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Scattering of elastic waves by a spherical inclusion - 1. Theory and
numerical results

Valeri A. Korneev and Lane R. Jolnson

Department of Geology and Geophysics, University of California,
and Center for Computational Seismology, Lawrence Berkeley Laboratory,

Berkeley, California 94720

A complete and exact solution for the problem of an incident P wave scattered

by an elastic spherical inclusion is presented and described. The solution can be

obtained from either analytical formula% or stable numerical procedures. A method of

estimating the number of terms that must be retained in the harmonic series in order

to achieve a specified accuracy is given. The results are investigated by calculating

synthetic seismograms, scattering diagrams, and scattering cross seclions for a broad

frequency band and for both low-velocity and high-vclocity inclusions. The fields

within the shadow zone are formed primarily from three different types of waves, P

waves transmitted through the sphere, P waves diffracted around the sphere, and S

waves converted at the boundary of the sphere. The relative contribution from these

different waves depends upon the distance of the observation point from the sphere.

Key words: elastic waves, sphere, scattering, diffraction

1. Introduction

The fact that the earth is not a homogencous bNly has forced seismologists to consider scattered

waves in their attempts to explain some of the features they observe on seismograms. Elastic wave

scattering has been called upon to explain a variety of different phenomena which are routinely

observed. These include the phase and amplitude fluctuations of waves arriving at a seismic army (Aki,

1973), the precursors to PKIKP (Haddon and Cleary, 1974), and the codas of local earthquakes (Aki,

1969). In addition, the attenuation of seismic waves is usually interpreted as being a combination of



intrinsic absorption and scattering (Aki, 1980).

The general problem of scattering of elastic waves by a heterogeneity within the earth is a

difficult one and analytical solutions are known for only a few special cases, and even in these instances

we solutions are complicated and laborious to calculate. Thus, most attempts at interpreting scattered

seismic waves have relied upon approximate treatments of the scattering theory. A number of approxi-

mations are possible and are related to such parameters as the size of the scatterer, the shape of the

scatterer, the distance of the observation point from the scatterer, the magnitude of the heterogeneity,

and the number of times the wave has been scattered. Assessing the validity of these approximations is

not a simple matter and has been addressed for only some of the approximations (for example, Hudson

and Heritage, 1981). The matter is further complicated by the fact that more than one approximation

may be involved in the same problem, and it is not always obvious that the different approximations are

consistent.

The best method of checking the validity of the approximations which are made in scattering

problems is to compare them with exact analytical solutions. In this paper we develop and discuss the

properties of one such solution, the scattering of a plane P wave by a spherical inclusion. The method

of obtaining the analytical solution is outlined, the numerical methods used in calculating the solution

are described, and some of the important features of the solution are described and discussed. The

results contained in this paper are the starting point for a companion paper (Komeev and Johnson,

1992), which makes detailed comparisons between various approximations and the exact solution.

In sctling up the theorelical problem for elastic wave scattering, one must choose a model which

is complicated enough so that it resembles situations found in the earth and at the same time simple

enough to allow tractable solutions of the mathematical equations. We have chosen to model a local

heterogeneity as a homogeneous elastic sphere surrounded by a homogeneous elastic medium. The

elastic constalts and density of the spherical inclusion can be arbitrarily different froim those of the sur-

rounding medium. The sphere can also be filled with a fluid. The sphere is one of' the few objects for

which the scattering problem can be solved exactly. It also has the desirable property of being describ-

able by a minimum number o-r parameters, which makes the interpretation of the analytical and
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numerical results relatively simple. Furthermore, scattering by a sphere represents a canonical problem

for a more extended class of objects with relatively simple and smooth boundaries, and thus the results

presented in this paper contribute to the general understanding of scattering from this class of hetero-

geneities.

2. Theory

The analytical treatment of scattering of elastic waves by a spherical inclusion has a long and rich

history, dating back to the classical papers by Clebsch (1863) and Rayleigh (1871). Much of the earlier

work was restricted to scalar (acoustic) waves, hollow inclusions, or rigid inclusions. Much of the more

recent work on the scatterering of elastic waves by a spherical inclusion has been associated with the

names of G. I. Petrashen in the USSR and R. Truell in the USA. As early as 1944 Petrashen was

studying the scattering problem for an incident P wave, where he made use of a natural spherical vector

system which he had developed earlier for the purposes of quantum mechanical problems. The later

studies by Petrashen and his students were concerned mostly with obtaining asymptotic representations

for different kinds of regular and diffracted waves formed by a sphere (Petrashen, 1946, 1950a, 1950b,

1953; Buldurev and Molotkov, 1958), such as head interference waves for the scalar case (Buldyrev and

Molotkov, 1960), failure waves for the scalar case, surface waves on an isolated elastic sphere (Gelchin-

skij. 1958), and complete solutions for an elastic sphere (Korneev, 1983; Korneev and Petrashen, 1987).

Related work includes the theoretical and experimental studies of acoustic waves incident upon an elas-

tic sphere by Nigul et al. (1974). Independently, Truell and his coworkers (Ying and Truell, 1956; Ein-

spruch, Witterholt, and Truell, 1960; Truell, Elbaum, and Chick, 1969) also made important contribu-

tions to the solution of this problem. The basic equations that are obtained when displacement poten-

tials are used along with summaries of some of the work mentioned above can be found in such books

as Morse and Feshbach (1953) and Pao and Mow (1971).

The basic method tollowed in the above papers is to write the solutions inside and outside the

inclusion in terms of appropriate eigenfunctions of the differential equations and then couple these solu-

tions by matching the boundary conditions on the surface of the inclusion. It is also possible to
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formulate this problem as an integral equation by making use of the elastodynamic Green function f'r a

homogeneous medium. Further information on this approach can be found in Miles (1960), Haddon

and Cleary (1974), Varatharajulu and Pao (1976), Waterman (1976), Hudson (1977), and Gubernatis et

al. (1977a, 1977b).

In this section we outline a method of obtaining the general solution for the scattering of a plane

11 wave by a spherical inclusion. Although a solution to this problem can be found in several of the

papers listed in the previous paragraphs, we repeat it here for completeness and also to introduce a set

of spherical basis ,ectors which are used in our solution but are not common in the English literature.

These basis vectors were developed by Petrashen and have properties which are convenient for solving

vector function problems with spherical symmetry.

Consider the configuration shown in Figure 1. Joint Cartesian (x,y,z) and spherical (r.0,}O

coordinate systems will be used. Centered about the common origin of these coordinate systems is a

sphere of radius r = R. The volume within this sphere will be denoted by the index v = 1, while the

volume outside will be denoted by v = 2. The materials inside and outside the sphere will in general

be different, and the properties of these materials are completely described by the Lune parameters and

density

A, - cons[. p, = const. , Pv = const. , (v = 1,2) (2.1)

Incident from medium v - 2 is a harmonic disturbance with a displacement field given by

Q, = U1 (A V.: ) e" (2.2)

'Ibe interaction of this incident wave with the sphere gives rise to additional displacement fields both

inside and outside the sphere, and these are denoted by

U, = U, (x,y,z) e"v . (v = 1,2) (2.3)

"These additionad disturh~uiccs will bc referred to aL the scalltered fields. Associaled with each field is a

stress tensor. We will only need the traction on sphericld surfaces and this is given by

tfv)(U,) = A V. Uv F + 2pa-. + lAbIf" x Vx U,] (2.4)
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where P = rir is the unit radius-vector. We also denote the velocities and slownesses of both compres-

sio•ldl :uld shear wavcs hly

= =- I V(V, y (2.5)

The incident field of equation (2.2) and the scattered fields of equation (2.3) must all satisfy the

elastodynamic equations of motion in mediums v = 1,2,

(Xv+2jiv) V2 U, - pv VxVxU, + pvo)2Uv = 0 (2.6)

Taken together the fields must satisfy the bo•ndary conditions on the surface of the sphere, which are

that the displacement and traction should be continuous. Thus we require that

U = U+ U, and t ,¶')LU = tr(2)[U(, + U2] (2.7)

where all of these cqualions are evalualed at r - R. We also require that the scattered fields remain

finite within the sphere and satisfy a radiation condition at large distances from the sphere

U-, z c(0,0 e''t r +-4 o (2.8)

r

where k = - Vp(2) or k = Wo/V)2ý. This is a well-po)sed problem in that, given the incident wave, the

boundary conditions are sufficient to solve for the scattered fields and thus arrive at a unique solution to

the problem.

Now let us consider the special case of an incident wave which is a plane harmonic P (compres-

sional) wave propagating in the direction of the positive z axis. In this case we have

UO = e " (2.9)

where i is a unit vector in the z direction. We construct the solutions by introducing the system of

spherical vectors developed by Ptr'ashen (1945, 1949)

Y Y"(0.) r x VY (0)

Y Y (0,= (1+!) F Yi,.(0,0) - r VYL,,(0,•4) (2.10)

Yb,- Y ,(0,) 4 I P Y,, (0,41) + r VY,.,(, 0,)
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with the usual definitions for the spherical harmonic functions

Y (0,0) = e/"" PPN(cvsO) 1 > 0 , (-H 5 M < 1)

This system, whose main features are outlined in Appendix A, leads to particularly simple equations in

I,• lr )rblciln of spllerical sylnin ciry. I Ising the systcln of cqualtion (2. 10). an arbitrary vector f unction

U can be represented in the form

U= X i•(r) Y¥ + y+ (r) Y+" +i(r)Y 1} (2.11)

U LM OIm I LM

where the 14/,,, (r) are unspecified radial functions at this point.

