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Analysis of Projections of the Transfer Matrix

in 2D Ising Models*

by
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Abstract

The Ising model, originally proposed to explain properties of ferromagnets, consists of a

regular lattice whose vertices are considered to be 'sites' that can be in exactly one of two

possible states. Of interest is the partition function, which is the sum of the energy of

the lattice over all possible configurations. There are two main approaches to computing

the partition function: the combinatorial method uses an expansion whose coefficients are

the number of subgraphs satsifying certain criteria; the algebraic approach introduces a

transfer matrix whose spectral radius is the partition function per spin. In the semi-infinite

2D model with n rows, the associated transfer matrix M, is duodiagonal of order 2". This

thesis introduces a special class of subspaces for approximating the dominant eigenvectors

of M,,, and analyzes the projections of M,, and its adjoint onto these subspaces. We shall

show that the projections are sparse (with 2 or 4 nonzero entries per column), and are of

order 0(n 221-') where I is a parameter of the subspaces. Some optimal properties of these

subspaces axe established.

*The author gratefully acknowledges partial support from ONR contact No. N00014-90-J-1372.



Contents

1 Introduction 1
1.1 Sum m ary .. . . . . .. .. . . . . . . . . . .. . . . . .. .. . . . . .. .. 1
1.2 Basic Notation and Terminology ....... ........................ 8

2 Projections of Transfer Matrices onto Indicial Subspaces 11
2.1 Indicial sets, vectors and bases ........ ......................... 11
2.2 Subspace Approximations ....... ............................ 16
2.3 Action of duodiagonal matrices on indicial bases ..... ............... 17
2.4 Structure of the column and row projection matrices ................. 23
2.5 Degenerate column and row projection matrices ...................... 30
2.6 Action of the transfer matrix on general indicial bases ................. 31
2.7 Choice of indicial bases and the spectral invariance conjecture ........... 33

3 Combinatorics of Indicial Subspaces 35
3.1 Quantitative analysis of 1-bit suffix-based indicial sets ................. 35
3.2 Reduction principle for indicial sets ............................. 41
3.3 Quantitative properties of suffix-based indicial sets and projection matrices 43

A Reduction principle for general indicial sets 48

Bibliography 53



Statement A per telecon
Richard Lau ONR/Code 1111
Arlington, VA 22217-5000

NNW 10/26/92

Jj

Chapter 1

Introduction DV -

1.1 Summary

The Ising model was proposed to explain properties of ferromagnets but since then

it has found application to topics in Chemistry and Biology as well as in Physics. The model

arose in Statistical Mechanics and consists of a regular grid whose vertices are considered to

be 'sites' that can be in exactly one of two possible states. In the original version [Isi25] each

site held an orientable particle that could have its spin p parallel to an external magnetic

field (pu = +1) or antiparallel (p = -1) to it. Another application (the formation of binary

alloys) has p = +1 if the site contains an atom of type A and p = -1 if it contains an

atom of type B. In studying gases p = +1 if a site is occupied by a molecule or U = 0 if

:t is empty. An excellent introduction to the Ising model targeted at a general audience is

[Cip87].

Early work focussed on 1D lattices but the subject really came to life in 1944
when Onsager [Ons44] derived an exact closed form expression for the partition ,unction

(see below) for an infinite 2D grid with no external magnetic field. This expressicon exhibited

the desired singularity that signals a critical temperature T, at which a faase transition

occurs. Specifically the residual magnetization Mo(T) that remains when the external

magnetic field is turned off is positive and decreases steadily to zero aS T -+ T, from below

but simply vanishes for all T > Tc.

Exact solutions for nonzero magnetic fields have z,)t been found so far and a

number of researchers have turned to approximations. There are two main approaches.

The combinatorial method uses an expansion of ZN, the partition function for N
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sites, that involves for its rth term the total number of subgraphs in an N-node graph with

exactly r edges subject to certain constraints. Considerable effort has gone into counting

these graphs but we shall say no more on this topic. See [Kac68] for further discussion.

The algebraic, or matrix method is based on the creation of a transfer matrix

whose spectral radius (the largest magnitude among the eigenvalues) yields the partition

function per spin [KW41]. This study is concerned with projecting the transfer matrix onto

a class of special subspaces but first we introduce the partition function and the related

transfer matrix.

Suppose that the grid contains N sites and is subject to an external magnetic

field of strength B. The interaction energy associated with a spin configuration P =

(60, ••, -1) is defined by

E(p) =-J pipji, - gB Jpj.
i,3 I

neighbors

Here each gi = ±1, J is the coupling constant giving the strength of the spin-spin inter-

actions and g is the magnetic moment of each spin. Usually, neighbors is interpreted as

nearest neighbors but broader definitions are possible.

The "partition function per spin" at temperature T is defined by

z(J,B,T) = [ Z e-E(A)/kT]I/N

all
configurations

for an N-site grid and k is Boltzmann's constant. Several quantities of physical interest

can be expressed in terms of z. By Boltzmann's law (e-E(hA)/kT)IzN is the probability

of occurence of configuration p at temperature T. The free energy per lattice site at

temperature T is -kTlogz and the magnetization per spin is m = kT• logz [Tho79].

The power of the algebraic approach comes from the introduction of a matrix

whose dominant eigenvalue is exactly zn(J, B, T) for a particular semi-infinite lattice with

n rows. There are several matrices that can be associated with the lattice, some symmetric,

others not. We use the one with the fewest nonzero entries, the duodiagonal matrix Mn of
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order 2" [Gar83]. We illustrate it for n = 3 and n = 4:

a a-I

b b-I

a a-I

b b-1Ml3 = b 
b-I

C C-1

b b-I

C C- 1

a a-1

b b-I

a a-1

b b-'

a a-I

b b-I

a a-I

b b-I
M 4 =

b b-I

c c-I

b b-1

C C-1

b b-I

C C- 1

b b-'

C C-1

where (with appropriate normalizations)

a = e(2-B)/T, b= e-B/T and c = e(-2-B)/T.

Since Mn acts on vectors in R 2n by multiplication we need to index the 2n positions in a

vector and we choose a standard mechanism of using binary numbers. We give an example

for n = 5:

(11010) -* 24 +2 3 + 2' = 26.
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Note that the n-bit strings here have no direct relation to the spin configurations mentioned

above.

The attractive property of Mn is that it is a nonnegative irreducible matrix whose

dominant eigenvalue (called the Perron root) is the wanted partition function per spin. Thus

it is only necessary to approximate this eigenvalue to the desired accuracy. However the

second eigenvalue and associated eigenvectors are also useful. Moreover M" is exceedingly

sparse; it has exactly 2 non-zero entries per row (and column) arranged in a regular pattern.

There is only one difficulty: Mn is of order 2n and we are interested in the case n -- oc.

We know of no calculations with n > 20 at present.

We note that the difficulty lies not in Mnf but in the the representation of vectors in

R 2
n. Indeed the special structure of Mln permits evaluation of Mnv for any 2n-dimensional

vector v with great efficiency. Th is Mn should be thought of, not as a matrix but as a

linear operator that requires only 0(1) data for its definition, i.e. a constant amount of

space independent of n.

Sparse vectors occur in sparse matrix work and N. Fuchs [Fuc89], when applying

the Power Method to MIn, keeps only the largest 1000 entries of each vector. This device

is satisfactory deep within the ferromagnetic region of the model. However after studying

the Perron vector in cases near the critical temperature we found that it contained almost

no small entries.

As a substitute for sparsity we propose to limit the number of distinct values that

can occur among a vector's components. In technical terms we select a finite family of

indicial subspaces {C, }, each of which is spanned by an orthogonal basis of indicial vectors

{fx,. . ., m} such that the nonzero entries of each xi are ones, and the positions of the

nonzero entries of x, and x., i $ j, are disjoint. We then approximate the top two column

eigenvectors of MA, from a member of {Ci }. The top two row eigenvectors are approximated

using a dual family {fT,}.

We indicate briefly how the two families of indicial subspaces can be used to obtain

a minimal representation for the top two eigenvectors of MJ [PH91].

Step 1. Select C, and rZ, from the two families. Also represent, in compact form, the

orthogonal projection P of the transfer matrix MA onto the subspace Ci. In addition

represent the projection Q of the adjoint matrix M,* onto the subspace Ri.

Step 2. Compute the two largest eigenvalues and the associated row and column eigenvec-
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tors of P and Q. These are, in a sense, the best approximations from the given pair

of indicial subspaces Ci and Ti. However they may not be good enough.

Step 3. Evaluate residual norms, condition numbers and associated error bounds and es-

timates. If the estimates are satisfactory then compute the required properties of the

model and stop. Otherwise return to Step 1 with the next member of each family.

We now discuss our choice of indicial subspaces for approximating the column

eigenvectors of Af,. In particular, we describe how we decide which entries of the eigenvector

should be forced to have the same value.

Consider the expression for thL energy associated with a particular state /I

(il,..-,•,), juj = ±1, in a 1D Ising model with only n sites:

n-1 nS(p) _= Aii + gB p)

Observe that in the first sum, -1 occurs t times if there are t transitions (adjacent changes

of sign) in the configuration M. Thus

n-1

Z /./ii+1 = n - 1 - 2t.

Similarly
n

# = k - (n - k) = 2k -n

s=l

if there are exactly k +1's inuj. Thus two states/p and A contribute equally to the associated

partition function if they have the same number of +1's and the same number of transitions.

The idea of using k and t can be applied to the 2D model. However, the situation

is more complicated here and we do not know how to justify the special role of k and t.

Nevertheless, numerical evidence does indicate the utility of k and t.

Table 1.1 shows the dominant (Perron) column eigenvector for Ms with parameter

settings B = 0.0001 and T = 2.2. which is within 4% of the critical temperature T,. The

eigenvector has been normalized to have largest entry 1, and the entries of the table have

been sorted in decreasing value of the components of the eigenvector. The first column of

the table shows the index of a position in the eigenvector, written as a 5-bit binary number

(and with its decimal equivalent in parenthesis), and the second and third columns give the

value of k and t for that index. The last column gives the value of that component of the

eigenvector. We shall write the indices aus binary numbers in the following discussion.
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position k t value
11111 (31) 5 0 1.0000000
00000(0) 0 0 0.9967231

10111 (23) 4 2 0.5597178
01000 (8) 1 2 0.5583141
11011 (27) 4 2 0.5487801
00100 (4) 1 2 0.5473442
11101 (29) 4 2 0.5352361
00010 (2) 1 2 0.5337697

S11110 (30) 4 1 0.5059892
00001 (1) 1 1 0.5045102

10011 (19) 3 2 0.4027520
01100 (12) 2 2 0.4022891
11001 (25) 3 2 0.3743792
00110 (6) 2 2 0.3738325

01110 (14) 3 2 0.3522495
10001 (17) 2 2 0.3521065
10101 (21) 3 4 0.3420300
01010 (10) 2 4 0.3415416

11100 (28) 3 1 0.3286180
00011 (3) 2 1 0.3279917
01111 (15) 4 1 0.3214520

t 10000 (16) 1 1 0.3209276
10110 (22) 3 3 0.3048252
11010 (26) 3 3 0.3044408
01001 (9) 2 3 0.3042764

00101 (5) 2 3 0.3038702
11000 (24) 2 1 0.2798594
00111 (7) 3 1 0.2797993

10010 (18) 2 3 0.2598551
01101 (13) 3 3 0.2598535

10100 (20) 2 3 0.2473428
01011 (11) 3 3 0.2473127

Table 1.1: Perron eigenvector for MIS with B = 0.0001, T = 2.2
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We see from the table that although the eigenvector is not sparse, those positions

with the same values of k and t have component values that are quite close. For example, the

positions with 4 ones and 2 bit transitions are 10111, 11011 and 11101, and their component

values are 0.5597178, 0.5487801 and 0.5352361 respectively.

