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AFIT/DS/ENS/92-1

Abstract

The objective of this research is to improve the available techniques for discrete-event

simulation output analysis. Discrete-event simulations are dynamic simulations in which the

system states change instantaneously at the occurrence of specified events. Often the dis-

tributions of the model outputs attain constant or steady-state characteristics after passing

through an initial transient period. The presence of this initial transient can bias estimates

of the parameters which characterize the steady-state distributions. One common method

to prevent bias from initial data is to delete the data previous to a selected truncation point.

Currently, only graphical and heuristic algorithms are available to determine the appropriate

initial data truncation point. This research investigates the use of the Kalman filter to select

the truncation point for both univariate and multivariate simulation output.

Although residual monitoring is tested, the best truncation-point selection results are

obtained with Multiple Model Adaptive Estimation (MMAE). In applying the MMAE tech-

nique, the unknown parameter space is discretized and a bank of Kalman filters with one

filter associated with each discrete point in parameter space is initialized. The probability

of the parameters in each filter being correct is calculated based upon the filter residuals.

Weighting the filters' estimates by their probabilities results in a time-varying MMAE pa-

rameter estimate. In this application, the unknown parameter is the system mean. The

truncation point is selected as the point when the time-varying MMAE mean estimate is

within a small tolerance of an assumed state-state mean estimate. The procedure is applied

to single output sequences and to the average of multiple replications with excellent results.

xviii



Identification of the

Initial Transient in

Discrete-Event Simulation Output

Using the

Kalman Filter

L Introduction

The objective of this research is to improve steady-state multivariate output anal-

ysis techniques for discrete-event simulation through application of Kalman filters. The

primary focus is to determine analytically truncation points that reduce the bias from ini-

tial conditions in univariate and multivariate discrete-event simulation output sequences for

steady-state analysis. This introduction provides an overview of discrete-event simulations,

steady-state output analysis, and Kalman filters. Based on this foundation, the research

objectives are outlined. The background and details of current output analysis techniques

are presented in Chapter II. Chapter III discusses Kalman filters and system identification.

In Chapters IV and V, new methodologies for selecting truncation points for single out-

put sequences are proposed and tested. Although the residual monitoring approach applied

in Chapter IV is not as effective as the techniques developed in later chapters, the model

formulation developed is applied throughout this research. In Chapter VI, the truncation-

point selection is applied to situations with multiple replications, and the methodology is

extended to multivariate output sequences in Chapter VII. Summary and recommendations

are presented in Chapter VIII.



1.1 Discrete-Event Simulation

When no analytical technique is known to investigate a complex system of interest

fully, computer simulation often is used. In general, the system under study is defined to be

a collection of entities, such as people or machines, that act and interact together toward the

accomplishment of some logical end [53:31. The mathematical or logical relationships, which

constitute a model, describe the behavior and interactions between the entities. While the

model is an abstraction of the real or proposed system, the model is designed to represent

or simulate those characteristics of interest in the real system sufficiently to provide useful

insight. In a computer simulation, numerical techniques are used to conduct experiments

that estimate the desired characteristics of the model. Since the model abstracts the real

world with respect to specific measures of effectiveness, useful inferences about the real

system may be made from the simulation model's output.

Computer simulations can be classified as deterministic or stochastic, static or dynamic,

and continuous and/or discrete. For deterministic simulations, the exogenous input variables

are known. In contrast, stochastic simulations have some deterministic input parameters,

but they are driven by random (actually pseudorandom) inputs. For example, a simulation

of the partial-differential wave equation would be a deterministic simulation since the inputs

are the known boundary conditions. On the other hand, the simulation of a lottery would

be a stochastic simulation because the draw would be modeled by a random variate.

Stochastic simulations can again be categorized two ways; static or dynamic. The

simulation system state is defined as a collection of variables that describe the system at

a particular time relative to the objectives of the study [53:3]. In static simulations, the

state does not change with time. Examples of static stochastic simulations are distribution

sampling and classical Monte Carlo methods for estimating integrals [103]. On the other

hand, the state variables of a dynamic simulation change over time. An example of a dynamic

simulation is a single-server queue in which one of the simulation state variables signifies

whether the server is busy or idle. This simulation state variable will change depcnding

upon the entities' interarrival and service times.

2



Figure 1. Discrete-Event Simulation Model

d Discrete-Event
Simulation - Yn

C Model

A final way to classify computer simulations is continuous, discrete, or a combination of

continuous and discrete. The state variables in continuous simulations usually are described

by rate or differential equations, and these values are simulated by approximating the equa-

tion solutions over small intervals of time. In contrast, the variables of interest in discrete

systems change instantaneously at distinct points in simulated time. These transition points

correspond to the occurrences of particular events. For example, in a single-server queue,

the server state of busy/idle can only switch either when an entity arrives or when an en-

tity completes service. Combined models using both continuous and discrete state variables

exist.

A discrete-event simulation, the topic of this research, is computer simulation which is

stochastic, dynamic, and discrete. In Figure 1, a general depiction is shown. The vector d

represents the deterministic input parameters while c represents the stream of concomitant

or control random variates that are generated and used within the simulation model. The

model represents the entities and their interactions, and y,, represents the vector of outputs

at time index t,,. The parameters of interest are the values which characterize the distribution

of the sequence of output vectors {y.}

Queuing theory is a class of models which study dynamic systems in which entities

arrive in a random manner at a service facility [79:304-364]. Since queuing theory provides

analytical solutions for classes of systems, these systems are useful for simulation research.

Queuing models are classified by the distribution of interarrival times, the distribution of

service times, and the number of servers. Using M to designate the exponential (Markovian)
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distribution [35:597], the waiting line for a single server with exponential interarrival times

and service times is called an M/M/1 queue. While this system has an analytical solution,

this system also can be modeled by means of a discrete-event simulation. In this example, the

control variates c are the streams of exponentially distributed interarrival times and service

times. The deterministic inputs d would be the means of the exponential distributions. The

model consists of the first-in-first-out (FIFO) service order, which means that the customer

who has been waiting the longest gets the server next. More complex queues may have

additional deterministic inputs, such as maximum queue length, and the model may also be

more elaborate with rules, such as balking or a different order of service. Balking means

that under specified conditions, customers would leave rather than enter the queue and wait

for service. An example of another service order is last-in-first-out (LIFO), which occurs

when newly arriving orders are placed on a stack and next order processed is taken from

the top of the stack. The model is a discrete-event simulation since the simulation states,

server busy/idle and number in the queue, only change at either an entity arrival or service

completion. In this case, a scalar output sequence {y,,} might be composed of the waiting

time for each entity. Another possible output measure could be the queue length recorded

at periodic intervals. Queuing systems often are used in discrete-event simulation research

since queuing theory provides an analytical steady-state solution for comparison.

Discrete-event simulation has a wide variety of applications. In particular, discrete-

event simulation is used extensively to evaluate systems while they are being designed or to

compare various operational alternatives without perturbing the real system. In fact, it is

reported as one of the most widely used operations research tools [35:8]. The Air Force, like

other organizations with complex problems to analyze, also uses discrete-event simulation.

For example, the Air Mobility Command uses the Mobility Analysis Support System, a large

discrete-event simulation model, to assess the impact of proposed policies and to evaluate

the capabilities of alternative force structures [78]. In addition, the Defense Science Board

has recently recommended that more extensive simulations be used to isolate, identify, and

quantify potential problem areas during weapon system development and procurement [29].
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In 1990, the Department of Defense identified "Simulation and Modeling" as one of the

top twenty critical techaologies to ensure long-term qualitative superiority of United States

weapon systems [74].

Summary articles on discrete-event simulation include Shannon [92], Law [50], Wilson

[103], Kelton and Law [45]. Numerous books have been published on discrete-event simula-

tions including Shannon [93], Fishman [23], Kleijnen [47], Banks and Carson [10], and Law

and Kelton [53]. In addition, several simulation languages, such as SLAM [77], are used

throughout the analysis community.

1.2 Output Analysis

One of the principal objectives of discrete-event simulation is to estimate the character-

istics of the model outputs of interest. Since the simulation outputs are functions of the input

random variables, the outputs are a sample from a discrete-time stochastic process. The ob-

jective of output analysis is to estimate the parameters of the output distribution. Typical

parameters of interest are the mean, the variance, a specified quantile, or the probability an

output variate is within a specific interval [103].

Typically the output sequence is correlated in time; hence, the estimation process is

similar to time series analysis where inferences are made about a stochastic process based on

partial observation [12:1]. However, unlike time series analysis, additional realizations can

be obtained from separate runs of the model. Since the inputs for discrete-event simulations

are typically streams of independent, identically distributed (iid) random variables that are

different for each simulation run, each simulation run or replication results in an independent

realization of the stochastic process. The goal of output analysis is to make inferences about

the stochastic process and the associated distributions based on realizations of the simulation

output. However, achieving this goal may be limited by the cost of computer time required

to generate the necessary amount of simulation output data (53:523-524].

Since the output sequences are realizations of a stochastic process, any estimates that

are derived from them are random variables. Welch [101] summarizes the output analysis
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process as follows:

Hence the experimenter must generate from the simulation not only an estimate
A but also enough information about the probability distribution of A so that he
can be reasonably sure that it is close enough to the unknown quantity JL for his
purposes. [101:279]

Usually, this is accomplished by using an approximately unbiased estimator, so that E[A,,]

A, and estimating the variance o,, of the estimator Ay from sets of sample sequences

[101:279]. The estimated variance &?, along with an assumed sampling distribution are

used to construct a confidence interval around the estimated mean A.

Although a model is an abstraction of reality, in practice, the validity of a model is

assumed in output analysis. Therefore, statistical evaluations of alternatives are made based

on the model output without considering unmodeled effects. The impact of this assumption

is mitigated by the practice of analysts and decision makers to disregard small statistically

significant differences as not being practical discriminators between alternatives. Because

of the abstraction of reality involved in simulation modeling, discrete-event simulation is

better suited for relative comparisons between alternatives than for absolute determination

of system performance [15].

Depending upon the objectives of the study, two types of analysis, finite-horizon and

infinite-horizon, are typically conducted with discrete-event simulation models. Although

this research is limited to infinite-horizon analysis, both types will be described here for

completeness.

1.2.1 Finite-Horizon Simulation Analysis. If the parameters of interest are for the

output from an initial condition until a natural conclusion, finite-horizon analysis is con-

ducted. The initial condition should be representative of expected conditions in the actual

system. For example, in a retail simulation, the initial conditions could correspond to the

number of customers and servers in the system when the simulation begins. A reasonable
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number of customers may be zero if the simulation is beginning at the store's morning open-

ing. The natural conclusion for a terminating simulation may be the closing of a business,

completion of a contract, completion of a military engagement, or end of the planning hori-

zon. Since the period of interest is from the initial condition to the natural conclusion,

the model is run through this simulated time. The simulation is repeated to improve the

parameter estimates and determine their variability.

1.2.2 Infinite-Honizon Simulation Analysis. If steady-state stationary or cyclic out-

put distributions are of interest [53:528-531], infinite-horizon simulation analysis techniques

are used. When steady-state stationary output distribution exist, the output will attain a

stationary probability distribution as the length of the simulation run increases. In con-

trast, steady-state cyclic output will follow a time-varying probability distribution as the

simulation output length increases. Although simulation models typically do not have an

analytical equation to describe their output, these classifications are similar to the solutions

of linear differential equations with time-invariant and time-varying coefficients. This re-

search focuses on estimating the output parameters of discrete-event simulation models that

attain a stationary steady-state probability distribution.

While the object of finite-horizon analysis is to estimate the output distribution pa-

rameters for specified conditions, infinite-horizon analysis estimates the long-run values of

output distribution parameters. In infinite-horizon analysis, particular attention is paid to

eliminating the effects of the model's start-up conditions. For example, a logistics system

could be modeled to determine the effect of more repair facilities on the expected repair

time. Even though the repair facilities may close every day, with the assumption that work

picks up where it left off, the sequence of repair times would be uneffected by the breaks.

Infinite-horizon analysis indicates the long run capacity of the logistic system regardless of

how many failed components are initially in the model.

In infinite-horizon analysis, two problems typically are present. First, the duration of

significant effect of the initial conditions on the output is not known a priori. Second, classical
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statistical techniques are usually based on independent observations, but the sequence of

observations from the simulation model typically are correlated [101:2891. A considerable

amount of research in this field has been devoted to develop output analysis techniques which

address these two problems.

If the simulation output sequence has a stationary steady-state distribution, then this

sequence typically passes through a transient phase, which depends upon the initial con-

ditions. Thereafter, in the steady-state phase, the sequence has an essentially unchanging

distribution which is independent of the initial conditions. Rather than the transient phase

ending at a particular point, the behavior of the sequence gradually may converge to steady-

state behavior [101:277-278]. This convergent behavior depends upon the particular initial

conditions and the process dynamics. Since the transient output characteristics are not

representative of the steady-state characteristics, including the simulation output from the

beginning of a run may bias steady-state estimates. P_ ,-,ver, determining the point at which

the output sequence effectively has att•!:ied steady-state is difficult.

While most classical statistic technicnies apply to independent replications, simulation

output usually is correlated positively within a model run. This correlation reduces the new

information available for subsequent output values. Therefore, the run length must be longer

to achieve an equivalent level of confidence in parameter estimates. Various techniques exist

to attain approximate independence or directly account for the effects of the correlation in

the output.

In the following quote, Kelton and Law summarize the current limitations in deter-

mining the simulation run length and truncation point so that the sample average of the

truncated sequence, Xm,• in their notation, is a good estimate of the mean of the output

distribution •s.

What is really needed, then, is a generally reliable method for identifying deletion
amounts l, as well as (total) replication length m such that jim is sufficiently close
to • to allow us safely to use the X',• as being unbiased estimators for /• in the
context of a given inferential goal, e.g. c.i. Iconfidence interval] formulation. [45]



Further background on discrete-event simulation output analysis is in Chapter II.

1.3 Kalman Filters

The Kalman filter is an algorithm to calculate optimal estimates of the state of a

stochastic process based on imperfect observations of the system output. Another definition

is that the "Kalman filter is simply an optimal recursive data processing algorithm" [57:4].

In this definition, optimality can be established by various criteria, such as minimizing any

symmetric cost function. The term recursive relates to the two-step nature of the computer

program to propagate an estimate and then to update the estimate with an imprecise mea-

surement, repeatedly. The details and theoretical presentation of the Kalman filter are given

in Chapter III.

While the Kalman filter is used primarily on engineering applications, statisticians have

implemented the algorithm as an optimal Bayesian estimator [67]. In applying the Kalman

filter to simulation output, additional information about the stochastic process results in the

form of a state-space representation, state estimates, the state estimate's covariances, resid-

uals, and computed residual covariances. This research exploits this additional information

to improve simulation output analysis techniques.

1.4 Research Objective

With the increase in computer capabilities and improved simulation languages, larger

and more complex simulation models are being built and used. Simulations of complex sys-

tems may require large amounts of computer time [53:523]. Genera]lv, these models produce

an array of outputs, complicating the necessary multivariate output "nalysis. For example,

in steady-state simulations, the initial transient data should be eliminated to prevent biasing

the estimates. However, in order to determine the effective end of the transient phase, each

sequence of output variables should be checked for stabilization. The determination of the

multivariate estimates along with their associated confidence region and the determination

of sufficient simulation run length are also more difficult with larger complex models. Im-
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proving the available techniques to conduct univariate and multivariate output analysis of

discrete-event steady-state simulation is the general objective of this research.

This research effort focuses on identifying the effective end of the transient phase, or

equivalently, the effective beginning of steady-state phase. The objective of this dissertation

is to develop improved analytical techniques for determining truncation points that effectively

reduce the remaining bias due to the initial conditions. Techniques are proposed for both

univariate and multivariate output sequences. The truncation point that are selected by the

procedures should be far enough into the simulation run to reduce the bias induced by the

transient effects, but not so far that data is deleted unnecessarily, increasing the variance of

the estimates.

1.5 Preview

The remainder of this dissertation is organized as follows: Chapter II provides simu-

lation output analysis background. Kalman filters and estimation techniques are described

in Chapter III. In Chapter IV, a truncation identification point based on running a single

Kalman filter in conjunction with residual monitoring is developed and tested. While the

residual monitoring approach did not provide expected results, the same model formulation,

developed in Section 4.2, is used throughout this dissertation. Chapter V presents a different

approach based on Multiple Model Adaptive Estimation (MMAE) with a bank of Kalman

filters. Many popular discrete-event simulation confidence interval techniques are based on

a single long run of output [13, 39, 52, 69, 53:551-563]. Because of the run length used with

these techniques, the parameter estimates may be biased an insignificant amount by the tran-

sient. While the MMAE approach works on a single long run, the value of the additional

effort to truncate data which induces a very small bias may be questionable. In contrast,

the multiple replication confidence interval technique uses several output sequences. Since

each sequence contains initial transient data, the determination of an appropriate truncation

point is more important to prevent biased parameter estimates. The MMAE approach is

applied to the case of multiple replications of univariate sequences in Chapter VI, and the
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method is extended to multivariate output in Chapter VII. The dissertation is completed

with conclusions and recommendations in Chapter VIII.
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II. Steady-State Output Analysis Techniques

2.1 Introduction

Simulation output analysis can be thought of as a collection of analytical techniques

used to make inferences about the probability distributions of the outputs from discrete-event

simulation models. These analysis techniques are used to make estimates of parameters which

reflect the properties of underlying probability distributions of outputs. Typical parameters

that are estimated are the mean, variance, quantiles, or the probability an output observation

is within an interval [101, 103].

Parameters for several types of output are typically of interest. Conway [15] classified

the types of output as based on either temporary or permanent entities. An output based

on a "temporary entity" is associated with a particular entity that flows through the system.

For example, the waiting times associated with customers in a queue are temporary variables

because each waiting time is associated with a specific customer. The name temporary is used

since the variable only exists while the entity is in the system. Whcx the entity completes

service and is terminated, the temporary variable no longer exists. Pritsker [77:36] calls

the output based on temporary entities "statistics based upon observations". On the other

hand, "permanent entities" remain throughout the simulation run. Examples of permanent

variables are the number in the queue and busy/idle status of a server. Permanent variables

change during the simulation run, and usually the variable's average value over time is the

parameter of interest for each such variable. Pritsker [77:36] refers to output which measures

permanent variables as "statistics based on time-persistent variables". This research deals

with sequences of both "statistics based upon observations" and "statistics based upon time-

persistent variables".

The output may be produced at evenly-spaced or unevenly-spaced time intervals.

Evenly-spaced outputs are typically simulation state variables that are measured at set in-

tervals of simulated time. For example, the number of entities in the queue could be output
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at a predetermined rate. Unevenly-spaced output are generated at varying time intervals.

For example, let the output sequence be the waiting times for entities processing through

a system. The waiting time associated with each entity is recorded when the entity com-

pletes service. Since the entities complete service at random intervals, their waiting times

are observed as unevenly-spaced output. While many of the techniques are developed for

evenly-spaced output, they can be applied to unevenly-spaced data using an index. For the

en:ities in the simulation of a M/M/1 queue, their completion sequence number can be the

necessary index. This technique of using indices to represent time is a common practice in

time series analysis, and Fishman [20] applies it to simulation output data.

Charnes [12:8] classifies multivariate discrete-event simulation output as synchronous

or asynchronous. Synchronous output results when the entire multivariate output vector is

produced at the same time. In contrast, asynchronous output results when only a portion

of the output vector is obtained from each simulation observation. For example, consider a

simulation of a medical clinic that has three types of patients and assume the vector of waiting

times by patient type is of interest. Since each patient can only be one of the three types and

each patient's completion produces a simulation output, asynchronous output results. Seila

[90, 91] proposed two techniques for estimating confidence intervals for asynchronous output.

Although this research is limited to synchronous output, a recommendation for futher work

addresses asynchronous output.

Because of the randomness of the input variates from run to run, "a simulation is

a computer-based statistical sampling experiment [50]." Unlike most experimenters, the

simulator has significantly more control over the inputs. Therefore, data collection through

simulation is very controlled experimentation.

Since the output is a realization or sample of a stochastic process, most output analysis

techniques are based on statistical theory. For example, numerous techniques have been

developed and are in use to construct a confidence interval for the estimate of the output

mean [13, 39, 52, 69, 53:551-563]. Some of the techniques assist in a specific portion of

the output analysis task. As an example, the techniques for initial data truncation [24, 44,
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104, 105, 101:289-294] are designed to remove unrepresentative data at the beginning of the

simulation run to improve the steady-state estimates calculated with other techniques.

In finite-horizon simulation analysis, a simulation model is run from a specified set

of initial conditions to a natural ending. For example, a simulation of a ground war may

begin with all of the tanks operational and continue until one side is victorious. Running the

model repeatedly with different independent random numbers results in independent replica-

tions. Since the summary statistics are independent between simulation runs or replications,

classical statistical techniques are applied.

In contrast to finite-horizon simulation analysis, infinite-horizon or steady-state analy-

sis techniques are used to estimate the long run or equilibrium characteristics of the system.

Some discrete-event simulation models follow a cyclic pattern in steady-state, but this re-

search addresses only simulation models with output that attains a stationary steady-state

probability distribution. In most real systems the characteristics of the system change over

time, hence the stochastic process may not have a steady-state distribution. In many cases,

the changes are slow enough to allow "quasi-static" modeling, and useful inferences can

be derived from a stationary steady-state simulation model. In addition, for discrete-event

simulation models, the system characteristics are generally held constant throughout the

simulation, and therefore, the model output sequences often attain a stationary steady-state

distribution [53:530].

The next section presents steady-state discrete-event simulation assumptions and char-

acteristics. The following section reviews the literature on steady-state identification tech-

niques.

2.2 Steady-State Assumptions and Characteristics

If a simulation model output converges to a stationary steady-state distribution, then

the probability distribution of the nth observation y, would approach a limiting distribution

for any given initial conditions as n increases, i.e., lim ,__, F,1 (ý I i) -* F,(4) where the i

represents initial conditions [53:525]. Since it is difficult, if not impossible, to pick initial
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conditions which are representative of the steady-state conditions, the simulation model will

pass through a transient phase. Theoretically, the steady state or asymptotic distribution

is approached and never actually attained. The goal of steady-state analysis is to run the

simulation long enough that the initial conditions no longer have a significant effect on

the estimated measures of performance [53:531]. After effectively completing the transient

period at no, the output sequence {y,n} for n > n0 constitutes a discrete realization of a

stochastic process in which each y, follows the steady-state distribution. Although members

of this sequence are not independent, they often approximately constitute a covariance-

stationarity process [53, 101]. In addition, many of the output analysis techniques implicitly

assume ergodicity. The next two sections describe the concepts of covariance stationary and

ergodicity.

2.2.1 Covamiance Stationarity. Covariance stationarity requires that the mean of the

output sequence 1L. is constant and the elements of the covariance matrix are finite and

constant through time, and the degree of correlation between random variables in the se-

quence depends only on the distance between the variables and not on their absolute location

[53, 57, 77]. In particular for a scalar output sequence {Yn},

AV = E[y(tn)]

a' E[(y(t,.) -Ay]

For times s and t,

-,(t- s) Cov[y(t), y(s)] = E[(y(t) - ,)(y(s)- -•)]

Y(0) = C2

N(Z) = -Y"(-%)

pY(W : %(Z)/-Y(0)
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where -y,(i) is the autocovariance and p(i) is the autocorrelation at a lag of i. Covariance

stationarity implies that

E[y(t,)] = p., a constant for all n

E[y(t,,)2 ] < 00 and a constant for all n

-y(t -s) = -(r-q) if t - s= Ir - qi

For multivariate output,

jAy - E[y(tn)]

yy =__ E[(y(tn) - Py)(y(t,)- Py)T]

and the autocovariance matrix Lyy is defined

Fyy(t - s) =- E[(y(tt) -t•y)(y(ta) -_y)T]

Fy(o) = yy

and covariance stationarity implies that

E[y(tn)] = My is a constant vector

E[y(tn)yT(tn)] is a finite and constant matrix

yy(t -- s) = Fyy(r - q) if It - sl = Ir - qI

2.2.2 Ergodicity. Another important concept is ergodicity, which Maybeck [57] de-

fines as follows:

A process is ergodic if any statistic calculated by averaging over all members of
the ensemble of samples at a fixed time can be calculated equivalently by time-
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averaging over any single representative member of the ensemble, except possibly
a single member out of a set of probability zero. [57:144]

The advantage of a realization of an ergodic process is that the properties of the random

variable can be estimated from a single realization. Parzen [75:73] proves that the sequence of

sample means {J2 1(n), n 1," .. oo}, is ergodic if a? -( 0 as n -- oo. Parzen [75:74-

75] further proves that a necessary and sufficient condition for an ergodic process is that

the elements of the autocovariance matrices are bounded and the covariance, between the

sample mean Ar(n) and the last observation y, tends to zero as n increases. Parzen [77:741

states that a sufficient condition for a covariance stationary process to be ergodic is that the

autocovariance function yY(1) tends to zero as i increases to infinity. The importance of this

result in the simulation application is that an estimator of the mean approximately equals

the process mean if the variance of the estimator goes to zero as the run length increases to

infinity [77:727]. Many of the discrete-event simulation output analysis techniques, such as

all the confidence interval approaches based on a single run, implicitly assume the simulation

output is an ergodic sequence.

2.3 Output Analysis Issues

Most of the research on steady-state simulation analysis has dealt with some aspect

of the two problems, the initial transient or the correlated output. Many of the techniques

can be categorized as either multiple-run techniques or single-run techniques. Multiple runs

achieve independence by separate stochastic realizations. However, the initial transient must

be deleted from each of the initial runs. The single-run techniques use one long simulation

run so that the transient must only be deleted once. However, accounting for the correlation

in the output is a critical problem for the single-run techniques. The next two sections detail

the transient and correlation problems.

2.3.1 Transient Issue. The initial transient or startup problem is induced by initial

conditions which are not representative of the unknown steady-state output distribution.
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Conway [151 states that the transient components typically decay geometrically in time and

convergence to steady-state conditions can be quite slow. Odoni and Roth [73] numerically

solved the Kolmogorov forward differential equations to describe the transient behavior of

certain queuing systems. They stated,

The rate at which a queue converges to its steady-state characteristics, inde-

pendently of the system's initial state, eventually becomes (for large values of

time t) dominated by an exponential term of the form exp(-t/T) where r is a
characteristic of the queuing system.

For their queuing systems, the characteristic T is found to vary with powers of the coefficients

of variation of the interarrival and service times, and it is independent of the initial conditions

selected. Their finding of expoxciitial decay to the steady-state output distribution agrees

with other researchers, s,,i c.s Conway [15].

Once the outp-AL of a simulation effectively has attained its stationary steady-state

probability dist-ioution, each observation has the same cumulative density function F,(4),

regardless of the initial conditions of the simulation model. While the steady-state probabil-

ity distribution is attained only in the limit, the point after which steady state is effectively

achieved is labeled, using Welch's notation [101:295], as no. Effectively attained means that

the error caused by assuming the system is in steady state is negligible [15]. Therefore, -h,,

is an estimate of the end of significant effects of the transient. Thus, E[y,] $ t,, for n < no

but analysts assume E[yn] = 1L, for n > no. If the mean of the output sequence is calculated

using all the data,

n=1

then the expected value does not equal the steady-state mean; E[Ai,] 5 Ai,- On the other

hand, if the output sequence prior to no is deleted, then the mean of the remaining data

would be an unbiased estimator of the steady-state stochastic process mean:

E[y]= E [-no1 =+ Yn] N- ,+ E [Y]
L~flo + n~+l18
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For this reason, a current practice is to delete or truncate the beginning portion of the

output sequence. The difficulty arises in determining how many of the initial observations

to delete. Not deleting enough initial data may bias the resulting steady-state estimates,

whereas truncating too much data unnecessarily increases the variance of the steady-state

estimates.

While the steady-state values do not depend on the initial conditions, the length and

rate of convergence do depend on the initial conditions for discrete-event simulation models

[53:551]. Numerous researchers [43, 71, 53:551] have investigated the effects of various initial

conditions.

Madansky [56] examines (M/M/l) queues with no data deletion. He shows that if

the objective is to minimize mean square error (MSE) in the estimate of the number in

the system, the mode and not the steady-state mean is the optimal number of queued

observations for an initial condition. In addition, increasing simulation run length is more

effective than adding replications in reducing the MSE [561. Extending Madansky results to

the case where deletion is allowed is not obvious.

Kelton and Law [46] analyze the transient behavior of different queues. Their findings

indicate that, for systems with several servers, starting empty and idle with a build-up

to steady-state is much slower than beginning overcongested and drawing-down to steady

state. Initial conditions can be specified based on the output of pilot runs. While most of the

literature favors the mode of the number in the system as the best initial condition, Kelton

and Law [46] prefer the mean or greater.

Other initialization routines have been proposed. Law and Kelton [53] credit Glynn

for suggesting a one-time pass through the transient to develop starting conditions. Kelton

[43] proposes a random initialization which reduces the severity and duration of the initial

transient period.

However, while these papers demonstrate the significant impact of the initial condi-

tions, in actual practice, these techniques are difficult to implement. First, real-world multi-
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variate simulations have many queues and factors which would be required to be initialized.

In addition, many of these queues are maintained internal to the simulation model, and the

corresponding queue statistics are not included in the output. Therefore, the best initial

conditions for these queues could not be estimated from the output of previous runs without

modifying the model's output routines. Regardless, since setting specific initial conditions

shortens, but does not eliminate the transient [15], an improved algorithm to identify the

end of significant effects of the transient is worthwhile.

2.3.2 Correlation Issue. Besides dealing with the problem of the initial transient, we

must also contend with the problem of correlated output. The effect of this correlation is

the difficulty, not only in estimating the stochastic process variance, but also in estimating

the variance of estimators. For example, the variance of the sample mean is below:

o? = _L ~IE 1 +2 i'EN'-1 3 +1 Cov[Yjyk1}

Usually discrete-event simulation output is correlated positively. Ignoring the positive cor-

relation results in underestimating the variance of the estimator A. and the corresponding

confidence interval being too small.

2.4 Steady-State Identification

Since the run length of any simulation is finite, the true steady-state or asymptotic

distribution is never really achieved. However, for the purposes of analysis, steady-state is

considered to have begun when the initial conditions no longer have an effective impact on

the distribution of the output sequence. This point is labeled as no using Welch's notation

[101:295].

The extent of the transient phase is difficult to determine. Law and Kelton [53:527]

indicate that the sample mean of the distribution of waiting times for M/M/1 queue with

traffic intensity p of 0.8 is very near the theoretical steady-state level within 500 customers.

Eilon and Chowdhury [19] report that for a simulation of an M/M/1 queue with' high traffic
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intensity, a substantial difference between the theoretical and the estimated steady-state

mean waiting time may exist for a batch of 1,000 customers, even after 20,000 customers.

While Eilon and Chowdhury attribute this to initialization bias, it may also be induced by

process variability and high autocorrelation.

Steady state is attained when the cumulative density function of the output sequence

F,(ý) stabilizes. Welch [101:290] proposes that the most straightforward approach to identify

steady state would be to estimate F,.(c) based on y, for each n, but he admits the computing

requirements would be impractical. Theoretically, many of the techniques would work with

higher moments, such as convergence of the output sequence variance; however, the increased

variance in estimating higher moments makes detection of the stabilization more difficult.

Therefore, although stabilization of the mean is a necessary, but not a sufficient condition for

steady state, the widely applied techniques are based on mean estimates stabilizing [53:545-

551].

Before discussing the techniques for estimating no that have been proposed in the

literature, the next section examines evaluation criteria. The following section describes

different approaches to select a truncation point to eliminate the biased initial data along with

published comparisons. An example of a simulation model of an M/M/1 is presented. The

last section of the chapter summarizes the requirements for a reliable and useful truncation

point selection technique.

2.4.1 Truncation Point Evaluation Criteria. This section reviews criteria that may

be applied to evaluate truncation point selection algorithms. The algorithms are generally

evaluated in terms of the effectiveness of the truncated sequences to make correct infer-

ences about a known parameter. The earliest criterion considered in the literature is mean

squared error (MSE) of the mean estimator for the truncated sequence. Later researchers

[44, 52, 104, 105] have recommended using confidence interval widths and coverage rates

for evaluating the effectiveness of truncation sequences. Therefore, the confidence interval

construction techniques are described in this section. The first confidence interval technique
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addressed is the method of replications, which is appropriate when multiple simulation runs

are conducted with univariate or multivariate output. Besides the method of replications,

confidence interval construction techniques designed for a single simulation run, nonoverlap-

ping batch means (NOBM) and overlapping batch means (OBM), are also described. Since

both NOBM and OBM require that a batch size be specified, Fishman's method to select

a batch size [22] is included in the discussion. After reviewing the confidence interval tech-

niques that may be used to evaluate the effectiveness of truncation sequences, Schruben's

technique to test for initial bias in a truncated sequence [87] is described. The performance

measures of MSE, confidence interval coverage and half widths, and the percentage of trun-

cated sequences passing Schruben's initial bias test are described in this section and applied

in Monte Carlo analyses in later chapters.

Truncation points are selected to delete data at the beginning of the simulation which is

not representative of the steady-state values. Not deleting enough data biases the resulting

estimates, whereas deleting too much data increases the variance of the initial parameter

estimator [53]. The inverse effect of sample size can be seen through the derivation for

the variance of the estimated mean, shown in Equation (1). This derivation assumes a

covariance-stationarity process. Therefore, the autocovariance 711(t - s) = Cov[y(t), y(s)] is
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constant for any set interval between t and s.
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Assuming that the autocorrelation decreases sufficiently fast as the lag increases, limh_, PY (h) =

0, then for large N,
2'" Y N()Z (h)l (2)

S h=- N h=-00

Since truncating the data reduces the sample size to N' = N - no, the variance of the mean

estimator increases. In other words, while initial data truncation reduces the bias, it also

increases the variance of the mean estimate.

In order to account for the tradeoff between bias reduction at the expense of variance

induction, numerous researchers [20, 21, 14, 100] used the mean square error (MSE). For a

point estimator 0 of 9, the variance is a= E[(9 - ý)2] and the bias is B(6) = E[9] - 0.

Therefore,
MSE(O) = E[(6 - 0)2]

+ B(ý )2

Since the MSE of an estimator is the variance plus the squared.bias, it appears to be an

excellent criterion to determine the correct tradeoff between increased variance and reduced

bias.
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Fishman [21] analyzes the effectiveness of truncation on data from a first order autore-

gressive AR(1) model, (yn - A,) = a(yn-1 - i) + En with (-1 < a < 1). The contribution

of the initial condition decreases by an as the observation number n increases. Fishman

compares no data deletion and a deletion point ho such that the initial value y, contributed

less than a predetermined percent to yk. For a range of a's and a range of truncation

points based on various percentages, Fishman shows analytically that deleting the initial

transient reduces bias, but may significantly increase variance. In fact, in terms of MSE,

Fishman concludes that truncation may not always be advisable. Turnquist and Sussman

[100] extend Fishman's work to single server queues with various traffic intensities and found

that, to minimize MSE, truncation may not be worthwhile. Wilson and Pritsker [105] report

that Blomqvist shows MSE is minimized by no data deletion for a special class of queuing

systems. For Markov processes, Cheng [14] makes an argument for one continuous run versus

replications based on MSE under the assumptions of no initial truncation and the bias being

a monotonically decreasing function of sample size.

These researchers use MSE of the mean estimator of the truncated sequence as a cri-

terion to evaluate truncation point selection algorithms. Later researchers [44, 52, 104, 105]

consider other criteria, in particular, confidence interval half widths and their associated

coverage rates. The next part of this section describes three confidence interval construction

techniques, the method of replications, nonoverlapping batch means (NOBM) and overlap-

ping batch means (OBM), that are applied in the Monte Carlo analyses.

The objective of simulation analysis is to make statistical inferences about the distribu-

tions of output sequences. These inferences are made typically in terms of a point estimator

and an associated confidence interval for a prescribed level of confidence. In these procedures,

a tradeoff exists between the width of the confidence interval and the level of confidence.

Since the interval typically is choosen to be symmetric about the point estimator, the half

width of the confidence interval generally is used for comparisons between techniques. These

same criteria can be used to evaluate the effect of truncating output sequences at different

points to eliminate the initial transients.

24



In Monte Carlo analyses, the percentage of times that confidence intervals contain

a known steady-state parameter is called the coverage rate. Nominal coverage rates are

reflected by the level of confidence, 1 - a, where a is the theoretical proportion of confidence

intervals that do not contain the true parameter. Law and Kelton [53:561-562] report that

actual coverage rates have been found to be considerably less than the expected coverage

rates. Wilson and Pritsker [104, 105] say the actual coverage attained is a more important

criterion than MSE to the objective of simulation output analysis. A bias in the point

estimator would cause the confidence intervals to contain the true parameter significantly

less often than the nominal level of the specified confidence interval. Therefore, Wilson and

Pritsker [104] propose a method to fix the confidence interval width for various truncation

points and initial conditions in order to compare the alternative deletion techniques in terms

of their actual coverage rates. Kelton and Law [44] state, "by looking at criteria other than

point estimator mean-square-error (in particular, true c.i. [confidence interval] coverage

probability and expected width), deletion can improve statistical validity with only minor

losses in efficiency." Kelton and Law [451 studied the effects of various deletion amounts

and number of replications for an AR(1) process, and they found that deletion improves the

confidence interval coverage rates to acceptable levels without substantially widening the

confidence interval half widths.

Confidence intervals for parameters of discrete-event simulation output distributions

can be constructed in a number of ways. If multiple simulation runs are made, the method

of replications is used. Since each replication is initialized with a different pseudorandom

number generator seed, the sample output sequences are independent. Let ym(N) be the

mean of the mth replication with N sequential observations. Based on M replications, the

mean estimate is

with sample variance of

P =( 1\ 42 (y(N) -

my MI .. M - 1
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A 100(1 - a) percent confidence interval is constructed using

Ay ± td,i-a/26i (3)

where td,1-./2 is the upper 1 - a/2 critical value for the Student's t distribution with degrees

of freedom d = M - 1.

The method of replications can be extended to multivariate output to determine a

confidence ellipsoid and its associated volume. For M replications with N observations

each with S responses, let ym,,,(N) be the mean response of the mth replication for the sth

response. Let ity be the vector of average responses across replications, and let the sample

covariance matrix -tyy = M--1 =Z(y,(N) - i)y)(y,,(N) - zy)T . Under the assumption

that the y,(N) are distributed normally with mean py and covariance Eyy, the confidence

region, as shown in Rubinstein and Marcus [80], is derived from:

Pr M( -- )Tlyfy(y - y) • _- 1)S•FSMS;1-fz} I -- - (4)

where FS,MM-S;1-. denotes the (1 - a) quantile of the F distribution with S and M - S

degrees of freedom. The associated volume of the confidence region is calculated via

S

V = 1C(S)j [S(M - 1) FSs-- (

S tyy M(M -S) ;a

where C(S) = and F is the gamma function.

If only one long univariate simulation run is conducted, two commonly applied confi-

dence interval construction techniques are nonoverlapping batch means (NOBM) and over-

lapping batch means (OBM). NOBM is described in almost every simulation textbook

[23, 51, 53, 77]. NOBM is similar to independent replications except that the replications'

means are replaced with batch means. Each of the M batch means y,(B) is based on B se-

quential observations. If the batch size B is sufficiently large, the batch mean estimators are
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approximately independent [101]. With the batch means replacing the replications' means,

the confidence interval is constructed in the exact manner as the method of replications,

Equation (3). Meketon and Schmeiser [69] propose that it is the number of batches, not

their independence, which is critical. By overlapping the batches in OBM, they state that

the asymptotic variance can be reduced to 2 of NOBM variance when using the same batch

size. Schmeiser and Song [82] published FORTRAN codes for both NOBM and OBM.

To use either NOBM or OBM, an appropriate batch size must be determined. Fishman

[22, 23:238-241] proposes a methodology to determine batch size. Fishman's algorithm is

based on the correlation between the batches calculated with

CM -E'-'(y'(B)- ym+i(B))w 1 M

C E 1 (y.(B) - wher M y.(B) (6)M2 M=

If the batch means are independent and normally-distributed, with as few as eight batches,

CM is approximately normally-distributed with a mean of zero and a variance of M-'

Based on CM, a hypothesis test for statistical independence can be tested. In this research,

if CM is outside the 90 percent confidence interval centered at zero, the null hypothesis of

independence is rejected. Fishman's algorithm begins with a batch size of one, B = 1 with

M = N, and doubles the batch size until the null hypothesis is not rejected. If the batch

size B increases until there are less than eight batches, M < 8, the algorithm fails to find

an appropriate batch size.

Since recent researchers recommend confidence interval coverage and half widths, rather

than MSE, to evaluate the effectiveness of truncation point selection algorithm, this research

employs those criteria. Specifically, the coverage rates and average half widths for the trun-

cated sequences are reported. For univariate single run Monte Carlo analyses, the confidence

interval techniques of NOBM and OBM using Fishman's batch size algorithm are applied.

For multiple runs Monte Carlo analyses, the method of replications coverage rates and av-

erage half widths are reported. In addition, Schruben's initial bias test [87] is used as a

critcrion for univariate sequences. The next part of this section describes Schruben's test.
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For a univariate sequence, Schruben [87] uses the concept of a Brownian bridge [75] to

develop a statistical test to determine if initialization bias remains in the truncated output

sequence. The development of Schruben's technique starts by describing the output sequence

{y,,} as the sum of the mean gjt,) and a noise term 7(t,,)

y(t.) = Ity(t.) + 77(tn) for n = 1, 2,.. ., N (7)

In steady state, jz,(t,) = Ay and E[77(tn)] = 0. If initialization bias is present, then /sy(t,)

changes in the sequence. Schruben [87] assumes that the noise sequence {f7(t,)} is stationary

and 0-mixing. The property 0-mixing intuitively means that "distant future behavior of the

process is almost independent of the present or past behavior of the process [87]."

Thinking of the output sequence as a signal (t,) plus noise r(tn), Schruben developes

"a transformation that converts the noise to a Brownian bridge process. Schruben summarizes

"a Brownian bridge as follows:

The limiting stochastic process used is a standard Brownian bridge
fit; 0 < t < 1, i. e., Brownian motion on the unit interval conditioned to start and
return to zero. 8t here is the process analogue to the standard normal random
variable used in applications of the classical central limit theorem. The Brownian
bridge process has continuous sample paths and four notable properties:

1. o 01 =O0,

2. E[3t] =0; 0 < t < 1,

3. Cov(Pt,,,8t,) = min(t1 ,t2 )(1 - max(t1 ,t 2)), and

4. Sets of ft have a jointly normal distribution. [87]

In his paper, Schruben shows that under the assumption that the 77(t,) are independent

identically distributed random variables, the following transformation,

k[-IF I 77(t.) - k~ 77(.)k,=N N n= k for k = 1,2,...,N
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meets the first three criteria of a Brownian bridge process. The last criterion is argued in

the limit.

Under the assumption of no initialization bias, the transformed sequence can be mod-

eled as a Brownian bridge process. However, an initialization bias caused by Ily(t.) $ AY

induces a non-constant signal. This signal causes the transformed sequence to have an un-

usually large value. Under the assumption of no signal, the transformed sequence of noise

is a Brownian bridge process. Since a Brownian bridge process follows a jointly normal dis-

tribution, a transformed sequence without noise should follow a normal distribution at each

observation. The presence of a non-constant signal, which corresponds to initialization bias,

is apparent as a statistical outlier.

The actual test for initialization bias is based on the null hypothesis that no bias is

present. This technique finds the maximum value of a transformed sequence,

,== max where i = 1, 2,. .. ,N (8)

Let I be the index of the observation which is the maximum value, i. Letting I N)

Schruben shows that
S= Na? i(i - i) (9)

has approximately a X2 distribution with 3 degrees of freedom when no initialization bias is

present. However, to calculate i requires the true variance of the mean estimator or?. Since

the ratio of two approximately independent X2 random variables follows approximately an

F distribution [36:220], if & is estimated with d degrees of freedom,

S
3 ? i( -i) (10)

has approximately an F distribution with 3 and d degrees of freedom. Schruben applies

Fishman's [23:247-255] pth-order autoregressive, AR(p), formulation to estimate the process
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variance and associated degrees of freedom. Fishman derives an estimate of ui as

QdN (1- • - .... ýP)211

where Qd is an estimate of the variance of the zero-mean normally-distributed noise term of

the AR(p) process. Degrees of freedom d for this estimator are

d - (12)2p - 2 EP 1(p - 2s)0.

Schruben recommends estimating &? using the last half of the data to prevent a bias from

the initial data. An initialization bias caused by /L(tn) :/$ induces a non-constant signal

and is apparent as a statistical outlier. Based on the same concepts, Schruben, Singh, and

Tierney [88] develope more powerful tests based on a priori knowledge about the transient

behavior.

This completes the literature review on truncation point evaluation criteria. For eval-

uating the potential for future applications of a truncation technique, a good set of criteria

measures the quality of confidence intervals constructed with the truncated sequence. The

confidence interval quality is measured by the average confidence interval widths and re-

alized coverage rate. If the initial data bias is removed, the coverage rate should be very

near the nomimal rate. Excessive deletion is apparent at wide average confidence interval

widths. Another potential criterion is the pass rate of Schruben's test for initialization bias

detection, a "state-of-the-art" approach.

2.4.2 Truncation Approaches. Numerous techniques to select the deletion or trun-

cation point no are proposed in the literature. This section reviews the techniques based

on Gafarian, Ancker and Morisaku's [24] survey paper and Wilson and Pritsker's [104, 105]

survey. Both papers were published in 1978. Since these surveys, Kelton and Law [44] and

Welch [101] have proposed two truncation point selection techniques. Following the descrip-

tion of these methodologies, Schruben's technique for truncating multivariate sequences is
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reviewed.

Gafarian, Ancker, and Morisaku [24] conduct a comprehensive study of the commonly

used techniques to select the deletion point. They evaluate the following five techniques:

Conway's Rule Truncate the series until the remaining first value is neither the minimum

nor maximum of the remaining data.

Conway's Rule (Modified) Find the first observation that is not the minimum or maxi-

mum of the earlier rejected data values.

Crossing-of-the-Mean Rule As proposed by Fishman, a running cumulative mean is

maintained. When the number of times the next data value crosses the cumulative

mean (switches from being above to below or vise-versa) reaches a specified number,

select that as the truncation point.

Cumulative-Mean Rule Using a set of exploratory simulation runs, the grand cumulative

mean is plotted. The point of stabilization is selected at the truncation point.

Gordon's Rule Since the variance of the mean estimate should be inversely proportional

to the sample size, a? oc !-, Gordon recommends calculating and plotting & on a

log-log graph with increasing increments of N. The N for which the graph begins

following a straight line with slope of minus one half is selected as the beginning of

steady-state.

The five techniques are compared based on accuracy and precision of selecting the "true"

truncation point. The "true" truncation point is determined by using the theoretical expecta-

tion of the waiting time for observations proceeding through queues. This "true" truncation

point is selected as the observation with a waiting time within five percent of the steady-state

value.

After empirically testing the rules with Monte Carlo analysis for a variety of queuing

systems, Gafarian, Ancker, and Morisaku [24], state, "none of the five rules is satisfactory

and that they should not be recommended for use by practitioners."
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Wilson and Pritsker [104, 105] survey the various simulation start-up techniques. Only

the two additional techniques in their summary are presented here.

Fishman [20] developes an estimate of no using the comparison between correlated

observations and independent observations to achieve an equivalent reduction in the vari-

ance of the same mean. The estimate is based on the following result which is derived in

Equation (2):

2 - V2 [0o

a4 N E (k)]

For independent observations,

P = /1 for k 0p(k){

0 for k 0

and
2 IU2

Since an independent observation by definition is independent of the initial conditions, set

Nj,•.,,,•,•t = 1 and equate the two equations for the variance of the mean estimator:

0,2 = 0 , (2o0

1 N p= -

Solving for N results in a point in the data sequence independent of the initial conditions.
Therefore, the estimated truncation point is iit, = E p'(k) - 1. The difficulty with

this procedure is that estimating the correlation coefficients is difficult. For finite-order

autoregressive (AR) processes, Fishman [23] expresses the truncation point in terms of the

autoregressive parameters.

Wilson and Pritsker [105] state that Schriber [84] proposes the truncation point as the

beginning of a set number of batches for which all of the batch means fall within a small

interval. Wilson and Pritsker tested these techniques and conclude that the truncation

rules of thumb "are very sensitive to parameter misspecification, and their use can result in

excessive truncation."
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In 1983, Kelton and Law [441 developed a simulation run length determination and

truncation point selection approach based on linear regression. The estimated mean for M

replications and small batches of size B over the time index n, A2.(M, B, n), is modeled as

the population mean y. plus a zero-mean noise term 77(t,):

jy(M, B,n) -- A + ±i(tn,) (13)

Under the assumption that E[y(tn)] converges monotonically to py, their method starts at

the end of the data, fitting regressions on blocks of data, until the hypothesis of zero slope is

rejected. The size of the block of data is maintained by removing data at the end. Batching

is employed to ensure normally-distributed disturbances and is not intended to eliminate

autocorrelation in the noise term. Hence, generalized least squares, rather than ordinary

least squares, is applied. They desired a conservative approach because, to them, reducing

the bias is more important than minimizing the deletion amounts.

In Kelton and Law's algorithm, M simulation replications are each run for a relatively

short duration. The averages across replications are calculated, and the sequence of averages

is batched. A regression line is fit to the last half of the batch means and is tested for

zero slope. If the slope is nonzero, each of the M simulation replications is continued to

increase the length of their output sequence. After increasing the run lengths, the procedure

is applied again. If the slope tests to be zero, the simulation replication lengths N are fixed

at their current lengths. Regression lines are fit to earlier segments of data until a nonzero

slope is encountered. The point of the first nonzero slope becomes the truncation point i0.

Kelton and Law's algorithm presents three difficulties. First, continuing simulation run

lengths after stopping the model may be difficult in applications. To restart the replications,

the entire simulation state vector must be recorded and the model must be reset to these

conditions prior to restarting. In any relatively complex simulation model, this restarting is

difficult to implement. In addition, besides the difficulting in restarting the models, the algo-

rithm requires generalized least squares, which allows for correlated data, to be implemented.
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Second, the detailed procedure requires the analyst to specify nine parameters. These nine

parameters are the number of replications, the initial simulation run lengths, the amount of

increment increases to the run lengths, the maximum run length, the number of batches, the

minimum and maximum deletion portions, the significance level for the test for zero slope,

and the maximum number of segments over which a fit is made. Determining appropriate

values for these parameters may prove difficult. Finally, Kelton and Law's algorithm as-

sumes monotonic convergence to the steady-state mean. They recommend further work to

identify the algorithm parameters and to extend the method to non-monotonic approaches

to steady state. Kelton and Law's Monte Carlo results are used as a base line for comparison

in Chapter VI.

While Kelton and Law's method assumes monotonic convergence to a steady-state

mean, Odoni and Roth [73] determine initial conditions under which the expected number

in the queue does not move monotonically toward the steady-state value. Kelton [42] and

Murray and Kelton [71] examine the transient behavior of a large class of queuing models

and also note non-monotonic approach to the steady-state means. They also demonstrate

that initial conditions greatly affected the time to decay within a specified interval of the

steady-state value.

The same year Kelton and Law published their techniques, 1983, Welch [101:290-294]

proposed a truncation procedure that is relatively easy to implement. This method involves

graphically observing the convergence of the mean estimator. Since for n > no,, E[y,] =

A j-, , Welch recommends plots of the output sequence {yn}. To reduce the variance, he

recommends averaging the yn across replication runs. The larger the number of replications,

the easier the stabilization can be detected. The decision can be simplified further if the

high frequency fluctuations are removed with a moving average. The moving average win-

dow size is increased until the stabilization on the plot is obvious to the practitioner. In

addition, Welch suggests plotting confidence intervals about the means for various n to give

an additional indication about when the transient effects are insignificant.

Law and Kelton [53:552] state that, for Welch's procedure to be statistically correct,
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separate sets of runs should be used to identify the transient phase and fr)r para-meter esti-

mation. They state that, if the transient phase is short compared to the run length, then it

is "probably safe" to use the same set of runs to determine the warm-up period and calculate

parameter estimates.

Law and Kelton [53:545-550] further recommend Welch's [101:290-294] plotting tech-

nique with subjective assessment as the "simplest and most general" approach to detect the

completion of the transient phase. However, this technique is only appropriate for univariate

output sequences. Law and Kelton also state that, in general, one replication is not sufficient

to estimate no.

To this point, this literature review has concentrated on identifying the effective com-

pletion of transient phase for the univariate output case. Schruben [86] proposes a method

to select a truncation point for multivariate output with multiple replications.

For a multivariate output sequence, initialization bias may affect some output measures

and be insignificant for others. Besides serial correlation within one of the output sequences,

cross and lagged-cross correlations should be considered. Schruben [86] demonstrates the

limitation of trying to examine each output sequence independently for stabilization. He

illustrates a case in which each of the output sequences has stabilized, but the correlation

between the sequences has not stabilized.

Schruben's test is based on Hotelling's two sample T 2 statistic [28:166-169]. Each

output vector y,, consists of S responses, and M replications are run. Schruben notes that

to use Hotelling's T 2 requires M > S, and he further recommends that M - S > 5. The

procedure begins by dividing the output vectors into NB small batches with batch size B of

5 to 10. These batches are not constructed to reduce serial correlation but to support the

normality assumption of the test statistic. An average vector is calculated within a batch

for each replication, y,,(B), and these are averaged across the replications.

M1
,(MB) = ,,(B) for = 1,2,... 3NB (14)
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Presuming that the run is long enough for the last batch, i = NB, is at equilibrium, the

sample covariance matrix is calculated by

SNB(MB) = M 1 -(Y,,Nn(B) - Y)N3(MB))((Yt,NE(B) - NB(MB))T (15)
M -1 M=1

When the number of replications is low, Schruben recommends using a group of the last

batches to calculate the sample covariance matrix. The Hotelling's two-sample test statistic

T2 for each batch i is given by

'=M2(M _ S) -y.M )T(B-r= (M- 1)(2M)S)[ i(MB) - yNB(MB)]T S(NB)-[yi(MB) - YNB(MB)] (16)

The truncation point can be selected when T2 shows consistency with an F,,,S,M-s dis-

tribution [86]. Specifically, beginning with the first batch, batches are discarded until

T• • F,,,S,M-S for a selected value of a.

Schruben evaluates his technique through a Monte Carlo analysis. He graphs the

coverage rates based on the desired confidence versus the observed confidence level for two

sets of data. The first data set is the remaining observations after using his criteria, and the

second set has the previous "biased" batch added in. With a large number of replications, the

effects of bias becomes much more apparent because, as the number of replications increases,

the confidence region decreases. For a biased estimator, the confidence region shrinks around

the incorrect point. Bias is therefore apparent by the observed coverage rate of the confidence

region on the true parameter being considerably lower than the nominal confidence level.

Schruben tests his method on response times and utilization from a time-sharing computer

model [3], employing 100 replications with a batch size of 3. Using his truncation criterion

results in the desired confidence level equaling the observed coverage rate. However, when

one batch before the appropriate truncation point is added to the data set, the observed

confidence level decreases significantly. The effectiveness of truncation points selected by

the technique proposed in Chapter VII are compared with the effectiveness of the truncation

points selected by Schruben's algorithm.
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2.4.3 Discrete-Event Simulation of an M/M/1 Queue. The M/M/1 queue is selected

because its theoretical mean is known and the simulated output is complex and highly

variable. Using the notation that the mean of the exponentially-distributed interarrival

Atimes is and the mean of exponentially-distributed service times is I, the traffic intensity

or server utilization is p = A (unitless).

In the literature, two example output sequences commonly are considered. One output

is waiting time in the system for a sequence of entities. This is an example of output that

Pritsker [77:36] classifies as "statistics based on observations". The other sequence is a

periodic output of the number in the simulation queue, which is an example of "statistics

based on time-persistent variables".

The expected waiting time E[Wq] in steady state is

E[Wq]= P

with variance
2 Aft

0 Wq (i-p) 2

The steady-state expected length of the queue E[Lq] is given by

E[Lq] __ A
- P it- A

As traffic intensity p increases, so does the correlation in the output. Therefore, as

traffic intensity increases, the significant effects of the initial transient should persist longer.

The queue becomes unstable and grows without bound when p > 1 since entities are arriving

faster than entities are served on the average. Figures 2 through 4 depict simulations where

p is 0.95 and the initial conditions are an empty queue and an idle server to show a case

with high autocorrelation and a long initial transient.

Figure 2 depicts a typical sequence of waiting times for entities processing through an

M/M/1 queue with first-in-first-out service order, no balks, and infinite queue capacity. For
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Figure 2. Sample Sequence of M/M/1 Queue Waiting Times with p 0.95 (E[Wq] = 19)
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this example, the traffic intensity p is 0.95 and the steady-state expected waiting time E[Wq]

is 19.0 time units. While the ratio of the arrival and service rates determines the traffic

intensity, their magnitudes determine the average waiting time. The congestion and long

waits experienced by the 7,500th through 9,500th entities are typical and occur periodically

when the system becomes congested. The length and duration of long lines increase with

traffic intensity.

The initial condition in this queue is empty and idle, so the first entity through has no

waiting time, Wq(to) = 0. Because of this initial condition, the probability of early entities

having long waiting times is significantly less than from the steady-state output distribution

for waiting times. For the system to be stable, that is p < 1, the mean arrival rate must be

less than the mean service rate, or equivalently, the mean interarrival time must be greater

than the average service time. Thus, in steady-state, the server will occasionally be idle, and

waiting times of zero occur. The empty and idle initial conditions cause the transient values

to have lower values, but not necessarily to be statistical outliers of the steady-state output

distribution. The initial transient values simply have distributions with a sequence of lower
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Figure 3. Average of 30 Replications of M/M/1 Queue Waiting Times (p = 0.95)
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means.

Averaging over independent replications of the simulation gives an empirical indica-

tion of the time-dependent output distribution mean. Figure 3 shows the average of 30

output sequences. The first observation in each sequence is zero, and by about the 1000th

observation, the average is very near the steady-state average of 19.
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Figure 4. Welch's Technique with Moving Average (Window = 500)
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Welch's technique [101], which is described earlier, recommends processing the sequence

of averages through a moving average. In the moving average, each observation is replaced

with the average of a set number of preceding observations, the same number of following

observations, and the original observation. The number of preceeding oberservations is called

the moving average window size. At the beginning and end of the sequence, the average is

taken over the points that would be in the complete window. Welch's technique assumes

that the steady-state distribution is gradually approached so that the output distribution

of nearby observations should be very similar. The moving average smooths the sequence

of averages across replications. Welch recommends increasing the window size until the

transient is apparent. Figure 4 depicts the moving average with a window size of 500 for the

average of 30 output sequences. Since the sequence appears to become level for the 1000th

to 4000th observation, the initial transient appears effectively to be complete by the 1000th

observation.
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2.4.4 Requirements for a Good Truncation Point Selection Method. Gafarian, Ancker

and Morisaku [241 use five criteria for comparing truncation techniques. Their criteria are

accuracy, precision, generality, cost, and simplicity. The first two, accuracy and precision,

relate only to situations with predefined "true" truncation points. Confidence interval half

widths and coverage rates are generally accepted as the best criteria for measuring the

success of a technique. Generality means that "the rule performs well across a broad range

of systems and a broad range of parameters within a system." Cost reflects the computer

time required for the algorithm. However, since simulation models themselves can require

significant amounts of computer time, almost any technique will have negligible impact on

the total computer time required. Simplicity ensures that the rule is usable by the average

simulation practitioner and implies that the technique should not require too many variables

to be set by the user. Past techniques are criticized for being too sensitive to parameter

settings and for not providing rules to specify the necessary parameter settings [105, 77:7531.

General recommendations are against trying to determine steady state based on cumu-

lative statistics. Their values typically lag behind the current statistics, resulting in excessive

deletion of data [15].

2.5 Summary

The typical assumptions and issues for steady-state output analysis of discrete-event

simulations are discussed. Common assumptions embedded in most analysis techniques are

covariance stationarity and ergodicity of the output sequence. Covariance stationarity in a

univariate sequence implies that the output sequence has a constant mean, finite and constant

variance, and the covariance for any two observations separated by any set interval is the

same. For discrete-event simulation output analysis, ergodicity implies that the estimator of

the mean is unbiased if its variance decreases to zero as the number of observations increases

to infinity.

Output analysis issues include dealing with the initial transient and correlated output.

The initial transient is induced since the initial conditions are not representative of unknown

41



steady-state conditions. The typical approach of dealing with the transient or warm-up

period is initial data deletion or truncation. Deleting too much initial data increases the

variance of the steady-state parameter estimates, whereas not deleting enough data may

result in biased estimates. Determining the appropriate truncation point is the objective of

this research.

Positive correlation in simulation output reduces the information obtained from each

additional observation. Since the statistical techniques for independent observations do not

apply directly, each output analysis technique must deal with the correlation of the output.

The next major section in this chapter deals with steady-state or initial transient

identification. In other words, steady-state identification is determining the point where

the sequence should be truncated to eliminate the estimation bias induced by the initial

conditions. While the steady-state output distribution is only reached in the asymptotic

limit as run length increases, the simulation output passes a point where steady state is

effectively attained. This means that the error induced by assuming that steady state has

been attained is statistically insignificant.

The section on steady state identification reviews the literature for evaluation criteria.

Currently, the mo:)st widely accepted criteria are the resulting confidence interval width and

realized coverage rates for the truncated sequences. Schruben's [87] initialization bias test

can also be used.

The literature review continues with proposed truncation point selection algorithms

and published evaluations of these algorithms. A general conclusion of the literature is the

lack of a sound analytical approach for the truncation of a univariate output sequence. The

chapter concludes with criteria for a good initial-data truncation method.

One of the major sources of difficulty in simulation output analysis is a result of

correlation in the output sequence. In both Schruben's [87] and Kelton and Law's [44]

approaches, the output sequence is assumed to be representable as a constant steady-state

mean plus noise. Since the output sequence is generally correlated, the mean being constant
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implies the noise accounts for the correlation. Schruben [87] assumes the noise is 4-mixing,

but he only demonstrates that the transformation to a Brownian bridge works if the noise

sequence is independent. Kelton and Law [44] use generalized least-squares to account for

the autocorrelation.

