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1 Introduction.

Let {T1, n > 1} be a sequence of random vectors taking values in R', such that Tn/n --+ c

in probability as n -4 oo. When the closure of the set S does not contain c, the probability

of the event {T,/n E S} tends to 0 and oftentimes at an exponential rate. Under these

circumstances the event {T,/n E S) is called a large deviation event. Large deviation

theorems provide asymptotic expressions for the logarithm of probability of the large

deviation events while strong large deviation theorems provide asymptotic expressions

for the probability of the large deviation events. In this paper we will be mainly concerned

with strong large deviation results.

In the univariate case, when T,, is the sum of n independent random variables

with a common nonlattice distribution function (d.f.) F, Cram&r (1938) established one

of the earliest strong large deviation theorems for P(Tn/n > m). The lattice case was

treated by Blackwell and Hodges (1959). Bahadur and Ranga Rao (1960) generalized

these results by improving the remainder terms, both for nonlattice and lattice d.f. F

under the assumption of finiteness of the moment generating function (m.g.f.) of X1

in an interval around the origin. When the m.g.f. of X1 is finite in some nondegener-

ate interval, Petrov (1965) obtained analogous results which hold uniformly for 771 in a

compact interval with zero as one of its end points. H6glund (1979) presented a unified

formulation of the results of Bahadur and Ranga Rao (1960) and Petrov (1965), both

for small and large deviations. He gave conditions under which the approximation holds

not only when m belongs to compact sets but also when m is close to oo.

A k-dimensional result which is related to the continuous case of H6glund (1979)

was given by Borovkov and Rogozin (1965). These authors obtained strong large de-

viation theorems for P(Tn/n E S,) under minimum conditions oln tile measurable sets



{ S,, n > 1}. Von Bahr (1967) obtained strong large deviation theorems for measurable
sets {S,,, n_ 1} which can be written as the difference of two convex sets considering

two cases. In the first case Sn's were assumed to be a subset of a sphere with its center

at the origin and in the other case S,'s were assumed to be contained in the comple-

ment of such a sphere. In a recent paper Robinson, et. al. (1990) extended the results of

H6glund (1979). They considered the case where T,, is the sum of n independent random

vectors in Rk with the first ko _< k dimnensions being lattice with span 1.

In this paper we obtain strong large deviation theorems for arbitrary sequences of

random vectors, under simple and easily verifiable conditions on the moment generating

functions. These results for arbitrary random vectors, generalize the univariate results

of Chaganty and Sethuraman (1992) and those of Petrov (1965). The key to the strong

large deviation result is a local limit theorem for arbitrary sequences of random vectors,

that is, a theorem on the convergence of pseudo-densities. Before obtaining the strong

large deviation result, we will prove such a local limit theorem under mild conditions on

the characteristic functions (c.f.'s) of the random vectors.

Let {Y,, n > 1} be a sequence of random vectors which converges in distribution

to Y. For any set S, let S' be the interior of S and S be the closure of S. Let S be

a measurable subset of Rk such that 0 < ,(S°) = p(S) < oo, where IL is the Lebesgue

measure on Rk and b,, --+ oc be a sequence of real numbers. Since 1' may not possess a

p.d.f., we will use qn(y; bn, S) = b' P(b,(Y, -y) E S)/tI(S) and call it the pseudo-density

of Y,. The convergence of qn(y; bn, S) to the probability density function of Y 'vili be

referred to as a local limit theorem. In this paper we also obtain two local limit .1,eorems

(Theorems 2.1 and 2.2) for random vectors Y,, under different conditions oil the c.f. of

Yn. A key result concerning asymptotic expressions for the Laplace transform on the set

Y >_ 0 is proved in Theorem 2.4. This result is used later in Section 3.
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As mentioned earlier, these local limit theorems are used to obtain a strong devi-

ation result (Theorem 3.4) for arbitrary random vectors. As ail application of this large

deviation result, we obtain expressions for the tail probabilities of the k dimensional

multivariate F-distribution in Section 4.