A careful look at the table, however, reveals an anomaly. The positions 00001 and

10000 both have a single one and a single bit transition, but their values are very different:

0.5045102 and 0.3209276 respectively (see the items marked t). The same problem occurs

with positions 11110 and 01111 (items marked t). This anomaly occurs more frequently

for higher n's, and shows that using k and t as the sole criteria for forcing equality in

eigenvector components is inadequate.

Observe, however, that for each anomalous pair, the two positions have different

trailing bit. This suggests using the trailing bit as a third criterion. More generally, we can

use the last 1 bits of each index.

With each value of 1, we can define an indicial subspace C1 C R 2
- for which x E C1

has the same value in entries i and j if the binary representations of i and j have the same

number of is, the same number of bit transitions, and the same last I bits. We obtain a

dual subspace 7R1 for approximating the row eigenvectors of M,, by using the first I bits of

an index as the third criterion.

We note that there is a tradeoff present in choosing approximating subspaces. By

forcing equality, we reduce the dimension of the subspaces that we work in, but at the same

time, we sacrifice the accuracy of our results. A discussion of the approximating properties

of our indicial subspaces is found in [PH91I. We briefly state some results from there.

For the case n < 15, we were able to compare our approximations with the exact

results. In our first implementation, we obtained approximations that were accurate to

7 decimal places for n = 14, using a subspace of dimension only 896 as compared to

214 = 16384. We also ran the code for n > 20 (for which no exact results are available), and

our error estimates showed that the subspaces delivered reasonable approximations. For

example. for n = 30, the approximations were estimated to be good to at least 4 decimal

places using a subspace of dimension as small as 5632 (note that 230 2 109).

We now give an overview of the thesis.

Chapter 2 formalizes the idea of indicial subspaces and analyzes the structural

properties of the projections of MA onto such subspaces. In Section 2.1, we define the

building blocks of indicial subs-aces. and in Section 2.2, we show how approximations can
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be derived from these subspaces. We then study the action of M. on our indicial subspaces

in Section 2.3, and this enables us to analyze the structure of the projections of M, in

Sections 2.4 and 2.5. We shall show that in general, the projections of M, are also sparse

with either 2 or 4 nonzeros per column. Finally, in Sections 2.6 and 2.7, we introduce a

more general class of indicial subspaces, and show that the ones we have used are the best

in the class.

Chapter 3 is concerned with the combinatorics of indicial subspaces. We begin by

analyzing a restricted class of indicial subspaces in Section 3.1, where we will determine the

dimension of those subspaces and the maximum number of components that are forced to

be equal. We then extend the results to arbitrary indicial subspaces in Sections 3.2 and 3.3.

The key result in that chapter is that our indicial subspaces have dimension O(n22.'1).

Appendix A considers how we can extend the results of Chapter 3 to the more

general class of indicial subspaces introduced in Section 2.6.

1.2 Basic Notation and Terminology

We will follow Householder's conventions: upper case Roman letters for matrices,

lower case letters for column vectors, and lower case Greek letters for scalars. However, the

letters i, j, k, I, m, n and t will be reserved for integers. All matrices and vectors will be

real. The transpose of A will be denoted by A*, and the inner product of vectors x and y

by (x, y) = x'y. We will exclusively use the Euclidean norm for vectors: IIx]I = xi'7-.

As the theory behind our indicial subspaces is intimately connected with the bi-

nary representations of numbers, we will index the rowe and columns of a matrix, and the

clements of a vector, starting from 0. unless oherwise specified. Th,.s for A E Rt'x and

x E R m . (A),,i denotes the entry in row i and column j of A, 0 < i < I- 1, 0 < j < m - 1,

and x(i) denotes the 'I' element of x, 0 < i < m - 1.

The I x m zero and identity matrices will be written as OLxm and 1]x, respectively;

the 2" x 2n identity matrix will be written as in. For Q E R'", we let span(Q) denote the

subspace of R1 spanned by th, r columns of Q. Similarly, if S is a set of vectors in R'. the

subspace spanned by these vectors will be denoted by span(S).

The symbol := will denote a definition, and the symbol E1 will mark the end of a

proof.

By a (binary) string ;. we shall mean a finite sequence of Os and is. The empty



string is denoted by e. We write {0, 1}i for the set of all strings (including e), and {0, 1}i for

the set of n-bit strings, n > 1. The length of a string w is denoted by Iw), the concatenation

of two strings ")1 and W2 by w,1 0 L2, and the reversal of a string u; (i.e. w written backwards)

by LoR.

eg. {0, i}3 = {000,O01,010,011, 100, 101,110, 111},

10011011 = 6, 010o 110 = 010110, 0 0 1 1 0 1 R = 01100.

We also define IdE := 0, r := e, and e o w = w o E := w for any string w.

For a nonempty string w, we denote its ith bit from the left by w(i), i = 1,2.....

Thus L, = Lv(1) 0 ý'(2) o.-. o w(lw1), and w R = w(Iwj) o w(lwI - 1) o... o w(1). For given I.

1 < I < IwI, the 1-bit prefix of w is the substring w(1) o w(2) o ... o w(l), and the 1-bit suffix

of w is the substring w(w] -1+ 1) o w(Iw]-l+2) o0 . o w(lwI). The empty string C will be

considered to be the 0-bit prefix and the 0-bit suffix of any string u;. We shall also refer to

"w(1), w(1)0ow(2) and w(lw1) as the leading bit, leading bit pair and trailing bit respectively

of a string w with IwIo > 2.

There is a natural correspondence between binary strings and the nonnegative

integers N arising from the concept of the binary representation of numbers. We formalize

this by defining two functions:

v : {0, 1}i - N mapping w E j0, 1}i to the integer value it represents (v(e) := 0).

and for n > 1,

a,, : {0, 1.... 2" - 1} -- {0, 1}' mapping i E N to its n-bit binary representation.

We note that there is no uniqueness in these maps: two different strings may have the same

value under v. eg. v(011) = v(11) = 3. and a nonnegative integer is mapped to different

strings under different (,n's. eg. a2 (3) = 11, a 3 (3) =011. This, however, should cause no

confusion. We can extend v to sets of strings: v(E) = {v(Lu) : w E E}, E Cf {0, 1}i, n > 1.

Two other properties of binary strings that are of interest to us are their 1-bit

counts and bit transition counts.

Definition 1.1 Let w be a nonempty string. We define K(w) to be the number of is ap-

pearing in w. and r(w) to be the number of bit transitions in w (i.e. 0 to 1 or 1 to 0). We

also define t(C) := 0 and r(e) := 0.
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eg. K(OOOOOO) = O, x.c(111111) = 6, K(101101) = 4.

r(OOOOOO) = r(111111) = 0, 7(001111) = 1, 7(101101) = 4, r-(010101) = 5.

We note that for w E {f0 1}", we have 0 < K(w) < n and 0 < 1(w,) _ n - 1.

It should be emphasized that the functions K and r are defined for binary strings.

and not for the binary representation of numbers. The earlier remarks on the non-uniqueness

of binary representations apply here. In particular, the bit transition count associated with

a number depends on the choice of the binary representation. Thus, r-(a 2 (3)) = T(11) = 0

but 'r(u3 (3)) = -r(011) = 1. This issue should be kept in mind in any implementation of

indicial subspaces.
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Chapter 2

Projections of Transfer Matrices

onto Indicial Subspaces

2.1 Indicial sets, vectors and bases

We begin by defining the building blocks of our indicial subspaces. Each such

subspace is obtained by forcing two vector components to have the same value if the bi-

nary representation of their indices have the same number of l's, the same number of bit

transitions and the same I-bit suffixes, where l is a fixed nonnegative integer. By grouping

the indices of equal-valued components together, we obtain a partition of the collection of

indices, and an associated basis for the subspace.

We first illustrate the ideas with a simple example where no suffixes are involved.

The space we shall work in is R8 and we shall regard indices as 3-bit binary strings. Consider

the subspace C of R8 obtained by forcing two components to have the same value if their

indices have the same 1-bit count and the same bit transition count. It is easily verified

that among the eight 3-bit strings 000, ... , 111, there are only two pairs of strings, namely

{001, 1001 and {011, 110}, which satisfy the above criteria. By grouping the indices of

equal-valued components together, we have the following partition of {000, ... , 111}:

{{000}, {001, 1001, {010}, {011,110), {101}, {111}}. (2.1)

We call each member of the partition an indicial set. To each indicial set I, we can associate

an indicial vector x, which has ones in positions whose indices are in I, and zeros elsewhere.
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For the partition (2.1), we have the following indicial vectors:

X1 = (1 000 000 0)", x 2 = (0 1 0 0 1 00n)', X3 = (00 1 0 0 00 0)",

X4 = (0 0 0 1 0 0 1 0)", X5 = (0 0 0 0 0 10 0)", X6 = (0 0 0 0 0 0 0 1)'}.

A moment's thought will reveal that {f 1x .1. x6 } is a basis for the subspace C.

Formally, we define

Definition 2.1 Let n > 1, 0 < k < n, 0 < t < n - 1, and w E {0, 1}" with [w[ < n. Define

I•.kZt := {fp E {0, 1}n : K,(p) = k, r(ju) = t, and w is the IL-bit suffix of M}.

Iknt is called a suffix-based indicial set. For a given w E {0, 1}" with JW< : n, we call a

pair k, t admissible if In

{0000}, 13,2 = {10011,101, 12,2 = {1001}.

We leave it as an exercise for the reader to verify that 14 = 0.

Definition 2.2 Suppose E C {0, i}", n > 1. Define the vector xE E .2" by:

xE(i) := 1 faniE0 < i < 2 -1.

0 if an(i) € E

xE can be regarded as the tabulation of the charactei-istic function XE of E. If E is a suffix-

based indicial set, i.e. E = In for some w, k and t, we call xE a suffix-based indicial

vector and we also write it as X"kt. Note that x1 0, and that IIXEIi 2 = El.

Definition 2.3 Let n > 1, 0 < I < n. Define

&J, := {Xn.{kt : IWI = 1, k,t admissible}.

We call Snj an indicial basis and span (Sn.t) an indicial subspace.

We rework the illustrative example using our new terminology:

eg. I0 = {000}, I3 = {001, 1001, I1I2 {010},

'e 2. =f {0 110}, 12,2 = {101}, a3 0 = fill),

S3,0 = {(1 0 00000 0)", (0 1 00 1 00 0)", (00 1 0 0 0 0 0)*,

(00 0 100 1 0)-, (0 0 0 0 0 1 0 0)", (0 0 0 0 0 0 0 1)"}.
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Central to our analysis of the action of the transfer matrix on indicial bases (see

Section 2.3) are the following two types of operators on sets of binary strings. The first type

will enable us to relate the image of an indicial vector under the transfer matrix to another

indicial vector; the second type plays a role in the decoupling of the action of the transfer

matrix. We urge the reader to read with care the definitions of 2,w and 2w + 1 below.

Definition 2.4 For a nonempty string w, the strings 2. and 2w + 1 are defined by:

2w : w(2)ow(3)o...o w(lw)o0

and 2w+ 1 : w(2)ow(3)o-...ooj(uJ)o1.

It is easily verified that v(2w) = 2v(w) mod 2111 and v(2w + 1) = (2v(w) + 1) mod 2111. We

extend the definition to sets of strings: for E C {O, 1}n, n > 1,

2E:= {2w:wEE} and 2E+1:= {2w+i:wE E).

