
AD-A256 896

Algorithms for Optimum Detection of Signals in Gaussian Noise

C.R. Baker

Department of Statistics
University of North Carolina
Chapel Hill, N.C. 27599-3260

DTIC LISS 48'S ELECTEMKmSLCT E 1 2V"a March. 1991
OCT 16 19921H

A
ABSTRACT

Algorithms are presented for detection of signals in Gaussian noise. The

signals can be Gaussian or nonGaussian. The algorithms are derived from a

general solution to the continuous-time problem, and are approximations to the

continuous-time likelihood ratio. They do not require knowledge of the

probability distributions for the signal-plus-noise process, but instead

require knowledge (or estimation) of a function. Independent sampling is not

assumed. One algorithm is fully adaptive to the signal-plus-noise process.

The algorithms have the potential of providing significant performance

improvements, as compared to classical detection methods, when the signal-plus-

noise process is broadband (stationary or nonstationary), and particularly

when it is nonCaussian.
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1. Introduction

Detection of stochastic signals in non-white Gaussian noise can be

reasonably characterized as the fundamental problem in sonar signal detection.

It also arises in many other applications; for example, in radar problems

involving clutter, a Gaussian model is frequently used to model the clutter.

The typical problem arises in continuous time with observation over some time

interval, although modern signal-processing capabilities usually result in a

discrete-time detection algorithm. The desired solution Is an algorithm based

on the likelihood ratio, which is of course the optimum operation under

various criteria. In particular, any strictly monotone increasing function of

the likelihood ratio provides a statistical test satisfying the Neyman-Pearson

criterion: maximization of probability of detection (PD) for any fixed value

of the probability of false alarm (PFA). Likelihood-ratio solutions have been

known for some special cases, as discussed in the next section of this paper.

However, these special cases do not anply to a large proportion of the

problems encountered in applications.

For discrete-time finite-sample-size data. the likelihood ratio is easy !

to construct; it is simply the ratio of the (multivariate) S+N probability

density function to the multivariate N (noise) probability density function. .4

Of course, this requires not only that both density functions exist, but also ti
0

(for implementation) that they be known. "Ah, there's the rub;" these density

functions are typically not known in sonar.

This paper presents new algorithms for this problem. They are based on

recent and very general mathematical solutions to the continuous-time problem.

and are obtained in discrete-time form as approximations to the exact

continuous-time likelihood ratio. They are in functional form. Their

optimality has the unusual property of not requiring any prior knowledge of
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the signal-plus-noise (S+N) statistical prcoperties; instead. it is required

that one know the drift function of a diffusion. The algorithms can be used

for passive or active detection.

The mathematical solution to the problem of discriminating between a

Gaussian process (noise) and a second stochastic process of a general type is

given in [1]. under very mild assumptions on the noise process. The results

include conditions for existence of the likelihood ratio, and expressions for

the likelihood ratio when it exists. The analysis In [1] is carried out for

the continuous-time problem; the results for the likelihood ratio require

knowledge that is not generally available in applications. Thus, effective

employment of these results in operational systems requires that a discrete-

time approximation be developed, and that such an approximation be given in

terms of quantities that can reasonably be expected to be available from

either prior knowledge or estimation from observed data.

A first approximation to the general solution is given in [2]. However,

it has the disadvantage that it requires determination of the eigenvectors and

associated eigenvalues of the noise matrix, a problem that can be extremely

difficult when using data containing many sample points, and which does not

lend itself to a recursive formulation. An implementation was given in [3]

which does not suffer these disadvantages. However. that paper did not give

an adaptive formulation, nor a formulation based on time-varying properties of

the S+N process. Neither [2] nor [3] contains a rigorous justification of the

approximations given; In particular, both omit the description of key points

that are crucial for the justification of the algorithms. Conversely, the

results for the continuous-time problem are stated in mathematical language

which is likely to be unfamiliar to many readers interested primarily in

applications.
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All of these omissions are remedied in the present paper. Two algorithms

are presented; one is fully adaptive to the S+N process; the other requires

prior knowledge of a diffusion drift function which (after filtering)

represents the signal process. Both algorithms require knowledge of the noise

covariance matrix. but not of its eigenvalues or eigenvectors. It will be

assumed throughout that the noise covariance matrix is known and that the

noise has zero mean.

The development here is aimed toward readers who are interested in the

actual development of detection algorithms. Given the theoretical basis of

the algorithms, the adaptive feature of one, and the many alternatives

available for their implementation, they appear to provide a practical

solution to this important class of detection problems, with potential

performance definitely superior to that of detection methods currently in use

when the signal-plus-noise process is braodband. In order that their

potential be fully developed, it is important that it be appreciated by those

who actually develop surveillance systems. Thus, we have minimized the

mathematical jargon so far as possible, have replaced theorems by descriptions

and interpretations of results, and have emphasized the applications aspects

of the results instead of the mathematical side. However, only so much can be

cone in this direction; we hope that those strongly interested in the problem

will not be deterred by some of the unavoidable complexities. A more

mathematical development of the results obtained here. along with additional

results, is contained in [22].

In addition to the results described here, we have obtained similar

results for detection when the noise is a Gaussian mixture (spherically

Invariant process); such processes represent, for example. Gaussian processes

having covariance known except for a scale factor. Those results will be
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published elsewhere; partial results are contained in [3) and [22].

The results given here have already been obtained from us on a privileged

basis by some workers in signal detection, and have subsequently been included

by at least one for-profit company in successful proposals for Navy funding on

development of detection algorithms for this problem. One of the objectives

of preparing this paper Is to make the algorithms generally available to

everyone involved in detection of nonGaussian (or Gaussian) signals in

Gaussian noise. We now have substantial extensions of these algorithms, to a

wide class of nonGaussian noise processes; the algorithms given here are the

basic building blocks for those algorithms.