In a different approach to account for correlation in the output sequence, this research

applies a filter with an autoregressive model to account for the correlation in the noise.

Chapter III presents the linear system theory and Kalman filter equations for this approach,

and univariate truncation point selection methodologies based on these concepts are proposed

in Chapters IV and V. Although the residual monitoring approach in Chapter IV is not as

successful as the MMAE approach in Chapter V, Section 4.2 provides the model formulation

used throughout this research. The transient effects are less significant with a single run,

so the truncation method is applied to cases with multiple replications in Chapters VI

and VII. Chapter VI provides the algorithm and results for univariate output sequences,

and in Chapter VII the method is ex,'ended for multivariate output sequences. Chapter VIII

summarizes this research.
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III. Kalman Filters and Model Estimation

S..1 Introduction

Kalman [401 and Kalman and Bucy [411 developed the Kalman filter. Kalman's contri-

bution was to combine the work of the German mathematician Gauss with the state-space

vector representation from linear system theory. The state vector is a set of variables such

that the present state vector with future inputs completely describe system behavior. This

definition of state-space representation is limited to Markov processes since the Markov

property implies that some set of sufficient statistics at the current time provides as much

information about the system as the complete time history of the process. In a state-space

representation, system equations are written to depict the state dynamics and measurement

relationships. Kalman's original derivation is based on the fact that the updated state esti-

mate at time t,,, *(t+), is the orthogonal projection of the true state x(t,) onto the subspace

spanned by the measurement history Z(t,) [57:235).

The Kalman filter is an optimal recursive next-step prediction algorithm. After ini-

tialization, the discrete Kalman filter continues with a two-step procedure. The first step

propagates the best estimate of the state through time. The second step uses the information

contained in a noise-corrupted measurement to update the prediction. The algorithm repeats

again by propagating this estimate to the next time interval. These steps of propagation

and update are repeated for each of the available observations.

The notation employed in this chapter follows engineering control theory conventions,

specifically Maybeck [57, 58, 591. Estimated parameters are indicated with a hat, and vectors

are in boldface, such as the state vector estimate i(t,,). At each point in time, two state

estimates are used; the propagated estimate, prior to the measurement update, is indicated

with a minus, i(tC), and the state estimate after the measurement update is marked with

a plus, i(t+). Alternative Kalman filter notation and descriptions include Meinhold and

Singpurwalla [68] and Harvey [33].
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Simulation output is a discrete realization of a stochastic process. In the next section,

the stochastic process is approximated as the solution to a linear stochastic differential equa-

tion driven by Brownian motion. The stochastic process is defined in terms of the states that

are estimated by the Kalman filter, which may or may not be the simulation states or the sim-

ulation observations. Since simulation output calculated with a digital computer is discrete,

rather than using the differential equation directly, an equivalent discrete-time difference

model [57:170] is applied. The discrete-time Kalman filter is discussed in Section 3.3. The

final major section in this chapter is on system identification. While techniques for system

identification are reviewed after describing the Kalman filter, the actual model formulation

and system identification are not discussed until the next chapter.

3.2 Stochastic Processes

Before showing the Kalman filter formulas in the next section, some underlying theory

of stochastic processes is discussed. This section presents a linear stochastic diferential

equation and the associated dynamics model and measurement model.

3.2.1 Linear Stochastic Differential Equations. Assume the underlying stochastic

process can be described or approximated with a linear stochastic differential equation,

dx(t) = F(t)x(t)dt + G(t)d,3(t) (17)

where x is a vector of the filter-design system states

F is the dynamics system matrix

G determines which system states are affected by noise

/3 is the dynamics driving noise

The system is linear if F(t) is not a function of the state values x(t). Further, assume that

the dynamics driving noise can be modeled as Brownian motion. Brownian motion has the

following characteristics [57:148,155]:
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"* Brownian motion has independent increments in time, and

"* the increments are normally distributed random variables such that for any time in-

stants, t and t',

SO = 0

E[(/3(t) - 13(t'))(3(t) -_ (tI))TI = -f't Q(T)dr

13(t 0) = 0 by convention

The matrix Q(7) represents the diffusion of the process. The term diffusion is from an

early application of Brownian motion for modeling the movement of gas molecules. In other

applications, Q(r) determines how fast the states in the process are changing.

Heuristically, Brownian motion is the result of white (uncorrelated in time) noise passed

through an integrator. In reverse, the hypothetical derivative of Brownian motion is white

noise. The derivative is hypothetical because Brownian motion is nondifferentiable. Heuris-

tically, Brownian motion is a continuous process which has corners everywhere [57:152].

A discrete sample of scalar white noise generated by sequencing 100 independent stan-

dard normal random variables is shown in Figure 5. The notation wd(t,, w1 ) indicates w for

white noise, subscript d for discrete, t, for time, and w, to indicate which realization from

the sample space 02. The cumulative sum of the white noise of Figure 5 is a discrete sample

sequence of Brownian motion with unit diffusion, Q(t) = 1. Three realizations are depicted

in Figure 6. Similarly, P indicates Brownian motion, t, is for time, and w, indicates the

realization from the sample space. If the diffusion strength Q(t) is increased, the variance

in the realizations of the Brownian motions also increases. In other words, the variance or

mean squared value of the process grows at a greater rate. The vertical scales in the figures

can be adjusted to depict other than Brownian motion with unit diffusion strength.
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3.2.2 Dynamics Equation. The general time-varying solution to the linear stochastic

differential equation (17) can be shown to be [57:40,164]

x(t) = t(t, to)x(to) + o(t, r)G(-r)d3(r)

where 4(t,to) is the state transition matrix from time to to t that satisfies the differential

equation and initial conditions:

d[lý(t, to)]/dt = F(t)-I(t, to)

-t(to, to) = I

When the dynamics system matrix F(t) is a constant matrix, the system is described by a

linear time-invariant differential equation, and the transition matrix can be calculated using

4(t, to) = 4(t- to) = e'(t-t°) or in the Laplace domain 4b(s) = [sI - F]-1 [57:41]. Since this

research is limited to simulation models with output that attains a stationary steady-state

distribution, only time-invariant system models are used.

Since the simulation output is a set of discrete realizations or observations of the

stochastic process, for this application an equivalent discrete-time model is useful. Beginning

with the continuous-time solution and integrating over time results in the discrete-time

version of the dynamics equation.

x(t,+l) = 4(t,•+,t,)x(tn) + wd(tn)

where Wd(t=) +

The transition matrix 4P relates the state vector x(t,) at one time to the state vector at

the next time index x(t,1 ,+). Since the continuous-time dynamics driving noise is assumed

to be Brownian motion, the integration or summation of normally-distributed Brownian

increments is also normally distributed. Therefore, discrete-time dynamics driving noise
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Wd(',,) is normally distributed with zero-mean and the following characteristics:

E[Wd(t.)] = 0
E[wd(t,,)w T (t,)] = ft ,+1 4(t,,+1,r)G(r)Q(r)G T (.r)IT(t,+lr)dT = Qd(tn) (18)

E[wd(t) (t)]W = 0 for t, 5 tj

The third characteristic is a result of the Brownian motion having independent increments,

which makes the dynamics noise sequence {wd(t,,)} uncorrelated in time or white.

While discrete-time dynamics equations are often derived from continuous-time rela-

tionships, discrete-time dynamics which do not have corresponding continous-time equations

are also useful.

x(tn+1 ) = 'b(tn+l, t,)x(tn) + Gd(tn)wd(tn) (19)

For example, Equation (19) incorporates a Gd(tn) that determines which filter-design states

the noise affects. This process only has a corresponding continuous process if the resulting

dynamics noise covariance matrix Qd(t,) is of full rank. In this research, the formulation

in Equation (19) is used. Since only discrete output sequences are considered, the lack oC a

corresponding continuous relationship has no adverse impact.

Assuming equally-spaced samples and a time-invariant system model, the transition

matrix is constant q(tn+l, t,) = 4ý. For application to simulation output, equal spacing can

be achieved in terms of simulated time or an index for the output sequence. For example,

customers processing through a queuing system can be numbered sequentially for an index

[20]. With the time index formulation, the transition matrix represents the relationship

between subsequent entities. In addition, since steady-state simulation output is modeled,

the dynamics noise wd(tn) is assumed to have constant variance, Qd(tn) = Qd, and the

distribution matrix G(t) is also assumed to be a constant G throughout the simulation

process.
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3.2.3 Measurement Model. In order to apply the Kalman filter, measurements of the

system states are necessary. In these applications, the simulation output is used to determine

discrete measui',.ments z, of the filter-design states x(tn). The measurement model indicates

the relationship between the system states and the measurements:

z(t.) = H(t.)x(t.) + v(t.) (20)

where z is the measurement or observation

H is the measurement or observation matrix

x is the vector of filter-design system states

v is the measurement noise

Assume that the measurement noise sequence {v(tn)} is white (uncorrelated in time),

normal • ;stributed, zero-mean stochastic sequence, such that,

E[v(tn)] = 0

E[v(tn)v T(t.)] = R(t,) (21)

E[v(ti)vT(t,)] = 0 for t, $ tj

If the measurement matrix H(t,,) is not a function of the states x(t), then the mea-

surement equation is linear. In addition, for steady-state simulation output sequences, the

measurement matrix H(t.) and the variance of the measurement noise process R(t,) are as-

sumed not to change with time. Therefore, these time-dependent matrices are replaced with

constant matrices, H(t,,) = H and R(t,,) = R. In addition, the noise sequences {wd(t,)}

and {v(tn)} generally are modeled to be uncorrelated with each other.

This section reviews stochastic processes. For a linear stochastic differential equation,

the dynamics model and measurement model are shown. Based on these equations, the next

section describes the Kalman filter.
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3.3 Linear Gaussian Time-Invariant Kalman Filter Algorithm

The discrete-timre Kalman filter algorithm is shown for a time-invariant, linear system,

with no control inputs, and normally-distributed (Gaussian) zero-mean discrete dynamics

noise and measurement noise [57:275]. "Discrete-time" implies that the propagation and

measurements updates occur only at set intervals, in contrast to many continuous-time

engineering applications. "Linear" implies that the values of the filter-design system states

x(t,,) do not affect the values of the transition matrix 4, the noise input matrix G, or the

measurement matrix H. "Time-invariant" means that the matrices I , G, and H do not

change throughout the stochastic process. The covariance matrices of the noises Qd and R

are constant since the process variance is assumed stationary.

In this section, the two stages of the Kalman filter, the propagation stage and the

measurement update stage, are shown. An example of a Kalman filter is depicted. The

section also includes discussions on constant gain Kalman filters and optimality of the filter's

state estimates.

3.3.1 Propagation Stage. Two equations comprise the propagation stage. The first

relationship determines the propagation through time of the estimated state vector. The

second equation propagates the covariance matrix of the state variables through time. The

propagation equation takes the best state estimate at the previous time i(t+ 1) (or the

initial estimate i(t 0 )) and moves it through time by multiplying by the transition matrix 4.

Therefore, the propagation equation is

i(t,) = (t+_) (22)

where : is the estimated state vector

4 is the transition matrix

This estimate results from computing the conditional expectation of the dynamics model,

Equation (19), since the dynamics driving noise wd(t,) has a mean of zero.
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The associated covariance matrix P(tn) of the state estimate k(tn) is calculated with

P(tn) = + GdQdGT (23)

where P is the covariance matrix of state estimates x

Gd is the dynamics noise wd(t,,) input matrix

Qd is the covariance matrix of the discrete dynamics driving noise

These two equations, one for the state estimate and the other for the associated co-

variance, complete the propagation stage. Each propagation is followed by a measurement

update, and then the two-stage cycle begins again.

3.3.2 Measurement Update Stage. After the propagation stage, the second step is the

measurement update. The measurement update is actually a static estimation problem of

combining two separate sets of information. A state estimate results from the dynamics equa-

tion in the propagation stage. The correction to that state estimate is based upon the actual

measurement and the measurement model. Both estimates are normally distributed with

known covariance matrices. The Kalman filter gain K(t,) provides the weighting between

the two sets of information about the state.

K(tn) = P(tn)HT[HP(t-)HT + R]-' (24)

where H is the measurement or observation matrix

R is the measurement covariance noise matrix

K is the Kalman gain

The measurement update equations, shown below, determine the new state estimates

and covariance matrix after the measurement at time tn is incorporated. The new updated

state estimate is

*(tZ) =i(C) + K(tn)[zn - Hi(t-)] (25)

where z,, is the actual measurement at time tn
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The updated state estimate k(t+) is the previous state estimate *(t,) corrected with the

Kalman filter gain times the new information provided by the measurement. The new infor-

mation is obtained from the measurement by taking the actual measurement z, and subtract-

ing the best prediction of the measurement before the measurement is received. HM(tC) is

the prediction of the measurement based on the assumed measurement model, Equation (20),

and the fact that the measurement noise v(tn) has a mean of zero. The differences between

the actual measurements and the predicted measurements are the residuals.

The residual,

r(tn) = zn- H*(tn) (26)

can be viewed as the new information contained in the measurement. Under the assumptions

of linea-, Gaussian (normally-distributed noise terms), time-invariant models with known

system matrices (4, Gd, Qd, H, and R), the residuals are normally distributed with a mean

vector of E[r(t,)] = 0 and covariance matrix of E[r(t,)r T (tn)] = HP(t,)H T +R. In addition,

the residual sequence {r(tn)} is a white (uncorrelated in time) sequence [57:228-2291. The

new information contained in the residual r(t,) may be substituted into Equation (25) to

get a simplier form of the state updated equation.

The Kalman filter residuals, from Equation (26), are critical in the simulation applica-

tions of the Kalman filter. Besides representing the new information in each successive mea-

surement, the residuals can be thought of as the error in the dynamics equation prediction as

projected onto the measurement space. Thus, one approach to estimating unknown parame-

ters in the dynamics and measurement equations is selecting parameters wbich minimize the

magnitude of the residuals. The common technique is to use least squares estimation, which

minimizes the sum of the squared residuals. If the steady-state model of the simulation out-

put can be approximated with an appropriate linear model, the residuals should constitute

a white, normally distributed, zero mean sequence. The Kalman filter residuals may provide
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an indication of the adequacy of the estimated model's fit to the data being processed.

Along with an updated state estimate, an updated covariance matrix is also necessary.

Since the Kalman filter gain K(t,,) is the weight based on comparing the variances of the

estimate from the propagation stage and the measurement model, it stands to reason that

this same gain is used to determine the reduction in variance resulting from incorporating

the measurement information:

P(t+) = P(t-) - K(t,)HP(t-) (28)

In the scalar case, since at worst the measurement contributes no new information, the

updated variance is always less than or equal to the propagated variance, P(t+) < P(t-).

Then during the propagation phase, the variance increases to P(t,+1 ) because of the uncer-

tainty induced by the dynamics driving noise.

The Kalman filter gain K(t,) weights the information provided by the dynamics equa-

tion and the measurement information according to their variances. As the terms of Qd, and

hence K(tn), increase, the measurement information is weighted heavier and the dynamics

model prediction is weighted less. Conversely, as the terms of R increase, and thus elements

of K(tn) decrease, the measurement information is weighted less.

For a moment, consider a scalar state vector x(t,). If measurements of this state are

available, the measurement matrix H = 1. Under these conditions, the Kalman filter gain

simplifies to K(t,,) = 2  If the measurements are perfect, the measurement noiseP(tn-)+R"

variance is zero, R = 0. With R = 0, the Kalman filter gain is one, K = 1, and thus

(t,,) = zr,. Therefore, the update equation completely disregards the prediction based on

the dynamics equation of the propagation stage, and the updated estimate is based entirely

on the measurement model prediction. This is logical since the measurements of the state

are perfect.

At the opposite end of the spectrum, if the measurement is so poor that it provides

no additional information, the measurement noise variance equals infinity, R = co. Under
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these conditions, the Kalman filter gain is zero, K = 0. Thus, the update step totally

disregards the worthless measurement, and the updated prediction would be based entirely

on the propagation equations, &(t+) = i(t,).

In actual practice, both the propagation state estimate and the measurement model

state estimate are combined for the best estimate. The weights applied are determined by

the Kalman filter gain which accounts for the different quality of their information by means

of their variances.

Another important observation is that the covariances P(t,) and P(t+) do not depend

on the actual measurements. Inspection of Equations (23), (24) and (28) shows the covariance

matrices P(t-) and P(t+) are unaffected by the actual measurements zn,. In fact, with

constant matrices, 4), Gd, Qd, H and R, the covariance matrices, P(t,) and P(t+), and

hence the Kalman filter gain vector K(t,), attain constant matrices, P-, P+, and K, as the

influence of initial values of P(to) decays. Therefore, these values can be precomputed and

stored prior to the actual running of the Kalman filter.

Besides the variance estimates being independent of the actual measurements, the

magnitude of the constant gain K depends only on the relationship between Qd and R, not

their actual values. In the case of scalar noises, the ratio Q determines the gain K. ThisR

indeterminacy complicates simultaneous estimation of both Qd and R.

3.3.3 Kalman Filter One Dimensional Ezample. In order to illustrate the use of the

Kalman filter, a simple scalar example is shown. The initial estimate, variance, and the

system parameters are as follows:

Initial state estimate io = 100 Initial variance P0 = 1

Transition matrix -t = 0.9 Dynamics noise variance Qd = 5.2

Measurement matrix H = 1 Measurement noise variance R = 3.0

Dynamic noise input matrix Gd = 1

The initial state estimate is normally distributed with mean of io and variance of P0.
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Figure 7. Propagation Through Time

The" propagation stage moves the normal probability density of the initial state estimate

forward ia time to tj:

i(ti-) = 4t(to) = 0.9(100) = 90

P(t 1) = tP(to).T + GdQdGT = (0.9)2(1.0) + (1)5.2(1) _ 6.0

The propagation stage maintains the normal probability density with a mean of i(tn) and a

variance 4f P(t,). Figure 7 depicts the move of the normal distributed state estimates from

a mean o' 100 at time to to a mean of 90 at time tj with an associated increase in variance

due to tL.- dynamics driving noise.

The measurement update at tj incorporates the information contained in a measure-

ment received at that time. For this example, let the measurement be zi = 84:

______=P _t__)H 6.0(1) .
K1

,tl) =HP(t, )H+R - 1(6.0)1+3 3

i(t+) = i(t-) + K(t1 )[z1 - H•i(t-)] = 90 + ?[84 - 1(90)] 86

P(t+) = P(t-) - K(t 1 )HP(t-) 6.0 - 1(1)6.0 = 2.0

56



0.3

• 7)--
0.25

0.2

fj(ý) 0.15

0.1

0.05 -

0
70 75 80 85 90 95 100 105 110

Kalman Filter State

Figure 8. Measurement Update

From the measurement model, z(t•) = Hx(tn) + v(t.) with H = 1 and an actual measure-

ment z,,, an estimate of the state conditioned only on the new measurement :ijz,(t,') equals

z, - v(t,,). Although the measurement noise v(t,,) is unknown, it is normally distributed

with a zero mean and a variance of R(t,,). Therefore, the state estimate conditioned on

the new measurement at time t,,, •iz,,(t,,), is also normally distributed with a mean value

corresponding to the measurement z,, and the variance of the measurement noise R(t,').

The Kalman filter gain K(t,,) provides the appropriate weight to combine these two

normal probability distributions. The propagated distribution with a mean of i(t-) receives

a weight of 1 - K(tn), and the distribution conditioned on the new measurement with mean of

SIz,,(t,) is weighted by K (t,). Since this is a linear com bination of two norm ally-distributed

random variables, the resulting estimate i(t+) is also normally distributed. Furthermore,

since K(t,) is bounded between zero and one, the resulting distribution has a mean between

the previous two means. Figure 8 shows the distributions of the propagated state estimate

;(ti ), the state estimate conditioned on the new measurement I zi(ti), and the updated state

estimate i(tl). The updated state estimate has smaller variance than either tLe propagated
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state estimate or the state estimate conditioned on the measurement.

The recursive nature of the Kalman filter algorithm is that it repeats the steps again

beginning with the updated state estimates. The two steps of propagation and update are

repeated for each observation.

3.3.4 Constant Kalman Filter Gain. As mentioned previously, the Kalman filter gain

K(t,) and the covariance matrices P(t-) and P(t+) are not dependent upon the actual mea-

surements. Actually, these matrices are functions of the initial estimate P(t 0 ), the covariance

of the dynamics driving noise Qd(t,), and the measurement noise covariance R(t,). Since

Qd and R are constant (as well as $, Gd, and H) in these applications, K(tn), P(t-), and

P(t+) attain steady-state values as the contribation of P(t 0 ) decays. These steady-state val-

ues can be determined from the Kalman filter equations by setting the the variance matrices

to constant matrices. The constant variance version of Equation (23) is

p- = + GdQdGT (29)

From Equation (24), the steady-state Kalman filter gain is

K =P-HT[HP-HT + RJ-' (30)

and from Equation (28),
P+ = P- - KHP- (31)

Substituting for P+ and K into Equation (29) results in

P- - ItP-k 4 T + tp-HT[HP-HT + R]-IHp--T - GdQdGdT = 0 (32)

This equation is called an algebraic Riccati equation because of its form. For the previous

one-dimensional example, the progression of these values is in Table 5 for calculations to two

decimal places. The state estimate variances and the Kalman filter gain rapidly converge to
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Table 5. Steady-State Variances and Gain

t,, P(t-,) K(t,,) P(t+)

0 1.00
1 6.01 0.67 1.98
2 6.81 0.69 2.11
3 6.91 0.70 2.07
4 6.88 0.70 2.06
5 6.87 0.70 2.06

their steady-state values.

Using the steady-state matrices, P-, P+, K, the two-step Kalman filter algorithm

simplifies to only two equations, Equations (22) and (25) with a constant Kalman gain K.

The covariance matrices are not calculated since their steady-state values are used for all

time. For the simple example shown previously, the steady-state values are used to generate

the Kalman filter state estimates in Figure 9.

After applying the Kalman Filter to the simulation output data, the estimates of the

filter-design state vector, the residual vectors, and also the covariance matrices associated

with these vectors are available. In addition, the covariance over time or the autocovariance

matrix P.1(t1 , t 2) is also available [57:166]:

Pxx(tl,t 2) = CPxX(tl,tl) = bP

This additional information may be used to improve simulation output analysis techniques.

3.3.5 Kalman Filter Optimality. Under the following assumptions, Kalman filter

state estimates are guaranteed to be optimal by essentially any logical criteria, such as

any symmetric cost function [57:231-236].
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Figure 9. Steady-State Kalman Filter

"* The dynamics equation is a linear stochastic differential equation, and the matrices

F(t) and G(t), or equivalently t(t.+1 ,,t) and Gd(t), are known. The measurement

model is linear, and the matrix H(t.) is known.

"* The dynamics driving noise is Brownian motion with known strength Q(t,), or equiv-

alently, the discrete-time white dynamics noise Wd(t,,) has a krown covariance matrix

Qd(t,). The measurement noise is uncorrelated normally-distributed random sequence

with known covariance matrix R(t.).

"* The initial state estimates are either known or normally distributed with a known

mean xo and covariance matrix P0.

Since Brownian motion has normally-distributed independent increments, all of the random

variable inputs are known or normally distributed. In addition, since the stochastic differ-

ential equation is linear, all of the state estimates are linear combinations of jointly normally-

distributed random variables. Therefore, all of the state estimates are also normally-distributed

random variables.
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The advantage of working with normally-distributed random variables is that the odd

central moments beyond the first one, the mean, are all zero. For example, the third moment

which measures skewness is zero since the normal distribution is symmetric. In addition,

the even central moments are all functions of the second central moment, the variance.

Therefore, the first two central moments, the mean and the variance, completely specify the

normal probability distribution.

Furthermore, the mean, mode, and median are all the same point for the normal dis-

tribution. Since most of the optimality criteria select one of these points as the optimal

estimate, under the above assumptions, the Kalman filter estimates are optimal by essen-

tially all meaningful criteria. According to Maybeck [57:232], the Kalman filter state estimate

*(t+) is the optimal Bayesian estimate because it is the mean of the probability distribu-

tion of the state conditioned on the measurements, fx(t,)Iz(t 1)(ýIZ), where Z, is the entire

measurement history available at time t,. "By virtue of being the conditional mean, i(t+) is

also the minimum mean square error (MMSE) estimate [57:232]." In addition, by being the

conditional mean of a symmetric distribution, ic(t+) minimizes any symmetric cost function

criteria [57:232]. While the Baycsian estimate is the conditional mean of fx(t,)Iz(t 1)(6IZ),

the mode of this distribution is called the maximum a posteriori (MAP) estimate. Similarly,

the classical maximum likelihood estimate (MLE) is the mode of fz(t,)jx(tj)(Z,[j) [57:235].

Besides being the MAP estimate, "i(t+) is the maximum likelihood estimate (MLE) of

x(t,) if Po = ool, i.e. if Po' = 0, and converges asymptotically to the MLE if PoI $ 0."

Maybeck [57:235] further states that *(t+) is the minimum variance unbiased linear estimate

even if the normal distribution assumption is removed from all noise inputs.

3.4 System Identification

Before applying a Kalman filter to simulation output, the system dynamics and mea-

surement equations must be determined. For engineering applications, these equations are

developed by aggregating the effect of subsystem components and empirical testing. Since

discrete-event simulations are used in applications where no analytically tractable solution
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exists, the dynamics and measurement equations must be deduced from the output sequence.

Assume the discrete stochastic process of simulation output, which has attained a

stationary steady-state distribution, can be represented by a linear time-invariant discrete

system with normally-distributed noise inputs. The time-invariant version of the dynamics

model, Equation (19),

x(t,,) = 4x(t, 1_I) + Gdwd(t,,) (33)

is determined by the constant transition matrix 4, the constant dynamic noise input matrix

Gd, and the time-invariant covariance matrix Qd of the discrete white normally-distributed

zero-mean dynamics driving noise Wd(t,). Similarly, the time-invariant version of the mea-

surement or observation model, Equation (20),

z(tf) = Hx(t,,) + v(t,,) (34)

is determined by specifying the constant measurement matrix H and the constant covari-

ance matrix R of the discrete white normally-distributed zero-mean measurement noise

v(tn). Therefore to specify the system equations completely, •, G, Qd, H and R must be es-

timated. However, due to this estimation, this Kalman filter application is no longer linearly

independent of the observations and optimality cannot be guaranteed.

Four potential approaches are considered to determine the appropriate system equation

and estimate the necessary parameters. First, a range of structural forms and parameteriza-

tions can be evaluated by the maximum likelihood estimation (MLE) procedure developed

by Akaike [6, 4, 5, 7, 8]. Second, multiple model adaptive estimation (MMAE) [48, 49, 58, 60]

can be applied with various classes of models. Third, transfer functions can be developed

to relate past observations to future observations. Finally, the structure of the model can

be imposed by a pmrori considerations, and the necessary parameters can be estimated by

least squares, MLE or MMAE. Each of these four approaches to determine the structure will

be presented in the following sections. However, only the a priori formulation is selected,

applied, and tested.
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3.4. 1 Akaike's Estimation Methodology. Several researchers demonstrate the equiva-

lence of some common types of model formulations. Akaike (4] proves that there is no differ-

ence between a Markovian representation of an output sequence from a stationary stochastic

process and an autoregressive and moving average (ARMA) representation. Cooper and

Wood [16] show equivalence between ARMA and state-space representation without control

inputs. Hence, if an ARMA model can be fit to simulation output, an equivalent state-space

model can be developed. The reverse may not be true since state-space formulations allow

for measurement noise which is not included in ARMA models.

While engineering models are built using known relationships, time series models are

estimated typically from the realized sequence. Box and Jenkins [11] present a method-

ology to fit ARMA models to univariate data. Two limitations in their methodology are

that subjective assessments are require" and that multivariate extensions are difficult [8].

Overcoming the multivariate limitation, Charnes [12] extends the use of time series models

for simulation output analysis. He demonstrates that vector autoregressive moving aver-

age (VARMA) models of specific forms can be used to improve the estimation of combined

confidence regions for simulation system parameters. Charnes' results demonstrate that

simulation output sequences can be successfully modeled with time series formulations, and

hence, also with state-space models.

Akaike [4] proposes the following maximum likelihood procedure for stationary normally-

distributed processes with a Markovian representation. Markovian representation ensures a

finite vector representation. First, the multivariate normal probability density function is

f(st)= (2,r)-s 12 1EI-L/2exp {-I[ [- ]T_ - U[]-

where ý is a realization of dim ision S, p is the mean vector, and E is the covariance matrix.

Since the natural logarithm is a strictly monotonic increasing function, the maximum of

the logarithm of a function is the same as the maximum of the original function. Letting
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L f(ý), the natural logarithm of the likelihood equals

In(L) = S ln(27r) - 2 1 [I - - I

Define actual residuals r, as the measurements z, minus the predicted measurements

Hi(tn), as shown in Equation (26). Using the whiteness of the residuals, their joint den-

sity function can be written as a product of the normally distributed marginal densities of

the individual residuals. Incorporating the actual residuals and their associated covariance

matrix, the natural logarithm of the likelihood function for N observations {z'} is:

SN1N 1N
n(L) - NIn(2 r) - • E In IHP-H + RI - - E rT[HP-HT + R]-'rn (35)

where S is the dimension of the measurement vector z,

N is the number of observations

H is the measurement matrix

P- is the covariance matrix of the state estimates prior to the measurement update

R is the covariance matrix of the measurement noise

rn is the residual vector for the nth observation

For each set of parameters considered, the data must be processed through the Kalman filter

because the likelihood function assumes a complete sequence of Kalman filter state estimates.

This likelihood function can be maximized by employing a nonlinear optimization routine

where each evaluation requires processing all of the observations through a Kalman filter.

The formulation can be varied by including more or less of the past observations in

the observation vector. For a specified dimension, the matrices, 'k, Gd, H, Qd, R, which

maximized this function are the Maximum Likelihood Estimation (MLE) parameters. MLE

estimates the parameters without any explicit penalty for increasing the number of param-

eters by using a larger system-state matrix. In contrast, Akaike's [4, 8] technique adds

a penalty for using a system-state vector with larger dimensions and more parameters to
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estimate. Akaike defines his information criterion, the AIC, as

AIC = - 2 In ( maximum value of the likelihood function)

+ 2 (number of independently adjusted parameters within the model)

The first term is a penalty for "badness of fit" of the model, and the second term penalizes

increased unreliability for additional parameter estimation [4]. When models of the same

dimension, and hence the same number of parameters, are compared, the addition of a

constant does not change the minimum of the AIC. Therefore, for models of the same

dimension, the technique results in the classical MLE methodology. For models of different

dimensions, the best choice of model is the one ihat minimizes the AIC. Akaike refers to the

selected model as the minimum information criteria estimate, MAICE. Akaike summarizes

the value of his procedure as follows:

By the introduction of MAICE the problem of statistical identification is for-
mulated explicitly as a problem of estimation and the need of the subjective
judgment required in the hypothesis testing procedure for the decision on the
levels of significance is eliminated completely. [5]

Because of the extensive numerical computations necessary to search all potential mod-

els of various dimensions and parameterizations using the AIC, Akaike [4] says the feasibility

of this procedure is almost entirely dependent on a good initial guess at the dimension of

the system and selecting a corresponding basis of the state space. He further states that de-

termination of the Markovian or ARMA representation proceeds in two steps, first selection

of the structure and then determination of the parameters.

Akaike [6] further recommends that canonical correlation analysis for the process can

provide an initial guess of the structure and the parameters to be used for the initialization

of the maximum likelihood procedure. Akaike [7] says that, for two sets of random variables,

one composed of the past and present values and the other composed of the present and

future values, the two sets of canonical variables with positive correlation form the minimal

65



information interface between the past and the future of the process. From this minimal

information interface, the dimension of the transition matrix can be determined.

Green [28:2611 describes the objective of canonical correlation as finding the linear

composite variables for each of two sets such that the highest possible correlation is attained

between the linear composites. Subsequent linear composites are selected such that they

are uncorrelated with previous linear composites and the highest conditional correlation

is attained. Each successive pair of composites between the two sets exhibits decreasing

correlation.

Let x represent one variable set with an associated vector of weights a. A new set

of variables x° is determined by aTx. Similarly, the other set of variables y and another

vector of weights b defines a new set of variables y*. The objective of canonical correlation

is to specify a and b such that correlation between x* and y* is maximized. A standard

multivariate result is that the a and b which maximizes the correlation between the two sets

are the solutions to the eigenvalue problems:

(Exx F"xy , • - AI)a 0 and - AI)b =0

where E are the respective covariance or cross-variance matrices, and the largest eigenvalue

A is the squared canonical correlation coefficient [18:341-342].

For a time-invariant system, Akaike [6] defines a realization of the ,I matrix of mini-

mal dimension as a minimal realization. Akaike [8:68-70] presents the steps for determining

the minimal realization using the MAICE. His process begins by developing two sets of

observatic,_s for canonical analysis. As he processes through the data, the p past vectors

plus the present vector is an observation in the first set of variables. In addition, at each

data point, the present vector plus the p future vectors is the corresponding observation in

the second set. The process is repeated with increasing p. The number of vectors in the

spanning set of canonical variates is the dimension p of the system. This p is equivalent to

the number of nonzero canonical variates [8:60], and the resulting model is equivalent to an
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ARMA(p, p - 1) model [27:7-8]. Akaike's system identification process iterates between min-

imization of the AIC given the model dimension and canonical correlation with an additional

lagged vector [8:68-70].

Cooper and Wood [171 modify Akaike's procedure by including the present vector in

only the future set rather than both the past and the future sets. Goodrich and Stellwa-

gen state in the Forecastmaster software documentation [27:7-9] that the advantage of this

modification is that all of the canonical variates can be identified in one step rather than in

a stepwise procedure. An ARMA(p, p) model results, and the parameters can be estimated

by maximum likelihood techniques using a nonlinear optimization routine such as Gauss-

Newton. The parameter estimates which are small compared to their standard error are set

to zero. Porter [76] uses Forecastmaster [27] in a feasibility study of applying the Kalman

filter to simulation output. He shows that, for waiting times from an M/M/1 queue, a two

state Kalman filter is specified. Tsay and Tiao [99] and Tsay [98] improve Akaike's method-

ology by eliminating the requirement for the canonical analysis step to specify models only

of order ARMA(p,p).

Schwarz [89] recommends a similar procedure except that Akiake's information criteria

(AIC) is replaced with a Bayesian information criteria (BIC):

BIC - 2 ln( maximum value of the likelihood function)

+ (number of independently adjusted parameters)

This technique selects the model that is a posteriori most probable. Quantitatively both

procedures apply the principle of parsimony [11:17-181 in model building. The Schwarz tech-

nique leans toward a lower-dimension model [89]. Neftci [72] makes a comparison between

the models resulting from using the AIC and the BIC for economic time series. Applying

both criteria to eight economic time series, Neftci fit univariate ARMA models. In every

case, Schwarz's BIC specifies a lower-dimension model. Neftci reports that the AIC selected

models with over nine parameters on average, whereas the BIC choose models which average

less than five parameters.
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In concluding this section, Akaike's procedure or one of the derivatives is a possibility

for identifying a dynamics model and a measurement equation for simulation output. How-

ever, due to the computational requirements to evaluate each set of parameters to determine

the MLE, this approach does not appear well suited for this application.

3.4.2 Multiple Model Adaptive Estimation (MMAE). Another potential method for

system identification is Multiple Model Adaptive Estimation [34, 48, 49, 58, 60, 61, 62,

63]. MMAE simultaneously estimates uncertain filter-design structural parameters and state

estimates. MMAE basically approximates the unknown parameter space with discrete points

and runs a Kalman filter at each discretized point in parameter space. The MMAE estimation

is accomplished by monitoring the residuals for each of the Kalman filters in the bank.

In contrast to MMAE, the unknown state parameters can be augmented to the state

vector and estimated along with the states using a nonlinear estimation technique [58:Chapter

12]. While a nonlinear approach requires approximations, Lainiotis [49] summarizes the re-

lationship between the nonlinear estimation of the state estimate at time t conditioned on

the available measurement history, ic(tIt, to) in his notation, and MMAE as follows:

The optimal nonlinear filter constitutes an exact decomposition or partitioning of
the nonlinear filter for k(tIt, to) into a set of much simpler linear elemental filters,
namely, the Kalman-Bucy filters, which are, moreover, completely decoupled from
each other. [49]

In addition, MMAE can be used to determine the necessary dimension of the filter-design

state vector [48].

Besides determining the system dimension, MMAE can be used to estimate unknown

parameters. Let a denote a vector of the parameters to be estimated. The continuous range

of values for a are discretized into L representative sets of values, a,. The discretization of

a can be thought of as a "grid".

The discretization typically is determined by the effect of varying the particular pa-

rameter. The generalized ambiguity function is defined as the average value of the likelihood
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function upon which the estimator of a is based, and it can provide insight into determining

the appropriate number of discrete levels needed for unknown parameters. The generalized

ambiguity function is given by Maybeck [58:97-991 where 0 is some function of the estimated

variables and Ci represents a realization of the measurement history Z(t,),

Let L[9(t,), 4,1 denote that likelihood function, and then the ambiguity function
A(., .) is defined as the scalar function such that

A(O, Ot) = I. L[O,,Ejjfz(t,)j9(t,)(£ijj~t)d~j

where 0 is some value of the estimated variables at time tj and Ot is the true, but
unknown, value of these quantities.

The curvature of the ambiguity function in the vicinity of the true parameters indicates the

preciseness with which the maximum likelihood estimate can be discerned [57:97]. If the

ambiguity function has little curvature, meaning it is relatively flat, the parameter effect is

not easily discernible, and therefore, a coarse grid for that parameter ought to be sufficient.

In contrast, if the ambiguity function has a distinct peak, small variations in the parameter

should be discernible in the magnitude of the residuals. Thus, a relatively fine discretation is

appropriate. In order to evaluate the ambiguity function, a sensitivity analysis is conducted

[57:325-341]. In this analysis, the "truth model" is a detailed model with assumed true

parameters. Unlike many engineering applications, most discrete-event simulations do not

provide an adequate "truth model".

After the discretization of the parameter space is complete, let the probability that

the unknown set of parameters a assumes the set of L discrete values at conditioned on the

measurement history up to time t,, be pi(t,,) = Prob (a = aiIZ(t,,) = Zn). Assuming the

possible values for a are limited to the L discrete parameter vectors a,, the probability is

calculated [61] as

p/(t.) fz(t,)Iz(t, 1)(z ai, Z.) pj(t,-,) (36)

i=1 fz(tn)1a,Z(t,_,)(Zn jai, Z_,1 ) . P 1(tn- 1 )
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The Bayesian minimum mean squared error state estimate, the sum of the L discrete state

estimates weighted by their associated probabilities, is the MMAE estimated state vector:

L
"ic( t+) = _,"2( t+) .pI( t,•) (37)

/=1

Each *c(t+) is calculated using a discrete-time Kalman filter with the associated aL pa-

rameters. With time-invariant matrices, the probabilities are calculated using the residuals

r,(t,) = z,n- HI 1k(t,) and their covariance matrices A, = HP-H T + RI. Since these

residuals are jointly normally distributed,

fz(t..)ja.Z(t,._,)(zjat, Z,-i) = (27r )-S,2 JAI 1-1/2 exp{-r T(tn)AI 1rt(tn)} (38)

where S is the dimension of the measurement vector z,. Since the residual rI(t,) for the

"best" set of parameters a, should be relatively small, the "best" set of parameters is as-

signed a high probability by the preceeding p1(t,) computation. Similarly, the residual for a

"mismatched" model should be relatively large and the associated probability is small [60].

Maybeck [58:131] derives the covariance matrix for the random vector of the updated

MMAE state vector *(t+) as

L

P(t+) = E-pI(t,){P,(t+) + [kt(t+) - *(t+)][iI(t+) - k(t+)]T}
1=1

Similarly, from Maybeck [58:132-133], the conditional mean for the unknown vector of system

parameters a at time t,, is

L
-i(t,)= E{a - i(tn)IZ(tn) = Zn} = a,. p1(t,) (39)

7=1
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and an indication of the precision of the estimate i(t,,) is given by the conditional covariance

matrix of a:

L

•aIzý = E{[a - f(t,,)][a - i(t,)]TIZ(t,) = Z,,} = -[ai - &(t,,)][a1 - i(t,)ITpI(t) (40)
L=1

In the recursive calculations of pi(t,,), if any of the pi(T.) becomes zero, it remains

zero thereafter. To prevent a set of parameters from getting discarded prematurely, the

probabilities typically are given a lower bound which depends on the number of discrete

points in the parameter space [60]. This lower bound permits the parameters to continue to

adapt throughout the observation set.

In contrast to using the Bayesian probabilistic weighted average of each filter, Maybeck

and Stevens [63] test two other techniques for determining the state estimate. The first

alternative is the Maximum A Posterior (MAP) version of MMAE, which simply uses the

state estimate of the filter with the highest computed probability. This prevents including

the weighted average of the filters with probabilities at the lower bound. A middle ground

between the Bayesian and MAP approach is to include within the weighted average, only

those filters with probabilities over a certain threshold.

The second alternative proposed by Maybeck and Stevens [63] is to modify the prob-

ability calculation. They note that the leading term before the exponential term in the

probability density function, Equation (38), scales the area under the curve to one. In the

case where the residuals ri equally match their associated covariance matrix At (meaning

the rT(t,,)A-'r1(t,,) are equal), the respective likelihoods should be equal. However, the

leading scalar term unjustly assigns higher probabilities to the filters where the determinant

of the covariance matrix is smaller. Therefore, Maybeck and Stevens [63] propose removing

that leading coefficient. Since each probability pj(t,,) is calculated by dividing by the sum

of all the numerator expressions for each possible value of at, each probability is maintained

between zero and one, and the sum of the L probabilities equals one.

If several parameters are unknown, the number of Kalman filters running in parallel,
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even for a coarse grid of possible parameter values, may be prohibitive. To circumvent this

problem, Maybeck and Hentz [34, 611 propose applying a bank of Kalman filters for which

the filter parameters are dynamically redeclared. Thus, the assumed parameter values, upon

which the filters in the bank are based, move through the feasible parameter space. The

small bank of Kalman filters searches for the best parameter estimates by redeclaring each

filter's parameters at. When the true parameter vector appears to be outside the current

range of the parameters in the filter bank, one of two options is employed. The assumed filter

parameters in the bank are either moved or their range expanded. As the bank converges to

"good" estimates of the parameters, the range of parameters in the bank of filters may be

contracted.

Many logical schemes for dynamically redeclaring the parameters in the bank of Kalman

filters are possible. Maybeck and Hentz [61] test several rules and report that two rules,

which position the center of the Kalman filter bank, worked well. The first rule maintains

the probabilistic weighted averag" 4f the parameters •i(t,) from Equation (39) near the cen-

ter of the parameters in the bank, and the other rule positions the parameters a1 with the

highest probability pg(t,,) as the center. When the parameters in the filters are redeclared,

the filters with new parameters are initialized with the probabilistic weighted average of the

state estimate, Equation (37). In addition, all the filters with new parameters are assigned

an equal share of the probability from the filters with discontinued parameters.

Maybeck and Hentz (61] also propose a contraction criterion and an expansion crite-

rion for the range of parameters in the Kalman filter bank. They suggest contracting when

a matrix norm of the conditional covariance matrix for a(t,,), EaIz,, falls below a certain

threshold. Their expansion criterion is based on residual monitoring using the filter com-

puted residual covariance matrix, A- 1 = [Hj(t,)Pi(t,)H'(t()+RR(t.)]-1. Specifically, their

criterion is that if all the likelihood quotients

L,(t,) = r,(t),)A-i ri(tn)
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are large and close in magnitude, the bank of filters is expanded. Both of these rules contract

or expand the filters in all dimensions parameter space at the same time. More complicated

approaches may contract or expand only in specific dimensions of the unknown parameter

vector. An approach which expands and contracts in different directions would be useful to

hone in on easily estimated parameters while continuing the coarse search for other param-

eters that are more difficult to estimate.

Harrison and Stevens [31, 32] apply an approach similar to MMAE to estimate time

series data. Their technique uses a bank of four Kalman filters. Each filter is designed for

a different condition; steady-state, transient value, slope change, or jump change. At each

stage, the sixteen probabilities of transitioning from each filter to any filter are determined.

To avoid a growing bank of filters, the probabilities and weighted state estimates are used

to reduce back to the original four filters.

Like Akaike's method, the MMAE technique is another alternative approach to deter-

mine the system structure. MMAE may also be used as a method to estimate unknow system

parameters. The MMAE technique, particularly with the use of the moving bank of filters,

appears to require considerably less computation than Akaike's technique. However, many

filters may be required to span different structural models each with unknown parameters.

3.4.3 Transfer Function Technique. Copper and Wood [16] relate the state-space

representation to a transfer function model. The transfer function is a linear operator which

relates the system inputs to outputs [11]. For example, the Autoregressive Moving Average

(ARMA) time series models are equivalent to types of transfer functions which relate a

normally-distributed white noise input to an output sequence. Given a stream of output

data, the transfer function can be estimated either in the time or frequency domains. In

the time domain, an ARMA model is fit, whereas in the frequency domain, the model is

estimated by using a Fourier transformation. Lee [54:99-107] describes a methodology to

indentify the transition matrix ,I by transforming to canonical form and estimating the

parameters with least squares.
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3.4.4 A Priori Model Formulation. For specific applications, the state-space struc-

ture may be imposed on the simulation output sequence by a priori considerations. Under

these circumstances, the dimension and structure of the problem are fixed, and the param-

eters can be estimated by least squares, Maximum Likelihood Estimation (MLE), Multiple

Model Adaptive Estimation (MMAE) [58], or correlation techniques [9, 65, 66]. Harvey

[33] presents the necessary likelihood functions for several structures which are commonly

encountered in time series data.

3.5 Summary

The first major section of this chapter reviews the theory of stochastic processes. A

discrete-time dynamics relationship, Equation (19), and a measurement model, Equation (20)

are shown. Using these system equations, the next section developes the discrete-time, time-

invariant, linear, Gaussian, Kalman filter equations. The final section in the chapter describes

four potential techniques for determining and estimating the filter-design system equations

for simulation output data. The next chapter applies these concepts to the specific problem

of simulation steady-state identification.
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IV. Single-Run Steady-State Identification: Residual Monitoring Approach

4.1 Introduction

In discrete-event simulation, a typical output analysis objective is to estimate the char-

acteristics of the model outputs of interest, such as the mean or variance. One class of models

is that of infinite-horizon simulations, in which our interest would be in estimating steady-

state parameters. Although it is possible that these parameters may be cyclic, this research

focuses on output sequences that attain a stationary steady-state probability distribution.

Typically, a simulation model is not initialized at steady-state conditions. The initial

transient or startup problem arises from the fact that the model's output may initially pass

through an unrepresentative phase as it approaches steady state. Including transient data

in output analysis may bias steady-state estimates, as described in Chapter II. A generally

accepted solution is to truncate the output sequence, thereby eliminating the initial data

that may bias the steady-state estimates. While initial data truncation may increase the

mean squared error of the point estimator [21, 104], deletion improves confidence interval

coverage markedly [44]. This chapter proposes and tests an analytical approach to determine

the appropriate initial-data truncation point.

Selection of the appropriate truncation point may be obfuscated by the difficulty that

the transient, rather than ending at a particular point, may converge gradually to the steady-

state distribution [101]. The effective end of the transient n0 is the point after which the

initial conditions no longer have a significant effect on the estimated performance measures

[15]. Deleting the data prior to n, reduces the bias, but deleting data after n, unnecessarily

reduces the sample size and increases the variance of the estimates. The specific problem

addressed by this chapter is estimating an appropriate truncation point h,, for a univariate

simulation output sequence {Y1, Y2,..., YN }. For the confidence interval construction tech-

niques designed for one long simulation run, such as batch means, this truncation point
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identification algorithm, which also works on a single replication, is a useful complementary

technique.

The background on related discrete-event simulation research is presented in Chap-

ter II, and Chapter III describes the Kalman filter. This chapter is divided into four major

sections. The proposed system models and a model estimation strategy is developed in the

first two sections. The next section on the truncation point selection methodology discusses

Kalman filter residual monitoring, and the following section presents the steps in the pro-

posed algorithm. The results section reports on the Monte Carlo analyses of second-order

autoregressive AR(2) data and first-order autoregressive-moving average ARMA(1,1) data.

Although the residual monitoring approach does not perform as well as the MMAE approach

in Chapter V, Section 4.2 provides the model formulation used in all of the subsequent meth-

ods.

4.2 Determination of the System Structure

The first step necessary in applying a Kalman filter is to determine appropriate system

equations. Four techniques are presented in the last half of Chapter III. Akaike's minimum

information criterion (MAICE), the Multiple Model Adaptive Estimation (MMAE), and

transfer functions can be used to determine appropriate system equations from general classes

of possible systems. In addition, the a priori method uses additional information to limit

the possible structure of the dynamic and measurement equations. Limiting the possible

structure and parameters significantly simplifies the system identification task. Kelton and

Law [44] and Schruben [87] impose a structure on the simulation output and achieve good

results. Therefore, using a similar structure for the form of the system equations, an a priori

approach is developed. The first subsection presents an a priori model formulation. The

associated Kalman filter equations and relationships are developed in the second subsection.

4.2.1 A Priori Model Formulation. In order to apply the Kalman filter to simulation

output, an appropriate dynamics model, Equation (19) on page 49, and the associated
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measurement model, Equation (20), must be determined. Since steady-state output is being

modeled, time-invariant equations (33) and (34) on page 62, are chosen.

Abate and Whitt [1], Harrison and Williams [30], and Whitt [102] use regulated Brow-

nian motion as the underlying model in analysis of queuing systems. A similar formulation

was considered for the dynamics equation. However, this approach was rejected because of

the nonlinear state transitions that would have to be taken into account in the Kalman filter.

Kelton and Law [44], as shown in Equation (13) on page 33, and Schruben [87], as

shown in Equation (7) on page 28, suggest modeling the steady-state simulation output y,

as a constant mean p,, plus noise r/(tn):

y(t,) = Ir + 77(t.) for observations n = 1,2,..., N (41)

The term 17(tn) is correlated noise with E[i7(tn)] = 0. These researchers attempt to account

for the correlation in the noise term. Kelton and Law [44] use generalized least squares rather

than ordinary least squares to account for the correlated noise term. Schruben [87], on the

other hand, tLansforms the sequence so that the noise is modeled as a Brownian bridge. In

both applications, the underlying model of the steady-state simulation output is a constant

mean plus noise. In the Kalman filter approach, with the same model for the simulation

output, i.he dynamics and measurement models must account for the correlation in the noise.

Using the same underlying model, the steady-state simulation output sequence {y(tn)}

can be approximated by a steady-state mean I,, plus a time-correlated noise 77(t,). The se-

quence of time-correlated noise is approximated as the output of a linear stochastic dynamics

system. The linear modeled noise terms i•(t,) and their lagged values are the filter-design

state vector x(t,) in the system model. A similar concept is used by Fishman [20, 23] to

construct confidence intervals for an ,!stimate of the process mean. Fishman's approach

fits an autoregressive time series model to the simulation output and uses the autoregres-

sive coefficients to estimate the variance of the mean estimate. Fishman's technique applies

77



time-invariant autoregressive coefficients. Since steady-state output is being modeled, time-

invariant system matrices seem reasonable.

Modeling the steady-state phase of simulation output by means of a linear time-

invariant system has been questioned. In evaluating frequency domain experimentation,

Sargent and Som [81] state that the input and output process cf a modulated M/M/1 simu-

lation does not constitute a time-invariant linear system. However, their analysis is confined

to examining the simulation model from inputs to outputs. In their study, the input is the

cosine of the average service time and the output is total time in the system. In contrast, the

time-series approach assumes a linear time-invariant system between lagged output values.

Thus, Sargent and Som's objections do not apply to this formulation.

The assumed constant autocorrelation relationship of a linear time-invariant system

may be inappropriate. Using the simulation of an M/M/1 queue as an example, let the

output of interest be either the waiting time for each entity or the total number in the

queue. When the queue length is long, a strong autocorrelation in the simulation output

seems logical. However, observations of either entity waiting times or queue lengths that

are separated by a period of time when the server is idle are functions of nonoverlapping

sequences of interarrival and service times. Both sequences are pseudorandom numbers,

which are designed to be uncorrelated in time. Thus, when separated by a period with an

idle server, no apparent autocorrelation may exist in the output for either waiting times or

queue lengths. Furthermore, the degree of autocorrelation may increase with queue length.

In spite of this objection, like Fishman's autoregressive time series approach [20, 23], this

application assumes a linear time-invariant system between lagged simulation output val-

ues. The approximation ought to be sufficiently accurate for the purpose of steady-state

identification.

An appropriate form and order of the noise model must be determined and estimated.

Odoni and Roth [731 investigate the simulation state of queue length. They state that, for

queuing systerms during the transient, the sequence of the simulation states is dominated by a

decaying exponential. Similarly, Conway [15] states that the transient components typically
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decay geometrically. While Odon' and Roth's [73] and Conway's [15] conclusions apply to the

transient phase of simulation output, they seem to indicate that the dominant autocorrelation

in the output sequence can be approximated by relatively simple autoregressive models.

In time series analysis, a decaying exponential is modeled as a first-order autoregressive

AR(1) process [11:57],

0.) = 0 10(t- 1 ) + wd(tn) (42)

where 0i is the first autoregressive coefficient and {Wd(t,)} is a sequence of white normally-

distributed noise terms. A second-order autoregressive AR(2) process,

=(t.) = l(t.- 1) + q52A(t._ 2) ± Wd(t.) (43)

can model a mixture of damped exponentials and a sinusoidal within an exponentially de-

caying envelope [11:59-60].

Steudel and Wu [97] and Schriber and Andrews [85] report that periodic samples of

M/M/1 queue length can be represented adequately as an AR(1). Charnes [12] reports that

a vector of queue lengths from more complex simulation models can be modeled adequately

dS a first-order vector autoregressive, VAR(1), model.

In this research, the simulation output is modeled as a steady-state mean plus corre-

lated noise. The true time-correlated noise 77(t,,) is approximated with autoregressive noise

ý(tn). The dynamics of the correlated noise is formulated either as an AR(1) with measure-

ment noise model, which has a scalar filter-design state x(t,,), or as an AR(2) with mea-

surement noise model, which has a two-dimensional state vector x(t,,). Both approaches,

the AR(1) with measurement noise and the AR(2) with measurement noise formulations,

are developed and tested in this chapter. While the noise in simulations may have higher

order effects, in many engineering applications, reduced order models are sufficient. In addi-

tion, the "lack of fit" of these simple models perhaps can be approximated as measurement

noise. This a priori model of a steady-state mean plus autoregressive noise is imposed on

discrete-event simulation output. The next subsection presents the corresponding Kalman
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filter equations.

4.2.2 The Kalman Filter Equations. Autoregressive models can be written as dis-

crete, linear, time-invariant, stochastic, dynamic systems with the appropriate choices of

defining matrices. The filter-design system states x(tn) are the autoregressive noises i(tn),

and the state transition matrix 4I relates one state vector to the next. The noise disper-

sion matrix Gd determines how the white normally-distributed scalar dynamic noise Wd(tn)

affects the states. Assume that the noise correlation can be approximated with an autoregres-

sive model. The dynamics model, Equation (33), and measurement model, Equation (34),

matrices for an AR(1) with measurement noise formulation are

X(t,) = i(t,), 4' = 41, Gd = 1 and H = 1 (44)

and for an AR(2) with measurement noise formulation are

x(t,) -[ tn)) ]1 [ 2] Gd= and H= 1 0 (45)ýn- 1 0 0

With this formulation, wd(tn), Qd(t,), z(t,), v(tn), and R(t,) are scalars. The vari-

ances of the discrete, white, normally-distributed, zero-mean, dynamic noise wd(t,) and

measurement noise v(tn) are assumed to be constant for the steady-state simulation output.

Thus, Qd(t,) = Qd and R(tn) = R, respectively.

Using either of the two possibilities for H, the modeled measurement z(tn) without the

noise term v(tn) from Equation (34) is

Hx(t,) = ý(t,) (46)

The actual measurements z, of the correlated noises 17n are determined from the realiza-

tion of simulation output y,n as follows from the random variable relationship expressed in
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Equation (41):

zn --- Yn -v (47)

Harvey 133:52-53] differentiates between the pure AR models without measurement

noise and the AR models with measurement noise. Since the state is unobserved with

measurement noise, Harvey calls the Autoregressive-Integrated-Moving Average (ARIMA)

models with measurement noise Unobserved Components ARIMA (UCARIMA) models. A

pure AR(1) process has theoretical autocovariances of the state x(t,,) at lag 7r of

_ 71'Qd fort =0,1,2,...

and has an autocorrelation function of

p.(r) = 0' for r = 0, 1, 2,...

In the ARMA case, one of the state vector elements x(t,,) equals the observation y(t,,) minus

the steady-state mean 1L.. In contrast, the states in the UCARMA formulation are observed

with measurement noise v(t,) with variance R. The variance of an UCAR(1) sequence

includes the measurement noise variance,

¢S;Qd"-Y(0)- = -€r Q + R

but the lagged autocovariances are the same as the AR(1) case since the measurement noise

is uncorrelated in time.' Therefore, the UCAR(1) autocorrelation function is

00Qd(l - for = 0,1,2,...
Qd(1- 0')-l + R

Inclusion of measurement noise requires that the variance R of the measurement noise v(t.)

must also be estimated. Rather than using the Harvey's UCAR(1) and UCAR(2) notation,

these formulations are referred to as the AR(1) with measurement noise model or the AR(2)
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with measurement noise model.

Pure AR models do not include measurement noise v(t,), but they can be thought

of as a degenerative form of the system model upon which Kalman filter is based. The

degenerative form simply requires eliminating the measurement noise v(t,). Setting the

variance of the measurement noise to zero, R = 0, removes the measurement noise from

the system model since it already has a mean of zero. For the above autoregressive models,

applying the Kalman filter equations with R = 0 results in the same estimates as applying

a pure AR(1) or AR(2) model.

A simple first or second order autoregressive model may not be adequate since Fishman

[20, 23] requires considerably more autoregressive terms in his applications to simulation

output. Specifically, he requires four lagged values to model the output of an M/M/1 queue

[20], seven lags for a simple airline reservation problem [23:256-257], and twenty-three lagged

values for a cyclical washer problem [23:259]. However, these system equations provide two

ways to account for "lack of fit" due to assuming the correlated noise 77(t,) can be modeled

adequately as a low-order autoregressive noise ý(t,,). Since discrete-event simulation output

y, is known exactly, the variance R of the measurement noise v(t,,) may represent "lack

of fit" between the true noise 77(t,,) and the assumed antoregressive noise i•(t,,). Second,

reduced order models are applied in many engineering applications by simply increasing the

variance Qd of the dynamic driving noise wd(t,,) [57].

For the proposed model of the steady-state simulation output, the system matrices

4', Gd, Qd, H and R are assumed time-invariant. Therefore, the Kalman filter ,ain K(t,)

and state-estimate variance matrices P(tC) and P(t+) attain steady-state values as dis-

cussed in Section 3.3.4. In this application, the steady-state matrices are used in all calcula-

tions. Since steady-state values are applied throughout, the time subscripts on the matrices

K, P-, P+ are not necessary.

This a priori formulation can be implemented two different ways. The simulation out-

put can be processed directly through this model of the Kalman filter as in most engineering
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applications. Another approach revolves around the idea that the simulation output can

first be smoothed by a moving average as in Welch's [101] technique. The moving average

replaces each observation with the average of a predetermined number of past and future

observations. This moving average removes some of the high frequency oscillations in the

output. This smoothed data then can be processed through the Kalman filter to deter-

mine the truncation point. The approach taken in this chapter is to process the simulation

observations directly.

In order to implement this formulation of the Kalman filter, the system parameters

must be estimated. The AR(I) with measurement noise formulation has four unknown pa-

rameters: the steady-state mean 1L., the variance Qd of the dynamics driving noise wd(t,), the

variance R of the measurement noise v(t,,), and the autoregressive coefficient 01. The AR(2)

with measurement noise formulation has an additional unknown autoregressive coefficient q 2

to estimate. Their estimation is discussed in the next section.

4.3 System Parameter Estimation

The a priori formulation proposed in the previous section requires the system pa am-

eters to be estimated. These parameters are the observation mean /, the autocorrelation

coefficients €1 (and 0 2 for an AR(2) with measurement noise formulation), the dynamic noise

variance Qd, and the measurement noise variance R. Several estimation procedures, such

as Multiple Model Adaptive Estimation (MMAE), Maximum Likelihood Estimation (MLE),

least squares estimation, or correlation techniques [66], are possible approaches.

In the method of MMAE (See Section 3.4.2), a bank of Kalman filters, each with a

different set of parameters, is run. The Maximum A Posterior (MAP) version of MMAE

selects, as estimates, the parameters from the filter with the most probable residuals. The

Bayesian version of MMAE uses the likelihood of each filter to calculate a weighted average

for the parameter estimates, as shown in Equation (39).

Classical MLE selects as parameter estimates the values which maximize the joint

probability of the actual measurements. Least squares estimation picks the parameter esti-
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mates that minimize the sum of the squared residuals. Therefore, while MLE and MMAE

are calculated based on the magnitude and assumed probability distribution of the Kalman

filter residuals, least squares is based only on the size of the residuals. For a univariate

sequence, least squares estimates are generally asymptotically equivalent to MLE [33:129].

The correlation technique proposed by Mehra [66] matches the theoretical autocorre-

lations for the assumed model with the sample autocorrelations. After solving for the mean

and autocorrelation coefficients, the noise variances are calculated from the sample variance

of the resulting residuals.

This section discusses the identifiability of the noise variances, Qd and R. The effect

of this indeterminancy between Qd and R on the various estimation approaches is discussed.

In order to eliminate the indeterminancy, the first term of the Kalman filter gain, Ki = k, is

estimated instead of the variances. Because of the lack of variance information, least squares

estimation is selected. Using the estimated system parameters and the residuals, the noise

variances, Qd and R, the state estimate variances, P- and P+, and the variances of the

output and the mean estimator can be calculated.

4.3.1 Identifiability. A set of parameters is identifiable if no other set of parameters

has the same joint density function [33:205].

Identifiability has an immediate bearing on estimation. If two structures have
the same joint density function, the probability of generating a particular set of
observations is the same for both structures. Thus there is no way of differenti-
ating between them on the basis of the data. Furthermore, it often will be the
case that attempts to estimate models which are not identifiable will run into
practical difficulties [33:205].

