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A BIAS BOUND FOR LEAST SQUARES
LINEAR REGRESSION

Naihua Duan and Ker-Chau Li

RAND Corporation and University of California

Abstract: Consider a general linear model y=g(a+0x)+4, where the link function g
is arbitrary and unknown. The maximal component of (a,O) that can be identified
is the direction of 0, which measures the substitutibility of the components of x. If

((03x)=E(x1f3x) is linear in oSx, the least squares linear regression of y on x gives a
consistent estimate for the direction of 0, despite possible nonlinearity in the link

function (Brillinger (1977, 1982)). If C(Ox) is nonlinear, the linear regression might
be inconsistent for the direction of 0. We establish a bound for the asymptotic bias,
which is determined from the nonlinearity in C(Ox), and the multiple correlation

coefficient R 2 for the least squares linear regression of y, on x. According to the
bias bound, the linear regression is nearly consistent for the direction of 3, despite
possible nonlinearity in the link function, provided that the nonlinearity in ((Ox)

is small compared to R 2 . Our measure of nonlinearity in ((Ox) is analogous to the
maximal curvature studied by Cox and Small (1978). The bias bound is tight; we
give the construction for the least favorable models which achieve the bias bound.
The theory is applied to a special case for an illustration.

Key words and phrases: Lack of fit, link function, maximal curvature, nonlinearity,
projection index, projection pursuit.

1. Main Result

Least squares linear regression is one of the most widely used statistical
tools. It is based on the standard linear model:

y=a+P3x+, + Jx N(Oa) (1)

where y denotes a scalar outcome variable, and x denotes a p-dimensional column
vector of regressor variables. In empirical applications, it is unlikely for the
standard linear model to hold exactly. Therefore we need to be concerned about
possible violations of the model assumptions. For example, we might consider
distribution violation: the error distribution might not be normal. There is a
rich literature on robust methods for estimating the linear model in the presence
of distribution violation; see, e.g., Huber (1981).

Reprinted by permisson from Slatislica Sinica, Vol. 1, No. 1, pp. 127-136, January 1991. Copyright
© Statistica Sinica 1991.
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Another serious challenge to the standard linear model is the violation of the
functional form. For example, the true model might be a power transformation
model; the working model (1) might be based on a wrong transformation. More
specifically, we assume the true model has the following form:

y = g(+3x) + E(EIx) = 0, 0ij4, (2)

where g is the link function, assumed to be arbitrary and unknown. Following

Brillinger (1977, 1982), we call a model of form (2) a general linear model (GLM).
To avoid trivialities, we assume in (2) that 0 is not null.

When the link function is arbitrary and unknown, any linear transformation
of a + ,3x can be absorbed into the link function. Therefore we cannot identify
the intercept a, nor can we identify the length or the orientation of 3. The

most that we can identify is the direction of 0, i.e., the collection of the ratios

{/3jl/k, j,k = 1,... ,p}. The direction of /3 measures the substitutibility of
the components of x, and might be the main quantities of interest in many

applications.

We will focus on estimating the direction of 03, using the least squares linear
regression of y on x. We are concerned whether the linear regression still provides
a valid estimate for the direction of 0 when the link function is nonlinear. We
assume a mild condition on the GLM and the regressor x:

(A.1) The regressor x is sampled randomly from a probability distribu-
tion Q(x); the following moments exist: p = E(x), E = Cov(x), E-1, E(yx'),
0"2 (x) = Var(f I x), and E[a2(x)xx].

Under (A.1), the least squares estimate 3LS converges to

ALS = Cov(g(a + 3x),x')E-I. (3)

When the link function g is nonlinear, /3LS might not have the same direction as
/. Brillinger (1977, 1982) established that, ALS does have the same direction ds

/3, despite possible nonlinearity in the link function, provided that x is nor,:ially
distributed. The result also holds under the weaker condition

(A.2) ((Ox) = E(xI/3x) is linear in Ox.

Theorem 1. Assume that the random vector (y,x') follows ,i GLM (2), and
satisfies (A.1) and (A.2). We then have 3LS CX /3.