2. Previous Results on Detection of Stochastic Signals

The problem of detecting a general signal in Gaussian noise has been of

acknowledged importance for many years. The major special cases. fo. which a

solution has been obtained are listed below. Here, and throughout the paper.

by a likelihood ratio we mean a test statistic that is a monotone function of

the likelihood ratio. The following cases represent those for which a

likelihood ratio or generalized likelihood ratio [4]. [5] are known.

(1) The signal is a known waveform (for which the classical matched filter is

a likelihood ratio). or a waveform known except for a fixed set of

parameters (e.g., amplitude, or phase, or time of arrival) whose

statistical distribution is known or can be assumed.

(2) A Gaussian signal-plus-noise process.

(3) A Wiener process as the noise.

(4) Independent signal and noise, with the signal paths being comparatively

smooth compared to those of the noise.
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Each of these problem classes has its drawbacks as a model for

applications in sonar. The first category of problems is not sufficiently

rich. The second [6]. [7] is a class that is often valid, and whose

implementation is fairly simple, requiring only quadratic-plus-linear

operations on the data. It requires knowledge of the mean vectors and

covariance matrix of both the noise (N) and the signal-plus-noise (S+N)

processes. These parameters are generally difficult to obtain in advance for

the S+N: another important drawback is that the model itself is not valid in

many situations; even in cases where it may be valid, the S+N process can vary

over time to having strongly nonGaussian properties, and an algorithm limited

to the assumption of Gaussian S+N then does not have the flexibility of

optimal operation.

Category (3) [8], [9]. [10] has a very attractive formulation for the

likelihood ratio, which has led to some questionable utilization. In fact,

however, it is not suitable as s, model for most applications in sonar. First.

the sample paths of the Wiener process are far too irregular to give a

reasonable model of ocean noise, being non-differentiable at all sample

points. Second, the probabilistic properties of the Wiener process are not

found in most applications, as they include those of being Markovian and a

martingale.

Conditions for existence of the likelihood ratio for problems fitting the

model of (4) have been given in [9] and [11]. An expression for the

likelihood ratio is included in [11]. However, this model is also not

generally practical; first, many important applications do not have

independent signal and noise; second, the expression for the likelihood ratio

as given in [11] requires that one know the statistical distributions of the

signal, which are not likely to be available.
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The difficulty of the general problem has led to the use of suboptimum

methods; that is, methods based on criteria other than Neyman-Pearson or

minimum Bayes risk. Probably the most widely-used such method assumes

quadratic-plus-linear operations, with the choice of the operations based on

the deflection criterion. This dates back to at least the early 1940's [12].

although a general solution to the problem was obtained only in 1969 [13] (see

also [14]). Unfortunately. as shown in [13]. the optimum operation from the

deflection criterion is not a likelihood ratio test statistic even when the

S+N process is Gaussian. Nevertheless, the simplicity of the mathematical

model and the generality of the solution has led to many papers being written

on various modifications of the deflection.

3. Objectives and Summary of Approach

Before moving to the technical content of the paper, we summarize our

objectives in this work. We have sought to obtain a detection algorithm, or

algorithms, meeting the following criteria.

(1) Likelihood-ratio based.

(2) Information-preserving. The solution should begin with analysis of the

original continuous-time problem. The likelihood-ratio for the

continuous-time problem should then be approximated as well as possible

in forming a discrete-time algorithm. Independent sampling, which

typically destroys information, should not be used unless absolutely

necessary.

(3) Implementable. An arcane theorem on the form of the likelihood ratio is

not our goal; although such theorems can be expected to form part of the

process of obtaining a practical algorithm, they must be developed into

expressions that can reasonably be expected to be implemented. Thus.
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they must not require information that is not reasonably accessible in

applications.

(4) Adaptive. A version of the algorithm should be adaptive, particularly to

the S+N process.

As will be seen, all four of these goals have been met. Two algorithms

will be given; one is fully adaptive to the S+N process; the second requires

prior knowledge of the S+N process, but has more flexibility in its

implementation when that information is available. Neither algorithm requires

the S+N process to have any particular statistical properties. The S+N

process can have any statistical properties, with Caussian or nonGaussian

distributions.

In keeping with the above objectives, a general solution to the

continuous-time problem was first obtained. This is described in the

following section. The likelihood ratio obtained in that work was then

approximated to obtain detection algorithms; this is described in the second

section below.

The approach taken can be summarized as follows. First, we obtain a set

of necessary conditions and a set of sufficient conditions in order that the

likelihood ratio exist between some process Y and our noise process N, for the

original continuous-time problem. This is a likelihood ratio for

probabilities on the space of observations, which we take to be L2 [0,0]. The

sufficient conditions are satisfied in typical sonar/radar problems, and,

assuming these conditions, we obtain an expression for the likelihood ratio.

This mathematical expression for the continuous-time problem will not, in

general, be implementable; there will not be sufficient information available

in applications. A basic problem is that the original representation (see

equation (1) below) of the noise process will typically not be known and
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cannot be determined in its original generality. Of course, if one has a

mathematical model in which the representation is known, then this is not the

case. However, here we are assuming the usual situation in practice: no valid

mathematical model giving the representation (1) will be availble. Thus, we

make an approximation to this representation (Justifying the approximation)

and then use the necessary conditions for existence of the likelihood ratio to

obtain an expression for the likelihood ratio which is based on the S+N

process having a representation as a filtered diffusion. This representation

is justified. Finally, using this representation, we approximate the

continuous-time likelihood ratio to obtain a discrete-time detection

algorithm. The estimation of the drift function of the underlying diffusion

then becomes the basic problem in implementing the detection algorithm; there

are various ways one may approach this problem.

