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1. Executive Summary
In July 1987. the Digital Mapping Laboratory at Carnegie Mellon University began work on a

three year contract. DACA 72-87-C-0001. with the U.S. Army Engineer Topographic Laboratories
to explore the detailed analysis of aerial imagery with particular emphasis on built-up areas
containing large numbers of complex man-made structures. During the past three years we have
performed research in several important areas including scene registration. stereo analysis.
shadow analysis. and building detection. Each of these areas addresses an important set of issues
toward the development of automated tools for cartographic feature extraction. This is the final
technical report under contract DACA 72-87-C-0001 and describes our overall research progress
during this three year period.,

1.1. Background

In previous reports we have described our research in monocular analysis for buildings
detection and delineation. This research developed the use of intensity based cues relying on the
detection of nearly right-angle comers that can be aggregrated into rectilinear shapes using lines.
comers, and structures. Systems based on such techniques tend to rel y on good contrast
between buildings and the adjacent terrain, as well as shape assumptions based upon composites
of rectangles. It is clear that such techniques require additional information in order to be robust
across a variety of image acquisition and spatiai resolution conditions.

As a result, during the second contract year we began research on the detailed analysis of
shadows cast by man-made structures. Our shadow analysis research has resulted in three
techniques for the interpretation of monocular imagery: building prediction. grouping of related
building hypotheses, and building hypothesis verification. In addition we have implemented an
technique to acquire estimates of building heights using the lengths of cast shadows. Height

estimation of man-made structures can be accomplished even using monocular imagery.

Previous work in stereo image analysis focused on the development of a new feature-based
matching algorithm based upon hierarchical waveform analysis. Our work in stereo analysis
complements the monocular feature extraction research and provides a basis for the integration
of explicit three-dimensional information into built-up area analysis. During the first two years

we began a major initiative to explore automatic methods for scene registration in complex aerial

imagery. This research has progressed. with improved results generated using a variety of

different image features.

In keeping with the theme of the use of multiple cues to provide additional information from

which a more robust estimate of the building height and/or location could be derived we began

'This research was sponsored by the U.S. Army Engineer Topographic Laboratories under Contract DACA72-87-
C-0001. The views and conclusions contained in this document are those of the authors and should not be
interpreted as representing the official policies, either expressed or implied, of the U.S. Army Engineer Topographic
Laboratones or of the United States Government.
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research on fusion of stereo estimates. This research focused on the combination of an area-
based and a feature-based method to attempt to achieve better overall height estimates in the
presence of occlusions, large depth discontinuities. and in complex matching conditions. We
aiso began to develop tools and techniques for automated performance evaluation using a
manually derived three-dimensional ground-truth database. Such quantitative performance
evaluation is critical for understanding the incremental performance of changes to vanious
matching techniques. the effects of parameter selection. and in head-to-head comparisons of
various end-to-end stereo systems.

Finally. we have supported a modest effort to investigate the utility of share-memory multi-
processors for high-level vision. Our focus has been the exploration of task-level parallelism for
a knowledge-based system that has been used to interpret airport and suburban house scenes.
We have achieved near linear speedups on an Encore multimax processor for the most
computationally intensive component of the system.

In Sections 2 through 6 we summarize the most recent accomplishments in each of these areas
achieved over the last year. We believe that progress has been steady and that the work in
shadow analysis, monocular fusion, scene registration. stereo analysis and refinement has greatly
improved our suite of techniques for built-up area analysis. In the remainder of this section we
summarize various technical talks. published papers. and other tangible accomplishments funded
under this research contract.

1.2. Accomplishments
Our primary effort under this contract was to investigate the use of knowledge-intensive

techniques for the detailed analvsis of remotely sensed imagery by developing scene
interpretation systems for complex urban areas. Our research has resulted in the design and
implementation of several cartographic feature extraction components/systems as well as
supporting work in stereo matching, information fusion, and tools for database utilization. In the
process. a variety of basic research issues in computer vision and cartography have been
addressed.

Developed an information fusion paradigm based on using multiple scene domain
cues to support a variety of tasks in cartographic feature extraction. These include
monocular fusion of building boundary cues. refinement of stereo disparity
estimated using intensity/surface material information. The common thrust of this
work is to find and exploit multiple information sources. extracted from common
imagery, that may contain redundant cues concerning the geometric structure of the
scene.

*Developed several techniques for shadow analysis including building hypothesis
generation, building hypothesis verification, and techniques to group buildings
based upon their consistency with detected shadow boundaries.

, Developed an automatic scene registration capability, with improved accuracy
results using a variety of different image features. Currently we are able to perform a
relative orientation between stereo image pairs whose accuracy is close to human-

2



level performance in accuracy using manually derived ground control points.

"* Our work with area-based and waveform-based stereo algorithms has continued.
producing improvements in the individual results. and development of a technique
for merging the results of the two methods. as well as methods for performance
evaluation. Our feature-based algorithm was improved particularly with respect to
waveform approximation and the use of inter-scanline consistency to detect and
correct mismatches. Our performance analysis on a variety of stereo pairs (currently
10 datasets) with various disparity ranges including significant terrain relief has
given us a better understanding issues in robust stereo analysis.

"* Making simple assumptions about the intensity of smooth surfaces has resulted in a
technique for fusing information in the disparity map with edge and intensity
information to generate much improved disparity map segmentations. Analysis of
the disparity image guided by the intensity image appears to be a promising
technique to reject mismatches and to generate a refined disparity map that lends
itself to further interpretation. This technique appears to be superior to many
interpolation based methods because it explicitly takes into account the nature of
surface patches with similar albedo.

" We began a modest effort to integrate ITD cartographic data into our spatial
database system. CONCEPTMAP. This rias resulted in the development of a flexible
query system. as well as a powerful window-based user interface. This initial work
has pointed the way to many issues in the efficient access to spatial data for
planning. navigation, and incorporation into cartographic feature extraction systems.

1.3. Publications
Over the period of our research contract our research contract in Built-Up Area Feature

Extraction we have published our results in refereed journals and conferences, and presented
progress reports at various meetings. This section details the most significant publications and
presentations supported under this contract.

1.4. Publications

"* D. M. McKeown. Jr. (1990). "Toward Automatic Cartographic Feature
Extraction", in Mapping and Spatial Modeling For Navigation. NATO ASI Series F:
Computer and Systems Sciences, Vol. 65, Springer-Verlag, Edited by L. Pau. 1990.
pp 149-180.

"* D. McKeown. F. Perlant, and J. Shufelt. (1990). "Information Fusion in
Cartographic Feature Extraction from Aerial Imagery" in Proceedings of ISPRS
Symposium on Global and Environmental Monitoring: Techniques and Impacts.
Victoria. British Columbia. Canada. September, 1990., pp. 140-144.

"* J. Shufelt and D. M. McKeown. "Fusion of Monocular Cues to Detect Man-Made
Structures in Aerial Imagery" in Proceedings of IAPR Workshop on Multisource
Data Integration in Remote Sensing June. 1990.

" Y. Hsieh. F. P. Perlant. and D. M. McKeown. "Recovering 3D Information from
Complex Aerial Imagery" in Proceedings of l0th International Conference on
Pattern Recognition Atlantic City. New Jersey, June, 1990. pp. 136-146.
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" F. P. Perlant and D. M. McKeown. "Improved Disparity Map Analysis Through the
Fusion of Monocular Image Segmentations" in Proceedin2s of IAPR Workshop on
Multisource Data Integration in Remote Sensing June. 1990.

" F. P. Perlant. and D. M. McKeown (1990) "Scene Registration in Aerial Image
Analysis". in Journal of Photoarammetric Enineerin• and Remote Sensing. Volume
56. No. 4. April. 1990. pp. 481-493.

" R. B. Irvin. and D. M. McKeown. (1989) "Methods for exploiting the relationship
between buildings and their shadows in aerial imagery" in IEEE Transactions on
Systems. Man and Cybernetics Volume 19. Number 6. November/December 1989.
pp. 1564-1575.

" W. Harvev. D. Kalp, M. Tambe. D. McKeown. A. Newell. "Measuring the
Effectiveness of Task-Level Parallelism for High-Level Vision" In Proc.,dings of
DARPA Image Understanding Workshop. Palo Alto. California. May 23-26. 1989.
Morgan Kaufmann Publishers.. pp. 916-933.

" D. M. McKeown. Jr.. Harvev. W.A.. and Wixson. L. "Automating Knowledge
Acquisition For Aerial Image Interpretation" Computer Vision. Graphics and Image
Processing Volume 46. Number 1. April. 1989. pp 37-8 1.

" R. B. Irvin. and D. M. McKeown, "Methods for exploiting the relationship between
buildings and their shadows in aerial imagery" in Proceedings of SPIE Conference
on Image Understanding and the Man-Machine Interface II Los Angeles, Calif.
January 17-18, 1989.. Volume 1076. pp. 156-164.

" F. P. Perlant. and D. M. McKeown. "Scene Registration in Aerial Image Analysis"
in Proceedings of SPIE Conference on Reconnaissance, Astronomy, Remote Sensing
and Photogrammetrm, Los Angeles, Calif, January 19-20. 1989.. Volume 1070. pp.
88-99.

1.5. Invited Presentations
* Keynote Speaker: "Knowledge-Based Systems for Remote Sensing" Workshop on

Environmental Remote Sensing at Research Institute for Applied Knowledge
Processing, FAW. Ulm. Germany, October 1-5, 1990.

" Session Chairman. "Knowledge-Based Techniques/Systems for Data Fusion". at
ISPRS Symposium on Global and Environmental Monitoring: Techniques and
Impacts. Victoria. British Columbia. Canada. September 17-21, 1990.

" "Knowledge-Based Vision. Airports, and SAR" JPL/Caltech Image Recognition
Workshop, Pasadena. CA.. May 17-18, 1990.

" "Toward Automatic Cartographic Feature Extraction", Machine Vision - Image
Understanding Workshop, AFOSR/AFWL. Albuquerque, NM.. May 15-16. 1990.

" "Automated Feature Extraction Research". Imagery Perspective Transformation
Symposium. Boiling AFB. Washington D.C. May 1-2. 1990.

" Participant: DARPA IUS Working Group Meeting, Scottsdale. AZ. February 26-28.
1990.

"* "Progress in Automated Cartographic Feature Extraction". U.S. Army Engineer
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Topographic Laboratories. Fort Belvoir. VA.. January 25. 1990.

*Tutorial: "Data Fusion Techniques for GIS and Remote Sensing". Workshop on
Advances in Spatial Information Extraction and Analysis for Remote Sensing.
International Society for Photogrammetry and Remote Sensing. Orono. Maine.
January 15. 1990.

" "Knowledge-Based Techniques for Geographic Information Systems". AIST.
Northeast Al Consortium. Syracuse. N.Y.. October 23. 1989.

" "Automated Feature Extraction in Urban Areas" Project 2851 Mission Rehearsal
Special Interest Group. Defense Mapping Agency Aerospace Center. St. Louis, MO.
September 28. 1989.

" "Trends in Automated Cartographic Feature Extraction" NATO Advanced Research
Workshop on Mapping and Spatial Modeling, For Navigation. Fano. Denmark.
August 21-25. 1989.

" Participant/Panel Leader: Specialist Meeting on Large Spatial Databases. NSF-
National Center for Geographic Information and Analysis. Santa Barbara. Cal.. July
19-22. 1989.

" "Artificial Intelligence in the Analysis of Aerial Imagery". IEEE Computer Society
Workshop on Artificial Intelligence for Computer Vision. San Diego. Cal.. June 5.
1989.

