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Aspects of a Parallel-Architecture Simulator

by

Eric Allen Brewer

Technical Report MIT/LCS/TR-527

Abstract

This thesis discusses the use of code augmentation in PROTEUS, a high-performance parallel-
architecture simulator. PROTEUS multiplexes a single processor among the various activities in
a simulated parallel machine to provide accurate information about the timing and behavior
of an application and the underlying simulated architecture. PROTEUS is fast, accurate, and
flexible: it is one to two orders of magnitude faster than comparable simulators, it can reproduce
results from real multiprocessors, and it is easily configured to simulate a wide range of MIMD
architectures.

Traditional multiprocessor simulators simulate the machine cycle by cycle, interpreting each
instruction. The high overhead of instruction interpretation makes these simulators too slow for
research in the area of parallel systems. PROTEUS simulates most instructions via a combination
of direct execution and code augmentation, which reduces the simulation overhead for these
instructions by roughly a factor of one hundred.

In addition to performance, code augmentation offers several other benefits for multipro-
cessor simulators, such as nonintrusive profiling and stack overflow detection. Primary among
these benefits is precise control of the cost in machine cycles of a piece of code. The ability to
assign code a cost of zero cycles allows users to generate nonintrusive monitoring and debugging
code. Because the monitoring code costs zero cycles, it has no effect on the timing of the simu-
lation. Thus, users can add arbitrary monitoring and debugging code without interfering with
the simulation. The ability to assign costs also allows users to tune costs to match a particular
architecture, thus increasing the accuracy of the simulation.

Empirical evidence reveals that the performance improvement of augmentation over in-
struction interpretation is about a factor of one hundred. PROTEUS as a whole outperforms
comparable simulators by one to two orders of magnitude. Further experiments reveal that
despite its remarkable speed, PROTEUS produces reliable results. In particular, PROTEUS has
accurately reproduced published results from several real multiprocessors.

Keywords: augmentation, execution-driven simulation, multiprocessor simulation, profiling

This report is a minor revision of a Master's thesis of the same title submitted to the Department
of Electrical Engineering and Computer Science on January 22, 1992. The thesis was supervised
by Professor William E. Weihl.
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Chapter 1

Introduction

The PROTEUS system was developed by myself and Chris Dellarocas as a testbed for studying

parallel languages and runtime systems, and led to both of our master's theses. Most of the

design was done jointly, and all major design decisions involved substantial discussion between

the two of us. This thesis covers a small paxt of the PROTEUS simulation system- it does not

even cover all of the components for which the author was responsible.

The author was primarily responsible for the following components:

* The design and implementation of the augmentation program, which is the focus of this

thesis.

* The design and implementation of the configuration program (and the associated config-

uration language), which allows users to specify the simulated architecture. The configu-

ration program is discussed in the PROTEUS user documentation [BD91].

* The design and implementation of the facilities for data collection.

* The design and implementation of the facilities for graphical presentation of simulation

data, including the graph-specification language. The data collection and display tools

are discussed in the PROTEUS user documentation.

* Much of the support for debugging, including nonintrusive monitoring and debugging

code, memory overwrite detection, and stack overflow detection. These aspects are also

covered in the user documentation.

15



16 CHAPTER 1. INTRODUCTION

This thesis presents a thorough examinat-on of the use of direct execution and code aug-

mentation in a multiprocessor simulation system. Direct execution means that some of the

simulated instructions are actually executed on the host workstation; code augmentation is the

automated addition of new code to a program to change its behavior in a very specific way.

These two techniques are combined in PROTEUS to provide very high-performance simulation

of a wide range of multiprocessors, including both shared-memory and message-passing MIMD

architectures. The design, implementation, and evaluation of the use of these techniques in

PROTEUS is the focus of this thesis.

1.1 Thesis Organization

This thesis is divided into seven chapters. After the general overview of PROTEUS provided

by the rest of this chapter, Chapter 2 examines the goals of the project that led to the use

of augmentation. The third chapter presents a broad overview of augmentation, followed by a

detailed discussion of the design and implementation in Chapter 4. The fifth chapter presents

the results of several experiments that investigate the performance and correctness of both

augmentation and PROTEUS as a whole. This is followed in Chapter 6 by a discussion of

related work. Finally, Chapter 7 draws conclusions regarding the success of augmentation with

respect to the goals defined in the second chapter.

1.2 PROTEUS Overview

PROTEUS is not actually a simulator; rather, it is an simulation engine that combines with archi-

tecture-specific modules and user applications to create a simulator. The resulting executable

provides high-performance simulation of the user's application on the target architecture. This

section presents a brief overview of PROTEU'S, including the design goals, the basic multipro-

cessor model, and the steps involved in building and using PROTEUS simulators.

PROTEUS simulates the events that take place in a parallel machine at the level of individual

machine instructions, bus or network accesses, interrupt requests, etc. However, the user can

write a parallel program for PROTEUS using a simple superset of the C programming language

and a set of supporting simulator calls. Parts of the user program that do not require inter-
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action with other processors are written in standard C and translated by the C compiler into

instructions for the host workstation. Nonlocal interactions in user programs are performed

by the supported simulator calls, which roughly correspond to the machine instructions that

perform nonlocal interactions in real parallel machines.

1.2.1 Design Goals

In designing PROTEUS, we had five major design goals:

Speed: We were well aware that current simulators had limited usefulness for parallel-systems

research because of their poor performance. The challenge was to remove the overhead

of cycle-by-cycle instruction interpretation without forfeiting so much accuracy that our

simulation results would be suspect.

Versatility/Modularity: PROTEUS must be versatile so that our group can investigate porta-

bility and general language and runtime-system mechanisms. Designing portable systems

requires the ability to test ideas on a wide range of architectures, including some that

physically may not exist. Similarly, general language and runtime-system mechanisms

require testing across a broad range of architectures.

Closely associated with versatility is modularity. By designing PROTEUS as a set of

replaceable modules, we can reduce and simplify the work required to extend tue range of

target architectures. For example, it should be possible to change the simulated network

without modifying code related to cache coherence or scheduling.

Tradeoff Performance and Accuracy: After starting the project, we realized the impor-

tance of providing a range of accuracy and performance options. This goal grew out of

our observation that a simple network module based on Agarwal's analytical network

model provided an order-of-magnitude improvement in network-simulation performance.

and yet often yielded sufficient accuracy. In general, different applications require accu-

racy in different areas, and a particular application requires different levels of accuracy

at different stages of development. Ideally, users should be able to specify the accu-

racy requirements and achieve the maximum possible performance consistent with those

requirements.
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Data Collection and Display: Given that simulations should be run to test specific hy-

potheses, it is critical that the system provide substantial data collection and display

tools. It should be easy to collect and display the data needed to resolve a hypothesis.

Furthermore, the graphs should be capable of providing new insight into the application

and the architecture.

Support for Debugging: Finally, we were very concerned that simulated applications, as

with applications on real multiprocessors, would exhibit intractable bugs due to concur-

rency. Thus, a key goal is repeatability, which is the property that rerunning a simulation.

even with extra monitoring code, produces the same results-in particular it repeats any

bugs. Repeatability allows users to exploit the traditional (and effective) debugging tech-

niques common in sequential program development. In general, the power of standard

sequential debuggers should be extended to apply to simulated parallel applications.

1.2.2 Architectural Model

PROTEUS simulates MIMD multiprocessors in which independent processor nodes are connected

via an interconnection medium, as shown in Figure 1-1. The interconnection medium can be

either a bus. a direct network such as a k-ary n-cube, or an indirect network such as a butterfly.

Each processor node consists of a processor, a network chip, a cache chip. and memory. Con-

ceptually, the processor is a generic sequential processor extended with instructions for network

access and cache coherence. The network chip interfaces the processor with the interconnec-

tion medium. The cache chip, which is optional, handles cache coherence and works with the

network chip for remote memory accesses.

The memory at each node is divided into two sections. a shared section that maps to part

of a global address space, and a private section that is not accessible from the interconnection

medium. For distributed-memory machines, the size of the shared section is zero. PROTEUS

can simulate hardware cache coherence for global memory and provides primitives for software

coherence.

Supported machine organizations fall into two major classes: bus-based and network-based.

Bus-based machines: Bus-based machines are built around a common bus through which
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Interconnection Medium

Figure 1-1: The basic architectural model. The interconnection medium can be a bus, a direct
network such as a k-ary n-cube, or an indirect network such as a butterfly. The cache chip. which
is optional, supports a global address space, For bus-based systems, the number of memory
modules may be more than the number of processors, with the extras simply connected to the
bus.
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processors communicate with shared-memory modules. Interprocessor interrupts (IPIs)

are channeled through the common bus or, alternatively, through an optional, independent

IPI bus. Processors are independent of shared-memory modules-there may be different

numbers of each. Uniform shared-memory access is assumed, that is, access of any memory

module from any processor takes the same amount of time (except for delays due to

bus contention). Processors are optionally provided with caches whose parameters are

specified by the user. Cache coherence is maintained using Goodman's protocol [Goo83].

a "snoopy" cache-coherence protocol.

Network-based machines: Machines of this class comprise a number of identical process-

ing nodes built around an interconnection network. Each processing node consists of a

processor and a shared-memory module. Thus, each memory module is associated with

a processor and shared-memory access is non-uniform. Accesses from a processor to its

associated memory module are less expensive than accesses to remote memory modules.

since requests to the latter must pass through the network. Cache coherence is provided

using a version of Chaiken's directory-based cache-coherence protocol [Cha90].

A large variety of direct and indirect network types are supported. Direct networks directly

connect two processing nodes through point-to-point links. In such networks there is a variable

"-distance" between two processing nodes, equal to the number of individual point-to-point

links that form the path used between those nodes. Indirect networks do not connect any two

processors directly, but rather use a number of internal switching stages that automatically

route a packet to its destination. In indirect networks, all pairs of processing nodes have the

same "distance", which is equal to the number of internal stages plus one.

PROTEUS supports the complete family of k-ary n-cube direct networks with either unidi-

rectional or bidirectional connections. This family includes most direct networks encountered

in MIMD machines, such as rings, meshes and hypercubes. The indirect network model can

emulate various multistage networks including butterflies and omega networks.
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1.2.3 Running Simulations

Figure 1-2 depicts the four steps in the creation and use of a PROTEUS simulator. First. the

user specifies the architecture using an X-based configuration tool.

Second, the application- and architecture-specific simulator is compiled and linked into an

executable. Augmentation is hidden in this step: the compilation of application procedures

includes augmentation of the application assembly code. The compiling and linking step is

normally performed either with the configuration program, config, or with the makesim com-

mand. The former allows users to alter the simulated architecture, while the makesim command

simply rebuilds the simulator for the current architecture. (These are discussed in detail in the

user documentation.). In practice, config is used only to change the architecture or some of the

parameters of the simulation. Most of the time, when the architecture and simulation param-

eters are stable, the makesim command is used to build the simulator, which is an executable

called proteus.

Next, the user runs the executable to produce screen output and a trace file. The executable

can be run either from the config program or directly from Unix.

Once proteus is executing, the user can interrupt the simulation at any time by pressing

Ctrl-C. This suspends execution of the simulated program and transfers control to a "snap-

shot" menu that allows the user to examine the state of the simulated machine at the time of

the interrupt. The "snapshot" mode, which is discussed in the user documentation. contains

several self-explanatory options and provides information about threads, processors, and mem-

ory, and supports application-specific debugging. It also allows the user to continue or abort

the simulation.

Finally, PROTEUS includes a sophisticated X-based graph generator, called stats. that

interprets the trace file and presents the results of the simulation.1

'All of the graphs in this document were produced by stats.
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User Application Code

Augmentation con fig

augmen0- oarchitecture specification,

assembly * parameters

makesim Simulator engine,

Library routines

proteus

Run
Simulation

trace file,
screen output

stats

Graphical Output

Figure 1-2: The steps invu ed in building and running a simulation.



