
AD-A256 610 0IIIhI 11)ll 1111 I l/ll 11 111 111111II
AFIT/GE/ENG/92S-06

DTIC
ELECTEOCT 2 1l 1992•

C

AUTONOMOUS FACE SEGMENTATION

THESIS

Kevin Patrick Gay
Captain, USAF

AFIT/GE/ENG/92S-06

Approved for public release; distribution unlimited

92-28133• L• • ~IInI1 un iui uii ~i uil uIun uIuuv

AFIT/GE/ENG/92S-06

AUTONOMOUS FACE SEGMENTATION

THESIS

Presented to the Faculty of the School of Engineering

of the Air Force Institute of Technology

Air University

In Partial Fulfillment of the

Requirements for the Degree of

Master of Science in Electrical Engineering

Kevin Patrick Gay, B.S.E.E.

Captain, USAF

September, 1992

Approved for public release; distribution unlimited

Acknowledgments

My thanks to Dr. Steve Rogers (Captain America) and Dr. Matt Kabrisky for

all the time, knowledge, and gentle persuasion they gave me during this research.

Their humor and free-flowing style of teaching made my time here a joy instead of a

drudgery. An additional thank you to Major Rogers for going the extra mile to help

me with my Air Force and post-Air Force career. The help was truly appreciated.

I also want to acknowledge Mr Dan Zambon and Captain Dennis Ruck for

their technical expertise with computer systems and their patience with students.

Dan was always quick to help on the Suns, saving me countless hours, and he was

always ready for a little friendly verbal jousting as well. Dennis assisted me with

innumerable "C" and Unix problems, and he could always manage a smile, even

when I repeatedly brought down the Next computer system.

And I would be ungrateful indeed if I did not thank the other two "face guys",

Ken Runyon and Dennis Krepp. Their friendship was a major reason I survived my

time here, and it is nice to know I can take it with me.

The last group I want to acknowledge are those that matter the most to me on

a personal level. My wife, who has carried the family through the difficult times here.

I love her, and she is truly better than I deserve. My children, who have given up

time we would normally spend together. Their sacrifice is more my sacrifice, because

the joy they bring me is sweeter than anything else on this earth. My father, who

passed away only a few months ago, and yet still strengthens and uplifts me. And

my sweet mother, who is love personified. These are but a few of the many to whom

I am indebted, but I will end here by publicly acknowledging God and expressing

my gratitude to Him. There may be some who doubt that God exists, but that does

not alter the fact that He does exist, and He blesses us daily.

Kevin Patrick Gay

ii

Table of Contents

Page

Acknowledgments ii

Table of Contents .. iii

List of Figures vi

Abstract viii

I. Problem Description 1

1.1 Introduction 1

1.2 Background 1

1.2.1 Suarez and Goble 1

1.2.2 Turk and Pentland 2

1.2.3 Lambert's AFRMM 2

1.3 Problem Statement 2

1.4 Research Objectives 3

1.5 Assumptions 3

1.6 Scope . 3

1.7 Standards 3

1.8 Approach/Methodology 4

1.9 Overview 4

I1. Literature Review 5

2.1 Introduction 5

2.2 Face Recognition Research 5

2.2.1 Face Segmentation 6

iii

Page

2.2.2 Individual Face Recognition 7

2.3 Summary and Conclusions 8

III. M ethodology 10

3.1 G eneral 10

3.2 M otion Analysis 10

3.2.1 Capturing Images 10

3.2.2 Finding Motion Regions 11

3.2.3 Segmentation by Region Analysis 13

3.3 Binarized Face Patterns 16

3.4 Sum mary 16

IV . R esults . 18

4.1 G eneral 18

4.2 Capturing Images 18

4.3 Finding Motion Regions 18

4.4 Segmentation Algorithm Test 24

4.5 Binarized Face Patterns 29

V. Conclusions 32

Appendix A. VideoPix 33

A.1 G eneral 33

A.2 Hardware 33

A.3 Initialization 34

A.4 Grab and Convert 35

Appendix B. Source Code 36

B.1 segm ent2.c 36

B.2 z-segm ent.c 38

iv

Page

B.3 zamotion.c 40

B.4 z.set-vfcihw.c 43

B.5 z-grab-gra.c 45

B.6 z-find-diff.c 47

B.7 z.median.c 49

B.8 z .outline.c 52

B.9 z-seg-regions.c 58

B.10 z.reduce.c 61

B.11 z.storeimage.c 63

B.12 globals.h 65

B.13 grab.c 67

B.14 grabrgb.c 70

B.15 motion.c 73

B.16 rgb.motion.c 75

B.17 seg-test.c 79

B.18 test-lam.c 82

B.19 time-grab.c 85

B.20 z-binarize-gra.c 87

B.21 z-grab-rgb.c 89

B.22 zdlam bert.c 91

B.23 z.side.edges.c 95

Appendix C. Segmentation Test Image Set 97

C.1 General 97

Bibliography ... 113

Vita .. 115

v

List of Figures

Figure Page

1. Typical Motion Image 12

2. Motion Outline I 13

3. Motion Outline II 14

4. Final Motion Outline 14

5. 8-Bit Grey Scale Images 18

6. Bad Motion Image 19

7. Severe Motion Image 19

8. Median Filtering an Image 20

9. Forming a Motion Region Image 22

10. Motion Image From RGB Images 23

11. Sample Edge Image 23

12. The Segmentation Process 25

13. Sample Segmentation Test Images 26

14. Sample Set of Segmented Regions 27

15. Segmentation Scale Test 28

16. Lambertization Images 30

17. Reduced Input Lambertization Images 30

18. Segmentation Test I Images (1 of 4) 98

19. Segmentation Test I Images (2 of 4) 99

20. Segmentation Test I Images (3 of 4) 100

21. Segmentation Test I Images (4 of 4) 101

22. Segmentation Test II Images (1 of 4) 102

23. Segmentation Test II Images (2 of 4) 103

24. Segmentation Test II Images (3 of 4) 104

vi

Figure Page
25. Segmentation Test II Images (4 of 4) 105
26. Segmentation Test III Images (1 of 4) 106

27. Segmentation Test III Images (2 of 4) 107
28. Segmentation Test III Images (3 of 4) 108

29. Segmentation Test III Images (4 of 4) 109

30. Segmented Regions I) 110
31. Segmented Regions II) 111
32. Segmented Regions III) 112

vii

AFIT/GE/ENG/92S-06

Abstract

The purpose of this study was to implement an autonomous face segmentor as

the front end to a face recognition system on a Sun SPARCStation2. Face recogni-

tion performance criteria, specifically, the capabilities to isolate and resize faces in

an image to a consistent scale, were analyzed to determine current practical limi-

tations. Face images were acquired using a S-VHS camcorder. Segmentation was

accomplished using motion detection and pre-defined rules. Tests were run to deter-

mine the suitable of the autonomous segmentor as the front-end to a face recognition

system. The segmentation system developed consistently located faces and rescaled

those faces to a normalized scale for subsequent recognition.

viii

AUTONOMOUS FACE SEGMENTATION

L Problem Description

1.1 Introduction

Autonomous face recognition systems have many potential applications, such

as scanning airports for criminals and verifying users at bank teller machines. Cur-

rent systems, however, are primarily research tools, ill-equipped for practical appli-

cations. This research focuses on some of the major obstacles to practical face recog-

nition by constructing an autonomous face segmentor which will operate as the front

end to a complete, autonomous face recognition system residing on a Sun SPARC-

Station2. Complementary theses by Krepp and Runyon will focus on the remaining

portions of this complete face recognition system (14)(22). The face recognition

system is intended for use in a realistic office environment.

This problem description begins with a background review of the most relevant

face recognition research, followed by the problem statement. Next, the research

objectives, assumptions, scope, and standards are stated. The approach is then

presented, and the chapter concludes with an overview of the remaining chapters.

1.2 Background.

1.2.1 Suarez and Goble. Suarez and Goble researched face recognition at

the Air Force Institute of Technology using the Karhunen Lobve and Discrete Co-

sine transforms, respectively (24)(7). Their recognition accuracies were respectable;

however, face segmentation was done manually, and recognition software resided in

pieces on several machines.

A face recognition system being developed by Runyon is based on the tech-

niques developed by Suarez's research. This face segmentation research will be the

front end for Runyon's recognition system.

1.2.2 Turk and Pentland. Turk and Pentland, from the Massachusetts In-

stitute of Technology, constructed a completely autonomous face recognition system

(25). Like Suarez, they used Karhunen Lo~ve transforms for the recognition process.

Their system used three processors: the first two dedicated to segmentation, and

the third, recognition. Their segmentation technique uses motion detection, motion

analysis, and the error in reconstructed images. Turk and Pentland did not address

the limitations of their system in a practical environment although the amount of

processing power required is an obvious drawback.

The concepts of using motion to find faces is directly applicable to this research,

but the processing power will be significantly different.

1.2.3 Lambert's AFRM. The AFRM (Autonomous Face Recognition Ma-

chine) was developed at the Air Force Institute of Technology before Lambert's

research, but it was his enhancements which make the execution time and segmenta-

tion results respectable. Lambert's segmentation technique used motion detection,

brightness normalization, and "face" brightness patterns. The system as a whole did

not meet expectations, and it was clearly not useful in a practical environment.

The motion detection and brightness normalization are the concepts most ap-

plicable to current research. His recognition technique, which is based on cortical

thought theory, takes more time and is less accurate than current techniques.

1.3 Problem Statement

Current face recognition systems are not yet practical for commercial use. The

purpose of this study is to investigate limitations of autonomous face segmentation

2

which is part of a complete, autonomous face recognition system operating in a

realistic environment.

1.4 Research Objectives

The objective of this research is to uncover, and overcome, the major obstacles

to autonomous face segmentation for a single workstation autonomous face recogni-

tion system.

1.5 Assumptions

The face segmentation assumes:

1. A fixed-position imaging device.

2. Fixed focal length.

3. Automatic intensity compensation.

4. Continuous head movement.

5. No movement directly behind the system user which is shoulder height or

higher.

6. Consistent office lighting.

1.6 Scope

The scope of this thesis is to investigate the limitations of an autonomous face

segmentation svstem operating on a Sun SPARCstation2.

1.7 Standards

The performance criterion for this face segmentation is a suitable face for face

recognition. The key criterion for the face recognition system is classification ac-

curacy, as well as user interaction and/or constraints. The key constraints for face

3

segmentation with regard to classification accuracy in this face recognition system

are :

1. Minimal background in each image, and

2. Consistent scale across all images.

The key user constraints to minimize for face segmentation:

1. Tailored backgrounds, and

2. User actions.

1.8 Approach/Methodology

A Super VHS camcorder connected to a Sun SPARCStation2 with a VideoPix

frame grabber card provides the input imaging capability of the system. A software

environment developed and executing on the Sun SPARCstation2 performs the face

segmentation and recognition. This software combines commercial software with

new software written in "-C."

1.9 Overview

Chapter Two presents a review of current literature related to face recognition

systems. Chapter Three provides a detailed description of the methodology used in

this thesis, and Chapter Four provides test results. Chapter Five presents conclusions

based on the test results and makes recommendations for future study.

4

II. Literature Review

2.1 Introduction

When people look at photographs of friends, or run into a co-worker at the

supermarket, or talk with family members at the dinner table, they probably never

stop to consider how they recognize these people. Recognizing people is so com-

monplace to humans they usually don't think about how remarkable this process

is. Faces are one of the most common discriminators humans use to recognize peo-

ple, and humans are very good at recognizing faces (experiments have shown that

monkeys, sheep, and even pigeons are also very good at recognizing human faces)

(19)(12)(21:35). Yet, as seemingly effortless as this process is for humans to perform,

no one has been able to build a machine thftt performs anywhere near as well as a

pigeon, let alone a human. In spite of this fact, there are some practical applications

which would benefit from a high confidence face recognition system. Scanning for

criminals in airports or verifying account owners at a bank teller machine are just

two of many possible examples. One of the requirements for this thesis is to build

an autonomous near-real time face recognition system. Given the performance dis-

parity between humans and machines, it seems prudent to review the latest research

regarding biological face recognition, as well as the latest face recognition technology.

The results of this literature investigation are provided in the following section. The

final section of this chapter will briefly summarize the current status of face recogni-

tion technology as found in the literature search, and state what can be concluded

regarding research objectives.

2.2 Face Recognition Research

One of the most interesting facts about investigating how the brain "does" face

recognition is that no one knows how the brain "does" any process, face recognition

included. There are, however, many hypotheses; some of which enjoy greater accep-

5

tance than others. The latest trends in face iecognition research indicate that there

are at least two major subprocesses in recognizing faces. First, taking in a visual

scene and realizing there is a face in that scene at all. This detection of a face is not

recognition of a specific person's face, it is simply realizing that a face exists in the

scene (for example, as someone looks around, he realizes there is a face looking at

him from the bushes). This process is referred to as segmentation. The second major

subprocess is recognizing that a face "belongs to" a specific person (returning to the

example, upon further study, he realizes it is that weird kid down the street that is

looking at him from the bushes). This second process is usually referred to as face

recognition by itself, but it will be referred to herein as individual face recognition

to distinguish it from the overall process.

2.2.1 Face Segmentation When humans look at a photograph of someone,

they can immediately determine if there is a face in that picture, but how do they

know this? Some research suggests humans have cells which respond uniquely to

faces, regardless of whose face it is or how it is represented (e.g., photograph, line

drawing, or some other representation) (20)(19)(9). Face sensitive cells suggest that

face segmentation is a biological process. Support for this hypothesis can be found in

the research conducted on prosopagnosia patients. These people exhibit no deficit

in the ability to find and discriminate faces, but they cannot identify the person to

whom the face belongs (4)(3)(18).

