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Summary

The assessment of the damage, which is done to structures by an explosion, depends both on the

blast loading and the structural response. In the past scaling laws were developed for the description

of simple blast loadings, thus eliminating the need for full-scale experiments. The aim of this work

is to construct an approximate scaling law for complex blast loadings.

The blast loading on a model of a shelter was studied in the 40x40 cm 2 blast simulator of the

TNO Prins Maurits Laboratory. The density distribution around the model was determined by

means of flow visualization with a shearing interferometer. An approximate scaling law, which

eliminates the dependency on the shock strength, is proposed for the time behaviour of the blast

loading. The scaling law is confirmed by measurements of the density at various locations on the

model, for shock strengths of 6.5 kPa and 33.2 kPa.

Samenvatting

De schatting van schade, die door een explosie wordt toegebracht aan constructies, is gebaseerd op ae

schokbelasting en op de eigenschappen van de constructie. In het verleden zijn schalingswetten

afgeleid om eenvoudige schokbelastingen te beschrijven, waardoor de noodzaak voor onderzoek op

ware grootte is vervallen. Het doel van deze studie is om een schalingswet af te leiden, die

ingewikkelde schokbelastingen bij benadering beschrijft.

De schokbelasting op het model van een bunker werd bestudeerd in the 40x40 cm 2 schokbuis van

het TNO Prins Maurits Laboratorium. De dichtheidsverdeling rond het model werd bepaald door

stromingsvisualisatie met behulp van een differentiaal interferometer. Een schalingswet, die in goede

benadering onafhankelijkheid is van de schoksterkte, wordt voorgesteld voor het tijdsgedrag van de

schokbelasting. De schalingswet wordt bevestigd door metingen van de dichtheid op een aantal

plaatsen op het model, bij schoksterktes van 6.5 kPa en 33.2 kPa.
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INTRODUCTION

When an explosion occurs, a blast wave is formed in the surrounding air. The sudden rise in

pressure at the shock front of the blast wave can cause damage to structures in the neighbourhood of

the explosion centre. The amount of damage is determined both by the blast loading and by the

structural response due to the load.

In calculations of the blast load on structures it is common practice to obtain the strength and dura-

tion of the incident blast wave from scaling laws (Sachs scaling, [1]). The similarity principle states

that it is sufficient to perform measurements for a single charge, say 1 kg of TNT, and then the be-

haviour of blast waves due to a charge with an arbitrary size can be derived from these results by

means of scaling factors. The scaling factors remove the dimensional parameters in the governing

equations and the physical situation is determined completely by a set of dimensionless so-called Pi

terms. For instance, the peak pressure ps of the shock caused by an explosion of a charge in free air

is described by the equation fl(psr 3/W, poCo 2 r3 /W) = 0, where r is the distance from the centre, W

is the charge size, and po and co are the density and sound velocity of ambient air.

The purpose of this work is to obtain scaling laws for the blast loading on structures, which include

complicated wave phenomena like reflection and expansion processes. The study is part of the re-

search programmes at the Prins Maurits Laboratory, which attempt to develop an integrated model

for blast loading and structural response, and was funded by the TNO Division for National

Defence Research. Chapter 2 discusses the application of the Buckingham Pi theorem and reviews

an empirical model for the blast loading on a rectangular structure. A set of Pi terms is proposeJ for

the description of blast loading during the diffraction phase. In Chapter 3 an experimental 'etup for

the measurement of the blast loading on a structure in a shock tube is described. The r sults of the

measurements and a discussion of the observed phenomena are contained in respectively Chapters 4

and 5. The conclusions of this study are given in Chapter 6.

2 A MODEL OF BLAST LOADING

2.1 Drag loading

It is common to consider two phases in the process of bla.t loading:

- diffraction loading, which consists of the interactin of the shock front with the structure, and

- drag loading, which is caused by the explosion-induced air flow.
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This section discusses drag loading, whele scaling techniques originating from the theory of fluid

mechanics can be applied. In fluid mechanics scaling laws have been used with success for the

description of steady fluid flows around obstacles. The physical process is determined completely by

the velocity u. of the main stream, the fluid density po, the viscosity Ti and the dimension I of the

obstacle. A possible choice for the dimensionless Pi term is the Reynolds number

Re = po Uo 0  / Tu (1)

A frictional force F will act on the surface of the obstacle and a dimensional analysis shows that it

must take the form

F= C~pu 12 (2)F =C I Po Uo 21(2

where C is a dimensionless quantity, called the drag coefficient. The value of the drag coefficient is

determined by Re and by the shape of the obstacle. For a laminar boundary layer and large values

of Re the drag coefficient becomes nearly independent of Re [2]. The force F is called the drag force,

the term

1 2 (3)%o =f• Po Uo2 3

is the dynamic pressure and C qo is called the drag pressure.