2 Multidimensional Local Limit Theorems.

Let { Y, n > 1} be a sequence of random vectors taking values in Rk, which converges

to a random vector Y in distribution. Let S be a measurable subset of R' satisfying

0 < ft(S°) = yi(S) < oo, where p is the Lebesgue measure on Rk. Let b, --+ oo be a

sequence of real numbers. Define
k.

qn(y; b, S) = P(b,(Y', - y) E S) (2-1)

for y in Rk. Notice that qn(y; bn, S) is the p.d.f. of )Ln + Z, where Zn is distributed

uniformly on -S/bn. We will refer to it as the pseudo-density of Y, and study its limiting

properties, since I'n itself may not possess a p.d.f. Let {y•, n > 1} be a sequence of

random vectors in Rk such that y, --+ y'. We will refer the convergence of qn(yn; b", S)

to the p.d.f. of Y at y* as a local limit theorem. We will use the following notations to

denote norms, vector products, etc. Let t = (ti,... ,tk), s = (s1 ,..... sk) be vectors in

Rk. Define

< tS > = t1S1 + + tkSk

jIjtj = max It I
l<j<k

It! = Itil + + Itki

= _> 1 s 2  k__ i-

t > s if tjŽsi V 1. (2-2)
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WVe first obtain a local limit theorem under a strong condition. This is given in

Theorem 2.1 below. This strong condition is relaxed and a more useful result is given in

Theorem 2.2.

THEOREM 2.1 Let {Y,, n > 1) be a sequence of random vectors which converges weakly

to a random vector Y. Let f,(t) and f(t) be the c.f. 's of Y, and Y respectively. Suppose

that there exists an integrable function, f(t) such that

supilf(t)I < f*(t) (2-3)
n

for all t. Then Y} possesses a bounded and continuous p.d.f. f,,(y), Y also possesses a

bounded and continuous p.d.f. f(y), and fn(y,) converges f(y*) if yn --* yY.

Proof. Condition (2-3) implies that the c.f.'s f,(t) and f(t) are integr, •)ie. Hence

both Yn and Y possess a bounded and continuous p.d.f.'s. The inversion formula and

the dominated convergence theorem show that f,(yn) converges to f(y-) if yn --- y* as

n -4 00.

Condition (2-3) is too strong to be useful in most situations. We show in The-

orem 2.2 below that appropriate bounds on the c.f. f,(t) on increasing sequences of

bounded intervals are sufficient to obtain results similar to Theorem 2.1.

THEOREM 2.2 Let {Yn, n > 1} be a sequence of random vectors which converges to a

random vector Y in distribution. Let f,,(t) be the c.f. of Yi, for n > 1 and let f(t) be

the c.f. of Y. Let {f#,} and {bn} be sequences of real numbers such that 0, --+ c• and

bi oo 0. Suppose that there exists an integrable function f*(t) such that for t E R',

sup I(t)I (Althl _< on) < f*(t) (2-4)

n
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and

,(A) def sup lfn(t)l o (2-5)0,, (A) sup_.0 ,,
0.IjtII•Ab.

for each A > 0, where the above supremum is defined to be zero if {t: 0, < li11 < •AbI is

empty. Then the random vector Y possesscs a bounded and continuous p.d.f. f(y). Let

qn(y; b,, S) be the pseudo-density function of Y` as defined in (2-1). Thcn there exists

a finite constant 1M and an integer n, depending on S. such that

sup [q,(y; b., S)] _ Al (2-6)
Y

for n > n,. Furthermore, if yn -- y* then

qn (yn; bn, S) - f(y*) (2-7)

as n --- o.

