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ABSTRACT (UNCLASSIFIED)

The 3-dimensional finite-difference time-domain method is a numerical method for solving electromagnetic
penetration and scattering problems. It uses a finite difference representation of the time dependent Maxwell
equations. The object of interest is embedded in a lattice and the time is divided in discrete intervals. By
applying the finite-difference equations for every time step the propagation and scattering of waves is
simulated. In this report the 3-dimensional FD-TD method and its algorithms are explained. Results are
presented for a perfectly conducting plate, cube and wedge and for a dielectric layered sphere. The
calculated results agree with experimental and exact theoretical results.

NTIS CRA&i
DTIC TAB s
Unannourcad 'f:l

Justification !

Accesion For '\) -
h———-—.—_ — e

By ‘

Distributica ' ;

rmctear = e e e e b m——— -

A\’ﬂi.".:-nx,. - ot !

e o e

toa . ”
A el
e .
H

Dist

i

S

C o




TNO report

rapport no. : FEL-92-B190

titel : Theorie en toepassingen van de 3-dimensionale cindige differentie, tijddomeinmethode
auteur(s) : ir. G.J.A. van Gennip

instituut : Fysisch en Elektronisch Laboratorium TNO

datum : juni 1992

hdo-opdr.no. : -

no. in iwp 92 : 710.5

Onderzoek uitgevoerdo.l.v. ir. H.J. M. Heemskerk

Onderzoek ultgevoerd door  : ir. G.J.A. van Gennip

SAMENVATTING (ONGERUBRICEERD)

De 3-dimensionale eindige differentie, tijddomein (finite difference time domain, FD-TD) methode is een
numericke methode om elektromagnetische penetratie- en verstrooingsproblemen op te lossen. De methode
maakt gebruik van een eindige differentie representatie van de tijdafthankelijke vergelijkingen van Maxweil.
Het te modelleren object wordt opgenomen in een rooster en de tijd wordt opgedeeld in discrete intervallen.
Door toepassing van de eindige differentie vergelijkingen op deze discrete ruimte te herhalen voor elke
volgende tijdstap simuleren we de voortplanting en verstrooing van golven. In dit rapport worden de 3-
dimensionale eindige differentie tijd domein methode en de hiervoor benodigde algorithmen behandeld.
Resultaten worden gepresenteerd voor een perfect geleidende plaat, kubus en wig en een dielektrisch
gelaagde bol. De berekende resultaten komen goed overeen met experimentele en exacte theoretische
resultaten.
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1 INTRODUCTION

Electromagnetic penetration and scattering problems are usually very complicated. Only a few of
them can be solved analytically. For the remainder, one bas to use numerical methods. Various
methods are being studied at the moment. One of the various methods under consideration is the
Finite-Difference, Time-Domain (FD-TD) method.

The FD-TD method uses a finite difference representation of the time dependent Maxwell
equations. The object of interest is embedded in a lattice, and time is divided in discrete intervals.
By applying the finite difference equations for every time step, we simulate the propagation and
scattering of waves. By enforcing a plane wave at t = 0, subsequent time-stepping will result in a
steady state which can be monitored and used to calculate the object's radar cross section.

The main advantage of the FD-TD method is its simplicity. The method can easily be
implemented for arbitrary complex objects, because it is possible to designate every cell in the
lattice its own material constants.

Chapter two deals with the theory and the used algorithms for the 3-dimensional FD-TD method.
It explains the complete method including boundary and source conditions. In chapter three some
results are presented and compared with other methods and measurements. The used objects are
perfectly conducting plates, cubes and wedges and a dielectric layered sphere.

o—




TNO report

2 THEORY AND BASIC ALGORITHMS

21 Ideas behind the FD-TD method

The aim of the FD-TD method is to model the propagation of an electromagnetic wave into a
volume of space containing a dielectric or conducting object. By time-stepping, i.c. repeatedly
implementing a finite difference analog of Maxwell's time-dependent curl equations at each cell
of the grid, the incident wave is tracked as it first propagates to the object and then interacts with
it. The time-stepping goes on until the sinusoidal steady-state is achieved at all points in the grid.

Time-stepping is done by a finite-difference procedure due to Yee [1]. This procedure requires the
positioning of the components of E and H about a unit cell of the lattice as shown in figure 1, and
the evaluation of E and H at alternate half-time steps. In this manner a second order accuracy in
the space and time increments is attained by using centred finite-difference expressions for both
the time and space derivatives.

