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ABSTRACT (UNCLASSIFIED)

The 3-dimensional finite-difference time-domain method is a numerical method for solving electromagnetic

penetration and scattering problems. It uses a finite difference representation of the time dependent Maxwell

equations. The object of interest is embedded in a lattice and the time is divided in discrete intervals. By

applying the fimite-difference equations for every time step the propagation and scattering of waves is

simulated. In this report the 3-dimensional FD-TD method and its algorithms are explained. Results are

presented for a perfectly conducting plate, cube and wedge and for a dielectric layered sphere. The

calculated results agree with experimental and exact theoretical results.
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SAMENVA'TMG (ONGERUBRICEERD)

De 3-dimensionale cindige differentie, tijddomein (finite difference time domain, FD-TD) methode is cen

numerieke methode om elektromagnetische penetrati-. en verstrooingsproblemen op te lossen. De inethode

maakt gebruik van een eindige differentie representatie van de tijdafliankelijke vergelikidngen van Maxwell.

Het te modelleren object wordt opgenomen in een rooster en de tijd wordt opgedeeld in discrete intervaflen.P
Door toepassing van do emndige differentie vergelijkingen op deze discrete ruimte te herhaen voor eike

volgende tijdstap simuleren we de voortplanting en verstrooing van golven. In dit rapport worden de 3-

dimensionale cindige differentie tijd domein methode en de hiervoor benodigde algorditmen behandeld.

Resultaten worden gepresenteerd voor ccix perfect geleidende plaat, kubus en wig en een dwielktnwsh

gelaagde bol. De berekende resultaten komen good overeen met experimentele en exacte ftheoretische

resultaten.
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INTRODUCTION

Electromagnetic penetration and scattering problems are usually very complicated. Only a few of

them can be solved analytically. For the remainder, one has to use numerical methods. Various

methods are being studied at the moment One of the various methods under consideration is the

Finite-Difference, Time-Domain (FD-TD) method.
K

The FD-TD method uses a finite difference representation of the time dependent Maxwell

equations. The object of interest is embedded in a lattice, and time is divided in discrete intervals.

By applying the finite difference equations for every time step, we simulate the propagation and

scattering of waves. By enforcing a plane wave at t = 0, subsequent time-stepping will result in a

steady state which can be monitored and used to calculate the object's radar cross section.

The main advantage of the FD-TD method is its simplicity. The method can easily be

implemented for arbitrary complex objects, because it is possible to designate every cell in the

lattice its own material constants.

Chapter two deals with the theory and the used algorithms for the 3-dimensional FD-TD method.

It explains the complete method including boundary and source conditions. In chapter three some

results are presented and compared with other methods and measurements. The used objects are

perfectly conducting plates, cubes and wedges and a dielectric layered sphere.
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2 THEORY AND BASIC ALGORITHMS

2.1 Ideas behind the FD-TD method

The aim of the FD-TD method is to model the propagation of an electromagnetic wave into a

volume of space containing a dielectric or conducting object. By time-stepping, ie. repeatedly

implementing a finite difference analog of Maxwell's time-dependent curl equations at each cell

of the grid, the incident wave is tracked as it first propagates to the object and then interacts with

it. The time-stepping goes on until the sinusoidal steady-state is achieved at all points in the grid.

Time-stepping is done by a finite-difference procedure due to Yee [1]. This procedure requires the

positioning of the components of E and l about a unit cell of the lattice as shown in figure 1,and

the evaluation of E and Ri at alternate half-time steps. In this manner a second order accuracy in

the space and time increments is attained by using centred finite-difference expressions for both

the time and space derivatives.

z

H3  Ey

E . i-lj+1,k+1)

EE 3
.. i E . .. .

