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1 Introduction.

Let {1y, n > 1} be a sequence of random vectors taking values in R*, such that T,/n — ¢
in probability as n — oo. When the closure of the set S does not contain c, the probability
of the event {T,/n € S} tends to 0 and oftentimes at an exponential rate. Under these
circumstances the event {T,,/n € S} is called a large deviation event. Large deviation
theorems provide asymptotic expressions for the logarithm of probability of the large
deviation events while strong large deviation theorems provide asymptotic expressions
for the probability of the large deviation events. In this paper we will be mainly concerned

with strong large deviation results.

In the univariate case, when T, is the sum of n independent random variables
with a common nonlattice distribution function {d.f.) F', Cramér (1938) established one
of the earliest strong large deviation theorems for P(T,,/n > m). The lattice case was
treated by Blackwell and Hodges (1959). Bahadur and Ranga Rao (1960) generalized
these results by improving the remainder terms, both for nonlattice and lattice d.f. F
under the assumption of finiteness of the moment generating function (m.g.f.) of X,
in an interval around the origin. When the m.g.f. of X is finite in some nondegener-
ate interval, Petrov (1965) obtained analogous results which hold uniformly for m in a
compact interval with zero as one of its end points. Hoglund (1979) presented a unified
formulation of the results of Bahadur and Ranga Rao (1960) and Petrov (1965), both
for small and large deviations. He gave conditions under which the approximation holds

not only when m belongs to compact sets but also when m is close to oco.

A k-dimensional result which is related to the continuous case of Hoglund (1979)
was given by Borovkov and Rogozin (1965). These authors obtained strong large de-

viation theorems for P(T,/n € S,) under minimum conditions on the measurable sets
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{Sn, n > 1}. Von Bahr (1967) obtained strong large deviation thcorems for measurable
sets {S,, n > 1} which can be written as the difference of two convex sets considering
two cases. In the first case S,’s were assumed to be a subset of a sphere with its center
at the origin and in the other case S,’s were assumed to be contained in the comple-
ment of such a sphere. In a recent paper Robinson, et. al. (1990) extended the results of
Hoglund (1979). They considered the case where T}, is the sum of n independent random

vectors in R* with the first £y < k dimensions being lattice with span 1.

In this paper we obtain strong large deviation theorems for arbitrary sequences of
random vectors, under simple and easily verifiable conditions on the moment generating
functions. These results for arbitrary random vectors, generalize the univariate results
of Chaganty and Sethuraman (1992) and those of Petrov (1963). The key to the strong
large deviation result is a local limit theorem for arbitrary sequences of random vectors,
that is, a theorem on the convergence of pseudo-densities. Before obtaining the strong
large deviation result, we will prove such a local limit theorem under mild conditions on

the characteristic functions (c.f.’s) of the random vectors.

Let {Y,, n > 1} be a sequence of random vectors which converges in distribution
to Y. For any set S, let S° be the interior of S and S be the closure of S. Let S be
a measurable subset of R* such that 0 < u(S5°) = u(S) < oo, where u is the Lebesgue
measure on R* and b, — oo be a sequence of real numbers. Since Y, may not possess a
p.d.f., we will use gn(y; bn, S) = b5 P(ba(Yo—y) € S)/u(S) and call it the pseudo-density
of Y,.. The convergence of ¢,(y; bn, S) to the probability density function of Y wili be
referred to as a local limit theorem. In this paper we also obtain two local limit .Lieorems
(Theorems 2.1 and 2.2) for random vectors Y; under different conditions ca the c.f. of
Y.. A key result concerning asymptotic expressions for the Laplace transform cn the set

Y, > 0 is proved in Theorem 2.4. This result is used later in Section 3.
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As mentioned earlier, these local limit theorems are used to obtain a strong devi-
ation result (Theorem 3.4) for arbitrary random vectors. As an application of this large
deviation result, we obtain expressions [or the tail probabilities of the & dimensional

multivariate F-distribution in Section 4.