Simultaneously estimating both the dynamics noise variance Qd and the measurement

noise variance R is an identifiability problem. As discussed on page 55 and in Section 3.3.4,

the estimated state variances are not effected by the actual measurements. Further, the

solution of Equation (32) gives the steady state solution for P-. If the noise variances,
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Qd and R, are multiplied by a positive constant, P- multiplied by the same constant is a

solution of Equation (32). Using the scaled variances and calculating the Kalman filter gain

with Equation (30) results in the original gain. Since the system matrices 4, Gd, H, K along

with the sequence of measurements determine the residuals, scaling all the variances by a

positive constant does not change the resulting residuals. For scalar system, the Kalman

filter gain is a function of the ratio of -Qd [57:225], so any combination with the same 9 tQ ratio

generates the same residuals and has equal likelihood of being the correct model. Therefore,

Qd and R can not be estimated simultaneously.

4.3.2 Estimation Techniques. In spite of the confounding effect described in the pre-

vious subsection, an approach for making unique estimates of the system parameters is

developed in this subsection. The estimation approach is based on "concentrating out" ei-

ther Qd or R. The effect of this approach on MLE, MMAE, and least squares estimation is

discussed. Rather than "concentrating out" Qd or R, estimation of the Kaman filter gain

directly is examined and selected.

For a univariate sequence, a common approach, if both of the noise variances are

unknown, is one of the variances should be "concentrated out" of the likelihood equation.

Harvey [33:107,126] shows that by setting one variance as a scalar multiple of the other

variance, one of the variances can be set arbitrarily and the other can be estimated using

MLE without the problem of indeterminancy.

To understand Harvey's approach, let a. be the unknown variance to be "concentrated

out" of the likelihood function. Harvey begins by dividing all of the variances by a'. Let

P• ='P - and P+ = ;.!P+, and use Qd. = ;½-Qd and R. = _1R. The same Kalman filter

variance propagation and update equations can be used, and the original Kalman filter gain

K, Equation (30), is attained. Harvey shows that MLE can be applied with these scaled

variances. The natural logarithm of the likelihood function for a multivariate sequence with

time-invariant system matrices is Equation (35) on page 64. The version for a univariate
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sequence with measurement noise with steady-state covariance matrices is

EN 2

ln(L) -N ln(27r) - N ln(HPHT + R) - n=1 rn
2 2 2(HP-HT + R)

where N is the number of observations

H is the measurement matrix

P- is the covariance matrix of the state estimates prior to measurement update

R is the covariance matrix of the measurement noise

r,, is the residual for the nth observation

Substituting in the scaled variances,

ln(L) = - ln(27r) - N ln(HP-HT + R.) - E r
-- 2 2 \2(c rHP HT+Pf+R.)

-ln(27r) - ýýln(o.2) - N ln(HP-HT + R.) i;(. HP*-H +R.

Harvey differentiates with respect to o,.. Since the measurement sequence and the Kalman

filter gain are unchanged by scaling with a., the residuals rn are the sam.e. In addition, the

residual variance, HPHT + R. is not a function of a..2

aln(L) N + ( 1=_ r n 0

- +2o2 2(U2)2 HP-HT + R.

Multipling through by 2(o,2) 2 and solving,

_L N 2

2 NEn=l1 rn
, HPHT + R.

The second partial of ln(L) with respect to (72 is

82n(L) _ N ( 1 ) Zn=1rn -N 1<0- II= -"1<0
92,.2 2(U.2)2 HP;HT + R. 2aT

Since a.2 is a variance, it must be non-negative. Thus, the second partial of ln(L) is strictly

positive, and setting the first partial equal to 0 yields the a2 which maximizes the natural
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logarithm of the likelihood function.

Under the assumption of a linear system with known system matrices (4, Gd, Qd, H

and R), the residuals are zero-mean, white, random variables. An approximation of the

residual sample variance equals j_ EN r', and the filter-computed residual variance is

HP-HT + R.. Thus, a.2 is approximately the ratio of the sample residual variance to

the filter-computed residual variance.

Harvey [33:107,126] continues by substituting the ratio of variances for a, in the like-

lihood equation:

ln(L,) N ln(27r) - -ln ) I--ln(HP•-H T + R.) N
2 "2 HP.2HT+R. - 2 2
=~~~~_ ---ln2N)l- 2)n(P*H +R)1h - Nln(HP•-H T + R.)

N (ln(27r) + 1)- ' ,n( E N1 r2)
2 2 N n=in

This likelihood equation can be maximized to determine parameter estimates. Alternatively,

1N

ln(L*) = N ln(• r 2r)

can be minimized. In contrast to the MLE parameters, the least squares estimates are deter-

mined by selecting parameters that minimize the sum of the residuals squared, EN r 2 In

general, MLE and least squares estimates are asymptotically equivalent estimates [33:129].

Since the natural logarithm is a monotonically increasing function, in this particular appli-

cation, the MLE parameter estimates are equal to the least squares parameter estimates for

fixed sample size N. However, in this application of trying to separate the transient and the

steady-state, both estimation techniques, MLE and least squares, beg the question of how

much of the data (the size of N) to use in estimating the steady-state parameters.

Harvey [33:126] recommends setting a.' equal to R or a diagonal element in Qd. If

2 R, then R. 1.0 and Qd. becomes the dynamics-to-measurement noise ratio. Using

the modified likelihood function, one less parameter is estimated, and the indeterminacy

between Qd and R should be eliminated. Either MLE or least squares estimation can be

87



used to estimate the remaining parameters.

The scaled variances can possibly be used in normalized Kalman filters in the MMAE

technique. The conditional probability of the Ath filter in the bank of K filters having the

correct parameters is given by Equation (36) on page 69. For the case of scalar measurements,

substituting in the normal distribution probability density function for the residuals with

mean zero and variance of HP-HT + R results in

F =1fZ(tnx)la,Z(tn_1)(z nla i.'z n-l)'Ph(tn-1)

E.,(2,,(HP•-HT+Ri))-1/" pt2 HP-H+k -I' .Pj(tn-1)( H+j) -/ j 2(HPT HT+-
-- (2w(HP-HT+Rk))1 / 2 Cip { (P PI~n1

(HP-HT+Rj)lI/2 exp.
j 2(HP7HT+Rj)J

= I (HPk-HT+Rk)-/2 exP{ 2(HPk HT+Rk) +I }'P(t+•-i)

Substituting in the scaled variances and a', for each filter irto the MMAE probability cal-

culations,

or2.j (HP-'jHT+R*j)-1/2 , • -- -'- 'pjt•l

u~CHP;3 HT+R. I /e *{2u (HP-.HT+ R. 1 ) }~~ni
pj(tn) = 2 .

K Ih' ff.2(HP HT+R.k)-1/2 exp • H. ..- ,.(tn•1)

Using Harvey's suggestion of setting r2. = R, so Rj = 1.0, results in the following probability

calculations:

"O.lj(HP1 .HT+I.0)-1/2 exp -.3~n 2 t•.•(HPjHT+j'0)
P., (tn)=1 -K-- , o*2,(HP- HT+1.0)-1/'eP ,2 (H HTI) "pht-)

The o,.' do not cancel and are unknown. The approach of assuming the U2. cancel and setting

an arbitrary value for each Rj may result in a nonlinear change in the MMAE probability

calculations.
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In a test of MMAE with the scaled variances, the 01 and Qd were varied at discrete

levels for each of K filters. The MMAE probability calculations used

(HP-.HT+RTJ)-RI/ 2 exp

p~,(t.) -2_(HP-,HT+R.,)

h=1 (HP-HT+R.,)-1/2 eip 2(Hp*-H'+R,h)

Of the three discrete values (0.1, 0.5, and 0.9) for 01, the center value of 0.5 was used to

generate the AR(1) data. After processing 1,000 observations through the Kalman filWrs, the

marginal probabilities for 01 were examined. For each run with different .alues of Roj, the

marginal probability for one of the discrete values of 01 was over 98 percent. This estimate

of 01 constitutes the Maximum A Posteriori (MAP) estimate. However, different values

of R., resulted in different MAP estimates of 4 '1. With R.j = 1.0, 01 was overestimated

as 0.9. On the other hand, when R., = 0.1, q 1 was underestimated as 0.1. In neither

case did MMAE closely estimate the correct 41 value of 0.5. In addition, although the

actual filter residuals were almost identical for each value of R.j, the filter-computed residual

variance, HP-HT + R., varied significantly. In order to draw reliable statistical inferences

about the residuals, the filter-computed residual variance should be approximately equal to

the actual residual variance. The choice of this example was unfortunate since the correct

value for R for pure AR(1) data without measurement noise is zero. Therefore, the MMAE

was attempting to select a very large Kalman filter gain proportional to the ratio of %AR"

However, the approach of arbitrarily fixing Qd or R and using MMAE to estimate the

other parameters does not appear to be a reliable estimation strategy. Because 0C potential

estimation problems and unreliable filter-computed variance estimates, MMAE is not applied

in the algorithm developed in this chapter.

In an extension of Harvey's approach, the original (unstarred) parameters can be esti-

mated after determining estimates of the starred (*) parameters. These calculations require

estimating o. with the mean squared residual, _ EN I r2, and the filter-computed resid-

ual variance, HP,-HT + R.. rlne advantage of this method is that the steady-state filter

variance would be tuned [57:337-338] to the realized residual variance. Tuning prevents di-
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vergence caused by the filter relying too heavily on its internal dynamic model, and tuning

also prevents chasing noise in the data. Tuning the filter also ensures that the probability

calculations for the residuals are reasonable.

Since Harvey's suggested approach scales the variances and MMAE probably should

not be applied, a simpler formulation is to let o. HPHT + R, the filter-computed

residual variance. This eliminates the need to calculate the variances Qd, R, P- or P+.

The unknown parameters become the steady-state mean ,p, a scalar k related to the Kalman

filter gain K, and the autoregressive coefficient(s) 01 (and 02) in 4. The observations can

be processed through Kalman filters with estimates of these unknown parameters without

corresponding estimates for Qd, R, P- or P+. With only an estimate of the Kalman filter

gain, but no variance estimates, MMAE and MLE can not be applied, however, least squares

estimation remains feasible.

In this chapter, the least squares estimates for the steady-state mean I 1,, the autore-

gressive coefficients 01 and 02, and the scalar k are used. These parameters fix the state

transition matrix 4D and the Kalman filter gain K. Based on these parameter estimates

and the resulting residual sequence, the variances can be estimated as shown in the next

subsection.

4.3.3 Variance Estimates. The variance relaAionships for both the AR(1) with mea-

surement noise and the AR(2) with measurement noise models are developed. Using esti-

mates for the output mean, autoregressive coefficients, and the first element of the Kalman

filter gain, the simulation output sequence is processed through the Kalman filter. The

resulting Kalman filter residuals along with the parameter estimates are used to calculate

variance estimates. If desired, the unknown variances of R and Qd, and thus P- and P+, are

calculated using the mean squared residuals. Further, Dased on the parameter estimates and

the estimates of Qd and R, the simulation output variance and the mean estimator variance

are determined.

In the AR(1) with measurement noise formulation, H = Gd = 1, K = k and ( P i.
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Using the estimates for 1.i, 01 and k, the data is processed through the Kalman filter. The

approximate residual sample variance is set eqtial to the filter-computed residual variance:

2-- HP-HHT + R P-+R
N ,,=1

Using the Equation (30) for the Kalman gain,

p,-
k = P (48)P-+ R

After multiplying and substituting, this relationship results in

P- = k( P- + R)--= k 1 r

By substituting into the residual variance equation, R is determined:

Furthermore, the Kalman filter equations with the estimate for P- are used to solve for P+

and Qd. From Equation (31),

P+ = P- - kP-

Using Equation (29),

Qd = P- 10p+

In addition, since k P- and both P- and R are variances, the scalar k is bounded

between zero and one. For an AR(1) with measurement noise formulation, the noise variances

and the state estimate variances are determined from the parameter estimates and the mean

of the squared residuals with these relationships.

For the AR(2) with measurement noise model, the Kalman filter gain is a vector with

two elements. After setting the first element equal to the scalar k, the second element must
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be solved in terms of the estimated parameters. Using the matrices from Equation (45) in

Equation (30),

K = P_ 1 - P +R (49)Pý- P: ý + R P.__2..

The first element of the Kalman filter gain matrix is set equal to the scalar k, so k =

As in the AR(1) case, the parameter k is bounded; 0 < k < 1. However, to determine

the second element in the Kalman filter gain matrix, PI-I must be solved in terms of theP'y+R

estimated parameters (AsY, k, e 1, and q2). P2 is determined using the Kalman filter equations

along with the symmetry of covariance matrices. From the covariance update, Equation (31),

P+ = P--KHP-

= P - P-HT[HP-HT + R]-'HP-

= P -(Pý, 1+R)P T HP-.

= P-- R (PjP)2 (P 2

= (IE+ P2 -- "Pa+

p= I

P[ j +R PI P+ +R

From the covariance matrix propagation equation, Equation (29),

p- = p+4T + GdQdGT

1 02 Pý2 0 Q, (50)P-P +nR P ý-, +R € 1 Q 0
1[ 0 2]1 1P5-~ P , (P

Pý2 +n - P:ý2- ¢ff 2 0 0 0
SPj +R 2 2 P +R 2 R

After multiplying,
l 1(PQ ) 2 ¢_2 PýJP2

PP p+ R +€2 P +R
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From the equation for the first element of the Kalman filter gain matrix, P = k(Pý +- R).

Substituting for Pfi in the numerator terms,

Pý2= ¢k(Pý-j + R) - 4i)k2 (P17j + R) + € 2P2 - 0 2kP1

and solving for P172

P2(1 - €42 + 02 k) (Olk - ¢IIk2 )(P7j + R)

Pý - ¢0 k01k2) P +R
P ( 1 - 02 +4 2k)

Further,
P_ €k - 010k2

Pf- + R 1 - 02 + 02 k

Since this is the second element of the Kalman filter gain, the complete gain matrix is

K = k 1 (1

With these relationships, the least squares estimates are found. After the least squares

estimates of Ay, k, qi , and 42 are determined, using the relationships above, unique estimates

of P-, P+, Qd, and R can be calculated, if desired. From the estimation of A, k, 41, and 42, a

residual sequence exists. Theoretically, the residuals are normally distributed with mean zero

and variance HP-HT + R. An approximation of the residual sample variance is -N nr,.

Equating these variances results in

-r = HP-HT + R = P± + R (52)

From Equations (49), (51) and (52), P11 and Pj- are determined. Again using Equation (52),

Rý is estimated. Finally, using Equation (50) and the fact that P2 = P1+j, Qd is calculated.

In many simulation applications, an estimate of the variance of the process is useful.

From fitting these Kalman filter equations, an estimate of the variance &2 of the simulation
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output y,, and an estimate of the variance P of the simulation output mean estimator f

can be determined.

The variance of the output P- is derived using Equations (34), (46) and (47):

ynt= AVv+,Zn

= ± + Hx(tn) + v(t.) (53)

= / + ý(t.) + V(tn)

The measurement noise v(tn) is assumed independent of the state estimates, which are the

autoregressive noises ,•(t,,). The independence along with the facts that E{v2 (t.)} = R and

that E{j 2 (t.)} = a are used in the derivations.

For the AR(1) with measurement noise formulation, the i(tn) are modeled as a zero

mean AR(1) process, as shown in Equation (42). Thus, a?= E[ý2 (tn)] =1A [11:58] of

2 = E{[Ay + ý(tn) + v(t.)]2} A2

= E{f 2 (tn)} + E v 2(tn)}

If the simulation output yn is from an AR(1) process, no "lack of fit" is necessary, and

R = 0. As expected, with R = 0, the variance is the same as for an AR(1) process.

For the AR(2) with measurement noise formulation, the correlated noise terms ?(tn)

are distributed as a pure AR(2) process, Equation (43), with process variance [11:62]:

a?• = E{ • 2(t")} = 0 1d +(154))5-

Since the result E{y} = Ay still holds, only the last part of the derivation that uses E{y2}

changes:

Y= E{-(t2 )}( ' (55)
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Once again, if the actual process is an AR(2), then R = 0 and the variance of y(t,,) degen-

erates to the pure AR(2) process variance.

In discrete-event simulations, the objective often is to calculate an estimate of the

mean output Ay. The variance of this estimate is necessary to form a confidence interval for

the mean.

By independence of the state estimates x(t.) = ý(t.) and the measurement noise v(t.),

the variance of their sum is the sum of their variances.

0? Var{l L N
= Var{ -L NE

Sn=1 On(t)} + N n.=1 Var{v(t.)}

= Var{k N 1 n(t) + R

Substituting Fishman's [23:247-252] approximation, Equation (11) with p = 2, for the vari-

ance of the mean estimator of an AR(2) sequence,

2 )2_ + -n (56)a&,•N(I - 01 -2 N==

with degrees of freedom d from-Equation (12) minus 1 for the estimation of R,

d - N(1 - 1- 2) (57)4 + 4•,

Substituting in the parameter estimates results in an estimate of the output variance &2

This variance estimate is used for constructing confidence intervals on the mean estimate

[37, 39].

The variance estimates are derived from the estimate of the scalar k. Empirical tests

shown in Table 53 on page 168 indicate that the scalar k is overestimated. The bias in

estimating k also biases the variance estimates Qd and 1. Furthermore, estimates based on

Qd and i?, such as &Y and &,A,, may also be biased.
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4.3.4 Application of Estimation Procedure. Two major issues affect the application

of the estimation procedure developed in the last subsection. The first issue is in which

direction should the data be processed, forward or backwards. In this chapter, the data is

processed backwards beginning at the end of the simulation output, however, in subsequent

chapters the data is processed foward from the beginning to end. The second issue is how

many of the observations should be used to estimate the steady-state system model. All of

the data is not used since the transient data may bias the parameter estimates necessary for

the algorithm to detect the transient. A bank of filters is employed to simultaneously evaluate

the feasible range of parameters until adequate parameters are accepted. The discretization

for the parameters upon which the filters are based is also discussed. Various stopping rules

are considered to determine when the estimates from one of the filters in the bank should

be accepted as the steady-state system model.

Processing the data from the end of the simulation output toward the beginning min-

imizes the chance of biasing the estimated steady-state model with transient observations.

Another advantage of estimating the steady-state model by processing the data from the end

to the beginning is that after the model is estimated, the model's residuals may be tracked

as a potential indication of the onset of significant transient effects.

In applying the least squares estimation technique, the decision must be made at

which observation to stop the system parameter estimation. Processing the output backward

from the simulation termination, in the same fashion as Kelton and Law [44] propose, the

steady-state output is encountered before the transient output. While more steady-state

observations should improve the confidence in the estimated parameters, including transient

output may bias the system parameter estimates. But at this stage in the algorithm, no

estimate of where the transient phase effectively ends is available. Therefore, at a point

sufficiently early in the steady-state observations to prevent including any transient data,

the parameter estimation procedure should be stopped.

The least squares estimates are generally found by applying Kalman filters with various

parameters to a fixed sample. A search is conducted until the parameters which minimize
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the sum of squared residuals is determined. In this application, the number of observa-

tions to include in the sample for the estimation algorithm is not obvious. The decision

of how many observations to include in the parameter estimation phase is solved partially

by using a bank of filters similar to the MMAE approach. The bank of filters are set up

in a grid covering the feasible and stable parameter space. The bank of filters processes

the observations backwards, beginning with the last observation. Using the bank of filters,

various combinations of parameters are evaluated after including each additional observation

to the estimation sample. As observations are processed, the cumulative sum of residuals

squared is maintained for each filter. After sufficient observations are processed, one filter

may consistently minimize the cumulative sum of squared residuals. This filter's parameters

are selected as the least squares estimates. As soon as the best combinations of parameter

estimates is apparent, no more data points are included in the estimation sample. Rather

than using a predetermined sample size, this approach applies an incrementally increasing

sample size until the estimates are determined. With the appropriate stopping rule, this

bank of filters approach avoids having to determine which observations constitute steady

state before beginning the estimation.

While optimized discretization schemes exist [94, 61], these schemes require a "truth

model" which is not available in these applications. An equally spaced discretization is

employed. The grid of filters covers the parameter space with a filter running at each

combination of the discrete parameters. For each filter in the bank, the sum of its residuals

squared is maintained. After processing an observation, the least square estimates to that

point are the parameters of the filter with the minimum sum of squared residuals.

For initial tests, the Kalman filter formulation is an AR(1) with measurement noise

model, and the tes4 data sequence is generated with a pure AR(1) model. The filter bank

includes filters with the scalar k discretized from 0.0 to 1.0 at every 0.1, 01 discretized

from -1.0 to 1.0 at every 0.1. The true mean is used in the filters. After processing 1000

observations, the minimum is always very close to the parameters used to generate the data.

However, the residual sum of squares is relatively insensitive to changes in the scalar k. In
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Table 6. Estimation Stopping Criteria

Residual Properties Hypothesis Test
Zero Mean Mean Hypothesis Test
Known Covariance X2 Variance Test
Whiteness Potmanteau Test
(Uncorrelated in Time) Durbin-Watson Statistic
Normally Distributed Goodness of Fit Test

addition, most of the neighboring filters have residual sum of squares just a small percentage

(< 2%) larger than the minimum. In other words, the residual sum of squares appears

to be a relatively flat surface. Therefore, parameter estimates that differ by less than 0.1

may not be distinguishable without an excessive number of observations. As a result of this

conclusion, the parameters are estimated only to within 0.1 in this chapter. This coarse

discretization enables the bank of Kalman filters to span the discretized feasible parameter

space completely.

After determining the discretization of the unknown parameters, a criterion to accept

the estimates from the filter with the minimum cumulative sum of squared residuals is

necessary. One approach for determining a stopping rule is periodically to estimate the

parameters and to test the fit of the model. Mehra and Peschon [64] present three types

of statistical hypothesis tests for the residuals: test of zero mean, test of covariance, and

test of whiteness. The assumption of normally distributed residuals can also be tested using

a goodness of fit test. These and other possible techniques to determine the estimation

stopping rule, shown in Table 6, are discussed. Because of the difficulty of implementing

sequential statistical hypothesis tests, a heuristic approach is selected.

Two variants of the test for zero mean are examined. The hypothesis test to determine
if the residuals are statistically zero-mean uses the sample mean, f = k E r,. The sample

mean is distributed normally with zero mean and variance of •[HPHT + R]. Therefore,
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the null hypothesis of zero mean is rejected whenever

1.96[HP-HT + RI

at the 5 percent confidence level.

While the previous test is based on the filter-computed residual variance HP-HT + R,

Mehra and Peschon [64] recommend using the sample variance. Let the standardized residu-

als be •,i= (HP-HT +R)-2r,,, and the sample variance equal &,' = (N- 1) n=' r,,-()2

Mehra and Peschon suggest a T 2 test with the following statistic:

T 2 = N5,-2r
2

which is the "uniformly most powerful among all the tests for zero mean which are invariant

with respect to scaling (or covariance)" [64].

The X2 hypothesis test evaluates whether the residual variance equals the filter-computed

variance. Since the estimation methodology forces these two variances to be equal, this test

is not appropriate to determine if the parameter estimates are sufficient. However, this test

is discussed later as a viable test for the onset of the transient data.

Whiteness is defined as independence in time. The test of whiteness is based on

estimating the sample autocorrelations cj at lag i with

, = EZ=i,(r. - f)(r_,i - F)
rN -- f)2

These sample autocorrelations can be compared with their standard errors, which are ap-

proximated usually by N-i. The difficulty with this approach is that for a few lags i, the

true standard errors may be much smaller than the approximation [2:261].

Another test of the sample autocorrelations is the modified Portmanteau test for an

ARMA(p, q) time series model [2:263]. In this test with N observations and KQ sample
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autocorrelations, the test statistic Q* is given by

KQ
Q* = N(N + 2 )• Ni

The statistic Q* is x2 distributed with KQ - p - q degrees of freedom where p + q is the total

number of parameters in the model.

While the Portmanteau test evaluates KQ autocorrelations, the Durbin-Watson statis-

tic only tests if the first autocorrelation coefficient is near zero. The Durbin-Watson statistic,

EN)

D - =2(r - rn-1ENr2

Zn=1

is approximately equal to 2(1 -p,(l)), where p,(1) is the first order autocorrelation coefficient

of the residuals. Since theoretically p,(1) should be zero, D should be close to 2. In addition,

a good heuristic test for whiteness is to adjust for the mean and then count the number of

zero crossing.

A different approach is to apply a goodness-of-fit test to evaluate the cumulative distri-

bution of the residuals. Several goodness-of-fit tests [96], such as the Kolmogorov-Smirnov

test, can be used to test whether the residuals are distributed normally with a mean of

zero and a variance equal to the filter-computed variance. The residuals for the test can be

obtained by processing a different set of observations than the set of observations used to

estimate the parameters.

If the residuals from the estimated model failed any of the hypothesis tests, more

observations can be included in the the least squares estimation. However, a difficulty

exists with repeatedly applying a statistical hypothesis test to determine if the estimated

model is adequate. Due to its statistical nature, an incorrect model may eventually be

accepted erroneously. The probability of failing to reject an inadequate model depends on

the power of the hypothesis test, but all statistical tests have some probability of accepting

an incorrect model. Therefore, for any given model, the test can be applied repeatedly to
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determine if the acceptance rate is commensurate with the confidence level of the statistical

test. However, repeatedly applying a statistical test and monitoring the rate of acceptance

is not implemented easily. Therefore, sequential hypothesis tests are not applied.

Since applying a statistical hypothesis test to determine whether the parameter esti-

mates are adequate is cumbersome, a simple heuristic approach is developed. The hypothesis

tests are examined for values that can be easily monitored and give a relatively good indica-

tion of the quality of the parameter estimates. The assumption of zero-mean residuals can

be tested by monitoring the cumulative sum of the residuals. If the residuals are zero mean

and normally distributed, as assumed in the proposed system model, the cumulative sum of

the residuals should fluctuate stochastically around zero [70:282]. Therefore, the parameters

of the filter with the smallest sum of residuals squared are accepted only if the absolute value

of the cumulative sum of residuals is within a small tolerance of zero.

Similarly, the Durbin-Watson statistic can be updated easily with each new obser-

vation. Thus, as an indication that the residuals are white, the parameter estimates are

accepted only if the associated Durbin-Watson statistic is above 1.9 and below 2.1.

These stopping rules indicate that the residuals appear to follow the assumptions of

being zero-mean and white. In addition, these rules are monitored easily as the observa-

tions are processed, and they do not require calculating the Kalman filter variance matrices.

Therefore, the parameters of the Kalman filter with the minimum sum of squared residuals

are tested after each additional observation is processed. When both tests are passed si-

multaneously, that filter's parameters are selected as the least squares estimates. The least

squares estimation with these stopping rules completes the steady-state system identifica-

tion. After several tests runs, the Durbin-Watson criterion was discarded. If the model used

to generate the data does not match the Kalman filter formulation, the residuals continually

fail the Durbin-Watson criterion.

The selected stopping rule is based on monitoring the cumulative sum of the residuals.

The cumulative sum should be normally distributed with mean zero and variance propor-
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tional to the sample size. The simulation output is processed backwards from the simulation

end to the beginning. After processing {YN, YN-1,. . ., YN-J} for J = 0, 1, 2,..., the number

of generated residuals is J + 1. The parameters of the filter with the smallest sum of residuals

squared are accepted only if the absolute value of the cumulative sum of residuals is below

a small tolerance times J + 1:

J

I 'rN- <0.1 /J+1 (58)
3.=0

In summary, a bank of filters, each with different parameter estimates, processes the

data from the end of the simulation output backwards toward the beginning. From the bank

of filters, the parameters of the Kalman filter with the minimum sum of squared residuals

are tested after processing each additional observation. When the cumulative sum is less

than a small tolerance, those filter's parameters are selected as the least squares estimates.

In this section, a procedure to estimate the system parameters is developed. The

procedure processes the data from the end of the simulation output until the adequate

parameter estimates are obtained. Based on this estimated steady-state model, the Kalman

filter can continue processing the observations backwards to detect when transient data is

encountered. The next section developes the algorithm for detecting transient data and

selecting an appropriate truncation point.

4.4 Truncation Point Selection

Once the steady-state system identification is accomplished, determination of the point

where the transient phase effectively ends may be addressed. The concept is to truncate the

initial transient data in order to obtain a better estimate of the steady-state simulation

output mean. Potentially, the appropriate truncation point may be identified in several dif-

ferent ways. This chapter tests an approach based on monitoring the Kalman filter residuals.

When the simulation output is processed through the estimated Kalman filter from the end

to the beginning, the transient effects may be apparent by the onset of a high occurrence of
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Table 7. Truncation Point Selection Criteria

Residual Properties Hypothesis Test

Zero Mean Mean Hypothesis Test
Known Covariance X2 Variance Test

Whiteness Durbin-Watson Statistic
(Uncorrelated in Time) Potmanteau Test
Normally Distributed Goodness of Fit Test

Joint Probabilities
All Properties Log of Conditional Densities

Cumulative-Sum Process Control

unlikely observations through residual monitoring.

Unlikely, and hence potentially transient, observations may be determined in a variety

of ways. Since the residuals in the steady-state model are white and distributed normally with

a mean of zero and the filter-computed variance, any violation of these assumptions would

indicate that transient observations are being processed through the steady-state Kalman

filter. Therefore, any of the statistical tests which are described previously as a method

to accept the estimated model, can also be used to identify transient data. Those tests

include the test of the residual mean, the tests of the residual whiteness, and the goodness-

of-fit tests. In addition, some different approaches are apparent. Table 7 summarizes the

truncation point selection criteria considered. The approaches that are not presented in the

previous section are discussed. The cumulative-sum (cusum) process control algorithm is

selected and tested in this research. The last part of this section discusses this application

of the cusum algorithm. The section concludes with an example of the cusum algorithm.

Maybeck [57:230] depicts a method of residual monitoring technique based on the sum

of natural logarithms of con 1itional densities of NL residuals:

I
LNL(tl) = c(t,) - 2(HP-HT + R) 3 NL r2 (t,)

13L+
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The term c(t,) is a negative term independent of the observed residual values. This tech-

nique requires determining the group size NL and a threshold value to determine significant

deviations.

A second alternative is to apply a statistical hypothesis test on the variance. Hines and

Montgomery [36:293] describe a test of hypothesis on the variance of a normal distribution.

By using the theoretical mean of zero in calculating the sample variance of the residuals,

this hypothesis test also detects a significant deviation from zero in the residual mean. The

one-sided alternative is described because if the transient data does not fit the steady-state

model, the resulting residual variance should be too large.

Therefore, for the hypothesis and alternative hypothesis are

H0  
2 = 2

H: 2  2c7

Set U0 equal to the filter-computed residual variance HP-HT + R of the steady-state filter,

which is estimated using the least squares technique. The sample variance of the test residuals

is approximated with the mean squared residuals:

S2 = En=_1' rnNx2

Nx2 is the number of observations processed for the test. The chi-square distributed test

statistic with NX2 - 1 degrees of freedom is

2 (Ng2 - 1)S 2

and the rule is to reject H 0 if x >1-

While a type I or a error is the probability of incorrectly rejecting the null hypothesis,

a type II or 3 error is the probability of incorrectly accepting the hypothesis when it is
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incorrect. Hines and Montgomery's text [36:606] contains operating characteristic curves

which indicate that, with a = .05, a sample size of N.2 = 30 is necessary to haven= .1 when

the true standard deviation is 1.5 times the hypothesized standard deviation. Similarly, with

a = .01 a sample size of N.2 = 40 is needed. Therefore, besides determining critical values of

the chi-square statistic, this hypothesis test provides insight into the desired sample size N.2.

This technique is very similar to Maybeck's since both use the sum of the residuals squared

divided by the filter-computed variance. However, the advantage of the this technique is

that, in choosing the probabilities of type I and II errors, the sample size and critical value

of the test statistic can be determined.

One additional point about hypothesis tests is pertinent. Even when the data is gener-

ated from the hypothesized linear system, the residuals fail the hypothesis test approximately

100cl percent of the trials. However, during the transient phase, the data's relationship in

time should be different than as predicted by the steady-state model. Thus, the transient

values should produce statistical outliers in the residuals. Therefore, as with repeated ap-

plication of any statistical test, the transient can be identified by a sequence of test results

with a much higher failure rate than the specified a.

While hypothesis tests have the problem of increasing probability of type I error for

repeated applications, process control algorithms cah be designed to set the statistical fre-

quency of false alarms [70:2881. After estimating the Kalman filter parameters for steady-

state simulation output, the filter's residuals may be tracked to detect the onset of transient

data. Of the many possible process control algorithms for monitoring sequences from which

to choose, the cumulative-sum (cusum) quality control algorithm [70:291-2>'3] is designed

specifically to detect small changes in a sequence's mean. Since the objective is to identify

transient simulation observations that bias the mean estimate, cusum seems to be an ap-

propriate test. Futhermore, the assumptions of the cusum algorithm are that the sequence

is white and normally distributed, with mean zero and known variance. The Kalman filter

residual sequence follows these assumptions.
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The remainder of this section describes the application of cusum to determine ap-

propriate truncation points for discrete-event simulation output. A sensitivity analysis is

presented to determine the number of residuals to aggregate in each cusum observation.

After determining that each residual should constitute a separate cusum observation, the

parameters for the cusum algorithm are selected. The section concludes with an example of

using the cusum algorithm to select a truncation point.

The cusum approach is based on the concept that the cumulative sum of residuals

should fluctuate near zero. The parameter A is the magnitude of the shift in the mean

desired to be detected, Hca is the cusum test's critical value, and N,, is the number of

residuals to average for an observation of the cusum test. For convenience, the residuals are

standardized with F,, = [HP-HT + R]J-r,. Thus, the average for the cusum test value is

1 =" Nri"=- Arc i •, for/i= 1, 2,... cNc =N,.(,-l)+l =

The cusum test values are calculated with

SH(i) = max[0, r. - - + SH(t -- 1)
2

ASL(i) = max[0, -- • - + SL(Z- 1)]

2

where SH(0) = SL(O) = 0. Considering A as a small tolerance, SH represents the cumulative

magnitude of a trend higher than the tolerance in the cusum observations. Likewise, SLzi)

corresponds to the cumulative magnitude of a trend lower than the tolerance. If SH(i) or

SL(i) exceeds H, the sequence is "out-of-control" and is hypothesized to have encountered

transient data. In addition, let NH and NL be the number of consecutive observations for

which SH(i) and SL(i), respectively, have been positive. Then, a reasonable truncation point

is NH or NL cusum observations prior to the failed test value.

Average Run Length (ARL) is the expected number of test observations processed

before the cusum test indicates that the sequence is "out-of-control". If the process is in
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Table 8. Cusum Average Run Length (ARL) for A = 1

Shift in Mean
(Multiples of oa) Hr, = 4 He, = 5

0 168 465
0.25 74.2 139
0.50 26.6 38.0
0.75 13.3 17.0
1.00 8.38 10.4
1.50 4.75 5.75
2.00 3.34 4.01
2.50 2.62 3.11
3.00 2.19 2.57
4.00 1.71 2.01

Note: Table reprinted from Montgomery [70:295]

steady state, the ARL would indicate the expected number of tests performed between

occurrence of false alarms. False alarms occur when the algorithm indicates that transient

data has been encountered when actually only steady-state data has been processed. In

general, a large ARL is desired when the steady-state data is being encountered, and a short

ARL when transient data is processed. By selection of A, H, and N,,, the ARL can be

varied.

The following discussion examines the sensitivity of varying the number of residuals

in a cusum observation. The fastest detection of a small shift in the mean is with only one

residual in the cusum observation, N,, = 1. Montgomery [70:295] presents Table 8 of ARL

values when Hc, = 4 or H,, = 5 with A = 1. The table assumes the cusum observations

are standard normal random variables. Therefore, Montgomery selects these values with the

objective of detecting a one standard deviation shift in the mean of the process.

Lucas [55] describes a methodology for selecting the parameters for a cusum control

scheme. He recommends that the "in-control" expected ARL be about 500 cusum observa-

tions. In addition, the cusum test for this application is designed to detect a shift in mean

of the standardized residuals of one half standard deviation, so A = lf = -"1

212
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Table 9. Cusum Batch Size N., Effect on Average Run Length (ARL)

Parameters Shift in the Residual Mean (Multiples of ao)
N.. A H., 0 0.25 0.50 0.75 1.00 1.50 2.00
1 0.5 8.59 499/499 94/94 30.9/30.9 17.5/17.5 12.1/12.1 7.6/7.6 5.5/5.5
4 1.0 5.07 499/1996 38.8/155.2 10.5/42.0 5.8/23.2 4.1/16.4 2.6/10.4 2.0/8.0
9 1.5 3.55 497/4473 22.1/198.9 5.5/49.5 2.2/19.8
16 2.0 2.67 504/8064 14.6/233.6 3.4/54.4 1.9/30.4 1.4/22.4
36 3.0 1.70 492/17,712 8.1/291.6 1.8/64.8 - 1/36
Note: Values are expected number of cusum observations/expected number of residuals

If the variance of the observations used for the cusum test is reduced, the ARL increases.

The variance can be reduced significantly by using the average of a batch of residuals for

each cusum observation rather than individual residuals. While fewer cusum observations are

necessary to detect a change in the mean, each of these observations contains more residuals.

Lucas' graphs [55] show that Hc, varies approximately linearly with log(ARL). Using this

interpolation scheme and his table of values, the tradeoff between the cusum batch size Nca

and the ARL can be seen in Table 9. Lucas provides values only for the sample sizes shown.
As the cusum batch size Nco increases from 1 to 4, the standard deviation of each

cusum observation is dt ,..ased by 1 = 1. Thus the magnitude of ua with No, = 1 equals
.VrN 2~

the magnitude of 2o- with N•, = 4, as seen by comparing Table 8 and Table 9. From

Table 9, the expected ARL of N,= 4 and a mean shift of 0.25a÷ is 38.8 cusum observations.

Furthermore, 0. 2 5of = 0.5a, when N,, = 4. In Table 8, expected ARL for a shift in the

mean of 0.5ao is 38.0 with He, = 5. The difference between the two values can be explained

by the slight change in the critical value HI, from 5.07 to 5.0.

Increasing the batch size for a cusum observation reduces the variance of the cusum

observation. Therefore, large batches can detect a shift in the residual mean in fewer cusum

observations. However, the advantage of increased batch size appears to be outweighed by

the additional residuals required in each cusum observation. In every case in Table 9, a

batch size N•, larger than one requires more residuals to detect the same magnitude of shift
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in the mean. Therefore, for this application, a batch size of one, Nca = 1, is used.

With Nc, = 1, selection of the magnitude of the shift to detect A and the desired

"in-control" ARL determines the cusum critical value H,,. Lucas [55] recommends that

the "in-control" ARL be about 500 cusum observations, and Gan [261 presents graphs from

which to determinc lhe HIl, given A and the ARL. The applied cusum test is designed to

detect a shift in mean of the standardized residuals of one half a standard deviation, so
A = 1

Saf = 5" The resulting critical value H~o is 8.6. The "in-control" ARL is 500, and the

theoretical "out-of-control" ARL for a shift of A in the residuals is about 31 observations.

In actual application, results may be degraded from these theoretical values due to modeling

assumptions and estimation errors.

After the cusum test indicates an "out-of-control" signal, a simple test for a false alarm

is to reset SH and SL to zero without reseting NH or NL. If the data has really changed

from the steady-state model, the cusum algorithm should quickly indicate "out-of-control"

again. Therefore, if a second "out-of-control" signal is calculated within 15 observations,

the truncation point is selected. The observation counters NH and NL are not reset so the

selected truncation point ho remains where the residuals sequence first indicate a systematic

change.

Let the parameter estimation have completed on the (N - J)th observation, continue

processing backwards through the data {YN-J-1, YN-J-2,.. Y I} with the estimated Kalman

filter. For convenience, the residuals are transformed to standard normal random variables,

= [HP-HT + R]j-rN-,. The applied cusum test values are

A

SH(J) = max[0, rfN-. - + SH(j - 1)] (59)

SL(J)= max[O, r-N- - A + SL(O- 1)j (60)
2

where SH(J) = SL(J) = 0 and j = J + 1,J + 2,...,N

If the cusum test for a high trend SH() is above the critical value He,, then the cusum test
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Figure 10. Simulation Output
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for a low trend SL(j) must be be zero. If SH(j) > H,., then SL(j) = 0 and NL = 0. The

reverse, if SL() > H,,, then SH(j) = 0 and NH = 0, is also true. Therefore, one possible

estimated truncation point it0 is where the cusum observations began a trend that leads to

exceeding the critical value. This truncation point can be calculated for both the high and

low "out-of- control" signals with

,, = N-j+NH+NL for SH(')> H,, or SL(j) > He, (61)

Figure 10 shows sample simulation output from an AR(1) process. The mean of the

process has a step shift from 10 to 12 at observation 500. Figure 11 shows the corresponding

cusum test statistic SH. The test statistic is reset when it exceeded the critical value of 8.6.

Upon the second crossing within 15 cusum tests, the truncation point is estimated at NH

observations prior where SH(J) first began the sequence of consecutive positive values. As

shown in Figure 11, the selected truncation point is observation 502 when the actual transient

ended at the 500th observations. The simulation output prior to the truncation point is not
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Figure 11. Cusum Test Statistic SH(j)
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shown.

This section has developed a truncation point selection algorithm based on residual

monitoring. For the estimated Kalman filter, the simulation output sequence is processed

through the Kalman filter backwards. The residuals are monitored by the cusum statistical

process control algorithm. When the cusum algorithm indicates that sequence is "out-of-

control", the cusum statistics are reset to test for a false alarm. Upon a second "out-of-

control" signal within a small number of observations, the algorithm assumes transient data

is being processed. The truncation point is selected where the cusum statistics started the

trend leading to the first "out-of-control" signal. The next section describes the specific steps

in the algorithm.

4.5 Residual Monitoring Truncation-Point Selection Algorithm Steps

Many alternative methods have been discussed for developing a truncation-point se-

lection algorithm. This section summaries the techniques that are tested and details the

specifics of their implementation.
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This technique is a post-processing approach, meaning that the simulation model is run

and the univariate output is stored in a file before beginning the truncation-point algorithm.

An AR(1) or AR(2) system model with measurement noise is fit to the simulation output

with least squares estimation. Applying the Kalman filter, the residuals are monitored with

the cusum quality control algorithm to identify an appropriate truncation point ho. The

steps of the truncation-point selection algorithm are:

Step 1. Using the last 250 of the simulation observations, {YN, YN-1,... YN-249}, make an

initial estimate of AV:
1 249

L-1  2 ~ ZYN-j
20j=0

Step 2. Set up a bank of Kalman filters with each filter having a different combination of

the discrete parameters, AY, 1), 42, and k. Discretize the parameters in increments of

0.1. The mean estimates vary from -0.3 to +0.3 of AV estimated in step 1. k varies

from 0.0 to 1.0. The autoregressive coefficients 4) and 42 are varied across the stable

range in increments of 0.1. Exclude 4j = 0 since this is the same as k = 0. For AR(2)

formulation, only stable combinations of 4 i and q2 [11] are used, resulting in a bank

of 3,773 or fewer filters. Also for each AR(2) filter, calculate an associated K using

Equation (51). The state estimates *(t+) are initialized with zeros.

Step 3. For each Kalman filter in the bank, beginning with the last observation YN, process

the observations. Propagate using Equations (22) and update with Equations (47),

(26) and (27). For each filter, maintain a cumulative sum of the squared residuals. For

each observation after the (N - 250)th, if the filter with the minimum sum of squared

residuals also meets the criterion in Equation (58), select the parameters of that filter

as the least square estimates. If no parameters are estimated prior to encountering the

end of the simulation data, steady state is assumed not to have been achieved in that

output sequence.

Optional Step. To reduce computer run time, particularly for Monte Carlo tests, after

observations YN-loo, YN-200, and YN-3OO are processed, turn off any Kalman filters
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with a sum of squared residuals greater than 1.5 times the minimum sum of squared

residuals.

Step 4. Assume the model estimation in Step 2 completes on the (N - J)th observation.

The cusum algorithm, Equations (59) and (60), is initiated using the residuals of the

least squares Kalman filter. Set SH(J) = SL(J) = 0 and continue processing backwards

beginning with the first obse. Ation not used in least squares estimation. When either

of the cusum test values, SH(j) or SL(J), exceed the control limit, He, = 8.6, the point

where the cusum test value first became positive, as calculated with Equation (61), is

considered a potential truncation point no. This point is tested for a false alarm in the

control algorithm by resetting the cusum test values, SH(J) and SL(j), to zero. If SH(j)

or SL(J) exceeds Hc. again within 15 observations, ho is selected as the truncation point.

Otherwise, the cusum algorithm is continued until a new potential truncation point

is determined. If no truncation point is selected in the entire stream, the algorithm

failed.

Optional Step. Determine Qd, R, or &A, with the least squares parameter estimates

and the approximate residual sample variance.

4.6 Monte Carlo Results

A Monte Carlo analysis is presented to show the effectiveness of using the Kalman

filter residual monitoring approach to determine the appropriate data truncation point. This

analysis consists of a loop that generates a set of data, applies the truncation-point selection

algorithm, evaluates the selected point, and collects the evaluation statistics.

Although there is not a widely accepted or proven analytical approach for simulation

initial data truncation, Welch's [101] graphical approach is the most commonly applied

technique. The disadvantages of Welch's technique is that it requires a subjective assessment,

and therefore, it is difficult to test in a Monte Carlo analysis.
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If the generated data sets have a known transition point from the transient phase to the

steady-state phase, two performance measures are the number of observations between the

known and the selected truncation point and the associated MSE. Schruben's [87] univariate

test for presence of initial bias, described in Section 2.4.1, can also be used to determine if

the truncation point deleted enough data.

Wilson and Pritsker [104] state that the true test for any technique is the effect on our

ability to draw inferences from the data. They recommend forming confidence intervals on

systems with analytical steady-state values. Then alternative techniques can be compared

by their resulting confidence interval half-widths and their actual coverage rates.

The specific performance measures for the Monte Carlo analysis are as follows:

1. The minimum, maximum, bias, and MSE of the selected truncation points.

2. The coverage rate for confidence intervals calculated with nonoverlapping and overlap-

ping batch means [69] technique using Fishman's algorithm [22, 23] to determine batch

size.

3. The percentage of truncation sequences that pass Schruben's test for no initial bias

[87].

Besides knowing the theoretical process mean of the generated data, the process variance is

also known and is used to evaluate the variance estimate.

The data used to test the Kalman filters truncation-point selection algorithm is gen-

erated with time-series models. For these models, the data is generated so that the onset of

steady state is known. The generated transient phases are caused by four types of changes

in the simulation output mean. The four transient types are a jump discontinuity, a ramp

change, a decaying exponential, or a decaying sinusoidal. The test data sets are generated

from AR(2) and ARMA(1,1) model sequences with an induced transient. The Monte Carlo

results are divided into two corresponding sections.
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Table 10. AR(2) Parameters for Generated Data

01 0 pv() o2 ::: Nu?

+1.5 -0.8 +0.83 9.09 11.11
+1.0 -0.5 +0.67 2.40 4.00
+0.5 +0.3 +0.71 2.24 25.00
+0.5 -0.3 +0.38. 1.29 1.56
-0.5 +0.3 -0.71 2.24 0.69
-0.5 -0.3 -0.38 1.29 0.31
-1.0 -0.5 -0.67 2.40 0.16
-1.5 -0.8 -0.83 9.09 0.09

4.6.1 Autoregressive Test Cases. A Monte Carlo analysis is conducted, and both the

AR(1) with measurement noise and AR(2) with measurement noise formulations are tested.

For each combination of parameters and conditions, 1,000 pure AR(2) data sequences are

generated. The transients are induced by varying the mean of the sequence. Four types of

transients, step change, ramp, exponential decay, and sinusoidal decay, are used. Each of

these transients are tested at four different magnitudes or rates of change.

Pure AR(2) data is generated with Equation (43). The specific parameters used to

generate the AR(2) data, shown in Table 10, are selected to produce output with a wide

range of autocorrelation and partial autocorrelation curves. For each of the generated data

sets, the variance of the dynamic noise Qd is 1.0, and no measurement noise is added, so

R = 0. The theoretical autocorrelation coefficient at lag one, pN(1) = ,- indicates that

most of the selected models have relatively high autocorrelation. The sequence variances 2

given in Equation (54), have a wide range. The last column reports the sample size N times

Fishman's approximate variance of the estimated mean a?4 (23:249] calculated with the true

parameters in Equation (11).

Transients for the time series models are induced by changing the expected value of

the generated sequence. Four types of transients, depicted in Figure 12, are used. The first

transient type is a simple step change in the mean. The next type is a ramp or linear change

in the mean. The final two transient types are an exponential decay and an exponentially
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Figure 12. Types of Transients
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decaying sinusoidal in the mean of the output. For each run, 500 transient observations and

1,000 steady-state values are generated. In order to compare between transient types, the

magnitude of the change in the expected value at the middle of the transient, observation

250, is equal for each of the transient types. This shift in the magnitude of the expected

value of the sequence, labeled Alt(u) in the tables, is expressed in multiples of the standard

deviation of the generated data uy.

Statistics, shown in Table 11, are collected on the technique's model estimation and

residual tracking. The results for both of the Kalman filter formulations are shown. The

top of the table are the results for the Kalman filter with an AR(1) with measurement noise

formulation, and the bottom half of the table reports the results for the Kalman filter with an

AR(2) with measurement noise formulation. (These two models are discussed on page 81.)

The column 'Fail' indicates the frequency with which the least squares technique failed to

estimate a steady state model. Failure to estimate a model occurred when the filter with the

minimum sum of squared residuals never met the test criterion of near-zero sum of residuals,

Equation (58). When the AR(2) data is generated with 01 of -1.0 or -1.5, the estimation

116



strategy fails to meet this criterion for over a fourth of the runs.

The next s,,' of columns in Table 11 are statistics on the number of simulation observa-

tions used to estimate the system parameters. The last 250 observations are assumed steady

state and used to obtain an initial estimate of the mean, so the least squares estimation

is not permitted to stop until after 250 observations have been processed. Therefore, the

minimum occurs at just greater than 250. The maximum number of observations used is

just prior to 1500 since that is the number of available observations. The average number of

observatiuns used to estimate the model for the last four cases is significantly higher than the

first four cases. This may be because the last four cases have negative first autocorrelatir-i

coefficients.

The final set of columns reports statistics on the number of "out-of-control" signals

generated by the cusum algorithm between model estimation and truncation point estima-

tion. After the model is estimated, two cusum "out-of-control" signals within 15 observations

are necessary to declare the transient.

The Kalman filLer modeled as an AR(1) with measurement noise formulation and the

Kalman filter modeled as an AR(2) with measurement noise model require approximately

the same number of observations to estimate a model. In addition, no difference in the

number of cusum alarms is apparent. Since the generated sequence consisted of 500 transient

observations and 1000 steady-,:.t ate observations, many of estimated parameters are based on

some transient data. In the last fo-ir cases, which have negatively correlated sequences, the

estimation algorithm generally requires more observations, fails to estimate a steady-state

model at a higher frequency, and has fewer cusum alarms. The fewer cusum alarms are

probably a result of fewer remaining data values after model estimation.

Statistics are also collected on the least squares estimated parameters, Ay, ý1, ý2, and

k. Table 12 shows the Kalman filter parameter estimates for the AR(1) formulation. The

mean estimate Ay is very near the steady-state mean of 10.0. Since the data is actually

AR(2), the value of qi attempts to account for the correlation prcduced by €1 and 02.
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Table 11. Kalman Filter Model Estimation Summary

I Observations Used To Estimate Cusum Alarms
Data Parameters Fail Min Max Avg St Dev Min Max Avg St Dev

AR(2) Data with AR(1) with Measurement Noise Model
€1 = 1.5 €2 = -0.8 0.007 252 1447 384.7 179.6 1 24 4.7 2.6
01 = 1.0 02 = -0.5 0.000 252 1347 303.3 70.4 2 21 4.8 2.5
01 = 0.5 42 = 0.3 0.045 252 1460 411.8 239.2 0 21 5.6 2.8
01 = 0.5 ¢2 = -0.3 0.004 254 1497 508.7 301.9 0 22 4.5 2.4
01 = -0.5 q2 = 0.3 0.099 265 1499 808.0 384.5 0 17 4.0 2.3
01 = -0.5 q 2 = -0.3 0.174 272 1499 1057.4 351.2 0 18 3.2 2.0

01 = -1.0 02 = -0.5 0.273 296 1499 1191.0 244.2 0 17 2.8 1.8
41 = -1.5 42 = -0.8 0.316 305 1499 1197.8 174.1 0 18 3.0 2.1

AR(2) Data with AR(2) with Measurement Noise Model
01 = 1.5 42 = -0.8 0.001 252 1432 300.2 57.9 2 18 6.3 2.5

01 = 1.0 02 = -0.5 0.003 254 1429 366.2 147.5 2 19 5.6 2.4
41 = 0.5 02 = 0.3 0.025 252 1496 363.8 183.5 0 22 5.8 2.7
41 = 0.5 42 = -0.3 0.017 256 1499 555.9 322.6 0 21 4.9 2.5
01 = -0.5 42 = 0.3 0.066 261 1498 803.4 382.5 0 19 3.7 2.1
01 = -0.5 42 = -0.3 0.210 273 1499 1055.1 349.1 0 19 3.1 1.9
41 = -1.0 42 = -0.5 0.328 299 1499 1190.4 243.3 0 16 2.5 1.4
01 = -1.5 A2 = -0.8 0.461 305 1499 1189.2 174.6 0 8 2.1 0.5

Note: Each row represents 16,000 runs: 1,000 for each transient type and magnitude.
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Table 12. AR(1) with Measurement Noise Model Parameter Estimation Summary

Data Parameters Ai", 6J4 Aj 6______
AR(2) Data with AR(1) with Measurement Noise Model

€1 = 1.5 02 = -0.8 10.00 0.19 0.80 0.02 1.00 0.00
€1 = 1.0 ¢2 = -0.5 10.00 0.12 0.67 0.04 1.00 0.00
01 = 0.5 02 = 0.3 10.00 0.28 0.86 0.05 0.61 0.08
€1 = 0.5 ¢2 = -0.3 9.99 0.08 0.40 0.05 1.00 0.00
€1 = -0.5 02 = 0.3 9.96 0.10 -0.89 0.03 0.55 0.11
01 = -0.5 ¢2 = -0.3 9.95 0.08 -0.19 0.44 0.89 029
€i = -1.0 ¢2 = -0.5 9.92 0.08 -0.62 0.07 0.99 0.05
€1 = -1.5 02 = -0.8 9.89 0.12 -0.79 0.03 1.00 0.00

Note: Each row represents the runs that did not fail to estimate a model from 16,000 runs.

Table 13. AR(1) with Measurement Noise Model Variances Estimation Summary

Data Parameters I 8Q A &A/ 0 uA
AR(2) Data with AR(1) with Measurement Noise Model

01= 1.5 02 = -0.8 2.77 0.46 0.00 0.00 2.80 0.45 3.02
01 = 1.0 02 = -0.5 1.33 0.14 0.00 0.00 1.57 0.11 1.55
41 = 0.5 0.2 = 0.3 0.44 0.11 0.39 0.08 1.51 0.41 1.50
01 = 0.5 02 =-0.3 1.11 0.09 0.00 0.01 1.15 0.07 1.14
01 = -0.5 02 = 0.3 0.39 0.09 0.55 0.32 1.56 0.13 1.50
01 = -0.5 02 = -0.3 1.02 0.38 0.16 0.43 1.19 0.11 1.14
41 =-1.0 •2 = -0.5 1.51 0.20 0.03 0.11 1.59 0.08 1.55

= -1.5 02 = -0.8 3.20 0.55 0.00 0.01 2.93 0.20 3.02
Note: Each row represents the runs that did not fail to estimate a model from 16,000 runs.

From these estimates for A.,1 , 4,, 42, and k, the noise variances, Qd and R, are de-

termined, as shown in Table 13. Finally, &Y is calculated by taking the square root of

the variance calculated with the estimated parameters in Equation (55). The theoretical

standard deviation o for the generated AR(2) data is presented for comparison. Where

necessary, the estimates adjusted for the "lack of fit" with inflated estimates of the dynamic

noise variance Qd (greater than Qd = 1.0) and by adding measurement noise variance fR.

Since &, is based on the bias estimates of Qd and R, the.se estimates also are biased.
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Table 14. AR(2) with Measurement Noise Model Parameter Estimation Summary

Data Parameters k_ &A. j & . A6 & Ak &
AR(2) Data with AR(2) with Measurement Noise Model

01 1.5 02 = -0.8 10.00 0.20 1.54 0.05 -0.84 0.04 0.90 0.00
4)i 1.0 4)2 = -0.5 10.00 0.11 1.08 0.06 -0.58 0.06 0.90 0.00

1 =0.5 02 = 0.3 10.00 0.28 0.53 0.10 0.26 0.08 0.87 0.08
0= 0.5 02 =-0.3 9.99 0.08 0.58 0.07 -0.35 0.07 0.88 0.04

1 =-0.5 02 = 0.3 9.97 0.07 -0.47 0.13 0.35 0.13 0.88 0.05
0= -0.5 0 2 = -0.3 9.95 0.08 -0.62 0.10 -0.39 0.09 0.72 0.22
01 -1.0 )2 = -0.5 9.93 0.08 -1.09 0.06 -0.57 0.05 0.81 0.12
01 -1.5 02 = -0.8 9.92 0.08 -1.53 0.04 -0.83 0.04 0.85 0.06

Note: Each row represents the runs that did not fail to estimate a model from 16,000 runs.

Table 15. AR(2) with Measurement Noise Model Variance Estimation Summary
Od f R & a

Data Parameters I A &, J 2 A&, &&Y
AR(2) Data with AR(2) with Measurement Noise Model

01 = 1.5 02 = -0.8 0.70 0.06 0.10 0.01 2.91 0.41 3.02
01 = 1.0 02 = -0.5 0.78 0.06 0.10 0.01 1.54 0.10 1.55
01 = 0.5 02 = 0.3 0.82 0.13 0.13 0.08 1.44 0.23 1.50
01 = 0.5 42 = -0.3 0.85 0.10 0.12 0.04 1.15 0.07 1.14
01 = -0.5 42 = 0.3 0.89 0.14 0.12 0.05 1.51 0.13 1.50
1 =-0.5 02 = -0.3 0.69 0.23 0.36 0.37 1.17 0.06 1.14
1= -1.0 42 = -0.5 0.76 0.13 0.28 0.25 1.57 0.07 1.55

01 = -1.5 42 = -0.8 0.83 0.11 0.26 0.18 3.05 0.30 3.02
Note: Each row represents the runs that did not fail to estimate a model from 16,000 runs.

Table 14 shows that when the data is from an AR(2) process, the Kalman filter es-

timates A2V, 4) and 42 are very accurate. The associated variance estimates are presented

in Table 15. The estimate for the variance of the dynamic driving noise Qd underestimates

the true value Qd = 1.0, but the measurement noise variance 1? is greater than zero to

compensate.

Generally, the model estimation is completed significantly prior to the transient phase.
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The parameter estimation results are similar across the four transient types. Therefore, the

model and parameter estimation tables are summarized across the four types of transients.

However, the results on estimating the end of the transient phase are very dependent on the

type of transient and are tabulated separately for each transient.

The performance measures are selected to evaluate the effectiveness of the Kalman

filter residual monitoring approach to select an appropriate truncation point fi,. Since the

transient phase ends in the generated sequence at the 500th observation, the accuracy is

evaluated in terms of this true truncation point n.. Tables 16, 17, 18, and 19 report statistics

that compare the estimated truncation point hi. with the true truncation point no. Each

transient type and mean shift magnitude combination is tested with 1,000 Monte Carlo runs.

The column 'Fail' indicates the frequency with which no truncation point is selected

after the model is estimated. This type of failure generally occurs only in a small percentage

of the runs, except for the case where the transient is a step change with the smallest

magnitude of shift, iArty(%). This high failure rate to select a truncation point occurs

because of a combination of two transient characteristics. First, the step transient is the

only one of the four transient types for which the magnitude of shift did not continue to

increase as the algorithm approaches the beginning of the simulated output. Second, the
1

amount of shift in the mean, a is too small for the cusum algorithm to detect. The cusum

algorithm is designed to detect a shift of one half a standard deviation in the magnitude of

the residuals 12 .2 The transient with the smallest change is apparently too small to detect

in many output sequences.

Negative truncation-point errors (ih, - n, < 0) indicate that transient data is retained

in the truncated sequence, and positive errors (h. - n0 > 0) result from excessive truncation.

In other words, negative truncation-point errors indicate the average number of transient

observations that remain in the truncated sequence. In contrast, positive truncation errors

show the number of steady-state observations that are truncated. For example, as shown

under the column label "Avg" in Table 16, the average truncation-point error for the transient

type "2.0 Ramp" is -29.3. For this case, the average selected truncation-point is 470.7
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while the generated end of transient is at 500. For the sixteen data types and transient

combinations tested, the AR(1) formulation results in average selected truncation-points no

significantly in the transient.

Tables 20, 21, 22, and 23 report similar truncation error statistics for the AR(2) with

measurement noise formulation applied to the same AR(2) time series models and transient

types. Generally, the AR(2) formulation improves the results when compared to the AR(1)

results. It is not surprising that the AR(2) formulation is able to better fit and detect a change

in AR(2) data. The improvement is apparent in smaller average truncation errors. The

standard deviation of the truncation points and the Mean Square Error (MSE) sometimes

increases and occasionally decreases when comparing the AR(1) to the AR(2) formulation.

In general, the truncation-point selection algorithm picks points near the end of the

induced transient. As the the shift in the transient mean decreases from 2a0 to only 1, the

selected truncation point -ho includes more transient data, as anticipated. The exponentially

decaying sinusoidal is the most difficult transient to identify, probably since the transient

varies about the steady-state mean.