For empirical applications, it is unlikely for conditiow (A.2) to hold exactly.
When (A.2) fails, /3LS might not have the same direction as /. However, we
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would expect the noncollinearity to be minor if ((/3x) is nearly linear in /3x. We
will quantify the magnitude of the noncollinearity between /3LS and /3, using a
measure of nonlinearity in C(13x) which is analogous to Cox and Small's (1978)
maximal curvature.

We measure the noncollinearity between /3 and /3LS by the squared sine
between the two vectors,

sin 2 (/3,/3LS) 1 (/3LSE/3')21(/3>2/3')(/3LSE/3LS),

where the sine function is taken with respect to the inner product

(v, W) =-- W' (4)

Note that 1 - sin 2(p3,/3LS) is the squared correlation between /3x and/3LSX. If /3
and /3Ls are nearly collinear, the linear regression of y on x does provide useful
information on the approximate direction of /3. If the noncollinearity is severe,
the linear regression might be misleading and should be applied with caution.

Our main result is the following bias bound, which is proved in Section 2.

Theorem 2. Assume the random vector (y,x') follows a GLM (2), and satisfies
(A.1). The noncollinearity between /3 andA/LS in (3) satisfies the following oias
bound:

sin2({,flLS)<min 1, V2(/3)1(1 - V20)) (5)

where R 2 = Var(/3Lsx)/Var(y) is the usual R2 for the least squares linear regres-
sion of y on x, and v2(/3) is given by

bTb'
v2(,3) = max b [b' constraint bE/3' = 0, where T = Cov(((/3x)).bER" ~b

The scalar v2 (/3) is the second eigenvalue for the spectral decomposition of
T with respect to E. (The first eigenvector is /3; the first eigenvalue is one.) We
now interpret v2(/3) as a measure for the nonlinearity in ((/3x). More specifically,
v2 (/3) measures the deviation of ((/3x) from the linear regression function

l(/3x) = A + X/3'/3(x - ,)OEX,

where we take the linear regression of x on /3x. Note that ((/3x) is linear if and
only if the regression of bx on /3x is linear for all b E RP. For any b E RP,
consider the decomposition

bx = bl + (b( - bl) + (bx - b(),
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where the first term is the linear regression of bx on /3x, the second term is
the lack of fit for this linear regression, and the third term is the pure error.
We measure the nonlinearity in b((/3x) by the proportion of the variance in bx
accounted for by the lack of fit term above:

LF(/3,b) = Var(b( - b/)/Var(bx).

We then maximize LF(13,b) over b to measure the nonlinearity in ((/3x). Since
/3x = /3, it is easy to verify that this nonlinearity measure coincides with V2(03):

v2(/)= max LF(/3, b).
bERP

The nonlinearity measure v2(13) is analogous to the maximum curvature
studied in Cox and Small (1978). Cox and Small considered the quadratic re-
gression of bx on /3x, and measured the nonlinearity by the proportion of the
variance in bx accounted for by the quadratic term. They then maximized the
nonlinearity over b. This is analogous to our consideration of LF and its maxi-
mization over b.

Theorem 1 follows immediately from Theorem 2: if •(13x) is linear in /3x, we
have v2(,3) = 0, therefore the right hand side of (5) is zero, and /3LS is collinear
with /3. When ((/3x) is nonlinear, Theorem 1 might not hold; however, the
noncollinearity between /3 LS an,•/3 is small if the nonlinearity in ((/3x), V2(03), is
small compared to R2.

The bias bound (5) is tight in the following sense: for a given /3, a given Q(x),
and a given R2, we can find a GLM for which the noncollinearity sin 2(/3,O3LS)
equals the right hand side of (5). The construction of such a GLM is given in
Section 2.

For empirical applications, we need to estimate the right hand side of (5).
If we have a good initial estimate 3 for the direction of 3, we can estimate ((,3x)
by an appropriate nonparametric regression of x on /3x, then estimate T, v2(0),
and the bias bound. If we don't have a good initial estimate for the direction of
3, we can take a conservative approach and replace v2(13) in (5) by its maximum

sup=
V2 = max 1/2(10).

OERP

For each /3 E RP, we estimate •((3x), then estimate T and v2(/3). We then
search for the maximum of the estimated v2(3)'s. This is a projection pursuit
problem, with v2(,3) as the projection index. Huber (1985 and discussions ) gave
a comprehensive review of the projection pursuit problem. Cox (1985) suggested
using the maximum curvature in Cox and Small (1978) as the projection index.
This is analogous to using v2(13) as the projection index.
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We prove Theorem 2 in Section 2, then apply the theory to a special case
in Section 3 for an illustration.

