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INTRODUCTION

Recent improvements in quieting of noise radiated by submarines have changed the nature of the
passive sonar detection and classification problem. Narrowband filtering followed by a power detector
works well when the emitted noise consists largely of signals with line spectra. However, if the emitted
noise is primarily broadband, then such a simple algorithm is no longer effective in low signal-to-noise
ratio (SNR) applications. These problems require detector and classification algorithms that are effective
for a broadband, nonstationary, stochastic signal imbedded in additive noise. For the passive sonar
application in a quiet ocean, the signal consists of the noise emitted by the submarine, while the additive
noise consists of receiver noise and ambient ocean noise. Frequently, the additive noise process is
Gaussian or near-Gaussian.

This paper summarizes the results of a computational evaluation of two new discrete-time detection
algorithms that may contribute to the solution of the new-era passive sonar detection problem. These are
likelihood-ratio-based algorithms under the assumption of Gaussian noise. However, in contrast to the
usual requirements on likelihood-ratio-based algorithms, their optimality is not based on knowledge of
the statistics of the signal-plus-noise (S + N) process. Instead, optimality is based on knowledge of the
drift function of a diffusion. Their implementation requires knowledge or estimation of this drift function
and knowledge or estimation of the noise covariance matrix and mean vector. In practice, these
parameters are typically estimated from data, and this is the procedure used in the study reported here.

Although the work reported here considered only detection, the new algorithms have obvious
potential for classification. The signal component of the S + N process is represented by a filtered
diffusion drift in the equations leading to the algorithms, and different target classes would correspond
to different diffusion drift functions.

The study included comparisons with appropriate reference algorithms. The evaluations resulted in
the new algorithms clearly outperforming comparable algorithms for detection of a broadband signal at
low values of false alarm probability (PFA)" This was despite the fact that the work did not include
optimization of the method used to estimate the diffusion drift function. It is speculated that the
algorithms' already excellent performance can be further improved with optimization of the estimation
procedure.

The derivation of the two new algorithms is partially contained in Refs. I and 2. Reference 3
contains a detailed discussion, including a derivation. They are optimum (approximations to a log-
likelihood ratio) for detecting stochastic signals in Gaussian noise under some mild assumptions on the
nature of noise and the S + N processes. 2,3 These assumptions include: mean-square continuity of the
continuous-time noise process from which the noise vector is obtained by sampling; zero energy in the
noise process at time zero (beginning of the observation period); spectral multiplicity of one (in the sense
of Cramdr and Hidal, 2,3) for the continuous-time process. The first of these three assumption is typically
satisfied; the third is approximately true in a mean-square sense;2'3 and the second can be fitnessed (when
not satisfied) byassuming that the first actual sample occurs at the second sampling time.

The algorithms were evaluated by using simulated Gaussian data and, more extensively, using passive
sonar data obtained from the output of a single hydrophone. The recording consisted of a segment of
noise (N), followed by a segment of a signal-plus-noise (S + N), followed by another segment of noise.

Five statistical tests for univariate normality were conducted on both the noise and the signal-plus-
noise data. In general, neither the noise nor the signal-plus-noise could be clearly accepted as Gaussian.
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The tendency toward Gaussian varied, depending on the frequency range being investigated. The non-
Gaussian nature of the data is illustrated by the relatively poor performance of the optimum (likelihood
ratio) detection algorithm under the hypothesis of Gaussian data (N and S + N), as shown below.

One of the new algorithms is totally adaptive to the signal-plus-noise process; implementation of the
other requires a "training" ensemble of signal-plus-noise data or prior knowledge of a time-varying
function representing a diffusion drift function. Both require knowledge or estimation of the noise
covariance matrix and mean vector. Comparisons were made with performance of reference algorithms
requiring comparable knowledge about the signal-plus-noise process. The algorithm that is adaptive to
the S + N process will henceforth be referred to as "adaptive." Although it is not fully adaptive, the
parameters that are required for its implementation depend solely on the noise, and are typically (for the
problems of interest here) much easier to obtain in reliable form than significant parameters of the S + N
process.

For the adaptive algorithm, termed Version 1, comparisons are made with an algorithm that computes
the squared norm of the output of a noise whitener (which is implemented by following a noise-whitener
with square-law device and then by in:egration), denoted WEN. The WEN requires prior knowledge of
the noise covariance matrix and mean vector, the same information required by the Version I algorithm.
Another reference algorithm was a simple energy detector, EN, which omits the noise whitener.

For the nonadaptive algorithm, denoted Version It, comparisons were made with the classical log-
likelihood-ratio detection algorithm (denoted GvG) when the data (noise and S + N) are Gaussian, and
with the best quadratic-plus-linear detector in Gaussian noise based on the deflection criterion (denoted
as DFL). These algorithms require the same type of knowledge for their implementation as does the
Version I1 algorithm, albeit partially in different form. All three require knowledge of the noise mean
vector and covariance matrix. In addition, the two reference algorithms require knowledge of the S + N
mean vector and covariance matrix. The Version II algorithm also requires knowledge of a two-variable
function determined by the S + N process: rather than a covariance matrix, this is a diffusion drift
function. Since none of these parameters are likely to be 1.nown in applications, implementation of all
three algorithms typically requires an ensemble of noise data and an ensemble of S + N data from which
to estimate the parameters.