Chapter 2

The Goals of Augmentation

2.1 Introduction

Before discussing augmentation in detail, it is useful to examine the goals of the simulator.

The decision to use augmentation to account for the costs of local instructions arose from the

interaction of two general goals: high performance and simulation accuracy.

2.2 The Need for High Performance

The standard reason for faster simulators is larger simulations: maximum simulation size in-

creases linearly with the speed of the simulator. Like computer performance. simulator per-

formance is always in demand; there will always be a desire for larger simulations and larger

collections of simulations. Computer-systems research groups require large simulations, and

thus high simulator performance, for at least three reasons.

First, it is important to simulate real applications. Poor performance restricts most sim-

ulators to either accurate simulation of tiny programs or large simulations involving many

inaccuracies. Unfortunately, toy applications and simulations with questionable assumptions

may hide important deficiencies in a language run-time system or in an operating system. Par-

allel processing is complicated enough that apparently minor aspects of a program can affect

performance severely. For example, poor data placement can lead to thrashing in the cache.

which increases both access latency and network traffic.

23
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In addition to simulating real applications, a key goal is the investigation of how programs

scale. For example, researchers must ensure that synchronization primitives developed for a

programming language will be effective for a thousand processors as well as for ten. This

of course implies simulating machines with at least hundreds of processors: typical simulator

performance precludes such simulations.

The third reason computer-systems groups require large simulations involves the multiple

layers of parallel systems. For example, in order to develop a portable parallel language, we need

a portable operating system. After we develop the operating system on top of the simulator, we

will run applications on top of the simulated operating system. Hence, in order to simulate an

application, we must also simulate the operating system. The operating system layer implies

larger simulations and an increased need for simulator performance.

Equally important is the ability to run many small simulations. Collections of simulations

are useful for comparing a variety of algorithms, evaluating algorithm parameters, and averaging

results for more accurate data. Running a large collection of simulations requires a high-

performance simulator. In this case, poor simulator performance does not hinder the individual

simulations, but rather limits the overall usefulness of the simulator by redu.'ing the quantity

and quality of the simulations.

In a study of reader-writer locks, Wilson Hsieh used PROTEUS to compare seven different

algorithms on a variety of machine sizes [HW91, HW92]. He also varied the relative percent-

ages of read and write operations. In this three-dimensional space there are six hundred points.

Thus, he ran six hundred simulations, not counting the simulations that he had to rerun during

development. Obviously, such large collections are feasible only with a high-performance sim-

ulator. A typical graph from his work is shown in Figure 2-1. Each point on this graph is the

result of one simulation: the thirty points reflect the results of thirty simulations. Other graphs

tracked different operation mixes and each required a separate set of thirty simulations.1

Adrian Colbrook used the simulator to study the effects of several parameters on two search-

tree algorithms. Although he only simulated two algorithms, he studied several variations of one

of them. and compared them across several parameters and operation mixes. His simulations

'After PROTEUS was established. Anthony Joseph ran a series of over two thousand simulations involving
ten-thousand-line fault-tolerance applications. The entire set took only a few days. The existence of PROTEUS
changed his methodology: he designed his experiments around the high-performance simulator.
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Figure 2-1: A typical graph from Wilson Hsieh's wor. In this graph, each of six synchronization
algorithms is simulated on 8, 27. 64, 125, and 216 )rocessors. with 99% read operations and
1% write operations.

took less than ten miites each, so it was never - problem to simulate a new variation or

study a new parameter.- he estirtates that he ran between five hundred and one thousand

simulations.
3

A rollecti-.. ,i simulations can also increase the accuracy of the data. Most parallel programs

show so, .; of r , determinism; execution time, for example, is rarely repeatable (on a real

mu.tiprocesý r). Slight changes in scheduling or message arrival times can affect greatly the

overall performance of the application. In such cases, a single simulation is of little value. More

effec; -is a set of simulations for each data point that generate a mean and standard deviation

for the point.4

2 A typical simulation of 50.000 insertion operations takes 2 minutes and 47 seconds.

'The conclusions from these simulations appear in "An Algorithm for Concurrent Search Trees" in the 1991
International Conference on Parallel Processing [CBDW91].

4 Although PROTEUS is a sequential program, events that have the same timestamp can be ordered randomly.
which produces nondeterministic behavior very similar to that of real machines. The ordering is determined by
a random number seed and is thus deterministic for a given seed; this allows simulations to be repeated exactly
for debugging purposes.



26 CHAPTER 2. THE GOALS OF AUGMENTATION

Finally, an unexpected advantage of a high-performance simulator is a substantial reduction

in development time. Because small simulations take only seconds to execute. application code

can be developed incrementally. The fast compile-and-execute cycle greatly reduces the time

required to code an application. Many of Adrian Colbrook's five hundred to one thousand

simulations tested small parts of the code: such simulations generally take only a few seconds.

By the time he ran large simulations, his code was very reliable.

The intended uses of the simulator demand high performance. In particular, the need for

large simulations and collections of simulations requires a high-performance simulator. High

performance also reduces development time. The need for performance was a driving factor in

the decision to use code augmentation.

2.3 The Need for Accuracy

Accuracy of simulation was the second driving factor for using code augmentation. Unfortu-

nately, the goal of accuracy conflicts with the goal of high performance: one can usually speed

up a simulation by making it less accurate. The accuracy of multiprocessor simulators varies

widely. Hardware designers often simulate a multiprocessor at the level of the VLSI cell. Other

simulators interpret each instruction in detail, while still others simulate at a higher level of

abstraction. As shown in Table 2.1. each step up in the level of abstraction reduces the accuracy

and increases the performance.

Given the conflict between performance and accuracy, it is important to determine the

accuracy requirements of the intended uses of the simulator. The requirements differ widely

depending on the goals of the application and on its state of development. For example, some

applications require very detailed network simulation, while others can get by with a simpler

but much faster network module. Furthermore, applications require far less accuracy during

development than during data collection. The wide range of accuracy requirements and the

conflict between performance and accuracy lead to the following conclusion: it is important

to maximize performance by providing only the required accuracy for a particular simulation.

Providing more accuracy merely reduces its performance.

Since PROTEUS is intended as a tool for parallel-systems research, it is acceptable to forfeit

the ability to simulate machines at the level of the VLSI cell. The harder question is whether
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Simulation Level Cycles per Second
Alewife VLSI Level 2
ASIM Instruction Level with Exact Network 5,000
ASIM Instruction Level with Modeled Network 40,000
PROTEUS with Exact Network and Cache Simulation 120,000
PROTEUS with Exact Network and No Cache 400.000
PROTEUS with Modeled Network and Cach' 500,000
PROTEUS with Modeled Network and No Cache 1,000,000

Table 2.1: The conflict between accuracy and performance. This table presents the speed of
several simulators on similar hardware. These numbers are only a rough guide; they vary quite
a bit depending on the application. Simulations are for machines with 64 processors arranged
in an 8x8 bidirectional mesh; machine cycles per second is one sixty-fourth of the "Cycles per
Second" number. The exact versions of the network simulate the path of every packet, while the
modeled versions calculate arrival time at the target using a model. Only the exact versions
reproduce network hot spots. The VLSI number is an estimate by John Kubiatowicz, who
designed some of the Alewife hardware. ASIM numbers are from private correspondence with
its author, Dan Nussbaum. PROTEUS numbers are for the eight-queens problem.

we must interpret every instruction. In other words, can we forfeit cycle-by-cycle instruction

interpretation (and its very high overhead) and still achieve acceptable accuracy for the intended

uses of PROTEUS?

One important use of PROTEUS is to test and tune algorithms. In particular, simulator

results are used to decide among several algorithms or several variations of an algorithm. Sim-

ulator data regarding the speed and scalability of various options must be accurate enough to

make the decision reliable. Thus, it is fine if algorithm times are slightly off as long as the

relative times are correct and the implications about scaling are correct. If the simulator says

one algorithm is twice as slow as another, then we expect the same relative relationship on a

real machine. In other words, the graphs generated by PROTEUS should have about the same

shape as the graphs from a real machine, although the exact data values can vary somewhat.

The validation that PROTEUS meets this goal is discussed in Section 5.3 and is covered in detail

in Chris Dellarocas' thesis [Del9l].

Unfortunately, many subtle aspects of multiprocessing affect the shape of these graphs.

Examples include network congestion, poor shared-memory cache hit rates, and synchronization

bottlenecks. The simulator must be able to simulate all of these effects. In particular, PROTEUS
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must simulate all accesses to shared memory, must record the size and entry time of every

network packet, and must simulate all synchronization primitives.

In general, all non-local interactions must be simulated, where non-local essentially means

anything that can affect another processor. Examples of local interactions include referencing

private local memory and executing local instructions such as register-to-register arithmetic.

Note that there is no fundamental reason to simulate local instructions exactly. The simulator

must reproduce two aspects of local interactions: first, it must reproduce the effect.s of the

interactions, and second, it must measure how many cycles these interactions take. In other

words, given a block of local instructions between two non-local interactions, the simulator

must reproduce both the effects of the block and the time required to execute the block. If

these two requirements are met, other processors cannot tell if PROTEUS interpreted each local

instruction in exact detail or if it simply accounted for the time and effects.

Thus, only non-local interactions must be simulated in detail. As discussed in the next chap-

ter, augmentation exploits this property by directly executing local instructions and counting

cycles as they execute. Direct execution fulfills the effects requirement, while counting cycles

fulfills the timing requirement. The key point is that by providing exactly the accuracy de-

manded by the intended uses of PROTEUS, we can maximize performance. More accuracy would

have little effect on our decisions, but would slow down the simulator significantly.

2.4 Conclusion

The intended uses of the simulator demand high performance, as well as accuracy of all non-local

interactions. As discussed in the next chapter, augmentation provides very high performance

with sufficient accuracy and allows exact measurement and control of specific costs.



Chapter 3

Overview of Augmentation

The key conclusion from examining the intended uses of the simulator is that although non-local

interactions generally require detailed simulation, purely local actions, such as local instructions.

can be simulated with less accuracy. The decision to use code augmentation as a fundamental

part of the simulator follows from this conclusion. The key idea is to execute local instructions

directly and augment the code with cycle-counting instructions to time the code. This chapter

presents an overview of augmentation and discusses the flexibility it provides and the assump-

tions it requires. Finally, it compares direct execution based on augmentation to alternative

simulation strategies.

3.1 What is Augmentation?

Augmentation is the process of integrating new code into a code file in order to monitor or add

functionality to the code. Augmentation was first described by P. J. Weinberger in 1984 [WeiS47.

He used augmentation to add code that counted how many times each source line was executed:

Figure 3-1 presents an example. This technique provides very accurate profiling information.

Note that augmentation is completely dynamic: although compile-time techniques can often

tell very little about dynamic instruction counts, the augmentation counts are determined aw

the instructions execute and are thus very accurate. Other uses of augmentation are discussed

in Section 6.7.

