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ABSTRACT-

In this paper we investigate the nonlinear development of the most unstable

Go**rtler mnode within a. general three dlimensionlal boundary layer upon01 a. suitably

concave surface. The structure of this mode was first Identified by Denier, Hall &

Seddoitgiii1 (1991) who demonstrated that the growth rate of this instability is O(Gý-)
where G is the Go'*rt~leri mninber (taken to be large hecre), which is effectively a measure

of the curvature of the surface. Previous researches have dlescrib~ed the fate of the

m1ost 1listalble mode within a two- dimensional b~oundlary laver. Denier &- Hall (1992)

(Iisculssedl the fully nionlinear dlevelopmnent of tihe vortex in this case andl sllowcdl that-

the mionmilincarity causes a breakdlown of the flow structure.

The effect. of crossflow anid unsteadiness upon01 an infinitesimal unlstab~le mode was

elucidated byv Bassoiii &- Hall (1991). They dlemonstrated1 that crossflow tends to

ta1)Iise the ost u nst ab le G**rtler miode, and for certain crossflow/freqiuencv comibi-

nmat ions~ thle G'rtl her mnodhe minay be made neutrally stable. These vortex configurationis

naturally lend themselves to a- weakly nonlinear stab~ility analysis; work which Is de-

scrube(l min a l)r(eXoi1 article by, the p~resenlt authors. Here- we extend tile ideas of

Denier and Hall (1992) to the three--dimensional boundary laver p)roblhem. It is found

that tihe nmumnerical solution of time fully nonlinear eqluationls is b~est coniduicted ulsimig a

intimie 1( which is essemmtiailv an a da1 tioml of that iitilised by Denier and~ Hall (1992). Tihe

infiluenice of crossilow and~ unisteadiness upon01 the breakdown of the flowv is described.

* R.-achwas iipporterd by the Natironal Aeronautics and Space Administration under NASA cont-

I ra, t, Nos-ý N:\SI 1860U5 and N..SI 19-1S0 while tire author was in residence at the Institute for Comrputer

Appli-rt iri inl Scnielic and IEuginre-rirg ((Ai).N *-\sA Langley' lResearch (Center, 1amnpton. VA 2366i5



fj1 Introduction

Theahim of this article is to fuirther our unilerstan(Iing of the effec7ts of unsteadiness

and crossflow upon the fully nlonilinear dlevelopmIfent of unstab~le Gi)rtler modes. The

initial derivationi of the governing equations for these modes was given by G6rtler

(1940) whose results were miodlifiedl by Haiiiimerlirn (1956). These early works ignored

nionlparallel effects lpreseiit duie to b~ound~ary layer growth andl Smith (1955) added

teriiis inl anl attemlpt to retf hsdfciency. Until recent years it was unclear as to

the imp~ortance of the n-oillparallel terms; this qulestioni was resolved by the results of

Hall (1982 ajb, 1983). Inl this series of papers Hall showed, uisinig a combination of

asymptotic and numei~rical techiniques., that for order one waveminimber vortices there is

nlo unique neutral linear stability curve. More p)recisely, the stability characteristics of

sutch waveimuniber mlodes are entirely dependent upon the initial form and location of

the dlistuirb~ance. However for sinall wavelength vortices a umique neutral curve (does

exist and onl this curve the vortex wavenumiiiler k is O(G'4) where G is the (assumied

large) Gi*rther milmnier. For further readhiig concerning the development of the stability

theory for G(**rtler vortices the reader is referred to Hall (1990).

The most unstable Gi~rtler mode (i.e. that infinitesimially -sized vortex which has

the largest growth rate) was ob)tainedl by Denier, Hall & Seddougui (1991) and Timii-

oshnil (1990). By -onsi,,deriing the stability lprop~erties of the essentially viscous modes

of wavenuinber O( G ) together with those of the imiviscid modles of 0(l) wavelenigths

it was possible to idlentify amil itermiedhate wavemiumlnier regimec inl which the vortex

growth rate is largest. These unstable modes are confined to a region of dlepth of

0(G - and possess5 growth rates of size 0(G ) The stab~ility properties of 0(G~
waveminibimer vortices are deduiced by, solving a sixth-order ordinary (lifferemitial sys-temi

with app~ropriate b~oundary coniditions andl the solution of this system reveals that the

liliiiqul most miistable mode hias waveminimler k =0.476G11 anil growth rate 0.312G-5

To (late there has beeni relatively little attenition lpaild to the nlonlhiiiar stabl~ity

1)roperties of G(**rtler vortices. Perhaps the first work was p~erformied by Ailiara (1976)
who attemlptedl to dlescrib~e the nionline(ar evolutionl of G(5rtler vortices using parallel

argumenits. Later calcul~ations by Hall (1988) remedied these dlefects and showed that

ais 0(1) wavemilmlber mnodes evolve dlownstreanm so the eniergy of the flow comiceiitrates

itself inl the fimldalinental and mean flow correctioii. This suggests far downistream the

flow canl be adequa tely described by a miean field/first hiarmonic structure amid su(-hi a
('0onfiglfa t ioui was eluicida ted for short waveleiigthI modes usling bothi weakly nionll(,inea

anld fully nloiilinear app)Iroachmes by Hall (1982 1)) anid Hall &, Lakiii ( 1988) res,')ectively.