E § (-1i+1k+1)

x. P SETSE

@Y E, Gi+1K

Fig. 1: Poﬁﬁmin;ofﬂnﬁcldeomponaminnpwecdl
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Beside the Yee procedure there are a number of other procedures that need to be developed. The
first one is the lattice truncation condition. At the edges of the lattice the centred finite-difference
expressions can't be used so that alternative expressions for the edges have to be developed. These
expressions are called lattice truncation conditions or absorbing boundary conditions. These
conditions must assure that the outgoing waves pass the lattice truncation planes with a minimum
of reflections. To minimize computer storage the conditions need to be positioned as close to the
object as possible.

The second procedure that is needed is the one that assures that there is a plane wave travelling
through the grid. This procedure is called the source condition. This source must not be the cause
of any extra reflections as will be the case when the plane wave is simply imposed on a certain
plane in the grid.

A third procedure is needed to calculate the radar cross section. Once the fields in the grid have
reached the steady state, the near fields are available. These fields will have to be used to
calculate the radar cross section. This includes a near-to-far field transformation. In the following
paragraphs a detailed discussion is given of the various algorithms.

22 The algorithms

221 The Yee algorithm
Assuming that €, G, | and p' are isotropic, Maxwell's equations in Carthesian coordinates can be
denoted as follows

oH, 1(JE, BE

— X - _ - _ Y%

o u(az dy pH") (1a)
dH, 1(3E, OE

L2 Y5x_

x p.(ax % "HY) (Ib)
oH, 1(3E, 9B,

Y ‘u(ay x PH*) de)

e 41 b i S . 4
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oH,
3;; 1(3;1- =L -oE ) (d)
JE
- .-..:.(a; a; GEy) (le)
oH
3;; =%( - a;*y —aE,) as

Where € is the electrical permittivity in farads/meter; o is the electrical conductivity in
mhos/meter; i is the magnetic permeability in henrys/meter; and p’ is an equivalent magnetic
resistivity in ohms/mete~. The magnetic resistivity term is provided to yield symmetric curl
equations, and to allow for the possibility of a magnetic field loss mechanism. In accordance with
Yee a point (x,y,z) = (i5,j8,k3) in space is denoted as (i,j,k) in which & = 8x = §y = 8z is the space
increment of a cubic lattice. A function F(i5,j5,kd,nAt) of space and time is denoted as FrG,j k) in
which At is the time increment and i, j, k, and n are integers. Yee used centred finite-difference
expressions for space and time derivatives that are second order accurate in § and At respectively.

FG,jk) i+, ik -F - 1,5k o

- - +0(8%) (2a)
IF"(i,j,k) _ F" 4G, k)~ F* (i, 5,k) 2

e = +0(a?) @b)

Using these expressions to get a finite-difference analog of the Maxwell equations results in

EG+ 4.3k =C3mERG+Y,jk) (33)
+C 4(m) (Hz G+ 14,5+ %0 ~H G+ 1 i 1 k)
~HI R G+ 1,5k + YHT G+ 1, j,k—}g))
EJ* i+ 1.k =Cy(mEDG,j+%,k) (3b)
+Cy(m) (H:*‘”(i, i+ 4.k + K —H" G, i+ 1,k - 1)
~HI A G4 6,54 14,k HP R G- I e }g,k))
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EMGjk+Y) =Cim)EjGjk+ %) (3c)
+Cotm) (Hy %G+ 34,1k + %) - Hy A6 - K3k + )
“HM A G5+ 1.k + YDA G - }g,k+}§))
HMAG,j+ Bk + 5) = ClmHE %G, i+ 4.k + ) (3d)
+Cy(m) (EGj+ Y5,k +D-EJGij+ J5.5)
—ELGLj+Lk+ BHEG ik + 1)
HIAG+ Y5k + 1) = CramEy G+ 14,5k + 1) (3¢) -
+Cy(m) (E3G+Ljk+ 1) -ESGjk+3)
~E}G+ 34,k + D+ER G+ 5,3.K))
G+ %+ %0 =CmHE %+ 1,i+ 4,k Gf)
+Cy(m) (ERG+4,i+1K)-ERGi+%.5,K)

