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DENSIFICATION OF CERAMICS BY GAS OVERPRESSURE SINTERING

G.E.GAZZA AND R.N.KATZ
U.S.Army Materials Technology Laboratory, Watertown, MA
02172-0001

ABSTRACT

The use of various gas pressure sintering (GPS) techniques
for densifying ceramics are reviewed for both oxides and
non«oxides. Variations of the process are discussed with
respect to process parameters selected, process sequence, and
microstructural development. Theoretical considerations
underlying the technique are presented. GPS and hot isostatic
pressing are compared and the advantages and disadvantages of
each are briefly discussed.

INTRODUCTION

Gas pressure sintering (CPS) has been developed over the
past two decades as a pressure densification process for
ceramics which are difficult to conventionally sinter to full
density. It provides a useful, alternative processing strategy
for pressure assisted densification which permits the processing
of bodies more complex in shape than can be produced by uniaxial
hot pressing and by a lower cost process than hot isostatic
pressing (HIP). GPS is effective in suppressing material
dissociation at elevated temperatures, maintaining compositional
stoichiometry, and promoting densification with microstructural
contrel. A major advantage of the technique is that it does not
require the encapsulation or cladding and decladding of
specimens as processing steps. Use of the gas pressure
sintering method has been reported for preducing ceramic
automotive components, ceramic tooling, rare earth cobalt
magnets, infrared windows and domes, lamp envelopes, and
electro-optic materials.

The gas pressure sintering or sinter/HIP process has been
used to densify various ceramics (oxides, nitrides, sulphides),
WC-Co cermets, rare earth cobalt magnets, anu a variety of metal
alloys. A comparison of parameters and conditions encountered
in uniaxial hot pressing, gas pressure sintering (or
sinter/HIP), and hot isostatic pressing of various ceramics is
shown in Table I.

GAS PRESSURE SINTERING (GPS) METHOD

The process utilizes a pressurized gas, either reactive or
inert, to promote high temperature densification of specimens
from the “green"-body form. The gas pressurization/temperature
cycle has been conducted using several different modifications
but is usually described as either a cne-step or two-step
process. In the one-step method, the gas pressure is raised to
a predetermined level and held at that level throughout the
sintering cycle. The sintering temperature may be held constant
or changed during the cycle depending on the densification
response and desired microstructural develcpment. 1In the
one-step method, the primary role of the gas is to maintain
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compositional stoichiometry and high temperature stability of
the material being densified rather than to provide significant
pressure to act as a driving force for densification. Since the
gas used will be entrapped in the pores when they become
isolated during densification, it is desirable that the gas have
some solubility and diffusivity in the material to lower gas

_concentration within the pores and promote pore shrinkage. The

densification of Si_N, with MgO [1] or CeO, [2], in a N, gas
atmosphere, are exaipies of this approach.

Table i. COGMPARISON OF PARAMETERS AND CONDITIONS ENCOUNTERED IN
VARIOUS PRESSURE DENSIFICATION PROCESSES

Gas Pressure

Sintering Hot lsostatic
Hot Pressing {Sinter/HIP) Pressing

Container Die/Plunger Cladless Cladded
Pressure {(MPa) 10-70 0.1-200 70-200
Typical Temperature - . -
Rangs {*C) :

Onides 900-1700 1100-1800 900-1500

Nitrides 1600-1800 1700-2100 1600-1900

Sulfides - 1000-1200 900-1100
Pressure Cycle Single Duat/Single Single
Shape Capability Simple Complex Complex

In the two-step method, the material is first densified to
the closed pore stage (93-94% T.D.). Either a vacuum
environment or a relatively low reactive gas pressure (0.1-2.0
MPa) is usually employed in this step of the process. For
example, H.S has been used for sintering sulfides [3,4], N,
for nitriad compositions [5-8], and vacuum or oxygen-rich
environment for various oxides [9,10}. In the second step, the
gas pressure is raised to provide an additional driving force to
promote pore shrinkage and further densify the material. Since
the pores have been isolated in the first step, encapsulation of
the specimen is not required. The use of a gas with low
sclubility and diffusivity in the material 'is now desired unless
high temperature compositiorsl stability of the material remains
an issue. Use of a combination of gases, each serving a
different purpose, is alsc an option.

