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Abstract

Although visual function and visual performance have both
been investigated, the relationship between these measures is largely
unexplored. In this study, we have evaluated the receptor input for
visual pursuit motor tracking performance using the rhesus monkey
as an animal model for the human visual system. Spectral sensitivity
functions derived from rhesus spectral intensity tracking performance
functions emphasize the role of photopic retinal mechanisms for high
fidelity tracking performance criteria. Spectral sensitivity functions
under these conditions appear photopic in shape and reflect central
retinal long and intermediate cone systems. Scotopic intrusion may
occur as performance decreases with lower fidelity performance
criteria. Species differences previously reported between rhesus and
human long wavelength foveal retinal mechanisms may be reflected
in visual performance criteria as well.
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Visual Functions Associated with Rhesus Visuil Pursuit
Tracking - [. Zwick, J. Calabrese, M. Cook, J. Molchany, and
KR. Bloom

Introduction

Numerous comparisons of human and rhesus visual function
support the utilization of the rhesus monkey as a primary surrogate
for human vision. The present investigation concerned the visual
control of a complex visual motor task, pursuit motor tracking, and
the utilization of the rhesus monkey as a viable human surrogate.
The major question we asked was the extent to which the visual
guidance provided by the rhesus monkey can be compared to the
visual guidance mechanism employed by human observers.

Human visual pursuit tracking varies systematically with
luminance level (1,2). Molchany et al. (3) showed that the absolute
range of the photopic-mesopic luminance-rms error function in a
pursuit motor tracking task compares favorably with that of the
primate luminance acuity function (4). Although target size used in
these tracking experiments exceeded the size of vi-ual acuity targets
by approximately a factor of 10, fine human pursuit tracking
strategies under photopic luminance levels often seem to involve a
high degree of fine acuity adjustment of target with tracking cross-
hairs.

We have approached the problem of specifying the photopic
mechanisms involved in visual guidance of visual motor tracking by
determining the spectral sensitivity associated with this tracking
task. In recent years, the photopic processes of the rhesus monkey
have received considerable attention and generally match the human
visual system extremely well. Microspectrophotometric (MSP)
measurements of rhesus cone photopigments, measured indiscreetly
from foveal and parafoveal retinal regions, compare favorably with
psychophysical measurements of cone fundamentals (5).
Measurements of rhesus photopic spectral sensitivity have been
demonstrated to fit the human photopic functions with small
departure in the short wavelength region generally attributed to
differences in lens pigmentation (6-8). Human achromatic acuity is
slightly better at high photopic luminance levels and rhesus acuity is
better at scotopic acuity luminance levels (4). This species disparity
can be attributed to differences in optical parameters between human
and rhesus rather than retinal morphological or physiological factors.
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On the other hand, spectral sensitivity functions measured for
spatial grating and Landolt ring acuity criteria demonstrate a long
wavelength insensitivity in the rhesus monkey relative to the human
(9,10). In these investigations, target size is much more restrictive to
the fovea, especially in the latter investigation in which Landolt rings
less than 1 minute of arc produced the maximum long wavelength
differences between human and rhesus subjects. Adams et al. (11)
offered the possibility that foveal and parafoveal cones differ in either
distribution or in neural interaction. No assumptions were made
about differences between foveal and parafoveal cone photopigments,
as separation of foveal and parafoveal cones in MSP investigations
has not been technically feasible (5).

In the present investigation, we derived spectral sensitivity
functions for a rhesus pursuit visual motor tracking task. We
attempted a limited comparison of human and rhesus visual motor
tracking with regard to spectral differences in the long and middle
visible spectrum.

