
AD-A256 609 0
AFIT/DS/ENC/92-1

DTICSEIL'ECTF#

OCT 2 7 1992

DEVELOPMENT OF AN ENVIRONMENT FOR

SOFTWARE RELIABILITY MODEL SELECTION'

DISSERTATION
I

Salah Amin Elewa

Lieutenant Colonel, Egypt Air Force

AFIT/DS/ENC/92-1

Approved for public release; distribution unlimited

92-28142
A iil) l llI1 [mIl I••

AFIT/DS/ENC/92-1

DEVELOPMENT OF AN ENVIRONMENT FOR

SOFTWARE RELIABILITY MODEL SELECTION

DISSERTATION

Presented to the Faculty of the School of Engineering

of the Air Force Institute of Technology

Air University

In Partial Fulfillment of the

Requirements for the Degree of

Doctor of Philosophy

Salah Amin Elewa, B.S,M.S.

Lieutenant Colonel, Egypt Air Force

September 1992

Approved for public release; distribution unlimited

AFIT/DS/ENC/92-1

DEVELOPMENT OF AN ENVIRONMENT FOR

SOFTWARE RELIABILITY MODEL SELECTION

Salah Amin Elewa, B.S,M.S.

Lieutenant Colonel, Egypt Air Force

Approved:

9~~ U.I-~D SL zie 2-

Robert A. Calico

Senior Dean

Prefac

The purpose of this study was to design an environment for proper software reliability model

selection. Previous investigations have indicated that a model that seems to be the best for one set

of data may give very poor results with another set. This is not surprising since the assumptions

for each model cannot be satisfied in all situations, due to variations in the development and testing

environments for each project. In light of this fact, the idea behind the Proper Model Selection

(PMS) environment was to liken a set of collected data to other known sets that previously proved to

fit well with a certain software reliability model, or models. Anyone who is interested in dey.ermining

a proper software reliability model to be used with a set of software failure data should find this

environment to be useful.

I must acknowledge special indebtedness to my supervisor Dr. Panna B. Nagarsenker for the

wise counseling, encouragement, and ongoing support which made this work, I hope, successful. To

Dr. Brahmanand N. Nagarsenker, I pay my sincerest thanks for his vigorous help and continuous

support. He has always been generous and encouraging. I am also deeply indebted to Dr. Henry

Potoczny for the continuous help throughout the courses and the dissertation research. I would also

like to thank Dr. Ben Williams for his enthusiasm, support, and intelligent remarks. Gratitude is

also due to Maj. Woodruff for his careful reading of the initial draft and his helpful suggestions.

Finally, I wish to express my appreciation to my wife for her patience and encouragement throughout

this project.

Salah Amin Eiewa

II1

Table of Contents

Page

Preface iii

Table of Contents . iv

List of Figures viii

List of Tables ix

Abstract xi

I. INTRODUCTION 1-1

1.1 Background 1-2

1.2 The Problem of Software Reliability Model Selection 1-3

1.3 General Approach 1-4

1.4 Assumptions 1-5

1.5 Sequence of Presentation 1-5

II. SOFTWARE RELIABILITY MODELS 2-1

2.1 History of Software Reliability 2-1

2.1.1 Before 1970 2-1

2.1.2 1970- 1979 2-2

2.1.3 1980- 1989 2-2

2.1.4 1990 - present 2-3

2.2 Some General Concepts 2-4

2.2.1 Software, Hardware & System Reliability 2-4

2.2.2 Faults and Failures 2-7

2.2.3 Fault Size 2-8

2.2.4 Operational Profile 2-8

iv

Page

2.2.5 Imperfect Debugging 2-9

2.3 Software Reliability Model Classifications 2-10

2.3.1 Classification According to the Model Assumptions 2-10

2.3.2 Classification According to the Nature of Failure Process . . 2-13

2.3.3 Musa-Okumoto Classification 2-14

:!.3.4 Other Classification Schemes 2-14

2.4 Classical Software Reliability Models 2-16

2.4.1 Jelinski-Moranda Model (JM) 2-16

2.4.2 Bayesian Jelinski-Moranda Model (BJM) 2-18

2.4.3 Goel-Okumoto Imperfect Debugging Model (GO) 2-19

2.4.4 Littlewood-Verall Model (LV) 2-20

2.4.5 Keiler-Littlewood Model (KL) 2-21

2.4.6 Musa Basic Execution Time Model 2-21

2.4.7 Musa Logarithmic Poisson Execution Time Model 2-23

III. SOFTWARE RELIABILITY MODEL SELECTION 3-1

3.1 Model Selection Using Analysis of Predictive Quality 3-1

3.1.1 the u-Plot 3-2

3.1.2 The y-Plot and Scatter Plot of its 3-3

3.1.3 Measures of Noise 3-6

3.1.4 Prequential Likelihood 3-7

3.2 Model Selection Based on a Linear Combination of Models 3-8

3.3 Model Selection Based on Check of Limits 3-9

3.4 Model Selection Using Akaike Information Criterion (AIC) 3-10

3.5 Recalibrating Software Reliability Models 3-12

Page

IV. MATHEMATICAL BACKGROUND 4-1

4.1 Fundamental Reliability Equations 4-1

4.2 Some Important Reliability Distributions 4-3

4.2.1 The Poisson Distribution: 4-3

4.2.2 The Gamma Distribution: 4-3

4.2.3 The Chi-Squared Distribution: 4-5

4.2.4 The One-Parameter Exponential Distribution: 4-5

4.2.5 TheTwo-Parameter Exponential Distribution: 4-6

4.3 The Moment Generating Function 4-7

4.4 Some Important Relations 4-8

4.5 Order Statistics 4-12

4.6 Type II Censoring 4-14

4.7 Maximum Likelihood Estimates of 0 and a for the Two-Parameter Ex-

ponential Distribution 4-19

4.8 The Likelihood Ratio Test (LRT) Principle 4-20

4.9 Derivation of the Likelihood Ratio Criterion 4-22

V. THE EXACT DISTRIBUTION OF THE TEST STATISTIC 5-1

5.1 Assumptions 5-1

5.2 Derivation of the hW- Moment of A 5-2

5.3 The Null Distribution of A 5-9

VI. THE ASYMPTOTIC DISTRIBUTION OF THE TEST STATISTIC 6-1

6.1 Preliminaries 6-1

6.2 Asymptotic Expansion of the Exact Distribution 6-4

VII. DESIGN AND APPLICATION OF TIE PMS ENVIRONMENT 7-1

7.1 Definition of the Proper Model Selection (PMS) Environment 7-1

7.2 Design of the PMS 7-2

7.3 A Practical Example for Using the IIMS Environment 7-4

Vi

Page

VIII. SUMMARY AND RECOMMENDATIONS FOR FUTURE WORK 8-1

Appendix A. Calculations of the Adjustment Factors A-i

A.1 Calculation of 6 A-1

A.2 Calculation of a A-2

Appendix B. Maximum Likelihood Estimate of Sample Size n B-1

Appendix C. Code Listings C-1

Appendix D. Application of the PMS on Musa and Littlewood Failure Data Sets D-i

Appendix E. Exact and Asymptotic Percentage Points of the Test Statistic E-1

Bibliography BIB-1

Vita VITA-1

vii

List of Figures

Figure Page

2.1. Relationship Between Hardware & Software Reliability (McCall[5§]) 2-5

2.2. An Imperfect Debugging Process [75:2401 2-9

2.3. Z(t) Plot for JM model [38]) 2-17

3.1. Drawing the u-Plot (Littlewood [52:168]) 3-3

3.2. Transformations to Obtain the y-Plot (Abdel-Ghaly [1:958]) 3-4

3.3. LV and JM y-Plots for Data of Table 1 in Littlewood [52:172] 3-4

3.4. Scatter Plot of ui for JM Model Using Data of Table 1 in [52:173] 3-5

3.5. Drawing the Step Recalibrating Function G* (Brocklehur•U-[14:461]) " 3-13

7.1. A Structure Chart for the PMS Environment 7-3

viii

List of Tables

Table Page

2.1. Finite Category Models [68:251]. 2-15

2.2. Infinite Category Models [68:251]. 2-15

3.1. Littlewood's Analysis of Data of Table 2 in [52:189] 3-8

7.1. Set. 2 of DACS failure data in [64]. 7-4

D.1. Data Analysis of Failure Set 1 D-1

D.2. Data Analysis of Failure Set 2 D-2

D.3. Data Analysis of Failure Set 4 D-3

D.4. Data Analysis of Failure Set 5 D-4

D.5. Data Analysis of Failure Set 6. D-5

D.6. Data Analysis of Failure Set. 14C D-6

D.7. Data Analysis of Failure Set 17 D-7

D.8. Data Analysis of Failure Set 27 D-S

D.9. Data Analysis of Failure Set SSla D-9

D.10.Data Analysis of Failure Set SSlc D-10

D.11.Data Analysis of Failure Set SS3................................. . D-11

D.12.Data Analysis of Failure Set SS4 D-12

D.13.Data Analysis of Failure Set Litt2 D-13

D.14.Data Analysis of Failure Set Litt3........... D-14

E.l. Percentage Points of L = Af when p= 2 E-1

E.2. Percentage Points of L = Az when p=3 E-2

E.3. Percentage Points of L = A* when p=4 E-3

E.A. Percentage Points of L = Az when p=5 E-4

ix

Table Page

E.5. Percentage Points of L = A with unequal sample sizes

(=.01, .05,p=2) E-5

E.6. Percentage Points of L = A* with unequal sample sizes

(a = .01, .05,p= 3) E-6

E.7. Comparison of Exact and Asymptotic Values of the Percentage Points

for L = Az and a = 0.01 E-7

E.8. Comparison of Exact and Asymptotic Values oi the Percentage Points

for L = Af and a = 0.05 E-8

x

A FIT//DS/ENC/92-1

Abstract

An environment, was developed for solving the problem of selecting a proper software reliability

model for a given set of software failures. The idea behind the environment developed in this

dissertation w-ýs to liken a collected set of software failure data to a previous one that proved to

fit. well with a specified software reliability model. Software failures were assumed to have a two-

Parameter exponential distribution with unequal type II censoring. A test critcton was derived

for testing the equality of software fa*lure data sets using the Maximum Likelihood Ratio criterion.

The exact, distribution of the test criterion was derived. An asymptotic approximation was also

obtained and was found to be very close to the exact distribution when the number of failures were

more than twenty. Software failure data available from "Data and Analysis Center for Software

(DACS)" were used as the initial group of software failure sets. The environment was then applied,

for testing the equality of several software failure sets.

Xi

DEVELOPMENT OF AN ENVIRONMENT FOR

SOFTWARE RELIABILITY MODEL SELECTION

I. INTRODUCTION

Software embedded in microprocessors has been intensively relied on in the past two decades

to perform more complex and critical tasks than ever before. Such tasks now include space shuttle

programs, weapons coordination, nuclear power plant control, air traffic control, power distribution

systems, and medical support systems. Relying on software to perform such mission and life critical

tasks, and the sharp increase of software cost relative to that of hardware, has led to ttie emergence

of software reliability field as an important research area. Some progress has been achieved in this

field through modern programming techniques, new methods of testing and proof of correctness,

and the adoption of fault-tolerant software products. Despite the whole work and research done, a

perfect software product, is not vet guaranteed. This problem will not be solved in the near future

due t.o the following reasons:

1. Software is created by error-prone humans, and there is no way to prevent programmers from

making mistakes,

2. Systenis are becoming more complex. This, in turn, vill make the task of checking all the

paths in a software code a very difficult task. As Dijkstra [25:861] states:

As long as there were no machines, Programming was no problem at all; when we
had a few weak computers, Programming became a mild problem, and now we have
gigantic computers, Programming has become an equally gigantic problem.

1-1

1.1 Background

Software testing is an important phase in the life cycle of any software product. This imi-

portance comes from the fact that whatever software engineering disciplines have been applied to

produce a reliable software, the majority of effort and major development costs will be associated

with this phase [92:2]. The most important tool in this phase is a software reliability model. Be-

sides measuring reliability of the software, software reliability models can help in the following ways

[68:21-22]:

1. Quantitatively evaluating new software engineering disciplines proposed for improving the

process of software development,

2. Evaluating the development status during the test phase of a project. A reliability measure,

such as current failure intensity, has been found to be much more practical than other tradi-

tional methods such as the intuition of the designers or test team, percent of tests completed,

or successful completion of critical functional tests,

3. Monitoring the operational performance of software, and controlling the addition of new

features and design changes to the software,

4. Enriching insight into the software product and the software development process, which

helps in making informed decisions,

5. Application of software reliability models is also useful in future development of other software

systems, due to the experiences gained from analyzing the results.

Despite all of the above benefits, many managers abandon the idea of applying soft~ware reliability

models to their projects. This can mainly be attributed to the problem of finding the proper

software reliability model for a given set of failure data. Reasons are given in the next section.

1-2

1.f The Problem of Software Reizabiity Model Selection

A large number (currently about 100 [26:322]) of software reliability models have been devel-

oped within the last two decades. This is supposed to result in some definitive models that ca'I be

recommended to potential users. Unfortunately, this is not the case. Among all existing software

reliability models, there is no single model that can be trusted to perform well in all situations.

The main reasons for this problem are [1:950],[56:172]:

1. Each model can produce a very different answer from the others, when applied to predict the

reliability of a software system. Further, a model that seems to be best for one set of data

may give very poor results with another set. This is not surprising, since the assumptions for

each model cannot be satisfied in all situations, due to variations in development and testing

environments for each project,

2. Even for the same project, good performance of a model for a given period of time does not

guarantee the same level of prediction for a later period,

3. There is no available priori method for deciding which model is the most suitable for a given

set of data,

4. Software failure data reflect the quality of the project under development. Consequently, many

organizations consider these data to be classified. This makes validation and refinement of

different models a difficult task, due to the shortage of published failure data.

As mentioned before, the above reasons, as well as time and cost constraints, have made many

software practitioners avoid incorporating reliability modeling as a management technique. This

situation makes it necessary to devote less effort in developing more software reliability models,

and concentrate on finding tools for selecting the proper model for a given set, of data. This will

help in establishing a software reliability theory similar to that of hardware. This dissertation is

part. of this effort.

1-3

1.3 General Approach

From the above discussion, it is clear that a simple and objective method is needed to select

the best model for a given set of data. Our approach for solving this problem is to use the same

model that proved to be the best for an equal set of data in the past. The main advantage of this

method is that one will make use of the previous analysis made when different models were applied

with different sets of data, and of different techniques used to measure the predictive quality of

software reliability models, with respect to known sets of data. This will be done without evaluating

different models, comparing them, and then choosing the best one. This method can simply be

stated as "matching a software reliability model to a given set of failure data". This method will

provide a strong framework and a useful data base system that results in the user confidence of the

reliability calculations he/she makes.

The sequence for solving the problem can be simplified as follows:

1. Initially, the failure data available from Data and Analysis Center for Software (DACS) [64]

will be used as a reference, because most of the research done in the past has used them,

either for data analysis or for introducing a model,

2. During the test phase of a software product, failure data will be collected. A proper software

reliability model will be needed. To achieve this, collected data will be compared with those

of DACS to find an equal set to the collected one,

3. If two sets of data are found to be equal, it is reasonable to assume that the same model used

in the past and gave good results with one set will do the same with an equal set. The logic

behind this method is similar to that of Littlewood [52:142] when he stated that

if a user knows that the past predictions emanating from a model have been in
close accord with actual behavior for a particular data set, then he/she can have
confidence in future predictions for the same data.

1-4

In this research, the ternm an equal will replace the term the same which verifies Littlewood's

prediction that at some future time, it may be possible to match a software reliability model

to a program via the characteristics of that program [52:152].

4. Any new set of data that proves to be in close accord with a certain software reliability model

in the future will be added to the initial sets available from DACS.

1.4 Assumptions

1. Knowing that almost all models assume that no failures occur at time t = 0, and the ex-

ponential distribution is the most acceptable one in the software reliability field due to the

randomness of test [92:62], will make us assume that the times between failures have a two

parameter exponential distribution. Proper tests will be applied to make sure that the un-

derlying distribution is exponential,

2. Because this study does not recommend specific software reliability models or present new

ones, any software reliability model that proved to be in close accord, with actual behavior

for a particular data set is assumed to be a valid model,

3. Since the data available from DACS will be used, the following assumptions will also be

applicable [64:3-4]:

(a) Data are assumed to be actual execution time (CPU time) or running clock time (elapsed

time from start to end of program execution on a running computer),

(b) Failures occurring before correcting the responsible fault are not counted.

1.5 Sequence of Presentation

11istory of software reliability models, some general concepts, and classification of existing soft-

ware reliability models, with a brief description of some classical models, will be given in Chapter 2.

1-5

Previous approaches to the problem, of software reliability model select-ion are given in Chapter 3.

A mathematical background is given in Chapter 4. Derivation of the test statistic necessary for

comparing two or more sets of software failure data is given in Chapter 5. The Asymptotic approxi-

mation of this test stat.istic for the case of software failure data sets of more than 20 failures is given

in Chapter 6. Chapter 7 describes the developed environmeint, and how to use it for comparing a

set of data with those of DACS or any other set of software failure data, along with the results of

application on some sets of available data. Finally, conclusions and recommendations for further

research are given in Chapter 8.

1-6

H. SOF7'WAIi I? F ELI.4BILITYt MODELS

Software reliability is defined as the probability of failure-free operation of software under test

for a specified period of time in specified environments [68:15]. According to this definition, two

identical copies of the same software may be different, if they are used under different operational

conditions. A software reliability model is the most appropriate tool for measuring the reliability of

software programs. Over the last twenty years, a large number of software reliability models have

been proposed, studied, and compared.

In this chapter, the different methods for classifying software reliability models are presented

and some existing software reliability models are described. Before going into these classifications,

the history of software reliability and some general concepts will be presented. This will make

understanding the subject much easier.

2. 1 History of Software Reliability

The history of software reliability can be found in many sources [24, 68, 82, 84, 92]. The

most updated history at this time is that in M. Xie's book [92:9-21], which can be summarized as

follows:

2.I.I Before 1970

"* By the development of computer systems in the sixties, software reliability problems arose,

but the dividing line between software reliability and hardware reliability was not clear,

* Although there were not, many articles devoted directly to software reliability in this period,

it can be considered as the initial stage of the explosion of software reliability models in

following periods,

"* The description of programming errors as a birth-death process was introduced by Hudson [36]

in 1967.

2-1

2.1.2 1970- 1979

"* Great development were made in this period, and many software reliability models were intro-

duced. The software reliability field changed direction from proof of correctness to stochastic

modeling of the failure process and statistical analysis of failure data,

"* A major change in the history of software reliability models took place in 1972 when the

Jelinski-Moranda (JM) model [38] and the Shooman model [83] were introduced,

"* Mills [59] suggested the error seeding method for estimating the software reliability in 1972,

"• Using the Bayesian methodology for estimating the time between failures was introduced by

Littlewood [55] in 1973,

"• The assumption that the software failures process can be modeled as a nonhomogeneous

Poisson process was introduced by Schneidewind [80] in 1975,

"• Using execution time instead of calendar time for software reliability modeling was introduced

by Musa [63] in 1975,

"* The idea of using software reliability for deciding when to stop testing and software release

policies was introduced by Forman and Singpurwalla [28] in 1977,

"• Goel and Okumoto [31] modeled the process of imperfect debugging in 1978,

"• A famous model was introduced by Goel and Okumoto (GO Model) [33] in 1979. Many later

models using the nonhomogeneous Poisson process were either generalizations or modifications

of this model,

SThis interesting period ended by the publication of real software failure data by Musa [64].

2.1..3 1980- 1989

* In this period, most of the models proposed earlier were applied to real data and their draw-

backs were identified and discussed. Many other new models were also introduced,

2-2

"* Musa's failure data made it possible for many researchers to overcome the difficulty of getting

relevant software failure data.

"* Okumoto and Goel [77] proposed some software release models and st udied optimum release

time, considering reliability and cost, in 1980,

"* Choosing the proper model among different software reliability models has attracted attention,

and tools for comparing different models have been widely studied [41, 42, 50, 66],

"* Nonhomogeneous Poisson process models have attracted the attention of many software en-

gineers and researchers [30, 76, 94],

"* In 1984, Musa and Okumoto [67] suggested a logarithmic Poisson model based on the execu-

tion time theory,

"* In 1987, M. Xie [91] modified the Jelinski-Moranda (JM) model [38] by assuming that earlier

detected faults contribute more to the total failure rate,

"* In 1989, Ohba [75] suggested a generalization of existing software reliability models by con-

sidering the possibility of imperfect debugging,

"* Many other software reliability models were introduced in this period. Most, of these models

are briefly described in the above mentioned book by M. Xie (see pages 13-19).

2.1.4 1990 - present

"* By the end of the eighties, the software reliability field was saturated with software reliability

models. Attention now is directed to other related problems such as tools for model selection,

multiversion programming, and software fault tolerance modeling,

"• hrocklehurst et al [14] presentied a technique called model recalibration for improving relia-

bility predictions,

2-3

"* Many researchers have deeply studied the fault-tolerance technique to iNcreas4 t f, r-liahility

of software progranms [C'. 8. 11],

"* Khoshgoftaar [.15] presented a technique for proper software reliability model selectioin using

the Akaike Information Criterion. This technique will be explained later in detail. Another

method for proper model selection based on check of limits is presented by iluang Xizi [93],

"* The reliability modeling of N version programming is studied by Goseva-Popstoijanova and

Grnarov [34].

.. 2 Some General Concepts

Because software reliability is a recently-developed research field, there are many new concepts

introduced in the existing literature. There are also some new ambiguous definitions, which need

to be clarified.

2.2.1 Software, Hardware & System Reliability: The increasing use of digital techniques in

system design led t.o the manifestation of three important facts [46]:

1. The main part of the system cost is due to the cost of software development and maintenance,

2. Increased delays in system development and production are primarily due to delays in software

development schedules,

3. The reduced reliability of a system containing software is mainly due to unreliable embeded

software, where errors are detected after the syst.em has been put into use.

These facts made it. necessary to direct more research effc-ts in the field of estimating the reliability

of systems containing software. The reliability of such systems is a combination of hardware,

software, and probably some other factors as shown in Figure (2.1). From this figure, it is clear that

proper tools for measuring the reliability of both hardware and software are needed for determining

the reliability of syvstems that. cont ain software.

2-4

Hardware Mission Soft ware

Get Failure Required Estimate
Rates by Modules Failure

Established Environment
Methods Time Rate

Operat g Time Executi n Time

Hardware Software
Failure Failure

Probability Probability

Combined Failure Probability

Figure 2.1. Relationship Between Hardware & Software Reliability (McCall[58])

2-5

Mani used hardware thousands of years ago when the ancient Egyptians used a range of

simple tools to build their temples- and pyraniids and to create their wonderful paintings. On the

contrary, computers and software came to existence only in this century. This time gap between

software and hardware explains why there has been more research and knowledge in the field of

hardware reliability than in that of software reliability. There are some similarities between the

two fields. These similarities include defining terms in the same way, which explains why they

are sometimes combined to get the system reliability [68:6]. As an example, the hazard rate Z(t)

for a software program (hardware componeni) can be defined as the conditional probability that

an error (a failure) happens in the interval {t,t + At) given that the program (component) has

not failed up to time 1. On the other hand, differences between software and hardware include

[24:841,[68:7],[92:7]:

1. Software does not wear out. Rather it becomes obsolete when the environment it was designed

for changes,

2. The source of software failures is design faults, while the principal source of hardware failures

is physical deterioration,

3. Once a software defect is propcrly fixed, it is fixed forever, which is not true for hardware,

4. Manufacturing can affect the quality of hardware products, while replication in software

products can be performed to very high standards of quality,

5. Software reliability changes mainly during the development phase, while that of hardware

usually occurs either in the burn-in phase, or at the end of its useful life phase,

G. Fedundancy methodology has no meaning in software reliability and cannot be considered

as a tool for improving reliability. The analogous technique in software reliability can be

achieved by using multiversion programming,

7. Hlardware can be repaired by spare modules, which is not. the case for software,

2-6

N. Preventive maintenance is very important for hard\Nare, while it has no meaning for software,

9. The hardware reliability field has a well-established mathematical theory but the software

reliability field does not.

e.2.2 Faults and Failures:

2,2.2.1 Faults: A program fault (bug) is a defect in the program that causes the

program to fail when it is executed under particular conditions. A fault. can be viewed either from

an absolute point of view or an operational one. From the absolute point of view, a fault is an

independent entity that can be defined without reference to failure. In other words, it is a defective,

missing or extra instruction or set of instructions. From the operational point of view, the relation

between faults and failures is one to one. To compromise between these two views, Musa [68:2371

defined the fault as "a defective, missing, or extra instruction or set of related instructions that

causes one or more actual or potential failure types". The majority of faults occur during the

integration phase, mainly due to the lack of communication between the personnel involved in the

software project (programmers, testers, debuggers, ... etc.). Faults can also be in the function of

the module itself as a whole, or internal to it (violation of the programming language rules, logical

faults ... etc.).

2.2.2.2 Failures: A program failure is defined as a departure of the output of a pro-

gram from its requirements. Since failures occur during execution of the program, they are dynamic

in nature. Failures are associated with time through the following relations:

1. Time at which a failure took place,

2. Time interval between two successive failures,

3. Total number of failures occurring up to a given time,

1. Total number of failures experienced in a time interval.

2-7

From the software reliability point oZ view, failures occurring as a result of propagation of previons

failures are not counted. Failures are said to be of the same type if they occur for the sa•e run

type, and are characterized bl' the same discrepancy, or are due to the same program fault.

".2.2 3 Fault S-e:. There has been much argument al-out whether faults have an equal effect

on the overall reliability of a software program. Some authors, such as Littlewood [51:316], believe

that faults do lot all have the same effect on reliability. They believe that faults discovered in the

earlier stages of testing have higher probability of occurrence. These are considered "big" faults,

with a more significant effect on software reliability than those "smafl" faults inherent in parts of

the program that are rarely executed. Thus, the size of a fault is formulated according to its rate

of manifestation.

.2.2.4 Operational Profile: The execution of a program can be viewed as a single entity, that

can last for months or even years for real time systems. However, it will be easier from the software

reliability point of view if the program execution is divided into runs.

A run is defined as a function that the program performs, such as a transaction in an airline

reservation system, or a particular service performed by the operating system for a user. A set

of identical runs is called a run type. During the test phase, the term test casc is used instead of

the term run type. Test cases are chosen to simulate the real operating environments, in order to

make sure that the requirements of the customer are correctly met. To achieve this exactly, the

tester must be knowledgeable of all the possible run types of the program, and the probability of

occurrence of each, which is called the Opcrational Profile.

The operational profil, is an extremely useful concept in soft.ware testing. However, it, may

not always be practical to determine the full operational profile because of the large number of

run types that can be involved. Thus. it. is usually impossible to test all run types of a program.

Therefore program failures occur.

2-S

0 1-

N-1

NN

Figure 2.2. An Imperfect Debugging Process [75:240]

2.2.5 Imperfect Debugging: Most software reliability models assume that a fault is coin-

pletel' removed directly after its detection, and that, no new faults are introduced (spawned) due

to the corrective action. This makes software models mnathematically simple, but on the other

hand, far from reality. That is mainly due to the fact that, "Almost all professional programmers

have experienced cases where they fixed one error to create another one" [75:239).

An example of an imperfect, debugging process is shown in Figure 2.2. Assuming that the

correction action is perfect, the number of faults is reduced by 1, while the number will stay the

samne or inay incre;se in case of imperfect fixing. If the probability of imperfect debugging is as

then the debugging process can be considered as a Markovian process [75:240].

2-9

2.3 Software Reliability Alodcl Classificattonw

Proper classification of software reliability vmodels is necessary to distinguish these models

from each other, and to help in proper model selection. The large number of existing software

reliability models makes their classification a difficult task. Before going into some classifications,

it is useful to know the components of a software reliability model.

Usually a software reliability model involves three main components [1:951]:

1. A conditional probabilistic model specifying the joint distribution of any subset of random

variables Ti, conditional on an unknown parameter a (The Tis are assumed to be independent

in all models considered in this chapter),

2. An inference procedure for the value of the unknown parameter a when the actual data are

obtained (realization of Tis),

3. A prediction procedure, which combines the above two components to provide predictions for

future Tis.

Each model has its own assumptions on the software failure detection rate, the number of faults

in the software, and the condition of testing environments. Models can differ also according to the

inference procedure and the prediction procedure used. There are several classification systems in

the literature for software reliability models. Examples of these systems include:

2.3.1 Classification According to the Model A4ssumptions: Depending on the assumptions

and procedures used for modeling, M. Xie [92:23-29] suggested the following classificption system:

2.3.1.1 Markov Models: For a software program under test., the number of faults re-

moved and those remaining at. time t are both random values. To explain the reason for this

randomness, consider a program that has initially N number of faults. A fault will cause a failure if

the program is executed for certain input states. Due to the uncertainty of where faults are located

2-10

and the random choice of input states, failures will occur randomly with time. Even when a fault

is discovered, there is no certainty about perfect fixing or even the introduction of new faults. The

Markov concept is useful in modeling this random behavior. A model is considered to be under this

class if its failure-counting process is essentially a Markovian process. Examples of these models

are the Jelinski-Moranda Model (JM) [38] and the Schick-Wolverton Model [81].

2.3.1.2 Nonhomogeneous Poisson Process Models: Nonhomogeneous Poisson process

(NIIPP) modeling is widely used in hardware reliability theory. The same concept is also used for

modeling software reliability growth, and many models belong to this class. The failure intensity

A(t) for this class of models is

A(t) = dp(I)/dt,

where p(t) is the mean value function for the number of detected faults N(t). By using different

forms for p(t), different NHPP models can be derived. Examples of this class of models are the

Goel-Okumoto Model (GO) [33] and the Schneidewind Model [801.

2.3.1.3 Bayesian Models: As mentioned before, at the second phase of software relia-

bility modeling, an inference procedure is used. The classical methods used in most. of the software

models are the maximum likelihood estimation method and the least square method. The third

method is the Bayesian analysis method. The main drawbacks of this method are its complexity

and difficulty of app!ication. The basic idea of the method is to identify a prior distribution for the

parameter to be estimated (which is the key difficulty in carrying out Bayesian analysis). A poste-

rior distribution is then obtained by multiplying the likelihood function (obtained from the collected

data) and the prior distribution. A model is classified under this category if a Bayesian technique

is used for parameter estimation. Examples of these models are the Bayesian Jelinski-Moranda

Model (BJM) [53] and the Littlewood-Verrall Model (LV) [55].

2-11

2...1.4 Statistical Data Analysis Models: In this class of models, collected failure data

are analyzed using standard statistical methods, such as time series analysis and regression analysis.

Software reliability can then be estimated and predicted as a result of these analyes. Examples of

these models are the Crow and Singpurwalla Model [191 and the Singpurwalla and Soyer Model [85].

2.3.1.5 Software Metrics Models: Software metrics include software size metrics, soft-

ware structure metrics, understandability metrics, ... , etc. These metrics are used for predicting the

number of faults in a software program. They are useful in earlier stages of software development.

The main disadvantage of existing software metrics models is that they predict the number of faults

in a program, which is not related to its reliability. More information about these metrics can be

found in the papers by Bailey and Dingee [7], Cote [16], Davis and-LeBlanc [20], and Munson and

Khoshgoftaar [62].

f.3.1.6 Fault Seeding Models: The basic approach in this class of models is to "seed" a

known number of faults in a program, which is assumed to have an unknown number of indigenous

faults. Further, it is assumed that the distribution of the seeded faults is the same as that of the

indigenous ones. The program is then tested, and the observed numbers of seeded and indigenous

faults are used to estimate the fault content in the program prior to seeding. Consequently program

reliability and other relevant measures can be estimated. Examples of these models are the Mills

hypergeometric model [59] and its modification by Lipow [48].

Some drawbacks of this technique include [53:46]:

1. Increamsing the load of testing effort, since the debugger has to manage both original and

seeded faults,

2. Seeding faults uniformly in all paths of a software program is always a difficult, if not an

impossible task,

2-12

3. The total number of faults in a program can not be considered a stand-alon, iniasurre of t he

program's reliability.

2.3.1, 7 Input Domain Based AModfls: The basic approach taken in this class of models

is similar to that of fault seeding models. The operational profile concept is used to generate a

set. of test cases from an input distribution, which is assumed to be a representative of the actual

operational profile of the program. Due to the difficulty of obtaining the exact operational profile,

the input domain is divided into a set of equivalent. classes, each of which is usually associated with

a program path. An estimate of program reliability is obtained according to the portion of test

cases that cause the program to fail. Examples of this type of models are Brown and Lipow [15]

and Nelson [73].

2.3.2 Classification According to the Nature of Failure Process: Under this classification

system, Goel [30] classified software reliability models into the following groups:

2.3.2.1 Times Between Failures Models: In this class of models. tile time between

failures is the process under study. The times between failures are assumed t.o have a distribution

whose parameters will be estimated from the observed values of these times. Estimates of software

reliability, mean time to next failure,... etc.. are then obtained from the fitted model.

2.3.2.2 Failure Count Models: The main interest in this class of modcls is the number

of program failures in specified time intervals, or those accumulated by a given time t, rather than

times between failures. The cumulative number of failures by time t, N(t) is assumed to be the

outcome of ,, random process, which can be completely specified by a discrete distribution function

like Poisson or Binomial. Paranmeters of tle models can be estimated from the observed values of

failure counts. Again, other estimates of software reliability, mean time to next failure, ... etc., can

he obtained from the fitted model.

2-13

2.Y.2.3 Fault Seeding 31oddls: As described before.

.?.3.2.4 In put Domamn Based Alodtl s: As described before.