The particular incident wave of equation (2.9) has the representation

U( = jl+1 (coa 2r) YIj -j,](oxa2r) YI-0 e 2 (2.12)

where the jk(A ) are spherical Bessel funclions. The displacement fields of the scattered waves U, and

U, Iim lnieq iiuaiOl (2•.) coulid ;also I• rcepicscniled ill iCi llas o)f . Selies If the splhcliat'il vclf()i o 1 cqli;l-

tion (2.10). Making use of the structure of the series in equation (2.12) ft)r the incident wave and the

orthogonal properties of the spherical vectors (see Appendix A), it is possible to show that U, and U2

can be represented by

U, = X{[atdJ,+,(oxxIr - lb,'')',1+,(io.r )jY1'.

+ [-al1 )jl-(ojoajr) + (1+1)bl(I)jl-.l(°(1r) Yi,( }e2 (2.13)

r • )]hjl -,-•i.+ Y

+ [_0112)h I_,(nxxr) + (1+1 )bl,2(hIJi(toW ir) Y ) 1 e 2  (2.14)
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where ailv) and b"v) are now unknown scalars and the hk(x) lare spherical Ilankel functions of the

.second kind. Note that the spherical Bessel functions jk (X ) of equation (2.13) are finite throughout the

inclusion and the spherical Hlankel functions hk((A) of equation (2.14) have asymptotic representations

for large argument that satisfy the condition in equation (2.8). Also note that with the basis vectors

being used here, the displacements in equations (2.13) and (2.14) separate into compressional and shear

fields, so that either equation can be put in the form

UV = OU,' + UV' (2.15)

with the aj(v) associated with the P field UV and the b7(V) associated with the S field UV, and with the

following conditions satisfied

VxU =- 0, V. UY - 0. (2.16)

To determinate the coefficients al(v)and b.(v) in equations (2.13) and (2.14) we have to satisfy the

boundary conditions of equation (2.7). Making the necessary substitutions, evaluating the expressions

for r = R, and using the orthogonal properties of the spherical vectors, one arrives at a separate set of

linear equations for each value of 1. When 1 = 0one can take advantage of the fact that Y( = 0 to get

the abbreviated set of equations

W oaj = 02 J (2.17)

where

W11= L 01 (2.18)

Oý= Y"ý-JO(ý,) - 4ic(ýkvJ

- Y2 [ý21
02 = " [-2 h(4,,) - 4h(4 2)]

E t,, iR TI (219

av PIP2(2.19)

tv
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When 1 _> I a full set of four equations with four unknowns is obtained of the form

WF, =F, (2.20)

where F1 and , 1 are the column matrices

F, = [a,. b,'). a,(2), bt('2JI (2.21)

and

p, = [ti+I(i2) J,--&(2), C2, C (2.22)

and the matrix W, is given by

)til(A,) Olt.101) -hl I (k2) -Ihl.1(712)

-j-Jl-(ý,) (1+1) )t-I('q) h,-1 (42) -(1+1) hj-1('2)

W = KC K1 D' -e+ -! f) + (2.23)

XIC- -K:(/+I)DI- -C2• (/+1)0 2"

The following notations are used here

C WJi() 1-2 (1-2) hJ.-(ý,,)

V-} = 2 [. h(,) - 2 (1-1) hi-+(:v)

D } = T iV ) -2 (1-l)_J ]

, ; } , I h,(n,,) -2 (1-1) hl-(n+6

It can be s.,,,wn that the deterninants of equations (2.18) and (2.23) arc always diflercin from

zero, so in principle it is always p'ossible to solve the systems of equations (2.17) and (2.20) for the

unknown coefficient,, al and 1),v• for any 1. However, because of the asymptotic propwrties of the

unknwn cethieiis asmpttic ropetie



mainx elements, numerical difficulties can be encountered when solving these systems of equations.

This will be discussed in the next section.

Finally, note that the coefficients al(v) and b,(') for any I are completely defined by the member

of the series in equation (2.12) for the incident wave with the same 1. That is, there is no coupling

between harmonics associated with different values of I. This means that a scattering problem for the

sphere with an incident wave represented by any member of equation (2.12) with index I could be con-

sidered, and the results would be the corresponding members of equations (2.17) and (2.20) with the

same index I. To illustrate this point we will show how the solution for an incident wave generated by

a point pressure source can be obtained by a slight modification of the solution for a plane wave source

developed above. Consider a point pressure source located at the point R(, = (Z1,,0,0) where Z, > R.

This will generate a displacement field U) of a spherical P-wave

U) = -v e-P -Ir-R,,I = -ik2X {j+t(k,,r) Y', - jl_,(k,,r) Yjj hl(k,, Z,,1  (2.24)

Each member of the series in equation (2.24) differs from that in equation (2.12) by the coefficient

, -C(1+l I
Cl = -i. e I h, (kp.Z 0 )

Thus the solution for the point pressure source is simply obtained by multiplying the members of equa-

tions (2.13) and (2.14) by cl. The equations (2.17) and (2.20) are unchanged.

3. Numerical considerations

To calculate the scattered fields U, and U2 using the scries in equations (2.13) and (2.14) we

have to solve the linear systems of equations (2.17) and (2.20) for all I _> 0 . These systems of equa-

tions are generally solved by numerical methods, which means that the numerical stability of the calcu-

lations are a concern. The coefficients of the matrices W, in these systems include spherical Bessel

and Hankel functions, whose features for 1 : 1 are characterized by the formulas

- Z I1 0 -+ - (3+.1)

I(z) Z os -(I + h - e 2 (3.1)
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if z : 1, and

J [(z)2 . h,(z) : [- ' (3.2)

ifz -cl ,where

1+-
2

z

Because of different ratios between I and the arguments 1, 42, T11, and 112 of the functions j, and h,

that appear in equation (2.23), the orders of the different columns of this matrix can became quite

different. In particular, for the case I -ý - the coefficient% in the two first columns go to zero while

the other coefficients go to infinity. In such a situation numerical calculations on a computer can

become unstable before achieving the necessary accuracy.

To avoid this situation, we redefine the unknown variables alt~) , b,(v) as new ones x y/ , yfv) by

the ftormulas

a,('= h,(•1,) x I') bl,'' = hl(h11) yV)

at(= h,-1(4 2 ) xj2 ) b (2)= hi-'(ri 2) y12) (3.3)

Now, if we let the unknown column matrix be

X, = x10) , (, (2), Y( 2 )]T (3.4)

the system of equation (2.20) will be

W, X, F (3.5)

where the column malrix F, is the s•;ne as in equation (2.22), and W, can be obtained from equation

(2.23) by multiplying its columns by h,(ý,) , h,(rT,) , hl-'( 2 ) . h,-'O12 ) , respectively. Now the

coeflicients of the matrix W, have values of approximately the same order (they difler from each other

no more than by a coefficient of order I) and the numerical difficulty mentioned above vanishes.

The change in variable given by equation (3.3) is also helpful in solving another numerical prob-

lem, that of determining how much of the infinite series of the solutions in equations (2.13) and (2.14)

10



must be retained in order to achieve a given accuracy. Note that the unknown coefficients now are of

the same order as the members of FP

x,/V) _ yM ( - _ ,(•2) (3.6a)

and for 1 > k2 we obtain the estimate

I • 1 I _
"X,(l - -(V 2 - e -N (3.6b)

where

1, =- 4 + N (N > 1) (3.7)
2

is taken to be sufficiently large (Io :• 1) . Thus, the coefficients xj(v) and yt(V) go to zero exponentially

when I Ž> -e + N ind N -4 -. Using the following relations obtained from equation (3.3)
2

U10) j,+_(0war) 
r

RI

bll) j,±1(Cnf3r) vj1")h,(Ti1)j,+1(T rl-)F (r <R)
R

a,(2) hi±1(toozr) = xl2)hl(k2-- )/ht(42)

(r > R)
b,12•) h±,+(o$32r) = (')h,±I(TIR)/ht(TI2)

and the "limited" character of the values

R IR

it is clear that the series in equations (2.13) and (2.14) converge at a rate that is equal to or greater than

the series in equation (2.12). Therefore, if we take the first 10 members of the series, with 1J, specified

by equation (3.7), the absolute error of the calculations will not be greater than a value of order e-.

When any of the arguments , , Tm, is no more than k2, the error in the respective series decreases with

increasing r as (r/R)I'o in medium v = I (r <R) and as (R/r)I' in medium v = 2 (r > R). Thus,

given a error tolerance for the calculations of the fields U,(r,0), we can estimate a number l0 for any

11



frequency o) and sum the series in equations (2.13) and (2.14) for I < 10. Test calculations showed

that N = 15 in equation (3.7) is sufficient to give an accuracy of 10-8 or better.

As mentioned at the beginning of this section, the system of equations (2.20), or equivalently

(3.5), are generally solved by numerical methods. However, analytical solutions of these systems are

possible, although laborious, requiring the equivalent of inverting a matrix of rank tour. This has been

done and the results are given in Appendix B. Having two different solutions of the same basic equa-

tions is quite useful in checking the stability and accuracy of both solutions. Thus the analytical solu-

tions of Appendix B were used to check the solutions that were obtained by numerically solving equa-

tion (3.5). This comparison showed that for l0 given by equation (3.7) with N = 15 the numerical solu-

tion of equation (3.5) is stable and gives the same result as the analytical solutions. For N > 15 (accu-

racies better than 10-8) the calculations revealed that the analytical solution gave more accurate results.

It should be mentioned here that all of the calculations discussed in this paper were done with double

precision arithmetic.

There is another way of estimating the accuracy of the calculations without considering the pro-

perties of the coefficients a, and bh. This approach takes advantage (if the observation made earlier that

there is no coupling between harmonics associated with different values of 1. Thus one considers the

expression for the incident wave in equation (2.12) evaluated on the surface of the sphere (r = R) and

truncates the series at a value of 1 that gives the desired accuracy in representing the incident wave.