Proof: Since f(t) -- f(t) pointwise and/3 -- 00, condition (2-4) implies that f(t) is

bounded by f'(t). Hence Y possesses a bounded and continuous p.d.f. f(y). Suppose

0,3/b, is bounded. Since b9On(A) -* 0, for each A > 0, we can find a sequence {A,}

satisfying

An --+ oo and Ak bk O,(An) --- 0 (2-8)

as n -4 00. If !3,,/b, -- 0, put An = 0,1/bn and in this case also (2-8) is satisfied because

0,(An) = 0 for large n. For simplicity of notation set On def 0n(An). Let Un be the

uniform distribution on the set -S/b,, and u,,, Ci,, be the p.d.f. and c.f. corresponding

to U,,. We also introduce another distribution function (d.f.) Vn with p.d.f. v,, and c.f.

s,,, to obtain the important identity (2-11):

5



SA•b• A.sin• nbnx,/2) I
A(kb)k k- (,(A•b7 a'j/2) 2 cx < xj < oc, j1,...,k (2-9)

r (l 1 if 11t[[ <5 )Ab,,
),, b, (2-10)

0 otherwise.

Let F,, be the d.f. of Y',, and let Q,, = F,, * U,, M , = Q,, * V, where * denotes the

convolution operation. Notice that qn(y; b, , S) defined in (2-1) is the p.d.f. of Qt . Let

mn(y) be the p.d.f. of M,. The c.f. rh7, (t) of M7 , which is equal to

vanishes outside the rectangle {t E R' : 11ill :_ A.7,bn}. The inversion theorem yields the

following identity:

771 , (y) = exp(-i < t, y >) rh7, (t) dt, ... dtk

= .. qn(y - x; bn, S)vn(x) dx, ... dxk

( -- J P(b , "(Y" - y + x) E S) v , (x) dx, ... drk. (2-11)

Relation (2-11) is the starting point of the main part of this proof and it relates

q,,(y; bn, S) to the integrable c.f. rh7 , (t). Let y, -+ y*. We first show that mn(yn)

converges to f(y*) and then obtain lower and upper bounds for mr, (y,,) which depend

on qn(yn, ; bn, , S). This will then establish (2-6) and (2-7). Using (2-8) and (2-11) we get

n(Y) (21 j j0:n exp(-i < t, y >) rh7"(t) dt, ... dtk

+ (2)k J j exp(-i < t, y >) ?h7, (t) dt ..'. dtk

1 (*~ .. (t) dt I...dtk + ,2 7)n

6



< f•) dt,""dtk" (2-12)

for n > n 0, where n0 is independent of y. From condition (2-4), (2-8), (2-12) and the

dominated convergence theorem and the inversion formula we get

m7y) 1 j_ ... J exp(-i < t, y* >) f(t) dt, ... dtk= f(y'). (2-13)

Let r7 > 0. Let S(x, 71) ={y :y - z-11 K il} be a ball of radius 71 (with norm

centered at x. Let S, = {x : S(x, r7) C S} and S" = {y: lix- y[ <_ 7j for some x E S).

Since we have assumed that /(So) = t(S) we can find 7-(= 77,) > 0 such that

y (S,) > 0 and [/t(S")/i(S)] < 2. (2-14)

Note that y E S, implies y + x E S(y, 71) C S if ijxil < 77. From this, we get a lower

bound for mrn(y) as follows:

mr (y) > b(<n P (b,,dY - Y + X) E S) v°(x) dx 1 ... dxk.

F T(S )I II 
I< , '\/bI

-- P(bn(yn -- y) E Sr7) f '''v,, Y(x) dxl 1"".dXk

-- 1I(S)- - ,l<77/bn

- P(bn(Y - Y() E S)) [I - (2-15)

Using (2-12), (2-16) and (2-8) we get

b~ k
n Pn_ Y - yn) E S,7) -4_

1_ 00_0 A~ k b"
- mn (y) :5 1. t dt, ... dtk+ n nl

(27r~k 1.(2-, )k

< ... fJ (t) dtt...dtk. (2-16)

-- (It~k • .- o "'



for sufficiently large n. By replacing S by S" and usilg (2-15) and the fact that S C (S°)o.

we get

It(S P(b,_(Y_ - y•) E S,) 1 r4, i]

Y(S') I 9... f

< (S) (9,.)k f•, -- (t) dt,...dtk

(4 ... fJ(t) dt.. dlk. (2-17)- (2r)k 0 .0

Since A• -- oo as n -- oo we can find an integer n, so that

[su P(b,(I'-- y.) E 5,j] < M (2-18)

for n > n, where

M - ... J f'(t) dt, ... dtk. (2-19)M - (.27r)k 00" -

This proves assertion (2-6). Note that y E S implies that y - x E S' for ILxjj < ?7.

