D-A256 609 @
MR

AFIT/DS/ENC/92-1

DTIC

@% ELECTE 7o

g, 00727 1992§ E

DEVELOPMENT OF AN ENVIRONMENT FOR
SOFTWARE RELIABILITY MODEL SELECTION -

DISSERTATION

Salah Amin Elewa
Lieutenant Colonel, Egypt Air Force

AFIT/DS/ENC/92-1

Approved for public release; distribution unlimited

92-28142
o e

AFIT/DS/ENC/92-1

DEVELOPMENT OF AN ENVIRONMENT FOR

SOFTWARE RELIABILITY MODEL SELECTION

DISSERTATION

Presented to the Faculty of the School ¢f Engineering
of the Air Force Institute of Technology
Air University
In Partial Fulfillment of the

Requirements for the Degree of

Doctor of Philosophy Ane
LA
b N
PN
RN . R »»’ :
Salah Amin Elewa, B.S,M.S. Lo
T L ——
Lieutenant Colonel, Egypt Air Force - o R ’

_ . i
September 1992 P_\ ; ‘ f

Approved for public release; distribution unlimited

oD) &

AFIT/DS/ENC/92-1

DEVELOPMENT OF AN ENVIRONMENT FOR

SOFTWARE RELIABILITY MODEL SELECTION

Salah Amin Elewa, B.S,M.S.

Lieutenant Colonel, Egypt Air Force

Approved:

Robert A. Calico

Senior Dean

Preface

The purpose of this study was to design an environment {or proper software reliability model
selection. Previous investigations have indicated that a model that seems to be the best for one set
of data may give very poor results with another set. This is not surprising since the assumptions
for each model cannot be satisfied in all situations, due to variations in the development and testing
environments for each project. In light of this fact, the idea behind the Proper Model Selection
(PMS) environment was to liken a set of collected data to other known sets that previously proved to
fit well with a certain software reliability model, or models. Anyone who is interested in determining
a proper software reliability model to be used with a set of software failure data should find this

environment to be useful.

I must acknowledge special indebtedness to my supervisor Dr. Panna B. Nagarsenker for the
wise counseling, encouragement, and ongoing support which made this work, I hope, successful. To
Dr. Brahmanand N. Nagarsenker, I pay my sincerest thanks for his vigorous help and continuous
support. He has always been generous and encouraging. I am also deeply indebted to Dr. Henry
Potoczny for the continuous help throughout the courses and the dissertation‘lresearch. I would also
like to thank Dr. Ben Williams for his enthusiasm, support, and intelligent remarks. Gratitude is
also due to Maj. Woodruff for his careful reading of the initial draft and his helpful suggestions.

Finally, I wish to express my appreciation to my wife for her patience and encouragement throughout

this project.

Salah Amin Eiewa

i

Table of Contents

Page

Preface i
Tableof Contents iv
Listof Figures e, viii
Listof Tables PN
Abstract . . . L L X1
I INTRODUCTION 1-1
1.1 Background 1-2

1.2 The Problem of Software Reliability Model Selection 1-3

1.3 General Approach Lo oo oL 1-4

1.4 Assumptions 1-5

1.5 Sequence of Presentation L 1-5

1. SOFTWARE RELIABILITY MODELS 2-1
2.1 History of Software Reliability 2-1

2.1.1 Before 1970 2-1

2.1.2 1970-1979 2-2

2.1.3 1980-1989 2-2

214 1990-present 2-3

2.2 Some General Concepts, 2-4

2.2.1 Software, Hardware & System Reliability 2-4

222 Faultsand Failures 2-7

223 FaultSize 2-8

2.2.4 Operational Profile 2-8

v

IIL.

Page

225 Imperfect Debugging 2-9

2.3 Software Reliability Model Classifications 2-10
2.3.1 Classification According to the Model Assumptions 2-10

2.3.2 Classification According to the Nature of Failure Process . . 2-13

2.3.3 Musa-Okumoto Classification, .. 2-14

2.3.4 Other Classification Schemes 2-14

2.4 Classical Software Reliability Models 2-16
2.4.1 Jelinski-Moranda Model (JM) 2-16

2.4.2 Bayesian Jelinski-Moranda Model (BJM) 2-18

2.4.3 Goel-Okumoto Imperfect Debugging Model (GO) 2-19

2.4.4 Littlewood-Verall Model (LV) 2-20

2.4.5 Keiler-Littlewood Model (KL) o .- " 2-21

2.4.6 Musa Basic Execution Time Model 2-21

2.4.7 Musa Logarithmic Poisson Execution Time Model 2-23
SOFTWARE RELIABILITY MODEL SELECTION 3-1
3.1 Model Selection Using Analysis of Predictive Quality 3-1
3.1.1 theu-Plot 3-2

3.1.2 The y-Plot and Scatter Plot of ufs 3-3

3.13 Measuresof Noise 3-6

3.14 Prequential Likelihood 3-7

3.2 Model Selection Based on a Linear Combination of Models 3-8
3.3 Model Selection Based on Check of Limits 3-9
3.4 Model Se]ecﬁion Using Akaike Information Criterion (AIC) 3-10
3.5 Recalibrating Software Reliability Models 3-12

IV. MATHEMATICAL BACKGROUND 4-1
4.1 Fundamental Reliability Equations 4-1
4.2 Some Important Reliability Distributions 4-3

4.2.1 The Poisson Distribution: 4-3
4.2.2 The Gamma Distnbution: 4-3
4.2.3 The Chi-Squared Distribution: 4-5
4.2.4 The One-Parameter Exponential Distribution: 4-5
4.2.5 TheTwo-Parameter Exponential Distribution: | . 4-6
4.3 The Moment Generating Function 4-7
4.4 Some Important Relations 4-8
45 Order Statistics L o 412
46 TypeII Censoring v v v ittt e e e e 4-14

4.7 Maximum Likelihood Estimates of 8 and o for the Two-Parameter Ex-

ponential Distribution 4-19

4.8 The Likelihood Ratio Test (LRT) Principle 4-20

4.9 Derivation of the Likelihood Ratio Criterion Lo 4-22

V. THE EXACT DISTRIBUTION OF THE TEST STATISTIC 5-1
5.1 Assumptions 5-1

5.2 Derivation of the A% Moment of A 5-2

5.3 The Null Distribution of A 5-9

Vl. THE ASYMPTOTIC DISTRIBUTION OF THE TEST STATISTIC 6-1
6.1 Preliminaries L 6-1

6.2 Asymptotic Expansion of the Exact Distribution 6-4

VII. DESIGN AND APPLICATION OF THE PMS ENVIRONMENT 7-1
7.1 Definition of the Proper Model Selection {(PMS) Environment 7-1

7.2 Designof the PMS 7-2

7.3 A Practical Example for Using the PMS Environment 7-4

vi

VIII. SUMMARY AND RECOMMENDATIONS FOR FUTURE WORK 8-1
Appendix A. Calculations of the Adjustment Factors A-1

A.l Calculationof 6. A-1

A.2 Caleulationofa A-2
Appendix B. Maximum Likelihood Estimate of Sample Sizen B-1
Appendix C. Code Listings. C-1
Appendix D. Application of the PMS on Musa and Littlewood Failure Data Sets . D-1
Appendix E. Exact and Asymptotic Percentage Points of the Test Statistic E-1
Bibliography.................‘.........'..h.- "BIB-I
VIta . . e e e e VITA-1

vii

Figure

2.1.
2.2

2.3.

3.1.
3.2.
3.3.
3.4.

3.5.

7.1.

List of Figures

Relationship Between Hardware & Software Reliability (McCall[58])

An Imperfect Debugging Process [75:240] . .

Z(t) Plot for JM model [38)

Drawing the u-Plot (Littlewood [52:168]) . .

Transformations to Obtain the y-Plot (Abdel-Ghaly [1:958])

LV and JM y-Plots for Data of Table 1 in Littlewood [52:172]

Scatter Plot of u; for JM Model Using Data of Table 1 in [52:173]

Drawing the Step Recalibrating Function G} (Brocklehurst [14:461])

A Structure Chart for the PMS Environment

viil

3-4

3-5

3-13

List of Tables

Table

2.1. Finite Category Models [68:251]

2.2. Infinite Category Models [68:251)
3.1. Littlewood’s Analysis of Data of Table 2 in [52:189]
7.1. Set 2 of DACS failure datain [64]

D.1. Data Analysisof FailureSet 1 L 0.

D.2. Data Analysisof Fallure Set 2

D.3. Data Analysis of FailureSet 4 ©T... :

D.4. Data Analysis of FailureSet 5 0.
D.5. Data Analysis of Failure Set 6
D.6. Data Analysis of Failure Set 14C
D.7. Data Analysis of Failure Set 17 PO
D 8. Data Analysis of Failure Set. 27 Lo
D.9. Data Analysis of Failure Set SS1a
D.10.Data Analysis of Failure Set SS1c¢ L.
D.11.Data Analysis of Fallure Set SS3 L oL,
D.12.Data Analysis of Failure Set SS4 oo
D.13.Data Analysis of Failure Set Latt2 o000

D.14.Data Analysis of Failure Set Litt3

E.l. Percentage Points of L= AF whenp=2.
E.2. Percentage Points of L = A% whenp=3
E.3. Percentage Points of L = A% whenp=4

E.4. Percentage Points of L = A% when p=5

Page

2-15

2-15

D-1
D-2
D-3
D-4
D-5
D-6

D-7

D-9
D-10
D-11
D-12
D-13

D-14

E-1
E-2
E-3

E-4

Table

E.5.

E.6.

E.8.

Percentage Points of L = A% with unequal sample sizes

{a=.01, 05,p=2) .. . e

Percentage Points of L = A% with unequal sample sizes

(o =.01, 05,p=3)

7. Comparison of Exact and Asymptotic Values of the Percentage Points

for L=ARanda=0.01,

Comparison of Exact and Asymptotic Values oi the Percentage Points

for L=AFfanda=0.05

Page

E-5

E-6

E-8

AFIT/DS/ENC/92-1

Abstract

Anenvironment was developed for solving the problem of selecting a proper software reliability
model for a given set of software failures. The idea behind the environment developed in this
dissertation wus to liken a collected set of software failure data to a previous one thiat proved to
fit well with a specified software reliability model. Software failures were assumed to have a two-
Parameter exponential distribution with unequal type II censoring. A test crite..on was derived
for testing the equality of software fallure data sets using the Maximum Likelihood Ratio criterion.
The exact distribution of the test criterion was derived. An asymptotic approximation was also
obtained and was found to be very close to the exact distribution when the number of failures were
more than twenty. Software failure data available from “Data and Analysis Center for Software

(DACS)” were used as the initial group of software failure sets. The environment was then applied,

for testing the equality of several software failure sets.

DEVELOPMENT OF AN ENVIRONMENT FOR
SOFTWARE RELIABILITY MODEL SELECTION

I. INTRODUCTION

Software embedded in microprocessors has been intensively relied on in the past two decades
to perform more complex and critical tasks than ever before. Such tasks now include space shuttle
programs, weapons coordination, nuclear power plant control, air traffic control, power distribution
systems, and medical support systems. Relying on software tovperi_‘i:)_rm such mission and lifeﬂcritical
tasks, and the sharp increase of software cost relative to that of hardware, has led to the emergence
of software reliability field as an important research area. Some progress has been achieved in this
field through modern programming techniques, new methods of testing and proof of correctness,
and the adoption of fault-tolerant software products. Despite the whole worlf and research done, a

perfect software product is not yet guaranteed. This problem will not be solved in the near future

due to the following reasons:

1. Software is created by error-prone humans, and there is no way to prevent programmers from

making mistakes,

2. Systems are becoming more complex. This, in turn, will make the task of checking all the

paths in a software code a very difficult task. As Dijkstra [25:861] states:

As long as there were no machines, Programming was no problem at all; when we
had a few weak computers, Programming became a mild problem, and now we have
gigantic computers, Programming has become an equally gigantic problem.

1-1

1.1 Background

Software testing is an important phase in the life cycle of any software product. This im-
portance comes from the fact that whatever software engineering disciplines have been applied to
produce a reliable software, the majority of effort and major development costs will be associated
with this phase [92:2]. The most important tool in this phase is a software reliability model. Be-
sides measuring reliability of the software, software reliability models can help in the following ways

[68:21-22):

1. Quantitatively evaluating new software engineering disciplines proposed for improving the

process of software development,

2. Evaluating the development status during the test phase of a project. A reliability measure,
such as current failure intensity, has been found to be much more practical than other tradi-
tional methods such as the intuition of the designers or test team, percent of tests completed,

or successful completion of critical functional tests,
/

3. Monitoring the operational performance of software, and controlling the addition of new

features and design changes to the software,

4. Enriching insight into the software product and the software development process, which

helps in making informed decisions,

5. Application of software reliability models is also useful in future development of other software

systems, due to the experiences gained from analyzing the results.

Despite all of the above benefits, many managers abandon the idea of applying software reliability
models to their projects. This can mainly be attributed to the problem of finding the proper

software reliability model for a given set of failure data. Reasons are given in the next section.

1.2 The Problem of Software Reliabulity Model Selection

A large number (currently about 100 [26:322]) of software reliability models have been devel-
oped within the last two decades. This is supposed to result in some definitive models that cau be
recommended to potential users. Unfortunately, this is not the case. Among all existing software
reliability models, there is no single model that can be trusted to perform well in all situations.

The main reasons for this problem are [1:950},[56:172]:

1. Each model can produce a very different answer from the others, when applied to predict the
reliability of a software system. Further, a model that seems to be best for one set of data
may give very poor results with another set. This is not surprising, since the assumptions for
each model cannot be satisfied in all situations, due to variations in development and testing

environments for each project,

2. Even for the same project, good performance of a model for a given period of time does not

guarantee the same level of prediction for a later period,

i

3. There is no available priori method for deciding which model is the most suitable for a given

set of data,

4. Software failure data reflect the quality of the project under development. Consequently, many
organizations consider these data to be classified. This makes validation and refinement of

different models a difficult task, due to the shortage of published failure data.

As mentioned before, the above reasons, as well as time and cost constraints, have made many
software practitioners avoid incorporating reliability modeling as a management technique. This
situation makes it necessary to devote less effort in developing more software reliability models,
and concentrate on finding tools for selecting the proper model for a given set of data. This will
help in establishing a software reliability theory similar to that of hardware. This dissertation is

part of this effort.

1-3

1.3 General Approach

From the above discussion, it is clear that a simple and objective method is needed to select
the best model for a given set of data. Our approach for solving this problern is to use the same
model that proved to be the best for an equal set of data in the past. The main advantage of this
method is that one will make use of the previous analysis made when different models were applied
with different sets of data, and of different techniques used to measure the predictive quality of
software reliability models, with respect to known sets of data. This will be done without evaluating
different models, comparnng them, and then choosing the best one. This method can simply be
stated as “matching a software reliability model to a given set of failure data ”. This method will
provide a strong framework and a useful data base system that results in the user confidence of the

reliability calculations he/she makes.

The sequence for solving the problem can be simplified as follows:

1. Initially, the failure data available from Data and Analysis Center for Software (DACS) [64]
/
will be used as a reference, because most of the research done in the past has used them,

either for data analysis or for introducing a model,

2. During the test phase of a software product, failure data will be collected. A proper software
reliability model will be needed. To achieve this, collected data will be compared with those

of DACS to find an equal set to the collected one,

3. If two sets of data are found to be equal, it is reasonable to assume that the same model used
in the past and gave good results with one set will do the same with an equal set. The logic

behind this method is similar to that of Littlewood [52:142] when he stated that

if a user knows that the past predictions emanating from a model have been in
close accord with actual behavior for a particular data set, then he/she can have
confidence in future predictions for the same data.

1-4

1.4

1.5

In this research, the terni an equal will replace the term the same which verifies Littlewood's
prediction that at some future time, it may be possible to match a software reliability model

to a program via the characteristics of that program [52:152].

. Any new set of data that proves to be in close accord with a certain software reliability model

in the future will be added to the initial sets available from DACS.

Assumplions

. Knowing that almost all models assume that no failures occur at time t = 0, and the ex-

ponential distribution is the most acceptable one in the software reliability field due to the
randomness of test {92:62], will make us assume that the times between failures have a two
parameter exponential distribution. Proper tests will be applied to make sure that the un-

derlying distribution is exponential,

. Because this study does not recommend specific software reliability models or present new

ones, any software reliability model that proved to be in close accord; with actual behavior

for a particular data set is assumed to be a valid model,

. Since the data available from DACS will be used, the following assumptions will also be

applicable [64:3-4]:

(a) Data are assumed to be actual execution time (CPU time) or running clock time (elapsed

time from start to end of program execution on a running computer),

(b) Failures occurring before correcting the responsible fault are not counted.

Sequence of Presentation

History of software reliability models, some general concepts, and classification of existing soft-

ware reliability models, with a brief description of some classical models, will be given in Chapter 2.

Previous approaches to the problem of software reliability model selection are given in Chapter 3.
A mathematical background 1s given in Chapter 4. Derivation of the test statistic necessary for
comparing two or more sets of software failure data is given in Chapter 5. The Asymptotic approxi-
mation of this test statistic for the case of software failure data sets of more than 20 failures is given
in Chapter 6. Chapter 7 describes the developed environment, and how to use it for comparing a
set of data with those of DACS or any other set of software failure data, along with the results of
application on some sets of available data. Finally, conclusions and recommendations for further

research are given in Chapter 8.

. SOFTWARE RELIABILITY MODFELS

Software reliability i1s defined as the probability of failure-free operation of software under test
for a specified period of time in specified environments [68:15]. According to this definition, two
identical copies of the same software may be different, if they are used under different operational
conditions. A software reliability model is the most appropriate tool for measuring the reliability of
software programs. Over the last twenty years, a large number of software reliability models have

been proposed, studied, and compared.

In this chapter, the diflerent methods for classifying software reliability models are presented
and some existing software reliability models are described. Before going into these classifications,
the history of software reliability and some general concepts will be presented. This will make

understanding the subject much easier.

2.1 History of Soflware Reliabilily

The history of software reliability can be found in many sources [24, 68, 82, 84, 92]. The
most updated history at this time is that in M. Xie’s book [92:9-21], which can be summarized as

follows:

2.1.1 Before 1970

o By the development of computer svstems in the sixties, software reliability problems arose,

but the dividing line between software reliability and hardware reliability was not clear,

e Although there were not many articles devoted directly to software reliability in this period,
it can be considered as the initial stage of the explosion of software reliability models in

following periods,

e The description of programming errors as a birth-death process was introduced by Hudson [36]

mn 1967.

2.1.2 1970 - 1979

Great development were made in this period, and many software reliability models were intro-
duced. The software reliability field changed direction from proof of correctness to stochastic

modeling of the failure process and statistical analysis of failure data,

A major change in the history of software reliability models took place in 1972 when the

Jelinski-Moranda (JM) model [38] and the Shooman model [83] were introduced,
Mills [59] suggested the error seeding method for estimating the software reliability in 1972,

Using the Bayesian methodology for estimating the time between failures was introduced by

Littlewood [55] in 1973,

The assumption that the software failures process can be modeled as a nonhomogeneous

Poisson process was introduced by Schneidewind [80] in 1975,

Using execution time instead of calendar time for software reliability modeling was introduced

by Musa [63] in 1975,

The idea of using software reliability for deciding when to stop testing and software release

policies was introduced by Forman and Singpurwalla [28] in 1977,
Goel and Okumoto [31] modeled the process of imperfect debugging in 1978,

A famous model was introduced by Goel and Okumoto (GO Model) [33] in 1979. Many later
models using the nonhomogeneous Poisson process were either generalizations or modifications

of this model,

This interesting period ended by the publication of real software failure data by Musa [64].

21.3 1980 - 1989

In this period, most of the models proposed earlier were applied to real data and their draw-

backs were identified and discussed. Many other new models were also introduced,

2-2

Musa’s failure data made it possible for many researchers to overcome the difficulty of getting

relevant software failure data,

Okumoto and Goel [77] proposed some software release models and studied optimuni release

time, considering reliability and cost, in 1980,

Choosing the proper model among different software reliability models has attracted attention,

and tools for comparing different models have been widely studied (41, 42, 50, 66],

Nonhomogeneous Poisson process models have attracted the attention of many software en-

gineers and researchers [30, 76, 94],

In 1984, Musa and Okumoto [67] suggested a logarithmic Poisson model based on the execu-

tion time theory,

In 1987, M. Xie [91] modified the Jelinski-Moranda (JM) model [38] by assurning that earlier

detected faults contribute more to the total failure rate,

In 1989, Ohba [75] suggested a generalization of existing software reliability models by con-

sidering the possibility of imperfect debugging,

Many other software reliability models were introduced in this period. Most of these models

are briefly described in the above mentioned book by M. Xie (see pages 13-19).
2.1.4 1990 - present

By the end of the eighties, the software reliability field was saturated with software reliability
models. Attention now is directed to other related problems such as tools for model selection,

multiversion programming, and software fault tolerance modeling,

Brocklehurst et al [14] presented a technique called model recalibration for improving relia-

bility predictions,

2-3

e Many researchers have deeply studied the fault-tolerance technique to increase the reliability
of software programs [€. &, 11],

o Khoshgoftaar [15] presented a techinique for proper software reliability model selection using
the Akaike Information Criterion. This technique will be explained later in detail. Anotlier

method for proper model selection based on check of limits is presented by Huang Xizi [93],

o The reliability modeling of N version programming is studied by Goseva-Popstojanova and

Grnarov [34).

2.2 Some General Concepts

Because software reliability is a recently-developed research field, there are many new concepts
introduced in the existing literature. There are also some new ambiguous definitions, which need

to be clarified.

2.2.1 Software, Hardware & System Reliability: The increasing use of digital techniques in

system design led to the manifestation of three important facts [46]:

1. The main part of the system cost is due to the cost of software development and maintenance,

2. Increased delays in system development and production are primarily due to delavs in software

development schedules,

3. The reduced reliability of a system containing software is mainly due to unreliable embeded

software, where errors are detected after the svstem has been put into use.

These facts made it necessary to direct more research eficrts in the field of estimating the reliability
of systems containing software. The reliability of such systems is a combination of hardware,
software, and probably some other factors as shown in Figure (2.1). From this figure, it is clear that
proper tools for measuring the reliability of both hardware and software are needed for determining

the rehability of systems that contain software.

Hardware

Get Faijure
Rates by
Established
Methods

Mission

Required
Modules
Environment
Time

Operatyig Time Executr

Hardware
Failure
Probability

Software

Estimate
Failure
Rate

Software

Failure
Probability

Combined Failure Probability

Figure 2.1. Relationship Between Hardware & Software Reliability (McCall[58])

Man used hardware thousands of vears ago when the ancient Egyptians used a range of
simple tools to build their temples and pyramids and to create their wonderful paintings. On the
contrary, computers and software came to existence only in this century. This time gap between
software and hardware explains why there has been more research and knowledge in the field of
hardware reliability than in that of software reliability. There are some similarities between the
two fields. These similarities include defining terms in the same way, which explains why they
are sometimes combined to get the system reliability [68:6]. As an example, the hazard rate Z(t)
for a software program (kardware component) can be defined as the conditional probability that
an error (a failure) happens in the interval {t,t + At} given that the program (component) has
not failed up to time ¢t. On the other hand, differences between software and hardware include
[24:84),(68:7),[92:7):

1. Software does not ugear out. Rather it becomes obsolete when the environment it was designed

for changes,

2. The source of software failures is design faults. while the principal source of hardware failures

is physical deterioration,
3. Once a software defect is properly fixed, it is fixed forever, which is not true for hardware,

4. Manufacturing can affect the quality of hardware products, while replication in software

products can be performed to very high standards of quality,

Software reliability changes mainly during the development phase, while that of hardware

3]

usually occurs either in the burn-in phase, or at the end of its useful life phase,

6. Redundancy methodology has no meaning in software reliability and cannot be considered
as a tool for improving reliability. The analogous technique in software reliability can be

aclieved by using multiversion programming,

. Hardware can be repaired by spare modules, which is not the case for software,

2-6

5. Preventive maintenance is very important for hardware, while it has no meamng for software,

9. The hardware reliability field has a well-established mathematical theory but the software

reliability field does not.

2.2.2 Faults and Fatlures:

2.2.2.1 Faults: A program fault (bug) is a defect in the program that causes the

program to fail when it is executed under particular conditions. A fault can be viewed either from
an absolute point of view or an operational one. From the absolute point of view, a fault is an
independent entity that can be defined without reference to failure. In other words, it is a defective,
missing or extra instruction or set of instructions. From the operational point of view, the ~rela.t,ion
between faults and failures is one to one. To compromise between these two views, Musa [68:237)
defined the fault as “a defective, missing, or extra instruction or set of related instructions that
causes one or more actual or potential failure types”. The majority of faults occur during the
integration phase, mainly due to the lack of communication between the per§onnel involved in the
software project (programmers, testers, debuggers, ... etc.). Faults can also be in the function of
the module itself as a whole, or internal to it (violation of the programming language rules, logical

faults, ...etc.).

2.2.2.2 Failures: A program failure is defined as a departure of the output of a pro-
gram from its requirements. Since failures occur during execution of the program, they are dynamic

in nature. Failures are associated with time through the following relations:

1. Time at which a failure took place,
2. Time interval between two successive failures,
3. Total number of failures occurring up to a given time,

4. Total number of failures experienced in a time interval.

From the software reliability point of view, fallures occurring as a result of propagation of previous
failures are not counted. Failures are said to be of the same type if they occur for the same run

tvpe. and are characterized by the same discrepancy, or are due to the same program fault.

2.2.3 Fault Size: There has been much argument akout whether faults have an equal effect
on the overall reliability of a software program. Some authors, such as Littlewood [51:316], believe
that faults do not all have the same effect on reliability. They believe that faults discovered in the
earlier stages of testing have higher probability of occurrence. These are considered “big” faults,
with a more significant effect on software reliability than those “small” faults inherent in parts of
the program that are rarely executed. Thus, the size of a fault is formulated according to its rate

of manifestation. L

2.2.4 Operational Profile: The execution of a program can be viewed as a single entity, that
can last for months or even years for real time systems. However, it will be easier from the software

reliability point of view if the program execution 1s divided into runs.

A run is defined as a function that the program performs, such as a transaction in an airline
reservation system, or a particular service performed by the operating system for a user. A set
of identical runs is called a run type. During the test phase, the term test casc i1s used instead of
the term run type. Test cases are chosen to simulate the real operating environments, in order to
make sure that the requirements of the customer are correctly met. To achieve this exactly, the
tester must be knowledgeable of all the possible run types of the program, and the probability of

occurrence of each, which is called the Opcerational Profile.

The operational profil- 1s an extremely useful concept in software testing. However, it may
not always be practical to deterinine the full operational profile because of the large number of
run tvpes that can be involved. Thus. it is usually impossible to test all run types of a program.

Therefore program failures occur.

I - a 1 -«

[4

£ 5

Figure 2.2. An Imperfect Debugging Process [75:240)

2.2.5 Imperfect Debugging: Most software reliability models assume that a fault is com-
pletely removed directly after its detection, and that no new faults are introduced (spawned) due
to the corrective action. This makes software models mathematically simple, but on the other

haund, {ar from reality. That is mainly due to the fact that “Almost all professional programmers

have experienced cases where they fixed one error to create another one”[75:239].

An example of an imperfect. debugging process is shown in Figure 2.2. Assuming that the
correction action is perfect, the number of faults is reduced by 1, while the number will stay the
same or ay increase in case of imperfect fixing. If the probability of imperfect debugging is o

then the debugging process can be considered as a Markovian process {75:240].

2.8 Software Reliability Model Classifications

Proper classification of software reliability models is necessary to distinguish these models
from each other, and to help in proper model selection. The large number of existing software
reliability models makes their classification a diflicult task. Before going into some classifications,

it is useful to know the components of a software reliability model.

Usually a software reliability model involves three main components {1:951]:

1. A conditional probabilistic model specifving the joint distribution of any subset of random
variables T;, conditional on an unknown parameter a {The T}s are assumed to be independent

in all models considered in this chapter),

2. An inference procedure for the value of the unknown parameter o when the actual data are

obtained (realization of T7s),

3. A prediction procedure, which combines the above two components to provide predictions {or

future T/s. ,

Each model has its own assumptions on the software failure detection rate, the number of faults
in the software, and the condition of testing environments. Models can differ also according to the
inference procedure and the prediction procedure used. There are several classification systems in

the literature for software reliability models. Examples of these systems include:

2.3.1 Classification According to the Model Assumplions: Depending on the assumptions

and procedures used for modeling, M. Xie [92:23-29] suggested the following classification system:

2.3.1.1 Markov Models: For a software program under test, the number of faults re-
moved and those remaining at time t are both random values. To explain the reason for this
randomness, consider a program that has initially N number of faults. A fault will cause a failure if

the program is executed for certain input states. Due to the uncertainty of where faults are located

2-10

and the random choice of input states, failures will occur randomly with time. Even when a fault
is discovered, there is no certainty about perfect fixing or even the introduction of new faults. The
Markov concept is useful in modeling this random behavior. A model is considered 1o be under this
class if its failure-counting process is essentially a Markovian process. Examples of these models

are the Jelinski-Moranda Model (JM} [38] and the Schick-Wolverton Model [81].

2.8.1.2 Nonhomogeneous Poisson Process Models: Nonhomogeneous Poisson process
(NHPP) modeling is widely used in hardware reliability theory. The same concept is also used for
modeling software reliability growth, and many models belong to this class. The failure intensity

A(t) for this class of models is

ML) = dp(t)/dt,

where pu(t) is the mean value function for the number of detected faults N(1). By using different
forms for p(t), different NHPP models can be derived. Examples of this class of models are the

/

Goel-Okumoto Model (GO) [33] and the Schneidewind Model [80].

2.8.1.8 Bayesian Models: As mentioned before, at the second phase of software relia-
bility modeling, an inference procedure is used. The classical methods used in most of the software
models are the maximum likelihood estimation method and the least square miethod. The third
method is the Bayesian analysis method. The main drawbacks of this method are its complexity
and difficulty of application. The basic idea of the method is to identify a prior distribution for the
parameter to be estimated (which is the key difficulty in carrying out Bayesian analysis). A poste-
rior distribution is then obtained by multiplying the likelihood function (obtained from the collected
data) and the prior distribution. A model is classified under this category i a Bayesian technique
is used for parameter estimation. Examples of these models are the Bayesian Jelinski-Moranda

Model (BJM) [53] and the Littlewood-Verrall Model (LV) [55].

2.3.1.4 Stattstical Data Analysis Models: In this class of models. collected failure data
are analyzed using standard statistical methods, such as time series analysis and regression analysis.
Software reliability can then be estimated and predicted as a result of these analyses. Examples of

these models are the Crow and Singpurwalla Model {19] and the Singpurwalla and Soyer Model [85].

2.8.1.5 Software Melrics Models: Software metrics include software size metrics, soft-
ware structure metrics, understandability metrics, ..., etc. These metrics are used for predicting the
number of faults in a software program. They are useful in earlier stages of software development.
The main disadvantage of existing software metrics models is that they predict the number of faults
in a program, which is not related to its reliability. More information about these metrics can be
found in the papers by Bailey and Dingee [7], Cote [16], Davis and-LeBlanc [20], and Munson and

Khoshgoftaar [62].

2.3.1.6 Fault Seeding Models: The basic approach in this class of models is to “seed” a
known number of faults in a program, which is assumed to have an unknown number of indigenous
faults. Further, it is assumed that the distribution of the seeded faults is tl:e same as that of the
indigenous ones. The program is then tested, and the observed numbers of seeded and indigenous
faults are used to estimate the fault content in the program prior to seeding. Consequently program

reliability and other relevant measures can be estimated. Examples of these models are the Mills

hypergeometric model [59] and its modification by Lipow [48].

Some drawbacks of this technique include [53:46]:

1. Increasing the load of testing effort, since the debugger has to manage both original and

seeded faults,

2. Seeding faults uniformly in all paths of a software program is always a difficult, if not an

impossible task,

3. The total number of faults in a program can not be considered a stand-alone measure of the

program's reliability.

2.8.1.7 Input Domain Based Models: The basic approach taken in this class of models
is similar to that of fault seeding models. The operational profile concept i1s used to generate a
set. of test cases from an input distribution, which is assumed to be a representative of the actual
operational profile of the program. Due to the difficuity of obtaining the exact operational profile,
the input domain is divided into a set of equivalent classes, each of which is usually associated with
a program path. An estimate of program reliability is obtained according to the portion of test
cases that cause the program to fail. Examples of this type of models are Brown and Lipow [15]

and Nelson [73]. C -

2.8.2 Classtfication According lo the Nature of Failure Process: Under this classification

system, Goel [30] classified software reliability models into the following groups:

2.3.2.1 Times Between Failures Models: In this class of modéls. the time between
failures is the process under study. The times between failures are assumed to have a distribution
whose parameters will be estimated from the observed values of these times. Estimates of software

reliability, mean time to next failure,... etc., are then obtained from the fitted model.

2.8.2.2 Failure Count Models: The main interest in Fhis class of modecls is the number
of program failures in specified time intervals, or those accumulated by a given time ¢, rather than
times between failures. The cumulative number of failures by time t, N(t) is assumed to be the
outcome of « random process, which can be completely specified by a discrete distribution function
like Poisson or Binomial. Parameters of the models can be estimated from the ohserved values of
failure counts. Again, other estimates of software reliability, mean time to next failure, ... etc., can

be obtained from the fitted model.

2.3.2.3 Fault Seeding Modcls: As described before.

2.3.2.4 Inpul Domain Based Models: As described before.

2.3.3 Musa-Okumotlo Classification: Musa and Okumoto (68:250-251], developed a classifi-

cation scheme in terms of five different attributes:

1.

3.

Time domain: Calendar time or execution time,

. Calegory: The total nuinber of failures that can be experienced in infinite time is either finite

or mfinte,

Type : The distribution of the total number of failures experienced by time t (Poisson, Bino-

mial,..., etc.,

. Class: (for finite category only) functional form of the failure intensity in terms of time

(exponential, Weibull, Gamma, ...etc.),

. Famzly: (for infinite failure category only) functional form of the failure intensity in terms of

the expected number of failures experienced (Geornetric, Inverse linear, ... etc).

This classification scheme is given in Tables 2.1 and 2.2. Note that in the finite category table,

class C indicates a distribution that does not have a common name. The same principle applies for

the infinite category table, where types T indicate distributions that do not have common names.

2.3.4 Other Classification Schecmes: There are many other classification schemes that can

be found in the literature. Examples of other classifications include:

1.

According to Applicable Phase

Ramamoorthy and Bastani [78] classified software reliability models according to the phase

where the software model applies. They classified software reliability models as follows:

Table 2.1. Finite Category Models [68:251]

Type
Class Poisson Binomial Other Types
Exponential | Musa [63] Jelinski-Moranda [38] | Goel-Okumoto [31]
Moranda [61] Musa [65]
Schneidewind [80; Shooman(83) Keiller-Littlewood [42]
Goel-Okumoto [33]
Weibull Schick-Wolverton {81]
Wagoner [89]
C1 Schick-Wolverton [82]
Pareto Littlewood [51] -
Gamma Yamada-Ohba-Osaki [94]
Table 2.2. Infinite Category Models [68:251]
Type
Family T1 T2 T3 Poisson
Geometric Moranda Musa-Okumoto
[61) 67)

Inverse Linear

Littlewood-Verrall
[59]

Inverse Polynomial
2nd degree

Littlewood-Verall
(55

Power

Crow [17]

2-15

(a) Debugging Phase Models
(b) Validation Phase Models,
{¢) Operational Phase Models,

(d) Maintenance Phase Models.

2. According to Nature of Debugging Strategy
Bastani and Ramamoorthy [10] classified software reliability models according to the nature
of debugging process as:
(2) Reliability Growth Models,
{b) Sampling Models,

(c) Seeding Models.

From the above discussion, it is clear that most of the classifications are very similar.

1

2.4 Classical Software Reliability Models

As mentioned before, about 100 software reliability models have been developed io predict
software reliability. In this section, a brief description of the most famous models will be given.

The construction of many other models is based on the ideas illustrated by these models.

2.4.1 Jelinski-Moranda Model (JM): This model [38] is one of the early models that the
reader finds in nearly all literature on software reliability modeling. It can be considered as the
basis for most of the models that followed it. It was proposed by Jelinski and Moranda in 1972,

taking into consideration the following assumptions:

2-16

1. A finite number of faults initially exists in the program,
2. Faults are independent, and each has the same probability of occurrence,
3. The debugging process is perfect, and takes place immediately when an error is detected,

4. The hazard rate decreases by an amount ¢ after discovery and correction of each fault

(see Figure 2.3},
5. The time to next failure is proportional to the number of remaining faults in the program.

