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ABSTRACT

This dissertation explores the use of a preconditioned Richardson iterative algorithm for
the solution of linear and nonlinear ill-posed integral equations of the first kind. The
discussion consists of three parts, which can be roughly categorized as: numerical analysis,
applications to statistical methodology, and an application to an inverse problem.

) In the first part, singular matrix equations that result from discretizing ill-posed inte-
gral equations of the first kind are considered. Sufficient conditions for the conver•tnce
of Richardson's algorithm to a solution are established, and necessary and sufficient con-
ditions are proved for special cases. The inconsistent case is also discussed. A precondi-
tioning for equations with positive kernels leads to the Conditional Expectation algorithm,
which is discussed in detail. A notion of 'iterative regularization' is introduced and related
to the more usual penalized least squares approach to regularization.

In the second part two problems in statistical methodology are considered which in-
volve the solution of nonlinear integral equations of the first kind. The first is the Behrens-
Fisher problem. Trickett and Welch (Biometrika, 1954) determined a very nearly similar
test for the Behrens-Fisher problem having reasonable power by numerically 'solving' a
nonlinear integral equation. The Trickett-Welch method is examined, and a version of
the Conditional Expectation algorithm for nonlinear equations is applied to the Behrens-
Fisher problem. The second methodological problem that is considered is that of 3-content
tolerance limits involving data from a one-way balanced random effects model. The Con-
ditional Expectation algorithm is used to approximately solve a nonlinear equation of
the first kind numerically, and to thereby derive a new tolerance limit procedure which
is shown to be a substantial improvement over the only other method in the statistics
literature.

In the third part an inverse problem is discussed in which the right hand side of the
integral equation is estimated. In this example, the objective is to infer the probability
density of the radii of random spheres in a two-phase medium from radii of circles in
cross-sectional slices of this medium. The Conditional Expectation algorithm leads to an
effective technique for solving this problem.
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Abstract

This dissertation explores the use of a preconditioned Richardson iterative algorithm for
the solution of linear and nonlinear ill-posed integral equations of the first kind. The
discussion consists of three parts, which can be roughly categorized as: numerical analysis,
applications to statistical methodology, and an application to an inverse problem.

In the first part, singular matrix equations that result from discretizing ill-posed inte-
gral equations of the first kind are considered. Sufficient conditions for the convergence
of Richardson's algorithm to a solution axe established, and necessary and sufficient con-
ditions are proved for special cases. The inconsistent case is also discussed. A precondi-
tioning for equations with positive kernels leads to the Conditional Eapectation algorithm,
which is discussed in detail. A notion of 'iterative regularization' is introduced and related
to the more usual penalized least squares approach to regularization.

In the second part two problems in statistical methodology are considered which in-
volve the solution of nonlinear integral equations of the first kidcý. The first is the Behrens-
Fisher problem. Trickett and Welch (Biometrika, 1954) determined a very nearly similar
test for the Behrens-Fisher problem having reasonable power by numerically 'solving' a
nonlinear integral equation. The Trickett-Welch method is examined, and a version of
the Conditional Expectation algorithm for nonlinear equations is applied to the Behrens-
Fisher problem. The second methodological problem that is considered is that of 0-content
tolerance limits involving data from a one-way balanced random effects model. The Con-
ditional Expectation algorithm is used to approximately solve a nonlinear equation of
the first kind numerically, and to thereby derive a new tolerance limit procedure which
is shown to be a substantial improvement over the only other method in the statistics
literature.

In the third part an inverse problem is discussed in which the right hand side of the
integral equation is estimated. In this example, the objective is to infer the probability
density of the radii of random spheres in a two-phase medium from radii of circles in
cross-sectional slices of this medium. The Conditional Expectation algorithm leads to an
effective technique for solving this problem.
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Chapter 1

Ill-Posed Integral Equation
Problems in Statistics

1.1 Introduction

Many problems of interest either in mathematical statistics or in applications can be for-
mulated as integral equations. We are concerned in this dissertation with the common
situation where the integral equation is ill-posed. It is the nature of an ill-posed prob-
lem that slight changes in given functions or data cause large changes in the solution.
Typically, even changes due to discretization or roundoff error in the computer represen-
tation of a function can cause instability when attempts are made to solve the problem
numerically.

The main objective of this thesis is to indicate how a simple iterative method, with
an appealing probabilistic interpretation, can be used for the numerical solution of what
are generally perceived to be difficult integral equation problems.

Let the (possibly nonlinear) integral equation to be solved be

I k {x, y, f[O(x, y)]} dy = g(x), (1.1)

where k, 0, and g are known functions. The linearization of this integral equation, which
follows from the Frechet derivative of the nonlinear integral operator, is a linear integral
equation with kernel equal to the derivative of k with respect to its third argument, which
we will denote as k'(x, y, f).

Let fo be a first approximation to a solution of (1.1); often we will choose fo = 0.
One form of the iteration that we will propose relates fn+l to fn by

fn+1 = fn + g  fo k(xY, f)dY (1.2)
f,,, k'(x, y, f n)dy

An example of a problem which leads to an integral equation of the form (1.1) which
does not have a solution in the usual sense of the word, but which can be easily treated
numerically by the iteration (1.2), is the Behrens-Fisher problem. Trickett and Welch
(1954) apply an iteration, which can be regarded as an approximation to (1.2), to the
nonlinear integral equation formulation oftthis classical problem with amazingly good
results. For sample sizes n1 = n2 = 20, Trickett and Welch provide details of hand
calculations of five iterations which lead to a smooth critical value statistic which provides
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a test differing from the nominal size by no more than ± .000002, regardless of the value
of the variance ratio. We will discuss the Behrens-Fisher problem from the point of view
of integral equations in Chapter 5.

Maric and Graybill (1979), independently of Trickett and Welch (1954), applied the
same algorithm to a variant of the Behrens-Fisher problem. Wang (1989), using the
Trickett-Welch approach, iteratively solved a #-expectation tolerance limit problem for
a normal random-effects model. In Chapter 6, we discuss the solution of Vangel (1987,
1990, 1992) to a normal random effects model /-content tolerance limit problem, a problem
which can also be formulated as a nonlinear integral equation.

In all four of these cases, the authors use iterative algorithms to 'solve' nonlinear ill-
posed problems numerically, problems which have long been known to most likely possess
either no solutions, or else only pathological solutions (Linnik, 1968). It is also significant
that in none of the above articles is there a single mention of the ill-posed nature of the
problems being treated numerically.

On the other hand, in the current literature on ill-posed integral equation problems
iterative algorithms are scarcely mentioned. Regularization methods dominate this land-
scape. The usual regularization methods (see, e.g., Tikhonov and Arsenin, 1977) introduce
a penalty term which causes a solution to be more or less smooth depending on the value
of a parameter. Since any linear smoother solves a certain penalized least squares problem
(Hastie and Tibshirani, 1990, p.72), there is regularization implicit in using an iterative
method on a problem in which the kernel acts as a smoother, a point which we will take
up in Chapter 3.

In addition to interesting problems in mathematical statistics, the methods of this

thesis may prove useful in the solution of many ill-posed problems in applied statistics.
Although our emphasis will be on problems for which g n (1.1) is known without error,
we will also consider, in Chapter 7, a classical inverse problem of stereology where g is
either a function observed with error, or else an estimate of a probability density.

1.2 The Ill-Posed Nature of Integral Equations of the First
Kind

In this section, we introduce some terminology from the theory of integral equations, and
we discuss the concept of an ill-posed problem. A review of the classical theory of integral
equations of the first kind along with a discussion of the ill-posed'ness of these integral
equations appears in Chapter 2.

1.2.1 Classification of Integral equations

A linear Fredholm integral equation of the first kind is an equation of the form

j k(x, y)f(y)dy = g(x), (1.3)

where k, f and g are functions in L2. The function k(x, y) is called the kernel of the integral
equation. For nonlinear integral equations (e.g., 1.1), the kernel is also a function of the
unknown f. All of the nonlinear examples which we will consider are special cases of the
equation j k{z, y, f[0(- ,y)J}dy = g(x), (1.4)
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where k, g, and 4 are known functions.

The general linear Fredholm equation of the second kind is

g(x) + AJ k(x, y)f(y)dy = f(x), (1.5)

where A is a constant. The methods to be discussed in this thesis are also applicable to
the second kind equation (1.5). However, we will not consider the second kind equation

further since it is generally well posed (see section 1.2.2 below) and more efficiently solved
by methods which exploit the special structure of second kind equations (the classical
Fredholm theorems, see, e.g., Smithies, 1958).

If the upper limits in the above integrals are replaced by x, then these equations
become equations of the Volterra type. A linear Volterra equation of the first kind

j k(x, y)f(y)dy = g(x), (1.6)

can be regarded as a Fredholm equation with the kernel

Sk(x,y) ify_<x
k=(, y = 0 if y > x0 fx(1.7)

Alternatively, with the change of variable y = xw, (1.6) becomes

x k(x, xw)f(xw)dw = g(x), (1.8)

an equation with constant limits of integration.

1.2.2 Ill-Posed Problems

Hadamard originated the classification of inverse problems as well- and ill-posed; a general
discussion appears in Tikhonov and Arsenin (1977, pp. 7-8). We consider here the
nonlinear operator equation A(f) = g, where f is to be found in terms of given data g. If

A(f) = g for some function f, then we write f = A-(g). The problem of determining f
is well posed if the following three conditions are satisfied:

1. For every g there exists a solution f,

2. this solution is unique, and

3. the inverse operator A- is continuous.

Problems which do not satisfy all of these conditions (particularly condition (3)) are said

to be ill-posed.

1.2.3 Near Solutions and Near Convergence of Ill-Posed Integral Equations
of the First Kind

When treating an ill-posed integral equation of the first kind numerically, we are usually
not interested in obtaining an exact 'solution', because a solution which corresponds to
exactly the right hand side in a numerical representation of the integral equation can be
very different from a solution to the original functional equation. The reason for this is
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that a representation of the right hand side on a computer will always differ (because
of discretization error, roundoff error, and possibly noise) from the true function g. We
therefore introduce the notion of a near-solution for a smooth, well behaved function which
results in a right hand side close to the actual right hand side. An iterative algorithm
which results in near-solutions after a moderate number of iterations will sometimes be
referred to as nearly convergent. The iterative algorithms discussed in this thesis can

produce near-solutions in practice, even when the matrix discretization, or perhaps the

original integral equation, has no solution. In practice, one stops after at most a few dozen

iterations. In theory, one considers infinitely many iterations, and the nearly convergent

algorithm will either converge, possibly to an exact solution (which is likely not to be

smooth) or else, in the inconsistent case, the iteration diverges.

1.3 An Example: Deflection of a Simply Supported Beam

We present the f-illowing example both to illustrate the ill-posed nature of the integral
equation of the first kind and to introduce a very simple integral equation which will be

referred to repeatedly in later chapters as a model problem. The problem introduced here
is widely used as an example in the literature on numerical methods for integral equations
of the first kind.

Consider a thin, elastic beam of unit length 'hinged' at the ends so that bending
moments cannot be transmitted from the supports. Let a continuous force be applied
perpendicular to the beam, and let this force as a function of position be denoted f(x).
The relationship between f and the displacement g that it causes is, for an appropriate
choice of material constants,

j k(x, y)f(y)dy = g(x), (1.9)

where the kernel k (a Green's function) is

k'- ) Y(1-x) ify x (1.10)
k~~)= X((ll -y)if y> x.

The integral equation (1.9) is equivalent to the boundary value problem

d2+ f(x) O, (1.11)
dx

2

g(0) = g(1) = 0,

and its solution is

AX) = d (1.12)f~)-dx2

(see, e.g., Tricomi, 1957, pp. 116-117).
We consider here right hand sides of the form

g(x)= go(x)(1 + sin(7rlx)/l). (1.13)

The L 2 norm of gi is

I1011i < Ilgoll(4 + 00/0), (1.14)

I I I I II4



so by making 1 large enough we have, for arbitrary positive c, that

111941t- JJgolJI < c. (1.15)

The solution to (1.9), however, is

fj(z) = -gg(x)[1 + sin(7rlx)/l) + go(X)lr 2 sin(irlx) (1.16)

- 2rg'(x)cos(irlz),

and as 1 -. oo, the difference in norms IIIfill - IlfoIll is unbounded.

1.4 Integral Equations of the First Kind in Statistics

There are several sources of integral equations of the first kind in statistics. These include
problems of

1. unbiased estimation,

2. estimating a prior distribution on a parameter given the marginal distribution of
the data and the likelihood,

3. similar tests for normal theory problems, and

4. inverse problems of indirect measurement.

We will introduce 1) and 3) in Chapter 2, with detailed discussion of particular examples
of 3) (the Behrens-Fisher problem and a tolerance limit problem) to follow in Chapters 5
and 6. An inverse problem of stereology provides an example of 4) which we will consider
in Chapter 7. The empirical Bayes problem of estimating a prior distribution is formally
very much like 1), and we will not discuss this problem in this thesis.

1.5 An Outline of the Remaining Chapters

Chapter 2 consists of review material from linear algebra, matrix analysis, functional
analysis, probability, statistics, and the theory of linear operator equations of the first
kind. Most readers will find some of this material helpful, although probably no one will
find all of this material new. Because this thesis is partly numerical analysis and partly
statistics, it is necessary to consider readers from each of these fields who might not have
a strong background in the other discipline.

Chapter 3 contains most of the theoretical discussion of this thesis. We begin by
introducing the Richardson and preconditioned Richardson iterative algorithms for linear
operator equations of the first kind. We then briefly review the literature on convergence
of some basic iterative algorithms in L 2.

This thesis is concerned almost exclusively with matrix equations which arise from the
discretization of integral equations. Since the integral equations which we shall consider
are ill-posed, the matrix equations which result from discretizations will usually be nu-
merically singular, and often also inconsistent. Even though, because of roundoff error,
the discretizations will almost never be exactly singular, the study of the singular case
helps throw light on the situation where one has almost singular matrices, and on the
original problem in function space, where one can have nonuniqueness or inconsistency.
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In Chapter 3, we establish a sufficient condition for convergence of Richardson's algorithm
for consistent iaatrix equations, and we also prove that the conditions are necessary for
an important class of problems. We also discuss the inconsistent case qualitatively, and
argue that the proposed algorithms are robust with respect to moderate violation of the
consistency assumption.

The proposed iterative algorithms tend to produce smooth approximate solutions;
hence there is regularization implicit in using these iterative methods. In Chapter 3, we
introduce the notion of iterative regularization and relate it to penalized least squares.

Although Richardson's algorithm tends to produce smooth near-solutions in many
situations, this algorithm can converge very slowly. The objective of preconditioning is
to produce a modified algorithm which converges more rapidly. We examine a form of
preconditioning of the Richardson iterates for matrix equations with positive matrices.
This preconditioning consists of operating on both sides of the equation on the left so as
to make the matrix stochastic, hence the name stochastic preconditioning. We use the
Perron-Frobenius theory of positive matrices to suggest under what conditions our pro-
posed preconditioning can be expected to work well. Several heuristic motivations are also
provided; one probabilistic motivation leads to the suggested name Conditional Expecta-
tion Algorithm for the proposed preconditioned Richardson algorithm and its nonlinear
generalizations.

Chapter 3 concludes with linear Fredholm and Volterra examples. A careful discussion
of the discretization process is given in an appendix, so that all of the numerical examples
in this thesis can be readily duplicated and extended by the interested reader.

In Chapter 4, we consider nonlinear equations. This is a short chapter which serves
mostly to establish notation and to generalize the Conditional Expectation algorithm,
introduced only for linear problems in the previous chapter, to nonlinear integral equations
of the first kind.

In Chapter 5, we begin the discussion of applications to statistics by reviewing the
Behrens-Fisher problem, with an emphasis on on the Trickett and Welch (1954) solution.
Most of the results of this chapter are not new, but the perspective on the problem is.
We are as concerned with the method of solution as with the results. Also, unlike Trickett
and Welch, we are aware of Linnik's (1968) demonstration that only pathological exact
solutions exist. The algorithm which Trickett and Welch use, with much success, can
be regarded as a very good approximation to a Conditional Expectation algorithm. In
fact, the differences between the iterates produced by the Trickett-Welch and Conditional
Expectation algorithms are negligable. However, the Conditional Expectation algorithm
can work in situations where the Trickett-Welch approach is not useful, as we show in
Chapter 6.

In Chapter 6, we discuss one-sided /3-content tolerance limits for a normal population
with two components of variance estimated by data from a one-way balanced random-
effects ANOVA model. By numerically approximating the solution to a nonlinear integral
equation using a Conditional Expectation algorithm, we develop a tolerance limit proce-
dure which provides the appropriate confidence level almost independently of the unknown
ratio of within- to between-group variances. It is very likely the case that, as with the
Behrens-Fisher problem, this tolerance limit problem has either none or else only patho-
logical exact solutions. However, by numerically 'solving' an integral equation of the first
kind, using the Conditional ExpectAtion algorithm, we obtain near solutions and are able
to develop a method which represents a substantial improvement over the Mee-Owen
(1983) approach, which is the only competing procedure in the statistics literature. For
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ease of computation, we provide coefficients for polynomials fit to the integral equation
solutions for two important cases. We also suggest another very simple alternative to the
Mee-Owen method.

In Chapter 7, we discuss an interesting example of an ill-posed inverse problem. Con-
sider a two-phase medium where the first phase consists of spherical inclusions of random
radius randomly distributed in a second phase. The radii of these spheres are assumed to
follow a probability distribution which has a density, and we would like to estimate this
density. The available data are circle radii measured on cross-sections of the material.
The density of the circle radii is related to the density of the sphere radii by an Abel
integral equation of the first kind. This problem of indirect measurement is typical of
the inverse problems of stereology, the science of inferring higher dimensional structure
from lower dimensional data. In this chapter, we derive the Abel equation (first reported
in Wicksell (1925)) and briefly review the extensive literature on this problem. We then
proceed to apply the Conditional Expectation algorithm in order to develop a method for
solving this equation. This apparently new approach is demonstrated on both simulated
and real data. For the simulated data, we consider both the case where the density of
the circle radii is a function observed with noise, and where the circle radius density is
estimated by a sample from this probability density.
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Chapter 2

A Review of Background
Material from Linear Algebra,
Functional Analysis, Probability,
and Statistics

2.1 Matrix Algebra

We review here those concepts from matrix algebra which will be used in this thesis. We
assume familiarity with topics generally covered in a first course in this subject, although
we will briefly review some of these ideas (eigenvalue, similarity, etc.) for completeness.
The definition of a vector space, and a discussion of the important notions of range and
nullspace are deferred until Section 2.3, where we take these topics up in a more general
Hilbert space setting.

In this thesis, we will denote m-dimensional complex Euclidean space by C', and
m-dimensional real Euclidean space by lZt.

2.1.1 Elementary Notions

Let A be an arbitrary m Y n matrix with elements a,3 E C. The entry in the ith row
and jth column of A is aij, and we write this as Ai, = aij. The transpose of A, AT, has
typical element AT = aj,, and the adjoint of A, A*, has typical element A. = adi, where
the overbar denotes complex conjugation. If A = AT, then A is symmetric; if A = A*,
then A is Hermitian. The rank of a matrix A is the number of linearly independent rows,
which equals the number of linearly independent columns.

A scalar A is an eigenvalue, and a nonzero vector x is a corresponding eigenvector, of
a square matrix A if

Ax = Ax. (2.1)

If A is Hermitian, then A is real. If A is Hermitian, and for all x E Cm , x $ 0,

x*Ax > 0, (2.2)

then A is positive semi-definite, and all eigenvalues of A are nonnegative. If the inequality
in (2.2) is strict, then A is positive definite and all of the eigenvalues of A are positive.
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The eigenvalues of a square matrix A are the roots of the characteristic polynomial

d(A) - IA - IJ, (2.3)

where . denotes the determinant. If zero is an eigenvalue, then IAI = 0 and the matrix
A is said to be singular, otherwise A is nonsingular. The multiplicity of an eigenvalue as
a root of d(A) is called the algebraic multiplicity of the eigenvalue. The dimension of the
subspace of eigenvectors corresponding to an eigenvalue is called the geometric multiplicity
of the eigenvalue. The geometric multiplicity of an eigenvalue is always less than or equal
to its algebraic multiplicity.

Matrices for which the algebraic and geometric multiplicities of at least one eigenvalue
are not equal are said to be defective, or non-diagonalizable. When the multiplicity of
an eigenvalue is referred to without a modifier, algebraic multiplicity is implied. When
we refer to a set of eigenvalues, or to the cardinality of such a set, without explicitly
stating that we mean distinct eigenvalues, then it is to be understood that we have in
mind eigenvalues repeated according to their algebraic multiplicities. Sometimes we will
state this idea briefly by using the phrase 'counting multiplicities'.

Two square matrices which represent the same linear transformation, possibly with
respect to different bases, are said to be similar. In particular, similar matrices have the
same eigenvalues. We state this formally as

Definition 2.1.1 (Similarity) Two m x m matrices A and B are said to be similar if
there exists a nonsingular matrix S such that

A = S-EBS.

If A is Hermitian, then A is similar to a diagonal matrix (which must have the eigen-
values of A as its diagonal elements). There is a matrix S which provides the similarity
transformation and is unitary, i.e. S' = S*. (A matrix U for which U*U = I is said to
be unitary; if UTU = I, then U is orthogonal.) The following result is the spectral theorem
for Hermitian matrices:

Theorem 2.1.1 (Spectral theorem for Hermitian matrices) Let A be a Hermitian
matrix. Then there is a matrix U such that U*U = I and

A = UAU*,

where A is a real diagonal matrix whose diagonal elements are eigenvalues of A, and where
the columns of U are corresponding eigenvectors.

If A is Hermitian, then there is a set of orthonormal eigenvectors (i.e. eigenvectors {ui}
for which u~uj equals one if i = j, and zero otherwise); the columns of U form one such
set. In general, the matrix U of the theorem is not unique. If A is real and symmetric,
then U can be selected to be real also.

2.1.2 The Singular Value Decomposition

Assume that A is an m x n matrix with m < n, and that the rank of A is q < m. Then
A*A and AA* are Hermitian, positive semidefinite matrices. The eigenvalues of AA*,
which we denote cv?, where

a?> > ... >a 2 > 0, (2.4)
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are also eigenvalues of A'A. If n > m, then the n x n matrix A*A has n - m additional
eigenvalues which equal zero. The nonnegative numbers {ai}'=1 are called singular values.
and we have the following result, which is, in a sense, one possible extension of Theorem
2.1.1 to general matrices (Horn and Johnson, 1985, p. 414):

Theorem 2.1.2 (Singular Value Decomposition) Let A be an arbitrary m x n ma-
trix, with m < n, and let the rank of A be q < m. Then, there exist unitary matrices U
and V, where U is m x m and V is n x n, and an m x n diagonal matrix E, such that

A = UEV'.

The m diagonal elements of E are the singular values of A, denoted {O',}m1, where

a, > a2 a9. > 0 = a+ . .

The columns of U and V are called left and right singular vectors, respectively, of A.
The columns of U are eigenvectors of AA*, and the columns of V are eigenvectors of A*A
(arranged in the same order as the corresponding eigenvalues ao).

Here again, if A is real, we can find real orthogonal matrices U and V. If A is a square
matrix with eigenvalues Ai and singular values oi, then

max ai> max lA l. (2.5)
i !

2.1.3 The Jordan Canonical Form

Not all matrices are diagonalizable, that is, similar to a diagonal matrix. Any square
matrix, however, is similar to a matrix which is nearly diagonal, and this near-diagonal
representation is referred to as the Jordan Canonical Form (Horn and Johnson, 1985,
Chapter 3).

Let A be an arbitrary m x m matrix of rank q < m. There exists a nonsingular matrix
S such that

J = S- 1 AS, (2.6)

where
J = diag(JI,...,J 7 ), (2.7)

a Jordan form matrix, is block diagonal, with r < m blocks. Each Jordan block Ji has
an eigenvalue of A, A,, on its main diagonal, ones on the diagonal for which the column
index is one greater than the row index, and zeros everywhere else. For example, if Ji
happens to be 4 x 4, then it will be a matrix of the form

A•i I

Ji(Ai)= A ,i 1 (2.8)

If the dimension of Ji is ni x hi, then F=- ni = m, where the sum of the geometric
multiplicities of distinct eigenvalues is r. The Jordan form exists for any square matrix,
and it is, except for permutations of rows and columns, unique.
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2.1.4 Matrices Having a Diagonalizable Nullspace

Let A be an m x m matrix of rank q. If A is nonsingular, then q = m and there exists a
nonsingular matrix B and a nonsingular Jordan form matrix J such that A = B-JB. If
A is singular, then q < m and there exists a nonsingular matrix B such that

A = B- 1 [ JX, Ox(M,,-) ]B, (2.9)
0(m-s)xas N(m-8)x(m-&)

where: s < q, J is a nonsingular s x s Jordan form matrix, and N is a matrix of Jordan
blocks corresponding to a zero eigenvalue. The rank of J, s, is equal to the rank of A, q, if
and only if N = 0. If N # 0, then s < q, since the nonzero rows of BAB- 1 corresponding
to rows of N are each linearly independent of the rows of BAB 1 corresponding to rows
of J.

Consider the submatrix N in (2.9), and let the typical element of this matrix be
denoted nij. For I = 0,..., m - s - 1, define the lth super-diagonal to be the set of entries
st = fnj,+iji}m-O. The only nonzero elements of N are on the first super-diagonal, and
these values equal one. It is easy to show by direct calculation that any nonzero elements
of N 2 must be ones on the second super-diagonal. To see this, compute the square of any
Jordan block corresponding to a zero eigenvalue, for example (2.8) with Ai = 0. Similarly,
N', for I < m - s, must be zero everywhere except possibly on the lth super-diagonal. It
follows that N1 = 0 for all 1 > m - s.

A matrix which when raised to some power is equal to a zero matrix is said to be
nilpotent, which is the reason why the letter 'N' is used in (2.9). The smallest positive
integer t such that N' = 0 is called the index- of both the matrix N and the matrix A in
the Jordan form representation (2.9). If a matrix A is nonsingular, we define it to have
index t = 0.

When N in (2.9) is a zero matrix, then the geometric multiplicity of zero as an eigen-
vlaue of a singular matrix equals its algebraic multiplicity. If N has a nonzero block, then
this is no longer the case. We will refer to the class of singular matrices for which

A = B-1 Jqxq Oqx(m-q) B, (2.10)10(rr--q)x Xq (n--q)×(r--q)I

for nonsingular J and B, as matrices having a diagonalizable nullspace. We are introducing
this nonstandard terminology in this thesis, since, for our purposes, it is more suggestive
than the usual definition: i.e. that a matrix A is of the form (2.10) if and only if A has a
group inverse (Campbell and Meyer, Chapter 7). However, it will be convenient to express
certain results in terms of the group inverse of a matrix, so we define this concept next.

Definition 2.1.2 (Group Inverse) Let A be an arbitrary square matrix. A generalized
inverse matrix, A#, such that

1. A#AA# = A*,

2. AA#A = A, and

3. AA# = A#A

is called the group inverse of the matrix A.
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If A# exists, then it is unique. If A is singular and A# exists, then A must be of the

form (2.10). We can see by direct calculation that

A# = B-_ qxq OqX(,u _q) ]B (2.11)
0

(m-q)xq O(--q)X(--q)

is the group inverse of A. For a detailed discussion of the properties of the group inverse,
see Chapter 7 of Campbell and Meyer (1979).

2.1.5 Congruence

Definition 2.1.3 (Congruence) A square matrix B is said to be congruent to a matrix
A if there exists a nonsingular matrix S such that

B = SAS*.

It is easy to show that the properties of being positive definite and positive semi-definite
are preserved by a congruence transformation.

Lemma 2.1.1 Let A be positive semi-definite, and let B be congruent to A. Then B is
positive semi-definite. If A is positive definite, then B is also.

Proof: For some nonsingular matrix S, and any nonzero vector x, we have that

x*Bx = x*SAS'x = (S'x)*A(S'x) = y'Ay >_ 0, (2.12)

since A is positive semi-definite by hypothesis. If A is positive definite and x $ 0, then
y = S'x is not zero, the inequality (2.12) is strict, and hence B is positive definite. I

2.1.6 Nonnegative Matrices

There is an extensive theory for matrices having nonnegative elements (e.g., Horn and
Johnson, 1985, chapter 9). A matrix A is said to be positive, and we write A > 0, if all of
the elements of A are strictly positive. Similarly, if A has only nonnegative elements, we
say that A is nonnegative, and we write A > 0. The fundamental theorem in the theory
of nonnegative matrices is the Perron-Frobenius theorem, a special case of which we state
below.

The maximum of the moduli of the eigenvalues of a matrix is called the spectral radius,
and denoted p(A). Since this is an important notion, we give a formal definition:

Definition 2.1.4 (Spectral Radius) Let A be an mxm matrix with eigenvalues {Ap}jy_ 1 ,
where the Ai need not all bt di',itnct. The spectral radius of A is defined by

p(A) E max lAil.
l<i<m

The spectral radius is the radius of the smallest circle, centered at the origin, which con-
tains all of the eigenvalues. We can now state a version of the Perron-Frobenius theorem.

Theorem 2.1.3 (Perron-Frobenius) Let A > 0 be a positive m x m matrix, and
assume that the eigenvectors of A have norm one. Then the following are among the
properties of A:
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1. The spectral radius of A is equal to p, where p is a real eigenvalue of A with algebraic

multiplicity one, and p is the unique eigenvalue of modulus p.

2. The matrix A has a positive eigenvector x corresponding to p.

3. Denote the sums of the values in the ith row of A by ri, and the ordered row sums,
from smallest to largest, by r(i). Then

r(1 ) <_ p:5 r(m).

We will refer to the positive eigenvalue p and the corresponding positive eigenvector x
(of norm one) of the above theorem as the Perron-Frobenius eigenvalue and Perron-

Frobenius eigenvector respectively.

A nonnegative matrix for which all of the row sums equal one is called stochastic. It

follows immediately from the Perron-Frobenius theorem that for a stochastic matrix the

Perron-Frobenius eigenvalue and eigenvector are p = 1 and

x = K] (2.13)

respectively.
We have as another consequence of the Perron-Frobenius theorem the following result

relating positive matrices, Perron-Frobenius eigenvectors, and stochastic matrices:

Lemma 2.1.2 Every positive matrix is similar to a matrix proportional to a stochastic

matrix

Proof: Let A be positive, and let D, be the diagonal matrix whose diagonal elements

are those of the Perron-Frobenius eigenvector x of A. Then

B = D-'AD•

has constant row sums. To see this, let aij denote the typical element of A, let ri denote
the sum of the elements in the ith row of B, and let xi denote the ith diagonal entry in

D,. Then, for any i, 771

r, = z aýx = p(A)•I = p(A),
3=1 Xi X

therefore, B/p(A) is stochastic. I
Knowing that the spectral radius is bounded by the extremal row sums often provides

useful upper, but not lower, bounds on p(A). One reason for this is that positive kernels
often decrease to zero at the boundaries of their domain, and the corresponding row sums

of a discretized matrix will be near zero. Actually, the average row sum is still a lower

bound for the spectral radius of a positive symmetric matrix A, as we show below:

Lemma 2.1.3 The Perron-Frobenius eigenvalue of a positive symmetric matrix is bounded
below by the average row sum
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Proof: Let A be positive and m x m with elements aij, and Perron-Frobenius eigen-
value and eigenvector denoted by p and x, respectively. Since p is larger in modulus than
any other eigenvalue of A, we have that (Strang, 1976, p. 253)

yT Ay

Define the unit vector
z=[1..,1Tv.

Then

m m 
in

zTAz = aij /m ' ri/m < p.
ilj=1 i=l

I

2.2 Matrix Analysis

There are many ways to define a norm for square matrices, and corresponding to each
norm there is a metric on the space of square matrices. There is, therefore, a theory of
matrix analysis, for which the two volume work of Horn and Johnson (1985, 1990) is an
excellent reference.

2.2.1 Matrix Norms

A matrix norm satisfies the following five axioms (Horn and Johnson, 1985, p. 290):

Definition 2.2.1 (Matrix Norm) Let II Ii be a mapping from the space of square ma-
trices, with elements in C, to R. The function 11" I is a matrix norm if, for all m x m
matrices A and B,

1. JAI Ža 0

2. AI =0 if and only ifA =0

3. IUcAI = IclIAI for all scalars c E C

4. JA + B1 K_ IIAI + JIBI.
5- JAB1l <_ IAýIBJJ.

Properties (1-4) are the axioms of a vector norm; a norm with property (5) is called
submultiplicative.

The largest singular value of a matrix provides a matrix norm, the spectral norm (Horn
and Johnson, 1985, p. 295):

Lemma 2.2.1 (Spectral Norm) The largest singular value of a matrix A is a matrix
norm, called the spectral or 12 norm and denoted

JIAI 2 - [p(A'A)]1 /2 = a,.

On occasion, we will use another matrix norm, the 1,,o, norm, which is easily expressed
in terms of the elements of a matrix (Horn and Johnson, 1985, p. 295):
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Lemma 2.2.2 (lo norm) Let A be an m x m matrix with typical element a,3 . The
function I . 1100, defined by

IIAjoo =. max Z aiuj

is a matrix norm, called the 1,, norm, or simply the infinity norm.