Since the general objective of steady state analysis is to draw inferences about the out-

put distribution, appropriate performance measures should reflect the effect of the estimated

truncation point on our ability to construct confidence intervals [44, 52, 104, 105]. Since the

sampling distribution is typically assumed to be symmetric about the point estimator, the

half width of the confidence interval, along with realized coverage, is generally used for com-

parisons. The effectiveness of confidence interval construction in terms of coverage and half

widths is reported for the nonoverlapping batch means (NOBM) and the overlapping batch

means (OBM) [69] techniques. (See page 26 for description.) Since the truncated sequence

should be without initial bias, the final criterion selected is the ability to pass Schruben's

test for no initial bias [87]. For comparison, the same performance measures are reported

for the sequence truncated at the induced true truncation point no. A nominal rate of 0.9 is

arbitarily selected for each criterion.
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Table 16. AR(1) with Measurement Noise Model Truncation Point Errors (h. - n.)
Ajuy(ay) Type I FailI Min Max Avg St Dev MSE

AR(2) Data with 01 =- 1.5 and 02 = -0.8
2.0 Step 0.000 -15 724 21.2 88.1 8211.9
2.0 Ramp 0.000 -165 708 -29.3 100.4 10934.9
2.0 Exp 0.000 -53 717 21.1 90.5 8640.2
2.0 Sine 0.004 -427 710 15.8 101.9 10640.7
1.5 Step 0.000 -43 727 27.6 105.5 11901.5
1.5 Ramp 0.000 -248 733 -47.0 112.6 14883.2
1.5 Exp 0.000 -231 705 16.4 95.4 9378.7
1.5 Sine 0.004 -437 709 -3.1 97.5 9516.1
1.0 Step 0.003 -443 690 22.3 101.3 10761.2
1.0 Ramp 0.000 -318 732 -85.7 128.2 23784.7
1.0 Exp 0.000 -306 715 -61.4 117.9 17676.0
1.0 Sine 0.002 -382 717 -119.7 138.1 33399.1
0.5 Step 0.072 -470 739 -52.7 158.4 27873.8
0.5 Ramp 0.006 -462 700 -190.2 158.1 61164.2
0.5 Exp 0.000 -392 723 -193.5 148.9 59598.7
0.5 Sine 0.000 -382 699 -237.9 160.1 82236.0

AR(2) Data with 01 = 1.0 and q 2 = -0.5
2.0 Step 0.000 -2 40 2.8 5.5 37.6
2.0 Ramp 0.000 -159 22 -78.9 32.1 7256.4
2.0 Exp 0.000 -148 81 -31.3 35.2 2783.0
2.0 Sine 0.000 -201 469 -88.2 50.5 10325.0
1.5 Step 0.000 -12 45 2.8 5.6 39.0
1.5 Ramp 0.000 -220 2 -113.4 38.4 14325.8
1.5 Exp 0.000 -211 37 -113.6 46.6 15082.4
1.5 Sine 0.000 -260 -5 -169.0 43.5 30457.8
1.0 Step 0.000 -222 72 -7.6 24.3 649.1
1.0 Ramp 0.000 -305 -23 -174.5 47.7 32732.0
1.0 Exp 0.000 -278 10 -193.3 43.4 39241.5
1.0 Sine 0.000 -324 -76 -242.7 34.8 60138.2
0.5 Step 0.698 -459 578 -143.4 140.1 40193.9
0.5 Ramp 0.100 -472 -103 -340.1 76.1 121447.4
0.5 Exp 0.000 -336 -135 -273.0 33.6 75686.6
0.5 Sine 0.000 -384 -183 -310.6 24.9 97091.6

Note: Negative Truncation points indicate transient observations are retained.
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Table 17. AR(1) with Measurement Noise Model Truncation Point Errors (io-
A/,u,(oa) Type I Fail Min Max Avg St Dev MSE

AR(2) Data with €1 = 0.5 and 02 = 0.3
2.0 Step 0.000 -10 699 27.0 97.7 10263.4
2.0 Ramp 0.003 -364 748 -18.4 115.4 13656.9
2.0 Exp 0.000 -388 732 25.8 119.8 15016.1
2.0 Sine 0.000 -450 684 -8.1 121.3 14778.8
1.5 Step 0.000 -21 731 29.8 106.2 12158.9
1.5 Ramp 0.003 -170 723 -33.6 121.3 15832.9
1.5 Exp 0.000 -420 737 -8.0 131.7 17400.8
1.5 Sine 0.000 -424 725 -61.8 153.1 27258.2
1.0 Step 0.008 -48 717 24.8 100.2 10657.5
1.0 Ramp 0.002 -223 721 -58.7 138.5 22611.5
1.0 Exp 0.000 -234 744 -79.8 148.2 28333.7
1.0 Sine 0.000 -454 740 -138.0 162.3 45400.2
0.5 Step 0.035 -452 677 -20.7 142.9 20841.2
0.5 Ramp 0.002 -406 744 -147.1 176.7 52857.7
0.5 Exp 0.000 -417 738 -167.2 172.8 57835.7
0.5 Sine 0.000 -460 734 -219.4 172.1 77772.8

AR(2) Data with 01  0.5 and 0 2 = -0.3
2.0 Step 0.004 -428 75 -5.7 32.4 1085.3
2.0 Ramp 0.000 -325 27 -92.2 44.4 10477.6
2.0 Exp 0.000 -341 54 -84.6 48.4 9503.5
2.0 Sine 0.000 -450 7 -145.2 64.3 25203.0
1.5 Step 0.005 -453 62 -9.0 46.5 2245.9
1.5 Ramp 0.000 -386 3 -121.7 46.9 16998.2
1.5 Exp 0.000 -382 26 -141.7 44.8 22075.0
1.5 Sine 0.001 -460 568 -201.5 60.1 44221.1
1.0 Step 0.021 -449 72 -24.2 60.4 4227.3
1.0 Ramp 0.001 -455 -26 -183.2 56.7 36781.9
1.0 Exp 0.000 -433 271 -207.6 44.7 45113.8
1.0 Sine 0.002 -468 312 -259.9 49.9 70035.5
0.5 Step 0.710 -457 41 -170.5 131.6 46381.0
0.5 Ramp 0.095 -471 -74 -342.7 73.5 122821.1
0.5 Exp 0.000 -458 -85 -274.0 40.8 76769.3
0.5 Sine 0.010 -474 -214 -319.3 34.1 103105.4

Note: Negative Truncation points indicate transient observations are retained.
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Table 18. AR(1) with Measurement Noise Model Truncation Point Errors ho - n0 )
Aj,(auy) Type I Fail Mi Max Avg St Dev MSE

AR(2) Data with 41 = -0.5 and 02 = 0.3
2.0 Step 0.000 -296 555 -35.4 77.9 7327.2
2.0 Ramp 0.000 -400 596 -85.8 106.3 18660.6
2.0 Exp 0.000 -343 524 -53.8 100.8 13066.6
2.0 Sine 0.008 -485 611 -105.9 149.3 33524.9
1.5 Step 0.000 -376 619 -49.3 110.0 14532.0
1.5 Ramp 0.000 -431 379 -102.3 96.1 19705.7
1.5 Exp 0.000 -393 605 -85.2 109.7 19288.8
1.5 Sine 0.005 -484 564 -146.7 151.5 44481.8
1.0 Step 0.004 -467 635 -62.0 111.9 16368.4
1.0 Ramp 0.003 -484 587 -137.2 119.4 33064.4
1.0 Exp 0.000 -447 639 -133.0 106.8 29082.4
1.0 Sine 0.005 -487 658 -217.0 143.3 67606.7
0.5 Step 0.043 -464 594 -76.9 130.6 22989.0
0.5 Ramp 0.008 -482 504 -201.4 113.0 53349.3
0.5 Exp 0.000 -488 624 -225.4 99.8 60766.1
0.5 Sine 0.003 -487 659 -286.9 111.5 94730.5

AR(2) Data with 01 = -0.5 and ¢2 = -0.3
2.0 Step 0.070 -394 61 -50.5 57.8 5894.7
2.0 Ramp 0.039 -328 16 -155.1 72.9 29382.3
2.0 Exp 0.016 -314 5 -141.2 71.0 24970.2
2.0 Sine 0.046 -481 -19 -298.7 124.5 104721.8
1.5 Step 0.036 -452 36 -102.7 111.0 22867.4
1.5 Ramp 0.019 -461 -7 -188.4 83.9 42526.5
1.5 Exp 0.016 -380 2 -195.6 67.3 42787.9
1.5 Sine 0.111 -482 -72 -328.9 112.3 120818.4
1.0 Step 0.171 -470 40 -123.3 119.9 29594.1
1.0 Ramp 0.006 -478 -51 -252.3 88.2 71431.2
1.0 Exp 0.027 -452 -25 -249.4 63.1 66169.8
1.0 Sine 0.186 -483 -129 -349.2 88.9 129863.5
0.5 Step 0.886 -450 33 -222.3 135.4 67742.6
0.5 Ramp 0.232 -476 -99 -371.4 66.3 142324.7
0.5 Exp 0.032 -489 -113 -310.9 53.7 99554.0
0.5 Sine 0.264 -485 -233 -354.2 59.8 129029.3

Note: Negative Truncation points indicate transient observations are retained.
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Table 19. AR(1) with Measurement Noise Model Truncation Point Errors (io - n0 )
AjI(av) Type Fail Min Max Avg St Dev MSE

AR(2) Data with €1 = -1.0 and 02 = -0.5
2.0 Step 0.011 -470 28 -145.4 124.3 36588.6
2.0 Ramp 0.001 -486 -14 -229.0 118.9 66576.0
2.0 Exp 0.000 -486 13 -187.6 114.5 48295.3
2.0 Sine 0.114 -483 4 -281.9 142.3 99683.5
1.5 Step 0.029 -468 27 -155.7 125.3 39934.8
1.5 Ramp 0.002 -483 -38 -237.1 101.7 66534.9
1.5 Exp 0.000 -483 0 -228.5 102.6 62758.4
1.5 Sine 0.131 -483 -72 -327.6 115.9 120766.1
1.0 Step 0.232 -464 18 -149.8 112.8 35170.2
1.0 Ramp 0.004 -483 -63 -278.9 87.5 85432.5
1.0 Exp 0.004 -491 -86 -279.3 79.1 84258.2
1.0 Sine 0.170 -485 -181 -362.9 92.9 140314.8
0.5 Step 0.968 -437 3 -281.5 114.3 92319.4
0.5 Ramp 0.252 -470 -154 -392.5 50.2 156579.5
0.5 Exp 0.009 -494 -146 -344.1 61.0 122093.4
0.5 Sine 0.188 -485 -246 -384.6 69.2 152685.7

AR(2) Data with 01 = -1.5 and 0 2 = -0.8
2.0 Step 0.000 -378 3 -148.8 104.0 32968.2
2.0 Ramp 0.000 -440 -11 -211.7 104.6 55736.8
2.0 Exp 0.000 -407 4 -158.6 111.9 37671.1
2.0 Sine 0.008 -466 2 -173.6 136.5 48783.4
1.5 Step 0.044 -458 4 -158.7 116.5 38753.3
1.5 Ramp 0.011 -487 -42 -229.2 102.7 63090.8
1.5 Exp 0.004 -481 3 -182.7 122.5 48398.5
1.5 Sine 0.029 -480 -3 -248.1 146.6 83036.6
1.0 Step 0.189 -459 10 -147.3 109.8 33749.1
1.0 Ramp 0.013 -486 -120 -264.7 90.3 78208.1
1.0 Exp 0.010 -490 -93 -250.4 89.1 70626.8
1.0 Sine 0.121 -457 -186 -338.5 100.7 124757.0
0.5 Step 0.997 -301 -119 -210.0 91.0 52381.0
0.5 Ramp 0.071 -472 -223 -389.4 41.6 153351.1
0.5 Exp 0.033 -491 -161 -329.8 54.7 111746.6
0.5 Sine 0.130 -480 -311 -394.1 60.7 159022.1

Note: Negative Truncation points indicate transient observations are retained.
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Table 20. AR(2) with Measurement Noise Model Truncation Point Errors io - no)
At,(ay) Type I Fail Min Max Avg St Dev MSE

AR(2) Data with 0, = 1.5 and 02 = -0.8

2.0 Step 0.000 -1 742 30.3 101.9 11300.6
2.0 Ramp 0.000 -49 738 17.6 116.2 13815.6
2.0 Exp 0.000 -1 722 33.4 113.2 13941.5
2.0 Sine 0.000 -24 737 29.5 108.4 12625.3
1.5 Step 0.000 -1 732 27.9 97.7 10317.1
1.5 Ramp 0.000 -60 692 12.2 122.6 15177.5
1.5 Exp 0.000 -4 739 31.7 112.7 13718.3
1.5 Sine 0.000 -37 725 30.1 113.3 13730.3
1.0 Step 0.000 -2 735 31.0 110.9 13257.8
1.0 Ramp 0.000 -89 728 1.2 125.4 15724.4
1.0 Exp 0.000 -32 739 33.5 117.5 14938.2
1.0 Sine 0.000 -436 727 25.7 123.6 15926.0
0.5 Step 0.000 -53 712 35.8 116.6 14868.9
0.5 Ramp 0.000 -180 735 -43.6 125.0 17519.7
0.5 Exp 0.000 -185 741 -46.5 144.1 22910.9
0.5 Sine 0.000 -437 707 -92.6 154.2 32356.8

AR(2) Data with 01 = 1.0 and 0 2 = -0.5

2.0 Step 0.000 -57 667 16.3 67.6 4835.9
2.0 Ramp 0.000 -194 669 -23.1 83.2 7457.8
2.0 Exp 0.000 -153 691 13.3 68.2 4827.2
2.0 Sine 0.000 -345 633 3.2 74.7 5591.8
1.5 Step 0.000 -52 714 15.9 69.6 5095.7
1.5 Ramp 0.000 -184 561 -40.3 67.8 6222.4
1.5 Exp 0.000 -169 732 -4.4 88.7 7886.3
1.5 Sine 0.000 -317 706 -44.1 86.5 9430.4
1.0 Step 0.000 -136 718 17.6 81.2 6900.1
1.0 Ramp 0.000 -227 721 -62.6 96.1 13159.7
1.0 Exp 0.000 -286 718 -77.4 94.4 14896.0
1.0 Sine 0.000 -439 654 -126.8 108.1 27770.3
0.5 Step 0.001 -420 651 3.0 80.2 6434.2
0.5 Ramp 0.000 -333 738 -140.7 106.1 31054.2
0.5 Exp 0.000 -305 725 -177.6 113.6 44458.7
0.5 Sine 0.000 -438 725 -220.8 128.1 65173.0

Note: Negative Truncation points indicate transient observations are retained.
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Table 21. AR(2) with Measurement Noise Model Truncation Point Errors (o -no)

Aly(aw) Type ý Fail Min Max Avg St Dev MSE
AR(2) Data with 01 = 0.5 and 02 0.3

2.0 Step 0.000 -221 729 35.4 118.1 15207.2
2.0 Ramp 0.000 -247 732 -3.5 134.5 18095.7
2.0 Exp 0.000 -317 745 29.9 122.2 15825.8
2.0 Sine 0.001 -441 739 11.0 124.6 15657.7
1.5 Step 0.002 -64 716 32.9 110.4 13265.0
1.5 Ramp 0.000 -247 746 -25.7 124.5 16159.8
1.5 Exp 0.000 -297 737 4.8 137.4 18900.9
1.5 Sine 0.000 -470 736 -38.1 153.0 24847.6
1.0 Step 0.006 -251 735 28.7 108.5 12603.3
1.0 Ramp 0.000 -299 721 -46.0 140.2 21779.3
1.0 Exp 0.000 -318 733 -65.5 150.6 26971.5
1.0 Sine 0.003 -471 740 -110.2 173.1 42107.5
0.5 Step 0.024 -458 742 7.0 122.7 15112.9
0.5 Ramp 0.004 -467 735 -129.4 174.9 47331.8
0.5 Exp 0.000 -374 739 -159.1 166.9 53170.0
0.5 Sine 0.001 -447 741 -203.3 177.8 72951.9

AR(2) Data with 41 = 0.5 and ¢2 = -0.3
2.0 Step 0.000 -120 593 0.1 47.0 2213.2
2.0 Ramp 0.000 -263 596 -61.6 64.8 7989.9
2.0 Exp 0.000 -277 543 -34.3 65.4 5450.6
2.0 Sine 0.000 -482 624 -94.0 100.9 19027.8
1.5 Step 0.000 -243 600 -3.5 53.1 2828.6
1.5 Ramp 0.000 -328 437 -81.1 57.2 9857.3
1.5 Exp 0.000 -294 595 -94.0 59.9 12418.7
1.5 Sine 0.001 -475 577 -157.2 98.7 34446.5
1.0 Step 0.001 -440 647 -11.5 76.4 5968.9

1.0 Ramp 0.000 -393 603 -125.6 82.8 22631.2
1.0 Exp 0.000 -368 639 -162.7 68.2 31133.6
1.0 Sine 0.006 -473 591 -220.8 84.8 55966.4
0.5 Step 0.100 -470 637 -83.0 120.8 21485.2

0.5 Ramp 0.001 -470 636 -234.0 96.4 64021.3
0.5 Exp 0.000 -417 647 -237.6 71.6 61571.1
0.5 Sine 0.017 -478 624 -288.3 79.9 89471.6

Note: Negative Truncation points indicate transient observations are retained.
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Table 22. AR(2) with Measurement Noise Model Truncation Point Errors (,ih, - no)
AIL,(oa) Type I Fail IMin Max Avg St Dev MSE

AR(2) Data with 01 = -0.5 and 2= 0.3
2.0 Step 0.000 -174 586 -20.7 51.9 3122.5
2.0 Ramp 0.000 -290 497 -81.9 80.2 13154.1
2.0 Exp 0.000 -261 164 -48.2 72.1 7528.1
2.0 Sine 0.003 -482 355 -117.6 141.8 33943.3
1.5 Step 0.005 -357 610 -30.4 70.0 5832.0
1.5 Ramp 0.000 -330 523 -103.7 82.8 17609.2
1.5 Exp 0.000 -333 567 -81.0 84.3 13662.8
1.5 Sine 0.004 -484 326 -171.2 138.2 48401.6
1.0 Step 0.031 -458 646 -45.4 91.6 10457.3
1.0 Ramp 0.000 -420 494 -141.3 95.0 28991.1
1.0 Exp 0.000 -373 639 -148.6 85.2 29340.4
1.0 Sine 0.006 -482 658 -237.4 123.5 71598.3
0.5 Step 0.140 -472 594 -79.6 115.5 19678.9
0.5 Ramp 0.011 -472 407 -217.1 92.7 55729.9
0.5 Exp 0.000 -439 288 -240.4 70.6 62782.2
0.5 Sine 0.008 -486 -74 -311.5 85.0 104283.0

AR(2) Data with 01  -0.5 and 02 = -0.3
2.0 Step 0.000 -325 80 -86.0 89.9 15482.7
2.0 Ramp 0.000 -436 59 -173.6 105.7 41293.3
2.0 Exp 0.000 -380 62 -144.1 103.5 31484.2
2.0 Sine 0.050 -485 22 -268.4 151.3 94918.7
1.5 Step 0.026 -468 51 -116.9 122.3 28613.1
1.5 Ramp 0.003 -481 -10 -201.9 116.7 54370.5
1.5 Exp 0.000 -436 43 -199.2 97.7 49217.0
1.5 Sine 0.058 -484 -7 -295.0 130.9 104164.6
1.0 Step 0.097 -471 66 -119.5 125.5 30018.6
1.0 Ramp 0.008 -480 -18 -239.4 106.9 68715.6
1.0 Exp 0.000 -456 -39 -248.3 87.6 69338.8
1.0 Sine 0.045 -485 447 -328.0 110.6 119831.2
0.5 Step 0.475 -457 44 -195.1 131.4 55317.7
0.5 Ramp 0.051 -477 108 -320.0 87.4 110053.6
0.5 Exp 0.000 -490 -70 -320.8 77.9 108992.6
0.5 Sine 0.071 -486 -187 -358.1 81.1 134784.4

Note: Negative Truncation points indicate transient observations are retained.
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Table 23. AR(2) with Measurement Noise Model Truncation Point Errors (io- n,)
Aju(au) Type FailI Min Max Avg St Dev MSE

AR(2) Data with 1 =- -1.0 and 0 2 =-0.5
2.0 Step 0.000 -334 56 -123.1 91.3 23477.2
2.0 Ramp 0.000 -418 -5 -210.3 104.2 55083.9
2.0 Exp 0.000 -381 32 -169.3 106.1 39930.1
2.0 Sine 0.124 -482 40 -269.0 159.5 97796.9
1.5 Step 0.021 -471 41 -167.4 130.9 45163.6
1.5 Ramp 0.003 -483 -5 -240.4 113.4 70675.7
1.5 Exp 0.000 -432 26 -206.1 107.0 53938.8
1.5 Sine 0.112 -484 0 -312.4 137.6 116507.5
1.0 Step 0.055 -466 40 -181.8 135.9 51503.5
1.0 Ramp 0.008 -482 -26 -270.4 106.4 84439.8
1.0 Exp 0.000 -475 -18 -271.2 97.1 82987.0
1.0 Sine 0.197 -485 -51 -343.3 117.0 131582.3
0.5 Step 0.373 -473 17 -224.6 129.8 67326.8
0.5 Ramp 0.019 -478 -100 -344.0 76.9 124233.9
0.5 Exp 0.006 -493 -91 -341.6 75.9 122431.6
0.5 Sine 0.194 -485 -192 -371.1 86.8 145279.2

AR(2) Data with 41 = -1.5 and 02 = -0.8
2.0 Step 0.000 -185 28 -64.3 41.2 5829.0
2.0 Ramp 0.000 -324 19 -163.3 67.5 31218.6
2.0 Exp 0.000 -254 13 -99.4 58.1 13261.1
2.0 Sine 0.004 -477 22 -199.8 142.9 60336.3
1.5 Step 0.000 -270 35 -100.0 64.3 14134.6
1.5 Ramp 0.000 -390 1 -200.0 80.5 46495.3
1.5 Exp 0.000 -351 19 -153.8 90.2 31787.4
1.5 Sine 0.028 -480 7 -242.8 154.3 82746.1
1.0 Step 0.003 -473 19 -188.4 129.1 52176.8
1.0 Ramp 0.000 -487 -9 -263.1 104.3 80098.6
1.0 Exp 0.000 -440 7 -209.8 100.7 54174.3
1.0 Sine 0.143 -483 1 -296.2 155.9 112013.6
0.5 Step 0.100 -468 29 -166.9 87.5 35530.1
0.5 Ramp 0.039 -487 -52 -293.3 71.2 91118.5
0.5 Exp 0.007 -494 -83 -313.7 78.9 104660.1
0.5 Sine 0.124 -486 -131 -369.1 97.8 145761.4

Note: Negative Truncation points indicate transient observations are retained.
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For the confidence interval Lechnique of NOBM, Fishman's algorithm [22, 23] to de-

termine the appropriate batch size is applied. (See discussion or page 27.) In the following

tables, the column labeled 'Fail' indicates the frequency that Fishman's algorithm did not

find a batch size which results in statistically independent batches. The OBM technique is

applied with the same batch size as the nonoverlapping batch means technique. Therefore, if

Fishman's algorithm failed, neither confidence interval technique is applied to the sequence.

The number and size of the batches selected by Fishman's algorithm depended upon the

type of variation in the data.

The confidence interval and bias evaluations for the truncated sequence are presented

in Tables 24, 25, 26 and 27 for the AR(1) with measurement noise model and Tables 28, 29,

30 and 31 for the AR(2) with measurement noise formulation. Sequences without a transient

are generated by truncating at the kncwn end of transient, no. The results for these sequences

are shown in the rows are labeled "None". Nonoverlapping and Overlapping Batch Means

produced practically identical coverage rates, half widths, and half width variance for the

sequences without a transient. Coverage rates are generally near the nominal rate of 0.9 for

the sequences without a transient.

On the average, the stimated truncation point ho includes some transient data in the

truncated data set. Therefore, the actual coverage rate for the sequences truncated at the

estimated truncation pc:nt ho decreases from the data set truncated at the true truncation

point no. Even though the estimated truncation point for the exponentially decaying sine

wave transient generally includes the most transient values, the corresponding coverage rates

do not decrease because high and low transient values apparently cancel each other out.

For the "Sine" sequences, the confidence interval half widths also increase marginally in

magnitude and variance.

Schruben's initial bias test, Equation (10) on page 29, requires an estimate of the

variance of the sample mean. The modified version cr Fishman's formula to approximate

this variance for an autoregressive sequence, Equation 56, is applied. When the population

parameters that generated the sequence are used in the Equation (11), the variance a? is
MY
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Table 24. AR(1) with Measurement Noise Model Truncation Point ii, Evaluations
Transient 1 NOBM OBM Bias Test

AIL(au) Type Fail Coy Half Width Coy Half Width F(&'2) x 2(ai)
AR(2) Data with 01 = 1.5 and 02 = -0.8

None 0.01 0.93 0.194 ± 0.040 0.91 0.197 ± 0.082 1.00 0.89
2.0 Step 0.00 0.93 0.198 ± 0.053 0.93 0.200 ± 0.050 1.00 0.89
2.0 Ramp 0.02 0.85 0.224 ± 0.090 0.85 0.225 ± 0.071 0.85 0.34
2.0 Exp 0.01 0.92 0.198 ± 0.057 0.92 0.200 ± 0.052 1.00 0.90
2.0 Sine 0.01 0.92 0.209 ± 0.199 0.92 0.211 ± 0.202 1.00 0.87
1.5 Step 0.01 0.92 0.197 ± 0.059 0.93 0.200 + 0.056 1.00 0.91
1.5 Ramp 0.02 0.75 0.239 ± 0.152 0.75 0.238 ± 0.124 0.70 0.24
1.5 Exp 0.02 0.90 0.206 ± 0.062 0.90 0.207 ± 0.068 0.95 0.75
1.5 Sine 0.01 0.84 0.222 ± 0.155 0.85 0.227 ± 0.162 0.98 0.87
1.0 Step 0.02 0.92 0.199 ± 0.063 0.92 0.201 ± 0.064 0.98 0.88
1.0 Ramp 0.03 0.56 0.254 ± 0.144 0.56 0.255 ± 0.148 0.46 0.14
1.0 Exp 0.09 0.50 0.259 ± 0.138 0.50 0.259 ± 0.122 0.34 0.17
1.0 Sine 0.00 0.91 0.268 ± 0.103 0.92 0.278 ± 0.112 0.67 0.56
0.5 Step 0.26 0.76 0.238 ± 0.105 0.76 0.238 ± 0.097 0.51 0.33
0.5 Ramp 0.11 0.30 0.249 ± 0.072 0.31 0.252 ± 0.094 0.25 0.09
0.5 Exp 0.05 0.22 0.243 ± 0.059 0.23 0.246 ± 0.075 0.22 0.07
0.5 Sine 0.00 0.92 0.240 ± 0.063 0.93 0.243 ± 0.070 0.83 0.54

AR(2) Data with €1 = 1.0 and 0 2 =-0.5
None 0.00 0.91 0.109 ± 0.014 0.91 0.117 ± 0.050 1.00 0.90

2.0 Step 0.00 0.92 0.110 ± 0.014 0.92 0.110 ± 0.013 1.00 0.91
2.0 Ramp 0.03 0.70 0.118 ± 0.041 0.70 0.118 ± 0.035 0.56 0.25
2.0 Exp 0.10 0.73 0.118 ± 0.022 0.76 0.124 ± 0.042 0.54 0.31
2.0 Sine 0.03 0.81 0.127 ± 0.046 0.83 0.137 ± 0.057 0.59 0.55
1.5 Step 0.00 0.91 0.109 ± 0.014 0.91 0.109 ± 0.013 1.00 0.92
1.5 Ramp 0.04 0.63 0.140 ± 0.118 0.61 0.132 ± 0.077 0.36 0.14
1.5 Exp 0.22 0.50 0.148 ± 0.137 0.46 0.140 ± 0.096 0.18 0.07
1.5 Sine 0.00 0.85 0.130 ± 0.049 0.87 0.136 ± 0.052 0.74 0.63
1.0 Step 0.03 0.87 0.113 ± 0.023 0.88 0.114 ± 0.030 0.87 0.73
1.0 Ramp 0.07 0.47 0.149 ± 0.104 0.51 0.155 ± 0.124 0.17 0.05
1.0 Exp 0.08 0.32 0.137 ± 0.,82 0.36 0.142 ± 0.100 0.11 0.03
1.0 Sine 0.00 0.89 0.120 ± 0.036 0.89 0.124 ± 0.040 0.45 0.30
0.5 Step 0.30 0.65 0.126 ± 0.082 0.64 0.126 ± 0.078 0.31 0.20
0.5 Ramp 0.52 0.25 0.117 ± 0.055 0.26 0.119 ± 0.063 0.03 0.01
0.5 Exp 0.07 0.35 0.112 ± 0.042 0.34 0.111 ± 0.029 0.23 0.03
0.5 Sine 0.00 0.86 0.107 ± 0.017 0.87 0.109 ± 0.020 0.94 0.85

Note: Since the nominal rates are 0.9, the coverage and bias test accuracies are • ±0.016
for 1000 runs.
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Table 25. AR(1) with Measurement Noise Model Truncation Point h,, Evaluations
Transient NOBM OBM Bias Test

A/py(o,) Type I Fail jCov Half Width Coy Half Width F(&f) X'2(o2)
AR(2) Data with 01 = 0.5 and 02 = 0.3

None 0.02 0.86 0.240 ± 0.072 0.89 0.281 ± 0.122 0.90 0.94
2.0 Step 0.03 0.85 0.241 ± 0.073 0.84 0.232 ± 0.064 0.91 0.94
2.0 Ramp 0.05 0.82 0.244 ± 0.094 0.81 0.240 ± 0.105 0.79 0.76
2.0 Exp 0.03 0.83 0.241 ± 0.078 0.82 0.234 ± 0.074 0.88 0.88
2.0 Sine 0.03 0.82 0.261 ± 0.145 0.82 0.265 ± 0.166 0.87 0.91
1.5 Step 0.03 0.83 0.236 ± 0.072 0.82 0.229 ± 0.064 0.95 0.95
1.5 Ramp 0.05 0.79 0.251 ± 0.107 0.79 0.246 ± 0.092 0.72 0.66
1.5 Exp 0.13 0.78 0.253 ± 0.110 0.77 0.250 ± 0.104 0.66 0.63
1.5 Sine 0.04 0.84 0.276 ± 0.151 0.86 0.283 ± 0.171 0.74 0.71
1.0 Step 0.02 0.83 0.240 ± 0.079 0.82 0.231 ± 0.070 0.92 0.94
1.0 Ramp 0.07 0.81 0.275 ± 0.170 0.79 0.263 ± 0.125 0.55 0.56
1.0 Exp 0.14 0.76 0.300 ± 0.190 0.74 0.284 ± 0.145 0.38 0.40
1.0 Sine 0.02 0.86 0.267 ± 0.129 0.87 0.274 ± 0.150 0.80 0.81
0.5 Step 0.15 0.83 0.270 ± 0.200 0.82 0.262 ± 0.177 0.65 0.66
0.5 Ramp 0.16 0.72 0.284 ± 0.152 0.75 0.292 ± 0.168 0.32 0.36
0.5 Exp 0.06 0.72 0.270 ± 0.124 0.72 0.271 ± 0.128 0.40 0.39
0.5 Sine 0.01 0.84 0.242 ± 0.089 0.85 0.247 ± 0.101 0.80 0.78

AR(2) Data with 01 = 0.5 and 02 = -0.3
None 0.00 0.92 0.069 ± 0.004 0.91 0.073 ± 0.031 0.99 0.89

2.0 Step 0.06 0.89 0.072 ± 0.018 0.90 0.073 ± 0.028 0.88 0.80
2.0 Ramp 0.02 0.73 0.074 ± 0.045 0.73 0.074 ± 0.050 0.45 0.27
2.0 Exp 0.10 0.61 0.076 ± 0.049 0.61 0.076 ± 0.044 0.27 0.15
2.0 Sine 0.00 0.85 0.075 ± 0.043 0.88 0.080 ± 0.052 0.55 0.44
1.5 Step 0.05 0.89 0.071 ± 0.014 0.90 0.073 ± 0.027 0.88 0.79
1.5 Ramp 0.03 0.64 0.074 ± 0.041 0.63 0.073 ± 0.034 0.34 0.19
1.5 Exp 0.05 0.49 0.074 ± 0.042 0.48 0.073 ± 0.033 0.13 0.06
1.5 Sine 0.00 0.83 0.072 ± 0.034 0.85 0.075 ± 0.045 0.77 0.71
1.0 Step 0.08 0.85 0.072 ± 0.025 0.85 0.072 ± 0.025 0.75 0.63
1.0 Ramp 0.06 0.49 0.074 ± 0.033 0.52 0.076 ± 0.046 0.18 0.09
1.0 Exp 0.03 0.41 0.068 ± 0.021 0.42 0.069 ± 0.027 0.15 0.05
1.0 Sine 0.00 0.86 0.068 ± 0.026 0.88 0.072 ± 0.041 0.50 0.33
0.5 Step 0.19 0.60 0.073 ± 0.038 0.61 0.072 ± 0.036 0.25 0.16
0.5 Ramp 0.27 0.25 0.066 ± 0.025 0.25 0.066 ± 0.027 0.06 0.02
0.5 Exp 0.03 0.55 0.064 ± 0.014 0.55 0.065 ± 0.021 0.29 0.10
0.5 Sine 0.00 0.87 0.065 ± 0.026 0.88 0.067 ± 0.031 0.92 0.88

Note: Since the nominal rates are 0.9, the coverage and bias test accuracies are -- ±0.016
for 1000 runs.
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Table 26. AR(1) with Measurement Noise Model Truncation Point ft, Evaluations
Transient NOBM OBM Bias Test

Alty(a) Type Fail Coy Half Width Coy Half Width F(&-) x2(u•)
AR(2) Data with 41 = -0.5 and 02 = 0.3

None 0.00 0.90 0.044 ± 0.005 0.91 0.049 ± 0.021 0.85 0.88
2.0 Step 0.27 0.80 0.053 ± 0.034 0.84 0.055 ± 0.053 0.47 0.53
2.0 Ramp 0.13 0.79 0.064 ± 0.076 0.81 0.067 ± 0.094 0.38 0.46
2.0 Exp 0.23 0.81 0.056 ±0.072 0.84 0.057 ± 0.067 0.43 0.50
2.0 Sine 0.00 0.86 0.069 ± 0.089 0.91 0.077 ± 0.092 0.63 0.70
1.5 Step 0.31 0.85 0.051 ± 0.032 0.87 0.053 ± 0.045 0.47 0.50
1.5 Ramp 0.12 0.79 0.059 ± 0.056 0.79 0.059 ± 0.063 0.34 0.43
1.5 Exp 0.23 0.77 0.054 ± 0.047 0.77 0.054 ± 0.051 0.31 0.38
1.5 Sine 0.00 0.82 0.060 ± 0.066 0.88 0.071 ± 0.076 0.61 0.65
1.0 Step 0.29 0.83 0.050 ± 0.030 0.86 0.052 ± 0.036 0.44 0.48
1.0 Ramp 0.17 0.77 0.052 ± 0.033 0.76 0.051 ± 0.035 0.23 0.33
1.0 Exp 0.12 0.69 0.048 ± 0.023 0.71 0.048 ± 0.027 0.21 0.29
1.0 Sine 0.00 0.83 0.057 ± 0.063 0.90 0.069 ± 0.074 0.56 0.63
0.5 Step 0.26 0.85 0.050 ± 0.032 0.84 0.050 ± 0.028 0.40 0.45
0.5 Ramp 0.17 0.69 0.046 ± 0.018 0.70 0.046 ± 0.020 0.16 0.23
0.5 Exp 0.12 0.69 0.045 ± 0.019 0.69 0.045 ± 0.027 0.15 0.25
0.5 Sine 0.00 0.86 0.052 ± 0.051 0.91 0.058 ± 0.054 0.48 0.57

AR(2) Data with 1 =- -0.5 and 02 = -0.3
None 0.00 0.91 0.032 ± 0.005 0.89 0.034 ± 0.014 0.99 0.86

2.0 Step 0.15 0.58 0.044 ± 0.019 0.64 0.047 ± 0.029 0.36 0.30
2.0 Ramp 0.07 0.49 0.045 ± 0.033 0.49 0.045 ± 0.035 0.17 0.08
2.0 Exp 0.10 0.39 0.042 ± 0.028 0.39 0.042 ± 0.027 0.10 0.04
2.0 Sine 0.00 0.85 0.062 ± 0.059 0.92 0.071 ± 0.060 0.75 0.46
1.5 Step 0.19 0.46 0.042 ± 0.016 0.54 0.045 ± 0.023 0.28 0.23
1.5 Ramp 0.10 0.42 0.040 ± 0.019 0.44 0.040 ± 0.023 0.13 0.06
1.5 Exp 0.10 0.30 0.038 ± 0.014 0.31 0.038 ± 0.015 0.05 0.02
1.5 Sine 0.00 0.81 0.057 ± 0.055 0.93 0.073 ± 0.064 0.83 0.61
1.0 Step 0.33 0.57 0.038 ± 0.022 0.57 0.039 ± 0.021 0.28 0.20
1.0 Ramp 0.18 0.30 0.036 ± 0.009 0.30 0.037 ± 0.012 0.05 0.02
1.0 Exp 0.09 0.31 0.036 ± 0.011 0.32 0.036 ± 0.014 0.07 0.03
1.0 Sine 0.00 0.82 0.046 ± 0.037 0.95 0.060 ± 0.048 0.65 0.45
0.5 Step 0.03 0.30 0.035 ± 0.008 0.30 0.035 ± 0.007 0.16 0.10
0.5 Ramp 0.11 0.14 0.033 ± 0.005 0.15 0.034 ± 0.006 0.02 0.01
0.5 Exp 0.07 0.40 0.034 ± 0.009 0.42 0.035 ± 0.016 0.13 0.03
0.5 Sine 0.00 0.88 0.036 ± 0.017 0.92 0.039 ± 0.022 0.85 0.77

Note: Since the nominal rates are 0.9, the coverage and bias test accuracies are -- ±0.016
for 1000 runs.
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Table 27. AR(1) with Measurement Noise Model Truncation Point ii,, Evaluations
Transient NOBM OBM Bias Test

Ar(%) Type {Fail Coy Half Width Coy Half Width F( X) x 2(o-)

AR(2) Data with 01 = -1.0 and 02 = -0.5
None 0.01 0.94 0.025 ± 0.006 0.91 0.024 ± 0.010 1.00 0.82

2.0 Step 0.55 0.40 0.043 ±: 0.018 0.39 0.042 ±- 0.017 0.11 0.09
2.0 Ramp 0.38 0.53 0.054 ± 0.044 0.49 0.048 ± 0.032 0.08 0.02
2.0 Exp 0.53 0.34 0.043 ± 0.033 0.33 0.042 ± 0.024 0.06 0.02
2.0 Sine 0.01 0.93 0.068 3= 0.067 0.95 0.071 ± 0.067 0.65 0.52
1.5 Step 0.27 0.26 0.044 ± 0.013 0.30 0.045 ± 0.015 0.10 0.08
1.5 Ramp 0.22 0.40 0.049 ± 0.031 0.42 0.049 ± 0.032 0.04 0.01
1.5 Exp 0.39 0.31 0.046 ± 0.032 0.29 0.044 ± 0.029 0.01 0.00
1.5 Sine 0.00 0.89 0.058 ± 0.056 0.97 0.065 ± 0.055 0.66 0.48
1.0 Step 0.43 0.35 0.038 ± 0.017 0.40 0.039 ± 0.016 0.11 0.08
1.0 Ramp 0.24 0.20 0.040 ± 0.016 0.32 0.046 ± 0.028 0.01 0.00
1.0 Exp 0.34 0.18 0.035 + 0.013 0.23 0.038 A: 0.021 0.00 0.00
1.0 Sine 0.00 0.84 0.044 ± 0.040 0.96 0.054 A: 0.041 0.55 0.43
0.5 Step 0.40 0.27 0.034 ± 0.019 0.27 0.034 A 0.018 0.04 0.04
0.5 Ramp 0.55 0.07 0.030 ± 0.008 0.08 0.030 ± 0.010 0.00 0.00
0.5 Exp 0.39 0.23 0.033 ± 0.013 0.27 0.035 ± 0.021 0.03 0.01
0.5 Sine 0.00 0.96 0.039 ± 0.031 0.97 0.039 ± 0.026 0.73 0.58

AR(2) Data with 01 = -1.5 and 02 = -0.8
None 0.09 0.98 0.024 ± 0.007 0.96 0.021 ± 0.007 0.99 0.58

2.0 Step 0.61 0.39 0.074 ±: 0.030 0.31 0.071 ±: 0.032 0.04 0.02
2.0 Ramp 0.30 0.33 0.070 ± 0.061 0.41 0.073 ± 0.073 0.04 0.00
2.0 Exp 0.46 0.31 0.062 ± 0.027 0.43 0.066 ± 0.028 0.04 0.02
2.0 Sine 0.02 0.90 0.076 ± 0.064 0.94 0.078 ±: 0.063 0.70 0.30
1.5 Step 0.39 0.28 0.068 ± 0.024 0.34 0.071 ± 0.026 0.03 0.02
1.5 Ramp 0.23 0.22 0.059 ± 0.038 0.30 0.067 ± 0.065 0.02 0.00
1.5 Exp 0.38 0.29 0.055 ± 0.023 0.29 0.055 ±: 0.023 0.03 0.01
1.5 Sine 0.00 0.97 0.069 ±: 0.046 0.98 0.070 ±: 0.045 0.74 0.29
1.0 Step 0.48 0.42 0.051 ±= 0.016 0.48 0.053 ±: 0.018 0.05 0.03
1.0 Ramp 0.30 0.15 0.051 ± 0.018 0.15 0.051 ± 0.018 0.00 0.00
1.0 Exp 0.29 0.06 0.052 ± 0.018 0.06 0.051 A: 0.015 0.00 0.00
1.0 Sine 0.00 0.99 0.064 A: 0.036 1.00 0.065 ± 0.037 0.64 0.27
0.5 Step 0.50 0.00 0.045 ± 0.000 0.00 0.046 A: 0.000 0.00 0.00
0.5 Ramp 0.14 0.01 0.045 ± 0.005 0.00 0.045 ± 0.004 0.00 0.00
0.5 Exp 0.31 0.04 0.042 A 0.011 0.05 0.042 ± 0.010 0.00 0.00
0.5 Sine 0.00 0.93 0.045 A: 0.027 0.99 0.051 A: 0.023 0.77 0.38

Note: Since the nominal rates are 0.9, the coverage and bias test accuracies are :- ±0.016
for 1000 runs.
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Table 28. AR(2) with Measurement Noise Model Truncation Point no, Evaluations
Transient NOBM OBM Bias Test

Au,(ay) Type Fail Cov Half Width Coy Half Width F(&') x2(au)
AR(2) Data with $1 = 1.5 and 02 = -0.8

None 0.00 0.93 0.194 ± 0.039 0.93 0.196 ± 0.036 0.78 0.88
2.0 Step 0.00 0.92 0.198 ± 0.050 0.93 0.200 ± 0.049 0.83 0.91
2.0 Ramp 0.01 0.92 0.198 ± 0.057 0.92 0.199 ± 0.053 0.75 0.86
2.0 Exp 0.01 0.91 0.197 ± 0.055 0.92 0.200 ± 0.054 0.83 0.92
2.0 Sine 0.01 0.91 0.198 ± 0.055 0.91 0.200 ± 0.052 0.75 0.86
1.5 Step 0.01 0.91 0.196 ± 0.052 0.92 0.198 ± 0.047 0.84 0.92
1.5 Ramp 0.00 0.91 0.197 ± 0.056 0.91 0.200 ± 0.053 0.73 0.84
1.5 Exp 0.00 0.90 0.198 ± 0.057 0.91 0.199 ± 0.055 0.82 0.91
1.5 Sine 0.01 0.92 0.198 ± 0.054 0.92 0.200 ± 0.052 0.76 0.87
1.0 Step 0.00 0.91 0.198 ± 0.059 0.91 0.199 ± 0.057 0.83 0.90
1.0 Ramp 0.01 0.91 0.197 ± 0.055 0.92 0.199 ± 0.051 0.67 0.80
1.0 Exp 0.01 0.93 0.200 ± 0.057 0.92 0.201 ± 0.054 0.82 0.91
1.0 Sine 0.00 0.92 0.200 ± 0.069 0.92 0.201 ± 0.069 0.80 0.90
0.5 Step 0.01 0.92 0.199 ± 0.058 0.92 0.200 ± 0.055 0.84 0.93
0.5 Ramp 0.00 0.89 0.196 ± 0.054 0.89 0.198 ± 0.048 0.48 0.63
0.5 Exp 0.00 0.83 0.200 ± 0.058 0.84 0.202 ± 0.054 0.34 0.46
0.5 Sine 0.00 0.91 0.199 ± 0.059 0.91 0.201 ± 0.057 0.69 0.79

AR(2) Data with &1 = 1.0 and 02 = -0.5
None 0.00 0.92 0.109 ± 0.014 0.92 0.110 ± 0.013 0.85 0.89

2.0 Step 0.00 0.91 0.111 ± 0.019 0.92 0.111 ± 0.018 0.88 0.91
2.0 Ramp 0.01 0.89 0.109 ± 0.027 0.89 0.110 ± 0.019 0.70 0.77
2.0 Exp 0.00 0.90 0.110 ± 0.032 0.90 0.111 ± 0.023 0.84 0.90
2.0 Sine 0.00 0.89 0.111 ± 0.026 0.90 0.111 ± 0.025 0.83 0.89
1.5 Step 0.00 0.90 0.111 ± 0.021 0.91 0.111 ± 0.019 0.88 0.92
1.5 Ramp 0.00 0.86 0.109 ± 0.024 0.86 0.109 ± 0.019 0.62 0.70
1.5 Exp 0.00 0.85 0.111 ± 0.019 0.86 0.112 ± 0.018 0.64 0.71
1.5 Sine 0.00 0.86 0.110 ± 0.017 0.86 0.111 ± 0.018 0.79 0.83
1.0 Step 0.00 0.89 0.110 ± 0.019 0.90 0.111 ± 0.020 0.88 0.91
1.0 Ramp 0.00 0.84 0.109 ± 0.020 0.84 0.109 ± 0.020 0.48 0.56
1.0 Exp 0.00 0.77 0.109 ± 0.017 0.78 0.109 ± 0.016 0.33 0.43
1.0 Sine 0.00 0.89 0.109 ± 0.026 0.89 0.109 ± 0.031 0.72 0.79
0.5 Step 0.01 0.87 0.111 ± 0.021 0.87 0.111 ± 0.018 0.76 0.81
0.5 Ramp 0.00 0.75 0.106 ± 0.020 0.75 0.107 ± 0.019 0.29 0.37
0.5 Exp 0.00 0 73 0.104 ± 0.019 0.73 0.105 ± 0.017 0.26 0.35
0.5 Sine 0.00 0.88 0.103 ± 0.020 0.88 0.103 ± 0.021 0.57 0.65

Note: Since the nominal rates are 0.9, the coverage and bias test accuracies are -- ±0.016
for 1000 runs.
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Table 29. AR(2) with Measurement Noise Model Truncation Point io Evaluations
Transient 1a1lNOBM OBM Bias Test

AI,(a.) Type Fail Coy Half Width Coy Half Width F(&f) X2(af)

AR(2) Data with €1 = 0.5 and €2 = 0.3
None 0.03 0.86 0.240 ± 0.071 0.85 0.231 ± 0.063 0.89 0.94

2.0 Step 0.02 0.83 0.241 ± 0.076 0.82 0.233 ± 0.066 0.90 0.94
2.0 Ramp 0.03 0.83 0.243 ± 0.106 0.82 0.238 ± 0.107 0.78 0.82
2.0 Exp 0.03 0.83 0.240 ± 0.100 0.82 0.233 ± 0.085 0.90 0.92
2.0 Sine 0.03 0.83 0.248 ± 0.111 0.81 0.245 ± 0.123 0.90 0.94
1.5 Step 0.03 0.83 0.238 ± 0.077 0.82 0.231 ± 0.077 0.92 0.95
1.5 Ramp 0.03 0.81 0.245 ± 0.096 0.79 0.240 ± 0.082 0.72 0.74
1.5 Exp 0.06 0.77 0.254 ± 0.148 0.77 0.249 ± 0.143 0.69 0.74
1.5 Sine 0.05 0.82 0.261 ± 0.111 0.82 0.264 ± 0.133 0.79 0.80
1.0 Step 0.02 0.84 0.240 ± 0.078 0.82 0.232 ± 0.070 0.92 0.95
1.0 Ramp 0.07 0.81 0.255 ± 0.127 0.80 0.249 ± 0.114 0.58 0.64
1.0 Exp 0.12 0.77 0.277 ± 0.154 0.76 0.267 ± 0.126 0.42 0.49
1.0 Sine 0.01 0.84 0.255 ± 0.098 0.84 0.257 ± 0.113 0.82 0.85
0.5 Step 0.08 0.83 0.247 ± 0.112 0.81 0.240 ± 0.099 0.77 0.80
0.5 Ramp 0.12 0.75 0.271 ± 0.131 0.77 0.271 ± 0.140 0.34 0.44
0.5 Exp 0.03 0.73 0.265 ± 0.123 0.73 0.263 ± 0.118 0.37 0.44
0.5 Sine 0.01 0.84 0.235 ± 0.073 0.85 0.237 ± 0.085 0.72 0.79

AR(2) Data with 01 = 0.5 and 0 2 = -0.3
None 0.00 0.92 0.069 ± 0.004 0.92 0.069 ± 0.004 0.88 0.89

2.0 Step 0.05 0.87 0.074 ± 0.025 0.88 0.075 ± 0.036 0.76 0.78
2.0 Ramp 0.01 0.84 0.074 ± 0.048 0.84 0.074 ± 0.051 0.53 0.56
2.0 Exp 0.03 0.82 0.072 ± 0.035 0.82 0.072 ± 0.028 0.52 0.54
2.0 Sine 0.00 0.84 0.074 ± 0.048 0.86 0.079 ± 0.060 0.71 0.72
1.5 Step 0.06 0.88 0.072 ± 0.015 0.90 0.074 ± 0.032 0.77 0.78
1.5 Ramp 0.01 0.78 0.070 ± 0.026 0.79 0.070 ± 0.032 0.45 0.49
1.5 Exp 0.02 0.69 0.070 ± 0.023 0.69 0.070 ± 0.027 0.24 0.27
1.5 Sine 0.00 0.87 0.072 ± 0.043 0.89 0.077 ± 0.057 0.65 0.66
1.0 Step 0.07 0.88 0.071 ± 0.026 0.89 0.072 ± 0.025 0.74 0.75
1.0 Ramp 0.03 0.70 0.068 ± 0.015 0.71 0.069 ± 0.023 0.30 0.32
1.0 Exp 0.04 0.67 0.066 ± 0.007 0.67 0.066 ± 0.011 0.20 0.22
1.0 Sine 0.00 0.87 0.068 + 0.034 0.88 0.072 ± 0.042 0.64 0.64
0.5 Step 0.03 0.69 0.069 ± 0.011 0.68 0.069 ± 0.011 039 0.42
0.5 Ramp 0.03 0.56 0.064 ± 0.010 0.56 0.064 ± 0.009 0.13 0.15
0.5 Exp 0.02 0.71 0.064 ± 0.014 0.71 0.065 ± 0.020 0.24 0.27
0.5 Sine 0.00 0.88 0.067 ± 0.042 0.89 0.068 ± 0.038 0.72 0.75

Note: Since the nominal rates are 0.9, the coverage and bias test accuracies are -- ±0.016
for 1000 runs.
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Table 30. AR(2) with Measurement Noise Model Truncation Point ii,• Evaluations
Transient NOBM OBM Bias Test

AA,(a,) Type Fail Coy Half Width Cov Half Width F(&f-) x2(a)
AR(2) Data with 4 1 = -0.5 and € 2 = 0.3

None 0.00 0.90 0.044 ± 0.004 0.90 0.044 ± 0.004 0.90 0.88
2.0 Step 0.20 0.78 0.055 ± 0.039 0.83 0.060 ± 0.062 0.53 0.54
2.0 Ramp 0.08 0.79 0.068 ± 0.083 0.80 0.071 ± 0.098 0.42 0.43
2.0 Exp 0.22 0.81 0.054 ± 0.065 0.85 0.055 ± 0.059 0.49 0.50
2.0 Sine 0.01 0.84 0.069 ± 0.084 0.91 0.080 ± 0.089 0.72 0.71
1.5 Step 0.24 0.82- 0.052 ± 0.028 0.86 0.056 ± 0.049 0.52 0.52
1.5 Ramp 0.11 0.74 0.058 ± 0.053 0.77 0.060 ± 0.064 0.34 0.37
1.5 Exp 0.22 0.74 0.055 ± 0.048 0.74 0.056 ± 0.051 0.30 0.31
1.5 Sine 0.01 0.82 0.061 ± 0.065 0.89 0.075 ± 0.078 0.58 0.57
1.0 Step 0.22 0.80 0.050 ± 0.026 0.84 0.052 ± 0.029 0.52 0.52
1.0 Ramp 0.16 0.75 0.055 ± 0.037 0.75 0.054 ± 0.040 0.24 0.26
1.0 Exp 0.13 0.64 0.050 ± 0.027 0.64 0.050 ± 0.029 0.15 0.18
1.0 Sine 0.00 0.83 0.057 ± 0.060 0.91 0.069 ± 0.069 0.62 0.63
0.5 Step 0.24 0.83 0.050 ± 0.032 0.82 0.050 ± 0.029 0.40 0.41
0.5 Ramp 0.18 0.65 0.047 ± 0.021 0.66 0.048 ± 0.024 0.13 0.14
0.5 Exp 0.13 0.65 0.045 ± 0.021 0.65 0.046 ± 0.029 0.16 0.17
0.5 Sine 0.00 0.85 0.054 ± 0.052 0.91 0.061 ± 0.056 0.56 0.56

AR(2) Data with 01 = -0.5 and 02 = -0.3
None 0.00 0.93 0.032 ± 0.005 0.93 0.032 ± 0.005 0.95 0.86

2.0 Step 0.31 0.54 0.044 ± 0.019 0.60 0.047 ± 0.028 0.25 0.24
2.0 Ramp 0.16 0.51 0.044 ± 0.032 0.51 0.044 ± 0.035 0.15 0.14
2.0 Exp 0.16 0.49 0.041 ± 0.029 0.48 0.041 ± 0.028 0.15 0.13
2.0 Sine 0.00 0.83 0.059 ± 0.066 0.90 0.066 ± 0.067 0.56 0.50
1.5 Step 0.20 0.44 0.042 ± 0.020 0.52 0.046 ± 0.026 0.22 0.22
1.5 Ramp 0.18 0.45 0.039 ± 0.018 0.47 0.040 ± 0.023 0.14 0.12
1.5 Exp 0.17 0.39 0.037 ± 0.013 0.39 0.038 ± 0.015 0.05 0.05
1.5 Sine 0.00 0.82 0.053 ± 0.060 0.92 0.064 ± 0.064 0.56 0.52
1.0 Step 0.31 0.54 0.037 ± 0.015 0.56 0.038 ± 0.015 0.27 0.26
1.0 Ramp 0.19 0.40 0.036 ± 0.011 0.41 0.036 ± 0.013 0.08 0.07
1.0 Exp 0.15 0.39 0.035 ± 0.011 0.40 0.036 ± 0.013 0.06 0.05
1.0 Sine 0.00 0.82 0.042 ± 0.034 0.93 0.053 ± 0.044 0.53 0.49
0.5 Step 0.06 0.40 0.034 ± 0.007 0.40 0.034 ± 0.005 0.13 0.11
0.5 Ramp 0.07 0.32 0.033 ± 0.007 0.32 0.033 ± 0.007 0.05 0.04
0.5 Exp 0.13 0.43 0.035 ± 0.012 0.44 0.036 ± 0.018 0.09 0.07
0.5 Sine 0.00 0.90 0.046 ± 0.047 0.94 0.046 ± 0.040 0.66 0.63

Note: Since the nominal rates are 0.9, the coverage and bias test accuracies are ± ±0.016
for 1000 runs.
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Table 31. AR(2) with Measurement Noise Model Truncation Point ho Evaluations
Transient NOBM OBM Bias Test

A/,(a,) Type Fail [ Cov Half Width Cov Half Width F(&f) x2(o()
AR(2) Data with €1 = -1.0 and 02 = -0.5

None 0.01 0.94 0.025 ± 0.006 0.94 0.025 ± 0.005 1.00 0.83
2.0 Step 0.52 0.38 0.044 ±4 0.018 0.36 0.043 ± 0.017 0.24 0.09
2.0 Ramp 0.32 0.52 0.053 ± 0.044 0.45 0.048 ± 0.032 0.54 0.06
2.0 Exp 0.48 0.39 0.043 ± 0.036 0.37 0.041 ± 0.026 0.55 0.07
2.0 Sine 0.00 0.92 0.067 ± 0.068 0.94 0.071 ± 0.068 0.96 0.58
1.5 Step 0.30 0.25 0.044 ± 0.013 0.29 0.045 ± 0.015 0.29 0.08
1.5 Ramp 0.22 0.40 0.047 ± 0.030 0.43 0.048 ± 0.032 0.57 0.04
1.5 Exp 0.32 0.40 0.043 ± 0.031 0.39 0.042 ± 0.029 0.65 0.04
1.5 Sine 0.00 0.90 0.059 ±- 0.057 0.97 0.065 ±- 0.057 0.93 0.45
1.0 Step 0.36 0.27 0.039 ±- 0.016 0.31 0.040 ±- 0.015 0.51 0.08
1.0 Ramp 0.18 0.27 0.039 ± 0.017 0.35 0.043 ± 0.027 0.67 0.02
1.0 Exp 0.34 0.28 0.034 ± 0.013 0.32 0.036 ±- 0.019 0.68 0.02
1.0 Sine 0.00 0.86 0.045 ± 0.043 0.96 0.053 ±- 0.043 0.92 0.55
0.5 Step 0.28 0.32 0.031 ± 0.010 0.31 0.031 ± 0.010 0.95 0.09
0.5 Ramp 0.32 0.21 0.029 1- 0.005 0.21 0.029 ± 0.006 0.94 0.00
0.5 Exp 0.39 0.30 0.032 ±: 0.014 0.33 0.035 ± 0.022 0.74 0.02
0.5 Sine 0.00 0.96 0.040 ± 0.035 0.97 0.040 ± 0.029 0.87 0.48

AR(2) Data with 01 = -1.5 and 02 = -0.8
None 0.10 0.98 0.025 ± 0.007 0.98 0.025 ± 0.005 1.00 0.60

2.0 Step 0.32 0.36 0.074 ±- 0.031 0.29 0.071 ± 0.034 0.13 0.04
2.0 Ramp 0.13 0.34 0.072 ± 0.066 0.46 0.077 ± 0.082 0.34 0.03
2.0 Exp 0.34 0.32 0.059 ± 0.024 0.48 0.065 ± 0.028 0.12 0.03
2.0 Sine 0.01 0.93 0.082 ± 0.066 0.95 0.084 ± 0.065 0.99 0.26
1.5 Step 0.30 0.31 0.066 ± 0.023 0.39 0.069 ± 0.026 0.11 0.03
1.5 Ramp 0.17 0.24 0.060 ± 0.043 0.37 0.069 ± 0.072 0.38 0.02
1.5 Exp 0.38 0.36 0.053 _ 0.028 0.37 0.054 ± 0.027 0.22 0.04
1.5 Sine 0.00 0.97 0.067 A- 0.047 0.98 0.068 ± 0.047 0.98 0.32
1.0 Step 0.59 0.40 0.052 ± 0.016 0.44 0.053 ± 0.018 0.10 0.02
1.0 Ramp 0.35 0.26 0.048 A- 0.021 0.27 0.048 ± 0.021 0.42 0.01
1.0 Exp 0.31 0.26 0.047 ± 0.021 0.25 0.046 ± 0.018 0.54 0.01
1.0 Sine 0.00 0.99 0.060 A- 0.042 0.99 0.061 ± 0.043 1.00 0.34
0.5 Step 0.15 0.25 0.045 ± 0.011 0.25 0.045 ± 0.011 0.63 0.02
0.5 Ramp 0.18 0.17 0.039 ± 0.009 0.19 0.040 ± 0.009 0.82 0.01
0.5 Exp 0.30 0.18 0.039 ± 0.014 0.18 0.040 ± 0.013 0.72 0.00
0.5 Sine 0.00 0.95 0.045 ± 0.029 0.99 0.049 ± 0.028 0.96 0.33

Note: Since the nominal rates are 0.9, the coverage and bias test accuracies are ± ±0.016
for 1000 runs.
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assumed to be known exactly and Schruben's X3 statistic in Equation (9) is tested. The

assumption of known variance of the mean estimator variance is reasonable since Fishman's

approximation is asymptotically unbiased and large samples are used. With the estimated

variance ^' from Equation (56) and degrees of freedom d from Equation (57), Schruben's

F3,1 statistic, shown in Equation (10), is used.

The acceptance rate for Schruben's test for initial bias is very close to the nominal rate

of 0.9 when the variance of the mean estimator, a?, calculated with the true parameters,

is used. The results are slightly less accurate when the estimated variance of the mean

estimatora^ ; is used. However, the estimated truncation points generally result in a pass

rate in excess of 50 percent for Schruben's initial bias test.

Schruben's initial bias identification test appears to be more dependent than the con-

fidence interval techniques on the type of variation in the data. For the sequence without a

transient, Schruben's technique worked well with the "true" variance estimate a? and the X2

test and also with the estimated mean estimator variance P? and the F test. Since the esti-

mated truncation point io usually retained some transient data in the sequence, Schruben's

initial bias test appears to be extremely sensitive to even a small number of transient data

values.

Tables 32, 33, 34, and 35 show the number and size of the batches of observations used

for Nonoverlapping and Overlapping Batch Means confidence interval techniques. For the

last two cases, (01 = -1.0,42 = -0.5) and (1i - 1.5,02 = -0.8), the average number

of the batches for the sequence truncated at the estimated truncation point iho significantly

increases in comparison with the sequence truncated at the true point no. Because of the

increased variance in the batches' sample means, the confidence interval half widths actually

increase. However, the batches which included transient values bias the mean estimate

enough to cause a significant decrease in the coverage rate. These two cases correspond to

the cases with significant degradation in actual coverage rates.