H,
Hx (i-1J+1,k)

(ij,k) Ey (iJ + l,k)

I�iy

Fig 1: Pboeiiaing of the field components in a space cal
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Beside the Yee procedure there are a number of other procedures that need to be developed. The

first one is the lattice truncation condition. At the edges of the lattice the centred finite-difference

expressions can't be used so that alternative expressions for the edges have to be developed. These

expressions are called lattice truncation conditions or absorbing boundary conditions. These

conditions must assure that the outgoing waves pass the lattice truncation planes with a minimum

of reflections. To minimize computer storage the conditions need to be positioned as close to the

object as possible.

The second procedure that is needed is the one that assures that there is a plane wave travelling

through the grid. This procedure is called the source condition. This source must not be the cause

of any extra reflections as will be the case when the plane wave is simply imposed on a certain

plane in the grid.

A third procedure is needed to calculate the radar cross section. Once the fields in the grid have

reached the steady state, the near fields are available. These fields will have to be used to

calculate the radar cross section. This includes a near-to-far field transformation. In the following

paragraphs a detailed discussion is given of the various algorithms.

2.2 The algorithms

2.2.1 The Yee algorithm

Assuming that e, a, gt and p' are isotropic, Maxwell's equations in Carthesian coordinates can be

denoted as follows

'1 = I a- z - p H (la)

M (a _L_ H(b

LL
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& aa

aEx = I t' , _--'l-- CFEla (le)

aEz = 1 (aHy l -(E' If
~t a Ix a

Where e is the electrical permittivity in farads/meter, a is the electrical conductivity in

mhos/meter; g± is the magnetic permeability in henrys/meter; and p' is an equivalent magnetic

resistivity in ohms/meter. The magnetic resistivity term is provided to yield symmetric curl

equations, and to allow for the possibility of a magnetic field loss mechanism. In accordance with

Yee a point (x,y,z) = (iSj8kS) in space is denoted as (ijk) in which 8 = 8x = 8y - 8 is the space

increment of a cubic lattice. A function F(i8jb,kbnAt) of space and time is denoted as Fn(ijk) in

which At is the time increment and i, j, k, and n are integers. Yee used centred finite-difference

expressions for space and time derivatives that are second order accurate in 8 and At respectively.

aFn (i, j, k) = Fni •2,j,k)- Fni- ,j) + O(82) (2a)

ax 8

aFn (i, j,k) = Fn+Y(ij,k) - Fn- (i'jk) +O(At2) (2b)
at At

Using these expressions to get a finite-difference analog of the Maxwell equations results in

En,(i +2,jk) = C3(m)En(i+ 2,j,k) (3a)

+C4(m) (Hn+(i+ Y,j+ 2,k)-HSzn+(i + ,j- + ,k)

-Hn (i + Y2,jk + V2)+H;+,%(i + V2,j,k -,V2))

y•+ (i,j + 2,k) - C3(m)E• (i,j + y,k) (3b)

+C4(m) (Hn+ffi ,,j + Y2,k + 2) - Hfn+"I(i,j + 2,k - Y2)

-Hzn+X(i + V,j+ V2,k)+Hn+ (i-,j + /2,k))
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n+I 3c
E, (i,j,k+Y2 ) =C3 (m)En(i,j,k+3•) (c

H~~ij •k+3 4() H C1()H (i~j+ 3•,k+ 3•)-H+(3d),~ky
nC2( % (~i, j+ y 2 ,k+y)E(~+ 2 k

n~ -E(i,j + yl,k + 3)E(yjk 3)
+x (i,j~,k + 3) = C1(M)HR~( 2 •j~ ) (3d)

+C2 (m) ( Y Y'En(i+,j+ k+3)-En(i,j+Y23•)

+ 3j,j,k + n)+E(ijk + Y2j~))

"Hn+Y2(i+3•,jk+y2k) =C 1(M)H n-Y(i +3•,j+3•,k) (3e)

-E l2,j + 3•,)+En(i~j +3•,k))

"C1 +Y (in) ,jy2k =C=) 4L-m) - Azp'(m, (4a)

2+C2m (M Azxm)

witht

(2p~(m) + Atp'(m))