gas

VARIATIONS OF THE GPS TECHNIQUE

Various modifications of two-step gas pressure sintering
can be devised to promote densification and control
microstructure. In Figures la-c, some examples of such
modifications are illustrated. In Figure la, a typical
sintering cycle is shown where the temperature is held
egsentially constant during the run while the pressure is
increased from P_, the initial gas pressure, to P_, the final,
external gas pregsure level used in the second stap of the
process. When gas pressures up to 20 MPa are used in this step
of the process, it is referred to as gas pressure sintering
(GPS). . If pressures are extended into the 70-200 MPa range, the
process is usually identified as sinter/HIP (S/H).
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Figure 1. Variations of the two-step gas pressure sintering process.

Some GPS or S/H processing is carried out with a reduction
in the sintering temperature in the second step as shown in
Figure 1b. This is designed to restrict grain growth and pore
coalescence. Additionally, Greskovich (7] has used this
approach with BeSiN_, doped Si_N, to reduce equilibrium pore
sizes and control the distribdtion of Be from the grain
boundaries into -the Si3N grains.

Another variation o? the process, as shown in Figure 1c,
employs a significant increase in temperature in the second step
to promote an increase in grain size and formation of a duplex
microstructure to increase material toughness. This approach is
referred to as in-situ microstructural toughening or development
of self-reinforced microstructures.

ANALYSIS OF PRESSURE/PORE SIZE RELATIONSHIP

A theoretical analysis of high gas pressure processing to
reduce egquilibrium pore sizes in ceramics has been recently
discussed by other investigators [7,11,12). When open porosity
exists in a material, shown schematically in Figure 2a, the
driving force for pore size reduction and pore closure is
essentially the capillary stress or surface tensjion denoted as
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2(Y¥y/r__, where Y is the solid-vapor surface energy and r is

the opgg pore radius. As pore isolation occurs, illustraPBa in

Figure 2b, the driving force for pore size reduction includes .
both the magnitude of the external pressure, P_, and the surface ,
tension term. If the pore contains an insoluble gas and remains

isolated without coalescence, the equilibrium pore size and gas

pressure within the pore is given by,

Po = 2(Y)/rg + P, (1)

Figure 2. Driving force for pore shrinkage
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where r_is the pore radius at equilibrium conditions, P_ is the
equilib?ium gas pressure within the pore, P_ is the extefnal gas
pressure, and Y is as previously defined. fhe presence of an
insoluble gas within the pore limits pore size reduction and
results in the forming of end point densities. If pore
coalescence occurs due to grain growth, the driving force for
pore closure will be reduced and larger pore sizes will result
in lower densities. If the pores contain a soluble gas with
high diffusivity through the ceramic, reduction in pore size
occurs as a function of gas solubility and diffusion kinetics,
and high densities are more easily achieved.

When pores contain a gas with low solubility in the matrix,
the smallest eguilibrium pore size can be shown to be a function
of both the initial pore size and the magnitude of the pressure
used for densification. Combining equation (1) with ideal gas
law equations for both initial and equilibrium conditions gives,

P (x> + 200 (r)?% = (p) (T (r ) /T, (2)

where P_ is the initial gas pressure, T_ is the equilibrium
tempera@ure, T_ is the initial temperatSre used in the process,
r is the initYal pore radius after pore isolation, and P_, r_,
and Y are ag previously identified, For Si . N,, Y is estiflate8
to be 1 J/m”. 1In considering the gas pressara densification of
Si_N,, the effect of using different gas pressures, in a
ona-gtep sintering process, on the equilibrium pore size (r ),
is shown in Figure 3a as a function of the initial pore siz
(r.). Both the gas pressure and sintering temperature are held
coflstant during the process producing the conditions P_ = P_ and
T, = T,. It is observed that the values of To increas& witl
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both increasing gas pressure and initial pore size. Therefore,
to produce smaller pores and higher densities, the use of finer
starting powders (producing finer pore sizes) has been suggested
[11] along with using the lowest possible acceptable gas
pressures before the closed pore stage is reached. Particle
size distributions that produce high packing densities should
also be effective.