A fuller descriptionl of the mioiilimiea~r stabl~ity of G(5rtler mnodes may be found inl

Denier & Hall (1992). Inl that paper the author's arguedl that inl a 1liuml1er of p)ractica~l

systems, especially where signilficanit cuirvatutre occurs such as the case of flow over



turbine blades, one would expect the small localized surface imperfections may well
trigger the most unstable linear G6rtler mode. (This conclusion relies on the result

of the linear receptivity theory given by Denier, Hall & Seddougui (1991).) This

motivated a careful study of nonlinear evolution of the most unstable mode which was

tackled in the following way. Denier & Hall (1992) took an arbitrary form of initial

disturbance at a typical streamwise location, say ,r = 1. By integrating the linear

form of the vortex equations over a long distance, up to x = 101, a flow profile was

obtained which is dominated by the most unstable mode described by Denier et al

(1991). From x = 101 onwards the full nonlinear equations replaced the linear ones

and the most unstable vortex mode was marched further. Typically 8 or 16 harmonics

of the fundamental were retained during this calculation. It was found that at a critical

point the flow contains a region of reverse flow and the analysis is then no longer valid.

Denier & Hall (1992) interpreted this breakdown as being responsible for the vortices

moving away from the wall and into the core of the boundary layer.

The effect of crossflow and unsteadiness on the most unstable G6rtler mode was

discussed by Bassom & Hall (1991). The primary result arising from this work was

the demonstration that a relatively small crossflow could completely stabilise the most

tirstable mode. Additionally, by allowing for vortex unsteadiness, it was shown that

suitable combininations of crossflow, vortex frequency and wavenumber could lead to

neutrally stable configurations. A weakly nonlinear stability analysis pertaining to

such configurations was conducted by Bassom & Otto (1992) who derived classical

'Stuart-Watson' (1960) type evolution equations for near-neutral modes. They con-

cluded that the weak -nonlinearity has a stabilising effect and derived equations for

the supercritical equilibrium amplitudes.

The results of Denier & Hall (1992) and Bassomn & Hall (1991) provide the ino-

tivation for the current study. Within a two-diniensional boundary layer the effect of

nonlinearity oni the most unstable mode tends to lead to a finite--distance breakdown

whereas crossflow appears to stabilise the flow. With these two mechanisms tending

to have opposite effects it is clear that in many practical situations, where three -

dimensionality is undoubtedly implortant, it is of great interest to determine which

of these two conflicting behaviours dominate. We attempt to answer this question by

considering the full nonlinear vortex equations and employ numerical techniques which
are similar to those used in Denier & Hall (1992) but modified in certain ways (detailed

later). These improvements significantly speed up the computations and allow us to

obtain a greater range of results than those found by Denier & Hall (1992).

The structure of the remaindler of this article is as follows: in section 2 the fully

I,(H)ii linear ,qiuation, ire dlerived and a brief description of the numerical procedures

Si Ji9llU ~ U



used are outlined in section 3. Details of the results are presented in section 4 and in

section 5 some brief conclusions are drawn.

§2 Formulation

As in Hall (1985) we consider a boundary layer flowing over the cylinder ) - 0,
-cx < 5 < oc where the >-axis is a generator of the cylinder, yi measures the distance

normal to the surface and .? denotes the distance along the surface. The Reynolds

iiunlmber Re and G5rtler number G are defined by

U0L G '-~6Re - I G = 2R2 b,

1,

where U0 is a typical flow velocity in the i-direction, L is a characteristic streamnwise

lengthscale and v' is the kinematic viscosity of the fluid. Furthermore the curvature of

the cylinder is supposed to be 1yO (f) and with these definitions 6 - L/b, where b is
a typical radius of curvature of the cylinder (G6rtler vortices are typically observed in
flows over concave surfaces which corresponds to the choice X0 > 0 ). The Reynolds

number is supposed to be large whilst 6 is sufficiently small so that as 6 --+ 0 the

paramneter G is fixed and is of order one. The basic three-dimensional boundary layer

is taken to be of the form

u=Uo (it(X, Y), R- }(X, Y), R' •(,) (1 +O0 (Re})

1

where X = i/L and Y = PR /L and the crossflow parameter A* is of order one.

It is convenient to define the scaled spanwise coordinate Z = 5Re /L and let T be

the temporal variable scaled on L/lUo. The basic velocity profile is perturbed by the
quantityI

q i u(T,X, YZ),R-R1 V(T,X, Y,Z),Re W(TXYZ))

and the pressure field by Re P (T, X, Y, Z). Substituting this flow form into the
continuity and Navier-- Stokes equations yields the system

Ux + Vy + Wz = 0, (2.1a)

-UT + UYY + Uzz - HY-V - WUx-TixU - iTUy - A*TU_, (2.1b)
= UUx + VUy + WUz,

-VT+ y-y ± V+ - G X T- -T - V - Vy - yV -
G U•,(2.1c)

= UVx + VV+ ± ,, +G ± 2

3



-Wr + I'V.y + Wzz - Pz - TTýY - A*TX U - I'WY - A*VTiy - A*i-•WV

= UWx + VWy + WWz, (2.1)

where terms of relative order O(Re- ) have been neglected. It is worth noting at this
point that the linearised system studied by Bassom & Hall (1991) is obtained by setting
the right-hand sides of (2.1 b-d) to zero whereas the nonlinear equations examined
by Denier & Hall (1992) to determine the development of steady nonlinear vortices in
two--dimensional boundary layers can be retrieved by setting A* and 0T equal to zero.