The spectral norm should not be confused with the spectral radius. In general, the
spectral radius is not a norm, but for each fixed square matrix A it is the greatest lower
bound for the values of all matrix norms of A (Horn and Johnson, 1985, p. 297).

Theorem 2.2.1 Let a matrix A and c > 0 be given. Then

1. For any matrix norm 1l " I,,
p(A) <_ 1AI.

2. There exists a matrix norm . such that

p(A) <_ ý A[ <_ p(A) +E

2.2.2 Convergent Matrices

A square matrix A is said to be convergent (Horn and Johnson, 1985, p. 298) if

lim Ak = 0, (2.14)
k--*

that is, if all of the elements of Ak decrease to zero in absolute value as k -* oo. Another
definition of a convergent matrix, easily shown to be equivalent to (2.14), is

Definition 2.2.2 (Convergent Matrix) An m x m matrix A is convergent if, for all
vectors v E Cm,

lim Akv = 0. (2.15)
k-oo

A necessary and sufficient condition for a matrix to be convergent is given by the following
theorem (Horn and Johnson, 1985, p. 138):

Theorem 2.2.2 A square matrix A is convergent if and only if p(A) < 1.

If p(A) = 1, then the powers of A can converge to a nonzero matrix. A matrix A for
which this is the case is sometimes referred to as semi-convergent. We discuss this idea

in more detail below.
If p(A) = I and A has a Jordan block which is an identity submatrix, then there is a

corresponding subspace U such that for u E U, Anu does not diverge, although Anu 74 0
unless u = 0. If the Jordan form has a block I + N, where N 5 0 is nilpotent, then Anu
blows up for u in a corresponding space.

The following theorem (Horn and Johnson, 1985, p. 299) says something about the
rate at which a convergent matrix approaches zero:

Theorem 2.2.3 Let A be an m x m matrix, and let c > 0 be given. Then, there exists a
constant C = C(A, c) such that

j(Ak),j 1 <C(p(A) +)k, (2.16)

for all k = 1,2, 3,.... and for all i, j = 1,2,..., m.

15



We will need to sum series of powers of matrices in Chapter 3. The following useful
lemma follows immediately from Theorem 2.2.2:

Lemma 2.2.3 (Geometric Series) If A is a square matrix and p(I - A) < 1, then A
nonsingular and

00

D(I - A)' = A-'. (2.17)
i=O

If p(I - A) = 1, then (I - A)' 74 0, so (2.17) cannot be a convergent series. However, the

partial sums of (2.17) may remain bounded, as can be seen from the example

A= [1 0 i 1/2]. (2.18)

2.2.3 Condition Numbers

With respect to any matrix norm, the condition number of a nonsingular matrix A is
defined as

(A) IAIIA- 1 . (2.19)

If A is singular, then ,c(A) =co. Note that, for any matrix norm, and any nonsingular
matrix A,

K(A) > jAA-'g = IIl >__ p(I) = 1. (2.20)

A condition number provides a measure of how nearly singular a matrix is, with a large
condition number suggesting that a matrix is 'nearly' singular. Let Kf = g be a matrix
equation. If r, is a condition number with respect to a norm lb I., then for any two vectors
f and f (Stoer and Bulirsch, 1980, p. 179),

If - fI. < , lib' - Kfj1. (2.21)
11f 1. - JKf fl. '

so a condition number relates the relative change in the right hand side of an equation
to the relative change in a solution. The most often used condition number is defined in
terms of the 12 norm. Let A be a nonsingular m x m matrix with largest and smallest
singular values given by a, and a,,, respectively. Then

K2 (A)= -al (2.22)a~m

is the condition number of A with respect to the 12 norm.

2.3 Elementary Notions of Functional Analysis

Since we are ultimately interested in approximating integral equations by matrix equa-
tions, and attempting to solve these resulting matrix equations on a computer, most of
the theoretical discussions in this thesis will be in m-dimensional space which we take,
for flexibility, to be C' rather thaini.m. However, we will make use of some function-
space results concerning integral equations in a Hilbert space, and so we review here the
functional analysis that we will require.
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2.3.1 Normed Vector Spaces

A vector space, 7"H, is a set of elements, called vectors, together with the operations of
vector addition and scalar multiplication, over a scalar field. We will take this scalar field
to be either the complex numbers C, or the real numbers RZ. The defining properties of a
vector space are as follows:

Definition 2.3.1 (Vector Space) Let 7"W be a nonempty set, let C be a scalar field, and
let there be two binary operations '+'and 'x ', corresponding to vector addition and scalar
multiplication, respectively. Let x,y,z be arbitrary points in H, and let a,/3,y E C be
arbitrary scalars. Then *H is a vector space, and the points in R are called vectors, if
all of the following properties are satisfied:

1. There is a binary operation, called vector addition, that assigns to each pair of
elements x,y E R a unique element of W-i called their sum, and denoted x + y. For
all x, y, z E 7H:

(a) x + y = y + x,
(b) x + (y + z) = (+ y) + z,

(c) there is an element 0 E 7-I such that x + 0 = x, and

(d) there is an element -x E W such that x + (-x) = 0.

2. There is a rule which assigns to each pair a ..- nd x E 7"H a unique vector, called the
scalar product of a and x, and denot,d ax. For arbitrary a,,3 E C and x,y E 7"J,
the scalar product has the ft iowzng properties:

(a) a(f3x) = (a/3)x,

(b) a(x + y) = ax + ay,

(c) (ca + ,3)x = ax + fx, and

(d) lx = x.

For a function f, which assigns for each x E A an element y = f(X) E B, we write
f : A -- B. The set A is called the domain of f; the set of all y = f(x) for x E A is
called the range of f and denoted R(f). A function is also sometimes called an operator
or a mapping, and we will use these terms interchangeably, although different terms are
customary in different contexts.

Functional analysis is concerned with analysis on vector spaces. In order to do analysis,
we need a generalization of the idea of the distance between two vectors of an arbitrary
vector space. This leads to the concept of a metric:

Definition 2.3.2 (Metric) Let X be a set, and let x,y,z E X be arbitrary points. A
metric, d(x, y) : X x X -. "Z is defined by the following properties:

1. d is finite and nonnegative,

2. d(x,y)=0 4 x=y,

3. d(x, y) = d(y, x), and

4. d(x, z) < d(x, y) + d(y, z).
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We define next a function mapping vectors into nonnegative scalars called a norm, thereby
generalizing the notion of length to vectors in abstract spaces:

Definition 2.3.3 (Norm) Let R be a vector space, and let z,y E R, and a E C be
arbitrary. A norm, : -. R, is defined by the following four properties:

1. 1 I_ 0,

2. I=j = 0 = O, x 0,

3. laxi = kajjjxI, and

4. Ix + yl -< I1i + Iyl.

A metric can always be defined in terms of a norm, for example

d(x, y) =- ix - yll. (2.23)

A normed space is a vector space together with a norm, (Wt, II ). Usually the norm
is understood, and the normed space is denoted simply Wt. We can do analysis in general
normed spaces; in particular, we can define limits and Cauchy sequences.

Definition 2.3.4 (Limit, Convergence) A sequence {Ix} in a normed vector space
(71,. 1I) converges to a limit x if x E R-, and for every > 0 there exists an N = N(C)
such that for all n > N

Definition 2.3.5 (Cauchy sequence) A sequence {z,,} in a normed vector space (71, 1.
II) is called a Cauchy sequence if, for every c > 0, there exists an N = N(E) such that
for all m, n > N

IIxm - n11 < C.

A normed vector space in which all Cauchy sequences converge (to vectors in Rt) is called
complete. A complete normed vector space is a Banach space.

We can discuss limits and continuity in Banach space, but we have no notion of
orthogonality, and so most of the geometry of finite dimensional Euclidean space does not
apply to a general Banach space. However, if the additional structure of an inner product
is imposed on a Banach space, the complete inner product space, or Hilbert space, which
results has a p' -metry which is in some ways very much like Euclidean space. An inner
product is d'-,:ed as follows:

Definition 2.3.6 (Inner product) Let X be a vector space, and let x, y, z E X and
a,4 E C be arbitrary. An inner product is a function (.,-) : X x X - C with the
following properties:

1. (x + y,z) = (x,z) + (y,z)

2. (ax, y) = a(x, y),

3. (z,y)= (y,x), and

4. (x,x) >0; (x,x) = 0 ý=* = 0.

A fundamental inequality for inner products is the Cauchy.Schwarz inequality:
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Lemma 2.3.1 (Cauchy-Schwarz Inequality) Let x and y be any vectors in an inner
product space. Then

I(x,y)12 < (x,X)(yy), (2.24)

with equality if and only if either x = 0, or y = 0, or y = ax for some constant a.

An inner product determines a norm,

HI = (X, z)1/2, (2.25)

and the Cauchy-Schwarz inequality relates this norm to the corresponding inner product.
Another important result which holds in a general inner product space is the Pytha-

gorean Theorem:

Theorem 2.3.1 (Pythagorean Theorem) Let x, :1, and X2 be vectors in an inner
product space, where x = X1 + X2 and (X1,X2) = 0. Then

p 112 = IIXd12 + II2112.

Proof:

IlX1l2 = (X,xl) + (X2,x-2) + (xI,x2) + (X2,Xl)

= 11XI112 + JX212H*

2.3.2 Hilbert Space

A Banach space in which the norm is determined by an inner product is called a Hilbert
space. An example of a Hilbert space with scalar field 1? is Im, with inner product
(X,y) = Xry and norm 1xi! = (xxT)1h/2. Another important example is the space of square
integrable complex valued functions, L2.

Let us define an inner product (f, g) on the vector space L2 of all Lebesgue measurable
complex valued functions for which

if(x)12dx < •o (2.26)

as follows

Definition 2.3.7 (Inner Product in L2 ) Let f,g E L2. The inner product (f,g) is

(f,g) =_10 f(x)g(x)dx,

where the integral is a Lebesgue integral.

This inner product determines the norm

If 12 (= , f) 1/2 
- .i-: If(X)1 2dx (2.27)

(Kreyszig, 1978, p. 62). Strictly speaking, by a function f we mean an equivalence class
of functions which are equal almost everywhere. It turns out that L2 is complete with
respect to this norm, and hence is a Hilbert space.
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We will refer to this space as L2, and to the norm I - as the L2 norm. We will
be concerned primarily with functions of a real variable, and we will sometimes refer to
this real function space as L2 . There are corresponding spaces for functions with other
domains which we will also refer to as L2. Sometimes the domain of the functions in the
space is included in the notation, for example L2[0, 1] is the space of square integrable
functions of a single variable on the unit interval. We will use the notation which doesn't
indicate the domain where there is no risk of confusion.

By analogy with the inner product on lZm, we say that two vectors x and y are
orthogonal if (x, y) = 0. If e is a unit vector and x is any vector, then we call (z, e) the
orthogonal projection, or simply the projection, of z onto e. A sequence of unit vectors
{ei} is called an orthonormal sequence if

(e,) - (2.28)

where bij is the Kronecker b,

1 if i = j(2.29)1i= 0 if i 54j (229

An orthonormal sequence is called complete if any vector in the space can be expressed
as a limit of linear combinations of elements in this sequence. A complete orthonormal
sequence is also called an orthonormal uasis, or simply a basis. In particular, L2 has
such bases. A Hilbert space which, like L2, has a countable orthonormal basis is said
to be separable. Although we will state some results more generally, we will confine our
attention primarily to L2.

'Complete' thus has two meanings. A normed vector space is complete if all Cauchy
sequences converge; an orthonormal system in a Hilbert space is complete if all vectors in
the space can be expressed as limits of linear combinations of vectors in the orthonormal
system. It will always be clear from the context which notion of completeness is to be
used.

For lZm there is a natural notion of dimension. We can now provide a general definition
for Hilbert space. If the number of vectors in a basis is finite, then this number is the same
for any basis, and is called the dimension of the space. If a space has an orthonormal basis
consisting of infinitely many vectors, then all bases consist of infinitely many vectors, and
we say that the space is infinite dimensional.

For any f E W", we represent f formally in terms of a basis {ei}'=' as a Fourier series

00

f = Ziei, (2.30)
t=1

where, for every i, ai (f,ei). The ai are called Fourier coefficients of f with respect to
the basis {ei}. We will always interpret an infinite sum such as (2.30) to mean that

1 N 2

lim f - aiei = 0. (2.31)
N--- 11

Let R be a Hilbert space. Under what conditions does every vector f E Rt have a
Fourier series representation (2.30)? Bessel's inequality provides a first step toward an
answer to this question:
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Lemma 2.3.2 (Bessel Inequality) Let {ei} be any orthonormal sequence in c Hilbert
space Xt. Let z E 7t be arbitrary. Then

Kx~, e,)l' <_< 114, (2.32)

If 7i is separable, then we can say more:

Lemma 2.3.3 (Parseval Identity) Let {ei} be an orthonormal basis in a separable
Hilbert space Xt. Let x E Nt be arbitrary. Then

ZI(xe,)12 = 1Ix12. (2.33)

If we are working in a separable Hilbert space, then we can use Parseval's identity to show

that (2.31) holds for any vector f. Therefore, if we interpret convergence in the sense of
convergence in norm, f has, for a given basis, a Fourier series (2.30). It can be shown
that this series is unique. A good discussion, in the context of integral equations, of the
material of this paragraph is in Tricomi (1957, pp. 83-88).

2.3.3 Linear Operators

We will be concerned with linear operators in L2 , so we give a formal definition of a linear
operator:

Definition 2.3.8 (Linear Operator) Let U1 and U2 be vector spaces. A linear oper-
ator K : U1 -' U2 is an operator (i.e., a mapping) such that for any x and y in U1 , and
for any scalars a, 0 E C,

K(crx + 0~y) = aK(x) + /3K(y).

We will be interested exclusively in the case where UJ and U2 are Hilbert spaces. We will

adopt the conventional notation Kx for K(x). We collect here some definitions for classes
of linear operators which will be needed in this and subsequent chapters:

Definition 2.3.9 (Bounded Operator) A linear operator E' : U1 -" U2 between Hilbert
spaces is bounded if there exists a real number c such that, for all x E U1,

lKxl <5 cllxl. (2.34)

Definition 2.3.10 (Continuous Operator) Let K : U1 - U2 be a linear operator be-
tween Hilbert spaccs. K is said to be continuous if for any c > 0, there exists a 6 > 0
such that for any vectors x, and X2 in U1,

IlI - X21 < 6 =I llKxi - IKX21 < C.

It can be shown (Kreyszig, 1978, p. 97) that a linear operator is continuous if and only
if it is bounded. It is customary to talk in this context about bounded, not continuous,
operators.

Let Rt be a Hilbert space, and let yo 1 iH be arbitrary. The special linear operator
K : 71 --- C defined by Kx =- (z, yo) is bounded. Also, linear operators on R', can be
represented by matrices, and are necessarily bounded.
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Definition 2.3.11 (Operator Norm) Let K : U1 - U2 be a bounded linear operator
between Hilbert spaces. The norm of the operator K, IIKI, is

IIKI = sup IKx
zEUi,z*• Iz4

Definition 2.3.12 (Adjoint Operator) Let K :U 1 - U2 be a bounded linear operator
between Hilbert spaces. The adjoint of K is the operator KI : U2 -- U, such that, for all
z E U1 and Y E U2 ,

(Kx, y) = (x, K*y).

We take for granted here that this definition makes sense: that is, that the adjoint exists.
A proof that the adjoint K" of a bounded linear operator K exists, is bounded and unique,
and that 5K11 = -K•K can be found in Kreyszig (1978, pp. 196-197).

Definition 2.3.13 (Self-Adjoint Operator) A bounded linear operator K is said to be
self-adjoint if U, = U2 and K = K*.
Definition 2.3.14 (Positive Operator) Let K : U --- U be a self-adjoint linear opera-

tor on a Hilbert space. K is said to be positive if, for all x E U,

(Kx, x) > 0.

For U = R'm, with scalar field 1, positive operators correspond to positive semi-definite
matrices.

Eigenvalues and eigenvectors can also be defined for general linear operators:

Definition 2.3.15 (Eigenvalue and Eigenvector) Let K : U - U be a linear oper-
ator. The vector x E U is an eigenvector, and the scalar A E C is an eigenvalue,
if

Kx = Ax.

A positive, self-adjoint linear operator has only real, nonnegative eigenvalues (Kreyszig,
1978, p. 475, problem 5). In matrix analysis, the adjoint corresponds to the transposed
complex conjugate (or transpose, for symmetric matrices), and self-adjoint operators cor-
respond to Hermitian (or symmetric, in the real case) matrices.

2.3.4 Orthogonal Complements in Hilbert Space

We review in this subsection some basic ideas about the geometry of Hilbert space which
we will make extensive use of in Chapter 3. A detailed exposition of this material appears
in Kreyszig (1978, Chapter 3).

We begin with some elementary notions. Let it be a Hilbert space, and let Wh g ?i
be an arbitrary subset of it. We say that Rt1 is a subspace of it if it is a vector space. If
Wt1 contains all of its limit points (with respect to the norm induced by the inner product
on 7t), then W1 is said to be a closed subspace of Ii. A subspace of a complete metric
space is itself complete if and only if it is closed (Kreyszig, 1978, p. 30), and hence W1 is
a IHilbert space with respect to the inner product on W if and only if 't 1 is closed.

Let it be a Hilbert space, and-let Ht C it and R 2 gC i be arbitrary subspaces.
The subspaces H, and ?f 2 are said to be orthogonal if, for any hi E 7J1 and h2 E It 2 ,
(hi,h 2 ) = (h2 ,hi) = 0. We write this as Rt1 _I Wi2 .
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The set of all vectors orthogonal to a subspace "il,

7-L {h E 711h -L 7t1 }, (2.35)

is a subspace called the orthogonal complement of W"1I. The orthogonal complement XL is
closed, and if N, is closed, then Ii. = lh (Kreyszig, 1978, p. 149). In general, we have
that Wj"1 = '1, where we denote the closure of a space by an overbar.

If every h E Wt can be expressed uniquely as h = h, + h2, where hl E Wi and h 2 E Rt2 ,
then iW is equal to the direct sum of the subspaces Wi and R"2, and we write

Rt = W E@D 2. (2.36)

Assume now that 71i is an arbitrary closed subspace, and that Wt2 = Wl . Then t can
be written as the direct sum (2.36) (Kreyszig, 1978, p. 146). This result is referred to as
the projection theorem. If h = h, + h2 , where hi E Wi and h2 E W2 , we say that h, is the
orthogonal projection (or briefly, the projection) of h onto the closed subspace 'i1 .

Given a linear operator between Hilbert spaces, K : U -- U2, define the nullspace of
K by

A/(K) = {z E UiIKz = 0}. (2.37)

It is easy to show that NA(K) is a closed subspace. The range of K is

R(K) = {y E U2 1y = Kx for somex E Ui}. (2.38)

The operator K is said to be of infinite rank if the dimension of JZ(K) is infinite, otherwise
K is said to be of finite rank.

The nullspace and range for the adjoint operator, K* : U2 --o. U1, are

.,V(K*) = {x E U2 IKx = 0}, (2.39)

and

7"(K*) = {y E Uily = K*z for some x E U2 ). (2.40)

If U2 is infinite dimensional, then 1P(K) need not be closed (and similarly for U1 and

It is not difficult to establish (e.g., Kress, 1989, p. 226) that

(K) =Af(K*), (2.41)

Z(K) = Af(K), (2.42)

U2 = 1?(K) (D A(K-), (2.43)

and

U1 = R(J-) a)OAT(K). (2.44)

-. 1
If K is self-adjoint, then U1 = U2, K = K*, and T(7•) = N'(K).
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2.3.5 Compact Linear Operators

Compact operators on an ininite dimensional Hilbert space have a structure that is in
many ways similar to that of matrices in a finite dimensional space. The prototypical
compact operators are integral operators. We begin with a definition:

Definition 2.3.16 (Compact Operator) Let K : U1 -- U2 be a linear operator between
separable Hilbert spaces. K is said to be compact if for every bounded sequence {fxt1)*

in U1 the sequence {Kxi }•= has a convergent subsequence.

A compact operator is necessarily bounded, since otherwise there would exist a bounded
sequence {jx}7l such that 1KAxj - oo, and for which {Kxi}•=l has no convergent
subsequence. Since an operator is bounded if and only if it is continuous, it follows that
a compact operator must be continuous.

The most important properties of compact operators for our purposes are the spectral
properties; and with respect to spectral properties, compact operators behave very much
like matrices. We state, without proof, the spectral theorem for compact, self-adjoint
operators

Theorem 2.3.2 (Spectral Theorem for Compact Self-Adjoint Operators) Let K:
U -- U be a compact, self-adjoint operator on a Hilbert space. There exists a sequence of
vectors {f,}, such that

(46, j) =

and a bounded sequence of nonzero real scalars { Ai}, such that, for all i,

K.0 = A€•.

Each eigenvalue can correspond to at most a finite number of Oi. Thus we can, without
loss of generality, label the Ai in nonincreasing order of absolute value, so that

I, I 1 21 > ... ,

are the nonzero eigenvalues of the operator K, and the corresponding orthonormal vectors
{ 4i} are eigenvectors. If there are infinitely many distinct and nonzero eigenvalues, then
these eigenvalues must have zero as an accumulation point.

For any x E U, we have that

Kx = )€,

where by 'si' we mean the sum over all (finite or infinitely many) nonzero eigenvalues.

Zero may also be an eigenvalue of a compact operator K, and, if so, we denote this
eigenvalue of special importance by A0. A good source for the spectral theory of compact
operators is Kreyszig (1978, Chapter 8).

If a linear operator is compact but not self-adjoint, then the eigenvalues need not be
real or even exist. For any compact operator, the subspace spanned by the eigenvectors
corresponding to a single eigenvalue can have dimension greater than one, but must be
finite dimensional. When discussing compact operators which are not self-adjoint, we will
make use of the singular vector expansion, which is a natural extension of the singular
value decomposition to compact operators in a Hilbert space (Smithies, 1958, Chapter
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8). If K is compact, then the operators K'K and KK" are compact, self-adjoint, and
positive, with the same eigenvalues. It turns out that these eigenvalues are the squares
of singuler values of K, defined in a way exactly analogous to the singular values of a
matrix.

Theorem 2.3.3 (Singular Vector Expansion) Let K : U, -. U2 be a compact linear
operator between Hilbert spaces. The operators K*K and KK" are compact, self-adjoint
and positive, each with nonzero eigenvalues

Oror2> >_. .. > o,

where
KOi = id~i,

K*Oji = oi,

and hence
KK *0" = ai 0.,

K'K~i = a•ti.

For all i and j,

and

(0i, 0j) = 5ij.

For any x E U1, we have
Kx = i(X, 000i,

where, as in Theorem 2.3.2, we interpret this sum to be over the (finite or infinitely
many) singular values.

The positive constants {ai} are called the singular values of K, and the two orthonormal
sequences {Oi} and {fi} are called singular vectors. We will, on occasion, find it convenient
to refer to {f i, Vi; ci} as a singular system. It is customary to define the singular values of
infinite rank operators to be positive, in contrast to the singular values of matrices, which
are nonnegative, and which can be zero.

2.4 Fredholm Integral Equations of the First Kind in L2

Let the function k(x, y) E L2 {[0, 11 x [0,11) be the kernel of a Fredholm integral equation
of the first kind:

oj k(x, y)f(y)dy = g(x). (2.45)

If, in (2.45), f E L 2, then it can be shown that g E L2. The linear operator equation
corresponding to (2.45) can be written as Kf = g, where K : L2[0, 1] -- L2[0, 1], given byI

(Kf)(x) j= k(x,y)f(y)dy, (2.46)

is compact (Young, 1988, p.93). If k(z,y) = k(yx), then we say that the kernel is
self-adjoint; if k(x,y) = k(y,z) then we say k(x,y) is symmetric. It is easy to see that
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linear operators K corresponding to self-adjoint (in particular, real symmetric) kernels are

self-adjoint. We will consider next the equation Kf = g where k(x, y) is not necessarily
self-adjoint. The self-adjoint case will not be discussed; it follows easily, by means of

Theorem 2.3.2 from the more general results of this subsection.
Since K is compact, from Theorem 2.3.3 there exists a set of singular values of K,

jai), an orthonormal basis {4i} for 1?(K), and an orthonormal basis {Oi} for 1Z(K*). It
follows easily from this that

k(x, y) = Zcai7i(z)Oi(y). (2.47)

We will be primu ,ly concerned with the case where k(x,y) is real, in which case {fi} and
10i} can be taken to be real as well. If there are infinitely many terms in the sum (2.47),
then by the equal sign we mean that

N fl2
lim k(x,y)- aidi(x)Oi(y) = 0. (2.48)

N-oo i=1

Let {¢J} be an orthonormal basis for .Z(K) = Ar(K*); and let {4•} be an orthonor-

mal basis for (KA')j" = NI(K). Then f and g can be written as

f = >aaiPi + (2.49)
S 3

and

g = Zb,~i + Zb .(2.50)
i

The Fourier coefficients ai, aj, bi, and bj are easily shown to be projections of f cr g onto
basis functions; for example ai = (i, i).

Since
Kf = (c df, O') 'aiaii, (2.51)

in order for Kf = g to have a solution, we must have that, for all i, bi = 0 and ai, = bi.

Any solution must have the form

f Lg, + aj - _ + h, (2.52)iai i ai

for arbitrary h E K(IK). For f to be a solution, we must have that

~i Oi E L2. (2.53)

It can be shown that a necessary and sufficient condition for (2.53) is that

b < 00. (2.54)

Thus we have the following thLeorem, proved by Picard (1910) for linear Fredholm
integral equations of the first kind, and later extended by others (e.g., Groetsch, 1980,
pp. 156-157) to arbitrary compact linear operators.
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Theorem 2.4.1 (Picard) Let K be compact, with singular system {i,oki;oi}, and let
g E L2 be given. There exists a function f such that Kf = g if and only if

21.ZO < oand

2. (g,u) = 0 for all u such that K'u = 0.

2.4.1 Existence and Uniqueness of Solutions of Linear Operator Equa-
tions

We summarize next the conditions under which a solution to a linear operator equation
of the first kind exists, and the conditions under which it is unique.

A solution to Kf = g exists if and only if g E 7Z(K). If a solution f exists, then it is
unique if and only if A((K) = {O}. If more then one solution exists, then the difference
between any two solutions is in A.r(K), and therefore as a consequence of the projection
theorem, there exists exactly one solution fi E T(KtC*) = APt(K)'. Let g E 1Z(K), and let
f, be the unique f _L A./(K) such that Kfl = g. The set of all solutions to Kf = g is
given by

Y {f =i f+ f2IKfi = g, fl E N'(K)',f 2 E N'(K)}. (2.55)

By the Pythagorean thcorem,

IfI2 = Ifl,1 2 + 11f2112. (2.56)

Since for an, solution f, jfil > fl, fi E F is the minimum norm solution.

2.4.2 Infinite Rank Compact Operator Equations of the First Kind are
Ill-Posed

In Chapter 1, we defined what it means for an equation to be ill-posed, and we provided
some intuition for why integral equations of the first kind are often ill-posed. We now
use the theory outlined in the present chapter to build on this intuition in a more general
context.

The Nature of the Spectrum of Infinite Rank Compact Linear Operator Equa-
tions

Let K : ?1 -4 ?1 be a compact, positive, self-adjoint linear operator on a separable Hilbert
space. Then K has a finite or countable spectrum of positive eigenvalues (Theorem
2.3.2). If K is of infinite rank, then K has infinitely many nonzero eigenvalues, and these
eigenvalues must have zero as an accumulation point. In particular, K = T*T is compact,
positive, and self-adjoint for any bounded linear operator T, and the nonzero eigenvalues
of K are the squares of the singular values of T (Theorem 2.3.3). Therefore if K is
compact, of infinite rank, but not necessarily self-adjoint, then the singular values of K
(eigenvalues, if K = K') will have zero as an accumulation point. It can be shown that
K cannot have a bounded inverse, and hence that the linear operator equation Kf = g
is ill-posed.

Because of this, a necessary condition for this equation to have a solution is that
the Fourier coefficients in the expansion of g must decrease in absolute values sufficiently
rapidly as the corresponding singular values approach zero, a result made precise by
Picard's Theorem (2.4.1).
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'R(K) $ 1Z(K) if K is Compact and of Infinite Rank: Some Implications for
Ill-Posedness

The second part of Theorem 2.4.1 states that g I iAV(K*) (or, if K is self-adjoint,
g .L A'(K)). This ensures that g E R(K). But, as we shall see in this subsection, if K
has infinitely many non-zero eigenvalues, then JZ(K) is not closed. Therefore, the first
condition in Theorem 2.4.1 is required in order to demonstrate that g E R(K). If g is

observed with error and/or represented on a computer, the fact that RZ(K) 5 JZ(K) has
important consequences, as can be seen by the following result of Strand (1974).

Theorem 2.4.2 (Strand, 1974, p. 801) Let K be compact, with eigenvalues {fA}• 1 ,
where

I >A 1 2l -> .-. -> O. (2.57)

Assume that infinitely many of these eigenvalues are nonzero. Let g E 1?(K) and c > 0
be arbitrary. Then there exists a function ý E Ni such that:

1. €1Z (K),

2. (. A/(K*), and

3. lig - N< (

By definition 1Z(K) is dense in its closure, JZ(K). Theorem 2.4.2 states that R(K) - R(K)
is dense in J(K).

This result provides one way of understanding what it means for an integral equation
to be ill-posed. One can always find a perturbation of the right hand side of arbitrarily
small norm which changes a solvable integral equation into an equation with no solution.

Actually, the consequences of ill-posedness for the numerical solution of integral equa-
tions of the first kind is somewhat different. When an equation with a reasonably smooth
kernel is discretized for solution on a computer, the resulting system of algebraic equations
has many small eigenvalues, and hence is very nearly singular. The exact right hand side
g(x) and a representation of g(x) on a computer will always be slightly different, because
of inevitable roundoff and discretization error. The solution of the matrix equation cor-
responding to this slightly perturbed right hand side will very likely exist, however it will
often be very different from the exact solution f.

2.5 Probability Theory

One empirical basis for mathematical probability lies in the observation of the long range
relative frequency of 'favorable' events in the repetition of a random experiment. The
theory originated with the investigation of games of chance in the seventeenth century,
where a set of elementary outcomes were treated as equally likely. A. N. Kolmogorov
provided an axiomatic foundation for probability in 1933, making use of the theory of
measure and integration. The present section is a very brief outline of the principal ideas
of probability theory, along with the definitions and some important properties of certain
probability distributions. There are many introductory books at various levels which the
reader can turn to for details; the present discussion follows Tucker (1967).

28



2.5.1 Probability Spaces

In order to have a rigorous discussion of probability, it is necessary to define a set of
possible outcomes of a random phenomenon, called a sample space.

Definition 2.5.1 (Sample Space, Elementary Event) A sample space Q is a set
of elements or points w E f?, called elementary events, each of which is a possible
outcome of a random phenomenon under consideration.

Probability is a set function which associates subsets of f? with numbers in the unit
interval. If the sample space is uncountable, then it is necessary to restrict this set
function to a class of subsets which satisfies the properties of a a-field :

Definition 2.5.2 (a-field ) A set of subsets S of f is called a a-field if

1. For every A E S, AC E S,

2. if A1, A2,... ,Anv... is a countable sequence of elements of 3, then UnAn E S, and

3. 0ES.

Subsets A E S are called events. The pair (fl,S) is sometimes called a measurable space.
In order for a set function to be a probability or probability measure, this function must

be as defined in the following:

Definition 2.5.3 (Probability) A probability P is a normed measure over a mea-
surable space (fZ,S); that is P is a real-valued function which assigns to every A E S a
number P(A) such that

1. P(A) _ 0 for every A E S,

2. P(fl) = 1, and

3. if {An} 1=1 is any countable sequence of disjoint events, then

00P(U0 1 An) = y P(A,•).

n=1

A probability space can now be defined.

Definition 2.5.4 (Probability Space) A probability space is a triple (Q,S, P), where
f? is a sample space, S is a a-field of subsets of Q2, and P is a probability measure on the
measurable space (Q,S).

2.5.2 Random Variables and Probability Distributions

Often one cannot, or does not want to, observe directly w E f1. Instead, what is measured
or studied is the value of a function on the sample space. Such an S-measurable function
is called a random variable.

Definition 2.5.5 (Random Variable) Let (1l,S, P) be a probability space. A random
variable, X : 1 ? - 1Z is a real-valued S-:measurable function. That is, for every real
number x,

{w E QIX(w) <: X) S.
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We will adopt the convention of using the notation X both for the random variable X and
for a value of this random variable X(w). We will denote the event {f E QJX(w) < x} by
{X < x}, and its probability by P(X < x).

Associated with every random variable X is a distribution function (also called a
cumulative distribution function, a cdf, or simply a distribution), Fx(x), which gives the
probability that X is less than or equal to any real number x.

Definition 2.5.6 (Distribution Function) If X is a random variable, its distribu-
tion function Fx is defined by

Fx(x) - P(X < x).

It can be shown that Fx is monotone nondecreasing, right-continuous, and that

lim Fx(x) =O,
X-00

and
lim Fx(x) = 1.

X-00

I1 is straightforward to extend the definition of distribution to the joint distribution
of several random variables.

