
AD-A256 656

NASA Contractor Report 189711

ICASE Report No. 92-46

ICASE
CONCURRENT FILE OPERATIONS IN A HIGH
PERFORMANCE FORTRAN

Peter Brezany D TIC
Michael Gerndt .LECT r
Piyush Mehrotra CT21 1992
Hans Zima

Contract Nos. NASI-18605 and NASI-19480
September 1992

Institute for Computer Applications in Science and Engineering
2.NASA Langley Research Center

SHampton, Virginia 23665-5225

_4t Operated by the Universities Space Research Association

SM National Aeronautics and !~~oe xVu2 60I

IM • . Space Adrministration .,, ,_ • .. ,,-,.-

N• Langley Research Center
,O Hampton, Virginia 23665-5225

O_T
S. ... -

_ _ _. .-.- - -.-

Concurrent File Operations in a High Performance

FORTRAN*
Peter Brezany", Michael Ge-rdik. Piyush Mehrotra'. Hans Zima"

"Departinient of Statistics and Computer Science,
University of Vienna, Bruennerstrasse 72, A-1210 Vienna, Austria

zina (lpIar.univie .a('.at

bC(niitral Iinstitute for Applied IMlatheinatics,
Researcvh Centre *Jiihch (KFA) Postfach 1913. D-5170 *Jiilich. Germanv

in.gerindt ukfa-juelich.(le

cICASE. MS 132C. NASA Langley Research Center.
Hampton VA 23681 USA

1in1 (ticase.(du

Abstract

1)istribted mnernory multiprocessor svstnems can provide the comnputing power
iiece(ssary for large-scale scientific applications. A critical perfoirmance issue for a
numwer of these applications is thle elticient transfer of (data to secondary storage.
IRv,('ntlly several research groups have proposed FOITR \AN language extensions
for exploit ing Ilie (ata p)arallelism of such scientific (-odes on (listril)ite(mciin-
ory archiltectii-res. Hlowever,. few of these high performance IV)OHI TANs provi(de
alppropriate ('onstrwcts for woritrolling tlie rise of the parallel I/O(capal)ilities of
Mtodern iitiltiprocessing iraclines. hi this paper. we propose coristrriwts lo Sle)eify
i/0 operations for (list rihut ed data strucdures ini the context of Vieni na Fortran.
These oel)rations can he used y I the programmier to) provide informat ion which c-an
help) Ihli cthe)ilr and runtim, eiviir Venitn make the miiost efficient us(, of the I/)
si 1 s vsI S| Il.

"lhi, work dIscrilbd in this paper is eing carrie, out as part of ,lit' l270)2 ESPRIT research p~roj'ct
"'An A.it,miiati, arallelizatii, Syst,.m for (Grn,.n1'" funded by Ile Astrinan Ministry for Science and
Hsuarch (B.1MW). Tli resarch was also) supi-,rtetd by the Nalifjnal Aeront wi-s and Space Adtrimiis-
Iratiom unidr NASA crmtracls NASI-I8605 and NAS, I-19,180 wiil, sorne o(ft mit ltl inrs were ini r,,sidiict
at I(WASIE. ;iil SIp) 132('. NASA Langley Rlesearch (enter. I1ami!pti(, VA 23GMS.

1 Introduction

[Distriblutedl memory muultiprocessors ([)MMIPs). such as Intel's Paragon and Thiniking

Machines' (M5, provide anl attractive aJ)proachi to high speed comfiutilg p~art ictilarly

b~ecause their p)erformanice call be easi ly scaled ip)V byIncreasing the iiunil1ber of i~rces-

.5015. Thme 1/0) b)ot tlenieck has beenl somlewhat alleviated InI thIese sys temns lyvpower.Ifull

(Concuirrent lInput/Output Systemis ((lOSs) ([1 2. 3. 9, 16]).

H ardlware andl software arch itect ures of ('lOSs pr-ovided lbv varlious 1)M M P veiidors

dliffer sillstanitiallv. For examp~le. the (Conicurrent File Syst em1l" 1 (('FS) develop~ed bY

Intel for the i PS(/2 and ifPS(/860 stipercompimters [15] is b~asedl omi anl architect ure

which is st raiglitforward to use whinle dleliveri ng high sp~eed concurrent access to larige

dat a sets. The ('S is b~ased on a technique called striping. The striping scheme allows

a sinmgle file to be spread across multipl)e dlisks (st ripedl) [3] so as to Improve access sp~eedl

mid~ decrease conigesti~on InI commulnicatilon liii ks. St ri pi ig Is (lone at thle logicatl I lock

level. For exam pIe I lie even mnulbered log-ical 1blocks of a file imay be allocated to disk 0

whliile tihe odd mitmnlibered logical blocks are locat ed on dlisk 1.

tDespi)te significant adlvances in hardware. pr-ogran mining DI)MR M s as beeni found to

be relativelv (difficult . IData aind work have to be (list ri buted amiong the 1)oesr andl

explicit mnessage passing has to be used to access remote data.