2 Multidimensional Local Limit Theorems.

Let {¥;, n > 1} be a sequence of random vectors taking values in R*, which converges
to a random vector Y in distribution. Let S be a measurable subset of R* satisfying
0 < u(S° = u(S) < oo, where u is the Lebesgue measure on R*. Let b, — oo be a
sequence of real numbers. Define

by
#(5)
for y in R*. Notice that ¢,(y; bs, S) is the p.d.f. of Y, + Z, where Z, is distributed

gn(y; bny S) =

P(bn(Yn —y) € 5) (2-1)

uniformly on —S/b,. We will refer to it as the pseudo-density of Y, and study its limiting
properties, since Y5 itself may not possess a p.d.f. Let {y,,n > 1} be a sequence of
random vectors in R* such that y, — y*. We will refer the convergence of gn(Yn; bn, S)

to the p.d.f. of ¥ at y* as a local limit theorem. We will use the following notations to

denote norms, vector products, etc. Let t = (¢1,...,1x), s = (s1,...,5;) be vectors in
RF. Define
<t,3> = t131+"'+tk3k
el = max It;]
[t = ltal+-- + [t
£ = R L AR
t 2 s ift,-Zs,- Vo (2—2)




We first obtain a local limit theorem under a strong condition. This is given in
Theorem 2.1 below. This strong condition is relaxed and a more useful result is given in

Theorem 2.2.

THEOREM 2.1 Let {Y,.,n > 1} be a sequence of random vectors which converges weakly
to a random vector Y. Let fn(t) and f(t) be the c.f.’s of Yo and Y respectively. Suppose

that there exists an integrable function f~(t) such that

sup|fa()] < J7(1) (2:3)

for all t. Then Y, possesses a bounded and continuous p.d.f. fu(y), ¥ also posscsses a

bounded and continuous p.d.f. f(u), and fu(yn) converges f(y™) if yn — y*.

Proof. Condition (2-3) implies that the c.i.’s fn(t) and f(¢) are integr. hte. Hence
both Y, and Y possess a bounded and continuous p.d.f.’s. The inversion formula and
the dominated convergence theorem show that f.(y.) converges to f(y™) if y, — ¥~ as

n — oQ. <>

Condition (2-3) is too strong to be useful in most situations. We show in The-
orem 2.2 below that appropriate bounds on the c.f. fn(t) on increasing sequences of

bounded intervals are sufficient to obtain results similar to Theorem 2.1.

THEOREM 2.2 Let {Y,, n > 1} be a sequence of random vectors which converges to a
random vector Y in distribution. Let fn(t) be the c.f. of Y, forn > 1 and let f(t) be
the c.f. of Y. Let {$,} and {b,} be sequences of real numbers such that 3, — oo and
b, — 0o. Suppose that there ezists an integrable function f*(t) such that for t € R*,

sup [fa(O)1 (It < B2) < f(1) (2-4)

4




and

d=ef

6N = sup fa(t)] = (b%) (2-5)

Ba<|It]<Abn

for each A > 0, where the above supremum is defined to be zero if {t : B, < ||t]|| £ Ab,} is
empty. Then the random vector Y possesscs a bounded and continuous p.d.f. f(y). Let
qn(y; bn, S) be the pseudo-density function of Y, as defined in (2-1). Then there exists

a finite constant M and an integer n, depending on S, such that

sup [qn(y$ bnv S)] S Af (2_6)
y

for n > ns. Furthermore, if y, — y~ then

Gn(Yn; b, S) — f(¥7) (2-7)
asn — 00.

Proof: Since fn(t) — f(t) pointwise and £, — oo, condition (2-4) implies that f(t) is
bounded by f~(t). Hence ¥ possesses a bounded and continuous p.d.f. f(y). Suppose
Ba/b, is bounded. Since 8%6,()) — 0, for each A > 0, we can find a sequence {\,}
satisfying

A =00 and  AfbEO.()) — O (2-8)

as n — oo. If 8,/b, — o0, put A, = B,/b, and in this case also (2-8) is satisfied because
0.(Az) = 0 for large n. For simplicity of notation set 6, def 0.(Xn). Let U, be the
uniform distribution on the set —S5/b, and un, G, be the p.d.f. and c.f. corresponding
to U,. We also introduce another distribution function (d.f.) V;, with p.d.f. v, and c.f.