Based on the assumptions, the continuous-time S + N process can be represented as a filtered

diffusion. The diffusion has the general form Z(t) = cr(s, Z(s))ds + W(t), where tht. function a is

the drift function of the diffusion and W is the standard Wiener process.2'3 Effective .stimation of this
function is the major problem in realizing the potential of the new algorithms. To implement Version
It, the drift function must be estimated (or, ideally, known). Version I estimates this function from the
observation vector, under the assumption that it is time-invariant. Polynomial regression was used to
estimate the drift function in the work reported here. However, for polynomials of order greater than -
one, a polynomnial drift function does not satisfy the assumptions under whi~h the algorithms were derived ar

when reasonable physical constraints are imposed. Thus, the results given here should be considered only 0
as lower bounds on their achievable performance.

With a large training ensemble, each of the two algorithms clearly outperformed its competitors on
the sonar data at low values of PFA. Their relative performance tailed off at high values of PFA. It is
speculated that this is due to poor estimation of the drift function. Additional performance gains should •/
be possible with more sophisticated estimation procedures. L Cadd'af

V'.iIi and/or
laJt i Special
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With small training ensembles, the adaptive algorithm outperformed all others at low values of PFA.
This is one of the most striking and encouraging (for eventual applications) results of the study.

The algorithms considered in this study that require prior knowledge of the S + N process are
Version 11, DFL, and GvG. In the study, this was obtained from an ensemble of training data. Such an
ensemble, almost perfectly matched to the evaluation data, will rarely, if ever, be available in
applications. Alternatively, the required parameters (mean vectors, covariance matrices, and diffusion
drift function) can be obtained from a good mathematical model of the S + N process. Again, this is
not likely to be available in many important applications. For such applications, the relative performance
of GvG, DFL, and Version II can only be regarded as benchmarks to which more implementable
algorithms can be compared. A possible exception is the Version 11 algorithm using a time-invariant drift
function, whose performance actually compared rather well with that of Version II when time-varying
drift was used. This implementation of Version 11 may be a reasonable goal for some applications.
However, as will be discussed, it is speculated that the adaptive Version I may have performance
comparable to that of Version II with time-invariant drift when long observation times are available.

Thus, a reasonable hypothesis is that the adaptive Version I is the algorithm having the most potential
for applications, and that its performance for long observation times is likely to be superior to that of all
the reference algorithms evaluated here, even when those algorithms have large S + N training ensembles
available. Of course, this must be qualified as resting largely on the assumption that the results here are
indicative of performance in more general applications.

These computational results, although very encouraging, should not be regarded in any sense as
definitive. Their principal contribution is to give a numerical confirmation, based on actual sonar data,
of the theoretical potential of the new algorithms. The fact that the algorithms performed so well with
very little attention given to optimizing their performance is especially encouraging, as is the relative
performance of the adaptive version in the face of an extremely short observation time. Since the new
algorithms require no assumptions on stationarity or on the signal being composed of a set of narrowband
components, they have obvious potential for applications to some of the Navy's most pressing detection
and classification problems. A long-term comprehensive program is needed to fully develop the
algorithms for sonar applications. Of course, many more data sets should be used for evaluations and
comparisons. Beyond this, a mixture of computational and theoretical research is needed to optimize
performance.

DATA ENSEMBLES

This section describes the data ensembles used in the detection studies. The studies, using
experimental data, were carried out on passive sonar data. These data are a time series of real numbers
that had been digitized from an analog tape recording of a single hydrophone. The recording was made
when the broadbpnd-radiating target platform (at an unknown depth) passed by the omnidirectional
hydrophone in a deep-ocean basin. The analog recording was made with instrumentation that preserved
frequency stability and provided a bandwidth well in excess of target frequencies of interest. A single-
channel analog-to-digital converter provided the time series data, which were stored on a nine-track tape.

A lofargram obtained from an array containing the above-mentioned hydrophone was obtained for
this same event. From inspection of the lofargram, noise (N) and signal-plus-noise (S + N) data
segments were identified. The noise used in the study was obtained from a data segment of
approximately 4.07 minutes duration, immediately preceding the S + N data segment. The latter was
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of the same time duration as the noise data. The lofargram and the hydrophone recording were furnished
by the Naval Ocean Systems Center (NOSC).

For the large training ensembles, the available NOSC data were divided into four ensembles, each
ensemble consisting of 5000 vectors of length 100. Since the sampling rate was 4096 samples/second,
each vector represented continuous-time data for a length of 100/4096 second.