Other research suggests that face sensitive cells are excited by particular com-

binations of cells (i.e., patterns) on the visual cortex. These cells on the visual cortex

respond as if a localized frequency analysis has been applied to the visual field (10).

These experiments have spawned research with wavelet segmentation; wavelets per-

form a localized frequency analysis. Wavelet segmentation results with tanks and

such are encouraging (23), but very little face segmentation with wavelets has been

attempted (26).

6

While the biological research on face segmentation progresses, other researchers

have designed and built systems to segment the faces in an image. The success

rate of these systems has been modest, but may be sufficient for some applications.

These systems find faces by using expected brightness patterns to find areas in the

image which may be the eyes (1)(15)(16) or face outline (27)(8)(16). To reduce the

computational load, most systems use pre-defined rules, such as head size (25)(8) or

motion (25) to reduce the possibility of falsely identifying a non-face object as a face.

To speed up the segmentation process, some face recognition systems use motion to

limit the search area (25)(15). The underlying assumption of this technique is that

people almost never keep their heads perfectly still. Experimental results have shown

this to be a reasonable assumption. Using motion is reasonable from a biological

standpoint, as well, since research has shown that (a) some animals use motion to

detect objects and (b) we have cells which respond solely to motion (11). Even with

motion and pre-defined rules, segmentation is usually the most time consuming and

computationally intensive portion of any autonomous face recognition system.

2.2.2 Individual Face Recognition Once the face is found in the image,

the face recognition process must be completed by identifying the individual to whom

the face belongs (individual face recognition). This is true regardless of whether

we are working with a biological or man-made process. The two most common

approaches to individual face recognition are feature-based and holistic. Biological

experiments have been cited to support feature-based and holistic recognition (2),

although neither approach can claim superiority based on the experimental results.

Recent studies suggest humans may do both feature-based and holistic recognition

in parallel (5:6).

The feature-based recognition, as might be guessed from the name, uses mea-

surements based on the features of a face (e.g., eyes, nose, and mouth) to characterize

a person's face. Which features are the right ones to use, or which features does the

brain use? We don't know. Researchers have tried a variety of measurements with

7

modest results. Feature-based techniques were used in the early seventies when face

recognition was first attempted by computers, and feature-based research still con-

tinues today. One of the most significant limitations of the feature-based approach is

the autonomous segmentation of the features. One recently developed autonomous

feature-based face recognition system required forty minutes on a VAX 8530 just to

find the face and get it into a format the system could use to extract the feature

measurements (16).

The holistic approach uses the "entire face", not just selected features, as an

input to the individual recognition process. The holistic research has been based pri-

marily on data compression techniques which have the advantage of representing the

entire image with just a few coefficients (6)(13)(7). In fact, face recognition systems

have been built which use one of three following data compression techniques:

"* The Karhunen Love Transform (25)(13)(24)

"* The Discrete Cosine Transform (7)

"* A Neural Network with Unsupervised Feature Extraction (6)

There is no clear advantage to using any one of these three techniques based on

recognition success rates; recognition success rates were essentially equivalent for

systems using any one of these techniques. An additional, and perhaps more sig-

nificant, advantage of holistic recognition is that rigorous segmentation may not be

required; the location of the face is needed, but not individual features. Face recog-

nition research using the holistic approach has been around for only a few years, but

results have been encouraging.

2.3 Summary and Conclusions

Current autonomous segmentation techniques have had only limited success

in locating faces in an image. To improve their success rate, most systems make a

number of assumptions about the objects that will appear in the visual field. These

8

assumptions severely limit the usefulness of these systems in practical applications.

A secondary issue is the computational burden and execution time. Although motion

and pre-defined rules may reduce the execution and the computational burden, they

intrinsicly make further assumptions about the system's environment and, therefore,

further limit their portability to new environments. Face segmentation with wavelets

may benefit the face segmentation field, but that research is still open.

The individual face recognition portion of the face recognition process can be

done by current equipment with reasonable accuracies using either the feature-based

or holistic approach. A major drawback to feature-based recognition is the rigorous

segmentation feature-based systems require; as discussed above, current segmenta-

tion techniques are limited. Holistic recognition is promising, partly because it does

not appear to require rigorous segmentation to achieve reasonable results.

As mentioned earlier, one of the requirements for this thesis is to build a portion

of an autonomous near-real time face recognition system, and sponsor requirements

dictate this system will be integrated into a Sun SPARCstation2. Given the results

of the literature search, a motion-aided holistic face recognition system seems to be

the most reasonable solution given the technology available today. The assumptions

about motion are acceptable for the intended environment of this system, and if

better segmentation techniques become available they can be easily integrated into

this type of system.

9

III. Methodology

3.1 General

The main objective of this thesis was to implement segmentation techniques on

a Sun workstation to determine the capabilities of these techniques to segment a face

from an input scene which is suitable for use as an input to a face recognition system.

The approach of this research was to use an algorithm to analyze the movement

between two successive images to find possible face regions. This approach is based

on the fact that humans do not keep their heads perfectly still; a certain amount of

motion is always present (17). A side benefit to this approach is that if this technique

cannot segment suitable faces by itself, it can be used by other techniques to find

areas of interest.

3.2 Motion Analysis

3.2.1 Capturing Images The first step was to develop the capability to

capture images and bring them into the Sun for analysis. The tools used were the

Sun VideoPix and a S-VHS camcorder. The reasons for choosing the VideoPix were

as follows:

1. The tool capability seemed adequate for our application. The specification

stated it could capture up to four grey-scale images per second; color images

at up to one per second.

2. The tool can be controlled via "C" routines which come with the tool.

3. The hardware and software were available and already integrated into a Sun

workstation.

The.S-VHS camcorder was chosen because it provided automatic brightness con-

trol, and could supply color or grey-scale, live or video-taped images. Appendix A

contains information on using VideoPix.

10

The images provided by the VideoPix tool are 720 by 480 non-square pixel

YUV images, where Y is luminance and UV are chrominance1 . The conversion to

NTSC format square pixel data produces a 640 by 480 image. The decision was

made to use 8-bit grey scale images because these types of images had been used

successfully for both motion and recognition in the past (25)(15).

3.2.2 Finding Motion Regions After developing the capability to capture

images on the Sun workstation, the next step was to find the regions of movement.

The technique for finding moving regions, and one that had been used successfully in

previously research (25)(15), was frame-to-frame subtraction. The reasoning behind

this approach is, given that the camera and focal region remain fixed, the pixel values

that change between two images are considered regions of movement.

One obvious consideration is the time lag that occurs between capturing the

first and second images. If this time lag is too large, the resolution of the motion

regions deteriorates. This time lag was measured using the Unix date command.

Additionally, the motion region created when a subject greatly exaggerates his mo-

tion was determined. Although the acquisition rate for the VideoPix tool i' fairly

slow, it is fast enough that a subject would have to intentionally exaggerate his mo-

tion to cause any significant deterioration of the motion image, and in this research

a cooperative user was assumed.

Noise was filtered out with a median filter; a median filter assigns pixel values

based on the median value of the pixels surrounding a pixel as well as the pixel value

itself.

As can be seen in Figure 1, the "motion regions" that result from this approach

are not usually solid regions, but rather loose outlines of moving objects, with gaps

in the outline, and random patterns of pixels internal to the object "outline" which

'More detail on the YUV data is given in Appendix A

11

depend on both the pattern of the moving object and the motion internal to that

object (i.e., blinking eyes or moving mouth).

' IX

Figure 1. Typical Motion Image

To form a defined region, the "motion" pixel closest to the top was found for

each column of the image and all pixels below that pixel were considered part of the

motion region. An example of this modified image can be seen in Figure 2.

The decision to find the pixel closest to the top was based on:

1. Many times the object "outlines" were so poor that no standard algorithm

could be used to simply "close the gaps."

2. Given the target environment for this system (office environment), it was as-

sumed that if a person was in the scene there would not be motion above that

person's head. It was recognized that a second person standing directly behind

a person sitting in a chair, would obscure the sitting person; however, that was

felt to be an acceptable limitation.

3. The top portion of the motion outlines is the most consistent outline edge.

12

Figure 2. Motion Outline I

To close small gaps that still exist in the modified motion image, the columns of this

image were then grouped, and all columns in a particular group were assigned the

"highest" motion pixel value for any column within that group. An example of this

image is shown in Figure 3.

As is evident from Figure 3, random noise or large gaps in the motion outline

occasionally caused "spikes" to occur in the motion region. Therefore, single column-

group spikes were eliminated by looking for large changes in motion pixel location

from one column to the next followed by another large change in motion pixel location

in the opposite direction. An example of the resulting "cleaned up" motion image is

provided in Figure 4.

Alternately, motion regions formed by subtracting two color (rgb) images were

tested to determine if there was any advantages to using color images instead of grey

scale to determine the motion regions.

3.2.3 Segmentation by Region Analysis Once motion regions were de-

fined, these regions were then analyzed to find features which were common to all

13

Figure 3. Motion Outline II

Figure 4. Final Motion Outline

14

face regions. A secondary analysis was to find features which were unique only to

face regions, but this was only secondary because it was felt that later processing

could eliminate non-faces as long as the segmentation was providing suitable face

regions when they were part of the input scene.

Because (a) motion regions were created by "blanketing" objects from the top,

and (b) human heads are tall oblong shapes on top of a wider shape (shoulders and

body), the difference between the height of the shoulders and the top of the head is

manifested as a dramatic change, or large slope, in the motion region. The analysis,

therefore, simply looks for a large positive slope, a fairly stable region, and then a

large negative slope. The entire image is searched for regions which fit this profile

over several slope thresholds. Multiple slope thresholds are an attempt to overcome

the variations in subjects and the "quality" of the motion outline.

Once the portions of the motion region had been found which fit the "head"

profile, these regions were "cut" out of the image and rescaled to a standard size. It

was hoped that since the region segmented out of the original image was dependent

on the width of the moving head, that rescaling the segmented region to a standard

size would provide sufficient scale invariance for an automatic recognition system.

The scale invariance was tested by segmenting the face of a subject at three different

camera "zoom" settings. These camera settings significantly altered the scale of

the subject's head in the image input. The segmented faces were then visually

inspected to determine how well the segmentation algorithm "normalized" the scale

given the three scale variations in the input images. Faces segmented during the

previous segmentation tests were also visually inspected to further determine the

scale consistency of faces segmented by this technique. The actual "sufficiency" of

this scale normalization for a recognition system may be tested in a complementary

thesis by Ken Runyon (22).

15

3.3 Binarized Face Patterns

To provide an alternate method of finding the faces in an image, it seemed

reasonable to search for specific features of faces in the image. One technique used

previously at AFIT which appeared to be fairly successful was to "lambertize" an

image and then search for features such as eyes, nose, and mouth (15). To over-

come feature obscuring due to brightness variations across a scene, Lambert found

the brightness variations within some window of the visual scene. The variations

renained fairly consistent even when the overall brightness of the image change rad-

ically. Thus, by finding these local variations, it was hoped that facial features would

appear consistently in a "lambertized" image.

Local variations in an image were found using Lambert's technique and several

different window sizes. The input image was then reduced and then local variations

were found in the reduced image as well. Algorithms for finding faces, based on these

images, may be developed in future research.

3.4 Summary

The face segmentation approach taken in this research can be summarized as:

1. Capture two images from a fixed camera in rapid succession.

2. Perform frame-to-frame subtraction to determine movement.

3. Eliminate noise from the motion image.

4. Group pixels to form a more defined motion region.

5. Analyze the motion region to find face regions.

6. Cut these face regions out of the input image.

7. Resize these face regions to create a standard size vector (these vectors become

the input to a face recognition system).

16

The details of this algorithm and the tests conducted to investigate this algorithm

have been described in this chapter. The results of these tests are documented in

the chapter that follows.

17

IV. Results

4.1 General

4.9, Capturing Images

The VideoPix hardware and software performed as expected. An example of

two 8-bit grey scale images captured in a software loop are provided in Figure 5.

The time lag between two successive captures was measured at 0.5 seconds. This

IMAGE 1 IMAGE2

Figure 5. 8-Bit Grey Scale Images

time lag was determined by executing the Unix date command, capturing twenty

images in a software loop, executing date again, and then dividing the difference

by twenty. This difference was taken ten different times and each time the same

measurement was found-footnoteIt was believed that capturing twenty images and

dividing would produce a better estimate of the time between two successive grabs

because the date command gives time to the nearest second, and the measurement

was expected to be in fractions of seconds..

4.3 Finding Motion Regions

As mentioned in the previous section, the frame by frame subtraction using

8-bit grey scale images did not provide the consistent motion expected. The funda-

18

mental assumption was that biological subjects "wobble", and thus a clearly defined

motion outline was expected even when subjects were trying to remain as still as

possible (17). Figure 6 clearly shows that this was not the case. Multiple attempts at

IMAGE 1 IMAGE 2 "MOTION"

Figure 6. Bad Motion Image

forming this motion image revealed that if the subject simply sat as if he or she were

working at the computer terminal, the motion regions formed were too inconsistent

to use for segmentation. This was particularly unfortunate in light of the fact that

this was the projected user scenario for the final face recognition system.

On the opposite end of the spectrum, a motion image was formed with the

subject greatly exaggerating his motion. As can be seen in Figure 7, severe motion

will also produce a potentially unusable motion image. This type of motion is essen-

IMAGE 1 IMAGE 2 "MOTION"

Figure 7. Severe Motion Image

19

tially ignored in this research, since a cooperative user was assumed. However, this

test revealed limitation of the system caused by the relatively slow acquisition rate

of the VideoPix tool.

The noise in the motion image was able to be filtered out very effectively by

"a median filter. Figure 8 shows this noise elimination by providing an example of

"a noisy motion image and the resulting images after passing through the median

filter. Typically, a difference threshold of ten was set for "motion" pixels from the

MOTION 1 ST PASS 2ND PASS

Figure 8. Median Filtering an Image

frame to frame subtraction, and the image was passed twice through a median filter.