Un, to obtain the important identity (2-11):




Akbk k [sin(/\ b xj/-z)r .
va(z) = it ,—oo<zT;<00,j=1,....k (2-9)
( ) LJ=I:[1 (Anbnlfj/Z) 2
II(1- 1Y It < Anba
() = { A b = (2-10)

0 otherwise.

Let F, be the d.f. of Y;,, and let Q, = F, x U, M, = @, * V, where * denotes the
convolution operation. Notice that ¢.(y; b,, S) defined in (2-1) is the p.d.f. of ,,. Let

m,(y) be the p.d.f. of M,. The c.f. 7,(t) of M,, which is equal to f,l(t)&n(t)irn(t)
vanishes outside the rectangle {¢t € R* : ||t|| € Anbn}. The inversion theorem yields the

following identity:

mn(y) = / 4/‘ltn<,\nb" ——Z <ty >) mn( )dtl ..o di
= / / gu(y — T; by S)vn(z) dzy .. . di
= bk / / Yo —y+2z) € S)va(z) dzy...dag.  (2-11)

Relation (2-11) is the starting point of the main part of this proof and it relates
¢=(y; bn, S) to the integrable c.f. 7hn,(t). Let yn — y*. We first show that m,(y.)
converges to f(y*) and then obtain lower and upper bounds for mu(y,) which depend

on ¢n(Yn; b, S). This will then establish (2-6) and (2-7). Using (2-8) and (2-11) we get

ma(y) —1—// exp(—i < t,y >) ma(t) dty...di
11tlI<Bn

/ / p(—t <t,y >)mu(t) dty...di
ﬁn<||t||<)\nbn

Al o dt+*(”"f

IN




t)dty...dt (2-12)

for n > ng, where ng is independent of y. From condition (2-4), (2-8). (2-12) and the

dominated convergence theorem and the inversion formula we get

Mn(Yn) — (_.—?71«‘7:/—0:0 e /_o:o exp(—i < t,y" >) f(t) dty ... dtx = fly™). (2-13)

Let n > 0. Let S(z,7n) = {y : lly — «|| < 5} be a ball of radius 4 (with norm || - |f)
centered at z. Let S, = {z : S(z, n) C S} and §7 = {y: ||z — y|| < 7 for some z € S}.
Since we have assumed that u(S°) = u(S) we can find (= n,) > 0 such that

p(S) >0 and  [u(ST)/u(S)] <2 (2-14)

Note that y € S, implies y +z € S(y,n) C S if ||z} < 5. Irom this, we get a lower

bound for m,(y) as follows:

bk
mn(y) 2 / ~/|27”<17/bn n Y, — y+ -T) € S) 'Un(il?) dIl ce. dl'k.
b
> P(b, (Y. —y) € Sy) ydz,...dx
= (S Pl / / rII<n/bn e O
> b P -y €S 1- 215
ST Rl L 219

Using (2-12), (2-16) and (2-8) we get

b ) 4 1*
”(5) (bn(}n - yn) € Sn) [1 - 7"/\1177] "
< o) € e [ [T P o S
< (2n)k/_m"'/_mf ) dty ... dt. (2-16)

|




for sufliciently large n. By replacing S by S™ and using (2-

we get

o o
ﬂg))P(b,L(}n Yn) € Sn) [1 — “n?’/]
p(S") 2 oo o

= /lEIS) (2m)k /_&oo /_mf () dty...dt
= (27r)k/ _""/;mf'(t)dtl .o di.

Since A, — 00 as n — oo we can find an integer n, so that

bk
su 2o P(b,(Y, —y,) €5, < M
ip [ PUbn (0, =) € )
for n > n,, where

15) and the fact that S C (87),,.