InI recent years. several languages extensions have been p~rop~osed to p)rovide a hilgh

level en vi roli men t for porti ng datta p)arallel scientific codles to [)M M Ps. The funmidamen-

tal goal with~ thlese app~jroachIes is to allow th ler tospecify tilie codusnitgoa

inldex space whiile f1rovidlinug auinotatmonis for sp~ecifvi ng the (list ri but ion of datat. The

comin iler t hen anialyses such hilgh level code and restruc tires thle code Into anl S PMD I

(Single Program Mujltiplev [Data) p)rogram for execution onl the target distributed mem-

ory mutlti processor. X~ork (list ribmut ion is based onl the owner-computes rule and lion- local

references are satisfied by insert ing appjrop~riate message fmassiimg statemients inI thle gen-

eratedl codle [7, 11 , 19].

Most of these efforts are extensions of FORTRAN 77 [5. 6. 12, 1-1, 18, 20] or FOR-

THRAN 90 [.1, 1:3] and we collectively refer to them as ats high performnaice F() I'II:\Ns.

Recent ly. a coal it ion of groupls from indulmst ry. government labs anil academia formie thle

H1igh Performance v()wI'RAN Forum to dlesign a stanidar(1 set of extensions to F)OR -j_

T {A N 90 along the hines descri bed above [8].0

A niong these laniguiages. only \'iemina Fortran [20] and(M PP [1H] l)rovid(' suiI)I)ort for

('OSs. However, efficient use of the ('OSs is crucial for many apl)fications. such as I0

cessinug of sesisn ic dlata and si umulat ions of oil fields. amid largely (dictates the p)erformiamice
Codes

Avaji and/or

I Dlet Special

DTýCc-~ .. ~-

of the whole program.

C onsider thle situnatlonl where oile program writes out all array and aniothier programn

t Iitein reads the i -dit a jitito at target atrray. If we use t IeI(st a it Iitrd FO) U' RA N write statemIIIenI t

to oultpult thle array to it sequ~enltial access file (miost scientific (codes use s~equlenitjal access

files onlyv), thle dlata elemieints are writ tenl out Iii thle col umn-nlajor ordler as definled 1 v

FORTRAN. kklieii the source array is distrib~uted across a set of processors, the processors

nieedl to svii(lronilze aind generallyV execute serially Iin order to preserve this sequence whlen

wiigout the elemenits of thle a rray to seconldary storage.

However, if thle target array is dlist riblutedl inl the same mnna~ier as tile source. bothi the

ou1tpui t anid the Illput mlay 1becomle mlore efficieiit if we (10 iiot mainltaini t his p)rescribed1

seuluent ial ordler. For example. each processor miay - III parallel - write ouit the ipiece of

lie array that it owns. ats at contiguous block. Thiis data (-all tihen be subsequentfly readl

-also iii parallel - Inito at si milarl vd(ist ributed target array.

If tlie dlistrib~uted arrays are 1beinig written and(read l i the same p)rogramf, for example

as scratchl arrays. thlen thle coimpiler knows the (listri but ion of the target array. Ini such

at situiat ion. It cali choose the best possible order of elements oil external storage so

ats to make bothI tile inipult anld ou1tpult efficient. However, Iin general. files are us~ed

to commnuniucate dhat a between programs. Iii such situlationis. the compiler aind ruintime

51,5hIl do'ii 1 riot. havc ally uifformIat ion about the distril1)11ion of the target array amid] benuce

wvill have to use thle st an dardl order for the elemeints.

Ill this paper. we propose coinstruicts which enable the user to provide some iuifornia-

tioui about how tile (data to be stored Iin the files is goinig to be subseq~uently used. This

iniformiat ion allows the compiiler to parahlehize read and write operations for distributed

arrays by selecting at well suit ed data sequlence Iin tile files. Nlote that the language

conist~ructs (lescribed here operate oii whlole arrays rather than sectioins of arrays.

\Xe present. thle concurrent I /0 operations inl the conitext of Vienna Fortran. a high

pe(rfo~ru~mance FORTRHA N language. Section 2 Inltrodluces some Vienina Fortran language

construicts for specifying dlata distrilbution along with hita formal model to dlescrib~e these

dist rilbutltolls. Thie nlext sectioni p~resenlts the concurreiit I/O op~erationis being proposed1

hiere, while Section -1 providles some performance niulmbers to justify the iieed for these

olperat lols.

2 The Vienna Fortran Distribution Model

Ilmli ils sect ion we present thle b asic language featumres of Vienna Fort ran. A full (lescri ptionl

of, thle ent Ire lauigliage c'aii b e found ili [20]. Vieninua Fort rani is basedl oil a ma~chiuie model

2

M- conisistinig of a set P of processors withi local mnemory, interconniected by somie nietwork,

anid a highi performianice file systemi. A Viennia Fortrani programn Q is executed oni A4 by

runiniiig the code lprodiluced by the Viennia Fortrani Comipiler oni eachi processor of A4.