Then the a, and b, summed up to this same value of I can be considered as either the exact solution to

the truncated version of the incident wave or Ls the approximate solution to the anadytical version of the

incident wave having the desired accuracy.

4. Scattering cross sections

A useful method of characterizing scattering by an object is to calculate the energy of the scat-

tered waves and compare it to the energy of the incident wave. Various forms of this ratio between the

scattered and incident energies are called scattering cross sections. The energy of the scattered waves

can be obtained by calculating the energy flux of scattered waves through a surface S that completely

12



surrounds the object. Noting that the energy flux per unit time through a surface element ds having a

normal n is given by (U t,, [U]) and that the energy flux averaged over one period is

a) lm(U - t,[UI)/2, then the total energy flux per period through the surface S is given by

F = -lmf(U - t:[U]) ds (4.1)

where (*) means the complex conjugate. The same reasoning applied to the incident P wave yields an

energy flux per unit area of the wave front of nd2at2 (X2+2g.2)/2.

Now we follow Truell et al. (1969) and define a normalized cross section as the ratio of the flow

of total energy carried outward by the scattered waves to the rate of flow in the incident wave through a

normal area equal to the cross-sectional area of the object (geometric shadow of the object). In our

case we let S be a spherical surface of radius r,, with r,, > R and the normalized cross section is given

by

D Imds
IM r oa]O2(X2+292)nfR 2

where (D can be calculated by using either of the lonnulas

4) = (U2 Ct[U2]) (4.2a)

or

4) = - (U2• t. U, l) - (UM,- tf[U21) (4.2b)

The second expression for (D is easily obtained from the fact that the scatterer generates no additional

energy, which leads to the conditions that for both the incident wave UO and the total field UO+U 2 there

is z7ero net energy flux across the surface S so long as it is entirely contained in medium v=2.

Using equation (2.4) for the traction vector, the series in equations (2.11) and (2.14) for U(, and

U,. and orthogonal properties of the spherical vectors, we can obtain two different expressions for oN

(2+l) M + 0(72 + )2 ) (4.3a)
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or

IN = -4 ,(2 + 1)Re (4.3b)

This result together with the earlier noted fact that the coefficients for different values of ! are not cou-

pled means that we must have

a2 1
2 2 + (I + 1)y3 I b,(2) 1 Re a(2) (4.4)

for any value of 1. This relationship is useful in verifying numerical calculations.

The function oN from equation (4.3) is closely connected with the value of the field U2(r,O) of

scattered waves that is observed along the positive z axis for large r (r : 2nVp /o) . Using asymptotic

expressions for the spherical Hankel functions in equation (2.14) we obtain

U2(r,O) = 2 R (21 + 1) a,(2) 1
+O(

r

where

A0 = i R j(21 + 1) a(2)

Comparing equation (4.5) with (4.3b) we have

Im A()
ON = -4 R- (4.6)R 2

which is analogous to an optical theorem tbr elastodynarnics. This expression in equation (4.6) is a

useful relationship between the anplitude of the forward-scattered field and the total energy scattered in

all directions by the obstacle.
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5. Numerical results

One of the primary purposes of this investigation was to gain an understanding of the features of

waves scattered by a local spherical heterogeneity. This problem can be studied with approximate

methods, such as ray theory, but it is not always clear if the information provided about amplitudes and

waveforms is accurate. With the results presented earlier in this paper, it is possible to calculate these

scattered waves with the assurance that the results are complete and accurate. Unfortunately, the results

such as equations (2.13) and (2.14) are not very revealing in the form of an analytical series and must

first be converted to sonic graphical lomn, such as synthetic seismograms or scattering cross sections,

before the physical properties of the scattered waves become apparent.

We are interested in knowing what types of waves are scattered by a sphere and particularly

interested in understanding where the scattered waves with the largest amplitudes can be found in the

region surrounding the sphere. It is possible to argue that the main features of such waves that are scat-

tered by a sphere will be approximately the same for a wide class of smoothly-shaped three-dimensional

heterogeneities, and this broadens the utility of the results presented in this paper for providing insight

into realistic seismological problems.

First consider the matter of what types of waves are scattered by the sphere and their relative

amplitudes. These effects are best observed in the time domain, which requires that the frequency

domain solutions obtained in this paper be transformed to the time domain. This was done by applying

a numerical Fourier transform to the solutions and by assuming a broad band pulse as the form of the

input wave. This source pulse had constant amplitudes in the frequency band between 0.00 and 64.0

liz with a sampling interval of 0.25 Hz, which means that the pulse contained wavelengths that ranged

from more than one order of magnitude smaller than the radius of the sphere to more than an order of

magnitude larger. Synthetic seismograms were calculated for the positions that are shown in Figure 1,

which lie on a line offset a distance z from the center of' the sphere in the direction of forward scatter-

ing and extending from the center of' the shadow into the fully illuminated zone. Because of the sym-

metry of the problem, there are only two non-zero components to the solutions, U, = U,,(x ,Oz ,1) and

U, = U (x,0.,Z).
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The solutions presented in this paper can be calculated for arbitrary elastic properties inside and

outside the sphere, including the case of a fluid inside the sphere. Here we present results for two

models, one representing a low-velocity scatterer and the other repremnting a high-velocity scatterer.

The elastic parameters for these two models are as follows:

model I V. 0 = 4.5 kIn/s , V," = 2.6 km/s , = 2.3 gm/cm 3

V 2P) = 6.0 km/s , V(2) = 3.5 km/s P2 = 2.7 gm/cm 3

model 2 - V M = 7.5 km Is, V1) = 4.4 kmIs, p = 3 .1 gm/cm 3

s = 6.0 kms V 2 -3.5 km Is P2 = 2.7 gm/cm3

Note that there is only one physical dimension in this problem, the radius of the sphere R. Thus all of

the other parameters in the problem can be scaled with respect to this parameter, which is given a value

of unity in the results that follow. The velocities and frequencies scale with R in the sense that the

results are invariant so long as the expressions of equation (2.19) and the ratio rOR remain constant.

Synthetic seismograms are shown fotr three different values of the offset distance from the sphere

z in Figures 2, 3, and 4. The results for the low velocity scatterer (model 1) are shown in the upper

parts of these figures and those for a high velocity scatterer (model 2) are shown in the lower parts. In

all of these figures a distance of I km along the x axis represents the edge of the geometrical shadow,

since the value R = I km was used for the radius of the sphere.

It is useful to associate geometrical ray paths with the primary features of the synthetic seLsmo-

grauns. Within the torward shadow there are three main types of scattered waves. These are:

1) A compressional refracted wave P 2PIP 2 that goes through the sphere. 2) A shear refracted wave

that goes through the sphere as PP IS2 for a low-velocity sphere and as P 2SIS 2 for a high-velocity

sphere. 3) A. compressional diffracted wave P2P2 P2 that gocs around the surface of the sphere. The

relative contributions of these different waves to the total seismogram depends upon the offset distance

z from the center of the sphere.

Vor near ollset distances z = 2R (Figure 2), the wave P2P P,. dominates the first arrivals within

the shadow on the : comirxnent. For a low velocity sphere (model I) it has a reversed polarity and
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arrives after the wave diffracted around the outside of the sphere. Note that there is a strong focusing

along the axis for the low-velocity sphere but not the high-velocity sphere. The diffracted wave

Pz/ 2P 2 has a smaller aunplitude within the deep shadow at this offset distance. This low-frequency

wave loses amplitude exponentially along its ray path around the sphere and is delayed in time with

respect to the undisturbed incident wave. The shear waves P 2PIS 2 (low-velocity case) and P2 SIS 2

(high-velocity case) are strong on the x component and have a compound wave structure, involving a

caustic and two diffracted waves. The caustic is due to the fact that the sphere is a low-velocity zone

for both of these waves. and extending beyond this caustic are low-frequency diffracted waves that

attenuate rapidly with distance. For the low-velocily sphere this diffraction from the caustic begins to

interfere with the P 2P P, wave at this offset distance. Behind this caustic and its diffraction is the

wave that has been refracted through the opposite side of the sphere and thus arrives at a later time.

Along this branch of the wave there is a transition from a geometrical ray arrival to a diffracted wave

that continues on to greater distances, although the point of this transition is not obvious on the seismo-

grams. Note that, because of focusing effecls and near field terms that are important at this offset dis-

tance, these waves have significant amplitudes on the z component of motion near the center of the sha-

dow. In fact, at x = 0, we have the unusual situation of an S wave that appears only on the z com-

ponent.

For medium offset distances z = 4R (Figure 3), all three of the waves P 2PIP2, P2P2 P 2, and

P,S1 S," have comparable amplitudes. The waves PPIP2 and P2P2P2 arrive closely in time and inter-

fere with each other. The PP S 2 and P 2SIS 2 waves are now separated in time from the other phases

and their compound nature is clearly evident.

For the larger offset distances Z = 8R (Figure 4), the wave P 2 P 2P 2 is dominant on the z com-

ponents, as the shadow is not nearly so deep as at the smaller offset distances. The wave P 2 PIP 2

which has passed through the sphere is relatively small compared to the wave which has diffracted

around it. On thc x componciII\ the waves P 2PiS 2 and P 2SIS 2 are the dominant arrivals and still

display their compound wave forms. It is worth commenting on the reason why the P 2 PIS 2 wave is

the dominant shear wave arrival for the low-velocity case, while P2 S1 S 2 is dominant for the high-
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velocity case. These are the S waves that see the smallest change in material properties upon both

entering and leaving the sphere, and thus the amount of energy lost to reflection and also the amount of

strong focusing is minimized. In contrast, the wave PSIS2 for the low-velocity case encounters a large

change in velocity upon entering the sphere, which leads to more energy lost to reflected waves and

also causes focusing so strong that the focal point lies within the sphere. Likewise, the wave P 2PIS 2

for the high-velocity case encounters a large change in velocity upon leaving the sphere.