The four ensembles consisted of two for training and two for evaluation, and were formed as follows.
For the noise training ensemble, a segment containing 5000 x 100 x 2 = 10s sample values was
selected. The first 100 sample values were selected for the training ensemble, the next 100 for the
eva!uation ensemble, the third 100 for the training ensemble, and so on. Thus, alternating 100-
component segments were selected for the training ensemble, alternated with 100-component segments
selected for the evaluation ensemble. A similar procedure was followed in forming the training and
evaluation ensembles for the signal-plus-noise.

For the small-training-ensemble evaluations, the evaluation ensembles were those defined above (N
and S + N ensembles, each consisting of 5000 sample vectors). However, the training ensemble for the
noise was formed by taking only the first 200 vectors of the 5000-vector training ensemble used in the
large training ensemble. Similarly, the S + N training ensemble was formed by taking only the first 200
vectors of the 5000-vector training ensemble used in the large-training-ensemble evaluations described
above.

Figures 1 throigh 5 show the results for unfiltered data. The algorithms evaluated here were also
evaluated using low-pass filtered data. Figure 6 shows some of these results. (For convenience, all
figures are grouped in the PERFORMANCE RESULTS section).

In addition to the ensembles formed from experimental data, two ensembles (one N, the other
S + N) of 100-component vectors were generated by computer simulation. The N ensemble was from
the Wiener process with mean zero, variance 1/100 (the sampling interval). The S + N ensemble was
from a diffusion with drift function f, f(x) = -25x. The algorithms were also evaluated for detection
performance on this data set.

DEFINITIONS AND DETECTION ALGORITHMS

This section contains a definition of basic quantities used to define the detection algorithms and a
definition of the test statistic A formed by each algorithm.

Basic Quantities

RN: Noise covariance matrix

Rs+N: S + N covariance matrix

inN: Noise mean vector

ms+N: S + N mean vector

A: Sampling interval
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aX: Vector of increments of a process X, obtained by sampling at interval A.
[6X](k) - X([k + I1A) - X(kA).

W: Random vector obtained by sampling the standard Wiener process W(t). ýW_ has
components and are i.i.d. (independent and identically distributed), normal, and with
variance A. The mean of LW in the experimental data was found to be non-negligible and
was subtracted out. That is, the noise mean was estimated from the training data and this
mean was subtracted from the evaluation data, so that _N and 6W were treated as if having
zero mean.

F: Lower triangular matrix satisfying RN = AFF* and N = FW, where * denotes transpose.
N_= F6W is a discrete-time representation of the noise process, which is assumed to have

the continuous-time representation N(t) = I F(t,s)dW(s). The F in the latter representation

is a function on 10, TJ X [0, T], where T is the time duration of the observed waveform.

a: Drift function of the diffusion Z assumed (for implementation of the new algorithms) to give
the S + N process: S +N - FLZ, where F is defined as above, and (6Z)(k) - Aa(k,
Zk) + 6W(k). LZ is a discrete-time representation of the differential of a diffusion process

Z having the representation Z(t) = o (s, Z(s))ds + W(t), where a is the drift function

of the diffusion.

L: Summation matrix; L(i, j) = I i > j
=0 i<j.

See Ref. 3 for a discussion of how diffusion processes arise in this application and Ref. 4 for a
general discussion of such processes. The Wiener process in the representation for the diffusion is not
the same Wiener process as that in the representation of the noise; see Ref. 3 for a discussion.

Detection Algorithms

Each detector forms a test statistic A having the value A(x) when x is the observed vector. The
decision is to decide "signal present" if A(x) exceeds a threshold, decide "noise only" if it does not. For
a given detector, the value of the threshold depends on the false alarm probability PFA.

1. Version I and Version 11 Algorithms (V.1 and V.11), for k-dimensional data vectors:3

k-IoJ,(Fxi]

A(x)•-P'E a[j, (LF'1x),][F'xJj., - ., (LF''x).
j-1

In Version 1, a is estimated from the observed vector x and is time-invariant (a(j, y) =
a(i, y) for all i, j, y).

In Version 11, a is estimated from a training ensemble of S + N vectors, is permitted to be
time-varying, and is inserted into the algorithm prior to the observation of the received
waveform.
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2. Gauss-vs-Gauss log-likeihood ratio (GvG; see, e.g., Ref. 5):

A(x) = (x - mN)* R1(x - MN) - (x - mN) RSN(X - MN)

m2(x - N) Rs.N(mS.N - MN).

3. Deflection Criterion Algorithm (DFL; Refs. 6, 7):

A(x) = (x- mN)*W(x - MN) + (x -MN)h

where W = RN'(RS*N - RN)RN' and h = 2RNI(mS-N - MN).

4. Noise Whitener - Energy Detector (WEN): A(x) = x *RN x.

5. Energy Detector (EN): A(x) = x * x.

As can bee seen, the simple energy detector requires no prior knowledge of the data properties. It
is perhaps closest to the standard lofargram when the input consists of broadband data. That is, the
lofargram is presumably constructed by computing the energy output from a large number of contiguous
narrowband filters. With broadband data having energy reasonably uniformly distributed across all
frequencies of interest, the narrowband filtering would serve no useful purpose. For some of the
evaluations, the EN algorithm is preceded by narrowband filtering.