"* "Product Opportunities in Cartography and Remote Sensing". DARPA IU Program
Meeting. Institute for Defense Analysis. Alexandria, VA.. March 13. 1989.

* Participant: DARPA Program Review Meeting. SCORPIUS Image Understanding
Program. El Segundo. Cal.. January 18. 1989.

* Participant: DARPA/USAETL Program Review Meeting on Spatial Databases for
ADRIESITACNAT. Fort Belvoir. VA.. September 13-14. 1988.

* "Automated Feature Extraction From Aerial Imagery". EXRAND Committee
Meeting. Washington. D.C.. February. 9. 1988.

* Tutorial: "Spatial Interpretation of Aerial Imagery" at IEEE Workshop on Applied
lmakerv Pattern Recognition. Washington. D.C.. October 28. 1987.

1.6. Researchers Supported
The following members of the Digital Mapping Laboratory, School of Computer Science.

Carnegie Mellon University were fully or partially supported during the period of this research
contract.

"* David M. McKenwn. Jr.
Research Compt ter Scientist

"* Aviad Zlotnick
Post Doctoral Research Associate

"* Wilson A. Harvey
Senior Research Programmer
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"* Frederic P. Perlant
Visitin2 Scientist

"* Jean-Christophe Dhellemmes
Visiting Scientist

"* Yuan Hsieh
Research Programmer

"* Matthew Diamond
Research Programmer

"* Steven Ford
Research Programmer

"* Undergraduate Research Assistants
Emilv Burke. Bruce Irvin. Jeffrey Shufelt. Lambert Wixson

1.7. Acknowledgements
During the course of this research program we have benefited from detailed technical

interactions with personnel from the U.S. Army Engineer Topographic Laboratories. Fort
Belvior. VA.. Dr. Fred Rhode. Edmundo Simental. Dan Edwards. and George Lukes each acted
as COTR during various phases of this contract. Each helped by providing good feedback on the
relevance of our research program to the U.S. Army, and in maintaining continuity of funding
and focus. We had many interesting technical discussions with various members of the Research
Institute. In particular. Ray Norvelle and Dan Edwards were helpful on issues including stereo
matching techniques and cartographic databases.

1.8. Organization of this Report
In the body of this final report we provide a detailed technical description of our research

supported under this contract. Section 2 discusses our work in the fusion of multiple building
hypothesis obtained using different feature extraction techniques into an improved set of
building estimates. This represents the integration of our work on building detection using
intensity cues with our work on shadow analysis for building hypothesis generation, verification
and grouping. An quantitative evaluation of the various feature extraction systems and the
improved results using our fusion technique is presented.

Section 3 discusses our work in automated scene registration to support stereo analysis. It

builds on our research in monocular cue analysis in that it uses features such as shadow comers

and building structures to provide matchable features for the registration process. We provide

quantitative results that compare registration accuracy using five different feature extraction

techniques with that achieved using manual matching.

Section 4 describes our results in stereo analysis using both area-based and feature-based

approaches. We briefly discuss some modifications to the stereo algorithms. SI and S2. and

focus on detailed performance analysis using a 3-dimensional ground-truth disparity map
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g~enerated for several test scenes. We introduce several metrics for stereo accuracy that are

relevant for the built-up area task: average error. percentage of point within +/- I pixel of true

disparity. building height accuracy, and building delineation accuracy.

Section 5 describes research in the use of image intensity patch information with stereo height

estimates to provide a basis for disparity refinement. This refinement technique can be used to
improve disparity estimates by associating surface patches in the intensity image with collections

of disparity points. The assumption is that these patches reflect surfaces and partial surfaces in

the scene that should have a nearly homogeneous height. Statistical analysis of the disparity

estimates within these regions can detect gross mismatches as well as incorrect matches due to

occlusion.

Section 6 describes some preliminary research in providing user-interface supp rt for large

scale spatial databases. We began with a DMA ITD database of Fort Hood and developed tools

to decode and reformat the spatial data to allow for random queries based on geographic location

and/or partial matching of feature attributes. An Xwindow interface was developed for feature

display and query processing.

Finally. Section 7 provides some brief conclusions on our program of research in the area of

automated cartographic feature extraction.
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2. Fusion of Monocular Building Hypotheses
The extraction of buildings from aerial imagery is a complex problem for automated computer

vision. It requires locating regions in a scene that possess properties distinguishing them as man-
made objects as opposed to naturally occurring terrain features. The building extraction process
requires techniques that exploit knowledge about the structure of man-made objects. Techniques
do exist that take advantage of this knowledge: various methods use edge-line analvsis, shadow
analysis, and stereo imagery analysis to produce building hypotheses. It is reasonable. however.
to assume that no single detection method will correctly delineate or verify buildings in every
scene. As an example. a feature extraction system that relies on analysis of cast shadows to
predict building locations is likely to fail in cases where the sun is directly above the scene.

It seems clear that a cooperative-methods paradigm is useful in approaching the building
extraction problem. Using this paradigm. each extraction technique provides information which
can then be added or assimilated into an overall interpretation of the scene. Thus. our research
focus is to explore the dev,.lolprnent of a computer vision system that integrates the results of
various scene analysis techniques into an accurate and robust interpretation of the underlying
three-dimensional scene.

This section describes research performed under DACA 72-87-C-00OI on the problem of building
hypothesis fusion generated using monocular imagery. First. our building extraction techniques
are briefly surveyed. including four building extraction. verification, and clustering systems that
form the basis for the work described here. A method for fusing the symbolic data generated by
these systems is described, and applied to monocular image and stereo image data sets.
Evaluation methods for the fusion results are described. and the fusion results are analyzed using
these methods.

2.1. Building extraction techniques
Under this research contract, we have developed several techniques for the extraction of man-

made objects from aerial imagery. One common goal of these techniques is to organize the
image into manageable parts for further processing. by using external knowledge to organize
these parts into regions. A set of four monocular buill" ig detection and evaluation systems were
used. Three of these were shadow-based systems: the fourth was line-corner based. The shadow
based systems are described more fully by Irvin and McKeown [I ], and the line-corner system is
described by Aviad. McKeown. and Hsieh (2]. A brief description of each of the four detection
and evaluation systems follows.

BABE (Builtup Area Building Extraction) is a building detection system based on a line-corner

analysis method. BABE starts with intensity edges for an image, and examines the proximity and
angles between edges to produce corners. To recover the structures represented by the corners.
BABE constructs chains of corners such that the direction of rotation along a chain is either

clockwise or counterclockwise, but not both. Since these chains may not necessarily form closed

segmentations. BABE generates building hypotheses by forming boxes out of the individual lines

8



that comprise a chain. These boxes are then evaluated in terms of size and line intensity
constraints, and the best boxes for each chain are kept, subject to shadow intensity
constraints [3], [4].

SHADE (SHAdow DEtection) is a building detection system based on a shadow analvsis
method. SHADE uses the shadow intensity computed by BABE as a threshold for an image.
Connected region extraction techniques are applied to produce segmentations of those regions
with intensities below the threshold. i.e.. the shadow regions. SHADE then examines the edges
comprising shadow regions. and keeps those edges that are adjacent to the buildings casting the
shadows. These edges are then broken into nearly straight line segments bv the use of an
imperfect sequence finder [5]. Those line segments that form nearly right-angled comers are
joined, and the comers that are concave with respect to the sun are extended into parallelograms.
SHADE's final building hypotheses.

SHAVE (SHAdow VErification) is a system for verification of building hypotheses by shadow
analysis. SHAVE takes as input a set of building hypotheses. an associated image. and a shadow
threshold produced by BABE. SHAVE begins by determining which sides of the hypothesized
building boxes could possibly cast shadows, given the sun illumination angle. and then performs
a walk away from the sun illumination angle for every pixel along a building/shadow edge to
delineate the shadow. The edge is then scored based on a measure of the variance of the length
of the shadow walks for that edge. These scores can then be examined to estimate the likelihood
that a building hypothesis corresponds to a building, based on the extent to which it casts
shadows.

GROUPER is a system designed to cluster, or group, fragmented building hypotheses. by
examining their relationships to possible building/shadow edges. GROUPER starts with a set of
hypotheses and the building/shadow edges produced by BABE. GROUPER back-projects the
endpoints of a building/shadow edge towards the sun along the sun illumination angle. and then
connects these projected endpoints to form a region of interest in which buildings might occur.
GROUPER intersects each building hypothesis with these regions of interest. If the degree of
overlap is sufficiently high (the criteria is currently 75% overlap), then the hypothesis is assumed
to be a part of the structure which is casting the building/shadow edge. All hypotheses that
intersect a single region of interest are grouped together to form a single building cluster.

2.2. A simple hypothesis merging technique
Building hypotheses typically take the form of geometric descriptions of objects in the context

of an image. One can imagine "stacking" sets of these geometric descriptions on the image: in
the process. those regions of the image that represent man-made structure in the scene should
accumulate more building hypotheses than those regions of the image that represent natural
features in the scene. The merging technique developed here exploits this idea.

The method takes as input an arbitrary collection of polygons. An image is created that is
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sufficiently large to contain all of the polygons, and each pixel in this image is initialized to zero.
Each polygon is scan-converted into the image. and each pixel touched during the scan is
incremented. The resulting image then has the property that the value of each pixel in the image
is the number of input polygons that cover it.

Segmentations can then be generated from this "accumulator" image by applying connected
region extraction techniques. If the image is thresholded at a value of 1 (i.e. all non-zero pixels
are kept). the regions produced by a connected region extraction algorithm will simply be the
geometric unions of the input polygons. It is the case. however, that the image could be
thresholded at higher values. We motivate thresholding experiments in Section 2.3.4.

2.3. Merging multiple hypothesis sets
We briefly describe some of the experiments performed with the scan-conversion hypothesis

fusion technique. The procedure used to apply this technique to the results of four building
detection and evaluation systems (BABE. SHADE. SHAVE. and GROUPER) is described. A

technique for quantitative evaluation of building hypotheses is described. and applied to the
hypothesis fusion results. These results are analyzed to suggest improvements to the fusion
technique.

2.3.1. The merging technique applied to four extraction systems
There were two merging problems under consideration. The first of these was the creation of a

single hypothesis out of a collection of fragmented hypotheses believed to correspond to a single
man-made structure. This problem was addressed by applying the scan-conversion technique to
the fragmented clusters produced by GROUPER. The technique was applied to each cluster
individually, and the resulting accumulator image was thresholded at 1. and connected region
extraction techniques were applied to provide the geometric union of each cluster. These
clusters were then used as the building hypotheses produced by GROUPER.

The second problem was the fusion of each of these monocular hypothesis sets into a single set
of hypotheses for the scene. Again. the scan-conversion technique was applied. The four

hypothesis sets were scan-converted, and the resulting accumulator image was thresholded at 1.
Connected region extraction techniques were applied to produce the final segmentation for the

image.

Figure 2-1 shows a section of a suburban area in Washington. D.C. Figure 2-2 shows the

SHADE results for this scene. Figure 2-3 shows the SHAVE results. Figure 2-4 shows the

GROUPER results, and Figure 2-5 shows the BABE results. Figure 2-6 shows the fusion of these

four monocular hypothesis sets.
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2.3.2. Evaluation of the technique
To iudLe the c:orrecines., or an interpretation ot a ,cene. it i,, de,,irable to have Noni niechanisrn

>~ru~atitti\ei\c'.aluatin-- that interpretation. O ne anproach , it) compare i ci\ enNe
2\ ~th~eNa,-aiflst J eCt that i,' knowni to he correct. anu anal'.ze tile difference-, ret\'.een inc,

-ii'en Net or hv\potheseN and] the correct ones. in pertorminu, evaluations or the fusion re,,uliN. %'ýe
2'* 'I;~;r~u? \t' ?U'lhIu 'flA aN1 thle correct detect ion reu it:, I or a scee.( Ound-trutri

'eumentations are manuailk produced segmentations or the buildinL,ý in an ima!-e.