2.2 Diffraction loading on a rectangular structure

The loading of a structure by a blast wave during the diffraction phase varies with time and depends

strongly on the profile of the blast wave. The basic problem in the construction of scaling laws for

diffraction loading is that the occurring wave phenomena depend in a complicated way on the peak

overpressure ps of the shock (or equivalently, on its velocity Us). Therefore, the scaling laws can

only be approximations with a limited validity. In the present study the attention is focussed on the

range of pressures ps between 1 and 100 kPa, because it is the most interesting for the assessment of

damage,
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As an illustration, this section describes the blast loading on the front, the top and the back face of a

rectangular structure with height H and length L. The shock front is plane and the overpressure ps

in the shock is constant, i.e. it is a uniform shock. The discussion presented below is valid for

shocks with values of ps up to 350 kPa [3]. The shock velocity is given by

Us = co 1 + 6/7 (p5 /po) (4)

where co and po are respectively the velocity of sound and the pressure of ambient air [3).

Figure la shows the reflection of the shock from the front face of the structure. The reflected over-

pressure is given by

Pr = 2 ps + 2.4 q (5)

where q is the dynamic pressure (see 2. 1). The pressure gap between Pr and ps is bridged by the

formation of an expansion wave at the corner of the structure. According to Glasstone [31 the

expansion wave causes a decay of the average pressure on the front face to the stagnation pressure

Pstag = Ps + C q (6)

in a time t = 3 H/Us. The drag coefficient C is unity in this case.

In Figure lb the shock front has passed the top and diffracts around the back edge. Glasstone

assumes that the average pressure on the fully loaded top (i.e. for t > L/Us) is given by equation (6)

with C = -0.4 [3). The expansion waves extend over the top face and vortices are formed at the edges,

so the local pressure can deviate somewhat from the average pressure.

Finally, Figure 1 c shows the reflection of the second expansion wave on the floor behind the struc-

ture. According to Glasstone it requires an additional time t = 4 H/Us after the arrival of the shock

at the back face for an average pressure to build up. The average pressure is given by equation (6)

with C = -0.3 [3].

At this time the force on the structure is completely due to drag loading. Drag loading by blast

waves with a long duration ('positive phase') can cause significant damage; however, for conven-

tional explosives the wavelength of blast is usually comparable to the dimension of loaded structures

and drag loading is of minor importance. In such cases damage is caused mainly by the large pres-

sure differences in the phase of diffraction loading.



TNO-report

PML 292688314 Page

8

a
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Figure 1 The reflection of a plane shock from a rectangular structure. In (a) the reflection on
the front face is shown. In (b) the diffraction around the back edge is drawn and (c)
shows the reflection of the diffracted wave from the ground (920536)

2.3 A set of Pi terms for diffraction loading

In this section a set of Pi terms is proposed for the description of the blast loading during the diffrac-

tion phase. The Pi terms relate to the development of the blast density with time and are combined

by the formulation of a new scaling law. The derivation is based on the observations made for blast
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loading on a rectangular structure ([2], see also section 2.2). For simplicity it is assumed that the

positive phase of the blast is very long, i.e. during the diffraction over the structure the blast wave

behaves like a plane uniform shock. Then the important physical parameters are

- the density po fkg/m 31 and the velocity of sound co [m/si in ambient air,

- the shock velocity Us [n/s],

- the length I [m] and the shape parameters ai of the structure,

- and the time t [s].

According to Equation (4) the overpressure Ps and the shock velocity Us are mutually dependent; Us

is chosen as a parameter instead of ps, because in the discussion of section 2.2 the dimensionless

term (Us t / 1) plays an important role.

The density po was chosen as a parameter instead of the ambient pressure po, since the measure-

ments yield as output the density distribution p(x,y) around a structure. It can be expressed in

dimensionless terms as

p(x,y)/po = Q(Ms, Ust/l, x/l, y/l, ai) (7)

Ms = Us/co is the Mach number of the shock and 0 is a complicated funcLion of its arguments. A

better scaling law for blast loading than Equation (7) is suggested by Equation (5). For shocks of

moderate strength ps the dynamic pressure q is small and Equation (5) can be written as

pr/ps = 2 (8)

i.e. the quantity pr1Ps is independent of ps. Equation (8) is the reflection factor in the linear-acous-

tic limit, but it can also be used as an approximate scaling law for nonlinear reflection processes. A

relation similar to (8) holds for the density in a reflected wave, so it is suggested to replace Equation

(7) by

(p(x,y)-po) / (ps-po) = (Q'(Ustl, x/l, y/l, ai) (9)

where ps is the density in the shock. It depends on Ms 12,3]:

ps/po =6 Ms 2 / (Ms 2 + 5) (10)



TNO-report

PML 292688314 Page

l0

The term Ps-Po in Equation (9) is the density jump in the shock and thus it is the density analogue

of the overpressure ps. The importance of Equation (9) is that the function Q1' depends on the posi-

tion xs = Us t of the shock and not on Ms (or equivalently, the shock strength).

