
AD-A25 6 898

The Discourse Reasoner in TRAINS-90

DTIC
K4t ECT E

David R. Traum CT619 1-1••

TRAINS Technical Note 91-5

May 1991 92-27193

UNIVERSITY OFROC R
COMPUTER SCIENCE

N AT

The Discourse Reasoner in TRAINS-90

David R. Traum

The University of Rochester
Computer Science Department
Rochester, New York 14627

TRAINS Technical Note 91-5

May 1991

Abstract

This note describes the Discourse Reasoner module of the TRAINS conversation system.
The overall purposes and functioning of the module is described, as well as the general
conversation tracking theory, and a guide to the code of the current system. A trace of the
discourse reasoner in action on a sample dialogue fragment is also given.

This material is based upon work supported by ONR/DARPA under Research Contract number N00014-
82-K-0193 and the National Science Foundation under Grant number IRI-9003841. The Government has
certain rights in this material.

SECURITY CLASSIFICATION OF THIS PAGE (fton Data Enteredo
REPORT DOCUMENTATION PAGE READ INSTRUCTIONS

BEFORE COMPLETING FORM
I. REPORT NUMBER 2. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER

TN 91-51

4. TITLE (and Subtitle) 5. TYPE OF REPORT & PERIOD COVERED

The Discourse Reasoner in TRAINS-90 technical note

6. PERFORMING ORG. REPORT NUMBER

7. AUTHOR(s) S. CONTRACT OR GRANT NUMBER(s)

David R. Traum NOOO14-82-K-0193

9. PERFORMING ORGANIZATION NAME AND ADDRESS SO. PROGRAM ELEMENT. PROJECT, TASKCompter ciece Dpt.AREA & WORK UNIT NUMBERS

Computer Science Dept.
University of Rochester
Rochester, NY, 14627, USA

11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

DARPA May 1991
1400 Wilson Blvd. 13. NUMBER OF PAGES

Arlington, VA 22209 23 pages
14. MONITORING AGENCY NAME & ADDRESS(i1 different from Controlling Office) IS. SECURITY CLASS. (of this report)

Office of Naval Research unclassified
Information Systems
Arlington, VA 22217 IS.. OECLASSIFICATION/DOWNGRADING' SCHEDULE

16. DISTRIBUTION STATEMENT (of this Report)

Distribution of this document is unlimited.

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, II different from Report)

IS. SUPPLEMENTARY NOTES

None.

19. KEY WORDS (Continue on reverse aide it neceesary and iden!tiy by block number)

natural language understandinq; speech acts; dialog systems

20. ABSTRACT (Continue an reverse side It necessary and Identify by block number)

This note describes the Discourse Reasoner module of the TRAINS conversation
system. The overall purposes and functioning of the module is described, as
well as the general conversation tracking theory, and a guide to the code of
the current system. A trace of the discourse reasoner in action on a sample
dialogue fragment is also given.

DD JAN 73 1473 EDITION OF I NOV 65 IS OBSOLETE

SECURITY CLASSIFICATION OF THIS PAGE (When Dote Entered)

1 Introduction: The TRAINS Conversation System

The TRAINS project involves research in a wide range of areas of natural language and
knowledge representation, including natural (spoken and written) language understanding,
dialogue and discourse modelling, and real-time plan-guided execution. A centerpiece of this
research is the design and implementation of a system which serves as a planning assistant
to a human manager, communicating with the manager in an English conversation, with
the duty of sending execution directives to agents in the simulated world to achieve the goal
of the manager. More detailed information on the design and scope of the system can be
found in [Allen and Schubert, 19911.

1.1 The Discourse Reasoner

The discourse reasoner is responsible for maintaining the flow of conversation, and making
sure that the conversational goals are met. For this system, the main goal is that an
executable plan which meets the manager's goals is worked out and agreed upon by both
the system and the manager and then that the plan is executed.

The discourse reasoner must keep track of the manager's current understanding of the
state of the dialogue, and determine the intentions of utterances of the manager, generate
utterances back, and send commands to the planner and executor when appropriate.

1.2 Other Related Modules

The Natural Language Subsystem is responsible for producing a semantic interpretation
of an input sentence. This interpretation is a statement or statements in Episodic Logic
[Schubert and Hwang, 1989]. Parsing, semantic interpretation and reference resolution
and inference are steps in the interpretation process. The NL Subsystem needs to process
both the manager's and the system's utterances, in order to update reference and tense
structures. The manager's processed utterances are passed over to the Discourse Reasoner
for speech act analysis and further action, if necessary. See [Schubert, 1991; Light, 1991]
for further information on the NL subsystem.

The NL Generator takes speech acts produced by the discourse system and converts
them to Natural Language utterances which are then output to the user (and fed back to
the NL subsystem). The current generator is just a stub module which can only produce a
couple precomputed sentences. It is described in appendix A.

The Domain Planner does plan recognition and plan elaboration. Plan recognition is
a crucial part of understanding utterances of the manager, and plan elaboration produces
the new information that needs to get communicated to the manager. The domain planner
is described in [Ferguson, 1991].

The Executor takes a plan and sends the necessary commands to the individual agents
to have that plan carried out. It also monitors the progress of the plan to make sure it is
successful. Plan execution occurs in the simulated TRAINS world, which is described in
[Martin and Miller, 1991]

1

1.3 Overview

Section 2 describes the tasks of the Discourse Reasoner in detail. Section 3 describes
the architecture used in this system for achieving these tasks. Section 4 describes the
actual implementation. Section 5 describes the next stages needed to improve the current
system. Section 6 gives a detailed trace of the system operating on a sample dialogue. The
appendices describe the workings of closely related stub modules.

2 The Tasks of the Discourse Reasoner

The Discourse Reasoner has several tasks that it must fulfill. First, it must recognize what
intentions are being communicated by an utterance of the manager. This ii-volves analyzing
the semantic interpretation of the utterance and trying to identify illocutionary acts that
the manager meant to convey.

Once the acts are recognized, they must be responded to. At a minimum, the Discourse
Reasoner must update the conversation knowledge context to include the new information,
but further action may also be warranted. When a suggestion or request about a domain
plan is recognized, plan recognition should also be performed, in order to capture an"
implicit suggestions. The Discourse Reasoner should also acknowledge utterances which it
thinks it understands, and accept or reject suggestions and requests made by the manager.