We now invoke the scalings proposed by Denier et. al. (1991) who demonstrated
that in high G6rtler number flows the most unstable vortices have O(G 1- ) wavenumbers

and are confined to a layer of thickness of O(G- ) adjacent to the cylinder. These
modes have a spatial growth rate of O(Gk) and we use the results of Bassom & Hall
(1991) who illustrated that the three-dimensionality of the basic flow significantly
affects the two dirnensional stability results once the scaled crossflow parameter A*
b)ecomes O(G ). Therefore it is convenient to define the 0(1) crossflow parameter

by

A GA. (2.2a)

To reflect the fact that the vortices are confined to a region of (!2pth O(G- ) adjacent
to the cylinder we introduce the 0(1) boundary layer coordinate dlefined by

G-L, (2.2b)

and in this layer the basic flow may be expanded as a Maclaurin series of the form

2 6 .
u, G- 1T11 (X)Y + ½ G- 11,22 (X)Y. + 1G ,,IL3 (X)Y3 +... (2.2c)

wi G- 1 i.,(X)y. + ½G-g tt22 (X)y2 ± -G t1 z.3(X)y ± + .. (2.2d)

To determine the foirm of the vortex disturbance we appeal to the findings of Bassom
& Otto (1992) who identified the crucial p)erturl)ation size at which the governing
equations b)ecome fully nonilinear (although these authors made no a tteml)t to solve
these fully nonlinear forms). The disturbance forms are then

G- L (U + G-U 1 + G-U 2 +... ) V = G• (V) +G- V] +±G-. 2

(2.3a, h)

I V G~ (I( ±+G-W + G- 1-2 + P.. . P Gý (P,, + G--P, ±G-2P +
(2.3c. (1)

wlhere UO,. I,0. II,. Pf. U. .... etc. are all fmictions of X.. the temporal and the span-

wise varialle. It is 110w ,oniveiiie.nt to imp)lem•,nt the result of Bassoin & Hall (1991)
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that the leading order behaviour in the downstream coordinate is purely oscillatory
and we do this by introducing the coordinate and temporal variations given by

3 1 2

X G-x, Z = Ox + G- z, T = G-5t, (2.4a)

where/1 = A/t21 /i11 1 . This then implies that the streamwise and spanwise derivatives

become 0 30 40 0 G
-G5 /3G5 G . (2.4b)

OX xOZ ' 9Z OZ0
The desired governing equations are obtained by substituting (2.2)-(2.4) into equations
(2.1). Leading order terms in the momentum equations yield that W0 = f3U 0 . Next
order terms in equation (2.1 b) give the first relationship

a2 a2 y 2 az 0 T a Y Uo - pi Vo = RHSI, (2.5a)Dy aZ2 2 0z aTxj

where the precise form of RHS, is given presently and o )=p22 - 4/1121. A second
equation is derived by following a procedure similar to that described by Bassoin & Hall
(1991). By considering the second order terms in the y and z momentum equations
(2.3), eliminating the pressure by cross-differentiation and applying the continuity

equation it is a routine but lengthy task to obtain(a2 02 2 a O (02 D2N 0V02o

y+ +z2 2 0z OT Yx" -/x 5 + \Oy 2 OZ 2 / O+-X az2 = RHS2
(2.5b)

where again we shall specify B HS 2 shortly. The forms of RHS2 includes reference to
the combination W, - /3U1 which therefore needs to be expressed in terms of quantities
with subscript zero. This is best accomplished by integrating the continuity equation

to give

f [O 57 ayow1 -/1u, ox)J0O±Vjz (2.S,.)

The aim of this article is to consider the nonlinear evolution of modes which are periodic

in the spanwise direction, with fundamental wavenumber ( I01 ) k say, and p)eriodic
in time. Now it is advantageous to introduce scalings first proposed by Bassom & Hall

(1991). It is found that if we transform according to

1 I I

O - + (\ L ,)W kO.,, 0 1  0 0t. 1x(9t,., (2.6a - c)

2 3 I 2 2 4

Uo 0  itl 10 -. /1 V, OT * X it 49il7', (2.6(1- .f)

( 11/1,22 /121/112)
0 = -kI/11 1 A (2.69-h)

211 X 5o

.13



then the transfoirmed equations (2.5 a,b) are independent of the particular boundary

layer mi(her consideration. Therefore the ensuing results are potentially relevant to

a wide class of basic configurations. In this nondiniensionalised coordinate system

we restrict ourselves to flow quantities the fundamental mode having spanwis5 and

teml)oral variation given by exI) [i (s + Qt)], so that Q represents the nondiinensional

frequelncy of the fundamental vortex coml)ponient.

Upon making the transformations (2.6) the leading order vortex equations (2.5

a.1)) become

( O"2 2A2OV g 0 1 O2 S1') 1 02 S(2) 1 0 2 S(3)
L a± 2) A, a 4.3 aZ±2 k-2 7 ZT 2 k2P Os.! k3 O.rOy' (2.7(,)

V 1
(IT) - = 1S(3), (2.7b)

where the operator L is defined according to

02 % ' 0%, A!q2 a 1 0 y 0
L 0-- Os2  k3 Os k:OT 2 3+ . (2.7c)

01 + 010-_ , + u2, (.a
0 1 [O 1k/ k 1 1 ]-- .- k---- - - +y +-.j ± .+ (2.7d)

5. D0Y Osr Oy-

S(2) S-- J -( .