The performance of the simple energy detector can be expected to lower-bound that of all the other
detectors. The two detectors WEN and V.I should give the next lowest performance; they require
knowledge only of the noise covariance matrix and mean vector.

The remaining three detectors, GvG, DFL, and V.11, all require knowledge of the S + N process
as well as knowledge of the noise covariance matrix and mean vector. GvG and DFL require knowledge
of the S + N covariance matrix and mean vector. V.11 requires knowledge of the (assumed) drift
function generating the diffusion which, when filtered by F, gives the S + N process.

In the studies summarized here, the a appearing in the definition of A for V.I and V.11 was modeled
as a low-order polynomial. For the large training ensembles, the maximum order investigated was of
order 8 for the V.J] algorithm. This was obtained by regression on 5000 sample values. For the V.I
detector, whtc'h had only 100 sample values with which to estimate or, the maximum order of polynomial
investigated was 3. The short observation time was presumably a substantial disadvantage for V.I.

For the small training ensembles, the V.11, Gauss-vs-Gauss, and Deflection algorithms were given
only 200 x 100 = 20,000 sample values of the S + N data from which to estimate the parameters,
depending on S + N. Together with V.I and the WEN, they were also given only 200 x 100 = 20,000
sample values of the noise from which to estimate the noise covariance matrix and mean vector. For this
evaluation, the V.I algorithm outperformed all others at low values of PFA. This is one of the most
significant and promising aspects of the study.

UNCLASSIFIED



UNCLASSIFIED

464 BAKER, FREY, AND PERSONS

ESTIMATION OF THE DIFFUSION DRIFT FUNCTION

For the two new algorithms, V.1 and V.11, it is assumed that the S + N process has the form

Y = F.Z, (1)

where RN = AFF*, F is lower triangular, and

(6Z)(k) = ,o(k, Z[k]) W([k + JiA) - W(kA). (2)

W is a sampled Wiener process, so that defining LW by (6W)(k) = W([k + I]A) - W(dA), ýW has
independent and identically-distributed components, each Gaussian with zero mean and variance of A (the
sampling interval).

With this model, the unknown a was estimated by modeling it as a polynomial of various orders and
the coefficients estimated by using multiple linear regression.' Performance using various orders was a
topic of investigation. Thus, for a pth order polynomial, the model was

p
(6Z)(k) = + ~ ÷ (MW)(k). (3)

i-O

The unknowns then consist of the coefficients {Jak, i < p, k < 100). They were estimated by standard
polynomial regression. For the Version I (adaptive), aki = ai for all k, each i: the drift function a is
time-invariant.

However, a polynomial of order greater than one does not satisfy the assumptions required for the
existence of the continuous-time likelihood ratio if one makes reasonable physical assumptions on the
continuous-time version of the process Z (the stochastic differential equation represented by the diffuion
way not have a solution; see Ref. 4. Polynomials were used primarily because of their ease of
implementation. The performance of the algorithms using polynomials can be expected (for strongly non-
Gaussian data) to be worse than performance using more appropriate drift function models.

Although the constraints of the study precluded a serious investigation of alternative methods of
estimating the drift function, a modest deviation from ordinary polynomial regression was eftfcted by
using weights. The original motivation for this was to compensate for the inappropriate nature of
polynomials of order greater than one as a model for the drift function. The procedure ,:in be
summarized jis follows. Suppose that a was represented by a pth-order polynomial so that for the jth
sampling time a(j, x) = ojpo + ajlx + ... + aj,pXp. First, estimate the unknown coefficients a,, using
standard polynomial regression.1 Then, multiply the coefficients {&i,, i = 2, ... , p) of the nonlhnar
terms by selected weights and use the resulting values in the implementation. Various weights are u,ed-
in some schemes, the weights vary with the coefficients; in others, the weights are the same. Ho% e- er,
the investigation is rather limited, and the use of different weights for the coefficients of dittdrent
nonlinear terms does not give appreciably better results than those obtained by using a constant weight
on all coefficients of nonlinear terms. This procedure is termed modified regression; the results rep,,rxc
here are for constant weights.
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The weights used in the study ranged from .5 to 3.33. The value of the weight used to obtain the
curves presented here was either 1.6 or 2. Weights of more than one increase the absolute values of the
coefficients of the nonlinear terms, as compared to unweighted coefficients. In the case of the V.I
(adaptive) algorithm, the best results were obtained by using a second-order polynomial with these
weights. This can be interpreted as being a consequence of two factors: the limited amount of data from
which the estimation was made, and the non-Gaussian nature of the S + N process. The first factor
would tend to make the use of higher-order polynomials unsatisfactory, since this would increase the
number of unknowns to be estimated from the data. The non-Gaussian nature of the data, however,
would lead to a need for emphasizing nonlinear effects in the drift function, and this is achieved by
increasing the absolute value of the coefficient for the second-order term. It must be noted, however,
that even for simulated Gaussian data the V.I algorithm performed best when using a second-order
polynomial and modified regression, rather than the first-order polynomial that theory would indicate.
This can be attributed to the small number of data samples available for the estimation. In the case of
V.11, which had a much larger sample for making the estimation, a first-order polynomial for the drift
function gave best performance on the simulated Gaussian data; a polynomial of order 7 gave best
performance on the sonar data.

