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Preface

Under contract No. F49620-C-89-0038, NTNF/NORSAR is conducting research within a
wide range of subjects relevant to seismic monitoring. The emphasis of the research pro-
gram is on developing and assessing methods for processing of data recorded by networks
of small-aperture arrays and 3-component stations, for events both at regional and teleseis-
mic distances. In addition, more general seismological research topics are addressed.

Each quarterly technical report under this contract presents one or several separate investi-
gations addressing specific problems within the scope of the statement of work. Summa-
ries of the research efforts within the program as a whole are given in annual technical
reports.

This Scientific Report No. 13 presents a manuscript entitled "Continuous seismic thresh-
old monitoring", by F. Ringdal and T. Kvema.
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Continuous Scismic Thrcshold Monitoring 31 May 1992

1 Introduction

Traditionally, seismic monitoring of earthquakes and underground explosions has
relied upon applying signal detectors to individual stations within a monitoring network,
associating detected phases and locating possible events in the region of interest. It is
implicitly understood that such a network will have a detection threshold that varies with
time. However, with methods being used in practical operation today, no attempt is made
to specify this threshold as a function of time. During time periods when the background
noise level is abnormally high, the event detection capabilities of such a network may be
severely degraded. It is important to retain such information along with the information on
the detected events.

In practice, the event detection procedure is often supplemented by assessments of
network capabilities for the target region, using statistical models for the noise and signal
distributions. These models include station corrections for signal attenuation and a combi-
national procedure to determine the detection threshold as a function of the number of
phase detections required for reliable location (Sykes and Evernden, 1982; Harjes, 1984;
Hannon, 1985; Ringdal, 1986; Sereno and Bratt, 1989).

The noise models used in these capability assessments are not able to accommodate
the effect of interfering signals, such as the coda of large earthquakes, which may cause
the estimated thresholds to be quite unrealistic at times. Furthermore, only a statistical
capability assessment is achieved, and no indication is given as to particular time intervals
when the possibility of undetected seismic events is particularly high.

The continuous threshold monitoring technique has been developed to address these
problems. The basic principles were described by Ringdal and Kverna (1989), who
showed that this method could be useful as a supplement to event detection analysis. In
this paper we expand further on the utility of this method for site-specific seismic monitor-
ing. In particular, we present an application in monitoring the northern Novaya Zemlya
nuclear testing site using the network of advanced regional seismic arrays in Fennoscan-
dia. A generalization of the site-specific application to a regional threshold monitoring
concept is also introduced.

2 Method

Threshold monitoring -- General description

Let us assume that we consider a network of seismic stations (i=l,2....,N) and a num-
ber of seismic phases (j= 1,2,...,M). For a seismic event of magnitude m,=m an estimate
fthi of m is given by

i= logS.U+b.(A, h) (1)

I I I I I I i I 'I J
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where S is the measured signal power of the j-th phase at the i-th station
bi (A, h) is a distance-depth correction factor for the j-th phase.

In standard formulas for magnitude, the signal power Sij is usually estimated as Aff,
i.e., amplitude divided by dominant signal period.

In our case, we will assume that S.. is the measurement of signal power (e.g., short
term average, STA) at the expected signal arrival time. The value is measured on a single
channel or array beam filtered in an appropriate frequency band.

The relation (1) is defined only for the time window corresponding to an actual seis-
mic event. We will now consider the righthand side of (1) as a continuous function of time.
Define the "threshold parameter" a i (i) as follows:

aii (t) = logSij (t) +by (A, h) (2)

The equation (2) represents a function which can be considered as a continuous repre-
sentation of the upper magnitude limit for a hypothetical seismic event at a given geo-
graphical location (target region). It coincides with the event magnitude estimate if an
event occurs at that site. The function is, by definition, tied to a specific station and a spe-
cific phase.

Using a statistical approach, and assuming statistical independence of the observa-
tions, we can now proceed as described by Ringdal and Kvmrna (1989). We obtain a net-
work-based representation of the upper magnitude limit by considering the function

g(m,t) = ((l (m -i(t))M D (3)j ( Ili(3

where m is event magnitude, o. is the standard deviation of the assumed magnitude distri-
bution for the j-th phase and O cdenotes the standard (0,1) normal distribution function. An
illustration of (3) is shown in Fig. 1.