Z(t)lr

No¢

Cumulative Time

Figure 2.3. Z(t) Plot for JM model [38]

Using the above assumptions, the hazard rate Z(1;), between the (i — 1) and the & fajlure

Is given by

Z)=¢[N-(i-1)] (2.1)
where
¥ = the time between the (i — 1)¢* and the 7% failure
o = the drop in the hazard rate due to one fault removal
N = the initial number of faults in the program

2-17

Now, let T1. Ty, -, T, represent the time intervals between successive failures. Under the assumip-
tion of uniform failure rate {which implies that the times between fallures are exponential with rate

Z(t,)), the probability density function of 7} = (t; — 1;_1) is given by
J(T) = o[N = (i = D) exp{—¢[N - (i - 1)]T;} (2.2)

and the likelihood function is
LT, Tz, T) = [[8N — (i = D]exp{=@[N = (i — 1)]T} (2.3)
1=1

taking the partial derivative of €n(L) with respect to NV and ¢ and setting the resulting equations

to 0, the MLE of N after n failures is obtained by solving the following equation and calling the

result N
1 1 1 n
it ... = 2.4
TS T ey outy R N (2.4)
N-3) (=T
i=1
where T = ZTx :
1=1
The MLE of ¢ is found to be
6= = (2.5)
RT =Y (i-1)T,
=1

this concludes the second part of the model. The final part is simply “plugging in” to get required

predictions. As an example, the MTTF after experiencing 7 failures, will be

1
A\IITTF(II) = == (26)
o(N —1)
2.4.2 Bayesian Jelmski-Moranda Modcl (BJM). The motivation for the introduction of this

model by Littlewood and Sofer [53] was that the JM model had produced too optimistic results

with almost every set of data 1t was applied on. This was interpreted as a result of either the

2-18

unreality of the underlying assumptions of the nodel. or poor estimates of the parameters. due 10
the use of the maximum likehhood method. The BIJM is a Bavesian approach to the JM model
with slight modeling changes. It does not consider the fatlure rate to be an integer multiple of .

The sequence of this model can be described as follows:

1. A “prior” distribution is assigned to the parameters A (initial failure rate of the program)

and ¢ (usually Gamma pdf),

2. Using the observed data t;,?,, ---, ¢, the distribution is modified to give the “posterior”

distribution of A and ¢,

3. The model is then used to calculate the current reliability, the current failure rate, the mean

time to failure, and the number of faults remaining in the program under test.

2.4.3 Goel-Okumoto I'mperfect Debuggrng Model (GO): This model {31, 32], is another mod-
ification of the basic Jelinski-Moranda model. The motivation for the introduction of this model
was the fact that in practice, the assumption of a perfect debugging process i_,s proved to be unreal-
istic in most cases [60, 86, 87]. The modification was then made by introducing a probability a for
imperfect debugging. The number of faults in the program at any time ¢, is treated as a Markovian
process with the transition probability a. Times between transitions are taken to be exponentially
distributed with rates depending on the number of faults remaining in the program. The hazard

rate between the (i — 1) and the 7% failure . Z(1;) is given as:

Z(t;) = AN —a(i - 1)] (2.7)
where
ti = the time between the (i — 1)** and the % failure
A = the failure rate per fault
2-19

]

Expressions are then derived for performance measures such as the distribution of time to a com-
pletely debugged program, distribution of the number of faults remaining in the program. and

program reliability.

2.4.4 Littlewood- Verall Model (LV): Littlewood and Verall [55], took a different approach
when they developed this model. Unlike most other models, they argued that software reliability
should not be related to the number of faults in the program. In this model, it is possible that
fixing a fault makes the program less reliable and even if an improvement took place, its magnitude

is uncertain. The assumptions of the model are:

1. The times between failures T/s are assumed to be independent random variables (as in JM

or BIM) with pdf

p(t.- | /\,) =X exp(—-/\,-ti) (t; > 0) (28)

i.e. the random variables T/s are exponential with parameter A;,

(]

. The Ms form a sequence of random variables each has a gnmma distriblition with the param-
eters a and (7). i.e.,
_ @) T exp (=%(1) M)

QG L a,v(@) = Fla) Ai >0 (2.9)

The function ¥(?) is a linear function of 1, reflecting the quality of the programmer and the difficulty
of the programming task. A rapidly increasing function ¢(7) reflects a good programmer, an easy

task or both.

The user can choose the parametric family for ¥(7). In (1], the parametric form of ¢:(i) was

taken as

The MLE method is used to estirnate the values of 3. % and . Using the realized failure times

{y.ts.- - .t;—1. the reliability of the systermn is estimated 10 be {1:954]
3 R
Ri(t) = J—('—)A (2.11)
t+ (1, 9)

where & and B are the ML estimates of a, 3. This model can also adjust the correction time to be

a constant value greater than zero.

2.4.5 Keiler-Littlewood Model (KL): This model [41, 42] is similar to LV, except that reli-

ability grow.h is induced via the shape parameter of the gamma distribution, i.e.,

L (ﬁ)w(i)/\?’(i)_lexp -B8X;i - .
fQa 18.93)) = T 2>0 (2.12)

Here, reliability growth takes place when (i) is a decreasing function of i. Again ¥(i) choice is

under the user control. In [1:934], the parametric form of /(i) was taken as

P(i.a) = () + azi)”! (2.13)

The MLE method is also used to estimate the values of a;, a» and ¥(i). Using realized failure

times £,. 8y, -, {;~1, the reliability of the system is estimated to be [1:954]
~ q¥lia)
~ 3
R(ty= | —= (2.14)
t+ 4

where a and J(i) are the ML estimates of «, $(7).

2.4.6 Musa Basic Erccution Time Model: This model [63] is one of the most commonly
used models in the software reliability field. What is interesting about this model is that it uses

execution time (which is the real stress and meaningful time for sofiware) instead of the calendar

time used by < .hier models. On the other hand, this model can also transforni exeouaon time
mto calendar tire. which 1s more convenient for software reliability managers and engineers. It i~
also possible to model the amount of limiting resources (testers, debuggers, and computer tine)

ivolved in the testing process.

The model starts with assuming the hazard rate function Z(7) to he

Z(7) = fK (N, — n(r)) (2.1%)

where

T = auount of execution time used in testing

N, = initial number of faults in the program

f = linear execution frequency (average instruction rate divided by the L .al
number of instructions in the program)

K = error exposure ratio which relates the error exposure irequency to lincar
execution frequency '

n{r) = number of faults detected by time

Assuniing that the rate of fallure occurrence is proportional to the rate of error correction, then

= BZ(+) (2.16)

where [2 s the error reduction factor which represents the average ratio of the rate of reduction of

errors to the rate of failure occurrence.

The above equation was further generalized by introducing a constant C to represent the ratio
of rate of error detection in the testing phase to that in the operational phase, so Eq (2.16) can be

expressed as

combining bEqgs (2.15) and (2.17). we get

in(+
“('I(') = BCfK[N, -~ n(7)]= BCfRN, - BCfRhn(r) (2.18)
Knowing that n = 0 at 7 = 0, the solution of the above equation is found to be
n(r) = No[1 — exp(—BCfR'1)] (2.19)

The MTTF can then be calculated as
MTTF =1/Z(r) = 1/[fKN,exp(-BCfK 1)) (2.20)

The reliability of the system at future execution time 7 will be

R(Tl) = exp(_A ' Z(:L‘)dz‘) = exp (M}?‘F) (2.21)

Other useful results that can be derived from this model include:

1. The number of faults to be detected to increase the time between failures from 71 to 7,

»

o

Additional CPU test time required to achieve the above goal,
3. The resource requirements needed for the same reason,

4. Utilization factor of the limiting resources.

2.4.7 Musa Logarithmic Poisson Erecution Time Model: This is another execution time
model developed by Musa and Okumoto {67] in 1984. It assumes an infinite number of faults in the
program and the failure process is a NHPP. Further, the failure intensity A is assumed to decrease

cvpenentially with the number O removed faults, ie.

2-23

A7) = Aeezp(—on(T)) (2.22)

where A, 1s the initial failure intensity, and ¢ is called the failure intensity decay parameter.

Substituting for A(7), we get

dn(r)
dr

= A erp(—on(T)) (2.23)
Using the initial condition that n(0) = 0, the solution of the above differential equat ~i. s
1
n(r) = E(’n(z\o¢>‘r+ 1) (2.24)

It 1s clear from the above equation that the expected number of faults detected by execution time

7 is a logarithmic function of 7, and hence the name of the model.

Using Eqgs (2.22) and (2.24), the failure intensity at execution time 7 is
i

A
/\(T) = /\oe.rp[—én(v‘)] = X—aﬁ (225)
The rehability function at execution time 7, 1s
door+1 \'V°
R = ——————— >0 2.26
(717o) (/\od)(r—i-ro)-i—l) = (2.26)

Other reliability measures can be obtained using the general theories of the NHPP models, as

described in Musa and Okumoto [67].

2-24

1. SOFTWARE RELIABILITY MODEL SELECTION

Software Reliability models differ considerably in the ways they transform model assumptions
into a detailed mathematical structure. The problem of proper model selection can be summa-
rized briefly as follows [52:149]: The available set of data to the user will be a sequence of times
between successive failures ty,1s,...,2;_1. These observed times are the realization of random vari-
ables Ty, T5. ..., T;-1. A software reliability model is then applied to use the observed set of data
ti,t2, ..., ti_1, to predict the future unobserved 7;, T;,, - - -. The problem to be solved by a software
reliability model is then a prediction problem. It involves the future via the unobserved random
variable 7;. Using the goodness of fit will not solve the problem. The reason, as pointed out in
[1:951] 1s that models are usually too complicated for a traditional "goodness-of-fit” approzach to
be used. In the literature, there are many suggestions for solving the problem of proper model

selection. Some of these suggestions will be given in this chapter.

3.1 Model Selection Using Analysis of Predictive Qualily

The idea behind this method is to do some analvsis about the predictive quality measures
(such as accuracy, bias, trend, noise, - - - etc.) for candidate software reliability models, with respect
to the set of data in hand. Detailed examples of these analyses can be found in [1], [41], [42], and

[52]. A brief summary of such methods will be given in the following discussion.

Given that the observed values ¢1,1a, - .{;_, of the random variables Ty ,Tn,---,T;_;, the
manager of the software product will be interested in having a good prediction for the future T;.
This future T;, can then be transforined into the current reliability of the software product as
follows:

Ri(t)=1=P(T; <t)=1- Fi(1) (3.1)

3-1

The user will never know. even at a later stage, the exact value of F;(1). However. by using a
software reliability niodel the estimated value f’,-({) can be calculated. By realizing the actual value
of T; at the time of next failure, the user will have a pair {Fi(t),t,-}, After having enough pairs of
such data, the user can tell whether there is any evidence to suggest that the t;s are realizations
of random variables from Fi(t)’s. If such evidence were not found, it would suggest that there are
significant differences between ﬁ(t) and Fi(t); hence; the predictions are not in accord with actual

behavior. Littlewood [52:166] made the following sequence of transformations:

u; = Fi(t:) (3.2)

Each is a probability integral transform of the observed #;, using the previously calculated predictor
Fi, based uponty,ta,- -, t;_;. According to Dawid [22] and Rosenblatt [79], if each F; were identical

1o the true F;, then u; would be realizations of independent uniform U (D, 1) random variables.

3.1.1 the u-Plot: The main idea behind this method is that since {u}s } are supposed to
have a uniform distribution, then the quality of the software reliability model can be measured by
whether the sequence of u]s looks like a random sample from U(0, 1). Knowing that the cumulative
distribution function (cdf) of U(0,1) is a line of unit slope through the origin, the u-Plot can be

used to judge the prediction quality of a software reliability model as foliows:
1. place the w; values on the horizontal axis,
2. At each point, increase the step function by 1/(n + 1),
3. Compare the resulting plot with the line of unit slope,

4. The deviation from this line. which can be measured using the Kolmogorov distance (maxi-
mum absolute vertical difference) will be used to measure the quality of the software rehability

model.

3-2

Figure 3.1. Drawing the u-Plot (Littlewood {52:168])

Another quality metric that can be deduced using the u-Plot is the bias of the model. If all of the
u’s are above the line of unit slope, then this means that the model predictions tend to be too

optimistic and vise versa if all of the u}s are under the line of unit slope.

3.1.2 The y-Plot and Scatter Plot of uls: One problem with the u-Plot is that it measures
only one type of departure of predictors from reality. For example if a prediction system applied
for a set of data shows optimism in the early predictions, and pessimism in the later predictions,
then a small Kolmogorov distance will be observed. It seems necessary then to examine the u!s for

trend. To do that, the y-Plot method makes the following transformation

Ir; = —-—[72(1 - u,‘) (33)

3-3

Stage 1

Stage 2

Stage 3

Figure 3.2. Transformations to Obtain the y-Plot (Abdel-Ghaly [1:958])

Figure 3.3. LV and JM y-Plots for Data of Table 1 in Littlewood [52:172]

LI\

t + + + + + S—
u) Us U3 Ug Um -1 Uy
zy = —€n(l — u;)
I Ials Im-1 Ty
) m
normalize Vi = le/ E Zj
1 1
T I I
A | I
o Yz | i
Y3
L !
T M

3-4

705

If the {u)s} are a true realization of 1d random variables with 17(0. 1) distribution. then the { z/s}
will be a realization of n2d unit exponential random variables. Thus, of the { z}s} are piotted un
the horizontal axis. then they should look like a reahization of a homogeneous Poisson process. The
alternative hypothesis (that there is trend in the u)s) will show itself as a non-constant rate for
this process. If the values of {z]s} are normalized onto (0.1) and their values are plotted, then a
plot that shows the trend of the predictions of the model will result (see Figure 3.3). Departure
from the line of unit slope will indicate that the prediction system is not capturing the “trend” in
the failure data (i.e. reliability growth) [41, 42]. Figure (3.3) shows the application of the y-Plot
procedure to the Littlewood-Verall (LV) and Jelinski-Moranda (JM) predictions of the table 1 data
in [52:144]. The Kolmogorov distances are found to be 0.120 for (JM) and 0.110 for (LV), both of
them are not significant at the 10% level [52:170]. A close iook at the JM y-Plot shows that it is

very close to linearity at early stages (until about i=90: see the fitting line).

1.0 T

!

[

! .

[
u; !

|

|

i

|
0.5 +

A

|

l

[

I

[

i

[

I. .
0.0 1

30 50 70 . 90 110 130

Figure 3.4. Scatter Plot of u, for JM Model Using Data of Table 1 in [52:173]

In the scatter plot, the values of {u;s} are plotred as in Figure (3.4) and the trend can be
judged by the number, and location of points in cach stage. As an example. it is clear fron the
plot that the prediction system seems to be too optimistic after 7 = 90. This is mainly because
the number of points with { u}s} less than 0.5 after + = 90 is higher than those with u; greater

than 0.5.

3.1.3 Measures of Noise: Both the u-Plot and the y-Plot can be considered as a measure
of bias. In the sequel some tools will be used to analyze the variability of the prediction. These
tools are, in fact, some quite crude measures of variability, due to the problem of unavailability of

the true sequence of Fi(t) [52:175).

8.1.8.1 Braun Statistic: This is a measure of predictions noise. It is defined as [13]:

St - E())?

B=- : 3.4
Shog e o0
where
E(T,-) = the estimated mean of T;
n = number of the terms in the sum

A small value of B indicates better smoothing of software reliability model predictions.

3.1.3.2 Median Variability: This is another measure of noise, which is defined as

. m, — My

where m; i1s the predicted median of T;. Between different prediction systems, this measure can
indicate which model has higher vanability in its predictions, or in other words, how noisy the

model predictions are. Again. a small value of A1 indicates better smoothing of the predictions.

3.1.3.3 Rate Varabihity: 'The rate vanability (KV) s defined as

R\':Z’—'LL"“-‘ (3.6)

Ti-1
i

where r;. the ratc of occurrence of fallures (ROCOF), is calculated immediately after a fix. This s
also another measure of noise. It is important to note that for both MV and KV, the comparison

between two prediction systems must be for the same set of data.

3.1.4 Prequential Likelhood: Most of the work concerning the Prequential Likelihood
was done by Dawid [21, 22]. The Prequential Likelihood (PL) for one-step ahead prediction of

Ti41.Tj42, - . Tj4n is defined as follows[52:177):

j+n R
PLa= T] fur) (3.7)
izj+1
where f,(t) 1s the pdf of the predictive distribution ﬁ,-(t), based on the realized values t; .14, - - . {;_;.

7

The PL value can be used to determine the accuracy of a software reliéhilit_\' model [57:174].
This value is usually very small, therefore its logarithmic value (which is always negative) is used for
comparison. The more negative it is, the more inaccurate the software reliability model predictions.
This measure can be considered as a general procedure for choosing the best prediction svstem for

a given set of data [14:461], so in case of having a tic between two models with respect to all other

quality measures, the one with higher accuracy will be preferable [57:174].

A comparison of two prediction systems A and B, over a range of predictions Tj41, Tj42, -+, Ty 4n

can be made via their prequential likelihood ratio (PLR)s 4.8

j+n A

IT 7w
=y 41

Jj+n

II 77 un

=741

(PLR)n_A'B =

Dawid [2‘2:‘2837284] stated that f PLR,, o p — x as n —— x . then prediction system A will

be considered better than B. Detailed discussion about these nieasures can be found in [1].[21].

[22]. and [37].

u-plot y-plot Braun Median Rate of
Model K-S dist. K-S dist. | Statistic | Variability | Vanability | -loge(PL)
(sig. level) | (sig.level) (rank) (rank) (rank) {rank)
Jelinski-Moranda 121 d15 1.11 4.23 3.81 466.22
IM [38) (NS) (NS) (8) (6) (8) (6)
Bayesian JM 110 077 1.04 3.27 466.64
BIM [53] (NS) (NS) (3) (7) (7)
Littlewood 123 091 1.07 5.27 4.66 465.49
L (51] (NS) (NS) () (7) (9) (2)
Bayesian Littlewood 138 .068 .96 2.82 465.18
BL [2] (NS) (NS) (1) (6) (1)
Littlewood-Verall 167 .051 97 2.33 2.18 465.52
LV [55] (10%) (NS) (3) (3) (4) (3)
Keiller-Littlewood .170 051 .96 . 2.33. 2.17 465.81
KL (41, 42] (10%) (NS) (1) (3) (3) (4)
Duane .209 .052 1.04 1.96 1.84 467.78
D (27, 18] (2%) (NS) (5) (2) (2) (9)
Goel-Okumoto 271 .085 1.21 1.06 1.03 473 .87
GO [31] (1%) (NS) (10) (1) (1) (10)
Littlewood NHPP .169 .082 97 3.05 2.76 465.85
LNHPP[1] (10%) (NS) (3) (5) (5) (3)
Weibull .100 111 1.17 6.16 5.48 466.89
W [2] (NS) (NS) 9) (8) (10) (8)

Table 3.1. Littlewood’s Analysis of Data of Table 2 in [52:189)

Table (3.1) is a summary of applying the above-mentioned prediction quality measures. From
this table, 1t is clear that different methods of model selection result in different models being chosen.
This problem, and the fact that some of the above methods are rather subjective as to which model
is better than others [45:184], force the user to try different measures and take the average, or to
Judge the results from his own perspective.

3.2 Model Selection Based on a Linear Combination of Models

The 1dea behind this method is that, rather than predicting software reliability by using
only one model, a meta predictor could be formed to take a linear combination of two (or more)

predictions, with weights chosen in some optimal way.

3-8

The heuristic algorithm for this method is as follows [57:173]

1. ldentify the candidate set of software reliability models to be used.
2. Select the models that tend to cancel out in their biased predictions (if any).
3. Selected models are equally weighted to form a linear combination model.

4. The arithmetic average (mnean value) of the predictions, resulting from the selected models
or their middle prediction value (median value), is used as the prediction of the linear

combination of models.

The authors used the Goel-Okumoto NHPP Model (GO) [33], the Musa-Okumoto Logarithmic
Model (MO) [67], and the Littlewood-Verall Model (LV) [55] to form an Equally-Weighted Linear
Combination (ELC) Model. The arithmetic average of each selected models’s predictions was taken

as the ELC Model predictions as follows:
1 1)

The main drawback of this method is that it is not the best in all cases. Also it mixes models of

different assumptions for the failure process.

8.3 Model Selection Based on Check of Limits

In this approach, a check of the limit conditions for the model to be used is performed
before using it, so as to avoid the meaningless consumption of time [93:481]. The check of the limit
conditions confirms the convergence of the model. As an example of this technique, H. Xizi [93:483]

derived the limit condition for the Musa Execution Time Model [63] as:

= < (3.10)

3-9

where

m = n./B

. = number of errors corrected

B = error reduction factor

¢ = the time between the (i — 1) and the 2 failures, i = 1,2,---,m

Littlewood [54:145] presented the convergence condition for the Jelinski-Moranda model (JM) [38]

as:
n n
S-m 3
=1 < = (3.11)
-1
1=1
where
n = observed number of failures
t; = the time between the (i — 1)2 and the i failures i = 1,2,---,n

The problem with this method is that the limit conditions for most of the models are similar, which

makes the user return to the the same problem of proper model selection.

3.4 Model Selection Using Akaike Information Criterion (AIC)

The (AIC) was developed by Akaiki [3] in 1974. 1t resulted from relating the entropy principle
from statistical mechanics to information theory. In a subsequent work [4], Akaiki proved that the

(AIC) can be used to select the model that best predicts the stochastic behavior of the system.

The use of the Akaike Information Criterion for software reliability model selection was first
suggested by Khoshgoftaar [43]. In a subsequent work [44], he showed that this technique, when
applied with some extensive simulation work, proved the feasibility of using the (AIC) for software

reliability model selection.

3-10

Entropy in statistical mechanics 18 the measire of the probability of having a svstem of
particles in state A. It increases with the system changing to its most probable state B. If A=B,
entropy will be maximum and can be taken as the measure of how close the estimator is to its real
distribution. For two probability density functions j(:) and g(z), the entropy of distribution f(z)

with respect to distribution g(z), denoted as B(f(:), g()) 1s expressed as [45:186]

- [1 (=)dz (3.12)

B(f(z).9(z))

= -E [Kn(] C (3.13)
= =I(f(2)i9(z)), (3.14)
where
E; = the expectation with respect to distribution f(z)
I(f(z);9(z)) = the expected log-likelihood ratio. or the negative of entropy
C = a constant value
The software reliability model that minimizes
— 2n (M> +2¢ (3.15)
9(2)

is the model that should be chosen Khoshgoftaar and Woodcock [45:187] stated that the AIC can

be written as the following expression:

AIC = -2(log likelihood function at its maximum likelihood estimators) +2 (number of parameters

fitted when maximizing the likelihood function)

The best model for a given data set using this method is that with the lowest AIC value.

3.5 Recalibrating Software Reliabilicy Models

This method was introduced by Brocklehurst and Others [14]. and can be sumimarized as

follows:

The relation between true distribution Fi(t) of the random variable 7}, and the predicted one

ﬁ.(t) can be represented through a relation function G; as
Fi(t) = G, [ﬁ,—(()] (3.16)

It is further assumed that G; is only slowly changing function with i. Since G; is not known, it will

be approximated with an estimate G} which will lead to a new prediction

Fr(t) = 6 [Fuo) (3.17)

This, in fact, recalibrates the raw model output ﬁ-(t) in the hght of the accuracy of past predictions
for the data set under study. The authors based their estimate of G7 on the u-Plot, calculated from
predictions which have be - made prior to T;. They made two choices for the shape of G7(?). The
first choice is a siraple shape in the form of a u-Plot with steps joined up to form a polygon, while

the second one is a more complicated one in the form of a spline.

The sequence of this method can be summarized as follows [14:461]:

1. Use the y-Plot to make sure that the error in previous predictions is approxiinately stationary,

(g%}

Construct the polygon G} by joining up the steps of the u-Plot formed by predictions before

T,. see Figure {3.5),
3. Get the raw prediction /":,-(1) by using the basic prediction system,

4. Recalibrate the raw predictions using Eq (3.17).

3-12

Gy R 0.5
1/(r+1)
1/(r+1)
1/(r+l)
T— + 1 0
0 u; uzug Ugq us

Figure 3.5. Drawing the Step Recalibrating Function G} (Brocklehurst [14:461])

The main problem with this technique, as stated by the authors, is that the failure behavior of

software cannot be guaranteed to be stationary in all cases. Also, recalibrated predictions can

sornetimes be worse than raw predictions.

IV, MATHEMATICAL BACKNGROUND

In this chapter. several mathematical concepts of the reliability theory will be presented.
These concepts are essential for understanding the process of software reliability modeling. The
most important distributions in reliability theory and the relations between these distributions are
also given in this chapter. The chapter .oncludes with a derivation of the test statistic and its

moments.

Throughout this discussion, the random variable T will be used to represent the time to next

failure, and t will represent the realization of T.

4.1 Fundamental Reliability Equations

There are some principles in hardware reliability theory that are also applicable in software

reliability theory.

The first common principle is that the religbility of a system (program) at time t, R(1) is

defined as the probability that there will be no failures by 1, 1. e.
RO)=P(T>)=1-P(T<t)y=1-F(1), (4.1)

where F'(t) is the probability of failure before time 1.

Also, the failure rate is defined as the probability that a failure per unit time occurs in the

interval between two times ({;,¢2), given that the system (program) has survived until time ¢;:

P(11$T<121T>11) _ P(t, < T <ty) (4.2)
(to — 1) T (ta—t)P(T > 1)) ‘
F(ta)— F(t,) (4.3)

(t2 — 1) R{11)

4-1

The hazard rate Z(t) for a component (sofiware program) is defined as the instantaneous failure
rate at time {. Therefore. 1t can be expressed as the hmiting condition of Eq (4.3) as the interval
(t2 — ;) approaches 0, so

2 = lim FUFA0-FO S0 S0
“U T Al ALR(Y) TR T 1= F()

where f(t) is the failure density or the first derivative of F(t).

The relation between Z(t) and R(t) rate can be derived by integrating the two sides of Eq
(4.4), 1.e.

R(1) :exp[—/0 Z(z)dxz] (4.5)

Using Egs (4.1), (4.4), and (4.5), we get

fty)y = Z(l)e.\:p[—/o Z(x)dz] (4.6)

;

The mean time to failure (MTTF), is defined as the expected time to the next failure, and can be

expressed as

MTTF = E(T) = /m 1f(t)dt (4.7)
0

It can also be computed by the following relation {40:10]
[ed)
MTTF = / R(1)dt (4.8)
0

If N(1) is the number of failures experienced by time t, then the mean value of N(t) 1s u(t) = E[N(t}],

which is an increasing function of ¢, and its derivative is the failure intensity A(t) = dp(t)/dt.

4.2 Some Immportant Relwability Distributions

In this section, some of the important distributions used in reliubility studies will be presented,
along with the relations between them. There are also some theories related to these distributions,

which are needed for the derivation of the test criteria.

4.2.1 The Poisson Distribution: The series

2

o0
n m*
l+7n+?+—~+ E_T (4.9)

converges for all values of m to ¢™. Consider the function f(z) defined by

m:, z=012,..
0 otherwise .
where m > 0. This makes f(z) > 0 and ,
o] o mTe~™
20 = T
oQ mr
= e ™ Z _:LT =e MM =1 (4.11)
r=0 :

thus. f(z) satisfies the conditions of being a pdf of a discrete type random variable. A random
variable X which has a pdf of that form of f(z) is said to have a Poisson distribution, and any

such f(r)is called a Poisson pdf.

4.2.2 The Gamma Distribution: For any positive number o, it is known that the integral

oo
/ y " leTVdy
o

4-3

exists for & > 0 (23:235]. and that the value of that integral is a positive qumber called the Gamma

function of a, where

F(a):/ Yy e Vdy (4.12)
0

If a = 1, it is clear that

F(l):/oooe_ydyzl (4.13)

If a > 1, then an integration by parts shows that
[e=]
Ma) = (a— 1)/ yv* 2e Vdy = (a—-1)-T(a = 1) (4.14)
0
Accordingly, if o is a positive integer greater than 1, then
[(a) = (a = 1)(a = 2)...3)(2)(1T(1) = (« = 1)! (4.15)

In the integral that defines ['(a), let us introduce a new variable z by writing y = z/f, where

I(a) = /Ow (%)H %l (%) dz, (4.16)

3 > 0, then

Dividing by TI'(a), we get

1 /8
= a=le-s 4.17
1 /0 ﬂ"‘F(a)l e dx (4.17)

Since a > 0, § > 0 and ['(a) > 0, it is clear that

1 a~1_,~z/0 >0
Gaty):r € T -
fia,8) =4 7O

. 4.18)
0 otherwise (

is a pdf of a random variable of the continuous type. A random variable .\ that has a pdf of that

form is said to have a Gamma distribution(X ~ I'(a, 3)).

4-4

From the properties of the pdf, it is known that

« 1 a-1_-xff
T € dr =1 4.19
./0 FoT(a) (4.19)
which can be rewritten as
oC
/ Io—lc—-’t‘/Bdl.:ﬁar(O) (420)
0

The mean and variance of a random variable X having a Gamma distribution are

E(X)=p=af V(X) = o? =ap?
4.2.83 The Chi-Squared Distribution: If v is any positive integer (usually referred to as
degree of freedom), then a random variable X is said to have a Chi-Squared distribution with
parameter v (X ~ x?(v)) if the pdf of X is the Gamma density defined in (4.18) with « = v/2 and

B = 2. Thus, the pdf of a chi-squared random variable X is

1 (v/2)-1,-x/2
le e " .'IIZO

flziv) =
0 otherwise (4.21)

The mean and variance of a random variable X having a Chi-Squared distribution are

E(X)=p=1¢ V(X)=6?=2v

{.2.4 The One-Parameter Erxponential Distribution: The one-parameter exponential dis-

tribution is another special case of the general Gamma distribution defined in (4.18) in which

a = | and 1 has been replaced by ¢ 1e. X is said to have a one-paramcter erponcutial distribution

(X ~ ENP(e)) if the pdf of X 1s

%e‘i r>20.0>0
zio) = (4.22)
0 otherwise

The mean and variance of a random variable X having a one-parameter exponential distribu-

tion are

and the cumulative density function (cdf} is

F(z;0)=1—e" (/) (4.23)

4.2.5 TheTwo-Parameter Erponential Distritutizon: A random variable X' 1s said to have
a two-parameter exponential distribution with parameters # and ¢ (X ~ EXP(0:0)) il it has a

pdf

-
|
|

z—€
e z2>0,0>0

flz:0,0) =

0 otherwise (4.24)

where 0 is the “threshold” or “guaraniee time” and o, is usually called “the mean time between

Satlures™.

From the definition of the pdf, one can write

z] e T] P
/ S dy :/ —e Ry = 1 (4.25)
§

a

4-6

multiplying both sides by o vields

/ c—“—?)d.r:/ Ny = o (4.26)
0 [}

The cdf of the two-parameter exponential distribution is

F(z;o0,0) = /;I f(z)dr =[9r Ze 5 dx

(o] o
T

1 I 1‘1 z
= / —e~)Ry :e(g)/ Ze B dr
0 O 6 O
= —el@e 9 = —e(®) [e=3) — =(®)]
= 1-c o (4.27)

43 The Moment Generaling Function

The mean and the variance of a random variable X are special cases of what is more generally
referred to as the moments of the random variable. The mean E(z) is thei first moment around
the origin. and the variance ¢ is the second moment about the mean. Higher moments are also
useful for characterizing other distribution aspects (e.g. the skewness of the pdf can be measured

in terms of its third moment about the mean).

The classic method for obtaining the r& moment of a random variable X" is to evaluate the
oo

integration / z” f(z)dz. Integrals of that form are rot always easy to evaluate. An alternative,
-0

and easy, method 1s to evaluate the moment generating function M, (t) which can be defined as

Definition IV.1 For all real values of t for which the expected valuc exists. the moment generating

Junction (m.g.f.) for a random variable X wath a pdf f(z) , denoted M (t) 1s

Mty = E(e") = / e f(z)dr (4.28)

Cdiala ¢

One of the most important properties of M (1) ic that its i derivative evaluated at zero
(MI()]o) is equal to E(XT) [23:163]. If M (1) can be found. then M(f) will be easier to evaluate

than / z" f(x)dr.

o0

Applying the above definition for the Gamma distribution defined in (4.18), we get

oo 1 1 oo]
\[r t)= / ltz_______ o=l —2/31 L / P o—1_=x(z—1))
M (¢) A € ﬂ“F(a)x € az 5oT(a) Jo ¢ e T BT dr (4.29)

using Eq (4.20), this is equivalent to

1 [(a) 1
B°T(a) (-1 (-5

— = (1-pt)"°

1.e., for the Gamma distribution

M()=(1- &)~° (4.30)

For the Chi-squared distribution M. (t) 1s
M (1) = (1=20)"/? (4.31)
and for the One-PParameter Exponential distribution

M) =(1 - at)7! (4.32)

4.4 Some Important Relations

In the following, the relations between the diflerent distributions will be explored.

Theorem IV.1 If X has a two-parameler exponential pdf, fz:0.c0) defined in Eq ({.24), then

(X -8) has a onc-parameter pdf f(x:0) defined in £q (4.22).

Proof

Let ¥ = X — 4. From the hypothesis, we have \' ~ EXP(#,0). where EXP(f.0) is
exponential distribution described in (4.24). The following lemma [9:245] is required to prove

this theorem.

Lemma IV.1 Given the pdf of X, then the pdf of Y where g(X) = Y is

9(y) = flg™ " (¥)) ‘dj};y"(y)‘ (4.33)

From the assumnption, it follows that X = ¢~(y) = Y + 6 and

d _,
l@y (y)' =1 (4.34)
Therefore, the pdf of Y is
d _ 1 -tz-m
9ly) = [(x:6.0)|—g7 (y)| = —e" -1
y
1 —(y+6-—86
= —€ c
o
1 =
= —e7 (4.35)
(22
1e.. the pdf of Y can be written as
Lle=2 y>0,0>0
gly) = (4.36)

0 otherwise

which 1s the pdf of a one-parameter exponential distribution.

Lemma IV.2 [f M.(t) 1s the moment generating function of X, then

My () = et M (at)

Proof
fwar+b(t) — E(et(ar-*-b)) — E(Ctur 'é,tb)

= e E(e') =€ M (at)

Lemma IV.3 The moment generating function (m.g.f.) of X, where X kas a lwo-parameler expo-
nenlial pdf 1s

M:(t) = e(1 —at)™!

Proof

Let ¥ = X' — 4, then Y will have a one-parameter exponential distribution whose moment

generating function (m.g.f.) is

M,t)=(1-ot)7} , (4.37)

since X = Y + 0, then using lemma(IV.2) and Eq (4.32), we get

M (1) =1 - ot)! (4.38)

Theorem IV.2 Supposc that Xy, Xy, -, X, are independent, and Ny has m.g.f. My;(t),

where 1=1,2,--- n, then the m.g.f. of ay X1 +asXa+---+anX, s

‘]‘Ialrl+a212+"‘+anxn(t) = Mtl(alt)j I2(a2t) e A/[In(aﬂt)

Proof

The proof of this theorem is given in Refl. [9:258].

Theorem 1V.3 Suppose that X'\ . XN, - - X, are independent and cach has a pdf

Gamma (a,,3). then the pdf of X1 + XNy + -+ X, ts Gamma(a; + a2+ - -+ «q. 3).

Proof

Applving Theorem (1V.2) we have

Myyaysien(t) = Mo ()Mo, (1) - Mg, (1)

= (1= Bt)"*}(1 = ft)~°2-. . (1 — pt)~°"

— (1 _ ﬁt)—(al+a2+“'+an)
le., X1+ Xoe+ -+ Xy~ Gamma(a, + a2+ ---+an,8) --
Theorem IV.4 If a random variable X ~ Gamma(a,), then ¢X ~ Gamma(a, cf).
Proof
Since X' ~ Gamma(a, 3), then its m.g.f. is

M (t)y=(1-Bt)-°

Applying lemma (IV.2) to M. (t) vields A (ct) whose value is (1 — Bct)™® which is the m.g.f. of
Gamma (a.c8), i.e.,

cX ~ Gamma(o,cf)

Corollary IV.1 If X is a one-parameler erponential distribution, then

eX ~ Gamma(l,co)

4.5 Order Statistics

Suppose that the random variable X has a continuous pdf f(z) and that {X; Ny, X, } s

. . . . ol . -
a randomn sample from this distribution. The X s, rearranged in order of magnitude, and denoted

X SA << Ay

are called the order statistics of the sample. A few results about order statistics will be given here.