There are many possible methods of implementing the estimation of the drift function. The choice
of polynomial regression for this study was due primarily to its ease of implementation, along with some
speculation that the sonar data might be sufficiently near to Gaussian that nonlinear polynomial terms
would be of secondary importance. The latter was not borne out by the results of the study. The data
not only deviated from Gaussian on the basis of statistical testing, but the detection results for the Gauss-
v s-Gauss log-likelihood ratio were markedly inferior to other algorithms and of a nature such that the
nonlinear properties are significant. Polynomials are therefore not suitable, based on theoretical
considerations; it is very encouraging that the results using them were so good. More appropriate models
and methods, satisfying the conditions for existence of the solution to a diffusion stochastic differential
equation and providing the nonlinear drift function needed to model a strongly non-Gaussian diffusion,
should be the subject of extensive further investigations on the algorithms.

SUMMARY OF RESULTS

Presentation

Results are shown in Fig. , through 7. Figure 1 is for simulated data; the remaining figures are for
the passive sonar data previously described. We summarize here the main results for the sonar data.

Large Training Ensembles

With a large training ensemble (5000 training vectors), the V.11 algorithms with a assumed to be a
polynomial of order 7 gave the best performance of all algorithms at low PFA values. The deflection
detector (DFIL) was second, followed (in order of performance) by V.I, GvG, WEN, and EN. The
relatively poor performance of GvG is a striking indication of the non-Gaussian nature of the data and
the sensitivity of this algorithm to the assumption of normality.

It is emphasized that the V.I algorithm relies totally on the observed waveform to make its estimate
of a. For the observation vectors of this study, V.I. had 100 sample values with which to work. The
V.11, DFL, and GvG detection algorithms all had 5000 x 100 = 500,000 points from which to estimate
their signal-dependent algorithm parameters. Thus, the relative performance of the V.I algorithm should
improve markedly when used with longer observation times.
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Small Training Ensembles

Two hundred noise training vectors and 200 signal-plus-noise training vectors were used in this
evaluation. Five thousand vectors, the same sets used in the evaluations for large training ensembles,
were used for the evaluation ensembles.

The most striking aspect of these results is the relative performance of the Version I algorithm. It
outperformed all other algorithms, even Version 11, at low values of PFA. Evidently, the same factor that
works against V.1 with a large training ensemble works in its favor with a small training ensemble: lack
of dependence on prior knowledge of the signal-plus-noise properties. Since the V.1 algorithm is by far
the most reasonable algorithm to implement (among all algorithms giving good performance at low values
of PFA), this result is highly encouraging for applications.

Time-Invariant Version II

Version II permits a time-varying drift function. Averaging the estimated drift function over time
gives a time-invariant function, and the performance of V.11 using this for the drift function can be
expected to be comparable to that of V.1 for long observation times. The results for the time-averaged
V.11 using a second-order polynomial for a were very near those of the V.11 with a time varying a and
the best-performing implementation (seventh order polynomial). Thus, for long observation times, one
may speculate that the V.1 algorithm with second-order drift polynomial will have relative performance
compared to that of GvG and DLF, which is reasonably near that of the best polynomial implementation
of V.11 using a time-varying drift function.

RANDOMNESS PROPERTIES OF THE TEST STATISTICS

In considering the elements necessary to have a valid evaluation of detection performance, the
following comments are relevant. For a given set of test statistic output values and a fixed threshold T,
define a corresponding 0-1 value for each statistic output, depending on whether or not the test statistic
output exceeds T. The resulting set of random variables should have a binomial distribution. Since the
set of threshold values varies considerably as a receiver operating curve (ROC) is constructed, this will
typically require that the set of test statistic outpu: be randoin (independent and identically distributed,
or i.i.d.).

Tests for randomness were conducted on four sets of detector outputs. Two sets consisted of test
statistic values for the simulated noise and S + N data used to form Fig. 1. The other two sets were
formed from the noise and S + N evaluation sonar data. Four tests of randomness were applied to each
set.

For the simulated data, both sets of test statistics were accepted as random by all four tests at a
significance level'6f .05. Each of the two sets formed from the sonar data were rejected as being random
by three of the four randomness tests.

Tests for univariate randomness of the sonar data were also conducted. These tests indicated that
data points separated by 24 samples could be accepted as i.i.d., provided that the total sample (including
omitted samples) did not exceed 17,000 data points. For each of the two sets of test statistics, the vectors
used to form the test statistics were separated by 100 of the original data samples. Thus, it seems most
likely that the test statistics' outputs were independent but not identically distributed.
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As discussed in Ref. 9, a failure to pass randomness tests can give insight into the nature of the data
properties. However, in the present case this is not easy to see, since the test statistic for which the tests
were made was the Version I algorithm using second-order polynomial regression to estimate a. This
test statistic involves linear, quadratic, cubic, and quartic operations on the original data. Even for the
simplest algorithm, VI.ol (V.1 using first-order polynomial regression), the test statistic involves linear
and quadratic operations, and then the difference of such operations. Thus, no general statement on the
reasons for the failures seems possible, except that it is most likely not due to lack of independence.