Thiis is calledI ani SPMD (Single- Program- Multi ple- Data) model [10].

C(ode genieratioit is guidied by a mnaj)piing of the internal data space of Q to thie

i)rocessors. Tihe internial (lata space A is the set of (leclaredl arrays of Q (scalar variables
cani be initerp~reted as onie-dimnensionial arrays withi onie elemnent).

Definition 1 DLt A E A dciioic ant arbitrary array. T&f index domain of A I's dn iothd

by 1". The shape of th(indc~ dorabin L. shap~(I), pro vid(s 1h(x.tcns ini achi diinl(iision

of th(~ doiiainl.

2.1 Processors

hin \eienna Fortrani processors are explilcitly initroduicedl by thie (leclarationl of a processor

array. The niotatoional conv-,entionis initroducedl for arrays above cani also be iise(l for

p~rocessor arrays, i.e., VR deniotes thie iin(iex domnaini of a p)rocessor array l

2.2 Distributions

A distribution of ani array iiap~s eachi array elementi to onie or miore p)rocessors whlilch

becomne the owners of thie elemienit, ani(l, Iin thils capacity, store thie elemenvt in thieir local

ineiniorv. We mo1(lel (list ribmitionis by funictionis bet weeni the associate(l i (lex (lonilains.

Definition 2 Distributions

Lct A E A, and assurnic that R is a proccssor array. A distributioni of ti',(array ,A

writh respu,(t to R. is dcfinicd by the the miappinig:

6A. : A , ~j,

whcifr(PI'~) df-not(s thz(pow ~r sHt of 1'.

Ini Viennia Fortrani thie (listrilbutioii of ani array is sp~ecifiedi by an nioLt.-tig t lie array

dJeclarationi withi a diStribitioni xprussloo. For examiple.

REAL A 1 ..).,..Ar(..) DIST dfx TO pl'ocs

(leclares arrays A1, I < i, < r. '[lie distribuitioni expressioni It .r (lefinies thie distribtiaoni of

Hearrays ini the -onitext of thie giveni processor set prtnis. Thie dfistribuitioni expresslion

Iin its slimplest formi conisists of a sequience of dlistribwi t ios, onie for eachi (Iifieivisioti of t li

31

(lata array. A set of intrinsic (listril)ut ioll functions are provided, inciluding the commonly

ocCurri ig Iblock (list ri bilut iol which maps contiguous elements to a processor and the cyclic

(list ii hlt iou which nilaps elements cyclicallv to the processor set.

Exampies of arrays with some hasic (list rib htioiis are giveu below:

PROCESSORS R21D(16.16)

REAL A(256.4096) DIST (BLOCK. BLOCK)TO R21)

REAL b(256.1096.16) DIST (CYCLIC, BLOCK,:) TO R21)

Th'e first statement declares an 16 x 16 two-dimensional processor array. 12D. The

array .I s (declared to I)v (list riuI)it e(l such that its first dimension is partitioned into

lhlocks of size 16. whiIt lieth secoid(dimension is partitioned into blocks of size 256. These

blhocks are maIapped to the correspondinig)rocessors of H21): for exampie. the segment

A0.19 : 6.1.38-11 : .1096) is assigne(l to lthe processor H12)(,1. 16).

The -:- in thle (list ril)tit lon eXlpression of B specifies that this dimension is [lot dis-

tri hutctl. Oiily the first two (imuensiouns are (list ri huted across the two dimensions of the

processor arrira,

Vieunna Fortran supports a wide range of facilities for (list ril)tit ing anld aligning data

arravs. Fi II dletails of Ihliese andl other feattires of tihe language. includli ng examples. call

be fotiuud 1 [.5. 20].

3 Concurrent Input/Output Operations

II thi is section, we dlescrihe, the concurrent file operations provided in Vienna Fortran.

The langluagte (ist 1i gtiishes l)etwee-i two types of files: standard files and array files.

St anlard fi les are accessed via standardi FORTRAN 1/0 statements whereas array files

Can I be acc('ssed I via (0ciUirrent I/() Ol)'erationis only.

Thue first suI)sect'ion lescrii)es Ilie strilictutire of the array files. The concurrent file

op,'rat ions are informallv introduce(l in the ilnext suhsecttion while thie last stlb)sectioti

specifies thist, seoperations formally.

3.1 Array Files

llp)llt/())Itl)ptt statemients control thle data flow b)etween program varial)hes and tile file

.ysteiii'm.The file svstem of macliine Al may reside physically oti a host system and/or a

(10,).

Definition 3 ih/ fib .,/.stI r. F of machimi M'1 i., djfinr d by th(union of a m. of .standard

I"OIT;.,"i,] ';-r and a .m t of ara,!/ fik., -FAR-.

When transferring elements of a distribuited array to an array file, each processor dloes

input/ouitput operations controlling the transfer of the local p~art of the array to or from

the corresponding p~art of the file. A suiltal)lv file structuring is nec'essary to achieve high
transfer efficiency.