The reader familiar with binary arithmetic will recall that multiplying a number L" by 2

corresponds to shifting in a 0 from the right, and that multiplying w by 2 and then adding

1 corresponds to shifting in a 1. The strings 2wý and 2w + 1 are the results we would obtain

when we perform the operations in a computer with Iwl-bit words.

Definition 2.5 Let E C {0, 1}", n > 2. We define

E° {fwEE:Ew(2)=0}

and E1  f {wEE:w(2)= 1},

i.e. E° and E1 are subsets of strings in E having 2nd leading bit 0 and 1 respectively. It

follows from the definition that E is the disjoint union of E° and El. If E = u'.kc, we also

write EO=In' and El =n,"= I .k 't an;=I .k~t'

eg. E= {0011,0100,0101,1000}, E° = {0011,1000}, E 1 = {0100.0101).

E = {oo10.0o11}, E° = E. El 0.

E 1 Ij33 = {O0Ot011.0001101,01O011,001101.0100011,0110001},

E° {OOO=Oiioooiioi,0oiotoo,OOiiOO1}, E' {=o0100011.0110001},
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2E 0 = {=0010110,0011010,0100110,0110010} = 10,34

2E 0 + 1 = {OO1O111,OO110i1,O100111,0110011} = I1473,

2E 1 = {1000110,1100010} = 0,3,3,

2E' + I = {1000111, 1100011} = 11,4,2

As the last example indicates, 2E 0 , 2E 0 + 1, 2E1 and 2E1 + 1 are pairwise disjoint and are

themselves suffix-based indicial sets, and 12E°I = 12E° + 1 = IE0° and 12E 1 1 = 12E 1 + I1 =

JE1 1. This is true in general (see Proposition 2.1.6 and Theorems 2.1.7 and 2.1.8 below).

In discussions where the value of n is assumed fixed, we will omit it in writing

indicial objects. Thus, we write IL,k,t, X,,kt, I°.kt and I11 instead of Inkt' X" In,°
w,~ •,k,t w , k, t W.0 1 ,k,t

and 1"' 1 respectively.

In an analogous fashion, we can define prefix-based indicial sets j vectors

Y,,k,t and bases Tn,,. It turns out, however, that prefix-based indicial objects can be derived

from corresponding suffix-based ones. This will be explored in Section 2.4.

We note here for future analyses some crucial properties of suffix-based indicial

sets, vectors and bases. We urge the reader to go through them carefully, with the exception

of the proof of Theorem 2.1.8, where parts (b), (c) and (d) may be skipped.

Fundamental Properties

Proposition 2.1.1 For fixed n and Iwl, the nonempty indicial sets Ik t are disjoint. Thus

for 0 < I < n, S, 1 is an orthogonal basis (i.e. for x,y E S,,t, x $ y =' x*y = 0) and so is

linearly independent.

Proposition 2.1.2 For fixed n and Ial, the collection of nonempty indicial sets 'Zkt is a

partition of{o, 1}". Thus for eachO < i < 2" - 1, there is a unique x E SnJ with x(i) = 1.

Proposition 2.1.3 The trailing bit and the parity of the transition count of a nonempty

string p determines its leading bit.

Proof. An even number of transitions (viewing from the right end of u to its left end)

restores its trailing bit whereas an odd number of transitions reverses its trailing bit. 0

Proposition 2.1.4 The strings in each indicial set I" n > 2, w all have the same

,d.kbt, sincea

leading bit since:
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(a) the trailing bit of w determines the trailing bit of each Pi E Ink,t,

(b) by Proposition 2.1.3, if t is even, the leading bit of each u E In must be the same

as its trailing bit; if t is odd, the leading bit must be different.

Proposition 2.1.5 The strings in each I1',,, n > 3, w $ e, all have the same leading bit

pair and the same trailing bit since Proposition 2.1.4 determines the leading and trailing

bit, and the 2 nd leading bit is 0 by definition. Similarly, the strings in each V"'. r > 3

,w $ c, all have the same leading bit pair and the same trailing bit.

Proposition 2.1.6 Let E C {0, 1}', n > 2. The sets 2E°, 2E° + 1, 2E 1 and 2El + 1 are

pairwise disjoint since by definition:

(a) strings in 2E° have leading bit 0 and trailing bit 0

(b) strings in 2E° + 1 have leading bit 0 and trailing bit 1

(c) strings in 2El have leading bit 1 and trailing bit 0

(d) strings in 2E 1 + 1 have leading bit 1 and trailing bit 1

Theorem 2.1.7 Let E = In,k,t, n > 2, w 3 e. Then 12EOI = 12E° + 11 - 1E01 and

12E 11 = 12E 1 + 11 = 1E11.

Proof. Let wl,w 2 E E° with 2.w1 = 2w 2 . Then

w1(2) o w1(3) o ... owl(n) o 0 = w2 (2) 0 W2 (3) o ... oW 2 (n) o 0

and so

=1 = w(1) o wl(2) o...-ow (n) = W 2(1) o W2 (2) o--. ow 2(n) = W 2

since W1 (1) = w2 ( 1) by Proposition 2.1.4 (note that w1 , w2 E E). Therefore, for L,1 ., 2 E EO.

$L -1 2 :*, 2w1 5 2w 2, and we have a one-to-one correspondence between E° and 2E°. So

12E°I = E°[. Similarly, we have 12E° + 11 = [E°[ and 12E 11 = 12E' + 11 = El 1. 0'

Theorem 2.1.8 Let E =In,.t, n > 3.0< fwf< n. Then 2E 0 , 2E+ 1. 2E 1 and 2E1+1

are themselves suffix--based indicial sets.
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Proof. There are four cases to consider, depending on the trailing bit of w and the parity

of t. We will prove the result for the first case; the proofs for the remaining three cases are

similar.

a) trailing bit of w is 0 and t is even:

We claim that 2E 0 = I".O,k,t* Suppose y E E° C E. Then u(2) = 0, p(n) = 0,

and by Proposition 2.1.4 applied to E, p(1) = 0. It is clear that u and 2A have the same

1-bit count and the same transition count, and that w o 0 is the (Iwi + 1)-bit suffix of 2p.
So 2 E I"Okt and 2E° C In

WoO - woO,k,t"

Conversely, let p' E Inook't. Then by definition, i'(n) = 0 and j'(n- 1) = W(WI1)

0. By Proposition 2.1.4 applied to IZoO,kt, P'(1) = 0. Thus u' = Oo'(2)o ... oji'(n-2)oOoO.

If we let p = 0o0o0oM'(2)o-.. ou'(n-2)o0, we see that /' = 2 ,u. It is clear that p and p' have

the same 1-bit count and the same transition count. So p E Ink, = E0 , and In C 2E°.W,~ WoO,k,t -- O

Therefore, we have 2E° = Ioo,k,t. We can show in a similar manner that:

2E +1 = I .t+, 2E' = InoOkAt_1, 2E 1 + 1 = Inol,k+ijt

b) trailing bit of w is 0 and t is odd:

2E 0 = I'noOk-it-i' 2E° + 1 = Ino1,kt,,,•o0,k-1 ,t- 1

2E' = Ino;"A 2EI + 1= In
joO~k- 1,t' 2 + 1 wol,k,t+1

c) trailing bit of w is 1 and t is even:

2E° = IwoO,k-1,t, 2E° + 1 = Io.knf_1,

2E 1 =InoO,k-_1t+I, 2E 1 + 1 = In

d) trailing bit of w is 1 and t is odd:

2E° = I 2E° + 1 = In•o0,k~t+1 ' Iol~k+ lj,,

2E1 =IO 2E 1 + 1 = In i 0,,:oO~k~t 'Wo 1,k+ 1,t-I "

2.2 Subspace Approximations

The orthogonal basis Sn,1 was defined in the previous section. There is a unique or-

thogonal projection of Mn onto span(S.,i) and our method takes the two largest eigenvalues

of this projection as approximations to those of Mn.

Here are the details.
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Let X E R2 x1S",1I be a matrix whose columns are the vectors in S, 1•. Let X*X

Dx, a positive definite diagonal matrix (with integer entries). Let X = XD-'2 . The

projector on S.,1 is XXk , and the projection of MN is XXUM1XX*, and its representation

in the basis given by k is

,= _ M *Ml"X = D •)'X*IM.XDx'/2.

Observe that P/S is diagonally similar to

PC D-'X MX = D-'/t2 -c D,12
= X ni,l X"

It is slightly more convenient to work with pCG than with P-.

In order to obtain good error estimates we approximate M4 as well but for reasons

discussed in Section 2.7 we project it onto the subspace Ttl dual to Snk. If Y is a matrix

whose columns are the vectors in T.,1 we compute the representation of the orthogonal

projection of AI, as

Let ,1 and ir2 be the largest two eigenvalues of PCI" In the absence of two such

positive eigenvalues we abandon the basis S, 1 immediately and increase 1 by 1. Thus we

compute (iri, gi, h*), i = 1, 2,

,pg, = g9•r,, hPt PC= r•rh, PC1g2 = g2 r 2 , h;PC = ir2 h;, 0 < 7r2 < r1.

Approximate eigenelements for A1n are defined as

(ri. Xg,,hIDXD X*), i = 1,2,

although we may not wish to form these eigenvectors until we are confident that they are

satisfactory. We define similar approximations for AI,• using the basis Tn,l.

2.3 Action of duodiagonal matrices on indicial bases

Our primary goal is to analyze the structure of the column projection matrix pC

and of the row projection matrix PR . This requires us to understand the action of the
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transfer matrix M, on basis vectors x in Sn,, for I > 1. In this section, we shall see how

to decouple the action of MA, and thus express Mx as a linear combination of indicial

vectors. Section 2.4 then analyzes the structure of PC, and pRt for I > 1. The degenerate

case I = 0 will be discussed in Section 2.5.

Let n be a fixed integer > 3, and I be a fixed integer > 1. Recall that PC1 =

DQ'X*MnX where the columns of X are vectors in Snt, and Dx = X'X. To elucidate

the action of Mn on X, we introduce a general class of duodiagonal matrices Un, of which

Mn is a special case. We first illustrate it for n = 4:

U0 U0
U0  U 2

U1U14
3 3U2 U2

0 2

U 0  
U2

W4  : -- U1 U

0 24

1 U3

U1

U2 U2
3 3

In general, we consider the 2" x 2" duodiagonal matrix:

0=[ 2n- X 2,n-2 2'x 02.-1 x2" 2,+-un 2

where

= U( e R2-3x2" 2  U(0)
"'.0 0

0 UU3o 0 14
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rUM' 0 U0  0l
2n- 1 1-UI ) R I ° o

= E 2, U(' -
".. j0 uV

Lu 0 U 3

u(2) 0 u0 0
u • •U (2) 2 n - o~-

= u() E R2 -x2 -2 , U(2) 2 U

0 u2

U(2) 0 u3

""L 0 2

U3( 3) 0 u

which we shall denote by

and abbreviate by U,. The transfer matrix Mn is then equal to

u[(a :);2 .a . )

U.(3 U(3 b-I b~-1 1- 0-

We shall denote the kth column of Ub by uy, k = 0, 1,.., 2" - 1.

Efficient processing with duodiagonal matrices U,~ depends on the following key

observations regarding their nonzero entries:

(a) the nonzero entries of uk occur exactly at positions 2k mood 2'n and (2k + 1) mood 2".