Figure 2-1: DC37 image with ground-truth segzmentation

There exist two simple criteria tor measuring the degree of similarity between a buildin2
hypothesis and a ground-truth building segmentation: the mutual area of overlap and the
difference In orientation. A correct building hypothesis and the corresponding ground-truth
cegmentation reLeIon should cover rougzhl\y the same area. and should have rouL-hl\ the same



.Iii.!-nment \\,ith respect to [he image. A scoring [unction c.an he de~eioped that inlcorporates
!hese cr;iteria. A reLIon rnatchmLe scheme \uch as [his. however. -~urrers fromn the tact that
Multiple huildines in the scene are Ne~mented h\ a sinLnje reuion in thle hypothesis, st. IIn these

C.thle hUildinlL hy~pothesis \ ill hlave lo\ý matchinLg ,cores \ý ith eachi ot the n~uildiin~s it
-ontains. due to thle differences in ox erlap area.

A simpler coxerage-hased gLobal evaluation method \%as dcv eloped. This exaluation method
\\orks in [he folio" ing manner. H. a -set ot building hypotheses tor an Image. and G. a ground-
truth se,-mentation ot that image. are Lnven. The ima.ge Is then scanned. pixel h,. pixel. For an\
pixel P 'in the Image. there are tour possibilities:

- %.2

Figure 2-2: DC37 SHADE results Figure 2-4: DC37 GROUPER results

Figure 2-3: DC37 SHAV~E results Figure 2-5: DC37 BABE results
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mean that the system producing H correctly denoted P as belonging to a man-made
structure in the scene.

By counting the number of pixels that fall into each of these four categories, we may obtain
measurements of the percentage of building hypotheses that were successful (and unsuccessful)
in denoting pixels as belonging to man-made structure. and the percentage of the background of
the scene that was correctly (and incorrectly) labeled as such. Further. we may use these
measurements to define a building pixel branching factor. which will represent the degree to
which a building detection system overclassifies background pixels as building pixels in the
process of generating building hypotheses. The building pixel branching factor is defined as the
number of false positive pixels divided by the number of correctly detected building pixels.

2.3.3. Results and analysis
The fusion process was run on other scenes in addition to the DC37 scene: DC36A. DC36B,

and DC38. three more scenes from the Washington. D.C. area: and LAX, a scene from the Los
Angeles International Airport. The coverage-based evaluation program was then applied to
generate Tables 2-1 through 2-5. Each table gives the statistics for a single scene. The first
column represents a building extraction system. The next two columns give the percentage of
building and background terrain correctly identified as such. The fourth and fifth columns show
incorrect identification percentages for buildings and terrain. The next two columns give the
breakdown (in percentages) of incorrect pixels in terms of false positives and false negatives.
The last column gives the building pixel branching factor.

Evaluation results for the fusion process on DC37

System % Bid % Bkgd % Bid % Bkgd % False % False Br
Detected Detected Missed Missed Pos. Neg. Factor

SHADE 37.5 98.2 62.5 1.8 15.0 85.0 0.294

SHAVE 47.2 96.8 52.8 3.2 26.8 73.2 0.408

GROUPER 48.7 95.8 51.3 4.2 32.6 67.4 0.508

BABE 58.9 97.2 41.1 2.8 28.5 71.5 0.278

FUSION 77.7 92.0 22.3 8.0 68.0 32.0 0.611

99 regions in ground truth

Table 2-1: Evaluation statistics for DC37 hypothesis fusion

We note that the quantitative results generated by the new evaluation method accurately reflect
the visual quality of the set of building hypotheses. Further, the building pixel branching factor
provides a rough estimate of the amount of noise generated in the fusion process. Judging by
these measures, we note that the final results of the hypothesis fusion process significantly
improve the detection of buildings in a scene. In all of the scenes, the detection percentage for
the final fusion is greater than the same percentage for any of the individual extraction system
hypotheses. although the building pixel branching factor also increases due to the accumulation
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Evaluation results for the fusion process on DC36A

Svstem % Bid % Bkgd % Bid % Bkgd % False i % False Br
Detected Detected Missed Missed I Pos. Neg. Factor

SHADE 53.8 97.0 46.2 3.0 30.7 69.3 0.381

SHAVE 63.6 96.2 36.4 3.8 41.8 58.2 0.411

GROUPER 58.0 95.8 42.0 4.2 40.6 59.4 0.495

BABE 51.0 1 97.9 49.0 2.1 2 2_2. 1 77.9 0.273

FUSION 80.9 91.9 1 19.1 8.1 74.3 25.7 0.682

51 regions in ground truth

Table 2-2: Evaluation statistics for DC36A hypothesis fusion

Evaluation results for the fusion process on DC36B

System % BId '% Bk Ld % Bld 1% Bkgd 1% False 1% False Br
Detected Detected Missed Missed Pos. Neg. Factor

SHADE 29.8 93.8 70.2 6.2 46.3 53.7 2.034

SHAVE 28.4 96.7 71.6 3.3 31.3 69.7 1.146

GROUPER 10.3 1 96.8 89.7 3.2 25.9 74.1 3.027

BABE 9.9 98.8 90.1 1.2 11.3 88.7 1.159
FUSION i49.8 89.2 50.2 10.8 67.8 !32.2 t2.126

133 regions in ground truth

Table 2-3: Evaluation statistics for DC36B hypothesis fusion

Evaluation results for the fusion process on DC38

System % Bid % Bkgd % Bid % Bkgd % False % False Br
Detected! Detected Missed Missed Pos. Neg. Factor

SHADE 51.3 97.4 48.7 2.6 13.2 86.8 0.144

SHAVE 43.1 95.3 56.9 4.7 19.1 80.9 0.311
GROUPER 54.6 95.8 45.4 4.2 21.0 79.0 0.221

BABE 44.7 96.0 55.3 4.0 17.3 82.7 0.260

FUSION 74.7 90.6 25.3 9.4 51.5 48.5 0.360

53 regions in ground truth

Table 2-4: Evaluation statistics for DC38 hypothesis fusion

of delineation errors from the various input hypotheses.

It is worth noting that the results for the DC36B scene (Table 2-3) are substantially worse than
those of the other scenes. This is in large part due to the fact that the DC36B scene has a low
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Evaluation results for the fusion process on LAX

System %Bid 17Bkgd %Bid I %Bkgd %False I% False Br
Detected Detected Missed Missed Pos. Neg. Factor

SHADE 34.4 99.0 65.6 1.0 10.1 89.9 0.213

SHAVE 54.1 94.9 45.9 5.1 43.6 56.4 0.655

GROUPER 46.0 98.5 54.0 1.5 16.5 83.5 0.232

BABE i 63.3 98.8 36.7 1.2 1 18.3 81.7 0.130

FUSION 73.0 92.9 27.0 I 7.1 65.0 35.0 0.687

26 regions in ground truth

Table 2-5: Evaluation statistics for LAX hypothesis fusion

dynamic range of intensities, and the component systems used for these fusion experi~tents are
inherently intensity-based. The building pixel branching factors reflect the poor performance of
the component systems: in GROUPER's case. over 3 pixels are incorrectly hypothesized as
building pixels for every correct building pixel. The fusion process, however, improved the
building detection percentage noticeably over the percentages of the component systems.

We also note that several difficulties are attributable to performance deficiencies in the
systems producing the original building hypotheses. The shadow-based detection and evaluation
systems. SHADE and SHAVE. both use a threshold to generate "shadow regions" in an image.
This threshold is generated automatically by BABE, a line-comer based detection system. In
some cases, the threshold is too low, and the resulting shadow regions are incomplete, which
results in fewer hypothesized buildings.

GROUPER. the shadow-based hypothesis clustering system. clusters fragmented hypotheses by
forming a region (based on shadow-building edges) in which building structure is expected to
occur. This region is typically larger than the true building creating the shadow-building edge,
and incorrect fragments sometimes fall within this region and are grouped with correct
fragments. The resulting groups tend to be larger than the true buildings, and thus produce a fair
number of false positive pixels.

SHAVE scores a set of hypotheses based on the extent to which they cast shadows, and then
selects the top fifteen percent of these as "good" building hypotheses. In some cases, buildings
whose scores fell in the top fifteen T -rcent actually had relatively low absolute scores. This
resulted in the inclusion of incorrect hypotheses in the final merger.

SHADE uses an imperfect sequence finder to locate comers in the noisy shadow-building edges

produced by thresholding. The sequence finder uses a threshold value to determine the amount

of noise that will be ignored when searching for corners. In some situations. the true building

comers are sufficiently small that the sequence finder regards them as noise, and as a result. the

final building hypotheses can either be erroneous or incomplete.
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2.3.4. Thresholding the accumulator image
A-, part of the scan-conversion fusion process. an accumulator image is produced whicn

represents the "building density" of the scene. More precisely, each pixel in the image has a
value, which is the number of hypotheses that overlapped the pixel. Pixels with higher values
represent areas of the image that have higher probability of being contained in a man-made
structure. Theoretically. thresholding this image at higher values and then applying connected
region extraction techniques would produce sets of hypotheses containing fewer false positives.
and these hypotheses would only represent those areas that had a high probability of
corresponding to structure in the scene.

To test this idea, the accumulator images for each of the six scenes were thresholded at values
of 2. 3. and 4. since four systems were used to produce the final hypothesis fusion. Connected
region extraction techniques were then applied to these thresholded images to produce new
hypothesis segmentations. The new evaluation method was then applied to these new
hypotheses.

In each of the scenes, increasing the threshold from its default value of 1 to a value of 2 causes
a reduction of roughly 20 percent in the number of correctly detected building pixels. This
suggests that a fair number of hypothesized building pixels are unique: i.e.. several pixels can
only be correctly identified as building pixels by one of the detection methods. Another
interesting observation is that the building pixel branching factor roughly doubles every time the
threshold is decremented. These observations suggest that thresholding alone may eliminate
unique information produced by the individual detection systems. and that more work will need
to be done to limit the number of false positives (and erroneous delineations) produced by each
system, and by the final fusion as a whole.
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3. Automated Scene Registration
The pirimar\ goal or stereo phologyrammetrN is to determine the threv-dimensionai position 0!

,1[1 objiect point that is, located in the o~ erlap area or t\o imalees taken from t\\ different
,amiera positions. Tile determination of thle orientation ot each camera at thle moment of
cý\posure and the relationship bermeen the camneras is a niecessary ste p in the photo Lrammetric
proceSS. The camera orientation determines, thle relationship between thle inmage. points and
,,rounld point,, in the scene. The classical epipoiar geometry for stereo mimaerv establishes a ýerv
sim1ple spatial relationship between corresponding points in the left and right images. Th e
'olut ion to the tuenerat camera orientation problem has tour components: the interior orientation.
tthe exterior orientation, thle relative orientation, and the absolute orientation. In this section wke
describe our research progress towards a fully automated scenL reginstration svste m that provides
,irelative orientation between two stereo imag~es. This orientation allows' us to resample the right

imiage of the ,tereo pair into epipolar geometry so that stereo matching 'an proceed.
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3.1. Automatic selection using different features
Clearly. one requirement for automated registration is the automatic selection of corresponding

points in the stereo pair images. There are two problems that must be solved. First we must
automatically detect potential landmarks in each image. and then we must determine those

landmarks that have been found in both images. General landmark matching is an unsolved
problem and most automatic registration techniques rely on the matching of characteristic
points [61 that often have no physical significance or relationship with the landmarks.