Therefore for n > n, an upper bound for ran(y) is given by

m (y) b= J -F P(b,('Y - y + x) E S) vo(x)dx, ...dXkY(s) 0o _-D

Sb•___•_ P (bn(In - y) E S') . .. J v (x) dxI ... dxkP (S)_ I _,.,11<,,/b.

+M J ... IIl>,/b. vn(X) dx I... dxkb ~ k 4 jk]
-(b.(Y. - Y() E S-) + Al [. - (2-20)

Thus, from (2-14), (2-16) and (2-21) we get that

8



r 1
im KS) P(b•,(V;,_ :) ) E S,,)j]im [u L t(S)I

< f (Y) • liminf b" P(b,,(I', -,n) O 5E1"). (2-21)

Replacing S by S" in the 1.h.s. and S by, S71 in the r.h.s. and using the relations S C (5'l),

and (S,)" C S we get that

limsup [L____ P(b•(•;, - y") E s)

F k1

< f(y) < mim1inf b P(b,(Y - yn) E ,q) • (2-22)

Letting q --+ 0 and using the fact yt(S°) = ti(S) we get the assertion (2-7).

We have replaced the strong condition (2-3) of Theorem 2.1 with a weaker but more

comlicated looking condition (2-4) in Theorem 2.2. The next theorem gives a convenient

condition to verify condition (2-4).

THEOREM 2.3 Let {Y,,, n > 1} be a sequence of random vectors taking values in Rk,

with c.f. 's {f1(t)}. Let {dn} be a sequence of real numbers such that d, ---+ 00. .Assumne

that there exists 6 > 0 such that gn(t) = dn"2 log If(d,,t)I is differentiable in an open

neighborhood U = {t : 11til < 6} of the origin for all n > 1. Suppose that there exists

a > 0 such that for t E U,

tIV2 gn(tOt - -- Ot't (2-23)

for all it > 1. Then condition (2-4) of Theorem 2.2 is satisfied with 3n = bd,,.

9



Proof: An application of Taylor's theorem yields for I E U.

9•(t) M g,(o)+ < t, Vg" (0) >
(224

2 - "

where r, E U. Therefore for i/d,, E U, we have.,
aftt

9,(114,) <5 .t (2-25)

71

Let 03,, = 6d,,. Thus

ýI(t)lI(lltll < f0,) -< exp(d',(g,(t/d.)))

< exp(-ai't/2) (2-26)

which is an integrable function. This completes the proof of the theorem. <>

The next theorem obtains the limit of a function related to the Laplace transform

of the positive part of Yn when (2-6) and (2-7) hold. It plays an important role in the

proofs of the strong large deviation theorem of Section 3.

THEOREM 2.4 Let {Y., n 7> I} bc a .sequence of randomn vfclors conrerging weakly to

Y. Let {b,} be a sequence of real numbers such that b, - o0. Let S be a measurable

subset of Rk such that 0 < /t(,• 0 ) = p,(S) < o,. Let q,,(y; b,, S) be as defined in (2-1).

Assume that qn(y; bn, S) satisfies (2-6) and (2-7). Then

kb• ~E[exp(-b,• n;, n(',>_01-*f0 (2-27)

i=1

as n -- oo.

Proof: Let h > 0 be given. Consider

k

In = E[exp(-bZ1'ni) I(),- > 0)]
i=1

10



E YZ E1 E [cxp(-b, E Y r fJi ( ~<(-
11=1 12=1 -i L=1 k== b,

Let y,,, (21i - 1)h/2b,,. Then

cc cc c k k
I = Z --... Eexp(-b, 1 Y;i) II (i-' _ y;,,-y, < (2-29)

11=1 12=-1 /k=l i=1 =1ý1 2, 1-b

Let m =Mh = [1/h 2 ] and Sh = [-h/2, h.2/]k, I = ( ... , Ilk) and y,,, = (yn,,. .  y,-).