Definition 2.5.7 (Multivariate Distribution Function) Let X 1 ,... ,X, be random
variables, where n > 1. The joint distribution function of {X 1 , - Xn} is defined by

Fx,....x(x,,...,x) = P(nl=,1{Xi <_ xi}),

where -oo < xi < 0, for 1 < i < n.

A related concept is the probability density, defined in the univariate case as follows:

Definition 2.5.8 (Probability Density) Let Fx(x) be an absolutely continuous distri-
bution function. Then

Fx(x) = 0 fx(t)dt

for some function fx(t), called the probability density of the random variable X.

A random variable X which has a density

f x(x) dx (2.58)

is said to be continuous. A random variable which takes on values in a finite or countable
set is said to be discrete. The notions of distribution and density can be generalized to
random variables which assume values in more general spaces.

Corresponding to joint distribution functions, there can be joint probability densities.
We will only need to make use of bivariate densities. For example, let X and Y be
two continuous random variables with joint density fx,y(x,y). The univariate marginal
density of either random variable is obtained by 'integrating out' the other variable, for
example 00

fx(x) = J fx,y(x,y)dy (2.59)

is the marginal density of X.
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2.5.3 Expectation and Moments

Mathematical expectation is a linear functional of a random variable which models the

empirical fact of long run averages.

Definition 2.5.9 (Expectation) The expectation of a random variablt X, denoted
E(X), is defined to be the Lebesgue integral of X with respect to the probability measure
P,

E(X) JXP(dw),

provided that this integral exists.

Usually it is more convenient to write this integral either as a Lebesgue-Stieltjes integral
with respect to the distribution of a random variable, or else as an integral involving a
probability density. If X has a density fx(x), then the following are equal:

E(X) = JXP(dw) = r xdFx(x) = j xfx(x)dx. (2.60)

The expectations of Xn are of particular importance. When these expectations exist,
they are called moments of the random variable X.

Definition 2.5.10 (Moments, Central Moments) The nth moment of a random
variable X is defined to be the expectation E(Xn), provided that this expectation exists. If
E(X) = ,, then the nth central moment is defined to be E{(X -,u)'}.

The mean of a random variable X is E(X), and it is usually denoted p. If X is a random
variable with mean p, then the variance of X, usually denoted o,, is E[(X -,u)'].

Expectation is a hnear functional; that is, if X and Y are any random variables for
which E(X) and E(Y) exist, and a and 3 are constants, then

E(aX +/3Y) = aE(X) + 1E(Y). (2.61)

2.5.4 Conditional Probability and Independence

Intuitively, if we toss a coin twice, the result of the first toss has 'no effect' on the result
of the second toss. We would say that these tosses are 'independent'. This provides a
motivation for the concept of independence in probability theory.

Independence is, of course, a special situation. For example, one might ask how one
would estimate the probability of drawing the ace of spades as a second card given each
of the three following situations:

1. that the first card drawn is the ace of spades,

2. that the first card drawn is the eight of hearts, or

3. no information on the first card.

This leads naturally to the notion of conditional probability.

Definition 2.5.11 (Conditional Probability) If (Q,S,P) is a probability space, and
A,B E S, with P(A) > 0, then

.P(Afl B)
P(BIA)=-PAnB

P(A)

is called the conditional probability of B given A.
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It is easy to show that P(.IA) is a probability measure.
In the case of discrete random variables, it is easy to define P(X = xJY = y) if

P(Y = y) is not zero. In the case of continuous random variables, we always have that
P(Y = y) = 0, and conditional probability (as well as conditional expectation, to be
defined below) raises measure theoretic problems. These are treated rigorously using the
Radon-Nikodym theorem (e.g., Chung, 1974, Chapter 9). It is not necessary to discuss
these technical issues here, as long as we use certain basic properties.

If X and Y are random variables with a joint density fxy(x,y), we will define the
conditional density of X given Y, fxly(xly), in terms of which we can compute conditional
probabilities and conditional expectations.

Definition 2.5.12 (Conditional Density) Let X and Y be continuous random vari-
ables, with marginal probability densities fx(x) and fy(y), and joint density fxy (x, y).
Then, the conditional density of the random variable X given that the random variable
Y equals y is fx y (x, y)

fxly(xly) =
fy(y))

provided that fy(y) 5 0.

An expectation with respect to a conditional distribution is called a conditional ex-
pectation. We assume that (X,Y) is continuous, so that fxly(xly) exists.

Definition 2.5.13 (Conditional Expectation) Let (X, Y) be continuous random vari-
ables, -nd assume that the conditional density fxly(xly) exists. Then the conditional
expectation of X given that Y = y is defined to be

E(Xjy) = E(XIY = y) =Jxfxly(xly)dx,

provided that this integral exists.

We write the random variable E(XJY) by substituting Y for y in the right hand side of
the defining equation.

More generally, we have the following properties of E(XIY). Let X 1, X2 and Y be
random variables, let g, and 92 be functions such that E(Ig1(X1)I) < cc and E(1g 2(X 2)I) <
oo, and let a and 3 be constants. Then

E[ag,(Xi) + 09g2(X2 )IY] = aE[gi(Xi)IYI + O3E[9 2(Xz2)IYl, (2.62)

E{E[g1 (X1)IY]} = E[gi(X 1 )], (2.63)

E[g2(Y)g,(X,)IY] = g2(Y)E[g,(X, )IY], (2.64)

and also
P(AIY) = E(1AIY), (2.65)

where 1A is the indicator random variable corresponding to the event A, defined by

1,(w ifw E (266
1A(){= 0A (2.66)

If two events are such that P(A1B) = P(A), or equivalently P(A n B) = P(A)P(B),
then the events A and B are said to be independent. More generally, we have the following
definition:
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Definition 2.5.14 (Independent Events) Let B = {B,,a E I} be a set of events.
These events are said to be independent if for every positive integer n and every n
distinct elements a,..., an in the indexing set I, we have that

n
P(B,, n ... n B0,,) P(B,).

i=1

If all events involving X are independent of those involving Y, i.e. {X E A} and {Y E B}
are independent for all sets A and B, then X and Y are said to be independent random
variables. In this case, Fx,y(x,y) = Fx(x)Fy(y), and, if X and Y are continuous,
fxy(x,y) = fx(x)fy(y), and fxly(xly) = fx(x). More generally, we have that:

Definition 2.5.15 (Independent Random Variables) Let {Xa,a E I} be a family
of random variables. These random variables are said to be independent if, for every
positive integer n and every n distinct elements a, ... an in the indexing set I, we have
that

n
Fx.,.- (XI. .,X,) Fx. (xi).

If X and Y are independent random variables, then, for any functions hi(x) and h2 (y)

for which E[tha(X)I] < oo, E[1h2 (Y)I] < 00

E[h1 (X)h 2 (Y)] = E[hi(X)]E[h2 (Y)I, (2.67)

and
E(XIY) = E(X). (2.68)

We also will be making use of the following results for independent random variables:

P[X < h(Y)] = E {Fx[h(Y)]} = IFx[h(y)]fy(y)dy, (2.69)

and the variance of X + Y is the sum of the variances of X and Y.

2.5.5 Some Distribution Theory for Statistics

We will make extensive use of several special continuous probability distributions of im-
portance to statistics. In this section, we define those probability distributions which we
will use in this thesis, and we state some important properties and relations.

All of these distributions are related, directly or indirectly, to the standard normal
distribution, denoted -6(x) and defined by

r; I e-/2dt. (2.70)

The corresponding standard normal density is

=d(x) / _X2/2
dx Vr .r (271

If X has a standard normal distribution, we indicate this by X - N(0, 1), where '.-,2 is
read 'is distributed as' and the arguments of N indicate that X has a mean of zero and a
variance of one.
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The six densities which we will use are defined below, where we adopt the convention of
separating,by a semicolon, parameters which define special cases of a class of distributions,
from the possible value x of the random variable.

f1 (x;p,- 2) 1 '- 1 2!2 = 1 - a (2.72)

V,1/2-1e-x/2

f2 (x;L/) = r(v/2)2-/ 2  (2.73)
r(A 1 + A2) AI.._1( 1  X)A2-1 (2.74)

f4X 1 2 [v + V2/2 V)I-2 (2.75)
- r(vA)/ 2)r ( !V/2

/ 112-1

[1 + (vl/ V2) X](,,'+*2)/2

r[(v + 1)/2](1fs(x;v) = • (- ( + 2/-{+/ (2.76)

fr (X; V, ) 'K~ [r(v/2)2v2] (2.77)

The following are listed below for each of these densities:

"* Notation for the corresponding distribution,

"• The interval over which the density is nonzero (the support), and

"* The mean and variance, if necessary:

1. f, is the normal density, with distribution denoted N(y, a 2 ), with support the real
line, and with mean p and variance or2;

2. f2 is the X2 density with v degrees of freedom, with distribution denoted X2,, with
support the positive reals, and with mean v and variance 2v;

3. f3 is the Beta density, with distribution denoted Beta (Al, A2), with support [0,1],
and with mean A1/(A1 + A2 );

4. f4 is the F density with v, and v2 degrees of freedom, with distribution denoted
F~,, 2 , and with support the positive reals;

5. f5 is the t density with v degrees of freedom, with distribution denoted Ti, with
support the real line, and with mean zero;

6. f6 is the noncentral t density with v degrees of freedom and noncentrality parameter
6, with distribution function denoted Tb(6), and with support the real line.

In addition, we note that if Z - N(A', a.2), then if n is an integer,

E[(Z - p)n] = 0 (2.78)
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for n odd, and

E[(Z - p)"] = (n/2)! 2n/2 (2.79)

for n even.
Let {X,)!' 1 denote a sequence of random variables. We call such a sequence a random

sample. If the Xi are independent and identically distributed, we use the notation iid.
The sample mean and variance are defined as follows:

Definition 2.5.16 (Mean and Variance of a Sample) Let {X,}i 1=j be a random sam-
ple. The sample mean and sample variance are

n

X= _Xi/n (2.80)
i=1

and
n

52 - (X, - X)2/(n - 1), (2.81)

respectively.

If the {X1 } are iid normally distributed, then the following important result holds:

Theorem 2.5.1 (Distribution of the Mean and Variance of a Normal Sample)
Assume {Xi.l are iid N(/so'). The sample mean and variance, X and S2 respectively,
are independent,

N (i, a2X/n),

and (n- 1)S2 2
a 7-~ Xn-2"

The following lemmas relate some of the random variables whose distributions were
defined above. These results are important, and the proofs are omitted here. In a more
leisurely presentation, many of these 'results' would be used as defining the corresponding
random variables, and the distributions would be derived from those definitions.

Lemma 2.5.1 (Sums of Normal Random Variables) If X ~ N(jI1 ,2 ) and Y
N(p 2, Or), where X and Y are independent, and a,b E 1Z are arbitrary constants, then

aX + bY - N(ap, + b/12, a2a, + b2o'•).

and
aX + b - N(aisi + b, a2 or).

Lemma 2.5.2 (Sums of Squares of Normal Random Variables) If {Xj)'=. are iid
N(O, 1), then

n Sx?~
i=1

Lemma 2.5.3 (Sums and Quotients ofx 2 Random Variables) Let X _ X2 and
Y where X and Y are independent. Define the three random variables Z1  X+Y,
Z2 -X/(X + Y), and Z3 - (X/uv)/(Y/v 2 ). Then
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1. Z, and Z2 are independent,
2

2. Z1 " XVI +02,

3. Z2 - Beta (vl /2, V2 /2), and

4. Z3 ~ F.q,02.

Lemma 2.5.4 (Student's t Distribution) If Z N(O, 1) and Y x• , where Z and
Y are independent, then

and

It is customary to use capitals for ranidom variables and Greek letters for parameter values.
There are exceptions often due to ancient conventions.

2.5.6 Some Limit Theorems

Two important limit theorems concerning the behavior of the average X of n iid random
variables X 1 ,X 2 ,... ,Xn are the Law of Large Numbers and the Central Limit Theorem.
In order to state these, we need to define two forms of convergence for a sequence of
random variables.

Definition 2.5.17 (Convergence in Probability) Let {Xn} be a sequence of random
variables. We say that {Xn} converges in probability to X if for every c > 0

P(IXn - X1 > 0) -- 0

as n -- oo, and we write Xn P X. X can be either a constant or a random variable.

Definition 2.5.18 (Convergence in Distribution) If X is a random variable with
distribution Fx(x), and if {X,,} is a sequence of random variables with distributions

{Fx,(Xn)}, then we say that Xn converges in distribution to X, and we write Fx. -

FX, if for all points of continuity x of Fx(x)

lira FXn(X)= Fx(z).
n-co

The Law of Large Numbers states that the average of itd random variables with finite
mean converges in probability to that mean; in other words, that expectation has been
properly defined to model long run averages.

Theorem 2.5.2 (Law of Large Numbers) Let {Xi} be a sequence of iid random vari-
ables with mean pu, and let Xn be given by

i=1

Then Xn P i.
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If the variance is finite, then the Central Limit Theorem tells us more, i.e. that Xn is
approximately normally distributed with mean p and variance a 2/n.

Theorem 2.5.3 (Central Limit Theorem) Let {X,) be a sequence of aid random vari-
ables with mean p and variance a 2 < oo. Then

-,/'- ( ) +N(O, 1).

We can now immediately derive several important results involving some of the dis-
tributions introduced in the previous subsection:

Lemma 2.5.5 Let An ' Xn, and let T, and Tn(6) denote Student t random variables.
Then,

An = n + vr2-nUn

where Un, V- N(0, 1) as n -- oo. Also, as n ---, oo, we have the following:

1. An/n 0 1,

2. T", V+ N(0, 1), and

3. Tn (6) -'* N (ý,1).

2.6 A Decision-Theoretic Approach to Estimation and Hy-
pothesis Testing

Statistical decision theory, a theory of decision making in the presence of uncertainty,
extends and unifies much of classical statistical inference. Statistical decision theory was
first studied extensively by Abraham Wald in the 1940's. Two useful texts which were

consulted in the preparation of this section are Chernoff and Moses (1957) and Berger
(1985).

In the present section, after introducing some of the ideas of statistical decision theory
we show how the classical statistical problems of estimation and hypothesis testing, which
will concern us in this thesis, can be regarded as special cases of this general theory.

Finally, we will illustrate each of these two classes of problems with an example.

2.6.1 Decision-Making Under Uncertainty

A simple decision-making problem under uncertainty can be modeled as follows. Given
a set A of possible actions a E A, a choice of action, or decision, has to be made. The
consequence of this decision depends on the unknown state of nature 0 E 0. Thus, for
each action a and state 0, there is a consequence (which may depend in part on chance).

For any individual whose preferences satisfy some modest assumptions, consequences
can be represented by a real valued utility measure which has the following properties

(e.g., Chernoff anid Moses, 1957, Chapter 4):

1. The higher utility goes to the preferred consequence
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2. If the consequences have random components, then the utility for a random situation
can be evaluated as the mathematical expectation of the corresponding utilities, even
though we are not involved in a long run average situation.

Because statisticians prefer to measure how much they lose because of ignorance, it is
conventional to use losses in place of utilities, where we can define loss as negative utility.
Thus the consequences can be represented by a loss function L(8,a). Now we are in the
position of having a game of a statistician with nature. Nature picks 0 E 0, and the
statistician in ignorance of 0 picks a E A. The game (in normal form) is represented
by L(O,a). By performing an experiment, the statistician has an opportunity to obtain
information about the state of nature. Unfortunately, most experiments are less than fully
informative; they do not tell us 0, but rather they provide data in the form of a random
variable X which takes on values in X, the distribution of which depends on the state.
The help that we get from the data depends on the extent to which the distribution of
the data depends on 0. Having observed the data, the statistician must incorporate that
information in his decision making. He does so by selecting his action as a function of
X. Thus we have the decision function 6 : X --- , A or 6(X) = A, where the resulting
action A is ordinarily random, since it depends on the data X. Occasionally we will
use the terminology of game theory and refer to a decision function as a strategy. The
consequence of using 6 when the state of nature is 0 is measured by the expected loss as
a function of 0, called the risk:

R(0,6) - Ee[L(O,A)] = EeIL(O,6(X))], (2.82)

where the subscript represents expectation with respect to the distribution of X, when 0
is the state of nature.

By introducing the experiment we have changed our relatively simple problem into a
more complicated looking problem of the same form: where the statistician chooses the
decision function while nature still chooses the state. However, we have lost nothing and
possibly gained something, because among our decision functions are those which ignore
the data. Typically, with informative experiments, we can do better than before.

2.6.2 Admissibility and Bayes Risk

Let X be a random variable, with distribution function Fx(x;O). On the basis of X,
we choose an action by means of the decision function 6 : AX -* A. We would like to
choose a 6 which makes R(O, 6) small for all 0 E G. Of course, we may have two decision
functions 6b and 62, for which R(0,61 ) < R(0,62 ) for some values of 0, but for which
R(0,61 ) > R(0,6 2) for some other values of 0. In this case, we cannot say which of 6b
and 62 is preferable on the basis of R(0,6) alone. However, if R(6,61 ) < R(0,62 ) for all
0, then 61 is clearly preferable. A decision function 6. dominates a decision function 6
if R(0,6.) !_ R(0,6 for all 0 and R(0,6.) < R(0,6) for some 0. A decision function is
inadmissible if it is dominated by some other strategy, and admissible otherwise.

It is natural for an optimizer to insist that we select only admissible strategies, but
that rarely solves the dilemma of how to select a decision function. Occasionally, however,
we do have a situation where a certain type of problem recurs frequently, and through
past experience we learn that the 8 values behave like random variables with a known
probability distribution fl(0); for simplicity of presentation we will take 0 to be continuous,
with density 7r(0). In those cases we can evaluate our decision function by minimizing the
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Bayes Risk

r(6) = E{Ee[L(0,6)]} = JE,[L(O,6)]r(O)dO. (2.83)

A decision function which minimizes the Bayes risk is called a Bayes strategy.
Two facts concerning Bayes strategies are of particular importance. The first of these is

a theorem which states that under suitable regularity conditions every admissible strategy
is a Bayes strategy or a limit of Bayes strategies. The second asserts that it is often
relatively easy to find a Bayes strategy by using the data X to replace the prior distribution
7r by a posterior distribution

7r-(O) (8Vfx(X;8) (2.84)f fX (X; 0)7r(0)d0'(.4

where fx (x; 0) is the density of X. Then we select A = b(X) as a value a which minimizes
the posterior risk, conditional on the data X,

E'[L(O, a)] = I L(9, a)ir(O)dO, (2.85)

where 0 is a random variable with posterior distribution 7r*. Here X is present implicitly,
since 7r*(9) depends on X.

2.6.3 Philosophies of Inference

The data X may have reduced uncertainty due to the unknown state of nature, but it
is seldom the case that there exists a decision function 6(X) which dominates all others.
There are two primary (and several secondary) schools of thought on how to select 'good'
decision functions when such a selection cannot be done on the basis of R(O, 6) alone: the
frequentist and Bayesian philosophies of inference.

The term 'frequentist' is a misnomer. It suggests the use of long run average which
is not relevant. A distinction between the two schools is, rather, that the frequentist
tries to be objective while the Bayesian is subjective. There is a theorem, very much like
the theorem that gives rise to utility, that states that if a decision maker acts coherently
on related problems, he must be acting as though he has a prior probability (Ferguson,
1967, pp. 17-22). Using conditional probability, we can show how this prior changes with
additional information, but this theorem does not say where the prior comes from. A
weakness of the Bayesian philosophy is that when we replace our vague feelings about
the prior by some approximation, that approximation may carry more information than
we really feel we have. The solution based on the approximation may be far from an
approximation to the solution, and there is a resulting lack of robustness. The fact that
Bayesians are subjective is also perceived by many to be a weakness. On the other
hand, frequentists try to find a procedure which will not do poorly no matter what the
true state of nature. A shortcoming of this approach is that whatever criterion that a
frequentist might suggest, it will either be equivalent to a Bayesian criterion, or else it will
lead to paradoxes because of the theorem on coherent decision making. If the criterion is
equivalent to a Bayesian one, then the prior is likely to have been chosen for matherratical
convenience, and it might not be a reasonable reflection of prior experience.
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2.6.4 Estimation

In problems of statistical inference, functions of the observed data X are usually called
statistics, and the state of nature 0 is called a parameter in a parameter space 0. Two
broad classes of statistical problems are problems of estimation and hypothesis testing,
and we briefly consider estimation next.

A decision problem for which knowledge of 0 would suggest that the best action to
take is g(0) is called an estimation problem, and the corresponding decision function is
called an estimator. Typically, for such a problem the loss will depend on how close a
is to 9(8). Ordinarily a smooth loss function can then be approximated by squared-error
loss, i.e.,

L(O,a) = (a - 9(9))2, (2.86)

In those cases we want a decision function b for which the mean square error

R(0,b) = E#[(b(X) - g(0))2] (2.87)

is small. Let the expected value of an estimator 6(X) be denoted pA(0). Then the risk
R(0,b) can be written as a sum of two terms

R(O,b) = Ee[(6(X) - 16(g)) 2] + [g(0) - p6(9)]2. (2.88)

The first term in (2.88) is the variance of the estimator 6(X), and the second term is the
square of the bias of 6(X).

Admissibility does not do much to help reduce the class of available estimators in this
case. To see this, let bo = 00, for any value 80 of 0, and note that, for the loss (2.86),
R(80 ,bo) = 0. Although bo makes no use of the data X, it is at least as good as any
decision function when the true parameter is 00.

For the Bayesian, the Bayes strategy for squared-error loss would be the mean of the
posterior distribution of g(O). A non-Bayesian can eliminate ridiculous strategies such
as the guess 0 = 0o above by restricting the class of decision functions to be considered.
Often this is done by restricting consideration to unbiased estimators. An estimator 6 is
an unbiased estimator of g(6) if

Ee[b(X)] = g(O) (2.89)

for all 0.
Among unbiased estimators for a particular estimation problem, one can often deter-

mine an estimator 5u(X) which minimizes the risk (2.88). Since squared-error loss for an
unbiased estimator is the same as variance, we call such a 5u(X) a minimum variance
unbiased estimator.

2.6.5 Hypothesis Testing

A decision problem with only two actions is called a hypothesis testing problem for reasons
that will become clear shortly. We can divide up the class 0 of states of nature into two
sets: one set, 00, for which one of the actions, say ao, is the best action, and another set,

01 = ( - 00, for which the other action, say a,, is the best action. Thus, we can identify
ao with accepting the hypothesis

Ho : 0 E Go, (2.90)

and a, with accepting the alternative hypothesis

H1 : 6 E 01. (2.91)
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Any decision function 6 consists of dividing up the set X of possible observations into two
subsets: U0 and U, = X - U0. Observations in Uo lead to accepting Ho, and observations
in U1 lead to accepting H1. The risk R(9,b) depends on both the cost of making the
wrong decision and on the probability of making the wrong decision, when 8 is the state
of nature. For example, if we associate a loss of zero with a correct decision, then

R(O,6) = L(O,ai)Pe(X E Ui) for 0 E 00, (2.92)

R(O,6) = L(O,ao)Po(X E Uo) for O E 0 1.

Historically, the theory of hypothesis testing developed slowly in several stages, before
the introduction of decision theory. In the first stage of significance testing, the formulation
was incomplete and no attention was paid to the alternative hypothesis nor to the cost
of making the wrong decision. Typically one wished to establish that some treatment
had an effect. A null hypothesis Ho would be formulated to state that the treatment
had no effect. (The action in the real world corresponding to rejecting the hypothesis
that there is no effect would be to continue research in that direction or to decide tv
apply the treatment. Accepting the hypothesis would presumably lead to giving up on
the treatment.) A statistic T would be introduced which would measure how inconsistent
the data are with the null hypothesis, and would lead to rejection if T were large enough.

For example, assume that our experiment consists of n jid observations X1,X 2,...,Xn
from a N(p,a2) distribution where U2 is known, and that our null hypothesis is

H0 : M = 0. (2.93)

A reasonable statistic to use in assessing evidence against Ho appears to be the absolute
value of the sample mean, lXI, since lxi estimates Itil, and so large values of lxi suggest
that the data are inconsistent with H0. We propose the test 'reject H0 if

T = IXI > 1.96c/vr'i'. (2.94)

The probability of rejecting the null hypothesis when the null hypothesis is true is called
the significance level or the size of a hypothesis test, and usually denoted a. For our
example, the constant 1.96 was chosen so that a -* .05. It is important to choose a
significance level before examining the data. A measure of the consistency of the data
with a null hypothesis is the P-value, which is the smallest significance level for which the
null hypothesis can be rejected. Thus, a test statistic which would yield a P-value of less
than .05 would be regarded as significant at the .05 level and lead to rejection if a .05 level
test were used. In this case a P-value of .0001 would be regarded as highly significant,
and would be of interest to the statistician who isn't completely bound by formalism, but
in principle it would lead to the same conclusion as a P-value of .0499.

When a test is of the form 'reject Ho if T > k', k is sometime.s called a critical value.
Traditionally k is a constant, although we will consider situations in which k is a function
of the data, and we will approximate the functional form of this statistic k, in order to
acheive certain as yet unspecified aims, by attempting to solve an integral equation.

The above example problem becomes more complicated if, as is common in real ap-
plications, a is unknown.

Then a particular test of the form 'reject H0 if T > 1.645ao0/v/n', where ao is some
constant, has the undesirable result that the probability of rejecting the hypothesis de-
pends on the nuisance parameter a, which is not of major interest in itself. In fact the
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probability of rejecting the hypothesis H0 : X - N(O,a 2), with unknown positive c,
varies from 0 to 1 as ar varies over the interval (0,oo). This problem was resolved by W.
S. Gossett, using the pseudonym 'Student', who suggested the use of the test procedure:
'reject HO if

T I k'. (2.95)

Here k is a constant critical value, and the denominator is an estimate of a/v,/'i. The test
(2.95) resembles the previous test (2.94), with the known standard deviation replaced by
its estimate. When Ho is true, the probability of falsely rejecting H0 is determined from
Student's-t distribution, and depends only on the choice of k and n - 1; it is independent
of the nuisance parameter. Test procedures for which the probability of rejection when
the hypothesis is true does not depend on the nuisance parameter are called similar.

A later stage in the development of the theory of hypothesis testing came out of the
realization that the significance theory did not give any formal suggestions for selecting
one test statistic over another. Neyman and Pearson introduced the notion of alternative
hypotheses. They formulated the problem of minimizing the probability of accepting the
hypothesis when it is false, given the size or significance level of the test. Then the above
problem could be stated as one where we observe iid observations which are N(p, or2 ),

where 0 = (p, a) and it is desired to test

H:0 Oeo = {0p = 0,0 <o < o} (2.96)

against the alternative

HI :O E O1 = {O u: 0,0 < a < oo}. (2.97)

Here, one is interested in the power function which measures the probability of rejecting
the hypothesis for all possible values of 0. In our example above the power function of
the t-test suggested depends only on k, n, and the noncentrality parameter b = v'nilp/,.
To see this, note that (2.95) can be written as

x
T = I (2.98)

S/a

IZ+b6

where 6b= ViI/a', Z N(0, 1), (n - 1)y 2 _ X2_1, and y2 (hence Y) is independent
of Z. Therefore, T is distributed as the absolute value of a noncentral-t random variable,
with (n - 1) degrees of freedom and noncentrality parameter 161.

In general, for composite hypotheses, the size of a test is
a = sup Pe ( Reject Ho). (2.99)

0E80

The Student t test, described in (2.95), can be shown to be optimal among size a tests
for which the power is symmetric in the parameter /&.

This theory fails to give formal consideration to the cost of incorrect decisions, but
there was always some sort of inf6rmal attention paid to cost, in order to rationalize
the selection of good significance levels of the test procedures. It is implicit in that the
Neyman-Pearson theory tends to treat the two hypotheses asymmetrically.
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2.6.6 Confidence Intervals

So far the theory of estimation, as expressed above, does not pay much attention to how
reliable the estimates are. Ordinarily, the statistician or scientist wants to know, for
his real decision making, which depends only in part on his estimate, how reliable this
estimate is. Traditionally, one accompanies an estimate of g(O) with an estimate of how
variable that estimate is. Philosophically this puts us in a problem of estimating the
variance of the estimate of the variance of the ... of the estimate. That problem can be
resolved by the use of confidence intervals or regions.

A confidence interval, or more generally, a confidence region, is a random set which
contains the true value of a (scalar or vector) parameter with at least a specified proba-
bility, or confidence. Let U(X) be a subset of the parameter space 0 which depends on
the data X. If, for all 0 E 0

Po[g(8) E U(X)] _2 -Y, (2.100)

where the probability is determined from the distribution Fx(x;O) of the data, then the
region U(X) is called a confidence region for g(9) of confidence at least -y.

For example, if Xi "- N(p,a 2 ) for i = 1,...,n, 0 = (p, o2), and X and S2 are the
sample mean and variance, then

T = /" "T-,(2.101)

where t,,-, denotes the Student-t distribution with n - 1 degrees of freedom, and hence,
for all p

Po[X - tn-,(a/2)S/Vr _: p :_ X + tn_ 1(a/2)S/v'I = y, (2.102)

where a = I - y and P(T > tn.l(.a/2)) = a/2. The random interval

r : (X - tin_,(a/2)S/v'f, X + t,_l 1(a/2)S/x/n) (2.103)

contains p with probability -y, and we say that r is a 100-1% confidence interval for p. To
be more specific, F is a two-sided interval; we can also construct one-sided intervals if we
are interested only in a lower, or upper, confidence limit on p.

A hypothesis under which the parameter equals a specific point in the parameter
space is called a simple hypothesis; the complementary situation is called a composite
hypothesis. There is a one-to-one relationship between simple hypotheses and confidence
intervals: given a confidence interval of confidence 1 - a for 0o the test 'reject H0 : 0 = 0o
if 0o is not in this confidence interval' is a hypothesis test of size a.

Actually, there can be a one-to-one relationship between confidence intervals and hy-
pothesis tests even when the null hypothesis is composite, and the confidence interval
(2.103) provides one such example. The interval (2.103) corresponds to the composite
null hypothesis

H0 : {(,al2 ) :p = P0,0 < o.2 < oo} (2.104)

together with the composite alternative

H1 : {(p, a2 ) : 1p p0,0 < o2 < oc). (2.105)

A test of H0 with alternative H1 of size a is provided by the criterion 'reject H0 if (2.103)
does not contain p0'. The reason why the interval (2.103) corresponds to a hypothesis
test is that the relevant test statistic does not depend on the nuisance parameter a2, and
were it not for this parameter H0 would be simple.
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2.6.7 Examples of Integral Equations in Estimation and Hypothesis
Testing

In this subsection, we provide examples of problems in %ahSiascd -,timation and hypothesis
testing which give rise to integral equations of the first kind. The first example is a problem
of unbiased estimation chosen because it is simple and because it illustrates an iterative
algorithm which we will discuss in later chapters. The hypothesis testing example provides
a preview of the Behrens-Fisher problem, to be pre-,."te1i in much more detail in Chapter
5.

Determining an Unbiased Estimator

Let X be a random variable with probability density

fAX; 0) = 0 for x > 0 (2.106)

0 for x < .

We will determine an unbiased estimator of 02, that is, a function h(X) such that

Eo[h(X)] = j h(x)f(x; O)dx = 02. (2.107)

If such an estimator exists, it can be shown to be the unique minimum variance unbiased
estimator of 02.

We will solve this problem by employing an iterative algorithm which is a special case
of the method to be considered in later chapters. Given an approximation h'(X) to h(X),
we define hn+l(X) to be

h n+1 (x) - h (x) + [02 - j hn(y)f(y;O)dy , (2.108)

where once the function of 0 in the square brackets is calculated, 0 is to be replaced with
X.

Let h°(x) = 0. We can easily calculate the first two moments of X,

E9(X) = 0 + 1, (2.109)

and

Eo(X 2 ) = 02 + 20 + 2, (2.110)

and use these moments to show that

h°(x) = 0, (2.111)

h'(x) = x2,

h2 (x) = X2 -2x-2, ard

h (X) = X2-2x,

for n > 2. The random variable h(X) = X 2 -2X is the unbiased estimator; the algorithm
converged to the exact solution in three iterations.
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The Behrens-Fisher Problem

Let Xli - 1,...,n 1 and X 2 , i = 1,...,n 2 denote random samples from normal popu-
lations with means and variances (Pl,a2) and (p 2,a2), respectively, and let the sample
means and variances be Xi and S?, for j = 1,2.

Consider the problem of testing the composite null hypothesis

HO :l = P2 (2.112)

against the alternative
H1 : Pl > P2. (2.113)

If the variance ratio, r = la2, is known then since

D -- - -2 ` N(pl - P2,a 2//nl + a2//n2), (2.114)

and D is independent of the estimate of a = ra2

=(n, h 1)S + r(n 2 - 1S22ni + n2 - 2 '(.15

which is proportional to a X~,+n 2_2 random variable, we have that

D -(p 2) Tn+n2-2 (2.116)

+ (r+2)-1 ]K

Thus, a simple extension of the student-t hypothesis test, discussed in Section 2.6.5 for
a single sample situation, provides an effective means of performing hypothesis tests and
obtaining confidence intervals for this two-sample case where r is known.

The situation where the variance ratio is unknown is usually referred to as the Behrens-
Fisher problem. This problem, the main topic of Chapter 5, has been controversial and
important to the theory of statistics.

A natural test statistic to consider for the Behrens-Fisher problem is

U -- X (2.117)
S2

where the null hypothesis is rejected when U is observed to be greater than a critical
value, which is a function of the data to be determined. We will allow the critical value
of this test statistic to depend, in an unspecified way, on the sample variances.