It should be emphasized that, regardless of the distance from the scatterer, there is a significant

amount of motion on the x compoment. Recall that the displacement on this component would be zero

if the sphere were not present, so we see that scattering is an effective means of transferring motion

from one component of motion to an orthogonal component in the direction of forward propagation. At

the larger offset distances and for boith the low-velocity case and the high-velocity case the shear waves

are the dominant contributor to the x - component seismograms.

A slightly different presentation of some of the data from Figures 2, 3, and 4 is shown in Figure

5. Here the seismograms for the z component at the center of the shadow are shown as a function of

the offset distance z. They show quite clearly how the dominant wave type in the shadow changes

from P 2PIP 2 at small z to P-IPP, at large z for the cases of both the low velocity inclusion and the

high velocity inclusion. Note that for the low velocity inclusion the P 21 2P 2 wave is the first arrival,

whereas for the high velocity sphere it is the P2P IP1 wave that arrives first. This figure also illustrates

how the low velocity sphere is much more effective in focusing energy into the shadow than is the high

velocity sphere.

These results show that, depending upon the distance of the observation point from the scattering

oblect, the dominant part of the seismic field in the shadow zone may be composed of waves having a

lundanentally different nature. Moreover, in the case of' low frequencies it may be difficult to separate

these different waves from each other on the basis of travel times. It would appear that results of this

type would he applicable to various types of seismic tomographic methods. For instance, the results in

Figure 5 show quite clearly that al ab,,crvalion points distuat from the inclusion mnore than a few times

its dimension, the dominanl wave has been diffracted around the obstacle rather than passing through it,
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which differs from the common assumption made in seismic transmission tomography. Because of this,

the travel time anomaly will decrease with distance from the inclusion. Obviously, when solving

inverse problems to obtain estimates of the properties of the scattering object, it is important to have a

proper understanding of what types of waves are dominating the seismograms in order that the correct

algorithms can be applied.

So far we have considered only forward scattered waves and the results have been illustrated with

broad band time domain seismograms. To obtain a better understanding of how the scattered fields

depend upon frequency and also to expand the spatial coverage to include back scattered waves, it is

convenient to consider scattering diagrams. The field U2 from equation (2.14) can be represented in the

form

U2= [U, ()j, F~ + [U, (0)].9 + lIUs(0)], f~ + tUs (0)]e0O (5.1)

Then, using equation (2.14) and the definitions of the spherical vectors, we obtain the following expres-

sions for the scattering diagrams for the P and S fields

-1-(1+1) ah, (ý)P(cs)
UP(, = - 1_aŽ-( )(21+1) e 2 P,(Cos )

I _

U ) = -
2 (2/+) -la+hl aP(cos)

[U,')J = lE,2(I+l)(21+l) e -2 .+'h(rl)-

U1(O) = ,___ 111) e2 P,(cosO) (5.2)

UI ? ._ 1 e1 + -

where we have assumed thai the parameters

(o r (o r

r- V(5.3)

are evaluated for any r > R.
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Scattering diagrams for six different ratios of R/k that range from less than 0.1 to greater than 3.0

and for both models are shown in Figure 6, where the radius of the observation point r is taken large

enough that nea'-field terms are small and the scattered P and S waves have their natural polarizations.

A number of interesting results emerge from the study of these figures. First, at low frequencies more

of the incident P field is converted to scattered S fields than to scattered P fields, while at high frequen-

cies just the opposite occurs. Second, at low frequencies the portions of the incident field which are

forward scattered and back scattered are comparable, whereas at high frequencies most of the scattered

field lies in the forward direction. At the highest frequencies we approach the case of only generating a

forward scattered P field. Third, in terms of the shapes and amplitudes of the scattering diagrams, there

are only minor differences between the case of the low velocity inclusion and that of the high velocity

inclusion. This is consistent with the results shown in Figures 2-5, where the differences between the

low and high velocity case are most pronounced at small distances from the inclusion and tend to

diminish at larger distances. Obviously, the near field parts of the solution are more sensitive to the

sign of the velocity anomaly of the inclusion than are the far field part%.

Finally, to obtain even more detailed information about the frequency dependence of the scattered

fields, it is instructive to consider the scattering cross sections defined in Section 4. These scattering

cross sections are plotted for both the low velocity inclusion and the high velocity inclusion in Figure 7.

An interesting result shown here is that at low frequencies (k-, R < 2) more energy is scattered into the

S field than into the P field, with the ratio reaching a factor oi 2 or more in some ranges. At high fre-

quencies (kR greater than about 5). the scattered energy flux is primarily in the P) field. In this range

the long large amplitude oscillations are caused by interference between P,PIP, and P,P,P, waves.

The short small unplitude o.cillations that appear only for the case of the low velocity sphere are

caused by the focusing characteristic of a low-vclocity inhomogeneity, essentially the waves multiply

reflected within the sphere that arc evident in Figure 5.

In both the scattering diagrams of Figure 6 and the scattering cross sections of Figure 7 the

amplitudes of the scattered fields have been displayed, but inlonnation about their phases are not

shown. It is important to remember that outside the sphere the total solution consists of the sum of the
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incident field U, and the scattered field U2, and these two fields can add either constructively or des-

tructively. From a physical viewpoint it is clear that when the primary field U( interacts with the inclu-

sion, it loses that part of its energy which is converted to scattered waves and this causes a change in

the primary field. Thus, the additional field U, must include both this change in the primary field as

well as the secondary scattered waves. For instance, in the deep shadow where the total field is approx-

imately zero, the field U2 must have a value that is close to - U(, in order to compensate for the pri-

mary field. Consequently, in the scattering diagrams of Figure 6 the forward scattered P field

approa,.hes a value of I at high frequencies, hut this is mostly present in order to cancel the primary

wave so that the total field present in this region is actually quite small. In the case of the scattering

cross sections of Figure 7 this same phenomenon causes the ý;cattcred P field to approach an asymptotic

value of approximately 2 at high frequencies. This fIllows from the fact that in this frequency range

the scattered field consists of two basic terms, the energy necessary to cancel the primary field in the

shadow and the energy which is scattered by the sphere, and by conservation of energy these two terms

must be equal to each owter and equal to the incident energy which is used to normalize the cross sec-

tions. It helps in understanding this phenomenon to consider the case of a perfectly absorbing sphere,

in which case there will not be any waves that are actually scattered, but the normalized scattering cross

sections will still have a value of 1.

6. ConcluitondS

The results presented in this paper can be used in a number of different ways. First, the complete

and exact solution for the scattering of an elastic P wave by a spherical inclusion is presented in a con-

venient form. T'he various terms of the solution can be obtained either from the analytical solutions or

a stable numerical procedure. Furthermore. a simple expression is developed for estimating the

number of terms required in the harmonic series solution. The results are appropriate for arbitrary non-

absorbing spherical inclusions, including fluids, and fIr all frequencies.

The numerical results calculated for the waves scattered from a spherical inclusion display a rich

variety of interesting phenomena, some of which were briefly investigated in this study. In addition to
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the wavelength of the incident wave, the results depend criticall;y upon the distance of the observation

point from the scattering object. Within the shadow zone the waves which dominate the solution near

the scatterer are quite different from those that dominate at larger distances. The solutions for low

velocity inclusions are quite different from those for high velocity inclusions when near the scatterer,

but these differences diminish at larger distances. Also, the solutions demonztrate that an inclusion can

be quite effective in transforming incident P waves to scattered S waves, which may be important in the

formation of seismic codas.

The results presented in this paper should also be applicable, in at least an approximate manner,

for problems involving scattering from heterogeneities more complicated than a simple sphere. Scatter-

ing by a sphere serves as a canonical problem for a general class of objects with relatively simple and

smooth boundaries. It is expected that many of the scattering phenomena associated with the spherical

inclusion will also apply to this wider class of heterogeneities.

Finally, as mentioned in the introduction, the results of this study can serve as the starting point

for an investigation of various approximations that are typically made in the interpretation of scattered

seismic waves. In assessing the validity of these approximations it is important to make comparisons

with the exact solutions.

Appendix A - Spherical vector system

The spherical vector system used in this paper and it+, application to the problems of elastodynam-

ics were developed by G. 1. Petrashen. Hlis original papers were published many years ago and in Rus-

sian, and are not readily available today. Thus we have included a brief summary of the system and its

main properties in this appendix. Mo•-c information can bxe tound in Petrashen (1945. 1949) and Kor-

necv anid Petrashen (1987).

In a spherical coordinate system (r.0,O} with unit vectors (iO,*) the spherical vectors are

defined by the expressions

' =- Yl', (0.0) =- r x VY1,(0,0)
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Y1M Y+ 0()=(1 +1) F~ Yim,,(0,0) - r V Yjým(0,0) (Al)

I Y M(0.41) = I f Yjm (8,i) + r V Yi,(0.0))

with the usual spherical harmonics

Y, (0,) = e"m P'(c-osO) I Ž!0 tit • m I

where Pl'(x) are the associated Legendre fuinctions

M2 d'l"m (x 2 1 )'

(I + mIn 1)!