4. Solution of the Continuous-Time Problem

Summary. We assume a mean-square continuous Gaussian process N = {N(t),

t in [0,1]) such that N(O) = 0 with probability one. The only other

assumption is that N have finite "spectral multiplicity" (also called

Cram~r-Hida multiplicity; see [15, 16]). Many processes have finite

multiplicity, and any m.s. continuous Gaussian process can be

approximated by a finite-multiplicity (in fact, multiplicity-one)

process. We obtain conditions for existence of the likelihood ratio

between N and a second process Y. Y can be thought of as signal-plus-

noise. Then, under the assumption that the likelihood ratio exists, we

obtain an expression for it. In the process, we also show that Y must

have a representation as Y = Se+N . where N is a noise with the same

family of finite-dimensional distributions as N, but with the important
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difference that N* is a function of Y. This is crucial in justifying the

final result for the likelihood ratio. Next we show that Y = (Y(t),

t C [0.1]) must (if the likelihood ratio exists) have an approximation as

a filtered diffusion. The filter and the drift function of the diffusion

then characterize the Y (S+N) process.

This section contains a summary of the solution to the continuous-time

problem for deciding whether an observed sample function is due only to noise

(a Gaussian process of known covariance) or to another process. This second

process may be Gaussian or nonGaussian; no assumptions are made on its

statistical properties. The mathematical model will first be described; next,

we give the solution to the problem of obtaining conditions for existence of

the likelihood ratio; finally, expressions for the likelihood ratio are given.

We do not aim for precision and generality in this discussion. Instead, we

aim to state the results in such a way that they will be accessible for a

reader not having background in the esoteric mathematics of stochastic

calculus and measures on linear spaces. A precise and complete description of

the mathematical problem, a precise theorem-format statement of the results

described here, and complete proofs, are contained in [1].

The noise is assumed to be a mean-square continuous Gaussian process.

The observation interval is [0,1], although any finite interval can be used.

We assume that the noise is "purely nondeterministic" [15]. [16]; in essence.

that the noise at time zero has the value zero with probability one. Under

these assumptions, it is known [15]. [16] that the noise has a representation

of the following form:

N = J'Fi(ts)dBi(s). (1)

e 
i=1 

/
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For each of the terms appearing in the above sum, the function F1 is a

deterministic function. The processes B are Gaussian processes that are

mutually independent and have independent increments; they can also be taken

to be mean-square continuous. The variance of the Bi process, which we denote

by P1. Is non-decreasing on [0.1] and so defines an ordinary measure on [0.1]

in the usual way: the measure of an interval (a.b) is equal to Pi(b) - Pi(a).

Let L2 [ 1 J] denote the space of all functions on [0.1] that are square-

integrable with respect to the measure defined by 1I3" Then. for each fixed I

and t. Fi(t.*) belongs to L2 [Pi]. The integrals in (1), expressed in terms of

the stochastic processes Bi. are described in many texts; see. for example,

[17] or [18]. Essentially, they can be regarded as Stieltjes-type integrals.

The above representation is due to Hida [15] and Cram6r [16]. The number

N can be infinite; it is the multipltctty of the process. One additional

assumption to be made here is that this multiplicity is finite. This does not

seem to be a serious restriction; it Is known that processes of multiplicity

one are dense, In a mean-square sense, among all processes having a

representation of the above form [19).

The first question that must be considered is that of obtaining

conditions for existence of the likelihood ratio. In the case where the

signal-plus-noise is Gaussian, It is known [6]. [7] that conditions can be

given that are necessary and sufficient. However, if a general nonGaussian

S+N process is to be admitted, one obtains a set of necessary conditions and a

separate set of sufficient conditions; at first glance, similar; on close

examination, quite different.

We now give a descriptive summary of these conditions for existence of

the likelihood ratio. They will be stated in a rather imprecise mathematical

form and all the aspects will not be given; our objective here is to bring out
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the main points and to illustrate the importance of some aspects of these

conditions. Readers whose primary interest is in development of the

algorithms may nevertheless find a careful reading and mulling-over of these

conditions to be valuable in unuerstanding how the subsequent detection

algorithms ;uvllow from the complicated mathematical results of [1]. Many ad

hoc detection algorithms have been proposed for problems such as the one

described here. and such algorithms are sometimes useful for purposes other

than production of papers. However, the algorithms to be given in the next

section are not of this genre; they have their genesis in the conditions for

existence of the continuous-time likelihood ratio.

The necessary conditions are given in Theorem 2 of [1]. Here. we shall

paraphrase that result in descriptive terms. First. let V be any stochastic

process independent of N. Let Y be any process defined on [0.1]. We want

conditions that are necessary for the likelihood ratio to exist for

discrimination between Y and N. Suppose that Y is adapted to the combined

processes V and N; in essence, this means that the Y process at time t can be

obtained as a function of the V and N processes, up to time t. Then, if the

likelihood ratio exists. Y must have a representation of the form

Yt = St +÷ (with probability one)

for all fixed t in [0.1]. The process N has the same family of finite-

dimensional distributions as the original noise process, and has a Cram~r-Hida

representation of the same form:

N t0

7= ' F (t.s)dB*(s) (2)
t i=l o

where the B* processes each have the same law as the original Bi process, and

the F functions are those that appear in the representation (1) for the N
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process. However, the N* process has the property (not generally shared by

the N process) that it can be written as a functional of the Y process.