In addition, the Discourse Reasoner must tell the executor to execute a plan when a
complete plan has been agreed upon by the manager and the system, and must determine
what needs to be said to the manager, based on the structure of the conversation arid private
beliefs and obligations.

2.1 Identifying Intentions from Utterances

The first job of the Discourse Reasoner is trying to recognize what the manager meant
by a particular utterance. While the NL subsystem derives semantic interpretations of
the utterances, it is up to the Discourse Reasoner to recognize how they apply to the
conversation at hand and what to do about them. The first step in this process is to
identify illocutionary acts from the interpreted utterance. The types of acts handled by the
prototype system are shown in table 1.

suggest item a proposal that can be related to a domain plan or to the conversation itself.
request item like a suggestion, but introduces an obligation on the hearer to address it (either by

performing a requested action, or accepting or rejecting the request explicitly).
accept item accept a proposed item.
reject item reject a proposed item.
release-turn a signal of the end of the current turn and a willingness for the system to begin speaking.

Table 1: Speech Act Types

The items mentioned in Table 2 can be any of the types listed in Table 2 or (adopt p)
which is a meta-plan item which means adopt plan p as shared between the participants.

2

The domain plan items have the following meanings: (goal g p), where g can be a state
to be achieved or an action to be performed, means that in order for p to be a successful
plan, goal g must be met. (action-in a p) means that a is an action (e.g. move-oranges
or unload) performed in the course of executing plan p. (uses o p) means that o is some
domain object (e.g. a particular factory or car) which is to be used somehow in plan p (e.g.
as a parameter in some action). (fact c p) means that c is some fact (e.g. (at (oranges
ol) (city cityB))) about the world which is a constraint on plan p. See [Ferguson, 19911
for more on the meanings and uses of the domain plan items.

(goal g p) g is a goal of plan p
(action-in a p) a is an action in plan p
(uses o p) o is an object used in plan p
(fact c p) c is a constraint on plan p

Table 2: Domain Plan Items

Some example interpreted illocutionary acts would be:

"* (suggest (fact (at (oranges o1) cityl) planl))

"* (request (action-in (move-oranges [parameters]) planl))

• (accept (adopt plani))

* (release-turn)

where (at (oranges ol) cityl) is a fact about the TRAINS world, saying that the group of
oranges ol is at cityl, move-oranges is an action in that world, and plan1 is an abstract plan
in the TRAINS domain. Further examples can be seen in the example traces in section 6.

Some parts of the speech act can be read directly from the utterance, such as the
particular action or fact, and often the type of act. Other parts will often have to be fillCd
in by the context, such as which plan is currently under discussion, and what an acceptance
(e.g. "Okay") or a rejection (e.g. "no, let's not") refers to.

Multiple speech acts can be the result of a single utterance. For instance, the utterance,
"Shall we ship the oranges?" in the trace given in Section 6 is interpreted as being a
suggestion of (1) a particular action being part of the current plan, (2) a request to adopt
the plan proposed by the speaker, and (3) a release of the current turn.

2.2 Tracking a Plan Through a Conversation: The Domain Plan Contexts

The Discourse Reasoner must maintain the knowledge about the state of the conversation
and how it relates to the topic being discussed. For the TRAINS system, the main object of f "
discussion is the TRAINS world, and plans for bringing about different situations therein.
The manager must get the system to have a plan to carry out his goals, since the system
has the only connections to the agents. Also, the system must try to satisfy the needs of the
manager (its overall design motivation). It is thus important that the system and manager V/

3 I Avail and/or

.... ...spo

must come to a shared plan of action. By "shared plan", we mean, roughly, shared belief
in a system intention to execute the plan, rather than a more intricate definition such as
that in [Grosz and Sidner, 1990].

2.2.1 Domain Plans

From the point of view of the Discourse Reasoner, Domain Plans are abstract entities which
contain a number of parts. These include: the goals of the plan, the actions which are to be
performed in executing the plan, objects used in the plan, and constraints on the execution
of the plan. The composition of plans are negotiated by the System and the Manager to
come up with an agreement on an executable plan, which can then be carried out. Seen
this way, the conversational participants can have different ideas about the composition of
a particular plan, even though they are both talking about the "same" plan. See [Ferguson,
1991] for details of domain plans.

Shared

System Accept- anager Accept

Manager System
Proposed Proposed

Manager Sugge, P System Suggest

Manager System

Plan Plan

Figure 1: The Domain Plan Contexts

2.2.2 The Plan Contexts

In order to keep track of the negotiation of the composition of a plan during a conversation,
a number of plan contexts are used. These are shown in Figure 1. The system's private
knowledge about a plan is kept in the System Plan context. Items which have been
suggested by the system but not yet accepted by the manager are in the System Proposed
context. Similarly, items which have been suggested by the manager but not accepted by
the System are in the Manager Proposed context. Items which have been proposed
by one party and accepted by another are in the Shared context. The Manager Plan
context is shown in dashed lines, because the system has no direct knowledge of the private
reasoning of the manager. If we were trying to reason about and represent knowledge that
the manager has but is not trying to communicate, then we would put it here. Spaces
inherit from the spaces shown above them in the diagram. That is, everything in Shared
will be in both System Proposed and Manager Proposed. Also, everything in System

4

Proposed will be in System Plan, and if it were used, Manager Plan would contain
everything in Manager Proposed.

As an example, in the trace in section 6, the domain planner decides in the course of the
elaboration that part of the plan will include loading the oranges into a car, this action gets
put into the System Plan space. When the Discourse Reasoner makes a suggestion to the
manager to this effect in the utterance, "shall I start loading the oranges in the empty car
at I?" this action is moved to the System Proposed space. Later, if the manager accepts
this, as in Section 6.1.6, it gets moved to the Shared space.

2.3 Acting on the basis of Discourse Information

There are several types of actions the Discourse Reasoner may take. The most important
are speaking, planning, and plan execution.