In a spherical coordinate system these vectors have the components

Ysin a o

ao ssin aý

Y1+nf ~ = +1 Y - ,L I ___ A2

ao sinO ao

In a Cartesian coordinate system the components are

M #- [Yt.n,4I + (I+m)(/-m+I) Y1,1- ]

- I~ [ YI - (1 +1,)1-M +I1) Y, + urn Y',, 1

IM 2 Y[ ,,+ - (L-1fl+I)(1-rn+2) Y1+l,,r-j

+ 4-. [ +, + (I-m+l)(1-nz+2) Y1+1,,-., 3 + (1-,n-iI) Y1+.1M i (M3)

2i
2L y1,", - (I-+m)(I+-s-n-) Y i,,.
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The spherical vectors of the system in equation (Al) are linearly independent at any point (0,0)

on a spherical surface. In the space of vector functions f(0,0) defined on a sphere 0

0 _< 0 _< 7 , 0 !5 0 U d.Q= sin0 dO do

the vectors satisfy the following orthogonality relation

Y /,y") Yl(v' dO = [c v,'St 8 ,'*&, (A4)

where the normalizing coefficients are given by the expressions

21 +1 (I-U M)!
S= 4I U1( + 1) (1 + m)

CL+ = 4 I (I m)! (A5)4n (1 + 1) (U + m)!

(I + m)!
c/•= (1 (+m')!

For vector functions f(0,0) with a finite norm

i1f42 dl --- fV-f dl < -

the system of spherical vectors in equation (Al) is complete in the sense of convergence in the mean

for a generalized Fourier series expwnsion of f(0,0)

- I
f0010) 1 2:E at-,"'v YtCv,)(0,O) (A6)

where

M= [*.v2v, J -V, f dQ A.7)

If the clasS of functions f(f,() pos'sesses continuous first derivatives with respect to 0 and 0 on the

sphere Q. then the series in equation (A6) convergences uniformly and also possesses first derivatives

with respect to 0 and 0 that agree with those o. A)e originad function.
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The main feature of the spherical vectors of equation (Al) is contained in their complete utiliza-

tion of central symmetry when acted upon by any differential operator that is invariant to rotation.

Consider an arbitrary differential operator L (r,8,O) which is invariant to rotation of the spherical coor-

dinate system (r,8,0) . By invariant to rotation we mean that the operator L commutes with any other

operator R that represents a rotation in three-dimensional space. Then, for an arbitrary function y(r),

possessing sufficient derivatives, we have the equality

L (r,0,0) [fI(r) Y,.v)(0.O) ] = [M1 'v) y(r)] Y•)(0,O) , v= (O,+,-) (A8)

where Mt1((r) is an operator that acts on the radial function y(r) only. This property together with the

orthogonality relation in equation (A4) means that for a differential equation of the form

L(r,0,0) U = 0

substituting an expansion of the orm

U = I wgc)Yj)(O9O)
vJpM

converts the original system into a set of independent equations

M mt1.J Wtv.%(r ) = 0

that only involve the radial functions AVv)(r).

In many practical applications, it is necessary to know how the vector

U1. .r) Yl., + W+,(r) Y',, +W-(r) Y- , (A9)

responds to the following differential operators :

v. U1,, (I + 1 + (1+2) W + + ) }Il

Vx Uf, _ _ 'ion) -( + 2M Y" -) )• (0,0) (A10)

+ 1+ I Fi, . (I + 2)

2! " [ r - IJ YA(OO) - 21+ [ 'r + r Mj Y-(eO) (All)
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V 2 U1. (+I)[ + rr + + (I- (+1)(/ +2) +4I4]V2 U •, =V I (! 1)n,.. r~l r2

F (21l- 1) (l-)(I+1) 1 Y_(0,4)
+ 1 k& rr r m+rj2 I 21 + 1

+ [ 1+{ + (21+3) + W]+2)

2mr +1I~ (1 - 1) ¥/•,O (A,2)
k I Vhr r r . 2 Vm 21 +1

AUim=V 2 Ul -VxVxUb = [irnr+24°r 1(1+1) %0 1 (

Il r r2 I IM

[Vlmr + 2 W+n r (1 + 1)(1 + 2) VIE+. Y'ý((),0)lmr •,r

+ I ... +2 f,. 1 (1 - 1)2 _r,& Y, (04,O) (AI3)

Finally we note that in the case of boundary conditions with cylindrical symmetry, it is con-

venient to use a cylindrical vector system

MYO = y i

Y. = Y. 15- i r (A14)

, = Yr., + i Y,,,

where Y,, = e"'# and (AJ,,) are unit vectors of a cylindrical coordinate system (p,O,z) . For the case

of cylindrical symmetry the vector system of equation (A14) possesses the main features of the system

of vpherical vectors of equation (Al).

Appendix B

The anilyticid solutions for the unknown coellicient:% in equation (2.20) are

A V) A,,(v)ai(v) - b - (v=1,2) (B.I), A b A v
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where

A 7223 h { 2 ,(1)i J ýl( ) Jl (01) P,2

(22) h1( 2 ) h() (21 + 1) A, + (21 + 1) A2
(21 +1)2 1 2 112 P III P2J

P_ h,(, 2) jt(11 ) jj(kl) h,(T12) 1
S(21 + [) - A12 + 12 A21

- q A, [A2 + ( + 2)hj+ 1(AJ)h 1 h1( --2 ) + (1 - I )h-,(l, 2 )h,.-(1
21

2) 1

+ 1 ýfl A2 A, 2+)jjý~jITI 11j-(Ij-(l)+ (1-1)(1+2)AIA- (13.2)
P2 L I I

Ah 1 ( = -ill I - L) -(1+2)(21+ 1)q
112 P2 711

+ hl- 1(1 2) q 1 +1(U+2)q j, I qj,-,(Tl) (B.3)

P T1 I
'' { [li [I - P 1 -(1+2)(21+1)q + 1+q ( -)(l+2)q

+ hl,i(T12)1 q 1+2) (B.4)

Aý) 3jA(I) j1(ni) P, PI

iY2) = j-~Ij-(j~ 1 1-(1 -1)(1 +2)q I I I -2I-P2-(14-2)(21+1)q J+
ilAI j (11) q /I(-1)(1+2)q-1-2- 1 + 11-0(11) j(41 ) q (12-1)(1+2)q-1-I--' B.5)- J P2111 P2 I IP

The following rwaiion exists between the terms in equations (B-3) - (B-5).

A(21 = i IM IA41)A. ).

An expression for A,12
, can be derived from equation (B.2) by substituting for functions

hk(;2) (k = 1-1,1,1+1) the corresponding functions -Jk(A2) . The following quantities were used in

27



equations (B.2) - (B.5)

A= (I + 1) jt+i(4j)jt-l(1nI) + I j1-1(41)j1+1(rh)

A2 = (I + 1) hl+ 1(42)hl..(ri 2) + I ht-A(•2)hI+ 1 (T12)

AJ 2 = (I + 1) jj+1(4j)ht-1(1i2) + I ji.(•,1)ht+I(I 2) (B.6)

A2= (I + 1) hI 1(+2)jI-I(yI) + I hI-.(A 2)jI+1 (r1,)

q = 1-12 j 2

For the case of a fluid within the sphere, the above equations can still be used provided the fol-

lowing substitutions are made:

g= 0 , ij+I(Ih) = I ,j_(rhi) = -I ,(m) = 0 (B.7)

A 2 - -- (21 + 1) - h1(1 2) +1 (I)-•-,

21 +1 L 2 I 1 )1

- (21 + I) hi ( A

P2 411h4

112 [ - t Ji(1] A2 + (I + 2)h,+|(A2)h,+j(71 2) + (I -)hl-|(42)h/-1(T12)

12 P] [L1-

+112 PiA2 2jj+,(ýI) _ ji (4 + 4 3 (1-1)(1+2)A2  1+({) - it I (B.8)
T2(i ) 2. h +(1 2 ) (B.9)

A.0l) = il T,2 /j(n12 )+ 12 (12-0 lT2

AP) = 0 (B.IO)

A 21) = - 2i112 I() l-(l-l)(l+2)q + _(1} (B.)

An expression for A(2) can he derived from the one for A in the .aune way as for thtc e•iasic cast.
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Figure 1. The geometry of the problem. The sphere of radius R has. material properties denoted by

v = 1, while the material properties of the surrounding medium are denoted by v =2. A plane P wave

is incident from along the negative z axis. The transmitted wave field is observed as a function of the

x coordinate along a line that is offset a distance z from the center of the sphere.
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Figure 5. Transmitted wave fields in the deepest shadow of the sphere (x = 0) as a function of the

offset distance z. Only the z component of the field is shown., as the x component is identically zero.

The upper panel is for model I of a low velocity inclusion, ajid the lower panel is for model 2 of a

high velocity inclusion.

36



1.0 20 .