Through experimentation, this difference threshold and two passes through the filter

were found to remove the noise in the image consistently.

To overcome this motion "inconsistency", the decision was made to thresh-

old the number of pixels "turned-on" in the motion image. The drawbacks of this

approach are:

1. The higher the threshold the more dramatic the motion must be on the part

of the user and usually the longer that user must wait for segmentation.

2. The more dramatic the motion the less precise the segmentation and, therefore,

the less consistent the scale in the segmented images.

3. The threshold does not guarantee a good motion outline, it simply indicates a

greater likelihood of a good outline given stable conditions.

20

Experimentally trading-off the quality of the motion image with the user movement

requirements and wait time, a motion threshold of 3000 pixels was found to be the

best motion threshold. Of course this threshold will vary with the number of pixels

in an image and the size of the moving objects in the image as well.

As mentioned in the previous chapter, moving objects found using frame-to-

frame subtraction are not usually solid, but somewhat abstract outlines and random

internal patterns. The process to form a defined motion outline is shown visually in

Figure 9 and briefly summarized as:

1. The noise in the motion image was removed by median filtering.

2. The "motion" pixel closest to the top was found for each column of the image

and all pixels below that pixel were considered part of the motion region.

3. The columns of this motion outline were then grouped to close these gaps.

4. Finally, single column "spikes" were eliminated by looking for large slopes in

one direction followed by a large slope in the opposing direction.

Forming motion regions by subtracting two color images was attempted to

determine if there were any improvement over using grey scale images. However, the

motion region created from two color images did not improve the consistency of the

motion outline at all, and the noise in the color image was not filtered out effectively.

Figure 10 is an example of the motion image created using color images.

An alternate method of finding the outline of moving objects could be devel-

oped using an edge enhancement algorithm. The edges of the objects in the input

image are found using an edge enhancement algorithm, and the motion analysis could

be used to determine the edges of the moving objects. Finding the exact edges of the

head would allow easy elimination of all background and also produce a rigid scale

standard for resized head regions. An example of an edge enhanced input image is

provided in Figure 11.

21

- ,- - "-

IMAGE 1 IMAGE 2 "MOTION"

I - -

I - - -..- o

MEDIAN FILTERINGK id
OUTLINE I OUTLINE 2 OUTLINE 3

(FIND TOP PIXELS) (GROUP COLUMNS) (REMOVE SPIKES)

Figure 9. Forming a Motion Region Image

22

t4;

MOTION FROM COLOR FILTERED MOTION

Figure 10. Motion Image From ROB Images

Figur 11.Sampl Edg Img
23

4.4 Segmentation Algorithm Test

Possible face regions are segmented according to the algorithm described in

Chapter three. This segmentation algorithm searches the motion image for large

positive slope-level region-large negative slope regions. The image is searched using

several slope thresholds to account for poor motion images and variations between

subjects. The top of a motion outline of a face was rarely fiat with a smooth curve

at the sides of the head. Many times there were small positive and negative slopes

along the top of the outline and very often small plateaus at the side of the head. By

ignoring small slopes that did not exceed some moderate threshold, these small de-

viations could easily be overcome. Some hairstyles however caused a more moderate

slope at the sides of the head, forcing lower thresholds to detect the sides of the head.

By searching the motion outline three times using three different slope thresholds,

it was experimentally found that all these irregularities could be overcome.

A visual representation of the entire segmentation process is provided in Fig-

ure 12.

The first part of the segmentation test was performed by videotaping several

subjects and allowing the segmentation routine to segment all regions that might be

valid faces. The segmentation test was run three times on the videotaped subjects

with three different thresholds on the number of motion pixels. Figure 13 shows a

sample 8-bit grey scale input image, the motion image associated with that image,

the segmented regions in that image, and the standard size image (32 x 32) for each

segmented region. A complete set of these segmentation test images are provided

it, appendix C. For scale comparison, all of the segmented regions for the highest

motion threshold test are provided in Figure 14.

The segmentation test results showed (a) each "successful" capture consistently

had at least one "properly" segmented face, and (b) "properly" segmented faces

were not one, but a few, consistent scales. A "successful" capture is one in which

the number of pixels changed in the motion image exceeded a pre-defined threshold.

24

m,• ~ ~ ~ ~ ~ ~ ~ ~ - --------•

-- I>

IMAGE I IMAGE 2 "MOTION"

.1 * I

MEDIAN FILTERING

OUTLINE 1 OUTLINE 2 OUTLINE 3
(FIND TOP PIXELS) (GROUP COLUMNS) (REMOVE SPIKES)

REGION 1 REGION 2 REGION 3

Figure 12. The Segmentation Process

25

Figure 13. Sample Segmentation Test Images

"Properly" segmented means the regions segmented from the original image appear

suitable for input into a face recognition system. The lowest motion threshold setting

(1500) had a few badly segmented face regions due to the poor motion regions on

the front end of the segmentation algorithm. The higher threshold settings (3000

and 4500) consistently segmented suitable faces for recognition provided that one

existed in the input scene.

The next part of this test investigated the scale "normalization" capability of

this algorithm. The test was conducted by placing a single subject in the system

field of view at three very different "zoom" settings on the camera. The three

"zoom" settings made the subject's face three very different sizes in the input image.

Three faces were autonomously segmented at each of the three "zoom" settings,

resulting in a total of nine faces segmented for that subject. The results of this

test, shown in Figure 15, and the results of the previous segmentation tests, indicate

the segmentation and rescaling is somewhat tolerant of changes in the input scale,

although more prototypes of each subject may need to be taken to account for the

slight variations in scale that did occur.

Face orientation may alter scale depending on the facial view segmented, but

each view will be a consistent scale. Thus, if a recognition system should attempt to

handle multiple orientations, prototypes taken from different viewpoints using this

algorithm should still be suitable.

26

Figure 14. Sample Set of Segmented Regions

27

SCALE 1 SCALE 2 SCALE 3

FACES
SEGMENTED

AT

SCALE 2

FACES
SEGMENTED

AT
SCALE 2

FACES
SEGMENTED

AT
SCALE 3

Figure 15. Segmentation Scale Test

28

Faces segmented using this algorithm may be further tested for their suitability

an input to a face recognizer in a complementary thesis by Runyon (22).

4.5 Binarized Face Patterns

Figure 16 shows the 8-bit grey scale image used as the input for the "lamber-

tized" images and the variation images which resulted from lambertizing the image

using the local brightness variation box sizes shown and then thresholding the result.

The grey areas are positive variations from the mean, and the black areas are the

negative variations from the mean. Figure 17 is the result of lambertization and

thresholding the same input image except it had been reduced from 640 x 480 pixels

to 128 x 96 pixels.

The lambertized images vary according to the size of the box relative to the

dimension of the input image, but the eyes, nose, and mouth appear consistently as

black regions. Since these images are local variations, the lambertized images should

be consistent over a large range of lighting conditions. Therefore, by either estimating

the face size in the input image or lambertizing the image with several different boxes,

or both, fares may be found by developing an algorithm which searches for the eyes,

nose, and mouth regions.

Two ways this algorithm might be combined with the motion analysis technique

are:

1. Use motion analysis to segment a possible face region, and then use use the

lambertization technique to find facial features. This may better discriminate

faces from non-faces, and may even reveal something of face orientation.

2. Use Lambertization to find possible faces, and then use the motion analysis to

discriminate faces from non-faces.

29

ý01

A -r

INPUT 640 x480 IMAGE Wx BOX VARIATIONS

.....

17x1 7 BOX VARIATIONS 25x25 BOX VARIATIONS

Figure 16. Lambertization Images

9 x 9 BOX VARIATIONS 17 x 17 BOX VARIATIONS 25 x 25 BOX VARIATIONS

Figure 17. Reduced Input Lambertization Images

30

The advantages of the first method are it may be quicker and provide more infor-
mation. The advantage of the second method is it may find faces even when motion

may not be available.

31

V. Conclusions

This thesis demonstrates that motion analysis alone may provide sufficient

segmentation for a face recognition system. Even though the motion outlines were

not as consistent as expected, the system consistently found the heads in a scene and

rescaled these heads to a new scale which was fairly consistent across all subjects.

This segmentation technique carries a low computational burden and is still

relatively quick. As such, it may be a valuable technique to fuse with other seg-

mentation techniques, such as searching for face patterns, to (a) reduce their search

time, and (b) increase the consistency of discriminating face regions.

The only drawback in this thesis was the consistency of the motion images.

Why the motion outlines were not consistently defined is not clear. Objects of similar

grey scales values might be expected to obscure some boundaries, but this does not

explain the results shown since the same objects and background produce outlines

most of the time, and only occasionally do not. The more likely explanation is that

the subjects did not move in direction of the plane of view.

With a better method of finding the motion image, the system could improve

the scale standardization and perhaps even its ability to discriminate head regions

from non-head regions. Although the scale of the segmented faces was consistent,

it varied slightly depending on the width of the motion region. This is due to the

fact that the motion outline did not find the edge of the head exactly. If the motion

region found the outline of the head exactly, scale would be consistent for each

person, and all background could be eliminated as well. Additionally, with a better

motion image, a more discriminating analysis could be conducted on the motion

image.

32

Appendix A. VideoPix

A.I General

VideoPix is a tool which provides image grabbing and manipulation capability

to Sun SPARCStations. The tool consists of (a) an electronics card inserted into

the SPARCStation system, and (b) "C" software routines. There is a users' manual

titled Using VideoPix which explains how to install the system and describes the

software routines.

This appendix discusses some of the software routines and some of the problems

associated with using these routines. There is no attempt to discuss installation, but

to discuss the software, it is useful to have some understanding of some hardware

capabilities. Appendix B has code which use these routines; this code may be useful

as examples.

A.2 Hardware

The input video signal is decoded into 4:1:1 YUV data. This translates to

two bytes per pixel, seven bits of Y (luminance) per pixel, and fourteen bits of UV

(chrominance) per four pixels. The upper byte of each pixel word contains the seven

Y data bits, and the lower byte contains either two or four of the fourteen UV data

bits and it takes four pixel words to describe the UV for any one pixel.

The YUV image data is also based on non-square pixels; the decoder used by

the tool was originally designed for televisions. Thus, to display the digitized images

correctly, the data must be converted to square pixel data. The non-square data can

be displayed, but it will appear distorted in the horizontal direction.

When an image is digitized, the images data is stored in two large FIFOs, one

for each field of the video frame. Each FIFO read increments an internal pointer.

Since the FIFO memory is serial access only, reading a specific pixel requires that

33

all pixels up to that location must be read as well. The dimensions of the digitized

YUV data is 720 x 480.

A.3 Initialization

The key VideoPix initialization software routines are:

vfc.open() Opens the hardware and locks out other users.

vfc.set.port() Supposedly sets the hardware to look for a signal on the

specified port (either either VFCYPORT1, VFCPORT2,

or VFC.SVIDEO). This routine did not appear to work.

If only one signal is coming into the Sun SPARCSta-

tion, it will usually find that signal regardless of the port

specified in this routine. With multiple active signals,

the tool seems to default to port 1. The only consistent

method for selecting a particular port seemed to be invok-

ing the VideoPix vfctool prior to executing user created

software, and previewing the video signal on the desired

port. Then, after exiting the vfctool, VideoPix seems

to always find the correct port when executing the user

defined software.

vfc.set.format() Determines the format type from the incoming signal

An example of user software module which uses these software routines can be

found in Appendix B, zvfcset_hw.c.

When the VideoPix hardware is no longer needed, the vfc.destroy() routine

releases the hardware.

34

A.4 Grab and Convert

The key VideoPix routines to grab image data' and convert that data to 8-bit

grey scale or rgb color are:

vfc.grab0 Instructs the hardware to digitize the next complete frame. This puts

the data into the FIFOs. Invoking vfc.yuvread.ntsc() is necessary to

put the data into user memory where it can be manipulated.

vfc.yuvread&ntsc() Reads in digitized YUV image data from the VideoPix hardware into

a memory block which has been allocated by the user. vfc.grab() and

vfc.yuvread.ntsc() are usually executed together.

vfc.yuv2y8.ntsc() Converts the non-square pixel YUV data into square pixel, 8-bit grey

scale data. Again, the user must allocate memory for the converted

data (remember the YUV data is two bytes per pixel, the 8-bit grey

scale is one byte per pixel). A point the user manual is not very clear

on here is that since the YUV data is actually 7-bit of luminance, the

8-bit data is created by multiplying the 7-bit data by 2. VideoPix does

this multiplication via look-up tables. As a consequence, vfc.init-lut()

should be invoked prior to executing this routine to initialize the look-

up tables. According to Sun, a colormap offset of zero is typical.

vfc.yuv2rgb.ntsc() Converts the non-square pixel YUV data into NTSC RGB color data.

The color data is four bytes per pixel, and the data for each pixel

is put into memory XGBR. The upper byte, X, which is evidently

transparency information, was not used in this research. The memory

allocation and look-up table comments given in the vfc-yuv2y8_ntsc()

discussion apply here as well.

An example of user software modules which use these software routines can be

found in Appendix B, z-grab-gra.c and z.grab-rgb.c.

'All functions which are format specific have both NTSC and PAL versions; the only format

referred in this appendix will be NTSC, but it appears that PAL can replace NTSC in all cases.

35

Appendix B. Source Code

This appendix contains a listing of some of the source code used in performing

this thesis. This code is presented as is, and no claims are made as to suitability for

other applications.