2+r U'K 0 1 + = d-k. (2.7c)

L + . [I I + k + + (2.7f

Iden't ifying the 'olmiponment of this equation ind(epemndenlt of z Vieldls

2f7r

2r - -I Jý {jI- + SW (L. (-y
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To close the systeml requires, specificat ion of app1rop~riate bolui(lary coi(Ii t jois. Clearly

wve require the velocity comlponeiits U. V to vanish on) y =0 ( and~ by cotltinilit so

nmiist ol1 j9y). Addfitionially the mnean flow termis 0 0 onil 0 and lin order thait

the (listurbl~aice b)e 'onlflined to the lboiif(larv layer we (lenian(l that the streanulwise

velocity L, tenl(ls to sonule funuction of x as y -4 0C.

NVe notice that equations (2.7) are the appIrop~riate generalisations of those solvedl

by Denier and Hall for the mlost unstable nonlinear vortex within al two dilineiisionlal

b~oundiary layer (their equiations are, byoer( setting A o 0 ;11(1 Setting- OJ,0).

This allowed uis to comnpare numiierica.1 results against their previously published ones

as5 a check of our1 inuniierical inethods.

ý,3 Numerical Methods

Tihe miethiods eniployedl to solve systemn (2.7) are simillar inl essence to those uised

in Denier &_ Hall (1992). However it was found imnecessary to iiltroollmce a nlmnhlber of

anmil(ldnlents to their co(Ie in ordler to slpee(l 1ii) the comniputatioums wh~ich inl turn-i had1

the benefit of allowing anl increased numlber of resuilts to be obtalined.

Denier &-- Hall (1992) solved thme two -(hInenrsional couinterp~arts of equiations, (2.7)

as follows. They (lecompillose-(l each of the flow velocities U. V, 11' into their Fourierl

comnipomemmts aimol rewrote the governing equations in ternims of these -oiinl)oiienits. By
utiiig a shmebsduothtipe nedbHall (1988) they obtainedl finite -

(hiffereilce eq-imatiomis for the mecan flow ani(l liarionint termns. These,,( equations containl

only one( streaniwise dlerivative ani(l a straightforwardl miethiod, basedl uponl solv*19 ing o

trid-iagonal andl one 1 )entaohiagonal systemi. mnay be uised( to mnarch the solution fromn

one( strearinwise station to the miext. For miore (letails of the p)racticalities of the scheine

the readler is, referredl to Denier &- Hall (1992).
One iiarkedl (hifference between our p~resent work andl that of Denier &- Hall (1992)

is that We chose to calculate the nonlinear termmis in physical space rather than trails-

forim space. as this is a conmputatioimally 'checaper' poliCY and1( so aillowedl its to retain1

More moesiii ouir calculations. This necessitates trammsformiimmg fromt Fourier space

to physical sp~ace, effecting the calculations andl extracting the Fourier coefficients. It

wais dlecidled to emiploy Fast Fouin-er Transformis to dlo this whichi 11as the 1benefit of

reduncing the cost of the transfornilations fromn O( N' ). ( the cost of redlucing X lino(les

aind using the Fouirier transformi dilrectly) to 0(5,N log N - 6.N). The codle uised( was

baisedl oii the original Cooley andl Tukey (1963) algorithmi atnol was thuis liimilted to N'
beinan initegral powver of 2.

Two other changes were miadle to the -ode( uisedl by Deniel(r &- Hall (1992). As

wa-is dlescrib e(l ini the nt rodbict ion. t hese alit hors were -omiicerneol with Iithe elo)mit

of the miost iimust able G(**rt lem iimode( within a two) (limieisio~ial 1 onnmmlary layer. To



achieve this most unstable mode Denier & Hall (1992) took an arbitrary (listurbance

and then marched the linear stability equations for a long distance d(ownstrean before

changing to the nonlinear system. This of course had the effect of ensuring that the

most unstable comp)onent of the original disturbance was then dominant over all the

other components so that when the full nonlinear equations were invoked the input

vortex flow was dominated by the most unstable mode. A drawback of this method

is that the lead-imi time in which the linear mode develops proves to be a significant

proportion of the total comultation time. To alleviate this difficulty we used the

program described by Bassom & Otto (1992) to compute the unstable eigenfunction

directly. This had the effect of making the lead-in time to the nonlinear equations

re(uindant and thus we could start our computations of the full nonlinear system almost

immediately. Substantial reduction in the computational time was also achieved by

using a stretched grid in the y-direction (normal to the cylinder surface) as opposed

to a uniform one. and the scheme eventually chosen for this process was taken from

Macaraeg. Streett & Hussaini (1988). A grid is required which encompasses the region

between im = 0 and Y, = Yi,,,,. where the subscript p denotes the physical coordinate

and (J 1 (elotes some outer bound at which the asymptotic forms of the solution of

the system (2.7) are supposed to have been attained. A notional computational grid

0 < y, < 1 is introduced which is related to yp via

Ymax (c 2 - 1)Y
Qe2 - Yr)C-

with the value (c 2 - 1) taking values between 0.2 and 1. The quantity (c2 - 1) rep-

resents the dcgree of stretching l)etween the large and small steps whilst c, controls

the rate of stretching. 1 < c, < 6. For most of the calculations reported here we used

c, = 2.4 and Q2 = 2 which allows 100 grid points to be distributed between yp = 0

and Y), = 50. The resulting (listribution of points and the corresponding step lengths

are illustrated in figure 1. Notice that as Yt ---" Y1,,, the step lengths become greater

than unity which in a finite difference scheme may induce errors. In the present case

graldients of the depenldent functions in this regime are minuscule and so this possible

difficulty did not arise. This parti'ular non--unifoirm stretching of the grid points al-

lowed a twenty fold reduction in the number of grid points over the regular grid used

iii Bassomi & Hall (1991) and a four fold improvement over the piecewise constant step

length grid used in Bassomn & Otto (1992).