We would like the size of this hypothesis test to not depend on the nuisance parameter
r, or equivalently, on

0 a,/n,-- '/ " (2.118)

A sample estimate of this parameter is the statistic

R s n, + (2.119)

We pose the following mathematical problem: determine a function, d, of the random
variable R so that, given that the null hypothesis is true,

P(U > d(R)IO) = a, (2.120)
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for all 0. A function d(R) satisfying (2.120) would provide a critical value statistic for a
similar test of the hypothesis (2.112) against the alternative (2.113) of size a.

This function d, if indeed it exists, will be shown in Chapter 5 to be a solution of the
following nonlinear integral equation:

ELq/2,v/2 {T-I+L- 2 [d(W ),vT v ~ + 3= I - a, (2.121)

where v, _= nj - 1; the expectation is with respect to X, a Beta random variable with
parameters vi/2 :Lnd V2/2; T,,(.) denotes the t distribution with ij degrees of freedom; and
W denotes the random variable

XO/v(
W = XO/Ve + (1 - X)(1 - 0)/v 2  (2.122)
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Chapter 3

Richardson's Algorithm,
Preconditioning, and Iterative
Regularization

3.1 Richardson's Algorithm

Let K : L2[0, 1] --+ L 2[0, 1] be compact. Consider the linear equation of the first kind

Kf =.g, (3.1)

where f and g are in L2, and g is a known function. Define the iteration

fn+1 = fn + OD(g - Kf"), for n = 0, 1,2,..., (3.2)

where 0 is a positive constant, fo : L2 --* L2 is arbitrary, and D is a known invertible
linear operator with a bounded inverse. This is the iterative algorithm which will concern
us for most of this chapter. When D = I, the identity operator, (3.2) is Richardson's
algorithm,

fn+I = fn + O(g - Kfr), for n = 0,1,2,..., (3.3)

proposed by Richardson (1910) for the iterative solution of sparse linear systems. We
would like to choose D to accelerate convergence to a vector f such that BKf - gi is
sufficiently small, a practice known as preconditioning, where D will be referred to as the
preconditioning operator.

The plan of this chapter is as follows. We consider first the behavior of (3.3) in various
situations. Except for a literature review, we do not consider the convergence of this
algorithm to a solution in L2. Since we are ultimately interested in solving discretizations
of integral equations on a computer, we are more interested in singular, and possibly
inconsistent, matrix equations than in functional equations, and we are more interested in
how close this algorithm comes to a smooth near-solution in a few dozen iterations than
in ultimate convergence to a solution. We introduced the concept of a near-solution in
Chapter 1. Having established some elementary ideas of functional analysis in Chapter
2, we can now be more specific. We will say that a function f is a near-solution to an
equation Kf = g if

JKf- gi < rlgl, (3.4)
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where the constant r is application dependent. A choice of r corresponds to a decision
concerning what is considered to be a 'small' residual.

Next, we consider the choice of a preconditioning operator, and our interest shifts to
(3.2). A particular choice of D leads t the Conditional Ezpcctation algorithm, which is
motivated in several ways and illustrated on various examples. We will demonstrate that
the Conditional Expectation algorithm can quickly lead to near-solutions.

If K is an integral operator with a smooth kernel, than (3.3) will tend to produce
smooth approximate solutions. There is regularization implicit in the iteration, and,
following the discussion of convergence theory and preconditioning, we present the idea

of iterative regularization.

This chapter concludes with the discussion of examples; details of the numerical im-
plementation of the algorithms are provided in Appendix A.

3.1.1 Convergence of the Richardson and Landweber Algorithms in L2

Proofs of the convergence of (3.3), under various conditions on the operator K, appear in
the literature, which we briefly review here. For more information, a good place to start

is Patterson (1974) and the references there.
If the operator K is positive and compact, then it is necessarily self-adjoint and it

has a denumerable set of nonnegative eigenvalues. Moreover, IIKI = A1 , where A1 is the
largest eigenvalue of K. If K is only assumed to be compact, then KAK is positive and
compact. It is not difficult to show (Patterson, 1974, p. 7) that if (3.1) is solvable, then

it has the same solutions as
K*Kf = K'g. (3.5)

Landweber (1951) considered the iteration

fn+1 = fn + OKg(g - Kfn) (3.6)

where 0 < 0 < 2/A\, and proved convergence for a Fredholm integral operator having a

continuous, real kernel. If a solution exists, then (3.6) converges to a solution, otherwise
this iteration converges to a function which minimizes Ig - Kf 11. If K is positive and
compact, then Landweber has also (trivially) proved convergence of Richardson's algo-
rithm (3.3) for 0 < 0 < 2/A 1, although he did not comment on this fact. Bialy (1959, see
also Patterson, 1974, pp. 33-41) generalized Landweber's results to K bounded, but not
necessarily compact.

3.1.2 Richardson's Algorithm for Matrix Equations

Usually, the iterations of Richardson's and Landweber's algorithms cannot be performed
analytically. Instead one discretizes an integral equation in order to obtain an approximat-
ing matrix equation. The discretization schemes used in this thesis for integral equations
of the first kind are described in Appendix A.

We therefore consider in this section Richardson's algorithm (3.3) applied to the matrix
equation Kf = g, where K is square and possibly singular, and g is not necessarily in the
range of K; i.e. the equation might be inconsistent.

We are interested in matrix equations which are approximations to ill-posed integral
equations, so situations where K is §ingular and/or the matrix equation is inconsistent are
particularly important. The L2 convergence theory reviewed in the previous subsection
is of little use here. Indeed, for reasons discussed in Section 2.4.2, we are less interested
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in 'solving' the equation than in finding a smooth 'near-solution': hence, an algorithm
which ultimately diverges might still be of considerable use if it quickly leads to such a
near-solution, at which point the iteration can be terminated.

Some Notation and a Preliminary Lemma

Let K be an m x m matrix of rank q < m. The Jordan form of the matrix K will be
written as

K B-'1 J11 0 2 B (3.7)

) 021(m-slxs N22(m-s)x(,n-.) B2.(m-&)Xm

where J11 is a nonsingular matrix of Jordan blocks, and N22 is a nilpotent matrix of
index t > 1 of Jordan blocks corresponding to a zero eigenvalue. The dimensions of the
submatrices are as indicated, and s < q. Either the row or the column dimension of each
block in the partitioned matrices B and B-1 is equal to m; the dot indicates which. Also,
the use of superscripts and subscripts on these blocks is intended to aid in identifying, at
a glance, that a product such as B"'B1 . is conformable.

We will also make use of the partitioned identity matrix

l.ýXm =[ IIn3X3 O,2ax(m-.) (3.8)
021(m-s)xs I22(m-3)x(M-a) (

Since BB-' = B-'B = I, we have the identities

B"'B1. + B'2 B 2. = I, (3.9)

B 1.B*' = 1,1,
BI.B'= 012,

B2.Bl= 021, and

B 2.B"2 = 122.

We will use the above notation and identities in the following lemma. The various parts
of this lemma are either well known, or else follow directly from well known results in
texts such as Campbell and Meyer (1979).

Lemma 3.1.1 Let K be an m x m square matrix of index t > 0 with Jordan form (3.7).
Let V =_ B Bi.. Then

a) V and I - V are projections onto RZ(V) and R (I - V), respectively,

b) V(I - V) = (I- V)V = 0,

c) x = Vx + (I - V)x is the unique decomposition x = x1 + X2 for which xi E JZ(V)
and x2 E 1(I - V), and

d)
-R%(.) = AJ(I - V) = ru(B') = A!(B 2 .) = 1-(K t ), and (3.10)

IZ(I - V) = A'(V) = AJ(B 1.) = IZ(B"2) = A(K'). (3.11)
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Proof: (a) Since
V2 = B 1 (BI.B')BI. = B'IlIB1 . = V (3.12)

and
(I- v) 2 =I+ V2 -2V = I+ V-2V =/- V, (3.13)

both V and I - V axe idempotent, and hence projection matrices. We say that V projects

onto 'R(V) along A"(V), and that I- V projects onto At(V) along TZ(V). Note that these

projections are in general not orthogonal.
(b) This follows immediately from (a):

V(I- V) =V V 2 = V - V = 0; (3.14)

similarly (I - V)V = 0.
(c) Of course, x = Vx + (I - V)x is one such decomposition. Let x = x, + X2, where

Xi E IZ(V) and X2 E 1(I - V). Then there exist vectors y, and Y2 such that x, = Vy1
and X2 =(I- V)y 2. So

Vx = V 2y1 + V(I - V)y 2 = Vy1 = x 1 , (3.15)

and
(I - V)X = (I - V)Vy1  + (I - V) 2 Y2 = (I - V)y 2 = z2 , (3.16)

where we have made use of (a) and (b). Therefore, the decomposition is unique.

(d) We note first that

Kt- B-1 B.2  i 0 012 1 [ B1.]- B1 J1'B1 ., (3.17)

since N22 = 0 by the definition of the index t.
If x E 1Z(K'), then there exists a y such that

x = K'y = B'(J'1 Bl.y) - Baz, (3.18)

for some vector z, so JZ(K') C 7Z(B'). Now let x E TZ(B"), so that

x = B1 y = B'1 (J 1 B1.B'1J-')y - J 1B 1 .z = K'z, (3.19)

so PZ(B"') C TZ(K'), and hence 1(B') = "Z(K').

Obviously,
Af(B 1.) C Af( B' J' 1B1.) = )f(K'). (3.20)

Let x E AK(K'). Then,

K'z = B*'J'1 B l .x = 0 =:,. J7'(Bi.B')J'1 B:.x = BI.z = 0, (3.21)

so K(K') C A((B1.), and hence AF(B 1.) = .A(K').
We show next that JZ(V) = AP(I - V) and 1Z(I - V) = Af(V). Assume that z E

1Z(I - V). Then, using (b),

x = (I- V)y = x = V(I- V)y = 0 * x E.N(V). (3.22)

Conversely, if x E .K(V) then

Vx = 0 =>z - Vx = (I- V)z = z => x E 1Z(I- V). (3.23)
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Therefore, R(I - V) = Af(V).
Similarly, assume that x E I(V). Then

x = Vy =: (I- V)x = (I- V)Vy= 0 = x E Ar(I- V). (3.24)

If x E A/r(I - V), then

(I- V)x = 0 =- x = VZ z E 7IZ(V). (3.25)

Therefore, 1Z(V) = Ar(I - V).
Now we show that P?(V) = 7Z(B`) and P.(V) = P.(Bi.). The first of these follows

from
Y E IZ(V) =o y = Vx = B*'B l .Z =- B 1 z =* Y E 7•(B') (3.26)

and

y E IZ(B 1 ) =* y = B'x #- y = B'(Bi.B')x = (B'Bj.)B'x M Vz => Y E IZ(V). (3.27)

The identity A'(V) = Ar(B,.) follows similarly from

x E AP.(V) => Vz = B'B 1 .x = 0 => (BI.B')BI.x = B,.x = 0 => x E Ar(B 1.) (3.28)

and
x E ,N(B1 .) => B1 .x = 0 =: B'B 1 .x = Vx = 0 * x E AP'(V). (3.29)

We complete the proof of this lemma by showing that A'(B2.) = AP'(I - V) and
-Z(B" 2) = -Z(I- V). Since I-V = B' 2 B2., we have immediately that AP'(B 2.) C P.A(I-V).
If Z E 1*(I1- V), then

(I - V)x = B'"B2.x = 0 => (B 2.B'2)B 2.X = B 2.X = 0, (3.30)

and so A/.(I - V) C A/.(B 2.), and hence Af(B 2.) = A/r(I - V). Finally, if x E R(I - V),
then

x = (I - V)y = B'2 B2.y = B 2z, (3.31)

so IZ(I - V) C IZ(B' 2). Conversely, if z E 1Z(B'2), then

S= B'2 = B'2 (B 2 .B'2 )y = (I - V)(B 2p) (I - V)z, (3.32)

therefore IZ(B"2) C 7Z(1 - V), so 7Z(B"2 ) = 7Z(f - V). I

Convergence of Richardson's Algorithm for Nonsingular Matrix Equations

Convergence of Richardson's algorithm (3.3) to the unique solution f = K-g of the
equation Kf = g where K is nonsingular depends on the spectral radius of the iteration
matrix

G = I - OK. (3.33)

To see this, let Kf = g and note that (3.3) leads to

(f _ f') = (f _ fn-1) - OK(f - fn-1) = G(f _ f n-1). (3.34)

and hence, if we let
un = f - f", (3.35)
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then
u= G u. (3.36)

If p(G) < 1, then by Theorem 2.2.2, G" -_ 0, so un -- 0 for all initial approximations fo
and all right hand sides g. If p(G) _> 1, then Gk 74 0. So, by the definition of a convergent
matrix, there must exist vectors u° for which un = Gnu° 7-, 0, hence there exist initial
vectors fo such that fn 74 f. We have established the following theorem:

Theorem 3.1.1 (Convergence for The Nonsingular Case) Let f = K-'g. A nec-
essary and sufficient condition for the iteration (3.3) to converge to f for all fo is that
p(I - OK) < 1.

If K is positive definite then, because of the spectral theorem (Theorem 2.1.1), the
behavior of Richardson's algorithm is particularly transparent. Let K be m x m and
positive definite, with eigenvalues

Al _> A2 >...>Am > 0, (3.37)

and corresponding orthonormal eigenvectors {vj}i!n. The condition p(I - OK) < I trans-
lates to

- < 1- OAI<...< 1-OA•m < 1, (3.38)

and we have
0 < 0 < 2/A1  (3.39)

as the necessary and sufficient condition for convergence for arbitrary fo. The solution f,
the right hand side g, and the iterates f71 can be expressed in terms of these eigenvectors
as, say,

m

f = Z•,vi, (3.40)

m

g hivi, and (3.41)
i=1

m

f = ZC!v,. (3.42)
i=1

Because of the orthonormality of the {vi}, the Richardson iteration (3.3), in the form
(3.34), leads to the following expression for the coefficients {c'}:

c1 - c' = (1 - OA)')(c, - -°) (3.43)

for i = 1,... ,m and n > 0. If the condition (3.39) holds, then, for each i,

.ir cO c,, (3.44)

so f" -. f. Note that since f =g,

= ��Aiv,vcjv, -3 -•cv, (3.45)
i=1 j=1 t=1

implies that
ci = hi/A•. (3.46)

for i =1,...,m.
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Convergence of Richardson's Algorithm for Singular Matrix Equations

We come now to the central results of this section. What if the square matrix K in the
equation Kf = g is singular, so that this equation has either zero or else infinitely many
solutions? We consider in this subsection conditions under which Richardson's algorithm
applied to a singular matrix equation converges to a solution; a necessary condition for
this is that g E 1Z(K). The geometry underlying Lemma 3.1.1 leads directly to the
following sufficient conditions for convergence:

Theorem 3.1.2 (Convergence for The Singular Case) Let K be a square, singular
matrix with index L. Richardson's algorithm (3.3) converges to a solution f of the equation
Kf = g if the following conditions are satisfied:

1. All of the nonzero eigenvalues of the matrix OK are contained in the interior of the
unit circle with center (1,0) in the complex plane,

2. f 0 E 7(i--), and

3. g E R(Kt ),

where we interpret (i(Ko) to mean 1(I).

Proof: Using the notation of Section 3.1.2, note that the index t > 1, and write (3.3) in
the form

n-1

f = (I- OK)"f° + •.(I - GiK)'Og (3.47)

= [.'ff J ('i02J11f U22 - ON22 B2

+ [ B-1 B.2] 2i=0 En- 012 B1.[ 021 i'(I22 - ON 2 2 ). B2.

n-1

= B'(1ll - OJll)nB.fJ" + B"i Z(JI' - OJ,,)'Bh.Og
:=0

n-I

+ B' 2 (12 2 - ON 22 )nB 2.Jf + B-2 EZ(I2 - ON22 )'B 2 .Og
1=0

an + n+a1l +2 +3 +4'

The nonzero eigenvalues of OK "orrespond to the eigenvalues of the nonsingular matrix
[11 -.OJ1 I. If A is any eigenvalue of OKt in the interior of the circle specified in the statement
of the theorem, then I - OA is contained in the interior of the unit circle centered at the
origin, so condition 1) implies that

p(hI - OJ1 I) < 1. (3.48)

Hence, by Theorem 2.2.2,

lira an' = him B'"(IJ, - OJ,,)1BI.f0 = 0 (3.49)

and by Lemma 2.2.3

n-1

iim a' = him B , Z(I' - OJ,,)'B,.Og = B"'J'' B.g. (3.50)
2=0
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Next, assume that fP E 17(K'-'). Then there exists a vector y such that

fo = BJ'-J'B 1 .y + B'2N- 1 B 2.y, (3.51)

and hence, for all n > 0,

a= B 2 (122 - 1N 2 4)B 2 .f 0  (3.52)

B B 2 (12 2 - ON22 )nB 2. (B.'J-LIBi.y + B2N2 j 2 .y)

n B( ) 2( -eN 22 yE 2 . (B1;1i -,+B2N;1B2 .

- (BJ&(B~ +) B2 (-1N2'B 2 .
j=o

n B'2 Nj 1 B 2.y,

where we have used the identities (3.9) and the definition of the index t. Note that a3 is
independent of n. The remaining condition and Lemma 3.1.1 (d) together lead to

g E TZ(K') = A/'(B 2.), (3.53)

therefore the term an of (3.47) is equal to zero for all n.
If the conditions of the theorem are satisfied, then

lim ffn = lim(an + an + an + an) = B'JjjBi.g + B'2 NjlB2.y, (3.54)

for some vector y. We demonstrate that the algorithm leads to convergence to a solution
by evaluating K(lim,-.oo fn):

K (B"J-'B,.g + B'2N2&-B 2.y) (3.55)

"- BJ 1 1 B1 . + B .2 N2 2 B 2 .) (BlJi-uBi.g + B .2N j1B2.Y)

= B 1 J1 1 B1 .B'IJj B1 .g + B 2 N 22B 2.B'2 NA B2 .y

= B 1 J1 IJjjBi.g + B'2N22B 2.y

= B"Bl.g=Vg=g,

where we have used the identities (3.9) and Lemma 3.1.1. Note that the term involving

y of (3.54) depends on fo, and will not be unique since t > 0. 1
Corollary 3.1.1 (Global Convergence) If K is a singular matrix with a diagonaliz-
able nullspace, then conditions 1) and 3) of Theorem 3.1.2 are necessary and sufficient
for Richardson's algorithm (3.3) to converge to a solution for all initial vectors fo (which
is now the content of condition 2)).

Proof: We will use the notation of Theorem 3.1.2. If K has a diagonalizable nullspace,
then t = 1. Conditions 3) and 2) of Theorem 3.1.2 become

g E l,(K') = IZ(K) (3.56)

and
fo E R(K' 1 ) = IZ(I). (3.57)
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Sufficiency thus follows from Theorem 3.1.2 with t = 1.
To prove necessity, first note that if condition 3) is violated, then a solution does

not exist, so Richardson's algorithm cannot converge to a solutira. Next, assume that
condition 3) holds, but that condition 1) does not. Then g E 1?(K), so a solution exists.
We will show that for any g there exist vectors fo for which Richardson's iteration does
not converge.

From Lemma (3.1.1) (d), observe that

IZ(K) = Ar(B 2.), (3.58)

hence B2.g = 0. Using (3.58), together with the hypothesis t = 1, the expression for the
nth iterate (3.47) becomes

n--I

fn = B"(Ih -_J 1,)n B1.10 + B"1 Z(IuI - OJ11 )'BI.Og (3.59)
i=0

+ n0B2. = an + an + n0(I - V)y°.

Since condition 1) does not hold,

p(Iu - 0J11) > 1, (3.60)

and, by Theorem 2.2.2, (I1, -OJl)n 74 0. Hence, there exist vectors fo such that a' 7 0,
as well as vectors fo (for example, fo = 0) for which an does converge to zero.

For any g, either a' converges, or it does not. Assume that an converges. Then choose
any fo E IZ(K) for which al does not converge. To see that such an f1 must exist, begin
by choosing any vector fo for which an does not converge. Such a jo cannot be in A/(B 1 .),
which equals AP(K) by Lemma 3.1.1 (d). Lemma 3.1.1 (c) implies that

fo-= VfO +-(I- e)f°O - f+ AV, (3.61)

and this decomposition is unique. Since

0o A P1(K) = -R(I - V), (3.62)

fR $ 0. Let

fo = fA E IZ(K). (3.63)

But (I - V) projects onto P1(K), hence On(I - V)f° = 0 and

f 1al + a2, (3.64)

where a ' does not converge, but an does. Therefore, fnl does not converge.
Assume that an does not converge. Then let fo = 0, so that

f = a2, (3.65)

which diverges. Conditions 1) and 3) are therefore necessary, and the proof of the corollary

is complete.

55



Inconsistent Equations

An inconsistent equation has no solution. However, if the right hand side of such an
equation is replaced with any projection onto Z(h'), then the equation which results will
have many solutions. Usually, one considers orthogonal projections, but we will find the
generally non-orthogonal projection provided by the matrix V of Lemma 3.1.1 to be more
convenient for our purposes.

Let K be an m x m singular matrix of index i. Let g E C' be an arbitrary vector.
From Lemma 3.1.1 (a-c)

Cm = 7Z(K')EN(K), (3.66)

so we can express g as
g = gR + gN, (3.67)

where, gR E 7Z(K'), and gN E AV(K'). From Lemma 3.1.1, we note that gR and 9N are
uniquely determined by

gR = Vg (3.68)

and
9N = (I - V)g, (3.69)

respectively, where V =_ B 1BI.. We call any vector f such that Kf = Vg a generalized
solution, and we write

Kf 'Tn g. (3.70)

If K is a singular matrix of index t, and if Kf = g is inconsistent, then since

g 0 1Z(K) =:- g 7"Z(K'), (3.71)

we have as a consequence of the proof of Theorem 3.1.2 that {fn} is not expected to
converge. Using the notation of this theorem, we will examine the rate of divergence of
the sequence {fn) for the case where g 0 Il(K) in order to develop some understanding
of how useful Richardson's algorithm can be if gN is small, but nonzero.

From equation (3.47), we have that
f na+a+ an+ a. (3.72)

Assume that p(Ili - 0J11) < 1. Then

lim an = 0, (3.73)
n--*oo

and
lim a1 = BJ 1 J 1 B1.g f, (3.74)

where Kf' gn g, since from (3.55) we see that

Kf = (B-fJ 11B 1. + B 2N22B 2 .)Bi'Jj1 B1.g (3.75)
= B'JxiBi.B'Jj• 1B.g = Vg = gR.

The sequence a, converges to zero at the rate p[(Ill - J11)n]•
The remaining terms an and an do not, in general, have finite limits. If we choose

ft E 'R(K'-L), which we can always do by taking fo = 0, then an is equal to zero for all
n. However, an can increase without bound if gN # 0.
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The maximum rates at which the terms an and a' can go to infinity follow from the
following results:

Tnin(i-1,,n) / \
(I22 - ON22) = 1 ) (-ON 22)i = O(n'-) (3.76)

22 2 ~i=.03.6

and
n-1 m,,n(,-,,n-,)

-, (-ON 22)j = 0(n'), (3.77)
i=O j.=O /

where the order symbol 0(.) is to be interpreted for each element of a matrix. Hence if
fo E IZ(K'-'), we see that

|g - Kfn" IgN + (gR - Kfn)l S 19N1 + I9R - Kfnj O(n)gN. (3.78)

If the iteration is terminated early, gN is sufficiently small, and t is not too large, then
it will often be the case that fn will be a near-solution when the iteration is te. ýrinated:
even though, ultimately, fn -. oo. A similar argument can be made for the case where
f 0 has a small component not in IZ(K'-'). In other words, Richardson's algorithm is
somewhat robust to violation of the requirements that g E IZ(K') and fo E *R(K'-I).
This is reassuring, since for discretizations of integral equations of the first kind 9N is
likely to be small, but nonzero.

On the other hand, if p(I11 -0J 1 1 ) = po > 1 then an+an will diverge at the exponential
rate p0. The situation where P0 = 1 is complicated, since whether al converges to zero,
and whether an converges at all, depends on the particular value of fo and g, respectively.
For a given vector z, (Ii -- jJ,)n z can converge to zero, converge to a nonzero vector, or
else not converge at all, depending on the choice of z and the subspace of TR(I 11 - 0J 1 1 )
which has eigenvalues with moduli greater than or equal to one. It is difficult to make a

general statement about the P0 = 1 case, but this situation is not likely to be important
in numerical practice.

Conditions on 0 for Which p(I - OK) < 1

The condition p(I1l - 0J 1 1 ) < 1 involves both the nonzero eigenvalues of K and the
constant 0. We will assume, without loss of generality, that 0 > 0. Let the nonzero

eigenvalues of K be denoted {Aj}ý=1 , and let pi = 1 - OAi. Conditions on {Ai}!=, and 0
which lead to maxi juil < 1 are given in the following lemma:

Lemma 3.1.2 Let {A,}f=l be a set of complex numbers, and let pi _ 1 - OAj, for i =

1,...,. . The following conditions together imply that

max IiI < 1: (3.79)

1. Fori=1,...,s, ?A, >0, and

2.

0<0< min ai. (3.80)
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Proof: Assume RA, > 0 for each i. The condition that the {yj};=j be in the interior
of the unit circle is equivalent to

IA,12 < 1 [1 - O(RA,)] 2 + 02(pA\)2 < 1,

or

0 < 0 < T . (3.81)

Since (3.81) must hold for all i, we have the condition (3.80). U

The Nullspace of G = I - OK When OK > 0 and p(OK) = 1

We consider next the special case of Richardson's algorithm (3.3) applied to a matrix
equation Kf = g for which K is positive. A positive matrix is a matrix for which all of
the elements are positive, and we write K > 0. From Lemma 3.1.2 and Theorem 3.1.2, it
is clear that it is very desirable for the nonzero eigenvalues of K to have positive real parts,
since if this is not the case, then there exists no 0 for which the sufficient conditions of
Theorem 3.1.2 and the necessary and sufficient conditions of Theorem 3.1.1 and Corollary
3.1.1 for Richardson's algorithm will be satisfied. So we will assume that in addition to
K being positive, all of the nonzero eigenvalues of K have positive real parts.

By the Perron-Frobenius theorem (Theorem 2.1.3), the largest eigenvalue of K in
magnitude is positive and equal to p(K), all other eigenvalues have modulus less than
p(K), and the corresponding Perron-Frobenius eigenvector is a positive vector z. By
selecting

0 = 1/p(K), (3.82)

we have p(OK) = 1. Then G = I - OK has one eigenvalue equal to zero and all other
eigenvalues of G have positive real parts.

The matrix OKT is also positive, with p(OKT) = 1. The Perron-Frobenius theorem
implies that there exists a positive vector y which is an eigenvector of 0 K, corresponding
to the eigenvalue one. Since

YTOK = YT (3.83)

it is customary to refer to yr as a left eigenvector of K and to z as a right eigenvector
of K, both corresponding to the same eigenvalue. When there is no risk of confusion, we
will continue to refer to right eigenvectors simply as eigenvectors.

The main result of this subsection is clarification of the role of the positive eigenvalue
and corresponding left and right eigenvectors in Richardson's algorithm. In order to
establish this result, we need to build on the geometry of Lemma 3.1.1, and we do this
next for a general square matrix. Later we will specialize to positive K.

Assume that K is an rn x m matrix and that the Jordan form of K consists of r < rn
Jordan blocks Jdj. Let

J = diag(Ji1, J 22 ,..-, Jrr), (3.84)

where we order these blocks so that the corresponding eigenvalues,

IA > IA 2I > ... _> 1rI o0, (3.85)

are in order of decreasing modulus.
Using notation similar to that of Section 3.1.2, we can represent K as

K = B 'tJB, (3.86)
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where
B-1 = [B" 2... B"] (3.87)

and
B 1.

B = B 2.. (3.88)

Br.

Then (3.86) becomes

K = ZB'JiiBi.. (3.89)
t=1

Because
BB-' = B-1 B = I, (3.90)

we have the following relations among the components of the partitioned matrices (3.87)
and (3.88):

ZB'B,. = I, (3.91)

Bi.B*' = Iii, (3.92)

and, for i 0 j,
Bi.B' = Oij, (3.93)

wh.,-, the Iii and 00 are identity and zero matrices, respectively, of the appropriate
dimensions. Because of these relations, we can easily generalize Lemma 3.1.1 to consider
projections onto the r subspaces corresponding to the Jordan representation (3.86). In
particular, we have the r projection matrices

Vi M B'iBi., (3.94)

for i = 1,...,r, where Vi2 = Vi and, for i 0 j, V.11 = 0. For any vector x E Cm, we have

r r
X V Z x mTi, (3.95)

i=l j=1

where for each i, the vector xi is the projection of x onto J?(Vi). It is important to note
that these projections are, in general, not orthogonal.

Now assume that K is positive, and that all nonzero eigenvalues of K have positive
real parts. Because of the Perron-Frobenius theorem, A, = 1/0 is larger in modulus than
all other eigenvalues of K, and A1 has algebraic multiplicity one. Hence V1 is a matrix of
rank one. In fact, it is not difficult to show that

V,0 ozy. (3.96)

Since
G = I - OK = B- 1 ( - OJ)B, (3.97)

the subspace onto which V, projects corresponds to an eigenvalue of G which equals
1 - 8/8 = 0, and this eigenvalue has multiplicity one.
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Next, let f be a solution to the consistent matrix equation Kf = g, and assume that
Richaxdson's algorithm (3.3) converges to f. Let the discrepancy be

un =f fn, (3.98)

and write Richardson's iteration (3.3) in the form

Un+1 = Gun, (3.99)

where
G = I - OK (3.100)

and Gz = 0.
We have the following decomposition of u° in terms of the subspaces {R"(Vi)}r=1 cor-

responding to G:
r rO = Z uO = ZB'Bi'u°" (3.101)

s=1 i-

Since V1 corresponds to the zero eigenvalue of G, we have that

r

un = G u° = B'(I - OJii)nB 1.B''Bi.u° (3.102)
i=1

= yZ B'i(I _ OJii)nBi.uO.
i=2

Hence, for all n > 0,
VIu, = ZYTUn = 0. (3.103)

Since z > 0, this implies that yTun = 0 for all n > 0.
What does this tell us? A weighted sum of the components of f - fn equals zero for

each n > 0, with the weights corresponding to the positive left eigenvector of K. We can
easily calculate this vector for a given problem, and this might lead to insight into how
well Richardson's iteration can be expected to perform. However, to calculate the left
Perron-Frobenius eigenvector is of roughly the same order of difficulty as the iteration
itself.

If OK is stochastic (recall that a stochastic matrix is a nonnegative matrix for which the
elements in each row sum to one) then OK is the transition matrix of some Markov chain,
where the left (positive) eigenvector of OK is proportional to the stationary distribution
of this chain, and the right eigenvector is positive and constant (e.g., Horn and Johnson,
1985, 487-489). We have shown above that, for all n > 0,

E(u') = 0, (3.104)

which implies that
E(un+1 - un) = E(bn) = 0, (3.105)

where the expectations are with respect to the stationary distribution of the Markov chain
corresponding to OK.

If OK is symmetric and stochastic, then then both z and y equal a constant vector, so
the sum of the components of f - fn will be zero for all positive n. In 'rany situations,
when the sum of the components of un equals zero, we will have nunl small.
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3.2 Stochastic Preconditioning and the Conditional Ex-
pectation Algorithm

When an ill-posed integral equation is discretized, the matrix equation which results
will have many eigenvalues with small absolute values. Because of this, G = I - OK
will have many eigenvalues at, or near, one in the complex plane. We have seen in the
previous section that the convergence of Richardson's algorithm (3.3) in the direction of
an eigenvector corresponding to an eigenvalue A of G for which IAI < 1 and IAI ; 1 will
be slow, since the convergence rate in the direction of this eigenvector is governed by the
powers of A.

This ultimate slow convergence is both an advantage and a disadvantage. It is advan-
tageous to not rapidly approach a 'solution' which, because of noise, is neither smooth nor
near any solution to the corresponding integral equation. Of course, it is also advanta-
geous for the iterates to not diverge rapidly if the matrix equation is inconsistent. But it
is disadvantageous to use an iteration for which the convergence becomes very slow when
the distance Jjg - Kf'1I is still unacceptably large.

At the beginning of this chapter, we mentioned the notion of preconditioning so as to
accelerate convergence. The idea is to choose a nonsingular matrix D so that the iteration
(3.2), repeated here for convenient reference,

fn+l = f n + OD(g - Kfn), for n = 0, 1,2,..., (3.106)

converges rapidly, at least initially. We will restrict attention, for the most part, to nonsin-
gular diagonal preconditioning matrices and to square matrices K with positive elements.
We will provide several motivations for choosing D so that if K is positive, then DK is
stochastic. We will refer to this form of preconditioning as stochastic preconditioning and
to the algorithm which results, along with its nonlinear generalizations, as the Conditional
Expectation algorithm. The effectiveness of this approach will be illustrated through ex-
amples in this and subsequent chapters. Stochastic matrices are relevant in the theory
of Markov chains and stochastic processes, so the presence of a stochastic matrix here is
a hint that a natural probabilistic interpretation of this preconditioned algorithm should
be possible.