Theorem IV.5 Let X(;) < X(g) < -+ < X(n) be the order statistics from a population with o pdf

EXP(0,0) defined in Eq (4.24), then the pdf of X; is EXP(8,0/n)

Proof

P(‘X(l) S”L‘) =] —(1 —Fr(x))" =1 —(1 —P()\’(l) S.’IJ))"
:1—[1—1+6L«“"2 — 1™

The derivative of the above cdf of Xy is

n [—n(r—ﬂ)] l [—(1‘—9)
—C a = —e afn
o o/n

Which means that X1 has a two-parameter exponential distribution with parameters 8, o /n.

Theorem IV.6 Let N1y < X2y < -+ € Ny be the order statistics from a population with a pdf

EX P(c) defined 1n Eq (4.22) then the pdf of X(1) is EXP(o/n)

Proof

P(Xgyy <o) =1-(1=F(e)" =1-(1-1+e7)

==
I —ee/n

I
!
~
Y
i

Once agai, the derivative of the c¢df of X(yy 15

] —r

€in

of/n
which means that \' |y has a one-parameter exponential distribution with parameter o/n.

Theorem IV.T let X | Xy, --- X, be independent and 1dentically distributed random variables
{ud). with pdf EN P{c), then

n
Z Xi ~ Gamma(n,o)

=1

Proof

Xi~ EXP(g) implies X; ~ Gamma(1l,0) by the definition of the exponential distribution,

then by using theorem (IV.3) we get

n n

Z N~ Gammu(z 1.m

i=1 i=1 ’

n

Z Ni ~ Gamma(n.o) (4.39)

i=]

Theorem IV.8 if X' ~ Gamma(a.b) then % ~ 2 3(2a)

[)Tu()f

A~ Gamma(a. b) implies 13— ~ Gamma(a, %;b) = Gamma(a, 2) by theory (IV.4) and this is

equivalent to y*(2a) from the definition of the Chi-Squared distribution. i.e . %— ~ x%(24a).

Theorem IV.9 If X'y, X», .- -, X, are independent and identically distributed random variables

with pdf EXP(c), then

2T ., n
— ~y7(2 g = XN,
o x“(2n) where T Z

1=]

Proof

Because .Y, X2, -+, X, are independent and identically distributed random variables with
pdf EXP(0), then T' ~ Gamina(n,o) as given before, and by the last theorem, 3} will be a

Chi-Squared distribution with 2n degrees of freeaom, that is

i ~ x3(2n) (4.40)
o

4.6 Type II Censoring

A type II censored sample is the one for which only the r smallest observations in a random
sample of n items are observed (1 < r < n). Experiments involving type II censoring are often
used in many situations, such as software failures, where the test is terminated at the time of the

7 oecurrence of failure. Such tests save time and money, since it could take a very long time for

‘

all failures to occur.

It should be clear that with type II censoring, the data counsist of the r smallest times
X1y € Xz) € ... € X(ry out of a random sample of n times Xy, Xz, ..., Xy from the distribution
in question. If A}, X2, ..., X, are independent and identically distributed random variables, and
have a continuous distribution with pdf f(z), it follows from the general results of order statistics
[47:518] that the joint pdf of Xy < X2y < .. < Xy is

n! r n—r
fleqay @y, xy) = = (Hf(-’lf(i))> [1 - F(:E('r))] (4.41)

n—r)t \;;

As an example, If { X} X4, ... X} is a random sample from a one-parameter exponential distribu-
tion whose pdf 1s

1 .
fla)y = —e77l" r>0,0>0

-

and knowing that F{r)=1 - e/ je.
1 —ziy/o z(rylo
fla) = e , Flem)=1~c¢

then the joint pdf of Xy < X(2) < ... £ Xr) i

| n-r
)T (2)r ey T(r)) = T Ze o) 1 = (1 — e=n/?
fxa) 2@y t0) = Go (1;[10)[= ()

—_mn 1 =1 . e—(n_r)z(r)/a

-3 [me +(n=r)ae
1 e =1

n!
(n~r)to"

—_n 1 _-T/o
 (n—-r) ar €

;
ZI(,-, +(n — r)x(,)J is called total time in the test whose pdf is Gamma(r, ¢) as can
1=1

be proved by the following theorem.

where T =

Theorem IV.10 The total time in the test T has a distribution which can be defined as

T ~ Gamma(r, o)
or 2T ~ Garmma(r,20)
or 2T /o~ Gamma(r,2) ~ \(y,

1-15

Proof

Consider the following transformation

”"1 = NIy

‘.V 5

(n =)(z(2) — (1))
Weor =(n—r+2)(z¢-1) = Z(r-2))
W, =(n-r+1) 2 - -1

Adding the W/s, gives

r Co-
W1+I'V2+--~+W,.:Zz(;)+(n—r)x(,)

=1

The joint pdf of W;s is given by [47:102]

8(1(1), :L‘(g), cany I(,))
B(Wh, Wa, .., W)

f(wl,wg, aey w,) = f(l‘(l),l'(g), ...,:L'(,))

where
(9(1‘(1).2?(2),...,1‘(,)) 1
AW, Wa, W) aWw, Wy, . W
oz (1y. T2y T (r))
Now
oWy oW, ... W,
9y 9Ty az (1)
- ; . oW, aw, . AWy
. ()(“’1”'_7,”7) _ Iz () oz (2 ax (3)
N1y, T2y, - T(r))
oW, aW, 3w,
Ur gy 9r () 87 ()

Substituting. we get

n —(n-—1) 0
B(Wy Wy, . W) | |0 (r=1) - 0
ANz (1), Z(2): 1 2(r)
0 0 s In—r41)
n!
T (n-r)
Thus, f(w;,ws,..., w,) can be expressed as
T
n! L -

f(wl’wz”“’w") = (o€

_ 1T
e ;e g
r
D Wi
i=1
= _l;e— 4

which means that W;, W,, ..., W, are independent, each with a pdf

1w
flwi) = —e G
(o)
Therefore, T= ZW,— can be defined by
i=)
T ~ Gamma(r, o)
or 2T ~ Gamma(r,20)
or 2T/o ~ Gamma(r,?2) “’Xfe.—)

4-17

If the above discussion is Lo be applied for the two-paraimeter exponential distribution. then let

N1, Xa, ., X, be a random sample from a two-parameter exponential distribution with a pdf

%e'%g r>60>0,06>0
flx;0.0) =

0 otherwise

If X(1) £ X(2) € ... £ X{r) represents an order statistic from the above distribution, then the joint

pdf of 4\-(1), 4\'('_»), . /\—(,.) 1s

ﬁle—(r(')-f’)/a) [1 (1 - e—(r(')-ﬁ)/a)]""
g

1=1

frapze)-20) = G5y (

it [Z(xm _0) 4 (n =)z~ 0)
— n! Le =1
(n-r)to"

Theorem IV.11 Let X(1) < Xy < ... < X be the order statistic from a two-parameter ezpo-

nenlial distribution, then

2n(z(yy—0)

(a) n(m(l) — 0) has a distribution given by . ~ x%?_)

2

(t) Y has a distribution given by 3,"' ~ X%(r-—l) where

Yo =) 2@+ (n =)z —nzq)

=1

Proof

(a) Itis already known that X', has a two-parameter exponential distribution EX P(f,/n) and

therefore n(X () — 0) will have a one-parameter pdf EX P(0). This can also be written as

1y — 8 2 -6
‘n—(r(—”—)~Gamnm(l,l) or j—(—ﬂ)—-—)-

~ Gamma(1.2) or ~ ,\';‘7.,)
g o 2

(b) smce ()~ 0) < (x5, =0y < - < (xpy ~0) for all values of r then the ahbove
statistics can be considered as the order statistic front a one-parameter exponential pdf EX P(a).

Consider the following transformation

W, n(z - 0)

i

W, (n= 1) [(z2)—0) - (z(1) ~ 0))] = (n—)(zg) - z(1))

"Vr—l = (Tl-—T‘+2) [(I(‘,_”—())—- (l'(r—Z)'_(;)] = (77—7‘+2)(1?(,-_1)—I(,._3))

W, =(-r+D)[@n -0 - (2¢-1y=0)] =(n-r+1)(z¢) - 2(-1)

knowing that W;, W, ..., W, are independent and each has a one-parameter exponential distribu-

tion, and that

Yo =2z + (n=r)ag) - nzq)

=1
r

= (@@ = 0) + (n =)z —) ~ n(z(1)~)
i=1

p r
= ZVV(,‘) - I']V(l) = ZVV(”
=1

=2

Since each W; ~ EX P(o), then ZWU ~ Gammua(r —1,0)

ie.. Y, ~ Gamma(r - 1,0) or 2Y/o ~ Gamma(r —1,2) ~);g(r_ 1

4.7 Mazimum Likelihood Estimates of 0 and o for the Two-Parameter Ezponential Distribution

Let Xy < XNjoy € ... < N(r) be the order statistic from a two-parameter exponential distri-
bution, The likelihood function in a random sample of size n is then

r

pt 1 —E[2(Tm = 0) + (n—r)(zi) — 0)
L(I(]),I(g). ...,.’l'(r),O'.O) = F—.——r—)'oje 1=1 (442)

where f<an <--- <y

To find the maximum likelihood estimator of @ and 6. one must first fix ¢ and maximize Eq (4.43)

w.r.t. # where 8 varies over the range 6 < r(),. This means. # must be selected so as to minimize

1| 1|
= Z(I(i) —0) + (n—r)(xe) - 0)] =7 [Z zi + (n—r)rgr —"9]

i=1 1i=1
It is clear that the minimuin is attained at 6 = z(,).
For &, let us consider

Tl! 1 _ 1y
L(I(]),l‘('_)),.“,I(,),O’,o): <G——r—)‘> ;’_‘C ')'

.
where Y, = (Z Ty + (n—r)r) —nzq)> , then

i=1

! 1
[nL(r(])y I(g). o Z(r) 0, 9) =¥{n <(ni—r)'> —ring — ;)’,—

differentiating w.r.t. o, we get
i)t:nL o= }_,
do g o0-

3énlL =0

putting o gives 0 =)T' ie. the MLE of g is 0 = (}r—")

4.8 The Likelihood Ratio Test (LRT) Primciple

Let X7, A%, ..., X5 denote n independent random variables having respectively the probability
density function fi(Z.6, 6, ..6,,) .i=1,2,---.n. The set that consists of all parameter points
(81,02.---.8n) 1s denoted by Q, which is called the parameter space. Let w be a subset of the
parameter space Q. Ifw is the set of unknown parameter values admissible under H,. then we wish

to test the hypothesis:

H,: (8,.0..---.0,,) € w against. H,: (01,0, --.6,,) € «

4-20

Define the likehhood functions

L(W’) = H f,‘(]',;(,1 b2, bm) 01, 02. e .0,” cw

and L(Q) = Hf,(.l‘,':gl‘g?'...'gm). 0].02."',0m€Q

Let L(@) and L(ﬁ) be the maxima of these two likelihood functions, which are assumed to exist.

The ratio t—% is called the likelihood ratio and is denoted by

=
1 55
p—

.‘.

=
o)

Let A" be a positive proper constant. The Likelihood ratio tesl principle states that the hypothesis

Ho: (01,02, -,6,) €w is rejected if and only if

A" is determined according to the value of the significance level of the test o according to the
following equation.

PIALXN | H, is true) = a

As an example, if the level cf significance is 0.05, then there is a 5% probability that the tested
hypothiesis will be rejected when it is actually true. In this research, a 5% chance of mistakenly

saying that the MTBF 's of the samples are not the same.

QOur objective in the next section is to obtain the cumulative distribution function of the
likelihood ratio, in a computational form so that the value of A* can be found for any level of

significance, any number of samples. and any number of failures.

4-21

4.9 Derwvation of the Likelihood Ratio Criterion

Suppose that there are p populations with the pdf of the i population be EX P(6;.0,) and

it is required to find the likelihood ratio criterion for testing

H, 6y =0s=-.-=6, =6 (unknown)
& oy =0y=---=0,=0 (unknown)
against H, otherwise.

X1 i)

Xi(2) Xiz)

1\’1(”) ‘x’l(r-)

Pop. 1 Pop. i
EXP(8,,0,) EXP(6;,0;)

Let Z,‘ = min(‘\’l(l), 4\"_3(1), ey, .\’,(1'))

SO Z’, :min(,\'l(;),,\'z(l),-~-,‘\',,(1))

Theorem IV.12

r!

Let Y, = (Nig) = Ni) + (m = ri)(Xigen) = Xiary)

1=1

p T, F
LV =YY (N = Z) + Y =) (N - Z)

=1 ;=1

i=1
i-1 4
and U; = (Z n;)Zi-1 + 1 XNy — (Z n;)Z;
=1 =1
where 1=2,3

Jo-..
)

When I, 1s true. we will have

4-22

Xeny
‘Xp(2

r

X piry)

Pop. p
EXP(b,.0,)

(4.43)
(4.44)

(4.45)

P
(a). Z), ~ Gannai R - p o)

1=}

(by. V ~ Gammne(fR-1.0)

r
(¢). V= Z)-; +u

i=1

P P
where R = E ry and u= E U;
=1 1=2

Proof

(a). It is already proved that ¥; ~ Gamma(r, — 1,0;), and therefore if H, is true, then

P P
Yi ~ Gamma(r; — 1,0). Since the }/s are independent, then ZY.- ~ Gamma(Z(r; —1),0) ~

i=1 i=1
Gamma(R — p, o).
(b). Since Z, is the smallest among {X;;,|7=1,---,p; j=1,---,7;} so, using the same
r
result of (a), we conclude that V ~ Gamma(Z(ri) —1,0)ie,V ~Gamma(R - 1,0).
i=1
(c). From the definition of U;, one can write
1 2
Uy = (O m)Zi+ Xy = (D _n;)2s
ji=1 1=1
= mZy+nNag)—(n +12)22
U3 = (14 n2)Za+ naXNyy - (n) +n2 +n3)23
ooy = (mi4nad -+ o) o+ np Ny =1+ ne 44 np_1)2p0
Uy = (mp4ne+ -+)2 Ny —(mi e+ 402,

by surnmation, we get

]

nmZ+ 11'_),\.3”)+ S +"}"\’p(l) - (ﬂ] +no+4+ -+ nr)Zp

ni(Zy = Zp) + o Nogy = Zp) + -+ np(Xpy = Zp)

r
= mNjy = Z)+ > m(Nan = Z) = Y Ny = Zp) (4.46)

1=2 1=1

~s

Eq (4.44) for V' can be written as

Vo= ZZ(.\,(J) Z)+Z 771_71)(\t(r -)

1=1 j=1
= ZZ ‘\,(J)" \,(])'I"/\,(]) -Z)+Z(1I; -7 1)~‘\.i(l|+‘\'i(l)"Zf’)
1=l 3=1 i=1
P T r
= Z Z(Xi(j) - Xip)+ Z("z‘ =) (Xigry — Nicny)
=1 =1 1=1
+ZZ(M1)-Z +Z(n.—1.) (Xiq1) = Zp)
i=1 j=1
,)
=) Yi+u (4.47)
1=1

where Y; is as given in (4.43), and o

r, r
_ Z(,xz(l) - 2,) Z(ni —) (Niqy — Zp)

I
[v]u

1i=1y
14 r
= 3 nXiw -2)+Z Xiay = Zp) = D rilXit, — Zp)
i=1 =1 1=} ,
P
= Z ni(Nsy — Zp)
1=1
P
which according to Eq (4.46) equals) U
P P
le. V= Z Y; + u where u= Z U; (4.48)
i=1 =2

Theorem IV.13 If H, 1s true,then u ~ Gamma(p—1,0).

Proof

Hogg and Tanis [35:439], proved that U; ~ Gamma(l,0) and since they are independent,

then Uy + Uz + -+ Uy ~ Gamma(p — 1.), and therefore u ~ Gamma(p — 1,0).

4-24

The last two theorems will be used again in the next chapter for the derivation of the At

moruent of the likelihood ratio criterion A.

For the derivation of the likelihood ratio criterion, remember that during the discussion about

the Maximuin Likelihood Estimates, the M.L.E. of 6; was X;(;) and that of o; was ({*) where

Yi = (Xig) = Xia) + (i = 1) (Xigry = Xiny)

i=1

The likelihood function of X1, - s Xp(r,) 18

=1

ol
i

. p o1 Tw [,Z($f(j) = 00) & (ni = 1)z — 01)
L(Xiqy s Xprpys O5500) = k- e - |
1=1

P A
where k= _ M
= (i =)t

t

Under the null hypothesis H,

D
iy
Il
)
%)
Il

w=0,=0, and o

1l
Q
(5]
1]
1]
Q
-
1l
Q

so, the likelihood function can be written as

-1 [\2(,\',-(]-) = 0) + (i = 1) (Nigr,) — 0)}
e j=1

P
' . 1
L(‘\I(I)V"‘v‘\p(r,,);oi;dl‘) = k- — [__7
i=1
p o P
1 " ZZ(X"(J')“6)+Z("i—7‘i)(x,'(r_)-—0)}
= kipee MEH =1 (4.49)

The M.LE. of 0 is Z, = min({z;, |1 =1,2,---,p; j=1,2,---,r5}).

Substituting i Eq (4.49) using (4.44). we get

L(Xy(1ye Npir, i 6i0) =k = €= (4.50)

The MLLE. of 0 is then o = %, 80

|
bl
o
|
Zz

N ameaxo L(X1(1)s- s Np(r,)i 635 04)

= k-— ¢ (4.51)
when 6; and o, are unrestricted, the M.L.E. of §; is X;(;) and the M.L.E. of 0, is (’;‘) S0

['Z(\,(J) ,(1 +(n; — ri)(Xi(r,) - X:(l))

P
o PR Koo = kL e
P P
(ro)" vy (ro)" .
=k e Vi ! = k - e
E o) H 0
P
- Ty
ﬁ (r,)"' e ; = K)) -R (4.52)
ARk 8K

i=1 =1

From (4.51) and (4.52), the likelihood ratio is given by

maxg, ¢, € H, L(/\’l(l | R .\-,,(,-p); 0,';0',')

A = - -
lnaxﬂ.,a,unrutrictedL(f\l(l)v"'yl\p(r,)§9i§0'i)
_ kPR (B
- P
(ri)r' R Ty
- e)
({I55) — 1%
P r
(Yo" acyn
_ RR £Il RR .11 .
= vrR 0 F = r T (4.53)
[Terom @+ 3)R [T
i=1 i=1 1=1

4-26

Vo THE EXACT DISTRIBUTION OF THE TEST STATISTIC

For our approach of selecting the proper software reliability model, a test statistic is needed.
This statistic will be used for testing, whether there are significant differences among various sets
ot software failure data. It has been taken into account that the underlying distribution is a
two-parameter exponential with type /I censoring, and the faillure data sets are of unequal sizes.
Nagarsenker and Nagarsenker [70] obtained the exact distribution of Likelihood Ratio T=st (LRT)
for testing the equality of two or more exponential distributions using, equal uncensored sets of

failure data. For the equality of one-parameter exponential distributions see Cr.le and others [39].

In this chapter, the exact distribution of the Likelihood Ratio Test (LRT), based on unequal

type Il censored sets of failure data, is obtained for the first time, in a computational form.

5.1 Assumplions

1. p independent, type Il censored sets of failure data are available, each has a two-parameter

’

exponential distribution given by

_Izh
;]-e 7 x> 60;,,0;,>0
./(17:91~oi): ' -
. (5.1)
0 otherwise
where ¢ = 1.2,---.p. is a subscript denotir.g data set i , p is the number of data sets. 6, is the
location parameter and o, is the scale parameter,
2. Each set has an unequal number of observatious.
The LRT for testing the hypothesis
H, « 6i=0.=-..=0, and oy =02=-- =0, (5.2)

previous chapter by

P P
™ (Yo"
_RE I:I] 3 RR I:-Il ..
A\ = “—F T = 3 M '—p————’— (().~3)
H(rx)r, (“+ Z}")R H(T‘)h
i=1 1=1 i=1
where
H, = Null Hypothesis
A = likehihood ratio
ri = size of censored sample 7; 1 < r; < n;
P
R = Zr,-, total number of failures
i;':'l
Y; = (zig) = 2i()) + (7 = 1) (Tir,) — Ti(1))
i=1
7 = sample size

r r, r
1V = ZZ(LL‘,‘U’) - Zp) + Z(n! - 1',’)(1“'(7-,) - ZP)
=1

i=17=1

Zp = 77’1.2’71()\,1(]'),/\’2(1),'",‘\'p(l))

5.2 Derivation of the h Moment of A

To get the A moment of A, we use

that under H, :

0y

(28]

the method described by Wilks {90:391}, and the fact

and that Y; ~ Gamma(r; — 1,0), and u ~ Gamma(p — 1,) as given in the previous chapter.

r

1\'ofcp: From Hogg and Tanis [35:439], I; and Y; are independent for cach i, and so Z Y; and

= § [/, are also independent.
v
)

1=2

iz

Theorem V.1 Let Y; ~ Gamma(e;, 3). i = 1.2, p. and W ~ Gamma(k,[3).

P
assume that Z)'} and W are independent, then the h moment of

i=1

P
[Toam
Yy = 1=l

=
(Z)" + ”,')R
i=1

where r; > 0 are constants and R =1y + ra+ -+ -+ 7, 15 grven by

P
IO ai+k)
= [(r;h i
E(Y™) = P = H (r(:l.-)a)
T(> o+ k+ Rh) =)
=1

Proof

Consider the function f(€) where

Following the method of Wilks [90:391], the A moment of Y is

d* f(6)
de:

E(Y") =

=0
s=-Rh

X\' ow

which can be expressed as

Furiher,

(5.6)

v
fiu+ Z v)

p
fo) =/ / / K = flyioye o ypow)dyrdys -
w> >0 Y

0=}

where f(yi,y2, -, ¥p,w) is the joint pdf of ¥7,¥5, -, ¥, and W.

Since Y/s and W are independent, then we have

fnyas - ypw) = f(n) - Sly2) - flyp) - fae)

further
l - -—
fy:) = Gamma(a;, 8) = my?t— le=wl/B
and stmilarly
f(w) = ————1 wkle~w/B
AT (k)
The joint pdf f(y1,y2,- -, yp, w) can be expressed as ,

(’-"]e—!! /B

. L i=1g-wis
flyr v,y w) = EGR Hﬂo T

substituting for f(8), we get

=
>

=
i

H(yi)r'h =1

1=1

P
r = €{w+zy,’)
e -
0

w>0Jy; >0 Yp>

4

r
1 L 1 -
{H [myfl. lC y-/ﬁ]} ’B‘F(k)u}k 16 /ﬁdyldy'.f ..

r=1
1 = k-1 1_9)
r / wh e (F 0 gy
ST (k) HB"' Hr(u w>o

i=1

2 1
/ [!/?.«#r.’“lc—y-(-‘q-@)] dy;
.

>0

I1

1=

P
1

“dypdw

-dy, dif>.10)

(5.14)

(5.15)

e ~ Fip+1) .)
Taking into account that 2'e*Tdr = T the last equation can be written as
0 4]
1 I(k) 4 T(ci+rh)
f6) = T e
(g =0 o (g — O+

r
E [4 3

,
B(k) - pi=t [Tlai)

=]
P
T(a; + i/

) ! g LTt ﬁ,z;a'”h
- P (11— B0)

Yo, 7Y S a; + Rh

BT (k)pBi=1 Hra, (1-p0)i=1

BRh L [+ rih)

= - H

[(a;
> ai+ Rh+ k= (e)
(1 - pgg)i= R

P
- _ai+ Rh+ k)
- ﬂRhH (11+7 h)(l—ﬂﬂ) et

= K(1-p6)° (5.16)

where

- rn 1 Dlay + rih) !
K=28];Il——rm— and n:(;ai+Rh+k) (5.17)

differentiating,we get

d* d* o
/0 = gEhi=30)

= Na(a+1)(a+2)---(a+s—1)F(1 —po)~le=s

F(Q -+ Q)

= K
['(ev)

31— pg)te (5.18)

At 6 = 0. ‘1’.”9) . [‘ Mo +s) es

6° ‘0:0 = BTy 1.C.

L
]
T

»
F(Zo, + Rh + k +5)
=1 3 (5.19)
F(Zu, + Rh+ k)

=1

P

_ aRh r(O,‘ + r, h)
9:0_ v [H F(o:)

1=

Putting s = —Rh, we have

P
F(> i+ Rh+k— Rh)

d* f(6) _ w7y Dlei+mib) |5 - Rh
a6 ,‘;flgh = # []:I F(ai) jl a g
: i=1 I(> ai+ Rh+k)
i 1=1
PQ eitk)
ie. E(Y") = —= HF("P‘(:’)"‘“ (5.20)
T} ai + Rh+ k) =1 '
i=1 h

Theorem V.2 Under the null hypothesis H,, the h*t moment of A defined in (5.3) is given by

RRED(R-1) { P(ri(1+h)—1)
h —r,h 1
_ T im0 5.21
E(A) r(R(1+/z)—1)E" T —1) (5.21)
Proof
In the previous chapter, we have seen that A can be written as
r
e OO
A= = (5.22)

1=1
T
[Leray s SR
1=1

1=1

and taking into consideration that ¥; ~ Gamma(r; —1,0). and u ~ Gamma(p—1.0) and applying

Theorem (V.1). we have

Therefore

h

RR" =1

P o r R

AT (u+ Y:)
({10 %

,l
r - +p—1
_ RR (Z;U =) firmnh+ri—1)

E(Ah)

Il
o

; P I(ri - 1)
) TO_(ri= D+ p =1+ Rh)'=
(feor)
_ RRh_F(R_p+p—1)HI‘(r,(IL+1 —1)(“)_“).

(R—p+p-1+RA) 11 T(n-1)

Rh _ p -
_ R*™.T(R-1) H_,,,I‘r,l-{-h) 1) (5.24)

T(R(1+h) - 1) T(ri = 1)
Having defined the test statistic and its A2 mon.ent, it is time now to know the probability
distribution for its values, and have the cumulative distribution function from which the expected
value of the statistic for a given probability can be calculated. In order to do that, the Mellin
Inverse Transform will be used to obtain the probability distribution from the moment generating
function which already has been derived. In order to obtain a computable form of the cumulative
distribution function of the statistic, the asymptotic expansion of the Gamma function will be used.

Before proceeding, the following results will be needed: Gamma Ezpansion:

The following expansion for the natural logarithm of the Gamina function holds [5:312]

1 m _ r 2]
(nl(z +h)=n(27)* + (z+ h— %)(nz _r— Z(7?351.31(3)

r=1

+ Run(z) (5.25)

where 0, (r) is the remainder. such that |R,,(2)} <

P for some constant C independent of z.

and B.(h) is the Bernoulh Polynomial of degree r and otder unity given by the following relation

13
:Z]7w4m (5.26)

The first three Polynomials are [5:312]

Bithy = h- % (5.27)

Ba(h)y = h-—h+ é (5.28)
3_ (3.0

Bs(hy = A ~(§)h' +(§)’l (5.29)

Inverse Mellin Transform:

If 3(h) = E(z"), then the pdf of 2 > 0 is the inverse Mellin Transform giver by [88]

100

J(2) = —

2mt

z=hVg(h)dh (5.30)

—300

o(t):

f(t) is O(t) if the function f(t) is bounded by some constant multiple of ¢ for large t. Nair &

Norlunds Result [72],[74):

’

If o(h) = O(h™%)hes. 1o | ¢,+f-) | is bounded; then ¢(f1) can be expanded as a factorial

series in the form

o0

oy _ T'(h + a) -
olh) = I T(h+k+1i+a) (5:31)

1=
wliere @ > 0 is an arbitrary constant chosen such that R; = 0 and the coefficients R; are obtained

using the following recurrence relations from [71:363]

S Riydi; = ¢, 1=123- (5.32)
7=0
di, = chi.kdi,r—k/r- di o= (5.33)
k=1
(-1 - 5.
o = ~——[B,i(a) = Br(a+v+1) (5.34)
rir+1)

<t
1

Beta Function:

The Beta function of w and = 15 defined as

1
Blw.s) = Blzaw)= [71—)" d
0

which is related to the Gamma function by

Incomplete Beta Function:

The Incomplete Beta Function /.(a,b) is defined by
1 T
H(a,b) = —nu a-1(1 —1)*~dt >0
Lot = s [a0 (a,6>0)

3.8 The Null Distribution of A

Let L = A?/F then from (5.24) we have

E(L") =K.

1

RNt L
r(R+ph—1)H[

i=1

-r.ph/R . ﬁ ph ~1
r I'(r; + (R))

I'(R-1)
r
JIRICEY
1=1

Applying the Inverse Mellin Transform [88] to E(L"), the pdf of L is

where N =

r

H [(k,-_)—phk-l“[(pm + ph+ 6)k; — 1]]

108
- £~h—l 1=l dh
271 /_mc P{pm + 6+ ph - 1)

where

¢ = adjustment or convergence factor
pin = R-¢
k; = /R hitke+ o+ k=1
define
t=m+h ;le. h=t-m (5.41)

From (5.40),(5.41), we get

m4too
10=FKig [e (5.42)
, R .
where Ky = K7 [(k)rme (5.43)
. i=1
LT [Gke)~ T ((pt + 8)ki — 1)]
_ i=1 -
and o) = T(pt+6-1) (5.44)

Using the asymptotic expansion for the logarithm of the Gamma function [5:pp.312] then-

SlL) = Kot [1+q7‘+j—+] (5.45)
=1 L (k.3
where A, = (Qw)u_f)p“’ka —3) {5.46)
i
and v = 3(p-1)/2 (5.47)
The coefficients ¢, are recursively determined using the following relations
4 = Z kArge_i/r .qo =1 (5.48)
k=1
(=1 L B (8 - 1)
A, = —— B -1 2t 5.
r(r+ 1)p" Braa(8) Z k7 (5.49)

Eq (5.45) shows that

(1)/ K2 =007") (5.50)

with real part of t tending to oc; @(t) has therefore the following exazt representation as a factonal
series [72, T4]

_ __ Plt+a) _
¢(z)_1\gZR.F(t+a+v+i) JRo=1 (5.51)

1=
where ¢ is a convergence factor chosen such that R, = 0, and the R]s are obtained using (5.32)

Using (5.51) in (5.42), the pdf of L is [71]

fm-}va](1)v+i—l

f(8) = K- Z& o) (5.52)
where K3 = (27) 57 (p) " I(R - 1)1‘[[KPE=2) p(RE; - 1) (5.53)
In Eq (5.49), choose é such that A; = 0, then
13~ ‘ .
b= D (k)7 - 1/tp-1) (5.54)
In Eq (5.51). choose a such that R; = 0, then
= (1.0 — v)/2.0 (5.55)
From (5.52), the c¢df of L 1s
£
F(£) = P(L<¥) :/ f(£)de
0
o [4 - —
N [m+a 1(1 _[)v+| 1
= l R,/ T d[
'3 ; A T(v+1)
= K3 R -l(m+a,v+i) (5.56)
1=0
where R, = Ri{[(m+a)/T(m+a+v+i) (5.57)

VI, THE ASYMPTOTIC DISTRIBUTION OF THE TEST STATISTIC

When the exact method for comparing different sets of software failure data was applied,
some sets were very large and sometimes exceeded eight hundred failure times. The calculations
for these large sets were very time consuming, which made it necessary to think of another efficient
method for calculating the cumulative density function (cdf) with accuracy approaching that of the
exact method. In this chapter, a useful asymptotic expansion of the distribution is obtained up to
the order of R~3, where R is the total number of failures. The second term in this expansion is of
the order of R~?, and so can be used to obtain accurate approximations to the percentage points
of the test statistic. In fact, the first term alone, which is a single beta distribution, provides a
powerful approximation even for moderately large values of R. Of course, for a small number of
total failures (less than 20 failures), one has to use the exact distribution obtained in the previous

chapter.

6.1 Prelimimnartes

From the previous chapter, the exact cdf F(£) is

oo
F(f)=Ks- N R

1=0

_ [(m+a)
‘T(m+a+uv+1)

Ie(m 4+ a,v +1) (6.1)

where N3 = (27) =

P
(p) 'I(f2— 1) H[KBE=3 rRE - 1) (6.2)
i=1

Knowing that pm = R — §, '3 can be expressed as

14

) F(pm+5 -1) ko4dk,~3 =
J —-v pm +6k, 27 5=
\3 ((pn]+5 ki — 1) ‘I:I] 1)
P
= K(m) p JJ(koyrmker st (am)EH) (63)
i=1
r é—
where K(m) = (prm + 1 (6.4)

Y, T(pmk; + ki~ 1)

6-1

The following lemma will help in sitnplifving the derivation of the asymptotic distribution.

Lemma VI.1 The following expansion for the ratio of two Gamma functions holds [69:359]

T(m+6é+a) —(ut) i1 Cia
= v 1+ —= U e 6.5
T(m+é+a+v+1) " * m +m'-'+ (6:5)
—_1\yr=~1
where ¢, = -(;(’—'l_)*_—-l—)[B,H (@) = Bry1(a+v+1)) (6.6)
Taking the natural logarithm of N'(m) given in (6.4), we get
P
tnk(m) = (nl(pm+6—1) =Y nl(pmk; + ki —1)

i=1

[50(27) + (pm + 6 — 1 = 2)En(pm) ~ (pm)

_$ W Bl)

r(r+ 1)(pm)"

+ Rt (pm)]

r=1

P
Z l[n("r) + (pmk;+ bk; — 1 — -)L’n(pmk } — (pmk;)
=1

- Bry1(6ki — 1) 5 !
rz; (r + 1)(pnk;)” * RmH(pmk.)]

= —[n(.u) + pmfla(pm) + bén(pm) — g[’n(pm) — (pm)

(=1) Brsr (6~ 1) P
_z AR 31 UL - — Yo
Oy R (pm) = S ln(27)

P

r
- Z pmk; + ék; — —)[n (pm) Z pk; + &k — g)/nki

i=1

. : bl B“(- 1)
g: (pmk;) + ; ?_? pmk),_ + R (pmk;)

= a-)[11(7) + pmfa(pm) + 6{n(pm) — -['n(pm) {pm)

(—1) B. 1
- Z} r— 1+;p7n)’) + Ring1(pm) — pmiapm) — 6{n(pm)

3
+§[n(pm) - Z[(pmk,— + 6k — g)[nlc,- + pm

r m
—1) B,y (ki — 1) g
+ZZ R E——" + Rpyaq(pmik;)

i=! r=1

l - m __
i.e. falN(m) = (__)__]2(,,(2“ _(],_ 1)(n{pm) Z[‘n ko48k,—3)
m a, .)
—+ 0 6
+,2_:11n" +O0m) (6.7)
_ (= A& BBk 1) _
where a, = rr T ; ———kjf - B(6-1) = -A, (6.8)

€nl\(m) can be expressed as

rK(m) = (= [(21) = (pm)3tr- ”HL_(P""‘ AL 2 B m'} (6.9)
i=1
so K(m) = (2m)°F (pm)i- “Hr“’""‘ AL PO DM -2
e) FUNE LW N
= (27) (pm)> H k; [l + - + - + {6.10)

1=}

The coeficients T, are recursively determined from the following relation
1 r
= - E kay T« dy =1 (6.11)
”

Substituting in (6.3), we get

P . .
Rs = (2,-.)‘~‘7’~’(pm)vnk,_-wmk,+.sk.~~s)[I
1=1
P .]
‘P‘vH(",‘)pmh_ﬂ.k._;5(27)(15_)
1=1
T T
= 'l S (6.12)
m m?
(6.13)
3
where vo= §(p—-l) (6.14)

6.2 Asymptotic Erpansion of the Eract Distribution

Choosing & such that Ty = 0, makes ¢y = 0 and 1o = ay. then substituting 1 (6.1), we get

T, 13] = ['(m + a) .
Y = mt - ERAR R; —I¢(r LU 6.15
F{{y=m [l t 3 t 3 } ’E_O Tomtates) e+ a, v+ 1) (6.15)
'(m + a)

Using lemma (V1.1) for F(£) will be

Fim+a+v+i)’

) Ts T3 ihd [Ci 1 Ci2
; = vl 22 022 0 INT R | 4 0L __¢]
£ " [i + md] £ [o o

1=U

dg(m 4+ a, v+ 1)

T. T > 1 ¢ ¢
2 3 1.1 1,2
- [l+ﬁ+7§5+"']23’ {F+W+m_+_+]

1=0

d(m +a,v417)

T T c co 2
= 1+ =+ —z---][(Ro-i- 24224) L(m4a)
m* m m m*?
I e
+R(—+ ==+ - Mmtarv+1)
m m?
1 ey
+ R —; +—3—+~'-)I((m+ﬂ.,1’+‘2)
m? o mf

1
= Rolelm+a.v)y+ —fcorle(m+a.v)+ Ridg(m+a. v+)]
m

1

o
y e
{

+—{coole(m+a,v)+ Rieyjleim+a, v+ 1)

n

+Ral(m 4 a, v+ 2)+ToRole(m + a,v)] + O(m”s) (6.16)

Since fp = 1, « 1s chosen such that Ry = 0, and & is chosen such that

Ty = ay = 0, then from the recurrence reiations c¢g; = 0. and F(£) will be

1
F(6) = Iim+a.v)+ —5lcole(m+a.v)+ Reli(m+a.v+2)
m?
+Tole(m + a. v)] + O(m?)

1 I
= L(m+arv)+ —[(con+ Tayie(m+av)+ Folg(m+a, v+ 2)]
m-

-1

+0(m*) (6.1

3y
!