C3(m) = 2E(m) - Atca(m) (4c)
2E(m) + Atc(m)

C4(M)= 2At(4d)
8(2e(m) + Ata(m))

in which mn = media(ij~k) is the type of medium at a field component location. To ensure stability

of this time stepping algorithm, At is chosen to satisfy the inequality [2]

At S a(5)

where c,. is the maximum wave phase velocity within this model. 8 is chosen to be small

compared to the wavelength, usually 85 )41. Also 8 has to be small compared to the dimensions

of the object, because curved boundauies are formed by a staircase approximation.
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With the system of equations (3a)-(3f), the new value of a field vector component at any lattice

point depends only on its previous value and on the previous values of the components of the

other field vector at adjacent points. Therefore, at any given time step, the computation of a field

vector may proceed either one point at a time, or, with a parallel processing computer, at many

points at a time.

2.2.2 Lattice regions and plane wave source condition

As shown in figure 2 the FD-TD lattice is divided into two distinct regions, separated by a

rectangular surface which serves to connect fields in each region.

2. S oeCt Fields

(A)

Plan. Wave Boundary

AbMornq soundf,0 Condkion

,7_ (B)

F I

Fig. 2: Division of the lanttice into total-field and sa~ttered-field regions (a) global geometry, (b) local geometry
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Region I of the lattice is denoted the total-field region, region 2 the scattered-field region. The

object is positioned in region 1 where all field quantities are comprised of the sum of the incident

wave and the scattered field. In region 2 all field quantities are comprised only of the scattered

field.

The rectangular planes that form the boundary between regions I and 2 contain E and R field

components. These field components are updated according to equations (3) and subsequently

corrected to maintain the two distinct regions. Typical FD-TD computations at these boundary

points are as follows.
E (, j k + Y2) = Ez jok +Y2e(3) + C 4 (m)Hi (i, j - 2,k+ Y) (6a)

n+ • i• n++ - •( j_ k I M

E~1(i + 2 , j.,k) = Ex~( + 0(6b) o- 2,k
E- J eo,kjelr(3a)+C4(m)H'n (i+(6,jo-),k)b)

n+ .(i, - ,,k + Y2)= H n+X(i,jo - Y,k + X)Jeqn() - C2 (m)E (i, j 9ok +Y) (6c)
n (i + ,- ,k)= H+(i + y2,jo - Y2 ,k)eqn(3 f) - C 2 (m)En (i + Y2 jo,k) (6d)

Here Eza+'(ijok+½) is the usual FD-TD value of the total E, component evaluated at point

(i,jo,k+½) and time step n+l. The superscript "i" denotes the known incident field component

value. These computations assure consistency of the subtraction operations of field components

across the Region I / Region 2 boundary. In effect, total-field quantities are always subtracted

from similar total-field quantities; the same goes for scattered-field quantities. This enforcement

of consistency serves to precisely connect the two regions. Further, the inclusion of arbitrary

values of Ri and Ri in the consistency relations permits the specification of any desired plane

wave of arbitrary angle of incidence and arbitrary polarisation.

There are a number of advantages to this method. For the complete object, the high dynamic

range total-field formalism is retained. This permits accurate computations of low-level fields in

cavities or shadow regions of the scatterer. A very accurate simulation of the radiation condition

is possible due to the scattered-field formalism in the lattice truncation region. An other advantage

is that the incident wave contribution need to be computed only for the field components at the

rectangular surface connecting Regions 1 and 2. And last, the scattered near field in Region 2 can

be easily integrated to derive the far-field scattering and radar cross section, as discussed later.
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2.2.3 The lattice truncation condition

Most of the electromagnetic field problems are "open" problems, which means that the fields are

not restricted to a certain area. To solve these problems with the FD-TD method the field

computation zone must be limited, otherwise an unlimited amount of data will have to be stored.