While the MSE appears relatively equal between the AR(1) and the AR(2) Kalman
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Table 32. Fishman's Number and Size of Batches for AR(2) with Measurement Noise Model
Transient Number of Batches Size

A/js(ay) Type [AM aM [AB B

AR(2) Data with 0, = 1.5 and 0S2 = -0.8
None 66.84 34.34 19.31 11.56

2.0 Step 64.96 33.45 19.26 11.83
2.0 Ramp 65.59 32.02 18.87 11.05
2.0 Exp 64.65 33.97 19.21 11.29
2.0 Sine 65.30 32.44 18.91 11.62
1.5 Step 63.57 32.02 19.63 11.71
1.5 Ramp 67.13 33.89 18.49 10.46
1.5 Exp 63.55 33.15 19.87 12.37
1.5 Sine 66.30 35.97 18.97 11.41
1.0 Step 63.95 35.04 19.31 11.25
1.0 Ramp 67.94 34.36 18.75 11.52
1.0 Exp 64.77 33.43 19.23 11.57
1.0 Sine 65.44 34.47 19.28 11.83
0.5 Step 64.51 33.82 19.29 11.67
0.5 Ramp 75.16 39.26 17.50 9.71
0.5 Exp 79.02 41.00 16.98 10.63
0.5 Sine 83.39 40.70 16.39 9.64

AR(2) Data with 01 = 1.0and qS2 = -0.5
None 168.98 68.09 7.35 4.88

2.0 Step 164.99 67.84 7.42 5.21
2.0 Ramp 174.30 70.96 7.17 5.31
2.0 Exp 162.46 70.27 7.88 6.67
2.0 Sine 167.60 70.92 7.51 5.35
1.5 Step 160.24 69.09 7.86 5.93
1.5 Ramp 177.78 73.96 7.47 7.09
1.5 Exp 175.47 73.76 7.38 6.13
1.5 Sine 189.83 77.34 7.22 7.09
1.0 Step 156.72 68.21 8.03 6.24
1.0 Ramp 183.77 77.42 7.42 6.56
1.0 Exp 197.14 79.22 6.91 5.24
1.0 Sine 214.87 81.92 6.69 6.52
0.5 Step 171.42 73.45 7.63 7.05
0.5 Ramp 208.13 85.34 7.54 10.63
0.5 Exp 207.53 84.77 7.47 9.51
0.5 Sine 218.39 88.33 6.86 4.32
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Table 33. Fishman's Number and Size of Batches for AR(2) with Measurement Noise Model
Transient Number of Batches Size

A/sv(ai) Type AM &M I AB &B

AR(2) Data with 0, = 0.5 and 0 2 = 0.3
None 40.87 16.95 29.60 14.52

2.0 Step 40.61 16.88 28.50 14.32
2.0 Ramp 39.15 17.28 31.23 16.30
2.0 Exp 40.43 17.19 29.25 15.47
2.0 Sine 39.04 17.67 31.80 17.56
1.5 Step 41.40 16.91 28.08 14.16
1.5 Ramp 37.78 17.94 33.99 18.24
1.5 Exp 37.51 17.42 33.19 19.58
1.5 Sine 34.36 15.61 36.60 17.99
1.0 Step 40.61 17.10 28.88 14.47
1.0 Ramp 35.49 17.20 37.85 23.65
1.0 Exp 31.89 17.35 45.92 31.55
1.0 Sine 35.82 14.55 36.56 19.36
0.5 Step 38.93 16.95 31.26 18.11
0.5 Ramp 30.94 18.98 55.14 41.21
0.5 Exp 31.09 18.80 55.57 39.66
0.5 Sine 38.58 16.31 37.46 20.78

AR(2) Data with 01 = 0.5 and 0 2 = -0.3
None 475.92 81.83 2.30 1.50

2.0 Step 429.33 151.07 6.66 15.12
2.0 Ramp 472.95 138.71 8.22 26.71
2.0 Exp 468.05 115.58 4.67 16.39
2.0 Sine 432.80 180.61 8.73 19.15
1.5 Step 445.72 132.26 5.25 12.88
1.5 Ramp 493.25 120.43 5.30 19.44
1.5 Exp 485.70 133.74 5.91 20.92
1.5 Sine 457.39 194.57 8.64 18.48
1.0 Step 457.92 110.34 3.82 11.36
1.0 Ramp 501.31 132.86 5.23 18.95
1.0 Exp 539.92 108.01 3.18 10.96
1.0 Sine 489.74 202.53 8.41 18.72
0.5 Step 483.53 112.11 2.91 8.12
0.5 Ramp 557.20 129.24 3.17 9.91
0.5 Exp 568.61 130.48 4.21 15.54
0.5 Sine 549.51 191.41 6.36 15.39
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Table 34. Fishman's Number and Size of Batches for AR(2) with Measurement Noise Model
Transient Number of Batches Size

A~tl(oy) Type IAM &M A(B &B

AR(2) Data with 01 = -0.5 and 02 = 0.3
None 297.99 128.07 4.14 2.49

2.0 Step 229.83 157:99 15.29 22.46
2.0 Ramp 211.03 164.16 31.14 47.54
2.0 Exp 228.29 155.45 18.28 31.35
2.0 Sine 181.07 172.09 22.61 24.97
1.5 Step 232.60 159.65 15.00 22.09
1.5 Ramp 212.84 157.33 28.62 46.06
1.5 Exp 218.01 154.06 21.50 37.10
1.5 Sine 173.49 187.04 24.28 26.72
1.0 Step 222.75 153.79 15.25 22.34
1.0 Ramp 212.09 157.68 30.68 48.91
1.0 Exp 219.38 149.14 22.44 40.65
1.0 Sine 160.39 156.04 25.25 26.85
0.5 Step 240.67 151.38 15.90 31.57
0.5 Ramp 222.48 148.70 24.72 44.67
0.5 Exp 259.64 156.71 17.57 36.14
0.5 Sine 195.64 171.31 21.65 24.93

AR(2) Data with 01 = -0.5 and 42 = -0.3
None 107.19 46.84 11.91 8.02

2.0 Step 212.61 206.70 19.16 23.41
2.0 Ramp 234.33 198.47 22.82 42.08
2.0 Exp 236.64 170.62 14.73 30.84
2.0 Sine 310.66 451.15 20.14 21.79
1.5 Step 290.06 241.69 14.81 22.40
1.5 Ramp 240.87 181.80 16.27 34.04
1.5 Exp 253.94 168.89 11.19 25.27
1.5 Sine 195.87 266.29 23.30 24.03
1.0 Step 194.39 104.11 9.78 15.44
1.0 Ramp 227.86 133.96 12.44 26.82
1.0 Exp 255.36 211.82 11.55 24.62
1.0 Sine 241.21 352.77 23.51 25.94
0.5 Step 219.75 98.57 7.55 10.20
0.5 Ramp 237.25 102.55 8.80 17.09
0.5 Exp 282.18 287.65 13.66 29.03
0.5 Sine 201.47 211.65 17.22 18.44

143



Table 35. Fishman's Number and Size of Batches for AR(2) with Measurement Noise Model
Transient Number of Batches Size

AIL,(ay) Type Am &M /AB &'B

AR(2) Data with €1 = 1.5 and 02 • -0.8
None 60.34 31.08 21.85 13.33

2.0 Step 317.37 216.50 11.14 16.50
2.0 Ramp 208.59 245.27 46.45 55.52
2.0 Exp 291.38 252.55 16.70 31.95
2.0 Sine 178.12 236.70 23.59 19.57
1.5 Step 355.32 239.43 12.56 19.84
1.5 Ramp 228.93 263.72 48.27 59.28
1.5 Exp 210.48 227.98 32.53 49.95
1.5 Sine 151.46 189.62 23.50 19.67
1.0 Step 336.94 255.74 12.70 21.06
1.0 Ramp 257.46 276.15 39.39 56.80
1.0 Exp 214.46 218.30 24.49 43.57
1.0 Sine 179.62 238.60 26.23 24.31
0.5 Step 132.29 43.17 12.97 19.14
0.5 Ramp 151.41 36.53 11.14 15.95
0.5 Exp 154.54 148.30 30.47 46.47
0.5 Sine 259.38 254.61 14.46 13.83

AR(2) Data with 01 = -1.5 and 25 = -0.8
None 25.03 9.58 45.78 17.21

2.0 Step 172.44 116.79 21.56 25.43
2.0 Ramp 97.57 87.70 47.36 54.97
2.0 Exp 147.51 106.44 21.21 24.76
2.0 Sine 113.33 103.97 21.73 16.05
1.5 Step 165.98 116.30 20.67 24.63
1.5 Ramp 107.06 92.99 42.81 53.61
1.5 Exp 147.53 88.59 13.46 17.65
1.5 Sine 119.41 120.04 22.05 15.93
1.0 Step 133.48 77.89 13.85 15.78
1.0 Ramp 133.03 100.87 23.15 34.57
1.0 Exp 123.14 84.76 17.17 22.94
1.0 Sine 100.59 108.34 24.40 14.74
0.5 Step 115.29 45.20 13.82 15.69
0.5 Ramp 99.57 48.23 19.57 24.21
0.5 Exp 107.20 68.93 19.52 22.99
0.5 Sine 66.26 54.48 31.47 19.36
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filter formulations, the truncation point selected by the AR(2) algorithm generally result

in postiv- truncation-point errors. The AR(2) with measurement noise formulation almost

always results in better confidence interval coverage rates and a significantly higher pass rate

on Schruben's initial bias test. Since these tests are conducted with pure AR(2) data, it is

not surprising that the AR(2) with measurement noise formulation performs better. The

improvement may also be attributed to the increased flexibility of the AR(2) with measure-

ment noise model. Because of the impro-ed performance of the AR(2) with measurement

noise formulation, only that model is applied in subsequent tests.

4.6.2 Autoregressive-Movzng Average Test Cases. A similar Monte Carlo analysis is

conducted on data. sets generated from first-order autoregressive-moving average ARMA(1,1)

models. The ARMA(1,1) model is selected because it is a simple time-series model from

which data is generated easily, but the ARMA(1,1) data can not be fit precisely with an

AR(1) or AR(2) formulation for the Kalman filter. Therefore, these daLa sets test the

robustness of the approach. Since the assumed filter model does not fit the data, some

adjustment for "lack of fit" is necessary. When actual discrete-event simulation output,

which has an unknown analytical formulation, is modeled, the truncation-point selection

algorithm needs to perform with some "lack of fit". The ARMA(1,1) model used to generate

the data is

Yn - ily = -,-(Yn-1 - P j) + Wd(t-) - OWd(tn,1)

with variance of

Table 36 shows the parameters used to generate the data sequences {fyn}. These parameters

are selected to test a wide range of the ARMA(1,1) stable region.

As seen in Table 37, for some combinations of parameters, the model parameters often

failed to meet the model estimation criterion, Equation (58), or required a significant number

of observations to estimate the model. This indicates that the AR(2) model embedded within

the Kalme, filter is unable to adjust to the correlation in ARMA(1,1) data.
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Tauie 36. ARMA(1,1) Parameters for Generated Data
_01 01 P- PV(1)

-0.8 +0.3 4.36 -0.87
-0.8 -0.3 1.69 -0.62
-0.3 +0.8 2.12 -0.64
-0.3 -0.8 1.27 +0.33
+0.3 +0.8 1.27 -0.33
+0.3 -0.8 2.12 0.64
+0.8 +0.3 1.69 0.62
+0.8 -0.3 4.36 0.87

Table 37. Kalman Filter Model Estimation Summary

i I Observations Used To Estimate Cusum Alarms
Data Parameters Fail Min Max Avg St Dev Min Max Avg St Dev

ARMA(1,1) Data with AR(2) with Measurement Noise Model
€1 -0.8 01 = 0.3 0.324 296 1499 1154.7 226.1 0 10 2.2 0.7
01 -0.8 01 = -0.3 0.110 267 1499 904.9 390.6 0 20 3.8 2.3
01 -0.3 01 = 0.8 0.344 470 1491 1230.1 124.2 0 10 2.1 0.6
01 -0.3 91 = -0.8 0.015 256 1499 516.0 303.6 0 21 6.2 2.9
01 0.3 01 = 0.8 0.261 346 1499 1188.5 145.5 0 15 2.1 0.8
01 0.3 91 = -0.8 0.001 253 1414 335.0 105.6 2 23 7.2 3.1
01 0.8 91 = 0.3 0.001 252 1492 306.8 74.8 0 17 5.4 2.4
01 0.8 01 = -0.3 0.044 252 1494 385.3 205.3 0 21 5.8 2.8

Note: Each row represents 16,000 runs: 1,000 for each transient type and magnitude.

Table 38 shows the estimated parameters for fitting an AR(2) model with measurement

noise to ARMA(1,1) data. Based on the parameter estimates, the variance estimates in

Table 39 are calculated. The variance of the measurement noise R should represent the

"lack of fit". Since the ARMA(1,1) data is generated with dynamics noise variance Qd of

1.0, the dynamics noise is slightly underestimated.

Tables 40 through 43 show the selected truncation-point errors, (ito- no,). The average

truncation error is negative, meaning that generally the estimated truncation point -h0 retains

transient data in the supposedly steady-state sequence. However, for the ARMA(1,1) case
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Table 38. AR(2) with Measurement Noise Model Parameter Estimation Summary

Data Parameters &IA 6 ý j I 8 ______

ARMA(1,1) Data with AR(2) with Measurement Noise Model

01 = -0.8 01 = 0.3 9.93 0.09 -1.19 0.14 -0.33 0.12 0.77 0.14

01 = -0.8 01 = -0.3 9.96 0.07 -0.56 0.19 0.19 0.16 0.78 0.12
01 = -0.3 01 = 0.8 9.91 0.09 -0.90 0.10 -0.33 0.07 0.74 0.19

01 = -0.3 0, = -0.8 9.99 0.08 0.44 0.07 -0.24 0.06 0.90 0.00
01 = 0.3 01 = 0.8 9.92 0.09 -0.38 0.19 -0.16 0.17 0.68 0.29

01 = 0.3 01 = -0.8 10.00 0.14 0.91 0.06 -0.39 0.05 0.90 0.00
01 = 0.8 01 = 0.3 10.00 0.20 0.67 0.13 0.08 0.10 0.73 0.12
01 = 0.8 01 = -0.3 10.00 0.35 1.17 0.06 -0.35 0.06 0.90 0.00

Note: Each row represents the runs that did not fail to estimate a model from 16,000 runs.

Table 39. AR(2) with Measurement Noise Model Variance Estimation Summary

Data Parameters AIL ŽŽ &Q ,k ii ,
ARMA(1,1) Data with AR(2) with Measurement Noise Model

•q1 = -0.8 01 = 0.3 0.73 0.23 0.39 0.36 2.12 0.21 2.09
01 = -0.8 01 = -0.3 0.76 0.23 0.22 0.12 1.32 0.08 1.30
01 = -0.3 01 = 0.8 0.98 0.26 0.52 0.53 1.58 0.10 1.53
0b = -0.3 01 = -0.8 0.96 0.08 0.11 0.02 1.13 0.05 1.13
01 = 0.3 01 = 0.8 0.89 0.50 0.52 0.68 1.23 0.16 1.13
01 = 0.3 01 = -0.8 0.99 0.09 0.12 0.01 1.48 0.09 1.53
01 = 0.8 01 = 0.3 0.63 0.17 0.27 0.12 1.28 0.09 1.30
01 = 0.8 0, = -0.3 0.78 0.07 0.10 0.01 2.00 0.72 2.09

Note: Each row represents the runs that did not fail to estimate a model from 16,000 runs.
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Table 40. AR(2) Truncation Point Errors (fo - no)
A/y(ay) Type I FailI Min Max Avg St Dev MSE

ARMA(1,1) Data with 01 = -0.8 and 01 = 0.3
2.0 Step 0.000 -150 56 -57.5 44.5 5284.4
2.0 Ramp 0.000 -290 41 -154.7 75.8 29669.4
2.0 Exp 0.000 -248 53 -103.5 70.1 15613.1
2.0 Sine 0.015 -480 40 -193.3 142.1 57570.4
1.5 Step 0.000 -211 41 -83.7 60.7 10698.0
1.5 Ramp 0.000 -340 26 -174.0 86.2 37701.6
1.5 Exp 0.000 -314 44 -139.9 90.4 27748.6
1.5 Sine 0.042 -485 17 -256.3 155.3 89815.6
1.0 Step 0.000 -366 30 -133.4 97.5 27311.1
1.0 Ramp 0.000 -432 28 -218.6 103.1 58397.9
1.0 Exp 0.000 -392 10 -187.6 96.8 44547.1
1.0 Sine 0.088 -486 -4 -315.5 137.2 118340.8
0.5 Step 0.103 -471 33 -170.9 132.1 46639.9
0.5 Ramp 0.025 -486 -33 -282.3 100.5 89819.9
0.5 Exp 0.000 -464 -22 -293.2 88.9 93881.2
0.5 Sine 0.104 -486 -124 -366.3 102.3 144627.6

ARMA(1,1) Data with 0i = -0.8 and 01 -0.3
2.0 Step 0.007 -447 80 -57.8 82.1 10074.9
2.0 Ramp 0.000 -401 398 -137.3 96.0 28063.3
2.0 Exp 0.000 -371 410 -105.4 96.2 20377.5
2.0 Sine 0.027 -483 178 -212.2 153.6 68605.9
1.5 Step 0.046 -466 62 -68.6 100.4 14776.9
1.5 Ramp 0.000 -454 -7 -165.2 98.2 36931.9
1.5 Exp 0.000 -409 216 -162.1 92.0 34752.8
1.5 Sine 0.034 -483 25 -250.0 127.7 78812.6
1.0 Step 0.097 -467 56 -79.2 110.5 18482.4
1.0 Ramp 0.013 -476 494 -205.8 99.5 52251.7
1.0 Exp 0.000 -450 639 -218.1 86.0 54982.9
1.0 Sine 0.039 -483 447 -296.6 105.2 99032.2
0.5 Step 0.443 -461 288 -177.4 135.8 49910.7
0.5 Ramp 0.042 -477 372 -309.3 85.9 103019.6
0.5 Exp 0.000 -491 460 -297.9 78.4 94900.2
0.5 Sine 0.062 -484 489 -336.5 78.6 119409.4

Note: Negative Truncation points indicate transient observations are retained.
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Table 41. AR(2 Truncation Point Errors (,ho, - no)
Ajy(ay) Type I Fail Min Max Avg St Dev MSE

ARMA(1,1) Data with 01S -0.3 and 01 = 0.8
2.0 Step 0.000 -139 -17 -69.1 39.2 6307.4
2.0 Ramp 0.000 -280 -86 -171.9 58.6 32987.2
2.0 Exp 0.000 -259 -48 -136.6 65.7 22989.9
2.0 Sine 0.005 -485 -34 -245.9 118.4 74463.5
1.5 Step 0.000 -194 -24 -104.4 55.0 13929.6
1.5 Ramp 0.000 -328 -100 -202.1 69.2 45622.7
1.5 Exp 0.000 -317 -58 -171.9 72.9 34875.7
1.5 Sine 0.009 -485 -64 -342.8 80.4 123989.7
1.0 Step 0.000 -324 -28 -153.1 92.2 31950.2
1.0 Ramp 0.000 -421 -76 -242.4 87.0 66317.2
1.0 Exp 0.000 -386 -123 -233.5 74.0 60019.6
1.0 Sine 0.008 -486 -187 -409.9 60.5 171717.8
0.5 Step 0.338 -465 -42 -142.4 81.4 26891.8
0.5 Ramp 0.001 -478 -189 -304.6 86.4 100269.6
0.5 Exp 0.000 -444 -227 -322.0 59.6 107244.4
0.5 Sine 0.009 -487 -313 -441.5 26.4 195630.4

ARMA(1,1) Data with 01 = -0.3 and 01 -0.8
2.0 Step 0.000 -403 593 3.5 71.9 5184.6
2.0 Ramp 0.000 -372 631 -94.8 87.2 16596.8
2.0 Exp 0.000 -321 677 -89.7 88.5 15874.2
2.0 Sine 0.002 -466 611 -155.0 106.3 35307.0
1.5 Step 0.005 -431 704 -1.9 89.5 8022.5
1.5 Ramp 0.000 -394 687 -127.0 98.6 25847.3
1.5 Exp 0.000 -380 689 -143.5 95.7 29761.7
1.5 Sine 0.001 -474 725 -204.3 118.9 55883.6
1.0 Step 0.035 -441 647 -42.6 103.7 12568.0
1.0 Ramp 0.004 -457 706 -182.4 113.4 46143.7
1.0 Exp 0.000 -427 715 -201.1 110.4 52645.8
1.0 Sine 0.011 -477 654 -256.2 116.9 79285.7
0.5 Step 0.524 -460 637 -148.7 181.0 54893.1
0.5 Ramp 0.177 -479 698 -295.1 151.4 110006.7
0.5 Exp 0.001 -488 647 -265.4 112.4 83057.0
0.5 Sine 0.009 -482 624 -310.2 116.0 109704.9

Note: Negative Truncation points indicate transient observations are retained.
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Table 42. AR(2) Truncation Point Errors (,Z, - n,)
AiX(au) Type I Fail Min Max Avg St Dev MSE

ARMA(1,1) Data with 0, = 0.3 and 01 = 0.8
2.0 Step 0.000 -102 20 -53.3 28.8 3673.7
2.0 Ramp 0.000 -238 17 -136.2 54.0 21462.2
2.0 Exp 0.000 -233 8 -112.6 58.3 16081.4
2.0 Sine 0.010 -479 1 -205.1 117.6 55901.8
1.5 Step 0.000 -145 11 -71.7 40.3 6757.8
1.5 Ramp 0.000 -281 -7 -157.6 61.8 28647.6
1.5 Exp 0.000 -287 5 -149.7 67.2 26934.9
1.5 Sine 0.020 -488 0 -276.1 104.4 87138.5
1.0 Step 0.000 -227 5 -103.4 63.8 14776.6
1.0 Ramp 0.000 -360 -15 -195.2 73.8 43543.0
1.0 Exp 0.000 -345 -36 -198.2 65.8 43622.4
1.0 Sine 0.032 -488 -78 -333.7 82.2 118141.3
0.5 Step 0.175 -468 8 -149.6 103.8 33160.2
0.5 Ramp 0.046 -482 -108 -262.7 86.4 76462.5
0.5 Exp 0.000 -408 -73 -287.2 59.5 86012.8
0.5 Sine 0.109 -489 -183 -382.4 70.7 151217.3

ARMA(1,1) Data with 0i = 0.3 and 01 = -0.8
2.0 Step 0.000 -41 737 41.1 124.8 17254.1
2.0 Ramp 0.000 -165 717 -26.6 133.8 18601.0
2.0 Exp 0.000 -135 726 22.8 133.2 18272.7
2.0 Sine 0.000 -215 702 -15.0 146.5 21682.0
1.5 Step 0.000 -81 732 31.7 106.6 12369.2
1.5 Ramp 0.000 -237 715 -40.4 153.8 25294.4
1.5 Exp 0.000 -224 732 -34.3 142.0 21327.7
1.5 Sine 0.000 -265 719 -82.8 157.2 31579.0
1.0 Step 0.000 -281 735 30.7 124.2 16360.0
1.0 Ramp 0.000 -289 738 -77.4 164.0 32889.7
1.0 Exp 0.000 -285 726 -103.2 164.5 37723.1
1.0 Sine 0.000 -324 737 -147.5 190.0 57842.3
0.5 Step 0.107 -448 740 -43.7 183.5 35583.3
0.5 Ramp 0.006 -457 738 -188.5 200.5 75740.0
0.5 Exp 0.000 -348 729 -180.8 195.7 70980.5
0.5 Sine 0.000 -445 734 -226.8 200.8 91777.4

Note: Negative Truncation points indicate transient observations are retained.
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Table 43. AR(2) Truncation Point Errors (io - no)
Ali(av) Type I Fail IM Max Avg St Dev MSE

ARMA(1,1) Data with 01 = 0.8 and 01 = 0.3
2.0 Step 0.000 -2 726 23.4 89.3 8528.1
2.0 Ramp 0.000 -100 711 -13.7 90.9 8453.2
2.0 Exp 0.000 -51 701 19.9 86.6 7895.0
2.0 Sine 0.000 -82 734 9.7 96.3 9374.1
1.5 Step 0.000 -7 709 19.6 76.5 6236.7
1.5 Ramp 0.000 -140 741 -24.7 92.7 9204.8
1.5 Exp 0.000 -139 732 0.0 102.4 10480.5
1.5 Sine 0.000 -195 708 -33.5 121.9 15978.2
1.0 Step 0.000 -4 718 21.9 92.3 8989.9
1.0 Ramp 0.000 -167 721 -42.9 118.7 15937.5
1.0 Exp 0.000 -296 740 -67.5 119.3 18799.5
1.0 Sine 0.001 -256 735 -110.5 132.5 29777.7
0.5 Step 0.000 -332 674 11.8 84.2 7227.8
0.5 Ramp 0.000 -350 722 -120.4 125.2 30183.2
0.5 Exp 0.000 -290 738 -153.4 144.5 44410.2
0.5 Sine 0.000 -326 734 -197.6 158.1 64036.8

ARMA(1,1) Data with 4 1 = 0.8 and 01 = -0.3
2.0 Step 0.000 -224 742 56.6 146.6 24688.3
2.0 Ramp 0.000 -390 738 27.9 171.3 30138.0
2.0 Exp 0.000 -298 738 57.0 155.9 27547.7
2.0 Sine 0.001 -441 742 40.5 153.9 25323.9
1.5 Step 0.001 -73 740 52.9 145.8 24055.8
1.5 Ramp 0.000 -211 731 13.8 168.3 28500.9
1.5 Exp 0.000 -243 741 47.9 153.7 25925.7
1.5 Sine 0.003 -473 744 31.2 180.0 33367.4
1.0 Step 0.006 -276 733 54.4 152.4 26185.5
1.0 Ramp 0.000 -346 739 -2.8 182.6 33343.7
1.0 Exp 0.000 -295 728 -0.6 169.3 28657.3
1.0 Sine 0.003 -478 740 -42.0 205.6 44038.4
0.5 Step 0.005 -346 741 52.7 168.4 31147.2
0.5 Ramp 0.000 -405 725 -72.9 200.8 45636.2
0.5 Exp 0.000 -371 742 -90.9 216.5 55140.1
0.5 Sine 0.002 -471 748 -136.4 241.4 76865.1

Note: Negative Truncation points indicate transient observations are retained.
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with 41 = 0.8 and 01 = -0.3, the algorithm selected good truncation points iL0 since the

errors are on the average are about 50 observations after the completion of the induced

transient.

For the ARMA(1,1) data, the coverage rate is less for the sequence truncated at the

estimated truncation point nio compared to the sequence truncation at the true truncation

point no. As before, coverage decreases as the shift in the mean decreases with the exception

of the exponentially decaying sinusoidal transient. For that transient, low transient values

and high transient values may cancel sufficiently to prevent a significant reduction in coverage

rate. The decaying exponential sinusoidal transient also has a very high rate of passing

Schruben's test for initial bias. The mixture of low and high transient values are apparently

more difficult for that statistical test to detect.

The extent of the coverage decrease for the sequence truncated at the estimated point

appears to depend on the correlation structure in the generated data. For the data sets

with a positive theoretical autocorrelation at lag one (see Table 36), the decrease in coverage

is small. For the same cases, the truncated sequences pass Schruben's test for initial bias

at fairly high rates. Actual discrete-event simulation output sequences generally have high

positive correlation, so these results are promising.

Tables 48 through 51 present the number and size of the batches used in the confidence

interval construction techniques. For each case, these numbers for 1000 sequences truncated

at the true truncation point n0 are also shown. In general, the sequences truncated at the

estimated point has about the same number of batches and batch sizes. For the four cases

with positive autocorrelation at lag one, the case with 01 = -0.3 and 01 = 0.8 has the largest

decrease in coverage. For this case, the number of batches increases dramatically from the

sequences without a transient. The increase in the number of batches causes tight confidence

intervals about a slightly biased mean estimate.

4.6.3 Analysis. The Monte Carlo results indicate that the technique works well for

sequences which display a high positive autocorrelation and significant transients. The al-
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Table 44. AR(2) with Measurement Noise Model Truncation Point ii, Evaluations
Transient [ NOBM OBM Bias Test

A,(oy) Type Fail Coy Half Width [Cov Half Width F(&ý)
ARMA(1,1) Data with 4, = -0.8 and 01 = 0.3

None 0.02 0.94 0.027 ± 0.009 0.95 0.028 ± 0.008 1.00
2.0 Step 0.65 0.65 0.052 ± 0.051 0.75 0.062 ± 0.082 0.24
2.0 Ramp 0.19 0.41 0.089 ± 0.107 0.52 0.101 ± 0.141 0.49
2.0 Exp 0.51 0.39 0.041 ± 0.012 0.57 0.049 ± 0.032 0.31
2.0 Sine 0.01 0.82 0.091 ± 0.105 0.90 0.098 ± 0.099 0.89
1.5 Step 0.68 0.78 0.050 ± 0.035 0.70 0.048 ± 0.039 0.23
1.5 Ramp 0.22 0.33 0.059 ± 0.066 0.46 0.067 ± 0.091 0.57
1.5 Exp 0.43 0.38 0.041 ± 0.038 0.38 0.041 ± 0.038 0.49
1.5 Sine 0.00 0.90 0.090 ± 0.096 0.96 0.096 ± 0.091 0.86
1.0 Step 0.61 0.44 0.042 ± 0.016 0.63 0.050 ± 0.034 0.26
1.0 Ramp 0.34 0.30 0.040 ± 0.026 0.36 0.043 ± 0.042 0.60
1.0 Exp 0.27 0.31 0.037 ± 0.016 0.33 0.038 ± 0.023 0.71
1.0 Sine 0.00 0.76 0.065 ± 0.076 0.98 0.085 ± 0.071 0.86
0.5 Step 0.19 0.28 0.037 ± 0.006 0.28 0.038 ± 0.006 0.67
0.5 Ramp 0.22 0.22 0.035 + 0.005 0.23 0.035 ± 0.006 0.77
0.5 Exp 0.30 0.27 0.034 ± 0.007 0.27 0.034 ± 0.010 0.73
0.5 Sine 0.00 0.80 0.053 ± 0.059 0.97 0.067 ± 0.055 0.87

ARMA(1,1) Data with 01 = -0.8 and 01 = -0.3
None 0.00 0.92 0.041 ± 0.003 0.93 0.041 ± 0.003 0.93

2.0 Step 0.33 0.83 0.048 ± 0.020 0.85 0.049 ± 0.027 0.42
2.0 Ramp 0.15 0.70 0.054 ± 0.046 0.73 0.057 ± 0.062 0.24
2.0 Exp 0.20 0.68 0.050 ± 0.045 0.69 0.051 ± 0.052 0.26
2.0 Sine 0.00 0.86 0.066 ± 0.073 0.91 0.075 ± 0.077 0.58
1.5 Step 0.30 0.82 0.047 ± 0.035 0.86 0.050 ± 0.035 0.42
1.5 Ramp 0.19 0.67 0.045 ± 0.026 0.69 0.046 ± 0.032 0.21
1.5 Exp 0.17 0.54 0.043 ± 0.020 0.54 0.043 ± 0.022 0.10
1.5 Sine 0.00 0.85 0.055 ± 0.055 0.91 0.065 ± 0.061 0.62
1.0 Step 0.28 0.77 0.044 ± 0.027 0.78 0.045 ± 0.024 0.42
1.0 Ramp 0.17 0.57 0.041 ± 0.013 0.58 0.042 ± 0.018 0.16
1.0 Exp 0.15 0.51 0.039 ± 0.011 0.52 0.040 ± 0.016 0.11
1.0 Sine 0.00 0.87 0.051 ± 0.049 0.93 0.057 ± 0.051 0.52
0.5 Step 0.04 0.49 0.040 ± 0.008 0.49 0.040 ± 0.008 0.17
0.5 Ramp 0.04 0.37 0.037 ± 0.006 0.37 0.037 ± 0.006 0.05
0.5 Exp 0.15 0.58 0.038 ± 0.011 0.58 0.039 ± 0.016 0.12
0.5 Sine 0.00 0.87 0.045 ± 0.035 0.91 0.047 ± 0.033 0.75

Note: Since the nominal rates are 0.9, the coverage and bias test accuracies are - ±0.016
for 1000 runs.
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Table 45. AR(2) with Measurement Noise Model Truncation Point ht, Evaluations
Transient [ NOBM OBM Bias Test

Agz(ar) Type Fail Coy Half Width Coy Half Width F(b2)
ARMA(1,1) Data with €, = -0.3 and 01 = 0.8

None 0.12 0.98 0.013 ± 0.004 0.98 0.014 ± 0.003 0.99
2.0 Step 0.79 0.11 0.050 ±0.030 0.16 0.058 ± 0.046 0.00
2.0 Ramp 0.24 0.02 0.077 ± 0.091 0.22 0.098 ± 0.154 0.00
2.0 Exp 0.33 0.00 0.044 ± 0.010 0.07 0.046 ± 0.011 0.00
2.0 Sine 0.02 0.51 0.083 ± 0.123 0.93 0.109 ± 0.097 0.73
1.5 Step 0.85 0.24 0.057 ± 0.016 0.09 0.054 ± 0.011 0.00
1.5 Ramp 0.47 0.04 0.062 ± 0.059 0.20 0.067 ± 0.075 0.00
1.5 Exp 0.75 0.01 0.040 ± 0.021 0.01 0.041 ± 0.025 0.00
1.5 Sine 0.00 0.72 0.065 ± 0.090 0.96 0.092 ± 0.092 0.68
1.0 Step 0.34 0.02 0.048 ± 0.008 0.06 0.049 ± 0.012 0.00
1.0 Ramp 0.45 0.55 0.065 ± 0.041 0.40 0.053 ± 0.028 0.00
1.0 Exp 0.57 0.19 0.043 ± 0.029 0.15 0.040 ± 0.024 0.00
1.0 Sine 0.00 0.58 0.087 ± 0.116 0.99 0.125 ± 0.079 0.72
0.5 Step 0.69 0.02 0.036 ± 0.005 0.08 0.037 ± 0.007 0.00
0.5 Ramp 0.35 0.01 0.035 ± 0.012 0.25 0.043 ± 0.029 0.00
0.5 Exp 0.53 0.00 0.035 ± 0.015 0.02 0.036 ± 0.015 0.00
0.5 Sine 0.00 0.64 0.073 ± 0.080 0.99 0.103 ± 0.049 0.68

ARMA(1,1) Data with 01 = -0.3 and 01 = -0.8
None 0.00 0.88 0.070 ± 0.007 0.88 0.069 ± 0.006 0.85

2.0 Step 0.06 0.85 0.072 ± 0.020 0.85 0.072 ± 0.023 0.76
2.0 Ramp 0.02 0.76 0.071 ± 0.025 0.76 0.071 ± 0.027 0.39
2.0 Exp 0.04 0.73 0.075 ± 0.037 0.72 0.074 ± 0.033 0.26
2.0 Sine 0.00 0.85 0.074 ± 0.035 0.86 0.076 ± 0.038 0.66
1.5 Step 0.06 0.87 0.072 ± 0.027 0.87 0.072 ± 0.025 0.73
1.5 Ramp 0.03 0.72 0.072 ± 0.026 0.72 0.072 ± 0.027 0.27
1.5 Exp 0.03 0.64 0.072 ± 0.028 0.63 0.071 ± 0.025 0.21
1.5 Sine 0.00 0.86 0.071 ± 0.028 0.86 0.073 - 0.035 0.62
1.0 Step 0.09 0.82 0.075 ± 0.037 0.81 0.074 ± 0.033 0.54
1.0 Ramp 0.06 0.65 0.070 ± 0.023 0.64 0.070 ± 0.024 0.21
1.0 Exp 0.03 0.67 0.068 ± 0.020 0.67 0.068 ± 0.020 0.22
1.0 Sine 0.00 0.85 0.068 ± 0.025 0.86 0.070 ± 0.029 0.68
0.5 Step 0.03 0.64 0.070 ± 0.028 0.63 0.070 ± 0.025 0.29
0.5 Ramp 0.05 0.56 0.065 ± 0.019 0.56 0.065 ± 0.018 0.14
0.5 Exp 0.03 0.73 0.065 ± 0.015 0.73 0.064 ± 0.015 0.28
0.5 Sine 0.00 0.85 0.06.5 ± 0.020 0.85 0.066 ± 0.020 0.73

Note: Since the nominal rates are 0.9, the coverage and bias test accuracies are ;t ±0.016
for 1000 runs.
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Table 46. AR(2) with Measurement Noise Model Truncation Point ii. Evaluations
Transient NOBM OBM Bias Test

Ap,(a.) Type Fail Coy Half Width [Cov Half Width F(&')
ARMA(1,1) Data with 01 = 0.3 and 01 = 0.8

None 0.03 0.97 0.020 ± 0.005 0.98 0.020 ± 0.004 1.00
2.0 Step 0.51 0.22 0.057 ± 0.026 0.26 0.059 ± 0.030 0.03
2.0 Ramp 0.17 0.22 0.072 ± 0.109 0.23 0.067 ± 0.088 0.03
2.0 Exp 0.18 0.11 0.046 ± 0.014 0.13 0.047 ± 0.015 0.02
2.0 Sine 0.01 0.57 0.064 ± 0.116 0.84 0.100 ± 0.143 0.65
1.5 Step 0.43 0.13 0.057 ± 0.023 0.17 0.059 ± 0.027 0.02
1.5 Ramp 0.16 0.12 0.056 ± 0.061 0.16 0.059 ± 0.078 0.03
1.5 Exp 0.37 0.12 0.045 ± 0.034 0.14 0.047 ± 0.037 0.03
1.5 Sine 0.01 0.61 0.066 ± 0.119 0.85 0.098 ± 0.128 0.61
1.0 Step 0.46 0.19 0.055 ± 0.017 0.20 0.055 ± 0.018 0.02
1.0 Ramp 0.29 I 0.14 0.050 ± 0.043 0.19 0.053 ± 0.055 0.02
1.0 Exp 0.26 0.22 0.047 ± 0.033 0.18 0.046 ± 0.037 0.01
1.0 Sine 0.00 0.69 0.072 ± 0.127 0.84 0.090 ± 0.125 0.47
0.5 Step 0.39 0.13 0.040 ± 0.008 0.18 0.042 ± 0.010 0.02
0.5 Ramp 0.33 0.19 0.045 ± 0.023 0.30 0.048 ± 0.031 0.00
0.5 Exp 0.20 0.06 0.036 ± 0.016 0.13 0.042 ± 0.021 0.01
0.5 Sine 0.00 0.83 0.079 ± 0.129 0.91 0.093 ± 0.113 0.46

ARMA(1,1) Data with 41 = 0.3 and 01 = -0.8
None 0.00 0.88 0.127 ± 0.020 0.88 0.127 ± 0.018 0.79

2.0 Step 0.00 0.86 0.130 ± 0.027 0.86 0.130 ± 0.025 0.84
2.0 Ramp 0.01 0.83 0.130 ± 0.033 0.82 0.129 ± 0.030 0.56
2.0 Exp 0.01 0.85 0.132 ± 0.033 0.85 0.131 ± 0.032 0.64
2.0 Sine 0.01 0.83 0.133 ± 0.031 0.83 0.133 ± 0.031 0.76
1.5 Step 0.00 0.87 0.129 ± 0.026 0.86 0.128 ± 0.024 0.84
1.5 Ramp 0.01 0.80 0.132 ± 0.042 0.79 0.130 ± 0.034 0.49
1.5 Exp 0.03 0.77 0.136 ± 0.051 0.77 0.134 ± 0.042 0.40
1.5 Sine 0.00 0.83 0.132 ± 0.033 0.84 0.131 ± 0.032 0.70
1.0 Step 0.01 0.86 0.130 ± 0.028 0.86 0.129 ± 0.027 0.81
1.0 Ramp 0.01 0.77 0.133 ± 0.047 0.77 0.132 ± 0.043 0.36
1.0 Exp 0.01 0.73 0.133 ± 0.045 0.73 0.132 ± 0.043 0.30
1.0 Sine 0.00 0.85 0.129 ± 0.031 0.85 0.128 ± 0.031 0.62
0.5 Step 0.08 0.76 0.138 ± 0.055 0.76 0.136 ± 0.050 0.42
0.5 Ramp 0.08 0.68 0.133 ± 0.053 0.68 0.131 ± 0.050 0.25
0.5 Exp 0.02 0.75 0.125 ± 0.040 0.75 0.124 ± 0.035 0.29
0.5 Sine 0.00 0.84 0.122 ± 0.031 0.84 0.121 ± 0.031 0.76

Note: Since the nominal rates are 0.9, the coverage and bias test accuracies are P ±0.016
for 1000 runs.
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Table 47. AR(2) with Measurement Noise Model Truncation Point ii,o Evaluations
Transient NOBM T OBM Bias Test

Aj.v(a,) Type Fail Coy Half Width I Coy Half Width F(&f)
ARMA(1,1) Data with 1 = 0.8 and 01 = 0.3

None 0.01 0.86 0.169 + 0.046 0.85 0.164 + 0.039 0.90
2.0 Step 0.01 0.85 0.170 ± 0.047 0.85 0.166 ± 0.040 0.90
2.0 Ramp 0.02 0.84 0.168 ± 0.047 0.83 0.165 + 0.042 0.81
2.0 Exp 0.01 0.85 0.169 ± 0.048 0.85 0.165 ± 0.042 0.91
2.0 Sine 0.01 0.83 0.172 ± 0.054 0.83 0.170 ± 0.053 0.89
1.5 Step 0.01 0.86 0.168 ± 0.045 0.84 0.164 ± 0.040 0.93
1.5 Ramp 0.02 0.82 0.170 ± 0.051 0.81 0.168 ± 0.045 0.77
1.5 Exp 0.04 0.81 0.175 ± 0.056 0.80 0.172 ± 0.053 0.71
1.5 Sine 0.03 0.82 0.182 ± 0.055 0.83 0.183 + 0.056 0.81
1.0 Step 0.01 0.84 0.169 ± 0.049 0.83 0.165 ± 0.042 0.93
1.0 Ramp 0.05 0.81 0.176 ± 0.064 0.80 0.172 ± 0.053 0.62
1.0 Exp 0.10 0.78 0.193 ± 0.098 0.77 0.188 + 0.078 0.42
1.0 Sine 0.02 0.86 0.181 ± 0.052 0.86 0.181 ± 0.051 0.76
0.5 Step 0.03 0.84 0.172 ± 0.070 0.83 0.169 ± 0.062 0.86
0.5 Ramp 0.07 0.74 0.199 + 0.101 0.75 0.194 ± 0.095 0.34
0.5 Exp 0.04 0.75 0.186 ± 0.080 0.74 0.183 + 0.073 0.35
0.5 Sine 0.01 0.85 0.170 ± 0.049 0.85 0.169 ± 0.046 0.67

ARMA(1,1) Data with 41 = 0.8 and 01 = -0.3
None 0.02 0.87 0.315 ± 0.087 0.86 0.306 ± 0.075 0.83

2.0 Step 0.02 0.82 0.319 ± 0.101 0.82 0.311 ± 0.097 0.86
2.0 Ramp 0.02 0.82 0.315 ± 0.115 0.82 0.311 ± 0.113 0.75
2.0 Exp 0.02 0.85 0.315 ± 0.097 0.84 0.307 + 0.087 0.86
2.0 Sine 0.01 0.84 0.334 ± 0.229 0.83 0.329 ± 0.236 0.82
1.5 Step 0.02 0.84 0.314 ± 0.094 0.83 0.308 ± 0.096 0.86
1.5 Ramp 0.01 0.80 0.324 ± 0.147 0.80 0.318 ± 0.128 0.71
1.5 Exp 0.03 0.82 0.322 ± 0.156 0.81 0.313 ± 0.135 0.81
1.5 Sine 0.02 0.82 0.338 ± 0.198 0.81 0.336 ± 0.213 0.84
1.0 Step 0.02 0.84 0.318 ± 0.105 0.83 0.310 ± 0.096 0.85
1.0 Ramp 0.04 0.81 0.324 ± 0.125 0.80 0.319 ± 0.119 0.60
1.0 Exp 0.06 0.80 0.339 ± 0.156 0.80 0.333 ± 0.135 0.49
1.0 Sine 0.02 0.83 0.342 ± 0.172 0.82 0.344 ± 0.197 0.72
0.5 Step 0.04 0.82 0.325 ± 0.143 0.82 0.317 ± 0.128 0.78
0.5 Ramp 0.05 0.7" 0.343 ± 0.158 0.77 0.337 ± 0.147 0.38
0.5 Exp 0.04 0.75 0.341 ± 0.148 0.74 0.335 + 0.141 0.36
0.5 Sine 0.01 0.83 0.315 ± 0.108 0.83 0.317 ± 0.126 0.69

Note: Since the nominal rates are 0.9, the coverage and bias test accuracies are -ý ±0.016
for 1000 runs.
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Table 48. Fishman's Number and Size of Batches for AR(2) with Measurement Noise Model
Transient Number of Batches Size

Aty(ay) Type ILM 6M JB &B

ARMA(1,1) Data with 1 = -0.8 and 01 = 0.3
None 90.69 121.40 23.92 16.74

2.0 Step 96.60 145.20 32.11 24.15
2.0 Ramp 238.32 253.60 58.63 62.84
2.0 Exp 307.29 237.96 21.75 27.34
2.0 Sine 174.48 214.16 26.73 20.71
1.5 Step 137.29 192.70 34.69 26.71
1.5 Ramp 322.00 255.01 38.84 57.14
1.5 Exp 410.30 206.82 9.26 22.45
1.5 Sine 135.80 185.58 27.30 18.64
1.0 Step 274.15 239.78 24.47 27.87
1.0 Ramp 385.35 236.77 17.30 38.13
1.0 Exp 398.26 213.89 8.32 21.59
1.0 Sine 111.08 166.99 35.51 25.97
0.5 Step 478.40 186.38 4.38 6.58
0.5 Ramp 433.29 227.19 6.32 14.72
0.5 Exp 389.66 244.51 7.57 13.80
0.5 Sine 143.93 206.44 32.13 24.42

ARMA(1,1) Data with 1S= -0.8 and 01 = -0.3
None 445.35 117.92 2.76 2.45

2.0 Step 344.62 206.18 14.16 22.41
2.0 Ramp 406.93 218.30 27.53 51.60
2.0 Exp 433.84 184.01 16.68 40.21
2.0 Sine 304.61 250.19 20.06 24.34
1.5 Step 356.33 205.22 15.04 25.89
1.5 Ramp 459.19 190.77 17.07 41.27
1.5 Exp 490.26 163.07 10.64 31.62
1.5 Sine 335.32 261.54 20.82 27.09
1.0 Step 437.35 153.90 8.25 22.77
1.0 Ramp 509.72 170.01 10.79 32.45
1.0 Exp 545.61 134.65 5.01 18.48
1.0 Sine 389.81 273.28 18.36 26.69
0.5 Step 537.70 140.19 3.62 12.71
0.5 Ramp 612.63 122.00 2.95 9.62
0.5 Exp 553.72 182.83 9.57 29.77
0.5 Sine 459.79 269.77 12.75 19.98
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Table 49. Fishman's Number and Size of Batches for AR(2) with Measurement Noise Model
Transient Number of Batches Size

Ajv(ao1 ) Type M Am 61UM AB &B

ARMA(1,1) Data with 01 -0.3 and 01 = 0.8
None 24.50 11.57 48.28 18.11

2.0 Step 366.52 212.91 12.89 20.88
2.0 Ramp 315.95 229.52 38.00 59.42
2.0 Exp 358.33 183.50 8.70 17.56
2.0 Sine 68.30 183.98 43.91 23.37
1.5 Step 353.73 210.38 15.26 24.89
1.5 Ramp 310.38 238.02 35.65 54.95
1.5 Exp 314.34 169.43 6.14 14.60
1.5 Sine 386.59 381.52 25.54 29.87
1.0 Step 422.17 185.46 6.03 13.71
1.0 Ramp 138.28 197.03 76.45 61.65
1.0 Exp 194.43 195.40 33.19 51.17
1.0 Sine 74.44 165.40 46.06 22.38
0.5 Step 237.27 91.12 8.80 14.75
0.5 Ramp 113.16 89.64 55.10 63.32
0.5 Exp 324.57 253.90 13.95 32.21
0.5 Sine 107.26 209.44 43.03 22.45

ARMA(1,1) Data with 01 -0.3 and 01 = -0.8
None 392.19 140.37 3.23 2.52

2.0 Step 367.54 156.43 5.53 11.69
2.0 Ramp 360.92 185.44 9.15 23.06
2.0 Exp 332.24 189.78 12.80 29.37
2.0 Sine 308.30 209.98 11.59 17.91
1.5 Step 360.68 158.45 5.54 12.74
1.5 Ramp 345.85 193.91 12.43 29.67
1.5 Exp 341.26 199.93 12.69 29.50
1.5 Sine 325.56 217.58 10.78 15.93
1.0 Step 343.03 170.85 9.70 25.60
1.0 Ramp 358.47 202.22 11.41 27.81
1.0 Exp 374.15 203.48 9.36 22.79
1.0 Sine 343.66 223.21 9.92 14.76
0.5 Step 384.52 190.47 9.06 24.39
0.5 Ramp 397.15 214.06 8.77 21.50
0.5 Exp 412.07 206.51 6.83 15.81
0.5 Sine 385.97 227.19 8.28 13.56

158



Table 50. Fishman's Number and Size of Batches for AR(2) with Measurement Noise Model
Transient Number of Batches Size

AjLy(ou,) Type I'M EM AIB GB

ARMA(1,1) Data with i1 0.3 and 01 = 0.8
None 37.77 19.16 33.92 17.63

2.0 Step 666.50 376.69 6.16 12.44
2.0 Ramp 434.07 406.44 24.75 45.19
2.0 Exp 429.11 335.65 8.37 16.26
2.0 Sine 238.47 314.80 31.83 32.00
1.5 Step 695.71 399.02 6.59 14.33
1.5 Ramp 442.89 388.28 16.91 37.54
1.5 Exp 411.77 335.44 10.43 23.49
1.5 Sine 426.70 541.72 27.98 30.15
1.0 Step 591.16 453.60 12.54 22.39
1.0 Ramp 303.04 261.93 25.03 44.26
1.0 Exp 314.71 373.03 29.09 48.94
1.0 Sine 514.44 49C 38 20.13 26.01
0.5 Step 242.58 128.39 11.71 19.31
0.5 Ramp 147.25 178.25 59.17 63.17
0.5 Exp 314.87 372.-4 35.96 55.82
0.5 Sine 363.92 434.28 24.09 25.39

ARMA(1,1) Data with 0= 0.3 and 01 = -0.8
None 142.83 63.41 8.87 5.90

2.0 Step 141.27 63.18 8.61 6.30
2.0 Ramp 136.71 69.59 11.26 11.66
2.0 Exp 136.97 66.65 10.11 9.85
2.0 Sine 125.21 67.22 12.43 12.07
1.5 Step 146.11 63.60 8.27 5.47
1.5 Ramp 130.87 66.88 12.86 16.96
1.5 Exp 125.44 70.52 15.14 21.36
1.5 Sine 121.15 67.49 13.81 13.33
1.0 Step 142.13 64.53 8.83 7.02
1.0 Ramp 129.61 73.43 16.36 24.96
1.0 Exp 124.21 71.78 18.04 26.97
1.0 Sine 120.67 67.65 14.55 14.03
0.5 Step 12".29 71.98 16.78 26.35
0.5 Ramp 126.95 75.69 21.b3 33.44
0.5 Exp 139.,A1 73.22 14.09 19.27
0.5 Sine 139.16 72.51 12.76 11.73
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Table 51. Fishman's Number and Size of Batches for AR(2) with Measurement Noise Model
Transient Number of Batches Size

Alty(ay) Type A1M GM AIB &B

ARMA(1,1) Data with 41 = -0.8 and 01 0.3
None 50.89 18.10 23.39 12.54

2.0 Step 50.68 18.47 22.82 12.09
2.0 Ramp 49.75 19.07 24.63 13.52
2.0 Exp 50.69 18.76 23.43 13.58
2.0 Sine 48.56 20.69 26.07 16.34
1.5 Step 51.58 18.44 22.66 12.56
1.5 Ramp 48.55 20.16 26.26 15.30
1.5 Exp 47.21 19.70 26.53 15.83
1.5 Sine 41.01 20.72 32.92 18.79
1.0 Step 50.68 19.35 23.27 12.99
1.0 Ramp 45.01 20.85 29.87 18.18
1.0 Exp 39.93 21.57 37.75 26.96
1.0 Sine 42.28 18.77 32.54 18.32
0.5 Step 49.88 418.77 24.17 14.87
0.5 Ramp 37.63 23.93 50.21 40.67
0.5 Exp 39.09 23.19 47.43 38.47
0.5 Sine 45.40 20.48 33.14 20.11

ARMA(1,1) Data with 1'= 0.8 and 01 = -0.3
None 49.29 17.92 24.44 13.37

2.0 Ramp 48.12 17.85 23.97 13.41
2.0 Exp 48.99 18.29 22.94 13.10
2.0 Sine 48.18 18.05 24.06 14.15
1.5 Step 49.05 17.27 22.68 12.41
1.5 Ramp 46.48 19.65 26.51 16.93
1.5 Exp 48.32 17.86 23.45 13.90
1.5 Sine 46.40 19.05 25.68 15.44
1.0 Step 47.99 17.97 23.50 13.17
1 0 Ramp 44.86 19.98 28.48 18.81
1.0 Exp 42.77 20.36 31.03 21.98
1.0 Sine 43.03 17.88 29.08 16.59
0.5 Step 47.92 18.71 23.95 15.75
0.5 Ramp 40.77 22.33 40.37 34.8C
0.5 Exp 41.02 23.04 41.88 36.90
0.5 Sine 46.05 20.39 30.69 19.52
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gorithm does not perform as well on sequences that have slow shifts or quick large shifts

from the transient to steady state. One possible explanation for this perfomance may be

that the scalar k is consistently estimated to be greater than 0.7. As the scalar k nears one,

the first element of the Kalman filter gain also nears one. The closer the scalar k is to 1.0,

the more the Kalman filter disregards the model state estimate and uses the last data for

the best state estimate. If the scalar k actually equals one, the predicted estimate is the

last observations propagated by the state transtition matrix. The result of a large Kalman

filter gain is that the state estimates quickly adjust to changes in the measurement sequence.

With a high Kalman filter gain, a jump discontinuity in the sequence is only apparent in the

residual sequence as a single residual at the time of the discontinuity and of the magnitude

of the jump shift. For this application, the filter's adjustment hides the effects of processing

transient data. When transient data is processed, the filter adjusts because of the high gain,

and the residuals remain relatively small. Without a significant change in the residuals, the

cusum algorithm has no means to detect a change.

When applied to output of waiting times from a simulation of an M/M/1 queue, k is

e.-timated to be 1.0. Therefore, the algorithm adjusts to every shift in the output sequences.

The residuals are just the difference between sequential values of the original output sequence.

Thus, for that sample of simulation output, the residual monitoring algorithm is unsuccessful.

One proposed solution is to run two filters, one with the estimated gain and another filter

with a gain of zero. Perhaps by monitoring the rate of divergence of the filter with zero gain,

the transient can be identified. Another potential approach may be to employ a bank of

filters, like the MMAE parameter estimation technique, around the estimated steady-state

mean. By monitoring the a posteriori probability of the filters' parameters, perhaps a good

truncation point can be determined. This approach is developed and tested in the next

chapter.
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4.7 Summary

Data truncation is a commonly accepted method of dealing with initialization bias in

discrete-event simulation. An algorithm for determining the appropriate initial-data trunca-

tion point for univariate output is studied. The technique entails beginning at the end of the

simulation output and estimating a steady-state output model in a Kalman filter framework.

Using the estimated model, the Kalman filter is applied and the residuals are monitored us-

ing a cumulative sums (cusum) quality control algorithm. The estimated truncation point

is selected when the cusum algorithm indicates the Kalman filter residual sequence is "out-

of-control".

A Monte Carlo analysis using data sets generated from AR(2) and ARMA(1,1) with

induced transients is used to evaluate the technique. The performance measures include the

ability to construct reliable confidence intervals for the mean response and passing Schruben's

test for no initialization bias. The test cases selected probably have significantly more vari-

ability than actual discrete-event simulation output. Reasonable results are obtained for

sequences with positive autocorrelations at lag one. Obviously, detecting small changes in

the process mean is difficult.

The residual monitoring algorithm does not preform well in a limited test on actual

simulation output. The simulation output is of waiting times for an M/M/1 queue. The

parameter estimation step results k_ k fo 1.0. Thus the resulting Kalman filter adapted

to every change in the output sequence with no significant pattern in the residuals. The

technique is unable to detect the transient observations. The next chapter explores a different

approach for the univariate single-run steady-state identification problem.
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V. Single-Run Steady-State Identification: Multiple Model Adaptive

Estimation (MMAE) Approach

5.1 Introduction

The truncation-point identification approach proposed in this chapter is based on Mul-

tiple Model Adaptive Estimation (MMAE). After estimating the steady-state Kalman filter

parameters, the MMAE technique is applied to calculate a time-varying estimate of the out-

put mean. A truncation point is selected when the MMAE mean estimate is "near" the

steady-state mean estimate.

In the MMAE technique, the data sequence is processed through a bank of Kalman fil-

ters, each with a different set of parameters. After processing an observation, the probability

of each filter having the correct parameters is calculated based on the filter residuals. The

MMAE time-varying estimate of the parameters is calculated with a probabilistic weighted

average of the filter parameters. MMAE is introduced and discussed in Section 3.4.2.

In this application, the steady-state Kalman filter parameters are estimated using

the correlation technique [66]. The filters in the MMAE bank share the same steady-state

parameter estimates, except they have different mean estimates. Starting at the beginning

of the sequence, the data sequence is processed forward through the MMAE bank of filters.

After processing each observation, the MMAE filter probabilities are updated and a new

MMAE mean estimate based on all the previous data is calculated. Effective steady-state

output may be detected in two ways. First, the filter probability for the filter using the

steady-state mean estimate should be near one. Second, when the MMAE mean estimate is

within a small tolerance of the steady-state mean estimate for a predetermined number of

consecutive observations, the truncation point can be selected.

In related research, Howard [37] uses MMAE to construct confidence intervals for the

univariate output of discrete-event simulations. He tests three different confidence interval

techniques. The first technique is based on the estimated steady-state parameters and vari-

163



ances. The second confidence interval technique uses the MMAE estimate of the variance for

the mean estimator, and the final technique is based upon the final MMAE filter probabili-

ties. Since Howard uses the same Kalman filter model formulation, this analysis of MMAE

characteristics provides some insight to Howard's confidence interval results.

Although the same Kalman filter formulation as used in Chapter IV is applied, a

different parameter estimation scheme is used. After discussing parameter estimation, the

MMAE truncation approach is developed, and a Monte Carlo analysis follows. This chapter

is divided into the following major sections: parameter estimation, MMAE implementation,

and Monte Carlo Analysis.

5.2 Parameter Estimation

In this section, the model formulation is reviewed. The parameter estimation with the

correlation technique is developed. The accuracy of the variance estimates is analyzed.

In this chapter, the AR(2) with measurement noise formulation, from Section 4.2.1, is

applied. Using the same system matrices shown in Equation (45), the simulation output y,,

is modeled as the sum of a constant mean, AR(2) correlated noise, and independent white

measurement noise. The four parameters that must be estimated are the steady-state mean

AY, the autoregressive coefficients 01 and 02, and the first element of the Kalman filter gain

k. Based on estimates of these parameters and the sample residual mean, the dynamic noise

variance Qd, measurement noise variance R, and the Kalman filter state estimate variances

P- and P+ can be estimated, if desired.

In Chapter IV, the four unknown parameters are estimated using least squares esti-

mation. The data is processed from the end of the simulation output until the least squares

estimates pass a heuristic criterion. In contrast, this approach, like Schruben's [87], assumes

that the last half of the data sequence has effectively attained a stationary steady-state

output distribution. Therefore, using the fixed sample size of half the number of data, the

steady-state parameters are estimated.
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Using Mehra's [66] correlation technique for parameter estimation, the first three the-

oretical lagged autocorrelations for an AR(2) with measurement noise model are equated

with the sample autocorrelations. In this formulation, the AR(2) noise term ý(t,,) equals the
first element of the state estimate, x1 (t-,) = t(t,,). The state vector x(t,) is a random vector

with mean of k(tn) and variance of P-. Since the measurement noises are independent of

the state estimates and independent in time, the lagged simulation output autocovariances

are the same as for the AR(2) dynamics state estimate:

YY(1) = -Yi,(1) = , -- i,(0)

2yv(2) = 2) = 014(l) + 02NI(O) -_- y(0) + 02-f4(0)

-'y(3) = -y,(3 ) = 1-y?,(2 ) + 02_Yý(1)

The variance -y4(0) equals the variance of the first element of the state estimate PfJ. The

variance of the simulation output, shown in Equation (55), can be expressed as the variance of

the first element of the state estimate plus the measurement noise variance, %y(0) = Pj + R.