A fundamental concept in the implementation of augmentation is the basic block. A basic

29
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Source Code Counts Source Code Counts
#define N 100000 1 max(v, n) 1
int x(n]; 1 int v0; 1

1 { int i, j; 1
main() 1 j O; 1
{ int i; 1 for(i=1; i<N; i++) { 1

srand(getpido); 1 if (v[i) < v[j)) 99,999
for (iO; i<N; i++) 1 j a i; 10

x[i] * rando; 100,000 1 99,999
max(x, N); I return(j); 1

I 11 0

Figure 3-1: An example profiling output paraphrased from Weinberger's 1984 paper "Cheap
Dynamic Instruction Counting" [Wei84]. The code that determines when to exit the loop in
max occurs not in the for line, but at its closing brace. Hence, the closing brace is "executed"
99,999 times.

iw $4, 32 ($sp) sw $4. 32($sp) sy $4, 32($sp)
l $14, length Iv $14, length 1W *14, length
la $3, string beq $14, 0, exit label: la $3, string
add $3, $2, 20 la $3, string add $3, $2, 20

add *3, $2, 20

(a) (b) (c)

Figure 3-2: Clarifying basic blocks: only the code fragment in (a) qualifies as a single basic
block. In (b) the branch instruction (beq) implies that the first three instructions could be
executed without executing the last two instructions; hence, there are two basic blocks. In (c)
the label divides the fragment into two basic blocks, the first ending just above the label.

block is a group of instructions that must be executed as an atomic unit. In this context.

atomic simply means that the block is indivisible: it is not possible to execute only a proper

subset of the instructions in the block. From this definition it is clear that if the first instruction

of a basic block is executed then the rest must immediately follow. Figure 3-2 presents code

fragments that clarify the definition of a basic block.

Augmentation exploits the atomicity property of basic blocks for higher performance. For

example, Weinberger's augmented code counts the number of times each basic block executes

instead of the number of times each instruction executes. Because of atomicity, the count for a

particular instruction is the same as the count for its basic block. The advantage of counting
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basic blocks is that the counting code executes once per block instead of once per instruction.

In our simulator, basic blocks usually consist of five to ten instructions, so basic-block counting

reduces the augmentation overhead by a factor of five to ten.

3.2 Augmentation in PROTEUS

In PROTEUS, augmentation is used to implement several features. The primary use is counting

the cycles required by local instructions. In addition, augmentation is used to improve the

safety and accuracy of the simulator and to implement procedure-level profiling. This section

provides a high-level overview of each of these uses; a detailed description is presented in the

next chapter.

Cycle counting is handled very much like Weinberger's basic-block counting. Instead of

counting the executions of the block, the cycle-counting code adds the number of cycles required

to execute the block to a global cycle counter that represents the current time. Implicit in the

use of cycle counting is the assumption that the instruction set of the simulated processor is

similar to the instruction set of the workstation executing the simulation. Section 3.5 discusses

this assumption in detail.

By design, augmentation does not always add cycle-counting code; the ability to turn off

cycle counting is an important asset of PROTEUS. In particular, users generate nonintrusive

monitoring or debugging code by temporarily turning off cycle counting. Since the code is not

cycle counted, it does not affect the timing of nonlocal interactions. Without this ability, the

debugging code could change the timing. which in turn could cause the relevant symptoms to

disappear. Section 4.8 discusses this ability in more detail.

An important safety contribution of augmentation is the addition of code that checks for

stack overflow. For single-threaded programs, which include almost all sequential programs.

there is only one stack. In a multi-threaded application, however, there may be thousands

of stacks. The sheer number of stacks reduces the memory allocated to each stack: although

a sequential stack may be several megabytes in size, individual stacks in a multi-threaded

program are generally quite small, usually only a few kilobytes. Small stacks greatly increase

the chance of stack overflow, which is a very difficult problem to detect and resolve. A stack

overflow may overwrite the data of a seemingly unrelated thread. causing errors that are nearly
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impossible to resolve because there is no obvious connection between the two threads. The

thread that overflowed its stack may not be affected by the error and often appears perfectly

normal. Because of the increased likelihood of overflow and the severe problems it can cause.

augmentation is used to insert an overflow check into the entry point of every procedure.

Although the simulator merely halts when it detects an overflow, it pinpoints the offending

procedure and thread. Since the user can adjust the stack size on a per-thread basis, it is

usually simple to eliminate the problem.

Augmentation also prevents processors from becoming too far apart in simulated time.

Because local instructions are executed directly, a set of local instructions that forms a long or

infinite loop causes the simulator to enter the same loop. If a simulated processor loops for a

long time it will be far ahead of the rest of the processors in terms of simulated time. This is a

problem because an interaction from another processor, such as a message send, may arrive well

in the "past" according to the time of the processor in the loop. This implies that the processor

has to "undo" all of its work since that time. The infinite loop case is particularly bad, since the

simulator enters an infinite loop. To avoid these problems, the simulator limits the maximum

time difference between any pair of processors. This is accomplished by establishing a maximum

number of cycles, called the quantum, that any thread may execute without returning control

to the simulator. The quantum does not eliminate an infinite loop, but instead breaks it up into

quantum-size chunks. Because the simulator regains control after each chunk, other threads

can get useful work done. This is critical because the actions of one of those threads may

terminate the "infinite" loop. For example, a thread spinning on a lock will spin until another

thread releases the lock; without the quantum, it would spin forever. Because the quantum

allows other threads to run, the lock will be released eventually and the spinning thread can

obtain the lock.1 In the case of a truly infinite loop. the quantum allows the user to enter

debugging mode by keeping the simulator engine in control. Once in debugging mode. it is easy

to determine the existence of an infinite loop.

Finally, PROTEUS uses augmentation to add profiling code to each procedure. Conceptually,

this code counts the number of times the procedure executes and tracks the amount of simulated

'Actually, spinning is so common that to improve performance the simulator does not really spin. Instead.
that processor is marked "spinning" until the desired lock is released.
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time spent in the body of the procedure. This procedure-level profiling is based on prof

[DECd. GKM82]. a Unix tool that tracks the amount of time spent in each procedure by

periodically sampling the program counter. Unlike prof, the augmentation approach is exact.

Furthermore, the profiling code tracks simulated time instead of real time, so that code that is

not cycle counted is not counted towards the time spent in the procedure.

In summary, augmentation generates code to accomplish four goals. First, it produces cycle-

counting code for timing local instruction sequences. The augmentation process also adds code

to detect stack overflow, and generates code to ensure that threads execute for at most one

quantum before returning control to the simulator. Finally, augmentation produces code for

procedure-level profiling. The next section discusses the integration of augmentation with the

normal sequence of compiling and linking.

3.3 Producing Augmented Code

In PROTEUS, user code written in a superset of C is compiled, augmented, and then assembled

into machine code. The process is depicted in Figure 3-3. The augment program. which

performs the augmentation, converts normal assembly language generated by the C compiler

into augmented assembly language that is then assembled into machine language.

The first step converts the superset of C into standard C. The primary difference between

the superset and standard C is the ability to declare variables as "shared". This status implies

that the declared variable is to reside in globally shared memory. The simulator must know

this in order to simulate the cache and network correctly during a shared-variable access. A

variable that is not shared resides in private local memory: it can be accessed only by the local

processor. Stacks and code generally reside in local memory. The preprocessor that converts

the superset into standard C is called catoc and is discussed in more detail in Chris Dellarocas'

thesis [Del9l].

In the second step, the standard C compiler generates assembly language for the source

program. This forms the input for augmentation. 2

Next, augment reads the assembly language. divides it into basic blocks. and generates the

2 \We are using the MIPS C compiler.
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Figure 3-3: Constructing a simulator executable. Cycle-counted user code written in a superset
of C is transformed first into normal C and then into assembly language. The code is then
augmented and assembled to produce a cycle-counted object module. Non-cycle-counted code
is compiled directly into non-cycle-counted modules. The makesim program combines user
modules. configuration information, the simulator engine, and libraries to produce the proteus
executable.
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augmented assembly language. The next chapter discusses the internal steps of augment in

detail.

Finally, the augmented assembly language is assembled into an object file and linked with

the rest of the PROTEUS engine to form the simulator executable, normally called proteus.

An important point about this process is the large amount of work that the simulator passes

off to existing tools. The C compiler, the assembler, and the linker are just the normal Unix

utilities. Only the preprocessor and augment required any development time.

3.4 The Flexibility of Augmentation

Although performance and accuracy were the most important factors in the decision to use

augmentation, the flexibility provided by augmentation is an important asset. The flexibility

derives from the ability to measure and alter specific costs.

Because both local code and non-local interactions are timed in cycles, it is very easy to

measure the time taken between two points: users simply record the cycle time at each point

and compute the diffe- _,- . Many simulation strategies, including instruction interpretation.

have this property t- . many others do not. For example, systems that use fixed costs for

procedures caninot resolve times at a finer granularity than procedures. Similarly. systems that

use an external timer to measure time are limited by the coarseness of the timer and by the

interference of the code added to record the time. Section 3.6 presents an overview of these

alternative strategies, and Chapter 6 discusses their use in other simulators.

Profiling is an example of the usefulness of such measurements. A profiling tool such as

prof [DECd] can resolve performance problems to specific procedures. As discussed in Section

4.6. nonintrusive profiling code can be added during code augmentation.

While profiling provides performance information at the procedure level, it is often useful to

measure costs within a procedure. For example, such measurements can reveal synchronization

bottlenecks by simply measuring the time across a synchronization primitive. In fact, users of

PROTEUS find that the ability to measure point-to-point times reduces the need for procedure-

level profiling.

More useful than the ability to measure costs is the ability to alter them. Unlike simulators

that interpret instructions, the notion of time is tied to instructions only indirectly. While
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most instruction-interpreting simulators fix the cost of an instruction, the use of augmentation

separates the functionality of a block of code from the time it takes to execute. Normallv.

the cost of the block is set to the cost in cycles of the instructions it contains. However.

this assignment is easily adjusted. For example, the cost of debugging code, such as a print

statement, can be measured and subtracted out. This results in a block that executes the

debugging code "for free": the extra code has absolutely no effect on the rest of the simulation.

The value of this ability is sometimes priceless: usually the addition of debugging code slightly

changes the timing, which may cause the bug to disappear. This problem, called the probe effect

[Gai86], is fundamental to multiprocessors, but can be eliminated in PROTEUS by ignoring the

execution time of the debugging code.

As a second example, consider the code for the operating system our research group is

developing. Once it is stabilized there is no need to count its costs every time, since they will

not change. Instead, we can measure the costs once and set them directly thereafter. The

advantage of this approach is that we can throw out the cycle-counting code; this improves the

performance of the simulator without affecting its accuracy.

The ability to alter times simplifies simulating new machines. For example, message-sending

overhead on the N-Cube [FJL+88I is much higher than on the J-Machine 3 [D+89], even though

both are distributed-memory multiprocessors. Instead of writing message-passing code for each

machine, we can just set the costs to match those of the desired machine. Thus with one set of

message-passing routines, we can simulate the overhead of many machines.

Finally, altering costs allows us to extend the power of the simulator. An example of this

phenomenon is the simulation of moving a stack on a distributed-memory machine with per-

word hardware tags. (Such a move is required to migrate an object to another processor.)

The algorithm for this is quite simple: traverse the stack and translate all pointers to the

corresponding locations in the new address space and simply copy all non-pointers. Our current

implementation cannot easily simulate this algorithm because the workstations we use do not

have hardware tags.4 Because the simulator actually has a single address space, we do not

3The .- Machine is a research machine being developed at MIT by the Concurrent VLSI Architecture group

headed by William Daily.
4There are a variety of difficult ways to simulate hardware tags using software tags, but all of them are quite

slow.
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really have to move the stack: it is sufficient to account for the time it would take to move the

stack on a machine with hardware tags. The time required is essentially an affine function of

the length of the stack. Thus, instead of actually moving the stack, the code simply pretends to

be busy for the right amount of time. The ability to aiter costs allows the simulator to simulate

stack moving correctly even though the underlying hardware cannot move the stack.

3.5 Fundamental Assumptions

The use of augmentation to simulate local instructions requires some fundamental assumptions

that merit further discussion. This section investigates three assumptions, discussing both the

problems they resolve and the problems they create. Despite being logically invalid, these

assumptions are reasonable in the sense that they do not affect the results of simulations

significantly. The proof that they are reasonable lies in the ability of PROTEUS to reproduce

data generated by real multiprocessors, which is discussed in Section 5.3 and covered in detail

in Chris Dellarocas' thesis [Del91].