Remark 1. It is helpful to interpret the bias bound (5) in terms of the equiv-
alent magnitude of estimation error. Under the standard linear model (1), the
least squares estimate 1LS is unbiased for /3. We measure the magnitude of its
estimation error by the mean squared sine,

MSS = E[sin2 (13,3LS)],

where the sine function is taken with respect to the inner product (4). It is easy
to verify that

MSS 4 n-1 (p- 1)(1 - R')/R

where n is the sample size.
The mean squared sine approximately equals the right hand side of the bias

bound (5) if
p-1n v( P)( - (6)

If the sample size is much smaller than the right hand side of (6), bias is likely to
be negligible compared with estimation error. If the sample size is much larger
than the right hand side of (6), bias might dominate estimation error if the true
link function is substantially nonlinear.

For the same nonlinearity measure v2(03), the right hand side of (6) is pro-
portional to p - 1. The asymptotic bias is less serious (compared to estimation
error) for larger p's.

Remark 2. The bias bound (5) and the discussion in Remark I deal with the
worst case bias when the true link function is the least favorable. For a specific
empirical study, the actual bias might be substantially smaller than the right
hand side of (5) if the true link function is not the least favorable.

The results in this paper can be used as a screening device to diagnose
whether we might have a serious bias if the true link function is substantially
nonlinear. If the right hand side of (5) is big, the empirical scientist should be
alerted to pay more attention to the goodness of the link function used in his
working model. If the right hand side of (5) is small, say, compared to the MSS
discussed in Remark 1, the goodness of the link function is less crucial.

2. Proof

The bias bound (5) is equivalent to
R' sin'(/3, OLS)2
1- R2 OSi2 (,LS) .< min(R 2,v 2 (/3)).

1 - R2 cos2 (/3,fiLS)-
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It is easy to see that the left hand side is bounded from above by R2 . We now
derive the other bound. In the derivation below, we consider several geometric
measures such as norm and orthogonality; all of these are taken with respect to
the inner product (4).

We decompose OLS into

O3LS = CO + O-L, 0-.± '

where c is a scalar. Since

sin 2(/3 ,0Ls) = II'11'2/1I/3LS112, R2 = 1JJLS112/Var(y),

we have
R2 sin2 ( PILS) = 11/3'112/(Var(y) - c21113112). (7)

1 -- R2 cos2 (13,/3LS)

Let v denote the slope vector for the least squares linear regression of g(o +
Ox) on C:

vT = Cov(g(a + Ox), ((Ox)').

If T does not have full rank, v is not uniquely defined. We can take any version
of v. Consider the decomposition

v=do+w, w113, (8)

where d is a scalar. We claim that

c = d, O-L = wTE-1. (9)

To see this, note that

vT = Cov(g,(') = Cov(g,x') = OLSE,

fiT = Cov(O(, ') = Cov(/3x, ') = Cov(Ox, x') O IE.

It follows that
flLSE = vT = dOE + wT,

which proves (9).
Let r2 = Var(y - v(). It follows from (8) and (9) that

Var(y) = Var(v() + r2 = c211•1112 + wTw' + 72. (10)
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Combining (7), (9) and (10), we have

R2_sin2 (/3,13Ls)_
1- R 2 cos 2(/3,/LS) = wTE- 1Tw'/(wTw' + r2 )

<_ wTE-1Tw' /wTw'. (1

We want to maximize the right hand side of (11) under the constraint w 1 /3,
thus we consider the spectral decomposition of TE- 1 T with respect to T. This
is equivalent to the spectral decomposition of T with respect to E. If w is an
eigenvector with eigenvalue v for the second spectral decomposition, i.e.,

wT = vwE, (12)

then w is also an eigenvector with the same eigenvalue for the first spectral
decomposition. The first eigenvalue for the spectral decomposition (12) is one,
with the corresponding eigenvector being w x /3. All other eigenvectors are
orthogonal to /3. It follows that the right hand side of (11) is maximized by
taking w to be the second eigenvector for the spectral decomposition (12). The
maximum is v2(/0), the second eigenvalue for (12). This completes the proof for
Theorem 2.