B.1 segment2.c
/,
* File: segment2.c
* Created: July 1992
* By: Kevin Gay

, Purpose:

* Assumes:

* Modified:
* By:
* Why:

#include <stdio.h>
#include <sys/types.h>
#include "vfc-lib. h"
#include "globals.h,

extern struct heacLptrs *z.segment);
extern int z.store.imageO;

main()
{

u-char *face, *ptr;
register int i;
struct head-ptrs *temp.ptr, *face-ptrs;
char tryagain[10],filename[30],command[80];
int count=1;

sprintf(tryagain,"'s","Y");
while((tryagain[O]=='Y ')jl (tryagain[O]==' y'))

{
printf("Please look at camera until you hear a beep.\n");

36

face..ptrs = (struct heac-ptrs *)z..segmento;

system("lecho V);

if(face-.ptrs == NULL)
I
printf(I"Trouble getting images\n");
exit(l);

else

f
while(face-.ptrs 0 NULL)

f
sprintf(filename,

"I%s%dY~s","I~ace"l,count," . am");
if(z..store-image(face-ptrs--+head,filename,SM-SIZE) <0)

fprintf(stderr, "Unable to write to file\n");
sprintf(command,"graytorle -o hold.rle %~d %d %/s",

SM-.WIDTH,SM-HEIGHT,filename);
sprintf (filename,

"%S%d.S" ,"~f acell,count," . rio");
system (command);
spriutf(coxnmand,"rlef lip -v -o %sa hold. rle" ,filename);
system (command);
system("rm hold.rle");
sprintf(command, "xli -quiet -zoom 500 %sa k" ,filename);
system(comxnand);
temp-.ptr = face-.ptrs;
face..ptrs = temp..ptr-*next;
free (temp..ptr--.head);
free(temp..ptr);
count++;

printf("Would you like to try again? (Y or N)");
gets(tryagain);
printf(I"\n");

37

B.2 z.segment.c
* * ****** * **** **** **** *** ** ** * **** **** *** *** *** ** *** ** ** * *** ** * *** * **

"* File: z.segment.c
"• Created: August 1992
"• By: Kevin Gay
,

• Purpose: This code is a set of common routines to save time/typing.
• This code grabs all potential head regions in an image,
• reduces them (SM.SIZE) and returns these reduced head images
• in a structure; a null-ptr is returned if unsuccessful.

* Assumes:

• Modified:
• By:
• Why:
* ***** * *** ** *** *** **** ** *** ***** ** * ***** * *** * *** *** **** *** ** * ***** **

#include <stdio.h>
#include <sys/types.h>
#include "vfc-lib.h"
#include "globals .h"

extern struct image.ptrs *z.motiono;
extern u.char *z.seg.regionso;
extern struct region *z.outlineo;

struct head-ptrs *z.segmentO{
u-char *face;
struct region *head.regions, *face.ptr;
struct image.ptrs *im-ptrs;
struct head-ptrs *head-list=O, *temp.head, *nuUlptr=O;

im-ptrs = (struct image.ptrs *)z-motiono;
if(im-ptrs == NULL)

{
printf("Trouble getting images\n");
return nulLptr;
}

head.regions=(struct region *)z.outline(im-ptrs--motion,
VFCINTSCWIDTH,VFCNTSCHEIGHT);

if(head-regions == NULL)
printf("No head regions f ound\n");

38

else

I
while(head-region8 # NULL)

I
face=(u..char *)z..seg-.regions(im..ptr8--dmage2,

head-xegions,VFC.NTSC-tTIDTH,
VFC..NTSCJ{EIGHT,SM-WIDTH,SM..HEIGHT);

if~face == NULL)
I
printf("f ace ptr is null\n');

else

I
temp-head=(struct hea~ptrs *

malloc(sizeof(struct head..ptrs));
if(temp-head== NULL)

I
printf('Problems adding to list\n');
return nufl-ptr;

I
else

I
temp-head-anext=head-list;
temp-head--4head =face;
head-list = temp-head;

face..ptr = head-rxegions;
head-regions = face-.ptr--imext;
free(face-ptr);

free (im..ptrs-*imagel);
free(im..ptrs-.image2);
free (im -ptrs-.motion);
free(im..ptrs);
free(head-xegions);

printf("z-.segment complete\n\n");

return head-list;

39

B.3 z.motion.c
* * *** ** ** ***** *** *** * * ** *** ** **** **** *** ** ** *** *** **** ** *** * *** ** ** *

"* File: z-motion.c
", Created: August 1992
", By: Kevin Gay

* Purpose: This code is a set of common routines to save time/typing.
, This code grabs two 8-bit grey images using z.grab-gra
, and finds the difference between the two images (to find
, out what was moving) using z-find-diff.
, The three images (both 8-bit grey and the difference)
, are put into a structure which is returned; a null-ptr
, is returned if unsuccessful.
* The images are all NTSCSIZE (640x480) and I bpp.
* The vfc hardware is set upon entry and released prior
* to departure from routine.

, Assumes:

, Modified:
* By:
* Why:
* ** ***** **** * ** ** ** ****** ** * *** * ** **** ** * **** ** ** ** * *** * **** ** ** ** * *

#include <stdio.h>
#include <sys/types.h>
#include "vfc-lib.h"I
#include "globals.h"

extern u-char *z.set-vfc-hwo;
extern u.char *z.grab-grao;
extern u-char *z..fnd-diffo;
extern int zamedian();

struct image.ptrs *z.motion()
{

u-char *image[2], *motion, *ptr;
register int i;
int pixels changed=O;
struct hw.controls *hw.ptrs;
struct image.ptrs *images, *null-ptr=O;

hw.ptrs = (struct hw-controls *)z.set-vfc.hw(;
if(hw.ptrs == NULL)

return null-ptr;

40

"* Create a difference image and check to see if there is enough
"* movement to exceed threshold.

while(pixels-changed< MOTION -THRESHOLD)

I
for0i=O; i<2; i++)

image[i]=(u..char *)z-grab-gra(hw..ptrs);
if(image[i] == NULL)

f
printf(Ilimage ptr is null\n"l);
return null-ptr;

motion=(u..char *)z..find.diff(image[i- 1],
image ji], NTSC-SIZE);

if(motion == NULL)
I
printf("mot ion ptr is null\nu");
return null-.ptr;

for(i=1; i<2; i++)
if(z-redin(motion,VFC..NTSC..WIDTH,VFC..NTSC-HEIGHT) <0)

fprintf(stderr, "Median ftilt ering errorWn");
ptr = motion;
pixels-changed = 0;
for(i=1; i<(NTSC-SIZE*2/3); i++)

if(*ptr++ == 0)
pixels..changed++;

images = (struct image-.ptrs *)malloc(sizeof(struct image-.ptrs));
if (images == NULL)

printf("Malloc error");
return nulL-ptr;
I

images-.image 1=image[10]
images-.image2=image 11];
images--.motion=motion;

41

vfc-destroy(hw..ptrs-..*vfc-dev);
free(hw..ptrs);

printf("z-.motion is complete\n\a");

return images;

42

B.4 z.set-vfcihw.c

* File: z-set-vfc-hw0
", Created: 7 July 1992
"* By: Kevin Gay

* This code was taken from an example written by Sun which came with the

, VideoPix card. The example was hw.setup.c which was labelled
* Copyright (c) 1990 by Sun Microsystems, Inc.
* #ident "@(#)hw.setup.c 1.5 90/12/12 SMI"
,

, Purpose: The code is intended to initialize the VideoPix hardware.
, Returns hardware pointers if successful; nulLptr if not.
,

, Assumes: Incoming signal is NTSC format; PORT set in global.h
,

", Modified:
"* By:
", Why:
** ** *** * ****** ** ** ** ** ** ** * *** * ** *** * ****** * ** ** ** *** * *** ** * **** * *** ** **

#include <stdio.h>
#include <sys/types.h>
#include "vfc-lib. V"

#include "globals.h"

struct hw.controls *z-set-vfchw(){
int rc, format, v.format, wmnoffset;
VfcDev *vfc-dev;
struct hw-controls *hw.ptrs, *null-ptr=O;

* Open the hardware just use the default case
* "/dev/vfcO" and test for success.
* Lock the hardware to deny other programs access

/***** Open the vfc hardware and set a software lock ******/

if((vfc-dev = vfc.open(NULL, VFC.LOCKDEV)) == NULL)

f
fprintf(stderr,"Could not open hardware\n");
return null-ptr;
}

/** Set the input signal port (PORT defined in globals.h **/

43

vfc..set-port(vfc-dev, PORT);

/**** Determine format of incoming signal and lock on

rc = vfc..setlformat(vfc-Aev, VFCAUTO, &format);
if(rc < 0)

I
fprintf(stderr,"No video signal detected\n");
return null-ptr;

if~format ==NO-LOCK)

fprintf(stderr, "Unable to lock onto a ignal\n");
return nul-ptr;
I

vlforinat = vfc..video-format (format);

if(vlformat # VFC-NTSC)

f
fprintf(stderr, "Warning :must be NTSC f ormat\n9);

return null-.ptr;

if(v-format == VFCNTSC)
vfc..adjust~hue(vfc.Aev, 0);

/***** Initialize colormap offset and look-up tables ***

wm..offset =0; /* Initialize H/W colormap offset; usu. 0 *

vfc-initiut (wm -offset); /* initialize look-up tables *

/*******Assign harware control variables*******f

hw..ptrs=(struct hw..controls *)malloc(sizeof(struct hw..controls));
if(hw-ptrs == NULL)

I
fprintf(stderr, "malloc hw-.ptrs error\n');
exit(1);

I
hw..ptrs--ivfc-dev = vfc-dev;
hw-ptrs-*colormap..offset = wni.offset;

printf("1z..set..vf c-.hw complete\n\ZL");

return hw..ptrs;

44

B.5 z-grab-gra.c

"* File: z.grab.gra.c
"* Created: 3 June 1992
", By: Kevin Gay

, Purpose: The code is intended to allocate memory for image data,
, grab YUV image data, and then
, convert that data to 8-bit grey, square pixel data.
, The code returns a pointer to the 8 bit grey data if
, successful, or a NULL if an error has occurred.
,

, Assumes: z.set.vfcjhw.c has been executed.
* YUV data is 2 bytes per pixel (bpp), 8 bit gray 1 bpp.

* Modified:
* By:
* Why:

#include <stdio.h>
#include <sys/types.h>
#include "vfc-_lib. h"
#include "globals.h"

u-char *z -grab.gra(hw.ptrs)
struct hw.controls *hw-ptrs;

{
u-char *yuv.data, *im-data, *mem-ptr, *null-ptr = NULL;
register int i;

* Allocate space for images.

yuv-data = (u.char *)malloc(YUVSIZE);
if(yuv-data == NULL) {

perror("malloc");
return null-ptr;}

im-data = (u.char *)malloc(NTSC.SIZE);
if(im-data == NULL) {

perror("malloc");
free(yuvdaa a);
return null-ptr;

45

/* printf("YUV and 8-bit image memories created\n");

*Do a grab and read in an image

if(vfc..grab(hw..ptrs--+vfc-dev) < 0){

* If the grab fails the image read will
* be garbage.

fprintf(stderr, "Warning, grab f ailed\n");
free(yuv-data);
free(im-data);
return null-ptr;

if(vfcyuvreac~sq(hw-ptrs--wfc-dev, yuv..data, VFC..NTSC) < 0){
fprintf(stderr, "Warning, vf c-.yuvread f ailed\n");
free(yuv.Aata);
free(im..data);
return nulL-ptr;

/* print f("YUV image grabbed and read from the hard ware\n");

*Convert the YUV data into 8-bit gray square pixel data.

if (hw..ptrs-'+colormap-offset 54 0)
vfc-it-lut(hw-ptrs-4colormap-iAfset);

vfc-yuv2y8-ntsc(yuv..data, im-.data);

print f("YUV data converted to 8-bit gray data\n");

free(yuv..data);

printf("z-.grab-.gra complete\n\n");

return im-data;

46

B.6 z.find-diffic
*** * * ****** * ** ** ** *** ** **** ** * ** * ******* **** ** *** * **** ** * *** ** ** ** * ****** *

"* File: z.find.diff.c
"* Created: 9 July 1992
"* By: Kevin Gay

, Purpose: The code is intended to allocate memory and store
* the pixel by pixel difference between two images.
, The resulting image is binarized (255 or 0) depending
* whether the Afference exceeds the DIFFERENCE-THRESHOLD.
* Difference pixels exceeding the threshold are 0 -
, 255 is white, 0 is black; difference is 0 to avoid
* a toner test when printing out difference images.
, The code return a pointer to the difference data; the
* pointer will point to NULL if an error has occurred.

* Assumes: Both input images are 8 bit grey image data (1 byte/pixel)
, and the same size (difference data is lbpp and same size
, as well).
,

, Modified:
* By:
* Why:
* * *** ** ** * ** ** ** ** **** ** * * *** ** ** ** ** ** **** * *** * ** * ** * ****** * ** *** ** **** **

#include <stdio.h>
#include <sys/types.h>
#include "vf c_ lib.h"
#include "globals.h"

#define DIFFERENCE-THRESHOLD 10

u-char *z-find.diff(iml -data, im2.data, size)
u.char *iml-data, *im2Adata;
int size;
{

u-char *iml-ptr, *im2.ptr, *diff-data, *diff-ptr,
*null-ptr = 0;

register int i;

diff-data = (u-char *)malloc(size);
if(diff-data == NULL) {

perror("malloc");
return nullptr;

I

iml-ptr = iml.data;

47

im2..ptr = im24data;
diff..ptr = diff-data;
for(i=O; i<(size); i++)

{
if((abs(*imi-ptr++ - *im2..ptr++) -DIFFERENCE-.THRESHOLD) >0)
*diff-ptr++ =0;

else
*diff-.ptr±+ = 255;

printf("z..f iud-dif f conmplete\n\n");

return d~iff-Aata;

48

B.7 z median.c
**** ********* * *** **** *** *** * ******* ****** **** *** *** *** *** *** *** *** * *** *****

* File: z-median.c
* Created: 10 July 1992
* By: Kevin Gay

• Purpose: The code is intended to median filter an input image.
• The code creates a temp memory, and filters as follows:
• - check if 1st row, last row, or other
• - check if 1st column, last column, or other
• - set pixel to majority walue of pixels which
• "surround" that pixel.
• Returns 1 if successful, -1 if not.
,

• Assumes: The input image data is binarized (either 255 or 0)
• 8 bit grey image data (1 byte/pixel).