Methods

Twu rhesus monkeys were trained on a pursuit motor tracking
task which required continuous tracking of a horizontally moving
annulus by maintaining a small spot of HeNe laser light in the center
of this annulus. TIe rhesus monkeys were seated individually in a
large primate cubicle. Their viewing condition was monocular,
limited to only that portion of the screen across which the target
moved, via monocular fiberglass face masks individually constructed
for each animal. A viscous-damped tracking mount placed in front of
the cubicle supported a video camera and HeNe laser. The HeNe
laser served as the animal's aiming pointer. (The beam divergence of"
the HeNe laser equalled 1/2 miniiradian and was attenuated in
intensity by a 0.5 log unit filter.) A single lever arm with a vertical
handle grip projected from the tracking head into the cubicle, serving
as the control for the horizontal position of the laser pointer/video
camera pair. The video camera was aligned so that the center of the
video frame represented the aiming position of the HeNe laser. The
horizontal position of the target in the field of view of a 100 mm lens
mounted on the CCD video camera (Sony Corp. Mdl XC-37) was
determined by a microcomputer-controlled video digitizing circuit.
Target position was sampled at 21 Hz during the 20 second trial.
Software controlled all experimental contingencies and provided on-
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line determination of the aiming position and on/off-target status of
each sample.

The task for the monkey began with the presentation of the
stimulus target and the HeNe laser pointer. The animal was
required to move the HeNe laser until it was in the center of the
target ring. When the laser was correctly positioned within a window
centered on the targets center of mass, a white background masking
noise was terminated for 1 second as a cue for correct target
acquisition. At the end of the 1-second cue, the noise was turned on,
and the target began its horizontal track for 20 seconds. The monkey
was required to maintain the HeNe laser on the target's center
position until the target was extinguished. Positive reinforcement
was used to reward the monkey for accurate tracking (12). The
amount of liquid reinforcement (Tang• Orange Drink) was
determined by aiming accuracy on each trial. Pursuit tracking
targets consisted of reverse contrast annuli projected onto a curved
high reflectance screen. The inner ring diameters of these stimuli
varied from 18 min of arc to 3 min of arc. In this experiment, we
employed a 6 min of arc target in obtaining all achromatic and
chromatic intensity performance functions and spectral sensitivity
functions derived from criterion performance. Stimulus intensity was
varied by two continuously variable circular optical density wedges
automatically moved in opposite directions over an optical density
range of 3.8 log units. Narrow pass interference fflters (+/- 10 nm
half maximum bandwidth) were used to vary peak wavelength every
20 nm from 460 to 660 nm. An equal energy spectrum was
constructed by normalizing the energy at each wavelength with the
filter transmitting the maximum energy. Maximum energy was
measured at 600 nm. Intensity performance functions at each peak
wavelength were constructed from these measurements and spectral
sensitivity functions derived for various criterion time-on-target
performance criteria.

Three human subjects served in the same task under compara-
ble conditions for measurement of achromatic and selective chromatic
intensity performance functions (13). Rhesus and human achromatic
and chromatic intensity performance functions were statistically
evaluated using a general mixed-model Analysis of Variance (14).
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Results

Sample tracking data from one rhesus subject during a 20
second trial period is presented in Fig. 1. The dashed lines indicate
the inner diameter of the annulus which was 0.3 degree (18 min of
arc) in this particular sample. The time-on-target, the total time the
HeNe laser spot was maintained within the inner diameter of the
annulus, exceeded 90 percent. As target luminance or intensity
decreased, this measure of performance also decreased, as shown in
the following figures employing a 6 minute of arc annulus.

2.0

1.5 TARGET : 0.3 deg
LASER : Non-exposure

1.0

.0.5

W

-1.0

-1.5.-

-2.0 a aaa aaa

0 5 10 15 20
TIME (sec)

Figure 1. Sample visual tracking data from one rhesus subject. This
trial began after initial target had been successfully acquired; i.e.,
after subject has placed the HeNe laser spot within the inner
diameter of the annulus.
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In Fig. 2, human and rhesus mean achromatic intensity per-
formance functions are shown for 2 human and 2 rhesus subjects.
"The human function is superior for the higher luminance targets but
the rhesus function becomes slightly more sensitive at the lower
target intensities. Over the high intensity range, differences between
the human and the rhesus were statistically significant (p<0.05)
using a general mixed model Analysis of Variance (14). Although the
rhesus was slightly superior in time-on-target scores for the dimmer
luminance levels, differences at the three lower luminance levels were
not statistically significant.