We now establish that the bias bound (5) is tight. For a given /3 and a
given Q(x), the "least favorable" GLM's have no pure error, E = 0, and have the
following link function:

y = g(a + /3x) = c/3x + w'•(/x), (13)

where w* is the second eigenvector for (12), and c is a scalar to be determined
from the given R2 . For those GLM's, we have

R2 = (c211/0112 + v2(/3)211w*jj2)/(c21j/lj2 + V2(0)IIW'l12).

If R2 > v2()3), we have

C2 = (R 2 
- V2('3))V2(/3)jjw'lI2/(1 - R 2 )11/311 2 ,

thus there exists a least favorable GLM of form (13) which has the given R2 and
achieves the right hand side of the bias bound (5).

If R2 < v2(/0), there does not exist a corresponding least favorable GLM of
form (13). The right hand side of (5) can be achieved in this case with the GLM

y = w'(/3x) + E, c Ix - N(0,r 2), (13')
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where
2' = (v(0) - R2)v2(#)Iiw'I 2 /R1

The bias bound (5) is noninformative in this case: the noncollinearity between
/3 and 3LS is unrestricted. For the GLM (13'), OLS is orthogonal to 3.

Remark 3. The bias bound allows the link function to be arbitrary. If we have
prior information on the link function, it might be possible to sharpen the boun d.
For example, it might be known that the link function is monotonic. The link

function for the least favorable GLM (13) might not be monotonic. Since

Cov(w*'(fx),Ox) = w*EO' = 0,

w*(f(x) is not monotonic in Ox. If c is small compared to I1w*lI, i.e., R2 - v2( 3 )
is small, the link function is not monotonic. If we restrict to monotonic link
functions, it might be possible to improve upon the bias bound (5). An example
is given in Section 3.

3. A Special Case

We illustrate the application of Theorem 2 with a special case which might
be of interest in itself. We assume x is uniformly distributed over the square
(-1 _< x, ! 1,-1 < zx _• 1). Let /3 = (1,t). Without loss of generality, we
assume 0 < t < 1.

If t = 0 or t = 1, (((x) is linear, thus QLS is collinear with /3. If 0 < t < 1,
then ((#3x) = ((1(/3x),2(/3x)) is nonlinear:

(/3x- I + t)/2, if 3x < -1 + t;

(1(3x)= 3x, if - + t _<x< I - t;

(fx + 1 - t)/2, if Ox > 1 - t;

(/3x + 1 - t)/2t, if 3x < -1 + t;

( 2 (/3x)= 0, if -1+t_</3x•<_ 1-t;

(Ox- 1 + t)/2t, if fx > 1 - t;

thus 3Ls and 3 might not be collinear. It is easy to verify that

V2(0) = t(1 - t) 2 /2 < 2/27,

where the maximum occurs at t = 1/3.
We have tabulated the bias bound (5) for 3 = (1,1/3). The second column

in Table I gives the maximal angle between 3 and SLs for R2 's ranging from
10% to 90%. The asymptotic bias is substantial when R2 is not close to one.
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Table 1. Maximal angle between OLS and /3 = (1, 1/3)

Maximal angle
R 2

Arbitrary g [1] Monotonic g (2]

0.10 58.10 12.50

0.20 34.40 12.50

0.30 25.60 12.50

0.40 20.30 12.50

0.50 16.40 12.50

0.60 13.40 12.50
17/27 12.50 12.50

0.70 10.70 10.70

0.80 8.10 8.10

0.90 5.40 5.40

[1] No restrictions on the link function g.

[2] Link function g restricted to be monotonic.

For p = 2, v2 (13) = 2/27, the right hand side of (6) is 12.5, which is quite
small. For mozt relevant sample sizes, bias might dominate estimation. error if
the true link function is substantially nonlinear.

It can be shown that the least favorable GLM (13) is monotonic in /3x for
R 2 > 17/27, and is not monotonic for R2 < 17/27. If we restrict to monotonic
link functions, we can sharpen the bias bound for R2 < 17/27: the maximal
angle is identical to that for R2 = 17/27; see the third column in Table 1. For
small R2 's, the bias bound is sharpened ',ubstantially.
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