We now get lower and upper bounds for 1, as follows:

rm m m k

I> .-.Z exp(-IZ )- y,,e, < h i
11=1 12=1 Ik=1 i=1 2 , P -"

- k. exp -h 1) qn ,, ; b ,,) (2-30)

n 11=1 1
k=l i=1

and

< •-. exp -h (li - 1) q,(y,1; by, Sh)
n11=1 12=1 IK-.= i=1

7k-± E ... Zexp (h -(l - 1)) q.n(y,1,; b., Sh)
" 11=1 12=1 /t,=1 i=1

;-bk -- - "' exp -ht -•(/i - 1) qn(y,,,a b, , Sh). (2-31)

Since yI -- 0 for each 1 we have q,,(y,7 j; by, Sh) ' f(O) as n - oc. Thus, we get.

k
Iimin1f (bkIn) _f f(0) h k exp(-1h)

=f [h(exp(-h)-exp(-h(m+ )))lk
- (0) [he~ 1) - exp(-h) J(2-32)

and
)] + AIkh" -(I 1)h

limsup(b$l,•) < f(O) [h. FtL exp(-(l - 1 )h)]k + Mph, ZEm+l exp(-(l- 1)h)

11



[() 1-ep(-h + ,I I Ah (2-3-3)

From (2-33) and (2-34). letting h -* 0 and noting that mn =[ /J21]. we get

hi-n(bI,,) = [(0). (2-34)

This completes the proof of the theorenm.

We will need the following extension of Theorem 2.4 in the next section.

THEOREM 2.5 Let {1n', n > 1} be a sequence of random vectors in R'k. L•t f,,(1) bf.

the c.f. of I" for n > 1. Let {3,1} and {b,,} be sequences of real numinbers such that

On -4 oc and b,, --+ oo. Assume that {1'n, ,, > 1} satisfies co,,ditions (2-4) and (2-5)

of Theorem 2.2. Let { P,_ n > 1} be a sequence of real positive definite matrices whose

eigenvalues are bounded above and bounded away from 0. Let p, / 2 be the unique positiveC

definite square-root of Pn. Suppose that p n/2 XI converges in distribution to a random

vector Y. Then

k
IP,.,11/2 bn E~exp(-br, Ini;,.) IOl, >_> 0)] --- .(0) (2-45)

t=l

as n - oc, where f is the p.d.f. of Y.

Proof: We will show that every subsequence has a further subsequence such that (2-

36) holds for the subsequence. Consider a subsequence and denote it, for simplicity, as

the sequence {n} itself. Since the elements of P, are uniformly bounded. we can find

a further subsequence, which again for convenience is labelled as {n}, and a positive

definite matrix P such that Pn -* P as n --+ oo. Let Q = P- 1 1', then I, converges to

Q Y in distribution. Note that the p.d.f. of Q Y at zero equals IQI f(0). where f is the

p.d.f. of 1'. The conclusion (2-36) now follows from Theorems 2.2 and 2.4.

12



3 Strong Large Deviation Theorems.

Let {TV,, 7? >_ I} be a sequence of random vectors in 11 R. Assume that the m.g.f. 9,,(z)

E[exp(< z, T7, >)] is holomorphic and nonvanishing in £Qk(c), where Q(c) = {z E C

Iz1 < c} for some c > 0 and C is the set of complex numbers. Let {a,,} be a Sequence of

real numbers. Then

1
= -- logQ,1 (z) (3-1)

is a well defined holomorpaic function on Qk(c). Let V'/,, (z) = (D, 7,, (z) .... Dk ,,(z))

be the vector of fi'st order partial derivatives and V24',(z) denote the matrix of second

order partial derivativcs, that is,

V2471(z) = (D~pm,,(z)). (3-2)

The determinant of the matrix V 20b,(z) is denoted by IV22,',(z)1 . For u in R k. let

-Y(u) = sup[< S, u > -'().(3-3)
sE~h

Let {m,} be a bounded sequence of vectors in Rfk such that there exists a sequence of

vectors {Tm} satisfying

Vib,(rn)=m, and 0<d< i-7 i<b<c forall I <i<_k, n_>1. (3-4)