A reduction in the equilibrium pore size can be further
accomplished by the use of higher gas pressures after pore
isclation has occurred, i.e., in the second step of a two~step
process. In Figure 3b, the influence of gas pressures (P_} of
3.6, 10, 100, and 200 MPa on the reduction of the equilibFjium
pore size iz shown when initial pore sizes up to 2.5 um are
considered. The sintering temperature is assumed to be constant
with T To. The initial pressure, is fixed at 2 MPa for
purposgs of "the calculations. The ploes illustrate the
effectiveness of raising the external gas pressure to the
sinter/HIP pressure levels which produce equilibrium pore sizes
approximately 1/2 to 1/3 of the size achieved by gas pressure
sintering at 10 MPa. The combination of higher gas pressure
applied after pore closure and smaller initial pore size would
result in the highest material density. Another advantage of
using higher pressures may involve increasing the solubility of
the gas entrapped in the pores into the matrix of the material
being densified (13).

Figure 3. Equilibrium pore size irel as a function of {a} initial pore size {rg) and
gas pressure and (b} initial pore size {ry) and final external pressure (P,
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MICRCSTRUCTURAL CONTROL

The lack of toughness in moneolithic ceramies has spurred
the development of whisker and fiber reinforced materials,
However, depending on size and aspect ratio, processing of the
whisker materials is costly due to the need for a more complex
naterials synthesis route and associated health issues. This
led to the davelopment of monclithic Si_N, with a duplex or
conposite type microstructure. Early sa ales {6] demonstrated
that by increasing gas pressure sintering temperatures to higher
levels than ncrmally used, i.e., 2000C, the fracture tuughness
of the material could be sxgnlflcantly increased due to the
develcopment of a fiber-like structure, that is, large, hxgh
aspect ratio grains forming in-situ in a finer grain si 4
matrix., The additions of rare earth oxides, such as y283,

0., or CeO,, with Al, 0O, produced high densities and“a“grain
boanaary phasa that proﬂoeed toughness by tailoring interfacial
properties between the grain boundary phase and the Si N grains
[6,14]. The two-step gas pressure sintering process wgs found
to be the most effective for producing toughness.

A comparison of microstructures for a gas pressure sinteread
and hot isostatically pressed Si_N, is observed in Figures 4a
and 4b, respectively. The GPS mgtérzal exhibits a coarse,
duplex structure with high aspect ratio grains, whereas the hot
isostatically pressed material has a fine, more eguiaxed
stxucture. The use of higher GPS temperatures, e.g.,
1975C-2100C, or longer sintering time results in the formation
of large, elongated grains in the matrix and produces higher
toughness values. The densification temperatures for HIPPED
Si,N, are usually 200-400C lower than for the gas pressure
sifitdred material.

(b}

Figure 4. Microstructures of SigNg4 containing Y203 sintering
additive. {a) Gas pressure sintered (b} Hot isostataically pressed.

{1000x)



EXAMPLES OF THE APPLICATION OF GPS TO ADVANCED CERAMICS

Specific examples of different classes of ceraric nmaterials
densified by gas pressure sintering (GPS) or sinter/HIP (S/H)
processes are shown in Table II. In the Table, the ceramic
materials are identified along with the pressures and
tamperatures used to densify them. It can be determined under
the Densification Parameter columns whether a one~step or a
two-step gas pressure process was used. Examples of cermets and
metals densified by GPS or S/H are available in References 15
and 16.