As previously mentioned thie solution strategy used here is essentially that de-

•crihed in Hall (1988). Suppose that the solution (Uo, V0, U0, 60 ) is known at some

specified station. .r and suppose further that a guess is made for the solution at .r + f.
(" ." °,)" The n,,)liear terms on the right hmanld sidles of eqiiations (2.7 a.1,)

8



were calculated using these guesses andl the system -,olv,,e(l to provide upd(atedl values

((I) I ).1 These upd(atedl variations were then put into the nonlinear termis

and the process rep~eatedl. When the (difference b~etween successive iterates was than

somie normn convergence was (leenie(1 to have occurredl and~ this process marched onito

the next step. For a computational grid composed of Al points and a calculation with

N modles retainled then the convergence norm used was

3=A k - Urjk I + -1" ij,k)j< 0N

k=-N/2 3=1

where U. dk(enotes the tit iterate of the 0th Fourier complonent of the flow quantity

CU evaluated at the t ,h y-positioni.

The equations (2.7 a,1 )) may 1)e discretised for any particular mode into the fornis

ar ,, 'yn+2 + bin 71 7y+ 1 + crn Im ± din Vin -.I + Cin Vin -2 ±f fr n = Vin (In = 3,. Al1 - 1)
(3.1o)

and

fln11+ + 1671,111 + 1,111 Itin l + J111,111 U111. (fII = 2,~ .11 1) (39.11 ))

This system was solved using a technique outlined ini Appendix B of Bassom &- Otto

(1992). This solves the p~rob~lemi (3.1) in one sweep rather than treating the p~air (3.1

ajl)) as distinct p)entadhiagonal andi tridhiagonal problemis. In essence. the equationis are

.solvedl by performing an outward forward elimination followed i)y a b~ack sub~stitution1.

Earlier we alluded to the fact that significant comp~utational saving was obtainied

b)y utilising Fast Fourier Transforms in p~reference to decomposing the flow quanitities,

into their respective complonenits. Standard p~rocedlures were imlplemnentedh so that to

change bectweeni physical and transform spaces we write

k=N2

E3 ,>3 -kz .I E [1, N].

1 =N

where z1, 2;-(J' - I )/N for J G [1, N] and where quantities with tildes are iii the

transform space audi those without in the physical space. Denier &, Hall (1992) were

able to restrict themselves to uising a cosine b)asis due to the nature of G'*rtle-r vortices

9



wvithi two dimiensional b)oundary layers ltut the add~it ion of temnloral lperiodlici ty and~
crossflow p~revenltedl iis from doing this.

For the muajority of the c'alcuulationis p~resenltedI below the mnumber of iiioole-s retained
was 16 andl it fairly large step used inl the streaniwise dhirection, typ~icallyv 0.01.
Denier k- Hall (1992) found iln their calculations that these Iparaineter choices gave
results to wvithin graplhical accuracy. Further testing. using 100 points inl the normal
(direction anil with Ymflrx =30 hias confirined that similar choices are satisfactory for
the three dimensional computations p)erformned iiere.

~4 Results

We have detailed the nunnllerical mnletliod by which we invt-'stigate(I the soluitionl
prop)erties of system (2.7) although as yet we have left the olefinlitionl of the amplitude
of the initial vortex uinis 1 ecifiedl .As described, we initiated our computations with a
iiillltilple of thle eigenifunlctioiis of the linearised versions of system (2.7). For a 51)ecifiedl
vortex wavenuiunber k. frequency Q and crossflow A the mecthio( outlined by Bassomi
&_- Otto ( 1992) was used to compute the corresponding linearised growth rates 3, anil
the resjpectv (i eigeIufunlct(ions normialised so that the energy deffined by

u2+ v 2)dyj

is equial to A'. We refer to A as the anmplituide of the initial cond~itionl.
Our first calculations Were lperforiuiedl primarily a'-ý a verification of our code againist

the (est ablishedl results of Denier &- Hall (1992). Thence wve considlered the caeof a

pl~lrelv two-dimuensional boundary layer and steady vortices (A == Q = 0. Dne
Hall ( 1992) found that as the vortex evol-ves nonlinearl olownlstro ami then at some
p)oinit their compiJutationis b~roke down inl a singularity. C Iareful investigation revealed
thait at this location the skini friction was of the flow vamiislies and~ then ally soliition
sýchemel which relies ii )oU a mlarchunig t echniquie becomes unvaidla teol. The vanlishinlg of

lhe ,kill frict ion was lilterlpretedl as being indica tive of the vortices lbreaking, away fromi
lhe wall anld nIoviuIgf into the core of the b~oundl~ary layer. Our resýults for various, initial

allipllitli~les A are indicated oui figure 2 where we shiow the location of the breakdown

pointf ., :is a fiumction of A for the most miistalble G("ritler mode with vortex wavenununber
A- 0.4 it (the dlist uri auice was intro(lucecl at xr 1 so the (list ance travehlule by the

pert urb at ion beffore brweakdown is *1h- ) Not surprisingly, the breakdownvi locationi
Yb Is a niouiotouie dlecre'asing2 function of the ampillitulde A andl as A -*4 0 so *rh -4 _V