Achromatic Comparison- Human vs Rhesus

120
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Figure 2. Comparison of mean human and rhesus intensity per-
formance functions for achromatic (white) targets. The human
achromatic intensity performance function is superior to the rhesus
function at the upper luminance levels. Plus and minus one standard
deviation scores are shown for each function. Standard deviations do
not overlap at all for the highest three luminance levels. At lower
luminance levels, the rhesus function becomes superior, and standard
deviations tend to overlap.
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In Fig. 3 mean spectral intensity performance functions at 520
and 640 nm are compared for the three human and two rhesus
subjects. At 520 nm the human function was slightly superior for the
high target intensity levels, whereas, the rhesus displayed better
time-on-target scores as target intensity decreased. The human 640
nm function is superior to the rhesus over the entire target intensity
range. The difference between human and rhesus time-on-target
scores at 640 nm over intensity was statistically significant (p< 0.05).
A similar ANOVA between human and rhesus time on target scores
at 520 nm was not statistically significant.

Sample Rhesus Intensity Performance
Functions for One Animal

110

100--
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Figure 3. Comparison of human and rhesus intensity performance
functions for two chromatic targets are presented in this figure. At
640 nm, the average human function (3 subjects) is superior to the
average rhesus function (2 subjects). At 520 nm the average human
function is initially superior to the rhesus but crosses over, becoming
less accurate, as target intensity decreases.
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Fig. 4 displays rhesus intensity performance functions sampled
over the visible spectrum for one rhesus subject. Systematic
variation in slope is evident from the shorter to the longer
wavelength functions; slopes become steeper as wavelength increases.

Chromatic Comparison - Human and Rhesus.

110
100 , H uman $-0 Um
90 - -- +-
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Figure 4. Rhesus spectral intensity performance functions for one
rhesus subject. These functions were measured at 20 nm intervals
between 460 and 660 nm.
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Spectral sensitivity functions derived for constant percent time-
on- target performance criteria are shown for two rhesus subjects in
Figs 5 and 6. In Fig. 5, the subject's spectral sensitivity at the 40
percent time-on-target criterion peaks between 500 and 520 nm with
a shoulder between 540 and 580 nm. As the time-on-target criterion
increased from 40 to 70 percent, overall sensitivity decreased by at
least 1 log unit at 500 nm with a relative plateau and a slight
depression at 560 nm between the 70 and 80 percent time-on-target
criteria.

Spectral Sensitivity for Performance

3.5

40%
-4-

50%

12.5 60%

70%

450 50 550 600 650 700WAVU (M

Figure 5. Spectral sensitivity functions for percent time-on-target
criteria are presented for the first rhesus subject. Spectral sensitivity
functions for constant time-on-target criteria were derived by relative
intensity values for constant percent time-on-target criteria at
different spectral intensity performance functions from 460 to 660
nm. Relative intensity values were then adjusted for equal energy by
normalizing each value to the spectral filter that transmitted
maximum energy, the 600 nm filter, and then, by plotting them as
reciprocal relative sensitivity values vs. wavelength for various equal
performance criteria. As time-on-target decreases, maximum spectral
sensitivity shifts from a shallow peak at 560 nm to a peak at 500 nm.
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A similar set of functions was derived for the second rhesus
subject shown in Fig. 6. At 40 percent time-on-target, the spectral
sensitivity function peaked at 500 nm and displayed a shoulder
between 540 and 580 nm. As time-on-target increased from 40 to 80
percent, peak sensitivity at 500 nm decreased by about I log unit
with a broad plateau from 520 to 580 nm.

Spectral Sensitivity for Performance
Criteria (Rhesu 2)

.3

2.5 40%

50%

. "-60%

70%

60%
0.5

VAVUDOR (nm)

Figure 6. Spectral sensitivity functions for percent time-on-target
criteria were derived as described above for the second rhesus subject.
A similar shift in spectral sensitivity function occurs for this animal
from a maximum sensitivity near 560 nm to a peak between 500 and
520 nm as criterion time-on-target decreases along with a similar
overall increase in sensitivity as observed in the first rhesus subject.
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In Fig. 7, we have compared the spectral sensitivity functions
obtained for the 40, 70 and 80 percent time-on-target criteria for
rhesus 1 with the Smith and Pokorny (15) cone fundamentals
normalized at 580 nm. In general, the long wavelength cone
fundamental provides a better fit at the long wavelength region for
all time-on-target criteria, whereas the intermediate cone
fundamental provides a better fit in the intermediate and shorter
wavelength spectral regions. However, it is also apparent that the
peak of the 40 percent time-on-target function is not well accounted
for by either fundamental. A similar situation is apparent in rhesus
2, in which a similar shift in peak spectral sensitivity occurs as the
time-on-target criterion is decreased.