(2-19)

This proves assertion (2-6). Note that y € S implies that y — 2 € S” for ||z|| < 7.

Therefore for n > n, an upper bound for m,(y) is given by

maly) = Z:) /_°° /°° P(ba(Ya — y + ) € S) va(z) dz1 .. . das
= (nS) P2 / /|T|I<n/bn z) doy..day
< ﬁﬂ Pbo(Yn—yn) €SN+ M |1 - [1 - m\nn] } . (2-20)
Thus, from (2-14), (2-16) and (2-21) we get that




. b ,
limsup | =% P(b, (Y, — yn) € S3)

n /I.(S) \
b, .
< f(y*) < |liminf =2 P(b,(Ys — yn) € 5")]. (2-21)
nou(S)

Replacing S by 57 in the Lh.s. and S by 5, in the r.h.s. and using the relations § C (5"},

and (S5,)" C S we get that

: b .
lllnnsul) [/L(Sn) P(bn()n - yn) e S)]
bk
< *) < liminf Z— P(bp(Yn —yn) € Q)} ) 2-22)
o) < timi | T2 P (
Letting 7 — 0 and using the fact p(S°) = p(S) we get the assertion (2-7). &

We have replaced the strong condition (2-3) of Theorem 2.1 with a weaker but more
comlicated looking condition (2-4) in Theorem 2.2. The next theorem gives a convenient

condition to verify condition (2-4).

THEOREM 2.3 Let {Y,, n > 1} be a sequence of random veclors taking values in R*,
with c.f.’s {fn(t)} Let {d,} be a sequence of real numbers such that d, — oo. Assume
that there exists 6 > 0 such that g,(1) = d;*log |fn(dnt)| s differentiable in an open
neighborhood U = {t : ||t|| < §} of the origin for all n > 1. Suppose that there erisis
a > 0 such that fort € U,

'Vig.(t)t < —at't (2-:

™)
o
(V]
S

for alln > 1. Then condition (2-4) of Theorem 2.2 is satisfied with 3, = éd,,.

9




Proof: An application of Taylor’s theorem yields for ¢ € U.

, t/v‘z T {
7a(t) = gu(0)+ < t,Vga(0) > Jr——g,—)u
1V, ()t al't )
- S T - )"
= 3 < 5 (2-24)
where r, € /. Therefore for t/d, € U, we have,
at’t
: < - 2-25
gn(t/dn) _ 2(1;)1 ( ‘))
Let 8, = éd,,. Thus
(A< 8a) < exp(dh(ga(t/dn))
< exp(—at't/2) (2-26)
which is an integrable function. This completes the proof of the theorem. O

The next theorem obtains the limit of a function related to the Laplace transform
of the positive part of Y, when (2-6) and (2-7) hold. It plays an important role in the

proofs of the strong large deviation theorem of Section 3.

THEOREM 2.4 Let {},, n > 1} be a scquence of random veclors converging weakly {o
Y. Let {b,} Ve a sequence of real numbers such that b, — oo. Let S be a measurable
subset of R* such that 0 < ;(S°) = u(S) < oo. Let qu(y: ba. S) be as defined in (2-1).
Assumec that gu(y; bn, S) satisfies (2-6) and (2-7). Then

k
by Elexp(—by 3 Yu) I(Y, 2 0)] — £(0) (2-27)

=1

as n — 00.

Proof: Let A > 0 be given. Consider

I, = E[exp(—bnzk:}’m) 1(Y, > 0)]

i=1

10




o = L u (li = 1)h . LA
l1=1 l=1 ;=1 n n

1=1 1=1
Let yn, = (21; — 1)1 /2b,. Then

o 00 0 k k }
Z Z Z l:(,\]) _bn Z }111 H ] ( )b 711 Jnl < ! ):| (') )O)
L=1l=1 r=1 i=1 i=1 n

2b,

Let m = my, = [1/h* and S, = [=/2, h/2], 1 = (L. 1) and gyt = (Yntys- -~ Yniy)-

We now get lower and upper bounds for [, as follows:

m m m k
]n 2 Z ZZGXP(‘I’ZI:)P<—%<Ym Yul, < 7 L VZ)