The function g (m, 1) is the probability that a given (hypothetical) seismic event of
magnitude m at time t would generate signals that exceed the observed noise values at at
least one station of the network. For a given t, the function g (m, t) is a monotoneously
increasing function of m, with values between 0 and 1.

Following Ringdal and Kvaerna (1989), a 90% upper limit at time t is defined as the
solution to the equation

g (m, t) = 0.90 (4)

The solution is a function of t, which we will denote mT90 (t). We call this the threshold
trace for the network and target region being considered.

2
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Site-specific threshold monitoring

Let us first consider threshold monitoring of a specific target area of limited geograph-

ical extent. The size of the target area may vary depending upon the application, but typi-

cally the area might be a few tens of kilometers in diameter. A basic assumption is that the

target area is defined such that all seismic events within the area show similar wave propa-

gation characteristics.

The distance-depth correction factors b1 (A, h) in (1) and (2) can either be determined

by using "generic" values representative for a larger region, or by calibration to the spe-

cific target area. The latter method is the most accurate and is preferable, assuming that

previous calibration events are available. We then obtain the necessary magnitude calibra-

tion factors from processing previous events with known magnitude, using the relation

bi,,j = ithi-log(Si,j) (i= 1,...,K;j= 1,...,L) (5)

where bij is our estimate of the magnitude correction factor for phase i and eventj, thj is

the estimate of the magnitude for event j (based on independent network observations),

and .ý,j is our estimate of the signal level at the predicted arrival time of phase i for event

j. K is the number of phases considered (there might be several stations and several phases

per station), and L is the number of events.

The magnitude correction factor to be used for phase i is then given by

L
1

bi= L bi,j (6)
j=1

Parameters such as window lengths for signal level estimation, travel-times of the differ-

ent phases, filter frequency bands and steering delays for array beamforming are obtained

on the basis of processing results for the calibration events.

Regional threshold monitoring

In principle, threshold monitoring of an extended geographical region can be achieved

by conducting site-specific monitoring of a dense grid of target points within that region.

The density of the grid and the interpolation technique applied will determine the quality

of the results.

The regional approach requires access to magnitude calibration statistics for each tar-

get point and each station/phase combination considered. In a practical situation it will

usually be impossible to obtain the necessary number of calibration events for each target

point in the grid, and a different approach is therefore required.

Our approach is to develop a "generic" attenuation model for the region to be moni-

tored. This can be done as a two-step process. The first step is to divide the region into

3
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subareas that are relatively homogeneous with respect to wave propagation characteristics.
Within each subarea, an attenuation model is then established on the basis of available cal-
ibration data.

Using this approach, the distance-depth correction factors b (A, h) in (1) and (2) can
be determined individually for each seismic phase, by applying standard least-squares
techniques. In this paper we have used the results of Alsaker et al (1991) and Kvwerna
(1991).

In threshold monitoring there is a tradeoff between the size of the target area and the
tolerances of the parameter values used in the threshold computations. With a given grid,
it is necessary to make the target area of each aiming point compatible with the grid spac-
ing.

An illustration of the time and azimuth tolerances is given in Figs. 2 and 3. For exam-
ple, if we increase the time windows over which we measure the signal levels Si,. in (5),
this has the effect of broadening the target area for the aiming point. At the same time,
some of the resolution in the regional threshold variation will be lost. A similar consider-
ation applies if we increase the allowable azimuth tolerances. For a more detailed discus-
sion of this problem, reference is made to Kvwrna (1991).

3 Site-specific threshold monitoring

Application to the Novaya Zemlya test sit-.

In order to demonstrate how site-specific threshold monitoring could be performed in
a practical operational situation, we have conducted an experiment during which we have
applied continuous threshold monitoring to the northern Novaya Zemlya test site (Lilwall
and Marshall, 1986) for a full one-week period. Our data base bas been the Fennoscandian
regional array network (NORESS, ARCESS, FINESA). As illustrated in Fig. 4, these
three arrays are all within regional distances from the test site.