Moreover. the signal process (S) must have its sample paths (with probability

one) belonging to the reproducing kernel Hilbert space (RKHS; see, for

example. [17] or [20]) of the noise covariance function, and must also be

adapted to the Y process. The RIM condition can be interpreted as follows: A

function f is in the RKHS of N if and only if the likelihood ratio exists

between N and N+f. In essence, the RKHS condition means that f is sufficiently

smooth (smoother) as compared to the sample functions of the noise.

A very important part of the above statement is that existence of the

likelihood ratio implies that the representation of (Yt as given above is

with respect to a process (Nt) which has the same distributions as (Nt) but

has the property that it can be represented as a functional of (Yt). which is

not the case for the original (Nt). In the next section, the crucial

importance of this fact will be more apparent; we defer a discussion until

that point.

In the above necessary condition for existence of the likelihood ratio.

we have introduced an independent process V. In sonar applications, this is

immediately interpreted. For active sonar, reflection from a target with

random reflecting surfaces would be a function of a process (the random

reflecting surfaces) that is essentially independent of the scatterers that

produce reverberation. Thus. the received signal Y would depend on the noise

process (reverberation plus receiver noise )N and on the target reflection

process V. In the case of passive detection, the same rationale holds; this

is particularly apparent for broadband signal sources. Thus, the initial

assumption that (Yt) be a functional of V and N has clear physical meaning.

We now turn to a summary of the sufficient conditions for existence of
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the likelihood ratio as given in Theorem 3 of [1]. As the above discussion

shows, we can begin by assuming that (Yt) is a functional of (Nt) and a

process (Vt) that is independent of (Nt). Under this assumption, the

likelihood ratio dPy/dPN will exist if Y has a representation as

Yt = St + Nt (with probability one)

for each fixed t in [0.1]. where S is a process having all paths (with

probability one) in the RKHS of the noise covariance function, and such that S

is adapted to the combined V and N processes.

One may note the difference between the necessary condition and the:

sufficient conditions. In both cases, Y has a representation as the sum of a

signal process and a noise process. In the representation for Y under the

sufficient conditions, the noise process is the original noise. In the

necessary conditions, the noise process (N*) has the same finite-dimensi~nal

distributions as the original noise process (N), but is a functional of the Y

process. The S process has similar representations in both sets of

conditions: in particular, in both cases it has sample paths belonging (with

probability one) to the RKHS of the noise covariance function. However, in

the necessary conditions, it is seen that the process (S*) must be adapted to

the Y process (which in turn is adapted to the combined V and N processes),

while in the sufficient conditions (St) must only be adapted to the combined V

and N processes. Thus, the properties of the process S* appearing in the

necessary conditions representation (Y = e + N*) are actually stronger than

the properties of the process S appearing in the sufficient conditions

representation (Y = S + N).

The sufficient conditions for existence of the likelihood ratio are those

which one might expect to be satisfied in the usual sonar or radar problem.

That is, the problem is usually one containing signal and additive noise; the
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signal process will typically be a functional of the noise process and some

independent message process. as previously described. Thus, the assumption

that the sufficient conditions are satisfied is quite tenable.

The necessary conditions and the sufficient conditions are quite

important. The combination of the sufficient conditions and the known

physical properties of typical sonar detection problems permit one to

determine a likelihood ratio. Given the form of that likelihood ratio, the

necessary conditions are thelL uised to Justify a functional representation of

the S+N process (Y in the ejove) which leads to a representation of the S+N

process as a filtered diffusion. This will be carried out in the following

section, However, we first give an expression for the continuous-time

likelihood ratio.

Referring to the original representation (1) of the noise process, one

shows the existence of a function m defined as follows. The range of m is

contained in the space of vector functions of N components, where each

component is a function on [0.1] which is continuous and vanishes at zero.

The domain of m is in L2 [O.]. m is not defined everywhere in L2[O,1, but on

a dense subset with probability one. Essentially, m can be interpreted as

follows. Let 0 be the map which takes the vector process (B 1 ..... BN) into the
4

noise process N (see equation (1)). This map, which has its domain in the

space of vector-valued N-component continuous functions vanishing at zero and

its range in L2 0.1]. is also defined in a probability one sense. Then

m[f](x) = x with probability one (PW) for x an N-vector of continuous func-

tions vanishing at zero. Thus, roughly, one can view m as being the inverse of

the "function" which maps the vector process (B1 .... B.BN) Into the process N.

The sufficient conditions described above are reasonable, given the

physical nature of the detection problem. We assume they are satisfied. They
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show that we can express S+N (or Y, in the above) in the form

Yt = [FdZ FI(ts)dZi(s)
i=1 0

where Z is a vector process with M components, each having continuous sample

paths, and with i th component having the form

Zi(t) = J vi(s)dPi(s) + Bi(t)

where (vi). i • N, are stochastic processes, with v, havings its sample paths

(w.p. 1) in L2 13i]. Now, it can be shown that the likelihood ratio must exist

between the two vector processes Z and B; write this likelihood ratio as

dPZ/dPB. This is a likelihood ratio on the space of N-component vector

functions where each component is a continuous function on [0,1] that vanishes

at zero. Then, the likelihood ratio dP(s+N)/dPN has the form (when a sample

function is observed)

dPs+N, dPzdP = dp m[x) (with probability one dPB). (3)
N B

We now come to a very important point. The likelihood ratio given above

is based on the assumption that the sufficient conditions are satisfied.