2.3.3 Musa-Okuonlo Classification: Musa and Okurnoto [68:250-251], developed a classifi-

cation scheme in terms of five different attributes:

1. Time domain: Calendar time or execution time,

2. Category: The total number of failures that can be experienced in infinite time is either finite

or infinite,

3. Type: The distribution of the total number of failures experienced by time t (Poisson. Bino-

rial,..., etc.,

4. Class: (for finite category only) functional form of the failure intensity in terms of time

(exponential, Weibull, Gamma, ...etc.),

5. Family: (for infinite failure category only) functional form of the failure intensity in terms of

the expected number of failures experienced (Geometric, Inverse linear, ... etc).

This classification scheme is given in Tables 2.1 and 2.2. Note that in the finite category table,

class C indicates a distribution that does not have a common name. The same principle applies for

the infinite category table, where types T indicate distributions that do not have common names.

"2.3., Other Classification Schcmcs: There are many other classification schemes that can

be found in the literature. Examples of other classifications include:

1. According to Applicable Phase

Ramamoorthy arid Bastani [78] classified software reliability models according to the phase

where the software model applies. They classified software reliability models as follows:

2-14

Table 2.1. Finite Category Models [68:251]

Type
Class Poisson Binomial Other Types
Exponential Musa [63] Jelinski-Moranda [38] Goel-Okumoto [31]

Moranda [61] Musa [65]
Schneidewind [80- Shooman[83] Keiller-Littlewood [42]
Goel-Okumoto [33]

Weibull Schick-Wolverton [81]

Wagoner [89]
C1 Schick-Wolverton [82]

Pareto Littlewood (51 .
Gamma Yamada-Ohba-Osaki [94]

Table 2.2. Infinite Category Models [68:2513

Type
Family TI T2 T3 Poisson

Geometric Moranda Musa-Okumoto
[61] [67]

Inverse Linear Littlewood-Verrall

____ ____ ____ ____[55]

Inverse Polynomial Littlewood-Verall
2nd degree [55]

Power Crow [17]

2-15

(a) Debugging Phase Models

(b) Validation Phase Models,

(c) Operational Phase Models,

(d) Maintenance FPhase Models.

2. According to Nature of Debugging Strategy

Bastani and Ramarnoorthy [10] classified software reliability models according to the nature

of debugging process as:

(a) Reliability Growth Models,

(b) Sampling Models,

(c) Seeding Models.

From the above discussion, it is clear that most of the classifications are very similar.

2.4 Classical Software Reliability Models

As mentioned before, about 100 software reliability models have been developed to predict.

software reliability. In this section, a brief description of the most famous models will be given.

The construction of many other models is based on the ideas illustrated by these models.

2.4.1 Jelinski-Moranda Model (JM): This model [38] is one of the early models that the

reader finds in nearly all literature on software reliability modeling. It can be considered as the

basis for most of the models that followed it. It was proposed by Jelinski and Moranda in 1972,

taking into consideration the following assumptions:

2-16

1. A finite number of faults initially exists in the program,

2. Faults are independent, and each has the same probability of occurrence,

3. The debugging process is perfect, and takes place immediately wheni an error is detected,

4. The hazard rate decreases by an amount 0 after discovery and correction of each fault

(see Figure 2.3),

5. The time to next failure is proportional to the number of remaining faults in the program.

Z(t)

t3

Cumulative Time

Figure 2.3. Z(t) Plot for JM model [38]

Using the above assumptions, the hazard rate Z(t1), between the (i - 1)--" and the iL- failure

is given by

Z(ti) = O[N - (i - 1)] (2.1)

where

ti = the time between the (i - I)--" and the it failure

-6 = the drop in the hazard rate due to one fault removal

N = the initial number of fa-ult~s in the program

2-17

Now, let T,7'1, "..,, represent t he time intervals between successive failures. Under the a.,siinip-

tion of uniform failure rate (which implies that the times between failures are exponential with rat,

Z(t,)), the probability density function of 7; = (t, - ti-1) is given by

f(T,) = €,IN- (i - 1)] exp{-O[N - (i - 1)]T,) (2.2)

and the likelihood function is

L(T1 ,T 2,..,T,) H 6[N - (i - I)]exp{-O[N - (i - 1)])} (2.3)
t=l

taking the partial derivative of In(L) with respect to N and d and setting the resulting equations

to 0, the MLE of N after n failures is obtained by solving the following equation and calling the

result N

+ 1 + 1 n (2.4)

N N-N --(-1)

2=1

where T = ET,

The MLE of 6 is found to be

n =(2.5)

NýT- E~i- 1)7;

this concludes the second part of the model. The final part is simply "plugging in" to get. required

predictions. As an example, the MTTF after experiencing i failures, will be

l
MTTF(i) =- -1 (2.6)

2.4.2 Bayestan Jchusk,-Moranda Model (BJMf): The motivation for the introduction of this

model by Littlewood and Sofer [53] was that the JM model had produced too optimistic results

,ith almost every set. of data it was applied on. This was interpreted as a result of either the

2- 1 ,'

unreality of the underlying assutliptions of thhe inodel. or poor est-imates of the paranieters. due to

tie use of the maxinum li kelihiood ietihod. The MJIM is a Bayesian approach to the JM inIodel

with slight modeling changes. It doe- not consider the failure rate to be an integer multiple of c.

The sequence of this model can be described as follows:

1. A "prior" distribut.ion is as.signed t.o the parameters A (initial failure rate of the program)

and 0 (usually Ganmnma pdf),

2. Using the observed data tl,t2, -,t,- 1 , the distribution is modified to give the "posterior"

distribution of A\ and 0,

3. The model is then used to calculate the current reliability, the current failure rate, the mean

time to failure, and the number of faults remaining in the program under test.

2.4.3 Goel-Okumoto Imperfecl Debugging Model (GO): This model [31, 32], is another mod-

ification of the basic Jelinski-Moranda model. The motivation for the introduction of this model

was the fact that in practice, the assumption of a perfect, debugging process i.s proved to be unreal-

istic in most. cases [60, 86, 87]. The modification was then made by introducing a probability a for

imperfect debugging. The number of faults in the program at any time 1, is treated as a Markovian

process with the transition probability a. Times between transitions are taken to be exponentially

distributed with rates depending on the number of faults remaining in the program. The hazard

rate between the (i - 1)-` and the ML failure . Z(1,) is given as:

Z(t,) A[N -a(i - 1)] (2.7)

where

ti = the time between the (i - 1)- and the th• failure

= the failure rate per fault

2-19

Expressions are then derived for performance iiieasures such &; the distribution of tinie to a corn-

pletely debugged programn distribution Of tile 11umuber of faults remaining iii the program. anid

program reliability.

4.4I Litilewood- Verall Model (LV): Littlewood and \'erall [551, took a different approach

when they developed this model. Unlike most other models, they. argued that software reliability

shiouldl not, be related to the number of faults in the programn. In this model, it is possible that

fixing a fault mnakes the program less reliable and even if anl improvement t~ook place, its magnitude

is uncertain. The assumptions of the model are:

1. The times between failures T~'s are assumed to be independent random variables (as in JM

or BJM) with pdf

p(tj I A)= Ai exp (- A i) (12 > 0) (2.8)

i.e. the random variables T~s are exponential with p~aramneter Ai,

2. The A's form a sequence of randomn variables each has a gammna distribitition with the pararn-

eters a and 1,60). 'i.e.,

f(A I a, ~ 'i)o~ exp r(-ai)) Aj > 0 (2.9)

The function Vý(i) is a linear function of i, reflecting the quality of the programmer and the difficulty

of the programming task. A rapidly increasing function iV'(i) reflects a good programmner. an ea-sy

task or both.

Th.w user can choose the parametric family for ~fi.In [11, the parametric form of VP(i) was

taken as,

<(,3) = ý + j3.,,i (2.10)

2-20

The NI LE method is used to estimate the values of Jal, J_ and t. Using tie realized failure times

S . ,t-1, the reliability of the system is estimated to be [1:954]

•i~t): •_'(i• !(2-11)
+ tp(i,j3)

where 5 and f5 are the NIL estimates of a, 3. This model can also adjust. tile correction time to be

a constant value greater than zero.

2.4.5 Keiler-Lzthkwood Model (1L): This model [41. 42] is similar to LN, except that reli-

ability gro% tn is induced via the shape parameter of the gamma distribution, i.e.,

f/(A I 0, V(i)) = (y () ,(i)) Aj > 0 (2.12)

Here, reliability growth takes place when 0(i) is a decreasing function of i. Again V,(i) choice is

under the user control. In [1:9541, the parametric form of V./(i) was taken as

ý,(i, or) = (a I + ai)- (2.13)

The NILE method is also used to estimate the values of o,, a-, and 4(i). Using realized failur-e

times 1 .t2, .,i- 1, the reliability of the system is estimated to be [1:954]

=U (2.14)

where 6 and J(i) are the ML estimates of c,, 4(i).

"2.4.6 Af.sa Basic Erccution Time Model: This model [63] is one of the most commonly

used models in the software reliability field. What is interesting about this model is that it, uses

(execlition tinte (which is the real stress and meaningful thie for software) instead of the calendar

2-21

tinie used by t ,her iwi,dcls. Oin the other hand, this model can also transfori ext , •-•on til,

into caleindar tir',ie which is more convenient for soft ware reliability mnanagers and engincers. It is

also possible to modol thf allioUlnt of limiting resources ktesters, debuggers. and(] comput er ti ile)

involved in the testing process.

The model starts with assuming the hazard rate function Z(7) t.o be

Z(7) = fK(N0 - n(r)) (2.15)

wvhere

7 = aiiount of execution time used in testing

N, = initial number of faults in the program

f = linear execution frequencv (average instruction rate divided by the t ,al

number of instru-tions in the program)

K = error exposure ratio which relates the error exposure irequency to linear

execution frequency

n(r) = number of faults detected by time 7

Assuming that the rate of failure occurrence is proportional to the rate of error correction, then

d---7--- =1Z()
(2.16)

where R is the error reduction factor which represents the average ratio of the rate of reduction of

errors to the rate of failure occurrence.

The above equation wa.• further generalized by introducing a constant C to represei, the ratio

of raite of error detection in the testing phase to that in the operational phase, so Eq (2.16) can be

oxtressed as

(--(-- 1= Z•(rz•) (2.17)

(17 -

2 '-1

combining Eqs (2.15) and (2.17). we get

tic(T) _ !3f[N,. - 7)(7)] BCfiK No - BCflKn(7) (2.18)
dr

IKnowing that. n = 0 at 0, the solution of the above equation is found to be

7,(r) = N0 [1 - exp(-BCfKr)] (2.19)

The MTTF can then be calculated as

MTTF = 1/Z(7) = 1/[fKNo exp(-BCf K7r)] (2.20)

The reliability of the system at future execution time Tr will be

R(r1) = exp(- Z(x)dx) = exp (M-F (2.21)

Other useful results that can be derived from this model include:

1. The number of faults to be detected to increase the time between failures from r7 to -_

2. Additional CPU test time required to achieve the above goal,

3. The resource requirements needed for the same reason,

4. Utilization factor of the limiting resources.

2.4. 7 Musa Logarithmic Poisson Execution Time Model: This is another execution time

model developed by Musa and Okumoto [67] in 1984. It assumes an infinite number of faults in the

program and the failure process is a NHPP. Further, the failure intensity A is assumed to decrease

1 -iintially with tiw- ,uitii•,r -r removed faults, i.e.

2-23

A(-,) = kecxp(-on(r)) (2.22)

where A, is the initial failure intensity, and 6 is called the failure intensity decay parameter.

Substituting for A(r), we get,

dn(r)
di- = Aocrp(-¢$n(T)) (2.23)

Using the initial condition that n(O) = 0, the solution of the above differential equat -;. 'S

n(7-) = ln(A.0 + 1) (2.24)

It is clear from the above equation that the expected number of fault~s detected by execution time

7 is a logarithmic function of r, and hence the name of the model.

Using Eqs (2.22) and (2.24), the failure intensity at, execution time 7 is

A0 ?

A(7) = Aoexp[-6n(r)] A,+ (2.25)

The reliability function at execution time 7-, is

R(7 1 7-o) A, 6-,(+ + +1- 7 >_ 0 (2.26)

Other reliability measures can be obtained using the general theories of the NHPP models, as

described in Musa and Okumoto [67].

2-24

11I. SOFT7"I A RE JELLABILITY .IODI7L SI.tLECTION

Soft ware Reliabilit v models differ consideralydv in thli ways thiey transform model assumptions

into a (let.ailed mathematical structure. The problem of proper model selection can be summa-

rized briefly as follows [52:149]: The available set of data to the user will be a sequence of times

between successive failures tl,t 2, ... ,ti-i. These observed times are the realization of random vari-

ables T1 ,T2 T,-I. A software reliability model is then applied to use the observed set of data

t, t- 1, to predict the future unobserved Ti,Ti+i, • - .. The problem to be solved by a software

reliability model is then a prediction problem. It involves the future via the unobserved random

variable Ti. Using the goodness of fit will not solve the problem. The reason, as pointed out in

[1:951] is that models are usually too complicated for a traditional "goodness-of-fit" approach to

be used. In the literature, there are many suggestions for solving the problem of proper model

selection. Some of these suggestions will be given in this chapter.

3.1 Model Selection Using Analysis of Predictive Quality

The idea behind this method is to do some analysis about the predictive quality measures

(such as accuracy, bias, trend, noise, • • -etc.) for candidate software reliability models, with respect

to the set of data in hand. Detailed examples of these analyses can be found in [1] , [41], [42], and

[52]. A brief summary of such methods will be given in the following discussion.

Given that. the observed values ti, 2 , ... ,ti-1 of the random variables T 1 ,T 2, , Ti- 1 , the

manager of the software product will be interested in having a good prediction for the future Ti.

This future Ti, can then be transformed into the current reliability of the software product as

follows:

Ri(t) = I - PiT, < t) = I - Fi(-) (3.1)

3-1

The user will never know, even at a later stage, the exact value of Fi(t). However. by using a

software reliability nmodel the estimated value Fi(t) can be calculated. By realizing the actual value

of T, at the time of next failure, the user will have a pair {F,(t),t 1 }. After having enough pairs of

such data, the user can tell whether there is any evidence to suggest that the 1's are realizations

of random variables from Fj(t)'s. If such evidence were not, found, it would suggest that there are

significant differences between fi(t) and Fi(t); hence; the predictions are not, in accord with actual

behavior. Littlewood [52:166] made the following sequence of transformations:

ui = Fi(ti) (3.2)

Each is a probability integral transform of the observed ti, using the previously calculated predictor

Fi, based upon tl,t 2 ," 'I, -1. According to Dawid [22] and Rosenblatt [79], if each F, were identical

to the true Fi, then ui would be realizations of independent uniform U(O, 1) random variables.

3.1.1 the i-Plot: The main idea behind this method is that since {ufs I are supposed to

have a uniform distribution, then the quality of the software reliability model can be measured by

whether the sequence of u's looks like a random sample from U(O, 1). Knowing that the cumulative

distribution function (cdf) of U(O, 1) is a line of unit slope through the origin, the u-Plot can be

used to judge the prediction quality of a software reliability model as foliows:

1. place the u, values on the horizontal axis,

2. At each point, increase the step function by 1/(n + 1),

3. Compare the resulting plot, with the line of unit slope,

4. The deviation from this line, which can be measured using the Kolmogorov distance (maxi-

mum absolute vertical difference) will be used to measure the quality of the software reliability

Inodel.

3-2

0
01

Figure 3.1. Drawing the u-Plot (Littlewood (52:168])

Another quality metric that can be deduced using the u-Plot is the bias of the model. If all of the

u's are above the line of unit slope, then this means that the model predictions tend to be too

optimistic and vise versa if all of the u's are under the line of unit slope.

3.1.2 The y-Plot and Scatter Plot ofu's: One problem with the u-Plot is that it measures

only one type of departure of predictors from reality. For example if a prediction system applied

for a set of data shows optimism in the early predictions, and pessimism in the later predictions,

then a small Kolmogorov distance will be observed. It seems necessary then to examine the u'is for

trend. To do that, the y-Plot method makes the following transformation

x -fn(- uj) (3.3)

3-3

Stage I
1l 112 U13 U 4 Um-1 ,...

xi -in(1 - ui)

Stage 2
X1 X2X3 xm-1 X,11

I rm

normalize Yi= xjZ xj
4 1

Stage 3

Y3

Figure 3.2. Transformations to Obtain the y-Plot (Abdel-Ghaly [1:958])

jM

0.5
LLVv

0
0 0.5 1

Figure 3.3. LV and JM y-Plots for Data of Table I in Littlewood [52:172]

3-4

If t(lie { u;..) are a true realization of zid rand(omi variables with I '(0. 1) distribuition. then the { -,'}

will be a realization of iid unit exponential random variahles. 'I hus. it the .j x',s} are pitted oij

the horizontal axis, then they should look like, a realization of a homiogeneous Poisson process. The

alternative hypothesis (that there is trend in the uW) will show itself as a non-constant rate for

this process. If the values of {x's) are normalized onto (0,1) and their values are plotted, then a

plot that shows the trend of the predictions of the inodel will result (see Figure 3.3). Departure

from the line of unit slope will indicate that the prediction systetn is not capturing the "trend" in

the failure data (i.e. reliability growth) [41, 42]. Figure (3.3) shows the application of the y-Plot

procedure to the Littlewood-Verall (LV) and Jelinski-Moranda (JM) predictions of the table I data

in [52:144]. The Kolmogorov distances are found to be 0.120 for (JM) and 0.110 for (LV), both of

them are not significant at the 10% level [52:170]. A close iook at the JM y-Plot shows that it is

very close to linearity at early stages (until about i-90: see the fitting line).

1.0

U,

0.5

I.

0.0 ...

30 50 70 __90 110 130

Figure 3.4. Scatter Plot of u, for JM Model Using Data of Table I in [52:173]

3-5

In the scatter plot, the values of 4u',>} are plott.ed as in Figure (3.4) and the trend can be

judged by Ihe number, and location of points in each stage. As an example. it is clear froni the

plot that the prediction svsteni seems to be too optimistic after i Z 90. This is mainly because

the number of points with { u~s) less than 0.5 after i = 90 is higher than those with u, greater

than 0.5.

3.1.3 Measures of Noise: Both the u-Plot and the y-Plot can be considered as a measure

of bias. In tile sequel some tools will be used to analyze the variability of the prediction. These

tools are, in fact, some quite crude measures of variability, due to the problem of unavailability of

the true sequence of Fi(t) [52:175].

3.1.3.1 Braun Statistic: This is a measure of predictions noise. It, is defined as [13]:

S(3.4)y t, -t)2- 7) - 2

where

E(Ti) = the estimated mean of T7

n = number of the terms in the sum

A small value of B indicates better smoothing of software reliability model predictions.

3.1.3.2 Median Varmabihl•i: This is another measure of noise, which is defined as

S=~ - rn, - r- (3.5)
ni, -I

where 7n, is the predicted median of T-. Between different prediction systems, this measure can

indicate which model has higher variability in its predictions, or in other words, how noisy the

model predictions are. Again, a small value of 1ll" indicates better smoothing of the predictions.

3-6

3. 1.-11 Rale Larzabizht: T[lhe rate variability (ARV) is (lefined as

R1 - ,-r _ (3.6)

where r,. tie ratk. ufc, ccur-,nce of failures (ROCOF), is calculated iumniedialdy after a fix. This is

also another measure of noise. It is important to note that for both A V and RV, the comparison

between two prediction systems must be for the same set of data.

3.1..4 Prequentzal Likelihood: Most of the work concerning the Prequential Likelihood

was done by Dawid [21, 221. The Prequential Likelihood (PL) for one-step ahead prediction of

T7+,Tj+,2 , - +, is defined as follows[52:177]:

j+n
PL,,= (3.7)

where f(1) is the pdfof the predictive distribution Fi(t), based on the realized values it, t,,.- .*. t,_ 1 .

The PL value can be used to determine the accuracy of a software reliability model [57:174].

This value is usually very small, therefore its logarithmic value (which is always negative) is used for

comparison. The more negative it is, the more inaccurate the software reliability model predictions.

This measure can be considered as a general procedure for choosing the best prediction system for

a given set of dat~a [14:461], so in case of having a tie between two models with respect to all other

quality measures, the one with higher accuracy will be preferable [57:174].

A comparison of two prediction systems A and B, over a range of predictions Tj+ 1,T,+ 2 , - - ,T+,

can be made via their prequential likelihood ratio (PLR),,.A.B

j +T1 AI (G,)
(PLR)..A.B- = ='+' 38

ij+n(+3- (3.8)

3-7

Dawid [22:283-284] stated that if PLR,, A -- X as ?d - - hei prediction svster . will

be considered better than B. Detailed discussion a bout lihes, m-easures can be found in [1],[21],

[22]. and [37].

u-plot y-plot Braun Median Rate of
Model K-S dist. K-S dist. Statistic Variability \ariability -Jog,(PL)

(sig. level) (sig.level) (rank) (rank) (rank) (rank)
Jelinski-Moranda .121 .115 1.11 4.23 3.81 466.22

JM [38] (NS) (NS) (8) (6) (8) (6)
Bayesian JM .110 .077 1.(14 3.27 466.64

BJM [53] (NS) (NS) (5) (7) (7)
Littlewood .123 .091 1.07 5.27 4.66 465.49

L [51] (NS) (NS) (7) (7) (9) (2)
Bayesian Littlewood .138 .068 .96 2.82 465.18

BL [2] (NS) (NS) (1) (6) (1)
Littlewood-Verall .167 .051 .97 2.33 2.18 465.52

LV [55] (10%) (NS) (3) (3) (4) (3)
Keiller-Littlewood .170 .051 .96 2.33 2.17 465.81

KL [41, 42] (10%) (NS) (1) (3) (3) (4)
Duane .209 .052 1.04 1.96 1.84 467.78

D [27, 18] (2%) (NS) (5) (2) (2) (9)
Goel-Okumoto .271 .085 1.21 1.06 1.03 473.87

GO [31] (1%) (NS) (10) (1) (1) (10)
Littlewood NHPP .169 .082 .97 3.05 2.76 465.85

LNHPP[1] (10%) (NS) (3) (5) (5) (5)
Weibull .100 .111 1.17 6.16 5.48 466.89

W [2] (NS) (NS) (9) (8) (10) (8)

Table 3.1. Littlewood's Analysis of Data of Table 2 in [52:189]

Table (3.1) is a summary of applying the above-mentioned prediction quality measures. From

this table, it is clear that different methods of model selection result in different models being chosen.

This problem, and the fact that some of the above methods are rather subjective as to which model

is better than others [45:184], force the user to try different measures and take the average, or to

judge the results from his own perspective.

3.2 Model Selection Based on a Linear Combination of Models

The idea behind this method is that, rather than predicting software reliability by using

only one model, a meta predictor could be formed to take a linear combination of two (or more)

predictions, with weights chosen in some optimal way.

3-8

'l'(e heiirist ic algorithm for this method is as follows [537:173]

1. Identify the candidate set. of software reliability models to be used.

2. Select th le models that, tend to cancel out. in their biased predictions (if any).

3. Selected models are equally weighted to form a linear combination model.

4. The arithmetic average (incan value) of the predictions, resulting from the selected models

or their middle prediction value (median value), is used as the prediction of the linear

combination of models.

The authors used the Goel-Okumoto NHPP Model (GO) [33], the Musa-Okumoto Logarithmic

Model (MO) [67], and the Littlewood-Verall Model (LV) [55].to form an Equally-Weighted Linear

Combination (ELC) Model. The arithmetic average of each selected models's predictions was taken

as the ELC Model predictions as follows:

ELC = -GO+ + MO + -LV (3.9)
3 3 3/

The main drawback of this method is that it is not the best in all cases. Also it mixes models of

different assumptions for the failure process.

3.3 Model Selection Based on Check of Limits

In this approach, a check of the limit conditions for the model to be used is performed

before using it, so as to avoid the meaningless consumption of time [93:481]. The check of the limit

conditions confirms the convergence of the model. As an example of this technique, H. Xizi [93:483]

derived the limit condition for the Musa Execution Time Model [63] as:
?fl

- 1)t,
1=1 1Tn- 1

< (3.10)

i=3

3-9

wherc

fl = ,•,/B

ntumiber of errors corrected

13 - error reduction factor

ti the time between the (i - 1)L- and the L"h failures, i = 1,2,.- 7

Littlewood [54:145] presented the convergence condition for the Jelinski-Moranda model (JM) [38]

as:
ETi - t ti

i=1 ----- 1 (3.11)

i=I

where

n = observed number of failures

ti = the time between the (i - 1)•L and the ih failures i = 1, 2, n .,

The problem with this method is that the limit conditions for most of the models are similar, which

makes the user return to the the same problem of proper model selection.

3.4 Model Seleclion Uszng Akazke Information Criterion (AIC)

The (AIC) was developed by Akaiki [3] in 1974. It resulted from relating the entropy principle

from statistical mechanics to information theory. In a subsequent work [4], Akaiki proved that the

(AIC) can be used to select the model that best predicts the stochastic behavior of the system.

The use of the Akaike Information Criterion for software reliability model selection was first

suggested by Khoshgoftaar [43]. In a subsequent work [44], he showed that, this technique. when

applied with soine extensive simulation work, proved the feasibility of using the (AIC) for software

reliability model selection.

3-10

Entropy in statistical mechanics is tihe zrnewsure of the probability of having a systWen of

particles in state A. It increases with the systerm changing to its most probable stat.e B. If A=B,

entropy will be maximum and can be taken as the measure of how close the estimator is to its real

distribution. For two probability density functions J(z) and g(z), the entropy of distribution f(z)

with respect to distribution g(z), denoted as B(f(z), g(z)) is expressed as [45:186]

B(f(z),g(z)) = 3.12f(z))n (f(z)

= -E 1 6, (!f)] zC (3.13)

U -I(f(z); g(z)), (3.14)

where

Ef = the expectation with respect to distribution f(z)

l(f(z);g(z)) = the expected log-likelihood ratio, or the negative of entropy

C = a constant value

The software reliabilityv model that minimizes

U()] + 2C (3.15)

is the model that should be chosen Khoshgoftaar and Woodcock [45:187] stated that the AIC can

be written as the following expression:

AIC = -2(log likelihood function at its maximum likelihood estimators) +2 (number of parameters

fitted when maximizing the likelihood function)

The best. model for a given data set using this method is that with the lowest AIC value.

3-11

3.5 Recahbratinq Software Reliabiity Alodel.

This method was introduced by Brocklehurst and Others f1i]. and call be suniniarized as

follows:

The relation between true distribution Fi(t) of the random variable 7', and the predicted one

.F,(t) can be represented through a relation function Gi as

Fi(t) = G, [.Piml)] (3.16)

It is further assumed that Gi is only slowly changing function with i. Since Gi is not known, it will

be approximated with an estimate G* which will lead to a new prediction

7(t) G [Ti(t)] (3.171)

This, in fact, recalibrates the raw model output Fi(t) in the light of the accuracy of past predictions

for the data set under study. The authors based their estimate of 67 on the u-Plot, calculated from

predictions which have be - made prior to T,. They made two choices for the shape of G,(t). The

first choice is a simple shape in the form of a u-Plot with steps joined up to form a polygon, while

the second one is a more complicated one in the form of a spline.

The sequence of this method can be summarized as follows [14:461]:

1 Use the v-Plot to make sure that the error in previous predictions is approximately stationary,

2. Construct the polygon G* by joining up the steps of the u-Plot formed by predictions before

T,. see Figure (3.5),

3. Get the raw prediction fi(t) by using the basic prediction system,

4. Recalibrate the raw predictions using Eq (3.17).

3-12

1/(r+l)

1/(r+l1)

0 U11 Ui2 Ul3 U4 U5

Figure 3.5. Drawing the Step Recalibrating Function GC (Brocklehurst [14:461])

The main problem with this technique, as stated by the authors, is that. the failure behavior of

software cannot be guaranteed to be stationary in all cases. Also, recalibrated predictions can

sometimes be worse than raw predictions.

3-13

11'. MA 7THEMA TICA L BA C'KGROIUA'D

In this chapter. several mathematical concepts of the reliability theory will be presented.

These concept-s are essential for understanding the process of software reliability modeling. The

most important distributions in reliability theory and the relations between these distributions are

also given in this chapter. The chapter -:)ncludes with a derivation of the test statistic and its

moments.

Throughout this discussion, the random variable T will be used to represent the time to next

failure, and t will represent the realization of T.

4.1 Fundamental Reliability Equations

There are some principles in hardware reliability theory that are also applicable in software

reliability theory.

The first common principle is that the reliability of a system (program) at time t, R(t) is

defined as the probability that there will be no failures by t, i. e.

R(t) = P(T > t) = 1 - P(T < t) = I - F(t), (-.1)

where F(t) is the probability of failure before time t.

Also, the failure rate is defined as the probability that a failure per unit time occurs in the

interval between two times (t , t,), given that the system (program) has survived until time ti:

P(t1 K T < 12 T > tj) PU(t 1 < T < t2)
(tý - tl (I-) -- tl)P(T > tl)

F(t 2) - F(t1)
(t - tI)R(t I(43)

4-1

The ha:zard rate Z(1) for a component (soft warn program) is defined as the instantaneous failure

rate at time t. Therefore. it can be expressed ais the limiting condition of Eq (4.3) as the interval

(t 2 - tj) approaches 0, so

F(t + At) - F(t) _ f(t) (M)Z(t) = lina - -_ (4.4)__
Nr-o AtR(t) I(1) - F(t) 44)

where f(t) is the failure density or the first. derivative of F(t).

The relation between Z(t) and R(t) rate can be derived by integrating the two sides of Eq

(4.4), i.e.

R(t) = exp[- Z(x)dz] (4.5)

Using Eqs (4.1), (4.4), and (4.5), we get

f(t) = Z(t) exp[- Z(x)dx] (4.6)

The mean time to failure (MTTF), is defined as the expected time to the next failure, and can be

expressed as

MTTF = E(T) = if(t)dt (4.7)

It can also be computed by the following relation [40:10]

'ffTTF = R(t)dt (4.8)

IfN(t) is the number of failuresexperienced by time t, then the mean value of N(t) is M(t) = E[N(t)],

which is an increasing function of t, and its derivative is the failure intensity A(1) = dp(t)/dt.

4-2

4.2 Some Important Reliablibty Distibutzows

In this section, some of the important distributions used iii relihability studies will be presented,

along wit h the relations between them. There are also sorie theories related to these distributions,

which are needed for the derivation of the test, criteria.

4.2.1 The Poisson Dish-ibution: The series

'2 •3 o rm

Tn+ m + in., + 7, 3 C - (4.9)
X'=0

converges for all values of m to e"n. Consider the function f(x) defined by

f~x) = e - x 0, 1,2,-1...

10 otherwise (4.10)

where rn > 0. This makes f(x) > 0 and

C-0 Co -i

Zf(X) = z -nix!
z=O T=O

e -m Z Y--mer (4.11)

X=O

thus. f(x) satisfies the conditions of being a pdf of a discrete type random variable. A random

variable X which has a pdf of that form of f(x) is said to have a Poisson distribution, and any

such f(x) is called a Poisson pdf.

4.'.2 The Gamma Distribution: For any positive number a, it is known that the integral

j y '- e-dy

4-3

exists for o > 0 [23:2351, and that the value of that integral is a positive iumber called the Gamma

function of o, where CQ
[(a) = j -yc-yd.d (4.12)

If a = 1, it. is clear that

r(1) = O e-ydy=1 (4.13)

If a > 1, then an integration by parts shows that

[(a) (a -1)1 i '- 2 e-ydy = (a- 1). F(a - 1) (4.14)

Accordingly, if a is a positive integer greater than 1, then

r(a) = (a - 1)(a - 2)...(3)(2)(1)F(1) = (a - 1)! (4.15)

In the integral that defines [(a), let us introduce a new variable x by writing y = z/x3, where

/3 > 0, then

[(a) =jc (X)c- I C (10 dx, (4.16)

Dividing by F(a), we get

1 = 13-f) e- dx (4.17)

Since a > 0, /3 > 0 and [(a) > 0, it is clear that

S1 ,a-le-VI/ X>

f (X r ,3) C' =03e OO->0 (4.18)

0 otherwise

is a pdf of a random variable of the continuous type. A random variable X that has a pdf of that,

form is said to have a Gamma dzstrzbufzon(X - [(a,/3)).

4-4

From the properties of the pdf, it is known that

I,. xo -le -r/OfixJ • 1~o =i/ 1 (4.19)

forýo(o)

which can be rewritten as

z' d (3OIia) (4.20)

The mean and variance of a random variable X having a Gamma distribution are

E(X) = p V(X) = a 2 =k02

4.2.3 The Chi-Squared Distribution: If v is any positive integer (usually referred to as

degree of freedom), then a random variable X is said to have a Chi-Squared distribution with

parameter v (X -, X2(v)) if the pdf of X is the Gamma density defined in (4.18) with a = v/2 and

13 2. Thus, the pdf of a chi-squared random variable X is

I ,(v/ 2)-IeX/ 2 x > 0
fP x; v) = F(v1/2)2",2 (4.21)

0 otherwise (421)

The mean and variance of a random variable X having a Chi-Squared distribution are

E(X) = 1 = v V(X) = a2 = 2v

4.2.4 The One-Parameter Erponential Distribution: The one-parameter exponential dis-

tribution is another special case of the general Gamma distribution defined in (4.18) in which

4-5

o = I and - has been replaced by a i.e. X is said to have a ont--para na • t rmpon Otzal do.-trzbuizoi

(X -,IE I '(or)) if the pdf of X is

1-e- X > 0. > 0
.fx, 01 = a (4.22)

0 otherwise

The mean and variance of a random variable X having a one-parameter exponential distribui-

tion are

E(X) = p = o" and V(X) = o,2

and the cumulative density function (cdf) is

F(x; cr) = 1 - e-(-/°) (4.23)

4.2.5 TheTwo-Parameter Exponential Distritution: A random variable X is said to have

a two-parameter exponential distribution with parameters 0 and a (X - EXP(a: 0)) if it has a

pdf

f(, x>Oa)>O
0 otherwise (4.24)

where 0 is the 'threshold" or "guarantee time" and o,, is usually called "the mean time between

fazhires ".