Table if. CERAMIC MATERIALS DENSIFIED BY GAS PRESSURE
SINTERING OR SINTER/HIP

Dansification Parameters

st Step " 2nd Step

Materiai Process Temp {*C)}/Prass (MPa} Temp (*C)/Press (MPa} Ref
SizNg - Mg0 GPS 1800-1900°C/1 MPa N3 e 1
SigNg - BuSiNg GPS 2000°C/2.1 MPa N2 1900°C/7.1 MP3 N3 7
SigNs . v,04/A103  GPS 1850-2000°C/1 MPa N3 —— 5
SigNg - RE. Oxides  GPS  1700-1800°C/0.2-4 MPa Ny 2000°C/4 MPa Ny 14
f - Sialon GPS  1600-1800°C/0.5 MPa Np  1650°C-1700°C/10 MPaNp 8
Al;03 S/H 1650°C/vac. 1650/100 MPs Ar 9
PLIT; BaTiO3 GPS 1170°C/0.1 MPa O3 1170°C/20 MPa Ae 10
CalazSy S/H 1050-1150°C/0.1 MPa Hp$ 990°C/200 MPa Ar 4
CalazSq - LagS3 S/H 1200°C/0.1 MPa Hp$ 1090°C/200 MPs Ar 3

Oxides

Early gas pressure sintering or sinter/HIP studies focused
principally on oxide materials, such as, Al.0, (9], Pb(Zr,Ti)o_,
BaTiO,, and SrTiO, [10]. The technique inv8l¥ed sintering in 3
vacuua environmena or using a gas with high diffusivity through
the material being densified in the first step of the
densification process. Oxygen was used for this purpose and its
presance was important to maintain the stoichiometry of the
oxide being densified. Whén the closed pore stage was reached,
a gas with a low diff.sivity in the oxides (either He or Ar) was
used at higher pressures to increase the density. A helium gas
pressure of 100 MPa was used to further densify Al_O. [9] while
approximately 35 MPa of argon was used for densififation of the
titanates [10].




Sulfides

The sinter/RIP process has been applied in the
densification of sulfide compounds {[3,4] to produce a material
with improved optical and infrared transmittance and increased
erosion resistance. Hot pressing of CaLaZS or a CalLa,S -Lazs3
solid solution compound in a graphite die rdsults in 950§ .
optical transmission due to material decomposition and loss of
sulphur. Sintering of the compound in H_ S to the closed pore
stage followed by cladless hot iscstatic”pressing, in an Ar
environment, producad a more stoichiometric material with higher
transmittance. Sintering temperatures used in the first step of
the process were 1000-1200C., The cladless HIP step was
performed in an Ar environment at temperatures between
990-1090C. Ar gas pressure used was 170-200 MPa.

Nitrides

Early attempts to densify Si_N, using a conventional
sintering approach {17}, i.e., unaeé 0.1 MPa N,, were only
partially successful because of difficulty in auppressing
dissociation reactions. Maximum density attained was limited to
approximately 80-85% of full density. The need to use high
sintering temperatures to promote diffusicnal processes for
densification and, at the same time, restrict decomposition of
the material led to the use of high N, gas pressure during
sintering. To determine the amount c% nitrogen gas pressure
required to stabilize the Si N4 at a given temperature, a
diagram defining the region 8f sinterability was
thermodynamically determined from the reaction in which the
nitrogen pressure and silicon vapor pressure are in equilibrium
with Si N, . This diagram is presented and discussed in
Ref.{lB?. In addition to suppressing the decomposition of Si_N
into Si and N,, high N, gas pressure will suppress the rate o
dissociation 3eactions producing $i0 and N_, limiting oxygen
removal from the system. The use of a covér powder in which the
specimen is embedded has also been shown to be effective for
this purpose [19].

Si_N,, doped with 5 w/o MgO [1] or CeO, [2] as
densifigaéion aids, was sintered by single étep GPS to >95%
dense with weight losses up to 6-8%. Temperatures between 1800C
and 1950C were used for sintering. Nitrogen gas pressures of
1-2 MPa were used principally to suppress decomposition of the
Si_N,.