The first assumption is that every instruction executes in a statically known fixed number of

cycles. Because basic blocks are assigned a fixed number of cycles per execution, augmentation

must assume that the block requires a fixed number of cycles. The existence of caches makes

this assumption false: an instruction requires more cycles if it is not in the cache. Furthermore.

if the instruction accesses local memory, the access time depends on the cache. It is essentially

impossible to determine statically the number of cycles required by an instruction.

Consequently. PROTEUS assumes that the cache hit rate for code and local data is 1007.

Fortunately, the hit rate of uniprocessor caches is very high, generally over 95%, so this as-

sumption is probably reasonable. Since this assumption affects only local instructions, it is the

hit rate of uniprocessor caches that is relevant, not the hit rate of multiprocessor caches, which

is much lower. Finally, the error in the cycle count due to cache misses is minor compared to

the effects of the compiler. Changing compilers or even just changing some of the compiler's

parameters can affect the number of instructions in a block by more than ten percent. The

large effect of the compiler is demonstrated in Section 5.2. The key point is that small errors

in the costs of local instructions do not affect the conclusions drawn from simulation results.

The second fundamental assumption is that the local instruction set of the simulated proce.-



38 CHAPTER 3. OVERVIEW OF AUGMENTATION

sor is the same as the local instruction set of the workstation executing the simulation. Because

local instructions are executed directly instead of being interpreted, PROTEUS must assume that

the local instructions of the workstation correspond to those of the simulated processor. The

proliferation of RISC architectures mitigates the effects of this assumption: the costs of most

instructions are quite uniform across the range of RISC instruction sets, which includes both

our workstations and the multiprocessors that we have investigated. Although most instruction

sets for multiprocessors have some instructions that are not present in uniprocessor architec-

tures, the local instructions match quite well. Finally, the exact costs of local instructions are

relatively unimportant: we are interested in parallel systems behavior, so small differences in

local instruction times are second-order effects at best. We expect the workstation instruction

set to represent the local instructions rather than match them exactly; slight differences in

local instruction costs should not affect the conclusions drawn from simulations. Section 4.3

discusses the cost of individual instructions and the overall cost of a block.

The third assumption is that interrupts that arrive in the middle of a block of local instruc-

tions do not affect the functionality of the block. Since PROTEUS executes the block directly,

it does not reproduce the effects of an interrupt that arrives (in simulated time) during the

block. Instead, the interrupt executes after the block has returned control to the simulator.

The functionality of the block should not change if the interrupt actually arrived in the middle,

since interrupt handlers do not affect the code interrupted other than the delay in execution.

Non-local instructions do not place this constraint on interrupts, since they are interpreted.

Code that is supposed to be affected by interrupts contains non-local instructions by definition.

Although this section argues that the assumptions required by augmentation are reasonable.

it is not clear that simulation data actually match reality given these assumptions. Fortunateiy.

there is direct evidence that these assumptions are reasonable. For example, our simulation

of David Chaiken's coherent-cache protocol [Cha90 reproduces all of the problems discussed

in his thesis; furthermore, applying the solutions he suggests leads to the same performance

problems and benefits that he encountered. Section 5.3 presents a more detailed example,

comparing simulation results with published results from a real multiprocessor. The nearly

identical behavior is strong evidence that these assumptions are reasonable. In general, any

effect that we have expected to see actually has appeared.
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More importantly, all unexpected effects have so far proven to be fundamental behavior

rather than idiosyncrasies of the simulator. For example. Wilson Hsieh found several fulL-

damental spinlock effects that do not appear in the literature, but are easily supported by

analysis. These effects are (probably) not in the literature because they are very subtle oil

the shared-memory multiprocessors currently in use, which generally have less than sixty-four

nodes.

3.6 Alternatives to Augmentation

The simulation of local instructions can be handled in a variety of ways in addition to augmen-

tation. Although some of these have been touched on before. and all are revisited in Chapter 6.

it is useful to summarize and contrast these other approaches. There are four approaches be-

sides augmentation for simulating local instructions: (1) interpreting instructions. (2) assigning

costs to local code, (3) timing local code using a hardware timer, and (4) counting cycles using

a hardware cycle counter.

The most common and most accurate approach is to interpret each instruction. This is

extremely accurate since it simulates every memory reference. every register. and all of the con-

dition flags. Unfortunately. it is also very slow. It generally takes hundreds of instructions to

interpret a single simulated instruction. According to the author of ASIM, the instruction-level

simulator for the Alewife multiprocessor being developed at MIT [CLN90]. ASIM executes about

two hundred instructions to simulate one instruction. In contrast. the overhead from augmen-

tation in PROTEUS is about a factor of two.' The high overhead of instruction interpretation

makes it an unacceptable approach given the intended uses of simulator.

At the other extreme of the accuracy versus performance spectrum is simply assigning cost

to local code [Riz89]. This approach should be faster than augmentation, since one updat,•

to the current time is made for the entire piece of code. instead of one update per executed

basic block. Unfortunately this approach can be wildly inaccurate. There may not even be

a single cost for a piece of code: it may take ten cycles for one execution and ten thousand

'The overhead from augmentation is so small that it is dwarfed by the overhead for simulating the cache-
and the network, and even by the overhead for context switching. Thus. the speed increase of PROTEUS over
ASIM i- only a factor of fifteen instead of the implied facto of one hundred. Section 4.10 discusses the relati%,

overhead costs more completely.
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for another. This problem can be mitigated somewhat by making the cost dependent on some

run-time parameters, but then this approach starts to look like augmentation. Even if there is

"a single cost, it may not be intuitive. Some apparently simple operations, such as computing

"a square root, can take thousands of cycles. Finally, it is relatively easy for the assigned costs

to become incorrect when the code they represent is changed. This is not a problem in the

other approaches, where the cost is recalculated automatically whenever the code changes. All

of these problems make the computed times inaccurate, probably inaccurate enough to make

the simulation results unreliable.

Closer to augmentation is the use of a hardware timer [Els9l, DSNB87]. The ,ise of a timer

results in less overhead than augmentation, but is less accurate. This technique depends on a

fine-resolution hardware timer. The standard timer for Unix has millisecond resolution, which

is far from sufficient on modern workstations. The workstations we use6 run at more than

twenty million instructions per second, or about twenty thousand instructions per millisecond.

Thus the Unix timer is accurate to within about ten thousand instructions. This is far too

coarse for accurate simulations. A microsecond timer, absent from most machines, would be

accurate to within ten instructions. Typical blocks of local code are ten to forty instructions.

so ten instructions is significant. The accuracy is decreased further by ti~e probe effect: the

measured time includes the execution time of the recording code.

A hardware cycle counter would be faster and just as accurate as augmentation. Unfortu-

nately, such counters are not available yet. Note that there is little difference between a cycle

counter and a hardware timer with single-cycle resolution. Given the above options, even if we

assume a microsecond timer, augmentation is the logical approach for simulating local code.

3.7 Conclusion

This chapter presented an overview of the functionality provided by augmentation. discussed the

flexibility and assumptions of augmentation, and discussed alternative approaches for simulating

local code. Augmentation generates code to count cycles, detect stack overflow, limit threads to

a quantum of execution time, and record profiling information: the next chapter describes these

6We are currently using DECstation 5000s.
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tasks in detail. Augmentation also promotes precise control and measurement of costs. which

allows nonintrusive debugging and monitoring and separates the cost of an operation from its

functionality. Finally. although augmentation requires several fundamental assumptions. these

assumptions have little impact on the validity of conclusions drawn from simulations.
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Chapter 4

Detailed Design

While previous chapters discuss augmentation at a high level, this chapter presents the detailed

design of the augmentation process. The implementations of cycle counting, the quantum.

stack overflow detection, and profiling are presented in detail. Additional functions of augment

are also discussed, including generating code for accessing the current time and automatically

linking in cycle-counting libraries. Finally, this chapter looks at some possible optimizations

for augmentation.

4.1 The augment Program

The augment program is oriented around procedures. Although an input assembly language file

may contain many procedures, augment treats the file as a collection of independent procedures.

The independence simply means that the augmentation of a particular procedure is not affected

by the rest of the procedures. A second general rule is that augment only adds lines, it doe,

not modify or delete them. This rule is expedient for two reasons. First, it is much easier to

ensure that augmentation does not affect the functionality of the application if the source lines

pass through untouched. Second, any comments in the source file are propagated through to

the output, which makes the augmented code easier to undarstand.

At the topmost level, augment scans for procedures and analyzes each one, building a list of

required changes for each procedure. A second pass is then made through the input file. In this

pass. lines are copied to the output file until augment reaches a point of augmentation, which is

43
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a point where code must be added. After the extra code is output, augment continues copying

the input until the next point of augmentation.

The first step in augment is to parse the input file into labels, instructions. registers. and

the other elements of the assembly language. This is done using a lexical analyzer generated

by lox [DECb], and a simple top-down parser. The parser has three modes: data, text, and

subroutine. Data mode occurs when the source file contains statements for the data area of

the executable. Text mode handles definitions that are outside of procedures, and subroutine

mode handles source lines that are part of a procedure. Only subroutine mode leads to any

augmentation.

After augment locates a procedure, the real work of augmentation begins. The procedure

is broken into basic blocks and the basic-block graph is generated. Each node in a basic-block

graph corresponds to one basic block, and contains information such as the starting and ending

line numbers and the number of cycles required to execute the block. The edges of the graph

define the possible next blocks to execute. The only case in which a block does not have exactly

one next block occurs when a block ends with a conditional branch, in which case there are two

outgoing edges. Figure 4-1 shows a procedure and its basic-block graph.

Once the basic-block graph is complete, it is compacted. The goal of compaction is to

increase the average basic-block size and thus reduce the overhead of augmentation. Compacting

the graph eliminates zero-instruction blocks and concatenates adjacent blocks if the second

block begins with an unreferenced label. The latter optimization occurs more than one might

expect because the compiler generates all of the labels it might reference. For example, return

statements generally produce code that branches to the epilogue; the compiler generates the

epilogue label regardless of whether or not the procedure contains any return statements.

After all of the basic-block graphs are complete, one for each procedure, the output phase

begins. The line-number fields of the basic-block nodes are used to locate each block in the

source file. The nodes are stored in order by line number, so it is always clear which block

will occur next in the source file. As described above, the output routines alternate between

copying the source file and generating the per-node additional code. When augment reaches

the end of the source file, the process is complete.



int fact(x)
int x;
{

if (x < 2)
return 1;

else {
return x*fact(x-1);

I

(a) Procedure fact

Prologue s3ubu $3p, 32
SW $31, 20($3p)
Sw $4, 32($3p)
sw $16, 16($sp)
1w $14,320$9p)

2 ?oge $14,2,$32

Fu $2, $15, $16

exit 1

1w W $4,32(Ssp)

| addu $sp, 32 -

Eov $31

(b) (c)

Figure 4-1: A procedure and its basic-block graph. The procedure fact, listed in (a). has the
basic-block graph shown in (b). The final basic blocks and their graph are shown in (c). Note
that the procedure call to fact splits one of the nodes in (b) into two nodes in (c). and that
the prologue and the first block in (b) have been merged in (c).
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4.2 Basic-Block Boundaries

Basic blocks )- -in and end at four types of statements. When a statement ends one block.

the next line implicitly begins the next block. The first of these statements is the branch

instruction, which must end a block because the following instruction is not executed if the

branch is taken. Thus atomicity requires that the two instructions reside in different blocks.