(b)theparmetrs 2' and ui+l (i = 0,1, j = 0,1,2,3) are the nonzero entries of

l2n.-2,+2k.Ft, 0 < k 2 2 -3 -2 1,

eg. for U5, thle parameters u? and u3 (i.e. i = 1, j = 1) are the nonzero
entries of U9, u31 , u33 and uI5 .

a a ) ( 2Ib and a-' 1-+b-

Equivalently, the parameters uji and u=1,j are the nonzero entries of Uk, for those

k E {0, 1,..., 2- - 1} where the leading bit pair of a,(k) is C2(j) and the trailing bit
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of oan(k) is al(i). In the above example, the only 5-bit strings with leading bit pair

01 and trailing bit 1 are

a5(9) = 01001, a 5(11) = 01011, a5(13) = 01101 and as(15) = 01111.

Combining the above observations, we have:

Proposition 2.3.1 Fori = 0, 1, j = 0, 1, 2,3, the parameteru~i appears as the(v(w),v(2•))

entry of U, where w E {0, 1}n satisfies w(1) ow(2) = a 2 (j) and w(n) = a1 (i); the parameter

2i+ Iu+ appears as the (v(w), v(2w + 1)) entry of Un for those samew 's.

We remind the reader that for a string A E {0, 1}", v(p) denotes the integer value it

represents, and that for i = 0,1, j = 0,1,2,3, aI(i) and a2(j) denote the 1-bit binary

representation of i and the 2-bit binary representation of j respectively (see Section 1.2).

Suppose E _C {0, 1)" is such that all strings in E have the same leading bit pair

and the same trailing bit. Recalling that a matrix-vector product is a linear combination of

the columns of the matrix with coefficients given by the entries of the vector, we see that

UnXE = E Uk = E Uk.

k where k where

XE(k) = I ffý(k) E E

From observation (b), the uk's involved in the vector sum have the same two parameters
U12, and u2'+l (for some i, j) as their nonzero entries, and applying observation (a) to each

such Uk, we see that the nonzero entries of UnxE have indices in v(2E) U v(2E + 1): u2'

appears at indices v(2E) while u 2i+I appears at indices v(2E + 1). We have thus shown the

following:

Theorem 2.3.2 Let E C {0, 1}n, n > 3, be such that all strings in E have the same leading

bit pair and the same trailing bit. Then

UnxE = U' 22E + u1 2E+l

for some i. j.

Consider now applying U,, to the indicial vector X,,k,.t E Sn,,. Let E = L.kjt

Recall from Definition 2.5 that E 0 = 1° and El = Iwkt (E0 and E1 could possibly be"t kt oB p nd
empty), and that E is the disjoint union of E° and El. By Proposition 2.1.5, E° and El
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each contain strings with the same leading bit pair and the same trailing bit. Applying

Therorem 2.3.2 to E 0 and to EI, we have:

U-XE = Un(xEO +XEI)

= U, XEO + Un xEl

i2t 2i+I + 2i' 2i'+1= - Uj X 2 EO + u, X2 EO+ 1 ) + (uI, x 2 E1 + u,, X2EI+ 1 )

for some 0 < ii' < 1 and 0 < j,j' < 3 with (i,j) 6 (i',j'). By Theorem 2.1.8, 2E°, 2E°+ 1.

2E 1 and 2E 1 + 1 are themselves suffix-based indicial sets. Enumerating the possibilities.

we have the following four cases for the formation of UnXE:

Theorem 2.3.3 Let x.,,k,t E Snt and E = I,,k.t. Then UnxE is a lincar combination of

(possibly zero) suffiz-based indicial vectors as follows:

/a) trailing bit of w is 0 and t is even:

UnxE = (UoXwoO.k,t + UOXwoIk+1.,t+) + (uOxWo0,kt.-1 + UIXaolk+1,t)

(b) trailing bit of w is 0 and t is odd:

UnxE.- (U2XwoO,k.1,_1f + U•Xwo1,k,t) + (UO3XoO,k.l,t + U3Xwo1,k,t+1)

(c) trailing bit of w is 1 and t is even:

UnxE (u22XwoO,kI,t 4 U2Xwo1.k,t_)"+ U3XwoO,k-l,t+I + U3 wol,k,t)

(d) trailing bit of w is 1 and t is odd:

UnxE = (ugoXaoO,k,t+l + U~oXwo1.k+It) + (UsXwoOk,t + Ujxwo1.k+l,t-l)

As an illustration of Theorem 2.3.3, we work out the action of U5 on some of the

basis vectors in S5,1 in the example below. The columns of the 32 x 32 identity matrix 15

will be denoted by {eO. el . . e31}. We urge the reader to go through the example carefully.

and to observe in each case how the result of applying Us to an indicial vector could be

expressed as a linear combination of 2 or 4 indicial vectors.

eg. (a) 'I 1.2 ={ooo10,00100,01000} -0, 1,2 = e2 + e 4 + e8s

UXO 1.2 = U5e2 + Use 4 + U5es

= U2 + U4 + U8

= uC 4 + t4,es) + (uge 8 + t4,e9) + (u'I' 16 + uje17)
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= u°(e4 + e8 ) + u'(es + e9) + u?,e6 + u~e17

= 0O i5 0 5 15
-Uo 0 ,1, 2 + UtoX 0 1 ,2 ,3 + -ulxO 0,1, 1 + UX 0 1 ,2 2

(b) 05,2,3 {10010, 10100}, X 0 ,2 ,3 = e18 + e20 ,

Usx, 2 3 = U18 ± U20

=(0 10 1= (u 4 + U~es) + (u2e8 + U2e9)
=0U 5 15
u2XO0. 1 2 + U21Xo 1 ,2 . 3

(c) I4 = {10111= 11011, 11101}, X514 2 = C23 + e27 + e29,

5xl4,42 := U 2 3 + U 2 7 + 7129

= 2ie14 + U~e1 5) + (u~e22 -' ve 23) + (ue26 + C~27)

2 5 3 5 2.5 35
U 2 X 1 0 3.2 + U 2 Xl, 4 ,," + U 3 1 0 ,3 ,3 + U3Xll,,2

(d) 153 , = {fool") X51 , 3 ,1 =

U 5 x1.3, 1 = U7

= U2 3UoeI 4 + uoe1 5
= 25 3 5

=ugx0,3, 2 + U0XII, 4 ,1

Returning to our analysis, we note that if E° = 0, then x 2EO = z2Eo+i= 0, and

that if El = 0, then x 2E1 = X2EI+1 = 0. However, E° and E1 cannot both be empty since

E = E° U E1 and E is nonempty. In addition, the nonzero vectors among X2 EQ, X2Eo+i.

X.2E1 and X 2El+1 are distinct from each other since 2E°, 2E° + 1, 2E 1 and 2E 1 + 1 are

pairwise disjoint by Proposition 2.1.6. So UnxE is a linear combination of either 2 or 4

suffix-based indicial vectors.

We can in fact relate UnxE to the vectors in the basis SnJ. Define a subvector of

a vector x to be a vector obtained by setting zero or more entries of x to 0, i.e. a subvector

has the same number of entries but more of them are 0; analogously, a subcolumn of a

matrix A is a column obtained by setting zero or more entries of some column of A to 0.

Recall that E = Ik,t. and w E {0. 1}1. By Theorem 2.1.8, each of 2E° and 2E 1 is of the

form 1,o0,k',t' for some k' and t'. and each of 2E° + 1 and 2E 1 + 1 is of the form I.ol.k,,,t,,

for some k" and t". Now.

w o 0 = w(1) o (w(2) o ... o w() o ) = w(1) o 2w,

and w ol = w(1)o (,a(2)o .. .ow(l)o 1) = w(1) o(2w + 1).
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Therefore IoO,k,,t, _ I 2w,k',t, and Iwol,k,,,t,, C 12w+1,k",t# since 2w and 2w + 1 are suffixes

of L o 0 and w o 1 respectively. It follows then that x2EO, X2E0+1, X2 E, and X2E1+1 are

subvectors of vectors in S,,,1 since 12wl = 12w + 11 = 1. Thus UnxE is a linear combination of

either 2 or 4 subvectors in S,,,t (with each subvector arising from a different vector in Sn,l ).

2.4 Structure of the column and row projection matrices

Armed with our understanding of the action of duodiagonal matrices on suffix-
based indicial bases, the analysis of the structure of the column projection matrix pC

becomes straightforward. Wc shall show that for I > 1, Pc 1 is sparse with either 2 or 4

nonzero entries per column, and we shall precisely locate the positions of those entries, and

express their values in a way that enables them to be computed without using vectors in

R2'. By exploiting an important relationship between suffix-based and prefix-based indicial

objects, we shall show that the row projection matrix PR, has the Zame sparsity structure

as the corresponding column projection matrix PCnt

Recall that PC1 = D`'X*MTX, where the columns of X are the vectors in S,,t

and Dx = X*X. We index the rows and columns of P.C by the triple (w,k,t) where X ",k"'

is a column of X. Then the entry in row (w', k', t') and column (w, k, t) of PCJ is given by:
1 1

I 1w',kt,112 (X,,,k',t', Mxf.,kt) 1',.,, ( Xw',k',t i MnXwkt)"

Recall that

Let E = I,,k~t. The analysis of Section 2.3 applied to M,, shows that MIXE is a linear

combination of either 2 or 4 subcolumns of X (with each subcolumn arising from a different

column of X). Since the columns of X have pairwise disjoint supports (cf. Proposition 2.1.2),

P,, is sparse with 2 or 4 nonzero entries per column arising from the nonzero inner products

(x,',k,,t,, MA XE). Specifically, column (w, k, t) of PC1 has 2 nonzero entries if one of E° and

E1 is empty, and has 4 nonzero entries if both E° and E1 are nonempty. For completeness,

we enumerate the possible nonzero inner products (cf. Theorem 2.3.3). The reader who is

not interested in the details may wish to skip the enumeration.



24

(a) trailing bit of w is 0 and t is even:

(X2w,k,t, M-XE) = (X2w,k,t, UOOXwoO,k,t)

= UgIIX,,.o,k,t 112

= U'OIIw .O~k,t I

= ajIIO,k,tI

= al2E0 I

= aIE0I by Theorem 2.1.7.

Similarly,

(X2,,+1,k+l,t+l, MnxE) = UOIjIw.1,k+I,t+I I = bIlwol,k+l,t+l I =I'

(X2,,,k,t-1,MflxE) = u'IjIw.O,k,t-II = bllw.o~k~t..1 = bIE1I

(x2,,+l,k+1,t,MnxE) = U~IIIwo1-,k+I,tI CIJwol,k+I,tI = cIE1I

(b) trailing bit of w is 0 and t is odd:

(X2w,k1I,t-1,AMnXE) = U0211w.Ook..1t..1I a-1IL0 O,k.1,t1j.1 = a-'1E 01

(X2w+1,k,t,MflxE) = u12IL.I,k,tj = b'IjIw.l,k,tI = b-'1E 01

(X2w,k.1,t,MflXE) = U30I~woO,k-l,t I = b'II-O,k.I,tI = b-1IE1I

(X2,,+1,k,t+l,hfflXE) = U31I.Iwo,k,t+l I = C 'II,,l,k,t+l I = c-1 E11

(c) trailing bit of w is 1 and t is even:

(X2w,k-I.t,M-xE) = Ut4II.,.Ook.I~tt = a1 'II.O,k..1,tI = a-'1E 01

(X2w+1,k,t..1,MnxE) = U'211wol,kt1- I =b-1 L.wo,k,tl1j = b-'1E0

(X2w,k.1t+I,MAfXE) = U3IIwoO,k..1,t+II = b-'IIijeO,k.-l,t+1I = b-1 0 1I

(X2w+1,k,t- Al'xE) = U3Iw1kt '~o~~I=cI 1

(d) trailing bit of w is 1 and t is odd:

(X2w,k,t+I,MnIxE) = UOII~.,.O,k,t+i I = aIIw.O~k~t+I I = aIE0I

(X2,+1,k+],t, MnxE) = UoiI, 0 1 ,k+I,hJ = bjIw.1,k+I,eI = bIE 0I

(X2~k~t, AfflxE) = U~I l,,O,k~t I = blII,.O,k,t I blE1 I

(X2w~l,+k+1t-1, AflXE) = U 1.,ak+I1t-1j =CIjo1,k+I1t-1I = cIE'I
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Note that in the above enumeration, we could state precisely the possible nonzero

inner products, and thus we can precisely locate the positions of the nonzero entries of PC.1

More importantly, each inner product (involving two vectors in R 2 ") was expressed as a

product of an ontry in M, and the cardinality of a suffix-based indicial set. In Chapter 3,

we shall develop formulas for finding those cardinalities. Thus the projection matriz PCt

can be computed in time proportional to IS.'I and without using any vectors in R 2".