The ratio 21(0), or equivalently P'4+, is seen to equal the unknown scalar k by Equation (48)

on page 91. Dividing the autocovariances by the variance -y(O) results in the theoretical

autocorrelations py(i). After substituting in the scalar k, the autocorrelation equations are

Py(l) =

pY(2) = 'p11(l) + 0 2k (62)

pY(3) = 01py(2) + q2p,(l)

Using these relationships, a quadratic equation for 01 can be derived. Solving the first two

autocorrelations in Equation (62) for k results in

k = pY(l)- 02Py(l) _ py( 2 ) - oip•(l)
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Cross multiplying and substituting in the relationship from the third autocorrelation,

42 = py(3)-.*, p(2) results in
p,(i)

O1py(2) - Spy,(1) =2py(l) - 02p,(1)

-(p3-p2 ))(l) - .0(Pt(3)--iP(2)p(1)

PY(3) - O1pv( 2 ) (4(3)-2Oip,(2)p,(3)+4'p,(2))

All the terms are moved to one side of the equation and grouped terms in powers of q1:

P ()02_ pv(2 022pv(2)pv(3)Y (1)¢2 p() + 01 - 2py(2)01 + py(3(3) - ) 0
pY(1) I ,(1) P,(1)

The actual parameter estimates for ý1, 42, and k are calculated using the sample

autocorrelations. Using the last half of the output sequence, the steady-state output mean

AY is estimated with the sample mean,

2 N

N-2 N y" (63)
n=j-+1

The sample autocorrelations ry(i) at lag i are calculated with

EN-i

r,(i) = ~Z4=_+1(. - 9)(Y.+, - 9)T• _,u ) (64)

Substituting the sample autocorrelations, a quadratic equation in terms of 4, is deter-

mined:

(r(1) - rj() + (2ry(2)r,(3) - 2r,(2) + (r(3) ) 0 (65)

Using the solutions for a quadratic equation, two estimates of 4, may be available. For each

quadratic solution for ý1, the third autocorrelation equation is used to estimate the second

autoregressive coefficient, 42 = r,(3)--Ir,(2) In an effort to minimize the numerical error, the
r,,(i)
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Table 52. Correlation Technique Parameter Estimation Summary

PY €1 €1 ¢2 ¢2 k k

10.00 10.00 0.32 0.60 0.63 0.12 0.30 0.27 0.11 0.57 0.80 0.05

pair of autoregressive parameters (01, 02) which minimizes Iry(3)-Oiry(2)-02r,(1)I from the

third autocorrelation equation is selected. (In a test of 1000 runs, the truncation algorithm

using the other pair of estimates obtained very similar, but slightly inferior, results.) Using

these estimates for the autoregressive parameters, k = (1-2)ry•() from the autocorrelation

equation for lag one. The resulting estimates of AV I 4 ), 42 and k are the correlation technique

estimates.

Based on the estimates, the gain and variances can be determined. Using Equation (51)

the Kalman filter gain K is calculated. The estimation of the noise and state variances

(Qd, R?, P-, and P+) is the same as described in Section 4.3.3. However, the bias in the

estimation of k affects the variance estimates, as demonstrated below.

As a test of this estimation scheme, this correlation technique is applied to 3,000

generated data sequences. The model for the generated data is an AR(2) with measurement

noise with autoregressive coefficients of 01 = 0.6 and 02 = 0.3, dynamics noise variance

Qd = 1.0, and measurement noise variance R = 1.0. For each generated sequence, the

parameter estimates are based on 1,000 steady state observations. As seen in Table 52, the

estimates of the mean and the autoregressive coefficients are fairly accurate; however, the

estimate of the scalar k is significantly in error. Since the value of the estimate k is integral

to the estimation of the noise variances (See Section 4.3.3), these calculations are completed

twice; once with the estimated scalar k and again with the true k. Table 53 shows that

the biased estimate k induces significant error into the noise variance estimates Qd and k?.

Howevte, if k can be accurately estimated, the noise variance estimates are also accurate.

Most estimation schemes for Kalman filter parameters, such as MLE, MMAE, and
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Table 53. Variance Estimation Summary

Qd Od R R v &

Estimated k 1.00 1.68 0.18 1.00 0.48 0.13 2.27 2.80 0.39
True k 1.00 1.01 0.08 1.00 1.00 0.05 2.27 2.33 0.27

Table 54. Sum of Squared Residuals for Various Scalar k
Estimated True

]cAY ý-1o0o ý2 %v Chang ,-2,0 2

E2 20 20=0 0 r % Change r,, % Change
0.0 104,472.8 124.6 104,729.6 125.2
0.1 65,545.0 40.9 64,423.2 38.5
0.2 54,414.0 17.0 53,718.6 15.5
0.3 49,763.7 7.0 49,355.6 6.1
0.4 47,620.5 2.4 47,397.2 1.9
0.5 46,711.8 0.4 46,615.6 0.2
1.6 46,506.4 0.0 46,502.8 0.0
0.7 46,744.9 0.5 46,812.8 0.7
0.8 47,286.4 1.7 47,411.9 2.0
0.9 48,047.6 3.3 48,221.6 3.7
1.0 48,978.6 5.3 49,194.9 5.8

Note: True k = 0.57.

least squares, are based on functions of the squared residuals. In an effort to assess the

ambiguity in the estimation of the scalar k, one sequence of 20,000 steady-state observations

is examined. The sequence was generated with an AR(2) with measurement noise model.

The sum of squared residuals are calculated for each value of the scalar k varied at increments

of 0.1 over its feasible range of zero to one. The first set of columns for the sum of squared

residuals in Table 54 is calculated with the parameter estimates of A = 10.15 (ILI = 10.0),

€i = 0.595 (€1 = 0.6), and €2 = 0.291 (02 = 0.3). Even with these relatively accurate

parameter estimates, the effect of the scalar k is a very small percentage change in the sum

of 20,000 residuals over most of the feasible region. To ensure that the estimation errors of the
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other parameters are not reducing the effect of the variation in k, the test is conducted again

using the true parameters except for k. Even when fixing the parameters which generated

the data to their true values, the effect of varying k is minimal for most of the feasible range.

The length of this data sequence is ten times greater than the simulation output sequences

tested in this research. Thus, the value of k may not be estimated accurately with a limited

number of observations available in many simulation applications.

Howard [37] in his confidence interval techniques uses a slightly different approach to

estimating the parameters. He uses the first two correlations to estimate the autoregressive

coefficients assuming a value for the scalar k. A linear search for k between its bounds

of zero and one is applied to minimize the sum of squared residuals. Howard applies the

the same equations to calculate the variance as the results in Table 53. In his tests, the

scalar k is overestimated. Thus, the dynamics noise variance generally is overestimated and

the measurement noise variance is underestimated. These biased variance estimates are the

basis of the first confidence interval technique Howard tested. Probably because of the bias

in the estimation of k, the confidence interval technique does not perform as well as other

techniques.

Table 54 indicates that the value of k has a minor impact on the sum of squared

residuals for this very long sequence. The implication is that k may not be estimated

accurately with a limited number of observations. In the opposite view, the value of k does

not significantly degrade the performance of the Kalman filter. Perhaps the value of k may

be arbitrarily set to achieve desired filter performance characteristics.

Using the above estimation scheme based on the correlation technique, estimates of

the mean, the autoregressive coefficients, and the scalar k are obtained with only two passes

through the data sequence. Using these estimated parameters, the last half of the data

sequence is processed through the estimated steady-state Kalman filter. The mean residual
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squared error is used as an estimate of the residual variance:

TN
HPH +R=2 r2 (66)

2

With these estimates, a bank of Kalman filters can be set up, and MMAE may be applied.

5.3 Multiple Model Adaptive Estimation (MMAE) Implementation

This section describes the application of MMAE to the problem of steady-state identi-

fication. The implementation issues, particularly the appropriate magnitude of the scalar k,

are discussed. The section identifies two bases for determining that steady-state observations

are being processed.

MMAE is introduced in Section 3.4.2 as a parameter estimation technique. In MMAE,

a bank of Kalman filters, each with a different set of parameters, is run through the data

sequence. After processing each observation, the probability of each filter having the cor-

rect parameters is calculated with Equation (36). Using the filter probabilities, an MMAE

estimate of the unknown parameters is determined with Equation (39) with conditional

covariance matrix of the estimated parameters calculated with Equation (40).

In this application, the steady-state system parameter estimates, calculated with the

correlation technique, are used in the MMAE bank of Kalman filters. However, each filter

is based on a different mean estimate. Thus, the MMAE filter probabilities and estimates

give indication to changes in the mean of the data sequence.

Application of the MMAE approach involves determination of the following:

"* Number and spacing of parameter estimates in the MMAE bank

"* Value of the Kalman filter scalar k

"* Filter prior probabilities, pl(to) in Equation (36)

"* Determining if and when to reset the filter probabilities pi(t.)
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* Establishing rules to declare steady-state by selecting h 0

As Howard [37, 39] reports, these issues can be critical to successfully applying MMAE

to simulation output. The issues are difficult to resolve since their effects interact in the

performance of the MMAE technique. Each of these issues is addressed in the following

sections.

5.3.1 Number and Spacing of Filters. While in some MMAE applications many fil-

ters are incorporated into the bank, the filters in this application are intended to signal three

possibilities about the output sequence: a downward bias, an upward bias, or no bias. The

objective is to truncate the initial biased data that significantly affect the mean estimator.

Therefore, in this application, detecting biases of different sizes is important, but not esti-

mating the magnitude of a bias. The selected bank consists of three filters, one centered on

the steady-state mean estimate and the others spaced above and below.

The spread between the filter means also influences the MMAE filter probabilities,

and hence the MMAE mean estimates. Let the steady-state mean based on the last half

of the data be represented by 9. The mean estimates in the three filters are Aj = 9 + 6j

where 6i is negative for the low filter, zero for the center filter, and positive for the high one.

The effect of spacing is examined with k set equal to zero and equal to one. These values

evaluate the possible range of the filter gains. k = 0 means the Kalman filter relies only

on the dynamics model and disregards measurement updates. In contrast, k = 1.0 means

that the state estimates are based on the propagation of the last two measurements. In both

cases, the filter parameters need to be spaced far enough apart to differentiate between the

filters' residuals. The actual spacing necessary is a function of the variation in the simulation

output being processed.

First, the Kalman filter residuals are examined with no measurement updates. If

k =0, the Kalman filter gainK= [ ] by Equation (51). Assuming stationary estimates

for AR(2) coefficients 4 i and 42, without measurement updates, the Kalman filter state
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estimates i(t-) and k(t+) decay to zero vectors. For each filter, the measurement z- is the

data Yn minus that filter's mean IL. For each of three filters, the residual at time tn is

r. = z3- HH (t,)

= n- IA

= y,n -9 -6

The data yn and the estimated steady-state mean g are the same for each filter. Each filter's

residuals are determined by the variation in Yn and the size of 6j. Since the relative magni-

tudes of the filter residuals determine the MMAE filter probabilities, the size of 6j compared

to the variation in yn may affect the stability of the filter probabilities. Relatively stable

filter probabilities make the MMAE mean estimate smoothly progress as more observations

are processed. Therefore 6j should probably be large compared to ay.

Similarly, the MMAE filter parameters should be widely spaced when the Kalman

filters' estimates rely extensively on the measurements. For k = 1, the Kalman filter gain

K = f by Equation (51). From Equations (22), (25) and (45), the corresponding state
0

t+ Z -1 andic~t) ¢lZn_j + ¢2n2 Th

estimates for the jth filter are xj(t n- 1 ) = - and *(t•) . The[ j
Zn -- 2 Zn -

residuals for each of the filter are

r3 =z3 -H itn1l

zn ^ J ^

(Yn - i4) j-- -2Zn_2

=" (Yn -- •jy) -- ýl(Yn-1 -- fj)- 2(Yn-2 -- I£J)

=" (Yn -- ff- •)-- (Yn-1 -l t • -- (•2(Yn-2 - f- 3

=- (Yn -- Y)--I(Yn-1 -- 9) -- ý2(Yn-2 -- i) -- (I -• - 2•

The last three observations minus the steady-state mean estimate are the same for each

filter. For stationary AR(2) processes, the factor (1 - ýI - 42) is bounded between 0 and 4.

Withk = 1, the spacing between filters 6, must be sufficiently large to distinguish between
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the different filters' residuals.

Whether k = 0 or k = 1, the differences between the filter means need to be sufficiently

large to result in significant difference in the filter residuals, and hence, the MMAE filter

probabilities. If the filter means are too close together, the variation in the output sequence

causes the probability to fluctuate between filters. If the filters are spread too far apart,

regardless of the transient, the significant probability remains with the center filter.

In a Monte Carlo analysis, two rules for determining the filter spread are considered

Initially, the filters are spread based on the variation in the filter residuals. Using tLX

estimated steady-state parameters and the last half of the output sequence, the residual

mean square error is calculated, HP-HT + R- = 2 ,FN +Q r.2% The filter spread of 6j
T3[HP-H + R]i is 'k-ested initially. However, the filter parameter range that worked for the

generated time-series models is not adequate with simulation output of an M/M/1 queue.

The magnitude of the residuals can vary depending on how well an AR(2) with measurement

noise model can fit the output sequence. Since the different filter means are used to detect

changes in the output sequence, the variation of the output, rather than the residuals, seems

to provide a better indication of the appropriate filter spacing. Since no reliable variance

estimate for the output sequence, oy, is readily available, the filters are spread based on the

minimum and maximum data values in the last half of the output sequence. The lower and

upper filters are positioned at 90 percent of the distance between the estimated mean and

the respective extreme data values.

In this subsection, the number of filters for the MMAE bank is choosen to be three. The

filters' means are based on th2 estimated mean and either the residual standard deviation or

the extreme simulation output values. The next subsection investigates the effect of varying

the magnitude of the Kalman filtcr gain.

5.3.2 Kalman Filter Gain. In this subsection, the effect on the MMAE estimates

of the Kalman filter gains of different maguitudes are examined. The investigation has

two purposes. The first is to select the value of k, which determines the magnitude of the
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Figure 13. Sample AR(2) with Measurement Noise Data Sequence
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Kalman filter gain, that results in good performance of the MMAE technique. The second

objective is to identify MMAE estimates that with an associated criteria may constitute a

good truncation-point selection algorithm. The MMAE filter probabilities, state estimates,

residuals, MMAE mean estimates and variances are considered. The MMAE filter probabil-

ities and MMAE mean estimates are selected as potential indicators for a truncation-point

selection algorithm.

In investigating the effects of various Kalman filter gains, one data sequence is used

extensively. The sequence, shown in Figure 13, was generated from an AR(2) with mea-

surement noise model using the following parameters; autoregressive coefficients 01 = 0.6,

02 = 0.3, dynamics noise variance Qd = 1.0 and measurement noise variance R = 1.0. The

sequence consisted of 2,000 observations. The last 1500 observations are steady-state values

with a mean of 10.0 and a standard deviation uv = 2.37. The first 500 observations have a

transient mean of y,. - 2o = 5.46. The transition from the transient to steady-state is a step

change in the mean at the 500th observation. While this is an artificial transient, the large

step change should be clearly identifiable by potential measures for selecting the appropriate
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Figure 14. MMAE Filter Probabilities with k 1.0
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truncation point. In fact, the transient is obvious in Figure 13, whereas transients of actual

simulation output often are not visibly discernible.

Applying the parameter estimation scheme to this sequence results in the following

estimates: V = 11.17, 41 = 0.88, 42 = 0.04, k = 0.65, and the standard deviation of the

residuals is [HP-HT + R]2 =- 1.55. In these initial tests, the filter spacing is based on plus

and minus three times the standard deviation of the steady-state filter residuals. The three

MMAE filter means are 6.52, 11.17, and 15.82.

After applying MMAE, the filter probabilities are examined. Figure 14 shows the

a posteriori probabilities of the filter parameters. One potential alternative for steady-state

identification is to declare a truncation point when the probability of the filter based on the

mean estimate 3 achieves a high value. With k = 1.0, the filter probabilities smoothly and

quickly transitioned after the sequence changes to steady state at the 500th observation.

In Figure 15, the residuals for the center filter, which used the steady-state mean

estimate g, are shown. The step change in the mean at observation 500 is apparent as a single
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Figure 15. Residuals of Mean Filter with k 1.0
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large residual. Only one large residual resulted because with k = 1.0, the state estimates

adapted in one iteration to changes in the data sequence. The one large residual occurs only

for transients that end with a step change to steady state. Transients that decay gradually,

which is common in discrete-event simulation output, produce no significant pattern in

the residuals because the state estimates adapt to every small change in the transient. In

Chapter IV, the residuals are monitored in an attempt to detect the change between the

transient and steady-state. Because the first element of the estimated Kalman filter gain

k is generally very near one, the state estimates adapt rapidly to any change in the data.

Therefore, the residual sequence have little or no pattern that can be detected. Even with

smaller gains, which are attempted later, the residuals contain no easily identifiable pattern

to detect a gradual change. Therefore, tracking the residuals is not considered further as a

viable basis for a truncation-point selection approach.

The state estimates for a particular filter, i 1(tn), do indicate a change in the output

sequence. The state estimates i 1 (tn) for this sequence are shown in Figure 16. However, the

sequence of state estimates is correlated. In fact, with k = 1.0, the state estimates are simply
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Figure 16. Hi-(t,,) of Mean Filter with k = 1.0
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the original sequence corrected for the filter's mean estimate. With lower values of k, the state

estimates decrease in correlation, but the transient also becomes less obvious. Because of the

correlation, detecting the change in state estimates is no easier than finding the change in

the original data sequence. The MMAE state estimates, determined by a weighted average

of the filter state estimates and their respective probabilities, has no discernible pattern.

Therefore, the MMAE state estimates are not pursued further as a basis for identifying

steady state.

Besides the individual filter state estimates and residuals, the MMAE technique also

provides an MMAE mean estimator and variance of the mean estimator. Figure 17 shows the

MMAE mean estimates A2y(tn), which are the filter means weighted by the filter probabilities.

With k = 1.0 and the bank of three filters as specified, the MMAE mean quickly detects a

large step change in the mean. The assumed steady-state mean estimate g is 11.1, so the

center filter is positioned there. After 500 transient observations, the MMAE mean estimate

As,(t,4) stabilizes on the center f;lter's mean estimate. Because of the clear indication of the
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Figure 17. MMAE A,(t,,) with k = 1.0
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transition to steady state, the MMAE mean estimator is the basis of the second truncation-

point selection algorithm tested in a Monte Carlo analysis.

Figure 18 depicts the MMAE conditional standard deviation of the mean estimate

&•,(t,) calculated with Equation (40) where i(t•,) =/•(t,). The second confidence interval

technique tested by Howard [37] is based on the final MMAE variance estimate. Because

of the variability in these estimates as each data point is processed, that confidence interval

technique may be improved slightly by using an average of a group of estimates at the end

of the data.

The MMAE technique provides at least two potential indicators of steady state. The

first is that the MMAE filter probability for the filter using the mean estimate of 9 approaches

one. The second indicator is that the MMAE time-varying mean estimate approaches ý. The

following analysis investigates the effect of changing the magnitude of the Kalman filter gain

on these two indicators.

Using the same data sequence, MMAE is applied with the Kalman filter gain scalar
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Figure 18. MMAE &4(t,) with k = 1.0
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Figure 19. MMAE Filter Probabilities with kc = 0.5
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k set equal to 0.5. Figure 19 shows the MMAE filter probabilities for the filters. With a

lower value for kc, the filter probabilities are more sensitive to changes in the data sequence.
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Figure 20. MMAE A,(t,) with k = 0.5
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However, the probabilities continue to fluctuate even when steady-state observations are

being processed. Similar fluctuations occur in the MMAE estimate of the mean Ay(t,,),

shown in Figure 20.

The value of k selected determines the perforinance of the MMAE filter probabilities

pj(t,) from Equation (36). When the scalar k is set at or near its upper bound of one,

the MMAE filter probabilities are very stable. As k decreases, the probabilities, and hence

the MMAE mean estimates A,(t,,), increase in fluctuations. However, with a lower k, the

probabilities and the MMAE mean estimate respond faster to a change in the sequence. By

varying kc, a tradeoff can be made between stable consistent indicators and faster indicators

with more false signals. Because with the higher kc the indicators are slower to respond,

larger values of k also result in selecting truncation points that eliminate more of the initial

data. Since k = 1.0 results in clearer indications and conservative trucation points, k =

1.0 is implemented in the Monte Carlo analysis in this chapter. In Chapter VI, the same

truncation-point selection method is applied to the average of multiple replications. In

those applications, better truncation points are selected when the estimated k is used in the
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algorithm rather than arbitrarily setting k to one.

5.3.3 Filter Probabilities. To begin the recursive MMAE procedure, filter a priori

probabilities for time to have to be set. In other applications of MMAE, the prior probabilities

p,(to) are significant [37]. However, for the test data sequence, the effect of the priors is

insignificant after processing 40 observations. Therefore, the priors are set uniformly with

each of the three filters having an a priori probability of a third; p1(to) - i

Each filter probability represents the probability conditioned on all data available to

that time. Thus, the filter probabilities are affected by the transient data. To eliminate

the effect of the transient, the probabilities can be periodically reset to their prior prob-

abilities. Resetting the filter probabilities was tested, but was found to have little effect.

With dispersed filter spacing, the probabilities adapt rapidly to changes in the sequence

without resetting. The decaying effect of the previous data is consistent with the decreasing

significance of the filter probability priors as more data is processed.

5.3.4 Declaring the Transient: Heuristic Rules. In order to select the initial data

truncation point h0 , two different heuristics are proposed and tested. The first approach

simply selects A0 at the point when the probability of the mean filter exceeds 0.9. The second

approach monitors the MMAE mean estimate 12v(t,). Welch's [101] graphical truncation-

point identification scheme, described in Section 2.4.2, estimates the time-varying mean by

smoothing the average of multiple simulation replications. Using Welch's method, the anna-

lyst selects the truncation point where the mean estimates stabilize. In a similar way, the

second proposed method selects the truncation point when the MMAE time-varying mean

estimate A2y(t,,) stabilizes within a small tolerance of the steady-state mean estimate, ý.

When the absolute difference between the mean estimates, ABS(ty(t.) - 9), is less than a

small tolerance for a few consecutive observations, the truncation point h0 is selected. For

these tests, the small tolerance is set to 1.0 and the criterion is passed for 5 consecutive ob-

servations. Both truncation-point selection methods performed well for generated transients,

as seen in the next section.
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5.4 Monte Carlo Results

A Monte Carlo analysis to test the effectiveness of using the MMAE approach to

determine data truncation points is conducted. Two types of data are used. The first

set of sequences are AR(2) with measurement noise data. These time-series sequences use

the same system parameters as the sample sequence in Figure 13 with various types of

transients. The second test set consists of waiting times from simulations of an M/M/1

queue. The truncation-point selection methods perform well on the time-series data, but

not as successfully on the simulation output. The output from a single simulation may be a

very difficult transient to detect.

5.4.1 AR(2) with Measurement Noise Data. The parameters used to generate the

data are V = 10.0, 01 = 0.6, 0S2 = 0.3, Qd = 1.0 and R = 1.0. Each sequence consists of 500

transient observations and 1,500 steady-state observations. Four types of transients; step,

ramp, decaying exponential, and exponentially decaying sinusoid, are used. The magnitude

of the transient shift AV(uV) at the 250th observation is varied in multiples of the standard

deviation of the steady-state data, o, = 2.27. The transients arc shown in Figure 12 on

page 116.

For both truncation-point selection rules, the parameter estimation procedure is the

same and the MMAE implementation is identical. The MMAE filters are positioned at the

mean and -3 [HP-HT + R]1. The estimated system parameters are shown in Table 55.

The scalar k is arbitrarily set to one in this Monte Carlo analysis.

The simple rule of declaring the steady state when the mean filter had an MMAE

probability greater than ninety percent, Prob(A,(t,)) > 0.9, is implemented. The truncation-

Table 55. Correlation Technique Parameter Estimation Summary

It', 04,IlII, a+ ,1+ a;, O, j , .. -

10.00 10.00 0.32 0.60 0.63 0.12 0.30 0.27 0.11 0.57 0.80 0.05
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Table 56. AR(2) Truncation Point Errors (ft, - no) (Prob(A,,(tn)) > 0.9)
AAý,(ua) Type I Fail I Min Max Avg St Dev MSE

AR(2) Data with €1 - 0.6 and ¢2 = 0.3
2.0 Step 0.00 -498 1406 177.8 163.0 58170.3
2.0 Ramp 0.00 -212 1075 89.0 147.2 29589.1
2.0 Exp 0.00 -184 1146 149.1 136.1 40754.2
2.0 Sine 0.00 -498 123 -390.5 161.9 178696.9
1.5 Step 0.00 -498 886 75.8 250.9 68704.4
1.5 Ramp 0.00 -259 1213 67.9 153.7 28235.0
1.5 Exp 0.00 -289 1093 102.1 168.5 38802.7
1.5 Sine 0.00 -498 226 -410.4 136.4 186985.9
1.0 Step 0.00 -498 924 -202.0 296.5 128721.8
1.0 Ramp 0.00 -498 868 -18.7 166.2 27973.6
1.0 Exp 0.00 -306 995 8.8 161.3 26083.1
1.0 Sine 0.00 -498 339 -422.1 118.5 192186.5
0.5 Step 0.00 -498 925 -438.9 123.6 207922.1
0.5 Ramp 0.00 -498 824 -309.5 195.4 133990.1
0.5 Exp 0.00 -383 1135 -85.2 154.6 31145.5
0.5 Sine 0.00 -498 3 -433.6 101.3 198285.4

Note: Negative Truncation points indicate transient observations are retained.

point errors for 1,000 runs are summarized in Table 56. In this table, "Fail" indicates the

rate of times that no truncation point is selected. Since the "Fail" column is all zeros, the

algorithm always selected a truncation point.

The desired truncation-point error is a small positive number so that all of the transient

data is truncated and little excessive truncation of steady-state data occurs. Large negative

errors indicate that many transient observations are retained in the truncated sequence and

they may bias estimates of steady-state parameters. Large positive truncation-point errors

indicate that many steady-state observations are truncated, increasing the variability of

steady-state parameter estimates.

The truncation-point algorithm based on the mean filter's probability generally works

well. The transients with larger shifts, with the exception of the "Sine", results in small

positive truncation-point errors. The transient of an exponentially decaying sinusoid, shown
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Table 57. AR(2) Truncation Point ii, Evaluations (Prob(iAy(t,,)) > 0.9)
Transient NOBM { OBM Bias Test

Aj 1 (c 1) Type Fail Coy Half Width Coy Half Width F(&2) x 2 (a7)

AR(2) Data with €1 0.6 and 02= 0.3
None 0.02 0.85 0.392 ± 0.146 0.84 0.376 ± 0.124 0.98 0.93

2.0 Step 0.05 0.83 0.414 ± 0.167 0.82 0.403 ± 0.153 0.96 0.93
2.0 Ramp 0.03 0.86 0.405 ± 0.163 0.85 0.391 ± 0.146 0.99 0.95
2.0 Exp 0.03 0.82 0.408 ± 0.157 0.82 0.395 ± 0.136 0.97 0.94
2.0 Sine 0.03 0.92 0.448 ± 0.141 0.90 0.423 ± 0.101 0.63 0.47
1.5 Step 0.15 0.85 0.412 ± 0.169 0.82 0.399 ± 0.150 0.85 0.82
1.5 Ramp 0.02 0.83 0.399 ± 0.159 0.82 0.386 ± 0.141 0.98 0.94
1.5 Exp 0.03 0.84 0.409 ± 0.167 0.82 0.394 ± 0.147 0.96 0.93
1.5 Sine 0.02 0.90 0.445 ± 0.162 0.88 0.398 ± 0.090 0.66 0.48
1.0 Step 0.35 0.69 0.439 ± 0.173 0.67 0.418 ± 0.152 0.57 0.43
1.0 Ramp 0.04 0.83 0.392 ± 0.147 0.81 0.377 ± 0.130 0.94 0.91
1.0 Exp 0.02 0.85 0.396 ± 0.150 0.84 0.382 ± 0.136 0.98 0.95
1.0 Sine 0.02 0.91 0.441 ± 0.157 0.87 0.382 ± 0.087 0.71 0.54
0.5 Step 0.15 0.67 0.384 ± 0.134 0.66 0.367 ± 0.119 0.77 0.55
0.5 Ramp 0.10 0.77 0.387 ± 0.128 0.75 0.369 ± 0.110 0.85 0.70
0.5 Exp 0.02 0.84 0.386 ± 0.148 0.82 0.371 ± 0.131 0.97 0.94
0.5 Sine 0.01 0.87 0.427 ± 0.130 0.83 0.367 ± 0.080 0.75 0.58

Note: The coverage and Schruben estimation accuracy is -_ ±0.016 for 1000 runs.

in Figure 12, repeatly traverses the steady-state mean. When the transient observations pass

near the estimated steady-state mean, a premature truncation point is sometimes selected.

The transients with a smaller shift in the mean, Ajy(a'y), are more difficult to detect.

The effect of the truncation point on the ability to draw inferences can be seen by

constructing confidence intervals. Transient observations in truncated sequences often bias

the mean estimates, resulting in lower than nominal coverage rate for the confidence intervals.

In contrast, excess truncation reduces the precision of the mean estimate and increases the

confidence interval half width.

Table 57 shows effectiveness of the confidence intervals constructed with the truncated

sequences. The column labeled "Fail" indicates the rate of times that the truncation se-

quence failed to obtain statistically independent batches with Fishman's algorithm. (See
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Equation (6) on page 27.)

The coverage rates and average confidence interval half widths are excellent. The base-

line for comparison are the sequences truncated at the 500th observations. These sequences

with no transient data are labeled under transient type as "None". These single-run con-

fidence interval techniques are based on approximations to account for the correlation in

the output sequence. Although few of the truncated sequences result in nominal confidence

interval coverage rates of 0.9, they are as close as the baseline case, which has a perfect trun-

cation point. Even thougb the exponentially decaying sinusoid transients generally result in

selected truncation points prior to steady state, these transients contain both high and low

data values which apparently cancel each other's effect. The transients with a small step

change to steady state resulted in the lowest coverage rates. Perhaps these transient values

are too small to be detected but significant enough to bias the mean estimate. None of the

cases result in excessive truncation, so the average confidence interval half widths are also

comparable to the baseline case.

The pass rates for Schruben's initial bias test, discussed in Bection 2.4.1, are also

presented. The X2 (aq), Equation (9), rates are generally near the nominal rate of 0.9.

Schruben's tests with the estimated variance F(&6), Equation (10), provide questionable

indications since the mean estimate variance &2 is based on the biased estimates of Qd and

/R (See page 167).

Table 58 shows the average number of batches and batch size selected by Fishman's

algorithm, Equation (6). Little variation between the different transient types is apparent.

In contrast to mnnnitoring the MMAE filter probabilities to determine a truncation

point, the MMAE time-varying mean estimate 4,,(t,) can be tracked. For a test of this

approach, the truncation point is selected when the MMAE mean estimate 4,(t,,) is withn

1.0 of the steady-state mean estimate g for 5 consecutive observations. The results of this

strategy are shown in Taole 56.
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Table 58. Fishman's Number and Size of Batches (Prob(Ay(t,,)) > 0.9)
Transient Number of Batches Batch Sizes

Am &_M AB &B

None 32.83 13.32 56.66 31.47
2.0 Step 30.73 12.06 51.25 26.50
2.0 Ramp 31.52 13.16 54.72 29.27
2.0 Exp 31.42 12.24 52.20 28.15
2.0 Sine 42.57 19.25 59.34 37.47
1.5 Step 31.13 12.18 51.75 27.65
1.5 Ramp 32.60 13.23 53.53 28.86
1.5 Exp 31.38 12.64 53.72 27.78
1.5 Sine 38.38 17.59 63.55 34.88
1.0 Step 28.77 12.31 67.21 35.71
1.0 Ramp 32.84 13.18 54.96 27.47
1.0 Exp 32.35 13.39 56.01 28.51
1.0 Sine 36.99 1.5.47 62.09 28.91
0.5 Step 34.74 16.35 69.90 35.17
0.5 Ramp 33.49 14.69 65.55 32.86
0.5 Exp 34.25 14.23 56.06 28.08
0.5 Sine 35.35 12.82 61.22 21.96
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Table 59. AR(2) Truncation Point Errors (iio, - no) (ABS(Ay(t,) - !) < 1)
Atp,(a,) Type I Fail I Min Max Avg St Dev MSE

AR(2) Data with 01 = 0.6 and 02 = 0.3
2.0 Step 0.00 -499 1232 108.0 147.4 33385.6
2.0 Ramp 0.00 -214 734 35.4 128.4 17741.0
2.0 Exp 0.00 -206 887 92.9 115.7 22025.9
2.0 Sine 0.00 -499 103 -438.4 108.2 203952.7
1.5 Step 0.00 -499 788 1.5 244.2 59654.7
1.5 Ramp 0.00 -323 1223 14.2 142.0 20359.6
1.5 Exp 0.00 -320 884 45.9 153.4 25628.1
1.5 Sine 0.00 -499 114 -451.7 89.1 211956.7
1.0 Step 0.00 -499 828 -279.3 265.0 148225.7
1.0 Ramp 0.00 -499 733 -73.8 153.3 28933.8
1.0 Exp 0.00 -330 768 -43.6 144.4 22741.9
1.0 Sine 0.00 -499 230 -456.4 79.5 214582.1
0.5 Step 0.00 -499 650 -462.9 93.4 223054.0
0.5 Ramp 0.00 -499 620 -357.0 170.0 156352.2
0.5 Exp 0.00 -393 914 -137.8 138.2 38100.2
0.5 Sine 0.00 -499 -81 -463.3 64.8 218834.9

Note: Negative Truncation points indicate transient observations are retained.
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By comparing Tables 56 and 59, the truncation-point errors for both MMAE ap-

proaches are seen to be very similar. The similarity is not surprising since the MMAE

probability approach tracked a probability while the MMAE mean approach tracked the filter

means weighted by their probabilities. Therefore, both approaches are based on the MMAE

filter probabilities. The truncation-point selection approach based on ABS(A,(t,,) - ?) < 1.0

appears to work slightly better with the transients with larger shifts, such as A/(ou) of 1.5

or 2.0. In contrast, the approach based on Prob(A,1 (tn) = 9) > 0.9 has smaller truncation-

point errors for the transients with a relatively smaller shift in their mean. However, any

tradeoffs between the two approaches is very dependent upon the arbitrary selected criteria

of 0.9 and 1.0.

As seen from comparing Table 57 and Table 60, the confidence interval coverage rates

and half widths are very similar between the two truncation-point selection rules. Since there

is minimal change in the number or size of batches, they are not shown. Because the two

truncation-point selection approaches have such similar results, only one is used for further

testing. The rule based on two mean estimates being within a small tolerance has more

potential for determining a heuristic to select the tolerance than the rule based on a filter

probability exceeding an arbitrary level. Therefore, the next section applys the truncation-

point selection rule based on ABS(•,(t•,) - 9) < 1 to actual discrete-event simulation output.

5.4.2 M/M/1 Queue Waiting Time Data. Detecting the transient in the time-series

test cases is considerably easier than with a single simulation output sequence. In some

actual simulation outputs, rather than an initial bias consisting of observations that are

statistical outliers of the steady-state output distributions, the initial transient consists of

observations from a similar, but skewed distribution, which varies with time. Transient

values can not be identified simply by being statistical outliers of an estimated steady-state

output distribution. But the mean of a group of transient values may be biased compared

to the mean of a group of steady-state observations.

In Section 2.4.3, Figures 2 through 4 depict the empirical transient for the simulation of
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Table 60. AR(2) Truncation Point ,•, Evaluations (ABS(A,2 - 9) < 1)
Transient NOBM OBM Bias Test

Apy,(a,) Type Fail I Coy Half Width Coy Half Width F(&') x2(u•)
AR(2) Data with 1- 0.6 and 02 = 0.3

None 0.02 0.85 0.392 ± 0.146 0.84 0.376 ± 0.124 0.98 0.93
2.0 Step 0.05 0.84 0.407 ± 0.162 0.83 0.394 ± 0.145 0.95 0.92
2.0 Ramp 0.02 0.87 0.398 ± 0.154 0.86 0.382 ± 0.134 0.99 0.95
2.0 Exp 0.03 0.83 0.404 ± 0.152 0.82 0.389 ± 0.131 0.97 0.95
2.0 Sine 0.02 0.92 0.455 ± 0.136 0.92 0.428 ± 0.092 0.61 0.44
1.5 Step 0.18 0.84 0.410 ± 0.169 0.82 0.395 ± 0.149 0.81 0.78
1.5 Ramp 0.03 0.83 0.398 ± 0.154 0.81 0.382 ± 0.134 0.96 0.94
1.5 Exp 0.02 0.84 0.405 ± 0.158 0.83 0.390 ± 0.140 0.95 0.93
1.5 Sine 0.02 0.91 0.450 ± 0.157 0.88 0.402 ± 0.085 0.63 0.43
1.0 Step 0.41 0.65 0.444 ± 0.173 0.62 0.422 ± 0.151 0.49 0.34
1.0 Ramp 0.05 0.82 0.387 ± 0.144 0.80 0.372 ± 0.124 0.92 0.89
1.0 Exp 0.03 0.85 0.392 ± 0.153 0.84 0.378 ± 0.137 0.97 0.94
1.0 Sine 0.02 0.92 0.446 ± 0.156 0.87 0.384 ± 0.084 0.69 0.51
0.5 Step 0.15 0.67 0.383 ± 0.130 0.65 0.366 ± 0.118 0.76 0.52
0.5 Ramp 0.12 0.77 0.388 ± 0.128 0.74 0.370 ± 0.111 0.84 0.65
0.5 Exp 0.03 0.83 0.381 ± 0.142 0.81 0.366 ± 0.125 0.96 0.93
0.5 Sine 0.01 0.89 0.430 ± 0.128 0.84 0.367 ± 0.075 0.73 0.56

Note: The coverage and Schruben estimation accuracy is ;4 ±0.016 for 1000 runs.
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Table 61. Correlation Technique Parameter Estimation Summary

-Y 9 i ý2k

p = 0.95 10.00 10.03 5.61 0.95 0.04 0.04 0.04 1.00 0.00

an M/M/1 queue with traffic intensity p of 0.95. The transient can not be detected visually

from a single run. After applying Welch's moving window technique to the average of 30

simulation replications, shown in Figure 4, the average end of transient is seen to be about

1,000 observations.

The same truncation selection procedure as applied on the time-series data is applied

to simulation output of M/M/1 with a traffic intensity p of 0.95. As Howard [37] reports,

the same MMAE filter spacing does not work well with different models. The MMAE filter

spacing is significantly increased for the M/M/1 output sequences. The filters are positioned

based on the minimum, mean, and maximum of the last half of the output sequence:

Aj = 9 + 0.9(V - 6,) where 63 = Ymin, 9, and ymax (67)

The simulation model inputs are such that the traffic intensity p is 0.95 and the the-

oretical steady-state waiting time is 10.0 time units. The parameter estimates for 2,000

simulation runs are shown in Table 61. Generally, the output sequence is represented ap-

proximately as a pure AR(1). The system model is nearly a pure AR(l) since q2 is near

zero and the estimated measurement noise variance R is zero (k = 1.0). Originally, it was

hoped that the measurement noise might represent the "lack of fit" for assuming an AR(2)

dynamics equation. However, this example seems to indicate that, if the dynamics model

inadequately represents the data's correlation structure, the parameter estimation increases

the Kalman filter gain to one in order to disregard the dynamics model predictions com-

pletely. But a Kalman filter gain of one indicates no measurement noise is needed to model

the data. Thus, the more "lack of fit" of the dynamics model to the real data there is, the
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Table 62. Truncation Points i,•,
Type Fail Min Max Avg St Dev
0.95 0.001 7 8070 1321.6 1234.1

Table 63. Truncation Point ho Evaluations
NOBM OBM Bias Test

p Fail Cov Half Width Cov Half Width F(5O)
0.9 0.32 0.56 2.761 ± 2.589 0.55 2.662 ± 2.486 0.54

less measurement noise variance is estimated.

The average selected truncation point, shown in Table 62, is 1,321.6. This compares

reasonably well with a truncation point of 1,000 identified by Welch's technique.

As shown in Table 63, the Non-Overlapping Batch Means (NOBM) and Overlapping

Batch Means (OBM) coverage rates with the truncated sequences are only 0.56 and 0.55

for 90 percent nominal confidence intervals. Two possible reasons for the low coverage are

biased mean estimates or Fishman's algorithm, which selects batch size, induces a bias. A

biased mean estimate is unlikely since 10,000 observations are used and the average trun-

cation point of 1321.6 is greater than the truncation point selected by Welch's algorithm.

Fishman's algorithm appears to have difficulty with this output data since for 32 percent

of the sequences no batch size is determined. These confidence intervals are constructed

with number of batches summarized in Table 64. The effects of Fishman's algorithm are

investigated further.

Table 64. ishman's Number and Size of Batches
Number of Batches Batch Sizes

AM &M AB &B
p = 0.9 17.46 7.89 601.44 256.68
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Table 65 shows the empirical mean of the output distribution for every 250th entity

through the simulated queue. The mean of the 1,000th observation is very near the theo-

retical steady-state mean of 10.0, and the transient appears to be effectively complete by

the 2,000th observation. Therefore, the average truncation point of 1321.6 retains some

biased data, but the magnitude of the bias appears to have been small. From examining

the variation in the data over the 2,000 runs, the average selected truncation point seems

reasonable.

Since the analytical alternatives for truncation-point selection are unreliable heuristics

[24, 105], one evaluation approach is to compare the Kalman filter results to the "best

possible". The "best possible" is determined by increasing the truncation point at increments

and calculating the confidence intervals on systems with analytic steady-state values.

Periodic truncation points at every 250th observation are tested, and the results are

shown in Table 66 for 2,000 replications. The first two columns are the mean estimates

and associated standard deviation for each of the truncated sequences. The column labeled

is the mean of the observations in the truncated sequence, and 64 is the standard

deviation over the 2,000 replications. These columns indicate the bias for not truncating any

observations is very small, and that small bias is removed with truncating several hundred

initial data values. The coverage rates, for any of these truncation sequences, are significantly

below the nominal rate of 90 percent. This may be due to the highly correlated nature of

the output sequences, the run length, or Fishman's algorithm.

Table 66 indicates that Fishman's algorithm, Equation (6), to determine the number of

statistically independent batches may induce some bias. At each of the horizontal lines, the

rate of sequences failing Fishman's test for independence significantly increases. A probable

cause of these increases is that Fishman's algorithm only considers batch sizes in powers

of two. Therefore, as more data is truncated, the truncated data sequence is shorter, and

some of the sequences have insufficient data to test for batch independence with double the

batch size. At the same place that the failure rate increases, the coverage rate significantly

decreases. Possibly, truncated sequences with large and highly correlated values fail the test
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Table 65. Average Periodic Output Values for 2,000 Replications (,, = 10.0)

1 0.00 0.00

250 6.17 5.80
500 7.67 7.39
750 8.60 8.46

1000 9.25 8.98
1250 9.73 9.66
1500 9.61 9.70
1750 9.73 10.00
2000 9.90 10.27
2250 10.08 10.43
2500 9.83 10.28
2750 10.00 10.30
3000 10.02 10.40
3250 10.11 10.55
3500 9.54 10.14
3750 10.00 10.44
4000 10.24 10.54
4250 9.93 10.16
4500 9.66 9.95
4750 9.61 10.09
5000 9.36 10.15
5250 9.60 10.42
5500 10.08 10.87
5750 10.04 10.70
6000 10.11 10.55
6250 9.98 10.71
6500 9.74 10.70
6750 9.91 10.88
7000 9.95 10.96
7250 10.20 11.20
7500 10.17 11.17
7750 10.38 11.00
8000 10.33 11.15
8250 10.41 11.22
8500 10.36 11.42
8750 10.50 10.93
9000 10.14 10.64
9250 9.85 10.33
9500 9.77 10.09
9750 9.60 9.83
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Table 66. Periodic Truncation Points (Fishman's Number of Batches)
Fishman's Algorithm NOBM OLMB Bias

nh0 o & Fails Batches Size Cov HW Cov HW Test
0 9.66 3.80 0.12 16.27 756.55 0.62 3.172 0.61 3.069 0.42

250 9.80 3.89 0.13 16.13 748.54 0.62 3.237 0.61 3.128 0.45
500 9.88 3.98 0.13 15.88 725.23 0.63 3.279 0.61 3.138 0.48
750 9.92 4.06 0.14 15.78 709.65 0.64 3.265 0.62 3.124 0.49

1000 9.95 4.14 0.47 19.84 486.42 0.51 2.221 0.49 2.159 0.50
1250 9.96 4.22 0.48 20.27 465.38 0.47 2.163 0.46 2.115 0.51
1500 9.97 4.30 0.45 19.21 479.60 0.49 2.267 0.47 2.194 0.52
1750 9.99 4.38 0.46 19.40 460.95 0.48 2.242 0.47 2.188 0.52
2000 9.99 4.45 0.42 18.43 475.01 0.50 2.379 0.49 2.282 0.53
2250 9.99 4.53 0.44 18.65 454.59 0.47 2.340 0.46 2.259 0.54
2500 9.99 4.61 0.40 17.74 467.98 0.51 2.465 0.49 2.367 0.55
2750 10.00 4.69 0.41 17.92 447.73 0.48 2.438 0.47 2.346 0.56
3000 9.99 4.77 0.37 16.97 462.66 0.52 2.563 0.51 2.446 0.57
3250 9.99 4.86 0.38 17.07 442.38 0.50 2.540 0.48 2.436 0.57
3500 9.99 4.95 0.34 16.18 454.98 0.53 2.685 0.51 2.557 0.58
3750 10.00 5.06 0.36 16.21 434.75 0.52 2.670 0.50 2.547 0.40
4000 9.99 5.16 0.32 15.21 452.37 0.54 2.831 0.52 2.675 0.38
4250 9.99 5.27 0.32 15.22 429.58 0.53 2.804 0.51 2.655 0.42
4500 9.99 5.38 0.28 14.37 444.77 0.54 2.974 0.52 2.807 0.46
4750 10.01 5.49 0.28 14.24 423.19 0.52 2.963 0.50 2.820 0.51
5000 10.03 5.61 0.25 13.55 435.26 0.53 3.168 0.51 3.016 0.56
5250 10.06 5.72 0.25 13.60 408.13 0.53 3.154 0.50 2.977 0.60
5500 10.06 5.84 0.66 18.59 252.00 0.24 1.823 0.23 1.769 0.65
5750 10.06 5.94 0.63 17.92 249.53 0.27 1.888 0.25 1.831 0.67
6000 10.06 6.06 0.60 16.88 249.92 0.28 1.987 0.26 1.909 0.68
6250 10.07 6.17 0.57 16.20 246.80 0.29 2.074 0.28 1.993 0.70
6500 10.07 6.29 0.55 15.24 246.86 0.31 2.168 0.30 2.075 0.73
6750 10.09 6.41 0.52 14.52 243.69 0.33 2.271 0.32 2.168 0.75
7000 10.10 6.55 0.49 13.72 241.42 0.35 2.392 0.33 2.276 0.77
7250 10.12 6.68 0.44 12.77 240.18 0.38 2.574 0.36 2.434 0.80
7500 10.13 6.84 0.40 11.77 238.75 0.40 2.768 0.38 2.614 0.83
7750 10.11 7.00 0.80 17.82 128.89 0.08 1.453 0.08 1.414 0.86
8000 10.08 7.16 0.75 16.61 126.06 0.12 1.566 0.11 1.506 0.88
8250 10.04 7.31 0.69 14.66 125.69 0.13 1.702 0.12 1.627 0.91
8500 9.98 7.42 0.61 12.86 125.01 0.17 1.927 0.16 1.831 0.95
8750 9.88 7.61 0.52 11.07 123.50 0.22 2.198 0.21 2.076 0.98
9000 9.76 7.85 0.84 15.83 64.24 0.02 1.212 0.02 1.161 0.09
9250 9.67 3.18 0.70 12.36 63.92 0.05 1.471 0.05 1.395 0.93
9500 9.60 8.56 0.88 15.46 32.51 0.01 0.869 0.01 0.838 0.98
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Table 67. Truncation Points o, (10 Batches)
Type I Fail Min Max Avg St Dev

0.95 0.001 7 8070 1364.7 1260.4

Table 68. Truncation Point o, Evaluations (10 Batches)
NOBM OBM Bias Test

p Fail Coy Half Width Coy Half Width F(6r)
0.95 0.00 0.64 3.785 ± 3.870 0.63 3.685 ± 3.783 0.54

for independent batches more often. As seen in Figure 2 on page 38, simulation output of

M/M/1 queue with p = 0.95 occasionally has very large and highly correlated subsequences.

In contrast, sequences with generally low values, often with idle servers causing independent

subsequences, may tend to pass Fishman's test for independent batches. Since low biased

sequences may pass Fishman's test and be used to form confidence intervals at a higher

frequency, the coverage rates are significantly less than the nominal rate.

To eliminate the effects of Fishman's algorithm determining the number of statisti-

cally independent batches, one thousand replications are tested with the number of batches

fixed to ten. The truncation-point algorithm is applied to these 1,000 simulation runs.

The selected truncation points, summarized in Table 67, are similar to the previous test.

However, Table 68 shows that fixing the number of batches at ten improved the coverage

rate. Therefore, Fishman's algorithm to select batch sizes does induce a bias and reduces

the coverage rates.

The periodic results with a fixed batcb siie of ten, shown in Table 69, have a higher

coverage rate at every periodic truncation point. However, no significant degradation in

coverage rate is apparent when the initial transient is not eliminated. The M/M/1 with

p = 0.95 queuing model was selected because of its extreme positive correlation. The high

correlation induces a relatively longer transient than other simulation models. Perhaps the
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Table 69. Periodic Truncation Points Number of Batches Fixed at 10)
ho &LV af,, Fails Batches Size NOBM OLMB Schrub
0 9.70 3.87 0.00 10.00 1000.00 0.65 3.654 0.64 3.552 0.41

250 9.83 3.97 0.00 10.00 975.00 0.65 3.713 0.65 3.588 0.45
500 9.91 4.06 0.00 10.00 950.00 0.66 3.756 0.65 3.619 0.48
750 9.96 4.14 0.00 10.00 925.00 0.66 3.787 0.65 3.643 0.49

1000 9.99 4.23 0.00 10.00 900.00 0.65 3.804 0.64 3.664 0.50
1250 10.02 4.31 0.00 10.00 875.00 0.66 3.823 0.64 3.681 0.50
1500 10.03 4.39 0.00 10.00 850.00 0.65 3.859 0.64 3.695 0.51
1750 10.05 4.47 0.00 10.00 825.00 0.65 3.895 0.63 3.703 0.51
2000 10.06 4.55 0.00 10.00 800.00 0.64 3.890 0.62 3.707 0.53
2250 10.07 4.63 0.00 10.00 775.00 0.64 3.879 0.63 3.710 0.54
2500 10.07 4.73 0.00 10.00 750.00 0.64 3.882 0.62 3.714 0.55
2750 10.08 4.82 0.00 10.00 725.00 0.64 3.908 0.62 3.718 0.55
3000 10.08 4.91 0.00 10.00 700.00 0.64 3.911 0.62 3.725 0.55
3250 10.08 5.01 0.00 10.00 675.00 0.63 3.903 0.62 3.734 0.57
3500 10.10 5.11 0.00 10.00 650.00 0.63 3.916 0.61 3.740 0.58
3750 10.11 5.21 0.00 10.00 625.00 0.63 3.940 0.61 3.740 0.39
4000 10.11 5.31 0.00 10.00 600.00 0.62 3.932 0.60 3.740 0.39
4250 10.11 5.42 0.00 10.00 575.00 0.60 3.914 0.58 3.747 0.42
4500 10.11 5.54 0.00 10.00 550.00 0.59 3.934 0.57 3.753 0.45
4750 10.14 5.68 0.00 10.00 525.00 0.58 3.941 0.55 3.756 0.50
5000 10.18 5.82 0.00 10.00 500.00 0.56 3.934 0.54 3.757 0.56
5250 10.19 5.97 0.00 10.00 475.00 0.56 3.946 0.53 3.751 0.60
5500 10.20 6.12 0.00 10.00 450.00 0.55 3.939 0.52 3.746 0.65
5750 10.21 6.26 0.00 10.00 425.00 0.56 3.941 0.54 3.749 0.67
6000 10.22 6.40 0.00 1 0.00 400.00 0.55 3.938 0.54 3.746 0.69
6250 10.22 6.54 0.00 10.00 375.00 0.55 3.937 0.53 3.730 0.72
6500 10.20 6.67 0.00 10.00 350.00 0.54 3.904 0.52 3.706 0.74
6750 10.19 6.80 0.00 10.00 325.00 0.53 3.900 0.51 3.687 0.75
7000 10.18 6.94 0.00 10.00 300.00 0.51 3.871 0.49 3.664 0.77
7250 10.20 7.06 0.00 10.00 275.00 0.51 3.848 0.49 3.637 0.80
7500 10.22 7.18 0.00 10.00 250.00 0.50 3.820 0.48 3.594 0.82
7750 10.20 7.27 0.00 10.00 225.00 0.46 3.765 0.44 3.537 0.85
8000 10.16 7.33 0.00 10.00 200.00 0.44 3.693 0.42 3.467 0.88
8250 10.12 7.38 0.00 10.00 175.00 0.44 3.610 0.42 3.380 0.91
8500 10.08 7.44 0.00 10.00 150.00 0.43 3.504 0.41 3.278 0.95
8750 9.99 7.55 0.00 10.00 125.00 0.39 3.367 0.37 3.149 0.99
9000 9.88 7.75 0.00 10.00 100.00 0.36 3.167 0.34 2.940 0.09
9250 9.77 8.08 0.00 10.00 75.00 0.30 2.879 0.29 2.676 0.93
9500 9.76 8.48 0.00 10.00 50.00 0.24 2.540 0.23 2.357 0.98
9750 9.70 8.99 0.00 10.00 25.00 0.16 1.999 0.15 1.849 1.00
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initial transient is insignificant when the single-run confidence interval techniques are applied

to one long simulation ron.

5.5 Summary

This chapter develops and tests a truncation-point selection algorithm for a single

simulation output sequence. An AR(2) with measurement noise model is estimated using

the correlation technique. Based on the estimated model, MMAE is applied with various

mean estimates. The truncation point is selected by either monitoring the probability of the

filter with the mean estimate or by tracking the distance between the MMAE mean estimate

and the assumed steady-state mean estimate. The method performs well on time-series data

with induced transients and on output of simulations of an M/M/1 queue.

For simulation practitioners, passing Fishman's test for statisically independent batches

may not be sufficient to ensure reliable estimates. In fact, as shown in the example for

simulations of an M/M/1 queue, the sequences which passed Fishman's test often are biased

low. As Schmeiser [83] states, "the run must be long enough to calculate a valid confidence

interval." Passing Fishman's test does not ensure that the run length is long enough.

The effective attainment of steady state is determined based on a single simulation

sequence. This seems to contradict Law and Kelton's [53:550] supposition that generally

one run is not sufficient to estimate the truncation point. However, the transient's effect on

drawing inferences may not be significant when confidence interval techniques use one long

simulation run. The output of a simulation of an M/M/1 queue with traffic intensity p of

0.95 was selected because the high correlation should induce a relative long transient. But

the initial transient is not found significant in decreasing the coverage rate when a single long

run is used. Schmeiser [83] states that "initial transients are often a major factor when using

independent replications." Therefore, an approach for multiple replications, very similar to

this technique, is proposed and tested in Chapter VI.
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VI. Multiple Replications Steady-State Identification: Multiple Model

Adaptive Estimation (MMAE) Approach

6. 1 Introduction

Besides the confidence interval approaches based on one long output sequence, confi-

dence intervals can be constructed using replications of the simulation model with different

random number generator seeds. The confidence interval technique is called the method of

replications. (See page 26 for a discussion.) The advantage of the method of replications

is that means of the replications are independent, so classical statistic techniques can be

applied. The disadvantage is that each run passes through the transient phase. Because of

the increase in transient data, selection of an appropriate truncation point becomes more

critical to prevent bias in the overall mean estimate.

This chapter describes the MMAE algorithm to select the truncation points for multiple

replications of univariate sequences. Evaluation measures are discussed, and a Monte Carlo

analysis with twelve simulation models is presented.

6.2 Methodology

The methodology applied in this approach is the same as the MMAE technique for a

single run developed in Chapter V. The only change is that the single sequence is replaced

with the sequence of averages from the M independent replications. The parameter estima-

tion, discussed in the Section 5.2, is applied again. Since a steady-state model is needed, the

last half of the averaged output sequence is assumed to have effectively attained steady state

and is used to estimate the steady-state parameters. Schruben [871 also uses the last half of

the output sequence for estimating a steady-state model. The MMAE algorithm developed

in Section 5.3 is applied again. After the estimated truncation point 'ho is selected, each of

the V sequences is truncated. The steps of the truncation point selection algorithm follow:
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Step 1. Select the simulation output length N and number of replications M. Run M

replications of the simulation model until N outputs occur and store the sequences of

outputs.

Step 2. Construct a sequence of length N of the averages of the Al replications.

Step 3. Based on the last half of the averaged sequence, determine an estimate of the

steady-state mean 9 with Equation (63) and the autocorrelation coefficients with Equa-

tion (64). Based on Equations (62) and (65), estimate 41, ý2, and k. (Initial Monte

Carlo results used k = 1.0 as recommended in Chapter V, but better results are ob-

tained by using k.)

Step 4. Apply the estimated Kalman filter to the last half of the average sequence and esti-

mate the residual variance with the mean squared residuals, as shown in Equation (66).

Find the minimum and maximum observation in the last half of the sequence of aver-

ages. Initialize an MMAE bank of three filters spaced according to minimum, mean 9,

and maximum, as shown in Equation (67). Calculate the Kalman filter gain K with

Equation (51). The initial state estimates ic(to) are zero vectors, and the initial MMAE

filter probabilities pj(to) are 1

Step 5. Process the observations in the averaged sequence through the MMAE bank of

filters. For each observation, propagate the estimated state vector in each filter using

Equations (22) and (45). Update the state estimates with Equation (25) using the

observation minus that filter's mean as the measurement. Calculate the MMAE filter

probabilities p,(t,) with Equation (36). Using the MMAE filter probabilities, calculate

the weighted MMAE mean estimate jz,(tn) by Equation (39) where a^(t,,) = /(t,).

When ABS[/t,(t,) - 9] is less than a small tolerance for a few consecutive observations,

select the truncation point h.o as t,,. (In these tests, the small tolerance is 1.0 and 5

consecutive observations are used. A relative criterion, such as the absolute difference

being less than a small percentage of the sample mean, is probably more appropriate

in general applications.) Before iterating, reset any near-zero filter probabilities to a

very small tolerance to allow for continue adaptation in the MMAE algorithm.
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The selected truncation point 'ho can be applied to the M output sequences used in

the algorithm or the truncation point can be applied to future replications. Pilot runs are

sometimes used to estimate the truncation point to prevent any chance of statistical bias.

However, Law and Kelton suggest that, if the resulting truncated sequences are substantially

larger than the truncated portion, using the same runs for truncation-point identification

and confidence interval construction is "probably safe" [53:552]. The same runs are used for

both selecting the truncation points and making the confidence intervals in the Monte Carlo

analysis.

6.3 Measures of Effectiveness

The performance measures are different than single-run approaches because different

techniques to draw inferences are applicable with multiple replications. In this study, three

of the measures used by Kelton and Law [44] are !applied. The three measures are the

Point Estimator Bias (PEBIAS), the 1Vean Absolute Deviation (MAD), and the method

of replication coverage rates with the corresponding confidence interval half widths. These

measures are applicable to model outputs for which the steady-state mean can be calculated

analytically.

The PEBIAS measures the error in the mean estimated with the truncated sequences

and the theoretical mean. From each truncated sequence of length N', the mean estimate

y,(N') is the average of N' observations. The estimated mean A2 is the grand mean of the
_EM

M truncated sequences Ay = M M,=1 ym(N'), and the point estimator bias is

PEBIAS = fy - py

The PEBIAS is presented as a percentage of the theoretical mean /z, 100"'L.,JAV

The MAD is the absolute value of the error between the estimated and theoretical

mean:

MAD = ]/y - zv[
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Therefore, the MAD is the absolute value of the PEBIAS. With repeated applications, neg-

ative and positive values of PEBIAS can cancel each other. In contrast, the MAD values are

all positive.

The output analysis objective is to make inference about the system. These inferences

usually are stated through point estimates with associated confidence intervals. Therefore,

the coverage rates for the confidence intervals and their associated half widths are impor-

tant evaluation measures. The method of replications, Equation (3), is used to calculate

a confidence interval for the mean of the truncated sequence. Along with these perfor-

mance measures, Schruben's initial bias test, Equation (10), can be applied to the truncated

sequence of averaged output. Since the same biased variance of the mean estimate as Chap-

ter V on page 167 is applied, the Schruben's test statistic is questionable. Except for the

addition of Schruben's initial bias test, these are the same performance measures that Kelton

and Law [44] apply. The same simulation models also are used in an attempt to make some

performance comparisons.

6.4 Monte Carlo Results

In this section, several analyses are conducted. Kelton and Law's algorithm [44] re-

quires the analyst to specify nine parameters. Because of the difficulty in determining ap-

propriate parameter values and implementing their algorithm, a Monte Carlo analysis com-

parable to their results is conducted. In this analysis, the scalar k is set to 1.0 as suggested

in the last chapter. In the next Monte Carlo analysis, the estimated value of k is used and

the simulation run length is fixed. These results include evaluations of periodic truncation

points for sensitivity analysis. The final two sections present excl "on on the effects of

simulation run length and MMAE filter spacing.

Eleven simulation models are used to test the algorithm in the first Monte Carlo

analysis. The first nine are queuing systems with a mean interarrival time of 1.0. Three

simulations of M/M/1 queues with first-in-first-out (FIFO) queue discipline, empty and idle

initial conditions, and infinite queue capacity are used. The traffic intensity p is varied
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between 0.8, 0.9, and 0.95. The remainder of the queuing simulations have a traffic intensity

p of 0.8. Two variants of the M/M/1 queue are changing the queue discipline to last-in-first-

out (LIFO) or changing the initial conditions to an initial queue length L0 of ten. Another

queuing simulation is an E4/M/1 where interarrival times are a four-stage Erlang random

variable [77:109]. The number of servers is increased to two, an M/M/2 queue, and to four,

an M/M/4 model. The final queuing simulation is three M/M/1 queues in tandem with an

interarrival rate at each queue of 1.0 and traffic intensities p of 0.5, 0.7, and 0.9. (For queues

in series with exponentially distributed interarrival times and service times, the interarrival

rates are equal.) The queues in tandem are labeled M/M/1/M/M/1/M/M/1.

The last two models are discrete-event simulation models of computer systems consid-

ered by Law and Carson [51]. The time-sharing computer system has 50 terminals submitting

jobs to a FIFO queue at the CPU. Each computer operator "thinks" for an exponentially

distributed time with a mean of 25.0 and then submits a job requesting an exponentially

distributed service time with mean of 0.8. The CPU processes jobs in increments of 0.1 time

units with a fixed overhead for each session of 0.015. Unfinished jobs enter the CPU queue,.

Completed jobs return to the terminal and the operator "thinks" again. The output is the

sequence of response times to the terminals. The time-sharing computer model's analytical

steady-state values are calculated as shown by Adiri and Avi-Itzhak [3].