0.8 PP PS 0.8

0.5 -0.5 - PPS

0.2 - 0.2-

0.0 0.0

-0.2- 0.2-

-0.5 -0.5

-0.8 -0.8 =

-1.0 1 I 1__ _ __ -1.0_ 1 1 1_1_1_1_1
-1.0 -0.8 -0.5 -0.2 0.0 0.2 0.5 0.8 1.0 -1.0 -0.8 -0.5 -0.2 0.0 0.7 0.5 0.6 1.0

1.0 - 1.0 -

PP PS PP PS
0.8 -0.8

0.5 -0.5

0.2 0.2

0.0 - 0.0

-0.2 -- 0.2

-0.5 -0.5 -

-0o8 kPR = 1.0 -0.8 kpR = 1.0

-2. _ _[ 1 • I-.0 I , I .L _
I . 1-I -2.0 1 _

-1.0 -0.8 -0.5 -0.2 0.0 0U 0.5 0.8 1.0 -1.0 -0.8 -0.5 -0.2 0.0 0.2 0.5 0.8 1 0

Figure 6a. Scattering diagrams for various values of the parameter kpR = o3RIVp. In each panel the

left hand figure represents the scattered P field, while the right hand figure represents the scattered S

field. The top two panels are for the case kt, R = 0.5 and the bottom two panels are for the case

kR = 1.0. The two panels on the left are for model I of a low velocity inclusion, and the two panels

on the right are for model 2 of a high velocity inclusion.
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Figure 6A. Similar to Figure 6a except that the cases are for ktR = 2 in the top two panels and for

kR = 4 in the bottom two panels
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Scattering of elastic waves by a spherical inclusion - 2. Limitations of
asymptotic solutions

Valeri A. Korneev and Lane R. Johnson

Department of Geology and Geophysics, University of California,
and Center for Computational Seismology, Lawrence Berkeley Laboratory,

Berkeley, California 94720

Starting with the exact solution for the scattering of a plane P wave by a homo-

geneous spherical inclusion, various types of approximate solutions are developed and

discussed. The standard Rayleigh and Mie approximations are extended to the case of

inclusions having arbitrary contrasts in material properties. For the low contrast case,

solutions are developed which are valid over a wide frequency range. Several aspects of

these solutions are discussed, including the importance of near-field terms and the rela-

tive strength of the scattered P and S fields. The various types of approximate solutions

are compared with each other and with the exact solution by calculating and displaying

their normalized scattering cross sections.

Key words: elastic waves, sphere, scattering, diffraction

1. Introduction

Scattering of seismic waves plays a significant role in seismic wave propagation in the earth. Such

phenomena as coda wave excitation, attenuation, precursors, and irregular arrival times are often assumed

to be caused by scattering from inhomogeneities of the earth's crust and upper mantle. The scattering

mechanism also plays a role in some of the algorithms for migration and diffraction tomography which are

used in exploration seismology.

Exact solutions for scattering problems are known for only a few types of obstacles, and even for

these cases the calculations are not easily implemented because of their complicated mathematicd

representations. The basic approach to the scattering problem which has been developed in such disciplines
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as optics, acoustics, and quantum mechanics makes extensive use of asymptotic solutions to explain the

main physical features of the scattered fields. In these disciplines, where the critical parameters of the

scattering obstacle and the observation system are usually well known and controllable, experiments can be

arranged so that the conditions for the asymptotic solutions are strongly satisfied, and thus these solutions

give a satisfactory representation of the observational results. However, in the case of scattered seismic

waves the situation is more complicated. Generally there is a wide variety of shapes, locations, boundaries,

and material properties in the local heterogeneity of the earth's crust and upper mantle which represent the

scattering obstacles for the seismic problem. Additional complications arise from the fact that these local

heterogeneities are measured with respect to a surrounding material which is itself typically inhomogene-

ous, but on a larger distance scale. In most cases the parameters of the scattering obstacles are either

unknown or poorly known. Furthermore, parameters of the observation system, such as the locations of the

sources and receivers and the wavelengths of the incident waves, are typically difficult to control. There-

fore, a common situation in seismic problems is that it is unknown whether the conditions necessary for the

application of asymptotic solutions are actually satisfied.

Establishing proper conditions for the use of different asymptotic approaches in the treatment of scat-

tered seismic waves is not a simple problem because of a number of reasons:

1. The broad range in the type and size of scattering obstacles which have to be considered makes it

difficult to find an asymptotic approach which is applicable over the entire range.

2. The fact that several different parameters are involved, some of which are poorly known, makes it

difficult to ascertain whether iu asymptotic solution is appropriate or not.

3. It is often necessary to apply a combination of asymptotic solutions and some of these may be

incompatible. For example, for the far field ( r -) o ) solution in the case of the Rayleigh approxi-

mation ( (o -+ 0 ) there is the rp)ssibility of a contradiction, because the parmuneter kr = m)r/V is

assumed to be large.

4. The absence of a set of canonical problems for which exact solutions are known makes it impossi-

ble to check the asymptotic solutions by comparing them with the exact solutions.
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In the present paper we consider various asymptotic representations of the scattered fields formed

when a plane P-wave is incident on an elastic spherical inclusion. An exact solution for this problem and

methods of calculating it were developed in a previous paper (Korneev and Johnson, 1992). This exact

solution can be used as the starting point for some of the asymptotic solutions. It can also be compared

with the asymptotic solutions as a means of investigating their validity.

2. Solutions for small inclusions

We begin with a brief review of some of the approximate scattering solutions that are commonly

used in seismology. Consider an elastic medium with an inclusion at the center of joint Cartesian x ,.y ,z I

and spherical (r.O,WJ coordinate systems. The parameters within the inclusion, denoted by the index

(v = 1), are allowed to be func:ions of the coordinates

X1 = XJ(x.yz) . = AI(x,y,z) Pn = p1(x,y,z) (1)

The volume of the inclusion will be denoted by V. The surrounding media, denoted by the index v = 2

and described by the constant parameters

)2 =- X = const. 9.t2 =- = const. P2 = P = const. (2)

is assumed to be homogeneous. In the equations that follow, material constants without indexes refer to the

surrounding media (v--2).

Most of the approximate solutions used in seismology involve the Born approximation, which is

assumed to be valid in the case of weak single scattering (Aki and Chouet, 1975; Sato, 1984; Wu and Aki,

1985a, 1985h). The actual conditions under which the Born approximation is valid are rather complicated

and involve both the dimensions of the inclusion and the contrast in its material properties (Hudson and

Hieritage, 1981), but it is commonly assumed in seismology that they are equivalent to the condition of a

small contrast in material properties. By this we mean that the perturbations of the elastic parameters

within the inclusion are small in comparison with those in the surrounding medium

1_ _ _ I_ - 2 _____ I.ll-l21 ___I _-_

I )I- X << !1 - <2 I, - IPIP2 1 (3)

4P P2
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Throughout this paper we will be considering an incident plane P wave of the form

U0 = e V, i = U,, e (4)

This wave is traveling along the z axis in the positive direction. The solution to the scattering problem,

which includes both the incident and scattered fields, will be written as

0 = Ue'(" = (U0 + Up + U,)e"N (5)

where U,, and U, represent the scattered P and S waves, respectively.

Our next approximation is to consider the solution at low frequencies. Then only the first members

of the frequency power series are retained and the solution is

Up = A j +2 + p coso _k+28 c 1s20 F (6a)

U5 = B {-kp sinO + y'•sin20}, (6b)

and where the following definitions have been used

V eikBr V -kr k ( = 1 (7)
4n r B 4n r V' V,7

__-- -M (8)

The above result has used only the first term in a power series of frequency and is thus dependent upon the

assumption that

ki, R = - << I (9)

where R is the average radius of the inclusion. This is generally known as the Rayleigh-Born approxima-

tion. The solution of equation (6) obviously does not depend upon the shape of the inclusion, but only

upon its volume. Thus, for the case of Rayleigh scattering, all parts of a homogeneous inclusion contribute

in proportion to their volume and the scattered field is a simple sum of these contributions.
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When the wavelength of the incident wave is comparable to the size of the inclusion and equation (9)

is no longer valid, then a different approximation must be used. In Mie scattering the phase differences of

the incident wave for different parts of inclusion are taken into account (Chernov, 1960). The solution is

A =(A + (ý) cosO 2- ) - cs21 e- dV() (10a)

P X + 2 g p X + 2 gi 0

U, = B 66) sinU + y 6 (•)siu204 e -'1 'dV(•). (1Oh)

where

S, = I i- ;IP S2 = V;!- - i

S, = ISII= 2 V,.- sinO $ S= ISS,1I = /V;-2 + V'2-2VV;os

1 1 Vin~ 2 - IS I - 2 VP- I ________

This approximation is equivalent to assuming that the inclusion is composed of numerous small nonin-

teracting parts, each of which causes a scattered field of the form of equation (6).

For the cawe where the scattering volume is a homogeneous sphere of radius R, the expressions in

equation (10) can be integrated to give

U + _. o_ 28p _. _ , j(ql)

U A -+ + cos=2 - r (I la)
P -) +2p p X+2p 0J q,

U B §Esinlo + YýEsin2l j I(q2) (I ib)
LP 1.1 0J q

where

q,= oxR and q 2 = U5 2R

and j1 (q) is the spherical Bessel function of order 1.

The solutions of equations (6) and (10) have been used in many publications for estimating seismic

attenuation, explaining the generation of coda waves. obtaining high-frequency asymptotics, and formulat-

ing seismic diffraction tomography. In most of these applications, however, valid bounds on the relevant

lkarameters are not established, and possible errors due to the use of asymptotic solutions are not
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considered. As a result, large errors in the estimated seismic parameters may occur, or invalid solutions

may be produced. In a later section we will illustrate these possibilities by comparing the approximate

solutions of equations (6) and (10) with the exact solution for a homogeneous elastic sphere.

3. Exact solution for the sphere

A method of calculating the exact scattering solution for a homogeneous elastic sphere was

presented in detail in a previous paper (Korneev & Johnson, 1992), so the results will only be summarized

here. The solution for the medium outside of the sphere for the case of an incident plane P wave has the

form

U = U() + U2  (12)

where

U 2 =U1, +UU, ={[ajh+l(kir)+lbjh,+,(kr)] Y+

+ [-aihi-i(kpr)+ (1+l)b,/iu-i(k~rj Yi I0I}

l ~ ~ h rh (k 0r hl(k~r) aP,(cosO) 1
= (21 + 1). a ('+ 1) kpr -hI(kr Pt(cosO)- k0r f

+b r1(1+1) h,(k-,r) P1(cos0) + h-#kr) h,(k.0 aP(cose) (13)
k, kr 010 r J aO

Ilere hk(A) are spherical Ilankel functions of the second kind. Analytical expressions for the coellicients

a, and b, are given in appendix B of Komeev and Johnson (1992), as well a& information about tL. spheri-

cal vector system

Y" - y,,,(O,) = r x VY,,, (0,0)

Y+ ar Y+ (0,4) = (1+1) i Yr., (0,0) - r VY,,, (0.0) (14)

yY- m Y-(O.0) = I f" Yj., (0.0) + r V Y,, (0,0)

The definitions for the spherical harmonic functions are the usual ones
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YL,,(0,ý) = e '" Pcos) ,I1 0 , (-1 :5m <_l)

Any cylindrically symmetric scattered field (as we have for the case of an incident plane P wave) can be

represented in the form of equation (13). where the coefficients al correspond to the compressional field

and the coefficients b, correspond to the shear field.