The analysis of the structure of the column projection matrix Pej could be adapted

to the row projection matrix pR = D•Y1M•MY by considering directly how multiplication

by M, affects prefix-based indicial vectors. It is, however, more illuminating to exploit the

relationship between suffix-based and prefix-based indicial vectors.

Consider the binary reversal matrix R4 E R2 "×2", whose only nonzero entries are

ones in row i and column j, where the n-bit binary representation of i and j are the reversal

of each other, i.e.

= { 1 if a.(i) = (a . (j))R < ij < 2" - 1.
0 otherwise

Rn. is a reflection: it is symmetric, involutary ( R,, = In) and orthogonal (R*,Rn = R, = In).

If ej E R 2" is the jth column of the identity matrix In, then Rkej = ej where we write

V((aO(j))R) as j. Therefore for the suffix-based indicial vector xw,k,t, we have R,•X•,k~ t =

Y,,Rk,t since R, does not change the 1-bit count and bit transition count of an n-bit string.

We thus have a one-to-one correspondence between suffix-based indicial vectors in Sn,, and

prefix-based indicial vectors in T",l, and R,1Snt = {Ri~x : x E Sn,t} = T",1 . By a suitable

arrangement of the columns of Y, we can make Y = R4X. Then

pR = D 1Y*•1*Y = D)1(X-R_,)M (R ,X) = D 1X-(RM-,)X

since

Dy Y= Y = (XR 0)(InX) = X-(RtRJ)X = X*X = Dx.

The sparsity structure of k,,AIRn is identical to that of Mln (the parameter values permute).

as Theorem 2.4.1 shows. We illustrate it for n = 4. Note that for a matrix B E R 2"X2".

BR/ is a permutation of the columns of B with columns i and j interchanged if i = j

(0 < i,j < 2" - 1). while 4•B is a permutation of the rows of B arising from the same

interchange of rows. In particular. the remarks hold for U;R 4 and R 4 (U;R 4) respectively.
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0001 0011 0101 0111 1001 1011 1101 1111

0000 0010 0100 0110 1000 1010 1100 1110

uo U

u u u u

08 0

u•l 2 u u0 1
U1 U1

u• 2 u

1~ 1

4L u2u

2u 2

u 2 u 3
24 2

04 1
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0001 0011 0101 0111 1001 1011 1101 1111

0000 0010 0100 0110 1000 1010 1100 1110,

u8 0~ 0000

0 0 0001

0u0 0010

0 0101

UU 1  0100

1 0101

0 1I 0110

1 111U 0111

U2 2' 1000
o2

2 2 1010

U2• ,3 toiol

u 0, ol1110

, 2 u 3 o111

3° 33 1 o
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00 0000

uo u12oo
2 2 0001

I u1 0010

Uo0 Uo 1o

3 3 l0011

00 0100

2l 23 0101

u 0 Ul loli0 011

2u 2 1001

U2U3 1010

tS3 1011

U2 u 3 11000110

2 A i 3 o1101
2 111

U2 u3 1111

~I I

TheotremofU 2.4.1 t)e till, )0 1~ 0 1 0 11

Poro b iathe 1 U. r0 1 1 2 2 3 by ,,,
LX 0u0U2 u~ 2 / U u~ 1 ~ 3 ~ 3

shall determine where the nonzero entries of R,, U,*,R,, are. It is easily verified that the (I, j)

entry of U,, appears as the (j, i) entry of k,, U, i-,,, or in terms of strings, the (v(ji), vkw)

entry of U,, appears as the (v(wR), v(pR)) entry of k,,U,*R,4 foryww E fO, 1)". In particular.

for w E f{O, 1)", the (t'(w), t'(2w)) and (v(w), v(2w + 1)) entries of U,, appear respectively as

the (v((2w )R), v(WR )) and (v((2w + l)R), v(u.R) ) entries of R,,R,

Consider the parameter u2. From Proposition 2.3. 1, U2 appears as the (v(w), v(2,,))
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entry of U,, where w E {0, 1}' satisfies w(1) ow(2) = 10 and w(n) = 1. Let

A = {w E {O,1}n w(1)ow(2) = 10, w(n) = 1},

and B = {w' E {O, 1} :w'(1)ow'(2)= 01, w'(n) = O}.

WAe claim that

{((2L)RR) :w E A} = {(w',2w'+ 1) :w' E B}. (2.2)

Note that JAI = IBI = 2n-3, and that for each set in equation (2.2), each pair in it can arise

from only one string in A (or B). It thus suffices to show that for w E A, (( 21.)R ,.R =

(w', 24' + 1 ) for some w' E B.

Let w E A, and w' = (1,)R. Then w(1) = 1, w(2) = 0, and w(n) = 1. In addition.

W/ = [w(2) o o w(n)o 0o]R

= 0ow(n)o ... ow(2),

and 2w'+1 = w(n)ow(n-1)o...ow(2)ol

- WR

So ((2W)R'WR) = (w',2w' + 1), and w'(1) ou'(2) = 01 and w'(n) = 0, i.e. w' E B.

Thus

{((fO )RWR) :w E A} = {(w',2w'+ 1) :w' E B},

and u2 appears as the (v(w'),v(2w' + 1) entry of knUýR, where w' E {0, 1}" satisfies

w'(1) ow'(2) = 01 and w'(n) = 0. By similarly considering the other fifteen parameters, we

can characterize their positions in RA ,U,•&, in the same manner. It then follows by applying

Proposition 2.3.1 to R,,U•R, that

R,,U,-, ,,= .( C

Applying the above theorem to R,,M/,R we have

-_Uý a bb a' a-' b-1 -

a b b) b( c)( -

= (a-1 b-1) a1 b-)I b-I cc' b-I c-1

and so Pj has the same structure as Pý.
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2.5 Degenerate column and row projection matrices

For 1 = 0 and fixed n, the column and row projection matrices, pC1 = D -'X-M', X

and PA = DX'X(RnMnn)X respectively, are degenerate in that they do not possess the

sparsity structure present when I > 1. Instead, P, 0 and Pýo have either 2, 4, 6 or 8 nonzero

entries per column.

Since no suffixes are involved when I = 0, we index the rows and columns of Pc0

by the pair (k, t), where XZ,k,t is a column of X. The entry in row (k', t') and column (k, t)

of Po is then given by

1X ,'V 12 (Xe,k ',t', AInX,,k,t).

Let E = I,k.. Then E = Ik,t and E1 = ,,k,t Unlike the case 1 > 1, E° and El each do

not necessarily contain strings with the same leading bit pair and the same trailing bit as

the suffixes are not specified. However, we can partition them according to the trailing bit

of strings in them:

E 0 = Eg u E°, E 1 = E, U E,

where

E I= 10 E=I=k1t, and E 1 E= Iak=1

IE0, E°, El, El are pairwise disjoint by definition, and by Proposition 2.1.5, they each

contain strings with the same leading bit pair and the same trailing bit. By Theorem 2.1.8,

each of 2E°, 2E0 + 1, ... , 2E1 and 2E1 + 1 are suffix-based indicial sets, and they are

pairwise disjoint since:

(a) by Proposition 2.1.6,

(i) 2Eo, 2EEo + 1, 2Eo and 2Eo + 1 are pairwise disjoint

(ii) 2E°, 2Et + 1, 2E1 and 2EI + 1 are pairwise disjoint

(b) a string p from a set in case (i) has p(n - 1) = 0 whereas a string p from a set in ase

(ii) has p(u - 1) = 1.

Applying Theorem 2.3.2 to each of Eo°, E0, E01 and El, we have

MnxE = AInXEO + MnXEO + M"IEl + Mfl-IE
0 1 0 1
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-(moooX2 EO + moo702E0+1) + (moloE2EO + mo ?X2Eo+1)

+(mlooz 2E1 + m'olX2 E1+l) + (m1lol 2E1 + mlllX2 El+l).

for some parameters mooo, ... , mill of Mý. As before, we note that if E° = 0. then

'2EO = E0 +i = 0, and similarly for E°, E1 and El. However, Eo, E°, El, E1 cannot all

be empty since E = E° U E° U El U El and E is nonempty. In addition, the nonzero vectors

among X2Eo I.... X2E 1 +i have pairwise disjoint supports. So MnxE is a linear combination

of either 2, 4. 6 or 8 suffix-based indicial vectors. The four possibilities can actually occur.

as the following example shows:

eg. (i) E = 4,, = {0000}, E° = {0000}, E° = E' = E= 0.

(ii) E = 14. = {0001,1000}, E0 = {I1000}, E° = {00011, E' = El 0.

(iii) E=1,2,3  {00101, 01001, 10010, 101001,

E° = {10010, 101001, E0 = {00101}, E' = 0, El = {01001}.

(iv) = I1,3, 2 = {001110, 011100, 100011, 110001},

E0 = {0C1110}, E 0 = {100011}, E1 = {011100}, E' = {110001}.

Thus P~o has either 2, 4, 6 or 8 nonzero entries per column. Since R IMR_/, has

the same structure as MA, the same conclusion holds for P, 0 .

2.6 Action of the transfer matrix on general indicial bases

The careful reader would no doubt question our choice of indicial sets. In particu-

lax, the exclusive use of the prefix or the suffix as one of the three parameters in our indicial

functions might seem overly restrictive. In this section. we introduce a more general class of

indicial sets, and consider how the transfer matrix acts on the corresponding indicial bases.

We will then be able to justify our choice of approximating subspaces in Section 2.7.

Let n > 1.0< k< n, 0<t <n- landw1 .w 2 E {0,1}'with0< KWiI+kW21 < n.

Recall that for a string p E {0, I}", K(p) and r(p) dpnote its 1-bit count and bit transition

count respectively. We define a general indicial set to be

G 1, 2,kt := P E {0. 1)" : K(j) = k. r(pu) = t, wl is a prefix of u and W2 is a suffix of p}

and in analogous fashion to suffix-based indicial sets, we can define general indicial vectors
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"z,1w,k,t and general indicial bases V0j0,#2, with 0 < 1 + 12 < n. We will assume that n is

a fixed integer > 3, and omit it in writing indicial sets and vectors.

It is clear that suffix-based and prefix-based indicial objects are special cases of

general indicial objects. Indeed, we have:

I,k,t-- G,,,w,k,t, zw,k,t = : ,Ze,wt, S.,t = Vn,o,t,

and Jw,k,t = Gw,e,k,t, Yw,k,t = Zw,e,k,t, 7T.. = V.,t,o.

In addition, since the leading (trailing) bit of a string can be determined from its trailing

(leading) bit together with the parity of i, '-it-transition count (cf. Proposition 2.1.3), we

have for nonempty general indicial sets G,,,,k,t the following:

GIw~,kt = G,,w2,k,t if IwIl = 1 and W2 5 E,

and G ,, ,k,t = Gdlekt if 1w2l = 1 and w, 5 e.

Therefore, SOI = V,,,t1 = Vn,,,1 and T.,, = V.,t,o = V.,l,,.