The scaling law (9) is developed for blast loading at moderate overpressures (ps < 100 kPa). In a

given situation the validity of the scaling law depends essentially on two factors:

- the deviation of the reflection factor from the linear acoustic value, and

- the importance of the air flow in the blast for the propagation of expansion waves.

In addition, the possible appearance of vortices at the edges of the structure can cause errors in the

blast loading obtained from a scaling procedure.

An impression of the approximate nature of the scaling law in the target range of pressures is

obtained by considering the process of normal shock reflection by an infinite wall, where calcula-

tions with Equation (9) yield 0'' = 2.006, 2.055 and 2.440 for points (x,y) in the reflected shock, at

Mach numbers Ms of respectively 1.004, 1.041 and 1.359 (ps = 1, 10 and 100 kPa). Thus the

loading by reflected waves is scaled with an error of at most 22 %. In the next Chapters an experi-

ment is discussed, which investigates the accuracy of the new scaling law for a complicated diffrac-

tion process, with an emphasis on the description of expansion waves.

3 THE EXPERIMENTAL CONFIGURATION

This section describes the structure, which was chosen to validate the scaling law (9), and the

configuration of the detectors in the experiments. In addition the motivations for chosing this

particular setup are discussed.

The measurements were performed with the 40x40 cm 2 shock tube of the TNO Prins Maurits

Laboratory. Piezoresistive pressure transducers can be attached to the tube at reguiar intervals of 0.5

m and the flow field at the measuring site can be visualized with a shearing interferometer. A

description of the shock tube specifications and the operation of the interferometer can be found in

reference (4J. Quantitative information about the density distribution of the flow field is obtained

from the interferograms by means of the fringe counting technique.

The model of a shelter was placed at the measuring site. The side of the shelter facing the incident

shock is a wedge with an angle of 35". The length of the wedge is 5.0 cm, i.e. half the length of the

shelter. The other half of the shelter is rectangular (model dimensions: 5.0x3.5 cm 2 ) with a flat

roof at the same height as the top of the wedge. The advantage of constructing the shelter in the

shape of a wedge is that the shock is reflected upwards and not upstream, as for the rectangular

structure in section 2.2. Therefore the overpressure of the reflected shock on the front face of the

shelter can decay immediately by an upstream-moving expansion wave.
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In the experiments plane shocks with peak pressures of 6.5 kPa and 33.2 kPa were used. The posi-

tive phase of the blast waves is approximately 20 ms, so during the diffraction process they behave

as uniform shocks. The choice of their strengths was motivated by two arguments:

I the values are the boundaries of a range of pressures, where the shearing interferometer operates

with sufficient resolution for a quantitative analysis of the interferograms;

2 shock wave theory predicts regular reflection at the wedge for a peak pressure of 6.5 kPa, whereas

Mach reflection occurs at 33.2 kPa [5, 6]. It is interesting to investigate if scaling laws are valid

in spite of the differences in the reflection process.

Interferograms of the blast loading on the shelter were recorded in time steps of 40 jis, starting from

the point of time where the shock front reaches the foot of the wedge. An objective of the measure-

ments was to determine the density of air around the shelter, which is impossible if large density

gradients (e.g. shocks) are present in the shearing direction. Therefore, the interferometer was used

with x-shear and the fringe counting analysis started from the left, in the tail of the blast wave. The

procedure followed in the ordering of the fringes is described in Annex 1.

4 RESULTS

4.1 The experimental data

Figure 2 shows the overpressure as a function of time for blast waves, which were generated with

driver fillings of compressed air at overpressures of 0.5 bar (a) and 4 bar (b). The pressure trans-

ducer was mounted at a distance of 14.6 cm from the foot of the wedge. About I ms after the arrival

of the shock front an increase in pressure is observed due to the reflection of the shock from the

wedge. For each driver filling the experimental programme consisted of a series of 13 shots; the

average strength of the shocks is respectively (6.48 ± 0.15) kPa and (33.2 ± 0.7) kPa.