For the purpose of comparing different solutions, we will use the normalized scattering cross section

ON, which is the ratio of the flow of the total energy carried outward by the scattered waves to the rate of

flow in the incident wave through a normal area equal to the cross-sectional area of the object (geometric

shadow of the object). In our case this is

ON = Im 12 (U, t:[,])ds _ 0 +

-I.F a, 12 1b, I
=4 (21 + I) 1•- 1 + 1(1 + I)Y2 1--I (15)

, /,R I 11,kR I I

where trjU 21 is the stress vector of the field U2 on the spherical surface of radius r, , (ro, > R) The two

parts of the scattering cross section, a) and c)r., represent the P and S fields, respectively. It can be

shown that the normalized scattered cross section ON is simply related to the forward scattered wave in the

far field (r -4 00)

U,(r.0) e- A, F,_f =(21+ 1)a,

through the formula

S 4ImA 2 4 (16)
kPR 2

This is the elastodynamic equivalent of an optical theorem.
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4. tAow frequency solution for an elastic sphere of arbitrary contrast

Starting with the exact solution described in the previous section, it is possible to develop approxi-

mate solutions which are more general than the standard approximations given in section 2. First consider

a low frequency approximation but with no restrictions upon the contrast in material properties. In this

case we retain from the solution in equation (13) only the terms that are of lowest degree in frequency,

which is c03 and appears only in the first three (1 =0,1,2) coefficients

Si._. 
__ __(_-_2)+ ____-Iz

6 13

-(X 1 + Al) +JA2
2 2

(Al = X L 1, b (17)al 9 [P2 - , b = 9 -P2 - 11(7

42 = j43 [ A- 62 = 03 2

where

"k= R,,- v = "

Y " -i-- , D +(+2f(18)

Then the solution has the form

UP,= [U/jr F + {uije

S[ - W (Z)+ [ _ lw (Z)cos+ _2 _ (Z (I_3cs20 f

I[ -W%(Z,,) sO - 2  - ]W (Z) sin20 j}(19a)

-B{[2[ý-- 1j W',(Z,) cose + 2 7 lj~W' (7.) (3(.(.V() I] P
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+ - - i] Wl(Z,) sin0 + I- WJ 0 (Z.)sin2 4 (19b)

where the following functions have been introduced.

W2,(Zp) = 1-2 Wj,(Zp) = 1+9i-4iZ/-9Zp

wM (Z') = I wo +(Z,) I + 3

It~(~ = z.2  
2 V~(p

I+ iZ 3i -i, 2 -3Z.,w • e (z P ) = z ,} 2 P w o (z , ) - z P

W(Z,) + iz, W(Z 3i -i,2-3z, (20)
z w2  V

These W functions depend upon frequency o and radius r of the observation point through the parameters

Z -= k. r - VLr Z, = k,r - VO

The expression in equation (19) is a complete low frequency solution in that it contains both the near

field and far field parts. All of the distance dependence in the solution is contained in the W functions of

equation (20). We obtain the far field asymptotic form of the solution if the functions in equation (20)

satisfy the following conditions

I h1 IWII'(Zp) I1. IWIr(Zp) I= IWlg(Z,) IIIWe(A) I I (21a)

iWTlH(7 .W,6(ZP) h.10, WSI , Ir W1 (ZP 2r s (21b)

The functions in equation (20) are graphed in Figure I for the case of y = VJV,, = Z /z, = 1/F3. This

figure shows that for -,, r < I the far field approximation is definitely not satisfied. As o) increases the

situation improves and for kA r > 3 equation (21a) is satisfied to within 10%. However, the terms of equa-

tion (2 1 b) converge to their asymptotic vadues much more slowly and, while three of these terms have con-

verged to within I Oh, of zero for kP r > 10, the W50 term does not decrease to this level until k, r > 20.
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What this means is that at observation distances r that are only a few times greater than the wi.-2vlen, th tile

amplitudes of the scattered waves may be consistent with the far field approximation but their polarizations

will be considerably more complicated than simple P and S waves.

The situation is slightly more complicated than indicated in Figure 1. hi Lijat fibgure the absolute

values of the W functions are plotted, but in equation (19) it is clear that these functions can combine either

constructively or destructively, depending upon the difference in material properties and the azimuth of the

observation point. Furthermore, at small distances and low frequencies it can be misleading to consider the

individual terms of the solution, as what appears to be a large individual term may be canceled out by

another and not show up in the total solution. Thus in Figure 2 the effect of the near field terms in the scat-

tered field is illustrated by showing the complete solutions in the time domain. Here the P wave scattered

from a homogeneous spherical inclusion is shown at one azimuth and a distance that is 6 times the radius of

the inclusion, which corresponds to k, r = 1.2. The near field terms make a significant contribution at this

distance, affecting both the amplitude and the polarization of the scattered wave.

In the true far field where all of the conditions of equation (21) are satisfied, the scattered field has

the form

2 + P ] 2  
-2 (2a

U,= B - I Sino + 91 - 1 sin20 (22b)

'lI'is result represents Rayleigh sc•tlering from ui obstacle having an arbitrary contrast in material proper-

ties. In the case where the contrast is small and the conditions of equation (3) are satisfied, then equation

(22) reduces to (6) and we have the combined approximations of low frequency, far field, and low contrast.

Thus in the progression of solutions in equations (13), (19), (22), and (6) we see the effects of the Rayleigh

and Born approximations.

The Mie scattering solution for a homogeneous sphere in equation (II) can be eaily generalized to

am sphere of arbitrary contrast to obtain
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Ur, = A - 1 23 lll+a + I cos0 + 2• ýP I 1 (l-3co.%20).-q (23a)

us = B -1] sinO + [ -1 sin20 } jI(q (23b)

In order to compare the various approximations discussed above, the nonmalized cross sections of'

equation (15) are plotted as a function of k, R in Figure 3. Such results are shown for two different cases, a

low velocity inclusion on the top and a high velocity inclusion on the bottom. The contrast in the velocities

and densities is about 20%/. The four solutions shown in this figure are the exact of equation (13), the

Born-Rayleigh approximation of equation (6), the arbitrary contrast Rayleigh of equation (22), and the

arbitrary contrast Mie of equation (23). Note that the far field approximation has been made in all of these

solutions. In order to calculate scattering cross sections from the solution in equation (23) it was necessary

to convert this solution to the form of equation (13) using the orthogonal properties of the spherical vectors

in equation (14), and then substitute the obtained coefficient% a, and b, into equation (15). It should be

pxinted out that scattering cross sections for the case of Rayleigh scattering from a spherical inclusion of

arbitrary contrast were also obtained by Ying and Truell (1956) using potential functions.

The results shown in Figure 3 help define the frequency ranges over which the various approxima-

tions are valid. First note that the Born-Rayleigh approximation is the least accurate of those shown in this

figure and that the sign or the error is different for low-velocity and high-velocity inclusions. For the case

ol the low-velocity inclusion this approximation falls below the exact solution at low frequencies and the

error reaches appreciable values in the range around k R = 0.4, whereas in the case of the high-velocity

inclusion the approximate solution falls above the exact solution and the error exceeds 100% for k, R > 0.3.

In contrast to this, the arbitrary contrast Rayleigh approximation behaves about the same for the low-

velocity and high-velocity inclusions and remains reasonably accurate for kPR < 0.5. A result which is

very clear in this figure is that by far the best approximation to the exact solution is provided by the arbi-

trary contrast Mie solution. This approximation is reasonably valid for k1, R < 6 for the low velocity inclu-

sion and for k,, R < 4 tor the high velocity inclusion, which is an order of magnitude broader range than for

the other approximations. Of course, these ranges ol validity will vary somewhat with the values of the
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material properties which are used, but our calculations indicate. that the results shown in Figure 3 display

the primary features present in the general case.

$. LoAw contrast approximation

Another type of approximate solution which can be derived from the exact solution of section 3 is

one which assumes a small contrast in material properties between the inclusion and surrounding media,

but places fewer restrictions upon the applicable frequency range than does the Rayleigh approximation.

For the case in equation (3) of small perturbations in the elastic parameters of the inclusion, the coefficients

a, and b, of equation (13) (the original expressions can be found in Appendix B of Korneev and Johnson,

1992) can be reduced to the following expressions

"a, = "{ --+28p 2j,4.1 +

I k1 '2(4) + jhI (k) - (21+3)--Rjj.,(E) + 21 - (24a)
2 pi

i-b, = ---- 2 (! l)J)Mt)L--jt_+(k))+ p- -- (24b)
bt=qlX+2g. ýi TI*O)(/l" -P.() it -f-j~n ,

These solutions are not completely general in frequency, because the manipulations of the Bessel functions

that were used in obtaining them are only strictly valid when we have

L 4kl + 25pt _ -1- 2 =k7R- 1 (25)

'1-42 1,21X+ 2g~ P l( 10,T 2 bP J 10

This restriction places an upper limit upon the vdid frequency range for equation (24), with this limit

increasing as the contrast in material properties becomes smaller and smldler. Below we will show that this

restriction is significant for the a, coefficients but not for the b, coefficients.