Under these conditions we can see that '(r, 1) =< rn,m, r,, > -ib(r•). Let K, b.2

the d.f. of T,,. \We will use the left continuov-" version of the distribution function which

will enable us to write the identities in (3-6). Let

d i y) = exp(< y, 'r , >) dK ,ý(y), y E R ' (3-5)
0.(7(,k )

13



and T,. be random variable with d.f. H,,(y). Let 7",' = (7', - a,,mn)/1V/f, and ,

(Y,1 1...., i nk) wh'Iere ICie = TzT'L. Using these new random variables we can write

P(Tn > aomn) = J{YERk:y[arn1 dK,(y)

= eERk:y m exp[- < y, 7,• > +alýfl(il)] dJI,(y)

= exp(aUn4'n( Tn)) E[exp(-V/'; < -n, 7" >) I(7 _> a,,)]

k= exp(- a ,,-y(",n)) E [exp(- 1 : 7,j T,',) I( n'n >- 0)]

i=1

k

exp(-anYn(mn,)) E[exp(-bnZ IJ()' n0)] (3-6)
i=1

where b, a-,a and I", is as defined before. The next lemma obtains some important

properties of the sequence {f', n > 1).

LEMMA 3.1 Let {T,,n > 1} be a sequence of random vectors in Rk. Let {m,, } be

a bounded sequence of vectors in Rfk such that there exist a sequence of vectors {1,7}

satisfying (3-4). Let the random vectors {Yn,n > 1} be as defined above. Assume that

{T,, n > 1) satisfies the following conditions:

(A) There exists 0 < 0 < oo such that K'n(Z)I < 0 for all n > 1, . E fQk(c).

(B) There exists a > 0 such that the eigenvalues of V2 'V,,(rn) are bounded below by a

for all n > 1.

Let D, be the diagonal matrix with rni as the ith diagonal element. Then, E1 is asyniptlt-

ically multivariate normal with mean 0 and variance-covariance matrix D, V 2 b,(7,,) D,.
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Let f,(t) bc the c.f. of Y'. Then thcrf, exists 6 > 0 and oa > 0, ind(pc.ndtnt of n, such

that

sup Ifn(o) 1(11til < 8v,,) _< cxp(-at't). (3-7)
n

Proof: The c.f. of T, is given by

= exp(-i/a--. < t, mn, >) o,(7n + '11,/-;) (3-8)ý, (7n)

Since ',,(z) is a holomorphic function in Qk(c), for ItJ < (c - b)/2 we have

log1 (t) = -ia < t, 7rn > +aýn['r(n + )-

- t 'V2 ,(-r)t + an Rn ( 7•, + i2 ) (3-9)

2 V-

where R,•(,, + it) = EZj3 E{a: 1,1=j} a,,,(it)°. By Cauchy's theorem and condition (A)

(see (3.7) of Chaganty and Sethuraman (1986)) we get the following bounds

ID~j¢(-)I _ ( ) l - (c5- b)2ol" (3-10)

Thus the elements of the matrix V 2 ?P(r.) are bounded uniformly in n. Now for Itl <

(c - b)/2 and for all n > 1, we have

k
R -(7n + Rt)l< E E JItIr'

j=3 {Ir lhrl=j) i=1 (c - b)i

E/3 (3-11)
j=3 (c - b)

Hence

t Ij 1,. jk
a~jRn (7n + iVa-. )1 la (c -b)' aj/2

j=3
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< ia, ( ) --k 0 (:-12)
j=3

as 71 --+ 0. From (3-9) and (3-12) we have that I/',' is asymptotically multivariate normal

with mean 0 and covariance matrix V 2 ,'n(Tr). Let D, be the diagonal matrix with I

as the iti diagonal element. Note that D T,', and Y, is asymptotically miltivariate

normal with mean 0 and covariance matrix D, V2 ,',,(Tr,,)D•. \Ve now proceed to show

(3-7). Let

gn(t) = an' log Iý.(v','t)l

= Real ,In(,r + it) - O,(7,•)). (3-13)