From the definition of the pdf, one can write

J c--dx j -- (--)dx 1 (4.25)

4-6

multiplying both sides by (r yields

-= (4.26)

The cdf of the two-paranmeter exponential distribution is

F(x;a,O) - f(:')dx = j ---)dx

= - C(La) IX = -e (k - e d a]

I 1- -', (4.27)

4 3 The Moment Generating Function

The mean and the variance of a random variable X are special cases of what. is more generally

referred to as the moments of the random variable. The mean E(x) is the first moment around

the origzn, and the variance u2 is the second moment about the mean. Higher moments are also

useful for characterizing other distribution aspects (e.g. the skewness of the pdf can be measured

in terms of its third moment about the mean).

The classic method for obtaining the rLh- moment of a random variable X is to evaluate thc

integration x'f(x)dx. Integrals of that, form are r.-t always easy to evaluate. An alternative,

and easy, method is t.o evaluate the moment generating function Afr(t) which can be defined as

Definition IV.1 For all real values of t for which the expected value exists, the moment generatlig

flincton (m.g.f) for a random variable X. with a pdf f(2-) , denoted Af 1 (t) is

If-(t) = E(eCt) =J e"f(x)dz (4.28)

4-7

One of the most important properties of MA-(t) is that its rt-' derivative evaluated at zero

(1'(t) o) is equal to E(\") [23:163]. If Mr(t) can be found, then .1 (1) will be easier to evaluate

than jX f(x)dr.

Applying the above definition for the Gamma distribution defined in (4.18), we get

-(t) f e fO(1a) 1 ry - -(-)dx (4.29)

using Eq (4.20), this is equivalent to

1 r(o) - = (1 -f#t,

i.e., for the Gamma distribution

Mr(t) = (1 - St)- (4.30)

For the Chi-squared distribution M 1 (t) is

A1,(1) 1 - 2t1)-'/ 2 (4.31)

and for the One-Parameter Exponential distribution

'11(t) = (I - oft)-I (4.32)

1 .4 Some Important Relations

In the following, the relations between the different distributions will be explored.

Theorem IV.1 If X has a two-parameter exponential pdf, f(x; 9. .) defined in Eq (,.24). then

(X - 9) has a onc-parameter pdf f(x: r) defined in Eq (4.22).

1-8

Peoof

Let Y = N - 0. From the hypothesis, we have X - EXP(O,o-),% where EXP(O,U) is

exponential distribution described in (4.24). The following lemma [9:245] is required to prove

this theorem.

Lemma IV.1 Given the pdf of X, then the pdf of Y where g(X) Y " is

g(y) = f(g-l(y)) dg-(y) (4.33)

From the assumption, it follows that. X = g-'(y) = Y + 0 and

d g-,(y) (4.34)

Therefore, the pdf of Y is

g) fr; o)d• 1 - .-11

(y) x, -9'(Y) -e •

-e-(,6O

= -co (4.3.5)cr

i.e.. the pdf of Y can be written as

9(y = oy_>O,a•>o
g~y) (4.36)

0 otherwise

which is the pdf of a one-parameter exponential distribution.

,1-9

Lemma IV.2 If M,(t) is the moment generatng function of X. then

Afax+b(i) = 6tb. M(at)

Proof

MA.+b(t) = E(,t(ax+b)) = E(c t " tb)

= etb E (C tax) = Ctb . Af,.(at)

Lemma IV.3 The moment generating function (m.g.f.) of X, where X has a two-parameter expo-

nenthal pdf is

M,(t) = e, 9 (1 - at)-'

Proof

Let Y = X - 9, then Y will have a one-parameter exponential distribution whose moment

generating function (m.g.f.) is

MY(f) = (1 - ot)-' (4.37)

since X = Y + 0, then using lemma(IV.2) and Eq (4.32), we get

M•(t) = e19 (1 - at)-' (4.38)

Theorem IV.2 Suppose that X 1 , X 2 , . . .,X, are zindependent, and Xi has m.g.f. Mxi(t),

where i= 1.2,. .. ,n, then the m.g.f. of aX, + a2X 2 + - +a,,X is

,Aaixri+a 2 X2 +...+az,(t) = Mai(ajt)A'Iz 2(a2t) "" A1xn(anl)

Proof

The proof of this theorem is given in Ref. [9:258].

4-10

Theorem IV.3 Suppose that X. A2, ,, are independent and each has a Pdf

Gamma (a,, 3). then tf• pdf of X, + N 2 + + X,, is Gamma(a1 + a2 + + +,, .3).

Proof

Applying Theorem (IV.2) we have

S= (t)m.2 (t) A1- (l

= (1 - tl)-al(1 - t)-.2 (1 -/3t)-an

= (1 t)(aI+a2+.+an)

i.e., X 1 + X2 + .. + XN,. - Garnma(al + a 2 + - -+aft.) --

Theorem IVA If a random variable X -- Gamma(a, #3), then cX Garnrna(o, cO3).

Proof

Since X - Gamma(a, 3), then its m.g.f. is

MA(t) = (1 - Ot)-'

Applying lemma (IV.2) to Mf,(t) yields MA(ct) whose value is (1 - Oct)` which is the m.g.f. of

Gamma (o, c3), i.e.,

cX - Garnrna(o, cO)

Corollary IV.1 If X is a onc-parameter erponential distribution, then

cX - Gamma(1, ca)

41-11

4.5 Order Statistics

Suppose that the rando)m variable X has a continuous pdf f(x) and that {X1I, .\ Is

a random sample from this distribution. The X s, rearranged in order of magnitude, and denoted

Au() _K X(:) _< .- _< .\(,,)

are called the order statistics of the sample. A few results about order statistics will be given here.

Theorem IV.5 Let X(1) K A'(2) _< ... <_ X(,) be the order statistics from a population wnth z pdf

EXP(Oa) defined in Eq (4.24), then the pdf of X, is EXP(O, or/n)

Proof

P(X(l) < x) = 1 - (1 - (x)) 1 - (1 - P(X(1) < x))'

=1-_-l_ n-n -O

The derivative of the above cdf of X(1) is

\Vhich means thai X(\) has a two-parameter exponential distribution with parameters 0. o/n.

Theorem IV.6 Let X(1) < X(2) •_ .. !_ X(,,) be the order statistics from a population walh a pdf

EXP(o) defined zn Eq (4. 22) then the pdf of X(l) is EX.P(a/n)

Proof

P(X(l) • r) = I - (1 - r() = I - (1 - I + -/"))-

4-12

Once agaIi,, the derIvative of Ihe cdf of X(1) is

which meanis that AXj) has a one-parameter exponential disoribution with parameter a/n.

Theorel, IV.7 let X , X 2 , X. , be independent and identically distributed random variables

(iid), witlh ,df EXP(aT), then

Xi - Gamnia(n, o-)
i=1

Proof

Xi - EXP(a) impnies Xi - Garnrna(1, c) by the definition of the exponential distribution,

then by using theorem (1\7.3) we get

Xi - Gammra(I,

I~e..

ZX \'i Gamna(no-) (4.39)
i=1

Tlicorem IV.S if X ..- Gammna(a, b) then 2X 2(2a)

l'rof

A' - Gamrnma(a, b) implies + Gamma(a, Lb) Gamnma(a. 2) by theory (111.4) and this is

equivalent t~o 2 (2a) from the definition of the Chi-Squared distribution. i.e z-V- X2(2a).' b

Theorem IV.9 If X 1, X_, ',)., are independent and identically distributed random variables

tw'th pdf EXP(o), then

- y(2n) where T 'Y,

4-13

Proof

Because AN , X2, X, are independent, and identically distribulted random variables with

pdf EXP(a), then T - Garnna(i,,a) as given before, and by the last theorem, 2T will be a

Chi-Squared distribution with 2n degrees of freeaom, that is

2T X(271) (4.40)

4.6 Type I1 Censoring

A type /I censored sample is the one for which only the r smallest observations in a random

sample of n items are observed (1 < r < n). Experiments involving type H censoring are often

used in many situations, such as software failures, where the test is terminated at the time of the

i-Lh occurrence of failure. Such tests save time and money, since it could take a very long time for

all failures to occur.

It should be clear that. with type II censoring, the data consist of the r smallest times

"A(l) < X(2) < .. () out of a random sample of n times X', IX2, ... , X,, from the distribution

in question. If X 1 , X, , are independent and identically distributed random variables, and

have a continuous distribution with pdf f(x), it. follows from the general results of order statistics

[.7:518] that the joint pdf of X(1) _ X(2) < V < (,) is

f X. (2). 2: (n) ()! f(.l)) - F(x(,) 1(4.41)

4t-14

As an example, If {i., V1 \n} is a random sanple from a one-parameter exponential distribu-

tion whose pdf is

fx) =- la" x >_ IT> O >O

and knowing that F(x) 1 - eIr/ i.e.

1 _e , io F(x(,)) = 1 -

then the joint. pdf of X(1) _< X(2) _. < X(1) is

.f(x(l),7(2), = (.-.). (. 1 - (1 - -(r)/Cr)

r

n! e
(n-r)! r

- x(i) + (n- r- x()
n! 1 [(n-)! 7 e i=1

n! 1 e- T/Cr

(n-r)!

where T x(i) + (n - r)x(r) is called total time in the test, whose pdf is Garnma(r, a) as can

be proved by the following theorem.

Theorem IV.10 The total timc in the test T has a distribution which can be defined as

7T - Garnma(r, a)

or 2T -' Garnma(r, 2o-)

or 2T/a -• Garnma(r, 2) (2 XF;r)

4-15

Proof

Consider the following transformation

"II =lnx(l)

WV = (n - 1)(z(2) - x(l))

i'V-i = (n - r + 2)(X(r- 1) - Z(r- 2))

1V = (n - r + 1)(X(r) - X(,_))

Adding the Wi's, gives

r

W1 + W + +" Wr X(i) + (n - r)x(r)
i=1

i.e.,

The joint pdf of Wi's is given by [47:1021

f(Wl,W2, ... ,Wr) = f(X(l), X(2), X(()) a(Xl), X(2),... (r))

where

O(x(). X(2), ... ,X(r)) 1

Now

C~lW 8 WP? Ol
ar(l) axil) ar (1)

r(I'i 1 t...,(2) a) 0)(2)

a(x(1), X(.), X(r))

dl),) dr(,.) dl)(,)

4-16

Substituting. we get

0 - 1) 0

0(1i7 , I¥,,..., ') 0 (n - 1) -. 0

a (x(1), X (.,), ... , ())•• . ..

0 0 (n-r+l)

n!

(n - r)!

Thus, f(wl, w2,..., wr) can be expressed as

__ n! 1 v__2

f(wl, w2,..., w,) (n-r)! 7ar /-,').

-- re

r

zwi
I i=1

which means that, W1 , .. 4 are independent, each with a pdf

1Wlf(wi) - -e

r

Therefore, T = IV, can be defined by

T -. Garnma(r, a)

oil 2T -.. Gamma(r, 2a)

or 2T/a -. Gamma(r,2) X2

4-17

If the above discussion is to be applied for the two-parameter exponential distribution. then let

-',- 2 X,, be a randoin sample from a two-parameter exponential distribution with a pdf

x-~ i> 0 >0, or > 0
.f(x; .o) = -

0 otherwise

If X(1) ! X(•) - X(r) represents an order statistic from the above distribution, then the joint

pdf of X(l), X(,).., X(r) Is

Sni rn-r

.f(x(1) X(2), x(-) (n-r (f -(z(')-8)/27 1 - (1 - e-(x(,r-)/_

(n-r)! a [0) + (n - (

Theorem IV.11 Let X(l) <_ X(K,) . <_ X(,.) be the order statistic from a two-parameter expo-

nential distribution, then

(a) n(x(l) --) has a distribution given by 2n(x(1)-O) .,'2

(b) Y'- has a distribution given by 2L) " 2 where

UL X 2 (r-1) whr

r

v;+ = Zx 2 + (-- r)x(•) - fx(1)

Proof

(a) It, is already known that X(1) has a two-parameter exponential distribution EXP(9,o'/n) and

therefore n(X(1) - 0) will have a one-parameter pdf EXP(a). This can also be written as

n(x(t) - 0) 2n(xuj) - 0)
Garn•,,a(, 1) or or Gamma(1. 2) or (X'2)

4-1S

(b) since (x(1 -9) < (-(.2) - 0) < < (x(,,) - 0) for all values of r, then the above

statistics can b)e considered a~s the order statistic front a one-paramneter exponential pdf EXtP(o).

Consider the following transformat ion

WI : =?(X(i)- 0)

' : (,) - I) [(x(2)- 0) - (x(1I -0)] (11 - 1)(X(2) - X(1))

= (n. - r + 2) [(Xz._r -9) - (X(r- 2) - 0)] = (n - r + 2)(x(,-,) - X(r_.))

1" = (n - r + 1) [(X(r) - 9) - (X(.-_) - 9)] = (n - r + 1)(x(,.) - X(r_1))

knowing that W1, W 2, ... , Ir are independent and each has a one-parameter exponential distribu-

tion, and that
r

Y,- = Ex() + (n - r)x(,) - nx(i)
i=1

r.= Z (') - 0) + (n- r)(X(r) - 0) - n(x(j)- 0)

i---1 i=2

Since each t4' ~ EXP(cr), then ZW.V~ .• Garmna(r - 1,o')
i=2

i.e.. Yr•- Gamma(r - 1, a) or 2Y)/a Gamma(r - 1.2) " X2(r_ 1)

4.7 Maximum Likelihood Estimates of 0 and a for the Two-Parameter Exponential Distribution

Let X(I) < X(2) < ... < XNr) be the order statistic from a two-parameter exponential distri-

bution, The likelihood function in a random sample of size n is then

0-- z(X) - 0) + (n - 7)(X() - 0)L(XI ,X2- Xrn0) 7! 1 6 (4.42)
_(7 - r)! o*'

where 0 < x(i) < < x(,)

4-19

To find the maximum likelihood estinmator of aT and 0, one must first fix (7 and maximize Eq (4.43)

w.r.t. 0 where 0 varies over tie range 0 _< x(il* 'This means, 0 must be selected so as to minimize

I (xý r) + (-)('(,) 0) .)1.

I - 0) + (.. - . X 1i) + (n - -I t)

It is clear that the minimumn is attained at - X((1).

For i, let, us consider

L(xi), r(2),... 0,(r, 0) n e- 7--l -'

k(n - r)! ,r

f (x (2 X .. X(), Cr, 0) f •n ((n -r)! rfztT0 , - ro

differentiating w.r.t. a, we get

OnfL n L 1.
__ = - - +dc (7 (.2

putting 9eL 0 gives , -- - i.e. the M.L.E. of a is -

4.,5 The Likelihood Ratio Test (LRT) Principle

Let X1 ,-2 , .- , denote n independent random variables having respectively the probability

density function fM(X,':O.12,...e,,,) i = 1, 2,.. n. The set that consists of all parameter points

(0? 02. . 0,n) is denoted by Q, which is called the parameter space. Let W be a subset of the

parameter space P.. If ,' is the set of unknown parameter values admissible under Ho, then we wish

to test the hypothesis:

II,, (01,0...., 0,,,) E against. It, (01, .0'. 0. ,, V) C

4-20

Define the likelihood function,

L (w) = 17 €1 6 2 I ~ ' * r

and L() A 1-i f, (.i:oJ,,2,....,) 01.-02,.. ,O C •Q
t=]

Let L(•) and L(f) be the maxima of these two likelihood functions, which are assumed to exist.

The ratio) is called the likelihood ratio and is denoted by
L(O)

Let A' be a positive proper constant.. The Likelihood ratio test principle states that the hypothesis

H, : (O0, 02,- , 0,,) E w is rejected if and only if

A < A'

A' is determined according to the value of the significance level of the test a according to the

following equation.

P(A < A" JHI is true) = a

As an example, if the level c(f significance is 0.05, then there is a 5% probability that the tested

hypothesis will be reJected when it. is actually true. In this research, a 5% chance of mistakenly

saying that the MTBF 's of the samples are not the same.

Our objective in the next section is to obtain the cumulative distribution function of the

likelihood ratio, in a computational form so that the value of A* can be found for any level of

significance, any number of samples, and any number of failures.

4-21

4.9 Dertvatzon of the Likehhood IRatzo ('Crnt on

Suppose that, there are p populationis with Ihe pdf of lhe i-h population he EX P(Oi, 7,) and

it is required to find the likelihood ratio criterion for testing

IH" : 1O2= 0= O, = 0 (unknown)

& aL = C2 . aP, = (unknown)

against HI,, otherwise.

X1(1) XNl) X,(

X1(2) X,(2)

X'1(r) Xt(r,) X-p(I,)

Pop. 1 Pop. i Pop. p
EX P(0, a71 E XP(O,, U,) EX P(IO. IaUP)

Let Z, = miin(X 1 (1),X._,(1), X.(1)

so ZP = min(Xl(1), X 2 (1),. ,X(1))

Theorem IV. 12

Let 1;- = (Xii - Xj 1))+ (ni - ri)(Xi(,, - Xii)) (4.43)
3=1

pt r, p

1.' = Z(X,(j) - Z,) + Z(n2 - ri)(X,,,)_ - z4) (4.44)

i-i i

and U, 1(7.,)Z,_ + n, X~i - nj)Z, (4.45)

where i = 2,3,..

When Ho, i.s true, we will ha v(

4-22

p

(a). >jf.-(antnh -p

(6). V' -. Gan•nin(1 - 1,a)
p

(c). V = -Z ,+ I

p p

Where le 1,,, and 11 E Zl!.
z=2

Proof

(a). It is already proved that 'i - Gam1ma(r, - 1,ai), and therefore if H, is true, then
P p

)i - Garnma(r, - 1,o-). Since the I 's are independent,, then J:Yi - Garnrna(Z(ri - 1),o,)

Garnrra(R - p, a).

(b). Since Zp is the smallest among {Xi(j) I i . ,p; j = 1,-.. ri} so, using the same
p

result of (a), we conclude that V - Gar•nna(Z-i(r) - 1,o-) i.e., V - Gamrna(R - 1,a).
i=1

(c). From the definition of Ui, one can write

1 2

U72 = (1Znj)ZI + 712 X 2(1) - (EZn, Z
j=I j=1

= ni Z, + n.X 2 (I) - (n, + 71,)Z,

' 3 = (n, + n,)Z2 + n3 X3(1) - (7, + 772 + na)Z3

= (n I+ 71 + + . 1.+ , 2)Zr 2 + 'I;,-IX (1,) - (n + n2 + -. + n.l)Z_

U(" (nI + n11+2 + . 11.,+)Zv + nr\(1) - (nl +1 2 + .+ nP)ZP

by summation, we get

17, = ni ZZ1 + +i2 A'2 -- + + ?1pXp -(hi + n, + + .nr)Zp
t=2

n, (ZI - ZP) + n-(X'•(1 - ZO) + + 1p(.Xp(l) ZO)

r p

= nI(XI(l1),- Z)+Z,+,(\Y- - Z) = E-7,(Xi(,\ - Z) (4.46)
s=2 1=1

-1-23

Eq (,1.44) for V can be written as

1, r,

- :(Xin~r)±Il - -P ZP)
xi. = .,,- + xl,,,-,.,) + Dili - ?",)(i" Xm+ i)-Z)

7' P

i=1 j-I i-

p r, 7'

= • Z(x,(- X,(,)) + J:(,i - ri)(X+(r,) - ,X.(l))
t=l j=l 2=1

+ E •i- . -,(,) - Z) + E(- -,)(x,(,)- x ,)2= =1 i=1

Y. ~+ U (4.47)

where Y, is as given in (4.43), and

p r, p

U ZE(X,, - ZP) +Z(n 1 - r,)(X-(,) - zP)

i 1 j =l i=1

P P0

p p pp

E r(Xi,)- Zp) + EZn:(Xi(o - Zp) - Zrl(X,() 7,;))
=1 =1

p

7i(.x,, - zP)
2=1i 1i 1

pp

which according to Eq (4.46) equals "Ui
i=2

P P

i.e. V Ys + u where u = U (4.48)
i=-1 i=2

Theorem IV.13 If H, is true, then u - Gamrna(p- Ia).

Proof

logg and Tanis [35:439], proved that Uj - Gamma(l,a) and since they are independent,

then U2 + U3 + -+ U' - Gamrna(p-- 1. T), and therefore u - Gamma(p - 1, a).

4-24

The last two theorems will be used again in the next chapter for the derivatioln of tile h0-1

Inorlient of the likelihood ratio criterion A.

For the derivation of the likelihood ratio criterion, remember that during the discussion about.

the Maximum Likelihood Estimates, the M.L.E. of Oi was Xj(i) and that of cri was (,) where

-- (Xi(j) - XA1j)) + (ni - rt)(Xj(r,) - Xi(1))
j=1

The likelihood function of XI(i), .,p(r,) is

1 -,- x - o,) + (n2 - ri)(xi(r) -o,L (XI ~P 1 1 (ij

L(.V,(1),• , Xp(r,); Oi; 0i) = k i --k e
i=10"2

P 7-7i

where k H-1
i=, (ni - rip

Under the null hypothesis H,

0 1 0 2= 0 0 Op 0, and 7=1 2 .. cp=

so, the likelihood function can be written as

SL:(Xi(j) 0-) + (74 - v'i)(Xi(r,) -0

S11= rp.k - • r(x' O-°+ ('-•'(x= r,

W __ DpX,(,- 0) +± n - ri)(Xi(r,) 0)= " •T eC 1=1 .j=1 i=1 1(4.49)

The M.L.E. of0 isZp min({xi) Ii = 1,2,.- ,p; j= 1,2, -- ,r }).

4-25

Substituting in Eq (4.49) using (4.44), we get

L(.Y (1) 'p(r,);OO ;0r,) = k " 1 (- (4.50)

The M...E. of U is then i =!ý, so

max L(XL(I) X,"p(,);O,;oj) = k.-,e.T, "e
0.,oEH . (1 '/ R)IR

= k. -T.e (4.51)

when O9 and a, are unrestricted, the M.L.E. of Oi is Xj(1) and the M.L.E. of ai is (2) so

-e L (X,;)(. - X,(i)) + (n - ri)(Xi(,,) - Xj(l))

,,l, • , =rI (Y j / =i) r. e

p

p (rr) p
Sk(fI)) -l k (l r)-R (4.52)

i=1 i=1

From (4.51) and (4.52), the likelihood ratio is given by

A max ,,, ,EH, L(X i(i, '".. . 'p(rp,; Oi; 7i)

k. R e-R _ R)R

k p(Ur) .- R -l~Y

p p
RR~ HoO" R ,=1

_____ _______ i== 1 (4.53)
p P

(ui,->" (?I + Y)R(r

4-26

'". THlE EX\AC('T I)'TJII3UTION OF THE TEST STATI.SIC

For our approach ofselectlng the proper software reliability model, a test statistic is needed.

This statistic will be used for testing, whether there are significant differences among various sets

ot software failure data. It has been taken into account that the underlying distribution is a

two-parameter exponential with type IH censoring, and the failure data sets are of unequal sizes.

Nagarsenker and Nagarsenker [70] obtained the exact distribution of Likelihood Ratio Test (LRTr)

for testing the equality of two or more exponential distributions using, equal uncensored sets of

failure data. For the equality of one-parameter exponential distributions see C'.Ie and others [39].

In this chapter, the exact distribution of the Likelihood Ratio Test (LRT), based on unequal

t% pe II censored sets of failure data, is obtained for the first time, in a computational form.

5.1 Assumptions

1. p independent, type /1 censored sets of failure data are available, each has a two-parameter

exponential distribution given by

-_-- X > 0i, Oi > 0

0 otherwise (51)

where i = 1.2,. .. ,p. is a subscript denotii.g data set i . p is the number of data sets. 0, is the

location parameter and or, is the scale parameter,

2. Each set has an unequal number of observations.

The LRT for testing the hypothesis

H, : 01 = 0 -= OP and trl = (7,... (5.2)

against the general alternatives based on the ordered sets of data where r, < ni was given in the

5-1

previous chapter by

P PII? J-I(>; R 1-I(y.)r,

i =1? R R H

JJB)-I", (n + '" I";
A1 7=1 (5)1

where

H= Null Hypothesis

A likelihood ratio

ri = size of censored sample i; 1 <_ 7i < ni
p

R ri, total number of failures
i=l1
r1

Yi D xi~j) - xi(1) + (n. - X~)

j=1

n~i = sample size
p r, 11

S=w • x,- ZP) + -(', - ,.,)(X(r,) - Z,)

i=lj=l i=1

7p ?fifl(X 1(l), X2(1),' • p(t))

5.2 Derivation of the ht--h Moment of A

To get the hIh moment, of A, we use tihe method described by Wilks [90:3911, and the fact,

that under HT,

0 1 = 0. .r 0 (5.4)

k- 0-1 = Cr, a (5.5)

and that I" CI(-amma(r - 1, (7), and u - Gamma(p - , oT) as given in the previous chapter.

p
Aofc: From llogg and Tanis [35:439], U, and Y1 are independent for each i, and so Y yS and

p

L = 7' are also indirpendi.ent

i=2

5-2

Theorem V.1 Let I'4 - Gamma(ac,3). 1 = 1.2. .p. and I' Gamnma(k,13). Further,
P

.ssume that I'j and W' arf independenit, thein the hW"• moment of

ifll

Ho 1•)",

= 1 r=(5.6)

where ri > 0 arc constants and R = r, + r, + + r. is given by

.+ + r.hp

r(Y: , + k) (h+)(57

E(Yh) = i=1 II r(+i,) (57)

(Z�a + k•+ Rh),
i=1

Proof

Consider the function f(O) where

o(U,+ yi) p

f(0) = E (y,)r, (5.8)

Following the method of Wilks [90:391], the hWimoment of Y is

E(yh (d1f(O)
(5.9)E(}") -- dO" I =0

i1f (0) E {m)U r~i J7 rhl

which can be expressed as

.5-3

f(0) -]l J(Yzi -1 f= .(y, y,, yp. w)dyj d yA52

%vhere f (YI , Y2 Yp, ?I') is the joint. pdf of YI , -, Y and IV.

Since Y's and KW are independent, t~hen we have

further

f (yi) = Garnr-na(ai, 3)-y c

and similarly

13jkf (ký)

The Joint pdf f (YI Y2 , Yp U?,y,) can be expressed a.9

P *l *-, * -,!I'u') - W k-]e uq 0.-1____ 5.4

substituting for f(O), we get

> =1 i1

j Ok r~k -1] loyd. dy (5.15

5-4

Tlaking into account that j .r1V C dx P+ I the last. eqaIoncn ewrtena

1() 1F(k) A F((vi+ rih)

f(O) p O~- 00+

p

17J [(at + I-lL /0 : + Rh
1k / F(k) l

p O p3 0 k Z o i +R h
/3k[F(k)li=1 I1P(cK 0)t

3R~h F(ei + rih)

Zo, + Rh-+-k Fa)
(1 O)i=l

p

o -h F n, + Yrih) o(Zi + Rh, + k)

-K(l - 0l0)-- (5.16)

where

PC3I P(ci, + ri /) and n (Zoi + Rh + k) (5.17)

differentiating~we get

dos f 0) (JSK(1 0)

Ka K(a + 1(a + 2)* (o + .s -)Os(-0 as

F(o + s)

F(O)

At0=0. d--f(O) ['(C,+S) /3
dAl 10= R. dO7 3

1p

+ Rh + k + s)
d'f(0) =;3Rh [FI V(o,+rih)I (-- 19)

a, + Rh + k)
i=1

Putting s -Rh, we have

p

d-'f (0) = Jh[jF(a + rih)] r(Z: n-i + Rh + k -R RIO
dooh ra) i=l p 3- Rh

LRih r(ai + tRh + k)

i= 1

p

r(P a(Ot + k)h

2=1

i~e. E()h) == r 1- i + r (5.20)p 11 r(ai)r(E-- a + Rh + k) =

Theorem V.2 Under the null hypoihesis H., Mhe hth. moment of A defined in (5.3) is given by

E(Ah) R Rhr-(R -'1) r,hr(ri(1 + h)- 1) (5.21)F(R(= + h) --1) Fi, - i)

Proof

In the previous chapter, we have seen that A can be written as

p

RA =1 (5.22)
1-(,' p•+• ,
fi(ri)', (lu-+ ZY,)

a=1

and taking into consideration that Y, - Gainua(ri - 1, c), and u - Ga71na(p-- 1. ot) and applying

Theorem (V.A). we have

Ah Rh ()'

hh _ (5.23)

\•= 01 l)

5-6

Therefore

/ 1'~

P; h E

RRh r(Z(ri 1)- + p- 1) -
Rna i=1 Hr h + ri

Drip r(Z(r, - 1) + P - I + Rh)

RRh - F(R--•p•+p- 1) P r(ri(h+ 1)-
r (R - p+ p -T-l+Rh)" r(r 1 -

R Rh. F(R -1) P ,h r(r,(1 + h) - 1)

P(R(1 + hi)--1) Frl r(ri - 1) (.4

Having defined the test statistic and its hL- monent, it is time now to know the probability

distribution for its values, and have the cumulative distribution function from which the expected

value of the statistic for a given probability can be calculated. In order to do that, the Mellin

Inverse Transform will be used to obtain the probability distribution from t(le moment generating

function which already has been derived. In order to obtain a computable form of the cumulative

distribution function of the statistic, the asymptotic expansion of the Gamma function will be used.

Before proceeding, the following results will be needed: Gamma Expansion:

The following expansion for the natural logarithm of the Gamnna function holds [5:312]

t~rr +h) ,•(;r) + (. +h 1 - -- •?:, r (i., + /i ii(, - ,-,+ I)J" + R,,(x) (5.25)
r=1

where 117,(x) is the remainder, such that IRm(x)I < - for some constant C independent of x.

and BU(h) is thl Bernoulli Polynomial of degree r and order unity gi cn by the following relation

S- 2t -...)BI(h) (5.26)
r=0

5-7

The first three Polynomi als arc [5:3121

B, (h) = h- - (5.27)2

132%) = -h2i1 + (5.28)(3 1

B3(h) = P -)h 2 +)h (5.29)

Juvcrse Mellin Transform:

If 6(h) = E(xh), then the pdf of x > 0 is the inverse Mellin Transform giver, by [88]

fo) ---1 X- h-I 0(h)d- h (5.30)

f(t) is Q(t) if the function f(t) is bounded by some constant multiple oft for large t. Nair &

Norlunds Icsult [72]7[74]:

If ((h) = 0(I-k)hoo,, i.e. is bounded; then 0(h) can be expanded as a factorial

series in tile form

6(h)= R, - (h+ia) (5.31)

i=0 ~ +i+a

where a > 0 is an arbitrary constant chosen such that R 1 = 0 and the coefficients Ri are obtained

using the following recurrence relations from [71:363]

Z Rid 2._.j = q,, = 1.2,3,--- (5.32)
J=0

di kci.kdi,_k/r, di,o=l (5.33)
k=1

c,-r - [B,+,(a) - B,+,(a + t, + i)] (5.34)
r(r+ I)

5-8

Beta Fuuctuon:

The Beta function of w and : is defined a.,

B(', z) = B(z,w) j t'-(1 -z)W-ldt (5.35)
0

which is related to the Garnnia function by

B(,w) - r(z)r(w) (5.36)
r(z + u)

Incomplete Beta Function:

The Incomplete Beta Function l4(a, 6) is defined by

I(a,b) I j ta-(- t)b-ldt (a,b > 0) (5.37)I(, b) (a, b) 0

5.3 The Null Distribution of A

Let L = AP/R, then from (5.24) we have

Rph pr[/ + ri)ph]
E(Lh) lrR~ph- 1i) r[-r V/r~+ •),p - l] (5.38)

r(R +ph -1I) _r F~ 5.8

r(R?- 1)
where K (5.39)

rl r(,'i - 1)

Applying the Inverse Mellin Transform [88] to E(Lh), the pdf of L is

P

- [((k-.)-P", [(pni + ph + 6)ki - 1]]

2f)i .. r(pm + ± + ph - 1) A (5.40)

5-9

where

6 = adjustment or convergence factor

pill = R -

k, = r,/R; k,-+kk2 + "+k=

define

t=M+h /I i.e. h t- (5.71

From (5.40),(5.41), we get
1 Tn+iOG

f((t) =K U-t(t)dt (5.42)
2-,ri Jm-2 00

p

where /K1 K t'- l(ki)-Pnk (5.43)

P

f- [(k)-plk r((pt + 6)k, - 1)]
and F(t) T 6p -1) (5.44)

Using thut asymptotic expansion for the logarithm of the Gamma function [5:pp. 3 12] then-

6()=h2.- 1 +• (5.45)

where =' K (,)) -z F, II+ + 72 -. (,- -

where K,2 (2-)()p IfAk(ka-, (5.46)
i

and v• - 3(p,- 1)/2 (5.47)

The coefficients q. are recursively determined using the following relations

q, = k.4kqr_./r ,qO = 1 (5.48)
A =1

A, 14.)p B,+(b - 1) - - 1)] (5.49)

5-10

Eq (5.45) shows that

Q(t)/K2 = Q(t-) (5.50)

with real part, of t tending to oG; 6(t) has therefore the following exact representation as a factorial

series [72, 74]

- r(t + a)€(t) =K 2 ~ iF + a+ v+ i) ,Ro =l (5.51)

i=0

where a is a convergence factor chosen such that R1 = 0, and the Rs are obtained using (5.32)

Using (5.51) in (5.42), the pdf of L is [71]

= ,++a.-1l -)•v+i-(f (t) =K3, " E R, F(v + i) (5.52)

i=0

___) [k(Rk. - ra k)j(.3where K 3 = (2•r) (p)-vF(R-1)J [kl'-'" F(Rk, -1)J (5.53)
i

In Eq (5.49), choose 6 such that A 1 , 0, then

P

6 7F[E(ki)-' - 1]/(p- 1) (5.54)
i

In Eq (5.51), choose a such that R1 , 0, then

a = (1.0 - v)/2.0 (5.55)

From (5.52), the cdf of L is

F(f) P(L < t) = f(f)df

= I 3 YR 1
cc st•_R ro +a- 1(1-_g)v+i- I

3 E(v +i) d

cc

= Ia>ZR:-.It(,n+a,v,+i) (5.56)
i=0

wher_ R: = T{[F(rn + a)/r(,,, + a + v + i)] (5.57)

5-11

1T. THE ASYMIPTOTIC DISTRIBUTION OF TUlE TE.T .T7P,7ISTIC

When the exact method for comparing different sets of software failurc- data was applied,

some sets were very large and sometimes exceeded eight hundred failure times. Thu calculations

for these large sets were very time consuming, which made it necessary to think of another efficient

method for calculating the cumulative density function (cdf) with accuracy approaching that of the

exact method. In this chapter, a useful asymptotic expansion of the distribution is obtained up to

the order of R- 3 , where R is the total number of failures. The second term inI this expansion is of

the order of R- 2 , and so can be used to obtain accurate approximations to the percentage points

of the test statistic. In fact, the first term alone, which is a single beta distribution, provides a

powerful approximation even for moderately large values of R. Of course, for a small number of

total failures (less than 20 failures), one has to use the exact distribution obtained in the previous

chapter.