3.2.1 A Property of Positive Definite Preconditioning Matrices

Lemma 3.1.2 implies that if the nonzero eigenvalues of a matrix K have positive real
parts, and if the positive constant 0 is sufficiently small, then the eigenvalues of I - OK
which are not equal to one will be in the interior of the unit circle. It is therefore a
desirable property of a preconditioning matrix D that if all of the eigenvalues of K have
nonnegative real parts, then the eigenvalues of DK have nonnegative real parts as well. We
demonstrate below that positive definite preconditioning matrices have this 'nonnegative
real part preserving' property.

Theorem 3.2.1 Let K be a square matrix, and assume that all of the eigenvalues of K
have nonnegative real parts. Let D be positive definite. Then all of the eigenvalues of DK
also have nonnegative real parts.

Proof: Write K in the form

K = (K + KI)/2 + i(K - K*)/(2i) - K1 + iK2 . (3.107)
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Let A be an arbitrary eigenvalue of K, and let x be a corresponding normalized eigenvector.
Then

A = x'Kx = X.Klx + ix'K 2x. (3.108)

The matrices K1 and K2 are Hermitian, and so x*Klx and x*K 2x are both real numbers.
It follows that x*Klx and x'K 2x are equal to RA > 0 and !aA, respectively.

Since D is positive definite (hence, Hermitian), D has a positive definite Hermitian
square root (Strang, 1976, p. 241). For i = 1,2,

DK, = D112 [D1/KjD1/2] D- (3.109)

and so DK, is similar to D1/IKD 1 12 , which is congruent to Ki. Thus DKi has the
same eigenvalues as D112 1CiD/ 2. By congruence (Lemma 2.1.1), the eigenvalues of
D1/ 2 K1 D1 / 2 are nonnegative. Because D1 / 2 K 2 D1 / 2 is Hermitian, it has real eigenvalues.
Thus, the eigenvalues of DK1 are nonnegative and those of DK2 are real. It follows that
the eigenvalues of DK have nonnegative real parts. 1

3.2.2 Positive, Bounded Kernels and Stochastic Matrices

Consider the integral equation of the first kindj k(x, y)f(y)dy = g(x), (3.110)

where we assume that the kernel, k(x, y), is positive and bounded. We discretize this
equation as discussed in Appendix A. This gives a matrix equation Kf = g. Let D be
the diagonal matrix corresponding to stochastic preconditioning, that is assume that

k' = DIK (3.111)

is stochastic.
If the integral, in y, of the kernel of (3.110) were equal to one for each x, then this inte-

gral equation, once discretized, would lead to a matrix equation having a nearly stochastic
matrix. The reason why the matrix might not be exactly stochastic is that the row sums
for the discretized problem are numerical approximations to integrals. We transform
(3.110) into a new equation, having the same solution, as follows:

j k(xy)f(y)dy = §(x), (3.112)

where

k(xy) = k(x,y) (3.113)
f0 ) k(x, y)dy'

and
g(x)

fo k(x, y)dy (3.114)

There are two slightly different approaches to applying Richardson's algorithm (3.106)
with stochastic preconditioning. One way is to normalize the equation as in (3.112), and
to discretize this transformed equation. Richardson's algorithm, (3.3), could then be
applied, with 0 = 1. The other approach is to discretize (3.110), and then find the matrix
D satisfying (3.111). The preconditioned Richardson algorithm, (3.106), could then be
applied, for this choice of D and with 0 = 1. The second approach is the more desirable
one for two reasons: the normalized kernel (3.113) need only be determined numerically,
and the matrix of the resulting discretized equation is exactly stochastic.
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3.2.3 Some Heuristic Motivations for Stochastic Preconditioning

We will make a case for stochastic preconditioning through several heuristic motivations,
and we will illustrate this form of preconditioning in a later section, and in later chapters,
with several examples. At this time, a complete understanding of why and when this form
of preconditioning works well is not available. The heuristic motivations below suggest
directions one might follow in order to attempt to answer these questions. For now, the
real justification for our choice of preconditioning comes not from theory, but from the
study of examples.

A Motivation Provided by Condition Numbers

From the point of view of numerical analysis, scaling a positive matrix so that it becomes a
stochastic matrix tends to make the matrix better conditioned. The following is a special
case of a theorem proved by Van der Sluis (1969, p.18):

Theorem 3.2.2 Let K be a nonsingular positive matrix, and let i " U. be either the 12 or
the l1o norm. Let D be a nonsingular diagonal matrix. Then the following measures of
the condition of DK are minimized when the rows of DK each sum to one:

1. x1(DK) IIDKLt II(DK)-'.II, and

"2. X2( DK) - fDKJl./lIDlKll..

Although X, and X2 each differs from the usual condition number based on the spectral
norm, . =- al/,m, all three quantities are reasonable measures of the condition of a
matrix. A preconditioning which minimizes X, and X2 can be expected to usually reduce
r as well. In fact, if 1l" 11,, is chosen for 11I 1. in X1, then X, becomes the condition number of
a matrix, with respect to the infinity norm. In Section 2.2.3, we showed how a condition
number relates changes in a right hand side to corresponding changes in a solution of a
matrix equation. It follows from this that the smaller a condition number is, the smaller
the change in the solution will be for a given change in right hand side, and so one would
expect Richardson's algorithm to converge more rapidly for matrices with relatively small
condition numbers.

A Taylor Series Motivation

Assume that (3.110) has a solution f, that k(x, y) has a peak with location on a smooth,
monotone curve y = v(x) in the unit square, where v(O) = 0 and v(1) = 1. Let ff be an
approximation to f at the nth iteration, let u' = f - f', and note that

j k(x,y)[f(y) + un(y)]dy = g(x), (3.115)

where u" is now the unknown. Assume that u' has a Taylor series expansion for all y.
Expand u' about v(x), keeping only the first term:

u"[v(x)] k(x, y)dy ; g(x) - j k(x,y)f h (y)dy, (3.116)

or

fin[v(x)] = g(x) - fg k(x, y)fn(y)dy (3.117)
fo' k(x, y)dy
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If we let
fn 1 (x) - fW(P ) + fi(x), (3.118)

then, in the special case where v(x) = x, we have the L2 version of Richardson's algorithm
with stochastic preconditioning. If v(x) is not the identity, then a change of variable in x
reduces the problem to the special case.

A Probabilistic Motivation

A simple probabilistic argument provides another motivation for stochastic precondition-
ing. Since k is bounded and positive, it is proportional to the joint density of two random
variables, say X and Y. We write this as

7rx,y(x,y) E ck(x,y), (3.119)

where the constant c is

c = k(x, y)dxdy] (3.120)

The normalized kernel (3.113) is exactly the conditional density of the random variable
Y given the random variable X:

lrx,y (x, Y)
xyyX(y)x) = = k(x, y). (3.121)

f0 7rx,y(x, y)dy

Richardson's algorithm applied to (3.112) with 0 = I is

f +l(x) = fn(x) + j k(xy)(f(y) - f"(y))dy. (3.122)

Since the integral on the right hand side of (3.122) can be interpreted as the conditional
expectation of the difference f - f", we can rewrite (3.122) (in terms of the random
variables X and Y) as

fn+'(X) - fn(X) = E [f(Y) - fn(y)IX] . (3.123)

In words: the nth step in this Richardson algorithm with stochastic preconditioning is
the conditional expectation of the difference between the solution and the approximation
f"n. Because of this, we will sometimes refer to Richardson's algorithm with stochastic
preconditioning as the Conditional Expectation algorithm.

This probabilistic interpretation suggests that this preconditioned Richardson algo-
rithm will converge rapidly when the conditional expectation, with respect to the density
(3.121), of f - fn is nearly equal to f - fin. This will occur when Y • X. For these ran-
dom variables to be nearly equal, the original kernel k(x, y) must be peaked about the line
y = x. The more this kernel is peaked, the more rapidly convergent this preconditioned
Richardson algorithm will be.

In fact, if Y ;zz h(X), for some monotone function h, then by defining Z = h(X), we
have Z ;s Y, and so we have reduced the problem to the case considered in the previous
paragraph.
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A Motivation Based on Convolution Kernels

Consider the Fredholm integral equation of the first kind

J k(x - y)f(y)dy = g(x), (3.124)

where the convolution kernel k(x - y) is positive, bounded, and

f k(x - y)ysdy <00, (3.125)

for all s > 0.
Let 7Ir(z) represent a polynomial of degree at most t. For any integer t, we have that

k(x - y)y'dy = k(y)(x - y)t dy (3.126)

= Xij0 ~~y r-()

If we transform the equation (3.124) so that the kernel of the transformed equation is

k( - y)(3.127)
k(x - y) =- fo- k(y)dy'

we have that

_Jo k(x - y)y t dy = x' + irtl(x). (3.128)

It is easy to see that, if u" = f - f' is a polynomial of degree t, then the preconditioned

Richardson algorithm (3.106), applied to the convolution equation (3.124) with stochastic

preconditioning, and with 0 = 1, will exactly converge in at most t iterations, reducing

the degree of u' by at least one with each successive iteration.

To the extent that there is a function u' for a specific problem which is well approx-

imated by a low order polynomial, and to the extent that the normalized kernel for a

specific problem is well approximated by a convolution, one would expect Richardson's

algorithm with stochastic preconditioning to converge rapidly.

3.3 Richardson's Algorithm and Iterative Regularization

Integration tends to smooth. It is clear, therefore, that the Richardson iterations (3.3)

and (3.2) will tend to produce smooth iterates when applied to integral equations of the

first kind having smooth kernels. There is regularization implicit in using Richardson's

algorithm, and it is the purpose of this section to examine the nature of this regularization
for the special case of the Richardson algorithm (3.3), applied to matrix equations with

matrices having a diagonalizable nullspace. We have in mind matrix equations which arise

from the discretization of ill-posed integral equations of the first kind, so that the more

oscillatory eigenvectors correspond to the many small eigenvalues of the matrix.
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3.3.1 Regularization Methods

One approach to 'solving' a matrix equation Kf = g which is the discretization of an
ill-posed linear operator equation is the method of regularization of Tikhonov (1962) and
Phillips (1963) (see also Tikhonov and Arsenin, 1977, and Groetsch 1984). The basic idea
is very simple. We do not want to solve any discretized version of an ill-posed equation
exactly. Instead, we minimize the quadratic form

U(z) - (Kz - g)*(Kz - g) + 7 z*Lz, (3.129)

where L is positive definite, and is chosen so that zTLz will tend to be large when z is
not smooth. A positive constant, j, determines the relative importance of the first (least-
squares) and second (penalty) terms of the functional O(z). When 7 is zero, minimizing
Ul(z) is equivalent to minimizing IKz - gi. As - is increased, increasing weight is put on
the smoothness of the solution, and less on 'fidelity' to the equation.

The quadratic form (3.129) is usually associated with the method of regularization.
We will instead be concerned with the functional

U(z) = (z - f)*(z - f) + 7 z*Lz. (3.130)

Although we will not require L to be positive definite, our motivation for choosing L is
the same as in (3.129). Minimizing U, like minimizing U, involves a compromise between
fidelity to the equation and smoothness of the solution. The difference is that the first term
in & measures how close the right hand side corresponding to an approximate solution is
to g, while the first term of U compares the approximate solution to a solution vector f.

3.3.2 Regularization Implicit in Richardson's Algorithm

Consider the Richardson iteration (3.3) applied to equations Kf = g for which K is an
m x m matrix with a diagonalizable nullspace (Section 2.1.4). Assume that the iteration
converges for a particular choice of 0. We have shown (Corollary 3.1.1) that since (3.3)
converges, it must converge for any f 0 , so we can choose fo arbitrarily, and denote the
corresponding solution by f. We will show that, under these conditions,

,l = fn+l _ fn = 0(g - Kfn) (3.131)

is a stationary point of the quadratic form

Q(z) QLS(Z) + Qp(z) =(un - z)*(un - z) + z(K#/0 - I)z, (3.132)

where K# is the group inverse of K, which exists and is unique since K has a diagonal-
izable nullspace, and

u f - fP. (3.133)

Differentiating Q(z) with respect to z and setting this derivative equal to zero, we
note that a stationary point z must satisfy the linear relationship

K#z- oun = 0. (3.134)

The matrix K has index t = 1, and hence there exists a nonsingular matrix B such that

K=BB-'JO 001B, (3.135)
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where J is a Jordan form matrix of blocks corresponding to nonzero eigenvalues of K.
The group inverse K# is then

K#=B[J-' oO]B, (3.136)

and we have, in the notation of Section 3.1.2 and Lemma 3.1.1, that

K#K = KK# = B-'JBI.B1J-1 B1 . = B'IB1 . = V. (3.137)

Substitute 6' for z in (3.134) and use Lemma 3.1.1 (d) to get

d =_ K#z - On' = -0(1 - K#K)u" = -0(1 - V)u' E Ar(K). (3.138)

We will show next that u" E 7I(K), so that, using once again Lemma 3.1.1, u" = Vh"
for some vector hV, and hence d = 0.

The vector fn - fo can be expressed as a sum of steps 6I

f _ 0 = :,-14 6 for n > 0, (3.139)

where 6i = OKu' E 7?(K) for every i. Therefore fn - fo E IZ(K) for every n. Since

lim (r - fo) = f -f, (3.140)
n-ocr

f - f0 E IZ(K). Hence

un = f _ fn = (f - fo) + (fo _ fn ) E (K), (3.141)

which completes the proof that 6" is a stationary point of (3.132).
Lemma 3.1.1 (c) implies that we can express f and f1 as

f = Vf +(I -V)f - fR + fN (3.142)

and
fo = VfO + (I- V)f° A + A, (3.143)

where V and (I - V) project onto TZ(K) and Af(K), respectively. Since fn - fo E IZ(K)
we have, for all n > 0,

A% = (I- V)f" = fN. (3.144)

We can obtain a simple expression for (3.132) evaluated at 6p in terms of un and u'+I.
Since

u" n _" -- (f _ fn) -(fn+l _ fn) = un+i, (3.145)

we see that
QLS( ") - Iu"n+aII 2. (3.146)

Using basic properties of the group inverse (Section 2.1.4), straightforward (though some-

what tedious) algebra leads to

Q(b") = (u"+')*u". (3.147)

Note the similarity between (3.130) and (3.132). We have shown that each step (3.131)
corresponds to solving a penalized leasi squares problem, where the penalty term Qp is
determined by the matrix K, and the 'least squares' term QLS is jun - b"I, where un =
f- f". Further discussion of the relationship between linear smoothers and penalized least
squares can be found in Buja, et. al. (1989). The notion that there can be regularization
implicit in iterative algorithms is apparently due to Bakushinskii (1967).
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3.3.3 Positive Definite K

Although (3.2) does not make explicit use of regularization, at each iteration regularization
is implicit in this algorithm and the character of this regularization is determined by the
matrix K. To see how the second term in (3.132) can penalize 'rough' iterates, we consider
the simple special case of K m x m positive definite, though with many small eigenvalues.
Let the (positive) eigenvalues of K be {A}(,= and let the corresponding orthonormal
eigenvectors be {tj}!n1 . By the spectral theorem (Theorem 2.1.1),

K - mAitit, (3.148)
j=1

where

Ai\ _ A2 _ ... > Am > 0.

Assume that f = l-1g, and 0 < 8 < 2/A 1 , so that fn - f for all f 0 . Let the expansions
of 6n in terms of the eigenvectors of K be

m
6" = -- nt;. (3.149)

i= I

In terms of the spectral decomposition (3.148) of K, the penalty term at the minimum
becomes

m
Qp(6") = S= [(O,)1 - 1]. (3.150)

Since the matrix K is a discretization of a smooth function, the more oscillatory eigen-
vectors will correspond to small eigenvalues. Components of 6" in the directions of these
highly oscillatory eigenvectors will have a large contribution to the penalty term, hence
the minimum of Q will tend to occur at a vector 6" which has small components in the
direction of the 'rougher' eigenvectors - that is, 6" will tend to be smooth if K is smooth.

3.4 Examples

We illustrate the ideas of this chapter by considering linear Fredholm and Volterra exam-
pies.

3.4.1 A Fredholm Example

In Chapter 1, we introduced a Fredholm integral equation of the first kind,

oj k1(x,y)f(y)dy = g(x), (3.151)

with kernel

YO - x) y !3X (3.152)z(1-y) y>zk I( x , y ) - X - ) >

We continue the discussion of this example which began in that chapter.
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An Eigenfunction Analysis

For the very simple example (3.151), we can determine the eigenfunctions and eigenvalues
of both the kernel (3.152) and the preconditioned kernel

2k (z,y) = { i: X (3.153)( = ( / - - X) Y>X

Here we are transforming the kernel, and then comparing the eigenfunctions of the trans-
formed kernel (3.153) with the kernel (3.152). In numerical examples we will, as discussed
in Section 3.2.2, discretize (3.152) to get a matrix equation, and then premultiply both
sides of this equation by the appropriate matrix D, so that the matrix becomes stochastic.

Since (3.152) is the Green's function for the differential equation

d2 + = 0, (3.154)

subject to the boundary conditions

g(0) = g(1) = 0, (3.155)

the eigenfunctions of (3.151) are the same as those of the differential equation (3.154),
subject to the boundary conditions (3.155). That is, the tth eigenfunction of (3.151) is

Ot(x) = sin(trx), (3.156)

and the corresponding eigenvalue is

,\= 1 (3.157)

The key to the eigenfunction analysis of the preconditioned Fredholm operator with
kernel (3.153), is to note that

S(y)y0dy = (3.158)

1d (t + 1)(t + 2)(

It follows that tth degree polynomials are transformed into tth degree polynomials by the
integral equation with kernel (3.153). It turns out that the eigenfunctions are polynomials,

= aii;x'. (3.159)
i=0

The eigenvalues are
2 (3.160)t(t + 1)'(310

and the coefficients in (3.159) can be determined recursively from the formulas

a,- 1t (3.161)

After scaling (3.152) by multiplying by r 2, so that both (3.152) and (3.153) have
largest eigenvalue one, we note that the eigenvalues corresponding to the preconditioned
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equation are substantially larger than the eigenvalues corresponding to the kernel (3.152),
particularly for moderate t. In the numerical examples to follow, we will iteratively solve
a matrix equation having a stochastic matrix, consequently the largest eigenvalue of this
matrix will equal one.

Another thing to note from this example is that the 'character' of the eigenfunctions
is completely changed - from trigonometric functions (all of which equal zero at the
endpoints) to polynomials - by the stochastic preconditioning.

A Numerical Investigation

In this subsection, we describe some numerical results on the equation (3.151). The
computations were performed using the S programming language (Becker, Chambers and
Wilks, 1988), and a software listing is in Appendix B.

Let the right hand side of (3.151) be

g1(X) = x3 (1 - x) 2 . (3.162)

We discretize the integral equation (3.151) with kernel (3.152) and right hand side
(3.162) using 50 point Gauss-Legendre quadrature as discussed in Appendix A. Let the
matrix of this discretized equation be denoted K1 , and let the corresponding precondi-
tioned matrix be k 1 . The matrix k, is formed by discretizing the kernel (3.152) as in
Appendix A, and then normalizing the rows of this matrix to each sum to one (see Section
3.2.2). The largest eigenvalue of K1 is .1013913, which is approximately equal to r- 2, the
largest eigenvalue of the corresponding integral equation. For the Richardson iteration
without preconditioning (3.3), we take 0 to equal the reciprocal of the largest eigenvalue,
i.e. 0 : 9.863, so that the largest eigenvalue of OK1 is (very nearly) equal to one. For the
Conditional Expectation algorithm (Richardson's algorithm (3.2) with stochastic precon-
ditioning) the largest eigenvalue is equal to one, so we let 0 = 1. We choose the initial
iterate fo = 0 for now; we will consider the important role of fo for the algorithm without
preconditioning below. Fifty iterations of both methods are compared in Figure 3.1. The
preconditioned method gives an approximation very near the solution

f(x) = -20x 3 + 24x 2 - 6x (3.163)

before the convergence rate begins to decrease dramatically. The method without pre-
conditioning is still far from the solution at the 50th iteration, and, since by the 50th
iteration the steps taken at each iteration are very small, it will take many iterations to
get appreciably closer to the solution.

Another way of seeing the dramatic effect preconditioning has had on the convergence
rate is to examine the distance, in 12 norm, to the discretized solution as a function of the
iteration index. This comparison is made in Figure 3.2a. In Figure 3.2b, we have plotted
the residual norms BKf' - gl (for the discretized functions, using the 12 norm).

The eigenvectors of (3.152) are sin(1irx), which equal zero, for all 1, at x = 0 and x = 1.
However, f(1) = -2, so contributions from eigenvectors of K1 corresponding to very small
eigenvalues are required in order for Richardson's algorithm without preconditioning to
closely approximate f(x) near x = 1. The eigenfunctions (3.159, 3.161) corresponding to
the Conditional Expectation algorithm are polynomials, and they do not all go to zero at
the endpoints of [0, 1].
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One might argue that the comparison in Figures 3.1 and 3.2 is unfair, since the eigen-
functions of (3.152) are ill-suited for approximating (3.163), at least when fo = 0. One
way to compare the two algorithms on a more even footing is to use the starting function

fo(x) = -2x, (3.164)

so that f°(0) = f(0) and fo(1) = f(1). (Of course, in practice one usually does not know
the value of the unknown function at the endpoints.) Fifty iterations of both algorithms,
begining with the starting iterate ( 3.164), are displayed in Figure 3.3. The distance from
the solution and residual norm, as functions of the iteration index, are given in Figure
3.4. The methods both perform reasonably well, with Richardson initially doing better,
but with the Conditional Expectation algorithm 'catching up' after 30 or 40 iterations.

These two numerical examples each illustrate the notion of 'near-convergence' and
'near-solution'. The Conditional Expectation algorithm is able to provide smooth ap-
proximate solutions which are close to the solutions of the continuous problem (Figures
3.2a and 3.4a), and for which the corresponding residuals JjKr" - g[[ are small (Figures
3.2b and 3.4b). The Richardson algorithm also provided smooth iterates, although in the
first example the Richardson approximations are very slowly convergent near x = 1.

Both the Richardson and the Conditional Expectation algorithms produce smooth
approximate solutions even with the inevitable error in the right hand side. This is an
instance of the idea of iterative regularization discussed in Section 3.3.1. However, even-
tually the approximations may become less smooth, as the components of the right hand
side in the directions of eigenvectors corresponding to smaller eigenvalues begin to con-
tribute. Since the right hand side for this example is smooth, and since preconditioning has
reduced the condition number substantially (from 156261 to 810.34), it would take many
iterations to observe the approximations depart from the true solution, and even then the
deviation would be slight. In order to see an effect in a reasonable number of iterations,
we add a component, with coefficient .01, in the direction of the 25th singular vector of
the matrix A1 to the right hand side (3.162). This leads to a perturbed right hand side,
the Fourier coefficients of which are presented in Figure 3.5a, and a plot of which is given
in Figure 3.5b. In Figure 3.6a, we display 50 iterations of the Conditional Expectation
algorithm with this perturbed right hand side, and in Figure 3.6b, we give the solution of
the matrix equation obtained by matrix inversion. Some obvious points to be made here
include the oscillatory nature of the 25th singular vector, as reflected in the 'noisy' right
hand side in Figure 3.5b, and the unpleasant solution in Figure 3.6b. In Figure 3.6a, we
see a dramatic illustration of near-convergence, as the Conditional Expectation approxi-
mations stay reasonably close to the discretized solution to the (unperturbed) continuous
problem. With some smoothing of the steps fn+l - fn (as discussed in Chapter 7), much
of the roughness of the approximations in Figure 3.6a can be eliminated. The distances
of the approximate solutiops from both the perturbed and unperturbed right hand sides
are given in Figure 3.7a, and the corresponding residual norms are in Figure 3.7b. Notice
that the approximations are closest in norm to this solution at the 8th iteration, and that
the corresponding residual norm at the 8th iteration is fairly small. From that point on,
the iterations move further away from the solution which corresponds to the unperturbed
right hand side as they approach the exact solution, which corresponds to the perturbed
right hand side. However, the residual norm with respect to the unperturbed right hand
side continues to slowly decrease until about the 30th iteration.
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3.4.2 A Volterra Example

As an example of a Volterra equation,

o k2(x, y)f(y)dy = g2(X), (3.165)

we take the differentiation problem, with kernel

k Y (x-y) for•yzxk2(~y = 0 for Y > x'for(3.166)

for a > -1, and with right hand side given by the power series
00

g 2 (X) = Zax. (3.167)
S=0

If a is a nonnegative integer, then the solution to this equation is

R(x) = g(a+l)(x), (3.168)

where
g(O' = g'(0) =-.. = g(a)(0) = 0. (3.169)

This example is useful because it is easy to examine the Conditional Expectation algorithm
analytically.

To piecondition the kernel, we divide (3.166) by

h(x) - k2(x,y)dy = (x- y)'dy = --- , (3.170)

and we denote the quotient k2(x,Y). For any t > 0

r(a + 2)F(I + 1), (3.171)

r(a + t + 2)

hence the eigenfunctions of the preconditioned kernel are the powers

O(X) = xi (3.172)

for t = 0, 1,..., and the corresponding eigenvalues are

r(a + 2)r(t + 1)

Vt = rF+a+t+2) (3.173)

For example, let a = 0. A little algebra shows that, if g(x) = x'+I/(s + 1), then the
corresponding f ar". given by

f'(x) = [1 - (1 - 1/(s + 1))"Ix*. (3.174)

Without preconditioning, it is easy to show that the Richardson iteration does not con-
verge for this example, regardless of 0. From the linearity of the Volterra integral operator
and (3.174) we see that, for the right hand side (3.167),

00

f"(x) = Zsa,1 - (1 - l/s)']x8-1 . (3.175)
8=1

72



If g is a smooth function plus noise, then f' will reflect the smooth components initially,
since these will correspond to fairly small values of s. Eventually, the solution will become
rougher, but only when (1 - l/s)n becomes small for fairly large s.

Numerical experimentation suggests that, for reasonably smooth right hand sides, the
iterative algorithm outlined in this section can be useful for numerical differentiation. We
will discuss the numerical solution of an equation related to the Volterra equation with

kernel k2(x,y) with a = 1/2 in Chapter 7.
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Chapter 4

The Conditional Expectation
Algorithm for Nonlinear Integral
Equations with Peaked Kernels

4.1 A Nonlinear Equation

All of the integral equations which we will consider can be expressed as integral equations
of the first kind of the form

oj k{x,y,f[4(x, y)]}dy = g(x), (4.1)

where the kernel k and the function € : [0, 1] x [0, 1] [0, 1] are known, and k is nonneg-
ative and bounded. To fix ideas, we will restrict attention, for the most part, to kernels
defined on the unit square. However, this restriction is not essential.

We will often need to refer to the kernel of (4.1) and to the derivative with respect to
its third argument, so we introduce the following notation to save writing:

k(z, y, z) Zf.i,,(z~)] - k(z, y, f) (4.2)

and
ak(x,y, z) k'(x, y, f). (4.3)

In addition to requiring that k be nonnegative and bounded, we also require k' to
be nonnegative and bounded. The reason for this is that we will introduce an iterative
algorithm, based on applying the Conditional Expectation algorithm of Section 3.2.3 to
linearizations of (4.1), which can be motivated by considering k' to be proportional to a
bivariate probability density.

4.1.1 Peaked Kernels

We will restrict attention to integral equations with kernels having certain features, which
we summarize here. A kernel k will be said to he peaked if k is nonnegative and bounded,
and k' has the following properties

1. k'(z, y, f) > 0 for all x and y,
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2. f1 k'(x, y, f)dy < co for all x, and

3. There exists a monotone function t :[0, 1] -. [0, 1], such that, for all x,

max k'(x, y,f) k'(x, t(x),J
yE[0,11

A nonlinear kernel can be peaked for some values of f and not for others. When we refer
to a kernel as being peaked, we intend, somewhat imprecisely, for this to mean that this
kernel is peaked for functions f of interest.

A simple (and important) example of a peaked kernel is the kernel,

k(xy, f) = w(z,y)f(y), (4.4)

of a linear Fredholm equation, where w is nonnegative, bounded, and peaked along the
line z = y. The kernel (4.4) is linear in f and, as discussed in Section 3.2.3, its derivative

k'(x,y,f) = w(x,y) (4.5)

is proportional to the joint density of two random variables X and Y. To the extent that
w is peaked along x = y, we can say that Y ; X. The definition of a peaked kernel
attempts to generalize this idea to kernels with derivatives with respect to f which can
be regarded as bivariate probability densities for which Y .:Z t(X), for some monotone
function y = t(x) in the unit square. We will consider a simple example for which t(z) is
not the identity in Section 4.3.2.

Note the slight difference in terminology between Chapter 3 and Chapter 4. If we
are restricting attention to linear equations, it is natural to refer to w(z, y) as the kernel,
since the relationship between w(x, y) and k(x, y, f) is the same for any linear problem.
However, when we regard a linear equation as merely a special case in a class of nonlinear
equations, then we will refer to k(x, y, f) as the kernel, where k'(x, y, ) = w(x, y).

4.2 Newton's Method

When solving a system of nonlinear equations the method of choice is often Newton's
method. Newton's method is known to converge for a 'good enough' starting value and
to converge quadratically in most cases. The sufficient conditions for convergence and
the rate of convergence of Newton's method are provided by the Newton-Kantorovich
theorem, (e.g., Ortega, 1972) and this theorem is proved in Banach space. In particular,
Newton's method is a useful algorithm for nonlinear integral equations in L2 .

4.2.1 The Fr6chet Derivative

In order to extend the definition of Newton's method to functional (in particular, integral)
equations, a concept of functional derivative is necessary. We introduce here one such
derivative, the Frdchet derivative. We give here the definition, in Banach space, following
Debnath and Mikusifiski 1990, p.416).

Definition 4.2.1 (Frichet Derivative) Let B, and B2 be Banach spaces, and let z E
B, be fixed. A continuous linear operator A : B1 - B 2 is called the Frý&het derivative
of an operator T : B, --- B2 at x if

T(x + h) - T(x) = Ah + $(z,h),
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and

Ihl--O jhj

The Frichet derivative at x of T will be denoted T'(x).

It can be easily shown that if the Frdchet derivative exists, then it is unique (Debnath
and Mikusifiski (1990, p.417).

Define T: L2 -* L 2 by
T(j) =o k(x, y, f)dy - g. (4.6)

The Frdchet derivative of T is

T'(])h = 1 k'(x,y,])h(y)dy. (4.7)

Now that we've extended the notion of derivative to integral operators of the form (4.1),
we can state what Newton's method is for this equation.

4.2.2 The Newton-Step Equation

Let T be an operator between Hilbert spaces, and let fn be a point in the domain at
which T is Fr~chet differentiable. We would like to approximately determine a function
f such that T(f) = 0 (where here '0' denotes the function which is identically zero), and
we assume that f n is 'near' f. Expand T about f" to first order in a Taylor series, giving

T(f) - T(fn) _ T'(f")(f - f"). (4.8)

But T(f) = 0, so we have the approximate linear equation

T(f") Z -T'(fn)(f - fn) (4.9)

relating fn to f. Let f+l+ be a value of f which makes (4.9) an equality. Solving the
linear operator equation (4.9) for fn+I constitutes one step of Newton's method.

For (4.1), let
, = fl+l _ fn. (4.10)

The function han is a solution to the following Newton-step equation:

g - 0 k(x,y,fn)d y = j k'(x,y,f I)hdy. (4.11)

Solving the linear integral equation (4.11) for h'" is in general difficult. We will instead
investigate a quasi-Newton iterative algorithm, in which we use one or several steps of the
Conditional Expectation algorithm of Section 3.2 as an easily determined approximate
Newton-step. By doing this, we replace a quadratically convergent algorithm with a
linearly convergent algorithm, but since the steps of the quasi-Newton algorithm are, by
design, very easy to calculate, we are often better off using the linearly convergent method.

There is another reason to want to use an approximate Newton-step. Recall from the
discussion of Section 2.4.2, that the exact solution of any numerical representation of an
ill-posed integral equation of the first kind is likely to be either nonexistent, or else quite
different from any solution to the integral equation. For an ill-posed nonlinear problem,
Newton's method involves the exact solution of an ill-posed linear equation at each step.
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4.3 The Conditional Expectation Algorithm

In Section 3.2, we motivated a specific preconditioned Richardson algorithm for a linear
integral equation of the first kind. We now propose extending this algorithm in order to
iteratively approximate solutions of nonlinear integral equations. Because of the proba-
bilibtic motivation of Section 3.2.3, we will refer to this algorithm, whether applied to
linear or to nonlinear equations, as the Conditional Expectation algorithm. To illustrate
this algorithm, we first consider the special case of (4.1) where O(x, y) = y, k is peaked,
and t(x) ;, x. Following this, we suggest how the method can be extended to some more
general problems.

4.3.1 A Simple Case

Let j k[x,y, f(y)]dy = g(x), (4.12)

where k is a peaked kernel with t(x) ;. x. We propose attempting to solve (4.12) using a
nested iteration, in which the outer iteration is an approximate Newton method, with the
approximate Newton step provided by the inner iteration. Since the Newton step equation
is linear, we can use Richardson's algorithm with stochastic preconditioning (Section 3.2)
in order to approximately determine the Newton steps. We call this nested algorithm the
Conditional Expectation algorithm, and we note that it reduces to the algorithm (of the
same name) discussed in Section 3.2 when (4.12) is linear in f.