The computation zone must be large enough to enclose the object of interest, and a suitable

boundary condition on the outer perimeter of the computation zone must be used to simulate the

extension of the computation zone to infinity. These conditions are called lattice truncation

conditions or absorbing boundary conditions. Care must be taken because these conditions must

not cause spurious reflections of outgoing scattered waves and must not cause numerical

instability.

The wave equ,-tion in free space is

a 2 U a2 U a 2 U I a2U
V + -W + Z2 c2 at2 0  (7)

with U =E, Er, E,, H,, HY, Hz. In other words

L.U=0 (8)

with

L = 2• + D 2 + D• 2_ 1
c-D z C2 t (9)

and

aaDa = a (10)

L can be written as L+- L- with

L=D. +Dt'---, (11)
c

and

S(12)
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It can be proven [3] that

L- *U=O (13)

applied on all field components at x =0 assures that all outgoing waves are absorbed. At x = h a

similar expression can be found:

L.* U = 0 (14)

For the numerical implementation of these conditions a Taylor approximation of the square root

in the L operator has to be made.

4-S2 = 1--,S 2  (15)

This results in six conditions, one for each face of the boundary surface.

a2 U 1 a2 U c a2 U c a2 U
S(x=O) (16a)

a2U I a2U c a2U c a2U
ctxt c &2 2 y2 2d 0,Z2 = 0 (x = a) (16b)

~xtc~ t c~ 2~

a2U 1 2 U c i2U ca2U
SC y=O) (16c)

a 2 U 1 2 U c a 2 U c a2U
ytct~2 12 az =0 (y =b) (16d)ayc~t c Ct 2N 22 )2

a2U la 2 U ca 2 U ca 2U
S&=° (z=0) (16e)

)2U 1 a2U c a 2 U c )2 U
-'c t2 2 -N2 2 ay2- = 0 (z = c) (16f)

The numerical implementation of these conditions further involve the transformation of the

differential operators to finite difference expressions. This is done according to Mur [4]. Typical

transformations are (for x = 0):

a2 Un(y 2 'jk) Un+ 1(l'j k) - Un+ (0,jk) - Un-'(1,j,k) + Un-l(0,j,k) (17a)
axat 2.8.At
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_2un(•,Jk) un+U(O,j,k)- 2Un(O,j,k) + Un-"(O,j,k)
-t2 2. At 2

+U n+ (l,j,k) - 2Un(l,j,k) + Un- 1 (,j,k) (17b)

2. At2

___2u __(_,j,k) Un(Oj + l,k)- 2Un(O,j,k) + Un(O,j- l,k)
-y2 282

+ Un(l'J + 1,k) - 2Un (1, jk) + Un(1,j - 1,k)(1c
282

2un_ (,_j,k) Un(O,j,k + 1) - 2Un (O,j,k) + Un(0,jk - 1)
Z 2 282

Un (1,j,k + 1) - 2Un (1, jk) + Un (,j,k - 1)
+ 282 (17d)

Finally, the absorbing boundary condition at x = 0 becomes

un+ (0,j,k) = -un-1 (l,j,k) + cAtn-+8 (un+l(l,j,k) + Un-l(0,j,k)) (18)cat+8

+ 28 "(Un(O.jk)+Un(1,j,k))+ (cAt) (Un(o0j+lk)
cAt + ' 28(cAt + 8)

+Un (0,j - l,k) + Un (l,j + lk) + Un (l,j - l,k) + Un(0,j,k + 1) + Un (O,j,k - I)

+Un(ljk + 1) + Un (1,j,k - 1) - 4. Un (O,j,k) -4. Un(lj,k))

For the other absorbing boundary conditions similar expressions can be derived.