Interferograms of the blast loading were recorded on Kodak TXP 6049 film in steps of 40 Pts,

starting from the point where the shock front reaches the foot of the wedge. Figure 3 shows interfer-

ograms for the peak pressure of 6.5 kPa, at times t=80 4as (a), 200 4s (b), 320 }is (c) and 480 pIs

(d). The interferograms in Figure 4a-d are recorded at the same time points, but in this case the

peak pressure is 33.2 kPa. The shock front S, the reflection R from the wedge and the expansion

waves El and E 2 at the two upper edges of the model are clearly visible. The negatives of the inter-

ferograms were digitized with a CCTV camera and analyzed with the computer code PCImage [7]

on a giVAX-3300.
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Max: J.39S4E.02 t- 1.S82 ["nsi ftlnr: -0.11ISE4.01 t. 0.4e6 [msi

Figure 2 The variation of pressure with time measured at a distance of 14.6 cm in front of the
model, for driver fillings of 0.5 bas (a) and 4 bar (b) (92537)
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Figure 3 Interferograms of the blast loading on the model, recorded at times t=80 ýIs (a), 200
is (b), 320 pts (c) and 480 ts (d). The driver contained compressed air at an
overpressure of 0.5 bar (910203-4, -7, -11, -16)
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Figure 4 Interferograms of the blast loading on the model, recorded at times t=80 gIs (a), 200
pIs (b), 320 Its (c) and 480 gIs (d). The driver contained compressed air at an
overpressure of 0.5 bar (910204-4, -7, -11, -16)

4.2 The S-, R- and E-wave velocities

It is obvious from the Figures 3 and 4, that the velocity of S-, R- and E-waves is different for the two

peak pressures. In the analysis of two series of 13 interferograms a ratio of (1. 129 ± 0.017) was

found for the S-wave velocities Us at 33.2 kPa and 6.5 kPa. The velocities of the R-wave and the E-

waves were also determined for both series, under the assumption that their value remains constant

between t = 0 and 480 4ts. In Table 1 the results are expressed relative to the S-wave velocities Us.

The 'Fable also contains the statistical error of the values. The value of uR in vertical direction

contains an additional systematical error due to uncertainties in matching the x- and y-scale, which

is not included in the error value.
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Table I The velocities of R- and E-waves relative to the velocity of the shock. The values are
derived from the interferograms at 6.5 kPa and 33.2 kPa under the assumption that
the wave velocity is a constant

velocity direction value (in US) value (in Us)

for p=6.5 kPa for p=33.2 kPa

uR(Y=O) -x 0.971 ± 0.017 0.760 ± 0.011

uR(x=foot of wedge) y 1.047 ± 0.013 0.974 ± 0.015

UEl(Y=-) -x 0.91 ± 0.04 0.82 ± 0.06

uF?(y=H) -x 0.89 ± 0.04 0.72 ± 0.06

4.3 The density distribution

The fringe counting technique was applied in order to determine the density at three locations on

the wedge: y=0.08 H, 0,40 H and 0.73 H (H=0.35 1 is the height of the model). On the top face the

location was selected in the middle, since the density distribution near the edges is affected by the

vortices. In a vortex a strong density drop occurs, which leads to an accumulation of fringes; in

addition, errors are introduced due to the refraction of the light rays. In order to avoid the vortices

during the counting of fringes, the density on the top face was actually determined somewhat

higher, at y= 1.2 H.

Due to the uncertainty in the fringe positions only density gradients with values between 0.2 and

7 kg/m 4 could be resolved, but this was sufficient to analyze most of the interferograms. An

example of the analysis of a complicated interference pattern is given in Annex 2. Annex 2 also

contains examples of the variation of the density distribution with time.

The results of the analysis were expressed in the Pi terms of Equation (9). Figure 5 shows the

scaled density on the wedge at a height y=0.08 H as a function of the scaled time, for ps = 6.5 kPa

(open dots) and 33.2 kPa (full dots). The vertical dashed line is the time of arrival of the shock. The

horizontal dashed line is the calculated strength of the reflected shock at 6.5 kPa, which was

obtained from Equation (9) under the assumption of regular reflection [5]. The strength could not

be calculated at 33.2 kra, since in this case Mach reflection occurs at the wedge. The arrows indicate

the scaled times of arrival of the expansion wave El for the two shock strengths. Similarly, in

Figures 6 and 7 the scaled density on the wedge is shown as a function of the scaled time, at heights

of respectively y=0.40 H and y=0.73 H. Figure 8 shows the scaled density in the middle of the top

face of the model. The arrows indicate the scaled times of arrival of the expansion wave Ea for the

two liock strengths.
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0 6.5 kPa 0 33.2 kPa

2.5

2.0; 
exp

S1.5

1.0

0.5

0.0
0.0 0.5 1.0 1.5 2.0 2.5

Scaled time Ut/I [-]