The excellent P-phase detection capabilities of these arrays are illustrated in Fig. 5,
which shows recorded P waves from the 24 October 1990 nuclear explosion at Novaya
Zemlya (mb = 5.7). A simple scaling of the noise traces as shown in the figure indicates
that ARCESS would have detected even an event three orders of magnitude :3maller (i.e.,
about magnitude 2.7). NORESS and FINESA have somewhat lower capabilities for this
target area. The ARCESS array also detects S phases from Novaya Zemlya explosions
quite well, whereas NORESS and FINESA have a lower S-phase detection capability.

The parameters used in the threshold monitoring experiment are given in Table 1. For
each array, we steer "optimum" P and S beams towards the test site, and calibrate these
beams using actually observed signal attenuation from available Novaya Zemlya explo-
sion recordings. By focusing in this way on the target region, we can at any point in time
measure the "noise magnitude" for a given phase at a given array, and combine these data
to obtain a network threshold as previously explained.

4
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For the Novaya Zemlya test site, only large explosions have been available to cali-
brate the three arrays. The effect of a spectral shift at lower magnitudes is uncertain. We
have selected the "optimum" filters with a sufficient bandwidth to accommodate the
expected range of dominant frequencies from mb = 2.5 to 5.5. These frequencies have
been estimated based on recorded data from chemical explosions and earthquakes at vari-
ous distance ranges.

Results

Figs. 6 and 7 show results from two days of the monitoring experiment. Each of the
figures covers one data day. The upper three traces of each figure represent the thresholds
(i.e., 90% upper magnitude limits) obtained from the three individual arrays, whereas the
bottom trace illustrates the network threshold. Typically, the individual array traces have a
number of significant peaks for each 24-hour period, due to interfering events (local or tel-
eseismic). On the network trace, the number and sizes of these peaks are greatly reduced,
because an interfering event will usually not provide matching signals at all the stations.
From probabilistic considerations, it can in such cases be inferred that the actual network
threshold is lower than these individual peaks might indicate. Fig. 8 shows the cumulative
statistics of the network thresholds for the full one-week period.

On each of the one-day figures, we have included comments explaining the presence
of the most significant peaks on the network trace. The number of peaks and the total time
exceeding given magnitude thresholds are summarized in Fig. 9. Here, we will just note
that the first day, 24 October 1990, was the day of the previously mentioned nuclear explo-
sion (mb = 5.7) on Novaya Zemlya, and this event naturally stands out on the plot. While
the peak value of the network threshold plot does not represent the actual magnitude of the
event, it is in fact quite close (5.64).

As a general comment to Figs. 6 and 7, we note that such plots enable the analyst to
obtain an instant assessment of the actual threshold level of the monitoring network. The
peaks on the network traces may be quickly correlated with a detection bulletin, in order to
decide whether they originate from interfering events or from events in the target region.
At NORSAR, such detection information is currently provided by the Intelligent Monitor-
ing System (Bache et al, 1990).

The advantage of the threshold monitoring approach is that, for a given target site and
at a specified threshold level for events of interest, only a very few peaks would need to be
examined. For example, experience from monitoring Novaya Zemlya shows that there are
many days with no significant peak at all, and the number of peaks above mb = 2.5 seldom
exceeds 3 or 4 during a day.

5
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4 Regional threshold monitoring

Application to Fennoscandia and adjacent regions

As previously discussed, regional threshold monitoring is an extension of the original
site-specific threshold monitoring concept. It entails using the same basic principles to
obtain wide geographical coverage, including coverage of regions for which no calibration
events are available. The key to achieving this is to develop generic relations for attenua-
tion and magnitude corrections of seismic phases of interest, and to deploy a sufficient
number of beams to ensure adequate geographical coverage.

Kverna (1991) has developed initial such generic relations for the Pn and Lg phases
of NORESS, ARCESS and FINESA using the method outlined previously. The relations
are applicable to northern Europe and adjacent regions, and are based on a systematic
analysis of several hundred phase observations of regional events in various geographical
areas. These results form the basis for the study presented in this section.

Threshold maps

The regional threshold monitoring approach lends itself naturally to displays in the
form of contoured geographical maps. By using a spatial grid covering the area of inter-
esty, interpolation can be applied to get a visual representation of threshold variations over
an extended geographical region.