Since 1o = —T5 — ¢q 2, then the asymptotic distribution of the test statistic is
- R’.’ B 3 .
F(6) = Lim+av)+ —[lim+av+2)—I/(m+av)]+0(m”) {6.18)
m?

In practice, it 1s found that this asvmptotic distribution is good when the number of failures in the

set 1s greater than twenty.

P
1)

VI[. DESIGN AND APPLICATION OF THE PMS ENVIRONMENT

In the preceding two chapters, the inathematical solution for the proposed method for solving
the problem of proper model selection has been developed. This is not the end in itself. This
mathematical solution should be transformed into a useful algorithm for the practical application
of this mathematical solution. The algorithm is then coded, using the appropriate programming
language, into an environment. In this way, the solution can even be modified to solve other similar
problems that may even exist in other fields. The transformation of a mathematical solution of
a problem into an environment is the link between two sides. The mathematical solution of the
problem, the design of an environment, an coding of this design, using an appropriate programming
language, are one side. The other side is the user who will use the environment, and provide the

feed back about the tool to the designer and the programmer.

7.1 Definition of the Proper Model Selection (PMS) Environment

The first question to be asked is what the Proper Model Selection (PMS) environment can
do and how. As the name indicates, it helps in selecting the proper software reliability model for a
given set of data. This environment is very simple and user-friendly. The user will keen in mind the
accuracy of calculations needed (exact or asymptotic), depending on the computer time available
and the size of the failure data on hand (asymptotic method is preferable for failure sets more than
25 in size). All that the user needs to know after that is whether the data he or she has, are in the
form of failure times or times between failures and the name of the file where the data are stored.
The environment will take these data and estimate the sample size (which is not known in case of
software failures). The maximum likelihood method is used to estimate the sample size as given in
Appendix B. After estimating the sample size, the environment will check whether the given set of
data can be from an expunential distribution, which is the most common distribution for software

reliability studies. The method used for testing the exponentiality of software failure sets is the

one referred to as the G test. This method is based on the so-called Gini statistic and is discussed
by Gail and Gastwirth [29]. The test has good power against some other alternatives [47:44¢]
specially with type I censored data. If the data did not provide evidence against exponentiality.
then the PMS will calculate the likelihood ratio test criterion for the given set and compare it with
the percentage points at different significance levels to determine if the given set of data can be
considered equal to one or more of the software failure sets given by Musa [64] (refered to as DACS
failure sets), or by Littlewood [52]. A table will be produced by the environment, telling whether
the set under test is equal to one or more of the other sets, and the maximum significance level at
which they can be considered equal. If the given set of data provide evidence against exponentiality.

then extra data may be neecded.

Along with the PMS, a table generation environment is developed to give the percentile points

at different significance levels for different failure sizes, and at different numbers of samples.

7.2 Design of the PMS

The Function-Oriented Design method has been used for the design of the environment as
shown in Fig (7.1). This method makes use of the data flow diagrams and the structure charts
for the environment. The Proper Model Selection environment (PMS), is designed to work with
Personal Computers using MS DOS operating svstem. This will widen the base of users of the
environment and will enhance the tool itself, by adding more data files to existing onies. The PMS
can be easily modified %o incorporate new mathematical mmethods, or to improve those already in
use. For the implementation of the design. the C language is chosen as the programming language.
Code listings for implementing the design of the PMS environment shown in Fig (7.1) are given in

Appendix C.

-1
|
[3%]

pms()

accuracy I
file name l
data type T exact,rrtf] tf],rr 1 I n t[].n,rr ! exact
Get_Information() Estimate_n() Check_Exp() Print_Header()
1 l nr [4D() -
times bet) £onverte n D l Header
(fai]ures .dat 0 (REPRT.DAT

INPUT.DAT

-
Sample_Number J

Results] IIead}z
Compare_Sets()

y Ll
samplenfizy N R

I Sample Si e?

llrt,J

Check_Data _File() Compute_ LRT()

Print_Results()

Samp]}%_r; J

l exact,r;

fil files

Irt,Samples_No

%M

O - OO falure

Compute_Percentile()

O OO ™
exﬁtﬂfﬁ' ! prob() R }|1 Newton() TR,- 1 Ar[]
Prob() — Newton() Ri_Coef() Ar_Coef()
L
’ Inv_Beta() Dir[]]
InGamma() Inv_Beta() Create.Dir() |
Ix :
ln-Gamma(ﬂ [s | C"['D J q) I
1x() - 1Ix(Create_Cir() q-Coef() -
Arf]
Betacf() T Bernolli T Al
Betacf() Polynomials Bern_Poly()
Bernolli .com()
Numbers |]
Bern_Num() A com()

Figute 7.1. A Structure Chart for the PMS Environment

7.3 A Practical Example for Using the PMS Environment

To demonstrate how to use the PMS environment, we have chiosen Set 2 of the DACS software
failure data supplied by Musa [64] as an example for the demonstration. This set of data is stored

in the form of times between failures as given in table (7.1).

191 50 6900 2519
222 660 3300 6890
280 1507 1510 3348
290 625 195 2750
290 912 1956 6675
385 638 135 6945
570 293 661 7899
610 1212 50

365 612 729

390 675 900 . .-
275 1215 180

360 2715 4225

800 3551 15600

1210 800 300

407 3910 9021

Table 7.1. Set 2 of DACS failure data in [64]

Assuming that the set is stored in a file “set2.dat”, then the sequence for running the envi-

ronment will start by tvping the executable file name “pms” and continues as follows :

Enter Type of Calculations Exact (e!E) OR Asymptotic (alA)?

a

asymptotic calculations requested

OK ! Now Enter The Name of Data File 7?7

set2.dat

Enter the Type of the Data

Failures Times (f|F) OR Time Between Failures (ti|T)?

failure times

Supplied Data Provided Evidence Tovards Exponentiality

Likelihood Ratio Test Program’
Asymptotic Method for Checking Equality of Data
and Proper Model Selection
The Symbols in the table are Y(es) or N(o)
The Value Under Yes or No is (L-C)

For Equality L must be greater than C

then Table D-2 in APPENDIX D will be generated.

from the table the following information can be extracted:

1. Set 2 of DACS can be considered equal to both of set 1 of DACS sets [64] and set 2 of

Littiewood sets [52].

2. It is also clear that set 2 is closer to the former set than the latter one (L — C=0.035 vs 0.017

at significance level =0.05)

3. The set can also be considered to be equal to set 17 of DACS sets, but at a lower significance

level (0.005).

7-5

The question to be answered next is:
Which Software Reliability Model is the Most Appropriate One to be Used with This Set of Data ?

To answer this question, it is necessary to find out the model or models that fitted properly
in the past with those sets of data that proved to be equal to the set under investigation (1.e. set
1 of DACS sets and set 2 of Littlewood sets). For the first set, full Analyses were performed by
Littlewood [52:184] on this set of data, using the Median Variability, the Rate Variability, the Braun
Statistic, the u—plot, the y—plot, and the Prequential Likelihood analysis. The results of these
analyses strongly suggested that the Littlewood Model (L) [49] and the Littlewood Non Homoge-
neous Poission Process Model (LNHPP) {1:955] are the most appropriate ones. This means that
these two models are also the best candidates to be used with the set of data under investigation.
On the other hand, one can also use the software reliability model or models that proved to be
the best with the set 2 of Littlewood data (despite the fact that it is less closer than the previous
one, as explained before). Similar analysis done by Abdel-Ghaly and Others [1] suggested that
the Littlewood Model [49], the Littlewood-Verrall Model (LV) [55], or the Keiler-Littlewood Model
(KL) [41, 42] are the best models to fit with the second set of Littlewood data, and accordingly,
with the set of data under test. From the above discussion, it is clear also that the Littlewood
Model (49] fitted both of the two sets that proved to be equal to the data set under consideration.
This strongly suggests that the Littlewood Model [49] is the best one to be used with the set of

data under study.

Full Analyses of DACS failure data and the two sets of data supplied by Littlewood [52] are

given in APPENDIX D.

VI SUMAMARY AND RECOMMENDATIONS FOR FUTURE WORK

A large nuinber (currently about 100 [26:322]) of software reliability models have been devel-
oped within the last two decades. Unfortunately, each of these models can produce a very different
answer from the others when applied to predict the reliability of a software system. Further, a
model that seems to be the best for one set of data, may give very poor results with other sets.
This is not surprising, since the assumptions for each model cannot be satisfied in all situations, '
to the variations in the development and testing environments for each project. The above prob-
lemns, as well as time and cost constraints, made many software practitioners avoid incorporating
reliability modeling as a management technique. This situation makes it necessary to devote less
eflort for developing more software reliability models, and concerﬂrate on finding tools for selecting

the proper model for a given set of data.

The Proper Model Selection (PMS) environment is one approach for solving this problem. It
uses the same model that proved to be the best for an equal set of data in the» past. It performs
a test of equality of a given set of software failures with each of the other sets that previously
fitted with different models, to determine how close the set under test is to each of other sets. if
past predictions of a software reliability model have been in close accord with actual behavior for
a particular data set, then it will be reasonable to use the same model with an equal set of data.
The PMS can help in selecting the proper reliability model without evaluating different models,
comparing them, and then choosing the best one. It can be simply stated as “matching a software

reltability model to a given set of failure data”.

The (PMS) is a sumple and objective method for selecting a proper model for a given set of
data. The main advantage of this method is that one will make use of the previous effort consumed.
when different models were applied with different sets of data, and when different techniques were
applied, to measure the predictive quality of software models with certain sets of data. The PMS

environment will provide a strong framework, and a useful data base svstem, which will result 1 the

user confidence of the software reliability calculations he/she makes. This will help in establishing

a software reliability theory similar to that of hardware.

Based on the assumptions stated initially, and the observations found during the development
and the application of the PMS environment, the following recommendations are proposed for future

work:

1. Despite the fact that estimating the sample size using the maximum likelihood method is
straightforward, some failure sets showed that the size is very close to the number of collected

fatlures. Other methods for dealing with such cases, need to be added to the environment.

2. Two sets of failure data (SETS 27,554 of DACS failure sets) were not equal to any other sets.
This may be due to the limited number of sets of software failure data used for comparison,
or more data may need to be collected. The former case can be solved by adding more failure
sets to the environment.

3. The studies for deciding which model fits with which set of data are stil] limited {41, 42, 52].

More studies of this kind are needed. This will make it possible to modify the environment

in the future to provide the best candidate models to be used along with each equal set.

T
y
I

Appendix A. Calculations of the Adjustment Factors

In this Appendix, the values of the convergence factors a and é used in chapters 5 and 6. The

values of these two factors are calculated in the following two sections

A.1 Calculation of ¢

é is an adjustment factor defined such that

(A1)
where -
(-1)" ? By (8k = 1)
Ay = ——— B (6§ - 1) — —_— A2
eyl LTI D Dy (4.2)
The symbols used in the equation are
P the number of samples
ki the percentage of failures in sample i
B, (") Bernoulh Polynomial of degree r and order unity
taking r = 1, we get
4y = = Ba(6 — 1) iB'““k‘”]) (A.3
41—.21) : —i“l k,’ ‘-)
Knowing that the second Bernoulli Polynomial Ba(h) is
) 1

A-1

Substituting in {A.3), we have

S N e L P (6k; = 1) -(M—l) L
A = —é—p—[((b~l) —(e=1)4)~ ; L

S U 13 O (6%k2 — 36k, + 12)

= ?p-[(é —3‘5‘*‘(‘;‘)’; E

= e 36+E)-—i62k—36+—-()

- 2p (6 i:l(

S ke

P
[—62+36 - _l(,?+63 - 36p + %Z;(k:l)]
{35(1—p)+ —5[2(51)- 1]

5=

—
~
")
—
—

To get §, we put 43 =0 so L -

I
=
A~

36(p— 1) DS k) -1 e

1

]

b= U= 10/

=1

4.2 Calculation of a

|

(A5)

(A.6)

a is a convergence factor chosen such that R, = 0, and the coefficients R; are obtained using

the following recurrence relations from [71]

ZRi—jdi—j.j = ¢i(i=1,2,3,-- Ro=1)
diy = chi,kdz‘,r—k/r~ dio=1
(_l)r—l)
Cir = m[Bm(a) — Bryi(a+ v+ 7))

A-2

(A7)

(A.8)

(2.9)

where v = 3(p ~ 1)/2 and ¢, is determined using the following relation

qr :ZkAer~k/7' vgo =1
k=1
the value of R, can be found from
Ridio+ Rodoy = q1 = Ay
where A; = 0 as discussed above. If Ry = 0 is desired, then
do'] = CO.ldO,O =0
this means coy = 0 1.e.
1 .
5[32(0) ~ Ba(a+v+1i)]=0
Substituting for the Bernoulli Polynomials, we get
e at 2 —(a+ 1)+ (at 1) = 2] =0
~fa*—a+ = —{(a a - l=
2 6 6
which reduces to

P4+ 2v~-1v=0

solving this equation gives

A-3

(A.10)

(A.11)

(A12)

(A.13)

(A.14)

(A.16)

Appendix B. Mazimum Likelihood Estimate of Sample Size n

Let X(3) < Xy € ... € X{,, be the order statistic from the 2-parameter exponential distri-

bution, then the likelihood function for a random sample of size n is

! l
Liz(1) 22y, oo 2y 0,0) = o — exp|= (T (2 = 0) + (n = r)(x(r) — O))]
n=-")c =
_ n! 1 1 r(zgy—6)
= (‘,;‘_).ar P[—;(I(r) - 9)(; " + (n—r)))
T oo P ZE - Nrs + (n—r)) (B.1)
r ; _9
where s= %—)—0—)) is the observed value of the random variable
=1 x(") -
R
(X —6)
S = (B.2)
im1 r)\(,.) - 9

Noting that for each n ,we’ve found in chapter 2 that equation (B.1) was maximized by having

i

Zz(i)+(""’)“(r) —nrm (B.3)

i=1

and § = Z(1) (B.4)

Denote (B.1) with ¢ and 6 substituted by L(z | n). Let L(z | n) be log L(z | n), then (B.1) is

maximized by the n satisfving
Lz |n+1)=-L(z|n)<0< L(x|n)~ Lz [n~-1) (B.5)
Following the same procedure as Blumenthal [12], equation (B.5) is achieved by 7 such that

D(n) <s< D(n+1) (B.6)

e

where

If there is an upper bound m on the possible values of n, then the estimator would be

D) = {r(1~ (1 -) R S R

iy = min(m, 1)

B-2

(B.8)

Appendix C. Code Listiug~

/t‘tt***t*t*"t*##‘#*‘*t**t##'**t*##tt**"tt‘t*##“ttﬁtt

-
o
**
**
=%
%
%
**
*x
*x
**
=%
%

* %

DATE: 01/16/1992 >
VERSION: 1.0 **
TITLE: Main Program File **
FILENAME: pms.c =
COORDINATOR: Salah Amin Elewa »*
PROJECT:Development of an Environment for Software »**

Reliability Model Selection. *%
OPERATING SYSTEM: MS DOS version 2.0 or higher b
LANGUAGE: Turbo C (2.1) x*
FILE PROCESSING: Compile and link with files prep.cx**

compute.c, coefs.c, and prob.c, **
CONTENTS: 1.0 main () - executive module *x
FUNCTION: This file contains the main program of ==

the project Coxs

##*‘*##‘t*#****#‘**#*#*t******&*ttt*#‘*##*t#*‘tt*#**ttt/

#include <conio.h>

#include "defs.h"

extern void Get_Information(void);
extern void Estimate_n(void);

extern void Check_Exp(void);

extern void Print_Table_Header(void);
extern void Compare_Sets(int);

C-1

/"##t“"t#*‘tt#*tttt#‘t#‘*“‘*it‘*#tt**'*tt#*'#ttttt#ﬁ

* %

*%

* %

*#

* ¥

* %

LE]

*%

* %

*%

* ¥

-x

* %

* %

DATE: 01/16/1991
VERSION: 1.0
MODULE NAME: main
MODULE NUMBER: 1.0

DESCRIPTION: This main program in the environments

PASSED VARIABLES: None

RETURNS: None

HARDWARE INPUT: None

HARDWARE OUTPUT:None

MODULES CALLED: Get_Information()
Estimate_n{)
Check_Exp()
Compare_Sets()

CALLING MODULES: None

AUTHOR: Salah Amin Eleva

HISTORY:

1.0 Salah Amin Elewa 01/16/1992

original version

/

5%

* ¥

* %

*%

* %

* ¥

%

**

*%

x¥

* %

s

%

* %

*%

* %

*x ¥

* %

#**t*#t*##*#**t#tt*t##***********#**ttt**#*lt##*ﬁt#/

vo

{

id main()

int K;

clrscr();

Get_Information();

Estimate_n();

Check_Exp();

Print_Table_Header();

for (K = 1; K < DATA_FILES; K++)
Compare_Sets(K);

return;

C-2

/“‘t“‘##“#‘#tt“'“tt‘lt"l#'ttllﬁt#*“tt*‘###t“tl‘t

*«» DATE:01/25/1992 ®x
*» VERSION: 1.0 as
*+ TITLE: Failure Data Processor x
*x FILENAME: Prep.c %
** COORDINATOR: Salah Amin Elewa %

-*% PROJECT:Development of an Environment for Software *=»

** Reliability Model Selection. *%
*+ OPERATING SYSTEM: MS DOS version 2.3 or higher x%
*% LANGUAGE: Turbo C (2.1) ™

+ FILE PROCESSING: Compile and link with files pms.c ==»

* % compute.c, coefs.c, and prob.c. %
** CONTENTS: - *%
*% 1.1.1 - Get_Information() *%
*x 1.1.2 - Estimate_n() *x
** 1.1.3 - Check_Exp() *
*% 1.1.4 - DO L
*% 1.1.5 - Print_Table_Header() %

’

** FUNCTION: The modules in this file get information *=

*x

* %

* %

* %k

about calculation method, how data are stored *=

(failure times or times between failures), =%

estimate sample size, check exponentiality of ==

failure data and print table header. x%

###‘tttt**#‘*##t“t*##‘*3&#t##t#*##‘!tt#*####"i###*###t/

#include
#include
#include
#include
#include
#include

extern b

<stdio.h>

<conio.h>

<math.h>

<ctype.h>

<stdlib.h>

"defs.h'"

oolean

exact,

void Get_Information(void);

void Print_Table_Header(void);

C-3

void
void
void

double

static
"static
static

FILE

Estimate_n(void);
Check_Exp(void);
Print_Table_Header(void);

D(int, int);

int n, rr;
double t[MAX_FAILURES];
FILE *fp100;

*fp5;

C-4

/*
=
%
%
%
>
T
=
'
s
%
%
**
*%
%
»*
**
%
't
**
TS
'S
*x
%
-k
-

* %

vo

{

ERRRRERR BB AEREEREA R EZE SR B REX SR BX SR AR RS E AR RSN RR X

DATE: 01/25/1992 *%
VERSION: 1.0 %
MODULE NAME: Get_Information() *x
MODULE NUMBER: 1.1.1 xx
DESCRIPTION: This module is used for obtaining inf-#=*

ormation about the required accuracy of calcu-*
lations, the name of the file containing *x
failure data and the form of failure data. It#**
stores failure data as failure times if it wasx
stored as time between failures. %
PASSED VARIABLES: None wx
RETURNS:None L -
GLOBAL VARIABLES USED: exact, t[],rr **
GLOBAL VARIABLES CHANGED: exact, t[],rr **
FILES READ: The file containing failure data *%
FILES WRITTEN:"converted.dat" a file with failure =**
data stored in the form of failure time **
HARDWARE INPUT: Keyboard " owx
HARDWARE OUTPUT: Screen **
MODULES CALLED: None *x
CALLING MODULES: The main program *=*
AUTHOR: Salah A. Elewa =*
HISTORY: *%
1.0 Salah A. Elewa 01/25/1992 =%
original version **
ttt‘#tttttl##‘##t‘##“#‘##*‘tt###*#t##l“#*tttﬁttt#tt/

id Get_Information(void)
int ch;
char FileKame[MAX_STRING];

FILE »£p300;

if ((£fp300 = fopen("convertd.dat", "w+")) == KULL)

C-5

puts(”\t can not open converted.dat\n");
exit(1);
}
puts("\n\n\tEnter Type of Calculations Exact (e{E) OR Asymptotic (alA)?\n\n");
for (;;)
{
ch = getche();
if (ch == ’a’ || ch == ’A’)
{
puts("symptotic calculations requested\n\n");
exact = FALSE;
}
else if (ch == ’e’ || ch == E?)
{
puts("xact calculations requested\n\n");

exact = TRUE;

else ;

printf("\n\t\t\t Sorry'! Y%c 1is Unknown Choice", ch);
puts("\n\t\t The Letters a,A,e,E are Acceptable Choices");
puts("\n\t\t Try Again OR Press Ctrl+Break to Quit\n\n\n");
}
if (ch == ’a’ |} ¢h == A’ || ch == ’e’ || ch == ’E’)
break;

puts("\t\t OK ! Now Enter The Name of Data File ?\n\n");
do
{
for (ch = getchar(); isspace(ch); ch = getchar())
; /* Null Statement */

ungetc(ch, stdin);

C-6

gets(FileName);

puts("\n");
if ((fp100 = fopen(FileName, "r")) == NULL)
{
printf{"\n\t\t Can NOT Find The File %s\n", FileName);

puts("\n\t\tEnter the CORRECT File Name OR Ctrl-C to Exit\n");

}
while ((fp100 = fopen(FileName, "r")) == NULL);

puts("“\t\t Enter the Type of the Data \n");

puts("\tFailures Times {f|F) OR Time Between Failures (t{T)?\n\n");

for (;;)
{ /* infinite loop */
ch = getche();
if (ch == 1’ || ch == 'F’)
puts{"ailure times \n\n");
else if (ch == ’t’ || ch == ’T’)
{
puts("ime between failures \n\n");
rr = 1;
t[0] = 0.0;
while (!'feof(fp100))
{
fscanf (fp100, "%lf ", &tlrrl};
tlrr] = tlrr] + tlzr - 1};
fprintf(£p300, "Y1f\n", tlrrl);
TT++;
}
fp100 = fp300;

else

printf("\n\t\t\t Sorry' %c is Unknown Choice", ch);

puts(”\n\t\t The Letters f,F,b,B are Acceptable Choices");

puts("“\n\t\t Try Again OR Press Ctrl+Break to Quit\n\m\n");
}

if (ch == £’ ||l ch == 'F’ || ch == 't’ || ch == ’T’)
break;
}
rewind(fp100);
fclose(fp300);
return;
C-8

/*
e
s
%
s
%
RL
%
**
3
**
=%
3
=
**
*%
s
*%
* %
*%
%
=
* %
*%
%
*%
s
e
s

vo

{

L2222 2 2 S22 233 2 2 R R AR 22 S R 2 RS SRR 2 S 2 Ed

DATE: 01/25/1992 =
VERSION: 1.0 %
MODULE NAME: Estimate_n() *
MODULE NUMBER: 1.1.2 x
DESCRIPTION: This module is used to estimate the =

value of the sample size n and then insert itxs
on the top of the failure times file so that #**
it can be read later by the environment.The =*x*
maximum likelihood estimation method is used ==

for estimating n as described in Appendix I. =#

PASSED VARIABLES: the Pointer to the file where s
failure times are stored *x
RETURNS: None *%
GLOBAL VARIABLES USED: t[],n,rr x»
GLOBAL VARIABLES CHANGED: n *x
FILES READ: The file containing the failure times #x
or the times between failures **
FILES WRITTEN: "input.dat” file, which has the est-»#
imated n on top and then {failure times %
HARDWARE INPUT: None L
HARDWARE OUTPUT: None *x
MODULES CALLED: Module D described in Appendix I =*=
CALLING MODULES: The main program >
AUTHOR: Salah A. Elewva %
HISTORY: ¥
1.0 Salah A. Elewa 01/25/1992 b
original version %%
tt#tttttt#‘tt#tt‘*ttt‘##‘t#ttt‘#.t‘t*#ttt"t‘t#*#i‘##/
id Estimate_n(void)
int i;

double T, max_t, SS, theta = 1.0e37;
FILE *{fp200;

C-9

T = max_t = 5SS = 0.0;
if ((fp200 = fopen("input.dat", "w+")) == KULL)
{

puts(“can not open input.dat\n");

exit(1);
}
rr = 1;
while ('feof(fpi00))
{

fscanf (fp100, “¥%1f ", &tlrrl);

if (tlrr] < theta)

theta = tlrr);
if (tlrr] > max_t)
max_t = tlrr);

T =T+ tlrrl;

ITH4;
}
rr = rr - 1;
printf("\t\tTotal Number of Failures r= %d\n", rr);
Ss ;(T-(double) rr*theta)/(double) rr/(max_t-theta);
rewind(£p100);
for (i = rr;; i++)
{

if (D(i, rr) <= SS && SS < D(i + 1.0, rr))

fprintf(fp200, "%d \n", n);
rewind(£p100);

while (!'feof(fp100))

{

fscanf (£p100, "%lf ", &tlrrl);
fprintf(£p200, "%1f \n", tlrrl);
}
fclose(fp200);

return;

C-11

/#*#‘*tt*#*t*t#*t*t#***********#****#t‘{******t*****#***

=* DATE: 01/25/1992 *x
** VERSION: 1.0 *%
*x MODULE NAME: Check_Exp() *%
** MODULE NUMBER: 1.1.3 **

** DESCRIPTION: This module is used to check whether ==

** the failure times are exponential. It uses **
*x G test based on the Gini statistic for check-*x*
% ing exponentiality of type II censored data.#*
*% PASSED VARIABLES: Tointer to "Input.dat" file *x
** RETURNS: None *%
** GLOBAL VARIABLES USFD: t[J,n,rr *%
*x GLOBAL VARIABLES CHANGED: None *k
** FILES READ: "input.dat" file o *oH
** FILES WRITTEN: None *
+* HARDWARE INPUT: None *%
** HARDWARE OUTPUT: Screen *%
*x MODULES CALLED: None *%
#*x CALLING MODULES: The main program **
** AUTHOR: Salah A. Elewa **
*» HISTORY: **
*% 1.0 Salah A. Elewa 01/25/1992 **
*% original version *%

***/
void Check_Exp{(void)
{
double time_bet[MAX_FAILURES], Wi[MAX_FAILURES];
double Witot, num, den;
double Grn, Var;

int i;

Witot = num = t[0] = 0.0;

for (i = 1; i < rr + 1; i++)

C-12

time_bet[1] = t{1] - tl1 - 1];
Wilil = (n - i + 1) = time_bet[i);
Witot = Witot + Wili];

}

den = (rr - 1) » VWitot;

for (i = 1; i < rr; i++)
num = num + i * Wili + 13;

Grn = num / den;

pow(i2 * (n - 1), .5) * (Grn - 0.5);

Var

if (Var > -2.33 && Var < 2.33)
/* 0.01 Significance Level is Used for Calculations */
puts("\n\t Supplied Data Provided Evidence Towards Exponentiality\n");
else
{
puts("\t\t\tSupplied Data Provided Evidence Against Exponentiality\n");
puts("\t\t\t\t Extra Data may b~ Nesu.d\n");
puts("\t\t\t\t Program will Terminate \n");
exit(1);
}
revind(£fp100);

fclose(fp100);

/“#ltil‘tt#t*t#ttt‘**t‘#t#t“l#tt‘#'t‘t‘tt’*tttt"‘t‘tt

xx
%
*x
%
x%

xx

x%
* ¥
* %
* ¥
* %
* %
**
* %
o K
* %
* %
* %
* %

* ¥

DATE: 01/25/1992
VERSION: 1.0
MODULE NAME: D()

MODULE NUMBER: 1.1.4

DESCRIPTION: This module is used for calculating
the value of the Parameter D described in
Appendix 1

PASSED VARIABLES: number of failures r and sample
size n.

RETURNS: D value

GLOBAL VARIABLES USED: None

GLOBAL VARIABLES CHANGED: None

FILES READ: None B

FILES WRITTEN: None

HARDWARE INPUT: None

HARDWARE OUTPUT: None

MODULES CALLED: None

CALLING MODULES: Estimate_n

AUTHOR: Salah A. Elewa

HISTORY:
1.0 Salah A. Elewa 01/25/1992

original version

*%¥

%

*%

* %

x%x

*%

* %k

* %

* %

* %

* %

t**tt#t#&t**t**ttt*t##t**ttt**#*#tt**##*t*****#t**#**t#/

do
{

uble D(int n, int 1)

double nn, rr, xx;

nn = (double) n;
rr = (double) r;
xx = pow(rr*(1.0-(pow((1.0-(xr/nn)),(1.0/rx)))),-1.0);

return (xx + 1.0 - (nn / r1));

/#t*t“*“*tlt**#‘*#***ﬁt*##tt*tt'ttt##"tt“ttttt'*‘ltt

*+ DATE: 01/25/1992 -
<> VERSION: 1.0 =
»* MODULE NAME: Print_Table_Header() **
** MODULE NUMBER: 1.1.5 ¥

#* DESCRIPTION: This module is used for printing the =»»

% table header on the screen and in the 'report*s
% .dat" file. *=
** PASSED VARIABLES: None %
** RETURNS: None *x
*» GLOBAL VARIABLES USED: exact *x
** GLOBAL VARIABLES CHANGED: None *%
*x FILES READ: None C e **
** FILES WRITTEN: "report.dat" file *x
** HARDWARE INPUT: None %
=+ HARDWARE OUTPUT: None *%
*» MODULES CALLED: None %
** CALLING MODULES: The main program *x
% AUTHOR: Salah A. Elewa e
** HISTORY: *x
= 1.0 Salah A. Elewa 01/25/1992 **
** original version %

*‘**t##****‘*#‘******ﬁ**l****'*******##*#***‘*#*"‘*#‘*/
void Print_Table_Header(void)

int j;

if ((fp5 = fopen("report.dat", "g")) == NULL)

{
printf("can not open report.dat file\n");
exit(1);

}

printf("\t\t\t Likelihood Ratio Test Program \n");

fprintf(£fp5, "\t\t\t Likelihood Ratio Test Program \n");

if (exact)

{
printf(”\t\t Exact Method for Checking Equality of Data \n");
printf("\t\t and Proper Model Selection \n");
fprintf (fp5,"\t\t Exact Method for Checking Equality of Data \n");
fprintf (£p5,"\t\t and Proper Model Selection\n");

else

printf("\t\t Asymptotic Method for Checking Equality of Data\n");
printf("\t\t and Proper Model Selection \n");
fprintf(fp5,"\t\t Asymptotic Method for Checking Equality of Data\n");
fprintf (fp5,"\t\t and Proper Model Selection\n");

) -

printf("”\t\t The Symbols in the table are Y(es) or N(o)\n");

fprintf(fp5,”\t\t The Symbols in the table are Y(es) or N(o)\n");
printf ("\t\t The Value Under Yes or No is (L-C)\n");

fprintf (£p5,"\t\t The Value Under Yes or No is (L-C)\n"};
printf("\t\t For Equality L must be greater than C \n");

fprintf(fp5, "\t\t For Equality L must be greater than C \n");

printf (" ———");
fprintf(fps, " ——T");
for {j = 1; j < 8; j++)
{
printf (" w——m—");
fprintf(fps, " ——");

printf (" ————\n");
fprintf(fp5, "——\n");

printf("| | Significance Level &X ");

printf(" ")

fprintf ({p5,"| i Significance Level & ");

fprintf (£p5," 1"
printf("\n| F)s

fprintf (£p5, "\nl oy

for (j = 1; j < 8; j++)

{

printf (" ———T");
fprintf(fp5, "—T");

printf (" ————\n"); R
fprintf(fp5, We———\n");

printf("] F. Set|.00025 | .0005 | .001 | .0025 | .00% ")
printf("| .01 | .025 1 .05 |");

fprintf(£p5,”| F. Set}.00025 | .0005 | .001 | .0025 | .005 *);
fprintf(fp5,”] .01 | .025 | .05 1"

return;

C-17

[eanxnex
=+ DATE:
*=+ VERSI
=+« TITLE
=+ FILEN
*+ COORD

1222 2 282 E 2 2 R R 2 i R R R S R R R R R R 2)

01/31/1992 s
ON: 1.0 ' s
: Computation Routines File hehd
AME: compute.c =
INATOR: Salah Amin Elewa >

**+ PROJECT:Development of an Environment for Software »»

x%

Reliability Model Selection. -
*» OPERATING SYSTEM:MS DOS version 2.0 or higher *»
** LANGUAGE: Turbo C (2.1) *s
#*« FILE PROCESSING: Compile and link with files prep.c#»
bl coefs.c, prob.c, and pms.c =
*x CONTENTS: L
wx 1.2.1 - Compare_Sets() o **
** 1.2.2 - Check_Data_File() x
*x 1.2.3 - Compute_LRT() %
b 1.2.4 - Compute_Percentile() **
*x 1.2.5 - Print_Results{) LA
#» FUNCTION: This file contains the modules for making#**
** the comparison between two sets of data and *x
*x printing the results in the file "report.dat". *#

L2222 2 3
#include
#include
#include
#include

#include

void
void
void
double

int

##***###‘###*##**t##ﬁ#tt#t*#‘#tt‘ttttt**ttt##*i/
<stdlib.h>
<stdio.h>
<ctype.h>
<math.h>

“defs.h"

Compare_Sets(int);

Print_Results(double, int);

Compute_Percentile(double, double, double *, double *);
Compute_LRT(void);

Check_Data_File(char =*);

C-18

extern

extern

static
static
static

. static

FILE *fp5;

double kal];

FILE *fpl;

boolean DIFFERENT = TRUE;

double LRT, Xi[MAX_SAMPLES], Yi[MAX_SAMPLES];
int R, Samples_NO,Sample_ri[HAX,SAHPLES],
Sample_Size[HAX_SAHPLESJ;

C-19

/"“i#l.##*“#‘t#‘ttt'ttt't“"#'*‘t‘#l‘tttl‘#‘#"t#“l

* %

*%

%

»*

x%

%

*%

*%

* %

* %

* %

* %

* %

*%

*%

* %

*%

* %

*%x

»* ¥

* %

* %

*x

*%

*k

*%x

%

%

*®

*%

L2

*%

DATE: 01/31/1992 x»
VERSION: 1.0 *x
MODULE NAME: Compare_Sets() *»
MODULE NUMBER: 1.2.1 *x
DESCRIPTION: This module is used to compare the two*#

sets of data specified in the corresponding =*#
.fil file. It first invokes Check_Data_File ==
routine to make sure that all required data #x*
for comparison exist in failure times files, =*»
then it compares input file with other sets =*=
through the loop J using the value of LRT xx
and the percentile point C from the routines =+
Compute_LRT and Compute_Percentile. **
PASSED VARIABLES: number of set to compare with (J)=**
RETURNS: None **
GLOBAL VARIABLES USED: Total number of failures (R)=**

,Samples_NO, DIFFERENT,LRT %
GLOBAL VARIABLES CHANGED: LRT T
FILES READ: The .fil file containing two sets of #*x

data to be compared and the files containing »=*
failure times =

FILES WRITTEN: "report.dat" file *x
HARDWARE INPUT: None *x
HARDWARE OUTPUT: Screen %
MODULES CALLED: Check_Data_File() **
Compute_LRT() *x*

Print_Results() P

CALLING MODULES: The main program **
AUTHOR: Salah Amin Elewa %
HISTORY: *»
1.0 Salah Amin Elewa 01/31/1992 2
original version =