'11( thle linear prob lemii retrievedI. For all the other calclulat ionis reported uponl here

aI siziuila r ýrend is ob servedl so that ini all cases we chose A =0.2: this select ion was
ii ia le, pI reIly for ilhuist rat iVe p)urp~ose~s and lhas, no special signlificanice what soever.
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In figure 3 we denonstrate another feature of the two -dinensional results. Figure

3a indicates the dependence of the li nar vortex growth rate 3 , as a function of the

vortex wavenumber k, for the first two modes. As is now well documented by Denier

,t al. (1991), Denier & Hall (1992) the most unstable niode has growth rate 3 , ,

0.312 at k' = 0.476 and 3,! -' 0 as k -+ 0 or A' -ý oo. We note however, that for a
significant range of scaled waveiminbers, roughly 0.3 < k < 0.8, the vortex growth

rate is not much reduced from the maximiun in as much as it is at least 90VX of

the maximum. This will have important consequences for later results. Figure 31)

illustrates breakdown point ,rh as a function of Ak for the first two modes. As is to be
expected for fixed initial amplitude A_ and fixed wavenumler the first mode always
breaks away from the wall before the second one and this trend continues for higher
modes. However, it is also observed that for the primary mode, xb is a monotone
decreasing function of Ak. Therefore for any fixed initial amplitude it is not the most
unstable mode which breaks up first. Indeed we previously remarked that for a whole
range of wavenumbers surrounding the most unstable value linear growth rates are not
too different from the largest growth rate. This has potentially imtportant consequences
for a number of practical flows as it demonstrates that the breakdown properties of the
flow are crucially dependent on the nature of the physical characteristics of the flow
and are sensitive to the nature of the evolution of the flow. More precisely, suppose
that the vortex motion starts with extreniely small amplitude. Then one would expect
there to be a large distance over which the motion develops essentially in a linear
manner. During this time the most unstable linear mode would overwhelm modes of
other wavelengths and once the vortices had grown sufficiently so that nonlinearity is
important the flow behaviour would be dlominated by that of the most unstable mode.
On the other hand if the initial vortex amplitude is not tiny, nonlinear effect are likely
to be important a relatively short, distance downstream by which stage it is unlikely
that the most unstal)le mode dominates the others. in this case the behaviour of the
most unstable vortex is not likely to dictate the p)roperties of the breakdown of the
flow.

We turn now to consider cr,,ses with non--zero crossflows. As noted by Bassom "

Hall (1991) we may restrict our attention to cases in which the crossflow parameter
A> 0 since by suitably transforming the system (2.7) we can relate flows with A < 0
to al)propriate counterparts with A > 0. In figure 4 we recall the results of increasing

crossflow on the linear, stationary vortex mode. As discussed in detail by Bassom &
Hall (1991) the effect of crossflow on linear vortex structures of wavelength O(G- r ) is
l)rimnwrily a stabilising one. Indeed figure 4 illustrates that when A > 0.410 the vortex
mode is stabilised for all wavenumbers in the O(GC) regime.
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Figures 5 a& ' show the variations of the maximium growth rate (3 r), and
the corresponding vortex wavenumber k,,•,, for :ncreasing crossflow parameter A. As

already noted. increasing A lowers (dr),,ax and it is the mode with wavenumnber k

0.407 which is the last to be stabilised. Further k,,, 1. is not a monotone function of
as might have been anticipated. Figure 5b, as well as showing ( 3 ,) mar, indicates the
growth rate of the mnode with wavenumber A- = 0.476 (the value of k,',,, for the case of
zero crossflow). It can be seen that the difference in growth rates of the most unstable

imode and that with k = 0.476 is very small over the whole range of A considered.

This reinforces the earlier comment that there is a significant wavenumnber regime over
which the linear growth rate of the vortex mode is almost constant.

For each crossflow A we integrated the appropriate most unstab)le linear eigenmode

with initial amplitude A = 0.2 until breakdown occurred, and then repeated the

experiment with vortex wvavenumber k = 0.476. The results are summarised in figure
5c. It is seen that as well as exercising a stabilising influence on the linear mode,

increasing the crossflow tends to hartm a similar effect on the nonlinear modes. Clearly

the greater A, the greater the delay downstream before the initially most unstable
molde breaks away from the wall. Additionally, for the same initial amplitude 2\ and
crossflow A the mode with A- = 0.476 breaks up before the linearly most unstable mode.

Further investigations have suggested that for all choices of A and vortex frequency
Q then if two linear modes of different modes k1 > k2 are such that if initially have
the same amplitude then if they are marched downstream then it is the one with the

higher wavenumber which breaks down first.