2.2.4 Sinusoidal steady state

Time stepping is continued until the desired sinusoidal steady state behaviour is achieved. The

time needed to reach this state is mainly depending on the object's electrical size. The total

number of time steps needed for a wave travelling at the speed of light to make two complete

front-to-back-to-front traverses is normally sufficient to reach the steady state. Typical times can

be found in [5]. After reaching the sinusoidal steady state the magnitude and phase of the

components of the near-fields have to be determined. Due to the fact that the FD-TD method

causes some fields to have a nonphysical dc offset, an algorithm is used that determines the

maximum and minimum of a field component. The magnitude is calculated as (max-min)/2 and

the phase is the phase of the maximum minus an arbitrary fixed phase. To achieve a greater

accuracy multiple cycles can be treated this way and an average result can be calculated.

T
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2.2.5 The near-to-far field transformiation

The far field data can be obtained, in principle, by solving an integral equation for the induced

currents on the surface of the object. For complex objects this can be very difficult. A good

alternative is to set up an equivalent problem. The object is surounded with an arbitrary, closed,

virtual boundary, the surface S, , on which the near-field data is obtained via the FD-TD method.

This surface is situated in the scattered-field region. The near-field data is used to calculate

equivalent electric and magnetic surface currents on the virtual surface S5.

iSeq(r) = fi x H.(i) (19a)

MSeqx() = -fix E.Cr) (19b)

A

where n is the outward, unit normal vector at the surface S5, see figure 3. By making the interior

of surface S, empty with zero fields and no sources the equivalent problem is set up. The

equivalent surface currents on S, produce the same scattered field external to S, as in the original

problem.

____ ____ r RO egion B_

regio A rogom A

no source
&

zero fields

eSq

Fig. 3: The equivalent probem

Th1e scattered far fields are given by the transform of the equivalent currents of (19a) and (19b)
over the free spaem Green's function [6],[71. If (8,4Q are the region B meditum characteristics
with k. - 2UrM and the free space impedance 11.-120, for 9 and 0 polarisations, the following
scattered far fields expressions are obtained.
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EO = -jkOI0 Ao + F# (20a)

E( =-jk0110AO-_0F9(20b)

where

Ae = Ax cosOcosp+Ay cos0sinp-A~sinO (21a)

FO =Fx cosOcos,+Fycos0sinqp-Fzsine (21b)

AV = -A, sin q+Ay cosP (21c)

F9 = -F, sinmw+ Fy cosqp (21d)

and the potentials in the far field region are given by

[] e-,Or f M-e jocsd 2a

with

rcosý = (xcosý + y sin*)sinO + zcosO (22b)

The radar cross section RCS is calculated as the ratio

RCS =41tI 2 .2 .2 r-o (23)
Egb + E')

where Eie and Et are the corresponding components of the incident plane wave. The complete

bistatic RCS is a natural result of this procedure for a given incident angle and polarisation of the

illuminating wave.

I
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3 FD-TD COMPUTED SCATTERING AND PENETRATION PROBLEMS

The used 3-dimensional FD-TD code is a Fortran code. It is used on a Convex C230

supercomputer with vectorisation and parailelisation turned on. Typical computation times for

one RCS value are

T = 1.3-N .(1.7 10-6D 3 + 2.7 10-5 1D2 + 2.9-10-3D) (24)

where T is the computation time in seconds, N is the total number of time steps and D is the cube

root of the total number of grid ceils. The memory requirements are empirically determined at

M = 7.3. 10- 5 D3 + 1.2.-10- 3 D2 +0.8 (25)

where M is the number of megabytes needed by the FD-TD code for single precision calculations.
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3.1 Radar cross section of a square metal plate

In this section results are shown for the FD-TD computed monostatic radar cross section of a
perfectly conducting square plate. The results are compared with the results of a code that uses

physical optics and diffraction theory.

The plate spans 6X x 61L and as 8 is chosen A/10 the plate is formed by 60 x 60 x I cells. The
absorbing boundary is located at a uniform distance of 10 cells from the plate surface. The
geometry of the plate is shown in figure 4. Vertical polarisation of the incident wave is used.
Azimuth angles are from 0" to 10" with the elevation angle fixed at 90.