We find that,

t' V 2g,•(t) t = -t'Real (V 2,•'n(T + it)) t

= -t'V 2 On(m.)t + Real(R!(T, + it)). (3-14)

From (3-11) we have R,•(rn +it)l/ltl 2 converges to 0 as I1 -+ 0 uniformly in n. Therefore

we can find a 61 > 0 such that for I11tI < 61,

IRn(Tn + it)f :5 ' It12 < a ,t (3-15)

From (3-14), (3-15) and condition (B) we have

tVg. (t)t <- -a t't + -+tl t -- t' t (3-16)
2 2

for Iltll < 61. This shows that the c.f. ýn(t) satisfies condition (2-24) of Theorem 2.3.

Hence

sup 1I.(t)l I(IltIl < 6,v',,) <_ exp(-at't/ 2 ). (3-17)
n
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The c.f. f,(t) of ¾; is given by f,(t)= f'n(Dt). From (3-4) we get that dill[ <_ H D, t]l <

aolltll and d't't < t'D Dnt <_ a 2t't. Let 6 = 61/ao and 01 = &d2/2. Then, from (3-17)

we' get

sup 1fn(t)I I(Iitjj < bVa/-) < exp(-oit't). (3-18)
71

This completes the proof of the Lemma.

LEMMA 3.2 Let {T,, n > 1} be a sequcncc of random vectors in Rk. Let {m,,} b(

a bounded sequence of vectors in Rk such that there cxists a sequence of vectors {r.j

satisfying (3-4). Let a,• - oo be a sequence of real numbers and let b, = yi-7" Suppose

that Tn satisfies conditions (A) and (B) and the following condition:

(C) There exists 6o > 0 such that

{t:SU<P} •(±I =+ (ak/2) (3-19)

for any given 6 and A such that 0 < 6 < 60 < A. Let E• be as defined in (3-6). Then

k k 1
'n l(r bn E[exp(-b,, Yni)/(Yn• >- 0)] -+- (27r)k,/2. (3-20)

i=1 i=1

Proof: \Ve will prove this lemma by verifying the conditions of Theorem 2.5 for the

sequence {Y'}. From Lemma 3.1, Y§, is asymptotically multivariate normal with mean

0 and covariance matrix Dn V 2
V'"(T7) Dn. From the same lemma, there exists a 6 > 0

such that (2-24) holds with /3O = 6bn. Using condition (C) we get that for fixed A > 0,

sup I.(t)I = sup IOn(D, t)I

K sup IO (t)I
17db,<jjtj <,bb,

I1-



= (sup =i . (3-21)

This verifies that the c.f. of Yn also satisties condition (2-25) of Theorem 2.2. From (3-4).

(3-10) and condition (B) we can see that the eigenvalues of P,. are bounded above and

away from zero below. Thus P, satisfies the conditions in Theorem 2.5. The assertion

(3-20) now follows from (2-36) of Theorem 2.5. <>

REMARK 3.3 The conclusion (3-20) of Lemma 3.2 can also be rewritten in the form

k 1

b E[exp(-b, ZYn)I(1"n > 0)] )/2 3-22).:=(27-) I/2 H =1  (3-.

where the symbol -- means that the ratio of the two terms above tends to 1 as 1 -- cc.

We are now in a position to state the main theorem of this section.

THEOREM 3.4 Let {Tn, n > 1} be a sequence of random vectors in Rk. Let {rmnI be

a bounded sequence of vectors in Rk such that there exists a sequence of vectors {17}

satisfying (3-4). Let an -+ oo be a sequence of real numbers. Suppose that {T,, n > 1}

satisfies conditions (A), (B) and (C). Then

(T, )exp(-a,,y, (rn.))

P ( > rnn) - )k/2 k 1,/2" (3-23)

Proof: Let E, be a function of Tn as defined in (3-6). The identity (3-6) states that

k

P(T, >_ anmn) = exp(-atn,(mn)) E[exp(-b, • Ynz) I(Y, >_ 0)] (3-24)
i= 1

Conditions (A), (B) and (C) imply that {Xnj satisfies the conditions of Lemma 3.2.