~EDGi+1,j+ 4. k)IFER G+ 14.5))

with
- sz
C2tm)= 8(2u(m)2 . tAtp @) @0
Cotm= 8<2e(m)2 v Ato(m) “d)

in which m = media(i,j k) is the type of medium at a field component location. To ensure stability
of this time stepping algorithm, At is chosen to satisfy the inequality [2]

8
Ats 5
R ®

where c,,, is the maximum wave phase velocity within this model. § is chosen to be small
compared to the wavelength, usually § < A/10. Also 3 has to be small compared to the dimensions
of the object, because curved boundaries are formed by a staircase approximation.
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With the system of equations (3a)-(3f), the new value of a field vector component at any lattice
point depends only on its previous value and on the previous values of the components of the
other field vector at adjacent points. Therefore, at any given time step, the computation of a field
vector may proceed either one point at a time, or, with a parallel processing computer, at many
points at a time.

222 Lattice regions and plane wave source condition
As shown in figure 2 the FD-TD lattice is divided into two distinct regions, separated by a
rectangular surface which serves to connect fields in each region.

2. Scattered Flelds

1.Total Flelds

(A)

Object

Plane Wave Boundary

Absorbing Boundary Condition

otal
flelde
o Ex /‘
S : P }-k
/ AN / ®)

Py scaliered
fokie

Fig. 2: Division of the lattice into total-field and scattered-field regions (a) global geometry, (b) local geometry
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Region 1 of the lattice is denoted the total-field region, region 2 the scattered-field region. The
object is positioned in region 1 where all field quantities are comprised of the sum of the incident
wave and the scattered fiecld. In region 2 all field quantities are compriged only of the scattered
field.

The rectangular planes that form the boundary between regions 1 and 2 contain E and H field
components. These field components are updated according to equations (3) and subsequently
corrected to maintain the two distinct regions. Typical FD-TD computations at these boundary
points are as follows.

e P
BT (6, o k + 1) = EP¥Gi ok + }é)l equ(3e) + CamHY " (hjo — Y.k + 1) (6a)
;. .ﬂ‘f% . .
E™(i+ 14, k)= EM i+ }z'JO’k)|eqn(3') +C4m)H; @i+ %.j, - 4.k) (6b)
(o - Y.k + 39 = HI G Jo = 15,k + W)l aqnaey ~C2MES ook +%)  (60)

HY' 2G4 .50 — B k) = HE G+ 14,50 — 14,5 equeaty — C2()EL G+ Yo k) (6d)

Here E,*™1(i j,k+%) is the usual FD-TD value of the total E, component evaluated at point
(i,jo-k+%#) and time step n+1. The superscript "i" denotes the known incident field component
value. These computations assure consistency of the subtraction operations of field components
across the Region 1 / Region 2 boundary. In effect, total-field quantities are always subtracted
from similar total-field quantities; the same goes for scattered-field quantities. This enforcement
of consistency serves to precisely connect the two regions. Further, the inclusion of arbitrary
values of E'and Hi in the consistency relations permits the specification of any desired plane
wave of arbitrary angle of incidence and arbitrary polarisation.

There are a number of advantages to this method. For the complete object, the high dynamic
range total-field formalism is retained. This permits accurate computations of low-level fields in
cavities or shadow regions of the scatterer. A very accurate simulation of the radiation condition
is possible due to the scattered-field formalism in the lattice truncation region. An other advantage
is that the incident wave contribution need to be computed only for the field components at the
rectangular surface connecting Regions 1 and 2. And last, the scattered near field in Region 2 can
be easily integrated to derive the far-field scattering and radar cross section, as discussed later.
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223 The lattice truncation condition
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Most of the electromagnetic field problems are "open" problems, which means that the fields are
not restricted to a certain area. To solve these problems with the FD-TD method the field
computation zone must be limited, otherwise an unlimited amount of data will have to be stored.
The computation zone must be large enough to enclose the object of interest, and a suitable
boundary condition on the outer perimeter of the computation zone must be used to simulate the
extension of the computation zone to infinity. These conditions are called lattice truncation
conditions or absorbing boundary conditions. Care must be taken because these conditions must

not cause spurious reflections of outgoing scattered waves and must not cause numerical

instability.