Z

anWa

I---

a

Fig. 4: Geometry of the plate

The results are presented in figure 5, which shows excellent agreement between the two methods
at the maxima within 1 dBsm. At the negative going peaks a greater deviation is noticed, due to
the imperfections embedded in the two methods. However, for practical applications only the
maxima and the positions of the minima are important, not the absolute values of the minima,

t
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RCS (dB/sqr(lambda))
50--

40-

30-

20-

100

0-

-10
0 1 2 3 4 5 6 7 8 9 10

azimuth angle (deg)

- ph. optics & edge diff " FD-TD, delta=lambd/1 0

Fig. 5: Results for a square metal plate, 61 x 61 vertical polarisation

p

i

.4
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3.2 Radar cross section of a rectangular metal cavity.

3.2.1 Vertical poladsation of the incident wave

We next consider the target shown in figure 6. The shown cavity is formed by a perectly

conducting cube with one side removed.

d a

k

x
azimuth angle

Fig. 6: Oemetiy ode metal cavity

The cavity is ilhuninated by a vertical polarised plane wave with a fequuicy of 15 GHz. The

dimensions of the cavity a shown in figure 6 are a 19.9 mm md d - 0.96 mm. Using 8 =

0.4975 mm- X40 and fonning the cavity by a w 40 cels andd - 2 cel is a good discratiatioa

of the cvty. The FD-TD campoaed monosta•c radar MMs seo vem axinmah Mut is
compoed to mnudmeat made in the meawi chamber facility at FEL-7TO. Muaemuaats
we made accrdins to (8]. The cabibted bkp d level the medo c rom was below -
55 dBm. The elevatio male is fixed at 90.

.1
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RCS (dB m2)
-20-

-25 /007U

-30-

-35--a

-405--

-450

0 15 30 45 60 75 90 105 120 135 150 165 180

azimuth angle (deg)

*FD-TD, delta=0.995mm - measurement data

Fig.?7: Measurement versus FD-ID code for a mfetal cavity, vertical polariuation of incident wave

Figure 7 shows a reasonable agreement between FD-TD data and measurement data, within 3 dB.

However, care must be taken because the nieasurennt dama is not as expected. At an angl of

180% the rear of the cavity, the object behaves as a flat conducting plate which has a well defineda

monostatic radar cross section of approximately -23 d~sn which shows more agreenent with the

FD-TD data than with the measurement data Apparently, the only deviation is an o FfEt- of about -

2 d~sm on the measurement data relative to the FD-TD results. For the remainder fth patterns

Fee to be matching. This offset is probably caused by a calftwntion error for the reference target

used durig the mau ets.For the calibaiond a Mpaere was used which hod ma RCS value of

only 4 to 8 4B above the backpround level. This car result in a wrong RCS value for the reference

object which explains the observed offset.

FD-TD calculations using 8-0.995mtrnm- )4M mi forming the cavity by a - 20 cells and d -lI

call. show, when conarud to the formir PD-D rasnk, dmat dschange in resolution gives only a

sligh chmge in RCS pa tn.Pgm, 8 shows dmt choosing 8 VW42 seems to be muifficis to

uwdel the cavity widi good ec r MUy.t
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RCS (dB m2)
-20 I

-25--

-30 -

-35--

-40--

-45 I I

0 15 30 45 60 75 90 105 120 135 150 165 180

azimuth angle (deg)

l - FD-TD, delta=O.4975mm --FD-TD, delta=O.995mm I

Fig. 8: The influence of the grid resolution oan the FD-TD reults for a metal cavity, vertical

polanised incident wave

-



TNO report

Page
23

3.2.2 Horizontal polarisation of the incident wave

We now consider the same cavity as used before illuminated by a horizontal polarised plane

wave. Using again 8 = V/40 figure 9 shows that the FD-TD computed radar cross section pattern

shows good agreement with the measurement data except for an offset on the measurement data

of approximately -7 dBsm.