"#t‘.##‘““.tttt#‘##t“‘.“t“‘t‘tt‘ttt‘#l“#‘t‘#ttt*/

C-20

void Compare_Sets(J)

{

double L;

int p = 0;

char fn[MAX_STRING], s[MAX_STRING];

char «filfile[] = {" ", "set_1.£fil", "set_2.1il",

"set_4.fi11","set_5.fil1","set_6.fil1","set_14c.fil",

"set_17.fil","set_27.fil1","set_ssla.fil", "set_ssic.fil",

“"set_SS3.fil", "set_SS4.fil", "Lit_2.fil", "Lit_3.fil"};
R = Samples_KNO = 0;

it (3> 1)
fclose(fpl); < -
if ((fp1 = fopen(filfilel[J], "r")) == NULL)
{
printf("\n can not open %s file\n", filfile[J]);
exit(1);
} :
fgets(s, 30, fpl); /* read 1st set name from the .fil file fpl=/
vhile (!feof(fp1))
{
i1f (sscanf(s, "%s", fn)) /* assign s to file fn if exist */
if (Check_Data_File(fn))
ptt; /* Check all data are found */
fgets(s, 30, fpl1); /* read 2nd set name from the .fil file */
}
if (p> 1)
{
LRT = Compute_LRT();
L = pow(LRT, (1.0 / (double) R));

Print_Results(L, J);

else

C-21

printf{("\n\nError LRT can not be computed for less than 2 samples\n");
printf("\n - OR - May be one of the failure times is 0.0 \n");
fprintf(fp5,"\nError LRT can not be computed for less than 2 samples\n");
fprintf(fp5, "\n - OR - May be one of the failure times is 0.0 \n");

}

if (J == (DATA_FILES - 1))

{
if ('DIFFERENT)
{

printf(“\nt L "y,

printf (" I\

fprantf(fp5,"\n — L ¥

fprintf(fpsS," I \n");

else

printf("\n |

printf (" L 1 I \n");

fprintf(fps, "\n b L ! I ! 1 "y,

fprintf (£fp5," ' L L J\n");
3
fclose(fp5);
fclose(fpl);
}

return,

/'##“'t“t.t‘l*tt‘*“t*#‘#‘*‘t‘*‘#t#‘tttt“‘“‘#lt#‘t‘t

"%
- %
*%
* %X
*¥
%
**
* %
¥
* ¥
* %
* %

* ¥

* ¥
* %
x %
x%
* %
L
%
* %
*k

* &

DATE: 01/31/1992 »x*
VERSION: 2.0 **
MODULE NAME: Check_Data_File() **
MODULE NUMBER: 1.2.2 **

DESCRIPTION: This module is used to Yead the files x=

containing the failure data and return TRUE =**

if all information needed exist. **
PASSED VARIABLES: Name of file to be checked =
RETURNS: TRUE or FALSE (1 or 0) %
GLOBAL VARIABLES USED: Sample_Size[], Sample_rif], *=»
Samples_NC, X1[], Yi[] =

GLOBAL VARTABLES CHANGED: Sample_Size[],Sample_ril],*
¢ mples_NO, X1[1, Yil] - *%

F™L¥_ AEAD: fn file passed as an argument **
FILES WRITTEN: None *x
BARDWARE INPUT: None **
HARDWARE OUTPUT: None *%
MODULES CALLED: None C ok
CALLING MODULES: Compare_Sets() >
AUTHOR: Salah Amin Elewa Lk
HISTORY: *%
1.0 Capt. K. N. Cole 5/8 /1985 **
original version x

1.1 Capt. K. N. Cole 10/25 /1986 o
modified for SAE system *x

2.0 Salah Amin Elewa 01/31/1992 L

- header modified **

- names for module and some variables ==

changed %

~ program modified to work with 2-para-#=*

meter exponential distribution and to**

read sample size from file "input.dat"=*

‘t‘t.tttt#tt"ﬁtﬁ“‘#*"it‘t.#.tt‘lt#ttl‘##‘t#“tt‘ttl*/

C-23

int Check_Data_File(char *fn)

{

FILE *1fp;

boolean error;

char *c;
int ni, ri;
double t, Ti, maximum_t, minimum_t;

t = Ti = maximum_t = minimum_t = 0.0;
if (Samples_NO >= MAX_SAMPLES)
error = TRUE;
else
{
error = FALSE;
maximum_t = 0.0;
¢ = fn;
minimum_t = 1.0e37;
vhile (isspace(*c))
c++;
if ((fp = fopen(c, "r")) !'= NULL)
{
fscanf(fp, " %d ", &ni);
ri = 0;
Ti = 0.0;
while (!feof(fp))
{
t = 0.0;
fscanf(fp, "%1f ", &t);
if (¢ '= 0.0)
{
if (¢t < minimum_t)
minimum_t = t;
if (t > maximum_t)

maximum_t = t;

C-24

Ti =T1 + ¢,
Ti++;
}
else
while ('feof(fp) && (fgetc(fp) !'= ’\n’));
}
fclose(fp);
if (ni < ri)
error = TRUE;
if ((Ti == 0) || (xi == 0))
error = TRUE;

}

else

{ -
printf("Check_Data_File: can’t open data file %s\n", c¢);
error = TRUE;

}

if ('error)

{ /
X1[Samples_NO] = minimum_t;
Yi[Samples_NO]=(Ti—ri*X1[Samples_NO])+(ni-ri)*(maximum_t-x1[Samples_NO]);
Sample_Size[Samples_NO] = ni;

Sample_ri[Samples_NO] = ri;
Samples_NO++;
}

}

return (lerror);

/*

x%

* %
* %
%

* %

x%
* %
* ¥
* %
*%
*%
*x%
%
*%
*x
%
¥
*%
do
{

(A2 RS RE RS R RS2 222222222 R R R RS R 2R RS R R R Y S 2]

DATE: 31/01/1992 *%
VERSION: 1.0 %
MODULE XNAME: Compute_LRT() %
MODULE NUMBER: 1.2.3 **
DESCRIPTION: This module is used to compute the test*

criteria from the global variables b
(Samples_NO,Sample_Size, and Sample_ri). **

* &
PASSED VARIABLES: =
RETURNS: The value of LRT bk
GLOBAL VARIABLES USED: Sample_Size[], Sample_ril[], »=

Samples_NO,total # of failures R, X1[], Yi[J==

% - R
and LRT x
GLOBAL VARIABLES CHANGED: R, LRT **
FILES READ: None 2%
FILES WRITTEN: None >
HARDWARE INPUT: None o
HARDWARE OUTPUT:None -
MODULES CALLED: None %
CALLING MODULES: Compare_Sets() %
AUTHOR: Salah Amin Elewa xx
HISTORY: x
1.0 Salah Amin Elewa 01/31/1992 **
original version x
AEBXARRRRAEBRE R AR AR R KRR R BN RRKR KRR RARR BN SRR RSN R %% [

uble Compute_LRT(void)

double partl, part2, Yitot, V, u;
int 1;
double Zp = 1.0e37;

partl = part2 = LRT = 0.0;

C-26

V=1u-=Yitot = 0.0;
1f (Samples_NO >= 2)
{
for (i = 0; 1 < Samples_NO; i++)
if (X1[i] < 2p)
x1[i];

Zp

for (i = 0; i < Samples_NO; i++)

R = R + Sample_ri[il;
u = u + Sample_Size[i] * (X1[i] - Zp);

Yitot = Yitot + Yil[il;
}
V = Yitot + u; SRR
parti = (double) R *log(((double) R / V));
part2 = 0.0;
for (i = 0; i < Samples_NO; i++)
part2=part2+{double)Sample_rilil*log(Yil[il/(double)Sample_ri[i]);
LRT = exp(partl + part2);
}
return (LRT);

C-27

/‘#“*#‘#tt*t“t‘*t#“#“i*"Q!#tt‘t#‘t“#'*‘lt#ttt‘ttt#

** DATE: 01/31/1992 .
** VERSION: 1.0 *»
+% MODULE NAME: Print_Results() =
»* MODULE NUMBER: 1.2.4 .

#* DESCRIPTION: This module is used to print the resu-*=*

- lting table on both the screen and the output =*=
s file "report.dat". .
*% PASSED VARIABLES: L, Failure Data Set number **
*+ RETURNS: None =
*+ GLOBAL VARIABLES USED: DIFFERENT *x
*» GLOBAL VARIABLES CHANGED: DIFFERENT »x
**x FILES READ: None x*
»% FILES WRITTEN: "report.dat" pointed to by-fpS *x
** HARDWARE INPUT: None =
x* HARDWARE OUTPUT: Screen *x
** MODULES CALLED: Compute_Percentile **
** CALLING MODULES: Compare_Sets()} >
** AUTHOR: Salah Amin Elewa) **
*x HISTORY: xx
** 1.0 Salah Amin Elewa 01/31/1992 **
*% original version **

*t****************t*‘****‘*****ﬁ****#**‘****‘*##*‘*‘*t#/

void Print_Results(double L, int J)

{
int i, 3, k;
double alpha[MAX_ALPHAl={.00025,.0005,.001,.0025,.005,.01,.025,.05};
double C[MAX_ALPHA], prb;
char *SET_NAME[DATA_FILES]={" SET_1 "," SET_2 “," SET_4 "," SET_5 ",
" SET_6 ","SET_14c" "SET_17 ", "“SET_27 " ,"SET_Sia","SET_Sic",
"SET_SS3","“SET_SS4","SET_Lt2","SET_Lt3"};

if (L > .999)
{

C-28

DIFFERENT = FALSE;

printf ("\n b——");

fprintf (fp5,"\n ——");

for (j = 1; j < 8; j++)
printf (" ——L-");

printf (" ———\n");

for (j = 1; j < 8; j++)
fprintf (£p5, " — 0 ");
fprintf(fp5, " e———r7\n");

printf("|%s!", SET_NAME[J - 1]);

fprintf(fp5, "[%s|", SET_NAME([J - 1]);

printf (" Two Identical Sets or Set Compared with Itself L = 1.0 1"

fprintf(fp5," Two Identical Sets or Set Compared with Itself L = 1.0
")

if (J < (DATA_FILES - 2))

{
printf("\nbF——");
fprintf(£p5, "\n b——m—");

for (j = 1; j < 8; j++)
printf (" —");
printf (" ———\n");
for (j = 1; j < 8; j++)

fprintf(fps, "—7 "),
fprintf (fps, #» ——— \n");

else

C-29

if (DIFFERENT)

{
printf("\n}");
fprintf(£p5, "\n}");

for (j = 1; j < 9; j++)
printf("———");
printf (" ———\n");

for (j = 1; j < 9; j++)
fprintf(fps, "——");
fprintf(fp5, "——\n");

printf("|%s!", SET_NAME[J - 1]);
fprintf (£p5, "l%sl|™, SET_NAME[J - 1]);
for (i = 0; 1 < MAX_ALPHA; i++)
{
Compute_Percentile(alpha(i],L,&C[i],&prb);
if (L < c[i])
{
printf("K/%3.21f[", L ~ C[i]);
fprintf(£p5, "N/%3.21f]", L - C[i]);
for (k = i; k < 7; k++)

{
printf (" 1"
fprintf(fps, " ¥
}
i = 8; /* not to recalculate if it is rejected */
}
else
{

printf("Y/%4.31£1", L - c[i]);
fprintf(fp5, "Y/%4.31f|", L - C[i]);

}

printf("\nl 1");
fprintf(fp5, "\nl 1");
for (i = 0; i < MAX_ALPHA; i++)

{
if (L < c¢[i])
{
printf("L=%4.312£1", L);
fprintf(fpS, "L=%4.31f|", L);
for (k = i; k < 7; k++)
{
printf(" 1"); i
fprintf(fps, " ");
}
i = 8; /* not to recalculate if it is rejected */
}
else
{ !
printf("L=%4.31£!", L);
fprintf(£fp5, "L=%4.311|", L);
}
}
printf("\nl 1");
fprintf(fpS, "\nl 1)

for (i = 0; i < MAX_ALPHA; i++)
{
if (L < c[i])
{
printf(“C=%4.3111", c[il);
fprintf(fp5, "C=%4.31£(", C[il);
for (k = i; k < 7; Kk+4)
{
printf(" 1");

C-31

fprintf(fps, " 1",
}

i = 8; /* not to recalculate if

else

printf("c=Y%4.31¢|", Cc[i]);
fprintf(fps, "C=%4.31fi", c[i]);
}
}
DIFFERENT = TRUE;
}

return;

it

C-32

is rejected

=/

/s
1)
(1]
1]
'Y
.
X
"
"%

* %

EE 3
* %k
%k
* %
* %
%
* %
* %
* %
* ¥
'
%
P
* ¥
* %
*%
2
L 2 d
*y¥

®x %

RESESEERARSEAEERAESRABSRA RS AR AR NN B AR R ER BRI AR XY B R E N
DATE: 01/31/1992 =
VERSION: 2.0 b
MODULE NAME: Compute_Percentile() L
MODULE NUMBER: 1.2.5 ks
DESCRIPTIDN: This module is used to compute the **

percentage point necessary for evaluating the »*»
LRT criteria at the values given by the global==
variables Sample_ri, total failures, and the =»*
significance level alpha %
PASSED VARIABLES: alpha,LRT L

RETURNS:values stored in the locations pointed to by*

pct - percentage point for alpha value given, ands**
prb - probability value. >
GLOBAL VARIABLES USED: kall],R,LRT,Samples_NO, »*
Sample_ri **

GLOBAL VARIABLES CHANGED: kal] b
FILES READ: None =
FILES WRITTEN: None LA
MODULES CALLED: Prob(),Newton(),Ri_Coef(),Ar_Coef()**

CALLING MODULES: Print_Results() ax
AUTHOR: Salah Amin Elewa *
HISTORY:1.0 Capt. K. K. Cole 5/8 /1985 *%
original version ' L

1.1 Capt. K. N. Cole 10/25 /1986 **
modified for SAE system ¥

2.0 Salah Amin Elewa 01/31/1992 **

-~ header modified **

- names for module and some variables #*

changed .

- program modified to work with 2-para-=»#*

meter exponential distribution and tos*

read sample size from file "input.dat”*

#‘#“#tt“l#..tt‘lt“t‘.t“‘.tt..tt“t"#t't‘t‘l"‘#t‘t/

C-33

void

Compute_Percentile(double alpha,double LRT,double *pct,double *prb)

{

extern double
extern double
extern double
extern

extern void
double

int

m = delta = sum

o
n

AT [DATA_FILES + 1];

Prob(double,double,double,int ,double,double);
Newton(double,double,double,double, int,double,double);
Ar_Coef(double, double);

Ri_Coef(double, double, double, double);

v, a, t, p, sum, m, delta;

i,

= a=0.0;

(double} Samples_NO;

for (i = 0; 1 < Samples_NO; i++)

kal[i) = (double) Sample_ri[i] / (double) R;

v=3.0*(p-1.0)/2.0;

t

for (i = 0, sum

(p+1.0)/ (6.0*p);

= 0.0; i < Samples_NO; i++)

sum = sum + 1.0 / ka(i];

delta = (13.0 * (sum - 1.0)) / ((p - 1.0) * 18.0);

a=(1.0-v) /2.0;

m

((double) R - delta) / p;

Ri_Coef(p, delta, a, v); /*initialize coefficientss*/

*prb = Prob(a,

v, p, R, LRT, m);

*pct = Newton(a, v, t, p, R, alpha, m);

return;

C-34

/#l““‘.““‘tt#“‘t“‘##.#3"##“‘tt‘..“t“t‘ttt"#‘#

»* DATE: 01/16/1992 s
*=» VERSION: 1.0 e
*» TITLE: Probability Computation File x
sx FILENKAME: Prob.c s
*» COORDINATOR: Salah Amin Elewa *x

» PROJECT:Development of an Environment for Software #=

** Reliability Model Selection. *s
=+ OPERATING SYSTEM:MS DOS version 2.0 or higher *»
*» LANGUAGE: Turbo C (2.1) *x

** FILE PROCESSING: Compile and link with files prep.c#*s

** coefs.c, compute.c, and pms.c %
=+ CONTENTS: 1T
** 1.3.1 - Prob() T s
* % 1.3.2 - Newton() x
** 1.3.3 - InGamma() %
** 1.4.4 - Ix() **
** 1.4.5 - Betacf() x
** 1.4.6 - Inv_Beta() , %

% FUNCTION:This file contains the modules for Comput-=

** ing the distribution function and calcula-*=»
% ting the percentage point using Newton’s =
** approximation method *x

###*‘*‘tt*###l####tttttt*t###*ttttttttttt#t‘*t##t#ttt#t/
#include <stdio.h>
#include <math.h>

#include '"defs.h"

boolean exact=TRUE;

extern double Ri[], ka[J;

double Prob(double,double,double,int,double,double),1lnGammadoudble);

doudble Newton(double,double,double,double,int,double,double);

static double Ix(double, double, double);

C-35

/t"“‘#'#l"‘#tl‘*#“‘#*““"tt““'ttttl‘!‘l.t""t.‘

«+ DATE: 01/16/1992 o
«+ VERSION: 1.0 ’ s
x+ MODULE NAME: Prob() .
x+ MODULE NUMBER: 1.4.1 -

** DESCRIPTION: This module is used for computing the ==

** distribution function of x =
't- PASSED VARIABLES: a, v, p, R, x, m %
** RETURNS:Prob (double) -
*+ GLOBAL VARIABLES USED: Rill, kall, exact, R s
=» GLOBAL VARIABLES CHANGED: None b
»* FILES READ: None =
** FILES WRITTEN:None *x
=+ HARDWARE INPUT: None . o **
=+ HARDWARE OUTPUT:None *x
** MODULES CALLED: 1nGamma(), Ix() *x

«* CALLING MODULES: Compute_Percentile(), Newton() *x

** AUTHOR: Salah A. Elewa . %
*x HISTORY: R
** 1.0 Salah A. Elewa 01/16/1992 *
*x original version x»

#####t*#‘#**‘*‘#***‘t***#**#*t‘****t*##ﬁ**‘*“#3'*‘*#‘#/
double
Prob{double a,double v,double p,int R,double x,double m)
{
int i, k;
double Rdsh,tsum,t2, K3;
tsum=Rdsh=0.0;
if (exact)
{
for (k = 0, t2 = 0.0; k < (int) p; k++)
t2=t2+((((double)R*kalk]-1.5)*log(kalk]))~1nGamma((double)R*kalk]-1.0));
K3=exp(1lnGamma((double)R-1.0)+t2~v*+log(p)+0.5*(p-1.0)*log(2.0*3.14159));

for (i = 0, t2 = 0.0; 1 <= limit; i++)

C-36

Rdsh=exp(1lnGamma((double)m+a)-1nGamma((double)m+a+v+i));

t2 = t2 + Ri{i] * Rdsh * Ix{((double) m + a, v + 1, x);
}
tsum = K3 * t2;
}
else

tsum=Ix(m+a,v,x)+Ri[2]*(Ix(m+a,v+2,x)-Ix(m+a,v,x))/m/m;

return (tsum);

C-37

/‘t““““‘t‘#‘l‘tt‘!"l‘*tl‘##tt.#t"“tt‘ttl#t#“tt#‘

*=» DATE: 01/16/1992 =
=+ VERSION: 1.1 *x
=+ MODULE NAME: Newton() %
»» MODULE NUMBER: 1.4.2 %

*» DESCRIPTION:This module is used for computing the *=

B percentage point using Newton’s approx-—**
% imation method %
** PASSED VARIABLES: a, v, p, t, R, alpha, m **
** RETURNS:Newton (double) *
** GLOBAL VARIABLES USED: DATA_FILES, R *x
** GLOBAL VARIABLES CHANGED: None %
*+ FILES READ: None *%
*+ FILES WRITTEN:None . **
=+ HARDWARE INPUT: None =
=+ HARDWARE OUTPUT:None *x
** MODULES CALLED: Prob{(), Inv_Beta() *x

+« CALLING MODULES: Compute_Percentile(), Process_Equal#

*¥ and Process_Unequal in table.c , *x*
=+ AUTHOR: Salah A. Elewa *x
*» HISTORY: »x
*% 1.0 Capt. K. N. Cole 01/05/1985 *x
*x Initial Version T
** 1.1 Salah A. Elewa 01/16/1992 *x
** Header modified, Variable names changed *x

tt‘l‘*#‘*#‘#‘t‘tt*tttt#t#‘i#‘ttttt#*‘“ttt‘tttt*##**##*/
double

Newton(double a,double v,double t,double p,int R,double alpha,double m)

double Inv_Beta(double, double, double);
double z[FEWTON_LIMIT + 2], pa[NEWTON_LIMIT + 2];
double sp, X;

int k, done;

z[1] = Inv_Beta(alpha, (double) R - t, v);
it (p <= 3.0)
z[2} = z[1]
else if (z[1] > 0.05)
z[2] = z[1]

+

0.05;

0.05;
else
z{2] = 2(1] 7/ 2.0;
x = z[1];
sp = Prob(a, v, p, R, x,m);
pal1l = sp;
done = FALSE;
for (k = 2; (k <= NEWTON_LIMIT) && 'done; k++)
. P
if (z[k] > 1.0)
z[k] = z[k - 1] + ((1 - z[k - 1]) / 2.0);
x = z[k];
sp = Prob(a, v, p, R, x,m);
palk]l = sp;
if (fabs(sp ~ alpha) < 0.0000001)
done = TRUE;
else
z[k+1] = z[k)-(z[k]-z[k-1]))*(sp-alpha)/(sp-palk-11);
if (z[k + 1] < 0.0)
z[k + 1) = z[x] / 2.0;
if ((sp > 1.0) |l (sp < 0.0))
{
printf ("\nNewton.c:Incorrect Prob Value %t %f \n",x,sp);

done = TRUE;

}

return (z(k - 1]);

C-39

/tt‘t*"t##t“#*‘tt##‘t#l!"##“#*“#"‘tt“‘ttt‘lttt" I

=* DATE: 01/16/1992

=%

*¥

*x

VERSION:

1.

1

MODULE NAME: 1lnGamma()

MODULE NUMBER:

1.4.3

DESCRIPTION:This module is used for computing the

the natural log of the Gamma function

«* PASSED VARIABLES: dx

+** RETURNS:1lnGamma (double)

»+ GLOBAL VARIABLES USED: None
»* GLOBAL VARIABLES CHANGED: None
=x FILES READ: None

*» FILES WRITTEN:None

=+ HARDWARE INPUT: None

*» HARDWARE OUTPUT:None

*+ MODULES CALLED: None

** CALLING MODULES: Prob(), Ix()
** AUTHOR: Salah A. Elewa

=% HISTORY:

* ¥

1.0 Capt. K. N. Cole 01/05/198%

% Translated from Pascal code

** (Original by Capt. Mark Amell)
** 1.1 Salah A. Elewa 01/16/1992
s

Header modified, module name changed

* %

**x

x¥

*%

* %

* %

**

*x

* %

* %

* %

e N Tt L LT I T YT R S S V4

double 1lnGamma{double dx)

{
double rdo, dy, dterm, de, da, db, domeg, dlggm;
double ds, dz, dw, dv, du, dt, dr, dq, dp;
rdo = 0.0;
dy = dx;

C-40

domeg = 1.0e25;
da = 0.8999999999;
db

1.0000000001;
dlggm = domeg;
if (dx >= rdo)

{
dlggm = rdo;
if ((dx <= da) || (dx >= db))
{
if ((dx <= (da + de)) || (dx >= (db + de)))
{
vhile ((dy - 18.00) <= 0.0)
{
dterm = dterm * dy; “
dy = dy + de;
}
ds = de / (dy * dy);
dz = (double) 0.005410256410256410;
dw = (double) -0.001917526917526918;
dv = (double) 0.0008417508417518418;
du = (double) -0.0005952380952360952;
dt = (double) 0.0007936507936507937;
dr = (double) -0.002777777777777778;
dgq = (double) 0.08333333333333333;
dp = (double) 0.9189385332046727;
dlggm = ((dy-0.5)*log(dy))+dp-dy-log(dterm);
dlggm = dlggm+((((((dz*ds+dw)*ds+dv)*ds+du)*
ds + dt) * ds + dr) * ds + dq) / dy;
}
}
}

return (dlggm);

C-41

/*
==
s
s
*%
*%
%
T k%
. %
L
*x
*%
* %
*%
x%
**
*%
* %
*%
**
* %
* ¥
**
**
*%
**
"%
do
{

EEREEEREERERE R R R B R ERERE R AR R R R R BB SRR R R R R R R AR E R Rk R F
DATE: 01/16/1992 *x
VERSION: 1.1 . **
MODULE NAME: Ix() %
JODULE NUMBER: 1.4.4 **
DESCRIPTION:This module is used for calculating thess

Incomplete Beta function using the con-*#

tinued fraction method. **

PASSED VARIABLES: a,b,x %
RETURNS:Ix(double) xx
GLOBAL VARIABLES USED: None *x
GLOBAL VARIABLES CHANGED: None **
FILES READ: None b
FILES WRITTEN:None o *
HARDWARE INPUT: None **
HARDWARE OUTPUT:None **
MODULES CALLED: Betacf(), lnGamma() -
CALLING MODULES: Prob(), Inv_Beta() **
AUTHOR: Salah A. Elewa **
HISTORY: "
1.0 Taken from "Numerical Recipes in C" by ==
William H. Press and Others, Cambridge **
University Press,pp.179,1990. *x

1.1 Salah A. Elewa 01/16/1992 s
Header Added, nrerror() function replaced*#

by printf() function x%
t*t**tttt####t#*#**#ttt****t#‘tt#*#t#*#**##*t*tt#t***/

uble Ix(double a,double b,double x)

double Betacf(double a, double b, double x);
double bt;

if (x <0.0 1] x> 1.0)

printf("Bad x in routine Ix()\n");

C-42

if (x == 0.0 || x == 1.0)
bt = 0.0;
else /* Factors in front of the continued fraction #*/
bt=exp(lnGamma(a+b)-1nGamma(a)-1nGamma(b)+a*log(x)+b*log(1-x));
if(x<(a+1.0)/(a+b+2.0))/* Use continued fractions directly */
return bt * Betacf(a, b, x) / a;
else
return 1.0 ~ bt * Betacf(b, a, 1.0 - x) / b;

/+Use continued fractions after making symmetry transformations*/

C-43

P e L Yy

=» DATE: 01/16/1992 **
=+ VERSION: 1.1 *%
#» MODULE NAME: Betacf() »*
** MODULE NUMBER: 1.4.5 =

** DESCRIPTION:This module is used for evaluating the #**

. L continued fractions for the Ix() funct-#=
ik tion above. =
** PASSED VARIABLES: a,b,x *x
** RETURNS:Betacf(double) a
»* GLOBAL VARIABLES USED: None *=
** GLOBAL VARIABLES CHANGED: None **
** FILES READ: None **
** FILES WRITTEN:None **
** HARDWARE INPUT: None *x
*» HARDWARE OUTPUT:None *%
** MODULES CALLED: None *%
=% CALLING MODULES: Ix() *x
»* AUTHOR: Salah A. Elewa Toxx
*x RISTORY: *
X 1.0 Taken from "Numerical Recipes in C" by »*
*x William H. Press and Others, Cambridge *%
** University Press,pp.180,1990. **
** 1.1 Salah A. Elewa 01/16/1992 *x
** Header Added, nrerror() function replaced**
= by printf() function =

“*#t‘tt#t“*"#‘#l*tt#‘*t“ttt"*#**##**###‘*““*‘t#!/
double Betacf(double a, double b, double x)
{

double qap, gam, gab, em, tem, d;

double bz, bm = 1.0, bp, bpp;

double az = 1.0, am = 1.0, ap, app, aold;

int m;

C-44

qa

b=a+b;

qap = a + 1.0;

gam = a - 1.0;

bz
fo
{

}
Pr

Ire

= 1.0 -~ gab * x / qap;
r (m = 1; m <= ITHAX; m++)

/* continued fraction evaluation by the recurrence method */
em = (double) m;

tem = em + em;

d=emx* (b-em) * x/ ({(qam + tem) * (a + tem));

ap = az +d * am;

/* One step (the even one) of the recurrence */

bp = bz + d * bm;

d=-(a+ em) * (qgab + em) * x / ((gap + tem) * (a + tem));
app = ap + d * az;

/% Next step of the recurrence (the odd one) */

bpp = bp + d * bz;

aold = az; /* Save the old answer */

am = ap / bpp; /* Renormalize to prevent overflows */
bm = bp / bpp;

az = app / bpp;

bz = 1.0;

if (fabs(az - aold) < (EPS * fabs(az)))

return az; /* Are we done */

intf("a or b too big or ITMAX too small in BETACAF \n");

turn 0.0;

/‘ti“tt##t‘t‘t“"t‘##“#*t*#lt#‘####*‘t#‘#*"*#tt##“#

x
%
.
%
'L

Caw
.
*%
T
-
%
*x
%
"
*x
%
-
*x
-k
*x
*x
%

%k

DATE: 01/16/1992

VERSION: 1.1

MODULE NAME: 1nv_Beta

MODULE NUMBER: 1.4.6

DESCRIPTION:This module is used for computing the
inverse Beta function

PASSED VARIABLES: alpha, p, g

RETURNS:Inv_Beta(double)

GLOBAL VARIABLES USED: None

GLOBAL VARIABLES CHANGED: None

FILES READ: None

FILES WRITTEN:None e e

HARDWARE INPUT: None

HARDWARE OUTPUT:None

MODULES CALLED: Ix()

CALLING MODULES: Newton()
AUTHOR: Salah A. Elewa
HISTORY:
1.0 Capt. K. N. Cole 01/05/1985
Translated from Pascal code
(Original by Capt. Mark Amell)
1.1 Salah A. Elewa 01/16/1992
Header modified, module name changed

*%

%

%

*x

*%

* %

x %

*%

*%

*%

* %

* %

*x

* %

x %

x%

tt‘t#tt###‘##*“‘*ﬁ‘#*‘#t#t‘*‘t‘*“tt#tt‘t‘ﬁt‘t#tt‘*###/

do
{

uble Inv_Beta(double alpha, dcuble p, double q)

int jj.)end,],i;

double dp,dl,dif,dlx,dux,dmp,decr,dmpu,dm,dn,du,dfd,

dabf,dfune,espl,esp2,esp3,esp4;
boolean flag;

double darg[5],dfun(5];

espl = 1.0e-180;

C-46

esp2 = 1.0e~13;
esp3 = 1.0e-11;

espd = 1.0e-10;

dp = alpha;
dm = p;

flag = TRUE;
dn = q;

du = 1.0;

if (((dp * (du-dp))<0.0)!1((dm<0.0){|(dn<0.0)))
dmp = 0.0;

else if ((dp * (du - dp)) == 0.0)
dmp = alpha;

else if (dm == 1.0) -
dmp = du - exp((du / dn) * log(du - dp));

else if (dn == 1.0)

dmp = exp((du / dm) * log(dp));

else

{
flag = FALSE;
dl = 0.0;

dif = 1.0 / 3.0;
dlx = -dp;

dux = du - dp;

ij = 0;
dmpu = 0.0;
jend = 3;

while ((jj < 25) && ('flag))
{
if (jj == 25)

while ((j <= jend) && (!flag))
{

C-47

dmp = (du + dl) / 2.0;
i=1;
if (((du-dl)<esp1)|!(((du-dl)<(esp2*dp))t&(dl>esp2)))
flag = TRUE;
else
while ((i < 3) && ('flag))
{
darg(i]

dl + (du - d1) = dif =* i;
dfunf{i]

Ix(dm, dn, dargli]) - dp;
if (dfun[i} == 0)

dmp = darglil;
if (dfun[i] == 0)

flag = TRUE; . o
else if ((dfun[i]) < 0.0) && (i == 2))

{
dl = dargl[2];
dilx = dfun{2];
}
else if (dfun[i] > 0.0)
{
du = dargl[i];
dux = dfunfi];
if (i == 2)
{
dl = dargl(1];
dlx = dfun{1];
}
else
i=2;
}
441
}
++3;

C-48

if ('flag)
{
jend = 2;

dmp = (du + dl1) / 2.0;
dfd = dux - dlx;

if ((dfd < esp3) && (dfd < (esp4d * dp)))

flag = TRUE;
}

it (‘flag)

{

decr = dux * (du - dl) / difd;
dmp = du - decr;
if (((dmp-dl)<esp1) || (((dmp-dl)<esp2)k&(d1>esp2)))

flag = TRUE;
if ('flag)
{

dfun[3] = Ix(dm, dn, dmp) - dp;
dabf = fabs(dfun[3]);
dfune = dfun[3]; '
1if(((dabf<esp3)t&(dabsf<(esps*dp)))|1((dmp<espl)|]
(((du-dmpu)<esp2)&&(du>0.999999999999)) | |
(dfun(3] == 0.0)))
flag = TRUE;
}
if ('flag)
{
if (dfun[3] < 0.0)
{
if (decr < (0.9 * (du - d1)))
{
dl = dmp,
dlx = dfune;

else

C-49

dmpu = dmp;
dmp = 5.0 * (dmp - d1) + dl;
dfune = Ix(dm, dn, dmp) - dp;
if (dfune == 0.0)

flag = TRUE;
if ('flag)
{

if (dfune < 0.0)

{

dl = dmp;

dlx = dfune;

else

du = dmp;
dux = dfune;
dl = dmpu,;

dlx = dfun[3];

else

if (decr >= (0.1 *» (du - d1)))
{
du = dmp;

dux = dfune;

else

dmpu = dmp;

dmp = du - 5.0 * decr,

dfune = Ix(dm, dn, dmp) - dp;
if (dfune == 0.0)
flag = TRUE;
if ('flag)
{
if (dfune < 0.0)
{
du = dmpu;
dux = dfun(3];
dl = dmp;
dlx = dfune;

}
else
. —
du = dmp;
dux = dfune;
}
}
}
}
}

}
return (dmp);

C-51

/'““‘*“'#tt‘#‘tt‘ttt‘*t#t#‘tt###t#“‘t##‘#t##‘#t#“*t

** DATE:01/16/1992 *x
»* VERSION: 1.0 Y
** TITLE: Coefficients file *%
»» FILENAME: coefs.c *%
** COORDINATOR: Salah Amin Elewa %

-** PROJECT:Development of an Environment for Software *x*

** Reliability Model Selection. **
*» OPERATING SYSTEM: MS DOS version 2.3 or higher **
% LANGUAGE: Turbo C (2.1) b

** FILE PROCESSING: Compile and link with files pms.c **

** compute.c, prep.c, and prob.c. **
*x CONTENTS: %
. 1.4.1 - Ri_Coef() o -
** 1.4.2 - q_Coef() s
** 1.4.3 - Ar_Coef() x
% 1.4.4 -~ Create_Dixr() *%
*% 1.4.5 ~ Create_Cir() * %
*% 1.4.6 -~ Bern_Poly() T
*x 1.4.7 ~ Bern_Num() *x
*x 1.4.8 - com() **

x FUNCTION: This file includes the routines used for ==
b creating the different coefficients needed by *=*
¥ the environment. *%
ERRRRAEE AR R R KRR ARGk h kR R Rk kR ks [
#include <math.h>

#include "defs.h"

boolean bflag = FALSE;

double ka[MAX_SAMPLES + 1];

double Ri[DATA_FILES + 1], Ar[DATA_FILES + 1];
void Ar_Coef(double, double);

void Ri_Coef(double, double, double, double);

C-52

static
static
static
static

static

double
double
double
double
double

com(int, int);

Bern_Poly(int, double);
q[DATA_FILES+1] ,barray[DATA_FILES+2];
Cir [DATA_FILES + 1J[DATA_FILES + 1];
Dir [DATA_FILES + 1) [DATA_FILES + 1];

/#t#t*‘#t‘*‘t*ﬁt##*"‘t##t#l‘#*#i##tt“.#t‘##‘ttt‘#“ttt

*s DATE: 01/16/1992 **
#»+ VERSION: 1.1 =
*+ MODULE NAME: Ri_Coef() ¥
*» MODULE NUMBER: 1.4.1 ¥

** DESCRIPTION: This module is used for creating the *»

L ** Ri coefficients needed by Process_Equal and =*x
*x Process_Unequal in table.c and Prob() module *=
*% PASSED VARIABLES: p,delta,a,v .4
** RETURNS:None %

+ GLOBAL VARIABLES USED: q[], Dir[], Ri[], DATA_FILES»*

** GLOBAL VARIABLES CHANGED: Ri[] x
** FILES READ: None *x
** FILES WRITTEN: None *x
** HARDWARE INPUT: None xx
«* HARDWARE OUTPUT: None *x
** MODULES CALLED: Create_Dir(), gq_Coef() *2