Array files in Vienna Fortran may contain valuies fromi more than onle array. There-

fore, array files are strlictiredl into records. Each record contains anl array (liStrjlblitioli

descriptor followed b~y at seqIleiice of data elemients associatedl with this array.

Definition 4 Ani array Jih F" E YARi .s a sequt incr of distributed array records
< dar c1 -dare c2... > Each rtcord can bf associated with a distribute d arr-7ay, A, and

has thI formI (v 4,01) wihereI

* ."is a distribution de~scriptor and has thc struicture 4 T(Hr.~i h
dist ribiution used for writing out flth s~qunc(of data f hc in ents and F' and VH a i-(

thit unde rlyinq array and pi'oce ssor indtx. domains. resp ctire ly. used for dejin ing

flthis dist rib uitionl.

"* (9.4 IIS a se que ncr of data (hinc itts stortd inI this rfcord.

3.2 1/O Operations

(uiciir-rent 1/0 operationls suipported byv Vienpa Fortran call Ihe classified int o thlree

groups: dlata transfer. Hi qilry and file uiaiipulatioii op~erat ions. These operations deal

wvithI whole arrays which are (list ribit ed across a set of processors. Thus, it global syn-

ch ron izat loll of the p~rocessors Is req Iiii red(before th1ey coolperat e to t'xeci it(' th li'o1erat ionl

InI this su hsect ion, we intforinal v (lescri he t he. colicurlretit /() operations supported

l~y Vienna Fort rain.

Writing to a File

Thel(conii('rrent write statement. CWRITE. -anl hev ised to write imulti pie arrays to at file

inI a single statement. For each array a elist ri huted array recordl is writ ten onto thlet file.

Vieinna Fort ran providles three forms of the concuirrent write st atemient . These affect, lthe

orde'r of data elements writ ten i ot to th li'distri huted array record.

(i) InI the simplest form, thet i ndiv~iduial dlist rlibut ions of thlet arrays (let erminte thlet

sequience of array elements written out t~othe file. Fore(xample. in the follow]ing st ateulient:

CWRITE (f) Al, A2 ,. _A,

where f elenotes the I/o uniit number and Al

< i . r are array, identifiers. This forml should be used when thle dlata Is going to

be read into arravs with the "'samne" distribution as A1. inl this situation, the sequence

of vellentis inl thle tile are generated b)y concatenating the linearized local segments of

A4 owned by the Indlividual processors accordling to the increasing order of the linearized

ilidlex of the processors. This is the most efficient formn of writing out a distributed array

since each processor can indlependently (and inl parallel) write out the piece of the array

that it owns. thus utilizing thle 1/0 capacity of the architecture to its fullest.

(ii) C onsider the sit uat ion]in which the data is to be readl several timles into an arrav

B. where the (list ribl~uton of B is different from that of the array being written out.

Ill this case. th lie ser Imay wish to optimize the sequence of (dat a elements iii the file

acco~rdinig to thle dlist ri but ion of the array B so as to make the mult iple read oIperat ionls

More eIffcieit . Additional parameters of the CWVRITE statement eniable thle uiser to

spec'ify (it) thle shape of thle (list ributed array to which the readh operation will be applied.

aitil (b)) Its (list ri b~ut ion. Thiese additional sp~ecifications c-an then be usedi by the compiler

toleterminiie thle sequiieiuce of elements inl the ouitput file.

If at shiape is sp~ecifiedl. the Size of the arrays A, ...4,. , has to be equal to the product

of tIlle extecuts of thle specified Inidex domain. 'FThe result inrg rank amid shape have to mlatchi

Ilie (list ri-ilit loll spec(ification . F'or exam ple. thle followinmg stat ement canl be utsed(If .4 Is

CWRITE (f. PROCESSORS~ =i{21(NN).

~Y DIST='(BHLO('K.('YCLI(') TO H2)') A

IHere. thit t'leienet s of thle array A4 are written so as to optimiize readling them Into

airi array% Whiichr is (list ribmited as (BLOC(K, (CY'(CLIC). [Depending onl thle sequence to be

writttcii. thle proce'ssors (a) couild sviich ronize so as to ex'cuite thle correct se 1ulence of the

nidividuial wrilt's to se'condary storage. or (b)) could iiicurr the overhead of retlistri but ing

lthe (hatia inuternrall bev fore uising at paralle'l write operation t~o out put thle diata.

(iii) If th dn tata lin a lile' is to be subsequiently reatd into arrays with different distrib~u-

tions or tht're Is nio Informnatioii available about the (distribution of the target arrays, the

itst'r May allow thle comnpilher to choose thet sequence of the elements to be written out.

liis is done bY specifyiing 'SYSTEM' as the (distribution in the CWRITE statement:

CWRITE J. DIST== SYST ENV) 4...,Ar

Thl~is allows thle tompil er and thle rmiit ime system to cooperate to determine thie b~est

ptssi mt sequmence for writIinig out thle data. gi venr that there is no knowledge about this-

tri Int ion of thlit target arrays.