Using the generic relations developed by Kverna (1991), we computed a threshold
monitoring grid of 20 x 30 geographical aiming points (see Fig. 10) for two 40-minute
time intervals. Data from the three arrays NORESS, ARCESS and FINESA were used.
Contouring maps were developed by interpolation in this grid, and displayed in the form
of color maps where the color scale is tied to the actual threshold.

Fig. 11 and 12 show two representative examples of output from this procedure.

Fig. 11 illustrates absolute TM threshold levels (with mb units indicated on the color
template). The top paul shows the absolute threshold levels at a specific time during a typ-
ically "quiet" period (i.e., no seismic event occurring). We note that the areas immediately
surrounding each array (blue or green) show the lowest thresholds (below mb = 0.5),
whereas most of the remaining area at regional distances has a yellow color, indicating
thresholds in the range mb = 0.5-1.5. The orange color seen further away from the network
stations indicates thres'-olds of mb 1.5 to 2.0.

The bottom part of Fig. 11 shows the absolute threshold levels during "interfering
event" conditions, i.e., a few minutes after the arrival of P waves firom a large distant
earthquake (South of Kermadec Islands, mb = 5.4). The threshold level has been raised by
approximately one magnitude unit over the entire Fennoscandian region, although the
increase is not uniform. In fact, the exact picture will change continuously with time as the
P wavefront and the P coda waves move across the area.
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Fig. 12 illustrates relative TM threshold levels. By relative thresholds we mean
thresholds relative to the long-term average for each geographical aiming point. The top
part of Fig. 12 shows the levels at a typical "quiet" period, and the various shades of blue
indicate that no activity apart from normal noise fluctuations are occurring.

The bottom part of Fig. 12 shows a typical relative map at a time corresponding to a
mining explosion (magnitude mL = 2.2) near Kirov.k (67.6 0N, 34.0°E) in the Kola Penin-
sula. The purpose of displaying relative thresholds is to emphasize more clearly the effects
of the seismic event in causing threshold increases both within and outside the source area.
We note that, naturally, the area surrounding the mining site has the highest relative
threshold (red), whereas "side lobe" effects cause significant threshold increase also in
other regions, some of which are quite far apart from the mine.

5 Discussion

The continuous threshold monitoring technique represents a new approach toward
achieving reliable seismic monitoring. As discussed in this paper, the method is well
suited to supplement the traditional methods in monitoring potential test sites for the pur-
pose of verifying nuclear test ban treaties. The method may equally well be used to moni-
tor earthquake activity at low magnitudes for sites of special interest, and could also be
useful for monitoring earthquake aftershock sequences. We have demonstrated how the
concept can be used to enable threshold monitoring of extended geographical regions,
with possible applications to real-time displays.

It is important to be aware that the main purpose of the threshold monitoring method
is to call attention to any time instance when a given threshold is exceeded. This will
enable the analyst to focus his efforts on those events that are truly of interest in a monitor-
ing situation. He will then apply other, traditional anlaysis tools in detecting, locating and
characterizing the source of the disturbance. Thus, the threshold monitoring method is a
supplement to, and not a replacement of, traditional methods.

Site-specific threshold monitoring

It is significant that the 3-array network studied in this paper can monitor the Novaya
Zemlya test site down to mb 2.5 or below more than 99% of the time (Fig. 8). Further
iml. wements would clearly be possible by adding more stations to the monitoring net-
work, especially highly sensitive stations at other azimuths than those covered by the
Fennoscandian arrays. This would in particular contribute to lowering the peaks due to
interfering events, whereas any event truly originating in the target region would still
stand out clearly on the combined network traces.

In a nuclear test ban monitoring situation, it will be important to isolate and analyze
more extensively those time intervals which offer significant evasion opportunities. Fig. 9
gives a statistic of the number of occasions during which the upper magnitude limit
exceeded a given level for the one-week monitoring experiment. In theory, if this limit is,

7
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e.g., at 3.0, it might be possible that a clandestine mb = 3.0 explosion had occurred without
being detected. There are many options available to investigate such a hypothesis in more
detail, although we have not attempted to do so in this study. The most immediate
approach would be to analyze high-frequency signals for the time interval being consid-
ered. For example, on ARCESS records Novaya Zemlya explosions will contain signifi-
cant energy at 10 Hz and above, even at magnitudes well below 3.0. Teleseismic events,
even of large mb, will contain relatively less energy at these frequencies and thus it might
be possible to obtain additional indications from these data.