There are some important criteria for automated control point selection. First. since the

elevation of the control points is not known and we are using a simple geometrical model, it is
important that the set of selected control points lie approximately in the same tievation plane.

Second. the selection of control points should not rely on a single type of scene domain feature.
such as road intersections, since not all control point features are abundant in all scenes. For

example. in urban scenes there are often many buildings and shadow regions available as
candidate control points, and they are usually well distributed throughout the imagery. However.
in airport scenes elongated line pairs and uniform intensi * v regions appear to be a better choice.
In any case we use an iterative selection algorithm [7j that converges to a consistent set of

control points that are usually a small subsoe of all of the possible matches in the stereo pair.

Another advantage of using muitiple features for control point estimation is that the results of
feature matching can be used to estimate the disparity range of the scene. Once the scene is

registered. all matched features can 1e remapd,,..t to the new coordinate frame. It is then possible
to calculate the disparity o - feature. Since all features are not at the same height. we

automatically obk-, -, rough ,m,.Ate of the disparity range for this scene. This disparity range

estimate is directly used by the stereo matching algorithms to control search for corresponding
points and ,n greatly red7du initial matching errors. In most research stereo systems the

disparity range is either manually provided or it is set to what is considered to be a "sufficiently

large" value. [-he drawback of the former approach is that it introduces a difficult manual step in

that the enti-e stereo model must be searched to find the minimum and maximum disparity
points. The latter situation can influence the accuracy of the resulting stereo matching algorithm

bv causing some matches to be never considered. or decrease the efficiency by allowing large

areas to be searched for which correct matches are impossible.

For this experiment. we assume that a coarse registration of the two images has already been

performed. Using this coarse correspondence. we are able to limit the search to find

corresponding features in the images. Most of the remaining error is translational rather than

rotational which simplifies the determination of corresponding points. Candidates for automatic

control point generation include shadow comers, shadow regions. BABE monocular building

hypotheses. uniform intensity regions. and elongated line structure pairs:

Shadow corners: Shadow comers are good candidates for automatic detection and

correspondence as well as for manual selection. We use comers produced by the BABE system.

After removing comers that are inconsistent with shape and orientation constraints imposed by
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the sun direction an2le and estimated shadow intensity, we select sets of shadow corners in both
the !eft and right images. Figure 3-3 shows the corners found in the left image in white. The
right image corners are shown in black and are projected onto the left image using the coarse
registration. Those pairs of shadow corners that are matched are shown as connected by a white
line whose endpoint circles indicate the conjugate points provided to the registration process.

Building hypotheses: Control points can also be defined geometncally with respect to

features or structures extracted from the imagery. Building hypotheses generated by a

monocular analysis system such as BABE can be used as match features. The center of mass of

these structures is defined as the corresponding control points. Compared to shadow corners.

control points defined by hypothesized buildings are not always accurate. but disambiguation of

buildings is easier. Properties such as shape, size. and perimeter are good criteria that are not

available for point features such as shadow corners. Figure 3-4 shows the BABE boxes in the left

and right images with the matched features marked in the same manner as Figure 3-3.

Other scene features: We performed experiments to obtain control points from shadow

regions, edges, and segmented regions using simple histogram analysis. In each case. control
points are defined as the center of mass of the structures. Shadow regions are extracted with

traditional connected component extraction techniques. using an estimate of shadow intensity

provided by BABE Il]. Due to variation in the shape of the shadows. shadow regions usually
give poor results in complex urban scenes with very high buildings. This variation of shape is

caused by occlusion of the shadow by tall structures. They can be very reliable, however, in

suburban house images where buildings are separated and have simple roof profiles. Edges are
another feature extracted by BABE. Only edges with significant length are used as candidates for

matching. The criteria for edge matching are edge orientation, length and the intensity gradient
across the edge. Figure 3-5 shows the significant lines extracted and matched in the industrial

scene. Finally, unique bright points in the scene can be used to form bright blob regions. The

intensity threshold for blob regions is determined by successively decreasing the intensity scale

until enough regions are extracted. These features turned out to be useful for scenes with few or

no man-made structures, where shadow corners, hypothesized buildings and shadow regions

failed to generate enough matching candidates.

Figure 3-6 shows the superposition of BABE results using the refined registration from Figure

3-4. The offset between building hypotheses is now primarily in the column direction and can be

attributed to the displacement of the building in the left and right image due to their height. In

many cases we have been able to automatically reduce the row offset error to sub-pixel accuracy

from an initial displacement of 15 to 20 rows in the coarse CONCEPTMAP registration.

3.2. Evaluation of automatic registration

Table 3-1 shows the local accuracy of the different scene registrations performed on the

industrial scene shown in Figures 3-1 and 3-2. POLY means that actual registration is performed

using a polynomial fit. whereas ISO means that the images are registered using an isometric
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•Olution. Coarse registration is the result o1 (ONCEPTMAp registration. L sinL, L s•t or manuall\
,elected control points \e aire able to evaluate the accuracy of e-ch relistratiOn in terms ot ro%,
ftfset compared to the ideal epipolar geometry (correspondim2 points on the same scanlinesi.

Polynonial approximation pertorrns better o\erall than isometric appromimation. but it Is more
,ensiti\e to noise. Further. the isometric approximation onI\ requires three control points. For
this ,uene. there are enough points from an\ of the match features to compute a second order
polynomnial approximation. The resultinn accuracy is comparable ý\ith that achieved usinr
manual selection of control points.

Figure 3-3: Shadov comers selected Figure 3-5: Significant lines selected

Figure 3-4: BABE building hypotheses Figure 3-6: Fine registration using
selected BABE points
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In summary, scene registration is a key initial step in many tasks involving the automated
interpretation of aerial images. Stereo analysis requires particular care in scene registration
because of the geometric assumptions made by most stereo matching algorithms and their
inability to recognize and recover from registration errors. Such registration errors usually end
up reflected as gross errors in the stereo match. As a part of our goal to produce three-
dimensional interpretations of complex urban scenes we have found it necessary to develop
registration techniques that are accurate and robust across a variety of scene domains. We have
tested our system on airport scenes, urban scenes, and suburban housing developments with
varying degrees of success. Under this contract we began to investigating methods to evaluate
the distribution of control points and to incorporate this evaluation into the registration system.
Another area for future research is to improve our ability to recover more feature-based control
point descriptions based upon other feature extraction systems, such as road detection and
tracking [8].

Statistics on the quality of different registration for DC38008

Type of Number Avg. row Std. row Min/Max Avg. col Std. col
Registration of points offset offset row off. offset offset

Coarse - -20.4 1.6 -23/-16 0.4 1.2

POLY manual 11 0.1 0.3 -1/1 0.1 0.5

POLY comer 20 0.5 0.6 0/2 -0.5 1.2

POLY structure 14 -0.8 0.8 -2/2 -5.2 2.0

POLY edge 17 0.8 0.7 0/3 0.0 1.8

POLY shadow 12 -0.6 0.8 -2/1 -0.4 0.9

POLY blob 17 0.6 0.6 0/2 -0.6 1.1

ISO manual 11 -0.4 0.6 -1/1 0.6 1.4

ISO comer 20 1.0 0.5 0/3 2.7 1.3

ISO structure 14 -1.7 0.9 -3/1 -2.9 1.2

ISO edge 17 1.3 0.9 0/4 0.9 1.2

ISO shadow 12 -0.2 1.1 -2M2 3.8 1.7

ISO blob 17 0.6 1.6 -2/5 1.4 1.2

Table 3-1: Statistics for different registrations on DC38008 stereo pair

22



4. Stereo Analysis for Urban Scenes
Algorithms for stereo correspondence can be grouped into two major categories: area-based

and feature-based matching [9]. Both classes of techniques. area-based and feature-based, have
advantages and drawbacks that primarily depend on the task domain and the three-dimensional
accuracy required. For complex urban scenes, feature-based techniques appear to provide more
accurate information in terms of locating depth discontinuities and in estimating height.
However, area-based approaches tend to be more robust in scenes containing a mix of buildings
and open terrain.

We do not believe that any one technique is likely to be robust enough to perform well in the
diverse set of scenes found in urban areas. For this reason we have developed two stereo
matching algorithms that have complementary behaviors. In this section we describe
modifications to SI, an existing area-based algorithm that uses the method of differences
matching technique developed by Lucas [10, 11]. We also describe S2, a new feature-based
technique that uses a scanline matching method which treats each epipolar scanline as an
intensity waveform. The technique matches peaks and troughs in the left and right waveform.
Both are hierarchical and use a coarse-to-fine matching approach. Each is quite general, as the
only constraint imposed is the order constraint for the feature-based approach. The order
constraint should generally be satisfied in our aerial imagery except in cases of hollowed
structures.

4.1. Modifications to the Si Stereo Algorithm
The Si area-based approach uses a hierarchical set of reduced resolution images to perform

coarse-to-fine matching on small windows in the two images. At each level the size of the
windows for the matching process depends on the resolution of the reduced image. An initial
disparity map is generated at the first level. Subsequent matching results computed at
successively finer levels of detail are used to refine the disparity estimate at each level.
Therefore the amount of error in the scene registration that can be tolerated by this matching
algorithm depends on the size of the matching windows. However, since there is a relationship

between the matching window size and the level of accuracy, simply using larger matching
windows may not be desirable.

To accommodate large disparities, we modified the algorithm to use a hierarchy of different

spatial resolutions. Starting with a reduced resolution dataset we compute an initial estimate of

the scene disparity. With this estimate of disparity as an initial starting point, we can better

refine our estimate than if we had begun matching at a coarser level. The disparity range of the

scene can be used to estimate the number of different spatial resolutions, the number of levels for

each resolution, and the size of the smoothing windows and scanning overlap at each level. A

good estimate of the disparity range can be provided by shadow analysis, BABE box matching, or

external knowledge of the terrain. We have found that good estimates of the disparity range are

necessary to achieve reasonable results. This approach has been used on different images and

gives better results than the standard Sl method. The results are less sensitive to registration
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errors and we obtain better results on the discontinuities.

As a final step in the S1 analysis we modified the aigorithm to improve the detection of the
disparity discontinuities. We first compute variational left and right images using a local

aianation operator [121. As an initial disparity estimate. we then use the result of the previous
method and rerun the S I procedure using just two resolution levels with the variational images to
encompass errors in the previous result, and thereby locally refine the disparity estimate.

Figure 4-1: Gradient Wave Matched Points Figure 4-2: Gradient Wave Matched Points

[Left] [Right]
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4.2. The S2 Stereo Algorithm
is, a teature-based ,\,-!em that treats the problem oi sterekv matchinL a-s one-dimensional

sienal mnatchinL,. s-' matches, epipolar ,canlineN in the left and right image using a hierarchical
aippro\imiation of the scanfine intensit\ m avetorm. It matches peaks and \ alle\,s in the \ka'etonn
at ditterent le~ els ot'resolution. s' uses intra-scaniine consistenc\ to ent orce a linear ordering ot
miatches,% ithout order re\ ersals. It also applies an inter-sc.anline consistenc'% that con iders the
miatches, in ad-jacent scanlines. Application oi the inter-scanline constraint is used to increase the
:onfidence ot matches found to be consistent across multiple scanfines and to delete improbable
matches. Since disparit\ discontinuit\ usua ll\ occurs at the intensit\ discontinuit\. the gradient
ýýavetOnrn i,, matched atter the int,-nsat\ matching phase to localize disparit\ -jumps. Finally.
ettorts, are made to detect occlusions and correct them.