6.1 Preliminaries

From the previous chapter, the exact cdf F(f) is

C F r(m +a)
F(r) = (2_) F-)(p +a +v- i)fl Ik, Rk+- 771 + a, V + 1) (6.1)

i=O

i= I

Knowing that prn = R - 6, AT3 can be expressed as

r(pm + 6 -1) VP
1 f-• F((pm + 6)ki_- 1)P I-(k") 2(2 - -

= (rn). p-]7(kjk.i,+ 6k. ,(2,r)(L) (6.3)
i=1

F(pm + 6 - 1)

where l1'(n) l- i~l F(pinki + 6k, - 1) (64)

(- 1

fire follow inrg let ma wil IHItel I til sim npIIfyIring I fie (Ier Ivat Ion of the &-y np to tic d is trIhtibt IonI

Lemmia VIA The following expanim~on for the i-aljo of two Gamma functzoirs hold~s [69:359]

r(m+6 + a) = (V+i+ LtcI+ Ci, 2 + (6.5)

where Cj,r -[Br+1 (a) - B,.+ (a + v +) (6.6)
re'- + 1

Takirng the natural logarithm of K(mn) given in (6.4), we get

p

=n~n tn[r(prn + 6 - 1) - ta 1n'(p??zki + 6k, - 1)

= [-n(27r) + (pm + 6 - 1 - -)[n(pm) - (pn)
2 2

m (- 1)rBr+1 (b - 1) + Rm+i (prn)]
F-1 r(r-+ 1) (p~n)r

p=1 1
I Z tn (2 7,) + (pink-. + 6kj - I -)e(prnkj) - (pniki)

D -2 2
i=1

- (-1yrBr 1(6k, -1)+ n I(ik)
r1 r(r + 1)(pnm,) +Rmi-nii)

1 3
= -[n(27,) + p~nCn(p~n) + Hbn(pm) - -fn(pm) - (pin)

2 2

"r ()r +~ 1)p,,r + R,+ 1 (prn) -((2)

- (pfllk, + 64-, - 2)fn(prn) - 1:(pvn2k, + bkj - 2)ik
i=1 =

+ Z(pmk:) + E EZ()B+1(k 1) + Rn+i(pmnk2)

0- P Ci(n~ + pmfn(prn) + 6tn (pin) - 3-[n(prn) - (pm")
2 2

in YBri(6-1 + R,+i (p?fl) - pmfnin pn?) - brn(pm)

Y- r r(r-l+ l)(p7n)r

37) 3
+ T[(I,,,ki+ 6kj - 3)fnki + pm

2 2

+ _(1YrBr+i(6ki - R1) , I±77ii
=1 j rr.1 +)(P? 14.)r

G;-2

i.e. InA(in) (1- n)) ((2;) + 1)1,,(,m) - " Ipn, +A- , I
2 2

Z ar (6.7)

where a7 rBr1p [f Bi(bki - 1)- B,+, (6- 1)] -A 7 (6.8)

r~ + Q" " 1

fnIK(in) can be expressed as

kL = + O(,n) -) (6.9)

r ? I,'=ll

so K(mn) = (2e)p (pin)d 3i k

= (27,) ' - (pmn)2 (- -J kT (++6k + 2 + (6.10)

The coefficients Tr are recursively determined from the following relation

7' ka,'k e:-.,o= 1 (6.11)
k==

Substituting in (6.3), we get

so) (2,-) "-- - (pm)}t r- kT(;ln~k [)p "k + ,- k,+--
i=1

=- + 7 ..2 1 (6.12)

(6.13)

where : -(1) - (6.14)
2

6-3

Ttl T/A

6. 2' Asymptolic ExpaIm,% a' Aj Ejacl lhnltr? hu /i i, In

Choosing I such that T1 = 0, makes (I 1 0 and 7:2 = u,. t hen substituting in (6.1), we get

T7, 73 F I(I + a) (6.15)

F'(t()= in"' 1-- +m: + . E ,Ri + (I (; ++ +(+")

,3 0 (m + a +v)

Using leinnia (VI.1) for F(n + i) F(C) will be
rm+ a + v + i

F (() = 1 1 + +__ _ -4 + " R i I-(i 1 + Ci.± + C .2

7112 j13 l TrI

•11(m + a,v + i)

= +-+ :j +.. Ri -•+ ,-' +• +-
"712)137 2=0 "77 ?n~ -- n+

.I(m + a,I, + i)

±r, T3 . .- .)C"+ L C-n + a.
[I + -=+ T ..]I/no + L-" + • + .)It• .

771" 77'13 M7 77212

+Rl(1 +C,11++ +

+ -1- + C2, + ...)IC(m + o7,v + 2)T7l ,77

1 c',. 1

71Rol~e(.n + a. t) + -- [co, lie(, + a. r) + JlIt(?n 4-+ a.? + 1)]

1
+ -[c(,2It(71 + a, 7') + I?1clll (dm + a. v + 1)

+ !lt(,n + a, I, + 2) + T-,2Rol(,, + a, I,)] + o(,n-3) (6.16)

Since O?= 1, a is chosen such that RI = 0. and 6 is choson such that

T" = a, 0, then from the recurrenct, relations c0c, = 0. and F(O) will be

1
F() 1(m + a. I,) + -[co.,.If(m+ a, v) + R,:If(m + av + 2)

+Tý2 ,(?n + a, v)] + O(m,3)

I I(m + a, v) + 4[(c2 +)t (n a, v) + ?2I(m + a, v+ 2)]

+ (7113) (6.17)

Since 162 = -T, - (n02 thP-n the asymptotic distribution of the test statistic is

f) =_m + a, v) + R2[I(,, + a, v + 2) - I(,m + a, v)] + 0(m,3) (6.18)

In practice, it is found that this asympt~ot.ic distribution is good when the number of failures in the

set is greater than twenty.

6-5

1'71. DE'lGN .A .\D A .4t'PLIC.4 TION OF TIlE PMS ENVIJON'jliI:'.N'7T

In the preceding two chapters, the mathematical solution for the proposed method for solving

the problem of proper model selection has been developed. This is not the end in itself. This

mathematical solution should be transformed into a useful algorithm for the practical application

of this mathematical solution. Tihe algorithm is then coded, using the appropriate programming

language, into an environnment.. In this way, the solution can even be modified to solve other similar

problems that may even exist in other fields. The transformation of a mathematical solution of

a problem into an environment is the link between two sides. The mathematical solution of the

problem, the design of an environment, and coding of this design, using an appropriate programming

language, are one side. The other side is the user who will use thl environment, and provide the

feed back about the tool to the designer and the programmer.

7.1 Definition of Ike Proper Model Selection (PMS) Environmeni

The first question to be asked is what. the Proper Model Selection (PMS) environment can

do and how. As the name indicates, it helps in selecting the proper software reliability model for a

given set of data. This environment is very simple and user-friendly. The user will keeo in mind the

accuracy of calculations needed (exact or asymptotic), depending on the computer time available

and the size of the failure data on hand (asymptotic method is preferable for failure sets more than

25 in size). All that the user needs to know after that is whether the data he or she has, are in the

form of failure times or times between failures and the name of the file where the data are stored.

The environment will take these data and estimate the sample siz.e (which is not known in case of

softxware failures). The maximum likelihood method is used to estimate the sample size as given in

Appendix B. After estimating the sample size, the environment will check whether the given set of

data can be from an exponential distribution, which is the most. common distribution for software

reliability studies. The method used for testing the exponentiality of software failure sets is the

7-1

one referred to as the G; tIrst. 'Ihis iet hod is based on the so-called G ini statistic and is discussed

by Gail and Gastwirth [29]. l'th lest has good power against some other alternanives [.171:1I-t;'

specially with type 11 celsorcd data. Ifthe data did not provide evidence against exponenlialitv.

then the PMS will calculate the likelihood ratio test criterion for the given set and compare it with

the percentage points at different significance levels to determine if the given set of da'.a cal bhe

considered equal to one or more of the software failure sets given by Musa [64] (refered t.o as DACS

failure sets), or by Littlewood [52]. A table will be produced by the environment, telling whether

the set under test is equal to one or more of the other sets, and the maximum significance level at.

which they can be considered equal. If the given set of data provide evidence against exponentialily.

then extra data may be needed.

Along with the PMS, a table generation environment is developed to give the percentile points

at, different significance levels for different failure sizes, and at, different, numbers of samples.

7.2 Design of the PMS

The Function-Oriented Design method has been used for the design of the environment as

shown in Fig (7.1). This method makes use of the data flow diagrams and the structure charts

for the environment. The Proper Model Selection environment (PMS), is designed to work with

Personal Computers using MS DOS operating system. This will widen the base of users of the

environment and will enhance the tool itself, by adding more data files to existing ones. The PMS

can be easily modified to incorporate new mathenmatica] methods, or to improve those already in

use. For the implementation of the design, the C language is chosen as the programming language.

Code listings for implementing the design of the PMS environment, shown in Fig (7.1) are given in

Appendix C.

7-2

accuracy
file name *I

data type Iexact,rr,tfl tU ,rr iI nr exact

Get-Information() Estirn-ate-n() Check-Exp() Print-Header()

falures .da
times betcoereD REPRT.DAT

Resultsl Ifea4j Sample-Number J

G~heck-Data-File() ComputeiR(Print-Results() fil files

Sample-ri I lrt,Sarnples-No

IR
I exact~r

Musa's
Failure Gornpute-Percentile()

Files ka.0

exact'R., It t trb)R~tNetn)fR ArD

Prob() Newtoni(Ri-Coef() Ar-Coef()

InGamma() Inv-Bet(Create-Dir()

lnGamma(i kC I q

L Ix() GX reate-Ciro) q..oef() PAr

B e t a c fo t B r o lA
t

Betacf()Polynomials Br~l(

Figure 7.1. A Structure Chart for the EMS Environment

7- 3

7.3 A Practical Exarnple for Using the PMS EnvironmnIt

To demonstrate how to use the PMS environment, we have chosen Set. 2 of the DACS software

failure data supplied by Musa [64] as an example for the demonstration. This set of data is stored

in the form of times between failures as given in table (7.1).

191 so 6900 2519
222 660 3300 6890

280 1507 1510 3348
290 625 195 2750
290 912 1956 6675
385 638 135 6945

570 293 661 7899
610 1212 50
365 612 729
390 675 900
275 1215 180
360 2715 4225
800 3551 15600
1210 800 300
407 3910 9021

Table 7.1. Set 2 of DACS failure data in [64]

Assuming that the set is stored in a file "set2.dat", then the sequence for running the envi-

ronment will start by typing the executable file name "pms" and continues as follows

Enter Type of Calculations Exact (elE) OR Asymptotic (alA)?

a

asymptotic calculations requested

OK ! Now Enter The Name of Data File ?

set2.dat

7-4

Enter the Type of the Data

Failures Times (fIF) OR Time Between Failures (tIT)?

f

failure times

Supplied Data Provided Evidence Towards Exponentiality

Likelihood Ratio Test Program

Asymptotic Method for Checking Equality of Data

and Proper Model Selection

The Symbols in the table are Y(es) or N(o)

The Value Under Yes or No is (L-C)

For Equality L must be greater than C

then Table D-2 in APPENDIX D will be generated.

from the table the following information can be extracted:

1. Set 2 of DACS can be considered equal to both of set 1 of DACS sets [64] and set 2 of

Littlewood sets [52].

2. It is also clear that set 2 is closer to the former set, than the latter one (L - C=0.035 vs 0.017

at significance level =0.05)

3. The set can also be considered to be equal to set. 17 of DACS sets, but at a lower significance

level (0.005).

7-5

The question to be answered next is:

Which Software Reliability Model is the Most Appropriate One to be Used with This Set of Data ?

"To answer this question, it is necessary to find out the model or models that fitted properly

in the past with those sets of data that proved to be equal to the set under investigation (i.e. set

1 of DACS sets and set 2 of Littlewood sets). For the first set, full Analyses were performed by

Littlewood [52:184] on this set of data, using the Median Variability, the Rate Variability, tile Braun

Statistic, the u-plot, the y-plot, and the Prequential Likelihood analysis. The results of these

analyses strongly suggested that the Littlewood Model (L) [49] and the Littlewood Non Homoge-

neous Poission Process Model (LNHPP) [1:955] are the most appropriate ones. This means that

these two models are also the best candidates to be used with the set of data under investigation.

On the other hand, one can also use the software reliability model or models that proved to be

the best with the set 2 of Littlewood data (despite the fact. that it is less closer than the previous

one, as explained before). Similar analysis done by Abdel-Ghaly and Others [1) suggested that

the Littlewood Model [49], the Littlewood-Verrall Model (LV) [55], or the Keiler-Littlewood Model

(KL) [41, 42] are the best models to fit. with the second set of Littlewood data, and accordingly,

with the set of data under test.. From the above discussion, it is clear also that the Littlewood

Model [49] fitted both of the two sets that proved to be equal to the data set under consideration.

This strongly suggests that the Littlewood Model [49] is the best one t.o be used with the set of

data under study.

Full Analyses of DACS failure data and the two sets of data supplied by Littlewood [52] are

given in APPENDIX D.

7-6

V III. SU .IA R" A ND RECOMMENDA TIONS' FOR F!'7'lTUt1' OIY)RK

A large number (currently about 100 [26:322]) of software reliability models have beetn devel-

oped within the last two decades. Unfortunately, each of these models cani produce a very different

answer from the others when applied to predict the reliability of a software system. Further, a

model that seems to be the best. for one set of data, may give very poor results with other sets.

This is not surprising, since the assumptions for each model cannot he satisfied in all situations, ' -

to the variations in the development and testing environments for each project. The above prob-

lems, as well a-, time and cost constraints, made many software practitioners avoid incorporating

reliability modeling as a management technique. This situation makes it. necessary to devote less

effort for developing more software reliability models, and concentrate on finding tools for selecting

the proper model for a given set of data.

The Proper Model Selection (PMS) environment is one approach for solving this problem. It

uses the same model that proved to be the best for an equal set of data in the past. It performs

a test of equality of a given set of software failures with each of the other sets that previously

fitted with different models, to determine how close the set under test is to each of other sets, if

past predictions of a software reliability model have been in close accord with actual behavior for

a particular data set. then it will be reasonable to use the same model with an equal set of data.

The PMS can help in selecting the proper reliability model without, evaluating different models,

comparing them, and then choosing the best one. It can be simply stated as "matlhing a softw are

reliability model to a given set of failure data".

The (PMS) is a simple and objective method for selecting a proper model for a given set of

data. The main advantage of this method is that one will make use of the previous effort consumed.

when different models were applied with different sets of data, and when different terhniques were

applied, to measure the predictive quality of software models with certain sets of data. The PMS

environment will provide a strong framework, and a useful data base system, which will resulh in the

8-1

user confidence of the software reliability calculations he/she makes, This will help in establishing

a software reliability theory similar to that of hardware.

Based on the assumptions stated initially, and the observations found during the development

and the application of the PMS environment, the following recommendations are proposed for future

work:

1. Despite the fact that estimating the sample size using the maximum likelihood method is

straightforward, some failure sets showed that the size is very close to the number of collected

failures. Other methods for dealing with such cases, need to be added to the environment.

2. Two sets of failure data (SETS 27,SS4 of DACS failure sets) were not equal to any other sets.

This may be due to the limited number of sets of software failure data used for comparison,

or more data may need to be collected. The former case can be solved by adding more failure

sets to the environment.

3. The studies for deciding which model fits with which set of data are still limited [41, 421 521.

More studies of this kind are needed. This will make it possible to modify the environment

in the future to provide the best candidate models to be used along with each equal set.

8-2

Appendix A. Calculations of thfl Adjustment FaclorC

In this Appendix, the values of t he convergence factors a and 6 used in chapters 5 and 6. The

"values of these two factors are calculated in the following two sections

A.I Calculatzon of6

b is an adjustment factor defined such that

A, = 0; (A.1)

where

A,- B() + B+(6 -) - B,+(6k, - 1) (A.2)
r(-+ I)pr [IE=1 k'

The symbols used in the equation are

p the number of samples

ki the percentage of failures in sample i

B,(.) Bernoulli Polynomial of degree r and order unity

taking r 1, we get

A, B2 0 - 11 (A .3)
21) ~ i=I k

Knowing that the second Bernoulli Polynomial B2(h) is

B,(h) = h2 + 1, + - (A.4)
6

A-1

Substituting in (A.3), we have

- (6k, - 1)2- (6k, - 1) +
A, 1 + - 3) - V - - E

-1 [2 Z3 - 36k +i !)

2 (62 - 36 + 1) - Z k, - 36 + 13k-)j
1 ., 13 13[-6"-2 + 3U - -3 36 p + (-•.1)

= 2p 6- - 3 6 p+

- 36(1 - p) + [- (k'-1)1 (A.5)2p a

To get b, we put A, 0 so

1 P

36(p-- 1) Z(k")- 1 i.e.
i=1

13= 13[(ki 1]/ 3 (p- 1) (A.6)

i1

A.2 Calculation of a

a is a convergence factor chosen such that R1 = 0, and the coefficients 14 are obtained using

the following recurrence relations from [71]

i

ER,-jdj,j= qi(i r 1,2,3,-,Ro = 1) (A.7)
1=0

di., kC 1kdjri, d-k/r, di,o=l (A.8)

k=1
(-1)"-

Cir - ([Br+I(a) - B,+ 1 (a+ v- i)] (A.9)
r(r+A1)

A -2

where t, = 3(p - 1)/2 and q, is determined using the following relatlion

r

q, = E kAkqrk./r qo = I (A.10)

k=-

the value of R1 can be found from

Rdi,o + Rodo,1 = q, = A 1 (A.11)

where Al = 0 as discussed above. If R1 = 0 is desired, then

do,, = co,ldo,o = 0 (A.12)

this means co,L = 0 i.e.

1[B 2 (a) - B 2 (a + v + i) 0 = (A.13)

Substituting for the Bernoulli Polynomials, we get

12 1 + (a+1)2+(aI+ 0 (A.14)

2 6 6

which reduces to

1,2 + 2av - v 0 (A.15)

solving this equation gives

a - (A.16)

2

A-3

Appendix B. Maximum Likelihood Esfimate of Samplh SiZI n

Let A\'(, \(X < ... :5 X(,) be the order statistic from the 2-parameter exponential distri-

bution, then the likelihood function for a random sample of size n is

n! 1
L(x~1)'Z(2).--X(r), O,9) = -r! exp[-(7(x() - 0) + (7, - r)(x(r) - 0))]

-(n -"r) , a Axp- (-•)y (()O "-"
2=1

n! I I r r(9~) -0= n- r)-rexp[--a(X(,) - 0)(EZ~ ()-0

n 1exp[-- (X(,) - 0)(rs + (n - r))] (B.1)
(n - r)! Or)

"where s E r(x(r) -'0) is the observed value of the random variable

"- (X(i - 0)Z X 0)(B.2)

Noting that for each n ,we've found in chapter 2 that equation (B.1) was maximized by having

0r = [x(i) + (n - r)x(r) - nx(,) (B.3)

and 9 = x(l) (B.4)

Denote (B.1) with & and 9 substituted by L(x I n). Let £(x n) be logL(x 7n), then (B.1) is

maximized by the n satisfving

£(x In + 1)- .:(x In) S 0 < j(x In) - L(x In - 1) (B.5)

Following the same procedure as Blumenthal [12], equation (B.5) is achieved by ii such that

D(h,) < s < D(,h + 1) (B6)

8- 1

where

D({,(1 - [- -- + - (,,/,) (B.7)

If there is an upper bound m on the possible values of n, then the estimator would be

mn= ri(m, it) (1.8)

B-2

Appendix C. Codt L,.•tiuq9,

** DATE: 01/16/1992 **

s* VERSION: 1.0

** TITLE: Main Program File **

** FILENAME: pms.c **

** COORDINATOR: Salah Amin Elewa

** PROJECT:Development of an Environment for Software **

** Reliability Model Selection. **

** OPERATING SYSTEM: MS DOS version 2.0 or higher *

** LANGUAGE: Turbo C (2.1) **

** FILE PROCESSING: Compile and link with files prep.c**

,, compute.c, coefs.c, and prob.c, **

** CONTENTS: 1.0 main C) executive module **

** FUNCTION: This file contains the main program of **

** the project **

ss** ***/*

#include <conio.h>

#include "defs.h"

extern void GetInformation(void);

extern void Estimate-n(void);

extern void Check-Exp(void);

extern void PrintTableHeader(void);

extern void CompareSets(int);

C-I

** DATE: 01/16/1991 *

** VERSION: 1.0 **

** MODULE NAME: main **

** MODULE NUMBER: 1.0 **

** DESCRIPTION: This main program in the environments **

** PASSED VARIABLES: None

** RETURNS: None **

** HARDWARE INPUT: None **

** HARDWARE OUTPUT:None **

** MODULES CALLED: GetInformationo) **

** Estimaten() **

** CheckExp() *o

** CompareSets() **

** CALLING MODULES: None **

** AUTHOR: Salah Amin Elewa **

** HISTORY: **

** 1.0 Salah Amin Elewa 01/16/1992 **

** original version **

void main()

{

int K;

clrscro;

Get-Informationo;

Estimate-no;

CheckExpo;

PrintTableHeadero);

for (K = 1; K < DATA-FILES; K*+)

CompareSets(K);

return;

C-2

I***

** DATE:01/25/1992 **

** VERSION: 1.0 **

** TITLE: Failure Data Processor

** FILENAME: Prep.c **

** COORDINATOR: Salah Amin Elewa **

** PROJECT:Development of an Environment for Software **

** Reliability Model Selection. **

** OPERATING SYSTEM: MS DOS version 2.3 or higher **

** LANGUAGE: Turbo C (2.1) **

** FILE PROCESSING: Compile and link with files pms.c **

** compute.c, coefs.c, and prob.c. **

** CONTENTS: . **

** 1.1.1 - GetInformation() **

** 1.1.2 - Estimate-n() **

** 1.1.3 - CheckExp() **

** 1.1.4 - Do **

** 1.1.5 - PrintTableHeader() **

** FUNCTION: The modules in this file get information *

** about calculation method, how data are stored **

** (failure times or times between failures), **

** estimate sample size, check exponentiality of **

** �ailure data and print table header. **

#include <stdio.h>

#include <conio.h>

#include <math.h>

#include <ctype.h>

#include <stdlib.h>

#include "defs.h"

extern boolean exact;

void GetInformation(void);

void Print-TableHeader(void);

C-3

void Estixnate-n(void);

void Check-Exp(void);

void Print-Table-Header(void);

double D(int, int);

static int n, rr;

static double t[MAX...FAILUREs);

static FILE *fplOO;

FILE*fs

CA4

** DATE: 01/25/1992 **

** VERSION: 1.0 *

** MODULE NAME: Get_Information()

*S MODULE NUMBER: 1.1.1 **

,* DESCRIPTION: This module is used for obtaining inf-**

. ** ormation about the required accuracy of calcu-*

** lations, the name of the file containing **

** failure data and the form of failure data. It**

** stores failure data as failure times if it was*

** stored as time between failures. **

** PASSED VARIABLES: None **

** RETURNS:None **

** GLOBAL VARIABLES USED: exact, t[l,rr **

** GLOBAL VARIABLES CHANGED: exact, t[],rr **

** FILES READ: The file containing failure data **

** FILES WRITTEN:"converted.dat" a file with failure **

** data stored in the form of failure time **

** HARDWARE INPUT: Keyboard **

** HARDWARE OUTPUT: Screen **

** MODULES CALLED: None *

** CALLING MODULES: The main program **

** AUTHOR: Salah A. Elewa **

** HISTORY: **

** 1.0 Salah A. Elewa 01/25/1992 **

original version **

void GetInformation(void)

{

int ch;

char FileName[MAXSTRING];

FILE *fp300;

if ((fp300 = fopen("convertd.dat", "w+")) NULL)

C-5

puts("\t can not open converted.dat\n");

exit(l);

puts("\n\n\tEnter Type of Calculations Exact (eJE) OR Asymptotic (aIA)?\n\n");

for (;;)

ch = getche(;

if (ch == 'a' 1I ch == 'A')

puts("symptotic calculations requested\n\n");

exact = FALSE;

}

else if (ch == 'e' II ch =z 'E')

{

puts("xact calculations requested\n\n");

exact = TRUE;

}

else

{

printf("\n\t\t\t Sorry! %c is Unknown Choice", ch);

puts("\n\t\t The Letters a,A,e,E are Acceptable Choices");

puts("\n\t\t Try Again OR Press Ctrl+Break to Quit\n\n\n");

}

break;

puts("\t\t OK ! Now Enter The Name of Data File ?\n\n");

do

{

for (ch = getcharo; isspace(ch); ch = getcharo)

/* Null Statement */

ungetc(ch. stdin);

C-6

gets(FileName);

puts("\n");

if ((fp100 = fopen(FileName, "r")) == NULL)

{

printf("\n\t\t Can NOT Find The File %s\n", FileName);

puts("\n\t\tEnter the CORRECT File Name OR Ctrl-C to Exit\n");

}

}

while ((fplO0 = fopen(FileName, "r")) == NULL);

puts("\t\t Enter the Type of the Data \n");

puts("\tFailures Times 'f1F) OR Time Between Failures (tIT)?\n\n");

for C;;)

{ */ infinite loop */

ch = getcheo;

if (ch == 'f' II ch == 'F')

puts("ailure times \n\n");

else if (ch == 't' 11 ch == 'T')

{

puts("ime between failures \n\n");

rr = 1;

t[01 = 0.0;

while (!feof(fplOO))

{

fscanf(fplOO. "%lf ", &t[rr]);

t[rr] = t[rr] + tErr - 1);

fprintf(fp300, "%lf\n", t[rr]);

rr++;

}

fplO0 = fp300;

else

C-7

printf("\n\t\t\t Sorry' %c is Unknown Choice", ch);

puts("\n\t\t The Letters f,F,b,B are Acceptable Choices");

puts("\n\t\t Try Again OR Press Ctrl+Break to Quit\n\n\n");

}

if (ch == 'f' 11 ch 'F' h ch 't' II ch= 'T')

break;

rewind(fplOO);

fclose(fp300);

return;

C-8

** DATE: 01/2511992 *

** VERSION: 1.0 *

** MODULE NAME: Estimaten() **

** MODULE NUMBER: 1.1.2 **

** DESCRIPTION: This module is used to estimate the *

** value of the sample size n and then insert it**

** on the top of the failure times file so that **

** it can be read later by the environment.The **

** maximum likelihood estimation method is used **

** for estimating n as described in Appendix I. **

** PASSED VARIABLES: the Pointer to the file vhere **

** failure times are stored

** RETURNS: None **

** GLOBAL VARIABLES USED: t[],n,rr **

** GLOBAL VARIABLES CHANGED: n **

** FILES READ: The file containing the failure times **

** or the times between failures **

** FILES WRITTEN: "input.dat" file, which has the ese-**

-* imated n on top and then failure times **

** HARDWARE INPUT: None ss

** HARDWARE OUTPUT: None **

** MODULES CALLED: Module D described in Appendix I **

** CALLING MODULES: The main program **

** AUTHOR: Salah A. Elewa **

** HISTORY: **

** 1.0 Salah A. Elewa 01/25/1992 **

** original version **

void Estimate.n(void)

{

int i;

double T, maxt, SS, theta = 1.0e37;

FILE *fp200;

C-9

T = max-t =SS = 0.0;

if C(fp200 fopenC'input.dat', "w+")) NULL)

puts("ca-n not open input.dat\n");

exit(1);

rr 1

while (!feof(fplOO))

fscaxif~fpl00. "%if ", t[rrj);

if (t~rrJ < theta)

theta = t~rr];

if (t [rr) > max-.t)

max..t = t~rr];

T = T + t~rr);

}r+

rr = rr -1

printfC'\t\tTotal Number of F'ailures r= %d\n". rr);

SS =(T-(double) rr*theta)/Cdouble) rr/(rnax~t-theta);

rewind Cf p100)

for Ci =rr;; i++)

if CD(i, rr) <= SS && SS < D(i + 1.0, rr))

n

break;

fprintf(fp200, "%.d \n", ni);

revind~fpl00);

while C'feof~fplOO))

C-10

fscanf(fplOO, "%lf ", &t[rrj);

fprintf(fp200, "%lf \n", t[rrj);

}

fclose(fp200);

return;

}

C-11

** DATE: 01/25/1992 **

** VERSION: 1.0 **

** MODULE NAME: CheckExp() **

** MODULE NUMBER: 1.1.3 **

** DESCRIPTION: This module is used to check whether **

** the failure times are exponential. It uses **

** G test based on the Gini statistic for check-**

** ing exponentiality of type II censored data.**

** PASSED VARIABLES: Pointer to "Input.dat" file **

** RETURNS: None **

** GLOBAL VARIABLES USED: t[ln,rr **

** GLOBAL VARIABLES CHANGED: None **

** FILES READ: "input.dat" file **

** FILES WRITTEN: None **

** HARDWARE INPUT: None **

** HARDWARE OUTPUT: Screen **

** MODULES CALLED: None **

** CALLING MODULES: The main program **

** AUTHOR: Salah A. Elewa **

** HISTORY: **

** 1.0 Salah A. Elewa 01/25/1992 **

** original version **

void CheckExp(void)

{

double timebet[MAXFAILURES], Wi[MAXFAILURES];

double Witot, num, den;

double Grn, Var;

int i;

Witot num = t[O] = 0.0;

for (i 1; i < rr + 1; i++)

(-12

time-bet[.i = t[i] - t[i - 1];

Wi[i] = (n - i 4 1) * time-bet[i];

Witot = Witot + Wi[i];

den = (rr - 1) * Witot;

for =i 1; i < rr; i++)

num = num + i * Wi[i + 1];

Grn = num / den;

Var = pow(12 * (n - 1), .5) * (Grn - O.b);

if (Var > -2.33 && Var < 2.33)

/* 0.01 Significance Level is Used for Calculations */

puts("\n\t Supplied Data Provided Evidence Towards Exponentiality\n");

else

puts("\t\t\tSupplied Data Provided Evidence Against Exponentiality\n");

puts("\t\t\t\t Extra Da~a may b- Neea-d\n");

puts("\t\t\t\t Program will Terminate \n");

exit(1);

}

rewind(fplOO);

fclose(fplOO);

C-13

** DATE: 01/25/1992 **

** VERSION: 1.0 **

** MODULE NAME: Do) **

** MODULE NUMBER: 1.1.4 **

** DESCRIPTION: This module is used for calculating **

the value of the Parameter D described in **

"** Appendix I *

** PASSED VARIABLES: number of failures r and sample **

** size n. **

** RETURNS: D value **

** GLOBAL VARIABLES USED: None **

** GLOBAL VARIABLES CHANGED: None **

** FILES READ: None

** FILES WRITTEN: None **

** HARDWARE INPUT: None **

** HARDWARE OUTPUT: None **

** MODULES CALLED: None **

** CALLING MODULES: Estimate-n **

** AUTHOR: Salah A. Elewa **

** HISTORY: **

** 1.0 Salah A. Elewa 01/25/1992 **

** original version *

****s***************************

double D(int n, int r)

{

double nn, rr, xx;

nn = (double) n;

rr = (double) r;

xx = pow(rr*(1.O-(pow((1.O-(rr/nn)),(1.0/rr)))),-1.0);

return (xx + 1.0 - (rLn / rr));

C-1,11

** DATE: 01/25/1992 *

* VERSION: 1.0 **

* MODULE NAME: PrintTableHeader() *o

* MODULE NUMBER: 1.1.5 *

* DESCRIPTION: This module is used for printing the *

.** table header on the screen and in the "report*-

.dat" file. ,,

* PASSED VARIABLES: None *

•* RETURNS: None *

•* GLOBAL VARIABLES USED: exact **

** GLOBAL VARIABLES CHANGED: None **

** FILES READ: None **

** FILES WRITTEN: "report.dat" file **

** HARDWARE INPUT: None **

H* HARDWARE OUTPUT: None **

M* MODULES CALLED: None **

** CALLING MODULES: The main program **

** AUTHOR: Salah A. Elewa **

H* HISTORY: **

• * 1.0 Salah A. Elewa 01/25/1992 **

• * original version **

void PrintTableHeader(void)

{

int j;

if ((fp5 = fopen("report.dat". "w")) == NULL)

{

printf("can not open report.dat file\n");

exit(l);

}

printf("\t\t\t Likelihood Ratio Test Program \n");

fprintf(fp5, "\t\t\t Likelihood Ratio Test Program \n");

C-15

if (exact)

{

printf("\t\t Exact Method for Checking Equality of Data \n");

printf("\t\t and Proper Model Selection \n");

fprintf(fpS,"\t\t Exact Method for Checking Equality of Data \n");

fprintf(fp5."\t\t and Proper Model Selection\n");

}

else

{

printf("\t\t Asymptotic Method for Checking Equality of Data\n");

printf("\t\t and Proper Model Selection \n");

fprintf(fp5,"\t\t Asymptotic Method for Checking Equality of Data\n");

fprintf(fp5,"\t\t and Proper Model Selection\n");

}
printf("\t\t The Symbols in the table are Y(es) or N(o)kn");

fprintf(fp5,"\t\t The Symbols in the table are Y(es) orN)

printf("\t\t The Value Under Yes or No is (L-C)\n");

fprintf(fp5,"\\t t The Value Under Yes or no is (L-C)\n");

printf("\t\t For Equality L must be greater than C \n");

fprintf(fp5, "\tit For Equality L must be greater than C \n");

printf(" ,-T)

fprintf(fpS, "r T ");

for (j = 1; j < j; j++)

{

printf(.

fprintf(fpS, " ")_

printf("--\n");

fprintf(fpS, "- 1 \n");

printf(" Significance Level o< ");

printf("

C-16

fprintf(fpS,"I ISignificance Level C<")

fprintf(fpS.1'

printf("\nI l)

fprintf(fpS.II\nI-t)

for (j = 1; j < 8; j++)

printf(" \n");

printf("I F. SetI.00025 1 .0005 I.001 I.0025 .00Q5I)

printf("I .01 1 .025 1 .05 I1");

fprintf(fp5.ItI F. Seti.000
2 5 I .0005 1 .001 1 .0025 1 .005 I)

fprintf(fpS.'t I .01 1 .025 1 .05 I1")"

return;

}7

** DATE: 01/31/1992 **

** VERSION: 1.0 **

** TITLE: Computation Routines File **

** FILENAME: compute.c **

** COORDINATOR: Salah Amin Elewa *

** PROJECT:Development of an Environment for Software **

** Reliability Model Selection. **

** OPERATING SYSTEM:MS DOS version 2.0 or higher *,

** LANGUAGE: Turbo C (2.1) **

** FILE PROCESSING: Compile and link with files prep.c**

** coefs.c, prob.c, and pms.c ss

** CONTENTS:

** 1.2.1 - CompareSets() **

** 1.2.2 - CheckData-FileC) **

** 1.2.3 - ComputeLRT() **

** 1.2.4 - ComputePercentile() **

** 1.2.5 - PrintResults() **

** FUNCTION: This file contains the modules for making**

** the comparison between two sets of data and

** printing the results in the file "report.dat". **

#include <stdlib.h>

#include <stdio.h>

#include <ctype.h>

#include <math.h>

#include "defs.h"

void CompareSets(int);

void PrintResults(double, int);

void ComputePercentile(double, double, double s, double *);

double ComputeLRT(void);

int CheckData-File(char *);

C-1S

extern FILE f5

extern double ka[];

static FILE *fpl;

static boolean DIFFERENT = TRUE;

static double LRT, X1[MAX..SAMPLES], Yi[MAX-.SAMPLES];

.static int R, Sazuples-.NO,Sample-riEMAXSAMPLESJ.