6i

Reading from a File

A read operation to one or more distributed arrays is specified by a statement of the

following form:

CREAD (f) BI, B2 . Br

where again f d(eiotes thie 1/() unit inum)ber and Bil, I < < 7- are array identifiers. The

operation reads tlie niext r (list rititetd array records iii f. Tit data eletimeits of thie itli

record are read into B,,. Note that thie semantics of standard FORTRAN I/O operatio•Ii

has to be i1naintaitied. That is, if an array A is written out to a file an(d then read Into

another array B, the column-major linearization of FORTRAN arrays will determine

which elehment of A is read into a given element of B. The actual transfer of data, t hus.

is done by taking into account the distribution descriptor of the ith record and the shape

and tiel distrihiutioii of Bi.

Accessing a Distribution Descriptor

hlle distribution descriptor of thie c(lrrent distributed array recordl in the file can be

ac'esseod as follows:

CDISTR (f)

The valtie retiried by this function can be used in the special Vieitna Fortran case

stat eiieiit, DCASE, whitich allows decisiolis to be made based on the value of tlie distri-

) it ion dlescriptors.

Other Operations

"* COPEN (colist) - Open an array file.

"* CCLOSE (cclist) - (Close aii array file*.

"* CSKIP (f.*) - Skip to the end of file.

"* CSKIP (f, i) - Skip (list ril)iited array records.

"* CBACKARRAY (f) - Move back to the previous array record.

"* CREWIND (f) - Rewind the file.

*The operations COPEN and CCLOSE have the same meaning and the lists -olht and ccMst have
the sarme form a.s their counterparts in FORTRAN 77.

7

I

* CEOF (f) - Check for end of file.

Note that the concurrent I/0 operations supported by Vienna Fortran can be applied

only to the special array files defined here, and conversely array files can only l)e accessed

through these operations.

3.3 Operations on Array Files

In this subsection, we formally describe the semantics of the concurrent operations on

array files.

Definition 5 1. A fih F can b(,i'hwtd as a concalrnation of two st-qucnacst

F = F cat F

wh!1,r F is part of tht- filt which has alr•ady bmn proccs.sd and F is th(r.st of thE

filt. TPus compon•n Wn art not directly accss.iblh to thc programm r. cat is thf

op ration of s(qut ncu concalt nation.

2. Th(null .suqut ncf is denotid by thl symbol <>.

31. If t - tuplt (it 111 1.it 2 t. t it ,7j,

th n i - tlpi j. i is th(ith iittIn of it - tiupl(.

4. if F = < rC, r(•,2.. . r(CC, r(C,, > for 0 < 71 < in, thcn

first(F) = CI
r.. 1(F) - < rc2 . r.... >

IIst (F) =- tc",
wilhontla.t(F) < rfCI 7T.C7,,,-I >

fir'sti (F, 1,) < < rCC' .•1 C,, >
tithoittfirSt/7(F. V) = < r' C,,+ I 7 . .. C , >

.5. B : 0 0 n al.s the transfcr of tht fJib data (hinfnts dcnotcd by 0 A to tlh dis-

tribuhd array B.

6. B reorder :<= (0.,A, 4 ,t") has thl following intcrpretation: 0 A is rad from

th filt-, th(n it is r(ord(rcd into an intrrntdiatc scqunu•• which matchcs., ti,"Q and

finally, this s.qqunct is transfcrrrd to the distributcd array B of thc program.

tTh(" formal specification of 111 array fike operations presented in this subsection, is partly based on
th," file rm,,dt(l prp,,sd by Tennent [17].

7. Let dOA = (IAIR,(1) a' d 6As = (IBil2, 6b 2). An equivalence relation, =. is

defined among distribution descriptors. We say, 1 A = VIF, iff shape (IA) = shape

(I'), shape (IR) = shape (I"2) and the two distributions RA and 6' 2 are cquivalent.

8. i/o-operation (F) A,, A.2, ... A,,, is equivalent to:

i/o - operation(F) A1

i/o - opeiatimn(F) A 2

i/o - op~(i-tioi (F) A,1,

Definition 6 Array Jilt operations arc defii, d as followsl:

I. Data transfer operations

"* CWRITE (F) A is (quivalein to:

- F cat < 0-A)>
F <>

"* CWRITE(F, SHAPE =(Fl . .. ,,,) PROCESSORS='(N.

DIST='dtx') A

I Nquivab ut to:

F F cat < (,je, 0A >
F :=

wIh (1.(

IN 1:3 = [1: El X ... X [1: E,,]

"* CWRITE (F, DIST=S YS77'EM,7) A

is rquivalent to:

F F cat < (O!'Systr. ()A)>

F <

wht7"e /.,ystem,, is implementnation dcjincd.

"* CREAD (F) B is cquivalett to:

Auxiliary operations, such as opening and closing files, are not included in the foirmal detinit ion here.