In order to accomplish its goals, the Discourse Reasoner may need to communicate
with the manager. This communication would take the form of English utterances that are
attempts at speech acts that the system would like to perform. These speech acts conform
to the types listed in Section 2.1. Since the main goal of the system is to come up with a
shared plan, these acts will be to propose new information and accept proposals made by
the manager.

The system will also have to do some planning to come up with these plans. When the
manager makes a proposal, the system must try to incorporate the proposal into what is
already known about the Manager's idea of the plan, which involves plan recognition to
get at implicatures of the proposal. The system must also do plan elaboration on its own,
to check the plan and fill in any gaps. An unqualified acceptance by the system of the
manager's plan carries the implicature that the plan is executable and will be carried out
by the system.

Finally, when a plan is fully explicit and is agreed upon, the system must execute it.
This involves sending off directives to the agents in the TRAINS world to perform actions.

3 Architecture of the Discourse Reasoner

The Discourse Reasoner is composed of 2 main programs, the Speech Act Analyzer and
the Discourse Actor, as well as some context information maintained by these.

3.1 The Discourse Context

Information in the discourse context is available to both the Speech Act analyzer, and
the Discourse Actor. Several types of information are represented in the Discourse Context.
including information about turn-taking, discourse segmentation, discourse obligations, and
discourse goals.

Turn-taking information is maintained in order to keep track of who is speaking. We
use a scheme which is much simpler than, but in the spirit of [Sacks et al., 1974]. WVe

5

hypothesize a release-turn action, which hands the turn over to the other participant. In
multi-party conversations, the release-turn could take an argument, which would be the
person (if any) directed to speak next. A release-turn could be recognized by any of several
cues, including: a question or request, an unmarked pause, or ending a statement with
rising intonation. A participant may also make a take-turn attempt. Any speaking while
another conversant has the turn may be seen as a take-turn attempt, though it will only be
successful if the turn is completed and acknowledged. Participants may also perform a hold-
turn action to explicitly keep the turn, while not furthering the conversation. Examples of
these would be things like "unhh" or "well, ..". These serve to either eliminate or mark the
pause that would otherwise be seen as a release-turn.

Discourse Segmentation information is kept for a variety of reasons. Some of these
have to do with linguistic interpretation and generation, such as the ability to determine
the possible referents for a referring expression. Others have more tv do with the relations
between utterances, things like adjacency pairs or clarification subdialogues. The currently
open segment structure will signal how certain utterances will be interpreted. Utterances
like "yes" can be seen as an acceptance of the last question asked but unanswered. if one
exists in an open segment. Certain utterances like "by the way", or "anyway", or "let's go
back to .." or "let's talk about .." will signal a shift in segments, while other phenomena
such as clarifications will signal their changes in structure just by the information content.
Arguments for the importance of discourse segmentation structure can be found in [Grosz
and Sidner, 1986].

A record of the system's Discourse Obligations is maintained so that the obligations
can be discharged appropriately. A promise or an accepted offer will incur an obligation.
Also a request or command by the other party will bring an obligation to perform or address
the requested action. If these requests are that the system say something (as in a release-
turn action) or to inform (as in a question), then a discourse obligation is incurred. Rather
than going through an elaborate planning procedure starting from the fact that the question
being asked means that the speaker wants to know something (e.g. [Allen and Perrault,
1980; Litman and Allen, 1990]), which should then cause the system to adopt a goal to tell
them, meeting the request, is registered directly as an obligation, regardless of the intent of
the questioner, or the other goal structure of the system. If the system doesn't address the
obligation, then it must deal with the usual social problems of obligations which have not
been met. This should help distinguish things expected by convention (e.g. that a question
be answered) from simple cooperative behavior (e.g. doing what another agent wants).
Other parts of the system might also bring about discourse obligations. For example, in
some circumstances if the execution of the plan goes wrong, this would bring an obligation
to inform the user.

Discourse goals are maintained so that the system can use the conversation to satisfy
its own goals. The over-riding goal for this domain is to work out an executable plan that is
shared between the two participants. This will lead to other goals such as accepting things
that the manager has suggested, doing domain plan synthesis, or proposing plans to the
manager that the domain planner has figured out. Another top level goal is to fulfill all
discourse obligations.

6

3.2 The Speech Act Analyzer

The Speech Act Analyzer is responsible for recognizing the illocutionary acts in an utterance.
The types of illocutionary acts used in this system are described in section 2.1 above. The
method for recognizing them is based on [Hinkelman, 1990]. What is needed is to combine
linguistic information with plan reasoning to come up with the most plausible interpretation.
We can use information based on the mood of the utterance, as well as certain clueword
cues to get the range of possibilities, and then filter them based on plan reasoning. If we
are talking about the domain, then we can get the domain reasoner to do plan recognition
and see if the interpretation would make sense in the current context. Eventually, as the
types of discourse acts considered become more numerous and complex, we could do plan
recognition of some sort at the discourse level as well.

3.3 The Discourse Actor

The Discourse Actor is the central "agent" of the Discourse Reasoner, which controls the
flow of the system. The Discourse Actor is implemented as a reactive executor which will
react to Illocutionary Acts made by the manager (as provided by the speech act analyzer),
information in the Discourse Context, responses to queries to the Domain Planner. and the
relationship of contents in the Domain Plan Context Spaces. The actions of the discourse
actor to different stimuli are given in Tables 3, 4, and 5.

Speech Act Action

Suggestion Incorporate suggestion in Human Proposed space. This will involve

plan recognition to figure out implicatures of the suggestion.

Accept item Move item from System Proposed to Shared Space.

Reject item Don't move plan to Shared. This will also update the discourse struc-
ture so that further acts will not be seen as implicit acceptance.

Request Add request to Discourse Obligations.

Release-turn Take turn.

Table 3: Actions based on recognized Speech Acts

When the system gets the turn, it will first try to discharge discourse obligations, and
then to achieve its goal of trying to get a shared executable plan to achieve the domain
goals. This will involve first trying to balance the domain plan contexts as described in
Table 4. After this, the planner will try to elaborate the current plan in the System Plan
context. It will release the turn either when it begins execution of a finished plan or when
it needs information back (generally after a request).