Given that the low contrast solution of equation (24) is most appropriate for low frequencies that

satisfy the restriction of equation (25), we can proceed differently to obtain solutions that are more

appropriate for the higher frequencies. Here we follow the method described by Van dcr Ilulst (1957) for

the scattering of light Irom large low conira.• spheres. The basic procedure is to substitute Debye
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asymptotic expansions for the Bessel functions into the exact analytical expressions. Starting with the

exact analytical expressions for the coefficients of equation (13), the low contrat, assumption is made and

then it is possible to obtain the following approximate expression for the coefficients of the scattered P

wave.

a, - Ji+ 1(A)jh(A2) - Kjt(AI)jh+1 (A2) (26)
ji.i(ýI) h,(ý 2) - icjg(k1 )h1~1(U2

where

K - , VI

P2 VI,"

Then we write equation (26) in the form

tan(a,) [I _ -2, (27)

t an (al)- - I 2

where

Sn(r1 ) - +()J(_,2) - KjA()JI+(2)

jj+ (•) nt(U - Kjj(( 1) nj+ 1(t2)

and the n, (ý) are spherical Neuman functions. Because we are looking for solutions valid at high frequen-

cies, we introduce the Debye isymptotic expansions

cos(V - n)
= 4

It

sin(Ef - -)

where

1+--
2

f = sint - tcost, and cost 2

These approximations are valid for I + - < •. Now equation (27) can be reduced to
2

at _ - r II _ - ikeJ f3(8
a, 2[11 + ike-' (28)
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where

k =K-
+ 1

If the low contrast conditions of equation (3) are strongly satisfied, equation (28) can be further

simplified to yield

a, - 2 1 - e J (29)

where

a =21 - I (30)

This is identical to the solution that is obtained in optics. Substituting the a, of equation (29) into the opti-

cld theorem of equation (16) results in a simple formula for the normalized scattering cross section (Moro-

chnik, 1983).

ON 2-- = sina + 4 (1 - cosa) (31)
a a2

An earlier derivation of equation (31) can be found in Van der Hulst (1957), where it is shown that this

result can be explained by interference of the incident and refracted waves propagating in the forward

direction. The parameter a is just the phase difference between these two waves in the far field.

Two different formulas have been developed above for the coefficients of the scattered P waves in

the low contrast case. At frequencies low enough so that equation (25) is satisfied, equation (24a) should

be used. At higher frequencies equation (28) should be used, and when the low contrast assumption is

strongly satisfied this can be replaced by equation (29). The high frequency solution is valid so long as

1 l + 1. The relationship between these different approximate solutions for the scattered P wave is illus-

Itrwed in Figure 4 for two diflerent cases, a low velocity inclusion mid a high velocity inclusion. In both

cases the contrast in velocities mid densities is about 5%. This figure shows the scattering cross section of

the exact solution for the wattered P field of equation (13) and for two approximate solutions, the low-

frequency P field of equation (24) and the high-frequency P field of equation (28). Also shown is the
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scattering cross section which is calculated using the analytical expression of equation (31). At low fre-

quencies the approximate solution of equation (24a) agrees best with the exact solution for the scattered P

field, with the error growing to about 30% by the time that the condition of equation (25) is exceeded

(kvR = 3). The high frequency approximate solution in equation (28) as well as equation (31) both sys-

tematically over estimate the exact solution in this range. At higher frequencies the situation is reversed.

The low frequency approximate solution of equation (24a) tracks the exact solution reasonably well up to

about k-R = 5 and then is completely wrong at higher frequencies. The high frequency approximate solu-

tion of equation (28) and equation (31) agree quite well with the exact solution for kpR Ž! 5, showing the

.same oscillatory behavior at a slightly reduced amplitude for the low-velocity inclusion and at a slightly

increased amplitude for the high-velocity inclusion. In this range these two approximate results are so

close to each other that they appear as one line on the graph. This demonstrates that the very simple

analytical expression of equation (31) provides an excellent approximation to the scattering cross section

for the high-frequency low-contrast case.

For the scattered S waves in the low contrast approximation we return to equation (24b) for the b,

coefficients. In this case the condition of equation (25) does not restrict the use of equation (24b) because

the higher order b, coeflicients decrease sufficiently rapidly with increasing frequency. At high frequen-

cies the S part of the scattering cross-section, aN , oscillates slightly about a constant level. Substituting

equation (24b) into equation (15) for okf) and numerically evaluating the infinite sum of the products of

Bessel functions, we obtain the high-frequency asymptotic estimate

I b,I2
= 41 (0+l)(21+l)y I-

j~~1I Ti

•u.• ~ L3 y V2 _5_

- 4.2y-4 412 - 6.0y 4-- - 1.8y4 (32)

Thus we see that in the limit of' large frequency, the scattering cross section of the S waves reduces to a

constant independent ot frequency.

An example of the various solutions for the normalized scattering cross sections for the S field is

shown in Figure 5. It is clear that the low contrast solution calculated from equation (24b) is a good
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approximation to the exact solution for both cases of a low-velocity inclusion and a high-velocity inclusion.

"lbe agreement L extremely good for k-,R < 1, but even at higher frequencies the approximate result tracks

the main features of the exact result and never differs from it by more than about 25%. Similar to the scat-

tered P field, this approximate solution under estimates the exact solution in the case of a low-velocity

inclusion and over estimates it in the case of a high-velocity inclusion. Also shown on this plot is the high

frequency asymptotic approximation of equation (32). While this is obviously not an appropriate approxi-

mation at the very low frequencies, it provides a simple but fairly accurate result at higher frequencies. It

is worth noting that the examples shown in Figures 4 and 5 actually represent a severe test for the low-

contrast approximations. While the contrasts in velocities and densities are only 5% in these examples, the

contrasts in elastic constants are about 15%.

Also shown in Figure 5 for the purposes of comparison is the exact solution for the normalized

scattering cross section of the P field. The scattered P field is clearly much larger than the scattered S field

for high frequencies, but for k-, R < 1 the situation can be reversed, with the scattered S field considerably

larger than the scattered P field. To a certain degree this type of behavior is a function of the contrasts in

material properties of the inclusion, but there is generally a range of frequencies where more energy is scat-

tered into the S field than into the P field. This observation could have implications for the generation of

seismic coda.

6. Conclusions

There are two basic lessons to be learned from this study. First, considerable care must be taken in

using v•aious approximate solutions tfr the s.ismic scattering problem because these solutions are valid

only over a limited range of conditions. Second, standard approximations that are typically made in

weismology and associated with the names of Born, Rayleigh. and Mie can be considerably improved by

making a few modifications in the formulae or by using some of the alternative formulae developed in this

study. Because of the need to make comparisons with exact solutions, this study has concentrated on the

case of 11 waves scattered from a spherical inclusion. IHowever, the results are more gencral than this and

should be applicable to scattering from a more extended class of objects with simple and smooth
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boundu'ies.

The Bom-Rayleigh approximation is commonly made in seismology for the case of low contraMt

scatterers and wavelengths large compared to the dimensions of the scatterer. However, becaus of the

effect of near field terms in the scattering solution, this approximation is only valid at distances which are

removed several wavelengths from the site of the scattering. Thus care must be taken in using this type of

an approximation to explain scattering in the vicinity of sismographic stations.

Both the usual Rayleigh approximation of equation (6) and the Mie approximation of equation (10)

are limited to low frequencies and low conwtrsts in material properties. The low contrast limitation can be

considerably expanded by using solutions developed as a low frequency approximation for an inclusion of

arbitrary contrast. Thus, by substituting equation (22) for the Rayleigh fonnula of equation (6) and by sub-

stituting equation (23) for the Mie formula of equation (01) the range of validity of these solutiotis can be

extended to higher frequencies. In particular, as shown in Figure 3, the arbitrary contrast Mie solution is

valid over a frequency range that is an order of magnitude greater than for the other approximate solutions.

In situations where the contrast in material properties is actually small, approximate solutions have

been developed that are valid over essentially the entire frequency range. In the case of an incident P wave

two diflerent results must be used for the scattered P field, one for the low frequencies and one for the high

frequencies. However, a single result can he used for the scattered S field over the entire frequency range.

For situations where the scattering cross section is needed, an analytical result based on the optical theorem

provides a simple but gool approximation for the higher frequencies. Finally. these results illustrate some

of the important differences between acoustic and elastic scattering, as there are frequencies where consid-

erably more energy is scattered into S waves than into P waves.
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Figure 1. Moduli of the W functions which control the distance dependence of the scattered fields in the

low frequency approximation.
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Figure 2. Synthetic seismograms that show the effects of near field terms in the scattered fields. A plane P

wave is incident upon a high-velocity sphere for which Vp,/Vp, = V/V., = 1.25 and PI/P2 = 1.10. The

dominant angular frequency of the input pulse is wo = 0.2 VpIR, where R is the radius of the sphere. The

seismograms are calculated at a radial distance r = OR and an azimuth 0 = 45". The units of the time I are

RNV,,. The solid line is the complete solution, whereas the dotted line includes only the far field parts of

the solution.
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Figure 3. Normalized scattering cross sections as a function of frequency. The upper two panels are for a

low velocity inclusion with VI/V,, = V,/V, = 0.8 and PI /P2 = 0.9, while the lower panels are for a high

velocity inclusion with V,]V,, = V,/V,, = 1.3 and Pi /P2 = 1.2. The panels on the right are expamded ver-

sions of those on the left for small values of the arguments.
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