9

if (1/Ia - i/A) then

B :. first(F) 1 2

else

B reorder :• (first(F) 4 2, ,A, 1pB)

endif

F F cat first(F'

F "7rest()

Where ý,A = (first(F) 4 1)

2. Inquiry operations

"* CDISTR (F) is equivalent to:

first(F) 4 1

"* CEOF(F) is tquivalent to:

=<>

3. File manipulation operations

* CREWIND (F) is equivalent to:

F FcatF

* CBACKARRAY (F) is equivalent to:

S:= last(F) cat F

F : wit houtlast(p`)

• CSKIP (F, *) is cquivalc,t to:

F:= F catF

F <>

* CSKIP (F, n) is equivalcnt to:

F F cat firstn(F,n)

F withoutfirstn(F,n)

10

4 Performance

In this section, we present some performance measurements to justify the need for user

control over the manner in which data from distributed arrays is transferred to and from

secondary storage.

Consider the following declarations:

PARAMETER (NP...)

PARAMETER (N =...)

PROCESSORS P(NP, NP)

REAL A(N, N) DIST (BLOCK, BLOCK)

Here, .4, is a N x N array, block distributed in both dimensions across an NP x NP

processor array. Figure 1 shows the distribution of elements of the array A for the case

of N' =4 and NP= 2.

A(1,1) A(1,2) A(113) A(1,4)

P(1,1) P(1,2)

A(2,1) A(2,2) A(2,3) A(2,4)

A(3,1) A(3,2) A(3,3) A(3,4)
P(2.1) P(2,2)

A(4I) A(4,2) A(4,3) A(4.4)

Figure 1: A two-dimensional block distributed array

If such an array is written out using a standard FORTRAN write statement, the se-

mantics enforce the column-major linearization of the data elements. This would require

(lose synchronization of the processors owning A to execute the write statement. Besides

this serizfization, another drawback is that each processors writes only small blocks of

the individual columns. On most svstemis., such as the iPS(C/860, the best. performance

for I/0 operations is reached for large blocks. Tile same inefficiencies recur, if the data

has to be subsequently read into a similarly block distributed two-dimensional array.

On the other hand, if we use the simplest form of the CWRITE statement as proposed

in the last section, the sequence of dhe data elements in the file would be as follows:

11

A(21).A(3AY)A(4AY)A(3.4yA(4A)

,':ach iprocess~ (-ail thiu s wr i te its lortcl telementstt as onie b lock, in parallel withI thle

lit'!l processes'. SimiflarIyn rain g lthe (dat a inito it simiilarl d (istrlibutedl array can also be
execultedi ii parallel.

III order to detteriinieit thle overhieads inv xol ved il wiiti ng ou t aii array tljst~ribuiited

as de'scri bed ab~ove, we implemienited fi vte ve'rsions of the write statement Oil thle Inztel

Pfsc/(/ o. -I'li(syste conietrsists oif :12 prou ssing Woes and 4 IA/) nodes using (FS to

manaage thle tIle system.

Thie fi rst lour' versionis of ouir experi tuiet . preserve thle st andaA d IN)RT A\N lineariza-

tionmll wh IT.xile Ithe I last uist's thle st'tjit'ice sliggt'stedt above.

III It Ii(fist imuiplemenit'iat ion. C LA I. each p~rocess senids its local b~lock of elemenets to

at (designate('d process5 which'l coll'ct s th len('itIr'e array. This Central proce'ss tOwn writes the

anrrv tmt to thle ('F'S usn it sand aiardlC F RTRHA N wvrite statemenit.

The next I liit't imiipleinent at ions. SEQO. SEhQ I anid S EQ2 againi preserve t he M"ol ni-

miajo~r lineitarizat ion o4 the array aiid use (TOS' HIle tioes 0. 1 and 2 reshpeti vely [Q]. to

"Tict out thle array. III .SLQO. each p~roce'ss mniiages its own file p~oiniter. .All 1rot'e~ss

write i iti5V ichirotiized ito thlit saine hihe. They posit on thiei r HIe ponUte to tile approp~riate(

posit ion ill thle filt' for ('ach sullcoflllini t hat t hey have to oit put.

'[In'l jPrOt('sst'sl Work with Iita coimn f101 ile(poinutetr ini version SEQ I andi tlinis have It) be

c isel v syntch ironize'd. F'or eatch p~art. of at coltunnui thle app~ropriate prcs performis the

Wrnit Wh'Iile It'e Otlt' r proCesses are wait ing.