Figure 5 The scaled density as a function of the scaled time, determined on the wedge face at a
height y=0.08 H. Open and full dots indicate the results at shock strengths of
respectively 6.5 kPa and 33.2 kPa. The vertical and horizontal dashed lines are
respectively the time of arrival of the shock and the density calculated for regular
reflection. The arrows indicate the arrival of E 1 (920538)

o 6.5 kPa * 33.2 kPa

2.5

exp
2.0 eP I

1.5

S1.0

0.5

0.0
0.0 0.5 1.0 1.5 2.0 2.5

Scaled tirme Lt/I M-I

Figure 6 The scaled density as a function of the scaled time, determined on the wedge face at a
height y=0.40 H. Open and full dots indicate the results at shock strengths of
respectively 6.5 kPa and 33.2 kPa. The vertical and horizontal dashed lines are
respectively the time of arrival of the shock and the density calculated for regular
reflection. The arrows indicate the arrival of E1 (920539)



TNO-repon

PML 292688314 IPage

17
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tf 1.5
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0.0 0.5 1.0 1.5 2.0 2.5

Scaled time Ut/I H-1

Figure 7 The scaled density as a function of the scaled time, determined on the wedge face at a
height y=0.73 H. Open and full dots indicate the results at shock strengths of
respectively 6.5 kPa and 33.2 kPa. The vertical and horizontal dashed lines are
respectively the time of arrival of the shock and the density calculated for regular
reflection. The arrows indicate the arrival of E1 (920540)

0 6.5 kPa 0 33.2 kPa
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1.5 I exp

"0
' 1.0

0.5 •
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Figure 8 The scaled density as a function of the scaled time, determined on the middle of the
top face at a height y=l.2 H. Open and full dots indicate the results at shock
strengths of respectively 6.5 kPa and 33.2 kPa. The vertical dashed line is the time
of arrival of the shock. The arrows indicate the arrival of E2 (920541)
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5 DISCUSSION

5.1 The S-, R- and E-wave velocities

The main purpose for determining the wave velocities was to investigate the importance of the shock

strength for the process of diffraction loading. Wave propagation depends strongly on the density

distribution of the flow field. Therefore differences, which are observed between the data sets at 6.5

kPa and 33.2 kPa, give information about the validity of the scaling law (9).

According to Equation (4) the Mach numbers Ms=Us/co corresponding to the overpressures of

(6.48 ± 0.15) kPa and (33.2 ± 0.7) kPa are respectively (1.0270 ± 0.0006) and (1.132 ± 0.003).

Their ratio, (1.102 ± 0.003), is somewhat less than the value of (1.129 ± 0.017), which was

derived from the interferograms. Apparently velocity calculations from the shock overpressure with

Equation (4) contain a small systematic error.

The results in Table 1 show that the R-wave moves upward with approximately the velocity of the

incident S-wave. In horizontal direction the R-wave and the E-waves propagate slower than the

S-wave. The main reason for this difference is the flow of air behind the shock front, which

decelerates upstream-moving waves. An upstream-moving sound wave has a velocity

uc= c -u 1  (11)

where cI is the local velocity of sound and uI is the velocity of the air flow. Expressions for c 1 and

uI can be derived from the shock adiabatic [2]. They are [2,3]

Cl/Co= (l + ps/po) (7 + pspo) / (7 + 6ps/po) (12)

and

ul/c. 5 (ps/po) / (7 Ms) (13)
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Insertion of the appropriate values for ps, po and Ms gives values of 0.937 and 0.738 for uc/Us at

respectively 6.5 kPa and 33.2 kPa (error values are omitted since the systematical errors are

unknown). The calculated values of uc agree with the values in Table 1, which indicates that the R-

and E-waves propagate as sound waves.

It is clear from Table 1 that the R- and E-waves at ps=33.2 kPa propagate upstream with a smaller

velocity than at 6.5 kPa. The larger shock strength is accompanied by a faster air flow behind the

wave front and, according to Equation (11), this reduces uc.

5.2 The density distribution

In section 5.1 it is found that the wave propagation depends on the shock strength. This suggests

that scaling laws, which base the time behaviour on the Pi term (Us t / 1), are of limited validity. In

Figures 5 and 6 discrepancies up to 30 % are indeed observed between the data at 6.5 kPa and 33.2

kPa; however, in view of the large difference in shock strength the result of the scaling law is quite

satisfactory. This is especially so, since the theory predicts different reflection processes at the wedge,

e.g. regular reflection at 6.5 kPa and Mach reflection at 33.2 kPa [5]. Apparently there is no drastic

change in the loading by the transition from regular reflection to Mach reflection.