Let the c-,•tr iteration be indexed by n, and let the inner iteration be indexed by s,
for s = 1,... ,l. Actually, the inner iteration limit can depend on n, but we will not state
the algorithm in this much generality in order to keep the notation as simple as possible.
Write the Newton-step equation, at the nth outer iteration, as

r - g - k(x,y,f-)dy - k'(x,y, f')hn(y)dy. (4.13)

Approximate hn by hn.' where, since t(x) = x,

hn"'sI(y) = hn'8 (y) + bs(y) ,z hn',(y) + bs(x), (4.14)

hn'° is arbitrary, and

(x) (x) - fo' k'(x,y,f ')h '(y)dy (4.15)
0fk'(x,y, fn)dy

A simple case, which is often useful, is to let I = 1, and to take hn° - 0 for all n. The
Conditional Expectation iteration is then

fl+I = fn + I k'(z,yfn)dy' (4.16)

since

hnI = hn', = h '° + 60 = rn. (4.17)

Another possibility, only slightly more complicated, is to let 1 = 1, h"' = 0, and

h -'' = hn-I'; (4.18)

84



the reasoning behind this being that if h,+' = hn, the (n - 1)st approximate Newton step
might provide a bett.er initial approximation to the nth step than the zero vector. This
choice of an inner iteration leads to

fn+ = fn +r, - f' k'(x, y, f')[f' - fn -1]dy
/n+ = f +( f (4.19)fo' kl(-, y, fn)dY

The iteration (4.19) makes clear the relationship of the nonlinear algorithm of this chapter
to the linear Conditional Expectation algorithm of Chapter 3.

If the integral equation of interest is ill-posed, then Newton's method will almost
certainly either diverge, or else converge to a solution of the discretized equation that is
far from any solutijn to the original equation. Because of this, it is probably a good
idea to keep I small; one exception being when the derivative of the kernel is expensive
to compute. Newton's method has been used to motivate the iterative algorithm of this
chapter, which is an iteration in its own right. Hence, one should not regard the closeness
with which one can approximate Newton steps as an overriding consideration in using the
Conditional Expectation algorithm.

4.3.2 An Example for Which t(x) 0 x and 4b(x,y) 5 y

Consider the integral equation

f0 k.(x, y)f(xy)dy = g(x), (4.20)

where
Sy(1-x ") if y < X (4.21)

( X'(1-y) ify_ ,xQ 4.

and a # 1 is a parameter. For this example 4O(x, y) = xy and t(x) = x'. The Newton-step
equation is

g(x) - j k.(x,y)f (xy)dy = j k.(x,y)h (xy)dy. (4.22)

We approximate the unknown h'(xy) by a function which is constant in y by replacing y
with

y. = t(X) = X, (4.23)

which is the location of the peak in y for each x. This leads to the Conditional Expectation

algorithm step

h(x+l) g(X) - f k(x,y)(y)dy (4.24)
f0 k.(x,y)dy

or alternatively,

h - g(xl/(aw+I)) - 0• kG,/(.+l)(xy)fn(xl/(a+l)y)dy (4.25)

fo ko/(.+I)(x,y)dy
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4.3.3 The General Case

The example of the previous subsection motivates the following generalization of the
Conditional Expectation algorithm. For the general case, we must approximately solve
(4.11) at -'ach iteration, and we rewrite this equation as

r (x) = J k'(z, y, fn [.(X, y)])hn[0(,y)]dy. (4.26)

Assume that k'(x, y, ffn) has a peak in y, for given z, with location y. = t(x). A reasonable
approximation to h'[10(x, y)] might be h I[O(x, u(x))], where u(x) ; t(x), and

hn[o(x, u(z))] = h"(z) = I k'{x,y,f'[4(x,y)])}dy (4.27)

In order to provide a useful approximation, it seems reasonable to require that u(z) have
the following two properties:

1. k'{x, u(x), fn[¢(X, u(X))]} is 'approximately' equal to

maXE•0,Jljk'{x,y,fn[¢(X,y)]} for all x.

2. Oiz, u(x)) : 10, 1) -- [0, 1] is monotone increasing, with 0(0, u(0)) = 0 and 0( 1, u(1)) =
1.

If i(x) = x, then u(x) = x exactly satisfies both of the above conditions. In general,
considerable experimentation may be required in order to determine a useful function u.
In Chapter 6, we discuss, in some detail, an example for which

0(X, Y)x 0CG 1 ) (G+-Y) (4.28)

and t(x) is approximately a constant function over most of the range of x.

Of the two conditions that we have imposed on u, the requirement that 0 be a mono-
tone increasing function mapping the unit interval into itself is important; the other
condition is merely heuristic. There is no guarantee that the 'best' choice of u exactly
maximizes k'(x, u(x), fn). A practical approach might be to first try simple choices of u,
however crude, and see what happens.

4.4 A Simple Numerical Nonlinear Example

We conclude this chapter by illustrating the Condition.d Expectation algorithm applied

to a nonlinear problem. Let v be a given differentiable function with a positive derivative,
and consider the following integral equation:

f w(x, y)v[f(y)]dy = g(z), (4.29)

for w(x,y) given by the Green's function

y(l -x) ify< (4.30)

z(1 -y) if y X,
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which we used in the examples of Section 3.4.1. The equation (4.29), though linear in
v, is nonlinear in the unknown function f, and of the form (4.1). The derivative of the
kernel at f is

k'(x, y, f) = w(z,y)v'(f). (4.31)

The peak of w(z, y) is at y = x, thus it is not unreasonable to assume that the peak of
(4.31) in y for fixed z is near the line t(x) = x. For the Conditional Expectation method,
we choose I = 1, and h'" -= 0 for all n, so that the Conditional Expectation step is

hn, (x) = g(x) - f01 t(z, 3)v[f"(y)]dy (4.32)fI w(x, y)v,[f"(y)]dy,

and
fn"+(y) = fn(y) + hn,,(Y). (4.33)

For a numerical example, we choose

v(x) = e', (4.34)

and
f(x) = 2x - 1, (4.35)

so that
1 + x(e 2 - 1) - e2(

=(x) 4e (4.36)

Note that there is a nontrivial distinction between the nonlinear iteration with v(f) = ef,
and the linear case with v(f) = f. For this example, with v(f) = ef, the solution f and
all approzimate solutions f'f must be everywhere positive.

We take fo _ 1 as a starting value, and discretize as in Appendix A, using 50-point
Gauss-Legendre quadrature. The first 50 approximations to the solution are displayed in
Figure 4.1. Initially, the algorithm converges rapidly, although eventually the convergence
rate becomes very slow. From the plot, in Figure 4.2, of the L 2 distance from the solution
as a function of the iteration index, it is clear that the rate of convergence begins to
decrease substantially after only a few iterations. However, convergence is sufficiently
rapid initially that approximations are near the solution before the iteration becomes
slowly convergent.
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Chapter 5

The Behrens-Fisher Problem

5.1 Historical Background

The Behrens-Fisher problem is the problem of comparing the means of two normal pop.
ulations with no assumptions about the variances. This problem has received much at-
tention, and caused much controversy, because it is the simplest example of any practical
importance where the fiducial (and noninformative-prior Bayesian) and Neyman-Pearson
approaches arrive at substantially different answers.

Let Xi,i = 1 ,.. ,n1 be a random sample from a N(pi,a2) population, and let Yi,, =

1,... n be a random sample from a N(A2 ,c7) population, where 0', 22, 1 and 022 are
unknown. Let Xcj and S?, for j = 1,2, be the usual sample estimates of the means and
variances (defined in Section 2.6). We wish to test the composite hypothesis

H0 II1 = U2 (5.1)

against the alternative
HI A1 > A2, (5.2)

where ar/a2 or, equivalently,

I = (5.31a2/nI + a2/n 2

is a nuisance parameter of special importance.
For both the fiducial and the frequentist approaches the test (of size a) is of the form

'Reject H0 if U exceeds a critical value ct,(Sc2 S, where

U -(5.4)
S2/n, + S2/n 2

however the critical values for the tests differ for the two approaches.
A fiducial argument suggests determining critical values for the test from the inverse

of the distribution of a certain linear combination of two Student t random variables.
The distribution of this linear combination is known as the Behrens-Fisher distribution.
A Bayesian analysis with a noninformative prior leads to the same result. The Behrens-
Fisher distribution can be evaluated numerically to provide a test which has size a, from
the standpoint of fiducial probability, for all 0; but this test is not accepted in the Neyman-
Pearson framework (e.g., Wallace, 1980).
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In the Neyman-Pearson framework, a test of

Ho: wE So

which achieves a nominal size a for all w E Q0 is said to be similar. A similar test for
the Behrens-Fisher problem must achieve a fixed size a for all values of the nuisance
parameter 0, and such a test does not exist. To be precise, a critical value statistic which
results in a similar test does not exist if n1 and n2 are of the same parity, and any critical
value statistic for sample sizes of opposite parity must be a function with infinitely many
discontinuities. This result was proved by Linnik and others in the 1960s (see Pfanzagl,
1974), and it was suspected to be true by many for years before. However, by the time
the Linnik results became available, much progress had been made toward a practical
solution from a frequentist perspective (e.g., Kendall and Stuart, 1977, Vol. 2, Chapter
21).

5.2 The Trickett-Welch Approach

Welch (1947) and Aspin (1948) tacitly assume the existence of a continuous critical value
statistic v,(R) such that

P(U < v0(R)) = 1 -a (5.5)

for all 0, where

R = (5.6)
S1/n, + Sl5/n2

is a sample estimate of 0, and the probability is determined assuming that the null hy-
pothesis is true. They proceed to calculate an asymptotic series for v,, including terms
of O(1/(ni - 1)'). This series provides a test which is very nearly similar for all but very
small sample sizes. Of course, in the light of Linnik's results, it should not be surpris-
ing that no bound was given by Welch and Aspin for the distance between their series
approximation and a solution to (5.5).

For ni and n2 less then about seven, this asymptotic series is not adequate, and so
Trickett and Welch (1954) consider an alternative numerical approach. Equation (5.5)
can be written as an integral equation, and Trickett and Welch do so by conditioning on
the variance estimates and averaging over their distributions. We will derive this integral
equation next, using a somewhat simpler approach.

5.2.1 The Trickett-Welch Equation

The sample means can be written as

Xi = y + Zo/jIV-n, (5.7)

where the Zj are iid N(O,1), and j = 1,2. So,

X 1 - X 2 = (l - /2) + Z3 Vl/n, + 2/n 2 , (5.8)

for Z 3 - N(O, 1), and

Z X 1 -,X 2  N(b, 1), (5.9)
or,/n, + U22/n 2
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with
_ UI - A2 (5.10)

Vo/fli, + 0,22/n2

would be a natural test statistic to use if we knew the variances c? and 27. Not knowing

these, we use the estimate U X, - X2
l-Xs2 + (5.11)

S/n, + S2/n2

where

,= s? x 2 (5.12)
a2 V

and

V 2S 2 XL(5.13)
a2

with vj ni - 1, are independent of each other and of Z. Let

a'lS? •'2S•
W - S L2S2 = ,- -V1 + V2, (5.14)

01 2

and
- ' (5.15)

and note that

U (XI_- -X2)1/ n /+ 2/f2 (5.16)
I+ 2V2 /(n 2V2 )/ T//l + n,2/nl2

= Z ( O V l + ( 1 - -_9 )v - 1/2

SV1 V2 2)

= Z {WfeY/IV + (1 - 0)(1 - )TV2]}-12,

= (V_ + V2)YO+ (1 - Y)(1 -+ 1/

VW7(vi -+ 2) {f/ + V1/ +2 I I

where Z, V1, and V2 are independent random variables with distributions independent of
the parameters.

It is well known, and easy to show, that
W V2 (5.17)

is independent of
Y - Beta(v 1/2,v 2/2). (5.18)

We can see from (5.9) and (5.16) that under HO the distribution of U depends on the
parameters ul, P2, a,, and a2 only through the nuisance parameter 0, so it is natural to
use a test of the form: 'Reject Ho if U > v,,(R)', where

R S2/n= - O +) (5.19)

S2/n, + S2/n2 = YO/VI + (1 - Y)(1 - O(,Y)5
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is an estimator of O. If Ho is true, then

Z
W/(v+ (5.20)

that is, T has a t distribution with vi + v2 degrees of freedom. Hence the events

{U •< v(R)} (5.21)

and
_y(1 )]1/

{T < v,(R) {(LI + V2) 2 + (5.22)

are equivalent.
Therefore we want to find va(R) so that, for all 0,

Pe[U < v,(R)] = E T,+,+, v,(R) (vI + V2)[Y + 1 0)]
(5.23)

where E{-} denotes the expectation, under the null hypothesis, of an expression depending

only on one ran'om variable Y, which has a Beta distribution, and where T,,+,, is the
cumulative of the t distribution with VI + v2 degrees of freedom. Thus our expectation
can be represented as an integral of the form

j k{O, y, v.[0(0, y)]}dy. (5.24)

We write the Trickett-Welch equation in full as

f k{f,y, v.[0(0,y)]}dy = g(0) 1- - a, (5.25)

where
YO/v(

~(B, y) = yO/vI + (1 - y)(l - 0)/V2 ' (5.26)

k(O,y,v,) = Beta (y;v,/ 2 ,v2/ 2 ) (5.27)

T.{• v,(Oy] +vI + V2) [LO + (1- 01'l 0)
V2 [ 1 V- [0)/ 0] 01y) V V2/2 1

Beta (y;vl/2,zV2/2) - 1- + v2)12] Yv./2-1(1 -F (vi/2) r (v2/2)
(5.28)

and

T /(0 r[(J + 1)/21](1 + x 2 /v)_(,+l)1/2dx. (5.29)

Note that vQ(r) is the same function of the deterministic argument r that v0,(R) is of the
random variable R.

We will sometimes use functional notation and write (5.23) as

F(vG) = I - a. (5.30)

This is equivalent to the integral equation (5.25), which Trickett and Welch solve numer-
ically.
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5.3 Quasi-Newton Methods and the Trickett-Welch Algo-
rithm

Trickett and Welch approximate a solution to (5.23) by using a quasi-Newton iterative
algorithm. In Chapter 4, we introduced iterative algorithms for nonlinear integral equa-
tions in general. In this section, we discuss, in the context of the Behrens-Fisher problem,
the quasi-Newton algorithm which Trickett and Welch used, as well as a Conditional
Expectation algorithm.

5.3.1 Newton's Method

We will begin examining the application of iterative algorithms to (5.23) by considering
what Newton's method is for this problem. Assume that v. solves (5.23), and expand to
first order about an approximate solution v°. Using functional notation, we have

F(vQ) = 1 -a ; F(v°) + F'(v°)(v. - va), (5.31)

where F'(v°) is the Frdchet derivative of F evaluated at v°.
If we regard (5.31) as an equality, and solve

F'(vo)h _ F,(vo)(bi - vo) = I -a -F(v°) (5.32)

for h, then we will be able to take a Newton step. Equation (5.32) is equivalent to

E ý(R) L, .) - ,
E( { V()Iv + V2) L11 + (1-8)2- ) (5.33)

1 - F(v0),

where T,, denotes the t density with v degrees of freedom.
Since Newton's method is quadratically convergent (when it does converge) in Banach

space, for v.'close enough' to a solution, one might think that Newton's method would
be a good choice for this problem. However, as discussed in Chapter 4, we must keep in
mind that, although (5.33) is a linear integral equation, it is ill-posed and difficult to solve.
Also, the Behrens-Fisher problem has either none or else only pathological solutions, so
we have no reason to expect that Newton's method will work well, even when applied to
a discretized problem. It turns out that more conservative, linearly convergent iterative
algorithms perform quite well for this problem.

5.3.2 Quasi-Newton Procedures

We will suggest two simple algorithms based on approximating the Newton-step equa-
tion (5.33). The first approximation is used by Trickett and Welch and is adequate for
the Behrens-Fisher problem. The second approximation is a form of the Conditional Ex-
pectation algorithm of Chapters 3 and 4. There are heuristic reasons (Section 3.2) to
suspect the Conditional Expectation algorithm to be an improvement over the original
Trickett-Welch procedure, however, for the Behrens-Fisher problem, there is virtually no
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difference between results obtained using the two procedures. We have used the Condi-
tional Expectation algorithm in the calculations below, but the simpler Trickett-Welch
algorithm results in the same iterates to several significant figures.

The Trickett-Welch Algorithm

Figure 5.1 show a contour plot of a typical kernel for the Newton step equation (5.33).
To be specific, we have taken n1 = 20, n2 = 10, v. equal to the constant 1.65, and
a = .05. We refer to these contours as typical since the shape of the kernel does not
depend strongly on v,. The effect of nj and n2 on the kernel is primarily limited to the
location and sharpness of the peak - the contours remain nearly straight vertical lines over
a wide range of nj and n2. Also, for most applications, it is sufficient to consider a in the
range .01 < a < .10, and, over this range, the shape of the kernel remains qualitatively
similar.

For the example with n1 = 20 and n 2 = 10, the variance of Y is small, so the kernel
is sharply peaked in y (and the location of this peak is almost independent of 0). The
mean of Y, VII(Vi + V2), is near the mode of the density of Y and is indicated by the
broken line. The effect on the kernel of changes in v2,, of the magnitude which occur in
practice does not significantly effect the conclusion that the kernel is generally sharply
peaked near y = VI/("V + V2). Trickett and Welch note this fact, and use it to motivate a
quasi-Newton procedure.

Since the kernel has a peak in y which does not depend very much on 0, Trickett and
Welch replace the argument of the expectation in (5.33) by the value that this function
assumes when Y = V1/(V1 + JV2). If we let y. =_ l/(vl + v2), then the Trickett-Welch
approximation is

h[0(0,"'A(Vi + V2) (OY + (1- 0)(1 - Y)) (5.34)

h[T( G1( , Y ](V + "2) + ( (1 - 0)1* )• T',+V2 V[O(oo, Y)] (( V1 v2 r V2

".T"C V1 [+)(9 T2))(S\ (+12 + 0(1 - 0)() -2.)

=h(O)T.,+. 2[v.0(0)11

where we have used
00(, y.) = 0, (5.35)

and

I( '1+2)(!y+ (1+ - 0)(1 Y)) =l'.s(5.36)

Since h(O)T,+,,[v°(O)] does not depend on the Beta random variable Y, it can be
taken out of the expectation in (5.33). Equivalently, since h(O)T.+,,[v°(O)] does not
depend on the variable of integration y, it can be taken out of the integrand if (5.33) is
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written explicitly as an integral equation. Having made this approximation in (5.32), we
solve for an h(O) which approximates the Newton step h(8):

h(O) ; h(O) = (5.37)

Given v., we can calculate the right hand side of (5.37) numerically for any values of 0
that we choose, and thereby determine the approximate Newton step h(O) at as many
points as we like. Since 0 takes the role of a dummy variable in (5.37), by determining
h(1) we also determine h(r) for the same values of the independent variable as h(O). We
let the next approximation to v, be

'•(r) = vO(r) + h(r), (5.38)

where we use an interpolation rule in order to get functions for all r E [0, 1].

The Conditional Expectation Algorithm

We now apply the Conditional Expectation algorithm in the form (4.16), that is, by taking
one inner iteration, and by using the zero function as the initial iterate for the inner
iteration. Using the notation of Chapter 4 for the kernel in the Newton step equation, we
write (5.33) as

1- a- F(v)= k'{0,y,v°[¢(O,y)]}h[O(o,y)]dy (5.39)

We know that k'{9, y, vj[0(0, y)]} has a pea.k in y at approximately y. = v1 /(z' + v2) for
all 0, so we approximate h[0(0, y)] by

i,[4(0, y.)] = h(o), (5.40)

which leads to the Conditional Expectation method quasi-Newton step

I - a - F(v°) (.1
h(O)f k'{,y,v[(,y)}dy (5.41)

In the next section, we illustrate the Conditional Expectation algorithm with quasi-
Newton step (5.41) by means of a numerical example.

5.4 A Numerical Example

In Figure 5.2 we present the result of applying the Conditional Expectation algorithm for
the case of nj = 20 and n2 = 10. We have chosen values of the nuisance parameter to be

0 = '-' for i = 1,...,m + 1, (5.42)

where m = 24. Integration is by 25 point Gauss-Legendre quadrature, and the function
vo is interpolhited using a linear spline in order to evaluate F(v.) numerically. Appendix
C consists of the function, written in the S programming language (Becker, Chambers
and Wilks, 1988), which was used to interactively perform the calculations.

The successive approximations v. are displayed in Figure 5.2, and the successive cal-
culations of the actual size (as a function of 0) for a nominal size of a = .05 is presented
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in Figure 5.3. The actual size is calculated at the 25 nuisance parameter values chosen

for the discretization. In practice, the true nuisance parameter will be between two of

the values used for the discretization, so the numerical demonstration of near similarity in

Figure 5.3 is a bit deceiving. However, when the actual size is evaluated for other nuisance

parameter values, the actual size is found to be still virtually equal to the nominal size.

We have added to Figures 5.2 and 5.3 the critical value and actual size from the

commonly used Welch's approximate t method (Welch, 1937; Bickel and Doksum, 1977,

p. 219), that is
E(~a- T'•,)(1 - ck), (5.43)

where T- 17 is the inverse of the t cumulative, and the degrees of freedom v is given by

v(R)_ [ + n1R -2] (5.44)

and R is the nuisance parameter estimate (5.6). Althougn the Conditional Expectation

results are outstanding, the simple approximate t method also provides a nearly similar
test.

Welt Y's approximate t is certainly easier to use than the method which results from
'solving' the Trickett-Welch integral equation, and for most applications the approximate

t provides a test that is as near to being similar as is necessary. But the Conditional

Expectation method can serve another purpose, even if it is not used very often in prac-
tice. Ad-hoc approximations such aq Welch's t are often compared on the basis of their

nearness to similarity, and also power (see, e.g., Best and Rayner, 1987). Measuring the

distances between an ad-hoc critical function and a critical function for an 'exactly' sim-

ilar test provides information on how close a proposed confidence interval comes to 'the
best possible' result.

No detail can be obtained from Figure 5.3 except for the first few iterations because
the convergence to similarity is so rapid. Also, it is difficult to infer much about the rate of

convergence from Figure 5.3. In Figure 5.4 we see the distance, in the L,, norm (maximum
absolute deviation) , from the nominal size in a semilog plot against the iteration number.

We can see from Figure 5.4 that the rate of convergence is rapid at first, and then even-

tually decreases to the point where, after twenty or so steps, it hardly seems worthwhile

to continue. Intuitively, this is consistent with our previous discussion of the convergence
of Richardson's algorithm. After the components of the initial approximation in the di-

rections of the dominant eigenfunctions decay, the 'less important' eigenfunctions remain,
and these decay much more slowly since they correspond to sma'ier eigenvalues.

In summary, these results are quite spectacular. Although there is no exact solution
to the Behrens-Fisher problem, we are able to easily determine a smooth critical function

for which the L¢, distance of dhe right hand side from 1 - a is less than 10-6!

5.5 The Power of Tests for the Behrens-Fisher Problem

If the null hypothesis is not true, then P(U < va(R)) is the power function for a test

using the critical value v0,(R). We can easily obtain an expression for the power, using
the same approach as in SectioT, 5.2. Since the null hypothesis is not true, we obtair

Z+6
U = ,- T,..+, 2() (5.45)

v/W/(n +
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where T,,, +,,2 (6) denotes the noncentral t cumulative with n1 + n2 degrees of freedom and

noncentrality parameter 6 given by (5.10) instead of the expression

Z
"" Tn +n2 (5.46)VW/t(nl + n2)

which appears in Section 5.2. The power is

r(6)e = 1 I- £ T,,+,, [v(R) {(ni + n2 ) -I + V- I I1 - b)] , (5.47)

where the notation 7r(6)o indicates that the power is a family of functions of 6, indexed
by the nuisance parameter value 0.

We calculate (5.47) numerically next as a continuation of the numerical example of
the previous section. As an example of a power calculation, we compare the Conditional
Expectation procedure with Welch's approximate t. It only makes sense to compare the
power of tests which have the same size, so we begin by examining Figure 5.2 in order
to determine a 0 value for which the sizes of the two methods are nearly the same. We
thereby choose 0 = .35 for the value of the nuisance parameter, and calculate the size
of the Conditional Expectation method to be .05000073, and the size of Welch's t to
be .049928. The power function for the Conditional Expectation method is displayed in
Figure 5.5. The power curve for Welch's t is not graphed in Figure 5.5 since it would not
be discernible from the other power function. The difference in the two power functions
(times 1000) is displayed in Figure 5.6. Note that the maximum difference between the
powers is not much larger than the (very small) difference between the sizes. It seems
that the test derived by the Conditional Expectation algorithm achieves near similarity
without sacrificing power relative to Welch's approximate t test.
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Chapter 6

One-Sided Tolerance Limits for a
One-Way Balanced
Random-Effects ANOVA Model

6.1 Other Applications of Iterative Algorithms

The Behrens-Fisher problem is only one example of a normal-theory problem with a
nuisance parameter. Other examples include: confidence intervals for the common mean of
two normal populations and one-sided prediction intervals for a one-way balanced random
effects model. The (unmodified) Trickett-Welch algorithm has been applied successfully
to these problems by Maric and Graybill (1979) and Wang (1988), respectively. In fact,
Maric and Graybill apparently independently discovered the Trickett-Welch algorithm.

We will discuss another problem, one which has some importance for applications and
which was the starting point for this thesis. This problem concerns one-sided confidence
intervals for a quantile of a normal population with two components of variance estimated
using data from a one-way balanced random-effects ANOVA model,

These tolerance limits are important for characterizing the strength of composite ma-
terials (Mil-HDBK-17C, 1992), and there was concern over the conservatism of an approx-
imate procedure for this problem due to Mee and Owen (1983). Attempts to reduce this
conservatism led to the application of the ideas first of Welch (1947) and later of Trickett
and Welch (1954). The integral equation for this tolerance limit problem is substantially
more complicated than the Trickett-Welch equation (5.25) of Chapter 5. Consequently
only first order terms of the Welch-Aspin type asymptotic expansion are tractable, and
the Trickett-Welch algorithm does not work at all. However, the Conditional Expectation
algorithm is very effective on this problem. In addition to this thesis, this work is reported
on in Vangel (1987, 1990, 1992).

6.2 The Tolerance Limit Problem

Let X be a normally distributed random variable with mean u and variance a2 = ab + a,
: A lower confidence limit for a quantile of this population (i.e., a lower tolerance limit)
is to be determined using data from a one-way balanced random effects ANOVA sample
with between-group and within-group variances a2 and a2 respectively.
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For example, let X represent the strength of a randomly selected specimen of a ma-
terial manufactured in a batch which can be considered to be randomly selected from a
population of batches. A quantity of interest to aircraft designers is the 'B-basis value',
which is a 95 percent lower confidence limit on the tenth percentile of the distribution
of X. For this situation, it is important that nearly the nominal coverage probability be
attained whatever the unknown population variance ratio. It is also very desirable that
the calculated limit be as large as possible, since unnecessarily low values cause undue
conservatism in design.

We discuss below techniques for determining one-sided tolerance limits for X based
on a random sample of J items from each of I batches. A (03,f) lower tolerance limit is a
statistic T such that at least a proportion 3 of the population is covered by the interval
(T, oo) with probability at least -. The methods developed here for lower tolerance limits
can be adapted in an obvious way to upper limits. We will refer to 0 as the coverage and
7 as the confidence.

This problem was first considered by Lemon (1977) who proposed an approximate
solution too conservative for most applications. Mee and Owen (1983) greatly improved
on Lemon's results by using a Satterthwaite (1947) approximation. Seeger and Thorsson
(1972) proposed the same approximation for the corresponding two-sided problem. The
Mee-Owen method is reviewed in Vangel (1990) and will not be described here. Instead,
we will regard this problem as a typical normal-theory inverse problem, requiring the
solution of an integral equation, and apply the Conditional Expectation algorithm.

First we shall consider the case where the nuisance parameters are known. Then
we shall develop a Welch-Aspin type of expansion. The latter can serve as an initial
approximation for the Conditional Expectation algorithm.

6.3 The One-Way Balanced Random-Effects Model

Let Xii denote the jth of J observations from the ith of I batches. If Xij follows a
one-way balanced random-effects model, then

XAj = p + bi + ej, (6.1)

where p denotes the population mean, p + bi denotes the mean of the ith batch, and
eii is the error term. The bi's and the ei's are assumed to be independently distributed
normal with mean zero and variance a2 and ar2 respectively. An observation X from this
pcpulation is thus normally distributed with mean p and variance

2 + 2 (6.2)

Let n = IJ denote the sample size: The parameters p, a 2 and a 2 of the random effects
model can be estimated by the pooled mean 4, the within batch mean square MSe, and
a linear combination of MS, with thz between batch mean square MSb where:

X. =(6.3)
j=1 .=

Xi= E Xi,/J, (6.4)
j=0
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MS= .... (6.5)

and

EE I"J-1 (6.6)i=l j=l

An unbiased estimator of the population variance ax is

&X = MSb/J + (1 - 1/J)MSe. (6.7)

For 0 < / < 1, let zO, be the 3 quantile of the standard normal distribution, i.e

0 = 1_ e-_t2/2 dt. (6.8)

A (/, 7) lower tolerance limit is a 100- percent lower confidence bound for

P - z~ax. (6.9)

By analogy with the single sample case (see, for example, Owen (1968)), we seek an
estimator of the form

A - k&x, (6.10)

where k is chosen to satisfy, for all a2 and o, 2
b e•

P(A - k&x :_ M - zcax) = y. (6.11)

Since A has a normal distribution with mean y and variance

a2 = (g°2 + a2)/n, (6.12)

we can rewrite (6.11) as

P Z +-'iz <- b=, (6.13)

where

Z- =- , (6.14)

b=- Fr:+l (6.15)

and

ab 2/ ae,. (6.16)

The random variable (6.14) has a N(0,1) distribution, and is independent of (6.7), whose
component terms are independent.
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6.4 An Exact Solution for Known r

For a simple random sample, a solution to the one sided tolerance limit problem is readily
obtained in terms of the noncentral t distribution (see, e.g., Owen 1968). If one assumes
that the variance ratio r is known, then the corresponding problem for a sample from

a balanced random effects model can be solved almost as easily. What is required is

the distribution: of a 'generalized noncentral t' random variable, a generalization of the

noncentral t to a random variable with the square root of a linear combination of two
X2 random variables in the denominator. In this section, we derive this distribution, and
then we show how it can be used to solve the tolerance limit problem for known r.

Let the random variables Z, Y1, and Y2 have the following distributions:

Z ,, N(0, 1), (6.17)

and

-3 nx,, (6.18)

for j = 1,2, where Z, Y1, and Y2 are mutually independent. We will call A a generalized
noncentral t random variable if A has the form

A = (n, + n 2 ) 1/ 2 dl + d2 Y'(6.19)

where dj, d2 , and 6 are constants with d, and d2 positive.

We will find the distribution of (6.19) by a technique very similar to the approach

used in Section 5.2.1. We express A as the product of a noncentral t random variable
times an expression involving only known constants and a beta random variable. Since

the two terms in this product are independent, conditioning on the beta random variable
and integrating yields the distribution of A.

The random variable A is easily seen to be equal to

A Z +6f Y1 + Y2  11/2

/(.Y1 + Y2 )/(ni + n2  d + d2 Y2 1

T , Yd, d2 '2 ]-1/2

)Ii + Y2 Y1 + Y2 .T-T/dY + d2 (l - Y)' (6.20)

where T has the noncentral t distribution with degrees of freedom n1 +fn2 and noncentrality

parameter 6, denoted T,•,+n 2(6), and Y has the beta distribution, with parameters ni/2
and n2 /2, denoted Beta (n,/2,n2 /2). It is well known (e.g., Fleiss, 1971) that Y has

the claimed beta distribution, and that L =- Y + Y'2 is independent of Y. Since Z is

independent of Y,, hence of Y, by assumption, it follows that T and Y are independent.

By conditioning on Y, we see that

FA(t) =- P(A <( t) = P IT <_ td( Y + d, - Y)] (6.21)
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where Ti(t,6) denotes the noncentral t cumulative distribution with f degrees of freedom
and noncentrality parameter 6, that is

Tf (t, b) P P[Z <tvki (6.22)

where C1 denotes the x 2 density with f degrees of freedom and *(.) is the standard
normal distribution. Thus, FA(t) can be expressed as an integral of a function of y, i.e.
the argument of T in (6.21) times the beta density. FA is a distribution with argument t
and implicit parameters n1 , n2, dj, d2, and 6.

For the tolerance limit problem, we have using (6.13) that,

P (Z+zo <vkb) =P ( Z-+<k = < (6.23)

Let nj = I - 1 and n 2 = I(J - 1): the between-group and within-group degrees of
freedom, respectively. Since the mean squares MSb and MSe are proportional to X2 random
variables, we see that

MSb = (Jab2 + a2)Yi/ni, (6.24)

MSe = a4Y 2 /n 2, (6.25)

and
&2 = (o6 + a4/J)Yi/nj + (I - 1/J)a4Y 2/n 2 . (6.26)

Simple algebra now leads to

-nb Y (6.27)
a"x I -- Jr+-1'

where r is the variance ratio, r = a2/aT 2

If we let

dl (n, + n2)I (6.28)
I-1

and
d2 = n7 + n2 (6.29)

Jr + '

then, for these specific values of nj, n2 , dj, and d2, with r known, we have that

P(it - k&x :_ p - zoax) = FA(k) (6.30)

and
bn(r + 1)(6.31)

6 -- abv•- zl "•rr -I,)'

A constant or function, such as the constant k in (6.30), which leads to a tolerance limit
is called a tolerance limit factor. The value k(r) of k such that FA(k) = 7 thus provides
an exact solution to the problem for known variance ratio r, where FA(k) depends on ab

and a, only through r.
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Later we will consider the case where the constant k is replaced by a function

c = c(MSb, MSe).