To assess interfering phases from events at regional distances is more difficult, since
the high-frequency energy might not discriminate such events from Novaya Zemlya
explosions. In such cases, additional procedures, such as maximum likelihood beamform-
ing, might become useful to suppress signals from the interfering event and thereby obtain
a more realistic estimate of the signal energy arriving from the target region.

Regional threshold monitoring

The regional threshold maps are in some ways similar to the standard network capa-
bility maps traditionally used in seismic monitoring studies (Network, Snap/D, etc.).
Especially Fig. 11, which gives "absolute" thresholds, could be seen as a capability map.
However, there are some fundamental differences:

Standard capability maps use as a basis statistical models of signal and noise charac-
teristics; in particular a signal variance and a noise variance is assumed to compen-
sate for statistical fluctuations. In contrast, the regional TM maps give "snapshots"
of the capability as actually observed at a given point in time.

With standard maps, no allowance is made for unusual conditions, such as, e.g., the
occ irrence of a large earthquake or an aftershock sequence which may cause the
network capability to deteriorate for hours. With the TM approach, the actual varia-
tion in detection capability is immediately apparent.

Standard capability maps require assumptions, e.g., with regard to "SNR threshold
required for detection" and "minimum number of stations required to locate". The
TM maps require no such assumptions since they are not tied to "detecting and
locating" seismic events, but rather describe directly the observed "seismic field" at
any point in time.

We will briefly comment further on the last item mentioned above: The requirement of
multistation detection with the standard method will sometimes result in unrealistically
high thresholds, e.g., in areas near a station of the monitoring network. The multistation
requirement also implies that the method is not able to adequately represent the possibility
of particularly favorable source-station paths. A case in point is the outstanding capability
of the NORESS array in detecting explosions at Semipalatinsk (Ringdal, 1990). Thus, if
NORESS has no detection, it is highly unlikely that any explosion at that site of mb> 3 has
occurred, whereas a capability map based on a 4-station detection requirement may well
show a threshold an order of magnitude higher.

8
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The threshold monitoring approach will avoid these inconsistencies. Thus, under nor-
mal noise conditions, the thresholds will be very low within a few hundred km of each net-
work station. Furthermore, since the TM thresholds are dominated by the "best" station of
the network, particularly favorable source/receiver paths may be accommodated, although
this would require a combination of regional and site-specific monitoring.

In conclusion, the continuous threshold monitoring has been demonstrated to provide
a simple and very effective tool in day-to-day monitoring of a site of particular interest.
Further research will focus upon developing methods to analyze time intervals during
which significant evasion possiblities might exist. Data from the regional arrays, the large-
aperture NORSAR array, as well as other available stations, will be used in these anal" c•.
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Continuous Seismic Thrchold Monituring 31 May 1992

Station Phase Tr.Time App. Vel. Azim. Filter Config. STALen. Tim.Tol. STACalib.

ARC Pn 148.0 9.9 60.5 3.0-5.0 AOB,C,D 2.0 2.0 0.754
ARC Sn 257.0 4.9 53.2 3.0-5.0 AO,B,C,D 5.0 3.0 1.176
FIN P 228.0 9.6 32.9 2.0-4.0 AO,B,C 2.0 2.0 1.520
NRS P 284.0 10.4 28.1 1.5-3.5 A0,B,C,D 2.0 2.0 0.677

Tr.Time -- Travel time of phase
App.Vel. -- Apparent velocity from broadband F-K measurements
Azim. -- Azimuth from broadband F-K measurement
Filter -- Cutoffs of bandpass filter (3rd order Butterworth)
Config. -- Array configuration used in beamforming. AO,B,C means

AOZ, B-ring and C-ring
STALen. -- STA length in seconds
Tim.Tol. -- Time tolerance when searching for maximum STA
STACalib. -- Calibration factor used when converting STA values

(in quantum units) to magnitude
Magnitude = log I0(STA) + STACalib.