3 4The use of a two-step apprcach to sinter Si3N close to
full density was initially applied using Be3SiN [9}, and
Y,0./Al.0, (5) as additives. The two-step, preésure-temperature
aﬁpgoacﬁ dsed to densify the Be_.SiN_ doped Si. N, was designed to
utilize differences in the tempgratare dependgne solubility of
Be in the Si3N grains. Since the solubility of Be in Si N,
decreases at tgmperatures greater than 2000C, a temperatu;e of
2050C was used in the first step to keep a Be containing liquid
at the grain boundies to promote diffusion and densification.

N, gas pressure was kept at 2 MPa during this sintering step.
When the closed pore stage was reached, the sintering ’
temperature was lowered to 1950C to increase diffusion of Be

into the grains. The gas pressure was increased to 10 MPa to

4

|
e e e cmsinasihs
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reduce the equilibrium pore size and promote further
densification.

COMPARISON OF GPS WITH HOT ISOSTATIC PRESSING

Gas pressure sintering and hot isostatic pressing are both
useful processes for densifying complex shapes. However, each
process has certain advantages and disadvantages associated with
the technique. Some of the strengths and limitations for each
process are listed in Table III. From the standpoint of
materials properties, such as high strength and reliability, the
HIP process is the preferred method of densification. It can
produce material with uniform microstructures and compositional
stability. The major concerns are the need to use or develop
cladding materials that have properties appropriate for the
stress-temperature conditions required for densification and the
possible reaction of the cladding materials with the specinmen.
Higher equipment and processing costs are further concerns.

With the GPS process, cladding/decladding steps are not required
and the versatile temperature-pressure cycles can be used for
tailoring microstructures, such as in-situ toughened materials.
Some problems with GPS may include loss of volatile
compositional components, reaction with the gas environment, and
the inability to close surface porosity. The latter problem may
be particularly undesirable for the densification of ceramic
components, such as bearings, where high surface or near-surface
stresses are encountered and an exceptional quality of surface
finish is required. Since higher temperatures are usually
required for GPS than for HIP, coarser microstructures are
generally produced by GPS. However, overall processing costs are
lower for the GPS technique.

Table ill. ADVANTAGES AND DISADVANTAGES ASSOCIATED WITH GAS PRESSURE
SINTERING AND HOT ISOSTATIC PRESSING PROCESSES

Gas Pressure &Ml.‘.@.‘.{* DISADVANTAGES
Sinteri
—=nerns. Versatile tor tailoring * Larger grain size than HIP
microstructure
* Deletericus reaction with
* No cladding required sintering environment
s Higher matl. toughness ¢ Loss of compositional con.ponents
* Lower Cost ¢ Surface porasity remains open
Hot lsostatic . A
A ¢ Fine grain size ¢ Need to develop appropriate
Prossing . container material
* Higher strength and
Weibuil moauius * Raaction with contsiner material
* No reaction with gas * Higher processing cost

environment

* Reduced additive lavels
whars roquired for
densification

* Compesitionas! stability




SUMMARY

{1) Gas pressure sintering can be used to densify both oxide and s
non~oxide ceramics for a variety of applications.

{2) Process parameters are tailored to material densification
and microstructural goals, usually in a one or two-step process.

(3) The smallest equilibrium pore sizes (highest densities) are
produced by:

(a) starting with a small initial pore size (rg). i.e., a
fine powder

(b} using a vacuum or the lowest gas pressure possible prior
to pore closure (P )-step 1 of the process

(c) raising the external gas pressure (P_) to high levels
after pore closure-step 2 of the process

(d) using gas with a high solubility/diffusivity in step 1
and a low solubility/diffusivity in step 2.

(4) GPS is competitive with HIP where, (a) only moderate
conditions of pressure are necessary for densification, (b)
changes in gpecimen composition do not occur by velatilization
or undesired reactions with the gas environment, and (c¢)
reductions in processing cost must be considered.
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