The teatures used for matchin(- are the intenisit and g~radient extremities of the scanlines. The
matchinL, criteria is ,impl\ the similarit between tw-o extremities. Intensit extremities are
-casier ito match than the Lradient extremities. because intensity extremities var\ in size and shape
more so than the gradient extremities. Ho\%ever. intensity features ma% not correspond to the
position ot ph\ysical ob-jects in the scene, so the Lradient. the derivative of the intensit\ peak. i,

mnatched. Fi,!ures -I- I and 4-2 sho" the left and ri~ht %%aveform for a single imag!e scan-line.
The horizontal black line is the scan-line being matched. the horizontal \%hite line is the
interpolated disparit\ protile tor the scanline. and the black- waveform is the gradient w aveform.
MIinima and maxima that have been matched are marked in white.

Figure 4-3: S-1 sparse dispanitY map
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lrltensit\ teatures are matched hierarchicall\. In other ý%ordls. s' matches the most si~Lmiticaflt

feature,, first. such a, points ýýWir hi~zhest and lowkest intensit\ \~alue'. Points \\ ith 'succeedinLi

.-dues are matched later usinLg matches at the previous coarse level as constraints. Due ito the

ocalitv of rnatchinL, ah-orithm. the optimum matches at the waveform level rniiht not he

Jiesirahle or correct from a ý-,lohal point of vie". It is precisel\ ror this reason that inter- and

intra-scaniine consistency constraints are imposed during the intensit\ matchi ng phase. Inter-

-'caniine consistenc\ \Impi\ assumes that dJisparit\ should he nearl\ continuous across the

'c~anlines. Intra-scanline assumes, continuity alons! the scanline. unless there are stronig supports

for the disparit\ jump. The intensity wvaveform matches are then used to constrain allo~kahle

matches durinL, position refinement usinLg the ieradient wavet orm.

Figure 4-4: DC3XxW Industrial Scene Figure 4-6: St Disparity Mlap

Figure 4-5: DCSVo(x Disparity Reference Figure 4-7: S2 Disparity Map

'2performs a final post processing step to explicitly deal \A.ith the problem of' boundary

26



Occlusion. W\e can detect an occlusion using the gradient prorile when wýe tind unmatched
*,i~..iticant features in one profile that occur between two ,ucces~sive good matches wxhere one
mnatch is a [iiih disparit%- estimate and the other is Ia low% oisparit\ es!imate. This situation iv
Jentitied and corrected b\ allowving a two-to-one teature match. In other wkords. a extra reature

inl one protile is matched to a ieature in the otner protile that alread\ has a match. At the end ot

:1is phase. wke can create a sparse disparit\ map as showkn in Figure 4-3. Points in this, ima~e
,--present the actual matches round bv S' and Lire only a smail subset or the three-dimensiona
poinlts in the scene. In the followinL, section we describe the interpolation of this sparse disparit\
Inap into a dense disparity map to recover height estimates for the entire scene.

Figure 4-8: DC37405 Suburban Scene Figure 4-10: si Disparity Map

Figure 4-9: DC374105 Disparity Reference Figure 4-11: S-2 Disparity Map

One kev Issue in feature-based stereo matching is the interpolation process. Because we are
obtaining depth estimates at sparse matching points, we must fill in depth estimates in a
c:onsistent manner in order to achieve a complete disparity estimate. There has been much work
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done in surface interpolation techniques: some combined the interpolation process into normal
stereo processine 113. 141. %%hiue others tried surface fitting wkith sparse data 1 151. Howkever. %ke

ha'~e not tound a satisf actor, technique that works in both urban environment,, kkith large
disparit\ lumps as well as in smoothly varying terrain. At present. a constant step interpolation
is used because it is the most suitable method Liven the sharp disparity discontinuities round 'in
urbanscn.

Figure 4-12: Denver ALV test site Figure 4-14: S I disparity map
for denver scene

Figure 4-13: Reference disparity map Figure 4-15: S2 disparity map
for denver scene for denver scene

Flizure 4-3 shows the result of the S2 process in a complex industrial scene shown In Fi~ffe
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4-4. White points are actual match points while black pixels correspond to points with no

disparity estimate. Figure 4-7 shows the result of interpolating the sparse disparity map

smoothed by a vertical median filter. Figure 4-7 shows that S2 performs well on discontinuities
with most of the mismatches and errors occurring at the occlusion boundaries. In the following
section we show stereo matching results for two complex urban scenes. DC38008 and DC37405.
and for a scene containing rugged terrain. ALV.

4.3. Some Test Datasets
Figures 4-4 through 4-15 show current results on three test datasets. In each case we present

the left intensity image of the stereo pair. a reference disparity map. and the disparity estimates
calculated bv the Si and S2 matching algorithms. In all cases disparity is shown with height

encoded from dark (low elevation) to light (high elevationL. The ground truth disparities and the
stereo disparities are scaled to the same intensity range for the purposes of visual comparison.

Figures 4-4 through 4-7 show an industrial scene containing a moderate number of complex

buildings. Each building is fairly large, generally having a non-homogeneous roof texture, and

have large areas of occlusion due to the building heights.

Figures 4-8 through 4-11 show a residential area having a larger variety of buildings including

townhouses. apartments, and large shopping areas. It also contains rather complex terrain, where
many of the townhouses are lower than the surrounding terrain.

Finally. Figures 4-12 through 4-15 show an open area with no man-made structures, the

Denver ALV site. This stereo pair is included to show that the stereo matching algorithms are

capable of working in highly textured areas with no depth discontinuity. The most difficult

aspect of this scene was the very large disparity range, approximately 30 pixels.

4.4. Performance Evaluation
It is difficult to quantitatively evaluate the results of any stereo matching algorithm working on

real. rather than synthetic. stereo image data. While random dot stereograms can provide

controlled three-dimensional scene structure we do not believe they are sufficient to evaluate

stereo matching algorithms in complicated imagery with natural and man-made structures. Two

different evaluations are possible. We can compare a disparity result to a reference disparity

map or we can compare different disparity results to one another. A true evaluation of the results.

however, requires the use of a reference "ground-truth' disparity map for comparison.

It is actually very difficult to get a good reference disparity map for an arbitrary test scene.

One could imagine resorting to the use of existing digital elevation models, or paper maps with

terrain contours. Unfortunately, unless one is fortunate enough to find an area with high

resolution ground-truth, the accuracy of standard digital products or maps is insufficient.

especially with a ground sample distance around 1 meter per pixel. We have developed a display

tool to manually generate disparity maps allowing a user to select points on the registered images
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and generate accurate disparity values. The user views the scene using a Tektronics 920 stereo
display monitor with the imagery registered using a manual ground point selection. Once a
sufficient number of points have been selected. usually a couple hundred. but depending on the
complexity of the underlying terrain, we can generate a dense reference disparity map of the
terrain by interpolation. Similarly. we add to the terrain disparity map. disparity regions that
correspond to man-made structures. In some sense these manual disparity maps are detailed
cartographic descriptions of the scene and can be much more accurate than most traditional
paper-based maps. Figures 4-5. 4-9. and 4-13 show the manually produced disparity maps for
the industrial, suburban house, and Denver terrain scenes.

At least three different performance measures can be calculated to evaluate a stereo disparity
result. We can evaluate the general performance on a scene. the performance for all the
buildings, or the performance on a building-by-building basis. The global average disparity error
is computed by finding the error for each point between an estimated disparity value and the
reference disparity map. This single statistic provides a quick quantitative measure of the quality
of the disparity map. One can further categorize points in the reference disparity map as high
gradient points, low gradient points, points with high disparity, or points with low disparity.
Based upon this classification it could be interesting to evaluate the performance of various
stereo matching algorithms for specific problems such as smoothing over depth discontinuities or
sensitivitv to disparity range.

We describe statistics on the error between the reference disparity value and the disparity
result without any further classification. For our global measure we present the average error for
the entire scene and the percentage of points having an estimate within +/- one pixel disparity
from the reference for the entire scene. The use of +/- one pixel disparity reflects some of the
accuracv limitations in the reference disparity map and is discussed further in Section 4.4.3.
These simple parameters give us an idea of the magnitude of the errors in the scene. but do not
give much insight into their distribution. Other error metrics such as min/max error are not very
reliable since they can be caused by single point errors that may occur in either the calculated or
reference disparity map.

30



CL

• Ag

O 0 I t

j 7U001

MAU

" '• j- -t"

200"

"S0• 6 A -t0 -5 1. $ 0 2S ,t to '2 1.

IV'
I- w

law~ -

.1 to is 61 -50'2 ' 0 5 £ 10 '2

Figure 4-18: Average Error in Pixel Figure 4-19: Percent points within +/- 1
Disparity in DC37405 Pixel of Ideal Disparity in DC37405

Tables 4-1. 4-2. and 4-3 give the global error estimates for each of the three test scenes. These
global statistics show that Si. the area-based method. S2, the feature-band method and merge, the

combination of S I and S2. give very similar results across each of the three scenes. Interestingly,

these measures do not seem to statistically reveal the apparent perceptual improvement achieved

by merging the results of S I and S2. We believe that this argues for a more structural analysis in

addition to global scene measures.
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Figure 4-20: Average Error in Pixel Figure 4-21: Percent points within +/- I
Disparity in Denver ALV Pixel of Ideal Disparity in Denver AL'V

One way to address some of the issues that are hidden by global statistics is to measure the

influence of the disparity value on matching accuracy for each of the methods. The graphics in

Figyures 4-16. 4-17. 4-18, 4-19, 4-20, and 4-21 plot error rates sorted by reference disparity.

Figures 4-16, 4-t8, and 4-20 show the average error in pixel disparity at each disparity level for

each of the test scenes. Each contains three graphs showing the results for S 1.5S2. and the merged

rcsult of S 1 and S2. Figures 4-17. 4-19, and 4-21 show the percentage of points within +/- one

pixel of the ideal pixel disparity over each disparity range.

In general. these graphs indicate that the greater the actual disparity, the more likely the

various matching algorithms will make a mistake. This is reflected in both a higher average

error and a lower percentage of points within +/- one pixel of the actual disparity. These global

metrics alqo show that in areas of low disparity, S1, S2. and their merger give similar results. For

higher disparities Sil has much more of a problem in correctly estimating the disparity than does

S2. Further. in most cases. the result of S1 and S2 merging produces an improved estimate

causing errors to decrease.
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Global Error Estimate for Stereo Matching
Using Figure 4-5 as ground truth

Stereo Min/Max Average ot points Ground Truth
Method Disparity Error % within +- I Disparity Range:(pixel disparity) pixel disparity

S1 -12/13 7%(I) 58% -2/15

S2 -5/14 6%(1) 63% -2/15

S1+S2 -10/14 5%(1) 59% -2/15

Table 4-1: Statistics for different stereo matching methods on DC38008

Global Error Estimate for Stereo Matching
Using Figure 4-9 as ground truth

Stereo Min/Max Average % of points Ground Truth
Method Disparity Error % within +- I Disparity Range

(pixel disparityv pixel disparity

SI -12/12 5%(1) 63% -13/13

S2 -15/15 4%(1) 70% -13/13

SI+S2 -15/15 4%(1) 70% -13/13

Table 4-2: Statistics for different stereo matching methods on DC37405

Global Error Estimate for Stereo Matching
Using Figure 4-13 as ground truth

Stereo Min/Max Average % of points Ground Truth
Method Disparity Error % within +- I Disparity Range

__(pixel disparity) pixel disparity

SI -22/19 5%(2) 61% i -28/-I

S2 -26/1 6%(1) 70% -28/-1

S1+S2 -25/1 6%(1) 70% -28/-1

Table 4-3: Statistics for different stereo matching methods on Denver scene

In areas with man-made structures global accuracy statistics do not adequately convey the

quality of the stereo matching system with respect to the buildings in the scene. In most cases

buildings may cover only a small portion of the scene and the background terrain will

statistically dominate the scene-wide estimate of disparity quality. Thus, we require a method

that allows buildings to be evaluated independently or as a class of objects in the scene.