* Modified:
• By:
• Why:

#include <stdio.h>
#include <sys/types.h>
#include "vfc-lib. h"
#include "globals.h"

int z-median(im-data, width, height)
u-char *imadata;
int width, height;
{

u-char *med..data, *iml-ptr, *im2_ptr;
register int i, j;
int sum;

medldata = (u.char *)malloc(width*height);
if(med-data == NULL) {

perror("malloc");
return - 1;

}

iml-ptr = imadata;
im2_ptr = med-data;
for(i=1; i<height; i++)

{ /* Since 0 is "on" ,/
for(j=l; j<width; j++) /* let ties goes to ,/

S/* 0 (best 5 of 9) /

49

/i**First Row **/ ifaj==1)
1* - first column */ sum = *iml-ptr++ + *(im1_ptr+1)+*(iml..ptr+width)
1* - last column */+*(iml-ptr+width+1) + 255 + 255;

/*- other columns */else ifo==width)
sum = *iml-ptr++ + *(iml-ptr-1) +

*(iml-ptr+width) + *(iml-ptr+width- 1) +
255 + 255;

else
sum = *iml-ptr++ + *(iml-ptr-1) + 255 +

*(iml-ptr+width) + * (imi -ptr+width- 1) +
(iml-ptr+width±1)+(iml-.ptr+1);

else if(i==height)

/**Last Row ***/ if(j==1)
/*- first column */sum = *iml-ptr++ + *(iml-.ptr+1) +

/* - last column */*(iml-ptr-width) + *(inl-ptr-width+1) +
/*- other columns *1255 + 255;

else if(j==width)
sum = *iml-ptr++ + *(iml-ptr-1) +

*(iml..ptr-width) + *(iml-.ptr-.width-1) +
255 + 255;

else
sum = *iml-ptr++ +*(irn1~ptr- 1)+*(im1_ptr+1)+

* (iml ptr -width) + *(iml-ptr-width- 1) +
* (iml -ptr- width+ 1) + 255;

else

/**Other Rows **/ ifGj==1)
/*- first column */sum = *iml-ptr++ + *(iml-ptr+1) + 255 +
*- last column */*(iml-ptr-width) + *(iml-ptr-width+1) +
/*- other columns */*(iml-.ptr+width) + *(iml-ptr+width+1);

else if(j==width)
sum = *iml-ptr++ + *(iml-ptr-1) + 255 +

* (iml -ptr -width) + *(iml-ptr-width- 1) +
* (iml..ptr+width) + *(iml ..ptr+width- 1);

else
sum = *iml-ptr+± +*(irn1ptr-~1)+*(imInptr+1)+

*(iml..ptr-width) + *(iml-ptr-width-1) +
*(iml-ptr-width+l) + *(iml-ptr+width) +
*(inl-ptr+width- 1) + *(iml-ptr~width+1);

if(sumŽ (5*25'5))
*im2..ptr+-t = 255;

50

else
*im2..ptr++ = 0;

iml-ptr = im-data;
im2..ptr = med-data;
for(i=O; i<(height*width); i++)

*iml-ptr++ = *im2..ptr++;
free(med-data);

printf("z-.median complete~un');

return 1;

51

B.8 z.outline.c
* ******* * ***** ** ** *** *** *** ** ******* * *** **** ***** ** *** ** *** * ** **** *****

* File: z.outline.c
* Created: August 1992
* By: Kevin Gay

* Purpose: This code makes an outline image of moving regions by
* looking for the first motion pixel from the top in each
, column. Some grouping is done to clean up the outline
* and some spikes are removed. Then possible head regions
, are found by finding positive-zero-negative slope regions.
* The code to create a outline image remains, but it is
* commented out.
,

, Assumes:

* Modified:
* By:
* Why:
* ** ** *** **** **** * *** ****** * ** * ****** ** * ** **** * ** *** ** * ****** ** ** ** ** **

#include <stdio.h>
#include <sys/types.h>
#include "vfc-lib.h"
#include "globals .h"

#define MAX-WIDTH VFCYNTSCWIDTH /** 640 **/
#define MAX-HEIGHT VFC.NTSC.-HEIGHT /** 480 **/
#define GROUPING 10
#define MINSFACEWIDTH 100

extern u.char *z.store-image(;

struct region *z.outline(motion, width, height)
u-char *motion;
int width, height;
{

register int i, j, slope-threshold;
int top[MAXWIDTH], shorttop[MAX.WIDTH/GROUPING],

top.slope[(MAXLWIDTH/GROUPING)-1],
found, leave-loop, repeat, not-smaller,
r-col, lcol, temp, remainder;

u-char *im-ptr, *outline;
char newname[301;
struct region *ptr, *ptr2, *poss-heads=0;
static int cnt=0;

52

if (width>MAXWIDTH)

{
printf("Too vide for routine\n°');
return poss-heads;
}

if (height>MAX-HEIGHT)

{
printf("Too high for routine\n");
return poss-heads;
}

/****** Find first motion pixels in each column (from top)
(skip first ten rows in case of border and
skip first/last ten columns in case of border) ********/

im-ptr = motion;
for(i=0; i<10; i++)

top[i] = height;
for(i=10; i<(width-1O); i++)

{
j=11;
im-ptr = motion+(10*width)+i;
found = 0;
while((found==0)&& (jheight))

{
if(*im.ptr == 0)

top[i] =j;

found = 1;
}

else if (j++ == height)
top[i] = height;

im-ptr+=(width);
}

for(i=(width- 10); i<width; i++)
top[i] = height;

f********* Clean up top edges by grouping columns ************/

for(i=0; i<(width/GROUPING); i+t)

{
shorttop(il = height;
for(j=0; j<GROUPING; j++)

if(top[(GROUPING*i)+j] <shorttop[i])
shorttop[i] = top[(GROUPING*i)+j];

53

/****************Find slopes from top **********

for(i=O; i< ((width/GROU PING) - 1); i++)
I
top-.slope[i]=((shorttopli+l] -shorttop[il)/(GROUPING*2)*(....));
remainder = abs((shorttopfi+lI-.shorttophij)%(GROUPING*2));
if((GROUPING-remainder)2Ž0)

if(shorttop[i+l] >shorttop[i])
top-s.lopelil-

else
top-slopefi]++;

/**********Eliminate some spikes *************

for(i=0; i<((width/GROUPING)-2); i++)
if(abs(top..slopefil) > 1)

if((abs(top-slope[iI+top..slope[i+ lj) <top-slope[iJ)&&
(ab8(top..slopeli+ 1])2Ž1))
f
shorttop(i+11 = shorttop~i];
top-.slopefi] 0;
top..slope~i+lj = ((shorttopfi+21 -

shorttop[i±1J)/(GROUPING*2)*(...));

else if((abs(top-slope~i] +top..slope[i-l1) <top-slope~iJ)
&&(i>0)&&(abs(top..slope~i- 11)Ž1))

shorttop[ij shorttopfi-11;
top..slopeli-lI 0;
top..slope[i] = ((shorttop[i+lj -

shorttop[iI)/(GROUPING*2)*(-1));

/**********Find potential faces from the top*******/

for(slope-threshold 1; slope-.threshold <3; slope..threshold++)
f
LcOl=O;
while(L-col< ((width/GROU PING) - 3))
{
found = 0;
if(top-.slope[L-col] >slope threshold)

54

r-.col=l-col+1;
leave-loop=O;
while(leave-loop==O)

f
/*********************I if(abs(top-.slope[r-col]):5slope..hreshold)

/* Beginning at leftmost */ r.col++;
1* column, find first col*/ else if(top-slope[r..col]>slope...hreshold)
/* with pos slope (L-col)*/ I
/* above threshold. 1-col=r..col;
/* While searching for */ r-.col++;
/* neg slope above thres-*/
1* hold (r-.col), update 4/ else /a'top..slope[r..colJ< ((-1)*slope-.threshold)*/
/* L-col w/each pos slopei1 I
/* above threshold */temp=l-col- 1;

not..smaller=l;
while ((temp ŽO) && (not-smaller== 1))

I
if(top-slope[templ Žtop-slope[l-coll)
I
L-col=temp;
temp--;

I
else

not..smaller=0;
/* Once col w/neg slope */}
/as is found (r..col), push*/ temp=r..col+l;
/* L-col back until slope*/ while((temp< ((width/GROUPING) -1))
/* is decreasing, and */&&(leaveioop==O))
/* push r..col forward I/
/" until slope increase */if(top..slope~temp]5top..slope[r..coll)

r-.col=temp;
temp++;

else
leave-loop=1;

if(((r..col-l-col) *GROUPING)
>MIN..FACE-WIDTH)

/* If pos-neg slope region is */ ptr=(struct region *
1* found, check for duplicate */malloc(sizeof(struct region));
/* regions. If not duplicate, */ ptr-~x=(L-co*GROUPING)+1;
/* then add to linked list of */ ptr--+width~=(rxcol+2)*
/* possible head regions */GROUPING -ptr--*x;

ptr-*y = shorttoplr..coll;
for(i=Lcol, i<r..col; i++)

55

if(ptr-*y > shorttop[i])
ptr-~y = shorttopji];

if((ptr-.*y+ptr--width*3/2) >height)
ptr--iheight= (height -ptr--y);

else
ptr--+*height=ptr-*width*3/2;

repeat=O;
ptr2=pow-heads;

if((ptr-.-*x==ptr2-.x)&&
(ptr-.#y==ptr2---*y)&&
(ptr-i-width=:=ptr2-4width))
repeat=1;

ptr2=ptr2-inext;

I
if(repeat==O)

ptr--next=poss..heads;
poss-heads =ptr;

else
I
free(ptr);

leave-loop = 1;
L-col=r-col;

I

1-col = r-cal;
leave-loop = 1;

else
L-col++;

/*********Create an image of the motion outline ****/

cnt++;

outline = (u-xhar *)malloc(width*height);
if(outline == NULL)

5G

perror("pmalloc");
return;

im-ptr = outline;
for(i0;, iwidth; i++)

I
im-ptr=outline;
im-ptr+=~i;
for(j=1; j<shorttop~i/1OJ; j++)

I
*im..ptr = 255;
im-ptr+=(width);

I
for(j=1; j!5 ((height-shorttopi/1OJ0)-I1); j++)

*im..ptr = 0;
im-ptr+=(width);

sprint f(newname, "%s~od%s", "outline",cnt ,r")
if(z..store.image(outline, newnazne, width*height) < 0)

fprintf(stderr, " Unable to write %os to file\n ",newname);

free(outline);

printf("z-.outline complete\n\n");

return poss-heads;

57

B.9 z.seg.regions.c

"* File: z.seg-regions.c
", Created: August 1992
", By: Kevin Gay

, Purpose: This routine takes in an image and a region structure
,1 which specifies the rectangular region to be segmented
* from an image.
, The segmented portion is then reduced to some specified
, dimension and returned; null ptr is returned if error.
, The code for view-face is left in, but commented out.
, The code for view-face will create an image the same
, dimensions as the input image with only those pixels
, to be segmented assigned grey scale values. The
, remaining pixels are white (255).

* Assumes:

, Modified:
* By:
* Why:

#include <stdio.h>
#include <sys/types.h>
#include "vf clib.h"
#include "globals.h"

extern u-char *zjreduceo;
extern int z.-store -image();

u.char ,z.seg-regions(image, head, width, height, seg.width, seg-height)
u-char *image;
struct region *head;
int seg.width, seg.height;
{

u-char *ptr, *ptr2, *face, *seg-face, *view.face,
*null-ptr=O;

char newname[30];
register int i, j;
static int cnt=O; /* Allows multiple calls with unique ,/

/* filenames. */

/4****** Segment the potential face from the image ***** */

face = (u-char *)malloc(head--4width*head--+height);

58

if~face == NULL)
f
perror("malloc");
return nufl-ptr;

ptr =image;

ptr2 = face;
ptr+=(((head-#y- 1) *width)+ (head--x- 1));
foroj=O; j<head--daeight; j++)

I
for(i=O; i<(head-*width); i++)

*ptr2++ = *ptr++;
ptr+= (width -head--'+width);

seglface= (uichar *)z-xeduce(face,head--*width,head---*height,
seg..width,seg-height);

if(seg-face == NULL)

f
printf("seg-face ptr is null\n');
return null-ptr;

/*****************Create view-face**********/

/*cnt++;

view-face = (u..char *)malloc(width*height);
if(view-face == NULL)

I
perror("malloc");
return null-ptr;
I

ptr2 = view-face;
for(i=O; i< (width*height); i++I)

*ptr2++ = 255;
ptr = image;
ptr2 = view-face;
ptr+=(((head->y-l1)* width)+ (head-> x-l1));

for(j=O; j<head->height; j++)

for(i=O; i<bead-> width; i++)
*ptr2++ = pr ;

ptr+=(width-head-> width);

59

ptr2+=(width-head-> width);

sprintf(newname, "%s%d%s", "view",~cnt, ".ra)
if(z..store-image(viewlface, newname, width* height) < 0)

fprintf(stderr, "Unable to write %s to file\n",newname);

free(vie-ý.- face);

Free memory and return image**********!

free (face);

printf(~z-.s eg-.reg ion~s complete\n\n");

return segJ'ace;

60

B.10 z.reduce.c
* ********* **** ** ** *** *** *** ** * ****** * ***** ** ****** ** **** *** *** *** * **** * *

"* File: z-reduce.c
"* Created: 13 July 1992
"* By: Kevin Gay

* Purpose: The code is intended to reduce an input image, of some
* arbitrary height and width, to a reduced height
* and width, also an input.
* The reduction algorithm simply skips bits.
, The algorithm skips more bits on the side of the image
, to be reduced in cases where the width division is not even,
* and more bits are skipped on the bottom of the input image
* when the height division is not even.
* Returns a pointer to the memory block containing the
, reduced image data upon success; a null ptr if not.