Table 1. Parameters used for site-specific monitoring of the northern Novaya Zemlya test site.
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S90/

0

d Network

1.5 2.0 2.? 3.0 3.5 4.0

Event magnitude M

Fig. 1. Illustration of the procedure for calculating upper magnitude limits. Each seismic
phase gives rise to a probability distribution, as illustrated on the figure. The dotted
curve, g(M,t), represents the probability, given event magnitude M, that the signal
from a hypothetical event occurring at time t would exceed the actually observed
noise level at at least one station. (After Ringdal and Kvwerna, 1989.)
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*<..Station A
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Fig. 2. This figure illustrates the necessity of using time tolerances. The plus signs indicate
target points, and a rectangle surrounding one of the target points (M) is also given.
The point within the rectangle with the minimum travel time is denoted M1 ,
whereas the point with the maximum travel time is denoted M2.
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Fig. 3. In order to monitor a finite area surrounding each of the target points, a mis-steering in azi-
muth is introduced when the beams are steered towards the target points. This figure illus-
trates this for two target points at different distances. The azimuth deviations are indicated
by dashed lines. Also note that for a fixed grid spacing, the mis-steering is a function of
distance to the target points.
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Threshold monitoring of Novaya Zemlya

700No ayaZ a

....... . .. ... . ... ...

""..

E--

60.60.0

............

55.0-
10.0 20.0 30. 40.0

LONGITUDE (DEGý

Fig. 4. Location of the target area (the northern Novaya Zemlya test site) for the threshold monitor-
ing experiment. The locations of the three arrays NORESS (A = 2280 kin), ARCESS (A=
1 100 km) and FINESA (A = 1780 km) are indicated.
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ARCESS 3-5 Hz

FIIESA2-4 HZ

0.000 20.000 40.000 60.000 Sec

Fig. 5. P-wave recordings (filtered array beams) at ARiESS, FINESA and NORESS for
the Novaya Zemlya nuclear explosion 24 October 1990. To illustrate the high sig-
nal-to-noise ratios, noise traces scaled by factors of 1000 (ARCESS) and 100
(FINESA and NORESS) are displayed for each array.
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24 October, 1990

Fig. 6. Threshold monitoring of the Novaya Zemlya test site for day 297 (24 October
1990). The top three traces represent thresholds (upper 90 per cent magnitude lim-
its) obtained from each of the three arrays (ARCESS, FINESA, NORESS),
whereas the bottom trace shows the combined network thresholds.

Notes:

1. An underground nuclear explosion (mb = 5.7) at Novaya Zemlya at
14:58:00 GMT. The peak of the network trace is 5.64.

2. Two teleseismic earthquakes from N. Xinjang province, China (mb = 5.2 and
5.4). The P-wave and coda from each of these earthquakes cause the network
threshold to increase to about mb = 3.0 for the target region.
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Fig. 7. Same as Fig. 6, but for day 299 (26 October 1990).

Notes:

1. A mining explosion (ML =3.0) near the Norway-USSR border. The Novaya Zemlya
threshold peak is mb = 3.2. Note that this threshold exceeds the event magnitude; this
is because of the proximity of the event to the network stations.

2. A mining explosion (ML = 2.5) at the Kola Peninsula. The network threshold peak is
mb = .2.8.

3. A teleseismic earthquake (mb = 5.1) near Lake Baikal. The network threshold peak is
mb = 3.2.
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Threshold magnitudes - Novaya Zemlya

0

C

C4

o.

1.0 1.5 2-0 2-5 3.0

Magnlthge

Fig. 8. Cumulative statistics of the network threshold magnitudes from one full week of
data, October 24-30, 1990.

24-30 October, 1990

Number of peaks exceeding given magnitude

20
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Fig. 9. Statistics of peaks in the network threshold traces for the one-week monitoring
experiment of Novaya Zemlya: a) Number of peaks exceeding given mb values and

b) Total duration of peaks above mb = 2.5.
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Fig. 10. Beam grid used for calculating regional thresholds with the array network NORESS,
ARCESS, and FINESA. The location of the three arrays is shown on the map.
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