7

Item in but not in Action
context context

System System Generate utterance (suggestion) to convey the new
Plan Proposed items to the human, move new items to System Pro-

posed context

System Shared generate request to adopt items in plan
Proposed

Human Shared either generate acceptance of items, move items to
Proposed Shared

or generate rejection and an alternative sugges-
tion, put alternative in System Proposed
context

Table 4: Actions based on the Domain Plan Contexts

Domain Call response Action

Elaborate okay Execute plan in Shared context

new items Generate utterance (suggestion) to convey the new
items to the human, move new items to System Pro-
posed context

choice items choose an item, incorporate choice into System
Proposed context, generate utterance to convey the
new item to the human

Incorporate 'uccess Generate acknowledgment that suggestion was under-
stood

failure Initiate request for clarification or correction

Table 5: Actions based on responses from the Domain Reasoner

8

4 The Current Implementation

This section describes the programs of the demonstation system that was implemented over
the summer of 1990. Some slight simplifications have been made to the model described
above, and some of the actions described have been left implicit in the program flow of
control. Currently, any question or request is interpreted as a release-turn action, and this
is the only facility for turn-taking. The current system does not concern itself with discourse
segmentation, handling only conversations within a single segment, although it does keep
track of the requests, to judge interpret answers. rhe discourse obligations and goals are
implicit in the control structure of the current discourse actor. rather than being explicitly
represented.

4.1 Interface to Other Modules

There are two top-level routines of the current Discourse Reasoner. These are init-discourse
and discourse. init-discourse gets called once at the beginning of the system, to ini-
tialize local data structures. It is called with no arguments and doesn't return a meaningful
value. Currently it is called by the domain planner function init-planner, discourse
gets called by the top-level module with a list of Semantic Interpretations in the form of
Episodic Logic statements. It returns a stream which includes any utterances it has made
while processing. This is so that these utterances can be interpreted by the NL subsystem
to update it's local state.

The Discourse Reasoner will make several calls to other modules. These include:
(create-plan), (is-a-plan item), (incorporate plan-part space),
(elaborate p space), (execute p space), (move-plan p oldspace newspace),
and (generate speech-act). All of the arguments of these calls are either symbols or
lists of symbols, except for the domain plan contexts, which take the actual context data
structures.

(create-plan) takes no arguments and returns an identifier for a new domain plan.
This plan can then have items added to it in various domain plan contexts. A dummy
version of (create plan) is currently in the file discourse.

(is-a-plan item) is a predicate which takes one argument and returnst if this argu-
ment is a valid plan. A dummy version of is-a-plan is in the file discourse.

Name Context
hprop Manager Proposed
sh Shared

sprop System Proposed
splan System Plan

Table 6: Internal Names for Domain Plan Contexts

(incorporate plan-part space) takes two arguments, the first of which is one of the
plan-items described in Table 2, the second of which is one of the domain plan contexts

9

described in Section 2.2.2. This -ommand will cause the domain planner to add the item
to the plan in the specified context, and perform plan recognition to add anything else
necessary for the item to make sense as part of the plan. This command will return an
error if it can't incorporate the item in that space. The most common call to incorporate
w l be in the Manager eroposed context, as a result of a suggestion or request by the

manager. Calls may also be made in the System Proposed context as a result of checking
the likely implicatures of an utterance made by the system. The system internal names of

the Domain Plan Contexts are given in Table 6.

(query plan-part space) takes two arguments, the first of which is one of the plan-
items described in Table 2, the second of which is one of the domain plan contexts described
in Section 2.2.2. This command will return true if the plan-part makes sense in that space.
query is very similar to incorporate, except it does not change the context. query is
currently unimplemented, but should be used by the Speech Act Analyzer to evaluate and
choose between possible speech acts. It could also be used by the NL generator when trying
to come up with felicitous utterances.

(elaborate p space) takes two arguments, the first of which is a plan, and the second
is one of the domain plan contexts described in Section 2.2.2. elaborate is a command to
the domain planner to try to complete the plan in that space. elaborate returns the new

items, including keys signalling where it can not go further. elaborate is usually called in
the System Plan space.

(execute p space) takes two arguments. the first of which is a plan, and the second
is one of the domain plan contexts described in Section 2.2.2. execute tells the domain
planner to ship off the plan in that context to the Executor to start performing the plan.
execute is currently called in the System Plan space.

(move-plan p oldspace newspace) takes three arguments, the first of which is a plan,
and the next two of which are domain plan contexts, as described in Section 2.2.2. This
moves a plan from one space to another, essentially copying all information about the
plan in one space to another. This is called to move plans from System Proposed or
Manager Proposed to Shared and from System Plan to System Proposed. This
should probably b, extended to allow moving individual plan-items, rather than just whole
plans.

(assert-plan-item plan-part space) takes two arguments, the first of which is a

plan, and the second is one -f the domain plan contexts described in Section 2.2.2.
assert-plan-item adds an item to the space, as in incorporate, but does not do plan

recognition or consistency checking as incorporate would. It is currently unused, but
would be another way to move items from System Plan to System Proposed.

(verify proposition) takes as its argument a proposition about the world as an ar-
gument and checks to see if this is true. It may involve sending queries to the domain
agents. Results of this may also modify the plan in the System Plan context if changes
are noticed. This command is currently unimplemented.

(generate speech-act) takes as its argument a speech act of the form described in

Section 2.1. It generates a natural language utterance to the manager which conveys the
specý_h act, and adds a string with the utterance to the variable *output* for the function
discourse to return. See Appendix A for more details.

10

4.2 The Code of the Current System

The code for this version of the Discourse Reasoner is divided into three files, plus additional
related material described in the appendices. The file discourse contains the top level
routines as well as some context information and general information. The file disc-actor
contains the Discourse Actor. get-acts contains the Speec.,-Act Analyzer.

4.2.1 File: discourse

The file discourse contains top level definitions for the Discourse Reasoner. It contains the
two top level functions discourse and init-discourse which get called from outside, as
described in Section 4.1. discourse calls the Episodic Logic Translator (see Appendix B)
on each episodic logic statement. It then calls the Speech Act Analyzer on each translation,
gathering up the Speech Acts which have been recognized, and then calls the Discourse Actor
to act in response to each of these. Finally, discourse returns a stream of all utterances
the system has made, as stored by the generator in the global variable *output*.