Additionally, there are several metrics that can be used to evaluate both the disparity estimate

and the quality of the depth jumps. We discuss these metrics in the following sections. Figures

4-22 and 4-23 are hand segmentations of the left image where we have associated a reference

building IDs. Figures 4-24 and 4-25 are graphs showing the actual building heights referenced

to the building IDs. We have also computed, for each building in the ground-truth. the height of
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the building over its surrounding terrain. We have assigned building ID's based upon the

ground-truth disparity map so that taller buildings have larger numeric ID's.
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4.4.1. Quality of Building Disparity Estimate
In order to evaluate the performance of S l, S2 and the merged result on buildings in the scene

we can gather statistics on the disparity estimate for each pixel considered to be on the roof of

the building. As before. the average disparity error in pixel disparity and the percentage of

points within +/- one pixel of the ground-truth estimation are good measures for performance.

Figure 4-26 shows the quality of the disparity estimate for each of the buildings in the DC38008
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industrial scene. The x-axis represents the ID number for each building and the y-axis shows the
errors in estimated disparity for a particular building across S1. S2. and the merged result. This
graphic, although a bit cluttered, shows no clear trend of performance advantage" both Si and S2
produce a comparable result. although S2 appears to perform better. especially on buildings with

greater disparity. For most buildings the error is bounded between ÷/- two pixels. The result of
merging generally appears to improve the average error. As we have assigned building ID's

sorted by disparity we can observe a trend towards increased error as we move along the x-axis.

We can also represent results using the disparity jump instead of the building ID to index the

results. These graphics represent the integration of the average disparity error over all buildings
with the same disparity jump. Figure 4-27 and 4-28 show the effect of disparity jump on the

disparity estimate and allow us to determine whether the actual height of a building over its

neighborhood (disparity jump) affects the disparity estimate produced by stereo matching. It
appears that Si is comparable with S2 for smaller buildings. This is because low buildings can

satisfy the continuity constraint of the area-based method. S2 performs better on scenes with

buildings having significant height because low buildings can be easilv masked bv random

mismatches in the feature-based analysis. The merge of SI and S2 produces results that combine
the best properties of both methods.

Figures 4-29, 4-30 and 4-31 provide similar statistics for the suburban house scene. DC37405.

As in DC38008 the average error for each building appears to be bounded by +/- two pixels. S2
appears to have slightly better performance than St. and the result of the merger almost always

improves the average error. Whereas S2 always appears to perform much better than Si with

respect to the percentage points (within +/-I pixel of the correct disparity in DC38008). (Figure
4-28) this is not the case for DC37405 as shown in Figure 4-31.

These statistics allow us to pinpoint problems at a much finer grain of detail than can be

accomplished with global analysis. Thus we can identify specific buildings in the scene and try

to understand. at the algorithmic level, whether there are specific situations where matching

could be improved. Once identified, these improvements should have an overall positive effect

on the rest of the scene. The result. of course, can be subjected to the same rigorous performance

analysis. Once we commit to working on complex scenes, as opposed to synthetic controlled

images. the visual inspection of disparity results to discover small variations in performance

becomes very unsatisfactory, except possibly at the earliest stages of experimentation. Such

manual inspection greatly limits our ability to detect subtle conceptual bugs or recognize

possibilities for algorithmic improvement. In some cases we can perform systematic analysis

across multiple scenes. For example. in applying statistics that take into account the disparity

jump for individual buildings, we can aggregate performance information for all buildings across

all scenes to achieve a larger statistical sample.
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4.4.2. Quality of Delineation Estimate

In the previous section we described techniques to measure the accuracy with which we can

recover the height of buildings in the scene. For cartographic applications it is equally important

that we generate an accurate delineation of the buildings with respect to their surroundings. In

this section we discuss another metric which is the quality of the stereo delineation of each

building in the scene. Wee o location which measures the distance of the estimated

disparity jump from that in the ground-truth disparity. We also measure ed~ge sharpness which

corresponds to the shape of the disparity jump in the estimated disparity map. Ideally, we would
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expect the stereo matcher to generate a step disparity jump at the point where the actual disparity
jump occurs in the reference disparity map. As before, we assume that the ground-truth disparity
map accurately captures the location and the height of the building edges. In order to allow for
measurement error, we tolerate some uncertainty in both the location of the edge (+/- one pixel)
and the height estimate on both sides of the edge (edge sharpness). The uncertainty in edge
sharpness is somewhat difficult to quantify since it depends on both the height estimate on each
side of the building roof edge and on the height estimate of the neighboring ground. These
estimates may be biased. since in some cases we are interpolating the ground elevation from a
sparse network of points. We can alleviate this error by making sure that we select
representative ground points as close to the buildings as possible.
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Figure 4-29: Average Error for Each Figure 4-30: Average Error for
Building in DC37405 Each Disparity Jump in DC37405

Figure 4-32 shows how we compute the edge location and sharpness for each building in the
scene. The two waveforms represent the gradient of the reference disparity map and the disparity
result being evaluated. The peaks in the reference disparity map gradient represent the true edge
of the building in the scene. The evaluation process finds the best matching peaks in the S1. S2.
or merged disparity map gradient within a neighborhood of the reference edge. The distance P
corresponds to the position error of the edge in the result disparity map. The ratio Hd/Hr
corresponds to the sharpness evaluation of the edge. A ratio of one is perfect. The value Hd and
Hr correspond to the amplitude of the gadient related to the reference zero gradient.

Both the position error and the edge sharpness metric require that an edge point in the
reference disparity map be matched with an edge point produced by the stereo matcher under
evaluation. In many cases no such match is possible: that is. there is no suitable match for the
reference disparity edge. In the following examples between 35% (DC37405) and 50% (DC38008)
of the reference points are not matched, hence the matchable edges represent between 50-65% of
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Figure 4-32: Gradient Matching for Edge Evaluation

the reference points in the scene. Figures 4-33 and 4-35 represent the average position error forthe matchable edges across all buildings in DC38008 and DC37405, respectively.

Figures 4-34 and 4-36 shows the percentage of edges produced by the stereo matchers that are
within +/- one pixel of a reference disparity map edge. These graphs are the subset of points
lying in the band +/- one position error from Figures 4-33 and 4-35 respectively, plotted with
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respect to all edges in the reference disparity map. In both cases the position error metric shows
that the ability to accurately delineate the disparity depth jump appears to be much weaker than
visual examination of the disparity maps might indicate.
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Figure 4-35: Edge Position Error for DC37805 Figure 4-36: Percent Good Edgels for DC37800

For the evaluation of disparity sharpness we calculate the average edge ratio and the sharpness
of edge points whose edge position is within +/- one pixel of the reference edge. Figure 4-37
represents the average edge sharpness ratio for all matchable edges across all buildings in
DC38008. A ratio of one indicates a perfect step edge. Figure 4-38 shows the sharpness of edge
points that are within +/- one pixel of the reference position for all buildings in DC38008. Figures
4-39 and 4-40 show the same results applied to the buildings in DC37405.

We can make several observations based upon this performance data. First. it is clear from
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this analysis that S i does n( -form as well as S2 in terms of disparity delineation. Its ability to
estimate the sharpness of the disparity jump (edge ratio) is likewise poorer than that of s:.

However. there are some comparative advantages. Si gives comparable results in the case of
buildings with low disparity. On the DC37405 scene the S I and S2 results are similar because the

buildings in this scene do not have large disparity jumps.
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It is interesting to note that errors in delineation, position, and sharpness increase as the height
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of the buildings increase. This is an artifact of occlusion, where higher buildings will occlude a
larger area. making it more difficult to detect the exact position of the disparity jump. Edge
errors seem to be comparable for both S I and S2 for buildings %kith low disparity. As expected.
S1 does not delineate tall buildings well and the merged result combining S1 and S2 sometimes
produces a result that is an improvement over each individual method but. more often. simply
decreases the maximal error.

4.4.3. Limitations of Performance Evaluation
The common theme in this section on performance evaluation is to describe a variety of

quantitative measures that allow us to objectively judge how well a particular set of
registration/matching techniques perform with respect to a manually compiled three-dimensional
ground-truth model, and by comparison, how well they perform with respect to one another. The
reference disparity map is generated using monocular and stereoscopic visualization and is a
representation of the scene within a certain accuracy. In most cases the ground-truth
segmentation can be constructed with enough care to provide for accurate detection of gross
errors. and as a common basis for general comparison between matching methods. However. the
actual accuracy of the reference disparity map has to be considered if we attempt to use it for the
analysis of scene micro-structure, such as roofs with shallow pitch that are modeled as flat
surfaces. small super structures such as building air conditioner units. stair well towers. and other
small roof structures. These superstructures can add an error bias into the overall statistics. This
bias is likely to be small: consider the fraction of error introduced in the case of a nine story
building where we have not correctly modeled an air conditioner unit that rises another story
over 15% of the total roof surface.

Nevertheless. we are sampling only a small subset of the actual three-dimensional points in the
scene. If we count all of the building edge pixels and terrain web points manually selected for
scenes such as DC38008 and DC37405. less than 3% of the scene points are used to produce the
dense reference disparity map. These points are represented in a triangulated irregular network

(TIN) for the terrain upon which is superimposed the building roof structures. We linearly
interpolate the network in order to calculate the dense disparity map. Interestingly, S2 gives us

matches for approximately 12% of the scene points which is typical for feature-based matching

algorithms. As such, our performance analysis is subject to possible errors in the evaluation of S2

matching algorithm introduced due to interpolation from the sparse disparity map.

Given the lack of performance evaluation techniques in computer vision for three-dimensional

scene modeling we are probably content simply to know the height of the buildings and the

general shape of the underlying terrain. But we should understand that if we attempt to push

performance analysis to detail the small effects of subtle algorithmic changes we may run up

against fundamental limits in our ability to recover these micro-structures. Thus, in our

calculations. we have added an uncertainty of +/- one pixel of disparity to the ideal ground-truth

value and feel that this covers a large fraction of the inherent inaccuracies. In summary. our

disparity performance evaluation has to be considered as a method to easily detect large
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mismatches by the stereo analysis system: it may have some limitations in the fine evaluation of
disparity values. Nevertheless. we see such techniques as the only method for effective
comparison of disparity results.
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5. Refinement of Disparity Estimates
One common problem for systems that interpret multiple sources of sensed data is the fusion

of partial results from a variety of sources. This problem appears under many guises. For
example. given a set of different scene descriptions generated from a single image using a
variety of image analysis techniques. how does one intelligently combine such partial
information? [ 16]. The introduction of additional sensor types. temporal imagery. and multiple-
look imagerv create dimensions along which information fusion must be performed: as such, the
complexity of the problem can increase. In some cases, increased amounts of data provide
improved information. This may not necessarily follow, however: complex systems having
different sources of error may not reinforce correct partial interpretations nor refute incorrect
ones.