* Assumes: The input image data is 8 bit grey image data (1 byte/pixel).

* Modified:
* By:
* Why:
* **** * **** *** **** *** * * *** * * *** *** * ** *** * *** * ****** ** *** ** * ** *** * ** * ** * *

#include <stdio.h>
#include <sys/types.h>
#include "vf c-lib .h"
#include "globals.h"

u-char *z.reduce(im-data, old-width, old.ht, new-width, newiht)
u.char *imradata;
int old-width, old.ht, new-width, newlht;
{

u.char *smndata, *ptrl, *ptr2, *null-ptr = 0;
register int i, j;
int width-div, width.adj, left-adj, rightadj, ht-div,

bottom-adj;

sm-data = (u.char *)malloc(new-width*new_.ht);
if(sm-data == NULL) {

perror('malloc");
return null-ptr;

}

if ((old -width <new.width)I (oldlht <newlht))

{
fprintf(stderr,"Too small to reduce. \n");

61

return null..ptr;

I
width..div = old..width/rew-width;
width-adj = old-.width%new-.width;
left..adj = width-aMj/2;
right..adj = new..width-left-adj- (width..adj%2);
ht.Av = ((old-ht/new..ht)-l);
bottom..adj = new-ht-(old-ht%newiit);

ptrl = sm-data;
ptr2 = im-.data;
ptr2+= (width-div/2);
foroj=O; j<newlit; j++)

f
for(i=O; iknew-.width; i++)

f
*ptrl++ =*ptr2;

ptr2+=width-div;
if((i <left-.adj) I I (i ý!right -adj))

ptr2++;

ptr2+=(old-.width*ht;-liv);
ifoj!bottom..adj)

ptr2+=old..width;

I

printf("z-.reduce complete\n\n");

return sm-data;

62

B.11 z.store-image.c
**** ** ****** *** *** **** *** *** *** **** *** ** ***** *** *** *** *** **** *** *********

"• File: z.storeimage.c
"• Created: 8 July 1992
"* By: Kevin Gay
,

* Purpose: The code is intended to store image data in a file
• which is labelled <filename> which is pass in.
• Returns a 1 is successful; -1 if not.

* Assumes:

* Modified:
* By:
* Why:

#include <stdio.h>
#include <sys/types.h>
#include "vf c. lib.h"
#include "globals.h"

int z-store-image(image-ptr, filename, size)
u.char *image.ptr;
char *filename;
int size;

FILE *dat-file;

* Open image files for writing images
* into memory; check to make sure they open okay.

if ((dat.file = fopen(filename,"w")) == NULL)

{
printf("I can't open the Ys file\n",filename);
return -1;
}

printf("Opened %s file\n",filename);

• Put the data into a file; close file.

if (fwrite(image -ptr, 1, size, dat-file) == 0)f

63

perror("vrite f ailed");
return -1;;

fflush(stdout);
fclose(datfie);

printf("Iz-..t ore..-image complete\unil");

return 1;

64

B.12 globals.h
/,

* File: globals.h
* Created: August 1992
* By: Kevin Gay

* Purpose: Put all global variables and definitions in one place.

, Assumes: vfc-lib.h is also included - all the vfc routines and
, vfc definitions are in vfclib.h.

* Modified:
* By:
, Why:

#define PORT "VFCSVIDEO"
#define YUVSIZE VFCNTSCHEIGHT*VFCYUVWIDTH*2 /* 720 x 480 x 2bpp,/
#define NTSC-SIZE VFCNTSCWIDTH*VFCNTSCHEIGHT /* 640 x 480*/
#define RED-WIDTH 128
#define RED-HEIGHT 96
#define RED-SIZE REDYWIDTH*RED-HEIGHT
#define SMWIDTH 32
#define SM-HEIGHT 32
#define SMSIZE SMWIDTH*SMHEIGHT
#define MOTION -THRESHOLD 3000

struct region
{
int x;
int Y;

int width;
int height;
struct region *next;1;

struct hw-controls
{
VfcDev *vfc-dev;
int colormap-offset;};

struct image-ptrs
{
u-char *imagel;
u-char *image2;

65

u...har *motion;

struct hea&.ptrs

f
u-char *head;
struct heaL-ptrs *next;

66

B.13 grab.c
/,
* File: grab.c
* Created: 8 July 1992
* By: Kevin Gay

* Purpose: The code is intended to take in images in a loop.
* Each pass thru the loop takes in YUV image data,
* converts the data to 8-bit grey, square pixel data, and
* save the 8-bit data in a file labelled with person's name.
* The number of images (up to ten) and the root of the
* filenames are entered during execution.

* Assumes:

* Modified:

* By:
* Why:

#include <stdio.h>
#include <sys/types.h>
#include "vfc-lib.h"
#include "globals .h"

extern VfcDev *z.set-vfc.hwo;
extern u-char *z-grab.graO;
extern int z.storeimageO;

void grab(o;

main()
{
char fWe[30J;
int numAnmages;

printf("Enter the filename root: ");
gets(file);
printf("\n");

printf("Enter the number of images (10 max):
scanf("%d",,&num-images);
printf("\W");

grab(file, nurnimages);
exit(O);

}

67

void
grab(name, numloop)
char name[20J;
int numioop;

u-char *grey[10];
register int
struct hw..controls *hw..ptrs;
char filenaxne[301;

hw..ptrs = (struct hw..controls *)z..setsvfcdiwo;

if(num.Joop> 10)
f
numl~oop = 10;
printf("Sorry, limited to 10 images\n'9;

forU=1; i:5num-loop; j++)
f
greyUjJ=(u-char *)z..grab..gra(hw..ptrs);
if(greyU] == NULL)

4
printf('ptr is null\n");
exit (1);

*Create name for image data and store in file.

for~j=1; j<nuxnioop; j++)

sprintf(fflenanie, " %sdY~s " ,namej, grall);
if(z-store-image(greybjJ, filename, NTSC-SIZE) < 0)

fprintf(stderr, "Unable to write %~s to f ile\n",fflename);

*Now destroy the hardware and free the memory.

vfc..destroy(hw..ptrs--*vfc..dev);
free(hw-ptrs);
for(j=1; j:ýnum.Joop; j++)

68

free(greyUjJ);

return;

69

B. 14 grabrgb.c

* File: grabrgb.c
* Created: July 1992
* By: Kevin Gay

* Purpose: The code is intended to take in images in a loop numinoop
* times. Each pass thru the loop takes in YUV image data,
* converts the data to 8-bit color, square pixel data, and
* save the 8-bit data in a file labelled with person's name.
, Number of loops (num-loop) and person's name (person)
* are entered during execution.

* Assumes: Signal coming in S-Video port, NTSC format
*

, Modified:
, By:
, Why:

#include <stdio.h>
#include <sys/types.h>
#include "vfc-lib. h"

extern VfcDev *z.set-vfc.hwo;
extem u.char *z-grab-rgbo;
extern int z.store-imageo;

exter int ntsc.size;

void grabrgbo;

main()
{
char file[30];
int num-images;

printf("Enter the filename root: ");
gets(file);
printf("\n");

printf("Enter the number of images (10 max): ");
scanf("%d" ,&num.images);
printf("\n");

grabrgb(file, num-images);
exit(O);

70

void
grabrgb(name, numloop)
char name[201;
nt, numloop;

u-.char *color[10];
register int j;
VfcDev *vfc-.dev;
char filenaxne[30];

vfc..dev = (VfcDev *)z-set..vfc..hwo;

if(numloop> 10)

f
nuxnloop = 10;
printf("Sorry, limited to 10 images\n");
I

forU=1; j:5nuni-loop; j++)
I
colorUjj=(u..char *)z..grab-rgb(vfc-dev);
if(colorU] == NULL)

f
printfQ'lptr is null\n");
exit(1);

*Create name for image data and store in file.

forUj=1; i:5num~loop; j++)
I
sprintf(filenwne, 'Ys%d~s ",name~j," . rgb");
if(z-store-image(colorU], filename, (ntsc..size*4)) < 0)

fprintf(stderr, "Unable to write %9 to f ile\n",filename);

*Now destroy the hardware and free the memory.

vfc-4estroy(vfc..dev);
for(j=1; j:5numloop; j++)

71

free (color I);

return;

72

B. 15 motionxc

* File: motionxc
"* Created: July 1992
"* By: Kevin Gay

*Purpose:

*Assumes:

*Modified:

*By:

*Why:

#include <stdio.h>
#include <sys/types.h>
#include "'vi c-ib .h"
#include "globals .h"

extern. struct inaage-.ptrs *z..motiono;
extern. it z..store..imageo;

main()

u-char *face, *ptr;
register int
struct region *head-regions, *face-.ptr;
struct image-ptrs *im..ptrs;
char filenaine[?O];

im-ptrs = (struct image-ptrs *)z-motiono;
if(im-.ptrs == NULL)

printf(" Trouble getting images\n");
ex~it(1);

sprintf(filenarne, "%~s ","'motion. gra");
if(z -store image(im...ptrs- motion, filename, NTSC-SIZE) < 0)

fprintf(stderr, "Unable to write %~s to f ile\n" ,filenaine);

sprintf(filename,"%s"," imagel 1.gra");
i f(z -store-image (im -ptrs- imagel1, filename, NTSC-SIZE) < 0)

fprintf(stderr, "Unable to write %9s to f ile\n" ,filename);

73

sprintf(filename,hmys s~image2. gra");
if(z..store-image(im..ptrs.....image2, filenamne, NTSC..SIZE) < 0)

fprintf(stderr, "Unable to write %s to f ile~n",filename);

free(im-ptrs-*image 1);
free(im..ptrs-eimage2);
free(im-ptrs-+motion);
free(im..ptrs);
free(head-regions);

74

B.16 rgb.motion.c

"* File: rgb-motion.c
", Created: July 1992
"* By: Kevin Gay

* Purpose: The code is intended to take in images in a loop numloop
* times. Each pass thru the loop takes in YUV image data,
* converts the data to 8-bit color, square pixel data, and
, save the 8-bit data in a file labelled with person's name.
, Number of loops (num-loop) and person's name (person)
* are entered during execution.
*

, Assumes: Signal coming in S-Video port, NTSC format

* Modified:
, By:
* Why:

#include <stdio.h>
#include <sys/types.h>
#include "vfc-lib.h"
#include "globals.h"

#define DIFFERENCE-THRESHOLD 10

extern struct hw-controls *z-set-vfc.hwo;
extern u.char *z.grab.rgb0;
extern int z.store-imageo;

main()
{

u-char *color[2], *im-ptr, *ptr2, *ptr3, *ptr4,
*red[21, *green[2], *blue[2J,
*ptr2a, *ptr3a, *ptr4a, *motion;

register int j, k;
struct hw-controls *hw.ptrs;
char filename[30];

hw-ptrs = (struct hw-controls *)z.set-vfc.hwo;

for(j=O; j<2; j++)

{
colorlj]=(u.char *)z-grabsrgb(hw.ptrs);
if(colorb] == NULL)

{

75

printf("ptr is null\n");
exit (1);

*Create name for image data and store in file.

forU=O; j<2; j++)
I
sprintf(fllename, "%s~d%sII," image" ,. rgb");
if(z~store-image(color~jJ, filename, (NTSC..SIZE*4)) < 0)

fprintf(stderr, "Unable to write %s to file\n",filenaine);

I

blueUi = (u..char *)malloc(NTSC-SIZE);
if(blueUj] == NULL)

perror("mallo c");
exit(l);
I

greenU] = (u-char *)malloc(NTSC-SIZE);
if(greenhj] ==NULL)

I
perror ("mall oc")
exit(1);

redU] = (u..char *)malloc(NTSC-SIZE);
if(redlj] == NULL)

perror("malloc V);

exit(l):

I
im..ptr = colorujJ;
ptr2 = bluefi];
ptr3 = greenfi];
ptr4 = redfj];
for(k=O; k<NTSC-SIZE; k++)

I
im..ptr++;

76

*ptr2++ = *im-ptr++;
*ptr3++ = *im-.ptr++;
*ptr4++ = *im-ptr++;

sprintf(filenamne, "Ys%d%s ", "blue" ,j," grIa");
if(z..store-image(blueDj], filename, (NTSC-SIZE)) < 0)

fprintf(stderr, "Unable to write %a~ to f ile\n",filename);
sprintf (filenamne, "Y~s%d%s"I ,"gre en" ,j," gra");
if(z-store-image(greenU], filename, (NTSC-SIZE)) < 0)

fprintf(stderr, "Unable to write %s to f ile\n",filename);
sprintf(filename, " %s%d%s", ,"red" j, " .gra"l);
if(z..store..image(redfj], filename, NTSC-SIZE) < 0)

fprintf(stderr, "Unable to write %s to file~n",filename);

/* motion = (u..char *)malloc(NTSC-SIZE);
if(motion==NULL)

exit(1);
im-ptr = motion;
ptr2 = blue[O];
ptr2a =blue [1];
ptr3 = green [0]
ptr3a =green[]J;
ptr4 = red[O];
ptr4a = red[lJ;
for0j=0; j<NTSC-SIZE; j++)