These facts do not seriously detract from the study. As noted above, statistical tests on the data
indicate that the set of test statistic outputs are independent, so that the probably cause of failing the
randomness tests is lack of being identically distributed. If, however, the data are representative, this
is just a consequence of the physical world. It means that data gathered over shorter observation periods
are probably needed to obtain test statistic outputs that would be accepted as identically distributed by
tests for randomness. Over the observation time used to take the data used in this study, the results will
give an estimate of relative performance of the several algorithms. It is this relative performance, rather
than individual quantitative estimates, that is of most interest here.

PERFORMANCE RESULTS

The following figures show performance of the algorithms. Some preliminary comments are
appropriate.

First, it is considered that PFA values of .02 and lower are of major interest.

The new algorithms were evaluated by using various orders of polynomial or modified polynomial
regression to estimate the drift function. The order of the polynomial is indicated in the designation of
the algorithm. For example, V.IIol is the Version II algorithm using first-order polynomial regression
to estimate the drift. Modified polynomial regression is indicated by an additional asterisk or other
identifier. These are defined in the comments immediately preceding the figure where the performance
is given.

All figures except Fig. 3 show results obtained with large training ensembles of 5,000 vectors. Figure
I is for simulated data; Figs. 2 through 7 are for the sonar data.

P" GvG I0

075- 0.75
%, 1o2 V.07

DFL Vfo

05 0ý5
05 DFL

0251- 4E 0.25

•EE%

I I I 0- -

O O(X)5 001 0015 ooz 0 0005 001 0015 002

PF4• PFA

Fig. 1 - (U) Simulated data Fig 2 - Large training ensembles
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Figure 1: Simulated Data

Figure 1 shows performance for simulated data. For these evaluations, the same data set was used
for training as for evaluations. The noise consisted of 5000 100-component vectors generated by the
standard Wiener process, sampled at intervals of .01 second. The signal-plus-noise process consisted of
5000 100-component vectors generated by a diffusion with drift function f, f(x) = -25x. The standard
Wiener process was used to generate the diffusion. The S + N process was then defined by

k

X([k + l]A) = A r (-25)X(iA) + W([k + IIA), (4)
i-I

where W denotes the Wiener process. The sampled Wiener vectors used to generate the diffusion (X)

vectors were not the same as those used to repres. € the noise.

The SNR (signal-to-noise ratio) is calculated according to

Trace Rs.N•,SNR = .N- 1, (5)

Trace RN

where R denotes correlation matrix (covariance matrix plus m*m, where m is the mean vector). This
definition permits negative values of SNR. However, it gives the classical definition in the case of
independent signal and noise. This seeming anomaly can be understood by noting that the classical SNR
actually satisfies SNR + 1 = (S + N energy)/(noise energy), and this is also satisfied by the definition
used here. Dependence between signal and noise can result in the S + N process having less energy than
the N process.
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For the simulated data, the SNR was -0.9, indicating strong negative correlation between the signal
and noise components of the S + N process. According to theory, the V.Iol and GvG algorithms
should have the same performance. In fact, the performance of GvG was slightly superior to that of V.II.
This could be simply due to happenstance (finite data set). However, a more fundamental explanation
may be more appropriate. Implementation of GvG depends only on knowledge of the data's covariance
matrices and mean vectors (for N and S + N). Implementation of V.11 requires knowledge of RN, inN,
and the drift function. It may be that estimation of Rs+N is more accurate than estimation by regression
of the drift, using 5000 data vectors. Also, errors in estimation of the drift may have more effect on V.11
performance than errors in estimation of Rs+N have on performance of GvG.

Figure 1 also shows the performance of the adaptive V.Io2*. This detection algorithm has drift
function o modeled by

o(x) = *o÷ x + rX+2x, (6)

when ao, oa, and a2 = 02/(1.6) are estimated by multiple linear regression.

Figure I also shows performance of V.Iol. V.IoI has drift function a given by

o(x) = 0o + a x, (7)

where % and a, are estimated by linear regression. In principle, this should be the best-performing
version of V.1, since the actual drift satisfies this model with 00 = 0 and a, = -25. The superior
performance of V.Io2* can be attributed to the relatively small number of data samples from which o is
estimated.

WEN had performance far inferior to that of the algorithms. Not displayed is the performance of
the simple energy detector EN, which was even worse.

Figure 2: Large Training Ensembles

These curves show performance for the NOSC data using large (5000 vector) training ensembles of
N and S + N data.