We note that by the same type of proof as in Theorem 2.1.8, we can show that:

Theorem 2.6.1 Let E = G , n > 3, 1w,1 >_ 2 and 1-011 + P212 <_ n. Then 2E =

Gand 2E + 1 = for some W' w' k i' w" w" k",t" with IJw' = Iw"' =
1w I - 1 and Iw'l = =1 21 + 1. Thus X2E and X2E+i belong to the basis

Consider now the action of M. on a general indicial basis V, 1,tj 2 , n > 3, 11 >_ 2

and 11 + 12 < n. As usual, we work with the general duodiagonal matrix U. instead of Mn.

Theorem 2.6.2 Let n > 3, 11 > 2 and 11 + 12 < n. Then

U-span(V-..,12 ) 9_ span(n -1,1_2,t+1 )

In particular, Mnspan(V,, 1, 12 ) g span(Vn,,l,-.11,+i ).

Proof. Let z,,, .2.k.t E V-,,,,102 and E = Gw,,.,k,t. Since 1w, 12! 2, E contains strings with

the same leading bit pair and the same trailing bit. Applying Theorem 2.3.2, we have

--= UnxE = u. x2E + uI X2E+I for some i, j.

From Theorem 2.6.1, X2E and X2E+1 belong to VnJI, 1-+j.1' So UnxE E span(Vn,-,1,12+1).

0
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The dual action of M,• is an easy consequence of Theorem 2.6.2 once we determine

how general indicial sets are affected by binary reversal. It is easily verified that for a

general indicial set G,,,,k,t,

(p:JE•,t "R k,t}

= G1,w ,k,t.

Thus •.z, ,,,2 ,k,t = Z~R,,Rkt and R.V.,I,,12 = V-,12 ,11.

Corollary 2.6.3 Let n > 3, 12 >_2 and l1 +12 < n. Then

M,•1span(V,1),,i•1) 9_ span(12.,1 +1,12-1 ).

Proof Recall that 4M,:?n is duodiagonal (Theorem 2.4.1). Thus

RnMnspan(Vn,,1 ,12) = RnM,••.span( V0,2,41)

C sPan(Vn,12-1,11+1) by Theorem 2.6.2,

and so

M'1*span(Vs,h,12) C knspan(V.,1,-1S,1+1)

=span(V2n,11+1,12_l).

since Fj1 =kn-. 0

2.7 Choice of indicial bases and the spectral invariance con-

jecture

Recall that Sn,1 is the set of all nonzero suffix-based indicial vectors Xnkt E R 2 "

with i-bit suffix w, and that Tn,1 is the corresponding prefix-based indicial basis. In Sec-

tion 2.2, for fixed n and 1, we chose span(Sn,t) and span(Tn,j) as the subspaces for approxi-

mating the top two column eigenvectors and the top two row eigenvectors of M.. We now

justify why these choices are best in a certain class of subspaces of the same dimension.

Recall from Section 2.6 that S, 1 = Vn,ti and Tn,, = Vn,l,. We will show in

Appendix A that the general indicial bases Vn,l,1, Vn.2.1-1, -j..., Vn,1, 1 all have the same car-

dinality (see Corollary A.1.5) and so the subspaces span(Vni,i+I-i), i = 1, 2,..., 1, all have
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the same dimension. We claim that among these subspaces, span(Vn,ti) = span(S,,I) gives

the best approximations to the top two column eigenvectors of Mn, and that span(V,,,I.j)

= span(T7,"I) gives the best approximations to the top two row eigenvectors of M,.

From the theory of the classical power method for computing dominant eigen-

values and eigenvectors, we know that for any real vector x and conformable matrix B,

Bx has a "richer" component in the top column eigenvector than does x, and similarly

for the second column eigenvector. So for x E span(VYn,i,1+l-i), i = 2,3,...,l, MnX

has a richer component in the top column eigenvector q, of MA than does x. But from

Theorem 2.6.2. Mnx E span(Vnli-l,+ 2 -i). Therefore, the best approximation to q, from

span(Vn.i-l,1 + 2 -i) would be better than the best approximation to q, from span(V.,it+1-i),

i = 2,3,...,l. In particular, the best approximation to q, from span(Vn.ij) = span(S,,.j)

would be better than any approximation to q, from span(Vn,i,1+]_i), i = 2,3,...,. So

span(Sn~t) contains the best approximations to the top two column eigenvectors of Ai,,

among span(Vn 3iJ+ -i), i = 1,2,...,l. A similar argument for M,* (and using Corol-

lary 2.6.3) shows that span(Tnt) contains the best approximations to the top two row

eigenvectors of Mln among span(Vnj,1,-+1_), i = 1, 2,..., 1.

What about the approximations to the top two eigenvalues of M,? Would those

two special subspaces give better approximations than the other general indicial subspaces?

To answer these questions, let

Pi,+,-i =DXI(X' MlX), Dx = X*X

where the columns of X are the vectors in V,,,ij+1-i, and let pR 1 1 - = Dx1(X*MX).

Then p2. 1 = p2 and PR. = PR1 as previously defined. We have the following remarkable

Theorem 2.7.1 (Spectral invariance) The projection matrices PC1 t P 1  . "

PC PR pR - PR all have the same set of eigenvalues.
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Chapter 3

Combinatorics of Indicial

Subspaces

3.1 Quantitative analysis of 1-bit suffix-based indicial sets

In this section, we shall be solely concerned with the quantitative properties of

suffix-based indicial sets of the form In with jwj = 1. As usual, n will be a fixed integer

(and we omit it in writing indicial sets). We first determine the values of k (the 1-bit count)

and t (the bit transition count) giving nonempty indicial sets, and the cardinalities of those

sets. We then show that the largest indicial set has cardinality :• 2n/nr. Finally, we will

prove that the number of nonempty indicial sets is 2 + n(r. - 1) = 0(n 2 ).

We now begin a formal analysis that will establish Theorem 3.1.2. There is a

relation between k and t for strings ending in 0.

Lemma 3.1.1 Consider nonempty indicial sets I0,k,t. Then

(a) t = 0 if k = 0,

(b) 1 <t < min(2k,2(n- k) -1) if 1 <k <n-1.

Proof. It is obvious that for k = 0, the only nonempty indicial set is I0,0,0 = {0}.
n

Consider now a fixed k > 1. Since k > 1 and any string P' E 10,k,t has trailing bit

0, there must be at least 1 bit transition within p, i.e. t > 1. Suppose / E I0,k,t has at most

as many l's as O's, i.e. k < n - k. Then each 1 in p can contribute at most 2 bit transitions

(if preceded and followed by O's), and so t < 2k. If instead p has at most as many O's as



36

l's, i.e. k > n - k, then each 0 in M contributes at most 2 bit transitions, except for the

trailing 0, which contributes at most 1 bit transition. So t < 2(n - k - 1) + 1 = 2(r - k) - 1.

Combining the two cases yields 1 < t < min(2k,2(n - k) - 1) for nonempty indicial Fets

IO,k,t, k > 1. 0

The next task is to compute IIO,ktI for 1 < k < n - 1, 1 < t < min(2k, 2(n - k) - 1).

This will be accomplished by deriving an alternative characterization for 10.k,t.

Definition 3.1 Let p be a nonempty string. By a block of 0's in a string fL, we shall mean

a (nonempty) sequence of 0 's in M which is preceded by (if possible) and followed by (if

possible) by 1 's. We make an analogous definition for a block of 1 's in P.

eg. y = 1001110110 has 3 blocks of O's, 3 blocks of l's, and 3 + 3- 1 = 5 bit
transitions.

As the above example indicates, the bit transition count of a string A is one less than the

sum of its number of blocks of O's and its number of blocks of l's. We thus have the following

alternative characterization for IO,k,t:

{I E {0,1}m' K(p) = k, T(,u) = t, p(n) = 0, and p has ift even
't + 1 blocks of O's and L blocks of 1's}

Io,kt =

{IPE {0,1}: K(ju)=k, r(p)=t, /(n)=0, and p has if todd
+1 blocks of O's and ±' blocks of 1's}

Theorem 3.1.2 The cardinalities of the nonempty indicial sets Iok,t are given by:

(a' 11no0 =0i.

(b) for 1 < k <n- 1 < t < mln(2k, 2(n - k)- 1),

t/ - 1t -/2 if t even

(tk 1 - k- 1 if t odd
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Proof. Case (a) is trivially true. Let k and t be as in case (b). Consider p E I0.k~t. Using

the above characterization of I0,k,t, we see that if t is even, the k l's and n - k O's of p are

divided into t/2 and t/2 + 1 blocks respectively; and that if t is odd, they are each divided

into (t + 1)/2 blocks. From combinatorics, we know that the number of ways to divide n O's

(or m l's) into q nonempty blocks where the ordering of the blocks is important is given by

( - 1). The result then follows by applying the combinatorial formula to the division
q- 1 ) .

of O's and the division of l's of ju into blocks. 0

The cardinalites of the nonempty indicial sets Il,k,t can be derived by a similar

argument. We note, however, a particularly simple and useful relationship between these

indicial sets and those of Theorem 3.1.2.

Definition 3.2 Let y be a nonempty string. The ones complement 7! of y is the string

obtained by reversing 0 's and 1 's. If E is a set of nonempty strings, we define E := {77:

,u E E}.

eg. 0110100 = 1001011.

Proposition 3.1.3 For all n > 1, 0 < k < n and 0 < t < n - 1,

IO.k,t = II,n-k,t and Il,k,t = Io,n-k,t.

We thus have a one-to-one correspondence between the collection of nonempty

IO,k,t and the collection of nonempty I1.k,t given by ones complementation, with corre-

sponding indicial sets having the same cardinality. Making the transformation k -, n - k

in Theorem 3.1.2, we obtain the corresponding result for II 1k,t1:

Corollary 3.1.4 The cardinalities of the nonempty indicial sets In,k,t are given by:

(a) IIT~,ol = 1,

(b) for 1 < k < n - 1, 1 < t < min(2k - 1,2(n -k)),

( k- ) n-k-t ift even

117, ,JI =

(t 1)/2 (t- 1)/2
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Having determined the cardinalities of the nonempty indicial sets I,,k,t with fw=

1, we now turn to finding the maximum cardinality of such a set. Because of the one-to-

one correspondence previously mentioned, we need only consider maximizing among the

nonempty indicial sets I0,kt.

We first recall the floor and ceiling functions for real numbers. For a real number

a, [aj (floor of a) is the largest integer < a, and [al (ceiling of a) is the smallest integer

> a.

eg. [3.9] = [2.11 = 3 and [-6.5j = [-7.11 = -7.

We note that La/2J + [a/21 = a, L-oJ = - [al, [-a] - - LJ for all real numbers a. In

addition, for a positive integer m,

n-ax ( )= ( L(3.1)/20_(?)(L m72J)(rm/21)(31

The following theorem gives the maximum cardinality of an indicial set I Ok,t. It

then follows by Stirling's approximation that the maximum cardinality of a 1-bit suffix-

based indicial set is ; 2"/nir. The proof of the theorem is tedious, and may be skipped

without any loss of continuity.

Theorem 3.1.5 Let n > 1. For n 0,1 (mod 4),

maxI0I01k 11 ( [i42J - 2 [n/2
k0t , ln/2j2Ln/4] [n/4J - 1 [n/4J

and for n - 2,3 (mod 4),

m-n, ax IktI = n I= ( n/2J - 1 ( [n/2] - 1

k0. L-/2j,2L-/4j+1 [n/4J I n/4J

Proof. We sketch the main ideas and leave the verification of the details to the reader.