In that case, t in (6.21) can be replaced by c as long as c can be represented as a function
of the mean square ratio:

MSb =(Jr+ n2Y,
M Se n- " (6.32)

The result is an integral equation depending on a2 and ac2 only through r.

6.5 The Solution for Unknown r: A Welch-Aspin Type
Asymptotic Expansion

For unknown variance ratio, the tolerance limit problem is closely related to the Behrens-
Fisher problem. Since it is well known that there is no 'well behaved' solution to the
Behrens-Fisher problem, it is likely that a tolerance limit factor for which the correspond-
ing tolerance limit has exactly the nominal confidence for all r does not exist. However,
we can proceed as if a tolerance limit factor does exist and attempt to approximate it.
Following the work of Welch (1947), Aspin (1948), and Trickett and Welch (1954), we will
propose three tolerance limit factors, which we will sometimes refer to as 'solutions'.

The first solution discussed is based on an asymptotic expansion (for large I and J) of
the type considered by Welch and Aspin; we will call this solution the Asymptotic Expan-
sion tolerance limit factor. While computationally simple, the first order approximation
presented here is anticonservative and may only be suitable for many batches.

We could improve this procedure by taking higher order approximations. However,
this becomes very tedious to carry out. Instead, we propose an ad-hoc modification to
the Asymptotic Expansion tolerance limit factor which is very easy to use and which is
adequate for most applications. We will refer to this result as the Modified Asymptotic
Expansion tolerance limit factor. In Section 6.6, the tolerance limit factor as a function of
the mean square ratio will be obtained approximately as a solution of an integral equation
by means of the Conditional Expectation algorithm. The Conditional Expectation toler-
ance limit factor which results provides confidence extremely close to the nominal level for
all values of the nuisance parameter: even for very small sample sizes.

To simplify the notation in what follows, let S2 be the mean squares, a? their expected
values, and ni the associated degrees of freedom for i = 1, 2, i.e.

S2= MSb o'=-Jcr+er, na =I-1,
S•=MSe, a 2 = 01 2, n2 = IV 0-1)

The pooled sample size is n = IJ and the population variance is denoted by

S2 = ( 2 cr/J + ,(1 l1/J), (6.33)

and estimated by
S 2 = 2 = S2/J + S(1 - l1/J). (6.34)

The subscript X for the population variance and the estimate of this variance will be
omitted for the remainder of this section.

We will consider tolerance limits of the form i - k6rx. If the variance ratio r were
,nown, then the factor k(r) determined from the generalized noncentral t distribution
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in Section 6.4 would be appropriate. Since r is not known, but can be estimated as a
function of S' and S2, we will replace k by c(S2, S2). We will call c the tolerance limit

factor, and we define h(S?,S•) to be cI.
The tolerance limit corresponding to this factor c can be expressed as an expectation

with respect to the distributions of the mean squares in terms of the standard normal
distribution, so that (6.11) becomes

= P( -c& <a-zaa)E [0t(oy/~n -)]
= E ( S, 2 6)] (6.35)

where as above
S n!(r + 1) _ a (6.36)

6=0 Jr +1 -a, /Vi (.36

The problem is to determine a function h(S?,S?) so that (6.35) is approximately
satisfied for all ao and a2 . If tolerance limits on the median are desired, then 6 = 0
and the results of Welch (1947) and Aspin (1948) can be used directly. If 6 is not zero,
the idea behind the Welch-Aspin derivation can still be applied, although the algebra is
considerably messier.

The Welch-Aspin approach makes use of differential operators in order to develop an
asymptotic expansion for h (for large I and J). The same approach can be used here,
but for first order calculations the algebraic simplifications which result are insufficient
to justify the additional formalism which the operator technique requires. Hence, the
discussion below consists of a straightforward Taylor series derivation. Of course, both
methods must give the same answer, and this has been used to provide a check on the
calculations.

We begin by rewriting (6.35) as
E[,(z, + U)] = 7, (6.37)

where

z' + U = h (S2,S2) 6. (6.38)

We then expand h in a series of inverse half-powers of ni:

h = ho + hi + o(1- 1/ 2 + j- 1/ 2 ). (6.39)

Up to terms of second order in h we have that

U hi(S?,S) + ho(S,S) (6.40)aI ,/Vn+ a I ý %fn al/V/n z",(.0

where we have substituted (6.36) for 6.
For the zeroth order approximation we approximate h(S2?,S?) by

ho( S,, S2) ;z1 ho(13 ', )
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and we have, U = 0 and
a,/v/ • - Z., = 0 (6.41)

or
ho(S2, S2 ) - !IS' + zOS. (6.42)

For the first order expression, we approximate h by

ho(S2,S22) + hi (S,,S2) ;- ho(S2,S2) + hi(,,,o) =

z~ [i+ - ) + z~a [1 + Q-- 1)] + hi (Or2'a22) (6.43)

then

UhY' )+ZU2 + , (6.44)U = ,U•+ z•2 + al/V/.•

where
U1 = -1 (6.45)

a7l

and

U2 =;7/-/-n Ga 1)(6.46)

Let Yi denote a X2 random variable with ni degrees of freedom and define

Vn, = L - 1 (6.47)
ni

for i = 1,2. The Ui can be expressed in terms of the V,,, as follows:

U1 = (1+ Vn) 1/2 - 1, (6.48)

U2 = -((a +V-1)(1+V)+ (1+V )1 (6.49)

After expanding the square roots in (6.48) and (6.49) in power series, one can readily

obtain approximations to the first two moments of the Uj suitable for first order calcula-
tions:

1

E(Uj) • 47--' (6.50)

E U1 (6.51)
(U 2n,"

E(U2) 1 [al + a2] (6.52)EU2) a "4 +• L'2

E(2 2al1• I ' (6.53)

and

E(U1 U2) (6.54)
114aIV- 2n,

114



where

a•3 n1/2
:_ I _2 (6.55)

and

a2 = ;3 j j) 2 n1 / 2 . (6.56)

The next step is to expand the normal cdf about z.., so that (6.37) can be replaced by
the following approximation:

E [ý (z-, + U)I = 7 ]

+¢(z-y)E(U) - z•¢(z.-)E(U 2 )/2, (6.57)

where 0(.) denotes the standard normal density. The expectation of U can be determined
immediately from (6.44), (6.50) amd (6.52). Since

E(U2) ,Z z2 E(Uj2) + z2E(U2) + 2zaE(V, 2), (6.58)

we need only substitute (6.51), (6.53) and (6.54) into (6.58) in order to complete the
evaluation of (6.57).

To complete these calculations, solve (6.57) for hi(o'2',a) (note that h, appears
through E(U)), replace each occurrence of a? or a2 with S2 or S2 respectively (i = 1,2)
and divide hl(S?,S') by S to finally obtain the tolerance limit factor c. The terms of
c = (ho + hI)/S can then be rearranged to reveal their structure. The following expression
for the Asymptotic Expansion tolerance limit factor c is one possibility:

+w + 1)

+ 2 + z 0TW + zjz 1)2W2
n1 n1

+ z/W 3 _ z)z.I(J -(6)59
21 2Q2

zo( J -- 1)2 /iTW3 "1
+ n2•Q2  J (6.59)

where

W (1 + (J - 1)]Q)-1/ 2  (6.60)

and

S2-. (6.61)

The confidence for the above approximation as a function of the population variance
ratio is plotted in Figure 6.1 for a (.90, .95) tolerance limit and J = 5. Note that for many
batches this solution performs well, though for few batches it is anticonservative.
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Table 6.1: Range in Actual Confidence for Approximate Tolerance Limit c"
(3,-)

I J (.90..95) (.99,.95) (.99,.99)
3 2 .929 .962 .931 .962 .970 .993
3 5 .921 .962 .914 .962 .954 .992
3 10 .927 .962 .922 .962 .956 .992
5 2 .942 .960 .940 .960 .981 .993
5 5 .944 .962 .945 .962 .980 .993
5 10 .950 .962 .950 .963 .982 .993

10 2 .950 .958 .950 .958 .989 .992
10 5 .950 .960 .950 .960 .990 .993
10 10 .950 .964 .950 .971 .990 .994

6.5.1 A Simple, Accurate Tolerance Limit Factor Based on an Asymp-
totic Expansion

The following two steps lead to an improved tolerance limit factor based on equation
(6.59). First, omit the terms in (6.59) which are proportional to 1/Q 2, since these are
singular at Q = 0 and are very small for rr.- lerate to large Q. What remains is a
polynomial in W. The random variable zoV/7/W estimates the noncentrality parameter
b defined in (6.36), so a polynomial in W is a polynomial in powers of estimates of the
reciprocal of 6.

There are many ways to choose the coefficients and terms of a polynomial in W so
as to provide approximate tolerance limit factors with good properties. The following
approximation performs remarkably well, considering its extreme simplicity:

c. [utj - uI/v/'+ (uI - ujj)W]/(1 - 1/v'W) for Q > 1
C uIj for Q < 1 '

where ut denotes the corresponding tolerance limit factor for a simple random sample of
size I. We will refer to c as the Modified Asymptotic Expansion tolerance limit factor.

As Q -. o, W -. I and c" -- ut. If Q = 1, then the variance estimate (6.12)
is equal to the pooled sample variance. Since c" = utj when Q = 1, the approximate
tolerance limit for the random effects model, using c" with Q = 1, will exactly equal the
corresponding simple random sample tolerance limit factor for the pooled data. If Q < 1,
then we take c* to equal utj so that the random effects tolerance limit factor will never
be less than the tolerance limit factor corresponding to a simple random sample of size
IJ. Truncating Q in this way is reasonable since Q estimates Jr + 1, which cannot be
less than one.

For any sample size, therefore, c" will provide a tolerance limit which is exact in the
limit of large r and conservative (because of the requirement that c° not exceed utj) for
r near zero. For intermediate r, this tolerance limit can be anticonservative, although the
anticonservatism is not prohibitive, except possibly for very few batches. In Table 6.1,
the range in the actual confidence of the tolerance limit factor (6.62) is given for selected
values of j, ', I and J.
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6.6 The Conditional Expectation Tolerance Limit Factor

For small samples, the first order approximation developed above may not be adequate,
and higher order calculations are clearly prohibitive. An alternative approach to be dis-
cussed next is to formulate the problem as an integral equation, and iteratively improve
on the first order approximation numerically.

It is convenient to transform from the parameter r to

r Jr+ 1 (6.63)

Then

P(A - kbx :_ p - z~ax) = (6.64)

E[1i~2 kr(,+ n2 )
1/ 2  17 + .L.2b(T))

where

6(T) = V,'z,,b= zO i(1+{ !) (6.65)

Y is a beta random variable with parameters ni/2 and n2/2, and b is defined in (6.15).
The parameter r can be estimated by the sample variance ratio (6.32):

S2 n Y(1 (6.66)

where we use Fn,,n2 to denote a random variable having an F distribution with ni and

n2 degrees of freedom.
If we seek a tolerance limit factor of the form

c(S2,S2) = v(Q), (6.67)

the remark at the end of Section 6.4 indicates that we seek a solution v(Q) of the integral

equation

V,(v) = E [Tn,+n 2 v(Q)(n, + n 2 ) 1/2  +I,1 - Y 6(r) =-7, (6.68)
I - rI

where the expectation is with respect to the beta density of Y.

In Section 6.5, we derived two approximations to v(Q), either of which we label here
v 0 (Q). We will improve on this approximation by using the Conditional Expectation
algorithm. Let the approximation at the nth iteration be denoted v"(Q) and define the

iteration
v n+1 = vn + ¢,, (6.69)

where the quasi-Newton step pn is an approximation to the solution un of the Newton-step

equation

7-V"(v")=

E [, (/)(n, + n2 )/2 _ 1- Y

•T+2 (vn(Q)(n, + n2)1/2 '+ ,• , (6.70)
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where T denotes the noncentral t density and V.(.) is given in (6.68).
The noncentral t density with f degrees of freedom and noncentrality parameter 6 can

be calculated by means of the following formula (Odeh and Owen, 1980, p. 272):

Tf(x,b) = L [ Ti+ (x 2 .36) -f2 Tf(x, b)] (6.71)

Since there are computer subroutines available for determining the noncentral t cdf (see,
e.g., Griffiths and Hill, 1985), (6.71) is very useful for computation.

Using the shorthand notation of Chapter 4, we write (6.68) as

I k{r, y, v"[O(r, y)]}dy = g(-) %(6.72)

where
- n2Y (6.73)

ni(1 - y)"

We also rewrite the Newton-step equation (6.70) as

y - k{r, y, v-[.(T, y)]dy = k'{r, y, v"[0(r, y)]I"n[O(r, y)ldy. (6.74)

The kernel of the integral equation (6.72) and the derivative of this kernel with respect
to its third argument are given by

k{r, y, vn[.(r, y)]} - Beta (y; n1 /2, n2 /2) (6.75)

* . .,<2 ( .y)l(n, + "2), , ,!__, +

and

k'•-Y, v,,[O(r, y)]} = Beta (y; n,,/2, n2/2) (6.76)

(n, + n2)1/2 .(,)]( + n2 )1/2  -+ ,6

respectively, where

Beta (y;nl/2, n2/2) - 1(n,/2)( +n2/2)yii(1 - Y)n2/ 2 1 . (6.77)

For any fixed r, we can numerically determine the location y.(r) of the peak of the

kernel, and define
r n 2 y.(r)

q.(r) = nj(l - y.(r)) (6.78)

We propose doing this for many values of r. Inspection of the kernel shows that the peaks

fall on a nearly straight ridge. Qualitatively, the contours of this kernel look much like

Figure 5.1 of Chapter 5. We make the approximation

ý"[0(,r, Y)] . "n[0(r, Y.)] = on"[q.(r)], (6.79)
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and we note that ip"[q.(r)] is not a function of yt and so can be removed from the integrand.
We have the following approximate Newton step

= - f• k{r,y, v'[4(r,y)]}dy (6.80)

f0 k'{r,y,vn[0k(ry)]}dy

which is in the form of a Conditional Expectation step with a single step for the inner
iteration, and with the initial iterate for each inner iteration identically zero; that is, we
have applied the Conditional Expectation algorithm in the form (4.16).

It is fortunate that in our tolerance limit problem, the function y.(r) is nearly inde-
pendent of r. Thus, on[o(r, y)] can be evaluated at or very nearly at a specified grid of
q. values by adjusting r after the nearly constant value y. of y.(r) is approximated for a
typical r value.

One difficulty with the above proposal arises from the fact that, strictly speaking, r
should only be taken to be greater than one, in which case the range of q. values is from
n2ý./[ni(1 - i.)] to oc instead of from 0 to oo as is required for the numerical integration.
Since n29./[n1 (1 - 9.)] turns out to be relatively small we translate the value of q. by this
amount, so that the range of q values will be 0 to co. In other words, we replace vn(q.)
in the approximation

" j - k•r, y, vn(q.)dy + j k'{r, Y, vn(q.)}on [0(7', y)]dy. (6.81)

by vn{q. - n 29./[ni(1 - )o)fl. After this approximation is carried out, the method can
be iterated using

Vn+, n2- 2/ =n [q. 2. & + 0(q.) (6.82)hi(1 - ni.) n(I - )J

to replace v".
With each iteration the value of the constant g. is likely to change and should be

recalculated.
The above simple improvement of the approximation underlying the Conditional Ex-

pectation approach enables one to calculate tolerance limit factors which provide very
nearly the nominal confidence even for few batches and small batch size. Tolerance limit
factors determined by means of the Conditional Expectation algorithm will be referred to
as Conditional Expectation tolerance limits.

The simple Conditional Expectation iteration outlined in this section is easily imple-
mented, and works astonishingly well for this difficult (unsolvable?) nonlinear problem.
Ten or twenty iterations will usually provide a smooth tolerance limit factor which provides
almost exactly the nominal size for all values of the nuisance parameter.

In fact, the calculations are simple enough to be performed interactively, and functions
written in S for doing this are provided in Appendix D.

6.6.1 Polynomial Approximations to the Integral Equation Solutions

The Conditional Expectation tolerance limit factors are, for many situations, well approx-
imated by polynomials in W, where W is defined in (6.60). For the combinations of 13, Y,
I, and J most important for aircraft design allowable applications, the cubic polynomial

S= a + bW + cW 2 + dW3  (6.83)
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was fit, by least squares, to the approximate numerical solutions to (6.68). Since the
numerical method of this section is not useful for the case of I = 2, we only consider
I > 2. The approximate tolerance limit factor i, obtained using the coefficients in Tables
6.2 and 6.3, provides very nearly the nominal confidence for all values of r.

6.7 The Distributions of the Tolerance Limits

Once the function v of Section 6.6 has been determined it is straightforward to calculate
the cumulative distribution function of the corresponding tolerance limit. It is obviously
preferable to compare distributions of confidence bounds rather than merely confidence
levels, and we make such a comparison in this section.

Using the notation of Section (6.6), the tolerance limit cdf is a function H(t) given by

H(t;/3, r) - P(X - v(Q)S < it - ta). (6.84)

For given v(Q), we would like H(t;/3,T') to be less than -i for t < u - z0o, greater than
-y for t > u - z~a, and equal to - for t = u - zoa. This cdf does not depend on U,
and it depends on a2 and a2 only through r. For our procedure 3 is fixed, so we let
H(t; r) = H(t; r,3) and see how well we do compared to the ideal case of known r. Since
this is just the function V?(v") of (6.68) with v'0 replaced by v and ;3 replaced by t, we
are able to examine the entire distribution of the tolerance limit with little more effort
than is required to calculate the tolerance limit factor.

In Figure 6.2, the cumulative distributions for (.90, .95) Conditional Expectation lower
tolerance limits with I = J = 5 are presented for various values of the intraclass correlation
p - r/(r + 1).

Note that all of the curves pass very nearly through (xo, .95), where x0 = p - z~ax,
indicating the striking success that we have had at removing the nuisance parameter, even
for as few as five batches. As the intraclass correlation is increased the random effects
sample goes from behaving essentially like a single sample of size n = IJ when p = 0 to
being equivalent to a single batch of size I when p = 1.

In Figure 6.3 three cdfs are plotted, corresponding to the Mee-Owen method, the
Conditional Expectation tolerance limit and the solution for known r = p - 0. The
intraclass correlation is taken to equal zero and the sample size is again I = J - 5. Note
that the Conditional Expectation tolerance limit is clearly preferable to the Mee-Owen
solution and doesn't fare too badly when compared to the known-r solution.

6.8 Discussion

The situation of primary interest to the aircraft industry, (.90, .95) lower tolerance limits,
is used here for illustration. The methods presented in this chapter include a Modified
Asymptotic Expansion tolerance limit based on the Welch-Aspin expansion (6.62), and
the Conditional Expectation tolerance limit based on the numerical solution of an integral
equation (Section 6.6). The confidence for these two methods and for the Mee-Owen
method as a function of the intraclass correlation is presented in Figure 6.4 for five batches
each of size five.

The various proposed tolerance limit factors, along with the factor of Mee and Owen
(1983), are displayed in Figure 6.5. The Mee-Owen tolerance limit factor is discontinuous
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Table 6.2: Coefficients of i, for (.90, .95) Lower Tolerance Limits

Sample Size Coefficients
I J a b c d

3 2 1.783 8.360 -10.762 6.773
3 3 1.355 2.839 2.725 -0.763
3 4 1.369 1.499 5.960 -2.672
3 5 1.403 1.051 6.880 -3.179
3 6 1.444 0.843 7.118 -3.250
3 7 1.450 0.925 6.843 -3.063
3 8 1.442 0.995 6.714 -2.995
3 9 1.443 0.981 6.748 -3.016
3 10 1.426 1.195 6.275 -2.741
3 00 1.255 1.960 5.233 -2.293
4 2 1.820 -1.036 5.548 -2.170
4 3 1.604 -0.389 4.887 -1.940
4 4 1.559 -0.286 4.848 -1.960
4 5 1.550 -0.307 4.946 -2.028
4 6 1.542 -0.305 4.986 -2.061
4 7 1.531 -0.275 4.964 -2.059
4 8 1.520 -0.241 4.934 -2.051
4 9 1.508 -0.190 4.868 -2.024
4 10 1.484 -0.077 4.702 -1.947
4 oo 1.281 0.940 3.148 -1.208
5 2 1.860 -1.878 5.814 -2.389
5 3 1.710 -1.042 4.462 -1.723
5 4 1.635 -0.743 4.074 -1.559
5 5 1.598 -0.638 3.984 -1.537
5 6 1.574 -0.575 3.939 -1.531
5 7 1.555 -0.516 3.884 -1.516
5 8 1.539 -0.464 3.833 -1.501
5 9 1.525 -0.419 3.786 -1.485
5 10 1.502 -0.317 3.645 -1.423
5 00 1.286 0.707 2.125 -0.712
6 2 1.861 -2.064 5.431 -2.222
6 3 1.721 -1.024 3.607 -1.298
6 4 1.644 -0.747 3.271 -1.162
6 5 1.604 -0.654 3.219 -1.163
6 6 1.577 -0.591 3.186 -1.165
6 7 1.555 -0.533 3.145 -1.160
6 8 1.537 -0.486 3.107 -1.152
6 9 1.523 -0.447 3.077 -1.147
6 10 1.507 -0.387 3.005 -1.119
6 0o 1.287 0.613 1.564 -0.457

121



Table 6.2: Coefficients of f' for (.90, .95) Lower Tolerance Limits

Sample Size Coefficients
I J a b c d

7 2 1.845 -1.974 4.808 -1.924

7 3 1.711 -0.911 2.926 -0.970
7 4 1.637 -0.682 2.682 -0.881
7 5 1.598 -0.609 2.671 -0.905

7 6 1.569 -0.553 2.660 -0.920
7 7 1.547 -0.504 2.637 -0.924

8 1.530 -0.465 2.622 -0.931
7 9 1.515 -0.426 2.589 -0.923
7 10 1.498 -0.358 2.529 -0.914

7 00 1.287 0.558 1.222 -0.311

8 2 1.749 -1.136 2.979 -1.010

8 3 1.660 -0.668 2.260 -0.670

8 4 1.607 -0.554 2.197 -0.668

8 5 1.578 -0.530 2.254 -0.721

8 6 1.555 -0.501 2.281 -0.753

8 7 1.536 -0.466 2.279 -0.767
8 8 1.520 -0.431 2.263 -0.771

8 9 1.506 -0.394 2.236 -0.766
8 10 1.485 -0.315 2.138 -0.727

8 00 1.286 0.520 0.996 -0.220
9 2 1.740 -1.068 2.640 -0.859

9 3 1.651 -0.611 1.943 -0.529

9 4 1.599 -0.511 1.905 -0.539

9 5 1.569 -0.490 1.970 -0.596
9 6 1.546 -0.463 2.001 -0.631

9 7 1.527 -0.429 2.003 -0.647
9 8 1.510 -0.395 1.990 -0.652

9 9 1.494 -0.347 1.949 -0.642

9 10 1.480 -0.308 1.912 -0.631
9 0o 1.286 0.490 0.837 -0.159
10 2 1.730 -0.992 2.343 -0.727

10 3 1.640 -0.556 1.689 -0.418
10 4 1.590 -0.471 1.676 -0.440

10 5 1.560 -0.452 1.748 -0.501
10 6 1.536 -0.426 1.782 -0.537

10 7 1.517 -0.395 1.789 -0.556
10 8 1.501 -0.363 1.779 -0.563

10 9 1.486 -0.322 1.749 -0.557
10 10 1.475 -0.301 1.740 -0.560
10 0o 1.285 0.466 0.720 -0.117
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Table 6.3: Coefficients of ' for (.99, .95) Lower Tolerance Limits

Sample Size Coefficients
I J a b c d
3 2 3.105 4.815 2.357 0.276
3 3 2.554 2.311 9.725 -4.038
3 4 2.543 2.021 10.472 -4.484
3 5 2.552 1.857 10.843 -4.699
3 6 2.558 1.743 11.104 -4.852
3 7 2.555 1.719 11.184 -4.904
3 8 2.550 1.717 11.214 -4.928
3 9 2.501 1.948 10.883 -4.778
3 10 2.468 2.480 9.619 -4.014
3 00 2.269 3.024 9.363 -4.104
4 2 2.933 -0.544 7.263 -2.610
4 3 2.608 0.125 6.989 -2.680
4 4 2.613 -0.082 7.464 -2.952
4 5 2.648 -0.362 7.984 -3.228

4 6 2.671 -0.543 8.324 -3.410
4 7 2.681 -0.646 8.529 -3.523
4 8 2.622 -0.391 8.201 -3.390
4 9 2.622 -0.074 7.463 -2.970
4 10 2.554 -0.062 7.712 -3.162
4 00 2.310 1.071 6.064 -2.403
5 2 2.919 -1.441 6.702 -2.439
5 3 2.608 -0.129 4.949 -1.687

5 4 2.615 -0.310 5.339 -1.902
5 5 2.655 -0.617 5.890 -2.187
5 6 2.682 -0.830 6.283 -2.393
5 7 2.696 -0.961 6.535 -2.529
5 8 2.673 -0.895 6.477 -2.514
5 9 2.606 -0.314 5.540 -2.090
5 10 2.542 0.192 4.248 -1.241
5 00 2.323 0.634 4.351 -1.567
6 2 2.905 -1.421 5.433 -1.856
6 3 2.587 0.036 3.356 -0.917
6 4 2.601 -0.198 3.827 -1.168
6 5 2.637 -0.505 4.387 -1.457
6 6 2.662 -0.723 4.794 -1.671
6 7 2.676 -0.868 5.075 -1.822
6 8 2.556 -0.075 3.805 -1.224
6 9 2.592 -0.350 4.271 -1.451
6 10 2.616 -0.695 4.918 -1.777
6 o0 2.328 0.484 3.356 -1.106
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Table 6.3: Coefficients of ib for (.99, .95) Lower Tolerance Limits

Sample Size Coefficients
I J a b c d
7 2 2.833 -0.830 3.638 -1.000
7 3 2.568 0.265 2.138 -0.330
7 4 2.588 -0.042 2.743 -0.647
7 5 2.616 -0.336 3.300 -0.939
7 6 2.635 -0.542 3.701 -1.152
7 7 2.647 -0.686 3.989 -1.307
7 8 2.575 -0.041 2.770 -0.663
7 9 2.575 -0.421 3.664 -1.177
7 10 2.562 -0.265 3.317 -0.972
7 co 2.330 0.416 2.720 -0.824
8 2 2.728 -0.005 1.697 -0.067
8 3 2.557 0.465 1.219 0.113
8 4 2.576 0.103 1.941 -0.267
8 5 2.595 -0.174 2.493 -0.561
8 6 2.608 -0.365 2.881 -0.770
8 7 2.617 -0.503 3.165 -0.925
8 8 2.585 -0.380 3.006 -0.857
8 9 2.624 -0.671 3.528 -1.127
8 10 2.506 0.535 0.822 0.492
8 0o 2.330 0.378 2.284 -0.638
9 2 2.642 0.758 -0.035 0.778
9 3 2.551 0.620 0.527 0.446
9 4 2.566 0.224 1.338 0.014
9 5 2.578 -0.038 1.883 -0.280
9 6 2.585 -0.213 2.256 -0.484
9 7 2.573 -0.264 2.416 -0.583
9 8 2.592 -0.435 2.737 -0.751
9 9 2.558 -0.218 2.390 -0.588
9 10 2.546 -0.323 2.664 -0.744
9 o0 2.330 0.354 1.968 -0.509
10 2 2.593 1.357 -1.453 1.485
10 3 2.549 0.735 0.001 0.697
10 4 2.558 0.320 0.878 0.225
10 5 2.562 0.075 1.412 -0.068
10 6 2.563 -0.085 1.769 -0.266
10 7 2.549 -0.073 1.792 -0.287
10 8 2.545 -0.168 2.031 -0.427
10 9 2.544 -0.171 2.090 -0.482
10 10 2.516 -0.158 2.123 -0.500
10 c0 2.330 0.336 1.730 -0.415
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because these authors recommend pooling the data if Q < 1. For the most part, the

differences in the tolerance limit factors are not large.
The integral equation approach virtually removes the nuisance parameter from the

problem. The Mee-Owen method has the disadvantage of being substantially conservative
when the variance ratio is small.

From the rescaled plot of the coverage probability function for the integral equation

solution (Figure 6.6) it can be seen that for r > 1 the actual coverage probability differs
from .95 by no more than ±.001. This small difference can be attributed to the limited
accuracy of the numerical integration. For r < 1, however, the difference in the actual and
nominal coverage probability increases substantially, but never does it reach a magnitude
that warrants concern for applications.

Figure 6.7 illustrates the convergence of the Conditional Expectation algorithm for
various values of the intraclass correlation. Note that for practical purposes ten itera-
tions is adequate, although some slight improvement can result from considering more
iterations.

6.9 Examples

We consider two examples in this section. The first example is a situation where there is
considerable between-batch variability, and the second is a case where the true between-
batch variance is zero, since the 'batches' are artificially constructed from a simple random
sample.

A manufacturer of aircraft components always performs certain mechanical tests on
specimens from each batch of composite material. The data in Table 6.4 are coded tensile
strength measurements made on five consecutive batches (R. Zabora, personal communi-
cation, 1988). The results of an analysis using the Mee-Owen method and the methods
of this chapter are also presented in Table 6.4.

All of the tolerance limit methods give nearly the same answer. These three methods
will always agree in the limit of large between-batch variability.

To see how much these methods differ when the between-batch variability is minimal,
we begin with a simple random sample of 180 composite tensile strength measurements
(Reese and Sorem, 1981). The normal distribution fits these data reasonably well, espe-
cially in the tails, so we proceed to choose 25 specimens at random (with replacement)
from this set and to divide these into five 'batches' of size five. These data are given, along
with tolerance limit calculations, in Table 6.5. Note the difference between the Condi-
tional Expectation solution and the other results. Although this difference is a fraction of
a standard deviation, it might be large enough to be of engineering importance for some
applications.

Since the 'batches' in this second example were artificially created, it is interesting to
compare the above random effects tolerance limits with the pooled sample tolerance limit:
209.93 - 1.838(18.38) = 176.15.
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Table 6.4: Example # I: Coded Strength Measurements From Five Batches

Batch Coded Strength Measurements
1 379 357 390 376 376
2 363 367 382 381 359
3 401 402 407 402 396
4 402 387 392 395 394
5 415 405 396 390 395

X•=388.36 S2 = 1040.84 S2 = 78.92 & = 271.30

km0 = 3.072 X - kmoS = 337.76
kt. = 3.063 X - kceS = 337.90

kma, = 3.055 - k,,,aS = 338.04

NOTE: 3 = .9, -1 = .95. The subscripts mo, ce, and mac denote the Mee-
Owen, Conditional Expectation (6.83), and Modified Asymptotic Expansion

(6.62) tolerance limit factors, respectively.

Table 6.5: Example # 2 : Artificially Batched Data From a Simple Random Sample

'Batch' Tensile Strength in 1000 psi
1 203.41 209.58 213.35 218.56 242.76
2 185.97 190.67 207.88 210.80 231.46
3 184.41 200.73 206.51 209.84 212.15

160.44 180.95 201.95 204.60 219.51
5 174.63 185.34 205.59 212.00 225.25

X = 203.93 S2 = 386.04 S2 = 325.56 &, = 337.65

k,m = 2.12 X - kmS = 164.98
k= 2.04 X - kceS = 166. -5

kma, = 1.93 X - knaeS = 168.47

NOTE: 3 = .9, -y = .95. The subscripts mo, ce, and mae denote the Mee-
Owen, Conditional Expectation (6.83), and Modified Asymptotic Expansion
(6.62) tolerance limit factors, respectively.

126



Confidence
0.82 0.84 0.86 0.88 0.90 0.92 0.94

-n

M

0
0)

CL

a I

0

0

CD

0120



Probability
0.0 0.2 0.4 0.6 0.8 1.0

-' 0
= -T
91co

0)

ag,•

0F4

o -"

v 52
r'D

1280



Probability
0.0 0.2 0.4 0.6 0.8 1.0

2 B1

* -n

- (C

CD

.cr.

129

5 0



Confidence Probability
0.95 0.96 0.97 0.98

k) I r

0

2!

00

CO

5-C
o~ 0)

K:_

CaC

3on

"-iv I
CP.O

00

0

130



Tolrance limit factor
1.5 2.0 2.5 3.0

-n

0

03

0
0

C

CDo

;n

1311



i

Confidence
0.9488 0.9492 0.9496 0.9500 -n

C

o €

0o~CD

0<

CD CD

0 0
00

213

02.