2 bn

S D IR o ( hZz,) (Ut b 1) (2:30)

i=1

and
k
€Xp ( h Z(Z - l)) ‘h(?/nl% bn-. Sh)

Ik m m k
— XX e (A= 1) gl b )
nly=1i=1 =1
k k
HYTY (03

bk { s [f>m} (i - 1)) Gn(Ynt; bn, Sh)- (2-31)

Since yn — 0 for each | we have ¢,,(yni; bn, Sn) — f(0) as n — oc. Thus, we get

k
Iilr%inf(bﬁ L) > [Z exp(—I[h) }
_ h(exp(—h) — exp(—h(m + 1)))]* N
= /() [ 1 —exp(—h) (2-32)
and
limsup (511, < f(0)[h T2y exp(—(1 = DI + =hitimer T exp(=(1 = 1)h)

11




= f(0) ["“_—“"(—"Mr + Ak [—h—]kcxp(—mh). (2-33)

l—exp(—h) L—exp{=h)

From (2-33) and (2-34). letting 1 — 0 and noting that m = [1/1?%]. we get

li%n(bﬁln) = f(0). (2-34)
This completes the proof of the theorem. &

We will need the following extension of Theorem 2.4 in the next section.

THEOREM 2.5 Let {Y,,n > 1} be a sequence of random veclors in RE. Let fn(t) be
the c.f. of Y, formn > 1. Let {5,} und {b,} be sequences of recal numbers such that
B, — oo and b, — oo. Assume that {Y,, n > 1} salisfies condilions (2-4) and (2-5)
of Theorem 2.2. Let {P,, n > 1} be a sequence of real positive definite matrices whose
eigenvalues are bounded above and bounded away from 0. Let P2 be the unique positive
definite square-root of P,. Suppose that P}?Y, converges in distribution to a random

veclor Y. Then

o
[V
[
=

k
P72 85 Elexp(=8, YY) 1022 0)) = f(0) (

as n — oo, where f is the p.d.f. of Y.

Proof: We will show that every subsequence has a further subsequence such that (2-
36) holds for the subsequence. Consider a subsequence and denote it, for simplicity, as
the sequence {n} itself. Since the elements of P, are uniformly bounded. we can find
a further subsequence, which again for convenience is labelled as {n}, and a positive
definite matrix P such that P, — P as n — oco. Let Q = P~'/? then Y, converges to
@Y in distribution. Note that the p.d.f. of QY at zero equals |Q| f(0), where f is the

p.d.f. of Y. The conclusion (2-36) now follows from Theorems 2.2 and 2.4. )

12
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3 Strong Large Deviation Theorems.

Let {T,,. n > 1} be a sequence of random vectors in R*. Assume that the m.g.f. ¢,(z) =
Elexp(< z, T, >)] is holomorphic and nonvanishing in Q*(c), where Q(c) = {z € C :
|z] < ¢} for some ¢ > 0 and C is the set of complex numbers. Let {a,} be a sequence of
real numbers. Then

Gnl2) = — logou(2) (1)
is a well defined holomorpaic function on Q¥(c). Let Vi (z) = (Diyna(2).. ... Diidn(2))
be the vector of 1irst order partial derivatives and V2¢,(z) denote the matrix of second

order partial derivatives, that is,
V2wn(3) = (Dijd’n(z))- (3-2)
The determinant of the matrix V%, (z) is denoted by |V?,(z)]. For u in R*. let

Ta(u) = sup[< s, u> —¥n(s)]. (3-3)
selk

Let {m,} be a bounded sequence of vectors in R* such that there exists a sequence of

vectors {7,} satisfying

V() =m, and 0<d<ty<b<c foral 1<i<k, n>1. (3-4)

Under these conditions we can see that y,(mn,) =< my, 7 > —tPn(7,). Let K, bo
the d.f. of T,,. We will use the left continuovs version of the distribution function which

will enable us to write the identities in (3-6). Let

exp(< y, Tn >)
Wn(Tn)

dH,(y) = dK.(y), y€ R (3-5)