** CALLING MODULES: Process_Equal and Process_Unequal *=*

** in table.c and Compute_Percentile() T ok
** AUTHOR: Salah A. Elewa **
** HISTORY: *3*
> 1.0 Capt. K. N. Cole 08/05/1985 s
= Translated from Pascal code x*
s (Original by Capt. Mark Amell) **
= 1.1 Salah A. Elewa 01/16/1992 *»
% Header modified, module names changed ok

‘t#“##*#*i‘ﬁ#‘##*‘#‘#*‘*##*“t#t#‘t##t*#*##*##l*tttt*#,
void Ri_Coef(double p, double delta, double a, double v)
{

void g_Coef (double, double);

void Create_Dir(double, double);

double sum;

int i, k;

Create_Dir(a, v);
q._Coef(p, delta);
Rifo] = 1.0;
for (i = 1; i <= DATA_FILES; i++)
{
for (sum = 0.0, k = 1; k <= i; k++)
sum = sum + Rili - k] » Dir[i - k] [k];
Ri[i] = (qli) - sum) / Dir[il[0];
}

return;

C-55

/*
%
%
*x
%
*x
L%
%
**
*%
*x
*%
*%

x%

*%
x%
*%
*%
*%
*x%
*%
*k
vo

{

AR RRIARABEREERER R R R AR AR AR E R RS R R RN K
DATE: 01/16/1992 . **
VERSION: 1.1 %
MODULE NAME: gq_Coef() xx
MODULE NUMBER: 1.4.2 *=*
DESCRIPTION:This module is used for calculating the*=

q coefficients for module Ri_Coef %

PASSED VARIABLES: p,delta Ll
RETURNS :None **
GLOBAL VARIABLES USED: Ar[3, q[l, DATA_FILES s
GLOBAL VARIABLES CHANGED: q[] *x
FILES READ: None *%
FILES WRITTEN: None _ *x
HARDWARE INPUT: None **
HARDWARE OUTPUT: None %
MODULES CALLED: Ar_Coef() **
CALLING MODULES: Ri_Coef() **
AUTHOR: Salah A. Elewa **
BISTORY: T
1.0 Capt. K. N. Cole 08/05/1985 %
Translated from Pascal code **

(Original by Capt. Mark Amell) *%

1.1 Salah A. Elewa 01/16/1992 *%
Header modified, module names changed xx

ttt#tt##****##**#t*‘*t##*t#****‘*##*#***t*t*tt#**#*/

id q_Coef(double p, double delta)

int i, k;

double sum;

Ar_Coef(p, delta);

qlol = 1.0;
for (i = 1; i <= DATA_FILES; i++)
{

for (sum = 0.0, k = 1; k <= 1i; k++)
sum = sum + k * Ar[k] * qli - X];
qfi] = (1.0 / (double) i) #* sum;
}

return;

/t““tt#t###'*##‘#‘#‘#tt#‘****‘tt###*#ttt“##t*#t‘t#*t#

%
%
-x
%
**
%

Tk
%
*%
*%
L2 3
%
*%
*%
%
*%
x%
*%
*%
%
*%
%
*k
*%

* %

DATE: 01/16/1992 *%
VERSION: 1.2 **
MODULE NAME: Ar_Coef() x
MODULE NUMBER: 1.4.3 *x
DESCRIPTION:This module is used for calculating thes=*
Ar coefficients for module q_Coef **

PASSED VARIABLES: p,delta **
RETURNS:None *x
GLOBAL VARIABLES USED: Ar[], xall, DATA_FILES »*
GLOBAL VARIABLES CHANGED: Ar[] >
FILES READ: None x
FILES WRITTEN: None *x
HARDWARE INPUT: None T *x
HARDWARE OUTPUT: None i
MODULES CALLED: Bern_Poly() *x
CALLING MODULES: q_Coef and Process_Equal and *%
Process_Unequal in table.c %

AUTHOR: Salah A. Elewa =
HISTORY: 4 **
1.0 Capt. K. N. Cole 01/12/1984 **
{Initial Version) =

1.1 Capt. K. N. Cole 05/10/1985 w*
Modified for new formula **

1.2 Salah A. Elewa 01/16/1992 **

Header modified, module names changed **

#tt##‘!t##!tt*ltt#tttt*ti‘#****##‘#t*t#**t‘*‘#‘***###t‘/

void Ar_Coef(double p, double delta)

{

double factor, partial;
int 1, k;

Ar[0) = 1.0;

factor = 1.0;

C-58

for (k = 1; k <= DATA_FILES; k++)
{
factor = factor * -1.0 / p;
for (partial = 0.0, i = 0; i < p; i++)
partia1=partia1+8ern_Poly(k+1,(delta*ka[i]~1))/exp(log(ka[i])#k);
Ar[k] =(factor/(double) (k*(k+1)))*(partial-Bern_Poly(k+1,(delta-1)));
}
return;

}

/‘t‘*“#‘t#t#‘tt##t##ttt'l#i“t‘tl"“t‘t“#tt'#‘#‘#‘#'t

x%

x %

* %

x%

» %

. %%

%

*%

*%

* %

*%

* %

* %

* %

* %

* %

*%¥

* %

* %

* ¥

* Xk

* %k

* %

* ¥

DATE: 01/16/1992

VERSION: 1.2

MODULE NAME: Create_Dir()

MODULE NUMBER: 1.4.4

DESCRIPTION:This module is used for creating the
Dir coefficients for module Ri_Coef

PASSED VARIABLES: a,v

RETURNS:None

GLOBAL VARIABLES USED: Cir{], Dir[], DATA_FILES

GLOBAL VARIABLES CHANGED: Dir[]

FILES READ: None

FILES WRITTEN: None

HARDWARE INPUT: None

HARDWARE OUTPUT: None
MODULES CALLED: Create_Cir()
CALLING MODULES: Ri_Coef()
AUTHOR: Salah A. Elewa
HISTORY:
1.0 Capt. Mark F. Amell 01/12/1984
(Initial Version)
1.1 Capt. K. N. Cole 05/10/1985
Header added
1.2 Salah A. Elewa 01/16/1992

Header modified, module names changed

*¥

%

> ¥

x¥%

* %

* %

* %

*x %

*%

T

* %

*%

* %

*x

.

*x

t##tt‘t*tt###t‘#*###t‘**t*##**t*‘*tt**##t*t#*#*##‘t‘t#‘/

vo

{

id Create_Dir(double a, double v)
void Create_Cir(double, double);
int r, i, k;

double sum;

Create_Cir(a, v);

for (i = 0; 1 <= DATA_FILES; 1i++)

C-60

Dir[iJ[0] = 1.0;
for (r = 1; r <= DATA_FILES; 1++)
{
for (i = 0; i <= DATA_FILES; i++)
{
for (sum = 0.0, k = 1; k <= r; k++)
sum = sum + k * Cir[i]J[kx] = Dir[il[r - k];
Dir[il[xr] = sum / (double) r;

}

return;

C-61

/‘#““tt‘t‘.lt““#t#“‘t‘#“‘t#“#““‘ltltttt#“‘tt‘#

* %

* %

* %

* %

%

x%

x%

*x

x5

*¥

*x

* X

*%

* ¥

* *

* X

*x

*%

* %

*%

*x

%

* ¥

*¥

DATE: 01/16/1992

VERSION: 1.2

MODULE NAME: Create_Cir()
MODULE NUMBER: 1.4.5

DESCRIPTION:This module is used for creating the

%

*s

»*

%

%

Cir coefficients for module Create_Dir() ==

PASSED VARIABLES: a,v
RETURKS:None
GLOBAL VARIABLES USED: Cir[], DATA_FILES
GLOBAL VARIABLES CEANGED: Cir[]
FILES READ: None
FILES WRITTEN: None
HARDWARE INPUT: None
HARDWARE QUTPUT: None
MODULES CALLED: Bern_Poly()
CALLING MODULES: Create_Dir()
AUTHOR: Salah A. Elewa
RISTORY:
1.0 Capt. Mark F. Amell 01/12/1984
(Initial Version)
1.1 Capt. K. N. Cole 05/10/1985
Header added
1.2 Salah A. Elewa 01/16/1992

Header modified, module names changed

®%

*%

¥

*¥

*¥

* %k

* x

* %

* %

* %

* %

* %

* %

#t‘#‘*#‘#“*#“#*#*‘ttttttt##t#t*#*t*ttt#ttt‘t‘#tt#ﬁ‘#t/

vo

{

id Create_Cir(double a, double v)

int r, i, rt;

double sign, temp;

for (i = 0; i <= DATA_FILES; ++i)

Cir[i]([0] = 1.0;

C-62

for (sign = 1.0, r = 1; r <= DATA_FILES; ++1)
{
rt = xr + 1;
temp = Bern_Poly(rt, a);
for (i = 0; i <= DATA_FILES; ++4i)
cir[i) [r)=(sign/(r*(r+1.0)))*(temp-Bern_Poly(rt,a+v+1));
sign = sign * (-1.0);
}

return,

C-63

/‘t“‘*t‘*#'t‘tttt##tt*‘#t##l"‘ﬁ#‘t*##‘t##tt*##t‘#“tt#

x%

*%

» %

*%

*x

L

x¥

x%

*%

**

%

%

* ¥

*%

*%x

%

%

xx%

* ¥

* %

x%

* %

* %

DATE: 01/16/1992
VERSION: 1.1

MODULE NAME: Bern_Poly()
MODULE NUMBER: 1.4.6

DESCRIPTION:This module is used for creating the

Bernoulli polynomials
PASSED VARIABLES: n,x
RETURNS:Bern_Poly (double)
GLOBAL VARIABLES USED: barrayl[]
GLOBAL VARIABLES CHANGED: None
FILES READ: None
FILES WRITTEK: None
HARDWARE INPUT: None
HARDWARE OUTPUT: None
MODULES CALLED: Bern_KNum(), com()
CALLING MODULES: Ar_Coef(), Create_Cir()

AUTHOR: Salah A. Elewa
HISTORY:
1.0 Capt. K. N. Cole 08/05/1985
Translated from Pascal code
(Original by Capt. Mark Amell)
1.1 Salah A. Elewa 01/16/1992
Header modified, module name changed

* %

*%

¥

x%

*%

*%

*=%

=¥

*%

*%

*%x

%

*xx%

*%

*%x

=%

* %

*%

* ¥

* %

*x

t##t*tt*t*t‘tt‘*'tti‘*‘tt##‘*#*#itt*####*#‘*#*##tt**#t#/

do
{

uble Bern_Poly(int n, double x)
void Bern_Num(void);
int i;

double sum, power;

sum = 0.0;

pover = 1.0;

C-64

if ('bflag)
{
bflag = TRUE;
Bern_Num(); /* initialize barray »/
}
for (i = n; i >= 0; i--)
{
sum = sum + com(n, i) * barray[i] * power;
power = power % X;
}

return (sum);

A T e Y T L P S

«* DATE: 01/16/1992 %
=+ VERSION: 1.1 *%
»#» MODULE NAME: Bern_Num() %
** MODULE NUMBER: 1.4.7 * ¥

*» DESCRIPTION:This module calculates the Bernoulli * %

% numbers and stores them in array (barray)*=
*» PASSED VARIABLES: None -
a* RETURNS:None *s
»*% GLOBAL VARIABLES USED: barray[], DATA_FILES *x
*» GLOBAL VARIABLES CHANGED: barray([] **
** FILES READ: None *
** FILES WRITTEN: None o **
** HARDWARE INPUT: None *%
*» HARDWARE OUTPUT: None *x
** MODULES CALLED: com() **
** CALLING MODULES: Bern_Poly() *x
** AUTHOR: Salah A. Elewa **
** BISTORY: s
** 1.0 Capt. K. K. Cole 08/05/1985 **
* % Translated from Pascal code **
** (Original by Capt. Mark Amell) *x
*x 1.1 Salah A. Elewa 01/16/1992 *x
** Header modified, module name changed * %

*#tt“t#‘*t##‘#4**t*t##*t**#**#*t#**#*‘*#**#*##*###tt#t/
void Bern_Num(void)
double sum;

int i, J;

barray[0] = 1.0;
for (j = 1; j <= (DATA_FILES + 1); j++)
{

sum = 0.0;

C-66

for (i = 0; i <= (j - 1); i++)
sum = sum + com(j + 1, i) * barray[i];
barray[j] = (-1.0 * sum) / (j + 1);
}
for (j = 1; j <= (DATA_FILES + 1); j++)
{
i1 ((barray[jl< 0.0000001)&&(barray[j1> -0.0000001))
barray(j] = 0.0;
}

return;

C-67

[EEAE AR RS ER AR AR AR B R RR AR NS AR R C RN R BB R SRR RS

x%

*¥

%

%

*x

%

Tk

*x

*x

%

* %

*%

%

*%

*x

*%

* %

Tk

%

* %

*%

*k

*%

DATE: 01/16/1992
VERSION: 1.1

MODULE NAME: com()
MODULE NUMBER: 1.4.8

DESCRIPTION:This module calculates the number of

possible combinations
PASSED VARIABLES: n,i
RETURNS:com (double)

GLOBAL VARIABLES USED: None
GLOBAL VARIABLES CEANGED: None
FILES READ: None
FILES WRITTEN: None
HARDWARE INPUT: None
HARDWARE OUTPUT: None
MODULES CALY D: None
CALLING MODULES: Bern_Num(), Bern_Poly()
AUTHOR: Salah A. Elewa
HISTORY:
1.0 Capt. K. N. Cole 08/05/1985
Translated from Pascal code
(Original by Capt. Mark Amell)
1.1 Salah A. Elewa 01/16/1992

Header modified, module name changed

*%

* %

* %

* ¥

x%

L2 J

* %

*¥x

%

* %

*¥

x %

% %

*x

* %

* %

* %

tt‘3**#*######*t‘****#*#**#tttt*#t#***#t*****tt##**“ti/

do
{

uble com(int n, int i)

double prod, fn, fi, 1j;

fn = n;

fi = i;

2, = 1n - £fi;
prod = 1.0;

while (fi > 0.0)

prod = prod * (fn / fi);

fn = fn - 1.0;
fi = f1 - 1.0;
}
vhile (£j > 0.0)
{

prod = prod * (fn / £j);
fn = fn - 1.0;
fj =1 - 1.0;

}

return (prod);

C-69

P T T L Y

**x DATE: 01/16/1992 %
=+ VERSION: 1.0 *x
#» TITLE: Percentile Points File **
*» FILENAME: table.c *x
** COORDINATOR: Salah Amin Elewa %

.** PROJECT:Development of an Environment for Software *=*

** Reliability Model Selection. *¥ .
** OPERATING SYSTEM: MS DOS version 2.3 or higher *»
** LANGUAGE: Turbo € (2.1) **

** FILE PROCESSING: Compile and ~ink with files Prob.c=*=»

** and coefs.c L
**x CONTENTS: *x
x* 1.0 - main() - %
*x 1.0.1 - Get_Data() * %
*x 1.0.2 - Process_Equal() *%
** 1.0.3 - Process-Unequal() *x
** 1.0.4 - Print_Header() **

** FUNCTION: The modules in this file get information *»

*% about calculation method, whether falilures aresx
xx equal or unequal, the number of samples, and *=*
** number of failures then a table of percentage *=
** points at various significance levels and var-#=x
** ious total number of failures is then produceds*x*

t###********t##***‘t***t###t#tt*t*t#*#*t*#*t#*#t‘**#*tt*/
#include <stdlib.h>

#include <stdio.h>

#include <conio.h>

#include <math.h>

#include "defs.h"

extern void Ar_Coef(double, double);

extern void Ri_Coef(double, double, double, double);

extern double Newton(double, double, double, double, int, double, double);

C-70

extern double Ar{];
extern boolean exact;

extern double kall;

static double p;
static boolean equal;
.static int k, RINI, RINC;
static FILE *fp6;
static double alpha_i[MAX_ALPHA] =
{ /% These values can be changed in the defs.h file */
#ifdef ALPHA1
ALPHAL,
#endif
#ifdef ALPHA2
ALPHA2,
#endif
#ifdef ALPHA3
ALPHA3,
#endif
#ifdef ALPHA4
ALPHA4,
#endif
#ifdef ALPHAS
ALPHAS,
#endif
3

/lt*‘#“#tt#*‘#*t#*#t#*!#i‘l****‘*!“t**t“##*tt**.tt*#‘

* %

* %

¥
A%
*%
TS
'L
¥
'
%
*x
%
-
%
-

* %

DATE: 01/16/1991

VERSION: 1.0

MODULE NAME: main

MODULE NUMBER: 1.0

DESCRIPTION: This main program in for percentage

points generation

PASSED VARIABLES: None

RETURNS: None

HARDWARE INPUT: None

HARDWARE OUTPUT: None

MODULES CALLED: Get_Data()
Process_Equal()
Process_Unequal()

CALLING MODULES: None

AUTHOR: Salah Amin Elewa

HISTORY:

1.0 Salah Amin Elewa 01/16/1992

original version

*¥

* ¥

* %

**

*»

%

%

* %

* %

* %

'

%

xx

* %

x¥

* %

*x

*%

#t#ttt#*##******#*****#**t**#**it****t*itt#*##**#*tt#/

vo

{

1d main()

void Get_Data(void);
void Process_Equal(void);

void Process_Unequal(void);

clrser();

Get_Data();

if (equal)
Process_Equal(),

clse

Process_Urequal();

/“*l“‘###*#‘#‘tt#‘t##t#t“'*ttt*“tt##ttt#ttt‘t##t‘#t‘

*&

* X%

* %

*x

*x%

B X

* %

* %

* %

*x

*¥

*%

%

xx%x

* %

* %

* %

* %

DATE: 01/16/1992

VERSION: 1.0

MODULE NAME: Get_Data()

MODULE NUMBER: 1.0.1

DESCRIPTION: This module is used for obtaining inf-
ormation about the number of failures in dif-
ferent samples whether equal or unequal, the
required accuracy of calculations whether
exact or asymptotic and the initial and inc-
remental number of failures.

PASSED VARIABLES: None

RETURNS: None .

GLOBAL VARIABLES USED: exact, equal, p, RINI, RINC

GLOBAL VARIABLES CEANGED: exact, equal

FILES READ: None

FILES WRITTEN: Nomne

HARDWARE INPUT: Keyboard

HARDWARE OUTPUT: Screen '

MODULES CALLED: None

CALLING MODULES: The main program

AUTHOR: Salah A. Elewa

HISTORY:
1.0 Salah A. Elewa 01/16/1992

original version

* %

L E]

*%

%

*%

**

=%

*%

x*

* %

*x %

xx

* %

* %

*x%

xx

*¥

T

x %

x %

* ¥

*%

* %

* %

‘##‘#*‘*.‘*"#‘#i'#t*t‘t‘tt*#ttt#*#‘#t‘t"#“t"#‘##'#*/

vo

{

id Get_Data(void)

char ch;

puts{"\n\n\t Enter (E)qual (e) OR (U)negqual (u) Calculations ?");

for (;;)
{
ch = getche();

if (ch == ’u’ || ch == 'U’)
{
equal = FALSE;
printf("nequal\n");
}
else if (ch == ’e’ || ch == ’E’)
{
equal = TRUE;

printf(”quali\n");
else

printf ("\n\t\t\t Sorry! Jc is Unknown Choice", ch);

puts{"\n\t\t\t Try Again OR Press Ctrl+Break to Quit\n\n\n*);
}

if (ch == ’'u’ || ¢h == ’U’ || ch == e’ || ch == 'E’)
break;
}
puts("\n\n\t Enter (E)xact (e) OR (A4)symptotic (a) Calculations 7");
for (;3)
{

ch = getche();
if (ch == ’a’ || ¢h == &)
{
exact = FALSE;
printf(“symptotic\n”);
}
else if (ch == ’e’ || ch == ’E’)
{
exact = TRUE;

printf("xact\n");

else

C-74

printf("\n\t\t\t Sorry' Y%c is Unknown Choice", ch);
puts(”\n\t\t\t Try Again OR Press Ctrl+Break to Quit\n\n\rn")};
}
if (ch == ’a’ || ¢h == A’ || ch == ’e’ || ch == ’E’)
break;
}
puts("\n\n\t Enter Number of Samples p?");

scanf ("%1f", &p);

puts("\n\n\t Enter Initial Total Number of Failures RINI?");
scanf("%d", &RINI);

puts(*“\n\n\t Enter Increment to Total Number of Failures RINC7");

scanf("%d", &RINC);

R
-~1
o

/‘“‘t"#‘t##“tt“ttt‘tt’#“*.)“‘ttt"t##t"‘#"““#‘

*» DATE: 01/16/1992 **
** VERSION: 1.0 *x
*+ MODULE NAME: Process_Equal() *»
*+ MODULE NUMBER: 1.0.2 *%

*s DESCRIPTION: This module is used to calculate the *=

L *% percentile points in case of equal numher of #**
** failures in each sample. %
*+ PASSED VARIABLES: Nomne *x
=+ RETURNS: None *x
#* GLOBAL VARIABLES USED: kall,Ar[],p,RINI,RINC w*
** and Alpha_i[] %
**x GLOBAL VARIABLES CHANGED: kaf[J,Ar[] **

«x FILES READ: The file containing the failure times =x
*x or the times between failures **
** FILES WRITTEN: "signific.dat” file, where the perc-*»
*x entile points at different significance levelx**
** and different failures per sample are printed**
=* HARDWARE INPUT: None *x
** HARDWARE OUTPUT: None *x

** MODULES CALLED: Print_Header(),Ar_Coef(), Ri_Coef()==*

*x and Newton() **
*+ CALLING MODULES: The main program *x
#*+ AUTHOR: Salah A. Elewa %
#« HISTORY: P
] 1.0 Salah A. Elewa 01/16/1992 **
=% original version **

“#"““""‘!l“"t.‘t‘*‘"‘*"“‘l‘t““"“‘.““‘.‘/
void Process_Equal(void)

void Print_Header(void);

int i, r, R;

double xvalue, v, a, t, sum, delta, m;

C-76

if ((fp6 = fopen("signific.dat", "&")) == NULL)
{
printf(‘“can not open signific.dat file\n");
exit(1);
}
delta = 0.0;
Print_Header();
for (i = 0; i < (int) p; i++)
ka[il = 1.0 / p;
v=30+(p-1.0)/2.0;
sum = 0.0;
for (1 = 0; i < (int) p; i++)
sum = sum + (1.0 / kalil);
delta = (13.0 * (sum - 1.0)) / ((p - 110)“; 18.0);
a=(1.0-v)/ 20;
t=(p+1.0)/ (6.0 *p);
Ri_Coef(p, delta, a, v);
for (r = RINI; r <= RINI + 12 * RINC; r = r + RINC)
{ /* loop through r values
if (r < ((int) p + 1))
r = (int) (p + 1.0);
printf("\nl r=%3d I, r);
fprintf(fp6, "\n| r=%3d ", r);

R =1x * (int) p;

m = ((double) R - delta) / p;

for (k = 0; k < MAX_ALPHA &% alpha_ilk] > 0.0; k++)

xvalue = Kewton(a, v, t, p, R, alpha_i[k], m);
printf(" %8.61f |", xvalue);
fprintf(£fp6, " %8.61f |", xvalue);
}
}

*/

printf("\nt

printf (" — 4 I\n");

")

fprintf(fp6,"\nt— 1

|
fprintf(fp6," L

fclose(fp6);

J \nu) ;

H n);

/*tt‘##““*t##‘tttlt####‘*‘#*###ttt*tﬁt#l*‘*t**t#!ttt#t

x%

* %

* ¥

* %

* %

O 2 J

* %

* %

*%

*x

*%

* %

*x

* %

* %

*x ¥

* %

*%

* %

* ¥

* %

* %

* %

* %

xR

x%

k%

*%

* ¥

* &

DATE: 01/16/1992 *x
VERSION: 1.0 x»
MODULE NAME: Process_Unequal() *
MODULE NUMBER: 1.0.3 *x
DESCRIPTION: This module is used to calculate the ==

percentile points in case of unequal number of=
failures in each sample. **
PASSED VARIABLES: None *»*
RETURNS: None =
GLOBAL VARIABLES USED: kaf[],Ar[],p,RINI,RINC s
and Alpha_i[],k,MAX_ALPHA ==

GLOBAL VARIABLES CHANGED: kall, Ar([] *»
FILES READ: The file “ka2" or "ka3" (depending on #**

the number of samples). These files contain *»
the values of the kal] coefficients. Note that*
this module handles two cases of number of *%
samples but can easily modified (just redraw **
the header) to handle any number of samples. #**
FILES WRITTEN: "signific.dat" file, where the perc-#x
entile points at different significance levelxx
and different values of kal] are printed *x
HARDWARE INPUT: None **
HARDWARE OUTPUT: None * %
MODULES CALLED: Print_Header(),Ar_Coef(), Ri_Coef()*x*

and Newton() e

CALLING MODULES: The main program **
AUTHOR: Salah A. Elewa *x
HISTORY: **
1.0 Salah A. Eleva 01/16/1992 =
original version **

#t‘#t#*‘.‘t‘tt‘t‘t‘t“t"‘tt#t*‘t!t‘tt##t####‘tttttt#l'/

C-79

void Process_Unequal(void)
{
FILE *+fpi10;
int i, j, R;
void Print_Header(void);
double xvalue, v, a, t;

double sum, delta, m;

delta = m = 0.0;
if ((fp6 = fopen("signific.dat", "w")) == NULL)
{

printf(“"can not open signific.dat file\n");

exit(1);

for (k = 0; k < MAX_ALPHA && alpha_il[k] > 0.0; k++)
/* loop through alpha values */
{

Print_Header();

if (p < 2.9999)

{
if ((fp10 = fopen(”ka2", "r")) == NULL)
{
printf("\n Can NOT Find The File %s\n", fp10);
puts("\n Enter the CORRECT File Name OR Ctrl-C to Exit\n");
}
}
else
{

if ((fp10 = fopen("ka3", "r")) == NULL)

{

printf("\n\t\t\t Can NOT Find The File %s\n", £p10);
puts("\n\t\t\t Enter the CORRECT File Name OR Ctrl-C to Exit\n");
}

}
while (!feof(fp10))
{
if (p < 2.9999)
{
fscanf (fp10, "%1f %1f ", &kal[0], &kal1]);
printf("i%2.2£1%2.211|", kal[0], kal[1]);
fprintf(fp6, "[%2.2f1%2.21¢1", kal0], kal1]);
}
else
{
fscanf (£p10, "%1f %1f %1f ", &ka[0], &kal1), &ka[2]);
printf(”|%2.2f1%2.2111%2. 211", kal0], kal1], kal2]);
tprintf(£p6, "1%2.211%2.21£1%2.2£|", kal0], kal1], kal(2]);

v=30x*(p-10)/20;
sum = 0.0;
for (i = 0; i < (MAX_SAMPLES + 1) & kal[il > .0000001; i++)
sum = sum + (1.0 / kali]);
delta = (13.0 * (sum - 1.0)) / ((p - 1.0) * 18.0);
a=((.0-v)/2.0;
t={p+1.0)/ (6.0 * p);
Ri_Coef(p, delta, a, v);
for (j = 1; j <= 5; j++)
{
R

RINI + (j - 1) * RINC;

m = ((double) R ~ delta) / p;

if (ka[0] * R > 2.99999999)

{
xvalue = Newton(a, v, t, p, R, alpha_i[k], m);
printf(" %8.61f 1", xvalue);

fprintf(fp6, " %8.61f |", xvalue);

else

printf(" "),
fprintf(fp6, * ")
}
} /* loop through fail values */
printf("\n");
fprintf(fp6, "\n");

}

if (p < 2.99999)

{
printf (" b—-o> L —L L "y,
printf (" —1 1 I\n");
fprintf(fp6," L 4 4 L L_ny.
fprintf(£p6," L ‘ —I\n");

}

else

{
printf ("t : L ! ! "y,
printf(" —1 A I\n");
fprintf (fp6," —-1 . : 4 ")
fprintf (fp6," =L 4 L 4 \n");

}

printf (“\n\n\n");
fprintf(fp6, "\n\n\n");
}
fclose(fpl0);

fclose(fp6);

AT T T L e T YT

** DATE: 01/16/1992 *
=» VERSION: 1.0 **
** MODULE NAME: Print_Header() L
=+ MODULE NUMBER: 1.0.4 **

+ DESCRIPTION: This module is used for printing the =#

. *E table header both on the screen and the file *=*
xx named signific.dat **
** PASSED VARIABLES: None *x
=+ RETURNS: Nore *x

** GLOBAL VARIABLES USED: exact, equal, k, p, RINI, **

*x RINC,alpha_i ¥
** GLOBAL VARIABLES CHANGED: None hdd
*% FILES READ: HNone o — *%
** FILES WRITTEN: "signific.dat' file **
** HARDWARE INPUT: None **
»* HARDWARE OUTPUT: None **
« MODULES CALLED: None **
** CALLING MODULES: The main program Coxx
i AUTHbR: Salah A. Elewa **
xx HISTORY: **
** 1.0 Salah A. Elewa 01/16/1992 **
** original version **

*****#**##*******‘*********‘*‘t**‘*‘**##*******#‘#t*##*/
void Print_Header(void)

{

clrser();

if (equal)

{

printf("\n Percentage Points of L= “(p/R) with Equal Sample Sizes");
fprintf(fp6,"\n Percentage Points of L= ~(p/R) with Equal Sample Sizes");
}

else

printf("\n Percentage Points of L= “(p/R) with Unequal Sample Sizes");
fprintf(fp6, "\n Percentage Points of L= ~(p/R) with Unegqual Sample
Sizes");

b

if (exact)
{
printf(”\n\t Exact Method is used for Calculations");

fprintf(fp6, "\n\t Exact Method is used for Calculations");
else

printf("\n\t Asymptotic Method is used for Calculations");
fprintf(fp6, "\n\t Asymptotic Hetﬁoa iguﬁsed for Calculatioﬁs");
}
printf("\n\t\t Number of samples = /d\n", (int) p);
fprintf(fp6, “\n\t\t Number of samples = %d\n", (int) p);
if (equal)

{

printf (", T "),

printf (" —————— \n");

printf("| Failures |\t\t\t Level of Significance X'\t I\n");
printf("| } 1 T T ");
printf (" T \n");

printf("| Per Sample | 0.100 | 0.050 | 0.025 | 0.010 ");
printf(" | 0.005 I\n");

printf ("] t % % 1 ")

printf (" 44— ");

fprintf(fp6,” T ")
fprintf(fp6," 1 \n");

fprintf(fp6,"! Failures |[\t\t\t Level of Significance X‘\t I\n");
fprintf (fp6,"| } T T T ");
fprintf({p6," T {\n");

fprintf(fp6,"| Per Sample | 0.100 | 0.050 | 0.025 | 0.010 ");
fprintf(fp6," | 0.005 I\n");

fprintf(fp6,"} ; } ¢ } ");

fprintf(fp6," +- {");
else
if (p < 2.9999)

{

printf (", T "y,

printf (" ———————\n");
printf ("]‘®= %5.31fI\t\t Total number of Failures R\t\t |\n",
alpha_i[x]);

printf("% T } T I I ");
printf (" ——— \n");

printf("| k1 | k2 | %2d | %2d {", RINI, RINI+RINC);
printf(” %2d | /2d | %24 I\n" ,RINI+2+RINC,

RINI+3*RINC,RINI+4*RINC);

printf (" p—ri { } } % +");

printf (" ———— 81— \n");

fprintf(fp6," ; "y

fprintf(fp6," 1 \n");
fprintf(fp6, "] ‘A= Y5.311|\t\t Total number of Failures R\t\t |\n",
alpha_i[k]);

fprintf(fp6, “} T | I I T ")
fprintf(fp6," —1—— \n");

fprintf(fp6, "| k1 | k2 | %2d] %2d i", RINI,RINI+RINC);
fprintf(fp6, " Y2a 1 %2d 1 %24 J\n",RINI+2#RINC,

RINI+3*RINC,RINI+4+RINC);

fprintf(fp6, " p— }

fprintf(£p6," —+—— \n");

printf (" T "y,

printf (" ——— 0——— \n");

printf(”| &= %5.31f |\t\t Total number of Failures R\t I\n",
alpha_i[kx]);

]:u':mtf("L T T T T T T ")

printf(" __{\n")

printf("| k1 | x2 | k3 | h2d I %2d I, RINI,RINI+RINC);

printf(" %2d | %2d | %24 I\n" ,RINI+2*RINC,
RINI+3*RINC,RINI+4*RINC);

printf (" }—1 T t : ~ % —lr ")

printf(" \n");

fprintf (£p6," 1 — ");

fprintf(fp6," 1\n);

fprintf(fp6, "| K= %5.31f I\t\t Total number of Failures R\t I\n",
alpha_i[k]);

fprintf (fp6, " | T ' ' T T ")

fprintf(fp6," —,———{ \n")

fprintf(fp6,"| k1 | k2 | k3 | %24 } %2d I, RINI,
RINI+RINC);

fprintf (fp6," %24 | %2d | %24 \n",RINI+2*RINC,
RINI+3*RINC,RINI+4*RINC);

fprint?(£p6," b—rof 4 }] 4 | "y,

fprintf (fp6," —+———’ \n");

C-86

APPENDIX D.

Application of the PMS on Musa and Littlewood Failure Dala Sels

Table D.1

Data Analysis of Failure Set 1

F. Set

Swgnaficeance Level a

0.00025

[0.0005 |

0.001

[0.0025 | 0.005

.01

l

0025 |

0.05

SET.]