However, these conditions assume a representation of Y = S + N, where N is the

actual noise process. Our eventual algorithm will be derived by first

assuming that the noise process N has multiplicity M = 1 in equation (1), and

then representing the process Z above (in multiplicity one) as a process of

"diffusion type," having the form

Z = {[s.Z , u • s]ds + Wt (4)

and
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Yt ofF(t.s)dZs (5)

where a Is a deterministic function and W Is a standard Wiener process. Such

a representation for Y always exists [17] if the likelihood ratio dPy/dPN

exists. However, (Zt) depends (in Its statistical properties) only on W. In

our following analysis, the noise will be obtained from the Wiener process;

that is,

Nt = oF(t.s)dWs. (6)

Thus. if we were to use this representation, then we would have (after

filtering to obtain Y = S + N) an S+N process which is completely determined

by the noise; obviously an unrealistic and unsatisfactory representation.

However. we can now appeal to the necessary conditions. According to

those conditions, we also have the representation of Y given by

Yt= ftF(ts)dZ: (7)
•0

where F is as above, and Z has the representation

z*= af*(s.Zu, u K s)ds + (8)

where now W is also a standard Wiener process, but is a functional of the S+N

process, Y. Moreover. since the statistical distributions of W" and W are the

same, they determine the same probability on C[O.11: similarly Z and ZN

determine the same probability on L ro.11. We can therefore assume (7) and

(8), rather than (5) and (6). This is a KEY fact in determining the

discrete-time detection algorithm. Without this, the representation derived

in the next section would be fallacious, since it would ostensibly be based on
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a S+N process that depends only on the noise. This is just one of the several

subtleties included in the derivation of the detection algorithm which derive

from the complicated mathematics of the continuous time problem, and which are

in turn so often dismissed as "just mathematics."

In order to implement the likelihood ratio, it is clear that one must

know the likelihood ratio of Z (or Z*) with respect to B. and also the

function m. The likelihood ratio of Z with respect to B can be determined

from known results, albeit in functional form. Determination of the unknown

parameters and the function m is addressed in the next section.

5. Detection Algorithms

Summarv. A discrete-time algorithm is obtained by discretizing the

approximation to the continuous-time likelihood ratio. This algorithm

depends on the covariance matrix of the noise and the drift function of a

diffusion. This diffusion, when filtered, gives an approximation to the

S+N process. We show that if the drift function is known, then knowledge

of the noise covariance matrix enables one to obtain the same PFA as if

the (continuous-time) filter were known, while the PD value will

approximate the value that would be obtained if the filter were known

(the approximation improving as sampling rate increases).

The preceding results are all for the original continuous-time problem.

Although they are very general, they suffer from the usual shortcomings of

mathematical research devoted to existence of likelihood ratios: they are

quite useless as practical detection algorithms unless one is in the rare (one

may say nonexistent) situation of having a reliable and complete mathematical

model which includes all the parameters needed to implement the continuous-
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time likelihood ratio. However. they form a basis for deriving practical

discrete-time detection algorithms that are solidly based on the continuous-

time likelihood ratio, and, in particular, which satisfy the four criteria

mentioned in Section 3:

(1) Likelihood-ratio-based;

(2) Information-preserving;

(3) Implementable; and

(4) Adaptive to the S+N process.

Two algorithms will now be derived. One meets all four of the above

criteria. The other meets all except (4); it requires prior knowledge of the

S+N process. However. it can model a wider class of S+N processes than the

adaptive algorithm, has the capability of being relatively more easily

implemented in recursive form, and should give better performance in many

situations when the necessary prior information is available.

We now proceed to the development of these two detection algorithms.

Version I. fully adaptive to the S+N process, is based on the following

additional assumptions:

(A.1) The noise process has multiplicity N=l. and the process (Bl(t)) is

the standard Wiener process (W(t)); thus N(t) = Jr F(ts)dW(s).

where F is a Volterra kernel with 1 fl F2 (t.s)dsdt <

(A.2) The signal-plus-noise process can be represented as Y(t) =

Jo F(t.s)dZ(s). where the process (Zt) is a diffusion with respect

to a Wiener process W and has time-invariant drift function, so that

Z(t) = O[Z(s)Jds + W(t). (9)

where P(Cj: J;E82 [Z(.,s)]ds < w) 1.
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The second algorithm. Version II. assumes (A.1) above and that the signal-

plus-noise process can be represented as Y(t) = Jt F(t.s)dZ(s). where

(A.3) Z(t) = fo [s. Z(s)]ds + W(t), (10)

12 2

where again W is a Wiener process, and P({: f e [s. Z(w.s)]2ds <

Assumption (A.1) can be justified by noting that all stationary processes

and all discrete-time processes are of unit multiplicity, that any Gaussian

vector can be represented as the result of a lower-triangular matrix operating

on white Gaussian noise, and that unit multiplicity processes are dense (in

L 2[dPdt]) in the class of m.s. continuous processes [19]. Moreover, one can

show that the assumption (A.1) is satisfied whenever the noise process has a
representation N(t) = rt F(t,s)dB(s), where the variance of (B(t)) is an

absolutely continuous function on [0.1]. To see. this we note that an

independent-increment Gaussian process B with B(O) = 0 (with probability one)

has the representation B(t) = W[h(t)], where EB 2(t) = h(t) and F(O) = 0. In

our setup. h is continuous, non-decreasing, and we can assume that h(t) > h(s)

if t > s. Thus,

J0F(t's)dB(s) = j'OF(t's)dW[h(s)] = P 1 (t)F(t'h-l(u))dW(u)

0 0 0

(setting h(s) = u)

= PG(t',u)dW(u)
0

where t' = h-I(t), G(t',u) = F(t.h- (u)). Note that if u > t', then

u > h -(t). so h(u) > t; hence G(t',u) = 0 if u > t'.