The wave equ~tion in free space is

*U d*U W 1 9%

ax2+ay2+azz"c‘iat2

with U = E,, E,, E,, H,, H,, H,. In other words

L-U=0

with

1

L=D} +D} +D? - =D}
[+

L can be writtenas L+ - L- with

1t=p, + 2t s?
C

and

)

¥

9

(10)

1n

az2)

M
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It can be proven [3] that

L"-U=0 13)
applied on all field components at x = 0 assures that all outgoing waves are absorbed. Atx=ha
similar expression can be found:

L' u=0 (14)

For the numerical implementation of these conditions a Taylor approximation of the square root
in the L operator has to be made.

V1-52 =1- 1452 (15)

This results in six conditions, one for each face of the boundary surface.

PU 19°U  cd’U  cd’U_

21 < coV_ = 16
3 ca:2+2ay2+2az2 0 (x=0) (16a)
2 2 2 2
U 1d*U cdu U
°U 13U c¢d*U cd?u
R Rt il (y=0) (16c)
U 13U cd*U co*u
o el 2ok 202 0 b=9 ded
2 2 2 2
U 10*U cd%U cd®U_, (2=0) 16¢)

aza:“Eatz+Eax2+iay2~

*U 13U cdU co'uU
422 2% -0

dzt cn® 2x% 297

(z=c) (16f)

The numerical implementation of these conditions further involve the transformation of the
differential operators to finite difference expressions. This is done according to Mur [4]. Typical
transformations are (for x = 0):

PUN UMK - U (0,5,k) - UL (L, k) + UPL(0,5.k)

Ixdt 2.5 At (17a)

13

™



TNO report

U (%4,5.k)

_ U™4(0,5,k) - 2U%(0,j,k) + U"1(0,j,k)

ot 2. At?
n+l /4 - _ N,q n-l,, -
40 (k) 2U2 (i,tjz,k)*-U (1,5k) a7b)
PU(YK,5k)  _ UR(O,j+1,k)-2U(0,j,k) +U(0,j—Lk)
ayz 282
n . _ n . n i1
+U (1,j+1k) 2U2(81,2],k)+U (L,j—-1k) a7c)
?U"(J.3K) UR(0,jk +1)-2UR(0,j,k) + U(0, 5,k - 1)
oz? 25°
Nt s —2MI%(1 3 Dep s 4
LUPik+1) 2U2(sl;],k)+U (Ljk~1) a70)
Finally, the absorbing boundary condition at x = 0 becomes
U™0.5.0)=-U""0jk) + %;—: (U™ @5k + U 0,5,k)) (18)
25 , . (cAt)? .
(U™0,5,k)+ U1, k)| + ————-(U(0,j+ 1Lk
+cAt+5 ( ©.3k) @] )) 25(cAt +3) ( ©. )

+U"(0,j- LK)+ U (L, j+ LK)+ U™(Lj- LK) + U™(0,j,k + )+ U (0,j,k - 1)
+UM(Lik + 1)+ U(Ljk -1 -4-U(0,3k) - 4-U(1,5,K)

For the other absorbing boundary conditions similar expressions can be derived.

224 Sinusoidal steady state
Time stepping is continued until the desired sinusoidal steady state bebaviour is achieved. The
time needed to reach this state is mainly depending on the object's electrical size. The total
number of time steps needed for a wave travelling at the speed of light to make two complete
front-to-back-to-front traverses is normally sufficient to reach the steady state. Typical times can
be found in [S]. After reaching the sinusoidal steady state the magnitude and phase of the
components of the near-fields have to be determined. Due to the fact that the FD-TD method
causes some ficlds to have a nonphysical dc offset, an algorithm is used that determines the
maximum and minimum of a field component. The magnitude is calculated as (max-min)/2 and
the phase is the phase of the maximum minus an arbitrary fixed phase. To achieve a greater
accuracy multiple cycles can be treated this way and an average result can be calculated.

Page
14
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225 The near-to-far field transformation

The far field data can be obtained, in principle, by solving an integral equation for the induced
currents on the surface of the object. For complex objects this can be very difficult. A good
alternative is to set up an equivalent problem. The object is surrounded with an arbitrary, closed,
virtual boundary, the surface S, , on which the near-field data is obtained via the FD-TD method.
This surface is situated in the scattered-field region. The near-field data is used to calculate
equivalent electric and magnetic surface currents on the virtual surface S,.

Tseq () =18 x Hy(P) (19a)
Mg, ()= -0 x E;(¥) (19b)

where 3 is the outward, unit normal vector at the surface S,, see figure 3. By making the interior
of surface S, empty with zero fields and no sources the equivalent problem is set up. The
equivalent surface currents on S, produce the same scattered field external to S, as in the original
problem.