III .ShAQ22 thit write (oper'ia tions art' cet'(li It' as co~lletctiye operat ions. The colluimn s

are' writ tt'i sequenit'lial ly. Thu s, teachi pr)cess which owns a p~art, of thle columii writes its

part . O thIetr prtoce'sses perform thle wvrite wvi th zero length i nformnation. The in formiat ion

wri tten ill Stich at colWect i xt'opnraIionl is ordIeredh in the out Jult filt'accordhinig to the process

11111iltibc.s

The last versionl. N1,11'. list's thlit imhpltme'i!ation suiggtestedl iii this pape'r. That, is.

insteat of writ inig ol t Ilt'e data in the colim in-major order, each p~roce'ss writes out its

lotal pit'cet' s coiitIigu olus b lock. Thit prcse petrform a. single collct ivtxv write u sinig the

Table)t I shioxws thlit tinit's i'ieasuiret for at 1000 x 1000 array (distri but etd hlockwise

itt~s aI x I pnireitsstor array. Si nte tlit' petrformfanc'e depends heavily on wvhether the

tit'1v ~tob xrkvni t ' xists prior tot in lt' opration or not,. we p~resent timings for bothI cases.

Thie Prtoh)tcm is Ihat if 1 lie HIle tlos niot alreadly exist, new tisk blocks have to b~e allocated

12

ImI1ldliig Pre-existvi 11

Version file creationi file
(CENT 41.3 41.0
SEQO 52.2 6.5
SEQI 413.9 7.9
SEQ2 42.3 -.
N E\W 1.9 6

Table 1: Timie (in secs) for writinlg out it (list ril~litcd arrax

eeyt ime thle file is ex tenmled. Thiis is particuilarlyv an issue wvith th le versionis. SLQO.

.5EQ I and .SEQ2 since each individual write for a part of thle col urn i ext eiids tihe file.

It is clear fromn our experiments. t hat at least on the i S(/8(it. t hat thle version

NEWH performs l)et ter than thle rest of th lie npleiieiit'ati1011. Thiis i ildicat-e. t hat I/0

1)0111(ap)plicat ions runiling oil (list iihllted m femory machinie max achieve much(1 I~et ter

performance if thle user call providle inuformnat ion which Would liel p Ilie cornpliler am I

runlt i 11 system to choose tihe l)est possi1 lde sequience of thle lat'a eleiiieiits w lit teli omit to

SeCollilarY storage.

1'lie- coilcurrent 1 /0(op~erat ions d escri he ini the last sect ion are cii miret ly being jue-

gratedI inuto thle Vijenlnia Fort ran C om pilIation System . We wxill rep~ort onl thle performiaiice

of t hese olperat ons. ini the context of actual al)1)icatols. at a latr (lMe.

5 Conclusions

Venidors of mnassi vely parallel svst 'llis uIsuially proid(x~e liigl-capaci tv parallel I/C) suil svs-

tenis. Efficient usage (if such sum systerns is cm tiAn to the perforinan ce of 1/0 bounid

a~pplicittioii co(les. Ini t ivs paper. we have p)resent ed language comist ruct~s to express p)ar-

allel I/0) operations oii distrib~uted data st ruct ures. TIhese operat ions (-all Iie uised 1)ly

the p)rogrammner to lpoimile informnatioii wiliclI willI allow the colili lr and(rnlltini eniix-

romimemt to optimize the transfer of (lata to aiid fromi second~ary storage. The language

coiist ructs presented here have beenl proposedl in t lie con text of V ien iia Fort ran. however.

they call he easily i nt egratedl imio any ot hr high perflormance M(''HaimN extenision.

Acknowledgment

We would like to thianik lBarhara C hapmnii for her1 helpful commniiits ail(h dlisculssionis. We

Would also like t~o thank one(of thle referees for the intsigit~fuil ad d11(et ailed commiilenits.

I 3

References

[I] .J.C. Admiiraal and C. Pronk : Distributed Store Allocation and File Management,

.Microprocessors and Microsystems. Vol. 14. No 1, 10-16, .January/February 1990

[21 R.IK. Asbury, 13.S. Scott: FORTRAN 1/0 on1 the iPSC/2: Is They,(Read Aftlr

W1ritc ý , Proceedings of the DMC(4, 129-13~2, 1989

[3] P. Beadle: A Distributed File 5ysthm for K2, Technical Report No. 88/17, ETH

Ziiri cl

[4] S. Benkner, B. Chapman, H. Zimia: Vienna Fortran 90, Proceedings of "~Scalable

Hfigh Performance Computing Conference", April 26-29, Williamsburg, 1992

[5] B. MI. C hapmani, P. Mehrotra, H. Zima: Programming lin Vit nna Fortran. Scientific

Programming, Vol. 1, No. 1, 1992.

[6] G. Fox, S. Hiranandani, K. Kennedy, C". Koelbel, U. Kremer, (". Tseng, and MI. Wu:

Fortran D language specification, Department of Computer Science Rice COMP

TR90079, Rice U niversity, March 1991

[1] H .M. Gerndt: Automatic Parallclization for Distributed-Mlemory Multi process? .ng

,;S ysh in, Phi.[. Dissertation. University of Bonn, Austrian Center for Parallel Corn

piitation Technical Report Series AC'PC-/TR9O-1, 1989

[8] Iligh Performance FORTRAN Forum. High Performance FORTRAN Language

*Specification. Technical Report, Rice U-niversity, Houston, TX.