Two ldentical Sets or Set Compared with Itself L = 1.0

SET.2

Y70.092
L=0.994
C=0.903

Y /0.084
L=0.994
C=0.910

Y/0.077
L=0.994
C=0.917

Y /0.068
L=0.994
C=0.926

Y /0.060
L=0.994
C=0.934

Y /0.053
L=0.994
C=0.941

Y /0.043
L=0.994
C=0.951

Y /0.035
L=0.994
C=0.959

SET_4

N/-0.01
L=0.895
C=0.902

SET.5

N/-0.98
L=0.000
C=0.980

SET.6

N/-0.23
L=0.683
C=0.911

SET.14c

N/-0.85
L=0.040
C=0.892

SET.17

N/-0.01
L=0.880
C=0.894

SET_27

N/-0.65
L=0.211
C=0.895

SET. Sla

N/-0.92
L=0.000
C=0.925

SET.Slc

N/-0.95
L=0.000
C=0.954

SET_SS3

N/-0.95
L=0.000
C=0.954

SET._S54

N/-0.94
L=0.000
C=0.943

SET_Lt2

Y/0.011
L=0.927
C=0.916

Y70.005
L=0.927
C=0.922

N/-0.00
L=0.927
C=0.929

SET_Lt3

N/-0.08
L=0.867
C=0.945

Table D.2 Data Analysis of Failure Set 2

Significance Level o

0.00025

0.0005

0.001

0.0025

0.005

.01

0.025

0.05

Y/0.092
L=.994
C=0.903

Y /0.084
L=0.994
C=0.910

Y/0.077
L=0.994
C=0.917

Y /0.068
L=0.994
C=0.926

Y /0.060
L=0.994
C=0.934

Y/0.053
L=0.994
C=0.941

Y /0.043
L=0.994
C=0.951

Y/0.035
L=0.954
C=0.959

Two

Identical S

ets or Set Compared w

ith Itself L = 1.0

N/-0.03
L=0.804
C=0.833

N/-0.28
L=0.700
C=0.978

SET.6

N/-0.32
L=0.538
C=0.857

SET . 14c¢

N/-0.13
L=0.074
C=0.804

SET._17

Y/0.074
L=0.881
C=0.808

Y/0.060
1L=0.881
C=0.821

Y /0.047
L=0.881
C=0.834

Y/0.029
L=0.881
C=0.853

Y/0.015
L=0.881
C=0.867

N/-0.00
1=0.881
C=0.881

SET.27

N/-0.53
L=0.282
C=0.813

SET Sia

N/-0.73
L=0.157
C=0.889

SET.S1c

N/-0.54
1=0.405
C=0.943

SET_SS3

N/-0.57
L=0.371
C=0.943

SET_S54

N/-0.70
L=0.226
C=0.925

SET_Lt2

Y /0.092
L=0.962
C=0.870

Y /0.082
L=0.962
C=0.879

Y/0.073
L=0.962
C=0.889

Y /0.060
L=0.962
C=0.901

Y /0.051
L=0.962
C=0.911

Y/0.0412
L=0.9622
C=0.9210

Y /0.027
L=0.962
C=0.934

Y/0.017
L=0.962
C=0.945

SET.Lt3

N/-0.08
L=0.848
C=0.928

D-2

Table D.3

Data Analysis of Failure Set 4

F. Set

Significance Level a

0.00025

0.0005

0.001

0.0025

0.005

.01

0.025

0.05

SET.1

N/-0.01
L=0.895
C=0.902

SET.2

N/-0.03
L=0.804
C=0.833

SET_4

Two

Identical Sets or Set Compared wi

th Itself L = 1.0

SET.5

N/-0.33
L=0.649
C=0.978

SET.6

Y/0.030
L=0.886
C=0.856

Y70.020
L=0.836
C=0.867

Y/0.010
L=0.886
C=0.877

N/-0.00
L=0.836
C=0.891

SET . 14c¢

N/-0.77
L=0.034
C=0.802

SET.17

N/-0.25
L=0.557
C=0.806

SET.27

N/-0.63
L=0.135
C=0.811

SET Sl1a

N/-0.78
L=0.104
C=0.889

SET S1c

N/-0.61
L=0.330
C=0.943

SET_SS3

N/-0.64
L=0.303
C=0.943

SET_SS4

N/-0.75
L=0.173
C=0.925

SET_Lt2

N/-0.16
L=0.708
C=0.869

SET_Lt3

Y /0.068
L=0.996
C=0.928

Y/0.063
L=0.996
C=0.933

Y/0.057
L=0.996

C=0.939

Y /0.050
L=0.996
C=0.946

Y/0.045
L=0.996
C=0.951

Y/0.039
L=0.996
C=0.957

Y /0.032
L=0.996
C=0.964

Y/0.026
L=0.996
C=0.970

D-3

Table D.4 Data Analysis of Failure Set 5

Significance Level a

0.00025

0.0005

0.001

0.0025

0.005

.01

0.025

0.05

N/-0.98
L=0.000
C=0.980

N/-0.28
L=0.700
C=0.978

N/-0.33
1.=0.649
C=0.978

SET._5

Two

ldentical Sets or Set Compared wi

th Itself L = 1.0

SET.6

N/-0.46
L=0.517
C=0.979

SET 14c¢

Y /0.007
L=0.984
C=0.978

Y/0.005
L=0.984
C=0.979

Y /0.003
L=0.984
C=0.951

Y /0.001
L=0.984
C=0.983

N/-0.60
L=0.984
C=0.985

SET._17

N/-0.18
L=0.798
C=0.978

SET.27

N/-0.08
L=0.899
C=0.978

SET.Sla

Y /0.020
L=0.999
C=0.980

Y/0.018
L=0.999
C=0.981

Y/0.017
L=0.999
C=0.983

Y/0.015
L=0.999
C=0.985

Y /0.013
L=0.999
C=0.986

Y/0.011
L=0.999
C=0.988

Y /0.009
L=0.999
C=0.990

Y/0.00%
L=0.999
C=0.992

SET Slc

Y/0.012
L=0.995
C=0.983

Y/0.011
L=0.995
C=0.984

Y/0.009
L=0.995
C=0.985

Y /0.007
L=0.995
C=0.957

Y /0.006
L=0.995
C=0.98%

Y/0.005
L=0.995
C=0.990

Y/0.003
L=0.995
C=0.992

Y /0.002
L=0.995
C=0.993

SET.SS3

Y /0.006
L=0.989
C=0.983

Y/0.005
L=0.989
C=0.984

Y/0.003
L=0.989
C=0.985

Y/0.002
L=0.989
C=0.987

Y /0.000
L=0.989
C=0.988

N/-0.00
L=0.989
C=0.990

SET.S54

N/-0.10
L=0.882
C=0.981

SET_Lt2

N/-0.37
L=0.611
C=0.979

SET_Lt3

N/-0.98
L=0.000
C=0.952

D-4

Table D.5 Data Analysis of Failure Set 6

Significance Level o

F. Set 0.00025 | 0.00050 | 0.00100 | 0.00250 | 0.00500 | 0.01000 { 0.02500 | 0.05000

SET.1 N/-0.23
L=0.683
C=0.911

SET.2 N/-0.32
L=0.538
C=0.857

SET4 | Y/0.030 | Y/0.020 | Y/0.010 | N/-0.00
L=0.886 | L=0.886 | L=0.886 | L=0.886
C=0.856 | C=0.867 | C=0.877 | C=0.891

SET.5 N/-0.46
L=0.517
C=0.979

SET.6 Two Identical Sets or Set Compared with Itself L = 1.0

SET.14¢ | N/-0.82
L=0.013
C=0.835

SET.17 | N/-051
L=0.325
C=0.838

SET.27 | N/-0.78
L=0.060
C=0.842 /

SET S1a : N/-0.86
L=0.043
C=0.900

SET.Slc N/-0.75
L=0.194
C=0.946

SET_SS3 | N/-0.17
L=0.174
C=0.946

SET_SS4 | N/-0.85
L=0.083
C=0.930

SET_Lt2 | N/-0.42
L=0.462
C=0.885

SET_Lt3 | N/-0.02
L=0.909
C=0933

Table D.6 Data Analysis of Failure Set 14C

Sgntficance Levcl o

0.00025

0.00050

0.00100

0.00250

6.00500

0.01000

0.02500

0.05000

N/-0.85
L=0.040
C=0.892

N/-0.73
L=0.074
C=0.804

N/-077
L=0.034
C=0.802

SET.5

Y/0.007
L=0.984
C=0.978

Y /0.005
L=0.984
C=0.979

Y /0.003
L=0.984
C=0.981

Y /0.001
L=0.984
C=0.983

N/-0.00
L=0.984
C=0.985

SET.6

N/-0.82
L=0.013
C=0.835

SET_14c

Two

Identical Sets or Set Compared with Itself L = 1.0

SET.17

N/-0.62
L=0.145
C=0.766

SET.27

N/-0.19
L=0.579
C=0.774

SET.Sla

Y /0.040
L=0.916
C=0.876

Y /0.031
L=0.916
C=0.835

Y /0.022
L=0.916
C=0.894

Y/0.010
L=0.916
C=0.906

Y /0.001
L=0.916
C=0.915

N/-0.01
L=0.91G
C=0.925

SET.S1c

Y/0.032
L=0.972
C=0.939

Y/0.028
L=0.972
C=0.944

Y /0.023
L=0.972
C=0.948

Y/0.017
L=0.972
C=0.954

Y/0.013
L=0.972
C=0.959

Y /0.008
L=0.972
C=0.964

Y/0.002
L=0.972
C=0.970

N/-0.00
L=0.972
C=0.975

SET_SS3

N/-0.00
L=0.936
C=0.940

SET_SS4

N/-0.09
L=0.828
C=0.919

SET_Lt2

N/-0.77
L=0.081
C=0.851

SET_Lt3

N/-0.92
L=0.000
C=0.923

D-6

Table D.7

Data Analysis of Failure Set 17

F. Set

Significance Level o

0.00025

0.00050

0.00100

0.00250

0.00500

0.01000

0.02500

0.05000

SET.1

N/-0.01
L=0.880
C=0.894

Y/0.074
L=0.881
C=0.808

Y/0.060
L=0.881
C=0.821

Y/0.047
L=0.881
C=0.834

Y/0.025
L=0.881
C=0.853

Y/0.015
L=0.881
C=0.867

N/-0.00
L=0.881
C=0.881

N/-0.25
L=0.557
C=0.806

SET.S

N/-0.18
1.=0.798
C=0.978

SET.6

N/-0.51
L=0.325
C=0 838

SET_l4¢

N/-0.62
L=0.145
C=0.766

SET.17

Two

ldentical Sets or Set C

ompared with Itself L = 1.0

SET.27

N/-0.33
L=0.448
C=0.779

SET.Sla

N/-0.60
L=0.278

SET_S1c

L=0.556
C=0.940

SET_SS3

N/-0.42
L=0.521
C=0.910

SET_SS4

N/-0.56
L=0.364
C=0.920

SET_Lt2

Y/0.108
1.=0.962
C=0.854

Y /0.098
L=0.962
C=0.864

Y/0.087
L=0.962
C=0.875

Y /0.073
L.=0.962
C=0.889

Y /0.062
L=0.962
C=0.900

Y70.051
L=0.962
C=0.911

Y/0.036
L=0.962
C=0.926

Y/0.024
L=0.Y62
C=0.93%

SET_Lt3

N/-0.27
L=0.649
C=0.923

Table D.&8 Data Analysis of Failure Set 27

Significance Level o

F. Set 0.00025 | 0.00050 | 0.00100 } 0.00250 | 0.0000 | 0.01000 | 0.02500 | 0.C5000
SET.1 N/-0.68
L=0.211
C=0.893
SET2 | N/-053
L=0.282
C=0.813 N
SET_ 4 N/-0.68
1=0.135
C=0.811
SET.5 N/-0.08
L=0.899
C=0.978
SET.6 N/-0.78
L=0.060
C=0.842
SET_14c | N/-0.19
L=0.579
C=0.774
SET_17 | N/-0.33
L=0.448
C=0.779
SET.27 Two Identical Sets or Set Compared with Itself L = 1.0
SET Sia | N/-0.32
L=0.558
C=0.880
SET.Slc | N/-0.17
L=0.773
C=0.940
SET.SS3 | N/-0.22
L=0.722
C=0.941
SET_SS4 | N/-C.36
L=0.504
C=0.921
SET_Lt2 | N/-0.51
1.=0.350
C=0.857
SET_Lt3 | N/-0.83
L=0.097
C=0.924

Table D.9 Data Analysis of Failure Set SSla

F. Set

Swgnificance Level

]

0.00025

0.00050

0.00100

0.00250

0.00500

0.01000

0.02500

0.05000

SET.]

N/-0.92
L=0.000
C=0.925

SET.2

N/-0.73
L=0.157
C=0.889

SET 4

N/-0.:8
L=0.104
C=0.889

SET.S

Y /0.020
1.=0.999
C=0.980

Y/0.018
L=0.999
C=0.981

Y/0.017
L=0.999
C=0.983

Y/0.015
L=0.999
C=0.985

Y/0.013
L=0.999
C=0.986

Y/0.011
L=0.999
C=0.988

Y/6.009
1.=0.999
C=0.990

Y/0.008
L=0.999
C=0.992

SET.¢

N/-0.80
L=0.043
C=0.900

SET 14c

Y/0.040
L=0.916
C=0.876

Y /0.031
L=0.916
C=0.885

Y/0.022
L=0.916
C=0.894

Y/0.010
L=0.91¢
C=0.906

Y /0.001
L=0.916
C=0.915

N/-0.01
L=0.916
C=0.925

SET.17

N/-0.60
L=0.278
C=0.878

SET_27

N/-0.32
.=0.558
C=0.880

SET Sla

Two

Identical Sets or Set Compared wi

th Itself L= 1.0

SETS1c

Y /0.040
L=0.991
C=0.9052

Y/0.036
1.=0.991
C=0.955

Y/0.032
L=0.991
C=0.959

Y/0.027
L=0.99]
C=0.964

Y/0.624
L=0.991
C=0.967

Y/0.020
L=0.991
C=0.971

Y/0.015
L=0.991
C=0.976

Y /0.011
L=0.991
C=0.980

SET_SS3

Y/0.040
L=0.992
C=0.952

Y/0.037
L=0.992
C=0.955

Y/0.033
L=0.992
C=0.959

Y70.025
L=0.992
C=0.964

Y/0.025
L=0.992
C=0.967

Y/0.021
L=0.992
C=0.971

Y/0.016
L=0.992
C=0.976

Y/0.012
L=0.992
C=0.980

SET_S54

N/-0.06
L=0.884
C=0.939

SET_Lt2

N/-0.79
L=0.112
C=0.907

SET_Lt3

N/-0.94
L=0.000
C=0.941

Table D.10 Data Analysis of Failure Set §S1¢

Stgmificance Level o

0.00025

0.00050

0.00100

0.00250

0.00500

0.01000

0.02500

0.05000

N/-0.95
L=0.000
C=0.954

N/-0.54
L=0.405
C=0.943

N/-0.61
L=0.330
C=0.943

o

Y/0.012
L=0.995
C=0.983

Y/0.011
L=0.995
C=0.984

Y/0.009
1.=0.995
C=0.985

Y /0.007
L=0.995
C=0.987

Y /0.006
L=0.995
C=0.988

Y/0.005.
L=0.995
C=0.990

Y/0.003
L=0.995
C=0.992

Y/0.002
L=0.995
C=0.993

N/-0.75
L=0.194
C=0.946

14C

Y/0.032
L=0.972
C=0.939

Y/0.028
L=0.972
C=0.944

Y /0.023
L=0.972
C=0.948

Y/0.017
L=0.972
C=0.954

Y/0.013
L=0.972
C=0.959

Y/0.008
L=0.972
C=0.964

Y/0.002
L=0.972
C=0.970

N/-0.00
L=0.972
C=0.975

N/-0.38
L=0.556
C=0.940

(%)
~1

N/-0.17
L=0.773
C=0.940

SSla

Y /0.040
L=0.991
C=0.952

Y/0.0364
L=0.9911
C=0.9557

Y /0.032
L=0.991
C=0.959

Y /0.027
L=0.991
C=0.964

Y /0.024
L=0.991
C=0.967

Y /0.0206
L=0.9911
C=0.9715

Y/0.015
L=0.991
C=0.97¢6

Y/0.011
L=0.991
C=0.9380

sslc

Two

Identical Sets or Set Compared with Itself L =

1.0

SS3

N/-0.00
L=0.964
C=0.966

554

N/-0.16
L=0.799
C=0.960

Litt2

N/-0.64
L=0.310
C=0.948

Litt3

N/-0.96
L=0.000
C=0.961

Table D.11

Data Analysis of Failure Set S53

F. Set

Significance Level o

0.00025

0.0005

0.001

0.0025

0.605

.01

0.025

0.05

SET.1

N/-0.95
L=0.000
C=0.954

SET.2

N/-0.57
L=0.371
C=0.943

SET._4

N/-0.64
L=0.303
C=0.943

SET.5

Y/0.006
L=0.989
C=0.983

Y /0.005
L=0.989
C=0.984

Y /0.003
L=0.989
C=0.985

Y/0.002
L=0.989
C=0.987

Y /0.000
L=0.989
C=0.988

N/-0.00
L=0.989
C=0.990

SET.6

N/-0.77
L=0.174
C=0.946

SET_ 14c

N/-0.00
L=0.936
C=0.940

SET_17

N/-0.42
L=0.521
C=0.940

SET.27

N/-0.22
L=0.722
C=0.941

SET.Sla

Y/0.040
L=0.992
C=0.952

Y/0.037
1,.=0.992
C=0.955

Y/0.033
L=0.992
C=0.959

Y /0.028
1L=0.992
C=0.964

Y/0.025
L=0.992
C=0.967

Y/0.021
L=0.992
C=0.971

Y /0.016
L=0.992
C=0.976

Y/0.012
L=0.992
C=0.9%0

SET.S1c

N/-0.00
L=0.964
C=0.966

SET.SS3

Two

Identical Sets or Set Compared with Itself L = 1.0

SET_S54

N/-0.04
L=0.920
C=0.960

SET_Lt2

N/-0.67
L=0.274
C=0.948

SET_Lt3

N/-0.96
L.=0.000
C=0.961

D-11

Table D.12 Data Analysis of Failure Set SS4

F. Set

Significance Level a

0.00025

0.00050 | 0.00100 | 0.00250 | 0.00500

0.01000 | 0.02500 |

0.05000

SET.1

N/-0.94
L=0.000
C=0.943

SET.2

N/-0.70
L=0.226
C=0.925

SET_ 4

N/-0.75
L=0.173
C=0.925

SET.5

N/-0.10
L=0.882
C=0.981

SET.6

N/-0.85
L=0.083
C=0.930

SET_l4¢

N/-0.09
L=0.828
C=0.919

SET.17

N/-0.50
L=0.364
C=0.920

SET.27

N/-0.36
L=0.564
C=0.921

SET.Sl1a

N/-0.06
L=0.884
C=0.939

SET.Sl1c

N/-0.16
L=0.799
C=0.960

SET.SS3

N/-0.04
L=0.920
C=0.960

SET_S54

Two Identical Sets or Set Compared w

ith Itself L=1.0

SET_Lt2

N/-0.78
L=0.149
C=0.934

SET_Lt3

N/-0.95
L=0.000
C=0.953

Table D.13 Data Analysis of Failure Set Litt2

F. Set

Signaficance Level a

0.00025

0.00050

0.00100

0.00250

0.00500

0.01000 | 0.02500

0.05000

SET.1

Y/0.011
L=0.927
C=0.916

Y /0.005
L=0.927
C=0.922

N/-0.00
L=0.927
C=0.929

SET_2

Y/0.092
L=0.962
C=0.870

Y /0.082
L=0.962
C=0.879

Y/0.073
L=0.962
C=0.889

Y/0.060
L=0.962
C=0.901

Y/0.051
L=0.962
C=0.911

Y /0.041
L=0.962
C=0.921

Y /0.027
L=0.962
C=0.934

Y/0.017
L=0.962
C=0.945

SET.4

N/-0.16
L=0.708
C=0.569

SET.S

N/-0.37
L=0.611
C=0.979

SET.6

N/-0.42
L=0.462
C=0.885

SET_14c

N/-OTY
L=0.081
C=0.851

SET.17

Y/0.108
L=0.962
C=0.854

Y/0.098
1.=0.962
C=0.864

Y /0.087
L=0.962
C=0.875

Y /0.073
1=0.962
C=0.889

Y /0.062
L=0.962
C=0.900

Y/0.051
L=0.962
C=0.911

Y /0.036
L=0.962
C=0.926

Y /0.024
L=0.962
C=0.938

SET.27

N/-0.51
L=0.350
C=0.857

SET S1a

N/-0.79
L=0.112
C=0.907

SET Sic

N/-0.64
L=0.310
C=0.948

SET_SS3

N/-0.67
L=0.274
C=0.948

SET_SS4

N/-0.78
L=0.149
C=0.934

SET_Lt2

Two

Identical Sets or Set C

ompared wi

thItself L = 1.0

SET_Lt3

N/-0.27
L=0.671
C=0.936

Table D.14 Data Analysis of Failure Set Litt3

F. Data

Significance Level a

0.00025

0.00050

0.00100

0.00250

0.00500

0.01000

0.02500

0.05000

SET.1

N/-0.08
L=0.867
C=0.945

SET.2

N/-0.08
L=0.848
C=0.928

SET.4

Y /0.068
L=0.996
C=0.928

Y/0.063
L=0.996
C=0.933

Y/0.057
1=0.996
C=0.939

Y /0.050
L=0.996
C=0.946

Y/0.045
L=0.996
C=0.951

Y/0.039
L=0.996
C=0.957

Y /0.032
L=0.996
C=0.964

Y /0.026
L=0.996
C=0.970

SET.5

N/-0.98
L=0.000
C=0.982

SET.6

N/-0.02
L=0.909
C=0.933

SET_14c

N/-0.92
L=0.000
C=0.923

SET.17

N/-0.27
L=0.649
C=0.923

SET.27

N/-0.83
L=0.097
C=0.924

SET.Sla

N/-0.94
L=0.000
C=0.941

SET Slc

N/-0.96
L=0.000
C=0.961

SET_SS3

N/-0.96
L=0.000
C=0.961

SET_SS4

N/-0.95
L=0.000
C=0.953

SET_Lt2

N/-0.27
L=0.671
C=0.936

SET_Lt3

Two ldentical Sets or Set Compared with Itself L = 1.0

APPENDIX E. Eract and Asymptotic Percenlage Points of the Test
Statistic

Table E.1 Percentage Points of L = A7R when p=2

Failures Level of Significance o
per sample 0.100 0.050 0.025 0.010 0.005
=5 0.449752 | 0.368224 | 0.302557 | 0.234197 | 0.193293
r=6 0.529323 | 0.451446 | 0.386168 | 0.315083 | 0.270573
=7 0.589488 | 0.516492 | 0.453664 | 0.383167 | 0.337681
=8 0.636320 | 0.568307 | 0.508641 { 0.440245 | 0.395162
r=9 0.673746 | 0.610380 | 0.554012 | 0.488355 | 0.444380
r= 10 0.704265 | 0.645142 | 0.591966 | 0.529252 | 0.486724
r= 11 0.729615 | 0.674304 | 0.624117 | 0.564338 | 0.523397
r= 12 0.750998 | 0.699097 | 0.651667 | 0.594711 | 0.555387
=13 0.769267 | 0.720420 | 0.675515770.621226 | 0.583491
r= 14 0.785056 | 0.738947 | 0.696349 | 0.644554 | 0.608347
r= 15 0.798822 | 0.755189 | 0.714698 | 0.665224 | 0.630470
r= 20 0.847698 | 0.813374 | 0.781060 | 0.740910 | 0.712234
r= 25 0.877481 | 0.849270 | 0.822471 | 0.788849 | 0.764602
r= 30 0.897547 | 0.873605 | 0.850742 | 0.821874 | 0.800924
r= 35 0.911960 | 0.891182 | 0.871259 { 0.845990 | 0.827569
r= 40 0.922823 | 0.904472 | 0.886824 | 0.864365 | 0.847940
r= 45 0.931300 | 0.914870 | 0.899034 | 0.878829 { 0.864014
r= 50 0.938100 | 0.923229 | 0.908868 | 0.890509 | 0.877020
r= 55 0.94367G | 0.930093 | 0.916958 | 0.900137 | 0.887758
r= 60 0.948330 | 0.935831 | 0.923729 | 0.908210 | N.896773
r= 65 0.952274 | 0.940699 | 0.929480 | 0.915076 | 0.904449
r= 70 0.955658 | 0.944880 | 0.934425 | 0.920988 | 0.911063
=75 0.958595 | 0.948511 | 0.938722 | 0.926130 | 0.916822
r= 80 0.961167 | 0.951693 | 0.942490 | 0.930644 | 0.921880
r= 83 0.963438 | 0.954505 | 0.945822 | 0.934638 | 0.926359
r= 90 0.965458 | 0.957007 | 0.948789 | 0.938197 { 0.930352
r= 95 0.967266 | 0.959249 | 0.951448 | 0.941389 | 0.933935
r=100 0.968895 | 0.961268 | 0.953845 { 0.944268 | 0.937167
r=105 0.970369 | 0.963097 | 0.956016 | 0.946877 | 0.940098
r=110 0.971710 | 0.964761 | 0.957992 | 0.949252 | 0.942767
=115 0.972935 | 0.966281 | 0.959799 | 0.951425 | 0.945209
r=120 0.974058 | 0.967676 | 0.961456 | 0.953419 | 0.947451
r=125 0.975091 | 0.968960 | 0.962982 | 0.955256 | 0.949517
r=130 0.976046 | 0.970145 | 0.964392 | 0.956953 | 0.951427
r=135 0.976930 | 0.971244 | 0.965698 | 0.958527 | 0.953197
r=140 0.954843 | 0.959989 | 0.966912 | 0.959989 | 0.954843
r=145 0.956377 | 0.961352 | 0.968043 | 0.961352 | 0.956377
r=150 0.957811 | 0.962625 | 0.969099 | 0.962625 | 0.957811

E-1

Table E.2 Percentage Points of L = A% when p=:3
Failures Level of Significance «
per sample 0.100 0.050 0.025 0.010 0.005
r=5 0.267091 | 0.209072 | 0.165154 | 0.121904 | 0.097222
r=6 0.347988 | 0.286615 | 0.238030 | 0.187729 | 0.157509
=7 0.414579 | 0.352800 | 0.302399 | 0.248465 | 0.214986
r=8 0.469791 | 0.409111 | 0.358512 | 0.303058 | 0.267820
r=9 0.516029 | 0.457190 | 0.40730G | 0.351634 | 0.315624
r= 10 0.555170 | 0.498503 | 0.449832 | 0.394734 | 0.358595
r= 11 0.588651 | 0.534266 | 0.487063 | 0.433010 | 0.397157
=12 0.617573 | 0.565457 | 0.519835 | 0.467098 | 0.431792
r= 13 0.642778 | 0.592859 | 0.548847 | 0.497567 | 0.462971
r= 14 0.664924 | 0.617098 | 0.574674 | 0.524914 | 0.491123
r= 15 0.684524 | 0.638674 | 0.597791 | 0.549561 | 0.516626
= 20 0.756144 | 0.718456 | 0.684247 | 0.643088 | 0.614437
r= 25 0.801400 | 0.769596 | 0.740420G | 0.704924 | 0.679931
r= 30 0.832536 | 0.805089 | 0.779744 | 0.748663 | 0.726621
r= 35 0.855252 | 0.831139 | 0.808765 | 0.781180 | 0.761515
r= 40 0.872551 | 0.851062 | 0.831051 | 0.806281 | 0.788555
r= 45 0.886162 | 0.866788 | 0.848697 | 0.826235 | 0.810112
r= 50 0.897149 | 0.879515 | 0.863012 | 0.842472 | 0.827694
r= 55 0.906203 | 0.890025 | 0.874856C 0.855940/ 0.842304
r= 60 0.913794 | 0.898850 | 0.884818 | 0.867290 | 0.854635
r= 63 0.920248 | 0.906365 | 0.893313 | 0.876986 | 0.865181
r= 70 0.925804 | 0.912841 | 0.900642 | 0.885362 | 0.874303
r= 75 0.930637 | 0.918480 | 0.907029 | 0.892G72 | 0.882270
r= 80 0.934878 | 0.923435 | 0.912645 | 0.899107 | 0.889289
r= 85 0.938631 | 0.927821 | 0.917622 | 0.904814 | 0.895518
r= 90 0.941976 | 0.931733 | 0.922063 | 0.909911 | 0.901085
r=95 0.944974 | 0.935242 | 0.926050 | 0.914490 | 0.906089
r=100 0.947678 | 0.938409 | 0.929648 | 0.918626 | 0.910611
=105 0.950129 | 0.941280 | 0.932913 | 0.922381 | 0.914719
r=110 0.952360 |} 0.943896 | 0.935889 | 0.925805 | 0.918465
r=115 0.954401 | 0.946288 | 0.938G12 | 0.928939 | 0.921897
r=120 0.956274 | 0.948485 | 0.941113 | 0.931820 | 0.925051
r=125 0.957999 | 0.950509 | 0.943418 | 0.934476 | 0.927961
r=130 0.959593 | 0.952381 | 0.945550 | 0.936933 | 0.930653
r=135 0.961070 | 0.954116 | 0.947526 | 0.939213 | 0.933151
r=140 0.962444 | 0.955729 | 0.949365 | 0.941333 | 0.935476
r=145 0.963723 | 0.957232 | 0.951079 | 0.943311 | 0.937644
r=150 0.964919 | 0.958637 | 0.952681 | 0.945160 | 0.939672
E-2

Table E.3 Percentage Points of L = A% when p=4
Faalures Level of Significance «
per samplc 0.100 0.050 0.025 0.010 0.005
=5 0.163267 | 0.122321 | 0.09261G | 0.064596 | 0.049267
=6 0.236473 | 0.189151 | 0.153010 | 0.116830 | 0.095732
=7 0.300401 | 0.249806 | 0.209863 | 0.168396 | 0.143314
=8 0.356022 | 0.304056 | 0.262035 { 0.217265 | 0.189488
=9 0.404423 | 0.352264 | 0.309309 | 0.262631 | 0.233110
r= 10 0.446668 | 0.395040 | 0.351903 | 0.304292 | 0.273724
r= 11 0.483713 | 0.433048 | 0.390219 | 0.342349 | 0.311238
=12 0.516370 | 0.466919 | 0.424713 | 0.377045 | 0.345751
r= 13 0.545319 | 0.497216 | 0.455828 | 0.408675 | 0.377457
=14 0.571123 | 0.524427 | 0.483974 | 0.437543 | 0.406581
r= 15 0.594244 | 0.5489G7 | 0.509513 | 0.463938 | 0.433360
r=20 0.680921 | 0.642223 | 0.6078151°0.567186 | 0.539342
=25 0.737413 | 0.703997 | 0.673932 | 0.637973 | 0.613020
r= 30 0.777026 | 0.747748 | 0.721202 | 0.689182 | 0.666780
r= 35 0.806303 | 0.780303 | 0.756601 | 0.727839 | 0.707600
r= 40 0.828807 | 0.805451 | 0.784071 | 0.758012 | 0.739596
r= 45 0.846639 | 0.82545] | 0.805995 | 0.782199 | 0.765327
r= 50 0.861114 | 0.841734 | 0.823892 { 0.802011 | 0.786456
r= 55 0.873096 | 0.855244 | 0.838775 | 0.818533 | 0.804111
r= 60 0.883178 | 0.866633 | 0.851344 | 0.832517'| 0.819080
r= 65 0.891778 ! 0.876363 | 0.862099 | 0.844506 | 0.831930
=70 0.899199 | 0.884772 | 0.871405 | 0.854896 | 0.843081
=75 0.905669 | 0.892111 | 0.879536 | 0.863988 | 0.852848
r= 80 0.911359 | 0.898572 | 0.886701 | 0.872009 | 0.861472
r= 85 0.916402 | 0.904304 | 0.8930G63 | 0.879139 | 0.869143
r= 90 0.920903 | 0.909423 | 0.893749 | 0.885516 | 0.876010
= 95 0.924943 | 0.914022 | 0.903862 | 0.891256 | 0.882194
r=100 0.928592 | 0.918178 | 0.908483 | 0.896448 | 0.887790
r=105 0.931902 | 0.921950 | 0.912681 | 0.901167 | 0.892880
=110 0.934919 | 0.925390 | 0.916511 | 0.905475 | 0.897528
r=115 0.937680 | 0.928540 [0.920019 | 0.909424 | 0.901791
r=120 0.940217 | 0.931434 | 0.923244 | 0.913056 | 0.905713
r=125 0.942555 | 0.934104 | 0.926220 | 0.916408 | 0.909334
=130 0.944717 | 0.936573 | 0.928973 | 0.919511 | 0.912687
=135 0.946722 | 0.938864 | 0.931528 | 0.922393 | 0.915802
=140 0.948587 | 0.940996 | 0.933907 | 0.925075 | 0.918702
r=145 0.950326 | 0.942984 | 0.936125 | 0.927578 | 0.921409
=150 0.951951 | 0.944842 | 0.938199 | 0.929920 | 0.923941

E-3

Table E.4 Percentage Points of L = A% when p=5
Failures Level of Sygnificance a
per sample 0.100 0.050 0.025 0.010 0.005
r=6 0.163811 | 0.128060 | 0.101629 | 0.076017 | 0.061524
=7 0.220897 | 0.180198 | 0.148926 | 0.117309 | 0.098639
r= 8 0.273189 | 0.229512 | 0.195032 | 0.159134 | 0.137313
=9 0.320432 | 0.275122 | 0.238621 | 0.199779 | 0.175660
=10 0.362879 | 0.316854 [0.279183 | 0.238406 | 0.212663
r= 11 0.400973 | 0.354853 | 0.316617 | 0.274057 | 0.247814
r= 12 0.435198 | 0.389399 | 0.351028 | 0.308440 | 0.5806766
=13 0.466021 | 0.420820 | 0.382614 | 0.695443 | 0.491269
r= 14 0.4938G4 | 0.449441 | 0.411610 | 0.503296 | 0.340773
r=15 0.519099 | 0.475566 | 0.4338254 | 0.407376 | 0.367715
r= 20 0.616001 | 0.577404 | 0.543581 | 0.504181 | 0.477486
r= 25 0.681000 | 0.646942 | 0.616708 {-0.580990 | 0.556462
r= 30 0.727395 | 0.697127 | 0.670026 | 0.637715 | 0.615329
=35 0.762100 | 0.734949 | 0.710492 | 0.681142 | 0.660680
r= 40 0.789012 | 0.764436 | 0.742200 | 0.715385 | 0.696602
=45 0.810477 | 0.788053 | 0.767692 | 0.743047 | 0.725723
= 50 0.827992 | 0.807385 | 0.788623 | 0.765844 | 0.749786
r= 55 0.842552 | 0.823497 | 0.806G109 | 0.784047 | 0.769994
r= 60 0.854845 | 0.837129 | 0.820933 | 0.801183 | 0.787199
r= 65 0.865360 | 0.848812 | 0.833659 | 0.815148.| 0.802020
=70 0.874458 | 0.858934 | 0.844700 | 0.82728G | 0.814919
r= 75 0.882405 | 0.867788 | 0.8543069 | 0.837932 | 0.8243245
r= 80 0.889408 | 0.875598 | 0.862908 | 0.847346 | 0.836269
r= 85 0.895624 | 0.882538 | 0.870502 | 0.855728 | 0.845203
r= 90 0.901179 { 0.888745 | 0.877300 | 0.863240 | 0.853214
r= 95 0.906173 | 0.894330 | 0.883421 [0.870009 | 0.860438
r=100 0.910687 | 0.899382 | 0.8889G1 | 0.87CG141 | 0.86698¢
r=105 0.914787 | 0.903973 | 0.893999 | 0.881721 | 0.872948
r=110 0.918527 | 0.908164 | 0.898601 | 0.856820 | 0.878400
r=115 0.921953 | 0.912004 | 0.902819 | 0.891499 | 0.853403
r=120 0.925103 | 0.915537 | 0.906701 | 0.895807 | 0.888011
r=125 0.928008 | 0.918797 | 0.910285 | 0.899786 | 0.892269
r=130 0.930697 | 0.921814 | 0.913604 | 0.903472 | 0.896216
r=135 0.933192 | 0.924616 | 0.916687 | 0.906897 | 0.899884
r=140 0.935514 | 0.927224 | 0.919557 | 0.91008S | 0.903302
r=145 0.937679 | 0.929658 | 0.922236 | 0.913067 | 0.906494
r=150 0.939704 | 0.931934 | 0.924742 | 0.915855 | 0.909483

E-4

Table £E.5 Percentage Points of L = A% with unequal sample sizes
(e =.01, 05,p=2)

a=.01 Total Number of Failures R

ky ko 10 15 20 25 30
50 .50 | 0.234197 | 0.412950 | 0.529252 | 0.608405 | 0.665224
.45 .55 | 0.233263 | 0.412267 | 0.528772 | 0.608058 | 0.664963
40 .60 | 0.230377 | 0.410141 | 0.527275 | 0.606973 | 0.664148
.35 .65 | 0.225282 | 0.406314 | 0.524565 | 0.605006 { 0.662670
.30 .70 | 0.217567 | 0.400287 { 0.520250 | 0.601861 | 0.660302
.25 .75 0.391187 | 0.513586 | 0.596967 | 0.656606
.20 .80 0.377726] 0.503170 | 0.589184 | 0.650688
.15 .85 0.486527 | 0.576075 | 0.640521
a = .01 Total Number of Failures R

Xy ks 40 60 30 100 120
.50 .50 | 0.740910 | 0.821874 | 0.864365 | 0.890509 | 0.908210
.45 .55 | 0.740749 | 0.821796 | 0.864320 | 0.890479 | 0.908189
40 .60 | 0.740246 | 0.821552 | 0.864176 | 0.890385 | 0.908123
.35 .65 | 0.739332 | 0.821108 | 0.863916 | 0.890215 | 0.908002
.30 .70 | 0.737868 | 0.820398 | 0.863499 | 0.839941 | 0.907809
25 .75 0.735578 | 0.819285 | 0.862847 | 0.889513 | 0.907508
.20 .80 | 0.731893 | 0.817493 | 0.86179G | 0.888825 | 0.907022
15 .85 | 0.725477 | 0.814358 | 0.859958 | 0.887621 | 0.906174
a=.05 Total Number of Failures R

kL ks 10 15 20 25 30
.50 .50 | 0.368224 | 0.543806 | 0.645142 | 0.710145 | 0.755189
45 .55 | 0.367196 | 0.543173 | 0.644733 | 0.7098G3 | 0.754933
40 .60 | 0.364009 | 0.541197 | 0.643453 | 0.708979 | 0.754339
.35 .65 | 0.358338 | 0.53762G | 0.641132 [0.707373 | 0.753169
.30 .70 | 0.349618 | 0.531955 | 0.637418 | 0.704798 | 0.751291
25 .75 0.523260 | 0.631635 | 0.700771 | 0.74834¢9
.20 .80 0.509963 | 0.622454 | 0.694305 | 0.743607
15 .85 0.607198 | 0.683191 | 0.735355
a=.05 Total Number of Failures R

ky ko 40 60 80 100 120
.50 .50 | 0.813374 | 0.873605 | 0.904472 | 0.923229 | 0.935831
45 .55 | 0.813252 | 0.873548 | 0.904439 | 0.923207 | 0.935816
40 .60 | 0.812868 | 0.873368 | 0.904335 | 0.923140 | 0.935769
35 .65 | 0.812172 | 0.873042 | 0.904147 | 0.923018 | 0.935683
.30 .70 | 0.811054 | 0.872518 | 0.903845 | 0.922822 | 0.935546
.25 .75 | 0.809301 | 0.871698 | 0.903372 | 0.922515 | 0.935331
.20 .80 | 0.806470 | 0.870373 | 0.902610 | 0.922021 | 0.934985
.15 .85 | 0.801506 | 0.868049 | 0.901274 | 0.921156 | 0.934380