B (f.-ﬁ .) ﬁ.ﬂ .) on B
region A region A
J-S
no sources
< &
zero flelds
scattering object [
n
Sy O _>J
Seq
Fig. 3: The equivalent problem

The scattered far fields are given by the transform of the equivalent currents of (19a) and (19b)
over the free space Green's function [6),[7). If (g, are the region B medium characteristics
with k, = 21/, and the free space impedance 1),=120x for © and ¢ polarisations, the following
scattered far fields expressions are obtained.

-
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. Fy
Eg =—jkoTo| Ag+
Mo

F;
E,=- Ad——-2
¢ J'koﬂo( ¢ Tlo)

where
Ag=A;cosBcos@+Ay cosBsing-A, sin@
Fy = F; cos@cos@ +F, cosOsing—F; sin6
Agp=-A,sinQ+A, cos@
Fp =—F; sin@+F, cosg

and the potentials in the far field region are given by
R
F r s, Seq

with

rcosE =(xcos¢ + ysin¢)sin0 + zcosO

The radar cross section RCS is calculated as the ratio

2 2

Eg+E

RCS= 410'2[-—2‘—"5'] I~—)oo
1 1

Ee +E’

(20a)

(20b)

(21a)
(21b)
(21¢c)
(21d)

(22a)

(22b)

(23)
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where Eiy and E!; are the corresponding components of the incident plane wave. The complete
bistatic RCS is a natural result of this procedure for a given incident angle and polarisation of the

illuminating wave.
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3 FD-TD COMPUTED SCATTERING AND PENETRATION PROBLEMS

The used 3-dimensional FD-TD code is & Fortran code. It is used on a Convex C230
supercomputer with vectorisation and parallelisation turned on. Typical computation times for

one RCS value are

T=13-N-(1.7-10%D% +2.7.10°D? +2.9-10D) 24)

where T is the computation time in seconds, N is the total number of time steps and D is the cube
root of the total number of grid cells. The memory requirements are empirically determined at

M=7.3-10D3+12.103D%*+0.8 25)

where M is the number of megabytes needed by the FD-TD code for single precision calculations.

17
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11 Radar cross section of a square metal plate

In this section results are shown for the FD-TD computed monostatic radar cross section of a
perfectly conducting square plate. The results are compared with the results of a code that uses
physical optics and diffraction theory.

The plate spans 6A x 6\ and as 8 is chosen A/10 the plate is formed by 60 x 60 x 1 cells. The
absorbing boundary is located at a uniform distance of 10 cells from the plate surface. The
geometry of the plate is shown in figure 4. Vertical polarisation of the incident wave is used.
Azimuth angles are from 0° to 10° with the elevation angle fixed at 90°.

Fig. 4: Geometry of the plate

Theresultsmptesentcdinﬁgmes.whichshowsexcellentagmementbetweenthetwomﬂhods
at the maxima within 1 dBsm. At the negative going peaks a greater deviation is noticed, due to
the imperfections embedded in the two methods. However, for practical applications only the
maxima and the positions of the minima are important, not the absolute values of the minima.

18
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50 -

RCS (dB/sqgr(lambda))

1 2 3 4 5 6 7 8
azimuth angle (deg)

1

— ph. optics & edge diff ° FD-TD, delta=lambd/10

Fig. 5: Results for a square metal plate, 6A x 6A, vertical polarisation

10
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32 Radar cross section of a rectangular metal cavity.

321 Vertical polarisation of the incident wave
We next consider the target shown in figure 6. The shown cavity is formed by a perfectly
conducting cube with one side removed.