(91 P(i and tP.5C/860 Mfanuals, Intel, 1990

[10] A.Hi. Karp): Programming for Parallelism, Comiputer 20(5), 43-57, May 1987

(11] C. Koellbel aridl P. Mchrotra: C7ompiling global name-space parallel loops for dis-

tributed (xec u/ion, IEEE Transactions on Parallel and Distributed Systems. October

199 1

[12] P. Mebirotra and .J. Van Rosendale. Programming distributed memory architectures

using Kali. In A. Nicolau, D. Celernter, T. Gross, and D. Padua, editors, Advances,

i .n Langu~ages and Compilers for Parallel Processing, pages :364-:384. Pitmani/MIT-

Press, 199 1.

14

[13] .J. H. Merlin: ADAPTing FORTRAN 90 Array Programs for Distributed Mem-

ory Architectures, Proceedings of the First International Conference of the ACPC,

September 1991, Salzburg, Austria

[14] D.M. Pase: MPP FORTRAN Programming Model, Draft 1.0, Technical Report.

Cray Research, October 1991

[15] P. Pierce: A Concurrent File System for a Highly Parallel Mass Storage Subsystem,

Proceedings of the DMCC 4, 155-160, 1989

[16] T.W. Pratt, .J.C. French, P.M. [)ickens, S.A. .Janet, .Jr. : A Comparison of the

Architecture and Performance of Two Parallel File Systems, Proceedings of the

DMC(C 4, 161-166, 1989

[17] R.D. Tennent: Principles of Programming Languages, Prentice Hall, New Jersey,

1981

[18] P. S. Tseng: A systolic array programming language, Proceedings of the DM('C 5.

1125-1130, 1990

[19] H. Zima, H.-J. Bast, and H.M. Gerndt: SUPERB - a tool for semi-automatic

MIMD/SI1WD parallelization, Parallel Computing, 6, 1-18, 1988

[20] H. Zima, P. Brezany, B. Chapman, P. Mehrotra, and A. Schwald: Vienna Fortran

- a language specification, ACPC Technical Report Series, University of Vienna,

Vienna, Austria, 1992. Also available as ICASE INTERIM REPORT 21, MS 132c,

NASA. Hampton VA 23681.

15

Form Approved

REPORT DOCUMENTATION PAGE o1B ro Ap04ro 18d

1 AGENCY USE ONLY jLedve Olank) 2 REPORT DATE 3. REPORT TYPE AND DATES COVERED

I ';d rnmht-r l nr r n npnnrt

4 TITLE AND SUBTITLE S. FUINDING NUMBERS

CONCURRENT FILE OPERATIONS IN A HIGH PERFORMANCE C NAS1-18605
FORTRAN C NASI-19480

6. AUTHOR(S) WU 505-90-52-01

Peter Brezany, Michael Gerndt, Piyush Mehrotra,
and Hans Zima

7 PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8 PERFORMING ORGANIZATION

Institute for Computer Applications in Science REPORTNUMBER

and Engineering
Mail Stop 132C, NASA Langley Research Center ICASE Report No. 92-46
Hampton, VA 23681-0001

9 SPONSORING MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10 SPONSORING MONITORING
National Aeronautics and Space Administration AGENCY REPORT NUMBER

Langley Research Center NASA CR-189711

Hampton, VA 23681-0001 ICASE Report No. 92-46

11. SUPPLEMENTARY NOTES

Langley Technical Monitor: Michael F. Card To appear in Supercomputing '92
Final Report (November 1992)

12a DISTRIBUTION AVAILABILITY STATEMENT 12b DISTRIBUTION CODE

Unclassified - Unlimited

Subject Category 61

13. ABSTRACT WMaxemum 200 words)

Distributed memory multiprocessor systems can provide the computing power necessary
for large-scale scientific applications. A critical performance issue for a number
of these applications is the efficient transfer of data to secondary storage.
Recently several research groups have proposed FORTRAN language extensions for ex-
ploiting the data parallelism of such scientific codes on distributed memory archi-
tectures. However, few of these high performance FORTRANs provide appropriate con-

structs for controlling the use of the parallel I/O capabilities of modern multi-
processing machines. In this paper, we propose constructs to specify I/O operations
for distributed data structures in the context of Vienna Fortran. These operations
can be used by the programmer to provide information which can help the compiler and
runtime environment make the most efficient use of the I/O subsystem.

14. SUBJECT TERMS 15, NUMBER OF PAGES

distributed-memory multiprocessors; concurrent input/output; 17
data distribution; Fortran language extensions 16. PRICE COOE

A03
17. SECURITY CLASSIFICATION 18 SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20 LIMITATION OF ABSTRACT

OF REPORT OF THIS PAGE OF ABSTRACT
Unclassified Unclassified

'%SN 75.0-0' 280 5500 S'a-da,d ;-0' 298 'Peý 2 89;