Finally, we discuss in more detail the influence of unsteadiness on our findings. In
their study Bassom & Hall (1991) made some comments concerning the properties of

time- l dependent linearised vortices. For the majority of their work these authors were
primarily interested in examining neutrally stable modes although they did compute

a few non-neutral ones (see their figure 16). Bassoin & Otto (1992) showed that for
fixed wavenunber A, then as the frequency 0 of the mode increases so the crossflow

required to maintain neutral stability grows. In particular it was shown that for a
non ldimensional vortex frequency Q the stability prop)erties of the vortex are sensitive
to the sign of Q. In figures 6 a& I) we illustrate a facet of this sensitivity. For each

fre'quency Q and crossflow parameter A we show the wavenumber of the most unstable

linear mode. k•,na, together with the growth rate of that mode (/r),,a r. For 0 < 0, it
it is observed that as A increases from zero so k,,a, decreases whereas for Q2 > 0 this
is not the case. Correspondingly, when •2 < 0 the growth rate of the most unstable

mode is monotone decreasing in A whereas when Q1 > 0 then as A increases from zero so
there is a crossflow range over which (,13 ),,a)ta increases. This increase is not indefinite

however and there is a critical A, dependent upon (2, after which the growth rate

12



decreases. We also note that if Q, > Q2 > 0 then ,axý /1, (0i; i) < max, /J, ( 2; )
so that over all Q and all A > 0 the mode with che greatest growth rate is stationary

and exists in a two-dimensional boundary layer.

The breakdown characteristics of unsteady flows are described by figure 6c. For

each frequency 0 and A we marched the linearly most unstable mode of amplitude

A = 0.2 from x = 1. We can observe the somewhat conflicting roles played bly

crossflow and frequency.

In the main, for a prescribed Q increasing A delays breakdown whereas for fixed

A and increasing Q this phenomenon is enhanced. Notice, however, one important

feature which runs against this general rule. For positive Q then a small to moderate

crossflow actually tends to promote breakdown although larger crossflows do reverse

this effect. An attempt was made to verify this trend by considering larger values of

Q than those illustrated in figure 6. However problems were encountered as Q grew

and these difficulties can be attributed to a number of causes. Following on from work

elucidated in Bassom & Hall (1991) it is the case that for small crossflow the most

unstable linear mode first has a small wavenumber relative to the implied scaling. As A

grows then the most unstable mode corresponds to an eigenfunction that moves away

from the wall at y = 0. At Q greater than about 2 this movement occurs quickly for

small changes in A so that for quite moderate values of A the eiegnmode is far removed

from the boundary. As found both by Bassom & Hall (1991) and Bassom & Otto

(1992) the numerical solution of the governing equations becomes non-trivial as the

vortex moves out since boundary conditions need to be imposed at the wall. Clearly

for modes concentrated away from the wall large changes in /3, A or Q can lead to

almost imperceptible changes in the values of the eigenfunctions at the wall and thus

reliable numerical convergence is rendered very difficult. However, our limited further

computations for 0 > 1.5 are in agreement with the general behaviour described above.

§5 Conclusions & Discussion

In this work we have detailed the nonlinear spatial evolution of unstable G6rtler

modes in a three-dimensional boundary layer. In particular, the roles played by vortex

wavenumber, frequency, and the crossflow component of the underlying base flow have

been described. We feel that of particular importance is our finding that ( all other

factors being equal) of two modes of wavenumber within the O(G• ) regime the one

with the smaller wavelength will be the first to breakdown. This then suggests that in

practical situations it may not be the most unstable linear mode which is of ultimate

importance.

In many cases the relevant calculation to describe the breakdown of a flow is one

of a receptivity type. In this scenario small disturbances within the 1boundary layer

13



or on the wall of the cylinder can trigger Goirtlr vortices and the re'cise metthod

of this triggering frequenfly excites mnlodes of a prefe'rred wavenumller. If this occurs

iii practice then our -'alculations provide a description of the evoliitioii of the modle.

Conversely, if a range of wavenumber modes is excited two evenituialities wolild seeni to

be possible. First,, suppose that the initial disturbance is very small. Then it is to be
expected that the perturbation travels a long way dowl•stream before nonlinearity has

significant effect, the most unstable linear mode will be, dominant before this point and

its evolution characteristics will essentially describe that of the whole flow. Second.

suppose that the initial perturbation is not so small. Our results summnarised by figure

3 have shown that although there is a unique most unstable mode for each crossflowx

and frequency Q vortices with wavenumbers in a fairly -large region surrounding that

of the most unstable mode have growth rates not very different from the maximum.

Therefore, by the time nonlinearity is significant it is not clear that the immost unstable
mo(le would hte dlomninant and the breakdown characteristics of the whole flow would

involve calculations more involved than those reported here. However we have shown
that for given mode amplitude it is the higher-wavenumber modes which apl)ear to

breakdown first so that these components of a sp~ectrum of excited modes may well

prove to be the important ones.

Denier & Hall (1992) showed that when their calculations for nonlinear modes in

two- dimensional boundary layers terminated, this corresponds to the skin friction of

the flow vanishing; at some point. Once this happens marching schenmes as used both

here and in Denier & Hall (1992) cannot be continued. We confirm this finding for

our three dimensional cases as well but we also observed that before the skin friction

vanishes the velocity profile develop inflection points at positions away from the wall.

The appearance of those inflection points suggest that the flow will become susceptible

to Rayleigh waves which would give an alternative route to the ultimate breakdown.

The analysis of these modes would be of interest.