Sample-.Size[MAX-.SAMPLES];

C-1~9

** DATE: 01/31/1992 **

** VERSION: 1.0 **

• MODULE NAME: CompareSets() ,,

M* MODULE NUMBER: 1.2.1 **

** DESCRIPTION: This module is used to compare the two**

.,, sets of data specified in the corresponding **

• * .fil file. It first invokes CheckDataFile **

• * routine to make sure that all required data **

* * for comparison exist in failure times files, **

• * then it compares input file with other sets *

• * through the loop J using the value of LRT **

** , and the percentile point C from the routines **

* * ComputeLRT and Compute-Percentile. **

* PASSED VARIABLES: number of set to compare with (3)**

• RETURNS: None **

* GLOBAL VARIABLES USED: Total number of failures (R)**

•** ,Samples-NO, DIFFERENTLRT ""

GLOBAL VARIABLES CHANGED: LRT *"

•* FILES READ: The .fil file containing two sets of *

• * data to be compared and the files containing **

• * failure times **

** FILES WRITTEN: "report.dat" file **

** HARDWARE INPUT: None **

•* HARDWARE OUTPUT: Screen **

** MODULES CALLED: CheckDataFile() **

* * ComputeLRTC) **

** ,PrintResults() **

* CALLING MODULES: The main program **

•* AUTHOR: Salah Amin Elewa

• HISTORY: *

* * 1.0 Salab Amin Elewa 01/31/1992 *

* * original version **

C-20

void Compare-Sets(J)

double L;

int p =O;

char fn[MAX-STRING] , sEMAX-STRING];

char *filfile[3 = {" ", "set-1.fil", "set..2.fil",

"set-4.f il','"setS.f il", "set..6.f il.,"set_ 14c.f il",

"set..17 .1 i", "set_27.fil" , set..ssla. fil",*"set-ss c.hil",

"set SS3 .f il", "set-SS4.fil", "Lit-.2fil", I"Lit_3 .fil"};

R =Samiples-NO = 0;

if (21 > 1)

f close Cf p1)

if ((fpl = fopen(filfile[J]. "r")) ==NULL)

printf('\n can not open /.s file\n", filfile[JI);

exit~l);

fgets(s, 30, fpl); 1* read 1st set name from the .fil file fpl*/

while (!feof(fpl))

if (sscanf(s, "%.s", fn)) /* assign s to file fn if exist *

if (CheckDataFile(fn))

P++;/* Check all data are found *

fgets~s, 30, fpl); /* read 2nd set name from the .fil file *

if (p > I)

LRT = Coznpute-LRTO;

L =pow(LRT, (1.0 / (double) R));

PrintResults(L, J);

else

C-21

printf("\n\nError LRT can not be computed for less than 2 samples\n");

printf("\n - OR - May be one of the failure times is 0.0 \n");

fprintf(fp5,"\nError LRT can not be computed for less than 2 sar.ples\n");

fprintf(fp5, "\n - OR - May be one of the failure times is 0.0 \n");

}

if (J == (DATA-FILES - 1))

{

if ('DIFFERENT)

{

printf,("\n

printf(" \n")

fprintf(fpS,"\n

fprintf(fp5," \n")

else

{

printf(,\nl I I I ,

printf(" \n")

fprintf(fp5, "\n)

fprintf(fpS," I\n)

}

fclose(fp5);

fclose(fpl);

}

return;

C-22

** DATE: 01/31/1992 **

** VERSION: 2.0 **

* MODULE NAME: CheckDataFile() **

** MODULE NUMBER: 1.2.2 *

•* DESCRIPTION: This module is used to read the files **

* * containing the failure data and return TRUE *4

S*4 if all information needed exist.

4 PASSED VARIABLES: Name of file to be checked 44

4 RETURNS: TRUE or FALSE (I or 0)

•* GLOBAL VARIABLES USED: Sample-Size[], Sample-ri[], **

Samples-NO, XI[3, Yi[] 4*

4* GLOBAL VARTABLES CHANGED: Sample_Size[],Sampleri[],*

• * F .nples_NO, X1[], Yi[] *

* F-Lr* ;ýEAD: fn file passed as an argument *4

4 FILES WRITTEN: None

* HARDWARE INPUT: None *

* HARDWARE OUTPUT: None *

* MODULES CALLED: None *

* CALLING MODULES: CompareSets()

4* AUTHOR: Salah Amin Elewa *4

* HISTORY:

S*4 1.0 Capt. K. N. Cole 5/8 /1985 *

• * original version *

•* 1.1 Capt. K. N. Cole 10/25 /1986

modified for SAE system *4

4 *2.0 Salah Amin Elewa 01/31/1992 *4

- header modified **

S*4 - names for module and some variables *

chaniged **

- program modified to work with 2-para-44

• * meter exponential distribution and to**

read sample size from file "input.dat"*

C-23

int Check-Data-File(char *fn)

FILE *fp;

boolea~n error;

char C

int ni, ri;

double t, Ti, maximun-t. zuinimum-t;

t=Ti = maximum-t = minimum _t =0.0;

if (Samnples-NO >= MAXSAMPLES)

error = TRUE;

else

error = FALSE;

?naximull-t = 0.0;

c = n;

minimum~.t =1.0e37;

while Cisspace(*c))

C++;

if ((fp =fopen(c, "r")) NULL)

fscanf(fp, " %d ", kni)*,

ri = 0

Ti = 0.0;

wihile C'feof(fp))

t = 0.0;

fscanf(fp, "7.lf ", Wt;

if (t != 0.0)

if (t < minimun..t)

minimfu1mLt = t

if (t > maximun-t)

maximumnt =t

C- 24

Ti =Ti + t

else

while (!feof(fp) && (fgetc(fp) !~'\n'));

fclose~fp);

if (ni <ri)

error TRUE;

if ((Ti ==0) 11 (ri ==0))

error =TRUE;

else

printf ("Check-Data..File: can't open data file %s\n', c);

error = TRUE;

if (!error)

X1[Samples..NO] = minimuzn-t;

Ya [Samples-NOJ (Ti-ri*X1 [Saxnples..JOJ)+ (ni-ri) *(maximum-t-X 1[Sainples-NO]);

Sainple..Size[Saxnples-NOI = ni;

Sample-ri[Samples-NO] =ri;

Sanmples-N0++;

return (!error);

C-25

** DATE: 31/01/1992 *

** VERSION: 1.0 **

** MODULE NAME: ComputeLRT() **

** MODULE NUMBER: 1.2.3 **

** DESCRIPTION: This module is used to compute the test*

** criteria from the global variables **

(SamplesNO,SampleSize, and Sample-ri). **

** PASSED VARIABLES: **

** RETURNS: The value of LRT **

** GLOBAL VARIABLES USED: SampleSize[], Sample.ri[l, **

** SamplesNOtotal # of failures R, X1[1, Yi[]**

** and LRT **

** GLOBAL VARIABLES CHANGED: R, LRT **

** FILES READ: None

*4 FILES WRITTEN: None **

*4 HARDWARE INPUT: None **

** HARDWARE OUTPUT:None

** MODULES CALLED: None **

** CALLING MODULES: CompareSets()

** AUTHOR: Salah Amin Elewa **

** HISTORY:

1.0 Salah Amin Elewa 01/31/1992 *

4* original version **

**

double ComputeLRT(void)

{

double partl, part2, Yitot, V, u;

Ant 1;

double Zp = 1.0e37;

partl = part2 = LRT = 0.0;

C-26

V =u =Yitot =0.0;

if (Samnples-.NO >= 2)

for (i =0; i < Samples-NO; i++)

if (Xi[i.J < Zp)

zP = x~l

for Ci = 0; i <Samiples-NO; i++)

R =R + Sample..ri[i];

u = u + Sample-Size[iJ * (X1[i] Zp);

Yitot =Yitot + Yi[i];

V =Yitot+ U;

parti = (double) R *log(((double) R /V));

part2 = 0.0;

for Ci = 0; i < Samnples-NO; i++)

part2=part2+(doub2e)Sample-ri Ei]*log(YI iJ /(doub2 e)Sanp~le-ri fi]);

LRT =exp(partl + part2);

return (LRT);

C-27

** DATE: 01/31/1992 **

** VERSION: 1.0 **

** MODULE NAME: PrintResults() -*

** MODULE NUMBER: 1.2.4 **

,* DESCRIPTION: This module is used to print the resu-**

** Iting table on both the screen and the output **

file "report.dat". **

** PASSED VARIABLES: L, Failure Data Set number **

** RETURNS: None **

** GLOBAL VARIABLES USED: DIFFERENT **

** GLOBAL VARIABLES CHANGED: DIFFERENT *

** FILES READ: None **

** FILES WRITTEN: "report.dat" pointed to by--fp5

** HARDWARE INPUT: None **

** HARDWARE OUTPUT: Screen **

** MODULES CALLED: Compute-Percentile **

** CALLING MODULES: CompareSets()

** AUTHOR: Salah Amin Elewa

** HISTORY: **

** 1.0 Salah Amin Elewa 01/31/1992 **

** original version **

void PrintResults(double L, int J)

{

int i, j, k;

double alpha[MAXALPHA>={.00025,.0005,.001,.0025,.005,.01,.025,.05};

double C[MAXALPHA], prb;

char *SETNAME[DATAFILES]={" SETI "," SET_2 "," SET-4 "," SET_5 "

" SET_6 ","SET_14c","SET_17 ","SET_27 ","SETSla","SET_S1c",

"SETSS3", "SET-SS4", "SETLt2"1, "SETLt3"};

if (L > .999)

{

C-28

DIFFERENT = FALSE;

printf(\n ('n");

fprintf(fp5,"\nl ";

for (j = 1; j < 8; j++)
printf(" I .,);

printf(" -W-\n");

for (j = 1; j < 8; j++)

fprintf(fp5, " I ");

fprintf(fp5, " [\n");

printf("Isl", SETNAME[J - 1);

fprintf(fpS, "!%sl", SETNAME[J - 1));

printf(" Two Identical Sets or Set Compared with Itself L = 1.0 1");

fprintf(fp5," Two Identical Sets or Set Compared with Itself L = 1.0

if (J < (DATA-FILES - 2))

{

printf("\nl I-");

fprintf(fpS, "\n' i- ");

for (j = 1; j < 8; j++)

printf(" I-");

printf(" -J\n');

for (j = 1; j < 8; j++)

fprintf(fp5, "F ");
fprintf(fp5,"S.\n)

}

else

{

C-29

if (DIFFERENT)

printf("\nF-");

fprintf(fpS, "\+");

for (j = 1; j < 9; j++)

printf(" W9')

for (J 1; j < 9; j++)

fprintf(fp5. "-I--..);

printfC"IAsI", SET-NAME[J - 1]);

fprintf(fp5, 'I7sI', SET-NAMED3 1]);

for (i =0; i < MAX-ALPHA; i++)

Compute-Percentile~alpha[iJ ,L,&C[i] ,&prb);

if (L < C~il)

printf ('N/`/`3.21f I", L - C [i])

fprintf(fpS, "N/143.21f 1", L -C~i]);

for (k = i; k < 7; k++)

printf(" I)

fprintf(fpS,

i = 8; /* not to recalculate if it is rejected *

else

printf ("Y/`/4.31f I", L -C i

fprintf(fpS, "Y/Y,`4.31f 1", L -C~i]);

C- 30

printf("\ni 1)

fprintf~fpS, "\nI ")

for (i = 0; i < MAX-ALPHA; i++)

if (L < C[iJ)

printf("L=%4.3lfIP. L);

fprintf(fpS, "L%4.31f1'. L);

for (k =i; k < 7; k++)

printf(" I")

fprintf(fp5, I)

i = 8; 1* not to recalculate if it is rejected *

else

printf('L=%4.3lfJ1. L);

fprintf(fp5, 'L=74.31f1", L);

printf(&\ni ")

fprintf(fp5. "\nI I");

for Ci = 0; i < MAXALPHA; i++)

if (L < C[iJ)

printf ("C=%.31f I ", C[iJ)

fprintf(fpS, "C=%4.31fl', C[i));

for (k =i; k < 7; k++)

printf("

C-31

fprintf(fpS, ");

}

i = 8; /* not to recalculate if it is rejected */

}

else

{

printf("C:%4.31fl", C~i]);

fprintf(fp5, "C=%4.3l1*I', C[i]);

}

}

DIFFERENT TRUE;

}

return;

C-32

** DATE: 01/31/1992 **

** VERSION: 2.0 **

** MODULE NAME: ComputePercentile()

** MODULE NUMBER: 1.2.5 **

** DESCRIPTION: This module is used to compute the **

percentage point necessary for evaluating the **

** LRT criteria at the values given by the global**

** variables Sample.ri, total failures, and the **

** significance level alpha **

** PASSED VARIABLES: alpha,LRT **

** RETURNS:values stored in the locations pointed to by*

** pct - percentage point for alpha value given, and**

** prb - probability value.

** GLOBAL VARIABLES USED: ka[],R,LRT,SamplesNO, **

*. Sample-ri **

** GLOBAL VARIABLES CHANGED: ka[] **

** FILES READ: None **

** FILES WRITTEN: None

** MODULES CALLED: Prob(),Newton(),RiCoefo,ArCoefo**

** CALLING MODULES: PrintResults() **

** AUTHOR: Salah Amin Eleva **

** HISTORY:1.0 Capt. K. N. Cole 5/8 /1985 **

** original version **

** 1.1 Capt. K. N. Cole 10/25 /1986

4* modified for SAE system **

** 2.0 Salah Amin Elewa 01/31/1992 **

,, - header modified **

** - names for module and some variables *

** changed **

*, - program modified to work with 2-para-**

meter exponential distribution and to**

read sample size from file "input.dat"*

C-33

void

ComputePercentile(double alpha,double LRT,double *pct,double *prb)

{

extern double Ar[DATAFILES + 12;

extern double Prob(double,double,double,intdouble,double);

extern double Newton(double,double,double,double,int,double,double);

extern ArCoef(double, double);

extern void RiCoef(double, double, double, double);

double v, a, t, p, sum, m, delta;

int i;

m = delta = sum = a = 0.0;

p = (double) SamplesNO;

for (i = 0; i < SamplesN0; i++)

ka[i] = (double) Sample-ri[iJ / (double) R;

v = 3.0 * (p - 1.0) / 2.0;

t = (p + 1.0) / (6.0 *p);

for (i 0, sum = 0.0; i < SamplesNO; i++)

sum = sum + 1.0 / ka[i];

delta = (13.0 * (sum - 1.0)) / ((p - 1.0) * 18.0);

a = (1.0 - v) /2.0;

m = ((double) R - delta) / p;

RiCoef(p, delta, a, v); /*initialize coefficients*/

*prb = Prob(a, v, p, R, LRT, m);

*pct= Newton(a, V, t, p, R, alpha, m);

return;

C- 34

** DATE: 01/16/1992

** VERSION: 1.0 **

** TITLE: Probability Computation File *

** FILENAME: Prob.c **

** COORDINATOR: Salah Amin Elewa **

** PROJECT:Development of an Environment for Software **

** Reliability Model Selection. **

** OPERATING SYSTEM:MS DOS version 2.0 or higher

** LANGUAGE: Turbo C (2.1) **

** FILE PROCESSING: Compile and link with files prep.c**

** coefs.c, compute.c, and pms.c **

** CONTENTS: **

** 1.3.1 - Prob() **

** 1.3.2 - Newton() **

** 1.3.3 - lnGamma() **

** 1.4.4 - Ix() **

** 1.4.5 - Betacf() **

** 1.4.6 - InvBeta() **

** FUNCTION:This file contains the modules for Comput-**

** ing the distribution function and calcula-**

** ting the percentage point using Newton's **

** approximation method **

#include <stdio.h>

#include <math.h>

#include "defs.h"

boolean exact=TRUE;

extern double Ri[], ka[];

double Prob(double,double,double,int,double,double),inGamma(double);

double Newton(double,doubledouble,doubleint,double,double);

static double Ix(double, double, double);

C-35

** DATE: 01/16/1992 *

** VERSION: 1.0

*s MODULE NAME: Prob() *o

*e MODULE NUMBER: 1.4.1 **

** DESCRIPTION: This module is used for computing the **

** distribution function of x *

** PASSED VARIABLES: a, v, p. R, x, m *

** RETURNS:Prob (double) **

** GLOBAL VARIABLES USED: Ri[], ka[], exact, R **

** GLOBAL VARIABLES CHANGED: None **

** FILES READ: None **

** FILES WRITTEN:None *

** HARDWARE INPUT: None **

** HARDWARE OUTPUT:None **

** MODULES CALLED: InGammao, Ix() **

** CALLING MODULES: ComputePercentileo, Newton() o *

** AUTHOR: Salah A. Elewa **

** HISTORY: **

** 1.0 Salah A. Elewa 01/16/1992 cc

** original version

double

Prob~double a,double v,double p,int R,double x,double m)

{

int i , k;

double Rdsh,tsum,t2, K3;

tsum=Rdsh=O.0;

if (exact)

{

for (k = 0. t2 = 0.0; k < (int) p; k++)

t2=t2+((((double)R*ka[kJ-l.5)*log(ka[k]))-lnGamma((double)R*ka[k]-l.O));

K3=exp(lnGamma((double)R-1.0)+t2-v*log(p)+O.5*(p-1.0)*log(2.0*3.14159));

for (i = 0, t2 = 0.0; i <= limit; i++)

C-36

Rdsh=exp(lnGanuna((double)m+a)-lflGamma(Cdouble)fl+a+v+i));

t2 =t2 + Riri] * Rdsh * Ix((double) m + a, v + 1,x)

tsuln = K3 * t2;

else

tsum~lx(m+a,v,x)+Ri[2]*CIx~m+a,v+2,x)-Ix~m+a,v,x))/m/m;

return Ctsum);

C-37

** DATE: 01/16/1992 **

** VERSION: 1.1 **

** MODULE NAME: Newton() **

** MODULE NUMBER: 1.4.2 **

** DESCRIPTION:This module is used for computing the **

** percentage point using Newton's approx-*

** imation method **

-* PASSED VARIABLES: a, v, p, t, R, alpha, m **

** RETURNS:Newton (double) **

** GLOBAL VARIABLES USED: DATA-FILES, R **

** GLOBAL VARIABLES CHANGED: None **

** FILES READ: None **

** FILES WRITTEN:None **

** HARDWARE INPUT: None **

** HARDWARE OUTPUT:None **

** MODULES CALLED: Prob), Inv_Betao) **

** CALLING MODULES: ComputePercentile(, Process-Equal*

** and Process-Unequal in table.c **

*s AUTHOR: Salah A. Elewa **

** HISTORY: **

** 1.0 Capt. K. N. Cole 01/05/1985 **

** Initial Version *

** 1.1 Salah A. Elewa 01/16/1992 **

** Header modified, Variable names changed **

double

Newton(double a,double v,double t,double p,int R,double alpha,double m)

double InvBeta(double, double, double);

double z[NEWTONLIMIT + 2), pa[NEWTONLIMIT + 2];

double sp, x;

int k, done;

C-3S

z[i) = InvaBeta(alpha, (double) R - t, v);

if (p <= 3.0)

z[2] = z[1] + 0.05;

else if (z[l] > 0.05)

z[2] = z[13 - 0.05;

else

z[2] = z[1] / 2.0;

x z[13;

sp = Prob(a, v, p, R, x,m);

pa[l] = sp;

done = FALSE;

for (k = 2; (k <= NEWTONLIMIT) !& 'done; k++)

{

if (z[k] > 1.0)

z[k] = z[k - 1] + ((1 - z[k - 1)) / 2.0);

x : z[k];

sp = Prob(a, v, p, R, x,M);

pa[k] = sp;

if (fabs(sp - alpha) < 0.0000001)

done = TRUE;

else

z[k+l] = z[k]-(z[k]-z[k-l])*(sp-alpha)/(sp-pa[k-1]);

if (z[k + i] < 0.0)

z[k + 1] = z[k] / 2.0;

if ((sp > 1.0) II (sp < 0.0))

{

printf("\nNewton.c:Incorrect Prob Value %,f %f \n",x,sp);

done = TRUE;

}

return (z[k - 1]);

C-39

** DATE: 01/16/1992 **

*" VERSION: 1.1 **

* MODULE NAME: lnGamma()

** MODULE NUMBER: 1.4.3 **

** DESCRIPTION:This module is used for computing the **

"the natural log of the Gamma function 4*

*s PASSED VARIABLES: dx *

4* RETURNS:lnGanma (double) *

* GLOBAL VARIABLES USED: None *

* GLOBAL VARIABLES CHANGED: None

** FILES READ: None "*

4* FILES WRITTEN:None *

4* HARDWARE INPUT: None **

** HARDWARE OUTPUT:None **

** MODULES CALLED: None **

** CALLING MODULES: Prob(), Ix()

4* AUTHOR: Salah A. Elewa *

4* HISTORY: **

** 1.0 Capt. K. N. Cole 01/05/1935 **

Translated from Pascal code

*4 (Original by Capt. Mark Amell) *4

** 1.1 Salah A. Elewa 01/16/1992

** Header modified, module name changed **

double lnGamma(double dx)

{

double rdo, dy, dterm, de, da, db, domeg, dlggm;

double ds, dz, dw, dv, du, dt, dir, dq, dp;

rdo 0.0;

dy = dx;

dterm = 1.0;

de = 1.0;

C-10

domeg = 1.0e25;

da = 0.9999999999;

db = 1.0000000001;

dlggm = domeg;

if (dx >= rdo)

{

dlggm = rdo;

if ((dx <= da) 11 (dx >= db))

{

if ((dx <= (da + de)) 11 (dx >= (db + de)))

{

while ((dy - 18.00) <= 0.0)

{

dterm = dterm * dy;

dy = dy + de;

ds = de / (dy * dy);

dz = (double) 0.005410256410256410;

dw = (double) -0.001917526917526918;

dv = (double) 0.0008417508417518418;

du = (double) -0.0005952380952360952;

dt = (double) 0.0007936507936507937;

dr = (double) -0.002777777777777778;

dq = (double) 0.08333333333333333;

dp = (double) 0.9189385332046727;

dlggm = ((dy-0.5)*log(dy))+dp-dy-log(dterm);

dlggm = dlggm+((((((dz*ds+dw)*ds+dv)*ds+du)*

ds + dt) * ds + dr) * ds + dq) / dy;

}

I

return (dlggm);

C-41

/ *************************************s**********.*******

*. DATE: 01/16/1992 **

** VERSION: 1.1 **

** MODULE NAME: Ix() **

** AODULE NUMBER: 1.4.4 **

** DESCRIPTION:This module is used for calculating the**

** Incomplete Beta function using the con-**

"** tinued fraction method.

** PASSED VARIABLES: a,b,x **

** RETURNS:Ix(double) **

** GLOBAL VARIABLES USED: None **

** GLOBAL VARIABLES CHANGED: None **

** FILES READ: None **

** FILES WRITTEN:None **

** HARDWARE INPUT: None **

** HARDWARE OUTPUT:None **

** MODULES CALLED: Betacf(), lnGamma() **

** CALLING MODULES: Probo, InvBeta() **

** AUTHOR: Salah A. Elewa **

** HISTORY: **

** 1.0 Taken from "Numerical Recipes in C" by **

** William H. Press and Others, Cambridge **

** University Press,pp.179,1990. **

** 1.1 Salah A. Elewa 01/16/1992 **

** Header Added, nrerror() function replaced**

** by printf() function **

double Ix(double a,double b,double x)

{

double Betacf(double a, double b, double x);

double bt;

if (x < 0.0 II x > 1.0)

printf("Bad x in routine Ix()\n");

C-42

if (x == 0.0 II x == 1.0)

bt = 0.0;

else /* Factors in front of the continued fraction */

btmexp(lnGamma(a+b)-lnGamma(a)-lnGamma(b)+a*log(x)+b*log(l-x));

if(x<(a+1.0)/(a+b+2.0))/* Use continued fractions directly */

return bt * Betacf(a, b, x) / a;

else

return 1.0 - bt * Betacf(b, a, 1.0 - x) / b;

/*Use continued fractions after making symmetry transformation*/

C-43

** DATE: 01/16/1992 **

** VERSION: 1.1

** MODULE NAME: Betacf() **

** MODULE NUMBER: 1.4.5 **

** DESCRIPTION:This module is used for evaluating the **

continued fractions for the Ix() funct-**

** tion above. **

** PASSED VARIABLES: a,b,x **

** RETURNS:Betacf(double) **

** GLOBAL VARIABLES USED: None **

** GLOBAL VARIABLES CHANGED: None **

** FILES READ: None **

** FILES WRITTEN:None **

** HARDWARE INPUT: None **

** HARDWARE OUTPUT:None **

** MODULES CALLED: None **

** CALLING MODULES: Ix() **

** AUTHOR: Salah A. Elewa **

** HISTORY: **

** 1.0 Taken from "Numerical Recipes in C" by **

** William H. Press and Others, Cambridge ,*

** University Press,pp.180,1990. **

** 1.1 Salah A. Elewa 01/16/1992 **

** Header Added, nrerror() function replaced**

** by printfo) function

double Betacf(double a, double b, double x)

{

double qap, qam, qab, em, tem, d;

double bz, bm = 1.0, bp, bpp;

double az = 1.0, am = 1.0, ap. app, aold;

int m;

C-44

qab = a + b;

qap a + 1.0;

qam a - 1.0;

bz = 1.0 - qab * x / qap;

for (m = 1; m <= ITMAX; m++)

{

/* continued fraction evaluation by the recurrence method *1

em = (double) m;

tem = em + em;

d em * (b- em) * x / ((qam + tem) * (a + tem));

ap = az + d * am;

/* One step (the even one) of the recurrence

bp = bz + d * bm;

d = -(a + em) * (qab + em) * x / ((qap .v-tem) * (a + tem));

app = ap + d * az;

/* Next step of the recurrence (the odd one) *1

bpp = bp + d * bz;

aold = az; /* Save the old answer

am = ap I bpp; /* Renormalize to prevent overflows *1

bm= bp / bpp;

az = app / bpp;

bz = 1.0;

if (fabs(az - aold) < (EPS * fabs(az)))

return az; /* Are we done */
}

printf("a or b too big or ITMAX too small in BETACAF \n");

return 0.0;

C-45

** DATE: 01/16/1992 **

** VERSION: 1.1 **

,M NODULE NAME: lnv-Beta **

** NODULE NUMBER: 1.4.6 **

** DESCRIPTION:This module is used for computing the **

** inverse Beta function **

** PASSED VARIABLES: alpha, p, q **

** RETURNS:InvBeta(double) **

** GLOBAL VARIABLES USED: None **

** GLOBAL VARIABLES CHANGED: None **

** FILES READ: None **

** FILES WRITTEN:None **

** HARDWARE INPUT: None **

** HARDWARE OUTPUT:None **

** MODULES CALLED: IxC) **

** CALLING MODULES: Newton() o*

** AUTHOR: Salah A. Elewa **

** HISTORY: **

** 1.0 Capt. K. N. Cole 01/05/1985 **

** Translated from Pascal code **

** (Original by Capt. Mark Amell)

** 1.1 Salah A. Elewa 01/16/1992 **

** Header modified, module name changed *,

double InvBeta(double alpha, double p, double q)

{

int jj,jend,j i;

double dp,dl,dif,dlxdux,dmp,decr,dmpudm,dn.du,dfd,

dabf,dfune,espl,esp2,esp3,esp4;

boolean flag;

double darg[5],dfun[S];

espl = 1.Oe-180;

C-46

esp2 = 1.0e-13;

esp3 = 1.0e-11;

esp4 = I .Oe-10;

dp = alpha;

di = p;

flag = TRUE;

dn = q;

du = 1.0;

if (((dp * (du-dp))<O.O)1II((dm<O.O) I I(dn<O.O)))

drop = 0.0;

else if ((dp * (du - dp)) ==0.0)

dmp = alpha;

else if (dm == 1.0) '

dmp = du - exp((du /dn) •log(du -dp));

else if (dn == 1.0)

dimp =exp((du / dm) log(dp));

else

flag =FALSE;

dl =0.0;

dif =1.0 / 3.0;

dlx =-dp;

dux =du - dp;

jj 0 ;

dmpu = 0.0;

jend = 3;

while ((]j < 25) •&(!flag))

if (jj == 25)

jend = 3;

ii = ii + 1;

j = 1;

while ((j <= jend) kk (!flag))

C'-47

dmp (du + dl) / 2.0;

if ((Cdu-dl)czespl)II(((du-dl)<(esp2*dp))&&(dl>esp2)))

flag =TRUE;

else

while ((i < 3) a& (!flag))

darg[iJ = dl + (du - dl) * dif i;

dfunli3 = Ix(dm, dn. darg[i]) -dp;

if (dfun~i] == 0)

dmp = darg~i];

if (dfun[i] = 0)

flag = TRUE;

else if ((dfun[iJ < 0.0) && (i 2))

dl darg[2J;

dlx =dfun[2];

else if (dfun~i] > 0.0)

dui = darg~li3;

dux =dfun[i];

if (i == 2)

dl darg~l];

dlx =dfun~l];

else

i 2;

++j;

C-48

if (!flag)

jend = 2;

drnp =(du + dl) / 2.0;

dfd = dux - dlx;

if C(dfd < esp3) && Cdfd < (esp4 *dp))

flag = TRUE;

I

if ('flag)

decr = dux * (du - dl) / dfd;

drnp = du - decr;

if(((dmp-dl)<espl)I I(((dmp-dl)<esp2)&&(dl>esp2)))

flag = TRUE;

if ('flag)

dfun[3j = Ix(drn, dn, dxnp) - dp;

dabf fabs(dfun[32);

dfune =dfun [3];

if(((dabf<esp3)&&(dabf<(esp4*dp)))11I((dnip<espl)lI

(((du-dimpu)<esp2)&&(du>0.999999999999)) II

(dfun[3J == 0.0))

flag = TRUE;

if ('flag)

if (dfun[31 < 0.0)

if (decr < (0.9 *(du - dl)))

dl =dmp;

dlx =dfune;

else

C-49

dmpu = drop;

drop = 5.0 * (drop - dl) + dl;

dfune = Ix(dm, dn, dmp) - dp;

if (dfune == 0.0)

flag = TRUE;

if ('flag)