4

p—

A‘LQ
/'\

azimuth angle

Fig. 6: Geometry of the metal cavity

The cavity is illuminated by a vertical polarised plane wave with a frequency of 15 GHz. The
dimensions of the cavity as shown in figure 6 are a = 199 mm and d = 0.96 mm. Using & =
0.4975 mm =~ A/40 and forming the cavity by a = 40 cells and d = 2 cells is 2 good discretisation
of the cavity. The FD-TD computed monostatic radar cross section versus azimuth angle is
compared to measurements made in the anechoic chamber facility at FEL-TNO. Measurements

are made according to [8]. The calibrated background level in the anechoic room was below - ‘
55 dBsm. The elevation angle is fixed at 90" ‘
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RCS (dB m2)
-50 +— t — +——rt ; + + + +
0O 15 30 45 60 75 90 105 120 135 150 165 180
azimuth angle (deg)
* FD-TD, delta=0.995mm — measurement data
Fig. 7: Measuremeat versus FD-TD code for a metal cavity, vertical polarisation of incident wave

Figure 7 shows a reasonable agreement between FD-TD data and measurement data, within 3 dB.
However, care must be taken because the measurement data is not as expected. At an angle of
180°, the rear of the cavity, the object behaves as a flat conducting plate which has a well defined
monostatic radar cross section of approximately -23 dBam which shows more agreement with the
FD-TD data than with the measurement data. Apparently, the only deviation is an offset of about -
2 dBsm on the measurement data relative to the FD-TD results. For the remainder the pattemns
seem to be matching. This offset is probably caused by a calibration error for the reference target
used during the measurements. For the calibration a sphere was used which had an RCS value of
only 4 to 8 dB above the background level. This can result in a wrong RCS value for the reference
object which explains the observed offset.

FD-TD caiculations using 3 = 0.995 mm ~ A/20 and forming the cavity by a = 20 cells and d = 1
cell, show, when compared to the former FD-TD result, that this change in resolution gives only a
slight change in RCS pattern. Figure 8 shows that choosing 8 = A/20 seems to be sufficient to
model the cavity with good accuracy.

oy
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RCS (dB m2)
-20
-25 —
-30
-35
-40
-45 ! + + ; + t } 1 } p—t—t
0 15 30 45 60 75 90 105 120 135 150 165 180
azimuth angle (deg)
— FD-TD, delta=0.4975mm - -FD-TD, delta=0.995mm
Fig. 8: The influence of the grid resolution on the FD-TD results for a metal cavity, vertical

polarised incident wave
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322 Horizontal polarisation of the incident wave
We now consider the same cavity as used before illuminated by a horizontal polarised plane
wave. Using again § = A/40 figure 9 shows that the FD-TD computed radar cross section pattern
shows good agreement with the measurement data except for an offset on the measurement data
of approximately -7 dBsm.

RCS (dB m2)

70_ A ‘ i | L I} ! i 1 i L.
- T T T T i T t t 1 T il

O 15 30 45 60 75 90 105 120 135 150 165 180
azimuth angle (deg)

* FD-TD, delta=0.995mm — measurement data

Fig. 9: Measurement versus FD-TD code for a metal cavity, horizontal polarisation of the incident
wave

Again it is assumed that the measurement data are incorrect due to the calibration error mentioned
in the previous section. A clue that states this conclusion is the fact that the radar cross section at
an azimuth angle of 180°, which is perpendicular incidence, should be independent of the
polarisation of the incident wave because at this angle the cavity is symmetric for rotations of 90°
along the x-axis. The FD-TD calculations are in agreement with this fact but the measurements
show a discrepancy of almost 5 dBsm between horizontal and vertical polarisations. Assuming
the FD-TD calculations are correct, 2 comparison is made with FD-TD calculations using a grid

S
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resolution of & = A/20. Figure 10 shows that the results again are only slightly different between

both discretisations.
RCS (dB m2)

-20
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-55 ; } e b } 4 e - }
0 15 30 45 60 75 90 105 120 135 150 165 180
azimuth angle (deg)

— FD-TD, delta=0.995mm - -FD-TD, delta=0.4975mm

Fig. 10: The influence of the grid resolution on the FD-TD results for a metal cavity, horizontal
polarised incident wave
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33 Radar cross section of a metal wedge

331 Vertical polarisation of incident wave

The next analyzed target is a perfectly conducting wedge with an opening angle of 10° as shown
in figure 11. At a frequency of 15 GHz side a is dimensioned to be 5A. Choosing 3 to be A/20 the
length a is formed by 100 cells. Again the boundary is only 10 cells away from the outer
dimensions of the wedge.