RCS (dB m2)
-20-

-40--

-50--

-60

-70 - i
0 15 30 45 60 75 90 105 120 135 150 165 180

azimuth angle (deg)

FD-TD, delta=0.995mm -measurement data
Fig. 9: MeasuremAn veasus FD-TD code for a mstal cavity, horizontal polarisaion of the inciden

wave

Again it is assumed that the measurement data are incorrect due to the calibration error mentioned

in the previous section. A clue tht states this conclusion is the fact that the radar aross section at

an azimuth angle of 1W, which is perpendiculair incidence, should be independent of ft

polar'ation of the incident wave because at this angle the cavity is symmetric for rotations of 90

along the x-axis. The FD-TD calculations ae in agreement with this fact but the measurement

show a ducrepancy of almost 5 dBun between horizontal and vertical polarisations. Assuming

the FI.TD calculations are comrect, a comp"ison is made with ID.TD calculations using a grid
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resolution of 8= V20. Figure 10 shows that the results again are only slightly different between

both discretisations.
RCS (dB m2)

-20-

-25 --.

-30

-35 -- ,,,

-40 --

-45 -- ,,

-50 ---

-55I I I

0 15 30 45 60 75 90 105 120 135 150 165 180

azimuth angle (deg)

I -FD-TD, delta=0.995mm -- FD-TD, delta=0.4975mm

Fig. 10: The influence of the grid resolution on the FD-TD results for a metal cavity, horizontal
polanised mcident wave
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3.3 Radar cross section of a metal wedge

3.3.1 Vertical polarisation of incident wave

The next analyzed target is a perfectly conducting wedge with an opening angle of 10" as shown

in figure 11. At a frequency of 15 GHz side a is dimensioned to be 5L Choosing 8 to be ,20 the

length a is formed by 100 cells. Again the boundary is only 10 cells away from the outer

dimensions of the wedge.

Z 100 •

z ,pi4"-

II

Fig. 11: GeOmetIy of the wedge

The central axis of the wedge is positioned parallel to the x-axis. The computed FD-TD reslt for

a vertical polarised incident wave is shown in figure 12 together with the experimental results

obtained at the anechoic chamber facility at FIL-TNO. The elevation angle is fixed at 90".

[ - ,
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RCS (dB m2)
10-

0-

a"-10 -•

-320

-30

-4 I I I

0 15 30 45 60 75 90 105 120 135 150 165 180

azimuth angle (deg)

- FD-TD, delta=lambdal20 -- measurement data

Fig. 12: Measurement versus FD-TD code for a metal wedge, vertical polarised incident wave

A good agreement is obtained for the main lobe at 85" and the first second and third side lobe. At

the angles around 30" and 140" the FD-TD method gives wrong radar cross section values. These

are probably due to the fact that the two planes forming the wedge, are making an angle with the

grid of only 5". Such a small angle has a very poor discrete representation. To show this effect the

wedge is positioned as in figure 13. The same experiment is repeated and the results are shown in

figure 14. An improvement can be noticed at azimuth angles around 30" and 140. This

improvement will become even more obvious in the next paragraph as the wedge is illuminated

by a horizontal polarised plane wave.

It
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Y-axis

Iazimuthanl

X-axis

Fig. 13: Improved position of the wedge in the grid
RCS (dB m2)

10-

0

-20-

-30

0 15 30 45 60 75 90 105 120 135 150 165 180
azimuth angle (deg)

*FD-TD, delta=lambda/20 - measurement data

FWg 14: eAImuement verna MT-D code for a meWa wedge wMt an improved poskoikkxg in the
grid. venical pohlaried incident wav
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3.3.2 Horizontal polarisation of the incident wave

As in the previous chapter the wedge is analyzed with the 3D FD-TD code in two ways; One with

the central axis of the wedge parallel to the x-axis and the second one with one plane of the wedge

parallel to the x-axis as in figure 13. This time a horizontal polarisation of the incident wave is

used. The results are shown respectively in figure 15 and figure 16. Again good results are

obtained for certain angles. When analyzing these two figures it becomes very obvious that the

positioning of the wedge in the grid has a major effect on the computed RCS value at those angles

where interference of the reflection of two planes of the wedge becomes dominant. ii'

RCS (dB m2)
10

0

Goo Ca a
oa

-40-- :':..