Define

m0 = max 1I0,k,0I and m, = max IIO.k.tj.
k,t k,t

t even t odd

We seek max(mo, ml).
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Consider first finding ion. By Theorem 3.1.2,

in0  maxk-I < <k<n-i (t/2-)1 t/2
I < t < min(2k,2(n - k) - 1), t even

max f(k,t')
1 <k< n-I

0< t, < min(k - i,n - k - 2)

where t' =t /2 - 1 andf( =)( ). For a fixed k,

k(n - k - 1)f(k,t' + 1) >f(k,t') *• t' + 1 <n
n

So the value of t' maximizing f(k, t') for fixed k is given by:

t'= k(n-k-1) (3.2)

Similary, for a fixed t, we have t' + 1 < k < n - t' - 2 and

f (k + 1, t') f_ (k, t') €#> k + 1 < t'(n -1) + 1.

- 1 + 2

So the value of k maximizing f(k,t') for fixed t' is given by:

k= [t1(n )J + 1 (3.3)

By considering the possible values of n mod 4, we can show that

k = Ln/2J - 1, t'= [n/4J - 1

is a simultaneous solution to (3.2) and (3.3). Recalling the change of variables V - t/2 - 1,

we have
II 1= (n/2j - 2 ' r( n/2]
O~ln2J-,21/4J [n/4J - 1) [n/4]

Consider now finding mi. By Theorem 3.1.2,

MI max
1 < k <n - I (t 2 (t - 1)/2

1 < t < min(2k,2(Cn - k) - 1), t odd

max g(k, t')

0 < t, < min(k- 1,n - k- 1)
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where t' = (t - 1)/2 and g(k,t') = ( 1 -' . Since g(k,t') = g(n - k,t'),

we conclude by symmetry that for a fixed t', the value of k maximizing g(k, t') is k = Ln/2J.

So

=, max g([n/2J ,t') = max (L/1- n2
0_<t'< [n/2J-1 O<t'<Ln/2j- / ti ti

Since

Ln/4J= [Ln/2J- ]2 for all n,

and n/4j = [ rn/2-] ifn =0,1,2 (mod 4)2
r/1. r,-1 if n 3 (mod 4)

we conclude by formula (3.1) that t' = Ln/4J gives the maximum value. Recalling the

change of variables t' = (t - 1)/2, we have

MI= 110, Ln/2j, 2Ln/4j+ - Ln/2j - 1 ) (Ff21 - 1)

Ln/4]) ( [n/4j

We now find max(mo, mnl). It is easily verified that

m. = (Ln/2J - 1)(rn/21 - tn/4J)
Mo Ln/4J [n/21

and that

m, > MO . ff/21 ([n/2j - 1) > [n/4J (n - 1)

*n - 2,3 (mod 4).

The theorem then follows. 0

Recalling that 10.k,t = 1,,,-k.t, we obtain the corresponding result for nonempty

I1.k,t by making the transformation k -+ n - k:

Corollary 3.1.6 Let n > 1. For n =- 0, 1 (mod 4),

MaX11nlkJI = II=L-4 ( [f21 [n/2j - 2
kj , rn/21+1,1/j [n/4j 1 [n/4j - I
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and for n = 2,3 (mod 4),

(~ [n/21 -1 [n/2J-
max1I'1.kft = I, rn/21.2Ln/4j+1I = n I

kjt Ln/4J [n/4]

We now count the number of nonempty indicial sets I ,w,ith IwI = 1. This is easily

accomplished using the bounds on k and t from Theorem 3.1.2.

Theorem 3.1.7 The number of nonempty indicial sets I,,k,t with IwI = 1 is 2 + n(1n - 1).

Proof. By Theorem 3.1.2, the number of nonempty IO.k,t is:

n-I n-1

1 + yj min(2k,2(n- k) - 1) = 1 + E k (after some simplification)
k=1 k=1

n(n- 1)
--- 1+2 2

From the one-to-one correspondence between nonempty IO,k,t and nonempty I1,k,t, we de-

duce that the number of nonempty I1,k,t is also 1 + n(n - 1)/2, and we have the desired

count. 11

3.2 Reduction principle for indicial sets

Our goal in this section is to prove a reduction principle relating arbitrary suffix-

based indicial sets to 1-bit suffix-based indicial sets. We can then apply the principle to

extend the results of Section 3.1.

The reduction principle transforms indicial sets Ikt with IwI = I to 1-bit indicial

sets by dropping the last 1 - 1 bits of strings in In. Central to the proof of the principle

are the following fundamental equalities for the 1-bit count and bit transition count of a

nonempty string.

Proposition 3.2.1 Let n > 1 and P E {0, 1}". Then

K(p) = K(p(1)o...ou(nf-l+1))+ K(/I(n -l+2)o ... op(n))

and r(i) = r(4(1)o ... op(n-1+1))+ r(p(n-l+1)o...op(n)).

We first show that dropping the last 1 - 1 bits of strings in Ikt does indeed

transform it into a 1-bit indicial set.
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Lemma 3.2.2 Let n and I be positive integers, with n > 2 and 2 < I < n, and let w be a

string of length 1. Then

{p(1)o-...op(n-l+l):pEI+:} = n-1+1

where

k' = K(w(2) o .. .o w(l))

and t' = t - r(w).

Proof. Let p E Ink.t and p' =/p(1)o...op(n-l+1). Then

p(nn-l+1)o...oop(n) w,

K(//') - (p)- K(p(n-l+2)o ... o/p(n)) by Proposition 3.2.1

k k-k',

and r(//') = r(//)-r(p(n-l+1)o...o//(n)) by Proposition 3.2.1

-- ti.

So p' E ,)- ,,"

Conversely, let p' E -''k',t,, and p = p' o [w(2) o... ow(l)] = ju'(1) o ... oa'(n-

)ow(1)o [w(2) o...ow(l)]. Then

p(n-l+1)o...o p(n) = w,

tc(p) = (.(p') + K(w(2) o ... o w(l)) 'y Proposition 3.2.1

and 7(/u) = r(,') + r(w(1) o w(2) o ... a w(l)) by Proposition 3.2.1

- t.

SopaE In.,kt and u' = u(1) o ... oop(n-l+1). 0

Theorem 3.2.3 Let n and I be positive integers, with n > 2 and 2 < I < n, and let w be

a fixed string of length I. There exists a one-to-one correspondence between the collection

I1 of nonempty suffix-based indicial sets .",k,t and the collection I1"-+' of nonempty 1-bit

suffi-based indicial sets 1 + Furthermore, corresponding indicial sets have the same

cardinality.
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Proof Define the function f :I"F -- I"-'+' by:

f(1,k,t) = {p(1)...o p((n-1+1) : u E I:,k,t.

From Lemma 3.2.2, f(I.kt) 1=)n-L+ ,.,

V' = n(w(2) o ... ow(I))

and t'= t - r(w).

We show that f is a one-to-one correspondence between 2"n and _rn-t+1 with the

desired property.

Suppose f(I ,k,,t,) = f(I,k2 ,t, ) for some In ' In,kt I,k 2 ,t2 E ZI. Then

In-i+1 =In-1+l

w(1),ki -k',t1  -r(w) - (1),k2-k',2-r(w)

and so k, = k2 and t, = t2 . Thus f is one-to-one. Furthermore, f is onto "n-1+1 since forin-1+1 2n-41 -, In In,,-t II.
w(1),kIt E In k+k,,t+r(w,) E Ti and f(.k+k,,+T(,)) = ",,'j,,• F~ially, for n,,-.,t E 1-n.

f(in k,t) and Ikt have the same cardinality since for A1,P2 E In

PI 9 P2 = • .. .o0AI(n-) / P2(1)0 ... 0P2(n-l1)

because

p I(n-1+1) o. o = A2(n-I+1) o.. o0p2 (n) = w. 0

There is a similar reduction principle relating general indicial sets to suffix-based

indicial sets. We refer the interested reader to Appendix A for its statement and proof.

3.3 Quantitative properties of suffix-based indicial sets and

projection matrices

In this section, we extend the results of Section 3.1 to arbitrary suffix-based indicial

sets using the reduction principle proved in Section 3.2. We can then deduce the order of our

projection matrices (or equivalently, the cardinalities of our indicial bases) and the number

of nonzero entries in them. We shall in fact show that the indicial bases Sn,t and 7ý.t both

have cardinality

S(n - l + 1)(n - l) 2
22)1n2 1 1"
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Before we begin a formal analysis, we present some numerical results to get a feel

for the quantitative behaviour of our indicial subspaces. Table 3.1 gives the cardinality of

the indicial basis Sn, and the maximum size of an indicial set Inkt (with W = 1) for 1 = 2, 4.

The latter quantity is by defilitiol: equal to the maximum number of ones appearing in a

basis vector in SO. We see from the table that the indicial bases have cdxrdinalities which

are very small compared to 2 n; in contrast, the basis vectors have a large number of nonzero

entries. For example, for n = 30 and I = 2, we approximate R2 30 by the subspace spanned

by the 1628 basis vectors in $ 30 ,2 , the "largest" of which has 5.95 x 106 ones appearing in

it.

2" IS.,21 max Iw,k,tI Sn,41 max I;,k,t
w,.k,t w,,kt

_ _ _ = 2 _1__ = 4

5 32 28 2 32 1
10 1024 148 20 352 6
15 32768 368 400 1072 120
20 1.05 x 106 688 8820 2192 2520
25 3.36 x 107 1108 2.33 x 105 3712 63504
30 1.07 x 109 1628 5.95 x 106 5632 1.59 x 106

Table 3.1: Combinatorial properties of suffix-based indicial sets

We now turn to extending the results of Section 3.1. Let n and I be fixed positive

integers with I < n. From Theorem 3.2.3, there is a one-to-one correspondence f between

the collection of nonempty suffix-based indicial sets I'n (for a fixed w E {o, 1}t) and the
,,k,t (o ie ,11 n h

collection of nonempty 1-bit suffix-based indicial sets In1+ given by:

f(,nw.k.,) = 1n,(),k-,,(w(2)o ... o,( )),,--()"

By making the appropriate substitutions (n by n - 1 + 1, k by k- K(w(2)o. ...ow(l)) and t

by t - r(7)) in Theorems 3.1.2 and 3.1.5 and Corollaries 3.1.4 and 3.1.6 of Section 3.1. we

obtain corresponding results for nonempty In.kjt.

Theorem 3.3.1 Let n be a positive integer, and w be a fized string of length I < n. Let

V = K,(w(2) o ... o w(l)). The cardinalities of the nonempty indicial sets 1 nkt are given by:

(a) if w(l)= O:

(i) I•A',•]=1
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(ii) fork'+ 1 < k < n-l +kW, r(w)+1 < t < r(w)+min(2(k-k'),2(n-l-k +k')+ 1),

(t - r(w))/2- 1 (t - r(w))(2

Ink,,t =

((t-r(w)-1)/2 ( (t-r(w)-1)/2 ift r(w)+ 1 (mod 2)

(b) if w(1) = 1:

(i) l w,n-1+k'+1,-(w)1 = 1,

(ii) fork'+1 < k < n-l+k', r(w)+l < t < r(w)+min(2(k-k')-1,2(n-l-k+k'+l)),

k -ki- n-( - k + k' ift 7w(md2
( (t -r(w))/2 (t -"r(w))/2 - f

ll"k,,klt =

(t-r(w)-1)/2 (t-r(w)-1)/2 ift r(w) + 1 (mod 2)

Theorem 3.3.2 Let n be a positive integer >_ 1, and w be a fixed string of length l n.