To clarify the significance of the assumptions (A.2) and (A.3), we

reference well-known material on the representation of processes (Zt) such
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that the likelihood ratio dPz/dPw exists. From Theorem 7.11 of [19]. any such

(Zt) must be a process of "diffusion type":

Z(W.t) = JY[s, Z(w.u). u 9 s)Jds + W(W.t) (11)

where (Wt) is a Wiener process adapted to _(Z), and r is a function on

[0.1]xCo[O.1] such that

i) for all s in [0.1] and all functions x in C[O.1]. i(sx) does not

depend on x(t) for any t > s;

1 2
ii) P{W: j'; [s.Z(w.-)Jds < 1 1.

From the necessary conditions described in Section 4. it can be seen that

assumption (A.3) reduces to the assumption that the function - is memoryless.

Of course, there is a very large class of processes such that this assumption

is satisfied. Note that this is emphatically not equivalent to the assumption

that the observed signal-plus-noise process is the solution to a stochastic

differential equation. To be precise, given that assumption (A.1) is

satisfied, the assumption (A.3) states that the slgnal-plus-noise process can

be represented as a filtered diffusion. Note that (A.3) is actually an

approximation to (11); it is necessary in order to estimate likelihood ratio

parameters from data.

Assumption (A.3) is of course much weaker than (A.2); the latter assumes

not only that the process Z defined above is a diffusion, but that the drift

function is time-homogeneous: -v[s, Z(w.u), u 9 s] = O[Z(Q.s)] a.e. dP(w)ds.

The reduction of the problem to the class of processes satisfying (A.2)

is motivated by the goal of developing a likelihood-ratio-based detection

algorithm that can operate without any prior knowledge of the signal

properties: completely adaptive to the S+N process.
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An algorithm will now be described, assuming (A.1) and (A.3). and uniform

sampling of the continuous-time waveform. For the detection problem as

defined above, applying the results for the likelihood ratio described in

Section 4. and known results for the Wiener process (see, e.g.. [17] or [20]).

the general form (under a mild restriction) of the likelihood ratio on L2 [O,]

is

[dPS+N/dPN](x) = lim exp [An(6n(m[x)))]
n

where 0 = tn tI tn ... < tn = T is a partition of [0,T] such that

0 1 2 n

sup It 1 - tIj _,0, 6n(X) (x(tn). x(tn)......x(tn)), and
j

n-1ntn)mxtn t•x ) t12)n[6n [m(x)]] = 2: a('MIX], mxt• mxti+l - (1x2)

i=O n-1 2t. ?x).)(t
(1/2) Z 2(I ma xCtI)i+1 tI

i__O

m is defined as in Section 4. and the limit exists in the norm of LI[PN].

It should be noted that this approximation does not arise from sampling

the continuous-time observation. The situation is much more complicated; the

approximation is obtained by sampling of the continuous-time function m(x).

where x is the observation. m(x) is a continuous function vanishing at zero.

The difficulty is that m will generally not be known.

The representation of (N(t)) by N(t) = Jt F(ts)dW(s) yields that

RN = FF*. where F is the integral operator with F(t.s) as its kernel, and F*

is its adjoint. This can be used to provide an approximation to the function

m(x) appearing in (12) that does not require calculation of eigenvalues and

elgenvectors.

First. notice that (e .ft> = T t F(s.u)du e (s)ds

ft fT F(s.u)e (s)dsdu = [LF'e ](t), where [Lf](t) t• f(v)dv. L is a function
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from L2 [0.1] into C[O.1] (the continuous functions on [0.1]). The expression

for m given in [1] can then be written as

m[x](t) =-lim [LF <e Jx> RýIe 1(t) (13)

= urn (LFWRNlPkx](t)
k-4w

where Pkx is the projection of the function x on the subspace in L2 [0,1]

spanned by (eI.....ek). Since RN1 = F -1F-1, the preceding becomes m[x](t) =

lim [LF1 PkxJ(t).
k-4-

For almost all sample functions x (either from noise or

signal-plus-noise), m[x](-) is a continuous function on [0.1]. Thus the map m

is a linear operator from L2 [0.1] into C[Ol] whose domain includes (with

probability one) all sample functions of the noise and signal-plus-noise

processes.

The difficulty in implementation of the approximate likelihood ratio (12)

will lie in letermining the function o and linear operator m. a is a parameter

of the signal-plus-noise process, and its estimation is a problem of

considerable interest in stochastic processes (as the drift of a diffusion)

and in stochastic filtering. The possibly unbounded linear operator m. mapping

L2 [O.1 into C[O.1]. depends only on the covariance function of the noise. If

o is known or estimated, and if the noise covariance function is known or

estimated, then the preceding expressions can be used to obtain a

discrete-time finite-sample approxima-ion to the likelihood ratio. We now

develop such approximations.

Let n denote the covariance matrix of the noise; one can write =

AnF F*. where the matrix F is lower triangular and An is the sampling
-n-n
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interval (uniform sampling). The expression for m given above is of the form

m[x](t) = lim [LF-IPkx](t).
k-4w

where RN = FFW, L is the integration operator, and Pk is the projection of x

onto the subspace spanned by {e..... ek), where (en. nŽl} are o.n.

elgenvectors of RN. Thus. a reasonable procedure is simply to replace this

expression by Mnn[x] = L F- x n, where xn is the observed data vector, an
-n n

element of Pn. and L is the summtion operator in Fn; (L xn) = 7i= x

However, this is so far simply an ad hoc assumption. Thus, we now

examine the relation of L F-Ixn to m(x). where xn = (x(An). x(2n)....."-nn-T-
n

x(nAn)).