{

if (dfune < 0.0)

{

dl = dmp;

dlx dfune;

}

else

{

du drop;

dux = dfune;

dl = dmpu;

dlx = dfun[3];

}

}

}

}

else

{

if (decr >= (0.1 * (du - dl)))

{

du= dmp;

dux = dfune;

}

else

{

dmpu = drop;

dmp = du - 5.0 * decr;

C-50

dfune = Ix(dm, dn, dmp) - dp;

if (dfune = 0.0)

flag = TRUE;

if (!flag)

{

if (dfune < 0.0)

{

du = dmpu;

dux = dfun [3];

dl = dmp;

dlx = dfune;

}

else

{

du = dmp;

dux dfune;

}

}

}

}

}

}

return (dmp);

C-51

** DATE:O1/16/1992 **

** VERSION: 1.0 **

** TITLE: Coefficients file **

*s FILENAME: coefs.c **

** COORDINATOR: Salah Amin Elewa **

.** PROJECT:Development of an Environment for Software **

** Reliability Model Selection. **

** OPERATING SYSTEM: MS DOS version 2.3 or higher **

** LANGUAGE: Turbo C (2.1) **

** FILE PROCESSING: Compile and link with files pms.c **

** compute.c, prep.c, and prob.c. **

** CONTENTS: **

** 1.4.1 - RiCoef() **

** 1.4.2 - qCoefo) **

** 1.4.3 - ArCoef() **

** 1.4.4 - CreateDir() **

** 1.4.5 - Create-Cir() **

** 1.4.6 - Bern_Poly() **

** 1.4.7 - BernNum() **

** 1.4.8 - com() **

** FUNCTION: This file includes the routines used for **

** creating the different coefficients needed by **

** the environment. **

#include <math.h>

#include "defs.h"

boolean bflag = FALSE;

double ka[MAXSAMPLES + 1];

double Ri[DATAFILES + 1], Ar[DATAFILES + 1];

void ArCoef(double. double);

void RiCoef(double, double, double, double);

C-52

static double cozn(int. int);

static double BernPoly(int, double);

static double q[DATA-JILES+1J ,barray[DATAFILES+23;

static double Cir[DATA-FILES + 1][DATAFILES + 1];

static double DirEDATAFILES + iJ [DATA-FILES + 13;

C-53

** DATE: 01/16/1992 **

** VERSION: 1.1 *

** MODULE NAME: RiCoef() **

** MODULE NUMBER: 1.4.1 **

** DESCRIPTION: This module is used for creating the **

** Ri coefficients needed by Process-Equal and *S

** Process-Unequal in table.c and Probo) module **

** PASSED VARIABLES: p,delta,a,v **

** RETURNS:None **

** GLOBAL VARIABLES USED: q[], Dir[], RiE], DATAFILES**

** GLOBAL VARIABLES CHANGED: Ri[] **

** FILES READ: None **

** FILES WRITTEN: None **

** HARDWARE INPUT: None **

*, HARDWARE OUTPUT: None **

** MODULES CALLED: CreateDir(, qCoef() **

5* CALLING MODULES: Process-Equal and Process-Unequal 5,

*5 in table.c and ComputePercentile() *5

55 AUTHOR: Salah A. Elewa **

** HISTORY: **

** 1.0 Capt. K. N. Cole 08/05/1985 **

** Translated from Pascal code

55 (Original by Capt. Mark Amell) **

55 1.1 Salah A. Elewa 01/16/1992

Header modified, module names changed 5,

void RiCoef(double p, double delta, double a, double v)

{

void qCoef(double, double);

void CreateDir(double, double);

double sum;

int i, k;

C-54

CreateDir(a, v);

qCoef(p, delta);

Ri[Eo : 1.0;

for (i 1; i <= DATA-FILES; i++)

{

for (sum = 0.0, k = 1; k <= i; k++)

sum= sum + Ri[i - k] * Dir[i - k] [k];

Ri[i] = (q[i] - sum) / Dir[i][0];

}

return;

C-.35

** DATE: 0111611992 **

** VERSION: 1.1 **

** MODULE NAME: qCoef() **

** MODULE NUMBER: 1.4.2 **

** DESCRIPTION:This module is used for calculating the**

q coefficients for module RiCoef **

** PASSED VARIABLES: p,delta **

** RETURNS:None **

** GLOBAL VARIABLES USED: Ar[], q[], DATAFILES **

** GLOBAL VARIABLES CHANGED: q[] **

** FILES READ: None **

** FILES WRITTEN: None **

** HARDWARE INPUT: None **

** HARDWARE OUTPUT: None **

** MODULES CALLED: ArCoef() **

** CALLING MODULES: RiCoef() **

** AUTHOR: Salah A. Elewa **

** HISTORY: **

** 1.0 Capt. K. N. Cole 08/05/1985 *

** Translated from Pascal code **

** (Original by Capt. Mark Amell) *

** 1.1 Salah A. Elewa 01/16/1992 **

** Header modified, module names changed *

void qCoef(double p, double delta)

{

int i, k;

double sum;

ArCoef(p, delta);

q[O] = 1.0;

for (i = 1; i <= DATA-FILES; i++)

{

C-56

for (sum =0.0, k = 1; k <= i; k++)

sum = sum + k * Ar[k] * qEi - k];

q[i] (1.0 / (double) i) * sum;

return;

C-57

1.***

** DATE: 01/16/1992 **

** VERSION: 1.2 **

** MODULE NAME: ArCoef() **

** MODULE NUMBER: 1.4.3 **

** DESCRIPTION:This module is used for calculating the**

** Ar coefficients for module qCoef **

"** PASSED VARIABLES: p,delta **

** RETURNS:None **

** GLOBAL VARIABLES USED: Ar[], ka[], DATA-FILES **

** GLOBAL VARIABLES CHANGED: Ar[J **

** FILES READ: None **

** FILES WRITTEN: None **

** HARDWARE INPUT: None . . **

** HARDWARE OUTPUT: None **

** MODULES CALLED: BernPolyC) **

** CALLING MODULES: qCoef and Process-Equal and **

** Process-Unequal in table.c **

** AUTHOR: Salah A. Elewa **

** HISTORY: **

** 1.0 Capt. K. N. Cole 01/12/1984 **

** (Initial Version) **

** 1.1 Capt. K. N. Cole 05/10/1985 **

** Modified for new formula **

** 1.2 Salah A. Elewa 01/16/1992 **

Header modified, module names changed **

void Ar_Coef(double p, double delta)

{

double factor, partial;

int i, k;

Ar[O] = 1.0;

factor = 1.0;

C-58

for (k =1; k <= DATA-FJILES; k++)

factor =factor * -1.0 /p;

for (partial = 0.0. i 0; i < p; i++)

partial~partial+Bern-.Poly(k+1. (delta*ka[i>-1))/exp(log(ka~iJ)*k);

Ar~k] =(factor/Cdouble)Ck*(k+l)))*(partial-BerflPoly~k+l,(delta-1)));

return;

C-59

** DATE: 01/16/1992 **

** VERSION: 1.2 **

** MODULE NAME: CreateDir() **

** MODULE NUMBER: 1.4.4 *

** DESCRIPTION:This module is used for creating the **

.** Dir coefficients for module RiCoef **

** PASSED VARIABLES: a,v **

** RETURNS:None **

** GLOBAL VARIABLES USED: Cir[], Dir[], DATA-FILES **

** GLOBAL VARIABLES CHANGED: Dir[] **

** FILES READ: None **

** FILES WRITTEN: None **

** HARDWARE INPUT: None **

** HARDWARE OUTPUT: None **

** MODULES CALLED: CreateCir() **

** CALLING MODULES: Ri_Coef() **

** AUTHOR: Salah A. Elewa **

** HISTORY: **

** 1.0 Capt. Mark F. Amell 01/12/1984 **

** (Initial Version) **

** 1.1 Capt. K. N. Cole 05/10/1985 **

** Header added **

** 1.2 Salah A. Elewa 01/16/1992 **

** Header modified, module names changed **

void CreateDir(double a, double v)

{

void Create Cir(double, double);

int r, i, k;

double sum;

CreateCir(a, v);

for (i = 0; i <= DATA-FILES; i++)

C-60

Dir[i]0[0) = 1.0;

for (r = 1; r <= DATA-FILES; r++)

{

for (i = 0; i <= DATA-FILES; i++)

{

for (sum = 0.0, k = 1; k <= r; k++)

sum= sum + k * Cir~i][k) * Dir[i][r - k];

Dir[i] [r] = sum / (double) r;

}

return;

C-61

** DATE: 01/16/1992

** VERSION: 1.2 **

** MODULE NAME: CreateCir() o*

** MODULE NUMBER: 1.4.5 *

** DESCRIPTION:This module is used for creating the **

** Cir coefficients for module CreateDirC)**

** PASSED VARIABLES: a,v *

** RETURNS:None **

"" GLOBAL VARIABLES USED: Cir[], DATA-FILES

** GLOBAL VARIABLES CHANGED: Cir[] **

** FILES READ: None **

"* FILES WRITTEN: None **

** HARDWARE INPUT: None **

** HARDWARE OUTPUT: None

** MODULES CALLED: BernPoly() **

** CALLING MODULES: CreateDirC) **

*s AUTHOR: Salah A. Elewa *

** HISTORY: **

** 1.0 Capt. Mark F. Amell 01/12/1984 **

** (Initial Version) *

** 1.1 Capt. K. N. Cole 05/10/1985 *

** Header added **

** 1.2 Salah A. Elewa 01/16/1992 *

** Header modified, module names changed **

void CreateCir(double a, double v)

{

int r, i, rt;

double sign, temp;

for (i = 0; i <= DATA_FILES; ++i)

Cir[i][0O = 1.0;

C-62

for (sign = 1.0, r = 1; r <= DATAFILES; .*+r)

rt = r + 1

temp =Bern..Yoly(rt, a);

for (i =0; i <= DATAFILES; ++i)

Cir[i] [rJ=(sign/(r*(r+1 .0)))*(temp-Bern-Poly(rt~a+v+i));

sign = sign * (-1.0);

return,

C-63

** DATE: 01/16/1992 **

** VERSION: 1.1 **

** MODULE NAME: BernPoly() **

** MODULE NUMBER: 1.4.6 **

** DESCRIPTION:This module is used for creating the **

Bernoulli polynomials **

** PASSED VARIABLES: n,x **

** RETURNS:BernPoly (double) **

** GLOBAL VARIABLES USED: barray[] **

** GLOBAL VARIABLES CHANGED: None

** FILES READ: None **

** FILES WRITTEN: None *

** HARDWARE INPUT: None **

** HARDWARE OUTPUT: None **

** MODULES CALLED: Bern-Numo, com() **

** CALLING MODULES: ArCoef(), Create-Cir() **

** AUTHOR: Salah A. Elewa **

** HISTORY: **

** 1.0 Capt. K. N. Cole 08/05/1985 **

** Translated from Pascal code **

** (Original by Capt. Mark Amell) *

** 1.1 Salah A. Elewa 01/16/1992

** Header modified, module name changed **

double BernPoly(int n, double x)

{

void BernNum(void);

int i;

double sum, power;

sum = 0.0;

power = 1.0;

C-c,'

if ('bflag)

{

bflag = TRUE;

BernNumo; /* initialize barray */

}

for (i n; i >= 0; i--)

{

sum = sum + com(n, i) * barray[i] * power;

power = power x;

}

return (sum);

C-65

** DATE: 01/16/1992 **

** VERSION: 1.1 **

** MODULE NAME: BernMum() **

** MODULE NUMBER: 1.4.7 **

** DESCRIPTION:This module calculates the Bernoulli **

.** numbers and stores them in array (barray)**

** PASSED VARIABLES: None **

** RETURNS:None **

** GLOBAL VARIABLES USED: barray[], DATA-FILES **

** GLOBAL VARIABLES CHANGED: barray[] **

** FILES READ: None **

** FILES WRITTEN: None **

** HARDWARE INPUT: None **

** HARDWARE OUTPUT: None **

** MODULES CALLED: com() **

** CALLING MODULES: BernPoly() **

** AUTHOR: Salah A. Elewa **

** HISTORY: **

** 1.0 Capt. K. N. Cole 08/05/1985 **

** Translated from Pascal code **

** (Original by Capt. Mark Amell) **

** 1.1 Salah A. Elewa 01/16/1992 **

** Header modified, module name changed **

void BernNum(void)

{

double sum;

int i, j;

barray[0] = 1.0;

for (j 1; j <= (DATA-FILES + 1); j++)

{

sum = 0.0;

C-66

for (i =0, i <= (j - 1); i++)

sum =sum + com(j + 1, i) * barray~i];

barray~jJ] -. sum) / j+ 1);

for (j = 1; j <= (DATA.FILES + 1); j++)

it (Cbarray[jJ< 0.0OOOO0l)&&Cbarray[j]> -0.0000001))

barray[j] 0.0;

return;

C-67

** DATE: 01/16/1992 **

*, VERSION: 1.1 **

** MODULE NAME: com() **

** MODULE NUMBER: 1.4.8 *"

** DESCRIPTION:This module calculates the number of **

possible combinations **

** PASSED VARIABLES: n,i **

** RETURNS:com (double)

** GLOBAL VARIABLES USED: None **

** GLOBAL VARIABLES CHANGED: None **

** FILES READ: None **

** FILES WRITTEN: None **

HARDWARE INPUT: None**

** HARDWARE OUTPUT: None

** MODULES CALT 0: None **

** CALLING MODULES: Bern_Numno, BernPoly() **

** AUTHOR: Salah A. Elewa **

•* HISTORY: **

** 1.0 Capt. K. N. Cole 08/05/1985 **

** Translated from Pascal code **

** (Original by Capt. Mark Amell) **

1.1 Salah A. Elewa 01/16/1992 *

** Header modified, module name changed **

double com(int n, int i)

{

double prod, fn, fi, fj;

fn = n;

fi = i;

f = fn - fi;

prod = 1.0;

while (fi > 0.0)

C-68

prod = prod * (fn / fi);

fn = fn - 1.0;

fi = fi - 1.0;

while (fj > 0.0)

{

prod = prod * (fn / fj);

fn = fn - 1.0;

fj = fj - 1.0;

}

return (prod);

C-69

** DATE: 01/16/1992 **

** VERSION: 1.0 *

** TITLE: Percentile Points File **

** FILENAME: table.c **

** COORDINATOR: Salah Amin Elewa **

.** PROJECT:Development of an Environment for Software **

** Reliability Model Selection. **

** OPERATING SYSTEM: MS DOS version 2.3 or higher **

** LANGUAGE: Turbo C (2.1) **

** FILE PROCESSING: Compile and link with files Prob.c**

** and coefs.c *

** CONTENTS: **

** 1.0 - main() o*

** 1.0.1 - GetData() **

** 1.0.2 - ProcessEqual() **

** 1.0.3 - Process-Unequal() **

** 1.0.4 - PrintHeader() **

** FUNCTION: The modules in this file get informatioi **

** about calculation method, whether failures are**

** equal or unequal, the number of samples, and **

*, number of failures then a table of percentage **

** points at various significance levels and var-**

** ious total number of failures is then produced**

#include <stdlib.h>

#include <stdio.h>

*include <conio.h>

#include <math.h>

#include "defs.h"

extern void ArCoef(double, double);

extern void RiCoef(double, double, double, double);

extern double Newton(double, double, double, double, int, double, double);

C-70

extern double Art];

extern boolean exact;

extern double ka[];

static double p;

static boolean equal;

.static int k, RINI, RINC;

static FILE *fp6;

static double alpha_i[MAXALPHA] =

{ /* These values can be changed in the defs.h file */

#ifdef ALPHAI

ALPHA1,

#endif

#ifdef ALPHA2

ALPHA2,

#endif

#ifdef ALPHA3

ALPHA3,

#endif

#ifdef ALPHA4

ALPHA4,

#endif

#ifdef ALPHA5

ALPHA5,

#endif

C-71

** DATE: 01/16/1991 **

** VERSION: 1.0 **

** MODULE NAME: main **

** MODULE NUMBER: 1.0 **

** DESCRIPTION: This main program in for percentage **

** points generation **

** PASSED VARIABLES: None **

** RETURNS: None **

** HARDWARE INPUT: None **

** HARDWARE OUTPUT: None **

** MODULES CALLED: GetDatao) **

** ProcessEqual() **

** ProcessUnequal() **

** CALLING MODULES: None **

** AUTHOR: Salah Amin Elewa **

s* HISTORY: **

** 1.0 Salah Amin Elewa 01/16/1992 **

original version **

void main()

{

void GetData(void);

void ProcessEqual(void);

void ProcessUnequal(void);

clrscro);

GetData(;

if (equal)

ProcessEqual(),

else

Process_Unequal();

C-72

*i DATE: 01/16/1992 *

** VERSION: 1.0 **

** MODULE NAME: GetData() **

** MODULE NUMBER: 1.0.1 **

** DESCRIPTION: This module is used for obtaining inf-**

.** ormation about the number of failures in dif-**

** ferent samples whether equal or unequal, the **

** required accuracy of calculations whether **

** exact or asymptotic and the initial and inc- **

** remental number of failures. **

** PASSED VARIABLES: None **

** RETURNS: None **

** GLOBAL VARIABLES USED: exact, equal, p, RINI, RINC **

** GLOBAL VARIABLES CHANGED: exact, equal **

** FILES READ: None **

** FILES WRITTEN: None **

** HARDWARE INPUT: Keyboard **

** HARDWARE OUTPUT: Screen **

** MODULES CALLED: None **

** CALLING MODULES: The main program **

** AUTHOR: Salah A. Elewa **

** HISTORY: **

** 1.0 Salah A. Elewa 01/16/1992 **

** original version **

void GetData(void)

{

char ch;

puts("\n\n\t Enter (E)qual (e) OR (U)nequal (u) Calculations ?");

for C;;)
{

ch = getcheC);

C-73

if (oh =='u' II ch == 'U')

equal = FALSE;

printf("nequal\n");

else if (ch == 'e' Il ch 'E')

{

equal = TRUE;

printf("qual\n");

}

else

{

printf("\n\t\t\t Sorry! %c is Unknown Choice", ch);

puts("\n\t\t\t Try Again OR Press Ctrl+Break to Quit\n\n\n");

}

if (ch == 'u' I1 ch == 'U' II ch == 'e' II ch == 'E')

break;

}

puts("\n\n\t Enter (E)xact (e) OR (A)symptotic (a) Calculations ?");

for (;;)

ch = getcheo;

if (ch == 'a' II ch == 'A')

{

exact FALSE;

printf("symptotic\n");

}

else if (ch == 'e' II ch == 'E')

{

exact = TRUE;

printf("xact\n");

}

else

{

C- 74

printf('\n\t\t\t Sorry! %c is Unknown Choice". ch);

puts('\n\t\t\t Try Again OR Press Ctrl+Break to Quit\n\n\n");

}

if (ch == 'a' 11 ch == 'A' II ch == 'e' 1I ch == 'E')

break;

}

puts("\n\n\t Enter Number of Samples p?");

scanf("%lf", &p);

puts("\n\n\t Enter Initial Total Number of Failures RINI?");

scanf("%d", &RINI);

puts("\n\n\t Enter Increment to Total Number of Failures RINC?");

scanf("%d", &RINC);

C-75

** DATE: 01/16/1992 **

** VERSION: 1.0 **

** MODULE NAME: ProcessEqual() **

** MODULE NUMBER: 1.0.2 **

** DESCRIPTION: This module is used to calculate the **

** percentile points in case of equal nu!ber of **

** failures in each sample. **

** PASSED VARIABLES: None *

** RETURNS: None **

** GLOBAL VARIABLES USED: ka[],Ar[],p,RINI,RINC **

** and Alpha-i[J **

** GLOBAL VARIABLES CHANGED: ka[],Ar[] **

** FILES READ: The file containing the failure times **

** or the times between fail-res **

** FILES WRITTEN: "signific.dat" file, where the perc-*s

** entile points at different significance level**

** and different failures per sample are printed**

** HARDWARE INPUT: None **

** HARDWARE OUTPUT: None **

** MODULES CALLED: PrintHeader(),ArCoefo, RiCoefo**

** and Newton() *o

** CALLING MODULES: The main program **

** AUTHOR: Salah A. Elewa **

** HISTORY: **

"** 1.0 Salah A. Elewa 01/16/1992 **

** original version **

void ProcessEqual(void)

{

void PrintHeader(void);

int i, r, R;

double xvalue, v, a, t, sum, delta, m;

C-76

if ((fp 6 = fopen("signific.dat", "w")) == NULL)

{

printf("can not open signific.dat file\n");

exit(1);

}

delta = 0.0;

PrintHeadero;

for (i 0; i < (int) p; i++)

ka[i] = 1.0 / p;

v = 3.0 * (p - 1.0) / 2.0;

sum = 0.0;

for (i 0; i < (int) p; i++)

sum sum + (1.0 / ka[i]);

delta (13.0 * (sum - 1.0)) / ((p - 1.0) * 18.0);

a = (1.0 - v) / 2.0;

t = (p + 1.0) / (6.0 *p);

RiCoef(p, delta, a, v);

for (r = RINI; r <= RINI + 12 * RINC; r = r + RINC)

{ /* loop through r values */

if (r < ((int) p + 1))

r = (int) (p + 1.0);

printf("\nl r=%3d I". r);

fprintf(fp6, "\nl r=%3d ",);

R = r * Cint) p;

m = ((double) R - delta) / p;

for (k = 0; k < MAX-ALPHA && alpha-i[k] > 0.0; k++)

{

xvalue = Newton(a, v, t, p, R, alpha ilk], m);

printf(" %8.61f I", xvalue);

fprintf(fp6, " %8.61f ", xvalue);

}

}

printf(,\nt

printf('\n,);

C-77

fprintf(fp6,"\ni

fprintf(fp6,"\")

f closeCf p6);

C-78

** DATE: 01/16/1992 **

** VERSION: 1.0 **

** MODULE NAME: ProcessUnequal() **

** MODULE NUMBER: 1.0.3 **

** DESCRIPTION: This module is used to calculate the **

"percentile points in case of unequal number of*

** �ailures in each sample. **

** PASSED VARIABLES: None **

** RETURNS: None **

** GLOBAL VARIABLES USED: ka[],Ar[l,p,RINI,RINC **

** aInd Alpha-i[],k,MAXALPHA **

** GLOBAL VARIABLES CHANGED: ka[]. Ar[] **

** FILES READ: The file "ka2" or "ka3" (depending on **

** the number of samples). These files contain **

** the values of the ka[] coeffici.ents. Note that*

** this module handles two cases of number of **

** samples but can easily modified (just redraw **

** the header) to handle any number of samples **

** FILES WRITTEN: "signific.dat" file, where the perc-**

** entile points at different significance level**

** and different values of ka[J are printed **

** HARDWARE INPUT: None **

** HARDWARE OUTPUT: None **

** MODULES CALLED: Print.Header(),ArCoefC), RiCoef)**

** and Newtono) **

** CALLING MODULES: The main program **

** AUTHOR: Salah A. Elewa **

** HISTORY: **

** 1.0 Salah A. Elewa 01/16/1992 **

** original version **

C-79

void ProcessUnequal(void)

{

FILE *fp10;

int i, j, R;

void PrintHeader(void);

double xvalue, v, a, t;

double sum, delta, m;

delta = m = 0.0;

if ((fp6 = fopen("signific.dat", "w")) == NULL)

{

printf("can not open signific.dat file\n");

exit(1);

for (k = 0; k < MAX-ALPHA && alpha-i[k] > 0.0; k++)

/* loop through alpha values */

{

PrintHeadero);

if (p < 2.9999)

{

if ((fplO = fopen("ka2", "r")) == NULL)

{

printf("\n Can NOT Find The File %s\n", fplO);

puts("\n Enter the CORRECT File Name OR Ctrl-C to Exit\n");

}

else

{

if ((fplO = fopen("ka3", "r")) == NULL)

{

printf("\n\t\t\t Can NOT Find The File %s\n", fplO);

puts("\n\t\t\t Enter the CORRECT File Name OR Ctrl-C to Exit\n");

}

C - O

}

while (!feof(fp10))

{

if (p < 2.9999)

{

fscanf(fplO, "Ylf %,lf ", &ka[O], &ka[1]);

printf("IY.2.2f1%2.21f1", ka[O], ka[1]);

fprintf(fp6, "I%2.2f1%2.21fj", ka[O], ka[1]);

}

else

{

fscanf(fplO, "%.lf %.If Y.lf ", &ka[0O, &ka[l], &ka[2]);

printf(" 1.2.2f1%,2.21f.1%2.2fI", ka[O], ka[1]. ka[2]);

fprintf(fp6, "I7,2.2f1%2.21f1%2.2fj", ka[0O, ka[1], ka[2]);

}

v = 3.0 * (p - 1.0) / 2.0;

sum = 0.0;

for (i 0; i < (MAX-SAMPLES + 1) && ka[i] > .0000001; i++)

sum = sum + (1.0 / ka[i]);

delta = (13.0 * (sum - 1.0)) / ((p - 1.0) * 18.0);

a = (1.0 - v) / 2.0;

t = (p + 1.0) / (6.0 *p);

RiCoef(p. delta, a, v);

for (j = 1; j <= 5; j++)
{

R = RINI + (j - 1) * RINC;

m = ((double) R - delta) / p;

if (ka[O] * R > 2.99999999)

{

xvalue Newton(a, v, t, p, R, alpha-ilk], m);

printf(" %8.61f I", xvalue);

fprintf(fp6, " %8.61f I", xvalue);

}

else

C-si

printf(

fprintf(fp6, "I)

} ~/* loop through fail values *

printf('\n");

fprintf(fp6, "\n");

if (p < 2.99999)

{rnf"

printf(''

fprintf(fp6.' ,

fprintf(fp6."n.

else

printf("'1

fprintf(f" , I

fprintf(fp6 II

printf("\n\n\n");

fprintf(fp6, "\n\n\n");

f close Cf p10)

fclose(fp6);

C-S2

** DATE: 01/16/1992 **

** VERSION: 1.0 **

** MODULE NAME: PrintHeader() -*

** MODULE NUMBER: 1.0.4 **

"* DESCRIPTION: This module is used for printing the **

** table header both on the screen and the file **

** named signific.dat **

** PASSED VARIABLES: None **

** RETURNS: None **

** GLOBAL VARIABLES USED: exact, equal, k, p, RINI, **

** RINCalpha_i **

** GLOBAL VARIABLES CHANGED: None **

** FILES READ: None **

** FILES WRITTEN: "signific.dat" file **

** HARDWARE INPUT: None **

** HARDWARE OUTPUT: None **

** MODULES CALLED: None **

** CALLING MODULES: The main program **

** AUTHOR: Salah A. Elewa **

** HISTORY: **

** 1.0 Salah A. Elewa 01/16/1992 **

** original version **

void PrintHeader(void)

{

clrscro;

if (equal)

{

printf('\n Percentage Points of L= "(p/R) with Equal Sample Sizes");

fprintf(fp6,"\n Percentage Points of L= "(p/R) with Equal Sample Sizes");

}

else

{

C-S3

printf("\n Percentage Points of L= "(p/R) with Unequal Sample Sizes");

fprintf(fp6, "\n Percentage Points of L= C(p/R) with Unequal Sample

Sizes");

}

if (exact)

printf("\n\t Exact Method is used for Calculations");

fprintf(fp6, "\n\t Exact Method is used for Calculations");

}

else

{

printf('\n\t Asymptotic Method is used for Calculations");

fprintf(fp6, "\n\t Asymptotic Method is used for Calculations");

}

printf("\nkt\t Number of samples = %d\n", (int) p);

fprintf(fp6, "\nkt\t Number of samples = %d\n", (int) p);

if (equal)

{

printf(..

printf(" \n");

printf("I Failures I\t\t\t Level of Significanceo('\t I\n");

printf("I I I I - ,

printf(" I \n");

printf("I Per Sample I 0.100 1 0.050 1 0.025 1 0.010 ");

printf(" 1 0.005 I\n");

printf("I I [I
printf(" t()

fprintf(fp6," .)

fprintf(fp6," \n");

fprintf(fp6,"I Failures I\t\t\t Level of SignificanceQ'\t I\n");

fprintf(fp6,"I I I "

fprintf(fp6," l\n");

C-84

fprintf(fp6,"I Per Sample 1 0.100 1 0.050 1 0.025 I0.010)

fprintf(fp6," 1 0.005 I\n");

fprintf(fp6,1 II
fprintf(fp6," II)

else

if (p < 2.9999)

printf(' _________________________

printf (" -\n")

printf("'I'(= 75.311 l\t\t Total number of Failures R\t\t I\n",

alpha..i [k])

printf(j I
printf(H \n");

printf('I k1 I k2 I %2d I %.2d 111, RINI, P.INI+RINC);

printf(" %.2d I %.2d I %.2d Rn",RINI+2*RINC,

RINI+3*RINC,RINI+4*RINC);

printf(I i i i 1 ")

fprintf(fp6,'*I

fprintf (fp6,' n.

fprintf(fp6, "I'G(%5.31fl\t\t Total number of Failures R\t\t I\n",

alpha-..i [k])

fprintf(fp6, III

fprintf(fp6, "Ik1 k2 I %.2d I %2d V.RINI,RINI+RINC);

fprintf(fp6. %2d I %.2d I %.2d I\n'",RINI+2*RINC,

RINI+3*RINC,RINI+4*RINC);

fprintf(fp6, '

else

C-85

pr intf('

printfC"I 0(= %.5.31f i\t\t Total number of Failures R\t I\n".

alpha- i Ek]))

printf(" I

printf(" W9")

printf("l k1 I k2 I k3 I %.2d I %2d I", RINI.RINI+RINC);

printf(" %2d I %2d I %2d I\n".RINI42*RINC,

RINI+3*RINC,RINI+4*RINC);

printf("! i i i i ii 1- .)
printf("\n)

fprintf(fp6,",S)

fprintf~fp6,' ~ n)

fprintf(1p6, "~I 0= %5.31f I\t\t Total number of Failures R\t I\"

alpha-.i [k])

fprintf~fp6, "
fprintf(!p6," FI \n);

fprintf(fp6,"1 k1 I k2 I k3 I %2d I %2d 1". RINI,

RINI+RINC);

fprintf(f p6," %2d I %.2d I %2d I\n",RINI+2*RINC,

RINI+3*RINC ,RINI+4*RINC);

fprintf~lp6,"i i i

fprintf(f p6," \n)

C-86

APPENDIX I). Application of the PMS on Musa and Littkwood Failure Data Swts

Table D.A Data Analysis of Failure Set 1

Szgnzficance Level a
F. Set 0.00025 0.0005 0.001 0.0025 0.005 .01 0.025 0.05
SETI Two Identical Sets or Set Compared with Itself L = 1.0
SE'F2 Y/0.092 Y/0.084 Y/0.077 Y/0.068 Y/0.060 Y/0.053 Y/0.043 Y/0.035

L=0.994 L=0.994 L=0.994 L=0.994 L=0.994 L=0.994 L=0.994 L=0.994
C=0.903 C=0.910 C=0.917 C=0.926 C=0.934 C=0.941 C=0.951 C=0.959

SET4 N/-0.01
L=0.895
C=0.902

SET_5 N/-0.98
L=0.000
C=0.980

SETG N/-0.23
L=0.683
C=0.911

SET_14c N/-0.85
L=0.040
C=0.892

SET-17 N/-0.01
L=0.880
C=0.894

SET_27 N/-0.68
L=0.211
C=0.895

SETSla N/-0.92
L=0.000
C=0.925

SETSlc N/-0.95
L=0.000
C=0.954

SETISS3 N/-0.95
L=0.000
C=0.954

SETSS4 N/-0.94
L=0.000
C=0.943

SETi _Lt2 Y/0.01 1 Y/0.005 N/-0.00
L=0.927 L=0.927 L=0.927
C=0.916 C=0.922 C=0.929

SETLt3 N/-0.08
L=0.867
C=0.945

D-1

Table D.2 Data Analysis of Failure Set 2

Significance Levcl o
F. Set 0.00025 0.0005 0.001 0.0025 0.005 .01 0.025 0.05

SETl Y/0.092 Y/0.084 Y/0.077 Y/0.068 Y/0.060 Y/0.053 Y/0.043 Y/0.035
L--.994 L=0.994 L=0.994 L=0.994 L=0.994 L=0.994 L=0.994 L=0.994
C=0.903 C=0.910 C=0.917 C=0.926 C=0.934 C=0.941 C=0.951 C=0.959

SET_2 Two Identical Sets or Set Compared with Itself L = 1.0
SET4 N/-0.03

L=0.804
C=0.833

SET_5 N/-0.28
L=0.700
C=0.978

SET_6 N/-0.32
L=0.538
C=0.857

SET_14c N/-0.73
L=0.074
C=0.804

SET-17 Y/0.074 Y/0.060 Y/0.047 Y/0.029 Y/0.015 N/-0.00
L=0.881 L=0.881 L=0.881 L=0.881 L=0.881 L=0.881
C=0.808 C=0.821 C=0.834 C=0.853 C=0.867 C=0.881