Likewise, a label starts a new block because statements on opposite sides of the label need

not be executed together. If the label is unreferenced, then the two sides form one basic block,

since it is impossible to jump into the middle of the block. The compaction phase identifies

unreferenced labels and merges the corresponding blocks. 1

The third statement that delimits basic blocks is the procedure call. Since a procedure call

might not return, it can be viewed as a conditional branch; like a branch statement, the call

instruction ends a block. Although procedures almost always return, there is a more important

reason to end the block: the called procedure may reference the current time, so the time must

be correct at the point of the call.

Consider the effects of not ending a block at a procedure call. The code to add the cycles

for the block occurs either before or after the call. If it occurs before, then the time required to

execute the instructions after the call, but in this block, is counted by the time the call executes.

Thus the current time is off by the number of cycles required to execute the part of the block

following the call. Likewise, if the cycles are added after the call, then the instructions that

reside in this block before the call axe not counted by the time the call executes. Again the time

is off. The correct solution is to count the instructions up to and including the call instruction

before the call executes, and count the instructions after the call after the procedure returns.

The easiest way to do this is to begin a new block after a call instruction and ensure that the

code for counting cycles precedes the call instruction.

The fourth delimiter follows similar reasoning. A new block begins after the user reads the

current time. If the access did not end a block then the time read would be off, just as in the

case above. To read the time, users read a dummy global variable, current.•time; augment

recognizes the access and translates it into code that computes the current time. This code is

'It is not possible to determine if a label is unreferenced during the first pass, since references may occur later
in the file. Compaction takes place after the graph is complete, so the status of each label is accurate.
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not cycle counted.

4.3 The Cost of a Block

The cost of a block is simply the sum of the costs of its instructions. The basic cost of each

instruction is stored in a table and can be adjusted to reflect the costs of the simulated processor.

Unfortunately, neither the exact costs of the instructions nor even the exact instructions in the

block can be determined from the assembly language.

As discussed in Section 3.5, the actual run-time costs of the instructions depend on the

cache; augment assumes that the hit rate is constant and uniform. Thus, the extra cost due to

cache misses is reduced to a single factor that is slightly greater than one. The cost of a block

is the basic cost of its instructions, assuming no cache misses, times the cache-miss overhead

factor.

Tile exact instructions in the block depend on the macro expansions performed by the

assembler and the number of pipeline delays that it inserts. Unfortunately, the MIPS assembler

is smart enough to use context-specific expansions. For example, multiplication by a constant

sometimes expands into shifts and adds and other times expands into a multiply instruction. In

the case of several expansions with differing costs, augment uses the average cost of the macro.2

4.4 Counting Cycles and the Quantum Check

At the beginning of every basic block, code is added to track the cycles required to execute the

block. To implement the quantum, the resulting time is checked against the expiration time

for this quantum. For better performance, the counter for the current quantum actually counts

down to zero instead of up to a maximum. This is faster because a comparison against zero is

faster than a comparison against a location in memory.

The simulator engine maintains two global variables that represent the current time. The

global variable cycles- is set to the quantum value just before the user thread executes. A

second global variable, bame.o-.ti , which is also set by the simulator engine, is used to compute

21t uses the expected value, weighing the cost of each expansion by the probability of that expansion. The

probabilities were determined by examining a random sample of the macro in question.



48 CHAPTER 4. DETAILED DESIGN

lW $8, cycles. .noat 1W $1, cycles-
sub $8, $8, x 1w $1, cycles- sub $1, $1, x
Vl $8, cycles, sub $1, $1, x as $1, cycles-

bgtz $8, Li sw $i, cycles- bgtz $i, Li

jal SinQuantun bgtz $1, Li sy $31, - 4 ($sp)
LI: ... jal SimQuantuam jal SinQuantum

.at 1w $31. -4($sp)

LI : ... Li:

(a) (b) (c)

Figure 4-2: Code generated for cycle counting. In (a) register $8 is available for updating
cycles. In (b) the .noat and .at directives warn the assembler that $1 is in use. In (c) the

return instruction pointer is saved on the stack across the call to SimQuantum.

Macro Expansion
bgt $11, $12, label sgt $1, $11, $12

bnz $I, label

Figure 4-3: Example of the assembler's use of register $1: the assembly macro bgt. The MIPS
R3000 processor does not have a "branch if greater than" instruction. Instead the bgt macro
implements it with two instructions: the first compares the registers, using register $1 to hold
the result temporarily, and the second performs a conditional branch based on the result.

the current time:

current time = base-time_ - cycles.

Only cycles, is modified by the augmented code; base_.time_ can be read but not written.

The thread executes until a call to the simulator engine is executed, such as an access to shared

memory, or until the value of cycles., which decreases as the thread executes, becomes less

than or equal to zero. Figure 4-2a shows the code added for cycle counting and the quantum

check.

A key problem in updating cycles, is finding an available register. To do this, augment

tracks which registers are used by the procedure. If one of the registers is not used, then this

register is used to update cycles- If all of the registers are in use, then the code uses register

$1, which is normally reserved for the assembler. Assembly language macros use register $1

as a temporary register. as shown in Figure 4-3. The register can be used as long as such
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macros are avoided. The directives .noat and .at disable and enable the assembler's use of

the register.3 The assembler generates an error if it needs the register while it is disabled.

Figure 4-2b presents this version of the cycle-counting code.

Because not all processors provide a register for temporary storage, implementations on

other machines may require more sophisticated techniques to find a temporary register for the

cycle-counting code. One possibility is more exact tracking of register usage. The current

version simply detects if a register is used anywhere in the procedure. A better algorithm

would determine exactly which registers are live at the point of augmentation. Even with exact

knowledge of register usage, all of the registers may be in use. One general solution is to save

the contents of a register on the stack, thus creating a free register. This approach was avoided

on the MIPS because it requires two extra memory accesses compared to the use of register $1.

The quantum expiration creates a second problem. If the quantum has expired, the code

calls the procedure SimQuantum, which returns control to the simulator. The MIPS processors

use a "branch and link" instruction for procedure call: the return instruction pointer is saved

in register $31 and the processor branches to the procedure. The return instruction loads the

instruction pointer from register $31. The goal of "branch and link" is to avoid saving the

instruction pointer on the stack unless it is strictly necessary. For example, "leaf" procedures.

those that do not call other procedures, need not save the instruction pointer on the stack.

since they can simply leave the instruction pointer in register $31. Procedures that call other

procedures, however, must move the saved instruction pointer out of register $31 to prevent

subsequent calls from overwriting it. Such procedures usually save register $31 on the stack for

the duration of the procedure.

The problem is that the call to SimQuantum must avoid writing over the saved instruction

pointer. The simple solution is to save register $31 on the stack across the call. This is

unnecessary if the register has already been saved on the stack. As an optimization, augment

saves register $31 only if the procedure has not already saved it on the stack. To implement

this, each node in the basic-block graph has a flag indicating the need to save register $31.

Figure 4-2c includes the code to save register $31.

A critical property of the cycle-counting code, including the quantum check, is that it has

'The "at" in these directives stands for "assembler temporary".
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no effect on the functionality of user code. The register used by this code is not used by the

user code. Although the extra code affects the performance of the original code, it does not

interfere with the functionality.

4.5 The Stack Overflow Check

While the cycle-counting code affects every basic block, the code for detecting stack overflow is

generated only once per procedure. Most compilers allocate stack space during the procedure

prologue and release it in the epilogue. Thus finer granularity stack checking would reduce

performance without increasing safety. The code for overflow detection is inserted into the

prologue after the stack frame has been allocated. This ensures that this procedure, but not

necessarily its children, will complete without overflowing the stack. The procedure's children

must check their own stack usage.

On our workstations, the stack grows downward: the compiler allocates a frame by sub-

tracting the frame size from the stack pointer. A stack overflow is thus equivalent to the stack

pointer falling below some minimum address. The global variable stackmin stores this address

for the current stack; stackmin is set by the simulator just before resuming a thread. The

overflow detection code simply compares the stack pointer, which has been adjusted to include

the current frame, and stackmin. If an overflow has occurred, the code calls the procedure

StackOverflow, which identifies the thread and procedure and halts the simulator. Figure 4-4

presents the overflow detection code.

Procedures that are not augmented normally do not detect overflow. Since users can create

non-augmented procedures this is a serious loophole. Fortunately, several factors mitigate the

problem. First, procedures can detect stack overflow by calling the routine CheckStack, which

is similar to the code added by augment. Second, if the non-augmented procedure calls an

augmented procedure, the latter will catch a stack overflow. Third, non-augmented procedures

tend to be small in practice and thus less likely to overflow the stack.

Finally, the simulator has an adjustable threshold for stack overflow. For example, if the

threshold is 800 bytes, then stackmin is set to 800 bytes from the end of the stack. Thus a stack

overflow really means that the stack pointer entered the threshold area, and may or may not

have overflowed its allocated space. Although this wastes space. it increases safety by allowing



4.6. PROFILING 51

lw $25, stackmin
sub $25, $sp, $25
bgez $25, L103
jal StackOverflow

L103: ...

Figure 4-4: Code added to perform the stack overflow check. This code is inserted after the
prologue of every cycle-counted procedure. The simulator engine ensures that the global variable
stackmin always contains the overflow address for the current stack. Overflow occurs when the
stack pointer ($sp) falls below stackmin. Procedure calling conventions ensure that register
$25 is free at procedure entry, and augment guarantees that the new label, L103 in the above
code, is unique. Finally, note that the procedure StackOverf low never returns, since stack
overflow is a fatal error.

non-augmented procedures to use stack space up to the threshold value without overflowing the

stack. With the threshold at 800 bytes, for example, a non-augmented procedure is guaranteed

at least 800 bytes before overflowing the stack. In practice, the threshold is kept small most of

the time, usually a few hundred bytes.

Note that users can rule out errors due to undetected stack overflows by increasing the stack

size, which can be set from the conf ig program. If the errors disappear, then overflow was

probably the cause.

Although stack overflow has appeared only rarely, its quick detection has saved countless

hours of debugging. Overwrite bugs, such as stack overflow, are by far the hardest to track

down. Users can generally locate the area that is being overwritten, but it is very difficult to

track down the source lines that overwrite the area. Even if the user can narrow down the time

of the overwrite, any of the threads active during that time could be the culprit. The PROTEuS

user documentation [BD91] discusses support for resolving overwrite bugs. Although the over-

flow detection code merely halts the simulator, it greatly simplifies debugging by immediately

detecting and locating the problem.

4.6 Profiling

PROTEUS uses augmentation to add code that records profiling information as a procedure

executes. The profile reveals both the number of calls for each procedure and the amount of
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simulated time spent in the body of each procedure. This is the same information provided by

prof[(DECd], the Unix profiling tool. Unlike prof. which uses periodic sampling of the program

counter to estimate the amount of time spent in the body, PROTEUS' profiling information is

exact.

Both PROTEUS and prof measure the time spent in the body of each procedure, which

excludes the time spent inside called procedures. This metric is useful b":caase it reveals which

procedures are active the most; including the time of child procedures reveals which procedures

are on the stack the longest. The latter is less useful since it is difficult to tell if the bulk of the

time is spent in the body or in the called procedures. Furthermore, it is easy to measure the

elapsed time spent in a procedure directly: record the entry time and subtract it from the exit

time.

Using the profiling information, the stats program produces three graphs in table or bar-

graph format: the number of calls for each procedure, the total number of cycles spent in the

body of each procedure, and the average cycles per call for each procedure. To help reveal the

most time-consuming procedures, stats lists the procedures in descending order of total time.

Augmenting a procedure with profiling code requires four steps. First, augment must al-

locate storage for the number of calls and the total time. Second, augment must add code to

the prologue to increment the number of calls. Third, it must add code to each basic block to

update the total-time counter. Finally, augment must communicate the location of the profiling

information to the simulator engine.