As discussed in Section 4. (mo§l)(x) = x a.e. dPw(x). where t maps W into

N. The distribution of m(N) is accordingly given by PW, so that the vector

6n m(N)] = (m(N)(An). m(N)(2An). .... m(N)(nA n)) has probability distribution

P ,obl1 where 6: C[OI] +n is defined by 6n(x) (x(An) x(2An)....
n nn-n n n

x(nAn)). Similarly, defining M n(xn) = L F-Ixn. Mn(n ) has probability

distribution Pwo 0l, from the definition of F . Thus, in the preceding
W n[n mx] -n inon areac

expression (12) for An[6 [m(x)], and setting ti = IA, one can replacen n

6n[m(x)] by m nIx n]; with respect tc PN' the law of An[,mn(,n)] will be the same

as that of An[bn[m(x)]].

Next, suppose that the signal is present. In examining the relation

between the law of An[,n[m(x)]J, as given by (12), and the law of An[ [nK ]n,

obtained by substituting rMn(, n) for 6n[m(x)], we make the following smoothness

assumptions:

(a) F n(iJ) = F(iAn JAn) for all i,J n;

(b) The law of the random vector In n with (i+l) component given by
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IA n
fo[s,Z(s)Jds + W([i+l]An) is approximately the law of the random

0

vector in In with (I+1) component given by
i

A o[kAn.Z(kAn)) + W([i+l]An). where
k=1

z(t) = oa(s.Z(s))ds +

as in assumption (A.3).

Assumption (a) is essentially equivalent to assuming that

(iAJ)An iAJ n n
J F(iAns)F(JAn.s)ds n An F(iA. kA )F(JAn. kAn)
0 k=l

for every ij K n. It is thus an assumption on the smoothness of {F(t..). t

in [0.1]). Note. however, that the smoothness requirement applies, for fixed

t, only to F(t.) restricted to [O,tJ. Similarly, (b) amounts to a smoothness

assumption on a.

When signal is present, letting Xn be the vector such that yn(k) =

kAn
f F(kAn,s)dZ(s). one has
0

Mnn = L F- Yn
"-nn

Assumptions (a) and (b) then give that the law of mncx[ ] is approximately that

of 6 nCm(x)]. with the law of 6nim(x)] being approximately that of the random

vector with (1+1) component given by

Ank=c[kA n, Z(kAn)] + W((i+l)An).
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Thus, with the smoothness assumptions (a) and (b), An[6n[m(x)]] and

An Mn xn]] have approximately the same distribution w.r.t. P S+" From the

nature of assumptions (a) and (b), it can be seen that (if F and a are

sufficiently smooth) the apiroximations can be expected to become better (for

a fixed observation time) as n increases (An decreases).

We thus have, under the assumption that a is known, and with the

smoothness assumptions on F and a, an approximation to the discretized

continuous-time likelihood ratio. The probability of false alarm (PFA)_

calculated under this approximation will be exactly that which one would

obtain with a discretized version of the exact continuous-timn. likelihood

ratio (under assumptions A.1 and A.3). Thus, the false rlarm rate is exact

for a given sampling rate. The probability of dc.ection (PD) will be an

approximation to that which would be obtained using a discretized version of

the exact continuous-time likelihoud ,atio when A.1 .., A.3 are satisfied.

In most applications, of course, a --ill not be known. We now describe

two approaches to obtai.7ng an estijate of a, corresponding to the two

assumptiori ( .2) and (A , both based on replacing 6n[m[x]] with Lnn[xn] in

tCe expression (12) for the discretized log-likelihood ratio.

F. st, suppose -sumption (A.3) is satisfied, and that a training

ensemblr of representative signal-plus-noise data is available, consisting of

K vectors {K . I • K), each having n components, with x 0() = x (JA). It is

assumed that the vectors represent independent samples. One first applies the

matrix F- 1 to each element of this ensemble. Under the assumptions (a) and
"-n

(b) above, this gives the ensemble of vectors {Z i, i • K), where

(6Zi)(J) = zi[(j+I)An - Z [JAn]

=An[j, Zi(jAn)] + Wi[(j+l)An] - Wi[jAnJ.
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One now fixes J. and uses the K values having the above expression (i K K) to

estimate a(J.*). Various procedures can be used to carry out the estimation;

note that defining (6W )(J) E [(J+1)An] - W (JAn], the set ((W )(j). i • K)

consists of i.i.d.. random variables, with each Gaussian. mean zero, variance

A.

With this estimated a inserted into the expression (12) for An. a sample

vector xNn is observed. MnINn] is then formed, and used in the expression for

An to form the test statistic An[m nxnn].

If a representative training ensemble of signal-plus-noise data is

available from which one can estimate a. or if a is known from a mathematical

model, then the above procedure gives the preferred mechanization (Version II

algorithm). In the case of non-stationary signal and noise, obtaining an

ensemble of S+N data, properly aligned, can be expected to be difficult.

However, if the signal-plus-noise is a stationary process, then one may opt to

use a long segment of S+N data to estimate a time-invariant a; this segment

could then be much longer than the observation time over which the detection

algorithm is to perform. It can be shown [3] that use of a time-varying a

gives an exact likelihood ratio !or the discrete-time problem if the signal-

plus-noise process is Gaussian.

Suppose next that nothing is known about the statistical properties of

the signal-plus-noise process. and that an ensemble of training data is not

available. Version I of the algorithm (12) is then implemented as follows.

for a fixed value of n: The observed sample vector x n is first used to

estimate a time-homogenous a; the estimated a is inserted into the expression

(12) for An, and then An[ n(_n)] is evaluated. This version of the algorithm

corresponds to assumption (A.2).