SET-27 N/-0.53
L=0.282
C=0.813

SETSla N/-0.73
L=0. 157
C=0.889

SETSlc N/-0.54
L=0.405
C=0.943

SETSS3 N/-0.57
L=0.371
C=0.943

SETSS4 N/-0.70
L=0.226
C=0.925

SETLt2 1Y/0.092 Y/0.082 Y/0.073 Y/0.060 Y/0.051 Y/0.0412 Y/0.027 Y/0.017
L=0.962 L=0.962 L=0.962 L=0.962 L=0.962 L=0.9622 L=0.962 L=0.962
C=0.870 C=0.879 C=0.889 C=0.901 C=0.911 C=0.9210 C=0.934 C=0.945

SETLt3 N/-0.08
L=0.848
C=0.928

D-2

Table D.3 Data Analysis of Failure Set 4

Significance Level a
F. Set, 0.00025 0.0005 0.001 0.0025 0.005 .01 [0.025 0.05
SETI N/-0.01

L=0.895
C=0.902

SET_2 N/-0.03
L=0.804
C=0.833

SETA Two Identical Sets or Set Compared with Itself L = 1.0
SET_5 N/-0.33

L=0.649
C=0.978

SET_6 Y/0.030 Y/0.020 Y/0.010 N/-0.00
L=0.886 L=0.886 L=0.886 L=0.886
C=0.856 C=0.867 C=0.877 C=0.891

SET_14c N/-0.77
L=0.034
C=0.802

SET-17 N/-0.25
L=0.557
C=0.806

SET-27 N/-0.68
L=0.135
C=0.811

SETSla N/-0.78
L=0. 104
C=0.889

SETSIc N/-0.61
L=0.330
C=0.943

SETSS3 N/-0.64
L=0.303
C=0.943

SETSS4 N/-0.75
L=0.173
C=0.925

SETLt2 N/-0.16
L=0.708
C=0.869

SETLt3 Y/0.068 Y/0.063 Y/0.057 Y/0.050 Y/0.045 Y/0.039 Y/0.032 Y/0.026
L=0.996 L=0.996 L=0.996 L=0.996 L=0.996 L=0.996 L=0.996 L=0.996
C=0.928 C=0.933 C=0.939 C=0.946 C=0.951 C=0.957 C=0.964 C=0.970

D-3

Table D.4 Data Analysis of Failure Set 5

Significancc Levl c,

F. Set 0.00025 00005 0.001 0.0025 0.005 .01 0.025 0.05
SE'II N/-0.96

L=0.000
C=0.980

SET_2 N/-0.28
L=0.700
C=0.978

SE'T_4 N/-0.33
1,=0.649
C=0.978

SET_5 Two Identical Sets or Set Compared with Itself L = 1.0
SET.6 N/-0.46

L=0.517
C=0.979

SET_14c Y/0.007 Y/0.005 Y/0.003 Y/0.001 N/-0.00
L=0.984 L=0.984 L=0.984 L=0.984 L=0.984
C=0.978 C=0.979 C=0.981 C=0.983 C=0.985

SET-17 N/-0.18
L=0.798
C=0.978

SET-27 N/-0.OS
L=0.899
C=0.978

SET_.Sla Y/0.020 Y/0.018 Y/0.017 Y/0.015 Y/0.013 Y/0.011 Y/0.009 5"/0.00b
L=0.999 L=0.999 L=0.999 L=0.999 L=0.999 L=0.999 L=0.999 L=0.999
C=0.980 C=0.981 C=0.983 C=0.985 C=0.986 C=0.988 C=0.990 C=0.992

SE-_Slc Y/0.012 Y/0.011 Y/0.009 Y/0.007 Y/0.006 Y/0.005 Y/0.003 Y/0.002
L=0.995 L=0.995 L=0.995 L=0.995 L=0.995 L=0.995 L=0.995 L=0.995
C=0.983 C=0.984 C=0.985 C=0.987 C=0.983 C=0.990 C=0.992 C=0.993

SETSS3 Y/0.006 Y/0.005 Y/0.003 Y/0.002 Y/0.000 N/-0.00
L=0.989 L=0.989 L=0.989 L=0.989 L=0.989 L=0.989
C=0.983 C=0.984 C=0.985 C=0.987 C=0.988 C=0.990

SETSS4 N/-0.10
L=0.882
C=0.981

SETLt2 N/-0.37
L=0.611
C=0.979

SETLt3 N/-0.98
L=0.000
C=0.9S2

D-4

Table D.5 Data Analysis of Failure Set 6

Szguificance Level a

F. Set 0.00025 0.00050 0.00100 0.00250 0.00500 0.01000 0.02500 0.05000
SETI N/-0.23

L=0.683
C=0.911

SET_2 N/-0.32
L=0.538
C=0.857

SETA Y/0.030 Y/0.020 Y/0.010 N/-0.00
L=0.886 L=0.886 L=0.886 L=0.886
C=0.856 C=0.867 C=0.877 C=0.891

SET_5 N/-0.46
L=0.517
C=0.979

SET_6 Two Identical Sets or Set Compared with Itself L = 1.0
SET_14c N/-0.82

L=0.013
C=0.835

SET-17 N/-0.51
L=0.325
C=0.83S

SET-27 N/-0.78
L=0.060
C=0.S42

SETSla N/-0.86
L=0.043
C=0.900

SETSL c N/-0.75
L=0.194
C=0.946

SETSS3 N/-0.77
L=0.174
C=0.946

SETSS4 N/-0.85

L=0 083
C=0.930

SETLt2 N/-0.42

L=0.462
C=0.885

SELt3 U N/-0.02
L=0.909
C=0.933

D-

Table D.6 Data Analysis of Failure Set 14C

Szgntficancc Levdl o
F. Set 0.00025 0.00050 0.00100 0.00250 0.00500 0.01000 0.02500 1 0.05000
SETI N/-0.85

L=0.040
C=0.892

SET_2 N/-0.73
L=0.074
C=0.804

SET4 N/-0.77
L=0.034
C=0.802

SET_5 Y/0.007 Y/0.005 Y/0.003 Y/0.001 N/-0.00
L=0.984 L=0.984 L=0.984 L=0.984 L=0.984
C=0.978 C=0.979 C=0.981 C=0.983 C=0.985

SET_6 N/-0.82
L=0.013

C=0.835
SET_14c Two Identical Sets or Set Compared with Itself L = 1.0
SET_17 N/-0.62

L=0.145
C=0.766

SET-27 N/-0.19
L=0.579
C=0.774

SETSla Y/0.040 Y/0.031 Y/0.022 Y/0.010 Y/0.001 N/-0.01
L=0.916 L=0.916 L=0.916 L=0.916 L=0.916 L=0.916
C=0.876 C=0.885 C=0.894 C=0.906 C=0.915 C=0.925

SET.Slc Y/0.032 Y/0.028 Y/0.023 Y/0.017 Y/0.013 Y/0.008 Y/0.002 N/-0.00
L=0.972 L=0.972 L=0.972 L=0.972 L=0.972 L=0.972 L=0.972 L=0.972
C=0.939 C=0.944 C=0.948 C=0.954 C=0.959 C=0.964 C=0.970 C=0.975

SETSS3 N/-0.00
L=0.936

C=0.940
SETSS4 N/-0.09

L=0.828
_C=0.919

SET.Lt2 N/-0.77
L=0.081
C=0.851

SETLt3 N/-0.92
L=0.000
C=0.923

D-6

Table D.7 Data Analysis of Failure Set 17

Signifirance Level ca

F. Set [0.00025 0.00050 0.00100 0.00250 0.00500 0.01O00 f 0.02500 0.05000
SETI N/-0.01

L=0.880
C=0.894

SET_2 Y/0.074 Y/0.060 Y/0.047 Y/0.02b Y/0.015 N/-0.00
L=0.881 L=0.881 L=0.881 L=0.881 L=0.881 L=0.881
C=0.808 C=0.821 C=0.834 C=0.853 C=0.867 C=0.881

SET_4 N/-0.25
L=0.557
C=0.806

SET_5 N/-0.18
L=0.798
C=0.978

SETI6 N/-0.51
L=0.325
C=0 838

SET_14c N/-0.62
L=0.145

C=0.766
SET-17 Two Identical Sets or Set Compared with Itself L = 1.0

SET-27 N/-0.33
L=0.448
C=0.779

SETSla N/-0.60
L=0.2-8
C=0.878

SET-SIc N/-0.38
L=0.556
C=0.940

SEr-SS3 N/-0.42
L=0.521
C=0.9410

SETISS4 N/-0.56

L=0.364
C=0.920

SETLt2 Y/0.108 Y/0.098 Y/0.087 Y/0.073 Y/0.062 Y/0.051 Y/0.036 Y/0.024

L=0.962 L=0.962 L=0.962 L=0.962 L=0.962 L=0.962 L=0.962 L=0.v62
C=0.854 C=0.864 C=0.875 C=0.889 C=0.900 C=0.911 C=0.926 C=0.938

SETL3 N/-0.27
L=0.649
C=0.923

D-7

Table D.8 Data Analysis of Failure Set 27

Signmficancc Level o
F. Set 0.00025 0.00050 0.00100 0.00250 0.00700 0.01000 0.02500 1 0.05000
SET_1 N/-0.68

L=0.211
C=0.895

SET_2 N/-0.53
L=0.282
C=0.813

SELT4 N/-0.6S
L=0.135
C=0.811

SELT5 N/-0.08
L=0.S99
C=0.978

SETG6 N/-0.78
L=0.060
C=0.8,12

SET_14c N/-0.19
L=0.579
C=0.774

SET_7 N/-C.33
L=0.448
C=0.779

SET_27 Two Identical Sets or Set Compared with Itself L= 1.0
SETLSla N/-0.32

L=0.558
C=0.8S0__

SETSlc N/- 0.17
L=0. 7 73

C=0.9410
SETSS3 N/-0.22

L=0.722
C=0.941

SETSS4 N //-C.36
L=0.564
C=0.921

SETLt2 N/-0.51
l,=0.350
C=0.857

SELt3 N/-0.83
L=0.097
C=0.924

D-8

Table D.9 Data Analysis of Failure Set SSIa

Szgazficancc Lev,,I a

F. Set 0.00025[0.00050 0.00100 0.00250 0.00500 0.01000 0.02500 0.05000
SE'I_- N/-0.92

L=0.000
C=0.925

SEi_2 N/-0.73
L=0.157
C=0.889

SETL4 N/-0.78
L=0. 104
C=0.889

SET_5 Y/0.020 Y/0.018 Y/0.017 Y/0.015 Y/0.013 Y/0.01 1 Y/0.009 Y/0.008
1,=0.999 L=0.999 L=0.999 L=0.999 L=0.999 L=0.999 1,=0.999 L=0.999
C=0.9SO (7=0.981 C=0.983 C=0.985 C=0.986 C=0.988 C=0.990 C=0.992

SE'I A N/-0.8o
L=0.043
C=0.900

SET_14c Y/0.040 Y/0.031 Y/0.022 Y/0.010 Y/0.001 N/-0.01
L=0.916 L=0.916 L=0.916 L=0.91U L=0.916 L=0.916
C=0.876 C=0.885 C=0.894 C=0.906 C=0.915 C=0.925

SET17 N/-0.60
L=0.278
C=0.878

SET-27 N/-0.32
1,=0.55S
C=0.SS0

SEfSla ITwo Identical Sets or Set Compared with Itself L 1.0
SETSlc Y/0.040 Y/0.036 Y/o.032 Y/0.027 Y/0.024 Y/0.020 Y/0.015 Y/0.01 1

L=0.991 L=0.991 L=0.991 L=0.991 L=0.991 L=0.991 L=0.991 L=0.991
(.=0.952 C=0.955 C=0.959 C=0.964 C=0.967 C=0.971 0=0.976 0=0.9S0

SET-SS3 Y/0.040 Y/0.037 Y/0.033 Y/0.028 Y/0.025 Y/0.021 Y/0.O016 Y/0.012
L=0.992 L=0.992 L=0.992 L=0.992 L=0.992 L=0.992 L=0.992 L=0.992
C=0.952 C=0.955 C=0.959 C=0.964 C=0.967 C=0.971 C=0.976 C=0.9S0

SETSS4 N/-0.06
L=0.8F'4
(0=0.939

SEI _Lt2 N/-0.79
L=0.112
C=0.907

SErLt3 N/-0.94 I
L=0.000

________ =0.941 ____ _ _ _ _____

D-9

"Table D.10 Data Analysis of Failure Set SSlc

Szgnificance Lu,'l 0

F. Set 0.00025 0.00050 0.00100 0.00250 J 0.00500 0.01000 0.0_2500 0.0500_
1 N/-0.95

L=0.000
C=0.954

2 N/-..54
L=0.405
C=0.943

4 N/-0.61
L=0.330
C=0.943

5 Y/0.012 Y/0.011 Y/O.O09 Y/O.007 Y/0.006 Y/0.005 Y/0.003 Y/0.002
L=0.995 L=0.995 1=0.995 L=0.995 L=0.995 L=0.995 L=0.995 L=0.995
C=0.983 C=0.984 C=0.985 C=0.987 C=0.988 C=0.990 C=0.992 C=0.993

6 N/-0.75
L=0.194
C=0.946

14C Y/0.032 Y/0.028 Y/0.023 Y/0.017 Y/0.013 Y/0.008 Y/0.002 N/-0.00
L=0.972 L=0.972 L=0.972 L=0.972 L=0.9712 L=0.972 L=0.972 L=0.972
C=0.939 C=0.944 C=0.948 C=0.954 C=0.959 C=0.964 C=0.970 C=0.975

17 N/-0.38
L=0.556
C=0.940

27 N/-0.17
L=0.773
C=0.940

SSla Y/0.040 Y/0.0364 Y/0.032 Y/0.027 Y/0.024 Y/0.0206 Y/0.015 Y/0.011
L=0.991 L=0.9911 L=0.991 L=0.991 L=0.991 L=0.9911 L=0.991 L=0.991
C=0.952 C=0.9557 C=0.959 C=0.964 C=0.967 C=0.9715 C=0.976 C=0.980

sslc Two Identical Sets or Set Compared with Itself L = 1.0
SS3 N/-0.00

L=0.964
C=0.966

SS4 N/-0.16
L=0.799
C=0.960

Litt2 N/-0.64
L=0.310
C=0.948

Litt.3 N/-0.96
L=0.000
C=0.961

D-10

Table D. 1I Data Analysis of Failure Set SS3

Signz/icanre Lerd ca
F. Set 0.00025 0.0005 0.001 0.0025 0.005 .01 0.025 0.05
SETI N/-0.95

L=0.000
C=0.954

SET_2 N/-0.57
L=0.371
C=0.943

SET4 N/-0.64
L=0.303
C=0.943

SET_5 Y/0.006 Y/0.005 Y/0.003 Y/0.002 Y/0.000 N/-0.00
L=0.989 L=0.989 L=0.989 L=0.989 L=0.989 L=0.989
C=0.983 C=0.984 C=0.985 C=0.987 C=0.988 C=0.990

SET_6 N/-0.77
L=0.174
C=0.946

SET_14c N/-0.00
L=0.936
C=0.940

SET_17 N/-0.42
L=0.521
C=0.940

SET-27 N/-0.22
L=0.722
C=0.941

SETSla Y/0.040 Y/0.037 Y/0.033 Y/0.028 Y/0.025 Y/0.021 Y/0.016 Y/0.012
L=0.992 L=0.992 L=0.992 L=0.992 L=0.992 L=0.992 L=0.992 L=0.992
C=0.952 C=0.955 C=0.959 C=0.964 C=0.967 C=0.971 C=0.976 C=0.9S0

SET-Slc N/-0.00
L=0.964
C=0.966

SETSS3 Two Identical Sets or Set Compared with Itself L = 1.0
SETSS4 N/-0.04

L=0.920
C=0.960

SETLt2 N/-0.67
L=0.274
C=0.948

SETLt3 N/-0.96
L=0.000
C=0.961

D- 1I

Table D.12 Data Analysis of Failure Set SS4

Significance Levd a
F. Set 0.00025 0.000.50 0.00100 0.00250 0.00500 0.01000 0.02500 0.05000
SETI N/-0.94

L=0.000
C=0.943

SET_2 N/-0.70
L=0.226
C=0.925

SET_4 N/-0.75
L=0. 173
C=0.925

SET_5 N/-0.10
L=0.882
C=0.981

SET_6 N/-0.85

L=0.083
C=0.930

SET_14c N/-0.09

L=0.828
C=0.919

SET-17 N/-0.56
L=0.364
C=0.920

SET-27 N/-0.36
L=0.564
C=0.921

SET.Sla N/-0.06
L=0.884
C=0.939

SETSIc N/-0.16
L=0.799
C=0.960

SETSS3 N/-0.04
L=0.920
C=0.960

SETSS4 Two Idcntical Sets or Set, Compared with Itself L = 1.0
SETLt2 N/-0.78

L=0.149
C=0.934

SETLt3 N/-0.95
L=0.000
C=0.953

D-12

Table D.13 Data Analysis of Failure Set Litt2

Szgnificance Level a

F. Set, 0.00025 0.00050 0.00100 0.00250 0.00500 0.01000 0.02500 0.05000
SE]_1 Y/0.011 Y/0.005 N/-0.00

L=0.927 L=0.927 L=0.927
C=0.916 C=0.922 C=0.929

SET_2 Y/0.092 Y/0.082 Y/0.073 Y/0.060 Y/0.051 Y/0.041 Y/0.027 Y/0.017
L=0.962 L=0.962 L=0.962 L=0.962 L=0.962 L=0.962 L=0.962 L=0.962
C=0.870 C=0.879 C=0.889 C=0.901 C=0.911 C=0.921 C=0.934 C=0.945

SETA N/-0.16
L=0.708
C=0.869

SET_5 N/-0.37
L=0.611
C=0.979

SETI_ N/-0.42
L=0.462
C=0.885

SET_14c N/-9ý.7'
L=0.081
C=0.851

SET-17 Y/0.108 Y/0.098 Y/0.087 Y/0.073 Y/0.062 Y/0.051 Y/0.036 Y/0.024
L=0.962 L=0.962 L=0.962 L=0.962 L=0.9C2 L=0.962 L=0.962 L=0.962
C=0.854 C=0.864 C=0.875 C=0.889 C=0.900 C=0.911 C=0.926 C=0.938

SET-27 N/-0.51
L=0.350
C=0.857

SETSla N/-0.79
L=0.1 12
C=0.907

SETSlc N/-0.64
L=0.310
C=0.948

SETSS3 N/-0.67
L=0.274
C=0.948

SETSS4 N/-0.78
L=0. 149
C=0.934

SETLt2 Two Identical Sets or Set Compared with Itself L = 1.0
SETLt3 N/-0.27

L=0.671
C=0.936

D- 13

Table D.14 Data Analysis of Failure Set Litt3

Significance Level a

F. Data 0.00025 0.00050 0.00100 0.00250 0.00500 0.01000 0.02:500 0.05000
SET_1 N/-0.08

L=0.867
C=0.945

SET_2 N/-0.08
L=0.848
C=0.928

SET4 Y/0.068 Y/0.063 Y/0.057 Y/0.050 Y/0.045 Y/0.039 Y/0.032 Y/0.02G
L=0.996 L=0.996 L=0.996 L=0.996 L=0.996 L=0.996 L=0.996 L=0.996
C=0.928 C=0.933 C=0.939 C=0.946 C=0.951 C=0.957 C=0.9G4 C=0.970

SET_5 N/-0.98
L=0.000
C=0.982

SET_6 N/-0.02
L=0.909
C=0.933

SET_14c N/-0.92
L=0.000
C=0.923

SET-17 N/-0.27
L=0.649
C=0.923

SET-27 N/-0.83
L=0.097
C=0.924

SET.Sla N/-0.94
L=0.000
C=0.941

SET-SIc N/-0.96
L=0.000
C=0.961

SETSS3 N/-0.96
L=0.000
C=0.961

SETSS4 N/-0.95
L=0.000
C=0.953

SETLt2 N/-0.27
L=0.671
C=0.936

SETLt3 Two Identical Sets or Set Compared with Itself L 1 .0

D-14

APPENDL E. Exact and Asymptotic Percentage Points of the 7Rst

Statistic

Table E.1 Percentage Points of L = A ýR when p=2

Failures Level of Significance a
per sample 0.100 0.050 0.025 0.010 0.005

r= 5 0.449752 0.368224 0.302557 0.234197 0.193293
r= 6 0.529323 0.451446 0.386168 0.315083 0.270573
r= 7 0.589488 0.516492 0.453664 0.383167 0.337681
r= 8 0.636320 0.568307 0.508641 0.440245 0.395162
r= 9 0.673746 0.610380 0.554012 0.488355 0.444380
r= 10 0.704265 0.645142 0.591966 0.529252 0.486724
r= 11 0.729615 0.674304 0.624117 0.564338 0.523397
r= 12 0.750998 0.699097 0.651667 0.594711 0.555387
r= 13 0.769267 0.720420 0.675515" 0.621226 0.583491
r= 14 0.785056 0.738947 0.696349 0.644554 0.608347
r= 15 0.798S22 0.755189 0.714698 0.665224 0.630470
r= 20 0.847698 0.813374 0.781060 0.740910 0.712234
r= 25 0.877481 0.849270 0.822471 0.788849 0.764602
r= 30 0.897547 0.873605 0.850742 0.821874 0.800924
r= 35 0.911960 0.891182 0.871259 0.845990 0.827569
r= 40 0.922823 0.904472 0.886824 0.864365 0.847940
r= 45 0.931300 0.914870 0.899034 0.878829f 0.864014
r= 50 0.938100 0.923229 0.908868 0.890509 0.877020
r= 55 0.943676 0.930093 0.916958 0.900137 0.887758
r= 60 0.948330 0.935831 0.923729 0.908210 0.896773
r= 65 0.952274 0.940699 0.929480 0.915076 0.904449
r= 70 0.955658 0.944880 0.934425 0.920988 0.911063
r= 75 0.958595 0.948511 0.938722 0.926130 0.916822
r= 80 0.961167 0.951693 0.942490 0.930644 0.921880
r= 85 0.963438 0.954505 0.945822 0.934638 0.926359
r= 90 0.965458 0.957007 0.948789 0.938197 0.930352
r= 95 0.967266 0.959249 0.951448 0.941389 0.933935
r=100 0.968895 0.961268 0.953845 0.944268 0.937167
r=105 0.970369 0.963097 0.956016 0.946877 0.940098
r=110 0.971710 0.964761 0.957992 0.949252 0.942767
r=115 0.972935 0.966281 0.959799 0.951425 0.945209
r=120 0.974058 0.967676 0.961456 0.953419 0.947451
r=125 0.975091 0.968960 0.962982 0.955256 0.949517
r=130 0.976046 0.970145 0.964392 0.956953 0.951427
r=135 0.976930 0.971244 0.965698 0.958527 0.953197
r=140 0.954843 0.959989 0.966912 0.959989 0.954843
r=145 0.956377 0.961352 0.968043 0.961352 0.956377
r=150 0.957811 0.962625 0.969099 0.962625 0.957811

E-1

Table E.2 Percentage Points of L = AL when p=3

Fadures Level of Sgngficanc(a
per sample 0.100 0.050 0.025 0.010 0.005

r= 5 0.267091 0.209072 0.165154 0.121904 0.097222
r= 6 0.347988 0.286615 0.238030 0.187729 0.157509
r= 7 0.414579 0.352800 0.302399 0.248465 0.214986
r= 8 0.469791 0.409111 0.358512 0.303058 0.267820
r= 9 0.516029 0.457190 0.407306 0.351634 0.315624
r= 10 0.555170 0.498503 0.449832 0.394734 0.358595
r= 11 0.588651 0.534266 0.487063 0.433010 0.397157
r= 12 0.617573 0.565457 0.519835 0.467098 0.431792
r= 13 0.642778 0.592859 0.548847 0.497567 0.462971
r= 14 0.664924 0.617098 0.574674 0.524914 0.491123
r= 15 0.684524 0.638674 0.597791 0.549561 0.516626

= 20 0.756144 0.718456 0.684247 0.643088 0.614437
r= 25 0.801400 0.769596 0.740426 0.704924 0.679931
r= 30 0.832536 0.805089 0.779744 0.748663 0.726621
r= 35 0.855252 0.831139 0.808765 0.781180 0.761515
r= 40 0.872551 0.851062 0.831051 0.806281 0.788555
r= 45 0.886162 0.866788 0.848697 0.826235 0.810112
r= 50 0.897149 0.879515 0.863012 0.842472 0.827694
r= 55 0.906203 0.890025 0.874856 0.855940 0.842304
r= 60 0.913794 0.898850 0.884818 0.867290 0.854635
r= 65 0.920248 0.906365 0.893313 0.876986 0.865181
r= 70 0.925804 0.912841 0.900642 0.885362 0.874303
r= 75 0.930637 0.918480 0.907029 0.892672 0.882270
r= 80 0.934878 0.923435 0.912645 0.899107 0.889289
r= 85 0.938631 0.927821 0.917622 0.904814 0.895518
r= 90 0.941976 0.931733 0.922063 0.909911 0.901085
r= 95 0.944974 0.935242 0.926050 0.914490 0.906089
r=100 0.947678 0.938409 0.929648 0.918626 0.910611
r=105 0.950129 0.941280 0.932913 0.922381 0.914719
r=110 0.952360 0.943896 0.935889 0.925805 0.918465
r=115 0.954401 0.946288 0.938612 0.928939 0.921897
r=120 0.956274 0.948485 0.941113 0.931820 0.925051
r=125 0.957999 0.950509 0.943418 0.934476 0.927961
r=130 0.959593 0.952381 0.945550 0.936933 0.930653
r=135 0.961070 0.954116 0.947526 0.939213 0.933151
r=140 0.962444 0.955729 0.949365 0.941333 0.935476
r=145 0.963723 0.957232 0.951079 0.943311 0.937644
r=150 0.964919 0.958637 0.952681 0.945160 0.939672

E-2

Table E.3 Percentage Points of L = A ' when p=4

Failures Level of Szgnificance u
per sample 0.100 0.050 0.025 0.010 0.005

r= 5 0.163267 0.122321 0.092616 0.064596 0.049267
r= 6 0.236473 0.189151 0.153010 0.116830 0.095732
r= 7 0.300401 0.249806 0.209863 0.168396 0.143314
r= 8 0.356022 0.304056 0.262035 0.217265 0.189488
r= 9 0.404423 0.352264 0.309309 0.262631 0.233110
r= 10 0.446668 0.395040 0.351903 0.304292 0.273724
r= 11 0.483713 0.433048 0.390219 0.342349 0.311238
r= 12 0.516370 0.466919 0.424713 0.377045 0.345751
r= 13 0.545319 0.497216 0.455828 0.408675 0.377457
r= 14 0.571123 0.5241427 0.483974 0.437543 0.406581
r= 15 0.594244 0.548967 0.509513 0.463938 0.433360
r= 20 0.680921 0.642223 0.607815 -0.567186 0.539342
r= 25 0.737413 0.703997 0.673932 0.637973 0.613020
r= 30 0.777026 0.747748 0.721202 0.689182 0.666780
r= 35 0.806303 0.780303 0.756601 0.727839 0.707600
r= 40 0.828807 0.805451 0.784071 0.758012 0.739596
r= 45 0.846639 0.825451 0.805995 0.782199 0.765327
r= 50 0.861114 0.841734 0.823892 0.802011 0.786456
r= 55 0.873096 0.855244 0.838775 0.818533 0.804111
r= 60 0.883178 0.866633 0.851344 0.832517' 0.819080
r= 65 0.891778 0.876363 0.862099 0.844506 0.831930
r= 70 0.899199 0.884772 0.871405 0.854896 0.843081
r= 75 0.905669 0.892111 0.879536 0.863988 0.852848
r= 80 0.911359 0.898572 0.886701 0.872009 0.861472
r= 85 0.916402 0.904304 0.893063 0.879139 0.869143
r= 90 0.920903 0.909423 0.89S749 0.885516 0.876010
r= 95 0.924943 0.914022 0.903862 0.891256 0.882194
r=100 0.928592 0.918178 0.908483 0.896448 0.887790
r=105 0.931902 0.921950 0.912681 0.901167 0.892880

r=110 0.934919 0.925390 0.916511 0.905475 0.897528
r=115 0.937680 0.928540 0.920019 0.909424 0.901791
r=120 0.940217 0.931434 0.923244 0.913056 0.905713
r=125 0.942555 0.934104 0.926220 0.916408 0.909334
r=130 0.944717 0.936573 0.928973 0.919511 0.912687
r=135 0.946722 0.938864 0.931528 0.922393 0.915802
r=140 0.948587 0.940996 0.933907 0.925075 0.918702
r=145 0.950326 0.942984 0.936125 0.927578 0.921409
r=150 0.951951 0.944842 0.938199 0.929920 0.923941

E-3

Table EA Percentage Points of L = AFL when p=5

Fazlures Leud of Signzficanc o
per sample 0.100 0.050 0.025 0.010 0.005

r= 6 0.163811 0.128060 0.101629 0.076017 0.061524
r= 7 0.220897 0.180198 0.148926 0.117309 0.098639
r= 8 0.273189 0.229512 0.195032 0.159134 0.137313
r= 9 0.320432 0.275122 0.238621 0.199779 0.175660
r= 10 0.362879 0.316854 0.279183 0.238406 0.212663
r= 11 0.400973 0.354853 0.316617 0.274657 0.247814
r= 12 0.435198 0.389399 0.351028 0.308440 0.586766
r= 13 0.466021 0.420820 0.382614 0.695443 0.491269
r= 14 0.493864 0.449441 0.411610 0.503296 0.340773
r= 15 0.519099 0.475566 0.438254 0.407376 0,367715
r= 20 0.616001 0.577404 0.543581 0.504181 0.477486
r= 25 0.681000 0.646942 0.616708 -0.580990 0.556462
r= 30 0.727395 0.697127 0.670026 0.637715 0.615329
r= 35 0.762100 0.734949 0.710492 0.681142 0.660680
r=40 0.789012 0.764436 0.742200 0.715385 0.696602
r= 45 0.810477 0.788053 0.767692 0.743047 0.725723
r= 50 0.827992 0.807385 0.788623 0.765844 0.749786
r= 55 0.842552 0.823497 0.806109 0.784947 0.76999.4
r= 60 0.854845 0.837129 0.820933 0.801183 0.787199
r= 65 0.865360 0.848812 0.833659 0.815148, 0.802020
r= 70 0.874458 0.858934 0.844700 0.827286 0.814919
r= 75 0.882405 0.867788 0.854369 0.837932 0.826245
r= 80 0.889408 0.875598 0.862908 0.847346 0.836269
r= 85 0.895624 0.882538 0.870502 0.855728 0.845203
r= 90 0.901179 0.888745 0.877300 0.863240 0.853214
r= 95 0.906173 0.894330 0.883421 0.870009 0.860438
r=100 0.910687 0.899382 0.888961 0.876141 0.866986
r=105 0.914787 0.903973 0.893999 0.881721 0.872948
r=110 0.918527 0.908164 0.898601 0.886820 0.878400
r=115 0.921953 0.912004 0.902819 0.891499 0.883403
r=120 0.925103 0.915537 0.906701 0.895807 0.888011
r=125 0.928008 0.918797 0.910285 0.899786 0.892269
r=130 0.930697 0.921814 0.913604 0.903472 0.896216
r=135 0.933192 0.924616 0.916687 0.906897 0.899884
r=140 0.935514 0.927224 0.919557 0.910088 0.903302
r=145 0.937679 0.929658 0.922236 0.913067 0.906494
r=150 0.939704 0.931934 0.924742 0.915855 0.909483

E-4

Table L.5 Percentage Points of L = A with unequal sample sizes
(a =.01, .05,p= 2)

a = .01 Total Number of Failures R
k, k, 10 15 20 25 30

.50 .50 0.234197 0.412950 0.529252 0.608405 0.665224
.45 .55 0.233263 0.412267 0.528772 0.608058 0.664963
.40 .60 0.230377 0.410141 0.527275 0.606973 0.664148
.35 .65 0.225282 0.406314 0.524565 0.605006 0.662670
.30 .70 0.217567 0.400287 0.520250 0.601861 0.660302
.25 .75 0.391187 0.513586 0.596967 0.656606
.20 .80 0.377726 0.503170 0.589184 0.650688
.15 .85 1 0.486527 0.576075 0.640521

0 = .01 Total ANumber of Falihr(s R
ki k2 40 60 80 100 120

.50 ,50 0.740910 0.821874 0.864365 0.890509 0.908210

.45 .55 0.740749 0.821796 0.864320 0.890479 0.908189

.40 .60 0.740246 0.821552 0.864176 0.890385 0.908123

.35 .65 0.739332 0.821108 0.863916 0.890215 0.908002

.30 .70 0.737868 0.820398 0.863499 0.889941 0.907809

.25 .75 0.735578 0.819285 0.862847 0.889513 0.907508

.20 .80 0.731893 0.817493 0.861796 0.888825 0.907022

.15 .85 0.725477 0.814358 0.859958 0.887621 0.906174

a = .05 Total Number of Failrcs R
k, k2 10 15 20 25 30

.50 .50 0.36S224 0.543806 0.645142 0.710145 0.755189

.45 .55 0.367196 0.5.13173 0.644733 0.709863 0.754983

.40 .60 0.364009 0.541197 0.643453 0.708979 0.754339
.35 .65 0.358338 0.537626 0.641132 0.707373 0.753169
.30 .70 0.349618 0.531955 0.637418 0.704798 0.751291
.25 .75 0.523260 0.631635 0.700771 0.748349
.20 .80 0.509963 0.622454 0.694305 0.743607
.15 .85 0.607198 0.683191 0.735355

a = .05 Total Number of Failures R
k, k 2 40 60 80 100 120

.50 .50 0.813374 0.873605 0.904472 0.923229 0.935831
.45 .55 0.813252 0.873548 0.904439 0.923207 0.935816
.40 .60 0.812868 0.873368 0.904335 0.923140 0.935769
.35 .65 0.812172 0.873042 0.904147 0.923018 0.935683
.30 .70 0.811054 0.872518 0.903845 0.922822 0.935546
.25 .75 0.809301 0.871698 0.903372 0.922515 0.935331
.20 .80 0.806470 0.870373 0.902610 0.922021 0.934985
.15 .85 0.801506 0.868049 0.901274 0.921156 0.934380