The curves include those for three algorithms whose implementation requires knowledge of S + N
data properties: V.11, GvG, and DFL. THe V.11o7* implementation has drift function a which is seventh
order polynomial:

7
aj(x) = Ujax', (8)

i=O

where the coefficients aft = .625 oji for i > I and =i =oi for i < 1 were estimated by multiple
linear regression.
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Perhaps the most striking aspect of these results is the relatively poor performance of GvG. As
previously discussed, the NOSC data were rejected by statistical testing as being Gaussian, although the
tendency toward normality varied with the data set tested. However, there is no ambiguity about the
detection results shown in Fig. 2: GvG performed far worse that V.1o7* and DFL. In fact GvG, which
used a 5000-vector training ensemble from which to estimate its necessary S + N parameters, performed
worse for PFA values under .018 than the two implementations of V.1o2, which had only 100 data
samples per observation from which to estimate S + N parameters.

Figure 2 also shows performance of algorithms that do not require prior knowledge of S + N
properties. In keeping with the results on simulated data, V.lo2* (a) has drift function defined by

a(x) = 0 + UIx + a2x, (9)

where ao, or, and &"2, 62 - c2/(1.6), are estimated by using multiple linear regression. However,
weights other than 1.6 were also investigated; of these a2 = c2/.5 gave the best results. This
implementation is shown as V.1o2* (b).

Figure 3: Small Training Ensembles

These results are for training ensembles (N and S + N) of 200 sample vectors, as discussed in the
preceding text. The same evaluation data were used as for the results of Fig. 2: 5000 from N and 5000
from S + N.

These results are considered more meaningful than those for the large training ensembles for most
applications. The reason, of course, is that large training ensembles, particularly of the S + N process,
will not usually be available. Even the noise characteristics may not be stable for long periods.

The most remarkable result of these evaluations is the superiority V.1o2* (1.6 factor, as in Fig. 1)
at low values of PFA. This is very promising for applications since V.I is easy to implement. It is
particularly impressive in view of the very short observation time (100/4096 second) and the 100 sample
values. Longer observation times and a larger number of data samples should improve the relative
performance of V.1 compared to GvG and DFL.

Results for V.11 are not displayed. Those results were inferior to the V.1 results using small training
ensembles.

Figure 4: Time-averaged Drift, Version I!

Version 11 pprmits time-varying a in its implementation. Version I permits only time-invariant drift.
With long observation times, the performance of Version I should be comparable to that of Version II
using a time-averaged drift. That is, with the V.11 original drift given by a,

p

a(j, x) = E a(j, i)xi, (10)
1-0
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define a by

p
a (x) E -a(11

i-O

where

100•i "• • ji.(12)

If long observation times are available, the estimate of a time-invariant a should be reasonably close
to the averaged time-varying a.

Thus, the results of Fig. 4 give reasonable estimates of V.1 performance if very long observation
times are available. Of course, as elsewhere, this is relative performance. Longer observation times
should also improve performance, if a good estimate of a is available, without reference to how a was
obtained.

The best results were obtained by averaging V.1lo2*, which was original drift a given by

0k(x) = aOo + X+ Or x 2 , +1 3)

wi-h ak0, akl, and O6, = a,/(1.6) determined from multiple linear regression. The remarkable aspect
of these results can be seen by comparing them with those given for V.Ilo7* in Fig. 2. This reveals that
the time-averaged second-order modified drift gave performance quite comparable to that with the time-
varying seventh order drift. Extrapolating, one may speculate that performance of V.Io2* may show the
same superiority over GvG and DFL as given by V.Ilo7* when long observation times are available.
The hypothesis needs to be investigated; if adequate experimental data are not available then simulations
could be used for a partial evaluation.

Figure 5: Version II Performance, Various Orders of Polynomial Drift

Figure 5 shows the performance of the V.11 algorithms using unmodified polynomial regression to
estimate the drift, with orders ranging from one to eight. Improvement over Order 1 occured almost
entirely at PFA values below .009. More evaluations are necessary to determine if the improvement
justifies thetcomplexity. Compared to V.llo7*, shown in Fig. 2, the difference is more significant, but
the relative superiority of V.1lo7* was still not impressive at PFA values greater than .009.

An interesting aspect of these results is the performance of V.Ilol, which uses a first-order
polynomial, in comparison with the performance of GvG as shown in Fig. 2. As previously discussed,
if S + N and N are both Gaussian, then the performance of V.llo I and GvG should be the same. Recall
that GvG had performance slightly better than that of V.llol for the Gaussian simulated data (Fig. 1).
However, for the sonar data, V.IIol far outperformed GvG. This is another indication of the significant
effect of the non-Gaussian property of the data.
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Figure 6: Filtered Data, Low-Frequency

Low-frequency data were obtained by passing the original data through a low-frequency bandpass
filter and also through two notch filters. The notch filters were inserted to remove weak lines in the
spectra.

Figure 6 shows performance using this filtered data with large training ensembles (5000 vectors for
N and for S + N). The data sets were those used to construct Fig. 2, but after being passed through the
bandpass filter and the two notch filters. For comparison, the results for the unfiltered data, already seen
in Fig. 2, are repeated.