The file discourse also defines several auxiliary functions including hprop, sh. sprop,
and splan which take no arguments and return the spaces *hprop*, *sh*, *sprop*, and
splan, respectively.

4.2.2 File: get-acts

This file contains the Speech Act Analyzer. The main function is get-speech-acts, which
is called by the function discourse with a translated logical form as argument. This
function returns a list of all speech acts found to be associated with this utterance. The
current implementation does not check to see if the speech acts are plausible with respect to
plan based information, or choose among a set of possible acts. It merely checks the surface
features (e.g. mood of utterance, main verbs, keywords) and determines the acts based on
these. It will also set the discourse-global *request*, which keeps track of the last request
made.

4.2.3 File: disc-actor

The main function is actor, which is called by function discourse with a speech act as
argument. This function works more or less as described in Table 3, above, branching to
a subfunction for each of the types of speech acts. One simplification is that the discourse
obligations are not explicitly represented. Instead, when a request is recognized. it is acted
upon immediately. Also, the system currently always adopts the user's plan whenever it
gets the turn, and never tries to interrupt before it thinks the user has handed over the
turn.

5 Next Stages for Implementation

There are several extensions which should be made to subsequent versions of the Discourse
Reasoner. These involve bringing the implementation (as discussed in Section 4) in accord

11

with the architecture described in Section 3, as well as extending that architecture. The
elements of the Discourse Context should be made more explicit. Discourse goals and
obligations should be explicitly represented and the Discourse Reasoner should be given
the ability to do some actual planning, or other types of inference, rather than simply
reacting as speech acts come in. In addition, as more complex problems and conversations
are considered, a capability of handling more than one discourse segment and more than
one plan at a time must be added.

This in turn will necessitate a more sophisticated Speech Act Analyzer. Different Speech
acts will appear more likely depending on which discourse segment the utterance is part of,
and which plan it is talking about. The Speech Act analyzer will have to make queries to
the domain planner, and choose the most likely act among a set of alternatives. More types
of speech acts should be allowed, including some which would function strictly as informs
of background information, without being related to any particular plan. The Discourse
Reasoner would also have to keep a more elaborate record of rhetcrical relations between
utterances than the current system, which just keeps track of the l-st request.

A more realistic NL generation module must be added, to form a tighter coupling be-
tween the information provided by the planner, and the utterances made to the user. There
also needs to be some way to distinguish between items added to the contexts explicitly
(through identification of the intentions of an utterance) and items which have been as-
sumed as implicitly communicated. It is generally a possibility in conversation to make
things more explicit, but different forms are used to reconfirm things already explicit in the
conversation.

Some other advances to the system should eventually be made. The system should have
a little more autonomy, with the ability to decide to accept a suggestion from the manager
only when it would come to a better plan. In addition, we may also want to add a couple
more domain contexts for items which have been acknowledged by the other party, but not
accepted. This would form the basis for more complex types of negotiation.

Finally, a change from the current sequential system to one in which the separate mod-
ules can run concurrently will merit further changes. When the planner can operate even
while the system does not have the turn, there will be times when the system will want to
take the turn instead of waiting passively for it to be handed over. This architecture will
also allow the system to recognize and respond to statements from the manager while the
planner is operating.

6 Example Traces of the Discourse Reasoner

We present two variants of a conversation to meet the same goal.

6.1 Example 1

First the System is set up. The Discourse System sets up a new domain plan, called PLAN1
which will be filled out in the course of the conversation. The plan is empty in all the
Domain Plan contexts.

12

6.1.1 The First Sentence

The first sentence uttered by the user is,

HUMAN SAYS-> We have to make OJ.

The Episodic Logical form of this sentence is,

(E EIO ((EIO AT-ABOUT NOW1) AND (E9 ORIENTS E1O))
((HUM TELL SYS

(THAT (E Ell ((Ell AT-ABOUT EIO) AND
(E8 ORIENTS Ell))
(((K (L LEl (((SET-OF HUN SYS)

(MAKE 03)) ** LEl)))
MUST-OCCUR) ** Ell)))) ** EIO))

The translation o tb- t statement is:

(TELL (AGENT HUMAN (*VAR* V-1071)) (AGENT SYSTEM (*VAR* V-1072))
(OBLIGATION AGENT (MAKEO3 (*VAR* V_1069) (*VAR* V_1070))))

From the "OBLIGATION", the speech act analyzer determines that this is a goal of the
manager. The default act that a "TELL" represents is a suggestion. The current plan under
discussion is PLAN1. So the Speech act analyzer recognizes the following act:

(SUGGEST (GOAL (MAKEOJ (*VAR* V_1069) (*VAR* V-1070)) PLAN1))

Now the discourse actor re;2ts to this speech act. This involves a call to incorporate
in the Manager Proposed context:

(incorporate (GOAL (MAKE_OJ (*VAR* V_1069) (*VAR* V_1070)) PLANI)
HPROP)

This will cause the domain planner to do plan recognition in the Manager Proposed con-
text. The planner returns okay, indicating a successful incorporation, and the next sentence
comes through:

6.1.2 The Second Sentence

HUMAN SAYS-> There are oranges at I and an OJ factory at B.

The Episodic Logical form for the first conjunct is:

(E E12 ((E12 AT-ABOUT NOW2) AND (EIO ORIENTS E12))
((HUM TELL SYS

(THAT (E E13 ((E13 AT-ABOUT E12) AND (Eli ORIENTS E13))
(((V117 (PLUR ORANGE)) AND
(V117 LOC-AT STN-I)) ** E13)))) ** E12))

13

which is translated as:

(TELL (AGENT HUMAN (*VAR* V_1083)) (AGENT SYSTEM (*VAR* V-1084))
(AT (ORANGES 01 (*VAR* V-1085)) (CITY CITYI (*VAR* V-1086))))

producing the speech-act:

(SUGGEST (FACT (AT (ORANGES 01 (*VAR* V-1085))

(CITY CITYI (*VAR* V$1086))) PLANO))