I
if((abs(*ptr2a++ - *ptr2++)>DIFFERENCE-THRESHOLD) I

(abs(*ptr3a++ - *ptr3-'-+)> DIFFERENCE.THRESH0LD) I
(abs(*ptr4a++ - *ptr4++)> DIFFERENCE-THRESHOLD))
*im-ptr++ = 0;

else
*im-ptr++ = 255;

if(z..store-image(motion, "rgb-inotion.gra", NTSC-SIZE) < 0)
fprintf(stderr, "Unable to write motion to file\n")

*Now destroy the hardware and free the memory.

vfc-destroy (hw..ptrs--.vfc-dev);
for(j=0; j<2; j++)

f
free(colorb]);
free(redUj]);

77

free (greenb[J);
free(bluebj]);

free(motion);

return;

7-8

B. 17 seg...est.c

* File: seg-test.c
* Created: August 1992
* By: Kevin Gay

*Purpose:

*Assumes:

*Modified:

*By:

*Why:

#include <stdio.h>
#include <sys/types.h>
#include 'vf c-.lib .h"l
#include 'globals .h"

extern struct image..ptrs *zanotiono;
extern struct region *z.~op..slopeso;
extern. u-.char *z..seg-.regionso;
extern. u-char *z..reduceo;
extern int z-store-imageo;

void seg~testO;

main()

seg..testO;
exit(O);

void
seg-.test()

char newnaxne[30J;
u-char *fa~ce, *ptr;
struct region *temp-.ptr, *head-list;
struct image-.ptrs *images;
register int
int count;
FILE *dat~ie;

79

f
images= (struct image-.ptrs *)z..motiono;
if(irnages==NULL)

I
printf(" Trouble getting images\n");
exit(1);
I

headlist = (struct region *) z...op..slopes(images-.motion,
VFC..NTSC.WIDTH,VFC..NTSC-HEIGHT);

if(head-list == NULL)
printf("No head regions found.\W');
else

I
count=1;
while(heac-list 0 NULL)

I
face = (u..rhar *)z-seg..xegions(images--dmrage2,headilist,

VFC.NTSCMWIDTH,VFC-NTSC-HEIGHT,SM-WIDTH,SMA{EIGHT);
if~face == NULL)

printf("f ace ptr is null\n");

else

*Create name for the face data and store in file.

sprintf(newname, "%/sYd%s~dY~s","f ace ",i, "-" ,count,". .m)

if(z..store-image(face, newname, SM..SIZE) < 0)
fprintf(stderr,
"Unable to write %s to f ile\n",newnaxne);

temp-ptr = head-list;
head-list = temp-.ptr--*next;
free(temp..ptr);
count ++;

*Create name for the motion data and store in file.

sprintf(newnarne, "'/.d'/s%d.s" 1, MOTION...TH RES HOLD,".. "J,i, gra")
if(z -store -image (images-4motion, newname, NTSC-SIZE) < 0)

80

fprintf(stderr, "Unable to write %8a to f ile\n",newnanie);

free(iznages-.Motion);

*Create name for the imnage data and store in fie.

sprintf(newname, "Ys%d%s ", "image to lit It.gra'f);
if(z-store-image(images--*image2, newname, NTSC-SIZE) < 0)
fprintf(stderr, "Unable to write %9 to f ile\uI',newnaxne);

free(images-.imagel);
free(images-4image2);

".Now free the memory.

free(images);
free(face);

I

return;

81

B. 18 testilam.c

* File: test-.binxc
* Created: 8 July 1992
* By.- Kevin (Gay

*Purpose: The code tests the ziambert routine.

*Assumes:

*Modified:

*By:

*Why:

#include <stdio.h>
#include <sys/types.h>
#include "vt c-.lib .h"
#include "globals li"

extern u-char *zlamberto;
extern u..char *z..grab-grao;
extern. u..char *z..reduceo;
extern, it z..store-imageo;
extern int z..xediano;

xnain()

char fllenaxne[3O], newname[30];
u..char *imagel, *image2, *red-.data;
register int i;
int check;
FILE *dat-file;

printf("Enter the raw 8-bit grey f ile (640x480) to lambertize:")
gets(filenamae);
printf(" \n");

*Allocate memory, read in image, and reduce it.

imagel =(u..char *)malloc(NTSC-SIZE);
if(imagel == NULL)

perror("mallo c");
exit(1);

82

I

printf("I can't open the %s file\n",filename);
exit(l);

if(chedc=fread(imagel, 1, NTSC.SIZE, dat..le)$ONTSC-SIZE)
printf("Error reading in file");

else

I
for(i=4; i•12; i+=4)

I
image2=(u-xhar *)z.Jambert(imagel,VFC..NTSC..WIDTH,

VFC-NTSC-HEIGHT,i,i);
if(irnage2 == NULL)

printf("lambert ptr is null\n");
exit(1);

1* ~sprint f(newnamne, "%s%d%s%d~os", "var"
2*1+1, "x" ,2*i +1,"gra");

if('z.store-image(image2, newnaine, NTSC-SIZE) < 0)
printf(" Unable to write %s to file\n",newnaine);

free(image2);

red-data=(u..char *)z..reduce(imagel ,VFC..NTSC..WIDTH,
VFC-NTSCJIIGHT,RED-WIDTH,RED-HEIGHT);

if(red-data==NULL)

f
printf("reduction error\n");
exit(1);

/*if(z.,store-image(red-data, "uzn 28X96.red ",RED-SIZE)< 0)
fprintf(stderr, "Unable to write red-.dat'ý to file\n");*/

for(i=4; i•!ý12; i+=4)

image2=(u..char *) ziabert(red-data,RED-WIDTH,
REDJIEIGHT,i,i);

if(image2 == NULL)
f
printf(I"lambert ptr is null\n");
exit(1);

sprint f(newname,"1 %s%d%s%d%'s" , "red-var",

83

2*1+1, "x",2*i+l, ".red",);
if(z..storeaimage(image2, newname, (RED-SIZE)) <Z 0)

printf(" Unable to write %5s to file\n",newname);

free(image2);

I
/*free(red-.data);41

fclose(dat-.file);

free(imagel);

return;

84

B. 19 time.grab.c

"* File: time.grab.c
", Created: 8 July 1992
"* By: Kevin Gay

* Purpose: The code is intended to take in images in a loop.
, Each pass thru the loop takes in YUV image data,
* converts the data to 8-bit grey, square pixel data, and
* save the 8-bit data in a file labelled with person's name.
, The number of images (up to ten) and the root of the
* filenames are entered during execution.

* Assumes:

, Modified:
, By:
, Why:

#include <stdio.h>
#include <sys/types.h>
#include "vfc-_lib. V

#include "globals .h"

extern struct hw.controls *z.set-vfcjhwo;
extern u-char *z.grab.graO;
extern int z.store-imageo;

mainO
{

u-char *grey[1O];
register int j;
struct hw.controls *hw.ptrs;
char filename[30];

hw.ptrs = (struct hw.controls *)z-set-vfclhwo;

system("date");

for(j=O; j<20; j++)
{
greyUj]=(u.char *) z.grab-gra(hw.ptrs);
if(greyUj] == NULL)

{
printf("ptr is null\n");
exit(l);

85

system(M"ate");

*Create name for image data and store in file.

1*for(j=O; j<20; j÷+)

sprintf(filenanme, "%os~d~s","image~~j,.ga)
if(z-store-image(greyjj], filename, NTSC-SIZE) < 0)

fkrintf(stderr, "Unable to write %os to file\n",filename);

*Now destroy the hardware and free the memory.

vfc-destroy(hw..ptrs--*vfc-dev);
free(hw..ptrs);
foroj=O; j<20; j++)

free(greylil);

return;

86

B.20 z-binarize-gra.c

"* File: z.binarize.gra.c
"* Created: 9 July 1992
"* By: Kevin Gay

, Purpose: The code is intended to allocate memory and store
, binary image data (255 or 0 depending on the THRESHOLD).
, The code return a pointer to the binary data; the
, pointer will point to NULL if an error has occurred.
,

, Assumes: The image is the same size as
* the 8 bit gray image data (both 1 byte/pixel).

, Modified:
* By:
* Why:

#include <stdio.h>
#include <sys/types.h>
#include "vf c-lib.h"

#define THRESHOLD 75

u-char *z.b'narize.gra(gray-ptr, size)
u-char *gray-ptr;
int size;
{

uchar *bin-ptr, *temp-ptr, *temp2_ptr, *null-ptr 0;
regIster int i;

bin-ptr = (u-char *)malloc(size); /* 8-bit gray and binary I bpp ,/
if(bin-ptr == NULL)

{
perror("malloc");
return null-ptr:
}

temp-ptr = gray-ptr;
temp2_ptr = bin.ptr;
for(i=0; i<(size); i++)

{
if (*temp.ptr++ < THRESHOLD)
*temp2_ptr++ = 0;

else
*temp2_ptr++ = 255;

87

printf(zbnaie-r couplet e~nn");

return bin-.ptr;

88

B.21 z.grab.rgb.c

* File: z.grab.rgb.c
* Created: 3 June 1992
* By: Kevin Gay
,

, Purpose: The code is intended to allocate memory for image data,
, grab YUV image data, and then
, convert that data to rgb color, square pixel data.
, The code return a pointer to the rgb color data
, which will point to NULL if an error has occurred.
,

, Assumes: H/W has been initialized and signal is NTSC format.
, YUV data is 2 bytes per pixel (bpp), rgb color 1 bpp.

, Modified:
* By:
, Why:,/

#include <stdio.h>
#include <sys/types.h>
#include "vfc-lib. h"

#define YUVSIZE VFCNTSCHEIGHT*VFCYUVWIDTH*2 /* 720 x 480 x 2bpp */

extern int ntsc.size;
extern int colormap-offset;

u-char *z-grab.rgb(hw.ptr)
VfcDev *hw-ptr;

{
u.char *yuv.data, *im-data, *nullptr = NULL;
register int i;

/,
, Allocate space for images.

yuv-data = (u.char *)malloc(YUVSIZE);
if(yuv-data == NULL) {

perror(I"malloc");
return null.ptr;

}

im.data = (u.char *)malloc(ntsc.size*4);

89

if(im-data == NULL){
perror("'malloc");
free(yuv-data);
return null.ptr;

/* printf("YUV and color image memories created\n");

*Do a grab and read in an image

if(vfc..grab(hw-ptr) < 0){

"* If the grab fails the image read will
"* be garbage.

fprintf(stderr, "Warning, grab failed\n");
free(yuvilata);
free(im-data);
return null-ptr;

if(vfc..yuvread..sq(hw-.ptr, yuv..data, VFC..NTSC) < 0) f
fprintf(stderr, "Warning, vi c-.yuvread failed\n');
free(yuv.Aata);
free(im-data);
return null-.ptr;

/* print f("YUV image grabbed and read from the hard ware\n");

*Convert the YUV data into 8-bit gray square pixel data.

if (colormap-offset #4 0)
vfc-initiut(colormap-.offset);

vfc-yuv2rgbkntsc(yuv..data, im-data);

print f(" YUV data converted to rgb color data\n")

free(yuv..data);

printf("'z-.grab-.rgb coxnplete\n\n");

return im-.data;

90

B.22 zlambert.c
************** *** **** *** *** *** **** ***** ** *** *** *** **** ** *** ** * *** *****

* File: zrambert.c
* Created: August 1992
* By: Kevin Gay

* Purpose. This code finds local variations in a image (thereby
, discounting object brightness) with a variable size "local
, box". The code moves a box around each pixel in an image,
, finds the mean of the pixel values in the box (for each
, pixel) and then subtracts the mean from that pixel which is
, surrounded by the box. The box is specified all the pixels
, some number away from the pixel of interest in the positive
, and negative direction along both the horizontal and vertical
, axes; the number of pixels in the horizontal direction is
, passed in as hor; the vertical, vert.
, A threshold is then set for the variations to identify regions
, both negative and bright with regard to their surroundings.
, The code to create a grey scale image by adding 128 to the
, variations found is left in, but commented out.