-50 -
0 15 30 45 60 75 90 105 120 135 150 165 180

azimuth -.,gle ('deg)

SFD-TD, delta=lambda/20 - measurement data }

aI

frig. 15: M,--.sureinent venus FD-TD) code for a metal wedge, hoiona pohmrsed inciden wave

a- -
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RCS (dB m2)
10-

00

-10 - - " " i " ' /•

-20 .. . .

-30 - °o "" 0.. .

-4 0 - - . . .. . ..... . .... ... ....

.60--

0 15 30 45 60 75 90 105 120 135 150 165 180

azimuth angle (deg)

SFD-TD, delta=lambda/20 - measurement data

Fig. 16: Measurement versus FD-TD code for a metal wedge with an improved position in the gid,
horizontal polarised incident wave

I
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3.4 Field penetration in a lossy inhomogeneous sphere

The last object to be analyzed is a lossy inhomogeneous dielectric sphere which consists of a core

and a shell. The core, marwd in figure 17 with 1, has the following characteristics: Er - 72,

g 1 =-0.9 S/m and a, = 0.08 m. For the shell, marked with 2, these values are: F= 7.5,

02= 0.05 S/m and a2 -- 0.15 m.

Z El(H,
yV

a a2

Fig. 17: Gleomeu of the losy inhomagongais spher

The incident plane wave is travelling in the negative i-dmito and has an E component in the

negative x-direction and an H component in the y-direction as in figure 17. The cen-re of the

sphere (xc,yc,rz) lies at (,a2,a%). Thi electromagnetic problem has an analytical oluion that can
be obtained with the Mie series (91. The magnitudes of the field components of the electrical field

in the sph we computed with tie FD-TD code and compared with the analytical solutio. A

frequency of 100 MHz is used and the sphere is dicretW at two resolution, 5-0.01 m and

60.02 m.t a.. o~o2I

I
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0.16

0.14'

0.12 -. .. .

0.1 -

0.08 -**

0.06-

0.04-

0
-15 -0 -5 0 5 10 15

X-Xc (cm)

*FD-TD, delta= 1cmn + FD-TD, delta=2cm - exact solution

Fig. 18: Ez versus x iside a losy inhomogeneus spheit, y y~,z z.
abs(Ex) (Vimn)

0.2f

0.15. *0;

±6 6+

0.1 -

0.05-

01
-15 -10 -5 0 5 10 15

Y-Yc (cm) -

*FD-TD~defta=1 cm + FD-TD, delta=2cm - exact solution
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abs(Ex) (V/m)
0.6

0.5 . .

0.4-

0.3-

8 +

0.2- ±

0.1

0
-15 -10 -5 0 5 10 15

X-Xc (cm)
•FD-TD, delta=l1cm + FD-TD, delta=2cm -- exact solution

Fig. 20: Ex versus x inside a lomy inhomogeneous spher, y = y, z = z-

These figures show a good agreement between the FD-TD computed results and the analytica
solution. It becomes clear that at sufficiently high resolutions FD-TD is able to model field

penetration in lossy dielectric objects with high contams.

j
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4 CONCLUSIONS

The 3-dimensional FD-TD method is a useful method for analyzing problems of scattering and

penetration of el a waves. Wfth modem zupa-ormnpuers, scattering from objects with

maximum dimensions of less than 10 wavelengths can be analyzed with this method. Depending

on the complexity of the sanpe and the materials used these dimensions may become smaller.

Good results re obtained for 6 - VIO to - WO depending on the complexity of the object of

interest. For perfectly conducting objects that fit exactly in the lattice, 8 = A420 seems to be

sufficient to model the RCS with 1 dB accuracy. For other objects a higher discretisation has to be

used.

I
j
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