The Episodic Logical Form for the second conjunct is

(E E14 ((E14 AT-ABOUT NOW3) AND (E12 ORIENTS E14))
((HUM TELL SYS

(THAT (E El5 ((E1S AT-ABOUT E14) AND (E13 ORIENTS E15))
((E m-1082 (((m1082 ((ATTR-N OJ) FACTORY))

k (W1082 LOC-AT STN-B)) * E15))
•* (F ElS)))))

•* E14))

which is translated as:

(TELL (AGENT HUMAN (*VAR* V-1087)) (AGENT SYSTEM (*VAR* V-1088))
(AT (OJFACTORY F1 (*VAR* V-1089)) (CITY CITYB (*VAR* VI090))))

producing the speech-act:

(SUGGEST (FACT (AT (OJFACTORY F1 (*VAR* V-1089))
(CITY CITYB (*VAR* VI1090))) PLANO)

These will cause the following calls:

(incorporate (FACT (AT (ORANGES 01 (*VAR* V_1085))

(CITY CITYI (*VAR* V-1086))) PLANO)
HPROP)

(incorporate (FACT (AT (OJFACTORY F1 (*VAR* V-1089))
(CITY CITYB (*VAR* V1090))) PLAN1)

HPROP)

6.1.3 The Third Sentence

Next,

HUMAN SAYS-> Engine E3 is scheduled to arrive at I at 3PM.

The Episodic Logical Form is:

14

(E E16 ((M16 AT-ABOUT NOW4) AND (E14 ORIENTS E16))

((HUM TELL SYS
(THAT (E E17 ((E17 AT-ABOUT E16) AND'(E15 ORIENTS El7))

((E a-1112 (((1112 SCHEDULE) &

(W1112 SPECIFIES
(K (L LE2 (((ADV-E (AT-TIME 3PM))

(ENG3 ARRIVE-AT STN-I))
LE2)))))

SEl?))

** (F E17)))))
E16))

Which translates to:

(TELL (AGENT HUMAN (*VAR* V-1113)) (AGENT SYSTEM (*VAR* V-1114))
(AT (ENGINE ENG3 (*VAR*'V_1115)) (CITY CITYI (*VAR* V_1116))))

Which produces the speech act:

(SUGGEST (FACT (AT (ENGINE ENG3 (*VAR* V-1115))
(CITY CITYI (*VAR* V-1116))) PLANI)

and the planner call:

(incorporate (FACT (AT (ENGINE ENG3 (*VAR* V-1115))
(CITY CITYI (*VAR* V_1116))) PLAN1)

HPROP)

6.1.4 The Fourth Sentence.

HUMAN SAYS-> Shall we ship the oranges?

which has the Episodic Logical Form:

(E E18 ((M18 AT-ABOUT NOWS) AND (E16 ORIENTS E18))

((HUM ASK SYS

(ANSWER-TO (Y-N-Q (E E19 ((E19 AT-ABOUT E18) AND (E7 ORIENTS E19))
((SHALL-OCCUR ((SET-OF HUM SYS) SHIP V117))

£* 19)))))

E* £18))

which translates to

(ASK (AGENT HUMAN (*VAR* V-1130)) (AGENT SYSTEM (*VAR* V-1131))
(SHALL (MOVE-ORANGES (*VAR* V_1121)

((AGENT (*VAR* AGENT1122) (*VAR* V-1123))
(ORANGES 01 (*VAR* V 1132))
(CAR (*VAR* CAR1124) (*VAR* V-1125))
(CITY (*VAR* CITY1126) (*VAR* V-1127))

(OJFACTORY (*VAR* OJFACTORYI128) (*VAR* V_1129))))))

Which produces the following speech acts:

15

1) (SUGGEST (ACTION-IN (MOVEORANGES (*VAR* V_1121)
((AGENT (*VAR* AGENT1122) (*VAR* V-1123))

"(ORANGES 01 (*VAR* V-1132))
(CAR (*VAR* CARl124) (*VAR* V-1125))
(CITY (*VAR* CITY1126) (*VAR* V-1127))
(OJFACTORY (*VAR* OJFACTORYI128) (*VAR* V_1129))))

PLAN1))

2) (REQUEST (ADOPT PLANO))

3) (RELEASE-TURN)

1) is recognized since a question with shall as the head verb indicates a suggestion. 2)
and 3) are recognized, since all questions are seen as release-turn actions, and implicit
requests to adopt the plan just mentioned. The speech acts will cause the following actions
to be taken:

1) (incorporate (ACTION-IN (MOVE-ORANGES (*VAR* V_1121)
((AGENT (*VAR* AGENT1122) (*VAR* V-1123))

(ORANGES 01 (*VAR* V-1132))
(CAR (*VAR* CARl124) (*VAR* V_112S))
(CITY (*VAR* CITYl126) (*VAR* V_1127N'
(OJFACTORY (*VAR* OJFACTORY1128) (*VAR* V_1129))))

PLAN1)
HPROP)

2) (generate (ACCEPT (ADOPT PLANI)))
(move-plan from *HPROP* to *SHARED*)

Now, the plan as recognized is shared by both parties.

3) (take-turn)

The system takes the turn.

6.1.5 The System's First Turn

Now the system has the turn. It tries to elaborate the plan in the System Plan context.

(elaborate PLANI *SPLAN*)

This returns the following new items, which have been added to the System Plan context:

(ACTION-IN (MOVEENG ACT1133
((ENGINE ENG3 PARM1092)

(CITY (FACTORY-CITY FI) PARMI074)))
PLAN1)

(ACTION-IN (RUN ACTIi34 ((OJFACTORY F1 PARMI1074))) PLAN1)

(ACTION-IN (UNLOADORANGES ACT1135
((OJFACTORY F1 PARMI074)

(CAR (*VAR* C) PARM1093)
(CITY CITYB PARMi077) (ORANGES 01 PARMI07S)))

16

(ACTION-IN (LOAD-ORANGES ACT1136
((CAR (*VAR* C) PARI¶1093)
(ORANGES 01 PARN1O75) (CITY CITYI PARMIO94))

PLAN1)

(ACTION-IN (RUN ACT2268 ((OJFACTORY F1 PARN2205))) PLANI)

In addition, the planner also returns,

(CHOICE (CAR C2 PARM1093) (CAR Cl PARM1093))