The experimental values of the scaled density at the wedge are much lower than the theoretical

value, which is calculated for an infinite plane ([5]; see also the point on the vertical dashed line in

the Figures). The reason is that the circular part of the R-waves in the Figures 3a and 4a is an

expansion wave, which attenuates the reflected wave [8]. Since the process of reflection from a wedge

is an important topic in the theory of blast loading, a detailed description is given in Annex 3. It is

concluded that the loading on the wedge face consists of a sharp peak due to the the unattenuated,

reflected shock followed by a period of moderate loading by the circular R-wave. The expansion wave

E I from the leftmost top edge of the model reduces the density on the wedge face to the density ps in

the incident blast wave. From the Figures 5, 6 and 7 it can be seen that this situation is reached at

a time t = 21/U s .

According to Figure 8 the density on the top face is initially somewhat larger than ps. The arrows

indicate the times of arrival of the expansion wave E2 from the rightmost top edge of the model.

This wave reduces the density to a value below ps. The Figures 3d and 4d show that the E2 -wave

reflects from the bottom behind the model. The measurements were ended at this point, because the

fringe counting technique could no longer be applied. It is expected that the reflection on the bottom

will expand over the rightmost edge and raise the density on the top face to ps. From that time the

loading will be mainly caused by the drag force.

In the present work the loading on the model is expressed in terms of the density distribution on the

wedge and the top face. This is a convenient choice for the presentation of the experimental results,
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however, usually the interesting quantity is the pressure. The pressure is related to the density by

the entropic equation of state

p(x,y,z) = 0.4 p(xy,z)1. 4 eIS(x,y,z)-SoI/Cv (14)

where S(x,y,z) is the entropy, So is a constant and Cv is the specific heat at constant volume. The

shocks used in the present work were of moderate strength and then S(x,y,z) is approximately

constant in the whole flow field. For such cases the exponent in Equation (14) is a constant and the

pressure distribution can be calculated directly from the density with the Equation

p[in kPa] = 78.04 (p[in kg/m 3 ]) 1.4 (15)
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6 CONCLUSIONS AND RECOMMENDATIONS

The loading of blast waves on a model of a shelter was studied in the 40x40 cm 2 blast simulator of

the TNO Prins Maurits Laboratory. The velocities of wave propagation and the density in the flow

field were determined at several locations by means of flow visualization with a shearing interfero-

meter. A new scaling law, which eliminates the strength of the blast wave from the description of

the loading on the model, was developed for peak overpressures ps below 100 kPa. The scaling law

expresses the time behaviour of the loading as a function 12, whose arguments are dimensionless Pi

terms:

(P(x,y)-po) / (Ps-Po) = Q(Ust/l, x/l, y/l, ai) (9)

In (9) Us is the shock velocity, t is the time, I is the length and ai are shape parameters of the

model, (x,y) are space coordinates and p(x,y), ps and po are respectively the density distribution, the

density in the shock and the density of ambient air. Equation (9) is formulated in terms of the

density, which was the measured quantity in the experiments, but a similar relation exists for the

pressure. It was found that the propagation of the secondary waves originating from reflection and

expansion was different for shock strengths of 6.5 kPa and 33.2 kPa, mainly due to the air flow in

the incident shock. In spite of this fact, the scaling law (9) gave similar blast loadings on the front

and top face of the model for both shock strengths.

The present work proves that the scaling law (9) can be applied for shocks of moderate strengths in

the diffraction phase. The important point is that the blast loading is essentially determined by the

shape parameters of a given structure, so it is sufficient to perform measurements at one shock

strength. Then Equation (9) gives an approximation of the blast loading at other shock strengths,

which in many cases will be of an acceptable accuracy (differences of at most 30 % were observed

between the loading on a structure at 6.5 kPa and 33.2 kPa).

The scaling law (9) is useful in many research areas of blast loading. It can be used as input for a

finite-element code, when the possible failure of a structure for various peak overpressures is investi-

gated. Another application is the estimation of blast loading on a structure at destructive peak over-

pressures by performing measurements at much lower pressures. Finally, the scaling law implies

that a structure can be designed in a blast-resistant shape for a large range of pressures, which

makes it worth while to develop criteria for such a design.
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9 SYMBOLS AND INDICES

9.1 Latin symbols

C drag coefficient

Co velocity of sound in ambient air M/S

c1 velocity of sound in the shock m/s

F frictional force N

I length of the model m

Ms Mach number of the shock

Po pressure of ambient air Pa

Pr pressure of the reflected shock Pa

PS peak pressure of the shock Pa

q dynamic pressure Pa

r distance from the explosion centre m

Re Reynolds number

S entropy J/kg K

t time s

Uo velocity of steady air flow M/s

Us velocity of the shock mIs

u1 velocity of air flow in the shock M/s

W charge size N m

x,y,z space coordinates

9.2 Greek symbols

'n viscosity of ambient air poise

0/ function

P0  density of ambient air kg/mr3

PS density in the shock kg/mr3

I ll= • e • • l,= • • -- -- • .. . ... -... .... ... ..... ...... ... . . ...
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ANNEX I DETERMINATION OF THE ORDER IN THE FRINGE COUNTING