F,-5

Tahle E.6 Percentage Points of L = A7 with unequal sample sizes

(a=.O1, .05,1,=3)

a = .01 Total Numbcr of Faiur-s It
ki k 2 k 3 10 15 20 25 30

.33 .33 .34 0.018296 0.121895 0.228876 0.319888 0.394727

.30 .30 .40 0.017713 0.121021 0.228008 0.319113 0.394001
.30 .35 .35 0.018151 0.121678 0.228652 0.319684 0.394549
.25 .25 .50 0.116438 0.223478 0.315090 0.390617
.25 .30 .45 0.119065 0.226019 0.317317 0.392509
.25 .35 .40 0.120352 0.227225 0.318355 0.393380
.20 .20 .60 0.107657 0.214517 0.307031 0.383685
.20 .30 .50 0.116144 0.222636 0.314076 0.389622

o = .01 Total Number of Fftlhtres R
ki k 2 k 3 40 50 60 70 80

.33 .33 .34 0.507002 0.585586 0.643085 0.68G799 0.721083

.30 .30 .40 0.506519 0.585229 0.642813 0.686586 0.720912

.30 .35 .35 0.506871 0.585488 0.6-13011 0.686741 0.721036

.25 .25 .50 0.504038 0.583401 0.641424 0.685498 0.720040

.25 .30 .45 0.505389 0.584391 0.642174 0.686085 0.720510

.25 .35 .40 0.506004 0.584840 0.642514 0.686349 0.720721

.20 .20 .60 0.499028 0.579710 0.638619 0.683305 0.718282

.20 .30 .50 0.503225 0.582767 0.640926 0.685101 0.719717

o = .05 Total Number of Falutrcs R
k, k2 k3 10 15 20 25 j 30

.33 .33 .34 0.057163 0.209061 0.331908 0.425966 0.498496

.30 .30 .40 0.056142 0.207997 0.330967 0.425188 0.4978G2

.30 .35 .35 0.056926 0.208798 0.331664 0.425760 0.498327

.25 .25 .50 0.202384 0.326053 0.421151 0.494584

.25 .30 .45 0.205611 0.328806 0.423383 0.496382

.25 .35 .40 0.207191 0.330107 0.424419 0.497209

.20 .20 .60 0.191514 0.316255 0.413024 0.487961

.20 .30 .50 0.202037 0.325075 0.420091 0.493610

a = .05 Total Number of Failurcs R
ki k2 k3 40 50 60 70 so

.33 .33 .34 0.601258 0.669779 0.718453 0.754727 0.782772

.30 .30 .40 0.600828 0.669472 0.718225 0.754551 0.782632

.30 .35 .35 0.601142 0.669695 0.718391 0.754679 0.782734

.25 .25 .50 0.598613 0.667900 0.717059 0.753654 0.781922

.25 .30 .45 0.599818 0.668752 0.717688 0.754138 0.782304

.25 .35 .40 0.600366 0.669137 0.717973 0.754355 0.782476

.20 .20 .60 0.594132 0664723 0.714703 0.751843 0.780489

.20 .30 .50 0.597876 0.667350 0.716638 0.753324 0.781657

E-6

Tahlb E.7 Comparison of Exact and Asymptotic Values of the Percentage Points
for L = Az and a = 0.01

FazlurCs P=2 p=3 P =4
pcr Exact First First Exact First First Exact First First

Sample Using 2 terms term Using 2 terms term Using 2 terms term
(r) (6) of (19) of (19) (6) of (19) of (19) (6) of (19) of (19)
5 0.234197 0.232728 0.231253 0.121904 0.113431 0.108148 0.064596 0.050114 0.044613
6 0.315083 0.314095 0.312921 0.187729 0.180706 0.175512 0.116830 0.102762 0.095544
7 0.383167 0.382519 0.381605 0.248465 0.243165 0.238549 0.168396 0.156777 0.149340
8 0.440245 0.439814 0.439103 0.303058 0.299160 0.295212 0.217265 0.208152 0.201178
9 0.488355 0.488062 0.487503 0.351634 0.348767 0.345437 0.262631 0.255590 0.249319
10 0.529252 0.529047 0.528601 0.394734 0.392605 0.389805 0.304292 0.298853 0.293321
11 0.564338 0.564191 0,563832 0.433010 0.431408 0.429048 0.342349 0.338121 0.333282
12 (.594711 0.594603 0.594310 0.467098 0.465873 -U.463876 0.377045 0.373728 0.369507
13 0.621226 0.621146 0.620904 0.497567 0.496618 0.494918 0.408675 0.406046 0.402362
14 0.644554 0.644493 0.644292 0.524914 0.524168 0.522713 0.437543 0.435438 0.432216
15 0.665224 0.665176 0.665007 0.549561 0.548968 0.547715 0.463938 0.462236 0.459409
20 0.740910 0.740894 0.740813 0.643088 0.642867 0.642222 0.567186 0.566514 0.564964
25 0.788849 0.788842 0.788798 0.704924 0.704823 0.704452 0.637973 0.637658 0.636731
30 0.821874 0.821871 0.821844 0.748663 0.748611 0.748379 0.689182 0.689016 0.688421
35 0.845990 0.845988 0.845970 0.781180 0.781150 0.780996 0.7278396 0.727743 0.727340
40 0.864365 0.864364 0.864352 0.806281 0.806263 0.806155 0.758012 0.757952 0.757667
45 0.878829 0.878829 0.878820 0.826235 0.826223 0.826145 0.782199 0.782160 0.781951
50 0.890509 0.890509 0.890503 0.842472 0.842464 0.842405 0.802011 0.801985 0.801827
55 0.900137 0.900137 0.900132 0.855940 0.855934 0.855F89 0.818533 0.818514 0.818392
60 0.908210 0.908210 0.908206 0.867290 0.867286 0.867251 0.832517 0.832504 0.832407
65 0.915076 0.915076 0.915073 0.876986 0.876983 0.87695.5 0.844506 0.844496 0.844419
70 0.920988 0.920987 0.920985 0.885362 0.885360 0.885337 0.854896 0.854889 0.654826
75 0.926130 0.926130 0.926128 0.892672 0.892671 0.892652 0.863988 0.863982 0.863930
80 0.930644 0.930644 0.930642 0.899107 0.899106 0.899090 0.872009 0.872005 0.871961
85 0.934638 0.934638 0.934636 0.904814 0.904813 0.904800 0.879139 0.879135 0.879098
90 0.938197 0.938197 0.938196 0.909911 0.909910 0.909899 0.885516 0.885513 0.885482
95 0.941389 0.941389 0.941388 0.914490 0.914489 '0.914480 0.891256 0.891253 0.891227
100 0.944268 0.944268 0.944267 0.918626 0.918625 0.918617 0.896448 0.896446 0.896423
105 0.946877 0.946877 0.946876 0.922381 0.922380 0.922373 0.901167 0.901165 0.901145
110 0.949252 0.949252 0.949252 0.925805 0.925804 0.925798 0.905475 0.905474 0.905456
115 0.951425 0.951425 0.951424 0.928939 0.928939 0.928933 0.909424 0.909422 0.909407
120 0.953419 0.953419 0.953418 0.931820 0.931819 0.931815 0.913056 0.913055 0.913041
125 0.955256 0.955256 0.955255 0.934476 0.934476 0.934471 0.916408 0.916407 0.916395
130 0.956953 0.956953 0.956953 0.936933 0.936933 0.936929 0.919511 0.919511 0.919500
135 0.958527 0.958527 0.958526 0.939213 0.939212 0.939209 0.922393 0.922392 0.922382
140 0.959989 0.959989 0.959989 0.941333 0.941333 0.941330 0.925075 0.925075 0.925066

E-7

Table E.8 Comparison of Exact and Asymptotic Values of the Percentage Points
for L = A and o = 0.05

Failures p= 2 p=3 p=4
pcr Exact First First Exact First First Exact First, First

Sample Using 2 terms term Using 2 terms term Using 2 terms term
(r) (6) of (19) of (19) (6) of (19) of (19) (6) of (19) of (19)
5 0.368224 0.367279 0.365570 0.209072 0.200361 0.192507 0.122321 0.103594 09337113
6 0.451446 0.450909 0.449732 0.286615 0.280641 0.274142 0.189151 0.174706 16413844
7 0.516492 0.516177 0.515346 0.352800 0.348796 0.343631 0.249806 0.239354 22987540
8 0.568307 0.568113 0.567511 0.409111 0.406393 0.402313 0.304056 0.296.553 28645278
9 0.610360 0.610256 0.609807 0.457190 0.455303 0.452062 0.352264 0.346825 34001619

10 0.645142 0.645059 0.644717 0.498503 0.497161 0.494560 0.395040 0.391036 38.533321
11 0.674304 0.674247 0.673980 0.534266 0.533288 0.531178 0.433048 0.430050 4252G3S2
12 0.699097 0.699056 0.698844 0.565457 0.564729 -0562998 0.466919 0.464637 -16059907
13 0.720420 0.720391 0.720220 0.592859 0.592307 0.590872 0.497216 0.495451 49202562
14 0.738947 0.738925 0.738786 0.617098 0.616671 0.615470 0.524427 0.523042 52011616
15 0.755189 0.755172 0.755057 0.638674 0.638339 0.637324 0.548967 0.547866 54535109
20 0.813374 0.813369 0.813317 0.718456 0.718336 0.717847 0.642223 0.641611 64052864
25 0.849270 0.849268 0.849241 0.769596 0.769543 0.769272 0.703997 0.703809 70307431
30 0.873605 0.873604 0.873588 0.805089 0.805062 0.804897 0.74774,R 0.747650 74719221
35 0.891182 0,891182 0.891172 0.831139 0.831124 0.831016 0.7803036 0.780247 77994340
40 0.904472 0.904472 0.904465 0.851062 0.851053 0.850979 0.805451 0.805416 80520467
45 0.914870 0.914870 0.914865 0.866788 0.866782 0.866729 0.825451 0.825429 82527551
50 0.923229 0.923229 0.923225 0.879515 0,879511 0.879,t71 0.841734 0.841718 8,1160327
55 0.930093 0.930093 0.930090 0.890025 0.890022 0.889992 0.855244 0.855233 85514592
60 0.935831 0.935831 0.935829 0.898850 0.898848 0.898824 0.866633 0.86662.5 86655607
(35 0.910699 0.940699 0.940697 0.906365 0.906363 0.966345 0.876363 0.87(G357 87630219
70 0.944880 0.944880 0.944879 0.912841 0.912840 0.912825 0,884772 0.884767 8S472326
75 0.948511 0.948511 0.948510 0.918480 0.918479 0.918467 0.892111 0.892107 89207130
s0 0.951693 0.951693 0.951692 0.923435 0.923434 0.92342,4 0.898572 0.898569 89853961
85 0.95,1505 0.954505 0.954504 0.927821 0.927821 0.927812 0.904304 0.904302 90427698
90 0.957007 0.957007 0.957007 0.931733 0.931732 0.931725 0.909423 0.909421 90939982
95 0.959249 0.959249 0.959248 0.935242 0.935242 0.935236 0.914022 0.914021 91-100227
100 0.961268 0.961268 0.961268 0.938409 0.938408 0.938403 0.918178 0.918176 91816023
105 0.963097 0.963097 0.963097 0.941280 0.941280 0.941275 0.921950 0.921949 0.921935
110 0.964761 0.964761 0.964761 0.943896 0.943895 0.943891 0.925390 0.925389 0.925377
115 0.966281 0.v66281 0.966281 0.946288 0.946288 0.946285 0.928540 0.928539 0.928528
120 0.967676 0.967676 0.967676 0.948485 0.948485 0.948482 0.931434 0.931434 0.931424
125 0.968960 0.968960 0.968959 0.950509 0.950509 0.950507 0.934104 0.934103 0.934095
130 0.970145 0.970145 0.970145 0.952381 0.952381 0.952378 0.936573 0.936573 0.936565
135 0.971244 0.971244 0.971244 0.954116 0.954116 0.954113 0.938864 0.938864 0.938857
143 0.959989 0.972264 0.972264 0.955729 0.955729 0.955727 0.940996 0.940995 0.940989

E-8

Bi b/li()raph y

I . A I oleGli-aly, A. and others. -1-Eval nation of' Comi petinug Software Reliability Pred ictiois.,"

JEL ra n'saltionis (ol .Sofliv'(r(L'ogincering. 1I'2(9):9.50-967 (September 1986).

2. Abdel-(holy......A. Analysis of Predictive Quality of Software R~eliability Models. Ph D dis-
strtat ionl, (ity Un¼ive'rsity, London. U1.K., 1986.

3. Ak-aiki, It. "A. New Look at Statistical Model Identification," IEEE Transactions on A utomnatic
Control, 19:716 723 (19741).

1ý Akaiki, HI. Pre~diction andi E'ntropy. Mathematics Research Center Technical Summnary Report
2397. Mlad ison, Wisconin:ii Uniiversityv of Wisconsin Madison, 1982.

5.Andersoni, T. W. Inutroduiction to M1ultivariate Statistical A4nalysis (Second Edit~ion). New
Y~ork, NY: Johni WAiley anid Sons, 1984.

G,. Arlat J . and Others. ' lependabilit~y Modeling and Evaluation of Software Fauilt-Tolerant
Systemvs, ITEra nsactionis oin Comiputers, 39:504-513 (1990).

Ii. ailey. (. V. and W. L. 1)ingee. "A Software Study Using Halstead Metrics," ACM/Siqmectrics.
10:189 197 (1981).

~.Balakrishinaii, M . and C. S. Raghavendra. "On Reliability Modeling of Closed Fault-i Olerant
Conmputer Systems," IEEEL T'ransactions on Comiputers, 39:571-575 (1990).

9. Harr. Donald P. and Pl~eer WV. Zehina. P~robability: Modeling Uncertainty. Menlo Park, CA:
Addlison-Wesley, 1983.

It), Bast ani, F". B. andl C. V'. Raaniaoorthy. "Input- Domain Base Models for Estimating the
Correctness of Process CIontrol IPro~rains." Reliability Theory edited by A. Serra and] R. E.

Harlow. 1:321 - 1378, AmlsterdIam: North-Holland, 1986.

It. Beslli. F. "Fault-Tolerant Programis and Their Reliability," IEEE Transactions on Reliability.
01: 18 1 192 (1990).

12. BIlument hal. S. anad W. Marcus. "E1stimnating Population Size with Exponential Failuire.' A iU r-
i .can Statistical 'Iss'ciation Joutrnal, 70:913-922 (December 1975).

13. B~rauni. It. and~ J. NI. Paine. A Comrparaltive Study of Models for Reliability Growth. Technical
Heport.. Departmnent of'Statistics - Princeton University, 1977 (126 Series 2).

11. lBrockleliurst , Sarah and others. "Recalibrating Software Reliability Models." IEEE 'Iransac-
tzoivs on Software En gincering, 16(4):458-470 (April 1990).

15. B~rowni, J. R. and~ M. Lipow. "Tesing for Software Reliability." Proceedings of the Interiational
('onf rc'nrc on l?cliablc Softwvare. 518--527. April 1975.

1 G. C(ofte, V. and Ot hers. "Soft~ware Metrics: An Overview of Recent. Results," .1. of Systemis an~d
Soft warr. 8:121 1:31 (1988).

17. C'row%, 1L. II. "Reliabilit~y Analysis for Complex, Repairable Systems." Reliability and Biomnetry
edited by F. Proshan and R. J1. Serfling, 379--410, Philadelphia, PA: SIAM, 1974.

is. C row. L. 11. ('onfidence Interval Procedures for Reliability Growth A4nalysis. Technical R~eport.,
Aberdeen. NII): US Army Material Systems Analysis Activity, 1977 (197).

19) Crow, L. 11. anl N. 1). Siiigptirwalla. "An empirically Developed Fourier Series Model for
Itescribing .Ydtware, Failures," IEEE Transactions en. Reliability, 33:176-183 (1984).

B311-1

20. Davis, J. S. and R. J. LvBlajic. "A Study of Applicability of C(nomplexity MNtrics. IL'"IEt.
"ransactions onJ Software Engin ertng , 14 :1366- 1372 (1988).

21. Dawid, A. P. Calibraton Based Empirical Probability. Res. ieport. 36, London: Department

of Statistical Science; University College, 1984.

22. Dawid, A. P. "Statistical Theory - The Prequential Approach," Royal Statis. Soc., 147:278-

292 (1984).

23. DeGroot, Morris 11. Probability and Statistic, (First Edition). Menlo Park, CA: Addison-
WVesley, 1975.

24. Dhillon, B. S. Reliability in Computer System Dcsign. Norwood, NJ: Ablex Publishing Corp.,
1987.

25. Dijkstra, E. W. "The Humble Programmer," Communs ACM, 859-866 (1972).

26. Down, T. and P. Garrone. "Some New Models of Software Testing with Performance Coin-
parisons," IEEE Transactions on Reliability, 40(3):322-328 (1991).

27. Duane, J. T. "Learning Curve Approach to Reliability Monitoring," IEEE Transactions on

Aerospace, 2:563566 (1964).

28. Forman, E. H. and N. D. Singpurwalla. "An Empirical Stopping Rule for Debugging and

Testing Computer Software," American Statistical Associatioin Journal, 72:750-757 (1977).

29. Gail, M. H and J. L. Gastwirth. "A Scale Free Goodness-of-Fit Test for the Exponential

Distribution based on the Gini Statistic," Royal Statistical Society Series B, 40(3):350-357
(1978).

30. Goel, A. L. "Software Reliability Models: Assumptions, Limitations, and Applicability," IEEE

Transactions on Software Engineering. 11(12): 1411-1423 (December 1985).

31. Goel, A. L. and K. Okumoto. "An Analysis of Recurrent Software Errors in a Real-Time

Control System." Proceedings of the AC31 Conference. 496-501. 1978. '

32. Goel, A. L. and K. Ok-amoto. An Imperfect Debugging Model for Software Reliability. Syracuse

University, Final Technical Report Vol. 1 RADC-TR-87-155, Rome Air Development Center
(RADC) Griffis AFB NY, 1978.

33. Goel, A. L. and K. Okumoto. "Time Dependent Error-Detection Rate Model for Software

Reliability and Other Performance Measures," IEEE Transactions on Reliability, -98(3):206-
211 (August 1979).

34. Goseva-Popstojanova, K. D. and A. L. Grnarov. "A New Markov Model of N version Program-

ruing System," Proceedings of the Internatonal Synip. on Software Reliability Engineering.
210-217 (1991).

35. Hogg, Robert. V. and Elliot A. Tanis. "An Iterative Procedure for Testing the Equality of Sev-
eral Exponential Distributions," American Statistical Association Journp'. 58:435-443 (June

1963).

36. lludson, G. R. Programming Errors as a Birth-Death Process. Technical Report SP-3011,

System Development Corp., 1967.

37. lannino, A. and Others. "Criteria for Software Reliability Model Comparisons," IEEE Trans-

actions on Software Engineering, 10(9):687-691 (November 1990).

38. Jelinski, Z. and P. B. Moranda. "Software Reliability Research." Statistical Computer Perfor-
inance Evaluation edited by %V. Freiberger, 465-484, New York, NY: Academic Press, 1972.

13113-2

39. K .. Cole. B. N. Nagarsenker and I'. B. Nagarsenker. "A 'lest for]uqtialiy of' ELXlOlielitial

Distributions Based on Type I] ('ensored Sample,," EELL Tran.sactions on Retablhtq. 346 :9,1
97 (1987).

40. Kapur, K. C. and L. R. Lan•herson . Rehability in Engineering Design. New York, NY:.John
\Viley and Sons. 1971.

41. Keiler, P. A. and others. "Comparison of Software Reliability Predictions." Dig. f7T('S (13 LL
Int. Syrp. tFault-Tolerant Comput., 128-134 (1983).

4'2. Keiler, 1'. A. and others. "On the Quality of Software Reliability Predictions." Eltctronic Sy,-
tems Effectiveness and Life Cycle Costing NATO ASI Series F3 edited by J. IK. Skwirzynski,
441-460, New York, NY: Springer-Verlag, 1983.

43. Khoshgoftaar, T. M. "On Model Selection in Software Reliability," Proceedings of the 8•
Synip. onl Computational Stati..ics, 13-14 (1988).

44. Khoshgoftaar, T. M. and T. G. Woodcock. "A Simulation Study of the Performance of the
Akaike Information Criterion for the Selection of Software Reliability Growth Models," Pro-
ceedings of the 27Lh- Annual South East Region ACM Conference, 419-423 (1989).

45. Khoshgoftaar, T. M. and T. G. Woodcock. "Software Reliability Model Selection: A Case
Study," Proceedings of the International Symp. on Software Reliability Engineerzing, 183-191
(1991). -

46. Kline, M. B. "Software and Hardware R&M: What are the Differences 9." Proceedings of the
IEEE Annual Reliability and Maintainability Symposium. 179-185. 1980.

47. Lawless, J. F. Statistical Models and Methods for Lifetime Data. New York, NY: John WViley
and Sons, 1982.

48. Lipow, M. Estimation of Software Package Residual Errors. Software Series Report TR\W-

SS-72-09, TRW Rodondo Beach , CA, 1972.

49. Littlewood, B. "flow to Measure Software Reliability and How Not to." IlEE Transactions
on Reliability, 28:103-110 (1979).

50. Littlewood, B. "Theories of Software Reliability: How Good Are They and How Can They be
Improved ?,` IEEE Transactions on Software Engineering, 6(5):489-500 (September 1980).

51. Littlewood, B. "Stochastic Reliability Growth: A model for fault-removal in computer pro-
grams and hardware designs," IEEE Transactions on Reliability, 30:313-320 (1981).

52. Littlewood, B. "Forecasting Software Reliability." Lectures Notes in Computer Science, Vol.

341 Software Reliability Modeling and Identification edited by Sergio Bittani. 141-209, New
York, ,.NY: Springer-Verlag, 1988.

53. Littlewood, B. and A. Sofer. "A Bayesian Modification to tile Jelinski-Morauda Software
Reliability Growth Model," Software Engineering Journal, 2:30-41 (1987).

54. Littlewood, B. and J. Verrall. "Likelihood Function of a Debugging Model for Computer
Software Reliability," IEEE Transactions on Reliability, 30:145-148 (1981).

55. Littlewood, B. and J. L. Verrall. "A Bavsian Reliability Growth Model for Computer Soft-
ware," J. Roy. Statist. Soc. C., 22:332-346 (1973).

56. Lyu, M. R. "Measuring Reliability of Embedded Software: An Empirical Study with JPL
Project. Data." Proceedings of International Conference on Probabilistic Safety Assessment
and ,'Managentent. 1991.

57. Lyu, M. IR. and Allen Nikora. "A Heuristic Approach for Software Reliability Prediction: The
[;qualit.-\Weighted L1inear Combination Model," Proceedings of the Intcrnational Syrup. on
Softwar(R1hzabihty Engineering. 172-181 (1991).

BIB-3

58.Nc.l and Others. .1th odoloqe for Softivart I1'(hliathty Pr~dcdti'n Vol. /II DIUI Peport

A D-A 1 90t-019. Romte AXir D~evelopmient Center (iA DC) (rufuis AFj:B NYV. 1 9870

59. Mi ills 11. I) On ti, (Statistical V'otido lion1 (If COW ptlt r Piogranis. kej ort I'M '-712-60 15. 1 liNt
Federal Syste utljvision Gait herburg, MND, 1972.

60. MIivan iota, I. "Soft ware Reli abilt Ini i On- Line Real Time Environments.- I7oe(cc(ing. of Ih,
Interna(tiona~l Confrrenrc on Reliable Software. 194-203. April 1975.

61. Nloranda. 1). 1B. 'Predictions of Software Reliability During Debugging." IrorC(dings of 11he
IEEE Annual Rcialuiliil, and Maintainabilityi Symiposlium. 327- 332. 1975.

62. Munson, .1. C. and T. MI. Khoshgoftaar. "The Use of Software Complexity Mletrics iii Soft-
ware Reliability Modeleing," Proceedings of the International Syrnp. on Softiwari Reliability
Enginceerng. 2-11 (1991).

63. Musa. J. D. "A Theory of Software Reliability and its Application," IEEL' Transactions on

Software Engineer~ing, 1:312-327 (September 1975).

64. Musa, J. D. Software Reliabihly Data. report available from Data and Analysis Center for
Software DACS, Rome Air Development Center (RADC) Griffis AFB NY, 1979.

65. Musa, J. D. "The Measurement and Management. of Software Reliability." Proc. ILEE.,68(9).
1131-1143. 1980.

66. Musa, J. D. and K. Okuimoto. "Software Reliability Mouels: Concepts. Classification, Coin-
parisons, and Practice." Electronic Systems Effectiveness and Life Cycle Costing NVATO ASI
Series F3? edited by J. K. Sk-wirzynski, 395-424, New York, NY: Springer- Verlag, 1983.

67. Musa, J1. D. and 1K. Okumoto. "A Logarithmic Poisson Execution Time Model for Soft~ware
Reliability Measurement." Proceedings of the 7L1-' Interniational Conference on Sofliware Engi-

nering. 230-238. 198-4.

68. MIusa, J. 1). and Others. Software Rleliability: Measurement, Prediction. A4pplication. New

York, NY: -McGraw-Hill, 1987.
69. Nagarsenker, 13. N. and P. B. Nagarsenker. "Onl a Test of Equality of Two-1Paramict~er Expo-

niential Dist ribut ions." Statistics and Probability Letters, 2:357-361 (1984).

70. Nagarsenker. B3. N. and P. B. Nagarsenker. "Distribution of the LRT for Testing the Equality of
several 2-Paramneter Exponential Distribution,-," IEEE Transactions on Reliability, 3ýi:65-68
(1985).

71. Nagarseniker. B. N. and 1K. C. Pillai. "Distribution of the likelihood Ratio Criterion for Testing
a hy"pothesis Specifying a Covariance Matrix," Biomnetrika, 60:359-364 (1973).

72. Nair. U. S. "Application of Factorial Series in the Study of Distribution laws in Statistics,"
Sankhya, .5:175 (1940).

73. Nelson. E. "Estimating Software Reliability from Test Data," Microrletronics and Reliability,
17:67-74 (1978).

74. Norlund, N. E. "Sur les series de facultes," Acta Math, 37:327-3871 (1914).

75. Obiba. NI. and Xiao-NMei Chou. "Does Imperfect debugging Affect, Software Reliability Growth
'7." Proceedings of the 1 W International IEEE Conference on .Software Engineering. 237-244.
May 1989.

76. Oliba. MI. and S. Yanmada. "S-shaped Software Reliability Growth Curve: How Good is it?."
COAIPS.'l('82, 38-44 (1982).

7.Okumnoto, 1K. atnd A. L. Goel. 'Optimti n Release Tinie for Soft ware System-." J. of Systems
and Softtware, 1:315--318 (1980).

BI113-4

78 . IRaniaui oorthyiv C. V. mid F. Bi. liast:,ni "Software Relialijt v. Stat us auid Perspective," uIFI:'
Tran.s a ctIi ous on ;Soffit War(En y it ef ring 5 1 35-1--371 1(1 9(s2

79. 1 ose b]la tt. N I. "I roni ark,, on a NIt niIt Ivar Iatfc 'I raiisforn at ion. A Anni MatIh St atzst.. t3:470-- 7-12
(1952).

S0. Scrineidewixid, N. 1'. "Analysis, of E~rror Process in Comiput er Software." Proceedings of 1h(
International Conference at' Ihliahld Soflttuar. 337-3416. April 1975.

81. Shick, G. J. and R. WV. Wolverton. "Assessment of Software Reliability." Proc. Operation
Research, Physica- Ve rlag 395-422, Wrhurbmrg-Wiemi. 1973.

82. Stuck, G. J. and R. W. Wolverton. "An Analysis of Competing Software Reliability Models,"
IEEE Transactions on Software Enyincrzng, 4(5):104-120 (1978).

83. Shooniai, M. L. "Probabilistic Models for Software Reliability Prediction." Statistical Com-
puter Performance Evaluation edited by 'A'. Freiberger. 485-502, New York, NY: Academic
P~ress, 1972.

84. Shoornan, M. L. "Software Reliability: A Historical Perspective," IE'EE Transactions on
Reliability, 33:48-55 (1984).

85. Singpurwalla, N. D. and Refik Sover. "Assessing(Softw~are) Reliability Growth Using a Random
Coefficient Autoregressive Process and Its Ramifications," IEEE Transactions on Software
Engineering, 11](12):1456-1464 (December 1985).

86. Sukert, A. "An Investigation of Software Reliability' Models." Proceedings of the Annual Rcli-
ability an-d Maintainability Symnposizin. January 1977.

87. Thayer, T. A. and Others. Software Reliability Study. Final Technical Report RADC-TR-83-
207, Rome Air Development, Center (RADC) Griffis AFB NY, 1976.

88. Tit~chmarsh, E. C. Introduction to thc Theory of Fourier Integrals. Oxford University' Press,
194 8.

89. 'Wagoner. WV. L. The Final R~eport of Software Reliability ilfcasurcinent. Aerospace Report
TOR-0074(41 12-1), Aerospace Corporation, August, 1973.

90. Wilks, S. S. "Sample Criteria for Testing the Equalit~y of Means, Equalit~y of Variances, and
Equality of Covariances in a 'Normal Mult~ivariate Dist ribution," Ann. Math Statist., 17:257-
281. (1946).

91. Xie, M. "A Shock Model for Software Failures," M~icroclectronics and Reliability. 27:717-724
(1987).

92. Nie, MN. Software Reliability Modeling. River E-dge,. NJ: WVorldl Scientific Publishing, 1991.

93. Xizi. Huang. "Tihe limit. Condition of Some Time Bet-ween Failures Models of Softw~are Relia-
bility," Microelectronics and Reliability, .30(3):481-485 (1990).

94. Yamiada, S. anid Others. "S-shaped Reliability Growth Modeling for Software Error Detection."
IEEE' Transactions on1 Reliability. 32:475-478 (1983).

BIB-5

V ita

Salah Amin Elewa was born on 16 July 1954 in Ismailia, Egypt. fie graduated from the

Modern h1igh School for Ad vanced Students iii Ain Shams. Cairo in 1972 and joined the Military

Technical College. Kobri E1-Kobba, Cairo, from which hl, received the degree of Bachelor of Science

in Electrica! F,•;ineering in July 1977. Upon graduation he served as a maintenance Engineer in

the Egyptian Air Force. From July 1981 to February 1982, he was assigned to F-16 Training in

Lackland AFB, San Antonio, Texas and Hill AFB, Utah. In 1984, he was assigned, as a part time

student, to earn the Masters Degree in Electronics and Computers from Ain Shams University,

Cairo, Egypt. Upon receiving his Master degree in December 1986, his assignment was to teach

computer science in the Egyptian Air Academy. In August 1988, he was chosen by the Egyptian

Department of Defense to earn a Doctorate Degree in Computer Science from the United States

Air Force Institute of Technology (AFIT). lie is a member of the IEEE Computer Society.

Permanent address: 7 Niazi St. off Farouk St.,
Zagazig, Egypt

VITA- I

T Form ApprovedREPORT DOCUMENTATION PAGE OMB No 0704-0188

0,r -e aa- U DC _ , - -, I,, . "S. -t .'. D '- 0o0rW 1,V jd ; Tto . lne '0o -. -,nr4a c-s S-' "-u. ',t -•5 0ae ,"a'es

(C.e~r ~ e~~. , ~'"~.~ ~ t-sC~3e aa,''~ '~~c eS, 1-Secs. 2.j~eýClO.,te to, *n o'~o" QeWno .'Ic w-yi 1, elew

1. AGENCY USE ONLY (Leave bianA) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

T Sept 92 IPhD Dissertation-Sept 92
4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

DEVELOPMENT OF AN ENVIRONMENT FOR
SOFTWARE RELIABILITY MODEL SELECTION

6. AUTHOR(S)

Salah Amin Elewa, B.S,M.S.
Lieutenant Colonel, Egypt Air Force

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION

School of Engineering REPORT NUMBER

Air Force Institute of Technology AFIT/DS/ENC/92-1
Wright-Patterson AFB, Ohio 45433

9. SPONSORING ,' MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING / MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION/ AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Approved for public release; distribution unlimited .

13. ABSTRACT (Maximum 200 words)

An environment was developed for solving the problem of selecting
a proper software reliability model for a given set of software failures.
The idea behind the environment developed in this dissertation was to
liken a collected set of software failure data to a previous one that
proved to fit well with a specified software reliability model. Software
failures were assumed to have a two-Parameter exponential distribution
with unequal type II censoring. A test criterion was derived for testing
Ratio Criterion. The exact distribution of the test criterion was derived.
An asymptotic approximation was also obtained and was found to be very
close to the exact distribution when the number of failures were more
than twenty. Software failure data, available from "Data and Analysis
Center for Software (DACS)", were used as the initial group of software
failure sets. The environment was then applied, for testing the quality
of several software failure sets.

1 14. SUBJECT TERMS 15. NUMBER OF PAGESS~222
SOFTWARE RELIABILITY MODELS, SOFTWARE FAILURES, MODEL SELECTIOr 16 .PRICECODE

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19, SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT

OF REPORT OF THIS PAGEj OF ABSTRACT

Unclassified Unclassified Unclassified UL

NSN 7540-01-280-5500 Starnard Form 298 (Rev 2-89)
P-w t-32 b NIý0 Z9'