Signalling that PARM1093, the car which the oranges must be loaded into and unloaded
from in the above actions, may be either Ci, an empty car already at city I, or C2, the car
which is attached to Engine E3. The Discourse Reasoner arbitrarily chooses C1, making
the following call,

(incorporate (FACT (AT (CAR Cl PARM1093) (CITY CITYI PARMl094))

PLAN1)
SPROP)

In order to communicate the new information to the manager. it passes the following speech

acts to the NL generator:

(SUGGEST (AT (CAR C1 PARMl093) (CITY CITYI PARM1094)))

(SUGGEST (ACTION-IN (LOADORANGES ACT1136
((CAR (*VAR* C) PAR1093)

(ORANGES 01 PARM1075)
(CITY CITYI PARM1094)))

PLAN1))

(SUGGEST (ACTION-IN (UNLOAD-ORANGES ACT1135
((OJFACTORY F1 PARIMl074)

(CAR (*VAR* C) PARM1093)
(CITY CITYB PARM1077)
(ORANGES 01 PARMI075)))

PLAN1))

(SUGGEST (ACTION-IN (RUN ACT1134 ((OJFACTORY F1 PARM1074)))

PLAN1))

(SUGGEST (ACTION_IN (MOVEENG ACTII33

((ENGINE ENG3 PARM1092)
(CITY (FACTORY-CITY F0) PARM1074)))

PLAN1)

Since it has nothing further to say it will also pass along:
(RELEASE-TURN) and (REQUEST (ADOPT PLANI.)).

Now the generator will cause the following to be uttered,

Yes, shall I start loading the oranges in the empty car at I?

The Discourse Reasoner will move these items from System Plan to System Proposed

17

6.1.6 The Sixth Sentence

The manager now replies,

HUMAN SAYS-> Yes, and we'll have E3 pick it up.

This produces the following episodic logical forms,

(E E23 ((E23 AT-ABOUT NOW8) AND (E21 ORIENTS E23))
((HUM TELL SYS YES) ** E23))

(E E24 ((E24 AT-ABOUT NOW9) AND (E23 ORIENTS E24))
((HUM TELL SYS

(THAT (E E25 ((E25 AT-ABOUT E24) AND (E22 ORIENTS E25))
((E E26 ((E26 AFTER E25) AND (ES ORIENTS E26))

(((SET-OF HUM SYS)
BRING-ABOUT
(K (L LE3 ((ENG3 PICK-UP CD) **LE3))))

** E26))

** (F E25)))))

** E24))

Which lead to the following translations:

(TELL (AGENT HUMAN (*VAR* V-1153)) (AGENT SYSTEM (*VAR* V-1154)) (YES))

(TELL (AGENT HUMAN (*VAR* V-1158)) (AGENT SYSTEM (*VAR* V-11S9))
(CAUSE SYS-HUM (COUPLE (*VAR* V-1155)

((ENGINE ENG3 (*VAR* V-1160))
(CAR C1 (*VAR* V-1161))
(CITY (*VAR* CITY1156) (*VAR* V_1157))))))

Which lead to the following speech acts:

(ACCEPT (ADOPT PLANO))

(SUGGEST (ACTION-IN (COUPLE (*VAR* V_115S)

((ENGINE ENG3 (*VAR* V-1160))
(CAR C1 (*VAR* V-1161))
(CITY (*VAR* CITY1156) (*VAR* V_1157))))

PLAN1))

The first will cause the discourse actor to move the items in System Proposed to Shared.
The second leads to the call,

(incorporate (ACTION-IN (COUPLE (*VAR* V_1155)
((ENGINE ENG3 (*VAR* V-1160))

(CAR C1 (*VAR* V-1161))
(CITY (*VAR* CITY1156) (*VAR* V_1157))))

PLAN1)
HPROP)

18

6.1.7 The Seventh Sentence

The manager now utters,

HUMAN SAYS-> ok?

which produces the Logical Form,

(E E27 ((E27 AT-ABOUT NOWlO) AND (E24 ORIENTS E27))
((HUM ASK SYS

(ANSWER-TO (Y-N-Q (E E28 ((E28 AT-ABOUT E27) AND
(E4 ORIENTS E28))

((E34 OK) ** E28)))))
** E27))

and the following translation:

(ASK (AGENT HUMAN (*VAR* V-1164)) (AGENT SYSTEM (*VAR* V-1165))
(OK))

Which leads to the following speech acts:

(REQUEST (ADOPT PLAN1))

(RELEASE-TURN)

The first one causes the Discourse Actor to accede to the request and move these items
from Manager Proposed to Shared and generate (ACCEPT (ADOPT PLAN1)) The second
causes the Discourse Actor to take up the turn.

6.1.8 The System's Second Turn

First the Discourse actor will call

(elaborate PLAN1 *SPLAN*)

Which this time does not return any new items: the plan is complete. Thus the Discourse
Actor will call

(execute PLANI *SPLAN*)

And give up the turn. The generator will produce,

OK.

and the executor will begin to carry out the plan.

6.2 Example 2

Example 2 is identical to Example 1 until the manager's first response (the sixth sentence).

19

6.2.6 The sixth sentence

Here, the manager rejects the system's suggestion to use ci and instead says,

HUMAN SAYS-> No, load the oranges into the car attached to E3.

which has the logical forms,

(E E23 ((E23 AT-ABOUT NOW8) AND (E21 ORIENTS E23))
((HUM TELL SYS NO) ** E23))

(E E24 M(E24 AT-ABOUT NOW9) AND (E23 ORIENTS E24))
((HUM INSTRUCT SYS

(K (L A2 (((FST A2) LOAD-INTO V117 C2)
** (RST A2)))))

** E24))

and leads to the following translations:

(TELL (AGENT HUMAN (*VAR* V-1152)) (AGENT SYSTEM (*VAR* V-1153)) (NO))

(REQUEST (AGENT HUMAN (*VAR* V-1157)) (AGENT SYSTEM (*VAR* V-1158))

(LOAD-ORANGES (*VAR* V.1154)
((CAR C2 (*VAR* V-1159))

(ORANGES 01 (*VAR* V-1160))
(CITY (*VAR* CITYl155) (*VAR* V_1156)))))

Leading to the speech acts:

1) (REJECT (ADOPT PLANO))

2) (REQUEST (DO (ACTION-IN (LOAD-ORANGES (*VAR* V_1154)

((CAR C2 (*VAR* V-1159))

(ORANGES 01 (*VAR* V-1160))
(CITY (*VAR* CITYl155) (*VAR* V_1156))))

PLAN1)))

3) (RELEASE-TURN)

Act 1) leaves the system's suggestion in the System Proposed context, rather than
moving it to shared. Act 2) causes the system to make the call,

(incorporate (ACTION-IN (LOAD-ORANGES (*VAR* V_1154)

((CAR C2 (*VAR* V-1159))
(ORANGES 01 (*VAR* V-1160))
(CITY (*VAR* CITY1155) (*VAR* V_1156))))

PLAN1)
HPROP)

Act 3) causes the system to take the turn again.