In this section we describe recent research in techniques to improve the accuracy of a stereo
disparity map using a segmentation of the left intensity image of a stereo pair. Thus. we are able
to recover from mismatches generated during stereo matching by re-utilizing the intensity image
that was originally used in the matching process. We give some experimental results on
disparity refinement and describe techniques that allow for the integration of additional scene
segmentations to provide for a more robust refinement process.

5.1. Disparity Refinement Procedure
In our research we utilize scene domain cues derived from monocular analysis and stereo

analysis of left/right stereo image pairs. In the case of monocular analysis, one source of
information is a region based segmentation of the left or right image. In the case of stereo
analysis, our cues are primarily disparity maps derived from area-based and feature-based stereo
matching algorithms. These image-based cues are different manifestations of man-made
structures and terrain surfaces in the scene. In the case of three-dimensional reconstruction, we
can make the assumption that the scene is composed of surfaces whose information content is
primarily in terms of surface orientation and radiometry. Under these assumptions. we will see
how estimates of three-dimensional scene structure (as encoded in a scene disparity map) can be
improved by the analysis of the original monocular imagery.

We have two sources of information that can be viewed as different representations of the
physical surfaces found in the scene: disparity maps resulting from different stereo matchers
providing the heights of the surfaces in the scene and the initial intensity images representing the
radiometric properties of the surfaces in the scene. Figures 4-4 and 4-7 show an example of
"initial" data used for these data fusion experiments. Figure 4-4 is a high resolution aerial image
containing a variety of buildings with complex shapes. typical of an industrial area. Figure 4-7 is
a disparity map derived using a feature-based stereo matching algorithm. It is important to note
that these two sources of information are "registered". That is. there is a pixel-by-pixel
correspondence between points in the intensity image and points in the disparity map. In some
many cases one issue complicating the use of multi-source information is the accurate
registration or correspondence between the information sources themselves.
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An intensity image. subject to sampling and digitization errors. poses difficulties for
monocular analysis techniques such as segmentation. On the other hand. most stereo matching
algorithms are fooled by different variations in the stereo pairs. which cause mismatches in the
disparity maps. The mismatches in disparity maps primarily result from geometric and
radiometric differences in the left and right images. rather than local di2itization or sampling
errors in the intensity images. Thus. it is possible to use information from the intensity images to
reduce the number of mismatches introduced by stereo matching processes.

5.1.1. Region based interpretation
Our approach utilizes surface illumination information, provided by the segmentation of the

monocular images into fine surface patches of nearly homogeneous intensity, to remove
mismatches generated during stereo matching. First. we segment the intensity image into
uniform intensity regions. These regions correspond to approximately planar surfaces in the
image. We assume that the orientation and surface material are the primary factors for the
radiometry of the image. Under these assumptions. uniform image radiometry is produced by a
planar surface, of a certain orientation and material. in the scene.

These surfaces should have continuous linear disparity values (i.e.. the disparity values of
these regions are represented by continuous linear functions). Since the disparity map contains
some noise, however, most of the regions segmented in the intensity image have disparity
functions that are neither linear nor continuous. Ideally, we would like to approximate the actual
disparity functions over the uniform intensity regions by the appropriate linear functions.

The problem of approximating a surface in three-dimensional space to a reasonable planar
surface is a difficult one: we approximate such surfaces by horizontal surfaces. Then. the
disparity values for each region will be the same for each pixel. and the problem is reduced to the
selection of the best value for the heights of these surfaces. The general problem is that of
locating of the surface which satisfies the equation

ax+by+cz+d=O

Given (x.y), we should be able to obtain

z = (-ax-by-d)/c

We assume here that z'= -d'/c' only. Then the problem is to find (-d'/c') that best fits the surface
so that

ax+by+c*(-d'/c')+d-=O

or to find z' so that z-z' would have a minimal value over the region (this can be the weighted
mean of the z distribution or the most 'representative' value of the z distribution). In other
words, we need only select a single disparity value for each region. Since we are using an over-
segmentation of the image, a piecewise planar disparity map gives a good approximation of the
relief in the scene. Furthermore. since we are interested in building extraction in aerial images.
this approximation will be adequate.

This region-based interpretation has been developed for two different applications. We show
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how this approach can support information fusion from different segmentations and well as

across multiple disparity estimates based upon a local decision making evaluation. In Section

5.2.1 we describe how improved disparity maps may be obtained by correcting the mismatches

produced by stereo matchers and by refining the disparity discontinuities. In Section 5.2.6 we

present preliminary results in the extraction of building regions from the scene using the height
information in these disparity maps.

5.1.2. Intensity Segmentation Techniques
The general scene segmentation problem is. of course. a very difficult one and has a long

history in image processing and computer vision. There are no universal segmentation
techniques that work well across a variety of imagery and tasks. Such low level algorithms

typically differ in their approaches: they may utilize intensity-based. area-based. or edge-based
techniques. Some systems combine these techniques into hybrid algorithms. We have
concentrated on those segmentation methods that produce (nearly) uniform intensity regions
because we wish to detect those image regions that correspond to oriented surface patches in the

scene. We utilize a region segmentation algorithm based upon the histogram splitting

paradigm [17] and a region growing algorithm [18] which takes into account edge strength and
shape criteria [19]. Interestingly. while neither of these methods give completely satisfactory
segmentation results. they provide good over-segmentations that rarely merge objectbackground
boundaries. Both techniques will also provide different segmentations based upon modification
of a small set of parameters. In our experiments we generated three scene segmentations: two by
using different parameters for histogram selection. and one by using region growing. These

segmentations provided the basis for our work in intensity/disparity fusion. the goal of which
was to produce an improved three-dimensional scene interpretation.

Figures 5-2 - 5-4 show examples of these segmentations on the DC38008 industrial left intensity

image. We ran the experiments on smoothed images (Figure 5-1) to remove intensity noise.

5.1.3. Machineseg
One of the major difficulties with region growing techniques in complex scenes is the

difficulty in determining automatic stopping conditions for the merging procedure.

MACHINESEG [19] is a region growing system that tries to preserve edges between regions and

stops the growing procedure when certain shape or spectral criteria are not satisfied inside the

region. It adds a decision procedure to evaluate the effect of the next merge operation and either

allows the merge to proceed or to be rejected. In the case of disparity map refinement, we want

the regions to be sufficiently uniform that they could be treated as planar (or at least "soft")

surfaces. We also limited the size of the generated regions so that very small regions could not

be generated. as these could be considered noise or non-representative regions. As can be seen

in Figure 5-2. since we are not considering the small region. our segmentation is not a complete

partition of the image: it does. however, obtain most of the representative surfaces in the image.
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5.2. Fusion Experiments
After different intensity ,,egmentations and different disparity results were obtained, wke

applied a verx simple fusion technique and developed a few experiments for the two applications
under consideration. Most of the experiments have been performed for the disparity refinement
process. but the results have been used for the building extraction process as well.

Figure 5-5: s i left disparity Figure 5-6: 52 left disparity
result for DC38(00 result for DC380O8

;.'.1. Disparity refinement
In order to refine the disparity maps (i.e.. to remove mismatches. improve disparity

discontinuities and obtain the best height estimate for each point in the scene). several
approaches have been explored:

"* Disparity refinement using one segmentation
"* Disparity refinement using several segmentations
"* Disparity refinement using one seementation and several disparity maps
"* Disparity refinement using several segmentations and several dispanty maps

5.2.2. Simple disparity refinement
In this first approach. a histogram is constructed for each segmentation region. The values of

each histogram are the disparity values in each region. The most representative value of each
histogram is then selected. In our case. this value was simply that of the highest peak in the
histogram. We chose this value for two reasons. The step-interpolated S2 disparity maps result
in disparity histograms having only a few values, which correspond to real height values or
matching noise. If the matching is reasonably robust. the noise will introduce local maxima in
the histogram that will be smaller in magnitude than the best height estimate. Further. a typical
region histogram for an s2 disparity map exhibits one or two large peaks and a few noise peaks
that influence the average value of the histogram. making it less reliable as a representative
value.
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For non-horizontal regions and SI result,,, the aerage disparit. ma'a sutfice ior a reasonable
measure of the height of the region. A confidence score can be Lenerated for these disparity
. diues based on the charactLcristics of the histograms (and. conccLv,,abl\. on the type ot disparit\
ma) used as well as the nature of the renion histograms). Final\. this dispart> \ aiue i,, assigned
io the entire region. under the assumption that it \ýill be a better etimate of the height tor the
. hole renion. In most case.,,. this removes a large numb'r of the mismatches. but v, henever our

in1itial a,,sumptions about scene radiometry are not valid, our height estimates mna\ differ from
Whe correct height \ alue.

We implemented this approach for each segmentation and disparit. map and generated newk
disparity maps that ý\ere based on the initial intensity regions and disparity values. The pixels
that \\ere not considered during the segmentation were removed from these ne\% disparity maps.
Ficures 5-7 and 5-S show the results of the disparity improvement process for the different

-eLmentations using the 52 disparity map. and Figures 5-9 and 5-10 ,how.k the results of the

i,,narin\ improvement proce,,,, tor the s I disparit. map.

Figure 5-7: S2 left disparity Figure 5-8: S2 left disparity
result for DC380ox result for DC3800X

improved using SEGIO improved using SEG20

It i,, worth noting that a common methodology is utilized among all of the approaches

described in this section. A set of attributes is computed tor each region in each segmentation.

.Amonw these attributes are the statistics for the disparity values inside a region. the best disparity

\alue. and a confidence score for this value. This allows the computation to proceed at a

,\mholhc level on a re~Lon-bh-reLion basis.
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the dispartv estimate attribute (computed for a given disparity map) as well as a confidence
score for this estimate. The confidence score is then used to select the best disparity value.
which is then assigned to the pixel. Currently a simple decision is made to select the disparity
value having the highest confidence score.

An attempt is made to maximize the score for each pixel in the entire image. This is done by
selecting a disparity value in all of the regions resulting from the union of the segmentations. In
other words, the segmentations were merged and the best height value was selected for each of
these regions. by utilizing the confidence scores computed for each region. The scoring method
currently in use takes into account information about the nature of the segmentation used.

In particular. higher confidences can be assigned to sufficiently large regions in a constrained
segmentation such as SEGIO than to the equivalent regions in SEG20. Information of this nature
must be incorporated in the confidence function for each segmentation region.

Figures 5-12 and 5-I1 show the results of merging the SEGIO and the SEG20 segmentations for
the S2 and the Sl disparity maps. respectively. Depending on the confidence scores of the
disparity values selected for each segmentation. we were able to obtain improved disparity
estimates for some of the regions. Comparing these results to Figures 5-7 and 5-8. disparity
maps obtained with the simple method, we observe some of the failings of both approaches. The
initial segmentations. in some cases, are under-segmented instead of over-segmented, resulting
in the grouping of regions that should have been assigned different height estimates. Another
factor is the confidence evaluation function for the regions of the segmentation. which only takes
simple properties of the disparity histograms of each region into account.

5.2.4. Multi-Disparity Disparity Refinement
In this approach. several different disparity maps are merged using a single segmentation.

looking for consistent areas across disparity maps. This approach is similar to the simple
disparity inprovement approach. except that we now attempt to select the best disparity value
based on a set of differing confidence scores. The score established for each disparity map at

each pixel should be dependent on the stereo matching algorithm used to generate the map. and
should also take into account the nature of the possible mismatches resulting from each stereo

matching technique.