To allocate storage, augment generates a data area consisting of two four-byte integers that

are initialized to zero. If the procedure being augmented is foo, then the label for the data

area is foo.P. 4 By convention, the first integer contains the total time and the second contains

the number of calls.

Incrementing the number of calls is straightforward. In the prologue, after the code that

checks for stack overflow, augment inserts instructions to load, increment, and store the number

of calls. which is the second integer located at address foo...

The extra code to update the total time is also simple. For each basic block, the total-time

41f foo.P is used elsewhere, this will result in an error at link time. The only solution is to rename either the
procedure or the other use of foo.P. Although this is ugly. it has never occurred in practice (to my knowledge).
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counter is incremented by the number of cycles required for the block. This code is identical

to the normal cycle-counting code except for the choice of counter. The cycle counter and

the total-time counter are always updated at the same time and by the same amount. which

ensures that the total-time counter correctly tracks the simulated time spent in the body of the

procedure.

Finally, augment generates code to communicate the address of the profiling information to

the simulator engine. In the code added to the prologue, the routine InitProf ile_ is called if

the number of calls is zero. Thus, the first time the procedure executes the address of fooP is

passed to InitProf ile_, which records the address for future use. At the end of the simulation.

PROTEUS uses the recorded addresses to save the profiling information to the event file. Note

that the initialization code runs at most once per procedure.

Unfortunately, the profiling code nearly doubles the overhead due to augmentation. How-

ever, as we shall see in Section 4.10, the overhead due to augmentation is not a significant factor

in simulator performance.

4.7 Cycle-Counting Libraries

To allow user code to exploit the rich collection of C library routines, the simulator must

provide cycle-counting versions of these routines. This requires both building the cycle-counting

libraries, and correctly linking them in with the user code.

The simulator includes cycle-counting versions of the standard C library., libc.a, and the

math library, libm. a. These were created by augmenting the source code for these libraries.

The new versions are libcyc. a and libcycm. a respectively.

Correctly linking in the cycle-counting versions is a more difficult problem, because the

simulator may need both the normal version and the cycle-counting version of the same routine.

For example, strlen, the library routine that computes the length of a string, may be called

both from the simulator engine and from an augmented user procedure. The engine requires

the normal version, while the user code requires the cycle-counting version.

To resolve this problem, the two versions have distinct names. Cycle-counting versions

are prefixed by the string "cyc_", while the normal versions have the normal Lame. The nor-

mal version of strien is simply called 'strlen". while the cycle-counting version is named
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"cyc.str1an". This naming convention allows PROTEUS to link in both versions of a library

routine.

Using separate names only partially solves the problem: users must remember to call the

correct version. This is painful, since it is easy to forget the "cyc_" prefix, resulting in code

that works correctly but ignores the time required by the library routine. Furthermore. not

all library routines have a cycle-counting version, in which case prepending "cyc_" leads to at,

identifier that the linker cannot resolve. In general, the cycle-counting versions exist only if their

costs are reasonable for a multiprocessor. For example, the file I/0 routines do not have cycle-

counting versions because it is unlikely that the costs for these routines on a multiprocessor are

the same as on a Unix workstation.

To avoid the problems of two distinct names, augment automatically prepends "cyc." to

any reference to a library routine that has a cycle-counting version. This hides the fact that

there are two names: references to library routines in cycle-counted code refer to the cycle-

counting versions (when they exist), while references in non-cycle-counted code refer to the

normal versions. The user need not worry about which version will be used, nor even know

that there are two versions.5 Finally, if the user references a library routine in augmented code

that does not have a cycle-counting version, augment displays a warning that it is referencing

the normal version,

4.8 Turning Counting On and Off

It is common in sequential programming to add debugging or monitoring code arbitrarily.

In concurrent systems, however, the addition of such code may cause the monitored effect

to disappear because of slight changes in timing, a problem called the probe effect [Gai86].

PROTEUS allows users to add debugging and monitoring code that is not cycle counted, and

thus does not change the behavi,-- of the system. (In rare cases, the additional code may affect

the timing of the system; this is discussed below.)

To allow zero-cost monitoring code, PROTEUS provides macros to turn off cycle counting

temporarily:

5The translation of library references is the only case where augment modifies the source code (as opposed to
merely adding lines).
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Macro Function

CYCLE-COUNTING_0rF Turn off cycle counting

CYCLE.COUNTING-ON Turn on cycle counting

These macros should always be used in pairs. The code between the macros is not cycle counted.

although direct changes to the cycle counter still occur. (Explicitly changing the cycle counter

is discussed in Section 4.9.)

This functionality is implemented via volatile global variables named cycles-on and cycles-off.

The macros expand into reads of the corresponding variables; because the variables are declared

"volatile", the C compiler is not allowed to throw away the reads, even though the returned val-

ues are never used. During augmentation, augment detects references to these variables. When

a reference to cycles-off is encountered, augment removes it and turns off cycle counting.

Likewise, augment deletes references to cycles-on and reinstates cycle counting.

Although the code between the macros is not cycle counted, it may still affect the cost of

the surrounding code indirectly, which could change the behavior of the system. For example.

if the additional code uses most of the registers, the surrounding code may have to do more

memory accesses than it did before. In this case, the "nonintrusive- code slightly increases the

cost of the surrounding code.

We have rarely observed this problem in practice; the addition of monitoring code to cycle-

counted code has not caused the effects being studied to disappear. Should it occur, however.

it is possible to adjust the cost of the monitored code so that it matches the cost it had prior

to the addition. PROTEUS provides primitives for increasing and decreasing the cycle counter

by a delta. so it is easy to subtract out the extra cycles due to the monitoring code. The next

section describes how to alter the cycle counter explicitly.

4.9 Explicit Control of The Cycle Counter

It is sometimes useful to alter the cycle counter directly. The main reason for altering the count

is to vary the costs of a particular operation without changing its functionality. For instance.

to simulate an architecture with a high cost for thread creation, one would simply alter the

cycle counter directly in the thread creation routine. This allows direct control of costs without
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affecting correctness or overall simulator performance.

Three macros are used to access the cycle counter; they are defined in user .h:

Macro Function

CURRTIME Evaluates to the current time

AddTims(t) Adds t cycles to the global time

SubtractTime(t) Subtracts t cycles from the current time

To read the current time, use the macro CURRTIME. It generates a special marker in the assembly

language that causes augment to replace the marker with the value of the cycle counter. 6 The

marker ends the current basic block so that the value read from the counter is exact. (If the

marker did not end the block, the counter would contain the time of the last instruction in the

block.)

The arguments to the AddTime and SubtractTime macros should be small integers. To add

a large amount of time to the cycle counter, repeatedly add a small number by placing the

AddTime(t) statement in a loop. Using this technique, the quantum check is performed each

time through the loop, which increases the accuracy of the simulation.

As described in the last section, there are cases where monitoring code in a non-cycle-

counted section of a cycle-counted file indirectly affects the cost of the surrounding code. In

such cases, the cycle counter should be altered directly to remove the indirect costs of the

monitoring code. The most successful way to remove these effects is to look at the assembly

language with and without the monitored code. The basic block structure will be the same

except for the additional code, thus one can measure the difference and subtract it out.7 A

simpler but less reliable method is to measure the time of the surrounding code with and

without the monitoring code, and then to subtract the difference. It is probably sufficient to

guess a small number of cycles, since the indirect effects tend to cause very minor increases in

the cost of the surrounding code.

To improve performance, the cycle counter actually counts down from the quantum to zero.

When the counter becomes negative, the quantum has expired. There are three global variables

"8This macro has two definitions: one for cycle-counted code and a second for non-cycle-counted code. The

one described here is for cycle-counted code: the other definition returns the value of the cycle counter directly.
and is discussed below.

7The SubtractTime macro must be placed inside the non-cycle-counted area; otherwise it will change the
timing.
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involved in cycle counting: cycles., quantum., and base.time_. 8 The cycles. variable counts

down from quantum., and the current time is computed by:

current-time - base.time. + quantum. - cycles.

(This is the definition of the CURRTIME macro when it is used in non-cycle-counted code.) Thus.

the AddTime(10) macro actually subtracts ten from cycles.. Users should use the macros

instead of altering cycles. directly, and should never alter the base.time_ and quantum.

variables.

4.10 Optimizations

There are quite a few optimizations that could be made to augment. Compacting the basic-

block graphs is one that is implemented, as is the use of register $1 when the general registers

are in use. Before looking at other optimizations, it is important to evaluate what effect they

may have.

Surprisingly, optimizations to augment have almost no effect on simulator performance.

This is because the amount of time spent in augmented code is a small fraction of the total

execution time. Figure 4-5 presents a procedure-level profile of the simulator, which reveals

that the eight-queens problem spends only 1.4 percent of its execution time in augmented code.

Since placing a queen is pretty simple, this number may be lower than for other applications:

however, the order of magnitude is representative. The key point is that the overhead from

simulating the network and the shared-memory system and the overhead from context switching

dominate the overhead from augmentation. Thus, an optimization that halves the overhead of

augmentation reduces simulator execution time by only a few tenths of one percent.

Because of the meager rewards, few optimizations to augment have been implemented. For

completeness, this section discusses two possible optimizations. The first optimization keeps

the value of cycles, in a register across basic blocks, instead of loading and storing the global

in every block. The value would be loaded only in the prologue and after procedure calls. and

stored only in the epilogue and before procedure calls. A register other than register $1 must

"These variables are declared as external unsigned long integers.
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Percent Time (seconds) Procedure (file)
13.3 10.2200 net-delay (net.c)
11.5 8.9000 ctxsV (ctxsw.s)
5.9 4.5500 memory..controllor (shmem.c)
5.9 4.5400 next-request (req.queue.c)
4.9 3.7800 Resumel1andler (resume.c)

4.7 3.6000 main (main.c)
4.1 3.1600 build.new-packet (net.c)
3.9 2.9700 send-protocol-message (shmem.c)
3.7 2.8900 Send.PacketRandler (net.c)
3.6 2.7800 ChockForInterrupts (ihandler.c)
3.3 2.5500 Route_.PacketHandlor (net.c)
2.7 2.1000 TrapToSimulator (resume.c)
2.4 1.8700 SimCall (simreq.c)
2.3 1.7900 Nocache..Pkt (shmem.c)
2.3 1.7500 net-hops (net.c)
2.2 1.6800 novwrequest (req.queue.c)
2.1 1.6500 enqueue.request (req.queue.c)
2.0 1.5700 dispat ch.to-controller (net.c)
1.7 1.3300 newpkt (net.c)
1.7 1.3300 shared-memory (shmem.c)
1.7 1.2800 Shared-Memory.Write (shmem.c)
1.3 1.0100 processor.request-.nocache (shmem.c)
1.3 1.0000 ReadTimer (timer.c)

1.2 0.9100 add-now (queens.ca)
1.2 0.9100 SharedM.emory_-Read (shmem.c)

0.2 0.1300 new.part ial-solut ions (queens.ca)
0.0 0.0300 stage (queens.ca)
0.0 0.0200 GETMEN (queens.ca)

Figure 4-5: Procedure-level profile of PROTEUS running eight-queens. Only the file "queens.ca",
highlighted in bold, is augmented. The augmented code accounts for only 1.4 percent of the
total execution time. In contrast, simulating the network (net-delay) and context switching
(ctxsw) account for nearly one-quarter of the execution time.



4.11. CONCLUSION 59

be available to hold the value, since the assembler will need register $1 for user code. The

interaction of cycles, with user access to the current time makes this tricky to implement.

although not impossible. This optimization also has the disadvantage of making it difficult

to compute the current time when debugging, since the value of the global may be stale.

These problems, combined with the optimization's minor effect o i itrformance, make this

optimization not worth implementing.