TECHNIQUE

In shearing interferometry the density gradient of the flow field can be calculated from phase shifts

in a light beam. Unfortunately the interferograms only record the maxima and minima in the
1

interference pattern (corresponding to phase differences of respectively 2xN and 2n(N+2-)), but they

contain no information about the phase distribution between extrema. A careful procedure is

required for determining the fringe order N. In this Annex the rules, which were applied in the pro-

cess of fringe counting, are summarized. They are:

- the interferograms were recorded in finite-fringe mode [4]; the Wollaston prism of the interfero-

meter was positioned in such a way that the order of the reference fringes decreases from left to

right;

- fringe counting starts from the left, in the region where the blast wave is still unperturbed;

- the analysis is restricted to fringes corresponding to a maximum;

- if fringes are separated by a minimum, they usually differ ± 1 in order; in some exceptional cases

they are of the same order;

- in most cases the order can be derived from the reference fringes, howe,'er, for closed fringes this

is not possible. Then use is made of basic knowledge about fluid flow: the density increases by

the reflection of a pressure wave and decreases in an expansion wave; the density decreases

towards the centre of a vortex;

- sometimes the order of closed fringes can be deduced from the systematic behaviour of other

fringes with known order in the interferogram;

- sometimes the order of closed fringes in an interferogram can be derived by a comparison with

the fringe patterns in preceding and successive interferograms.
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ANNEX 2 EXAMPLES OF THE ANALYSIS OF AN INTERFERENCE PANIERN

This Annex gives examples of density distributions, which were deduced from the two series of 13

interferograms (see Chapter 3). The analysis is based on the fringe counting technique, which is

summarized in Annex 1. The intermediate steps in the analysis are illustrated in the first part of

this Annex. The second part shows the development of the density distribution in the reflected wave

as a function of time.

2.1A The analysis

Figure laA shows the ordering of fringes, which was obtained at a height y = 1.2 H in Figure 4c of

the main text, by application of the procedure in Annex 1. In finite-fringe mode a tilt is introduced

in the fringe distribution by placing the Wollaston prism of the shearing interferometer outside the

focus of the mirror system. This artificial tilt is represented in Figure laA by a dashed line. The

density gradient corresponoing to the fringe distribution is drawn in Figure lbA [4,71. The gradient

is positive in the reflected wave and negative in the expansion waves. Figure IbA also shows the

behaviour of the gradient in a density dip: at the leftmost vortex the gradient is at first negative but

becomes positive after passage of the centre. The peak on the right side is artificial and indicates the

position of the shock front. Figure IcA shows the density distribution, which is calculated by an

integration of the gradient in Figure I bA over the horizontal coordinate. The integration constant is

the value of the density at the lower boundary of integration, i.e. in the unperturbed blast wave. It

was calculated with

p p 0o [7 + 6 (ps/po)] / [7 + (ps/po)] (lA)

where ps is the overpressure and po and po are respectively the ambient pressure and density.

Equation (IA) is derived from Equations (4) and (10) in the main text. Insertion of ps=33.2 kPa,

Po=101.3 kPa and po=1. 2 05 kg/m 3 in Equation (1A) gives p=1. 4 7 4 kg/m3 for the integration con-

stant.
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Figure 1A The intermediate ;teps in the determination of che density distribution from Figure
4c of the main text, at a height y= 1.2H. In (a) the fringe ordering is shown, (b) is
the density gradient and (c) the density, obtained by integrating (b) (920542,
920543, 920544)
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2.2A The density distribution in the reflected wave

The advantage of flow visualization over other techniques is that the behaviour of the complete flow

field is recorded. From the recordings, the density distribution is obtained as a function of the spatial

coordinates (x,y). If the flow field is recorded at successive time intervals, then the variation of

density with time is also determined. This is illustrated in Figure 2A, which shows the variation of

the density in the R-wave as a function of x, at a height y=0.73 H (arrow), for times t=120 uts (dot-

dashed curve), 200 gis (solid curve), 280 I.s (dashed curve) and 360 Its (dotted curve). The thick

solid line indicates the position of the wedge. The curves in the Figures 2aA and 2bA were derived

for shock strengths of respectively 6.5 kPa and 33.2 kPa. The Figures clearly show the propagation

of the R-wave and its attenuation by the expansion wave El, which arrives at t=200 ts. At 33.2 kPa

the R-wave exhibits a steep edge, which is not visible at 6.5 kPa.