The second computer simulation has eight jobs in the system. CPU service times are

exponentially distributed with a mean of 1.0 time units. After leaving the CPU, the jobs

enter one of two peripheral queues with probability of 0.5 each. The mean service times

at the peripherals are exponentially distributed with mean of 2.0 time units. When a job

completed service at the peripheral, another job instantaneously arrives in the CPU queue.

Initial conditions are one peripheral queue with six jobs, one job in the other peripheral

queue, and one job in the CPU queue. The output response is the time for each job to be

processed by the CPU and a peripheral device.

The theoretical steady-state output response times for these models are shown in Ta-

ble 70 [44]. The Monte Carlo analysis which follows is divided into four sections. In the first
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Table 70. Theoretical Steady-State Means
Model /PY

M/M/1 p = 0.8 3.200
M/M/l p = 0.9 8.100
MIMI/1 p = 0.95 18.050
MIM11 p = 0.8 LIFO 3.206
MIM11 p = 0.8 Lo = 10 3.200
E41M/1 p = 0.8 1.814

M/M/2 p = 0.8 2.844
M/M/4 p = 0.8 2.386
M/M/1/M/M/1/M/M/l 10.233
Time-Sharing Computer 21.384
Central Server Computer 10.000

section, simulation runs are made under the same conditions as Kelton and Law [44]. The

next section shows runs at a consistent simulation run length. Two sections of analytical

excursions are included; one section examines the effect of increasing the simulation run

lengths, and the other section examines the effect of the filter spacing.

6.4.1 Results with k = 1.0 This Monte Carlo analysis is conducted in order to com-

pare results with Kelton and Law [44]. As recommended in Chapter V, the MMAE approach

is implementd with kc arbitrarily set equal to one.

Kelton and Law [44] propose a methodology to determine the appropriate simulation

run length N and truncation point ii0 for replicated simulations. Their algorithm is dis-

cussed on page 2.4.2. Their algorithm determines the run length by restarting all of the M

simulations if the length is found to be insufficient. Restarting M replications is considered

impractical for many discrete-event simulation applications. Because of the difficulty in set-

ting the parameters and applying Kelton and Law's algorithm (See discussion beginning on

page 2.4.2.), their algorithm is not implemented. However, in order to make comparisons

on as equitable a basis as possible, the same simulation models and evaluation measures are

used. In addition, the models are run for the same number of replications, five, and for the
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Table 71. Correlation Technique Parameter Estimation Summary (k = 1.0)
AL~ Y 9 2

Data Model Ai, & &1 , Ai , &k
M/M/1 p = 0.80 3.20 3.21 0.53 0.88 0.06 0.07 0.05 1.00 0.00
M/M/1 p = 0.90 8.10 8.10 2.14 0.92 0.06 0.06 0.05 1.00 0.00
M/M/1 p = 0.95 18.05 17.30 5.89 0.92 0.05 0.06 0.05 1.00 0.00
M/M/1 p = 0.80 LIFO 3.20 3.30 0.63 0.45 0.15 0.22 0.16 0.78 0.17
M/M/1 p = 0.80 Lo= 10 3.20 3.20 0.58 0.88 0.06 0.07 0.05 1.00 0.00
E4/M/1lp = 0.80 1.81 1.82 0.28 0.86 0.07 0.07 0.06 1.00 0.00
M/M/2 p = 0.80 2.84 2.86 0.56 0.69 0.09 0.27 0.09 0.97 0.02
M/I/4 p = 0.80 2.39 2.40 0.55 0.64 0.15 0.34 0.15 0.89 0.05
M/M/1/M/M/1/M/M/1 10.23 10.19 2.22 0.89 0.07 0.09 0.07 0.99 0.01
Time-Sharing Computer 21.38 21.39 0.83 0.15 0.49 0.29 0.60 0.25 0.35
Central Server Computer 10.00 10.01 0.18 0.38 0.18 0.38 0.23 0.42 0.17

run length of the average run length from their results.

Another difference in the results is that their algorithm always estimates a truncation

point. For their results, the maximum simulation length is set to 3,000 observations and

the maximum deletion amount of one half. Since 1,500 appears to be beyond the transient

for these output sequences, their algorithm defaults to a "good" truncation point. Since the

MMAE approach seldom fails to estimate a truncation point, this difference does not impact

the comparison signTIL,,ntly.

A Monte Carlo analysis is conducted with 1,000 sets of runs with 5 replications per set.

The MMAE parameters are estimated using the last half of the averaged output sequence.

Table 71 shows the average parameter estimates and their standard deviations. The average

initial mean estimate Afi is very near the theoretical steady-state mean value jL, except for the

M/M/1 model with traffic intensity p of 0.95. The estimated AR(2) with measurement noise

model often has significant first autoregressive coefficients ý1 with small second autoregressive

coefficients q2 and no measurement noise, k = 1.0. In general, these models' outputs are

adequately represented by a pure AR(1) model.

Based on the scalar esimate k and the variance of the residuals for the last half of the
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Table 72. Noise Variances Estimation Summary (k = 1.0)

Qd R
Data Model ___ &_____R

M/M/1 p = 0.80 0.23 0.02 0.00 0.00
M/M/1 p = 0.90 0.32 0.03 0.00 0.00
M/M/1 p = 0.95 0.39 0.06 0.00 0.00
M/M/1 p = 0.80 LIFO 13.57 10.32 4.14 6.12
M/M/I1 p = 0.80 Lo = 10 0.23 0.02 0.00 0.00
E4 /M/1 p = 0.80 0.13 0.01 0.00 0.00
M/M/2 p = 0.80 0.31 0.03 0.01 0.01
M/M/4 p = 0.80 0.38 0.07 0.05 0.02
M/M/1/M/M/1/M/M/1 0.58 0.04 0.01 0.00
Time-Sharing Computer 27.67 52.10 63.95 30.21
Central Server Computer 1.69 1.11 3.01 1.01

averaged output sequence, the dynamics noise variance Qd and the measurement noise vari-

ance R are estimated. The estimation approach and its problems are discussed on pages 90

and 167. Table 72 shows the average estimates for the 1,000 Monte Carlo sets of runs.

Whenever k = 1.0, the measurement noise variance 1 is also estimated to be zero.

Table 73 shows statistics on the selected truncation points i-0 for the 1,000 Monte Carlo

sets of runs. The column labeled 'Fail' indicates the proportion of sets for which the MMAE

approach failed to select a truncation point. These sets of runs are excluded from further

analysis. The averages of the MMAE selected truncation points are always less than 1 of
2

the average truncation points reported by Kelton and Law [44]. For the E4 /M/1 model, the

average is only i of the average they report. Kelton and Law report the accuracy for their

estimation of the truncation point no. Using this accuracy value to back out the variance, the

MMAE truncation-point variance is less for every model except M/M/4. For the M/M/4,

the truncation-point variances are almost equal. Therefore, the MMAE algorithm generally

truncates less of the initial data than Kelton and Law's algorithm. If the MMAE truncation

points are sufficient to remove the initial data bias, the resulting inferences are more precise

because of the increased number of untruncated observations.
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Table 73. Truncation Points no (k = 1.0)
Data Model Run Length Fail Min Max Avg St Dev

M/M/1 p = 0.80 1615 0.000 1 1422 178.3 184.9
M/M/1 p = 0.90 1910 0.013 11 1860 443.3 367.3
M/M/1 p = 0.95 2560 0.256 18 2424 667.1 458.7
M/M/1 p = 0.80 LIFO 1365 0.055 28 1360 335.3 286.6
M/M/1 p = 0.80 LIFOt 1365 0.045 24 1360 291.6 261.4
M/M/1 p = 0.80 Lo = 10 1475 0.001 1 1373 121.0 154.5
E 4/M/1 p = 0.80 1460 0.000 1 1253 93.8 114.3
M/M/2 p = 0.80 1470 0.009 3 1434 308.1 309.2
M/M/4 p = 0.80 1390 0.489 8 1372 486.0 376.7
M/M/1/M/M/1/M/M/1 1860 0.004 23 1847 558.4 437.9
Time-Sharing Computer 1380 0.366 31 1375 125.3 142.9
Time-Sharing Computer t 1380 0.109 37 1324 122.6 166.9
Central Server Computer 1150 0.128 8 1110 89.4 148.9

t Truncation algorithm used the estimated k rather than k = 1.0.

The simulation models for which the average of k, Ak, is less than one, shown in

Table 71, also result in a high proportion of sets where MMAE failed to identify a truncation

point. Because of the analysis of kc in Chapter V, the MMAE algorithm is implemented with

k set arbitrarily to one. For the two models with the lowest average for k, M/M/1 LIFO and

Time-Sharing Computer, the Monte Carlo analysis is run again with the MMAE algorithm

modified to use the estimated k rather than setting it to one. The results with the estimate

kc, marked with the dagger t, show that this change reduces the rate of failures with only a

small effect on the average selected truncation points. This change to using the estimated

k in the algorithm has little or no effect on most of the cases since their estimates of k are

close to 1.0.

Table 74 shows the measures of effectiveness for each of the tested models. The PEBIAS

are larger than values reported by Kelton and Law [44] except for the E4 /M/1 and Central

Server Computer models. Larger errors indicate worse results, but the impact is mitigated

by two considerations. First, the percentages of PEBIAS are reported in terms of the steady-

state means p.. Since these percentages are not large, the PEBIAS values are very small in
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Table 74. Truncation Point fi,° Evaluations (k = 1.0)
Data Model PEBIAS MAD Coy Half Width Bias

(% of I) Test
M/M/1 p = 0.80 2.4 ± 0.79 0.3 ± 0.02 0.88 ± 0.017 0.8 ± 0.03 0.28
M/M/1 p = 0.90 2.8 ± 1.37 1.6 ± 0.07 0.82 ± 0.020 3.5 ± 0.15 0.54
M/M/1 p = 0.95 -14.2 ± 1.27 3.9 ± 0.14 0.69 ± 0.028 7.2 ± 0.27 0.55
M/M/1 p = 0.80 LIFO 8.2 ± 2.44 0.6 ± 0.07 0.88 ± 0.017 1.2 ± 0.12 0.39
M/M/1 p = 0.80 LIFO f 6.3 ± 2.11 0.5 ± 0.06 0.88 ± 0.017 1.1 ± 0.11 0.36
M/M/1 p = 0.80 Lo = 10 1.8 ± 0.94 0.4 ± 0.02 0.88 ± 0.017 0.9 ± 0.04 0.21
E 4 M/1 p = 0.80 1.5 ± 0.78 0.2 ± 0.01 0.89 ± 0.016 0.4 ± 0.02 0.16
M/M/2 p = 0.80 6.4 ± 1.44 0.5 ± 0.03 0.88 ± 0.017 1.1 ± 0.06 0.56
M/M/4 p = 0.80 6.2 ± 2.34 0.5 ± 0.05 0.87 ± 0.024 1.1 ± 0.09 0.74
M/M/1/M/M/1/M/M/1 5.1 ± 1.33 1.9 ± 0.10 0.85 ± 0.018 4.1 ± 0.18 0.61
Time-Sharing Computer -0.1 ± 0.22 0.5 ± 0.03 0.90 ± 0.020 1.3 ± 0.06 0.29
Time-Sharing Computer t -0.1 + 0.18 0.5 ± 0.03 0.89 ± 0.017 1.3 ± 0.03 0.39
Central Server Computer 0.1 ± 0.08 0.1 ± 0.01 0.90 ± 0.017 0.3 ± 0.01 0.28

t Truncation algorithm used the estimated k rather than k = 1.0.

absolute terms. In fact, the difference may be accounted for by the data variation between

the two separate Monte Carlo analyses. The second consideration is that if the transient data

biases the mean estimates, the PEBIAS has a sign indicative of the upward or downward bias

induced by the initial conditions. Only two of the cases, the M/M/1 models with p = 0.95

and L0 = 10, have the same sign of PEBIAS as is induced by the model's initial conditions.

Apparently, the MMAE selected truncation points generally remove the bias induced by the

initial conditions.

Whercas the PEBIAS allows positive and negative values to cancel, the absolute value

in the MAD measure prevents errors from canceling each others effect. As a result, the

MAD measure reflects both the accuracies and variances of the mean estimates. The MAD

values are lower than the corresponding values reported by Kelton and Law (44] except

for the M/M/1 LIFO and the M/M/1/M/M!1/M/M/1 models. For these two models,

the reported MAD values are within 0.1 of their results. Therefore, in terms of MAD, the

MMAE truncation points are generally better than the points selected by Kelton and Law's
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technique.

The coverage rates for confidence intervals based on the sequences truncated at the

MMAE selected truncation points are higher than reported by Kelton and Law [44] except

for the M/M/1 with p = 0.95 model. In that case, the coverage rates are statistically

indistinquishable, 0.69 and 0.70. Thus, in terms of coverage rates, the MMAE truncation

points are superior. However, coverage rates should be examined in conjunction with their

corresponding average confidence interval average half width. The average half widths are

less except for three models. For the M/M/1 LIFO, M/M/2, and M/M/4 models, the

average half widths are only 0.1 larger for the sequence truncated with the MMAE selected

truncation points. The higher coverage with generally smaller average half width results from

an increase in the number of steady-state observations since the MMAE selected truncation

points are generally much earlier in the output sequence.

Overall, the MMAE selected truncation points appear superior to those selected by

Kelton and Law's algorithm. The results are not conclusive since Kelton and Law's algorithm

is not actually implemented. 1however, for this Monte Carlo analysis, which uses conditions

as similar as possible to their Monte Carlo analysis, better results are obtained by the MMAE

truncation-point selection algorithm.

6.4.2 Results with Estimated k. As shown in Table 74, using the estimated k generally

improves the evaluations of the truncated sequence. Since better results are obtained when

the estimated k is used in the MMAE selection algorithm, the Monte Carlo analysis is

conducted again. Besides using the estimate of k, the simulation run length is fixed at 1,500

observations for each of the 5 replications.

One additional output sequence for the M/M/1 queue also is tested. The sequence

consists of the length of the queue Lq sampled at intervals of one time unit. This output

sequence for the model M/M/1 (p = 0.8 Lq) is an example of "statistics based on time-

persistent variables" in contrast to all the other tested sequences, which are "statistics based

on observations". (See discussion of output classifications on page 37.)
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Table 75. Correlation Technique Parameter Estimation Summary (Estimated k)

Data Model /2+ A , O &, Ak O&k
M/M/1 p = 0.80 3.20 3.23 0.56 0.88 0.06 0.07 0.05 1.00 0.00
M/M/1 p = 0.90 8.10 8.15 2.33 0.91 0.06 0.07 0.06 1.00 0.00
M/M/l p = 0.95 18.05 16.44 5.53 0.91 0.06 0.07 0.06 1.00 0.00
M/M/l p = 0.80 LIFO .20 3.31 0.59 0.46 0.15 0.20 0.15 0.78 0.16
M/M/l p = 0.80 Lo = 10 3.20 3.20 0.56 0.88 0.06 0.07 0.05 1.00 0.00
M/M/1 p = 0.80 Lq 3.20 3.20 0.59 0.88 0.06 0.07 0.05 1.00 0.00
E 4/M/1 p = 0.80 1.81 1.82 0.27 0.86 0.07 0.07 0.05 1.00 0.00
M/M/2 p = 0.80 2.84 2.87 0.56 0.70 0.09 0.26 0.09 0.97 0.02
M/M/4 p = 0.80 2.39 2.41 0.54 0.64 0.15 0.34 0.15 0.89 0.05
M/M/1/M/M/1/M/M/1 10.23 10.25 2.54 0.88 0.08 0.10 0.07 0.99 0.01
Time-Sharing Computer 21.38 21.39 0.84 0.12 0.49 0.33 0.61 0.25 0.35
Central Server Computer 10.00 10.00 0.16 0.41 0.17 0.36 0.22 0.41 0.15

Table 75 shows a summary of the estimated system parameters. Except for the M/M/1

with p = 0.95 model, the averge of the mean estimates are very close to the theoretical

models. The M/M/1 with p = 0.95 results are discussed later in Section 6.4.3. Table 76

presents the corresponding estimates of the dynamics noise variance Qd and the measurement

noise variance R.

Table 77 shows the truncation-point statistics resulting with the MMAE algorithm

using the estimated k. Even when the run length is slightly longer than the Monte Carlo

analysis with k fixed at 1.0, the average truncation point is slightly earlier in the output

sequence. The proportion of times that the MMAE algorithm failed to find a truncation

point significantly decreases, except for the output from M/M/1 with p = 0.95. For this

model, the failure rate increases because the run length is reduced from 2,560 observations

to only 1,500 output values.

Table 78 shows the evaluation measures for the modified MMAE algorithm. The slight

changes from the case in which the MMAE used k = 1.0 are a result of different run lengths,

different stochastic realizations, and slightly earlier truncation points. With the decrease in
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Table 76. Noise Variances Estimation Summary (Estimated k)

Qd R
Data Model &,ý Aft &fZ

M/M/1 p = 0.80 0.23 0.02 0.00 0.00
M/M/1 p = 0.90 0.32 0.04 0.00 0.00
M/M/1 p = 0.95 0.40 0.07 0.00 0.00
M/M/1 p = 0.80 LIFO 13.99 11.34 4.21 7.10
M/M/1 p = 0.80 Lo = 10 0.23 0.02 0.00 0.00
M/M/1 p = 0.80 Lq 0.29 0.02 0.00 0.00
E4/M/l p = 0.80 0.13 0.01 0.00 0.00
M/M/2 p = 0.80 0.31 0.03 0.01 0.01
M/M/4 p = 0.80 0.37 0.07 0.05 0.02
M/M/1/M/M/1 ],'M/M/1 0.58 0.05 0.01 0.00
Time-Sha,'n. Computer 29.18 55.26 63.90 30.82
Central 5,-ier Computer 1.61 1.00 3.09 0.89

Table 77. Truncation Points ht (Estimated k)
Data Model Run Length Fail Min Max Avg St Dev

M/M/1 p = 0.80 1500 0.000 1 1317 179.9 199.5
M/M/1 p = 0.90 1500 0.017 9 1458 405.8 315.0
M/M/1 p = 0.95 1500 0.356 40 1440 512.8 328.7
M/M/1 p = 0.80 LIFO 1500 0.031 29 1456 309.9 284.6
M/M/1 p = 0.80 L0 = 10 1500 0.001 1 1221 117.4 135.6
M/M/l p = 0.80 Lq 1500 0.000 1 1489 207.1 221.3
E4/M/1 p = 0.80 1500 0.000 1 1169 91.7 112.0
M/M/2 p = 0.80 1500 0.006 5 1482 300.3 304.3
M/M14 p = 0.80 1500 0.372 14 1493 513.6 408.0
M/M/1/M/M/1/M/M/1 1500 0.008 16 1495 488.5 353.2
Time-Sharing Computer 1500 0.130 42 1332 118.8 149.0
Central Server Computer 1500 0.005 7 1446 38.8 95.6
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Table 78. Truncation Point h,, Evaluations (Estimated k)
Data Model PEBIAS MAD Coy Half Width Bias

(% of AY) Test
M/M/1 p = 0.80 3.0 ± 0.94 0.4 ± 0.02 0.86 ± 0.018 0.9 ± 0.03 0.30
M/M/1 p = 0.90 3.4 ± 1.52 1.7 ± 0.09 0.83 ± 0.020 3.9 ± 0.17 0.60
M/M/l p = 0.95 -22.1 ± 1.48 5.11± 0.18 0.56 ± 0.032 7.3 ± 0.32 0.61
M/M/1 p = 0.80 LIFO 5.0 ± 1.30 0.4 ± 0.04 0.86 ± 0.018 1.0 ± 0.05 0.32
M/M/1 p = 0.80 L0 = 10 1.1 ± 0.79 0.4 ± 0.02 0.87 ± 0.018 0.8 ± 0.03 0.21
M/M/1 p = 0.80 Lq 3.2 ± 1.03 0.4 ± 0.02 0.86 ± 0.018 1.0 ± 0.05 0.34
E 4/M/l p = 0.80 1.0 - 0.65 0.2 ± 0.01 0.89 ± 0.017 0.4 ± 0.01 0.15
M/M/2 p = 0.80 6.4 1.32 0.4 ± 0.03 0.88 ± 0.017 1.0 ± 0.05 0.56
M/M/4 p 0.80 8.3 ± 2.40 0.5 ± 0.05 0.86 ± 0.023 1.1 ± 0.08 0.76
M/M/1/M/M/1/M/M/l 4.6 ± 1.39 2.0 ± 0.10 0.84 ± 0.019 4.3 ± 0.19 0.66
Time-Sharing Computer -0.2 ± 0.17 0.5 ± 0.02 0.90 ± 0.017 1.2 ± 0.03 0.36
Central Server Computer 0.1 ± 0.06 0.1 ± 0.00 0.90 ± 0.016 0.2 ± 0.00 0.19

run length, the M/M/1 with p = 0.95 coverage rate decreases from 0.69 to only 0.56. For

this case, the effect of increasing the run length is examined in Section 6.4.3.

The following sequence of tables characterizes the transient and its effect for each of

the eleven models. For each model, two tables are presented. The first table shows the

average values of periodic output values and their variance. When the average approaches

the steady-state value, the transient is essentially complete. These values are obtained by

averaging over the 1,000 Monte Carlo sets each with 5 replications. Table 79 shows the

results for the output of the M/M/1 queue simulation with p = 0.8. The initial conditions

of an empty queue and idle server cause the first customer always to have a waiting time of

zero. The downward initial bias appears to have a very small effect by the 200th observation

since their average of 3.16 is almost equal to the theoretical average of 3.2. Certainly, the

initial bias is inconsequential by the 400th observation. The double horizontal lines indicate

between which periodic values the average truncation point occurs. For the M/M/1 with

p = 0.8 output, the average truncation point is 179.9, which is between 100 and 200.

The second table on the output of each model shows the effect of truncating at periodic
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Table 79. Periodic Output Values Points for M/M/1 with p = 0.8 ( = 3.2)
n Av1, &v
1 0.00 0.00

100 2.99 3.61

200 3.16 3.93
300 3.1.7 3.95
400 3.25 3.93
500 3.19 3.93
600 3.23 4.01
700 3.20 4.05
800 3.21 3.87
900 3.19 4.04

1000 3.21 3.98
1100 3.22 4.01
1200 3.22 3.86
1300 3.21 3.89
1400 3.22 3.91
1500 3.19 3.93

points. Since no alternative analytical truncation-point technique is widely accepted, these

tables investigate the sensitivity of the MMAE selected truncation points. In the table for

each model, the first two columns are the mean estimate and its variance when the output

sequences are truncated at that point. The next columns present the point estimator bias

(PEBIAS) as a percentage of the theoretical steady-state mean and the average of the mean

absolute deviation (MAD) for the truncated sequences. The coverage rate and average

confidence interval half width are also presented for the truncated sequences. The final

column presents the ratio of averaged sequences which passed Schruben's test for no initial

bias. Again, the interval containing the average of the MMAE selected truncation points is

indicated with double horizontal lines.

Table 80 shows the inferences that result for periodic truncations of the output from

the M/M/1 model with p = 0.8. The mean estimate after deleting the first 100 observations

has no significant downward bias from the initial conditions. Deleting more of the initial
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Table 80. Periodic Truncation Points for M/M/1 with p = 0.8 (IL, = 3.2)

-ho __ _ PEBIAS (% of •) MAD Cov HW Bias Test
0 3.16 0.40 -1.2 ± 0.65 0.3 ± 0.01 0.86 ± 0.018 0.8 ± 0.02 0.00

100 3.21 0.42 0.5 ± 0.68 0.3 + 0.01 0.87 ± C.018 0.8 ± 0.02 0.18
200 3.22 0.44 0.6 ± 0.71 0.3 ± 0.01 0.87 ± 0.018 0.8 ± 0.02 0.35
300 3.22 0.46 0.7 ± 0.74 0.4 ± 0.02 0.87 ± 0.018 0.9 ± 0.03 0.50
400 3.23 0.47 0.8 ± 0.77 0.4 ± 0.02 0.86 ± 0.018 0.9 ± 0.03 0.63
500 3.23 0.49 0.9 ± 0.80 0.4 ± 0.02 0.88 ± 0.017 0.9 ± 0.03 0.74
600 3.23 0.52 0.8 + 0.84 0.4 ± 0.02 0.88 ± 0.017 1.0 ± 0.03 0.85
700 3.23 0.54 0.9 ± 0.88 0.4 ± 0.02 0.88 ± 0.017 1.0 ± 0.03 0.92
800 3.22 0.58 0.7 ± 0.95 0.5 ± 0.02 0.86 ± 0.018 1.1 ± 0.03 0.95
900 3.22 0.61 0.6 ± 0.99 0.5 ± 0.02 0.85 ± 0.018 1.1 ± 0.04 0.97

1000 3.22 0.65 0.7 ± 1.06 0.5 ± 0.02 0.85 ± 0.019 1.2 ± 0.04 0.95
1100 3.21 0.70 0.5 ± 1.14 0.5 ± 0.02 0.86 ± 0.018 1.3 ± 0.04 0.90
1200 3.20 0.79 0.1 ± 1.29 0.6 ± 0.03 0.83 ± 0.020 1.4 ± 0.05 0.82
1300 3.19 0.95 -0.2 + 1.54 0.7 ± 0.03 0.81 ± 0.020 1.7 ± 0.06 0.72
1400 3.22 1.23 0.5 ± 1.99 0.9 ± 0.04 0.81 ± 0.021 2.1 ± 0.08 0.92

observations increases the variance in the mean estimate. With no deletion, iho 0, the

PEBIAS has a negative sign because of the downward bias induced by the initial conditions.

However, after deleting only 100 observations, the PEBIAS no longer shows the effects of the

initial conditions. The MAD statistic is a function of both the point estimator bias and its

variance. The average value of the MAD statistic increases steadily as more data is deleted

and the variance of the point estimator A,, increases. The coverage rate never attains its

nominal value of 0.9. Besides a slight increase in the coverage rate, the initial transient has

almost no effect. However, deleting more than half the data causes the coverage rate to

decrease. The average confidence interval half widths steadily increase with less data. The

final column reports the percentage of truncated averaged sequences which passed Schruben's

test for no initial bias. The nominal rate of 0.9 is not achieved until 700 observations are

deleted. Schruben's test appears overly sensitive to potential outliers. Schruben's test also

results in odd fluctuations as the length of the truncated sequence becomes very short.

The periodic output values for the simulation of the M/M/1 queue with p = 0.9 are
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Table 81. Periodic Output Values Points for M/M/1 with p 0.9 (tt , 8.1)
n1 /.S O'Y

1 0.00 0.00
100 5.63 5.81
200 6.90 7.18
300 7.40. 7.90
400 7.76 8.27

500 7.83 8.54
600 8.03 8.78
700 7.96 8.83
800 8.16 9.01
900 8.16 9.26

1000 8.16 9.04
1100 8.11 9.15
1200 8.19 8.88
1300 8.12 8.95
1400 8.13 8.81
1500 8.05 8.84

shown in Table 81. The exponential or geometric decay of the transient value to the steady-

state mean of 8.1 is apparent. The effects of the transient appear to be inconsequential by

the 800th observations. From Table 82, the initial transient effects on the mean estimates

are seen to be negligible after deleting the first 500 observations. After deleting 500 initial

observations, the PEBIAS no longer has the negative sign induced by the start-up condi-

tions and the coverage rate has attained its maximum value. Deleting further observations

increases the variance of the mean estimators, which causes the coverage rate to decrease

even with wider confidence intervals. The average MMAE selected truncation point of 405.8

appears :ery reasonable.

The periodic output from the simulation of the M/M/1 queue with p = 0.95, shown

in Table 83, indicate that many of the output sequences have not completed their initial

transient within 1,500 observations. The average of the 1,000 Monte Carlo sets, with 5

replications each, never attains the steady-state mean of 18.05. Therefore, the average of
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the mean estimate based on the last half of the data ý, shown in Table 75, is significantly

below the steady-state mean.

For the M/M/1 with p =- 0.95, Table 84 shows that the average mean estimate also

never attains the theoretical value. Regardless of the truncation point, a downward bias is

indicated by the negative sign on the PEBIAS. The coverage is always below the nominal

rate of 0.9, but increases as more initial data is truncated. Because many of these output

sequences generally continue to increase, the MMAE truncation-point selection algorithm

fails to pick a truncation point for 35.6 percent of the sets.

When the MMAE algorithm selected a truncation point, the coverage rate is only

0.56. This is lower than any of the fixed periodic truncation points, probably because of the

manner in which the output varies. As shown in Figure 2 in Section 2.4.3, M/M/1 with

p = 0.95 simulation output has long subsequences of thousands of observations with low

average values and occasional subsequences of about one thousand observations with very

Table 82. Periodic Truncation Points for M/M/1 with p = 0.9 (pu = 8.1)

ii0 Ay &A, PEBIAS (% of u) MAD Cov HW Bias Test
0 7.61 1.64 -6.1 ± 1.05 1.4 ± 0.05 0.77 ± 0.022 2.9 ± 0.11 0.00

100 7.86 1.75 -2.9 ± 1.12 1.4 ± 0.06 0.81 ± 0.020 3.1 ± 0.11 0.22
200 7.98 1.84 -1.5 ± 1.19 1.4 ± 0.06 0.82 ± 0.020 3.2 ± 0.12 0.48
300 8.04 1.94 -0.7 ± 1.25 1.5 ± 0.01 0.83 ± 0.020 3.4 ± 0.13 0.69
400 5.09 2.02 -0.1 ± 1.30 1.5 ± 0.07 0.83 ± 0.020 3.5 ± 0.14 0.70

500 8.12 2.10 0.2 ± 1.35 1.6 ± 0.07 0.83 ± 0.020 3.7 ± 0.14 0.75
600 8.13 2.19 0.4 ± 1.41 1.6 ± 0.08 0.83 ± 0.020 3.9 ± 0.15 0.75
700 8.15 2.27 0.6 ± 1.46 1.7 ± 0.08 0.83 ± 0.020 4.0 ± 0.16 0.83
800 8.15 2.39 0.6 ± 1.53 1.8 ± 0.08 0.81 ± 0.020 4.2 ± 0.17 0.82
900 8.14 2.48 0.5 ± 1.59 1.9 ± 0.08 0.82 ± 0.020 4.3 ± 0.17 0.81

1000 8.13 2.60 0.4 ± 1.67 2.0 ± 0.09 0.81 ± 0.020 4.5 ± 0.18 0.78
1100 8.12 2.75 0.2 ± 1.77 2.1 ± 0.09 0.81 ± 0.021 4.8 ± 0.19 0.78
1200 8.10 2.96 0.0 ± 1.90 2.3 ± 0.10 0.79 ± 0.021 5.1 ± 0.19 0.82
1300 8.06 3.18 -0.5 ± 2.05 2.5 ± 0.10 0.78 ± 0.021 5.6 ± 0.20 0.94
1400 8.07 3.49 -0.4 ± 2.24 2.8 ± 0.11 0.78 ± 0.022 6.2 ± 0.21 0.99
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Table 83. Periodic Output Values Points for M/M/1 with p = 0.95 (j = 18.05)

1 0.00 0.00
100 7.61 7.09
200 10.29 9.48
300 11.86 11.10
400 12.93 12.24
500 13.73 13.20

600 14.50 14.00
700 14.94 14.52
800 15.55 15.26
900 15.89 15.85

1000 16.14 16.20
1100 16.47 16.56
1200 16.73 16.75
1300 16.90 16.98
1400 17.01 17.07
1500 17.01 17.28

Table 84. Periodic Truncation Points for M/M/1 with p - 0.95 (ji, 18.05)

,ho Ay &j, IPEBIAS (% of p.) MAD Cov HW Bias Test
0 14.05 3.75 -22.1 ± 1.08 4.8 ± 0.14 0.58 ± 0.026 6.9 ± 0.23 0.00

100 14.69 4.00 -18.6 ± 1.15 4.5 ± 0.14 0.63 ± 0.025 7.4 ± 0.24 0.12
200 15.13 4.26 -16.2 ± 1.23 4.4 ± 0.14 0.67 ± 0.024 7.8 ± 0.26 0.32
300 15.46 4.51 -14.4 ± 1.30 4.3 ± 0.15 0.69 ± 0.024 8.3 ± 0.28 0.54
400 15.74 4.75 -12.8 ± 1.37 4.4 ± 0.15 0.70 ± 0.024 8.7 ± 0.30 0.47
500 15.98 4.98 -11.5 ± 1.44 4.5 ± 0.16 0.72 ± 0.023 9.2 + 0.31 0.50

600 16.19 5.20 -10.3 ± 1.50 4.6 ± 0.16 0.73 ± 0.023 9.7 ± 0.33 0.52
700 16.36 5.41 -9.3 ± 1.56 4.7 ± 0.17 0.73 ± 0.023 10.1 + 0.34 0.78
800 16.51 5.64 -8.5 ± 1.63 4.8 ± 0.17 0.74 ± 0.023 10.6 ± 0.36 0.79
900 16.63 5.84 -7.9 ± 1.68 4.9 ± 0.18 0.77 ± 0.022 11.0 ± 0.37 0.77

1000 16.75 6.03 -7.2 ± 1.74 5.0 ± 0.19 0.77 ± 0.022 11.4 ± 0.38 0.81
1100 16.83 6.23 -6.8 ± 1.79 5.1 ± 0.19 0.77 ± 0.022 11.9 ± 0.39 0.87
3200 16.91 6.48 -6.3 ± 1.87 5.3 ± 0.20 0.77 ± 0.022 12.4 ± 0.40 0.93
1300 16.93 6.78 -6.2 ± 1.96 5.5 ± 0.21 0.78 ± 0.022 13.0 ± 0.40 0.98
1400 16.97 7.07 -6.0 ± 2.04 5.8 ± 0.22 0.80 ± 0.021 13.8 ± 0.41 0.99
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Table 85. Periodic Output Values Points for M/M/1 LIFO (pv 3.2)

1 0.00 0.00
100 2.68 7.21
200 3.07 9.66
300 3.24 10.71

400 3.45 11.32
500 3.18 10.21
600 3.10 10.06
700 3.19 10.62
800 3.57 12.89
900 3.22 10.52

1000 2.98 9.69
1100 3.06 9.84
1200 3.22 11.20
1300 3.22 11.21
1400 3.29 10.77
1500 15.86 28.97

long waiting times when the system is congested. If none of the five replications happen to

have become congested within 1,500 observations, the mean estimate based on the last half

of the data sequence 1 is significantly low. As a result, the MMAE mean estimate A,(t,)

very likely comes within 1.0 of g and a truncation point is selected. Under these conditions,

the mean estimate and confidence interval are biased downward and fail to cover the steady-

state mean. This phenonmenon explains the lower coverage rate for the MMAE truncation

sequences compared to the sequences truncated at fix intervals.

The M/M/1 LIFO average observations, shown in Table 85, indicate that the signif-

icant effects of the transient are negligible after 300th observations. From Table 86, the

truncation point apparently can be selected earlier in the output sequence without adverse

effects.

The output from the simulation of the M/M/1 with initial queue length L0 of 10 is

an example of an initially over-congested system. Except for the first waiting time, which is
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still zero, the entities during the initial transient have waiting times generally longer than

the steady-state mean. Table 87 shows that, by the 300th observation, the average waiting

time has decreased to less than the steady-state value. Table 88 indicates that no or very

little truncation achieves the highest coverage rate with the smallest average confidence

interval half widths. The MMAE algorithm generally selects very early truncation points

and achieves good results.

The length of queue L. is an example of "statistics based on time-persistent variable."

The output M/M/1 p = 0.8 Lq is generated by sampling the queue length every time unit.

Therefore, unlike for the other tested models, the state transition matrix (b represents the

change over a fixed time interval rather than the change between sequential observations.

Table 89 indicates that the output is very near its steady-state mean by the 200th observation

and the initial transient effectively is complete by the 400th observation. From Table 90,

the effect of the initial conditions is insignificant on coverage after 100 observations. The

Table 86. Periodic Truncation Points for M/M/1 LIFO (jIL, = 3.2)

ho _ ,_&A,, PEBIAS (% of i) MAD Coy HW Bias Test
0 3.15 0.39 -1.4 ± 0.64 0.3 ± 0.01 0.85 ± 0.019 0.7 ± 0.02 0.00

100 3.24 0.42 1.2 ± 0.68 0.3 ± 0.01 0.88 ± 0.017 0.8 ± 0.02 0.11
200 3.26 0.43 1.8 ± 0.71 0.3 ± 0.01 0.88 ± 0.017 0.8 ± 0.02 0.23
300 3.27 0.46 2.1 ± 0.75 0.4 ± 0.02 0.88 ± 0.017 0.9 ± 0.03 0.35

400 3.27 0.49 J 2.3 ± 0.79 0.4 ± 0.02 0.87 ± 0.017 0.9 ± 0.03 0.46
500 3.28 0.51 2.5 ± 0.82 0.4 ± 0.02 0.88 ± 0.017 1.0 ± 0.03 0.59
600 3.29 0.53 2.7 ± 0.87 0.4 4 0.02 0.88 ± 0.017 1.0 + 0.03 0.70
700 3.30 0.57 3.0 ± 0.93 0.4 ± 0.02 0.88 ± 0.017 1.1 ± 0.04 0.76
800 3.31 0.62 3.4 ± 1.01 0.5 ± 0.02 0.87 ± 0.018 1.1 ± 0.04 0.84
900 3.32 0.67 3.8 ± 1.09 0.5 ± 0.02 0.87 ± 0.017 1.2 ± 0.04 0.88

1000 3.34 0.72 4.5 ± 1.17 0.5 ± 0.03 0.87 ± 0.017 1.3 ± 0.04 0.93
1100 3.38 0.79 5.6 ± 1.28 0.6 ± 0.03 0.87 ± 0.017 1.4 ± 0.05 0.96
1200 3.41 0.90 6.7 ± 1.47 0.7 ± 0.03 0.86 ± 0.018 1.6 ± 0.05 0.97
1300 3.49 1.13 9.1 ± 1.84 0.8 ± 0.04 0.87 ± 0.017 1.9 ± 0.07 0.99
1400 3.79 1.73 18.4 ± 2.82 1.2 ± 0.07 0.86 ± 0.018 2.7 ± 0.12 0.99
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Table 87. Periodic Output Values Points for M/M/1 with Lo = 10 (/ = 3.2)

1 0.00 0.00
100 3.36 4.18

200 3.28 4.07
300 3.15 3.97
400 3.24 3.86

500 3.26 3.97
600 3.18 3.88
700 3.23 3.86

800 3.18 3.90
900 3.19 4.02

1000 3.29 4.05
1100 3.25 4.01
1200 3.21 3.93
1300 3.22 3.93
1400 3.20 3.86
1500 3.09 3.77

Table 88. Periodic Truncation Points for M/M/1 with Lo = 10 ( = 3.2)

n0o Ay &f PEBIAS (% of /. MAD Cov HW Bias Test
0 3.29 0.42 2.9 ± 0.68 0.3 ± 0.01 0.88 ± 0.017 0.8 ± 0.02 0.00

100 3.21 0.43 0.4 ± 0.69 0.3 ± 0.01 0.88 ± 0.017 0.8 ± 0.02 0.21

200 1 3.20 0.44 0.2 ± 0.71 0.3 ± 0.01 0.87 ± 0.017 0.8 ± 0.02 0.36
300 3.20 0.45 0.1 ± 0.74 0.4 ± 0.01 0.87 ± 0.018 0.8 ± 0.02 0.50
400 3.21 0.47 0.2 ± 0.76 0.4 ± 0.02 0.87 ± 0.018 0.9 ± 0.02 0.65
500 3.20 0.49 0.1 ± 0.79 0.4 ± 0.02 0.87 ± 0.017 0.9 ± 0.03 0.77
600 3.20 0.51 0.0 ± 0.84 0.4 ± 0.02 0.87 ± 0.017 0.9 ± 0.03 0.83
700 3.20 0.54 0.1 ± 0.88 0.4 ± 0.02 0.87 ± 0.018 1.0 ± 0.03 0.92
800 3.20 0.58 0.0 ± 0.94 0.4 ± 0.02 0.86 ± 0.018 1.1 ± 0.03 0.96
900 3.20 0.61 0.0 ± 1.00 0.5 ± 0.02 0.86 ± 0.018 1.1 ± 0.04 0.97

1000 3.19 0.65 -0.2 ± 1.06 0.5 ± 0.02 0.86 ± 0.018 1.2 ± 0.04 0.96
1100 3.18 0.70 -0.7 ± 1.13 0.5 ± 0.02 0.84 ± 0.019 1.3 ± 0.04 0.91
1200 3.18 0.78 -0.6 ± 1.28 0.6 ± 0.03 0.83 ± 0.020 1.4 ± 0.05 0.82
1300 3.18 0.87 -0.7 ± 1.42 0.7 ± 0.03 0.81 ± 0.020 1.6 ± 0.06 0.71
1400 3.14 1.10 -1.7 ± 1.80 0.9 ± 0.04 0.79 ± 0.021 1.9 ± 0.07 0.94
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average MMAE selected truncation point is 207.1. For this example of "statistics based on

time-persistent variables", the MMAE selected truncation point is both effective and efficient

at reducing the effects of the initial conditions.

For the E4/M/l model, the periodic average output values, Table 91, and the periodic

truncation points, Table 92, show that the significant transient effects are relatively short-

lived. As such, the average truncation point selected by the MMAE algorithm is only 91.7.

For the M/M/2 simulation output, the averages of periodic observations and the eval-

uation of periodic truncation points are shown in Tables 93 and 94, respectively. Since the

average truncation point selected by the MMAE algorithm is 300.3, this case provides the

opportunity to examine the effect of the variance in the MMAE truncation points compared

to a fixed truncation point of 300. Since the evaluations of the MMAE truncation points

use the same output sequences to select the truncation point and to draw inferences, a bias

may be present. For the 1,000 sets of runs, the percentage of PEBIAS is 6.4 for the MMAE

approach compared to 0.8 the fixed truncation point of 300. However, 6.4 percent of /I, is

only 0.18 in absolute terms. This is rather small compared to the standard deviation of the

mean estimates &i,, of 0.45. The average MAD values are about the same. The sequences

truncated with the MMAE selected points have a slightly larger half width and therefore

a coverage rate a little closer to the nominal rate. The largest difference is in the rate of

passing Schruben's test for initial bias. The sequences truncated at the fix point pass 75

percent of the time, while only 56 percent of the sequences truncated at the MMAE selected

point pass Schruben's test.

Tables 95 and 96 indicate that the output from the M/M/4 model has a relatively

short transient. The sequences truncated at the MMAE selected truncation point achieve

a coverage of 0.87, as high as any of the fixed truncation points. While the statistics and

parameters for these sequences appear similar to the other models, the MMAE algorithm

fails to select a truncation point in 37.2 percent of the Monte Carlo sets of runs. These

failures are caused by the filter spacing, which is examined later in Section 6.4.4.
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Table 89. Periodic Output Values Points for M/M/1 Lq (A,, 3.2)

n Ay.I &y.
1 0.47 0.82

100 2.87 3.80
200 3.15 4.12

300 3.17 4.32
400 3.21 4.28
500 3.23 4.29
600 3.30 4.43
700 3.23 4.42
800 3.23 4.39
900 3.17 4.18

1000 3.17 4.27
1100 3.22 4.29
1200 3.17 4.25
1300 3.19 4.32
1400 3.21 4.33
1500 3.09 4.22

Table 90. Periodic Truncation Points for M/M/1 L9 (I, = 3.2)

__o ______ PEBIAS (% of gy MAD Cov HW Bias Test
0 3.15 0.41 -1.6 ± 0.67 0.3 ± 0.01 0.84 ± 0.019 0.8 ± 0.02 0.00

100 3.20 0.44 -0.1 ± 0.71 0.3 ± 0.01 0.86 ± 0.018 0.8 ± 0.02 0.17
200 3.21 0.45 0.3 ± 0.73 0.4 ± 0.01 0.86 ± 0.018 0.8 ± 0.02 0.35

300 3.21 0.47 0.4 ± 0.77 0.4 ± 0.02 0.85 ± 0.019 0.9 ± 0.02 0.49
400 3.21 0.50 0.4 ± 0.82 0.4 ± 0.02 0.85 ± 0.019 0.9 ± 0.03 0.64
500 3.22 0.52 0.5 ± 0.85 0.4 ± 0.02 0.86 ± 0.018 1.0 ± 0.03 0.77
600 3.21 0.54 0.3 ± 0.88 0.4 ± 0.02 0.85 ± 0.018 1.0 ± 0.03 0.85
700 3.20 0.57 0.1 ± 0.92 0.5 ± 0.02 0.86 ± 0.018 1.1 ± 0.03 0.90
800 3.19 0.61 -0.3 ± 0.99 0.5 ± 0.02 0.85 ± 0.019 1.1 ± 0.03 0.94
900 3.20 0.66 -0.1 ± 1.07 0.5 ± 0.02 0.84 ± 0.019 1.2 ± 0.04 0.96

1000 3.21 0.71 0.4 ± 1.15 0.5 ± 0.02 0.84 ± 0.019 1.3 ± 0.04 0.96
1100 3.23 0.80 0.8 ± 1.30 0.6 ± 0.03 0.83 ± 0.019 1.4 ± 0.05 0.92
1200 3.21 0.90 0.3 ± 1.46 0.7 ± 0.03 0.81 ± 0.020 1.6 ± 0.06 0.85
1300 3.22 1.07 0.5 ± 1.74 0.8 ± 0.04 0.81 ± 0.021 1.8 ± 0.07 0.74
1400 3.20 1.28 0.1 ± 2.08 1.0 ± 0.04 0.79 ± 9.021 2.2 ± 0.09 0.89
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Table 91. Periodic Output Values Points for E41MIl (ILy 1.814)
n Ay. &y.
1 0.00 0-00ý

100 1.73 2.38

200 1.82 2.53

300 1.80 2.52
400 1.87 2.54

500 1.80 2.45

600 1.82 2.55
700 1.82 2.55
800 1.81 2.53
900 1.78 2.50

1000 1.81 2.47

1100 1.82 2.49

1200 1.85 2.51

1300 1.85 2.51
1400 1.82 2.50

1500 1 1.75 2.46

Table 92. Periodic Truncation Points for E41MIl (ILy 1.814)

'ho &k PEBIAS (% of ity) MAD Cov HW Bias Tes

0 1.80 0.20 -1.0 ± 0.57 0.2 ± 0.01 0.88 ± 0.017 0.4 ± 0.01 0.00

100 1.82 0.21 0.2 ± 0.59 0.2 ± 0.01 0.89 ± 0.017 0.4 ± 0.011 0.15
200 1.82 0.21 0.1 ± 0.61 0.2 ± 0.01 0.88 ± 0.017 0.4 ± 0.01 0.34

300 1.82 0.22 0.2 ± 0.64 0.2 0.01 0.89 ± 0.016 0.4 0.01 0.47

400 1.82 0.23 0.2 ± 0.66 0.2 0.01 0.89 ± 0.016 0.4 0.01 0.61
500 1.82 0.24 0.2 ± 0.69 0.2 0.01 0.89 ± 0.016 0.5 0.01 0.73
600 1.82 0.25 0.2 ± 0.72 0.2 0.01 0.88 ± 0.017 0.5 0.01 0.81
700 1.82 0.26 0.4 ± 0.76 0.2 0.01 0.89 ± 0.016 0.5 0.01 0.88
800 1.82 0.28 0.1 ± 0.81 0.2 0.01 0.88 ± 0.017 0.5 0.02 0.93
900 1.81 0.30 0.0 ± 0.87 0.2 0.01 0.87 ± 0.017 0.6 0.02 0.97

1000 1.82 0.33 0.2 ± 0.95 0.3 ± 0.01 0.87 ± 0.018 0.6 0.02 0.98
1100 1.81 0.37 -0.1 ± 1.06 0.3 ± 0.01 0.86 ± 0.018 0.7 ± 0.02 0.97
1200 1.82 0.43 0.1 ± 1.22 0.3 ± 0.01 0.86 ± 0.018 0.8 ± 0.03 0.94
1300 1.81 0.51 -0.2 ± 1.45 0.4 ± 0.02 0.83 ± 0.019 0.9 ± 0.03 0.82
1400 1.81 0.67 -0.2 ± 1.91 1 0.5 ± 0.02_1 0.81 ± 0.021 1.1 ± 0.05 0.79
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Table 93. Periodic Output Values Points for M/M/2 (sv = 2.844)

1 0.00 0.00
100 2.64 3.53
200 2.82 3.84
300 2.85 3.83

400 2.89 3.84
500 2.85 3.80
600 2.88 3.89
700 2.87 3.99
800 2.84 3.79
900 2.82 3.99

1000 2.86 3.85
1100 2.88 3.93
1200 2.88 3.78
1300 2.85 3.75
1400 2.87 3.83
1500 2.81 3.84

Table 94. Periodic Truncation Points for M/M/2 (v = 2.844)

_h_ a ,5 PEBIAS (% of •y) MAD Coy HW Bias Test
0 2.81 0.39 -1.4 ± 0.72 0.3 ± 0.01 0.86 ± 0.018 0.7 ± 0.02 0.00

100 2.86 0.41 0.5 ± 0.76 0.3 + 0.01 0.87 ± 0.018 0.8 ± 0.02 0.35
200 2.86 0.43 0.7 - 0.79 0.3 ± 0.01 0.86 ± 0.018 0.8 ± 0.02 0.60
300 2.87 0.45 0.8 - 0.82 0.3 ± 0.02 0.86 ± 0.018 0.8 ± 0.03 0.75

400 2.87 0.47 0.9 ± 0.86 0.4 ± 0.02 0.87 ± 0.018 0.9 ± 0.03 0.87
500 2.87 0.48 1.0 ± 0.89 0.4 ± 0.02 0.88 ± 0.017 0.9 ± 0.03 0.92
600 2.87 0.51 0.9 ± 0.93 0.4 ± 0.02 0.87 ± 0.017 1.0 ± 0.03 0.95
700 2.87 0.54 1.0 - 0.98 0.4 ± 0.02 0.87 ± 0.017 1.0 ± 0.03 0.97
800 2.86 0.58 0.7 + 1.05 0.4 ± 0.02 0.86 ± 0.018 1.0 ± 0.03 0.96
900 2.86 0.60 0.6 ± 1.10 0.5 ± 0.02 0.85 ± 0.019 1.1 ± 0.04 0.96

1000 2.87 0.64 0.8 ± 1.17 0.5 ± 0.02 0.84 ± 0.019 1.2 ± 0.04 0.92
1100 2.86 0.69 0.5 ± 1.26 0.5 ± 0.02 0.85 ± 0.019 1.3 ± 0.04 0.87
1200 2.85 0.78 0.1 ± 1.42 0.6 ± 0.03 0.83 ± 0.020 1.4 ± 0.05 0.81
1300 2.84 0.93 -0.3 ± 1.70 0.7 ± 0.03 0.81 ± 0.020 1.6 ± 0.06 0.75
1400 2.86 1.21 0.5 ± 2.21 0.9 ± 0.04 0.81 ± 0.021 2.0 ± 0.08 0.95
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Table 95. Periodic Output Values Points for M/M/4 (1v= 2.386)

1 0.00 0.00
100 2.22 3.39
200 2.37 3.62
300 2.35 3.65
400 2.42 3.61
500 2.36 3.62

600 2.41 3.73
700 2.41 3.77
800 2.40 3.67
900 2.40 3.80

1000 2.37 3.71
1100 2.43 3.77
1200 2.43 3.61
1300 2.34 3.54
1400 2.42 3.67
1500 2.35 3.69

Table 96. Periodic Truncation Points for M/M/4 (si, 2.386)

no ____- PEBIAS (% of py) MAD Coy HW Bias Test
0 2.34 0.38 -1.8 ± 0.83 0.3 ± 0.01 0.85 ± 0.019 0.7 ± 0.02 0.00

100 2.40 0.40 0.4 ± 0.88 0.3 ± 0.01 0.86 ± 0.018 0.8 ± 0.02 0.81
200 2.40 0.42 0.6 ± 0.91 0.3 ± 0.01 0.86 ± 0.018 0.8 ± 0.02 0.93

300 2.40 0.44 0.8 ± 0.95 0.3 ± 0.01 0.86 ± 0.018 0.8 ± 0.03 0.97
400 2.41 0.46 0.9 ± 0.99 0.4 ± 0.01 0.85 ± 0.018 0.9 ± 0.03 0.96
500 2.41 0.47 1.0 ± 1.03 0.4 ± 0.02 0.87 ± 0.017 0.9 ± 0.03 0.90

600 2.41 0.49 1.0 ± 1.08 0.4 ± 0.02 0.86 ± 0.018 0.9 ± 0.03 0.83
700 2.41 0.52 1.0 ± 1.14 0.4 ± 0.02 0.87 ± 0.018 1.0 ± 0.03 0.82
800 2.40 0.56 0.7 ± 1.22 0.4 ± 0.02 0.86 ± 0.018 1.0 ± 0.03 0.85
900 2.40 0.58 0.5 ± 1.27 0.4 ± 0.02 0.85 ± 0.019 1.1 ± 0.04 0.84

1000 2.40 0.62 0.6 ± 1.35 0.5 ± 0.02 0.85 ± 0.019 1.1 ± 0.04 0.81
1100 2.39 0.67 0.3 ± 1.45 0.5 ± 0.02 0.84 ± 0.019 1.2 - 0.04 0.80
1200 2.38 0.75 -0.2 ± 1.64 0.6 ± 0.02 0.83 ± 0.020 1.3 ± 0.04 0.82
1300 2.37 0.90 -0.7 ± 1.96 0.7 ± 0.03 0.80 ± 0.021 1.5 ± 0.06 0.89
1400 2.39 1.17 0.1 ± 2.55 0.9 ± 0.04 0.78 ± 0.022 1.9 + 0.08 0.97
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For the MIM11/M/M/1/M/M/1 model output, shown in Table 98, the significant

effects of the initial condition are negligible by the 600th observation. For the purposes of

drawing inferences, Table 97 indicates that a truncation point about 500 is best. The average

truncation point selected by the MMAE algorithm is 488.5.

The last two of the twelve models, Time-Sharing Computer and Central Server Com-

puter, are more similar to applied discrete-event simulation models than the previous sim-

ulation of queuing systems. The output summaries for the Time-Sharing Computer model

aro, in Tables '9 and 100, and the Central Server Computer model summaries are in Ta-

bles 101 and 102. Both of these models have significant transient effects that are relatively

short-lived, and the MMAE algorithm selects appropriate truncation points.

Overall in the Monte Carlo analysis, the MMAE algorithm selected truncation points

that achieved coverage near or better than the best coverage achieved by a fixed truncation

point. The best results in terms of coverage are achieved with the most realistic simulation

models.

The three lowest coverage rates correspond to the three models with the highest av-

erage estimates for ý1. Since increased correlation in the output sequence requires more

observations to achieve the same accuracy in the estimate, this seems to indicate that the

models with high autocorrelation at lag one should have been run longer. The next section

examines the effect of increasing the run length.

6.4.3 The Effect of Simulation Run Length. A possible indication that long simula-

tion run lengths are necessary is an estimate for ýj near one. Models with output with high

autocorrelation (indicated by high estimates of €1) require more observations in each run to

obtain reliable estimates. As shown in Table 103, the 4i appears to be inversely correlated

with the coverage rate. Each of the twelve models in the Monte Carlo analysis are listed

in order of decreasing values of the average of the first autocorrelation coefficient estimate

€, from Table 75. The next column shows the resulting average coverage rate from the

truncated sequences, as given in Table 78. In the analysis, the nominal coverage rate is 0.9.
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Table 97. Periodic Output Values Points for M/M/1/M/M/1M/M/1 (I•y 10.233)
n A Y . & Y

1 0.00 0.00
100 7.62 6.24
200 8.98 7.46
300 9.60 8.31
400 9.88 8.90
500 10.00 8.97
600 10.26 9.13
700 10.27 9.30
800 10.34 9.46
900 10.46 9.57

1000 10.20 9.31
1100 10.27 9.50
1200 10.26 9.38
1300 10.27 9.34
1400 10.15 9.32

Table 98. Periodic Truncation Points for M/M/1/M/M/1M/M/1 (I, = 10.233)

'h0 Ay &i, PEBIAS (% of a,) MAD Cov HW Bias Test
0 9.69 1.71 -5.3 ± 0.87 1.5 ± 0.05 0.77 ± 0.022 3.0 ± 0.10 0.00

100 9.98 1.83 -2.5 ± 0.93 1.5 ± 0.06 0.82 ± 0.020 3.2 ± 0.11 0.30
200 10.10 1.93 -1.3 ± 0.98 1.5 ± 0.06 0.82 ± 0.020 3.3 ± 0.12 0.58
300 10.17 2.04 -0.6 ± 1.04 1.6 ± 0.07 0.83 ± 0.019 3.5 ± 0.12 0.77
400 10.21 2.14 -0.2 ± 1.09 1.6 ± 0.07 0.84 ± 0.019 3.6 ± 0.13 0.79
500 10.24 2.25 0.1 ± 1.14 1.7 ± 0.08 0.84 ± 0.019 3.8 ± 0.14 0.83
600 10.26 2.36 0.2 ± 1.20 1.8 ± 0.08 0.83 + 0.019 3.9 ± 0.14 0.82
700 10.26 2.47 0.2 ± 1.26 1.9 ± 0.08 0.82 ± 0.020 4.1 ± 0.15 0.86
800 10.25 2.60 0.2 ± 1.32 2.0 ± 0.09 0.81 ± 0.020 4.3 ± 0.16 0.82
900 10.23 2.72 0.0 ± 1.38 2.1 ± 0.09 0.81 ± 0.021 4.4 ± 0.17 0.80

1000 10.21 2.82 -0.2 ± 1.44 2.1 ± 0.10 0.81 ± 0.020 4.7 ± 0.18 0.77
1100 10.21 2.92 -0.2 ± 1.49 2.2 ± 0.10 0.82 ± 0.020 4.9 ± 0.19 0.75
1200 10.16 3.06 -0.7 ± 1.56 2.3 ± 0.10 0.81 ± 0.021 5.3 ± 0.20 0.81
1300 10.13 3.24 -1.1 ± 1.65 2.5 ± 0.11 0.80 ± 0.021 5.8 ± 0.21 0.93
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Table 99. Periodic Output Values Points for Time-Sharing Computer Model (ýU= 21.38W
n2 /In &Yn

1 0.66 0.68
100 19.21 17.07

200 21.19 20.49
300 21.50 21.12
400 21.67 20.77
500 21.14 20.84
600 21.06 20.80
700 21.15 19.83
800 20.99 20.34
900 21.57 21.34

1000 21.43 21.06
1100 21.69 21.54
1200 21.03 20.55
1300 20.64 20.27
1400 20.96 20.30

Table 100. Periodic Truncation Points for Time-Sharing Computer Model (jil, 21.38)

'ho ýy &A,, PEBIAS (% of py) MAD Coy HW Bias Test
0 20.73 0.58 -3.0 ± 0.14 0.7 ± 0.02 0.75 ± 0.022 1.2 ± 0.02 0.00

100 21.34 0.62 -0.2 ± 0.15 0.5 ± 0.02 0.91 ± 0.015 1.2 ± 0.02 0.55
200 21.38 0.65 0.0 ± 0.16 0.5 ± 0.02 0.91 ± 0.015 1.3 ± 0.02 0.70
300 21.38 0.68 0.0 ± 0.17 0.5 ± 0.02 0.90 ± 0.015 1.3 ± 0.02 0.75
400 21.38 0.71 0.0 ± 0.17 0.6 ± 0.02 0.91 ± 0.015 1.4 ± 0.03 0.78
500 21.38 0.75 0.0 ± 0.18 0.6 ± 0.02 0.90 ± 0.015 1.5 ± 0.03 0.80
600 21.39 0.78 0.0 ± 0.19 0.6 - 0.03 0.90 ± 0.016 1.5 ± 0.03 0.83
700 21.39 0.82 0.0 ± 0.20 0.6 ± 0.03 0.89 ± 0.016 1.6 ± 0.03 0.84
800 21.39 0.86 0.0 ± 0.21 0.7 ± 0.03 0.90 ± 0.015 1.7 ± 0.03 0.81
900 21.38 0.91 0.0 ± 0.22 0.7 ± 0.03 0.90 ± 0.016 1.9 ± 0.03 0.64

1000 21.38 0.98 0.0 ± 0.24 0.8 ± 0.03 0.89 ± 0.016 2.0 ± 0.04 0.78
1100 21.40 1.10 0.1 ± 0.27 0.9 ± 0.03 0.91 ± 0.015 2.2 ± 0.04 0.99
1200 21.36 1.28 -0.1 ± 0.31 1.0 ± 0.04 0.90 ± 0.016 2.6 ± 0.05 1.00
1300 21.35 1.50 -0.2 ± 0.36 1.2 ± 0.05 0.89 ± 0.016 3.0 ± 0.06 0.99
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Table 101. Periodic Output Values Points for Central Computer Model (/L= 10.0)

1 0.97 0.98

100 9.96 5.30
200 10.00 5.23
300 10.12 5.31
400 10.04 5.32
500 10.00 5.28
600 10.06 5.40
700 10.07 5.38
800 10.11 5.26
900 9.92 5.34

1000 10.10 5.34
1100 10.07 5.45
1200 10.03 5.41
1300 9.91 5.18
1400 10.01 5.25

Table 102. Periodic Truncation Points for Central Computer Model (I = 10.0)

iio Ay PEBIAS (% of =jzy) MAD I Cov HW Bias Test
0 9.97 0.11 -0.3 ± 0.06 0.1 ± 0.00 0.87 ± 0.017 0.2 ± 0.00 0.00

100 10.00 0.11 0.0 ± 0.06 0.1 ± 0.00 0.90 ± 0.016 0.2 ± 0.00 0.45
200 10.00 0.12 0.0 ± 0.06 0.1 ± 0.00 0.90 ± 0.016 0.2 ± 0.00 0.62
300 10.00 0.13 0.0 ± 0.07 0.1 ± 0.00 0.89 ± 0.016 0.2 ± 0.00 0.77
400 10.00 0.13 0.0 ± 0.07 0.1 ± 0.00 0.89 ± 0.016 0.3 ± 0.00 0.85
500 10.00 0.14 0.0 ± 0.07 0.1 ± 0.00 0.89 ± 0.016 0.3 ± 0.00 0.90
600 10.00 0.15 0.0 ± 0.08 0.1 ± 0.00 0.90 ± 0.016 0.3 ± 0.01 0.95
700 10.00 0.15 0.0 ± 0.08 0.1 ± 0.00 0.90 ± 0.016 0.3 ± 0.01 0.96
800 10.00 0.17 0.0 ± 0.09 0.1 ± 0.01 0.88 ± 0.017 0.3 ± 0.01 0.96
900 10.00 0.18 0.0 ± 0.09 0.1 ± 0.01 0.89 ± 0.016 0.3 ± 0.01 0.94

1000 10.00 0.20 0.0 ± 0.10 0.2 ± 0.01 0.89 ± 0.016 0.4 ± 0.01 0.97
1100 10.00 0.21 0.0 ± 0.11 0.2 ± 0.01 0.89 ± 0.016 0.4 ± 0.01 1.00
1200 10.00 0.25 0.0 ± 0.13 0.2 ± 0.01 -0.88 ± 0.017 0.5 ± 0.01 0.99
1300 10.00 0.30 0.0 ± 0.16 0.2 ± 0.01 0.90 ± 0.016 0.6 ± 0.01 0.99
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Table 103. Autocorrelation and Coverage Relationship
Model A.; Cov

M/M/1 p = 0.95 0.91 0.56
M/M/1 p = 0.9 0.91 0.83
M/M/1/M/M/1/M/M/1 0.88 0.84
M'M/1 p = 0.8 0.88 0.86
M/M/1 Lq 0.88 0.86
M/M/1 Lo = 10 0.88 0.87
E 4 /M/1 0.86 0.89
M/M/2 0.70 0.88
M/M/4 0.64 0.86
M/M/1 LIFO 0.46 0.86
Central Server Computer 0.41 0.90
Time-Sharing Computer 0.12 0.90

Correlation coefficient equals -0.38.