13




and T be random variable with d.f. H,(y). Let T = (17 — aym,)//a, and Y, =

(Yor...., Yo) where Y5, = 7, T, Using these new random variables we can write

ni”

P(T, > an,my,) = dh,(y)

/{yeR“:yZanmn}

/ | expl= < Y, Tn > +antn(7n)] dHaly)
{yER*:y>anmn}

= exp(antfn(ms)) Llexp(—van < 7, T >) 1{T7 > aymy,)]
= exp(_anvn("n CP\P Z Tni 1, m TTII > 0)]

= exp(—a,Yn(mn)) Elexp(—b, Z} I(Y, > 0)] (3-6)
where b, = \/a, and Y}, is as defined before. The next lemma obtains some important
properties of the sequence {¥,, n > 1}.

LEMMA 3.1 Let {T,,n > 1} be a sequence of random wvectors in R*. Let {m,} be
a bounded sequence of vectors in R* such that there erist a sequence of vectors {ma}

satisfying (3-4). Let the random vectors {Yn,n > 1} be as defined above. Assume that
{Tn,n 2 1} satisfies the following conditions:

(A) There exists 0 < B < oo such that |{',(z)] < 8 for alln > 1, z € D*(c).

(B) There exists a > 0 such that the eigenvalues of V), (1,) are bounded below by a
foralln > 1.

Let Dy, be the diagonal matriz with 7,; as the ith diagonal element. Then, Y, is asymplol-

ically multivariate normal with mean 0 and variance-covariance matriz D, V23, (7,) D,,.

14




Let fn(t) be the c.f. of Yo. Then there exists § > 0 and a; > 0, independent of n, such
that

sup @[] < 6v/an) < exp(—aqt't). (3-7)

Proof: The c.f. of T} is given by
GulTa + 1t/ /ay)

gn(1) = exp(—iva, < t, m, > , 3-8
gn(l) = exp(—iv/an, ey (3-8)

Since ¥,(z) is a holomorphic function in Q¥ (c), for |t] < (¢ — b)/2 we have

. . ot
log gn(t) = —iva, <t,my, > +au[vn(r +1 ) = Un(T0)]
Van
'V ()t

= ——IZQ—(T—) + an Ru(7n + z‘\/ta_n) (3-9)

where Ru (7 +1t) = Y23 Y (0 jal=j} a5 (ét)*. By Cauchy’s theorem and condition (A)
(see (3.7) of Chaganty and Sethuraman (1986)) we get the following bounds

3
< _
= (c—b)ll

|Dijtbn(ma)| < la{M| (3-10)

(c—b)
Thus the elements of the matrix V?¢,(7,) are bounded uniformly in n. Now for |t| <

(c—b)/2 and for all n > 1, we have

oo k
. 8
Rurtit] < 3 e 2
i=3 {a : al=i) :1;11: (c =0y
S L
< 5;:3: Tk (3-11)

Hence

aann(Tn + d




- 1Y .
< ﬁanz (2\/Z> Jk_)o (';'12)

Jj=3
as n — o0o. From (3-9) and (3-12) we have that T is asymptotically multivariate normal
with mean 0 and covariance matrix V2¥,(7,). Let D, be the diagonal matrix with 7,;
as the 7ith diagonal element. Note that Y, = D, T and Y, is asymptotically multivariate

normal with mean 0 and covariance matrix D, V2, (7,) D,. We now proceed to show

(3-7). Let

ga(t) = a;’ log |dn(y/ast)|

= Real (¢n(rn + it) — ¥n(Ta)). (3-13)
We find that,
t'V2g.(t)t = —t'Real (V3 (1, + it))t
= —t' V()1 + Real(Ra(mn + it)). (3-14)

From (3-11) we have |R.(7, +1t)|/|{|* converges to 0 as |t| — 0 uniformly in n. Therefore

we can find a 6; > 0 such that for ||t|| < é1,
[Ra(ra +it)] < o 1P < St (3-15)
From (3-14), (3-15) and condition (B) we have

t' V2, (1)t < —at't+ gt’t = —%t’t (3-16)

for ||t|| < é1. This shows that the c.f. §.(t) satisfies condition (2-24) of Theorem 2.3.