Opt.Detec. - 7/6/92 - 26



The estimation of a is made from the single observed sample vector xn

which is to be tested for the presence of a signal. One applies F to x-n

assuming that Nn represents signal-plus-noise. this yields a vector 6Z. which

has the representation (under assumptions (a) and (b))

(6Z)(J+I) = Ano[Z(JAn)] + (6W)(J+I).

(6W)(j+l) = W[(J+I)An, - W[jAn].

The elements of {5W(J). j K K) are i.i.d. random variables, with each

Gaussian. mean zero, and variance An.

The preceding discussion will now be summarized. First, a is either

known or else is estimated by one of the two procedures described above when

n
the observation is an n-component vector Lx . The test statistic, an

approximation to the continuous-time log-likelihood ratio under the assumption

that the noise has multiplicity N = 1. then has the expression (with the

definition of An slightly changed from (12))

A n(N n) _ o(j, [(LFlI n), , ] [(L-F_ xh, -1 x -'• n (L__ F -lx n)_ "

Jnn2 iD -- J+1 n-n ~j

(An/2) a 2(J, [(L.F-1x n (14)

a (J. [(L F -lx n).)[(F-lx).]-_ (A n /2) 2 (J. [(LFFlxn).

J-_ -nn A-in -AAJ_ ,, ,,[

If now a new data point xn+1 is observed, the approximation has the recursivc

form

A n+1(x+ = A n() + a[n. (L F- x) )(F-1x)L (15)
-n-n n n+- n+l

- (An/ 2 ) .2 [n. (L F-Ix)n1.
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The above procedure requires relatively few additional operations when a

new data point is observed. The implementation and calculation of A require

the following operations. First. the function a must be known and programmed

or estimated from the observation. Given the value of An(2n) and the observa-

tion Nn = (x .... x). one stores An(x n) x n. oEn. (L F-lxn) ] and
-- n "-- -nn -- n

(L F-l-xn) When the data point xn+1 is received, it is only necessary to use.-- n ln

the vector Nn+l to calculate (F-1 n+l 1n+l" which is simply cross-correlation

of the observation vector Ln+l with row n+l of F-1  This number, say b Isýnl nubr sybl.

then used to form An+l(xn+l).

n+1 n
Anxn+l = Ann + o[n. b - (An/ 2 ) 2 [n. = bil. (16)

Throughout. we have made the assumption that the noise covariance is

known. One then knows (Fn, n > 1). and thus (F_1. n ý 1). As mentioned, each

new observation of a data point requires only cross-correlation of the
1-

observed vector, an element of IP+I. with row n+l of F 1
. It is not

necessary to apply the mtrix F 1 to the data vector.

Implementation of the recursive form of the algorithm is done most

conveniently when a is known, or when a training ensemble of S+N data can be

used to estimate a. If one hust estimate a from the observed data (Version I

algorithm), then the recursive formulation given above will need modification.

Various approaches can then be used for updating the estimate of a. depending

on the amount of storage available. etc.

A pleasing and important feature of the algorithms in that Version II is

a likelihood ratio (exact) when the S+N process is Gaussian (see [3]).

The performance of the algorithm can be expected to depend not only on

the properties of the data, but also on the sampling rate and the choice of
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the specific estimation procedure for estimating a. Thus, implementation for

a particular application should be preceded by an extensive study featuring

both simulated and experimental data. Limited computational evaluations of

these algorithms have given excellent results with passive sonar data [21].

6. Concluding Remarks

Many discrete-time finite-sample detection algorithms for problems such

as discussed here are obtained from consideration of only the discrete-time

(and finite-dimensional) problem. It is obviously preferable, If possible, to

develop a discrete-time algorithm based on approximations to the likelihood

ratio for the continuous-time problem.

However, likelihood ratios for continuous-time problems involve

conditions for existence of the likelihood ratio. Unfortunately, studies on

existence of likelihood ratios are frequently considered to be of only

mathematical interest. As can be seen from the preceding development.

appropriate studies on absolute continuity and likelihood ratios for

continuous-time problems can be extremely important in developing practical

discrete-time detection algorithms.
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AD-A256063 Words/Phrases(4 words max) that match Thesaurus Entries
TEXT THESAURUS
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ASSIMILATIONS Assimilation

CORRECTION Corrections
CORRECTIONS Corrections
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NAVAL RESEARCH Naval Research

NAVAL RESEARCH LABORATORY Naval Research Laboratories
NORTH CAROLINA North Carolina

NUMERICAL ANALYSIS Numerical Analysis
PROFILES Profiles
RAINFALL Rainfall
SOUNDING Sounding

TIME Time
UNIVERSITY Universities

@I@ AD-A256063 93-02
@20@ u
@23@ Assimilation, Corrections, Cycles, Heating, Interpolation, Lak.. . s,

. Naval Research, Naval Research Laboratories, Nrt 1,
24@ umercal Analysis, Profiles, Rainfall, Time, UniAMerities.

@27@ A method of assimilating 3-hourly sounding data is developed and
successfully tested in this study. First, the successive corrections
scheme of Bratseth (1986) which converges to optimum interpolation, is
applied for the numerical analysis of data collected during the Genesis
of Atlantic Lows Experiment (GALE). Next, diabatic forcing is
incorporated into a vertical mode initialization scheme to proivde more
realistic initial conditions and to shorten the spinup time of the Naval
Research Laboratory/North Carolina State University (NRL/NCSU) mesoscale
mode. Latent-heating profiles are computed from 'spun-up'
model-generated and observed rainfall. Finally, the multivariate,
successive correction analysis scheme correction analysis scheme and the
diabatic initialization procedure are combined with the NRL/NCSU model
to form an intermittent data-assimilation system. Assimilations of the
GALE data over a 2 1/2-day period were performed with differing update
cycles of 3, 6, and 12 h.
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