A second optimization would dedicate a register to hold the value of cycles. This would

eliminate all of the loads and stores to cycles, in the user code. Unfortunately, this is difficult

to implement without modifying the C compiler. 9 The compiler may use all of the available

registers, which would require augment to switch back to loading and storing the cycle count.

This complexity of this optimization and its small effect on overall performance make it not

worth implementing.

In general, optimizations have been implemented only when they are simple and clearly

safe. In practice, this leads to optimizations whose effects are clearly local to the point of

augmentation. For example, the use of register $1 for temporary storage, instead of spilling a

register to the stack, only affects the cycle-counting code of that particular block. The .noat

and .at directives guarantee that augment and the assembler do not interfere in their use of

the register. The simplicity and safety of this optimization made it worth implementing, even

though the resulting performance improvement is quite small.

4.11 Conclusion

This chapter discussed the design of augment in detail. It presented the code generated for

each transformation, and discussed the major problems that the design had to resolve. Given

the detailed design of the augmentation process, the next chapter looks at some experiments

to empirically evaluate the overhead and correctness of augment.

'Unlike the MIPS compiler, the Gnu compiler, gcc. allows users to mark particular registers "off limits- to
the compiler, which makes it easy to dedicate a register to tracking the current time.
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Chapter 5

Experiments

This chapter evaluates the overhead and correctness of augment by discussing the results of three

experiments. The first experiment investigates the overhead of augment, the second verifies the

accuracy of the cycle counts, and the third provides evidence to validate the simulator as a

whole.

These experiments use pixie [DECcl, a production-quality cycle-counting utility originally

developed by MIPS and included with versions of Unix for MIPS processors. The pixie utility

is very similar to augment, except that it is intended only for MIPS object code files. Instead

of augmenting assembly language files, pixie augments binary executables. Thus, it first

disassembles the machine code into assembly language. Once the input is in assembly language.

the utility locates basic blocks and augments each one. Like augment, pixie assumes that the

cache hit rate is 100% and that instructions take a fixed number of cycles. However, pixie

is more accurate than augment, since the MIPS assembler inserts pipeline delays and expands

macros before generating the machine code. Thus the code input to pixie matches the machine

code exactly, while the code input to augment is merely a close approximation. Since pixie has

been in use for several years. it is reasonable to assume that it generally produces the correct

cycle counts.
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Normal Augmented Overhead
Program Cycles (time) Cycles (time) Factor

Queue 65,876,631 (3.1) 144,581,647 (6.6) 2.2

Sieve 52,483,384 (2.1) 130,868,590 (5.2) 2.5

augment 11,670,316 (1.0) 24,578,648 (1.8) 2.1

Table 5.1: Measuring the overhead of augment. This table compares several programs with
and without augmentation. The cycles were determined by pixie, and the time in seconds by
the Unix time command. The overhead factor is the ratio of the pixie cycle count for the
augmented version over that of the normal version. The overhead is consistently a small factor.

5.1 Measuring the Overhead

This section measures the overhead of augmentation for three C programs. The execution times

for each program are measured with and without augmentation. The ratio of these times is the

overhead factor. The three programs are Queue, Sieve, and augment.

Queue performs 1.2 million operations on a priority queue. It is one of several priority queue

implementations that were considered for an important data structure in the simulator engine.

The selection of operations was generated by tracing the execution of the eight-queens program

on the simulator. (The algorithm is essentially a calendar queue [Bro88].)

Sieve computes the first 100 prime numbers, starting over for each prime. To determine

primality, Sieve divides the potential prime by every smaller prime until it either finds a factor

or exhausts the smaller primes.

The third program is augment itself, which executes some routines that are not cycle

counted. Since the overhead for non-cycle-counted procedures is zero, the overall overhead

factor should be slightly smaller than in the other programs.

Table 5.1 show the results of these measurements. Each run is timed in two ways: first,

using the Unix time command [DECal, and second, us. i pixie to count the total number of

cycles executed. The pixie number is far more accurate: the time results are affected by other

processes. The overhead factor is the ratio of the cycle count for the augmented version over

the cycle count for the normal version.

The overhead is consistently a small factor. Using augment as the input file, which includes
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Program pixie Count augment Count Percent Error

Queue (MIPS) 65,876,631 65,931,364 0.083%

Queue (Gnu) 87,198,232 87,956.339 0.86%

Sieve 52,483,384 52,768,111 0.54%

augment 11,670.316 11,169,127 -4.3%

Table 5.2: Verifying the cycle counting of augment. This table shows that most of the time the
cycle counts produced by augment are extremely accurate. The inaccuracies are discussed in
Section 5.2.

some non-cycle-counted code, produces the lowest overhead as expected. Its overhead is about

5% lower than the input fie with the second lowest overhead.1 As we shall see in the next

experiment, the non-cycle-counted code executes about 5% of the time. The overhead of the

Sieve program is probably higher because of a low average basic-block size; small blocks incur

a higher percentage of overhead.

As discussed in Section 4.10, the overhead of augment is less than 2% of the total overhead

of PROTEUS: reducing the overhead of augment would affect simulation times by a very small

amount.

5.2 Verifying the Cycle Counts

The second experiment evaluates the accuracy of the cycle counting by comparing the results

of augment with the results of pixie. The latter should be slightly more accurate, since it

augments machine code while augment works with assembly language. The same three programs

are examined as in the first experiment. However, the Queue program is evaluated with both

the MIPS C compiler and the Gnu C compiler. The data for the second compiler reveals that

changes in the compiler have a much greater impact on the cycle count than the inaccuracies

of augment. The results are summarized in Table 5.2.

These results show that with one exception, the counts produced by augment closely match

'The 5% number is the difference between the overhead factors for augment and Queue, which is .1. divided
by the overhead factor for augment, which is 2.1.
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the counts produced by pixie. The result for input file augment is the exception. The 4% dif-

ference is due to the existence of non-cycle-counted code. This code costs zero cycles according

to augment, but costs the correct amount when measured by pixie. The inaccuracies of the

other input files are due to the fact that augment counts assembly language instructions, not

machine language instructions (as pixie does). As discussed in Section 4.3, the MIPS assembly

language does not have a one-to-one correspondence with the machine code. The assembler uses

context-specific macro expansion and inserts null instructions as required by pipeline delays.

The unpredictability of the macro expansion and the extra cycles due to pipeline delays create

discrepancies between the cycles required by the assembly language and the cycles required

by the machine code. These discrepancies account for the slight inaccuracy of augment when

compared to pixie.

These inaccuracies appear even more insignificant when we examine the effect of the compiler

on the cycle counts. Changing the compiler for the Queue program results in a 31% change in

the cycle count. This difference far exceeds the change due to inaccuracies in augment. The

error due to augment is irrelevant given that the cost of a local instruction block can vary by

30% just because of the compiler.

5.3 Validating the Simulator

This experiment, originally performed by Chris Dellarocas, seeks to answer a very important

question: given all of our assumptions, can we trust the results of a simulation? This section

compares simulation results with published results from a real multiprocessor. If the simulator

produces valid data, then its results should match those of the real multiprocessor. at least in

their overall trends and features.

The experiment is a comparison of spinlock implementations by John M. Mellor-Crummev

and Michael L. Scott from their paper "Synchronization Without Contention" in the proceed-

ings from the 1991 International Conference on Architectural Support for Programming Lan-

guages and Operating Systems. Their code was modified to run on PROTEUS in less than one

day.

Figure 5-2 reports the results of an experiment performed on a Sequent Symmetry multi-

processor. We ran the same experiment on PROTEUS: our results appear in Figure 5-1. The
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vertical axis is the average time spent trying to acquire a spinlock. The horizontal axis rep-

resents the number of processors trying to acquire the spinlock. The major conclusion drawn

from Figure 5-2 is that the simple test-and-test-and-set spinlock does not scale well: the other

implementations do scale well. The PROTEUS graph leads to the same conclusion.

There are two differences between the graphs that deserve further discussion. First. the

Sequent graph has a large dip for the test-and-test-and-set spinlock that is absent from the

simulation graph. The dip is extremely counterintuitive: it implies that as the number of

processors trying to acquire the lock increases from 14 to 16, the average spinning time decrease.s.

In other words, if two of the sixteen processors stopped trying to acquire the lock. the waiting

time for the rest would increase. Mellor-Crummey and Scott were unable to explain the dip

and agree that it does not make any sense.2 It is unlikely that the dip would appear in

other experiments or on other bus-based machines. The data from PROTEUS is probably more

representative of spinlock behavior on bus-based multiprocessors. If we discard the data for 15

and 16 processors, which effectively removes the dip, the slopes of the graphs match extremely

well.

The second difference is the slight reordering of the other three spinlocks. In Figure 5-2.

the Anderson lock performs slightly better than the test-and-set with exponential backoff. In

the PROTEUS graph, the 3rder is reversed. However, in both graphs these spinlocks axe very

competitive, that is. the points are close together. Since we used a generic bus simulation

instead of a detailed simulation of the fairly complex Sequent bus. we expect some error in the

absolute numbers. Furthermore, the effects of the compiler can move individual points ten to

thirty percent. Given that we expect some error in the individual points, we could not draw

any conclusions about the relative merits of the three implementations that scale well.

Overall the graphs match quite well. The perturbations seen with small numbers of proces-

sors match, as do the slopes for each implementation. Conclusions drawn from the PROTEU'S

graph are valid for the Sequent, which validates the accuracy of PROTEUS in this case.

Finally, evidence for the accuracy of PROTEUS comes from other sources as well. We hav%

also reproduced published results for sorting algorithms on an nCUBE [FJL+88, Qui891. II

his research on concurrent search trees, Adrian Colbrook found that PROTEtLS reproduced his

2This statement is paraphrased from a private communication from John Mellor-Crummey.
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Comparison of Spiniock Implementations (small critical section)
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Figure 5-1: Spinlocks with a small critical section simulated by PROTEUS.

data from a Supernode multiprocessor quite well [CBDW9I). Thrashing problems predicted by'

David Chaiken for his coherent-cache protocol were produced in PROTEUS simulations [Cha9O].

In general. any effect that we expected to see has actually appeared.
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Chapter 6

Related Work

This chapter discusses several multiprocessor simulators that use direct execution as well as

some related uses of augmentation. There are several simulators that use some form of direct

execution. For the purposes of this thesis, the primary difference in these systems is how they

account for the time required by the directly executed code.

6.1 Aspen

The Aspen simulator, the doctoral project of I. J. P. Elshoff at the University of Arizona.

executes code directly and uses Unix timing routines to time the execution [Els9l]. This method

has the advantages of portability and improved performance over simulators that interpret

instructions. The primary problem with this approach is the millisecond accuracy of the Unix

timer. All times are implicitly truncated to the nearest millisecond, roughly ten thousand

instructions for a ten MIPS machine. This is far too coarse for simulating a multiprocessor. In

ten thousand cycles, a single processor in the J-machine could send a hundred messages [D+891.

A second serious problem is that it is not possible to add nonintrusive monitoring or debug-

ging code, since all of the code is timed. The accuracy of the timer exacerbates the problem

because it prevents users from subtracting out the cost of the monitoring code.
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6.2 CARE

The CARE sin'ilator developed at Stanford by Delagi, Saraiya, Nishimura. and Byrd, simulates

LISP code by direct execution [DSNB87]. It uses a microsecond timer to track processor times.

This is a viable approach if a microsecond timer is available to the simulator. However, it is not

as accurate as counting instructions for processors that execute more than a million instructions

per second. Even with a microsecond timer, the CARE simulator would not meet the goals

of our simulator for two reasons. First, the performance is relatively poor. A shared-memory

access requires on the order of ten to twenty milliseconds to simulate, while the same access

in our simulator requires less than a thousand instructions, or about 30 microseconds on a

DECstation 5000.1 This discrepancy arises primarily from the overhead introduced by several

layers of abstraction between the LISP code and the machine language.