Tahle E.G Percentage Points of L = A% with unequal sample sizes
(e« = .01, .05,p=23)
a= .01 Total Number of Fatlurcs R
ky ko k3 10 15 20 25 30
.33 .33 .34 [0.018296 | 0.121895 | 0.228876 | 0.319888 | 0.394727
.30 .30 40 [0.017713 § 0.121021 | 0.228008 | 0.319113 | 0.3940G1
.30 .35 .35 [0.018151 § 0.121678 | 0.228652 | 0.319684 | 0.394549
25 25 .50 0.116438 | 0.223478 | 0.315090 | 0.390617
.25 .30 .45 0.119065 | 0.226019 | 0.317317 | 0.392509
25 .35 40 0.120352 | 0.227225 | 0.318355 | 0.393380
20 20 .60 0.107657 | 0.214517 | 0.307031 | 0.383685
.20 .30 .50 0.116144 | 0.222636 | 0.314076 | 0.389622
a = .01 Total Number of Farlures R
ky ko ks 40 50 60 70 80
.33 .33 .34 | 0.507002 | 0.585586 | 0.643085 | 0.680799 | 0.721083
30 .30 .40 | 0.506519 | 0.585229 | 0.642813 | 0.686586 | 0.720912
30 .35 .35 | 0.506871 | 0.585488 | 0.643011 | 0.686741 | 0.721036
25 .25 .50 | 0.504038 | 0.583401 | 0.641424 | 0.685498 | 0.720040
.25 .30 .45 1 0.505389 | 0.584391 | 0.642174 | 0.686085 | 0.720510
.25 .35 .40 | 0.506004 | 0.584840 | 0.642514 | 0.686349 | 0.720721
.20 .20 .60 | 0.499028 | 0.579710 | 0.638619 | 0.683305 | 0.718282
.20 .30 .50 | 0.503225 | 0.582767 | 0.64092G | 0.685101 | 0.719717
a= .05 Total Number of Failures R
ky ko ki 10 15 20 25] 30
33 .33 .34 | 0.057163 | 0.209061 | 0.331908 | 0.425966 | 0.49849¢
30 .30 .40 | 0.056142 | 0.207997 | 0.330967 | 0.425188 | 0.4978C2
30 .35 .35 | 0.056926 | 0.208798 | 0.331664 | 0.425760 | 0.498327
25 .25 .50 0.202384 | 0.326053 | 0.421151 | 0.494584
25 .30 45 0.205611 | 0.32880C | 0.423383 | 0.496382
25 .35 40 0.207191 | 0.330107 | 0.424419 | 0.497209
20 .20 .60 0.191514 | 0.316255 | 0.413024 | 0.487961
20 .30 .50 0.202037 | 0.325075 | 0.420091 | 0.493610
a=.05 Total Number of Failures R
ky ka ki 40 50 60 70 80
33 .33 .34 | 0.601258 | 0.669779 | 0.718453 | 0.754727 | 0.782772
.30 .30 .40 | 0.600828 | 0.669472 | 0.718225 | 0.754551 | 0.782632
30 .35 .35 | 0.601142 | 0.669695 | 0.718391 | 0.754679 | 0.782734
25 .25 .50 | 0.598613 | 0.667900 | 0.717059 | 0.753654 | 0.781922
.25 30 .45 | 0.599818 | 0.668752 | 0.717688 | 0.754138 | 0.782304
.25 .35 .40 | 0.600366 | 0.669137 | 0.717973 | 0.754355 | 0.782476
20 .20 .60 | 0.594132 | 0664723 | 0.714703 | 0.751843 | 0.780489
20 .30 .50 | 0.597876 | 0.667350 | 0.716638 | 0.753324 | 0.781657

E-6

Table E.¥ Comparison of Exact and Asymptotic Values of the Percentage Points
for L= A% and a = 0.01

Failures p=2 p=3 p=4
per Exact First First Exact First First Exact Farst First

Sample Using 2 terms term Using 2 terms term Using 2 terms term
(r) (6) of (19) of (19) (6) of (19) of (19) (6) of (19) of (19)
5 0.234197 | 0.232728 | 0.231253 | 0.121904 | 0.113431 | 0.108148 | 0.0+4596 | 0.050114 | 0.044613
6 0.315083 | 0.314095 | 0.312921 | 0.187729 | 0.180706 | 0.175512 | 0.116830 | 0.102762 | 0.095544
7 0.383167 | 0.382519 | 0.381605 | 0.248465 | 0.243165 | 0.238549 | 0.168396 | 0.156777 | 0.149340
3 0.440245 | 0.439814 | 0.439103 | 0.303058 | 0.299160 | 0.295212 | 0.217265 | 0.208152 | 0.201178
9 0.488355 | 0.488062 | 0.487503 | 0.351634 | 0.348767 | 0.345437 | 0.262631 | 0.255590 ! 0.249319
10 0.529252 | 0.529047 | 0.528G01 | 0.394734 | 0.392605 | 0.389805 | 0.304292 | 0.298853 | 0.293321
11 0.564338 | 0.564191 | 0.563832 | 0.433010 | 0.431408 | 0.429048 | 0.342349 | 0.338121 | 0.333282
12 0.594711 | 0.594603 | 0.594310 | 0.467098 | 0.465873 | U.463876 | 0.377045 | 0.373728 | 0.369507
13 0.621226 { 0.621146 | 0.620904 | 0.497567 | 0.496618 | 0.494918 | 0.408675 | 0.406046G | 0.402362
14 0.644554 | 0.644493 | 0.644292 | 0.524914 | 0.524168 | 0.522713 | 0.437543 | 0.435438 | 0.432216
15 0.665224 | 0.665176 | 0.665007 | 0.549561 | 0.548968 { 0.547715 | 0.463938 | 0.462236 | 0.459409
20 0.740910 | 0.740894 | 0.740813 | 0.643088 | 0.642867 | 0.642222 ; 0.567186 | 0.566514 | 0.564964
25 0.788849 | 0.788842 | 0.788798 | 0.704924 | 0.704823 | 0.704452 | 0.637973 | 0.637658 | 0.636731
30 0.821874 | 0.821871 | 0.821844 | 0.748663 | 0.748611 | 0.748379 | 0.689182 | 0.689016 | 0.685421
35 0.845990 | 0.845988 | 0.845970 | 0.781180 | 0.781150 | 0.780996 | 0.7278396 { 0.727743 | 0.727340
40 0.864365 | 0.864364 | 0.864352 | 0.806281 | 0.806263 | 0.806155 } 0.758012 | 0.757952 | 0.757667
45 0.878829 | 0.878829 | 0.878820 | 0.826235 | 0.826223 | 0.826145 | 0.782199 | 0.782160 | 0.781951
50 0.890509 | 0.890509 | 0.890503 | 0.842472 | 0.842464 | 0.842405 | 0.802011 | 0.801985 | 0.801827
55 0.900137 | 0.900137 | 0.900132 | 0.855940 | 0.855934 | 0.855%89 | 0.818533 { 0.818514 | 0.818392
60 0.908210 | 0.908210 | 0.908206 | 0.867290 | 0.867286 | 0.867251 | 0.832517 | 0.832504 | 0.832407
65 0.915076 | 0.915076 | 0.915073 | 0.876986 | 0.876983 | 0.876955 | 0.844506 | 0.844496 | 0.844419
70 0.920988 | 0.920987 | 0.920985 | 0.885362 | 0.885360 | 0.885337 | 0.854896 | 0.854889 | 0.854826
75 0.926130 | 0.926130 | 0.926128 | 0.892672 | 0.892671 | 0.892652 | 0.863988 | 0.863982 | 0.863930
80 0.930644 | 0.930644 | 0.930642 | 0.899107 | 0.899106 | 0.899090 [0.872009 | 0.872005 | 0.671961
85 0.934638 | 0.934638 | 0.93463G | 0.904814 | 0.904813 | 0.904800 { 0.879139 | 0.879135 | 0.879098
90 0.938197 | 0.938197 | 0.938196 | 0.909911 | 0.909910 | 0.909899 | 0.885516 | 0.885513 | 0.885482
95 0.941389 | 0.941389 | 0.941388 | 0.914490 | 0.914489 ['0.914480 | 0.891256 | 0.891253 | 0.891227
100 0.944268 | 0.944268 | 0.944267 | 0.918626 | 0.918625 | 0.918617 | 0.896448 | 0.896446 | 0.896423
105 0.946877 | 0.946877 | 0.946876 | 0.922381 | 0.922380 | 0.922373 | 0.901167 | 0.901165 | 0.901145
110 0.949252 | 0.949252 | 0.949252 | 0.925805 | 0.925804 | 0.925798 | 0.905475 | 0.905474 | 0.905456
115 0.951425 | 0.951425 | 0.951424 | 0.928939 | 0.928939 | 0.928933 | 0.909424 | 0.909422 | 0.909407
120 0.953419 | 0.953419 j 0.953418 | 0.931820 | 0.931819 { 0.931815 | 0.913056 | 0.913055 | 0.913041
125 0.955256 | 0.955256 | 0.955255 | 0.934476 | 0.934476 | 0.934471 | 0.916408 | 0.916407 | 0.916395
130 0.956953 { 0.956953 { 0.956953 | 0.936933 | 0.936933 | 0.936929 | 0.919511 | 0.919511 | 0.919500
135 0.958527 | 0.958527 | 0.958526 | 0.939213 | 0.939212 { 0.939209 | 0.922393 | 0.922392 | 0.922382
140 0.959989 | 0.959989 | 0.959989 | 0.941333 | 0.941333 | 0.941330 | 0.925075 | 0.925075 | 0.925066

E-7

Table E.§ Comparison of Exact and Asymptotic Values of the Percentage Points
for L= A¥ and o = 0.05

Failures p=2 p=3 p=4
per Exact First First Exact First First Exact First First

Sample Using 2 terms term Using 7 terms term Using 2 terms term
{r) (6) of (19) of (19) (6) of {19) of (19) (6) of (19) of (19)
) 0.368224 | 0.367279 | 0.365570 | 0.209072 | 0.200361 | 0.192507 { 0.122321 | 0.103594 | 09337113
6 0.451446 | 0.450909 | 0.449732 | 0.286615 | 0.280641 | 0.274142 |} 0.189151 | 0.174706 | 16413344
N 0.516492 | 0.516177 | 0.515346 | 0.352800 | 0.348796 | 0.343631 | 0.249806 | 0.239354 | 22087540
8 0.568307 | 0.568113 | 0.567511 | 0.409111 | 0.406393 | 0.402313 | 0.304056 | 0.296553 | 28845278
9 0.610350 | 0.610256 | 0.609807 | 0.457190 | 0.455303 | 0.452062 | 0.352264 | 0.34G825 | 34001619
10 0.645142 | 0.645059 | 0.644717 | 0.498503 | 0.497161 | 0.494560 | 0.395040 | 0.39103G | 385333321
11 0.674304 | 0.674247 | 0.673980 | 0.534266 | 0.533288 | 0.531175 | 0.433048 | 0.430050 | 42520382
12 0.699097 | 0.699056 | 0.698844 | 0.565457 | 0.564729 { 0.562998 | 0.466919 | 0.464637 | 46059907
13 0.720420 | 0.720391 | 0.720220 | 0.592859 | 0.592307 | 0.590872 | 0.497216 | 0.495451 | 49202562
14 0.738947 | 0.738925 | 0.73878G | 0.617098 | 0.616671 | 0.615470 | 0.524427 | 0.523042 | 52011616
15 0.755180 | 0.755172 | 0.755057 | 0.638G74 | 0.638339 | 0.637324 | 0.548967 | 0.5478G6 | 54535109
20 0.813374 | 0.813369 | 0.813317 | 0.718456 | 0.718336 | 0.717847 | 0.642223 | 0.641511 | 64052864
25 0.849270 | 0.849268 | 0.849241 | 0.769596 | 0.769543 | 0.769272 | 0.703997 | 0.703809 | 70307431
30 0.873605 { 0.873604 | 0.873588 | 0.805089 | 0.805062 | 0.804897 | 0.747748 | 0.747650 | T471922]
35 0.891182 | 0.891182 | 0.891172 | 0.831139 | 0.831124 | 0.831016 | 0.7803036 | 0.780247 | 77994340
40 0.904472 | 0.904472 | 0.904465 | 0.851062 | 0.851053 | 0.850979 | 0.805451 | 0.805416 | 80520467
43 0.914870 | 0.914870 | 0.914865 | 0.866788 | 0.866782 | 0.866729 | 0.825451 | 0.825429 | §2527551
50 0.923229 | 0.923229 | 0.923225 | 0.879515 | 0.879511 { 0.879471 | 0.841734 | 0.841718 | 84160327
55 0.930093 | 0.930093 | 0.930090 | 0.890025 | 0.890022 | 0.889992 | 0.855244 | 0.855233 | 85514592
GO 0.935831 | 0.935831 | 0.935829 | 0.898850 | 0.898848 | 0.898824 | 0.866633 | 0.806¢25 | 86635607
65 0.940699 | 0.940699 | 0.940697 | 0.906365 | 0.906363 | 0.906345 | 0.87636G3 | 0.87G357 | 8730219
70 0.944880 | 0.944880 | 0.944879 | 0.912841 | 0.912840 | 0.912825 | 0.884772 | 0.8847G7 | 88472320
h 0.948511 | 0.948511 | 0.948510 | 0.918480 | 0.918479 | 0.918467 | 0.892111 | 0.892107 | 89207130
80 0.951693 | 0.951693 | 0.951692 | 0.923435 | 0.923434 | 0.923424 | 0.898572 | 0.898569 | 89853801
&5 0.951505 | 0.954505 | 0.954504 | 0.927821 | 0.927821 | 0.927812 | 0.904304 | 0.904302 | 90427698
a0 0.957007 | 0.957007 | 0.957007 | 0.931733 | 0.931732 | 0.931725 | 0.909423 | 0.909421 | 90939982
95 0.959249 | 0.959249 | 0.959248 | 0.935242 | 0.935242 | 0.935236 | 0.914022 | 0.914021 | 91400227
100 0.961268 | 0.961268 | 0.961268 | 0.938409 | 0.938408 | 0.938403 | 0.918178 | 0.918176 | 91816023
105 0.963097 | 0.963097 | 0.963097 | 0.941280 | 0.941280 | 0.941275 | 0.921950 | 0.921949 | 0.921935
110 0.964761 | 0.964761 | 0.964761 | 0.943896 | 0.943895 | 0.943891 | 0.925390 | 0.925389 | 0.925377
115 0.966281 | 0.966281 | 0.966281 | 0.946288 | 0.946288 | 0.946285 | 0.928540 | 0.928539 | 0.928528
120 0.967676 | 0.967676 | 0.967676 | 0.948485 | 0.948485 | 0.948482 | 0.931434 | 0.931434 | 0.931424
125 0.968960 | 0.968960 | 0.968959 | 0.950509 | 0.950509 | 0.950507 | 0.934104 | 0.934103 | 0.934095
130 0.970145 | 0.970145 | 0.970145 | 0.952381 | 0.952381 | 0.952378 | 0.936573 | 0.936573 | 0.936565
135 0971244 | 0.971244 | 0.971244 | 0.954116 | 0.954116 | 0.954113 | 0.938864 | 0.938864 | 0.938857
140 0.959989 | 0.972264 | 0.972264 | 0.955729 | 0.955729 | 0.955727 | 0.940996 | 0.940995 | 0.940989

E-8

1.

b

14,

Bibliography

Abdel-Ghaly, A. and others. “Evaluation of Competing Software Reliability Predictions,”
TEEE Transactions on Software Fngineering, 12(9):950-967 (September 1986).

CAbdel-Ghaly, A. AL Analysis of Predictive Quality of Software Reliability Models. PhD dis-

sertation, City University, London, UK., 1986.

. Akaiki, H. “A New Look at Statistical Model Identification,” IEEFE Transactions on Automatic

Control, 19:716 723 (1974).

. AKkaiki, H. Prediction and Fntropy. Mathematics Rescarch Center Technical Summary Report

2397, Madison, Wisconsin: University of Wisconsin Madison, 1982.

. Anderson, T. W Introduction to Multivariate Statistical Analysis {Second Edition). New

York, NY: John Wiley and Sons, 1984.

. Arlar, J. and Others. “Dependability Modeling and Evaluation of Software Fault-Tolerant

Systems,” TEEE Transactions on Computers, 39:504-513 (1990).

. Batley, €T and WL L. Dingee. “A Software Study Using Halstead Metrics,” ACM/Sigmetrics,

10:139 - 197 (1981).

. Balakrishnan, M. and €. S, Raghavendra. “On Reliability Modeling of Closed Fault-Tolerant

Computer Systems,” [EEE Transactions on Compulers, 39:571-575 (1990).

. Barr. Donald R. and Peter W. Zehna. Probability: Modeling Uncertainty. Menlo Park, CA:

Addison-Wesley, 1983,

. Bastani, . B. and €. V. Ramamoorthy. “Input-Domain Base Models for Estimating the

Correctness of Process Control Programs.” Reliabulity Theory edited by A. Serra and R. E.
Barlow. 1321- 1378, Amsterdam: North-Holland, 1986.

~ Belli, Fo o Fault-Tolerant Programs and Their Reliability,” TEEE Transactions on Rehability,

39184 192 (1990).

. Blumenthal. S. and R. Marcus. “Estimating Population Size with Exponential Failure.” Amer-

tean Stafistical Association Journal, 70:913-922 (December 1975).

3. Braun. H. and J. M. Paine. A Comparative Study of Models for Reliability Growth. Technical

Report, Department of Statistics - Princeton University, 1977 (126 Series 2).

. Brocklehurst, Sarah and others. “Recalibrating Software Reliability Models,” IEEFE Transac-

tions on Software Enginecring, 16(4):458-470 (April 1990).

5. Brown, J. R.and M. Lipow. “Tesing for Software Reliability.” Proceedings of the International

Conference on Reliable Software. 518-527. April 1975.

i, Cote, V. and Others. “Software Metrics: An Overview of Recent Results,” J. of Sysfems and

Software, 8:121 131 (1988).

. Crow, L. H. “Reliability Analysis for Complex, Repairable Systems.” Reliability and Biomelry

edited by F. Proshan and R. J. Serfling, 379--410, Philadelphia, PA: SIAM, 1974,

- Crow. L. H. Confidence Interval Procedures for Reliability Growth Analysis. Technical Report,

Aberdeen, MD: US Army Matenial Systems Analysis Activity, 1977 (197).

Crow, I,. H. and N. D. Singpurwalla. “An empirically Developed Fourier Series Model for
Deseribing Software Failures,” IEEFE Transactions en Reliabilily, 32:176-183 (1984).

BIB-1

21.

22.

29.

30.

31.

32.

34.

36.

37,

Davis, J. S. and R. J. LeBlanc. “A Study of Applicability of Complexity Metrics” [EEF
Transactions on Software Engmeermg, 14:1366-1372 (1988).

Dawid, A. P. Calibrairon Based Empirical Probability. Res. Report 36, London: Departinent
of Statistical Science; University College, 1934.

Dawid, A. P. “Statistical Theory - The Prequential Approach,” Royal Statzs. Soc., 147:278-
292 (1984).

. DeGroot, Morris H. Probability and Statistics (First Edition). Menlo Park, CA: Addison-

Wesley, 1975.

. Dhillon, B. S. Reliability in Computer Systemi Design. Norwood, NJ: Ablex Publishing Corp.,

1987,

. Dijkstra, E. W. “The Humble Programmer,” Communs ACM, 859-866 (1972).

. Down, T. and P. Garrone. “Some New Models of Software Testing with Performance Com-

parisons,” IEEE Transactions on Rechabality, 40(3):322-328 (1991).

. Duane, J. T. “Learning Curve Approach to Reliahility Monitoring,” IEEE Transaclions on

Aerospace, 2:563566 (1964).

. Forman, E. H. and N. D. Singpurwalla. “An Empirical Stopping Rule for Debugging and

Testing Computer Software,” American Statistical Association Journal, 72:750-757 (1977).
g p

Gail, M. H and J. L. Gastwirth. “A Scale Free Goodness-of-Fit Test for the Exponential
Distribution based on the Gini Statistic,” Royal Statistical Society Series B, 40(3):350-357
(1978).

Goel, A. L. “Software Reliability Models: Assumptions, Limitations, and Applicability,” JEEE
Transactions on Software Engineering. 11(12):1411-1423 (December 1985).

Goel, A. L. and K. Okumoto. “An Analysis of Recurrent Software Errors in a Real-Time
Control System.” Proceedings of the ACM Conference. 496-501. 1978. "

Goel, A. L. and K. Okumoto. An Imperfect Debugging Model for Softwarc Reliabilaty. Syracuse
University, Final Technical Report Vol. 1 RADC-TR-87-155, Rome Air Development Center
(RADC) Griffis AFB NY, 1978.

. Goel, A. L. and K. Okumoto. “Time Dependent Error-Detection Rate Model for Software

Reliability and Other Performance Measures,” JEEE Transactions on Reliability, 28(3):206—
211 (August 1979).

Goseva-Popstojanova, K. D. and A. L.. Grnarov. “A New Markov Model of N version Program-
ming System,” Proceedings of the [nternational Symp. on Software Reliability Engineering.
210-217 (1991).

. Hogg, Robert V. and Elliot A. Tanis. “An Iterative Procedure for Testing the Equality of Sev-

eral Exponential Distributions,” American Statistical Association Journel 58:435-443 (June
1963).

Hudson, G. R. Programmming Errors as a Birth-Death Process. Technical Report SP-3011,
System Development Corp., 1967.

Iannino, A. and Others. “Criteria for Software Reliability Model Comparisons,” IEEE Trans-
actions on Software Engineering, 10(9):687-691 (November 1990).

. Jelinski, Z. and P. B. Moranda. “Software Reliability Research.” Statistzcal Compuler Perfor-

mance Evaluation edited by W. Freiberger, 465-184, New York, NY: Academic Press, 1972.

BIB-2

41.

42.

43.

44.

(1)
<

w

- K. N. Cole. B. N. Nagarsenker and P. B. Nagarsenker. “A Test for Equality of Exponential

Distributions Based on Type I Censored Sample~” 1EEE Transactions on Reltabality . 3694
97 (1987).

. Kapur. K. C. and L. R. Lamberson. Rehability in Engineering Design. New York, NY: John

Wiley and Sons. 1977.

Keiler, P. A. and others. “Comparison of Software Reliability Predictions.” Dig. FTC'S (131
Int. Symp. Fauli-Tolerant Compul., 128-134 (1983).

Keiler, P. A. and others. “On the Quality of Software Reliability Predictions.” Electronic Sy.-
tems Effectiveness and Life Cycle Costing NATO ASI Series F8 edited by J. K. Skwirzynski,
441-460, New York, NY: Springer-Verlag, 1983.

Khoshgoftaar, T. M. “On Model Selection in Software Reliability,” Procecdings of the 8
Symp. on Computational Statistics, 13-14 (1988).

Khoshgoftaar, T. M. and T. G. Woodcock. “A Simulation Study of the Perforimance of the
Akaike Information Criterion for the Selection of Software Reliability Growth Models,” Pro-
ceedings of the 278 Annual South East Region ACM Conference, 419-423 (1989).

. Khoshgoftaar, T. M. and T. G. Woodcock. “Software Reliability Model Selection: A Case

Study,” Proceedings of the Inlernational Symp. on Software Reliability Engineermng, 183-191
(1991). S e .

. Kline, M. B. “Software and Hardware R&M: What are the Differences 7. Proccedings of the

IEEE Annual Reliability and Maintamnability Symposium. 179-185. 1980.

. Lawless, J. F. Statistical Models and Methods for Lifetime Data. New York, NY: Jolin Wiley

and Sons, 1982.

Lipow, M. Estimation of Software Package Residual Errors. Software Series Report TRW-
$S-72-09, TRW Rodondo Beach , CA, 1972.

Littlewood, B. “How to Measure Software Reliability and How Not t0." IEEE Transactions
on Reliability, 25:103-110 (1979).

. Littlewood, B. “Theories of Software Reliability: How Good Are They and llow Can They be

Improved ?,” IEEE Transactions on Software Engineering, 6(5):489-500 (Scptember 1980).

. Littlewood, B. “Stochastic Reliability Growth: A model for fault-removal in computer pro-

grams and hardware designs,” IEEE Transaclions on Reliability, 30:313-320 (1981).

. Littlewood, B. “Forecasting Software Reliability.” Lectures Notes in Computer Science, Vol

341 Software Reliability Modeling and Identification edited by Sergio Bittani. 141-209, New
York, NY: Springer-Verlag, 1988.

3. Littlewood, B. and A. Sofer. “A Bavesian Modification to the Jelinski-Moranda Software

Reliability Growth Model,” Software Engincering Journal, 2:30-41 (1987).

. Littlewood, B. and J. Verrall. “Likelihood Function of a Debugging Model for Computer

Software Reliability,” IEEFE Transactions on Rcliability, 30:145-148 (1981).

Littlewood, B. and J. L. Verrall. “A Baysian Reliability Growth Model for Computer Soft-
ware,” J. Roy. Statist. Soc. C., 22:332-346 (1973).

Lyu, M. R. “Measuring Reliability of Embedded Software: An Empirical Study with JPL
Project Data.” Procecdings of International Conference on Probabilistic Safely Assessment
and Management. 1991.

Lyu, M. R. and Allen Nikora. “A Heuristic Approach for Software Reliability Prediction: The
Equality-Weighted Linear Combination Model.,” Proceedings of the International Symp. on
Software Rehability Engineermg. 172-181 (1991).

BIB-3

42
v 2

60.

61.

63.

64.

65.

G8.

69.

-1
1

~1
>

-1
(41}

-1
=1

. McCall and Others. Mcthodology for Software Keliahility Prediction Vol]I, DTIC Report

AD-A 190-019. Rome Air Developiment Center (RADC) Gniffis AFB NY. 1987,

59. Mills, H. D). On the Statistecal Validation of Computer Programs. Report FSC-72-6015, IBM

Federal Svsten Division Gaitherburg, MD, 1972
Mivamoto, I. “Software Rehability in On-Line Real Tune Environments.” Procecdings of the
International Conference on Reliable Software. 194-203. April 1975.

Moranda, P. B. “Predictions of Software Reliability During Debugging.” Proccedimgs of the
IEEE Annval Reliabiity and Mamtamability Symposiwm. 327- 332, 1975,

. Munson, J. C. and T. M. Khoshgoftaar. “The Use of Software Complexity Metrics in Soft-

ware Reliability Modeling,” Proceedings of the International Symp. on Software Reliabilaty
Engineering, 2-11 (1991).

Musa. J. D. “A Theory of Software Reliability and its Application,” [EELE Transactions on
Software Fngineering, 1:312-327 (September 1975).

Musa, J. D. Software Reliabilily Date. report available from Data and Analysis Center for
Software DACS, Rome Air Development Center (RADC) Griffis AFB NY, 1979.

Musa, J. D. “The Measurement and Management of Software Reliability.” Prec. IEEE.68(9).
1131-1143. 1980.

. Musa, J. D. and K. Okumoto. “Software Reliability Moueis: Concepts, Classification, Com-

parisons, and Practice.” Electronic Systems Effectiveness and Life Cycle Costing NATO ASI
Serres F3 edited by J. K. Skwirzynski, 395-424, New York, NY: Springer-Verlag, 1983.

. Musa, J. D. and K. Okumoto. “A Logarithmic Poisson Execution Time Model for Software

Reliability Measurement.” Proceedings of the T2 International Conference on Software Engi-

neering. 230-238. 1984,

Musa, J. D. and Others. Software Reliability: Measurement, Prediction, Application. New
York, NY: McGraw-Hill, 1987. ’

Nagarsenker, B. N. and P. B. Nagarsenker. “On a Test of Equality of Two-Parameter Expo-
nential Distributions,” Statistics and Probability Letters, 2:357-361 (1984).

. Nagarsenker, B. N. and P. B. Nagarsenker. “Distribution of the LRT for Testitrg the Equality of

several 2-Parameter Exponential Distributions,” JEEE Transactions on Reliability, 34:65-68
(1985).

. Nagarsenker, B. N. and K. C. Pillai. “Distribution of the likelihood Ratio Criterion for Testing

a Hypothesis Specifving a Covariance Matrix,” Biometrika, 60:359-364 (1973).

. Nair, U. S, “Application of Factorial Series in the Study of Distribution laws in Statistics,”

Sankhya, 5:175 (1940).

Nelson. E. “Estimating Software Reliability from Test Data,” Microclcctronics and Reliabdlity.
17:67-74 (1978).

Norlund, N. E. “Sur les series de facultes,” Acta Math, 37:327-387 (1914).

Ohba, M. and Xiao-Mei Chou. “Does Imperfect debugging Affect Software Reliability Growth

2" Proccedings of the 1122 International IEEE Conference on Software Engineering. 237-244.
May 1989.

76. Ohba, M. and S. Yamada. “S-shaped Software Reliability Growth Curve: How Good is 1t7,”

COMPSAC 82, 38-44 (1982).

. Okumoto, K. and A. L. Goel. “Optimum Release Time for Software Systems.” J. of Systems

and Software, 1:315--318 (1980).

BIB-4

82.

83.

84.

85.

86.

90.

91.

92.
93.

04.

Ramamoorthy, C. V. and F. B. Bastaini. “Software Reliability: Status and Perspective,” [FEF
Transactions on Software Engmeering. 5:351-371 (1982,

Rosenblatt. M. “Remarks on a Multivaniate Transformation.” Ann. Math Statist.. 23:470-742
(1952).

. Schnerdewind, N. F. “Analysis of Error Process in Computer Software.” Proceedings of the

International Couference an Reliable Software. 337-346. April 1975,

. Shick, G. J. and R. W. Wolverton. “Assessiment of Software Reliability.” Proc. Operalion

Research, Physica-Verlag 395422, Wurzburg-Wien, 1973.

Shick. G. J. and R. W. Wolverton. “An Analysis of Competing Software Reliability Models,”
TEEE Transactions on Software Engmecring, 4(5):104-120 (1978).

Shooman, M. L. “Probabilistic Models for Software Reliability Prediction.” Statistical Com-
puter Performance Evaluation edited by W. Freiberger, 485-502, New York, NY: Academic
Press, 1972.

Shooman, M. L. “Software Reliability: A Historical Perspective,” [EEE Transactions on
Reliabilaty, 33:48-55 (1984).

Singpurwalla, N. D. and Refik Soyer. “Assessing(Software) Reliability Growth Using a Random
Coeflicient Autoregressive Process and Its Ramifications,” IEEE Transactions on Software
Engineering, 11(12):1456-1464 (December 1985). i

Sukert, A. “An Investigation of Software Reliability Models.” Proceedings of the Annual Rel-
abilily and Mainlamnability Sympostum . January 1377.

. Thayer, T. A. and Others. Software Reliability Study. Final Technical Report RADC-TR-83-

207, Rome Air Development Center (RADC) Griffis AFB NY, 1976.

. Titchmarsh, E. C. Introduction to thc Theory of Fourier Integrals. Oxford University Press,

1948.

. Wagoner. W. L. The Fial Report of Software Reliability Measurcment. Aerospace Report

TOR-0074(4112-1), Aerospace Corporation, August 1973.

Wilks, S. S. “Sample Criteria for Testing the Equality of Means, Equality of Variances. and
Equality of Covariances in a Normal Multivariate Distribution,” Ann. Math Statst., 17:257~
281 (1946).

Xie, M. “A Shock Model for Software Failures,” Microelectronics and Reliability, 27:717-724
(1987).

Xie, M. Sofiware Releability Modelimg. River Edge,. NJ: World Scientific Publishing, 1991.

Xizi, Huang. “The limit Condition of Some Time Between Failures Models of Software Relia-
bility.” Microelectronics and Reliabilaty, 30(3):481-485 (1990).

Yamada, S. and Others. “S-shaped Reliability Growth Modeling for Software Error Detection.”
TEEE Transactions on Reliability. 32:475-478 (1983).

BIB-5

Vita

Salah Amin Elewa was born on 16 July 1954 in lsmailia. Egypt. He graduated from the
Modern High School for Advanced Students in Ain Shams. Cairo in 1972 and joined the Military
Techuical College. Kobri El-Kobba, Cairo, from which he received the degree of Bachelor of Science
m Electrica! Freineering in July 1977. Upon graduation he served as a maintenance Engineer in
the Egvptian Air Force. From July 1981 to February 1982, he was assigned to F-16 Training in
Lackland AFB, San Antonio, Texas and Hill AFB, Utah. In 1984, he was assigned, as a part time
student, to earn the Masters Degree in Electronics and Computers from Ain Shams University,
Cairo, Egypt. Upon receiving his Master degree in December 1986, his assignment was to teach
computer science in the Egyptian Air Academy. In August 1988, he was chosen by the Egyptian

Department of Defense to earn a Doctorate Degree in Computer Science from the United States

Air Force Institute of Technology (AFIT). He is a member of the IEEE Computer Society.

Permanent address: 7 Niazi St. off Farouk St.,
Zagazig, Egypt

VITA-1

RT DOCUMENTATION e e ovoa
REPO CU pAGE OMB No 07C4-0188
PuDl TBDITA L LUrQeR TP TN £T0 mIOIMGlIn T LT AR IC 370 T T T DR CByDOre PLUGHN S TRE UMP CO7 rE i mwing (NSTTUC TNy 5847 N T Ba TN] JA1A S0UrT RS
JATRPNAT INA M 1rtanIng The D314 ARaged ANA (CMDIBNUNG ANg BV Aw NG IFe 2Metion St ataremation Seng (omments r0g4°d1nG thy Durgen astimate Of any MAer aspect ot this
COUBCLGN #nt mgTiar N0 u@ PG SUGJEsTIdNg *ur ra@uaing Ch § Sraen T W AT INGIIr HeaaGuarTers Services, Lirectorate 107 intnrmatinn Operatinns ang Reparts 1215 jetterson
Jasrs P aa, Sote '202 arnngrin LA J2277-4302 arg ! tme e 5t Maragement and Huoaet Yaperwore Reduction Prowect (0704-0788) Nasnongtor 1.0 205C3
1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

Sept 92 PhD Dissertation-Sept 92
4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

DEVELOPMENT OF AN ENVIRONMENT FOR
SOFTWARE RELIABILITY MODEL SELECTION

6. AUTHOR(S)
Salah Amin Elewa, B.S,M.S.
Lieutenant Colonel, Egypt Air Force

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
School of Engineering REPORT NUMBER
Air Force Institute of Technology AFIT/DS/ENC/92~1
Wright-Patterson AFB, Ohio 45433

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING / MONITORING

AGENCY REPORT NUMBER

1.

SUPPLEMENTARY NOTES

12a. DISTRIBUTION / AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Approved for public release; distribution unlimited /¢

e ¢ - g ——— - o

- -

13. ABSTRACT (Maximum 200 words)

An environment was developed for solving the problem of selecting
a proper software reliability model for a given set of software failures.
The idea behind the environment developed in this dissertation was to
liken a collected set of software failure data to a previous one that
proved to fit well with a specified software reliability model. Software
failures were assumed to have a two-Parameter exponential distribution
with unequal type II censoring. A test criterion was derived for testing
Ratio Criterion. The exact distribution of the test criterion was derived.
An asymptotic approximation was also obtained and was found to be very
close to the exact distribution when the number of failures were more
than twenty. Software failure data, available from "Data and Analysis
Center for Software (DACS)", were used as the initial group of software
failure sets. The environment was then applied, for testing the quality
of several software failure sets.

-

14.

SUBJECT TERMS 15. NU?ZASEZR OF PAGES

SOFTWARE RELIABILITY MODELS, SOFTWARE FAILURES, MODEL SELECTIOI\16 PRICE CODE

ey o -

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT
OF REPORT OF THIS PAGE OF ABSTRACT
Unclassified Unclassified Unclassified UL
NSN 7540-01-280-5500 tangard form 298 (Rev 2-89)

Prescetwed by ANSE Stg 239-'8
28052