The major problem with all of the refinement approaches discussed in this final report is the
development of a reasonable confidence evaluation function for each set of data. Currently,

confidence is evaluated by a scoring function that utilizes the standard deviation and the

disparity range of the histogram for each region. as well as the size of the region. Ideally. this

scoring function would also take into account the nature of the disparity map. As an initial

experiment. we defined a similar scoring function for each disparity map and checked for

disparity consistency across segmentation regions. In Figure 5-13. the areas where disparity

values differ between S1 and S2 are marked in black. as we do not use any score difference

information to select the most probable height value at this stage.
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5.2.5. General Disparity Refinement
For the general case we can merge the results of different disparity maps and different

,egmentations and look for consistency across the results. The approach is similar to the multi-
Negmentation method: hokever. we should be able to add additional height hypotheses according
to the different segmentations.

.Again. the processes can be decomposed into two stages. The first stage ,aill Lather the
information and convert it into a common representation (i.e.. region attributes). As an example.
for each segmentation we should obtain a list of height estimates with scores associated %kith
each of the different disparity maps we can use (SI and s2). The second stage %kill attempt to
merge this information bh selectin. the -correct- value from the available information. b\
comparing scores based on the nature and quality of the different pieces of information. It we
can precisel\ evaluate the quality or confidence in the information. \\e should be able to
max imize the amount of accurate data we merge from our different information sources.

There are ,till man% experiments that have vet to be performed. In particular. experimentation
needs to be done on merging the two different disparity values for the three different
,egmentations.

Figure 5-13: Si left disparity
and S2 left disparity
merged using YAK

5.2.6. Building extraction
This second application of information fusion is an attempt to validate this region-based

approach for scene interpretation. Using the previously described methods. we can obtain an

estimate of the height of each of the composite regions in each segmentation. According to our

representation of the scene, buildings are composed of a single intensity region or a group of
intensity regions. and. in general. are hi2her than their surroundings. Therefore. regions
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representimg parts ot a building shouid be higher than their neiwhborinL, reLions.

For each reion. a list ot it., nelwhborinL re~ions i,, constructed. and the dis.- r\t\ % aiues tor
,:ach ol these reoions are obtained. Then. a keithted histoeram i,, ornputec' :.:t takes into
,,,:count ,hared boundary length and disparit\ intormation. This ýeiphtea -,_re i, then
,ompared \\ith the height ot the re~ion to label the reion a,, buildin,, structure or t•ackeround
ierrain. This buildingi extraction process can use either the initial disnarit\ map or the refined
dISparit\ map.

A\ refinement process i, used to group neighboring regions vith the Name height in order to
,biain an intermediate segmentation containing tewer iand largyer) consistent renions. This
..'roupim n procedure merues connected re,_,ions hajin,, the ,ame height to form a ,ingle region.
This, alio%,, the building emractin process to ue iarger, and hopefull\ more consistent. disparit.,

:eC2on,, as a basis tor the neighborhood disparity anali\,is. The qualit% ot this anai\, ,i is again
dependent on the accurac\ ot the disparity estimate, as,, in the previous tusion process,. Figure
".- 14 ,how ,, the result ot such an anal\.si,,. The white re.ions correspond to ,ections or buiidings.
The bUidinLe extraction. as, done b\ hand. i, in Figure 5-15. The building extraction process
described here illustrates one facet of scene interpretation that can be pertormed %kithin our
retinement tramerork.

Figure 5-14: Building regions for Figure 5-15: Building regions for
DC38OMS extracted DC38008 extracted
using the merging manually

ot SEG I o and SEG20
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6. Database Support for Spatial Databases
Automated cartographic feature extraction requires database support to store and retrieve

existing map knowledge, and to incrementally update spatial databases as new information

becomes available. We have begun some preliminary work in addressing such issues using

realistic digital map databases. CONCEPTMAP. our spatial database system. provides a

framework for storage and retrieval of many types of image data. including images and

associated attributes, object boundaries (in image or map coordinates., correspondence

information. et cetera. The ability to freely import and export this type of information is another

important feature that CONCEPTMAP provides. To this end, we have initiated work to integrate

ITD cartographic data. DMA's Interim Terrain Data format, into our spatial database

management system, as well as to provide an efficient graphical user interface to the database.

The integration process includes the decoding of low level ITD symbolic and spatial data, the

building of a representation for the ITD data structure specifications. and the automated

gieneration of formated information that can be directly integrated in a known spatial database

management system. The user interface supports ways of query'ing the data dictionaries and the

data structure of the database. It also allows to display and interactively select spatial

information. Finally, it provides simple means of performing semantic queries on multi-layer
data.

6.1. Integration
A general decoding program has been written to read the raw ITD data format and produce

human readable ascii information. This program uses a simple assembly-like language where

-ach instruction is able to read an arbitrary binary data stream and produce an (Attribute.Value)

pair text output. The processor is able to interpret numeric data on the fly to parameterize loops

and decode dynamic data structures.

A set of utilities has been developed to extract the spatial information from the decoded data

and produce specific data file formats for display purposes or for future database integration. Part

of this process makes use of global information for absolute positioning, or segment naming

conventions to provide links to the symbolic data. This is supported by a simple mechanism

where the global information on a given data set is centralized in configuration files.

In order to check symbolic data consistency and produce ITD symbolic data in a format suited

for the integration in a known database system. or more simply in user readable format. a data

representation of the complete ITD format specifications has been built. The ITD data structure

is organized in three levels: the feature level, the attribute level, and the physical structure level.

These levels are described in text files so that they can easily be modified with a text editor.

The data output formats of the various steps towards integration are consistent so standard

tools could be developed. All the data involved after the first stage of decoding is represented as

(attribute.value) pairs stored in text format (ascii files). This format is very useful for
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experimentation. It makes it easy to read and interpret the output of a process as well as edit the
input of a process for testing. The text format is also justified by the fact that most of the
processing involves symbolic data.

Some programs were developed to transform the ITD symbolic data into a format that can be
used by a database management system. From the first two levels of the structure specification. a
feature dictionary is generated. This dictionary, the feature and attribute levels, the physical
structure and the global configuration files specific to the data set can then be used by an
integration program (or database compiler) to automatically generate an arbitrary database
format.

For experimental purposes. our first database compiler outputs an (attribute.value) pair text file
format. The tools designed for text file parsing have been extended to support feature oriented
structures (processing of paragraphs as separate features). The second part of this report shows
how a simple database management system was developed with these tools to experiment on
user interface issues.

The next step is to write an ITD database compiler for the CONCEPTMAP spatial database.
Already, the spatial information can be integrated in CONCEPTMAP. and work is in progress to
automatically generate CONCEPTMAP symbolic data dictionaries.

6.2. Interface
Once the ITD cartographic data has been organized and compiled into a usable database. the

next issue is to design a user interface to this database. In the process of designing a high level
graphical user interface, three levels of interfacing have been developed. The first level involves
utility programs executed from the UNIX command line. This level is useful to define and
develop the various functionalities needed, but is the most primitive interface. The second level
is the integration of a set of functions in a common context (it is possible to have a current
working data set. and help facilities). This level is still command line oriented, but is the best that
can be implemented on a regular terminal. The last level is the graphical user interface
implemented on a Unix workstation with the X Window System. The goal is to simplify the task
of the user by guiding his steps through a session in order to optimize the use of the system by
reducing the interaction time. in particular for complex tasks.

6.2.1. The database system
The first utilities that we developed provided a way to consult data and link the spatial ITD

data to the symbolic data. One of the utilities allows the user to pick a segment on a graphic
display and get in return the symbolic information for the feature corresponding to that segment.
Another one can filter symbolic data files to extract a class of features.

An initial version of the database query system consisted of a command line interface
developed using CI. the Command Interpreter, which integrated the various functions provided
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by the consultation utilities. In this first system, the user could consult the ITD data structure

specifications. display the ITD spatial data. and consult the compiled version of the ITD

symbolic data. Then. a simple quer. system was added to search through the ITD symbolic data.

This query system is based on data filters. The concept of a data filter in this system is analogous

to UNIX filters, but is implemented slightly differently (no fixed length buffers) and adapted to

this particular data format (more rigid and simple syntax. feature oriented format).

In this system, a feature presented at the input of a filter will generate on its output a new

feature (generally itself or NULL). Therefore. when this filter is applied to a feature file it will

generate a new feature file. In a database context, such a filter can be considered to be a query

primitive and the filtered feature file corresponds to the result of this query. In this model. filters
can be chained together to achieve the 'AND' operation or put in parallel to realize the 'OR'
operation.

During a database query session, a complete trace of the different outputs obtained is kept by
the system. A history is associated with each partial result so that it is possible to reconstruct the

processing steps that lead to the result. It is possible to save the history along with partial results.

6.2.2. The graphical user interface

A first cut at the graphical interface for representing the feature files and filters was developed

using the X Window Svstem. The current interface is simple, though it does demonstrate the

methods for graphically combining filters. It also shows how it is possible to back-propagate a

query until a database match is found. This information is loaded as a text file and the various

filters are applied in the right order until the query is satisfied. There are several benefits gained

by using the simple representations. Because of the use of the XWindows and since our database

representation is text based. the query system is easily ported from one platform to another. We

currently have the system running on VAX and Sun platforms.

The current graphical interface is an adaptation of the command line interface, employing the

XCI package. XCI is an adaptation of the CI command interpreter interface in the X Window

environment. It replaces the command line by menus and dialog boxes for user input. Figure

6-1 shows an example of the user's interaction with the interface. For the output. separate

windows are used to display symbolic and spatial data. A custom grapt, s package, again based

on X. is used to display the spatial data. The interface packages are used only as building blocks

for the database query system, so other projects within our group will be able to take advantage

of the work done to produce these interfaces.
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7. Conclusions
Computer vision and image understanding address difficult problems in a variety of task

domains. In many cases. such as in certain industrial robotics applications, one can choose to
engineer the problem domain in order to make automated sensing and manipulation tractable
using current technology. In cartography. however, one is presented with two-dimensional
images of the unconstrained three-dimensional world. We can not paint red squares on the
corners of buildin2s in order to make roof detection more tractable for our computer vision
techniques. Success and failure in these tasks are easily determined since we have a well
understood basis for human performance in the cartographic community.

Although it is clear that humans bring a great deal of knowledge and context to bear when
attempting to understand the structural and spatial relationships inherent in a scene, we are still a
long way off from having such a level of expertise embodied in computer interpretation systems.
The variety and complexity of man-made structures and natural terrain make the automated
extraction and analysis one of the most difficult challenges for computer vision research.

1• this final technical report under contract DACA 72-87-C-0001 we have described our progress

,oward automated cartographic feature extraction. Our research has put particular emphasis on
built-up areas containing large numbers of complex man-made structures. Over the past three
years we have attempted to address a fairly broad set of problems includi:,g scene registration.
stereo analysis. shadow analysis. and building detection. Each of these areas addresses an
important set of issues toward the development of automated tools for cartographic feature
extraction.

In several cases we can see the inter-relationship between these different areas. The use of
,hadow cues for both registration and building detection, the use of monocular segmentations to
refine disparity maps, and the fusion of various building hypothesis illustrate the need for many
capable modules that can be used for a variety of purposes. Such a suite of feature extraction
tools may provide the required foundation for more capable and robust systems that can reason
about the structure and contents of the scene. Such a system needs to combine 'bottom-up'
analysis across multiple images with a priori map knowledge to achieve the level of accuracy,
robustness. and general performance required in order to be a useful and cost effective
alternative to current manual map compilation techniques.
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