As the average estimated value of q1 increases, the realized coverage rate decreases. In fact,

from the 1,000 Monte Carlo sets of runs, the averages of 41, fi, and the coverage rates have

a correlation coefficient of -0.38. Large positive autocorrelation, apparent by 01 close to

1.0, indicate that each additional observation provides less information. Therefore, models

with large positive autocorrelation in their output sequences must have more observations

to achieve the same statistical precision.

Since the model with the highest average value for 4j and lowest coverage is M/M/1

with p = 0.95, the run length for that model is increased. Table 104 depicts the parameter

estimates as the run length is increased. Longer run lengths result in less bias and less

variance in the initial mean estimate ý. The other parameter estimates do not change

significantly as the run length increased.

The MMAE algorithm selects truncation points for an increasing percentage of the

trials as the run length increases. Table 105 shows that the average selected truncation

point h0 moves slightly toward the beginning of the sequence as the run length increases.

Table 106 reveals that all of the performance measures, except Schruben's intial bias test,
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Table 104. M/M/1 p = 0.95 Parameter Estimation Summary (I, = 18.05)

Run Length &D & f &, Ak ak
2,500 18.05 17.45 5.97 0.93 0.05 0.06 0.05 1.00 0.00
5,000 18.05 17.99 5.34 0.94 0.04 0.05 0.04 1.00 0.00

15,000 18.05 18.07 3.71 0.96 0.03 0.03 0.03 1.00 0.00
20,000 18.05 17.97 3.15 0.96 0.03 0.03 0.03 1.00 0.00
25,000 18.05 18.00 2.84 0.97 0.03 0.02 0.03 1.00 0.00
30,000 18.05 17.95 2.62 0.97 0.02 0.02 0.02 1.00 0.00
35,000 18.05 18.01 2.36 0.97 0.02 0.02 0.02 1.00 0.00

Table 105. Truncation Points ho
Run Length Fail Min Max Avg St Dev

2,500 0.271 24 2391 682.6 493.4
5,000 0.151 35 3673 783.9 589.1

15,000 0.011 58 4932 707.2 559.0
20,000 0.001 61 5180 648.1 489.0
25,000 0.000 58 5463 634.8 486.5
30,000 0.000 38 3758 607.6 426.7
35,000 0.000 103 5341 590.3 427.7

230



Table 106. Truncation Point ho, Evaluations
Run Length PEBIAS (% of .) MAD Coy Half Width Bias Test

2,500 -15.0 ± 1.32 4.0 ± 0.16 0.67 ± 0.029 6.9 ± 0.27 0.58
5,000 -6.6 ± 1.13 3.1 ± 0.13 0.76 ± 0.024 6.5 ± 0.23 0.28

15,000 -1.1 ± 0.79 2.1 ± 0.09 0.84 ± 0.019 4.8 ± 0.15 0.05
20,000 -0.9 ± 0.69 1.9 ± 0.08 0.84 ± 0.019 4.2 ± 0.13 0.03
25,000 -0.7 ± 0.62 1.7 ± 0.07 0.85 ± 0.018 3.9 ± 0.11 0.02
30,000 -0.7 1 0.55 1.5 ± 0.06 0.86 ± 0.018 3.5 ± 0.09 0.01
35,000 -0.6 ± 0.50 1.4 ± 0.05 0.86 ± 0.018 3.2 ± 0.08 0.01

improved with increased run lengths. Perhaps the estimate of 41 may provide a basis for a
"rule of thumb" to determine a reasonable simulation run length.

6.4.4 The Effect of Filter Spacing. Between using the estimate k instead of k = 1.0

and increasing the run length, the MMAE algorithm has a very low rate of failure to select

a truncation point for all of the models except the M/M/4 queue. Tables 95 and 96 indicate

that the M/M/4 transient is effectively complete by the 500th observation. The average value

for 4j is 0.64, relatively low, so the run length of 1,500 observations is sufficient. Compared

to the other simulation models, the M/M/4 output has less variance. Less variance results

in the minimum, mean, and maximum output values being closer. Since these values are

used to space the MMAE filters, tighter filter spacing results. If the filters are spaced too

close together, the filter probabilities fluctuate between filters.

The lower filter is positioned at consecutively lower fixed values to test the effect of

increasing the filter spacing. Only the lower filter is moved since the transient bias induced

by the empty and idle initial conditions result in low output values. Table 107 shows that,

as the lower filter is moved downward, the MMAE algorithm selects a truncation point on

more trials. The average truncation point is earlier in the sequence as the filter spacing

increases. Table 108 depicts the effects of these earlier truncation points on the performance

measures. The PEBIAS only has the same sign as the transient values when the low filter

is at -4.0. The MAD improves with each increase in spacing. The coverage appears to be

231



Table 107. M/M/4 Truncation Points h,,
Low Filter Position Fail Min Max Avg St Dev

S- 0.9(9 - Ym in) 0.372 14 1493 513.6 408.0
0 0.353 18 1493 524.9 409.0
-1 0.244 1 1491 499.2 386.6
-2 0.109 1 1485 367.1 391.5
-3 0.001 1 1474 113.7 274.0
-4 0.000 1 1058 11.5 88.6

Table 108. M/M/4 Truncation Point h1o Evaluations

Low Filter Position PEBIAS (% of •) MAD Cov Half Width Bias Test
9 - 0.9(9 - Ymin) 8.3 ± 2.40 0.5 ± 0.05 0.86 ± 0.023 1.1 ± 0.08 0.76

0 8.5 ± 2.41 0.5 ± 0.05 0.87 ± 0.022 1.1 ± 0.08 0.76
-1 7.8 ± 2.07 0.5 ± 0.04 0.86 ± 0.021 1.1 ± 0.07 0.77
-2 7.0 ± 1.72 0.5 ± 0.03 0.85 ± 0.020 1.0 ± 0.06 0.65
-3 2.7 ± 1.36 0.4 ± 0.03 0.84 ± 0.019 0.9 ± 0.04 0.17
-4 -1.0 ± 0.96 0.3 ± 0.02 0.85 ± 0.019 0.7 ± 0.03 0.02
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decreasing, but not a statistically significant amount. The half widths are smaller because

of the increase in the number of untruncated observations.

For the case of M/M/4, the increased filter spacing reduces the MMAE algorithm's

rate of failure to select a truncation point. However, extreme filter spacing, which results

in selecting trucation points very early in the sequence, may have an adverse effect on the

coverage rate for the truncated sequences.

6.5 Summary

This chapter proposes an algorithm to select the truncation point to eliminate the

bias induced by initial conditions for multiple replications of discrete-event simulations. The

procedure is based on MMAE with the necessary parameters estimated using the last half of

the output sequences. After estimating an assumed steady-state AR(2) with measurement

noise model, three Kalman filters are initialized. The Kalman filters are spaced based on

the minimum, mean, and maximum value of the averaged output values. By processing the

average output values through the bank of Kalman filters, the truncation point is selected

when the time-varying MMAE mean estimate is within a small tolerance of the mean estimate

for five consecutive observations. The algorithm performs well with the steady-state model

estimated with the last half of the sequences and the small tolerance on the mean set to 1.0.

This approach is tested on twelve models in a Monte Carlo analysis of 1,000 sets with

each set using 5 replications. The selected truncation points result in truncated sequences

that provided excellent estimates of the steady-state values. The method appears to work

for both types of output sequences: "statistics based on observations" and "statistics based

on time-persistent variables". In the first case, the state transition matrix used in the

Kalman filter is the relationship between sequenced observations. For the periodic samples

of time-persisent variables, the state transition matrix is the relationship between samples

equally spaced in time. In both cases, the parameters are estimated in the same manner.

The MMAE-selected truncation points perform slightly better than Kelton and Law's [44]

truncation points.
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This approach has several advantages over Kelton and Law's technique. First, the

analyst has fewer parameters to specify. The decisions to make in applying the MMAE

algorithm concern the filter spacing and the tolerances on the MMAE mean estmate to

select the truncation point. The tested values for the MMAE algorithm, which are selected

without attempting to optimize, appear to provide relatively robust results. In addition,

these algorithm settings can easily be determined from the output sequences for the analyst.

Second, as seen in Chapter V with the time series models, this approach works for non-

monotonic convergence to the steady-state mean. Third, rather than having to restart

the simulation models, such as Kelton and Law's technique, the analyst can specify the

replication run length. However, if a sequential approach that continues the replication runs

is desired, the MMAE approach can be modified easily.
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VII. Multivariate Steady-State Identification

7.1 Introduction

This chapter extends the univariate initial data truncation methodology from Chap-

ter VI to application for multivariate output sequences. A first-order vector autoregressive

with measurement noise model is proposed to approximate the simulation output sequences.

An estimation scheme based on the sample autocorrelation matrices is presented. Using

the estimated model and parameters, Multiple Model Adaptive Estimation (MMAE) with a

bank of Kalman filters is applied. The truncation point is selected when a vector norm of a

mean estimate minus the MMAE time-varying mean estimate are within a small tolerance.

The multivariate algorithm is summarized and tested.

7.2 VAR(1) with Measurement Noise Model

For univariate output sequences, Steudel and Wu [971 and Schriber and Andrews [853

report that periodic samples of M/M/1 queue length can be adequately represented with an

AR(1) model. Charnes [12] finds that multivariate output sequences of queue lengths can be

represented as a first-order vector autoregressive, VAR(1), model. In this application, the

proposed model assumes the filter-design states have a VAR(1) formulation, but the states

are observed with an independent additive white noise vector. Thus, multivariate simulation

output is formulated as a VAR(1) with measurement noise model. The proposed model is

linear with time-invariant system matric.-s and constant noise covariances.

The average of multivariate sequences with S responses is modeled as follows. . et

x(t,,) represent the S x 1 state vector, 4 be the S x S time-invariant state transition matrix,

and wd(t,,) be the S x 1 white noise vector, which is jointly normally-distributed with a zero

mean vector and an S x S covariance matrix of Qd. The first-order vector autoregressive

model VAR(1) for the filter-design state vector is

x(tn) =: x(t_,) + wd(t,,)
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In this application, the state vector is time-varying representations of each of the S responses

corrected for that response's mean. For example, if the first simulation response is queue

length, the first element of the state vector x1 (t,,) is the modeled queue length at time t,,

minus the expected queue length.

This formulation is a VAR(1) with measurement noise model, rather than a pure

VAR(1), because the states are observed only with the addition of a vector of measurement

noise. Define the S x 1 measurement vector z(t,,) as the filter-design state vector x(tn) plus

an S x 1 measurement noise vector v(tn). Thus, the measurement matrix H is simply an

S x S identity matrix. The associated measurement model is

z(tn) = Hx(t,) + v(t,,)

= x(t.) + v(t.)

The simulation sequence averaged over bhe replications {f'y} is used to determine realizations

of the measurements:

Zn = - p3. (68)

While significant lag effects in many simulation models may occur at greater than one

lag, Charnes [121 reports that, for periodic samples of queue lengths, a VAR(1) formulation

is sufficient to characterize the autocorrelation structure. The increased flexibility of the

VAR(1) with measurement noise model should be sufficient for similar types of output se-

quences. However, analysts should carefully consider the applicability of this methodology

to untested types of simulation models. Specifically, if each of the response sequences does

not exhibit significant autocovariances at one and two lags, the inverse matrices necessary

for estimation may not exist.

7.3 Parameter Estimation

In similar fashion as the univariate case, parameter estimates are based on the sample

autocorrelations. Assuming covariance stationarity, the autocovariance matrices at a lag of i
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for the sequence of S x 1 averaged output vectors {y(tl), y(t 2),. .. , y(tN)} are defined as

ryy(i*) =_ E[(y(t.) - tiy)(y(t,•_,)- _ y)T]

The theoretical covariance matrix and first two lagged autocovariance matrices of y(t,)
are derived below. Because the dynamics noise sequence {wd(tn)} and the measurement noise

sequence {v(t,,)} are each modeled as zero mean, independent in time, and independent of

each other and the state vectors, many of the cross terms have zero expected value:

EYY = FYY(O)

= E[(y(t.) - Ity) (y(t.)- -y)T]

= E[(x(t,) + v(t,)) (x(t,) + v(t,)) T ]

= ELx(t.)x T (t.)] + E[v(t.)x T (t.)] + E[v(t.)xT (t.)] + E[v(t.)vT (t.)]

= E[x(t,)x T (t,)] + E[v(t,)vT(t,)]

= rxx(O) + R

= P-+ R

Since the measurement matrix H equals the identity matrix, the covariance of output se-
quence is equal to the Kalman filter predicted residual variance, HP-HT + R. The autoco-
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variance matrix at one lag L'yy(l) is

L'yy(l) = E,[(y(t.) - IAy) (y(tn- 1 ) - 1Y)T]

= E[x(t,%)x T (t._l)] ± E[V(t.)XT (tnl)] + Efv( tn)XT (tn-l)] E[v(t,1 )VT (tn- 1)]

= E~x(t,)x T(t._1 )]

= J7xx(1)

= E[(4PX(tn- 1 ) + Wd(tn)) X T(t._1 )]

= 4I7P(O

Similarly, the autocovariance matrix at lag two are derived:

=E[(X(tn) + V(tn)) (X(tn- 2 ) + V(t.- 2))T I

= J71x(2)

= E[(4X(tn-1) + wd(tn ))XT (tn-2)]

= 'tE[x(tn...) xT (4- 2 )]

= '!FXX(1)

= qP2 P-

Using these relationships, the state transition matrix 4b and the Kalman filter gain

matrix K are determined in terms of the autocovariance matrices:

ryy(2)r-,(l) = b2 p- (4pp-)-'

- (69)
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From Equation (30) on page 58, the Kalman filter gain K are derived as follows:

K = P-HT[HP-HT + R]-'

= P-[P- + R]-'

= 4-'Fyy(1)F-'(0) (70)

= EFyy(2)LP';(1)jý' L'yy(1)-'4(0)= ryy(2)rF (21)F yy(1)r- (o)

The inverse matrices necessary for estimation (r-y(i) for i = 0, 1,2) very likely exist if each

of the output sequences has significant values for its first and second autocovariances. If

each of these sequence exhibits AR(1) behavior, the first two autocovariances probably are

not zero.

Using Equations (69) and (70) and the estimated autocovariance matrices based on

the last half of the output sequence,

2 N

YY(i- N) -2 W (Y S)(Y )T forti = 0,1,2 (71)
2n=N4-+

From these sample autocovariance matrices, the state transition matrix and the Kalman filter

gain vector can be estimated. These are the matrices necessary to apply the Kalman filter.

Applying the Kalman filter to the last half of the sequence can determine the filter-design

residual covariance matrix:

T 2 NHP-H +R= N 2 E rrT (72)
+ 1

Using the last half of the output sequence, an assumed steady-state mean Y is calculated

and the minimum and maximum of each response are found. All the estimates necessary to

apply MMAE (,, K, HP-HT + R, and y) are available. After spacing and initializing the

bank of filters, MMAE can be applied. The L = 3S filters are positioned at each combination

of the minimum, mean, and maximum of the S responses. The initial filter state vectors
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are zeros. As in the univariate case, the MMAE time-varying mean estimate #y(t,,) is

compared with Y with a vector norm to determine the appropriate truncation point. When

the Euclidean distance of JIIy(t,,) - yll is less than small tolerance for a few consecutive

observations, the truncation point is selected. The small tolerance should probably be a

small percent, perhaps ten, of the vector norm of the sample mean, but in these tests, an

absolute value of one is used. Achieving the criterion for several consecutive observations

reduces the chance that the randomness of the output sequence might give a false indication

that its transient is effectively complete. The next section summarizes the specific steps in

the technique.

7.4 The Multivariate Truncation-Point Selection Algorithm

The truncation-point selection algorithm for multivariate output sequences is summa-

rized below.

Step 1. Select the simulation run length N and number of replications M. Run M repli-

cations of the simulation of length N, storing the multivariate sequences each with S

responses.

Step 2. Construct a sequence of length N of the average across the M replications for each

of the S responses.

Step 3. Based on the last half of the averaged sequence, determine an estimate of the

steady-state mean vector Y, the covariance matrix and autocovariance matrices with

Equation (71). Based on Equations (69) and (70), estimate 1 and K. Estimate

HP-HT + R with Equation (72).

Step 4. Find the minimum and maximum of each of the S responses in the last half of the

sequence of averages. Initialize an MMAE bank of L = 3 S filters with a filter at each

combination of the minimums, means, and maximums of the S responses. The initial

state estimates i(to) are zero vectors, and the initial MMAE filter probabilities pi(to)

are
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Step 5. Process the observations in the averaged sequence through the MMAE bank of

filters. For each observation, propagate the estimated state vector in each filter us-

ing Equations (22, and (45). Update the state estimates with Equation (25), using

the observation from the averaged sequence, Y, minus that filter's mean it' as the

measurement z1,. Calculate the MMAE filter probabilities pi(t,,) with Equation (36).

Using the MMAE filter probabilities, calculate the weighted MMAE mean estimate

jsy(tn) by Equation (39) where &(tn) = jLy(t,,). Reset any near zero MMAE filter

probabilities to a very small positive value, such as '. When Ijity(t,,) - Y11 < 1.0

for 5 consecutive observations, select the truncation point n0 as t". (In these tests,

the Euclidean norm is used, the small tolerance is 1.0 and 5 consecutive observations

are used. A relative criterion, such as the absolute difference being less than a small

percentage of the vector norm of the sample mean, is probably more appropriate in

general applications.)

7.5 Monte Carlo Results

A Monte Carlo analysis is conducted using the MMAE and Schruben's truncation-point

selection algorithms. Four simulation models are used to generate the output sequences. For

each of 1,000 sets, 10 replications of 1,500 observations each are generated.

The simulation models used to test this algorithm are simulations of open queuing

systems and closed queuing systems. An open queuing system has new entities arriving,

being processed, and departing. The multivariate output responses are a periodic sampling

of the queue lengths at each server. If the queues are M/M/1 queues in tandem, Ross

[79:326-330] shows that the queue lengths are independent and that the expected queue

lengths for each server are the same as for stand-alone M/M/1 queues.

In contrast to the open queuing system, a closed queuing system has a fixed number of

entities cycling through a circle of servers. The multivariate output responses are a periodic

sampling of the number of customers at each server for all but one of the servers. If each

241



queue has exponentially distributed service times, Ross [79:330-335] provides the equations

to calculate their analytic steady-state means.

The third type of multivariate output is from the open queuing model. Using two

queues, the multivariate output consists of the the waiting time plus service time at the

first server and the total system time. In contrast to the two previous cases which are

"statistics based on time-persistent variables", these output sequence. are "statistics based

on observations".

The evaluation measures are based on the multivariate method of replications. On the

truncated sequences, the confidence region is calculated with Equation (4) and associated

volume with Equation (5). Over 1,000 sets of runs, the coverage rate for the analytic mean

and average confidence region volumes are reported.

For comparison, Schruben's multivariate truncation algorithm, shown in Equations (14),

(15), ana, ", also is applied with a = 0.1. For the sequences truncated with Schruben's al-

gorithm, the confidence regions are calculated. The associated coverage rates and confidence

region volumes are summarized.

The first simulation model is an open model of three M/M/1 queues in tandem. The

interarrival time to the first queue in the series is exponentially distributed with a mean

of 1.0. The queues have exponentially distributed service times of 0.5, 0.7, and 0.9 time

units, respectively. Ross [79:326-3303 shows that the length of queue for each server is the

same as for an M/M/1 queue and that the queue lengths are independent of each other.

The responses are the queue lengths with analytic steady-state solutions of (0.5, 1.63, 8 .1)T.

Two sets of initial conditions are tested. The first is all empty queues and idle servers. The

second set of initial conditions for this model is that of idle servers but with 26 customers in

the first queue. In the first test, the system builds to steady state. In contrast, in the second

test, the system starts overcongested, and the output sequences decays to their steady-state

levels. The output responses are the queue lengths measured at every time interval for 1,500

observations.
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Table 109. Open Model Queue Lengths Parameter Estimation Summary
Model AV Y2 AY, 93

AV, &f At 2 &9/2  A93 3  &93

Open Model (Empty and Idle) 0.50 0.50 0.03 1.63 1.64 0.15 8.10 8.09 1.71
Open Model (Lq, (tO)= 26) 0.50 0.50 0.03 1.63 1.64 0.15 8.10 8.12 1.74

Figure 21. Average Estimated Covariance Matrix iy (&Y ),,.,

0.124 (0.021) -0.003 (0.023) -0.018 (0.082)
-0.003 (0.023) 0.638 (0.170) -0.088 (0.334)
-0.018 (0.082) -0.088 (0.334) 5.874 (3.333)

The steady-state model is estimated with the last half of the sequence. Over the 1,000

Monte Carlo sets of runs, Table 109 shows that the estimated steady-state means are very

near the analytic solutions. Figure 21 shows the average covariance matrix and standard

deviation (not the standard error) for the 1,000 sets with empty and idle initial conditions.

The diagonal elements indicate that the queue length variance increases as traffic intensity

increases. The off-diagonal elements are near zero because of the independence between

queue lengths. Figures 22 and 23 show the average autocovariance matrices at one and two

lags, respectively. The queue lengths exhibit positive autocovariances and insignificant

cross-covariances.

Figures 24 and 25 show the average state transition matrices -b and the average Kalman

Figure 22. Average Estimated Autocovariance Matrix at One Lag fyy(1) (&f,(l))

0.087 (0.020) 0.013 (0.023) -0.015 (0.082)
0.013 (0.023) 0.577 (0.169) -0.058 (0.333)

-0.015 (0.082) -0.058 (0.333) 5.788 (3.334)
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Figure 23. Average Estimated Autocovariance Matrix at Two Lags fyy(2) (&ftVc(2))

0.064 (0.019) 0.021 (0.022) -0.011 (0.081)
0.021 (0.022) 0.525 (0.167) -0.033 (0.332)

-0.011 (0.081) -0.033 (0.332) 5.705 (3.334)

Figure 24. Average State Transition Matrix 4 (&•,.)

0.713 (0.052) 0.023 (0.012) 0.000 (0.004)
0.023 (0.012) 0.899 (0.025) 0.005 (0.006)
0.000 (0.004) 0.005 (0.006) 0.982 (0.010)

filter gains K for the 1,000 Monte Carlo sets of runs. Because of the small cross-correlations,

the off-diagonal terms are near zero. The diagonal elements of the state transition matrix

show that the weights for propagating the estimates increase with the traffic intensity of

the queues. Similarly, the Kalman filter gains increase with traffic intensity. The diagonal

elements of the Kalman filter are relatively near their upper bound of 1.0. Since there are

only insignificant differences between the average autocovariance matrices for the two initial

conditions, only the average matrices are shown for the empty and idle initial conditions.

Table 110 shows statistics on the truncation points selected by the MMAE approach

and by Schruben's approach. For these tests, MMAE selected a point in 1,999 out of 2,000

sets, whereas Schruben's algorithm failed to select a truncation point for 6 percent of the

sets. The MMAE selected truncation points are considerably earlier in the sequences and

Figure 25. Average Kalman Filter Gain K (&K,.,)

0.694 (0.042) 0.024 (0.011) -0.001 (0.004)
0.024 (0.011) 0.897 (0.023) 0.005 (0.006)

-0.001 (0.004) 0.005 (0.006) 0.981 (0.010)
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Table 110. Truncation Points io,
1 Fail IM Max Avg St Dev

Open Model(Empty and Idle)
MMAE Algorithm 0.001 24 1064 1173.5 147.6
Schruben Algorithm 0.060 20 1480 353.5 355.1

Open Model (Lq, (t0 )= 26)
MMAE Algorithm 0.000 59 928 276.9 158.7
Schruben Algorithm 0.064 51 1481 447.2 351.0

Table 111. Truncation Point h° Evaluations
h I Coy Vol

Open Model (Empty and Idle)
MMAE Algorithm 173.5 ± 7.68 0.83 ± 0.020 0.44 ± 0.026
Schruben Algorithm 353.5 ± 19.05 0.82 ± 0.021 1.76 ± 0.614

Open Model (Lq. (to)= 26)
MMAE Algorithm 276.9 - 8.25 1 0.85 ± 0.019 0.47 ± 0.019
Schruben Algorithm 447.2 - 18.87 J 0.82 ± 0.020 1.58 ± 0.485

have less variance than Schruben's technique. Table 111 shows that the MMAE-selected

truncation points result in sequences that achieve a higher coverage rate at a smaller average

confidence region volume.

Table 112 depicts the average periodic output values when the initial conditions are

empty and idle. The output increases to the steady-state values. The double horizontal

line indicates where the average MMAE selected truncation point occurs, and the single

horizontal line is where the average truncation point selected by Schruben's algorithm occurs.

Table 113 shows periodic output values for the multivariate sequence when the initial queue

length at the first server is 26. Since the first queue is initially overcongested, each of the

three queues becomes overcongested during the transient. The truncated sequences resulting

from both algorithms retain some transient data, particularly with the initial queue of 26

entities at the first server.
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Table 112. Periodic Output Values Points for Open Model (Empty and Idle)

ŽL 10.50 1.63 8.10
1 0.29 0.68 0.16 0.43 0.03 0.18

100 0.48 1.09 1.60 2.54 5.53 5.93

200 0.50 1.13 1.65 2.55 6.77 7.38
300 0.50 1.12 1.60 2.57 7.37 8.32
400 0.50 1.12 1.60 2.50 7.57 8.71
500 0.49 1.08 1.63 2.55 7.77 8.96
600 0.51 1.12 1.63 2.59 7.99 9.18
700 0.50 1.12 1.60 2.54 8.12 9.34
800 0.48 1.09 1.61 2.55 8.06 9.33
900 0.48 1.10 1.64 2.55 7.98 9.29

1000 0.47 1.08 1.65 2.55 7.95 9.24
1100 0.52 1.15 1.63 2.59 7.95 9.24
1200 0.51 1.14 1.63 2.59 8.10 9.35
1300 0.48 1.07 1.62 2.57 8.26 9.49
1400 0.50 1.12 1.63 2.52 8.13 9.53
1500 0.50 1.13 1.65 2.60 8.26 9.62
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Table 113. Periodic Output Values Points for Open Model (L,1 (to) - 26)
nl A- ' ~1 ~ AY /1I,.2 &V..2 IiVn.. OUIM. 3

Ay 0.50 1.63 8.10
1 24.02 1.72 0.64 1.03 0.11 0.36

100 0.49 1.08 2.29 3.89 15.65 11.22
200 0.51 1.11 1.69 2.60 11.79 12.29
300 0.48 1.09 1.63 2.58 9.91 11.52
400 0.48 1.06 1.62 2.52 9.32 10.94
500 0.49 1.07 1.59 2.51 8.76 10.43
600 0.51 1.14 1.63 2.61 8.61 10.22
700 0.49 1.12 1.60 2.53 8.53 9.94
800 0.49 1.10 1.65 2.61 8.31 9.76
900 0.51 1.12 1.60 2.56 8.17 9.47

1000 0.50 1.11 1.66 2.57 7.97 9.33
1100 0.51 1.11 1.61 2.55 7.99 9.29
1200 0.50 1.13 1.62 2.53 8.13 9.35
1300 0.51 1.13 1.58 2.49 8.12 9.41
1400 0.48 1.10 1.63 2.53 8.14 9.30
1500 0.51 1.13 1.63 2.56 8.14 9.36
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Table 114. Periodic Truncation Points for Open Model (Empty and Idle)
0.5 A Cov Vol

1Y 0.50 1.63 8.10
0 0.50 1.62 7.52 0.79 ± 0.02 0.30 ± 0.01

100 0.50 1.63 7.80 0.82 ± 0.02 0.35 ± 0.01

200 0.50 1.63 7.92 0.83 ± 0.02 0.40 ± 0.02
300 0.50 1.63 7.99 0.84 ± 0.02 0.45 ± 0.02
400 0.50 1.63 8.03 0.83 ± 0.02 0.51 ± 0.02
500 0.50 1.64 8.07 0.83 ± 0.02 0.58 ± 0.02
600 0.50 1.64 8.09 0.85 ± 0.02 0.67 ± 0.03
700 0.50 1.64 8.09 0.85 ± 0.02 0.79 ± 0.03
800 0.50 1.64 8.09 0.83 ± 0.02 0.94 + 0.04
900 0.50 1.64 8.10 0.83 ± 0.02 1.15 ± 0.05

1000 0.50 1.64 8.14 0.82 ± 0.02 1.43 ± 0.06
1100 0.50 1.64 8.19 0.81 ± 0.02 1.88 ± 0.08
1200 0.50 1.64 8.22 0.80 ± 0.02 2.65 ± 0.11
1300 0.50 1.64 8.24 0.77 ± 0.02 4.27 ± 0.19
1400 0.50 1.64 8.23 0.77 ± 0.02 8.79 ± 0.45

Tabie 114 shows for the periodic truncated sequences, the average estimated responses

along with the corresponding coverage rate and confidence region volume for the open model

with emty and idle initial conditions. Table 115 shows the same statistics when the initial

conditios are 26 customers at the first server. The estimated responses converge to the

analytic .ialues by the 800th observation. However, the mean estimator error is very small

consider bly earlier in the sequences. The coverage rate begins at zero with no truncation,

but is very near the nominal rate of 0.9 after truncating only 100 observations. The coverage

rate cont.rlues to decrease with additional truncation. The confidence region volume initially

decreases, probably because of the high variability in the first 100 observations. Additional

deletions after the first 100 data points result in increasing the confidence region volume. The

average MMAE truncation point is indicated with double horizontal bars, and the average

truncation point selected by Schruben's algorithm is shown with a single bar.
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Table 115. Periodic Truncation Points for Open Model (Lq,(to) 26)
fzo •o Coy Vol
J•y 0.50 1.63 8.10

0 0.71 1.97 9.15 0.00 ± 0.00 0.85 ± 0.03
100 0.50 1.64 8.95 0.89 ± 0.02 0.45 ± 0.02
200 0.50 1.63 8.60 0.88 ± 0.02 0.47 ± 0.02

300 0.50 1.63 8.41 0.87 ± 0.02 0.51 ± 0.02
400 0.50 1.63 8.30 0.86 ± 0.02 0.56 ± 0.02
500 0.50 1.64 8.23 0.85 ± 0.02 0.62 ± 0.03
600 0.50 1.64 8.18 0.84 ± 0.02 0.70 ± 0.03
700 0.50 1.64 8.14 0.83 ± 0.02 0.80 ± 0.04
800 0.50 1.64 8.10 0.82 ± 0.02 0.94 ± 0.05
900 0.50 1.64 8.07 0.81 ± 0.02 1.13 ± 0.05

1000 0.50 1.64 8.07 0.81 ± 0.02 1.40 ± 0.06
1100 0.50 1.64 8.09 0.81 ± 0.02 1.85 ± 0.08
1200 0.50 1.64 8.10 0.79 ± 0.02 2.57 - 0.11
1300 0.50 1.64 8.09 0.77 ± 0.02 4.08 ± 0.18
1400 0.50 1.65 8.08 0.76 ± 0.02 8.24 + 0.41

The next model is a closed network of servers. Four servers, each with exponentially-

distributed service times with means of 0.8, 0.7, 0.6, and 0.5, are arranged in a ring. Thirty

customers, initially at the second queue, are processed around the ring. The system is

closed, so by definition no additional customers arrive and no current customers leave. The

responses are the number of customers in line or being served for the first three servers. (If

all four queues are used, the multivariate output is linearly dependent.) Ross [79:330-335]

provides an algorithm to calculate the analytic steady-state value of the response. For this

system, the vector of steady-state responses is (19.33, 6.14, 2 .8 9 )T. Beginning with all the

customers queued at the second server induces a significant transient. The responses are

sampled every time unit until 1,500 observations are recorded.

Table 116 shows that, for the 1,000 Monte Carlo sets of runs, the mean responses

based on the last half of the output sequences are very near the analytic values. Figures 26

through 28 shows the average estimated covariance matrix and autocovariance matrices.
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Table 116. Open Model (4 Servers) Queue Lengths Parameter Estimation Summary
Model (YS 91 YA2 y Y3

Closed Model (4 Servers) 19.33 19.31 0.65 6.14 6.16 0.54 2.89 2.89 0.19

Figure 26. Average Estimated Covariance Matrix t (&,,)[4.114 (1.277) -2.892 (1.055) -0.868 (0.371)1
-2.892 (1.055) 3.087 (0.971) -0.142 (0.264)
-0.868 (0.371) -0.142 (0.264) 1.025 (0.228)

Each of these matrices shows a negative covariance with the number of customers at other

queues. Since the number of customers is fixed, this negative cross-correlation is logical.

Figure 29 shows the average state transition matrix and standard deviations over the

1,000 sets. In propagating the estimates of the number at each server, the previous number

at that server has the largest weight, with small negative weights assigned to the other

server queue lengths. The average Kalman filter gains are shown in Figure 30. The diagonal

elements are relatively close to 1.0.

Table 117 shows the results of applying both the MMAE and Schruben's trucation

point selection algorithms. With highly interdependent responses, Schruben's algorithm

selected a truncation point only 32 times out of the 1,000 sets of runs. In contrast, the

MMAE approach selected a truncation point every run. Table 118 shows that the coverage

Figure 27. Average Estimated Autocovariance Matrix at One Lag Fyy(1) (•&t',•(1))

3.990 (1.277) -2.833 (1.054) -0.851 (0.371)[-2.833 (1.054) 2.970 (0.970) -0-092 (0.264)
-0.851 (0.371) -0.092 (0.264) 0.918 (0.227)
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Figure 28. Average Estimated Autocovariance Matrix at Two Lags Lyy( 2 ) (&f•VC(2))

3.868 (1.275) -2.773 (1.053) -0.821 (0.370)
-2.773 (1.053) 2.865 (0.969) -0.056 (0.263)
-0.821 (0.370) -0.056 (0.263) 0.832 (0.225)

Figure 29. Average State Transition Matrix 4ý (&•,s,)

0.892 (0.028) -0.082 (0.027) -0.072 (0.031) 1
-0.026 (0.023) 0.936 (0.025) 0 012 (0.027)
-0.073 (0.025) -0.062 (0.026) 0.825 (0.037)

Figure 30. Average Kalman Filter Gain K (&K,. )

[0.877 (0.022) -0.097 (0.021) -0.098 (0.022)1
0.000 (0.000) 0.946 (0.019) 0.032 (0.019)
0.000 (0.000) 0.000 (0.000) 0.796 (0.031)

Table 117. Truncation Points hi,o
I Fail I Min Max Avg St Dev

Closed Model (4 Servers)
MMAE Algorithm 0.000 55 344 113.9 36.5
Schruben Algorithm 0.968 70 1460 619.1 430.9
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Table 118. Truncation Point hto Evaluations
I Coy Vol

Closed Model (4 Servers)
MMAE Algorithm 113.9 ± 1.90 0.88 ± 0.017 0.38 ± 0.010
Schruben Algorithm 619.1 ± 125.31 0.81 ± 0.114 1.64 ± 0.858

Table 119. Periodic Output Values Points for the Closed Model (4 Servers)
n ____, ___•,_, _ _,_ _, I y,,3 &y.,3

jzv 19.33 6.14 2.89
1 0.18 0.43 28.66 1.19 0.84 1.04

100 16.73 7.66 7.89 6.85 3.50 3.84

200 19.14 6.90 6.29 6.01 2.93 3.29
300 19.27 6.80 6.22 5.93 2.88 3.29
400 19.33 6.74 6.10 5.80 2.94 3.30
500 19.33 6.85 6.14 5.91 2.89 3.25
600 19.38 6.74 6.08 5.79 2.93 3.36
700 19.27 6.83 6.16 5.88 2.89 3.23
800 19.25 6.79 6.24 5.83 2.87 3.24
900 19.25 6.84 6.16 5.88 2.92 3.28

1000 19.29 6.70 6.15 5.88 2.94 3.23
1100 19.45 6.71 6.01 5.78 2.88 3.23
1200 19.19 6.81 6.26 5.90 2.89 3.27
1300 19.36 6.72 6.16 5.86 2.83 3.23
1400 19.29 6.78 6.18 5.88 2.88 3.24
1500 19.25 6.85 6.16 5.89 2.93 3.33

rate for the sequences truncated at the MMAE selected point is very near nominal. The

coverage rate and volume for Schruben's algorithm are based only on the sequences resulting

from the 32 selected truncation points.

Table 119 shows periodic output responses, and Table 120 shows the estimated re-

sponses, coverage rates, and confiden:e region volume for periodic truncation points. These

two tables indicate that the MMAE average selected truncation point of 113.9 is both ef-

fective in terms of removing the transient and efficient by not excessively truncating the
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Table 120. Periodic Truncation Points for the Closed Model (4 Servers)
'ho it Y Coy Vol

pUy 19.33 6.14 2.89

0 18.62 6.73 2.97 0.78 ± 0.02 0.36 ± 0.01
100 19.24 6.21 2.91 0.90 ± 0.02 0.38 ± 0.01

200 19.31 6.16 2.89 0.88 ± 0.02 0.42 ± 0.01
300 19.31 6.16 2.89 0.88 ± 0.02 0.46 ± 0.01
400 19.31 6.16 2.89 0.87 ± 0.02 0.52 ± 0.01
500 19.32 6.16 2.89 0.88 ± 0.02 0.60 ± 0.02
600 19.32 6.16 2.89 0.88 ± 0.02 0.70 ± 0.02
700 19.31 6.16 2.89 0.88 ± 0.02 0.83 ± 0.02
800 19.31 6.16 2.89 0.89 ± 0.02 0.99 ± 0.03
900 19.32 6.16 2.89 0.87 ± 0.02 1.24 ± 0.04

1000 19.32 6.16 2.88 0.89 ± 0.02 1.62 ± 0.05
1100 19.31 6.17 2.88 0.86 ± 0.02 2.21 ± 0.07
1200 19.31 6.17 2.88 0.87 ± 0.02 3.26 ± 0.11
1300 19.30 6.18 2.89 0.83 ± 0.02 5.69 ± 0.21
1400 19.26 6.21 2.90 0.81 ± 0.02 13.11 ± 0.57

sequences.

The closed model is also run with five servers. The mean service times are 0.8, 0.7,

0.6, 0.5 and 0.4 time units. The analytic numbers of entities at each of the first four servers

are (18.46, 6.05, 2.88, 1.6 3 )T. Table 121 demonstrates that these values are estimated fairly

closely with the last half of the output sequences. Figures 31 through 33 show the positive

autocovariances and the negative covariances among the responses. Figures 34 and 35 show

the average state transition matrix and average Kalman filter gain. Since the off-diagonal

elements in the state transition matrix and Kalman filter gains are small on the average, the

Kalman filter relies mostly on measurements of each response for estimating the correspond-

ing state.

Statistics on the truncation points are shown in Table 122 for both the MMAE and

Schrube-'s algorithms. Schruben's algorithm selected a truncation point in only 3 of the

1,000 sets of runs. Schruben's approach appears not to work well with negatively correlated
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Table 121. Closed Model (5 Servers) Parameter Estimation Summary

Model Ayl 91 A Y2 AV 1/3 1A Y4
A~ f" &fo3 &9/3 /23 &Q3 Af, 01/4.

Closed Model 18.46 18.48 0.63 6.05 6.03 0.52 2.88 2.88 0.19 1.63 1.63 0.08

Figure 31. Average Estimated Covariance Matrix ,,. )

4.093 (1.262) -2.732 (1.000) -0.851 (0.375) -0.350 (0.147) 1
-2.732 (1.000) 2.966 (0.899) -0.157 (0.258) -0.055 (0.115)
-0.851 (0.375) -0.157 (0.258) 1.026 (0.235) -0.012 (0.063)
-0.350 (0.147) -0.055 (0.115) -0.012 (0.063) 0.419 (0.068)

Figure 32. Average Estimated Autocovariance Matrix at One Lag 'yy(1) (O, (1) )

3.969 (1.262) -2.673 (0.999) -0.843 (0.374) -0.332 (0.147)
-2.673 (0.999) 2.850 (0.898) -0.107 (0.257) -0.048 (0.115)
-0.843 (0.374) -0.107 (0.257) 0.919 (0.234) 0.028 (0.062)
-0.332 (0.147) -0.048 (0.115) 0.028 (0.062) 0.324 (0.066)

Figure 33. Average Estimated Autocovariance Matrix at Two Lags ryy(2) (ri,(2))

3.846 (1.260) -2.618 (0.999) -0.822 (0.373) -0.305 (0.146) 1
-2.618 (0.999) 2.745 (0.897) -0.072 (0.256) -0.038 (0.114)
-0.822 (0.373) -0.072 (0.256) 0.834 (0.231) 0.048 (0.062)
-0.305 (0.146) -0.038 (0.114) 0.048 (0.062) 0.261 (0.064)
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Figure 34. Average State Transition Matrix 4' (&.,,)

0.823 (0.056) -0.151 (0.055) -0.151 (0.056) -0.101 (0,068)
-0.020 (0.045) 0.941 (0.046) 0.016 (0.047) 0.003 (0.056)
-0.075 (0.046) -0.063 (0.046) 0.823 (0.053) -0.007 (0.058)
-0.112 (0.045) -0.110 (0.046) -0.082 (0.046) 0.670 (0.070)

Figure 35. Average Kalman Filter Gain K )

0.784 (0.029) -- 0.190 (0.029) -0.200 (0.029) -0.165 (0.031)
0.000 (0.000) 0.955 (0.024) 0.041 (0.024) 0.008 (0.026)
0.000 (0.000) 0.000 (0.000) 0.846 (0.033) 0.052 (0.030)
0.000 (0.000) 0.000 (0.000) 0.000 (0.000) 0.614 (0.041)

Table 122. Truncation Points niL
I FailI Min Max Avg St Dev

Closed Model (5 Servers)
MMAE Algorithi,,. 0.000 41 301 105.5 32.7
Schruben Algorithm 0.997 500 1290 893.3 322.5

255



Table 123. Truncation Point ii, Evaluations
I Cov Vol

Closed Model (5 Servers)
MMAE Algorithm 105.5 ± 1.70 0.85 ± 0.018 0.07 ± 0.002
Schruben Algorithm 893.3 ± 543.73 0.33 ± 0.795 1.25 ± 2.581

Table 124. Periodic Output Values Points for Closed Model (5 Servers)

n if 'n..1  &Y~ ILh ,2 or YnA2 Aj.L~,3  '7n /.L11 ,4  O*Yn,4

AY 18.46 6.05 2.88 1.63
1 0.08 0.29 28.59 1.19 0.85 1.03 0.33 0.59

100 16.40 7.48 7.43 6.54 3.29 3.68 1.79 2.25

200 18.35 6.84 6.15 5.87 2.87 3.21 1.64 2.04
300 18.28 6.82 6.14 5.80 2.94 3.37 1.67 2.16
400 18.36 6.80 6.14 5.77 2.89 3.25 1.63 2.00
500 18.30 6.81 6.11 5.78 2.96 3.38 1.66 2.10
600 18.45 6.79 6.15 5.76 2.79 3.23 1.59 2.04
700 18.47 6.74 5.99 5.68 2.93 3.27 1.63 2.06
800 18.41 6.78 6.10 5.77 2.86 3.30 1.64 2.07
900 18.47 6.64 6.04 5.60 2.86 3.25 1.64 2.05

1000 18.42 6.74 6.14 5.76 2.88 3.23 1.59 2.03
1100 18.53 6.70 5.98 5.64 2.87 3.28 1.63 2.09
1200 18.44 6.75 6.01 5.69 2.89 3.22 1.68 2.08
1300 18.45 6.69 6.04 5.68 2.88 3.23 1.65 2.07
1400 18.47 6.74 6.00 5.70 2.92 3.32 1.63 2.06
1500 118.44 6.70 5.97 5.66 2.93 3.31 1.65 2.07

output responses. The MMAE algorithm truncated 105.5 observations on the average. The

MMAE truncated sequences result in a coverage rate of 85 percent and an average confidence

region volume of 0.07. Only one of three truncated points selected by Schruben's routine

result in a confidence region which covered the analytic mean.

The table of periodic output values, Table 124, shows that large transient effects last

less than 200 observations, but small transient effects are seen until about the 600th obser-

vation. From Table 125, the transient is insignificant on the confidence region coverage rate
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Table 125. Periodic Truncation Points for Closed Model (5 Servers)
no IY Coy Vol
1Y 18.46 6.05 2.88 1.63

0 17.80 6.58 2.95 1.65 0.78 ± 0.02 0.06 ± 0.00
100 18.38 6.10 2.89 1.64 0.88 ± 0.02 0.07 ± 0.00

200 18.43 6.06 2.88 1.63 0.89 ± 0.02 0.08 ± 0.00
300 18.44 6.06 2.88 1.63 0.87 ± 0.02 0.09 ± 0.00
400 18.45 6.05 2.88 1.63 0.87 ± 0.02 0.10 ± 0.00
500 18.46 6.04 2.88 1.63 0.88 ± 0.02 0.12 ± 0.00
600 18.47 6.03 2.88 1.63 0.89 ± 0.02 0.15 ± 0.01
700 18.48 6.03 2.88 1.63 0.89 ± 0.02 0.19 ± 0.01
800 18.48 6.03 2.87 1.63 0.90 ± 0.02 0.25 ± 0.01
900 18.48 6.03 2.88 1.6 0.88 ± 0.02 0.33 ± 0.01

1000 18.48 6.02 2.88 1.63 0.86 ± 0.02 0.47 ± 0.02
1100 18.49 6.02 2.87 1.63 0.87 ± 0.02 0.72 ± 0.03
1200 18.48 6.03 2.87 1.63 0.85 ± 0.02 1.23 ± 0.05
1300 18.49 6.02 2.88 1.63 0.85 ± 0.02 2.60 ± 0.11
1400 18.48 6.01 2.88 1.64 0.81 ± 0.02 8.31 ± 0.41

after truncating 100 observations.

The final output considered is the waiting and service times for entities in a simulation

o: two tandem M/M/1 queues. Both the interarrival and service times are exponentially

distributec. The mean interarrival time is 1.0 time unit, and the means of the service times

are 0.6 and 0.8, respectively. Ross [79] shows that the queues are independent with the

analytic solutions the same as individual M/M/1 queues. The first response is the waiting

time plus service time at the first server, and the second response is total time in the system.

Since the second response is the sum the first response plus an independent random variable,

the responses are moderately correlated.

This output sequence is an example of "statistics based on observations", whereas the

previous sequences are "statistics based on time-persistent variables". In this case, the state

transition matrix represents the relationship between subsequent entities rather than the

relationship over a fixed time interval. The state transition is estimated in the same way
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Table .26. Open Model Waiting Times Parameter Estimation Summary
Model A/2 91 AV2 92

- Ah &1 A92 &V

Open Model Waiting Times 1.50 1.50 0.07 5.50 5.49 0.44

Figure 36. Average Estimated Covariance Matrix iy (& )

[0.223 (0.045) 0.216 (0.090) 1
0.216 (0.090) 1.659 (0.654) J

and is still held constant in the Kalman filter.

The steady-state models are estimated using the last half of the output sequences.

Table 126 shows that the average steady-state mean estimates are centered on the analytic

means. Figures 36 through 38 indicate that the output sequences have positive covariances

and positive autocovariances.

Figure 39 shows the average state transition matrix, and Figure 40 shows the average

Kalman filter gains. Since the off-diagonal elements are near zero, the MMAE approach does

not rely on the covariance between the responses.

The MMAE algorithm never failed to select a truncation point, while Schruben's ap-

proach failed in 4.3 percent of the tests, as shown in Table 127. The MMAE truncation

points are considerably earlier in the sequence, with much less variance than the trunca-

tion poir-t, telecied by Schruben's algorithm. Table 128 shows that the resulting coverage

Figure 37. Average Estimated Autocovariance Matrix at One Lag Fyy(i) (t,(1) )

[0.187 (0.045) 0.192 (0.090)1
0.192 (0.090) 1.584 (0.654)
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Figure 38. Average Estimated Autocovariance Matrix at Two Lags fyy(2) (&tfYC(2))

0.160 (0.044) 0.174 (0.090)1
0.174 (0.090) 1.517 (0.653)

Figure 39. Average State Transition Matrix 4 (&,,,)

[ 0.838 (0.034) 0.007 (0.008)1
-0.066 (0.031) 0.959 (0.017)

Figure 40. Average Kalman Filter Gain K ()K,,)

[ 0.822 (0.032) 0.008 (0.009) 1
0.000 (0.000) 0.958 (0.016)

Table 127. Truncation Points h,
I Fail I Min Max. Avg St Dev

Open Model Waiting Times
MMAE Algorithm 0.000 9 310 36.1 24.2
Schruben Algorithm 0.043 0 1480 236.3 283.3
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Table 128. Truncation Point h,° Evaluations
I Coy Vol

Open Model Waiting Times
MMAE Algorithm 36.1 ± 1.26 10.87 ± 0.017 0.26 ± 0.007
Schruben Algorithm 236.3 ± 15.06 0.88 ± 0.018 0.43 ± 0.057

Table 129. Periodic Output Values Points for Open Model Waiting Times
n /.Sn1 j & /~j A~.2 U&hn. 2

-y 1.50 5.50
1 0.62 0.61 1.43 1.03

100 1.49 1.49 5.31 4.00
200 1.51 1.53 5.47 4.16
300 1.50 1.49 5.48 4.19
400 1.49 1.49 5.51 4.31
500 1.50 1.48 5.50 4.27
600 1.50 1.50 5.53 4.28
700 1.47 1.48 5.53 4.37
800 1.51 1.52 5.54 4.31
900 1.50 1.49 5.52 4.33

1000 1.49 1.49 5.43 4.22
1100 1.50 1.52 5.49 4.27
1200 1.50 1.51 5.54 4.31
1300 1.50 1.50 5.57 4.42
1400 1.49 1.50 5.48 4.25
1500 1.50 1.49 5.50 4.21

rates are nearly equal, but that the MMAE truncation point result in considerably smaller

confidence region volumes.

Table 129 shows periodic responses. The analytic means are obtained at the 400th

observation on average. The evaluation of periodic truncation points are given in Table 130.

Very near nominal coverage rates are achieved with only small amounts of truncation. The

MMAE approach which truncates early in the sequence appears preferable to Schruben's

algorithm.
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Table 130. Periodic Truncation Points for Open Model Waiting Times
'ho itY Coy Vol

1.50 5.50

0 1.50 5.43 0.86 ±- 0.02 0.25 ± 0.01

100 1.50 5.49 0.88 : 0.02 0.27 ± 0.01
200 1.50 5.50 0.87 ±- 0.02 0.29 ± 0.01
300 1.50 5.50 0.87 ±- 0.02 0.32 ± 0.01
400 1.50 5.50 0.89 ±- 0.02 0.35 ± 0.01
500 1.50 5.50 0.87 ± 0.02 0.38 ± 0.01
600 1.50 5.50 0.87 ±- 0.02 0.42 ± 0.01
700 1.50 5.50 0.86 =± 0.02 0.46 ±- 0.01
800 1.50 5.49 0.86 ±: 0.02 0.52 ± 0.02
900 1.50 5.49 0.85 ± 0.02 0.59 ± 0.02

1000 1.50 5.49 0.85 ±- 0.02 0.69 ± 0.02
1100 1.50 5.50 0.84 ±- 0.02 0.85 ±- 0.03
1200 1.50 5.50 0.82 ± 0.02 1.09 ± 0.04
1300 1.50 5.49 0.82 ±- 0.02 1.48 ± 0.06
1400 1.50 5.46 0.79 ± 0.02 2.45 ± 0.10

7.6 Summary

The multivariate MMAE truncation-point selection algorithm is very successful on the

output of four simulation models. The truncated sequences have very near nominal coverage

rates and relatively small confidence region volumes. The test cases include two cases of

"statistics based on time-persistent variables": the open queuing system with uncorrelated

responses and the closed queuing system with negatively correlated responses. The third test

case is an example of "statistics based upon observations" from an open queuing system.

In all of these cases, the sequences truncated with the MMAE points are more effective

(in terms of coverage rates) and more efficient (in terms of confidence region volume) than

sequences truncated with points selected by Schruben's [86] algorithm.

Schruben's method [86] rarely selected a truncation point for the closed queuing system.

In comparision to the other cases, these responses have relatively stronger correlation and

further have negative correlation. Schruben's method is based on the sample mean vector
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and sample covariance matrix estimated with only the last batch from each observation.

Since the recommended batches are small, only 5 to 10 observations, very little data is

used for these estimates. The variance of these estimates may have contributed to the poor

performance of his technique. In his article, Schruben [86] presents only one trial case for

his algorithm. His example case is based on the time-sharing computer model studied by

Adirir and Avi-Itzhak [3]. The responses are the computer response time, a "statistic based

on observations" and a zero-one indicator variable of the cpu's busy/idle status, which is

a "statistic based on time". Because the sequences are different types, how the data is

collected in pairs is not obvious. Although not specified, it appears Schruben took these two

seperate univariate sequences and matched up corresponding terms to form his multivaritate

sequence. Since the pairs of responses may not have measured the system under the same

conditions, the mulitvariate sequence may not have significant covariance. Schruben may

have tested his multivariate algorithm under the conditions of little covariance. As seen

in this chapter, his algorithm performs well with no covariance, but less satisfactorily with

negative covariance.
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VIII. Summary and Recommendations

8.1 Summary

The significance of this research is the introduction of new concepts to the field of

discrete-event simulation output analysis. Specifically, modeling wvith measurement noise,

applying Kalman filters, and using Multiple Model Adaptive Estimation (MMAE) are all

new approaches to analyzing simulation output. As a result of applying these concepts,

new algorithms for truncation-point selection for both univariate and multivariate output

sequences are proposed and tested. These algorithms are applicable to both "statistics

based on time-persisitent variables" and "statistics based on observations". The truncation-

point selection algorithms based on MMAE result in truncated sequences with better mean

estimates and confidence intervals.

This research begins with a review of simulation output analysis. Particular focus is

placed on the initial data bias or warm-up problem. An overview of stochastic processes is

presented, leading to an introduction of the Kalman filter. The Kalman filter is a state-space

stochastic estimation algorithm. Several approaches for system identification and estimation

are reviewed.

Using the foundation of previous simulation research and stochastic estimation with

the Kalman filter, two methods to select truncation points to eliminate the initial data bias

are developed. The first truncation-point selection approach is based on residual monitoring

using a single Kalman filter. The knowledge gained from this attempt laid the foundation

for an improved approach based on Multiple Model Adaptive Estimation (MMAE). MMAE

is an estimation technique that uses a bank of Kalman filters with different estimates. In

the MMAE method, the output is estimated as an autoregressive model observed with mea-

surement noise using the last half of the output sequence. The MMAE filters have different

estimates for the output means. Based on the filters' residuals, a time-varying MMAE mean

estimate is calculated. When the MMAE mean estimate is close to the mean estimator from
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the last half of the output sequence for a predetermined number of observations, a truncation

point is selected.

The MMAE truncation algorithm performs successfully on a single long run of simu-

lation output. However, for single long runs, the effects of the initial transient on making

confidence intervals may be negligible. The MMAE truncation algorithm is very successful

with multiple replications for both univariate and multivariate output sequences. The se-

lected truncation points effectively reduce the effects of the initial bias, without excessive

deletion which increases the variance of the estimates.

8.2 Recommendations for Improvements to the MMAE Truncation-Point Selection Algo-

rithms

Instead of the correlation technique, perhaps a different estimation approach for the

steady-state parameters could be employed. Law and Kelton [53:286] show that autocor-

relation estimates may be biased. 17 the sample size is fixed to the last half of the output

sequence, MLE or least squares can be used instead of the correlation technique. More elab-

orate estimation schemes may be possible. For example, Minimum Distance Estimation has

been found to outperform MLE for small static samples [25]. If the estimate of k can be

improved, the variance estimates may be more reliable and may prove useful.

A better scheme for determining the MMAE filter spacing or truncation point may

be possible. The tested algorithm estimates the steady-state model and finds the average,

minimum, and maximum for each response from the last half of the output sequences. The

MMAE filters are positioned at each combination of the response averages, minimum, and

maximum. The truncation point is selected when the MMAE time-varying mean estimate is

within one of the Euclidean distance to the response averages for 5 consecutive observations.

These results are based on an initial approach without attempting to optimize. Perhaps a

different vector norm or consecutive number of observations may improve the results. At

a minimum, a theshold for the difference in mean est.mates in terms of the sample output
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mean, rather than the absolute value of one, may make the algorithm applicable to a wider

range of model outputs.

A transformation of the data, such as natural logarithms of each observation, may

reduce the effect of the exponential output distribution from many queuing systems. If the

output distribution is closer to the normal distribution, the Kalman filter assumptions of

normally distributed noise terms may be more appropriate.

The underlying model could possibly be changed from an AR(2) with measurement

noise model to regulated Brownian motion. Several researchers [1, 30, 102] have applied

regulated Brownian motion models to simulation output with success. The resulting Kalman

filter may have significant nonlinearities.

8.3 Potential Extensions to Other Discrete-Event Simulation Analysis Applications

Several other potential applications of Kalman filters for simulation output analysis,

which not developed in this dissertation, are presented. These proposals are grouped into

four categories: mean vector estimation, covariance estimation, variance reduction, and run

length control. The univariate case is a special case of each multivariate proposal.

8.3.1 Multivariate Estimation of the Mean Vector. Develop an improved method of

multivariate estimation of the mean vector with a joint confidence region for the estimated

parameters. Three possibilities are apparent, but each of these concepts is extremely depen-

dent upon the definition of the system states used in the Kalman filter.

The first idea for developing a confidence iL.erval for the parameters is to relate the

Kalman filter model estimates and covariance matrices to the estimated parameter's co-

variance matrix. In the process of running the Kalman filter, a covariance matrix of the

Kalman filter states is developed. Along with this covariance matrix of states, the cross-

covariance between the states and the parameters could be explored if nonlinear Kalman

filter approaches (See Maybeck [581) are applied. If this information could be related to the

covariance matrix of the parameter estimates of the simulation output distributions, a new
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technique for developing confidence intervals and regions can be tested. Another potential

source of variance estimates are the probabilities from Multiple Model Adaptive Estimation

[58:68-144]. These approaches are tested in the univariate case by Howard [37] and Howard,

Gallagher, Bauer and Maybeck [39, 38].

The second concept addresses the problem of asynchronous output. Asynchronous out-

put occurs when each output vector has only some of the responses [12, 90, 91]. If functions

of the simulation output responses are included as Kalman filter states, the information from

the asynchronous output could be incorporated using scalar measurement update techniques.

(For scalar measurement updates, see Maybeck [57].) The Kalman filter algorithm nmay pro-

duce the estimated mean and covariance matrix of interest for the multivariate stochastic

process. The difficulty is to define and estimate the state transition matrix 'It. Synder [95]

may provide the necessary mathematical foundations.

Third, mean estimates are calculated currently by a weighted average of observation

values, but the Kalman filter produces a sequence of state estimates. Perhaps, the Kalman

filter state estimates may provide an improved estimate of the mean vector. Howard [37]

finds there is very little difference between the average state estimate and the average of

the data. This occurs for his applications because the Kalman filter gains are almost 1.0,

which simply makes each state estimate, the propagation of the last two data values. With

smaller Kalman filter gains, the state estimates may smooth the sequence by decreasing the

magnitude of outliers.

8.3.2 Covariance Matrix Estimation. Besides estimating the variance of mean esti-

mates, the covariance of the underlying multivariate stochastic process is also of interest. In

fitting the Kalman filter to the simulation output, some estimate of the covariance of the

underlying stochastic process is embedded in the analysis process. The MMAE technique

[58:68-144] can also be used to estimate the covariance matrix. In the univariate case, this

variance estimate can be compared with the Welch's [101:300-302] jackknife technique to

estimate the system variance.
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8.3.3 Improved Control Variates Applications. Variance reduction is a collection of

techniques to reduce the variance of estimates. One specific class of variance reduction

techniques is the method of control variates. Control variate methods use the covariance

between the input pseudorandom control variates and the output sequence. Based on this

covariance, conditional estimates of the parameters of interest are determined, given the

actual realizations of the control variates. While the current techniques use the aggregate

average of the control variates over an entire simulation run, the Kalman filter potentially can

be used to develop the covariance based on the individual control variates and the affected

entities. Since more information is used, better estimates with smaller variances may result.

8.3.4 Enhanced Simulation Run-Length Control. One difficulty with simulation out-

put analysis is to determine the necessary run length to achieve a predetermined accuracy in

the parameter estimates. Any information gained from the Kalman filter about the correla-

tion among the output sequence or the stochastic process variance can be used to improve the

current run length determination techniques. Perhaps a "rule of thumb" relating necessary

simulation run length from the estimate of 4 j can be developed.
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