The conclusion (3-23) follows from (3-24) and (3-22).
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4 Applications.

In this section we will demonstrate the applicability of the theorems in Section 3 with

an example. This example is concerned with approximating the probability of the tail

areas of the multivariate F-distribution.

Let G.C.. Gk,, and W., be independent and distributed as chi-square with nA.1 .... Pk

and n degrees of freedom respectively, where A),.. . , Ak are fixed positive integers. Let

G,, = (G,,,...,Gk,). The distribution of the random vector V,, = G,,/1Wi is known as

the multivariate F-distribution with (nAi, .. fnAk, n) degrees of freedom. Fix a vector

r0 = (ro 1,... , rok). We will use Theorem 3.4 to estimate the tail probability P(XN > ro),

which can be rewritten as

P(X,, > ro) = P(G, - 7oWn > 0)

= P(T. > 0) (4-1)

where T =G, - ro1,,. The m.g.f. of T, is given by

0.(z)=fl 1 2 )I +2 z ) , zef k (4-2)2-'i + =1Ziroi]
,2 _l=

where Q = {z E C : Real(z) < 1/2}. We will verify that {T,} satisfies the conditions

(A), (B) and (C) with a, = n and m,, = 0 for n > 1. Note that O,(z) = I log ¢,,(z) is
n

independent of n and is given by

k1 k
v/ = -(z) Ai log(1 - 2zi) - - log(1 + 2 ziroi), (4-3)

2
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and ,(z) is bounded for ik(c) for any 0 < c < 1/2. Thus iTJ} satisfies condition (A).

Since m7 = 0 and ',,, = V) are independent of n, we have 7,'s satisfying (3-4) do not

depend on n. and are equal to mu, where the ith component of T0 is given by

I [ i(V + k l .

roi=, r oi (l+ki) < (.1-+)

Assume that the vector r0 = (rol,... , rok) satisfies

l rki > Ai - for all 1 < i'< k (4-5)

where T = E roi/k and A = _ As/k. From (4-4) and (4-5) we can verify that there exists

d > 0 and 0 < b < 1/2 such that d < 7oi < b for all 1 < i < k. Thus -r, = ro satisfies

(3-4). With some simple calculations we can show that the determinant of V2  
70(ro) is

given by

1,72k (7)1 2ro2i• l+ k A2
IV=k(1o)f = {1 + kA) (4-6)

showing that the eigenvalues of V 24'(ro) are bounded below away from zero. Thus {T,}

satisfies condition (B). Using (4-2) we can see that for any given 6 > 0 and A > 6,

sup 1.(ro + it) < sup (4-7)
{t:6<III<\} I (ro) - { 6 H<1t:5\} 1 o0(ro)

where qo(z) = H-I 1 (1 - 2zi)-A\/2 is the joint m.g.f. of k independent chi-square random

variables. Since 00o(7o + it)/¢o(ro) is the c.f. of a nonlattice random vector, there exists

a q > 0 such that

20



S) (70 + it)supl < e-•. (4-8)
It: b<lltII!_<, 1 0 o(ro)

From (4-7) and (4-8) we get that

0o(70 + it) _ _

sup =(4-9)
{t: 6<11t0<5A} I0 ( ) ( )

Thus we have verified that {Tj} satisfies condition (C). We now can apply Theorem 3.4

to the sequence {T,, n > 1} with the choice of a,, = n and rn, = 0. Notice that -y((O)

-0(7o), where 0' is defined by (4-3). Thus from the conclusion (3-23) of Theorem 3.4

and (4-1) we get

P(XT• > ro) exp(n 1V(ro)) (4-10)(27r n)k/2  j H 1 7-,1207)1/

for any r0 satisfying (4-5), where b, 7o and IV2 0(To)I are given by (4-3), (4-4) and (4-6)

respectively.

Another application of Theorem 3.4 can be given for tail probabilities of a multi-

nomial distribution. We do not present the details of this application since it is very

similar to the above application to the multivariate F-distribution.
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