Spectral Sensitivity Function Fits with
Cone Fundamentah
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b ". A0• ,L4%-GP~~
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Figure 7. Comparison three spectral sensitivity functions from
rhesus 1 at 40, 70 and 80 percent time-on-target which were
normalized with the Smith and Porkorny cone fundamentals at 580
nn.
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Discussion

Our major objective in this paper was the derivation of rhesus
spectral sensitivity for a complex visual motor task. Although rhesus
spectral sensitivity has been assessed in numerous investigations, to
our knowledge, no investigation has evaluated a complex visual motor
task with regard to the visual guidance provided by visual
mechanisms. The spectral sensitivity functions derived from rhesus
spectral intensity performance functions obtained in this study
provide a relationship between rhesus visual motor performance and
visuaLd mechanism guidance of pursuit motor tracking in the rhesus
monkey.

For high performance criteria, the rhesus spectral sensitivity
functions in both subject animals compare favorably with other
investigations of rhesus photopic spectral sensitivity. These functions
have a broad maximum sensitivity from 520 to 580 nm and appear to
make a good, although not perfect, fit with the long and intermediate
cone fundamentals of Smith and Pokorny (15). Encroachment of
shorter wavelength receptor mechanisms is suggested by the shift in
the peaks of these spectral sensitivity functions with decreasing time-
on-target criterion from 80 to 40 percent, as demonstrated in both
rhesus subjects. We have added the intermediate cone fundamental
to fit the 40 percent function (Fig. 7). Although this fit is not perfect,
it provides a better fit to the shorter wavelength end of the lower
criterion spectral sensitivity functions than that of the long
wavelength cone fundamental alone.

Although we have not fitted a rod spectral sensitivity function
to the lower criterion spectral sensitivity function, we do not preclude
the intrusion of rods as criterion time-on-target decreases. However,
evidence from previous measures of visual motor pursuit tracking
performance and tar,. .t luminance suggests that pursuit tracking
performance may operate into the mesopic luminance range but not
into the fully scotopic luminance range (3). Human observers report
a shift in their response strategy under dim luminance conditions
from a continuous tracking strategy involving fine adjustments to a
grosser tracking strategy involving discrete target "bracketing" or
estimation of center of target mass (1). Such strategies may involve
both peripheral and central retinal receptor processes. Similarly, in
the present study, both rhesus and human achromatic intensity
tracking functions (Fig. 2) fall off abruptly at the lower target
intensities.
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In addition to supporting the accepted status of the rhesus
monkey as a viable surrogate of human photopic function, we have
also demonstrated species differences reminiscent of previous rhesus
and human comparisons (4). Human tracking at the high intensity
levels (Fig. 2) exceeded that of the rhesus, whereas rhesus time-on-
target scores tend to exceed those of human observers at the dimmer
target intensity levels.

Even more significant was the dramatic difference between
human and rhesus intensity performance functions at 640 uin, as
compared to statistically non-significant differences between human
and rhesus functions at 520 nm. This result is consistent with target
sizes used in studies in which rhesus long wavelength sensitivity was
suppressed relative to the human (9,10,16-18). In other rhesus and
human comparisons of photopic spectral sensitivity, much more
agreement exists between human and rhesus in the spectral
sensitivity range from 580 to 640 nm (6-8). However, all of these
studies utilized test targets many times larger than the test target
limits which we used for observing rhesus long wavelength
insensitivity. Yet, in at least two studies (7,8) a small deficit in
rhesus long wavelength sensitivity either appeared without comment
or was noted and dismissed as incidental experimental variation.

In summary, we have derived spectral sensitivity functions for
complex rhesus visual motor performance. These spectral sensitivity
functions indicate domination of cone mechanisms, although rod
function may interact at lower photopic luminance levels.
Furthermore, these functions are consistent with data derived from
afferent visual response criteria as well as providing consistency with
possible species differences between the rhesus monkey and the
human regarding foveal visual processing in the visible long
wavelength spectral region.
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