In section 2.1A it was explained that shearing interferometry measures the density gradient and an

integration is necessary in order to obtain the density. This procedure is successful for values of the

density gradient between 0.2 and 7 kg/m 4 . The R-wave in Figure 2aA is very weak and can just be

resolved. In contrast, steep gradients are present in Figure 2bA and small errors in their value have

a large impact on the calculated density. This explains the fact, that at a time t=280 pts on the

average lower densities are calculated than at t=360 Its.
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Figure 2A The density distribution in the R-wave at a height y=0.73 H (arrow), at times t= 120
gIs (dot-dashed curve), 200 4s (solid curve), 280 uis (dashed curve) and 360 gs
(dotted curve). The thick solid line indicates the position of the wedge. In (a) and (b)
the results for the shocks of respectively 6.5 kPa and 33.2 kPa are displayed
(92545, 92546)
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ANNEX 3 REGULAR REFLECTION FROM A WEDGE

The nonlinear behaviour of shock waves is of particular importance in reflection processes. It

appears from experiments that the characteristics of the reflected wave depend on the strength of the

incident wave (see reference [8] of the main text). In the case of oblique reflection of a plane, uni-

form shock wave from an infinite wall it is possible to derive analytical Equations for the strength

and angle of the reflected shock. In the derivation use is made of the conservation of mass, momen-

tum and energy across the shock front and the constraint that the air flow in the reflected shock is

parallel to the wall (see reference [51 in the main text). The process that is described by these

Equations is called regular reflection. Under certain conditions (skimming incidence of strong

shocks) a solution of the Equations does not exist and a different process occurs, called Mach reflec-

tion [3,5,6,8].

U

L

R Q

aw

C
Figure 1B Regular reflection of a uniform plane shock wave from a wedge (920547)

In practice the size of a wall is of course finite and boundary effects change the reflected wave. Figure

1B shows the process of regular reflection from a wedge. The reflected shock R is attenuated by a

circular expansion wave, which emerges at the foot C of the wedge. Although the strength (i.e.

overpressure or density) of the circular part of the R-wave is no longer uniform, the reflection pro-

cess is still self-similar. This means that Figure 1B is valid for all times. A part of the expansion

wave follows the reflected shock with the local velocity of sound. It has been suggested that Mach

reflection occurs in situations where the expansion wave overtakes the shock front [8]. The part of

the expansion wave, which travels upstream, is a weak shock wave.
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Figure lB is in fact a schematic drawing of the reflection process in the experiments at 6.5 kPa of

the main text, at least until the shock front reaches the top of the wedge (see Figure 3a of the main

text). Therefore calculations of regular reflection were performed for Figure 1B, assuming a wedge

angle ctw of 35 and a peak overpressure of 6.5 kPa in the incident shock (ps=1.260 kg/m3

according to Equation (1A) of Annex 2). The intersection L of the wave front with the wedge face

moves with a velocity

uL = Us/cOs(cXw) = 1.254 co (IB)

(see Equation (4) in the main text). The intersection Q of the circular wave with the wedge face

moves with a velocity

uQ = vR + cR (2B)

where vR is the air flow velocity in the reflected shock and cR is the local velocity of sound.

Equation (2B) is comparable to Equation (11) of the main text, because they both describe the

influence of air flow on wave propagation. Actually, in the discussion of the E1 - and E2 -wave veloci-

ties in the main text the use of Equation (2B) instead of (11) would have been more correct, because

the expansion waves propagate in the reflected R-wave; Equation (11) was only chosen for the sake

of simplicity. The quantities vR and cR can be calculated provided that the values of the density pR

and the peak overpressure pR in the reflected shock are known. Equations in the literature (92.9

and 92.10 in reference (21; see also [51) yield PR= 1 .3 3 6 kg/m 3 and PR= 1 5 .6 7 kPa. Then the con-

straint of mass conservation at the front of the reflected wave requires VR=0.0 8 9 co and the equa-

tion of state yields CR= 1.02 1 co. Finally, application of Equation (2B) gives

UQ= 1.110cO.

Consequently the ratio uL/uQ is 1.130, and, because of self-similarity the ratio between the

distances LC and QC in Figure IB is also 1.130. Only a fraction (12%) of the wedge face is loaded

with the unattenuated, reflected shock. Thus in the present experiments the duration of the loading

was less than 16 Ais. Therefore the unattenuated, reflected shock strength is not observed in the

results of the Figures 5, 6 and 7 in the main text.

The calculations in the preceding paragraph are based on the theory of regular reflection and so they

can not be repeated for the experiment at 33.2 kPa, where Mach reflection occurs.
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