A second deficiency results because many language design decisions involve the low-level

code of the run-time system. The simulator must be able to measure run-time system costs

accurately. Using LISP for the run-time code is unacceptable because there are many hidden

costs in the high-level semantics of LISP. These hidden costs are counted by the CARE simulator

even though they would not exist in the actual implementation of the run-time system. (These

hidden costs also account for part of the performance degradation.)

Like Aspen, CARE prevents the use of nonintrusive monitoring or debugging code. With

the improved resolution of the timer, users can attempt to subtract out the cost of monitoring

code, but this is off by roughly half of a microsecond per instance.

6.3 Accounting for Time by Hand

The multiprocessor simulator developed by Luigi Rizzo. at the Utniversit•i di Pisa, requires users

to specify the costs of operations using a procedure call [Riz89]. A block that costs ten units

must include a statement of the form takes(10), which simply adds ten to the simulated time

for this processor. These calls can be inserted anywhere: placing one in each basic block is

essentially augmentation by hand. Besides being tedious, the use of takes calls is generally

'The CARE figures are from a private correspondence from Bruce Delagi. Our simulator takes substantially
less than one thousand cycles if the accessed value is in the simulated cache, perhaps only thirty cycles.
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inaccurate. The user may be quite far off in his estimate of the time required for a particular

block or procedure. Augmentation provides the same control of costs as these calls, but defaults

to the cycles required by the block instead of defaulting to zero.

6.4 Threads

The Threads simulator [MF88]. developed by Mathieson and Francis at La Trobe University in

Australia, was the first to use augmentation to account for the costs of instructions. Instruction

counting is performed by inserting a procedure call into each basic block to update the simu-

lated time. Although their simulator exploited direct execution. it requires many questionable

assumptions. For example. they assumed that all memory accesses required the same number

of cycles, and that all instructions require one cycle to execute. The machine model supports

communication only through shared memory; Threads cannot simulate distributed-memory

machines or interprocessor interrupts.

6.5 RPPT

The Rice Parallel Processing Testbed (RPPT) [CMM+88], which was developed by Covington

et al. at Rice University, is similar to PROTEUS but is oriented towards message-passing mul-

tiprocessors with tens of processors. It uses code augmentation to account for costs, but does

not address issues such as stack overflow, profiling, and nonintrusive monitoring and debugging.

The paper discusses future plans for validating RPPT, but does not present any results.

6.6 Tango

The Tango system [DGH90], developed by Davis, Goldschmidt and Hennessy at Stanford. is

the closest simulator to our work. Developed concurrently with PROTEUS, Tango uses aug-

mentation to determine the time required by local instructions. The augmentation overhead is

nearly the same as in PROTEUS. The overall system performance. however, is one to two orders

of magnitude worse than PROTEUS. The primary reason for this difference is Tango's use of

one Unix process for each thread. which results in a typical context-switch time of 180-250
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microseconds (according to the authors). The lightweight threads package developed for PRO-

TEUS, combined with invariants that reduce the amount of state that must be swapped, results

in an average context-switch time of about five microseconds. Tango uses Unix semaphores for

synchronization, which have higher overhead than the semaphores developed for PROTEUS. The

simulation overhead of synchronization in PROTEUS is comparable to a procedure call, as op-

posed to the cross-process communication required by Tango. Furthermore, Tango requires that

all shared-memory accesses call the memory subsystem, which executes in a different process:

each simulated access requires two context switches and takes on the order of one millisecond.

In PROTEUS, a shared-memory access results in a context switch only if the value is not in the

simulated cache. This brings the average access time down to a few microseconds.

6.7 Other Uses of Augmentation

Augmentation has many uses besides simulation via direct execution. The original use, pre-

sented by Weinberger, was counting instructions. The other major use is the addition of code

that generates event traces dynamically.

6.7.1 Profiling

Augmenting assembly language with code that counts instructions was first documented by P.

J. Weinberger at Bell Labs [Wei84]. His article Cheap Dynamic Instruction Counting covers the

basics of augmentation quite well. The tool generates execution profiles of sequential programs

by counting the number of times each (high-level language) statement executes. The counts

are very accurate and thus give quite a good picture of where the program spends its time.

The MIPS corporation rediscovered augmentation for profiling and produced the pixie util-

ity [DECc]. As discussed in the last chapter, pixie is a very accurate profiling tool that uses

augmentation to count cycles dynamically. Its primary advantage over augment is its ability

to augment machine code directly instead of using assembly language. Augmenting machine

code is more accurate since the assembler performs macro expansion and inserts pipeline delays.

Augmenting machine code requires neither recompilation nor access to source code. One advan-

tage to augmenting assembly language. however, is that it is easy to augment only a subset of
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the original code by using directives in the input file to turn augmentation on and off. A second

advantage is ease of portability. Changing augment to handle a different assembly language

requires only defining each instruction and its cost, and determining which instructions delimit

basic blocks and procedures. Augmenting machine code requires knowledge about the object

code format and about the specific processor. The disassembler requires detailed knowledge

of the instruction set of the exact processor, rather than knowledge about the instruction set

architecture provided by the assembler, which is less restrictive.

6.7.2 Tracing

Augmentation has also been used to produce address traces for both sequential and parallel

shared-memory machines. Traces are useful as input to memory system simulations because

they represent the access patterns of real applications. The basic idea is to augment a program

so that it records every memory reference as it executes. This is done by inserting code at every

reference to record the address. Trace generation through augmentation is described by Eggers

et al. [EKKL90] and by Stunkel and Fuchs [SF89].

6.8 Conclusion

Our dccision to use augmentation was influenced most by Aspen, which provides the perfor-

mance of direct execution, but not the accuracy of augmentation. The use of augmentation in

multiprocessor simulators was first used by Ian Mathieson and was rediscovered by ourselves

and by Helen Davis at Stanford for the Tango simulator. Although Tango is very similar to

PROTE us. it was not an influence since it remained unpublished until PROTEUS was nearly

complete. The idea to apply augmentation to a multiprocessor simulator resulted in part from

the su ress of augmentation for generating traces, epitomized by the work of Eggers et al.

[EKKL90] and Stunkel and Fuchs [SF89].
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Chapter 7

Conclusions

This thesis investigated the combination of code augmentation and direct execution as a key

facet of PROTEUS, a versatile high-performance parallel-architecture simulator. After providing

an overview of PROTEUS, we discussed the need for both performance and accuracy in a mul-

tiprocessor simulator, and the fundamental conflict between them. This conflict leads to the

principle of maximizing performance by providing only the required accuracy for a particular

simulation.

After establishing the motivation for code augmentation and providing an overview, this the-

sis examined the detailed design and implementation of code augmentation. It then presented

empirical evidence that supports the correctness and low overhead of the implementation, and

compared PROTEUS results with those of a real multiprocessor to validate PROTEUS as a whole.

The use of direct execution and code augmentation to simulatc local instructions is an

application of the principle of maximizing performance by providing only the required accu-

racy. While instruction interpretation has an overhead of about two hundred instructions per

simulated instruction, the overhead of augmentation is only about two instructions per sim-

ulated instruction. Thus, the simulation of local instructions via direct execution and code

augmentation reduces the simulation overhead by about a factor of one hundred.

Furthermore. the thesis claims that the loss of accuracy in the move from instruction in-

terpretation to code augmentation is unimportant for parallel-systems research. Intuitively.

the intricate details of a particular instruction set are not relevant to the overall behavior of

the system. The ability of PROTEUS to reproduce results from real multiprocessors is direct
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evidence that code augmentation is sufficiently accurate.

The use of augmentation also allows precise control of the cost of a block of code. A block

that is not cycle counted costs zero cycles, which allows nonintrusive monitoring and debugging

code. Thus, users can add debugging code without worrying that the symptoms of the bug

will disappear due to a reordering of nonlocal interactions. Furthermore, the cost of a block

may be altered explicitly to produce more accurate costs relative to the target architecture.

For example, the same message-passing code, with different costs, has been used to simulate

message passing on several architectures.

We also use augmentation to collect profiling information. Because augmentation assigns

the cost of each block, the profiling information is exact. In particular, non-cycle-counted code

and code with explicitly altered costs are profiled correctly.

Augmentation aids debugging by adding code to detect stack overflow as soon as it occurs.

The quick detection makes the error trivial to fix, which essentially eliminates a class of bugs

that are notoriously difficult to track down.

The augmented code also limits the number of cycles that a thread can execute without

returning control to the PROTEUS engine. This improves the accuracy of simulations, and allows

the engine to remain in control even in the presence of infinite loops in user code.

Finally, one should note that augmentation fits in well with the rest of the compilation envi-

ronment. Since augmentation is simply a transformation of assembly language, the rest of the

tools for compilation and linking are inherited without modification from the host workstation.

PROTEUS as a whole meets all of our original design goals: it is fast, accurate, versatile.

and provides substantial support for debugging, data collection and graphical output.

Thanks to augmentation and fast context switching, PROTEUS is consistently one to two

orders of magnitude faster than comparable multiprocessor simulators. The range of perfor-

mance and accuracy combinations provided by PROTEUS allows users to achieve the maximum

performance for the amount of accuracy they require. This provides more than a factor of ten

performance improvement during development, but allows slower more accurate simulations for

data collection.

In its most accurate mode PROTEUS consistently produces accurate simulations. We have

reproduced published empirical results from several multiprocessors and algorithms: the PRo-
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TEUS graphs consistently match the data from real machines. In general, any effect that we

have expected to see actually has appeared in simulation results. More importantly, all unex-

pected effects turned out to be valid data rather than a manifestation of inaccuracies inherent

in PROTEUS.

The simulator has also met the goal of versatility. PROTEUS simulates both message-passing

and shared-memory machines. Topologies include buses, k-ary n-cubes, and multi-stage indirect

networks. The memory module simulates cache-coherence algorithms, full/empty bits, and

atomic memory cperations. The configuration program allows users to control nearly every

facet of the target architecture.

Support for debugging includes a built in "snapshot" mode that allows users to examine

the status of processors, threads, locks, memory, and the network. There is also support for

tracking down memory-overwrite bugs, which would be exceptionally tricky to resolve without

the tools provided by PROTEUS. The early stack overflow detection provided by augmentation is

one such tool. Debugging PROTEUS applications is simplified further because users can exploit

the power of standard sequential debuggers to complement the tools provided by PROTEUS.

The simulator also provides very general data collection and display facilities. In addition to

a broad range of data collected by the engine, users can define their own data types to collect

exactly the data they need. A sophisticated graphing program combined with a simple but

powerful graph-specification language allows users to examine their data in a variety of useful

ways, and produces camera-ready hardcopy of the graphs for publication.

Although we designed PROTEUS initially as a testbed for experimenting with language and

runtime-system mechanisms, it has become clear through use that simulators like PROTEUS

are also effective for developing parallel applications. The monitoring capabilities provided

by PROTEUS make debugging and initial performance tuning significantly easier than on real

machines. Using PROTEUS for development reduces the time required on real multiprocessors,

which are expensive and scarce. Finally, PROTEUS allows applications to be developed for a

wide variety of machines, including machines that only exist on paper.

Finally, PROTEUS as a whole is effective in practice as a tool for parallel-systems research. It

has been very successful as the base for the design and implementation of a concurrent object-

oriented language, PRELUDE [WBC+91]. It has also been used for extensive studies of fault
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tolerance, including a set of over two thousand simulations run in just a few days. Finally. to

date PROTEUS has generated the empirical results used in two parallel-systems research papers.

one on concurrent search-tree algorithms [CBDW91] and another on algorithms for readers-

writers locks [HW92]. The usefulness of PROTEUS is a direct consequence of the performance

and accuracy provided by augmentation.
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