Fig. 11; Geometry of the wedge

The central axis of the wedge is positioned parallel to the x-axis. The computed FD-TD result for
a vertical polarised incident wave is shown in figure 12 together with the experimental results
obtained at the anechoic chamber facility at FEL-TNQ. The elevation angle is fixed at 90".
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RCS (dB m2)
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azimuth angle (deg)

* FD-TD, delta=lambda/20 — measurement data

{

Fig. 12: Measurement versus FD-TD code for a metal wedge, vertical polarised incident wave

A good agreement is obtained for the main lobe at 85° and the first second and third side lobe. At
the angles around 30° and 140° the FD-TD method gives wrong radar cross section values. These
are probably due to the fact that the two planes forming the wedge, are making an angle with the
grid of only 5°. Such a small angle has a very poor discrete representation. To show this effect the
wedge is positioned as in figure 13. The same experiment is repeated and the results are shown in
figure 14. An improvement can be noticed at azimuth angles around 30° and 140°. This
improvement will become even more obvious in the next paragraph as the wedge is illuminated
by a horizontal polarised plane wave.
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3: Improved position of the wedge in the grid
RCS (dB m2)
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* FD-TD, delta=lambda/20 — measurement data

Fig. 14: Measurement versus FD-TD code for a metal wedge with an improved positioning in the

grid, vestical polarised incident wave
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3.3.2 Horizontal polarisation of the incident wave

As in the previous chapter the wedge is analyzed with the 3D FD-TD code in two ways; One with
the central axis of the wedge parallel to the x-axis and the second one with one plane of the wedge
parallel to the x-axis as in figure 13. This time a horizontal polarisation of the incident wave is
used. The results are shown respectively in figure 15 and figure 16. Again good results are
obtained for certain angles. When analyzing these two figures it becomes very obvious that the
positioning of the wedge in the grid has a major effect on the computed RCS value at those angles

where interference of the reflection of two planes of the wedge becomes dominant.
RCS (dB m2)
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* FD-TD, deita=lambda/20 — measurement data

Fig. 15: Measurement versus FD-TD code for a metal wedge, horizontal polarised incident wave
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Fig. 16:

Measurement versus FD-TD code for a metal wedge with an improved position in the grid,

horizontal polarised incident wave
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34 Field penetration in a lossy inhomogeneous sphere

The last object to be analyzed is a lossy inhomogeneous dielectric sphere which consists of a core
and a shell. The core, marked in figure 17 with 1, has the following characteristics: &, = 72,
6,=0.9 S/m and a; = 0.08 m. For the shell, marked with 2, these values are: ¢, = 7.5,
6, =0.05 S/m and a, = 0.15 m.

Fig. 17: Geometry of the lossy inhomogeneous sphere

The incident plane wave is travelling in the negative z-direction and has an E component in the
negative x-direction and an H component in the y-direction as in figure 17. The centre of the
sphere (x,y..z,) lics at (a),8,,8,). This electromagnetic problem has an analytical solution that can
be obtained with the Mie series [9]. The magnitudes of the field components of the electrical field
in the sphere are computed with the FD-TD code and compared with the analytical solution. A
frequency of 100 MHz is used and the sphere is discretised at two resolutions, § = 0.01 m and
§=002m.
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abs(Ez) (V/m)
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* FD-TD, delta=1cm *+ FD-TD, delta=2cm — exact solution

Fig. 18: Ez versus x inside a lossy inhomogeneous sphere,y =y, z=2,
abs(Ex) (V/m)
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Fig. 19: Ex versus y inside a lossy inhomogeneous sphere, x = x., z = z,
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abs(Ex) (V/m)

0.6

0.1}

0 :
-15 -10 -5 0 5 10 15
X-Xc (cm)

* FD-TD, delta=1cm + FD-TD, delta=2cm — exact solution

Fig. 20: Ex versus x inside a lossy inhomogeneous sphere, ymy_zmz,

These figures show a good agreement between the FD-TD computed results and the analytical
solution. It becomes clear that at sufficiently high resolutions FD-TD is able to model field
penetration in lossy dielectric objects with high contrasts.
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4 CONCLUSIONS

The 3-dimensional FD-TD method is a useful method for analyzing problems of scattering and
penetration of electromagnetic waves. With modem supercomputers, scattering from objects with
maximum dimensions of less than 10 wavelengths can be analyzed with this method. Depending
on the complexity of the shape and the materials used these dimensions may become smaller.
Good results are obtained for § = A/10 to § = AM0 depending on the complexity of the object of
interest. For perfectly conducting objects that fit exactly in the lattice, 8 = A/20 seems to be
sufficient to model the RCS with 1 dB accuracy. For other objects a higher discretisation has to be
used.
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