Hence

sup |gn ()] T(|[tll < 81v/ax) < exp(—at’t/2). (3-17)
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The c.f. fu(t) of ¥, is given by f,(t) = gn(Dnt). From (3-1) we get that d||t|| < ||Dat]| <
aollt]| and d*t't < t'Dy Dt < adt't. Let 6 = 61/ag and a; = ad?/2. Then from (3-17)

we get
sup | fu(O1T(l1tll < 63/@n) < exp(—ant't). (3-18)
This completes the proof of the Lemma. &

LEMMA 3.2 Let {T,,,n > 1} be a sequence of random vectors in RE. Let {m,} be
a bounded sequence of vectors in R* such that lhere crists a sequence of vectors {7,}
salisfying (3-4). Let a, — oo be a sequence of real numbers and let b, = \/a,. Suppose
that T,, satisfies conditions (A) and (B) and the following condition:

(C) There exists by > 0 such that

sup
{t:6<ltlI<A}

o (Tn + 1 1
PnlTn +11) ;n(::)t);:o(aﬁ/z) (3-19)

for any given § and A such that 0 < § < 8 < A. Let Y, be as defined in (3-6). Then

k k 1
E Toi [ V2n(70) |2 8% Elexp(—bn Y Yai) I(¥Yn 2 0)] — PISTEE

=1

(3-20)

Proof: We will prove this lemma by verifyving the conditions of Theorem 2.5 for the
sequence {Y,}. From Lemma 3.1, ¥, is asymptotically multivariate normal with mean
0 and covariance matrix D, V24, (7,) D,. From the same lemma, there exists a § > 0
such that (2-24) holds with 8, = éb,. Using condition (C) we get that for fixed A > 0,

sup | fa(2)] sup  [gn(Dn )]
8bn < It} < Abn 8bn <|1t]| < Abn

< sup | ga(t)]
6dbn <|}]|< \bbn
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on(Trz + Zt)

= sup -
On(Tn)

Sd<||t]| < \b

1

This verifies that the c.f. of Y}, also satisties condition (2-25) of T'heorem 2.2, Lrom (3-4).
(3-10) and condition (B) we can see that the eigenvalues of P, are bounded above and
away from zero below. Thus P, satisfies the conditions in Theorem 2.5. The assertion

(3-20) now follows from (2-36) of Theorem 2.5. &

REMARK 3.3 The conclusion (3-20) of Lemma 3.2 can also be rewritten in the form

k 1
b8 Elexp(—b, YY) I(Yn > 0)] ~
n Elexp( ; H0 2 0) (20 )*/2 [Ty Tos [V 20 (7)) M2

=1

(3-22)

where the symbol ~ means that the ratio of the two terms above tends to 1 as n — oc.
We are now in a position to state the main theorem of this section.

THEOREM 3.4 Let {T,, n > 1} be a sequence of random vectors in R*. Let {m,} be
a bounded sequence of vectors in R¥ such that there ezists a sequence of vectors {r,}
satisfying (3-4). Let a, — oo be a sequence of rcal numbers. Suppose that {T,, n > 1}
satisfies conditions (A), (B) and (C). Then

P (.& > my exP("an7n(mn)) (3-23)

an ) (27 an)*? T Tni | V20 (70) V2

1=1

Proof: Let Y, be a function of T, as defined in (3-6). The identity (3-6) states that

k
P(T, 2 anmy) = exp(—anyn(my)) E[exp(——bnz Yai) I(Ya > 0)] (3-24)

=1
Conditions (A), (B) and (C) imply that {};} satisfies the conditions of Lemma 3.2.
The conclusion (3-23) follows from (3-24) and (3-22). &
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4 Applications.