20

6.2.7 The System's Second Turn

First the system will accept the suggestion, moving the new items from Manager Pro-
posed to Shared (and giving up on the plan in System Proposed). Next the system
makes the call,

(elaborate PLANI *SPLAN*)

to see if there are any gaps left in the Manager's plan. The Domain Planner returns the
new items (which have been added to the System Plan context):

(ACTION-IN (MOVEENG ACT1163
((ENGINE ENG3 PARPI1092)

(CITY (FACTORY-CITY Fl) PARM1074)))
PLAN 1)

(ACTION-IN (RUN ACT1164 ((OJFACTORY F1 PARMI074))) PLANO)

(ACTION_IN (UNLOAD-ORANGES ACT1165
((OJFACTORY Fl PARM1074)

(CAR C2 PARMlO93)

(CITY CITYB PARKl077)
(ORANGES 01 PARM1075)))

PLANO)

Since none of these involve a choice, the system can go ahead and execute the completed
plan, confident that this is okay with the manager. It has nothing more to say, so it sends
a release-turn to the generator, producing the utterance,

OK.

It al, i makes the call,

(execute PLANI *SPLAN*)

Which causes the executor to carry out the plan using the attached car this time.

21

A The NL Generator

The current NL Generator module is just a stub which produces appropriate utterances
for the demonstration system. The NL Generator is in file generator. It consists of
two functions: generate, and make-utterance. generate gets called by the Discourse
Reasoner with a speech act as argument. It saves the speech acts in a list, and then calls
make-utterance on that list when it has enough to make a coherent statement. Currently,
generate does not make judgements on the form of the speech-acts, it just makes an
utterance when-ever it receives a release-turn act. A more sophisticated version might
look at other things such as timing and the relationship of the different acts so as to make
several utterances within a turn.

make-utterance takes a list of acts as argument and produces an utterance. It has two
prewritten utterances set up for this demonstration, and chooses strictly on the number of
speech acts it receives.

make-utterance calls the system function utter with a string containing the utter-
ance as argument. utter is a function of the executor package which actually makes the
text appear on screen to the user. make-utterance also sets the discourse global variable
output to the utterance, so this can be passed back as the result of the discourse call.
This is an artifact of the current control strategy. Probably make-utterance should directly
call the language sub-system when it makes an utterance.

B The Episodic Logic Translator

Episodic Logic [Schubert and Hwang, 19891 is a general purpose knowledge representation
suitable for Natural Language story understanding in a wide variety of domains. The
domain reasoner, however, is a planner specially built for the TRAINS world. In order to
shift from the generality of Episodic Logic to this particular domain, a translator is the
first step in the interpretation process. The translator is a pattern matcher contained in
the file matcher which uses rules in the file rules. The function translate gets called by
the function discourse with an episodic logic statement, and returns a statement in the
TRAINS planning representation.

22

References

[Allen and Perrault, 1980] James F. Allen and C. R. Perrault, "Analyzing Intention in
Utterances," Artificial Intelligence, 15:143-178, 1980.

[Allen and Schubert, 1991] James F. Allen and Lenhart K. Schubert, "The TRAINS
Project," TRAINS Technical Note 91-1, Computer Science Dept. University of Rochester,
1991.

[Ferguson, 1991] George Ferguson, "Domain Plan Reasoning in TRAINS-90," TRAINS
Technical Note 91-2, Computer Science Dept. University of Rochester, 1991.

[Grosz and Sidner, 1986] Barbara Grosz and Candice Sidner, "Attention, Intention, and
the Structure of Discourse," CL, 12(3):175-204, 1986.

[Grosz and Sidner, 1990] Barbara J. Grosz and Candace L. Sidner, "Plans for Discourse,"
In P. R. Cohen, J. Morgan, and M. Pollack, editors, Intentions in Communication. MIT
Press, 1990.

[Ilinkelman, 1990] Elizabeth Hinkelman, Linguisic and Pragmatic Constraints on Utter-
ance Interpretation, PhD thesis, University of Rochester, 1990.

[Light, 1991] Marc Light, "Semantic Interpretation in TRAINS-90," TRAINS Technical
Note 91-3, Computer Science Dept. University of Rochester, 1991.

[Litman and Allen, 19901 Diane J. Litman and James F. Allen, "Discourse Processing and
Common Sense Plans," In P. R. Cohen, J. Morgan, and M. Pollack, editors, Intentions
in Communication. MIT Press, 1990.

[Martin and Miller, 1991] Nat Martin and Brad Miller, "The TRAINS-90 Simulator,"
TRAINS Technical Note 91-4, Computer Science Dept. University of Rochester. 1991.

[Sacks et al., 1974] H. Sacks, E. A. Schegloff, and G. Jefferson, "A Simplest Systematics
For the organization of Turn-Taking for Conversation," Language. 50:696-735, 1974.

[Schubert and Hwang, 1989] L. K. Schubert and C. H. Hwang, "An Episodic knowledge
representation for Narrative Texts," In 1st Inter. Conf. on Principles of Knou'ledgc
Representation and Reasoning (KR89), pages 444-458, Toronto. Canada, May 15-18,
1989.

[Schubert, 1991] Lenhart K. Schubert, "Language processing in the TRAINS Project,"
Trains technical note, Computer Science Dept. University of Rochester, forthcoming 1991.

23