, Assumes:

* Modified:
* By:
, Why:
* * ** *** *** * **** *** **** ***** *** ** *** ** *** **** **** ** ** *** ** *** ** * ** * ***** * *

#include <stdio.h>
#include <sys/types.h>
#include "vfc-lib.h"
#include "globals .h"

extern u.char *z.store.imageo;

u.char *zilambert(im-data, width, height, hor, vert)
u-char *im-data;
int width, height, hor, vert;
{

u-char *lam..data, *im-ptr, *lam-ptr, *nulLptr=O,
*variation-data, *variation.ptr,
*mean-data, *mean.ptr;

register int i, j, k, m;
int sum, mean, check,

colIsum[VFCNTSCHEIGHT][VFCNTSCWIDTH],
neigh[VFCNTSC-HEIGHT][VFC-NTSCWIDTH];

char newname[301;

91

1A lam..data = (u..car *)malloc(width*height);
if(Iam-data == NULL)

per-ror("malloc");
return 2u)l-ptr;

variation-data = (u..char *)malloc(width*height);
if(variation-data == NULL)

f
perror("malloc');
return nulL-ptr;

im-.ptr=im-data;

for(i=0; i<width; i++)

col-suxn[O[ij=0;
for(j=0; j<(2*vert+1); j++)

col-sum[0J[iJ+=*(im.-ptr+(width*j)+i);

for(i=O; i <width- (2*hor+1); i++)

neigh [0l][i=0;
forUj=0; j<(2*hor+1); j++)

neigh[O0][i] +=col-sum(o][i;

for(i=1; i-< (height- (2*vert+1)); i++)

foroj=0; j<width; j++)
col-sui[ij bj=col-sux[i- 1jLI - *(irn.ptr+ (width* (i-.. 1)) +j) +

* (im-ptr+ (width* (i +(2*vert))) +j);
neigh [ij [01=0;
forUj=0; j<(2*hor+1); j++)

neigh [i] (01 +=col-sux[i] U];
foroj=1; j:5 (width- (2*hor+l)); j++)

neigh[i] LI=neigh[i] [-i] +col-sum[i] D+2*hor] -col-sumfi] [I- 1J

im..ptr=im-data;
variation..ptr=variation-data;

/*lam-ptr=lam..data;

92

forUj=1; i:5width; j++)
I

I
mean=neigh[i-vert] (-hor]/((1+2*vert)*(1+2*hor));
check = 128 + ((*im-ptr++) - mean);
if(check>255)

check = 255;
else if(check<0)

check = 0;
*lam-.ptr++ = check;

if(check< 120)
*variation-ptr++ = 0;

else if(check >136)
*variation-.ptr++ = 128;

else
*variation..ptr++ =255;

else

*lam-.ptr-1+ = 25.5;

*variation..ptr++ = 255;
im-ptr++;

/*if((width== VFCJVJTSC.WIDTH)&&(height==VFC..NTSC-HEIGHT))

sprint f(newnamne, "%s~od~s%d~os", "lam ",2*hor+1 xl,
2*vert+1, ".gra");

if(z-.store-image(1am...data,newnamne, (NTSC-SIZE)) < 0)
fprintf(stdez-r, "Unable to write var-.data to file\n");

else if((width==RED-WIDTH)&&(height==RED-IEIGHT))

sprint f(newnamne, "%s~od~s%d%s" ,"red Jam ",2*hor+1 ,x"

2*vert+1, ".red"1);
if(z..store-image(lam-data,newname, (RED-SIZE)) < 0)

fprintf(stderr, "Unable to write var-data to file\n");

I
free(lam..4ata);

printf("z-1.ambert complete~nn");

93

return variation-data;

9

94

B. 23 z..side-.edges-c

* File: z.-side-.edges.c
* Created: August 1992
* By: Kevin Gay

*Purpose:

*Assumes:

*Modified:

*By:

#include <stdio.h>
#include <sys/types.h>
#include 'vf c-.lib. h"
#include "globals .h"

#define SLOPE-.THRESHOLD 8

exter n t z..store-imageo;

struct region *z..side-.edges(image, width, height)
u..char *imnage;
int width, height;

register jut i, j, run, threshold;
int slope[VFCSNTSC-HEIGHT][VFC..NTSC..WIDTH- 1],

count=0, found, leave-loop, repeat,
not-smaller, r-col, 1-col, temp,total=0;

u..char *im..ptr, *im-.ptr2, *edge-image;
char newnamef 301;
struct region *poss-.faces=0, *ptr, *ptr2;

if (width>VFCJJTSC.WIDTH)

I
printf("Too vide for routine\n");
return poss-faces;
I

if (height >VFCŽJTSC-HEIGHT)

printf("Too high for routine\n");
return posslfaces;

95

/****************Find slopes from side **********

edge-image = (u-char *)malloc(width*height);
if(edge-image ==NULL)

I
perror(I"malloc");
return possafaces;

for(run=l; run•1; run++)

im-.ptr2=edge-image;
for(i=O; ikheight; i++)

I
im-ptr=ixnage;
im-ptr+= (width*i);

foroj=O; j<(width-run); j++)
f
if(0(+1)%40==O)
fprintf(dat..file,"W\n);
slope(i]]*i-trrm-impr+
if(abs(slopeli] L]) >SLOPE-THRESHOLD)
*im-.ptr2++ = 0;
else
*im-~ptr2++ = 255;

fora=(width-run); j<width; j++)
*im-.ptr2++ = 255;

1
sprintf(newnaine, "%s%d%s", ,"edge ",run,". gra9);
if(z..storeimage(edge..ixage, newname, width*height) < 0)
fprintf(stderr, "Unable to write %~a to f ile\n",newnaine);

free (edge-image);

printf("Iz-.aside- edges complete~nn");

return possJ'aces;

96

Appendix C. Segmentation Test Image Set

C. 1 General

The following figures is the complete set of images which resulted from the

segmentation testing. Each row of these figures begin with a grey scale image, the

associated motion image, and all the potential face images segmented from the input

image followed by a reduced image of just the segmented region. Thus, there are

instances when a segmented region image with its reduced image are shown and there

is no grey scale or motion image preceding these images in that row. These instances

represent the case of multiple segmented regions from a single motion image. As such,

the grey scale and motion images in the row immediately preceding the row where

there is no grey scale or motion images are the associated grey scale and motion

images for those segmented regions as well. A complete set of only the segmented

regions for each test are provided for comparison at the end of this appendix.

97

Ii

Figure 18. Segmentation Test I Images (1 of 4) [The Lowest Motion Threshold
Tested]

98

F7igure 19. Segmentation Test I Images (2 of 4)

99

Figure 20. Segmentation Test I Images (3 of 4)

100

Figure 21. Segmentation Test I Images (4 of 4)

101

Figure 22. Segmentation Test II Images (1 of 4) [The Middle Motion Threshold
Tested]

102

VIM

... ..:: ...

Figure 23. Segmentation Test II Images (2 of 4)

103

II

Figure 24. Segmentation Test II Images (3 of 4)

104

slms

Figure 25. Segmentation Test II Images (4 of 4)

105

li

Figure 26. Segmentation Test III Images (1 of 4) [The Highest Motion Threshold
Tested]

106

Figure 27. Segmentation Test III Images (2 of 4)

107

Figure 28. Segmentation Test III Images (3 of 4)

108

U

I t

Figure 29. Segmentation Test III Images (4 of 4)

109

Figure 30. Segmented Regions I [The Lowest Motion Threshold Tested]

110

Io i

Figure 31. Segmented Regions II [The Middle Motion Threshold Tested]

111

.~li

Figure 32. Segmented Regions III [The Highest Motion Threshold Tested]

112

Bibliography

1. Cannon, Scott, et al. "A Computer Vision System for Identification of Individ-
uals," IECON, 347-351 (1986).

2. Carey, Susan and Rhea Diamond. "From Piecemeal to Configurational Repre-
sentation of Faces," Science, 195:312-314 (Jan 1977).

3. Damasio, Antonio R. "Prosopagnosia," Trends in Neuroscience, 8:132-135
(1985).

4. Damasio, Antonio R. and others. "Prosopagnosia: Anatomic Basis and Behav-
ioral Mechanisms," Neurology, 331-341 (April 1982).

5. Ellis, Hayden D. and others, editors. Aspects of Face Processing. The Nether-
lands: Martinus Nijhoff Publishers, 1986.

6. Fleming, Michael K. and Garrison W. Cottrell. "Categorization of Faces Us-
ing Unsupervised Feature Extraction," IEEE International Joint Conference on
Neural Networks, 65-70 (1990).

7. Goble, James Robert. Face Recognition using the Discrete Cosine Transform.
MS thesis, AFIT/GE/ENG/91D-21. School of Engineering, Air Force Institute
of Technology (AU), Wright-Patterson AFB OH, December 1991.

8. Govindaraju, Venu, et al. "Locating Human Faces in Newspaper Photographs,"
IEEE Computer Society Conference on Computer Vision and Pattern Recogni-
tion, 549-554 (June 1989).

9. Jeffreys, D. A. "A Face-Responsive Potential Recorded from the Human Scalp,"
Experimental Brain Research, 78:193-202 (1989).

10. Jones, Judson P. and Larry A. Palmer. "The Two-Dimensional Spatial Struc-
ture of Simple Receptive Fields inCat Striate Cortex," Journal of Neurophysi-
ology, 58(6):1187-1211 (December 1987).

11. Kabrisky, Matthew, 1992. Human Factors Course Lecture.

12. Kendrick, Keith. "Through a Sheep's Eye," New Scientist, 62-65 (May 1990).

13. Kirby, M. and L. Sirovich. "Application of Karhunen-Lo~ve Procedure for the
Characterization of Human Faces." IEEE Transaction on Pattern Analysis and
Machine Intelligence12. 103 - 108. January 1990.

14. Krepp, Dennis. Face Recognition With Neural Networks. MS thesis,
AFIT/GE/ENG/92D. School of Engineering, Air Force Institute of Technol-
ogy (AU), Wright-Patterson AFB OH, December 1992.

113

15. Lambert, Laurence C. Evaluation and Enhancement of the AFIT Autonomous
Face Recognition Machine. MS thesis, AFIT/GE/ENG/87D-35. School of En-
gineering, Air Force Institute of Technology (AU), Wright-Patterson AFB OH,
Decembei 1987.

16. Mannaert, Herwig and Andre Oosterlinck. "Self-Organizing System for Anal-
ysis and Identification of Human Faces," SPIE, Applications of Digital Image
Processing XIII, 1349:227-232 (1990).

17. McKinley, Richard, 1992. 3-D Sound Localization Lecture.

18. Meadows, J. C. "Varieties of Prosopagnosia," Journal of Neurology, Neuro-
surgery, and Psychiatry, 498-501 (1974).

19. Perrett, D. I., et al. "Visual Neurones Responsive to Faces in the Monkey
Temporal Cortex," Experimental Brain Research, 47:329-342 (1982).

20. Perrett, David I., et al. "Visual Neurones Responsive to Faces," TRends in
Neuroscience, 10:358-364 (1987).

21. Rogers, Steven K. An Introduction to Biological and Artificial Neural Networks.
P.O. Box 10, Bellingham Washington, 98227-0010: SPIE Press, 1991.

22. Runyon, Kenneth. Autonomous Face Recognition.
MS thesis, AFIT/GE/ENG/92D. School of Engineering, Air Force Institute
of Technology (AU), Wright-Patterson AFB OH, December 1992.

23. Smiley, Steven. Image Segmentation Using Affine Wavelets. MS thesis,
AFIT/GE/ENG/91D. School of Engineering, Air Force Institute of Technol-
ogy (AU), Wright-Patterson AFB OH, December 1991.

24. Suarez, Pedro F. Face Recognition with the Karhunen-Lo~ve Transform. MS
thesis, AFIT/GE/ENG/91D-54. School of Engineering, Air Force Institute of
Technology (AU), Wright-Patterson AFB OH, December 1991.

25. Turk, Matthew A. and Alex P. Pentland. "Recognition in Face Space," SPIE
Intelligent Robots and Computer Vision IX: Algorithm and Techniques, 43-54
(1990).

26. Wickenhauser and Coifman.

27. Wong, Dr. K. H., et al. "A System for Recognising Human Faces," Proceed-
ings from International Conference on Acoustics, Speech, and Signal Processing,
1638-1641 (May 1989).

114

Vita

Kevin Gay was born in Fort Lauderdale, Florida on November 30, 1960. He

lived in Hollywood, Florida until graduating from Cooper City High in 1978. He

married his lovely and talented wife, Elizabeth, in August of 1981. Kevin enlisted in

the U.S. Air Force in 1982 as an imagery interpreter. Upon completing his Bachelor

of Science degree in Electrical Engineering at Brigham Young University, Kevin was

commissioned in 1986. He served as an engineer in the gutless God-less liberal

wasteland of Massachusetts at Electronics Systems Division (ESD) until he entered

the Masters Program in the School of Engineering, Air Force Institute of Technology,

in 1990. Along the way, he has accumulated five children, Amy, Daniel, Brenna,

Elijah, and Samuel, and remains with the wife of his youth, the lovely Elizabeth.

After graduation, Kevin will return to the warm sun of Florida and re-enter civilian

life.

Permanent address: 6641 Douglas Street
Hollywood, Florida 33024

115

Form Approved

REPORT DOCUMENTATION PAGE OMB 07A4-01ed

P.ot,(,'nor' - en 'his Pc)f fc-au i, ,-s -t,mateo to 1erae -=3ar oer esoorse. n ,c,.,ain the time #or r ,ewanq ,nsaructot',,. searc nq el,,tfng data sources.
3a t ern.n jrd - litrlnnq the -ata needed and cmc oeting and revievno !he n' C o1 n of information Sena comments re,,ardrng this burden estimate Of 3fn, Mthr aspect of this
rCile-tOn f nI rn'atC,'n. , nr suggq-Ptwns ýr edlu(ng this ourren to /AVisn gton -,eadauarters Servces. Crec-,orate for information O0prationS and ReDorts. 1215 Jefferson
Da,,s-ri-,_q a, Sý,te 12C4 ;. "grtcn. A 222 02-4302. and to t"h Otffle)f Management and Budget. Paperworx ReductiOn Project (0704-0188). Vashington. CC 20503

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
September 1992 Master's Thesis

4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

AUTONOMOUS FACE SEGMENTATION

6. AUTHOR(S)
Kevin P. Gay

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION

Air Force Institute of Technology, WPAFB OH 45433-6583 REPORT NUMBER
AFIT/GE/ENG/92S-06

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/ MONITORING

Major Rodney Winter AGENCY REPORT NUMBER

DIR/NSA, R221
9800 Savage Road
Ft Meade, MD 20755-6000

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION / AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Distribution Unlimited

13. ABSTRACT (Maximum 200 words)
The purpose of this study was to implement an autonomous face segmentor as the front end to a face recognition
system on a Sun SPARCStation2. Face recognition performance criteria, specifically, the capabilities to isolate
and resize faces in an image to a consistent scale, were analyzed to determine current practical limitations. Face
images were acquired using a S-VHS camcorder. Segmentation was accomplished using motion detection and
pre-defined rules. Tests were run to determine the suitable of the autonomous segmentor as the front-end to a
face recognition system. The segmentation system developed consistently located faces and rescaled those faces

to a normalized scale for subsequent recognition.

14. SUBJECT TERMS 15. NUMBER OF PAGES

Face Segmentation, Face Recognition, Segmentation 125
16. PRICE CODE

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT
OF REPORT OF THIS PAGE OF ABSTRACT
UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED UL

%SN 7540-0'-290-5500 Standard ;orm 298 (Rev 2-89)
1-5 c 2 .e Std 13.

2Wgý 1'3