The SNR for this filtered data was 2.886, vs 1.885 for the unfiltered data. The improved SNR
should result in all detection algorithms improving their performance. However, if an algorithm is
initially optimum for unfiltered data, its performance cannot improve for filtered data, since the filtering
simply introduces another stage into the detection algorithm. Conversely, a suboptimum detection
algorithm may well have improved performance if preceded by narrowband filtering.

These general considerations are borne out by the results shown in Fig. 6. V.lo2* is implemented
exactly as for Fig. 2. The results from Fig. 2 are shown for comparison. The algorithm's performance
on the filtered data substantially decreased. By contrast, the performance of the simple energy detector,
EN, substantially improved.

The basic idea here is that bandpass filtering is an irreversible operation on the data. Thus,
information available to an optimum algorithm is lost when bandpass filtering is applied, unless the
filtering is equivalent to a stage in the operation of the optimum algorithm on the unfiltered data.
Evidently, for the V.lo2* algorithm this is not the case. This can be understood by noting that the
bandpass filtering not only removes noise but also removes signal components in the higher frequency
ranges.

Figure 6 also shows the performances of GvG and DFL for filtered and unfiltered data. As can be
seen, there is very little difference between the results for the filtered and unfiltered data for these two
algorithms.

One complicating factor here is that the filtering included notches as well as the bandpass. One could
speculate that the degradation in performance of V.lo2* is due to loss of the line components. That this
is not the case seen in Fig. 7.

Figure 7: Performance with Notch Filtering vs No Filter

Figure 7 shews performance of V.To2* and EN. Performance is shown for unfiltered data and for
filtered data when the filter consists only of notches.

There was very little difference between performances of the two algorithms on filtered and unfiltered
data. For V.lo2*, this shows that the degradation due to filtering shown in Fig. 6 was due to the low-
frequency bandpass filtering.
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CONCLUSIONS AND RECOMMENDATIONS

The study reported here compared the detection performance of two new algorithms with a number
of appropriate reference algorithms using both simulated data and passive sonar data. One of the more
interesting results of the study was the relatively poor performance with the sonar data of the reference
algorithm that is a log-likelihood ratio under the assumption that both N and S + N are Gaussian.
Repetition of such a result using more extensive data would be an important and perhaps largely
unexpected revelation regarding models for passive sonar. The fact that sonar data fails a statistical test
for normality may not necessarily imply that algorithms based on the assumption of normality will not
perform well. However, the results given here indicate that the nature of the departure from Gaussian
for this data set was serious from a signal detection viewpoint, thus providing more incentive for
development of algorithms that are not based on the assumption of Gaussian data.

The results summarized here are the first computational results obtained for the new algorithms. The
broadband character of the sonar signal data is an important aspect of the work. As previously discussed,
the algorithms are directly descended, via reasonable assumptions and appropriate approximations, from
the exact log-likelihood-ratio for the continuous-time data. 3 Although their optimality is based on the
assumption of Gaussian noise, they require no assumptions about the statistical properties of the S + N
process. Moreover, the results of the present study, in which the sonar noise data failed statistical tests
for normality, indicate that the algorithms may not be sensitive to modest departures from normality of
the noise process. Their performance on the passive sonar data used in this study was superior to that
of all the comparable reference algorithms, despite the very rudimentary method used to estimate the
unknown drift function. The performance of both algorithms should improve when this procedure is
optimized. In addition, the extremely short observation time and small number of data samples per
observation, necessary because of data limitations, were presumably a strong handicap to the adaptive
version. The fact that the algorithms performed so well under these handicaps is very encouraging,
although we emphasize that this is for only one data set. Nevertheless, the results provide a preliminary
confirmation of the theoretical advantages of the new algorithms, particularly for use in detecting
broadband signals. Extensive further work, both theoretical and computational, is now needed to realize
their full potential.

Some of this work is fairly evident; other parts less so. It includes optimization of the method for
estimating the diffusion drift function, development of optimum array processing (for both fixed and
movable arrays) based on the new single-time-series algorithms, investigation of the effect of sampling
rate on the performance of approximations to likelihood ratios derived from S + N that is a filtered
diffusion (and particularly for the adaptive Version I), development of efficient and reliable methods of
simulating filtered diffusions (needed because large ensembles of S + N data are likely to be unavailable
for many applications, while empirical evaluations will be needed to determine performance estimates),
and extension of the detection algorithms to classification.

The theoretical components of the additional work required can be anticipated to be rather complex.
The reason is that the algorithms are not obtained by considering any optimality criterion for the discrete-
time problem but as approximations to a continuous-time likelihood ratio. Thus, it is the continuous-time
problem that is at the heart of the algorithms's development, as described in Refs. I and 3. This point
needs to be constantly kept in mind in carrying out the further work described above. That work seems
clearly worthwhile: The new algorithms appear to have the potential of providing significant
improvements over existing detection and classification methods when the signals are broadband, without
any assumptions on the signals' statistical properties.
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