Let k' = K(w(2) o ... ow(l)). For n E 1 - 1,1 (mod 4),

maxiInk~e = L(n- + 1)/2J -2 ( n [ -nI+ 1)/21
kt \(n - l+ 1)/4J - 1 [(n - l+ 1)/4j

Sw, L(n-1+1)/2J+k,-1,2L(n-1+1)/4j+r(w)I ifw(1) = 0

I lIw, r(n-_+1)/21+k,+1,2t(n-_+1)/4j+r.(,) if,(1) = 1

and forn =I+1,1+2 (mod4),

max l ,ki' L( -1I+ 1)/2j - 1'( [(n - 1 +1)/21 - 1'
k., [(n- l+ 1)/4j [(n - I+ 1)/4J

= I' k1w, L(n-1+1)/2j+k',2t(n-,+1)/4j+r(u4)+ I ifW(1) = 0

w I,, r(n-L+i)/21+k',2L(n-1+1)/4j+r(,.,)+l ifw(1)= 1

Our next task is to count the number of nonempty suffix-based indicial sets I"

with Iwl = 1.
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Theorem 3.3.3 The number of nonempty indicial sets I",kt with Iw = 1 > 0 is

2'(1 + (n - I + 1)(n - n221 1.2

Proof. Let w be a fixed string of length 1. From the proof of Theorem 3.1.7, we know that

there are 1+(n-1+ 1)(n -1)/2 nonempty indicial sets of the form 1"-'+• by Theorem 3.2.3,

we have exactly that many nonempty indicial sets of the form I"kt* Summing over the 21

possible w's, we obtain the desired count. 0

We apply the above results to finding the order and the number of nonzero entries

of the column projection matrix PC, and of the row projection matrix PRt for 1 > 0. WVe

note that these two matrices have the same order and the same number of nonzero entries

(see Section 2.4).

An immediate corollary to Theorem 3.3.3 gives us the order of the projection

matrices:

Corollary 3.3.4 The cardinality of the indicial bases S,,,t and T,,,, 1 > 0, are both 2' (1 +

(n - I + 1)(n - 1)/2). Consequently, the projection matrices PC, and pR1 , 1 > 0, both have

order 21 (1 + (n - 1 + 1)(n - 1)/2).

Our final result concerns the number of nonzero entries in the projection matrices.

Theorem 3.3.5 The number of nonzero entries in each of PC1 and Pn,, l > 0, is

21+2(1+ (n - l)(n - l- 1))
2

Proof. Referring to the analysis of the possible nonzero inner products occuring in the

construction of the column projection matrix PC0 (see Section 2.4), we see that the number

of nonzero entries in PCt is 2 (101 + jCel), where

,0 = {nonempty E° where E = IAJ with II = 1}

and e' = {nonempty E1 where E = L.Ak,t with Iw = 11.

We remind the reader that E0 and E1 are subsets of strings in E having 2nd leading bit 0

and 1 respectively.

Again using the fact (Proposition 2.1.3) that the trailing bit and transition count

t of a string determines its leading bit, we see that each E0 E C' is equal to some GL,1oO.w.k,t
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with IwlI = 1 and Iwl = 1, and that each nonempty G, 1 oO,W,k,t with IwIl = 1 and JwL =

is in e'. Thus eo = {nonempty G, 1 oO,w,k,t with Iwll = 1 and Iwi = 1}. Similarly, El =

{nonempty GIol,w,k,t with Iwll = 1 and Iwi = 1}. Therefore

Co u El = {nonempty G•,,,kt with 1wl = 2 and Iwi = 1}.

Since Co n C1 = 0, we have

2(C601 + 1.l6) = 2. 1,°U (l'

= 2. I{nonempty Iw,k,t with w = 1 + 1}I by Theorem A.1.4
(n - I)(n - i -i)

= 21+2(1+ 2 ) by Theorem 3.3.3. 0
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Appendix A

Reduction principle for general

indicial sets

In Section 3.2, we proved a reduction principle (Theorem 3.2.3) relating suffix-

based indicial sets to 1-bit suffix-based indicial sets. Our goal in this appendix is to prove

a similar reduction principle relating general indicial sets (defined in Section 2.6) to suffix-

based indicial sets.

We first introduce the shift operators + and - on bit strings. For a nonempty

string w = w(1) o w(2) o... o w(IwI), we define

w+ 1 w(2)ow(3)o ... ow(jwj)ow(1),

w- 1 w(IwI)ow(1)o...ow(Iw--1).

We also define c + 1 = c - 1 = e. The result of applying + i times on a nonempty w

(1 < i < IwI) will be denoted by w + i, and that of applying - i times by w - i. Thus

w + i =w(i+1)ow(i+2)o ... ow(w)ow(1)o ... ow(i),

w - i w(Ilw-i+1)ow(IwI-i+2)o ... ow(Iw)ow(1)o .. .ow(Iwl-i).

Note that

(w ± i)(k) = w((k ± i - 1) mod Jwi + 1), k = 1,...,Iwl. (A.1)

If E C f0, 1}{ is a set of strings of length m, m > 2, we define E + i {w + i :w E E}

and E - i {w - i w E E) for 1 <i < m.

We note the following properties of the operators + and -.
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Proposition A.1.1 Let m be an integer >_ 2, and let wI,w 2 E {0,1}m, and El,E 2 C

{0, 1}m. Then for 1 < i < m, the following equivalences hold:

WI = W2 WI Wi=W2 ± i,

and E 1 = E 2  El i = E 2 ± i.

Proposition A.1.2 Let m be ,;n integer > 2, and let w E {o, 1}m, and E C {0, 1}'. Then

for 1 < i < m,

(w+ i) - i= (w - i) + W = 0,

and (E + i) - i = (E - i) + i =E.

We also have the following relationships between the 1-bit count and the transition

count of w, w + i and w - i:

K(W ± i) = K(O), (A.2)

r(w + i) = r(w) - r(w(i) o w(i+ 1)) + r(w(IwI) o w(1)), (A.3)

and r(w - i) = r(w) - r(w(IwI -i) o w0(IjwI-i+1)) + r(wo(IwI) o w(1)). (A.4)

Formulae (A.3) and (A.4) arise from the fundamental equality for the transition count of a

nonempty string p (cf. Proposition 3.2.1):

r(p) = r(p(1) o M(2)) + r(p( 2 ) o p( 3 )) + + r(i(jjl-1) o j(lIl)).

As usual, we let n be a fixed integer > 3. By performing appropriate shifts, we

can transform general indicial sets to suffix-based ones, and vice versa. This forms the bas;L

of Theorem A.1.4 below.

Lemma A.1.3 Let ll and 12 be positive integers, with 2 < 11 + 12 <_ n. Let G,,,1 ,k,t be a

nonempty general indicial set with 1Iw, = 11 and 1w2 1 = 12. Then

(G~1 ,w,k.t) + (11 - 1) = G, 1 (1,),wk,t, = Iw,,k,,

where

W' =W 2 0 w1 (1) o...o 0W1 (-1), (A.5)

and t' = t - r(wi (l -1) o 0W1 (l 1)) + r(w 2 (12 ) o0W1 (1)). (A.6)
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Proof. The equality

G ' (1j),w',k,t' "•" I,,,k,t'

follows from the fact that the trailing bit and the parity of the transition count of a nonempty

string determines its leading bit (Proposition 2.1.3).

Let p E Gt,,2k,t and p' = p + (11 - 1). By definition, p(1) o... o pI(l1) = wl, and

p(n-12+1) o...op(n)=w2. .2hen

n(,') = k by formula (A.2),

r(,U) = r(p) - T(,U(/1 -1) o P(11)) + r(y(n) o p(1)) by formula (A.3)

= t - r(wi(11 -1) 0w 1 (1
1 )) + T(W2 (12 ) w1 (M))

= t' by formula (A.6),

ji'(n-l+2) o.. .o t'(n) = [p'(n-l1-1 2 +2) o.. o y'(n-/l+ 1)] o

[p'(n-1 1 + 2) o...o 0'(n)]

= [p(n- 12+ 1)o0... o (n)] o [u(1) o... -op -)

= w 2 ow,(1)owl(2)o"'oW1 (/ 1 -1),

= w' by formula (A.5),

and p'(1) = (p + (ll - 1))(1)

= p((11 - 1) mod n + 1) by formula (A.1)

So ju' E G,,xI.,,kt and (G,,.,,2,k,t) + (11 - 1) C Gl (1,),w,,k,t,.

Conversely, let p' E G,,1 (l),,,.kt,, and p = u'-(11-1). By definition, p'(1) = wI(lI)

and p'(n-1-l12+2) o... o '(n) = w2 ow1 (1) o ... owl(11-1). Then

K(p) = k by formula (A.2),

r(p) = t' - T(p'(n - 11 + 1) o p'(n- l1 + 2)) + r(p'(n) o p'(1))

by formula (A.4)

= t'- r(wO2 (12 ) o0 W(1)) + i(w(1 1 -1) ow 1 (11 ))

= t by formula (A.6),

p(l) o-.. -op(li) = [p'(n-1+2) o. c ,i'(n)] o'(1)
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= [ .(.) 0 •0• 1 (11 - 1)] o0 Li(ll)

and 1 u(n-1 2+1)o...op(n) = p'(n-11-1 2 +2)o...o '(n-/l+l)

= W2-

So u E Gw1,,, 2 ,k,t and p' = [y' - (11 - 1)] + (1] - 1) = p + (ll - 1). Thus GWI(I 1 ).wk.t, C

(G, 1 ,, 2 ,k,t) + (l1 - 1). 0

Theorem A.1.4 Let 1, 11 and 12 be positive integers, with 2 < I < n and 11 + 12 = 1. There

exists a one-to-one correspondence between the collection git,12 of nonempty general indicial

sets Go1 ,• 2 ,k,t with Iw, I = 11 and ILw21 = 12, and the collection T.-1 of nonempty suffix-based

indicial sets Iw,k,t with IwI = I - 1. Furthermore, corresponding nonempty indicial sets have

the same cardinality.

Proof. We first consider the case l = 1. Recall that the trailing bit and the transition

count of a bit string determines its leading bit (Proposition 2.1.3). So for G ,Vw,2 ,k,t E g9, 1 2.

we have G,1,, 2,k,t = IL,k,t; and for I',,k,t E 112, we have I',k,t = G,,,,k,t for some 1-bit
string w'. Thus 91,12 = 112, and we have a trivial one-to-one correspondence.

Consider now the case 11 > 1. From Lemma A.1.3, we know that for G.,1,, 2 .k jt E

911,12,

(G,•m,,02,k,t) + (li - 1) E 11i-1.

Similarly, we can show that for I,,,k,t E Ij-1,

(I,,,k.t )- (11 - 1 ) E 911,12.

We can thus define a function f : Qg1 ,12 - 1 1_ given by:

/(G•,•,I2,ok)= (G,,j,, 2 ,k,t) + (11 - 1).

We show that f is a one-to-one correspondence with the desired property. By

Proposition A.1.1, f is one-to-one. Furthermore, f is onto II"_ since for I.,kt E T1_1.

(I,•.k~t) - (11 - 1 ) E 91,1,2, and f(I.,kj ) - (11 - 1 )) = ((Iw,kjt) - (11 - 1)) + (11 - 1) = Iwk~t.

Finally. for G,1 ,,,kt C ,1, the cardinality of f(G,1 ,w2,k,t) is the same as that of G,1 , 2.k.tt

since for PI, A2 E GwI W.kj,,

Al • A2 • Al + (li -1) A P2 + (l] - 1)

by Proposition A.1.1. E1
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Corollary A.1.5 The general indicial bases V•, 1 ,1 , V,•, 2 ,1- 1 , ... , V,j, 1 all have the same

cardinality.

We leave it to the reader to extend the results of Section 3.3 using Theorem A.1.4.
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