Finally, we recall that all our calculations have been concerned with considering

the evolution of perturbations of a specified wavenumber. Of course in some situations

a spectrum of modes may well be present. We have identified situations in which we

might expect one mode to donminate the others before nonlinearity sets in but in the

other cases calculations would be needed which account for an initial perturbation

which contains a number of modes. The development of a code to perform such calcu-

lations might well be formidable but it would give the definitive theoretical description

of nonlinear G6rtler vortex behaviour in three- dimensional boundary layers.

14



Acknowledgements

The authors wish to acknowledge Drs. Craig Streett, Ralph Smith, .Jim Denier

and Demetrius Papageorgiou for comments regarding the techniques used herein. The

research of SRO was supported by the National Aeronautics and Space Administration

under NASA contracts Nos. NAS1-18605 and NAS1-19480 while he was in residence

at the Institute for Computer Applications in Science and Engineering (ICASE), NASA

Langley Research Center, Hampton, VA 23665, USA. APB would like to thank ICASE

for their support and hospitality (huring a visit whilst part of this work was carried

out.

References

Aihara, Y. (1976) Nonlinear analysis of Grtler vortices. Phys. Fluid.s 19

1655-1660

Bassom, A.P. & Hall, P. (1991) Vortex instabilities in three-dimensional

boundary layers: The relationship b)etween Grtler and Crossflow vortices .1. Fluid

Mech. 232 647-680

Bassom, A. P. & Otto, S.R. (1992) On the stability of nonlinear vis(cous

vortices in three-dimensional boundary layers. ICASE Report No. 92 -15, submitted
to J. Fluid Mech.

Cooley, J. W. & Tukey, J. W. (1965) An Algorithm for the Machine Calcu-

lation of Complex Fourier Series Mathematics of Computation 19 297-301

Denier, J.P. & Hall, P. (1991) On the nonlinear development of the most

unstable G6rtler vortex mode ICASE Report No. 91-86, submitted to J. Fluid Mech.

Denier, J.P., Hall, P. & Seddougui, S. (1991) On the receptivity problenm

for G6rtler vortices: vortex motion induced by wall roughness Phil. Trans. Roy. Soc.

Lond. A 335 51-85

G6rtler, H. (1940) Uber eine dreidiiiensionale instabilitait laininare Gren-

zschubten an Konkaven Whinden NACA TM 1357

Hall, P. (1982a) Taylor-G6rtler vortices in fully developed or boundary layer

flows J. Fluid Mech. 124 475-494

Hall, P. (1982b) On the nonlinear evolution of Girtler vortices in non-parallel

boundary layers J. Inst. Maths Applies 29 173-196

Hall, P. (1985) The G6rtler vortex instability mechanism in three d(imensional

boundary layers Proc. Roy. Soc. Lond. A 399 135 152

Hall, P. (1988) The nonlinear development of G6rtler vortices in growing 1)b(nd-

ary layers J. Fluid Mech. 193 247 -266

15



Hall, P. (1990) G6rtler vortices in growing boundary layers: the leading edge

receptivity problem, linear growth and the nonlinear breakdown stage Mathematika

37 151-189

Himmerlin, G. (1956) Zur Theorie der dreidiniensionalen Instabilitat laminar

Grenschichten Z. Angew. Math. Phys. 1 156-167

Macaraeg, M. G., Streett, C. L. & Hussaini, M. Y. (1988) A Spectral Col-

location Solution to the Comnpressible Stability Eigenvalue Problem. NASA technical

Paper 2858

Smith, A.M.O. (1955) On the growth of Taylor-Girtler vortices along highly

concave walls Q. Appl. Maths 13 233-262

Stuart, J.T. (1960) On the nonlinear mneclianics of wave (listurbances in stable

and unstable parallel flows, Part 1. The basic behaviour in plane Poiseuille flow J.

Fluid Mech. 9 353--370

Timoshin, S. N. (1990) Asymptotic Analysis of a Spatially Unstable G6rtler

Vortex Spectrum. Fluid Dynamics 25 25-33

Watson, J. (1960) On the nonlinear mechanics of wave disturbances in stable

and unstable parallel flows, Part 2. The development of a solution for plane Poisenille

and plane Couette flow J. Fluid Mech. 9 371--389

16



Fi gure co

0.0
0.8 ........... ,'""

0.6

0.4

0. 2

0.0 , ;

0 10 20 K0 40 UC

Figure lb

2.5

2.0

1.0

0.5 ."""o

0.0--
0 10 20 30 40 50

Yp

Figure 1: Distribution of grid points and corresp)onding sp)acing for the calculzitiOls

performed here. The computational coordinate y, satisfies 0 < y, < 1 and is r'lat'd

to the physical coordinate yp by yp= 5 0y,/(2 - y/),24

17



H2

Flir 2: Loato of brad w on ha ii fiiil vre m ltd

fo~r the, most unstable niode• with =0, ý2 = 0.

18

• U2Un uln nmannmmmnu.• ,. . . ............



i qLurc a5

U). j5 -
0.250, " • .. }. . . ,

0.25 -

QQ -

0. 1 0

0.0 -

0.0

0.0 0.2 0.4 0.6 0.8 1.0

Figure 3:}

cuve ofa"adb ..

"--.

2-

0.0 0.2 0.4 0.6 0.8 1.0

Fig;ure 3:

a) Linear vortex growth rates i3 r as a function of wawenlunlber k" for the two most
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