In this section we will demonstrate the applicability of the theorems in Section 3 with
an example. This example is concerned with approximating the probability of the tail

arcas of the multivariate I'-distribution.

Let Ghn, ... Gin and W5, be independent and distributed as chi-square with nAy, ... nAg
and n degrees of freedom respectively, where A, ..., Ay are fixed positive integers. Let
Gn = (Grn, ..., Gn). The distribution of the random vector X, = G,./W, is known as
the multivariate F-distribution with (nh;,... . nAc. n) degrees of freedom. Fix a vector
ro = (To1,...,7ox). We will use Theorem 3.4 to estimate the tail probability P(X, > ro),

which can be rewritten as

P(‘Xn 2 7"0) = P(Gn —To H/n 2 0)
= P(T. 20) (4-1)

where T, = G, — r¢W,,. The m.g.f. of T}, is given by

k 1 Ain/f2 1 n/2 k
nl<) = ’ ° € Q e
¢ ( ) tI_:Il (1_22’1) (1+2Zf=lzl’r0i—) ( )

where ! = {z € C : Real(z) < 1/2}. We will verify that {T,} satisfies the conditions
(A), (B) and (C) with a, = n and m, = 0 for n > 1. Note that ¢,(z) = L log ¢n(z) is

independent of n and is given by

1 & 1 ul
Y(z)= -3 > X log(l — 22;) — 5 log(1+ 2) " ziro), (4-3)

< a=1 1=1
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and 1(z) is bounded for Q*(c) for any 0 < ¢ < 1/2. Thus {T,} satisfies condition (A).
Since m, = 0 and v, = ¥ are independent of n, we have 7,’s satisfying (3-4) do not

depend on n and are equal to 7y, where the 1th component of 7y is given by

1 Ai(1 + k7) .
i==|l-————=]. 1<:<k 14
=g [ ror(1 +k)\)] ='= (1)

Assume that the vector rg = (ro1,. .., 7o) satisfies

Toi > /\i
L+ k77 14+kX

forall 1 <<% (4-5)

where 7 = Y. ro;/k and A = ¥ X;/k. From (4-4) and (4-5) we can verify that there exists
d>0and 0 < b<1/2such that d < 7; < bforall1 <: < k. Thus 7, = 7 satisfies
(3-4). With some simple calculations we can show that the determinant of V2 (7) is

given by

k r2. kX 2 -
V2 (70)| = I_I (2;_") (11:&?) (14+EX) (4-6)

showing that the eigenvalues of V23(7;) are bounded below away from zero. Thus {T.,}

satisfies condition (B). Using (4-2) we can see that for any given § > 0 and X > 4,

n

: y
sup M < M?_) (4_7)

(t:5<t)<3}|  Dn(T0) (t:8<ltli<ra} | Po(70)
where ¢o(z) = [15.,(1 — 22;)*/? is the joint m.g.f. of k independent chi-square random

variables. Since ¢o(70 + it)/do(70) is the c.f. of a nonlattice random vector, there exists

a > 0 such that




: y
sup M < e (4-8)
{t:8<|tfI<A} $o(70)
From (4-7) and (4-8) we get that
' 1 1
sup Mf—) =0 (k_/2> . (4-9)
(t:6<iti<ay | ®ol(To0) n

Thus we have verified that {7,,} satisfies condition (C). We now can apply Theorem 3.4
to the sequence {T,, n > 1} with the choice of a,, = n and m, = 0. Notice that v,(0) =
—(70), where ¢ is defined by (4-3). Thus from the conclusion (3-23) of Theorem 3.4
and (4-1) we get

P(Xo > o) ~ exp(n (7o)

@r ) TIey 7o V() 2 (4-10)

for any ro satisfying (4-5), where ¥, 7o and |V2y(7)| are given by (4-3), (4-4) and (4-6)

respectively.

Another application of Theorem 3.4 can be given for tail probabilities of a multi-
nomial distribution. We do not present the details of this application since it is very

similar to the above application to the multivariate F-distribution.
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