0-

um

*00

132E



CD
0)

0)

0

t4

(A

C-

3D

133



134



Chapter 7

An Ill-Posed Inverse Problem in
Stereology

7.1 Ill-Posed Inverse Problems in Applied Science

This thesis has been concerned thus far with describing and applying the Conditional
Expectation algorithm to the solution of integral equations of the first kind, where the
known functions are given without error. Problems of this sort are examples of ill-posed
inverse problems. The study of ill-posed inverse problems in applications, where the
right hand side is observed with error, or where the right hand size is an estimate of a
probability density, is receiving increasing attention in statistics (O'Sullivan, 1986). There
are many examples of inverse problems, in such diverse areas as geophysics, tomography,
water resource management, and stereology.

Problems involving integral equations of the first kind generally arise when a quantity
is indirectly observed. For a linear problem, we have

j k(z, y)f(y)dy = g(z), (7.1)

where g(z) is a function, observed with error, which acts as a proxy for the unobservable
f(y). The kernel, k(x,y), relates the observable, g, to the quantity of interest, f. The
kernel k, which we will always assume to be known, is often a model for the response of
a measuring instrument.

The Conditional Expectation algorithm is rapidly convergent for a fairly wide class of
problems and produces smooth near-solutions. Because this algorithm produces smooth
near-solutions (see Section 1.2.3), it may be useful for certain inverse problems in applied
science as well. We consider next one such problem, the classical random sphere problem
of stereology.

7.2 The Random Sphere Problem

Often investigators in medicine, materials science, and astronomy, among other fields, are
faced with the following situation. Observations are made on a two-phase material where
the first phase consists of spheres of random radius, and these spheres are randomly
distributed in a second phase. Examples include stars in a globular cluster (Wicksell,
1926), tumor cell nuclei in a mouse liver (Keiding et. al., 1972), and air bubbles in
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polystyrene (Meisner, 1967). The distribution of the radii of the spheres is desired, but
data are available only on the radii either of circular projections or else of sections of these
spheres: for example, circular cross sections of tumors measured from a thin slice of a
dissected organ.

This problem was apparently first correctly modeled by Wicksell (1925). A large
literature has its origin with this Wicksell article, including a wide variety of solution
techniques. The interested reader can begin with the reviews of Anderssen and Jakeman
(1974), Jakeman and Anderssen (1974), Cruz-Orive (1983), and Colman (1989). For
purposes of practical stereology, the Wicksell problem has been largely solved, but 'its very
simple structure makes it a perfect vehicle for testing numerical and statistical procedures'
(Coleman, 1989, p. 244) . So this problem is a natural one to consider, and we begin
by introducing some of the theory for a class of integral equations to which the random
sphere equation belongs.

7.3 Singular Integral Equations of Abel Type

Abel's integral equation, in its simplest form, is

f0 (Y dy = g(x). (7.2)

This is a weakly singular Volterra equation. An equation is said to be singular if either
the kernel is singular, the range of integration is unbounded, or both (Porter and Stirling,
1990, Chapter 9). A weak singularity is of the form (x - y)-* for 0 < a < 1. The Abel
equation appears in the solution of the brachistochrone problem with which the calculus
of variations began (e.g., Weinstock, 1974, pp. 19, 28-29), and so it is of considerable
historical, as well as practical, importance.

To solve the equation (7.2) analytically, we apply the operator

Kf o f(Y) dy (7.3)1K Z (X - y)1/2d

to both sides, giving

ds f(t)dt g(s)ds (7.4)

Jo ( -s) 1 / 2 Jo"(S -t)/ 2 =o (X_ S)1/2

Interchanging the order of integration on the left hand side of (7.4), we have

dt X ds - g(s)ds (7.5)

it (X - S)/2(S 1- (/ = (z- 8s)1/2"

The change of variable
s = z sin 2e0 + tcos 2 0 (7.6)

gives /t• ds
= ir (7.7)

(x - s)1/2(s - t)1/2

The solution to (7.2) can now be seen to be

1 d g(t)dtf rx = d'x Jo (.T t 1/2" 78
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Various generalizations of (7.2) are possible, the most important being replacing the
exponent 1/2 in the denominator of the integrand of (7.2) with any a E (0, 1), for which
we have the inversion formula (Porter and Stirling, 1990, p. 293)

sin(alr) d X g(t)dt (79)
7) dx o (x -t ( - (7.9

To use either of the inversion formulas (7.8) or (7.9) numerically, one must perform
numerical differentiation. Algorithms for solving Abel integral equations numerically by
means of the inversion formula use devices such as spectral differentiation and smoothing
to deal with the well-known difficulties inherent in numerical differentiation. Iterative
algorithms, on the other hand, exploit the smoothing capability of the kernel itself, and
do not require explicit inversion formulas.

7.4 The Wicksell Solution to the Random Sphere Problem

A.n argument in geometric probability leads to an Abel equation for the random sphere
problem. We follow here the presentation of the conditioning argument given by Nychka
et. al. (1984).

Consider a single sphere of radius R, where R is a random variable with density f(r).
Condition on the radius R = r, and let this sphere be cut at random by a plane, i.e. let
the distance U from the cutting plane to the center of the sphere be uniform on [0, r],
and let the radius of a cross-sectional circle (a profile radius) be denoted by the random
variable X. Let E denote the event that a sphere cut by the plane has radius r. It is easy
to see that

GXIE(X) = P(X < x1E) = P(U > V Ix2JE) (7.10)

1 -1r- _/r for 0<x_<r
1 for x > r
0 for x <0

The probability that a sphere will be cut by a given plane depends on its radius, r.
Thus the conditional density of the radii of spheres given that they are cut by a specified
plane changes from f(r) to l(r), which is proportional to rf(r). To see this, consider an
infinite population of spheres intersecting a given plane. Replace each cut sphere by the
diameter which is orthogonal to the intersecting plane. The probability density that a cut
sphere has radius r is clearly the ratio of the total length of diameters of length 2r to the
total length of all diameters, i.e.

- 2rf(r) rf(r) rf(r) (7.11)

2fo0 zf(z)dz - foo zf(z)dz - (1

where p is defined to be mean sphere radius, and r0 is the largest observable profile radius.
Let F and G denote the cumulative distributions of sphere and profile radii, respec-

tively, and let l{A)(t) denote the indicator function (2.66) for the set A. We have

G(x) = j[l_ I{r>z}(r)V>r/ x2/r]rf(r)dr (7.12)

= 1--1 vr2-x2f(r)dr.
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Differentiating both sides of (7.12) with respect to x gives an Abel equation relating the
density of profile radii to the density of sphere radii:

gXx) = ;-JO rd (7.13)

Because p is the mean of a random variable (the sphere radius) having density f(z), the
equation (7.13) is actually nonlinear. We will see below, though, that this nonlinearity
does not introduce any serious difficulties.

7.5 The Conditional Expectation Algorithm for the Ran-
dom Sphere Problem

We now apply the Conditional Expectation algorithm (4.16) to (7.13), and consider several
numerical examples. First we discuss how to transform (7.13) into an equation for which

the limits of integration are constant, and then we define the modified algorithm. We
begin the iteration with f0 = g(z).

Let the mean of the sphere radius density fn(x) be

1n _ xfn(X)dx. (7.14)

We now replace the functional p in (7.13) with the constant pn. The result is a linear
integral equation, and a Conditional Expectation algorithm step for this equation is

hn(x) [Jt0  zd [IjY1 X V '-Lt xfrfn~r)drj (7.15)
2-1 [nx xfn(r)drl.

= {x [log (V/•0o x2 + ro) - log(x)]} [I0 _ I 7777T-•d

Following the approach in Appendix A for discretizing Volterra equations (A.3), we
simplify the computation by changing the variable of integration so that the quadrature
points can be chosen independently of x. To do this, we make the change of variable to
w where

r = (ro - z)w + x. (7.16)

If the integral of the kernel is denoted

qWx -T 110 ( 0/T+ 0  logWx) 02-X2+r (7.17)

then, after the change of variable (7.16),

h'(x) = [pg(x)- [0 X(ro - )fn((ro - x)w + x)dw1 q(x). (7.18)
Jo)- V(ro _ X)2W2 + 2uwx(ro - x) I /

We have transformed the Volterra equation (7.13) into a series of integral equations

corresponding to {111}, all with kernel

k(xw) z(ro - X) (7.19)

, q(x)(r0 - x)2 w2 + 2wx(ro - x)'
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for (X, w) E [0, 1] x (0, 1J. This kernel has a singularity along the line {(x, w)Iw = 0}.
Figure 7.1 is a plot of (7.19). Note that k(x,w) drops off very rapidly with increasing w
for each x and that, if h" is evaluated along the singular line, then

h"((ro - x)w + x)l=.0 = hV(x). (7.20)

We can, without loss of generality, let r0 = 1, since this is equivalent to choosing a suitable
unit of length.

We now outline an approach, based on the Conditional Expectation algorithm, for
simultaneously approximating f and p. Let fn be a given sphere radius density, which
we will regard as an approximation to a solution f to (7.13). Corresponding to this fn,
there is a mean sphere radius pn and a profile radius density gn. We can easily determine
the product pgn:

= xfn(r)drdy. (7.21)

We know that gn(x), a probability density, must integrate to one. The mean radius pn is
therefore the normalizing constant:

,,n =jf'§n(xT)dx j [j 2dr dT] dx. (7.22)

From f' we determine, successively, §, p,, gn, and hn (where hn is given by (7.18)).
Now we can calculate fn+1 = f n + hn. Assume, for the moment, that fn+1 is positive.
Since j,+1 need not be a probability density, we let

fI jl+i(X) (7.23)fn~l~xf -If fn+1 (y)dy'

and continue the iteration.
If jn+l(x) < 0 for some x values, the simplest thing to do is to replace fn+l with

max(f"+ 1 ,0) before performing the normalization (7.23). This approach is usually ade-
quate, and it has been followed in the examples of this chapter.

Another approach is to replace (7.13) with the nonlinear equation

g(X) -=1 [1 xef(r)dr1hz /-Z• (7.24)

The Newton-step equation corresponding to (7.24) is easy to determine, and the corre-
sponding Conditional Expectation quasi-Newton step is

u(X) = n(X)dr' (7.25)

which cannot be negative for any z.
The nonlinear iteration based on (7.25) is closely related to the EM algorithm iteration

for this problem (Silverman, et. al., 1990), and to an iterative algorithm recently proposed
by Vardi (1992). However, the iterates from this nonlinear algorithm tend to be less
smooth than those from the Conditional Expectation algorithm, particularly where the
denominator in (7.25) is small.
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7.5.1 Density Estimation Issues

In pract.ce, we ;.re almost never given a density g(x). Instead, we have profile radius

measurements, and the first order of business is to estimate their density. For those

situations where raw radius data is available, Taylcr (1982) recommends using a (variable

bandwidth) Rosenblatt kernel estimator.

If only a histogram of profile radii is available, then this histogram, once normalized,
can be used as a piecewise constant estimate of g(x). Alternatively, one can interpolate

between the points with abscissas at the midpoints of the histogram intervals and ordinates

given by the normalized counts in the corresponding cells.

We discuss in some detail the use of a piecewise constant estimate of g. Let the

endpoints of the ith cell of the normalized histogram be 1i < ui, for i = 1,...,m, and

denote the estimate of g(x) for x E [l4, u,) by 4,. Then, from (7.13) we have, for each i,

that

O, j, O(x) = 1 - .drdx (7.26)

= ki(r)dr,

where
0 0 < r <4

ki(r) < r < ui (7.27)

_1-2 2u? ui < r < 1

where we have set r0 = 1. The kernel (7.27) is continuous in r but discrete in z. Al-

though this kernel is not singular, it does have a peak where r = ui and the Conditional

Expectation algorithm can still be successfully applied.

7.6 Numerical Examples

We begin by considering a simple example for the solution is known:

fR(r) f(r) = 6r(1 - r), (7.28)

where R is the sphere radius, and it = E(R) = 1/2. The corfesponding profile radius

density, g(x), is (Anderssen and Jakeman, 1974, p. 136)

g(x) = 6{xV/1- - x31og[x' + 1/ -i]}. (7.29)

We will consider the cases where g is observed with and without error; and for the case
where g is noisy, we will examine the effects of smoothing. We will also cons;der the case

where instead of the right hand side being a function observed with error, we are given a

random sample of profile radii from the density (7.29). Following this, we will attempt to

invert (7.13) for a real data set on cross sections of liver cell nucleil (Keiding, 1972). The

computations were programmed in S (Becker, Chambers and Wilks, 1988), and the code

is included in Appendix E.
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7.6.1 Sphere Radius Density f(r) = 6r(1 - r)

Let f(r) be given by (7.28) and let g(x) be given by (7.29), where g(x) might be observed
with error. We discretize this problem as in Appendix A by evaluating x and r each
at 25 Gauss-Legendre quadrature points and then we apply the Conditional Expectation
algorithm (4.16) (see the discussion in Section 7.5) for ten iterations.

We consider first the case where g is observed without error (except for computer
roundoff and discretization error), and no smoothing is performed. The results of ten
iterations of the algorithm for this situation is presented in Figure 7.2a-b. The heavy line
in the Figure 7. 2a is the true solution, and the heavy line in Figure 7.2b is the true right
hand side. Note that the algorithm converges rapidly to the solution to the problem, and
that the computations have apparently not been substantially effected by roundoff error.

Next, we introduce error in g. It turns out that, unless the noise level is low, some
smoothing of the profile radii is helpful. Within the S package, it is convenient to use
the function 'smooth', which is an implementation of the '4(3RSR)2H twice' smoother
(Velleman and Hoaglin, 1981). Of course, for a real application, careful consideration
must be given to the density estimation process. However, it is our intention in this
section to demonstrate that the Conditional Expectation algorithm is potentially useful
for certain inverse problems in applied science, so we will not be concerned much with the
details of density estimation.

Let Zi,i = 1,... ,25 be iid standard normal random variables. At each value g(xi) of
g(z) in the discretized problem, we introduce relative error by the relationship

•(xi) g(xi)(1 + EZi). (7.30)

We sometimes smooth the ý(xj) by one pass of the '4(3RSR)2H twice' smoother. The
Conditional Expectation algorithm is then applied with no further smoothing.

In Figures 7.3 and 7.4 we 'roughen' the profile radius measurements by using equation
(7.30) with c = .001 and c = .01 respectively. No smoothing was done, and it is obvious
from the results that no smoothing was necessary. Although noise levels within the range
considered here may seem small (in fact, the perturbed g(x) looks quite smooth to the
eye), it is worth noting that we have demonstrated that the inversion algorithm is useful
with only two significant digits of accuracy.

In Figures 7.5 and 7.6 we show the results from c = .1, both with and without smooth-
ing of g. In Figures 7.7 and 7.8 we examine the extreme case of c = .25, again with and
without smoothing. It is significant that even for these noisy examples, where the per-
turbed g(x) is visibly rough, the algorithm performs reasonably well.

7.6.2 Sphere Radius Density f(r) = 6r(1 - r): Sampling from g(x)

It is straightforward to randomly sample from the density g(x). To do so, begin by
choosing a sphere radius at random from the density f(r); that is, from a Beta (2, 2)
density. Let this selected sphere radius be rj. Next, choose a center for this sphere from
the uniform density on [0,1]; let the chosen center be cj. Let the plane of the profile sections
be at 1. If cj + rj > 1, then the jth sphere has been cut, and we can proceed to select a
profile radius. If cj +rj _5 1, then the jth sphere was too far from the plane to be sectioned,
and the selected rj does not provide a profile radius. Let di E ci + rj - 1. If dj > 0, then

simple geometry shows that the desired profile radius is q r r -(ri - dj)2.
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For a numerical example, we selected 1000 sphere radii, of which 515 were cut by
the sectioning plane, resulting in 515 random draws from the density (7.29). A 50-cell
histogram of these 515 profile radii is given in Figure 7.9. We will explain below the solid
and broken lines in this figure. As a check, we have that the average of these 515 radii
is 2 = .4773 with a standard error of .0092, which is less than one standard deviation
greater than

jxg(x)dx = jo 6x X2~iT _ X3 log[X- 1 + Vý2 i1 ]1 dx -- .4712. (7.31)

We now use this histogram to estimate the density (7.29) as follows. First we form
two vectors: an abscissa vector of the midpoints of the histogram cells in Figure 7.9,
and an ordinate vector of the cell counts. These two vectors determine a piecewise linear
function which we take to be our right hand side g. Next, we evaluate this piecewise
linear interpolant at the quadrature points for 25-point Gauss-Legendre quadrature. We
integrate the resulting function, and normalize it so as to provide a density estimate.
The estimate which results is superposed, suitably scaled, on the histogram as a solid
piecewise linear function. The broken line results from applying one pass of the smoother
'4(3RSR)2H twice' to the solid line. We will refer to the broken line as a 'smoothed
density estimate'.

In Figure 7.10a, successive approximations to the solution are displayed for the smoothed
density estimate in Figure 7.9. The results are disappointing; there is an unwanted peak
near x = 0. This difficulty does not occur in the real data example of the following
subsection, but it is not yet understood. Silverman et. al. (1990) comment on the
same phenomenon when they treat this random sphere problem using a 'smoothed EM'
approach. In Figure 7.10b we see evidence of the ill-posed nature of our problem: the
unreasonable approximation with the unwanted peak still gives a right hand side close to
the smoothed profile density estimate.

7.6.3 A Real Data Example: Liver Cell Nuclei

We now consider a real example, taken from Keiding et. al. (1972). The function g(x)
consists of smoothed midpoints of a histogram of liver cell nuclei profile radii (Keiding,
1972, p. 823).

In Figure 7.11, this histogram is displayed along with the estimate of f(r) which
the Conditional Expectation algorithm provides. The sphere density estimate becomes
slightly negative for small r; it is truncated to zero in the figure. Of course, an estimate
of a profile radius density obtained from real data need not correspond to any sphere
density under our idealized model. Density estimates which are negative in places are
to be expected with real data from any algorithm unless the algorithm constrains the
solution to remain positive. Overall, though, the sphere radius density estimate looks
reasonable, and it compares favorably with estimates for this (and other) datasets in the
stereology literature.
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Chapter 8

Conclusions

The focus of this thesis has been on a simple iterative algorithm for integral equations
of the first kind with positive kernels, which we have called the Conditional Expectation
Algorithm. A study of a numerical algorithm for solving deterministic equations might
be regarded more as work in numerical analysis than as statistics. However there are
numerous connections with this work to statistics, some of which are:

1. The first instance of an approximation to the Conditional Expectation algorithm
appears in the attempt of Trickett and Welch (1954) to find a similar test for the
Behrens-Fisher problem. The Trickett-Welch algorithm apparently converged to a
"--ooth 'solution' for a problem which has either none or only pathological solutions.

2. The Conditional Expectation algorithm has been applied successfully to a difficult
problem in one-sided 1-content tolerance limits for a balanced one-way ANOVA
model, a problem which is of some importance in engineering statistics. The result
is a new method (Vangel, 1992) which provides tolerance limits with confidence level
virtually independent of nuisance parameters. Like the Behrens-Fisher problem, this
problem most likely has, at best, pathological exact solutions.

3. Many other applications to problems in mathematical statistics which can be for-
mulated as integral equations of the first kind are clearly possible.

4. The Conditional Expectation algorithm has been shown to be potentially useful
for certain inverse problems of indirect measurement. This usefulness has been
demonstrated by means of a classical inverse problem of stereology. The statistical
analysis of inverse problems is an area of considerable interest to statistics.

5. The name 'Conditional Expectation algorithm' was chosen to emphasize the prob-
abilistic motivation for the method. We have introduced the notion of stochastic
preconditioning, a process which transforms any positive, bounded kernel into a
conditional density. Each step of the proposed algorithm then constitutes the con-
ditional expectation of the true discrepancy of a solution from the current iterate,
with respect to this density.

In Chapters 5-7 of this thesis we consider, in succession, the Behrens-Fisher problem,
a random effects tolerance limit problem, and an inverse problem in stereology. All of
these problems involve solving nonlinear ill-posed integral equations of the first kind, all
are of statistical interest, and all are successfully treated by the Conditional Expectation
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algorithm. This algorithm has also been useful in several other examples, but we have
chosen not to report on them here. Instead, we have attempted to explain why the
remarkably simple algorithm which we have proposed often works so well on problems
formulated as ill-posed integral equations.

In order to attempt to answer this question we have made a long detour into numerical
and functional analysis, with some interesting results:

1. Sufficient and, in some cases, necessary conditions for the convergence of Richard-
son's algorithm for singular matrix equations have been established for singular and
nonsingular matrix equations. These general theorems provide insight into why such
algorithms can still perform well when applied to inconsistent equations.

2. Several motivations for the stochastic preconditioning which leads to the Conditional
Expectation algorithm have been developed. One of these heuristic motivations
suggested the name for the algorithm.

3. One peculiarity of iterative algorithms applied to ill-posed integral equations is that
these algorithms can produce smooth near-solutions without requiring explicit regu-
larization. There must be regularization implicit in iteration, and this regularization
arises because the kernel of the equation tends to smooth. We have made this idea
precise by showing that each step in a linear iteration minimizes a quadratic form,
which is a sum of two terms. The first term measures how close the present iterate
is to the vector to which it is converging, and the second term (for discretizations
of integral equations with smooth kernels) tends to penalize 'rough' iterates.

We conclude by suggesting three directions for future research. The first is into the
numerical aspects of the Conditional Expectation algorithm, an area in which our results
have been incomplete. This is work for a numerical analyst. The second two areas are of
more statistical interest:

1. Apply the Conditional Expectation algorithm to other problems in statistical method-
ology. These problems include similar tests and confidence intervals in normal the-
ory problems (such as, for example, confidence intervals for linear combinations
of variance components). Another promising class of problems in empirical Bayes
methodology concerns estimating a prior density on a parameter given an estimate
of the marginal density of the data.

2. Explore the role of the Conditional Expectation algorithm in other applied inverse
problems, perhaps in image processing.

This thesis had its origin in 1985, with a chance encounter with Trickett and Welch
(1954), an article virtually ignored in the statistical literature. Some points of interest
along the path followed since then axe summarized in this document. There is much more
to be seen; a fundamental understanding of how the Trickett-Welch and related algorithms
work their magic is still lacking. Perhaps others will take up the trail.
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Appendix A

A Setup for Numerical Problems

To iteratively approximate the solution of an integral equation numerically, we replace
the integral equation by an approximating system of algebraic equations. We then apply
a version of Richardson's algorithm to the solution of this system of equations.

All integral equations which we will consider are special cases of

I k{x, y, f [(x, y)]}dy = g(x), (A.1)

where k, g, and 4 : [0, 1] x [0,1] - [0, 1] are known functions. By choosing a mesh of x
and y values, a quadrature rule, and an interpolation rule for f, equation (A.1) can be
replaced with a system of nonlinear equations.

Note that (A.1) allows for the possibility that the kernel, k, is nonlinear in the un-
known, f. When this is the case, we will linearize this equation, thus reducing the numer-
ical problem to one of approximately solving a linear integral equation, with a different
kernel, at each iteration.

We discuss first a numerical setup suitable for the general equation (A.1), and then
we consider important special cases. Although we present this discretization scheme for
an integral equation on the unit square, extension to other regions is straightforward.

A.1 The General Setup

Let fyi}ý=, be quadrature abscissas, and let {wi}j= 1 denote the quadrature weights. We
choose r points at which the unknown function, f, is to be determined, and we let these
points be {x,}r=.. We define the x, and yj values to be ordered:

and 0_<Yl <Y2<"'<Yr-<

We will use iterative algorithms to solve r equations in r unknowns. Unless O(x,y) =

y, c = r, and xi = yi for i = 1,... ,r, it is necessary to specify a function I which
approximates f by interpolation, and possibly also by extrapolation. We will give the
details of f defined by linear interpolation, and we will use this definition exclusively in
numerical examples.

For any point z* = O(xi, yj) such that x, < z* < x,+,, let

f(z*) A.f() + f(x+-f(X) (A . _ X,). (A.2)
X8+1 - Za

If z* < x, or z° > x,, then it is necessary to specify an extrapolation rule. This will
usually be required if yj < x, or yc > x,. Letxo = 0 < x, and x,+q- 1 > x,. If Zo X1,

162



assume f(0) is known. Similarly, if x,+l # x,, assume f(1) is known. This situation does
not arise in this thesis; if it did one could choose a quadrature rule which did not require
f(O) or f(1).

For z° < zx, define

,i(z*) = fXz) + f(XI) -/(z0) (z. _ ZI), (A.3)

ZI

and for z° > z,, let

f(-,+i) -f(zr)(z - zr). (A.4)1(z*) =- (O' + 1 -, ( (.4

When discussing discrete approximations to integral equations, we will let f and g
denote the r-dimensional vectors

"- f(j)1)
f(z2)

f E (A.5)

f (Xr)J

and
" g(XI)

g(X2)

9 =(A.6)

*g(xr) -

We define I to be the rc-dimensional vector

1[0(xI, YO)]
[b(X1, Y2)]

, =(A.7)

f[O(Xr, Yc)]

where the function f(z) is given by the formulas (A.2)-(A.4) in terms of the elements of

the vector f. All of the elements of f need not be distinct. For example, if O(z, y) = y

and r = c, then there will only be r distinct elements in f.
There exists an rc x r matrix M, which is implicitly defined by (A.2)-(A.4), such that

f = Mf, (A.8)

but we will not make any explicit use of this matrix.
We can now replace the equation (A.1) by the approximating system of equations

gi (f ) E k Ix ,,yj, 1[0(xi,,yj)]} wj = gi, (A.9)

.1=l

for i = 1,...,r.
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In numerical examples, we will restrict attention to the case r = c, yi = zi, and
Gauss-Legendre quadrature, wherever possible.

A preconditioned Richardson algorithm for the system of equations (A.9) is

f+= fXI X + OD-',. [grx, - g(fP)rxl], (A.10)

where the dimensions of the matrices are as indicated, 0 is a positive constant, and D is
a nonsingular matrix. We would like to choose D to accelerate convergence.

The reason why the matrix M in (A.8) is never needed should now be clear. The
difference fn+I - fn involves fn only through the residual g - 4(fn).

If the elements of §(f) are linear in the elements of f, that is, if the interpolation rule
is linear and if the kernel, k(x, y, f), is linear in the function f, then it is always possible
to write

§(f) = Kf, (A.11)

for some r x r matrix K, although it can, in general, be tedious to determine the elements
of K. If § is nonlinear in f, then we will linearize the system of equations (A.9) at each
iteration.

Important special cases of this general setup are discretizations for linear Fredholm
and linear Volterra equations. We discuss next the specific discretizations used for all
linear Fredholm and Volterra numerical examples in this thesis.

A.2 A Linear Fredholm Example

Consider the Fredholm equation of the first kind

jI k(x, y)f(y)dy = g(x). (A.12)

We will use the setup of Section A.1, with r = c and zi = yi for i = 1,..., r. Let {zj}j.= 1 be
the abscissa values for Gauss-Legendre quadrature, and let {wi}>=1 be the corresponding
weights. Define the typical elements of the r-dimensional vectors f and g by

fA f (Xi) (A. 13)

and

gi - gzi), (A.14)

respectively. Note that f has at most r distinct values. The ith element of §(f) is

C C

Mf) = E k(xi,yj)f(i-l)c+,wj = E k(xi,yj)fjwj, (A.15)
j=1 j=l

for i 1,... ,r. We can write, for this example, Kf = g, where the typical element of K
is

,Kii =- k( xi, yj)wj. (A .16)

A preconditioned Richardson algorithm, for this discretization of a linear Fredholm
equation, is then of the form (3.3).

A.3 A Linear Volterra Example

Consider the Volterra equation of the first kind

of k(x, u)f(u)du = g(z). (A.17)
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Since the upper limit of integration of (A.17) is not constant, (A.17) is not in the general

form of (A.1). However, the change of variable

u = zy (A.18)

results in the following integral equation with fixed limits of integration:

Sxk(x,zy)f(zy)dy = g(x). (A.19)

If we let
O(X,y) Zy (A.20)

and
kfx, y, f [j(x, y)]} - zk(z, xy)f(zy), (A.21)

then (A.19) is a special case of (A.1).
As with the Fredholm example, we will use the setup of Section A.1, with r = c and

xi = yi for i = 1,... ,r. Let {x.}•=)1 be the abscissa values for Gauss-Legendre quadrature,
and let {w,})=l be the corresponding weights. Define the ith element of the r-dimensional
vector g by

gi -= g(xi). (A.22)

We will assume f(O) is known, and define the r 2 x I vector f by equations (A.2)-(A.4).
The elements of §(f) are given by

§i(f) -E ZXik(Xi, xiyj)f(Xiyj)wj, (A.23)
j=l

for i - 1,... ,r. Although { =(f), - gi} 1=I, where § is given by (A.23), is a system of r
linear equations in r unknowns, it is not easy, and certainly not necessary, to find a matrix
K so that this system can be written in the form A'f = g. Richardson's algorithm can be
used directly, in the form (A.10).

The approach to the discretization of Volterra equations presented in this subsection
will be used exclusively for the Volterra numerical examples in this thesis. However, it
is important to note that by transforming a Volterra kernel (on a triangular domain)
into a kernel on the unit square, we have violated a notion of causality inherent in the
Volterra equation. The value of the right hand size g(z) depends only on {f(y)Iy < :}, and
conversely, the solution f(y) depends only on {fg(x)lx < y). Our numerical treatment does
not preserve this property. In this sense what we are doing is unconventional. Although
it has worked well for the examples considered, we are not in a position, at this time, to
advocate it as a general approach.

165



Appendix B

S Code for Conditional
Expectation Algorithm and
Richardson Algorithm for the
Green's Function Kernel

The following function, written in the S programming language, (Becker, Chambers and
Wilks, 1988), can be used for solving the integral equation with kernel (4.30). The function
gauleg calls a FORTRAN routine to determine Gauss-Legendre quadrature abscissas and
weights, and is documented in Appendix C.

Note that to solve other linear integral equations on the unit square, only the functions
kernel and rhs need to be modified. This is therefore a very useful function for exploring
iterative algorithms for linear integral equations.

8

# Mark Vangel Sept 1990
a

S Richardson and Conditional Expectation algorithms for Green's function
# example.
a

inteqn.function(niter=10, npt=26, xl=O, xh=l, norm=T, fct=l,
jac=F, land=F){

8

8 -- Matrices of successive corrections, sums of corrections,
* and approximate r.h.s

h_matrix (0, niter, npt)
f-h

v-h

8 -- Gauss-Legendre abscissas and \weights
gl-gauleg (npt, xl, xh)

8

# -- Arrays of x and y values at which functions are evaluated
x-matrix (glSx, npt, npt, byrov=T)

# x_(-6*x**3+9*X**2-x)/2
y.matrix (glSx, npt, npt)

8
# -- Array of weights for numerically integrating kernel w.r.t. y
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vyaatrix (gl$, npt. npt)
S

S -- Kernel, integral of kernel u.r.t. y, and rhs

k-kernul Ux, y) *evy

u-1 /apply (k. 2, 'sum')
if (norm am F) u-fct*u/u
it (jac an T) u-1/diag(kernel(x,y))
g-rhs (x(1,J)
if (land == T){

g- t(k) %*% g
k- (t(k) %*% kernel(x.y)) *vy}

#

S -- First approximation to solution
tCl.] ..

S

* -- low calculate the successive corrections

for (i in l:(niter-1)) {
vi.] _t(k) %*% tfi,]
h~i,J -u * (g -v[i]))
f Ci+l. JI Ci,]+h i,]

}
inteqnlist (h, f, v, g, kernel(x,y))

names(inteqn)_c('h', 't', 'g', 'rhs', 'k')

return (inteqn)

}

* Calculate kernel at gauss points
S

kernel-function (x, y) {
i.y<x
kernel- i *y *(i-x) +(l-i) *x *(l-y)

roturn(kernel)

}

S Right hand side of equation

rhsefunction(x)
rhs-x**3* (1-x)0*2
return (rhs)
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Appendix C

S Code for The Trickett-Welch
Algorithm and Conditional
Expectation Algorithms for the
Behrens-Fisher Problem

C.1 The Trickett-Welch Algorithm

The following function is writte, in the S programming language (Becker, Chambers and

Wilks, 1988). The only required call to an external FORTRAN routine is the function

gauleg which calcnlates Gauss-Legendre quadrature points and weights. This FORTRAN

routine was obtained from Press, et. al. (1986, pp. 125-126), and is not reproduced

here. The FORTRAN routines mydbeta, mydt and mypt are double precision versions of

the single precision S functions dbeta, dt :,nd pt respectively. These FORTRAN functions

were obtained from Griffiths and Hill (1985), but satisfactory results for most applications

can probably be obtained from the corresponding S functions.
8

X Mark Vangel May 1991
8

S Solve Behrens-Fisher integral equation
# (Algorithm as in Trickett-Welch (1954))
8

bftw-function(niter=lO, npt=26, uquad=2S, nnpl=lO0,
conf= )5, initf=qnorm(conf), n=c(5,5))

* -- Matrices of successive corrections; sums of corrections;
8 and approximate r.h.s.

h -matrix (0, niter, npt)
f_h
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V -.h
r -.h

8 -d.f. of variance estimates; r.h.s for equation; initial guess for
8 critical value.
df _.n-i
g -..atrix(conf. npt, 1)
f El.) .initf

S -- Gauss-Legendre abscissas and weights; beta density evaluated at
# abscissas.

gl-gauleg (nquad, 0, 1)
b -..ydbeta (gl~x, df (1)/2, df[2J/2)

S -- Arrays of x, y and beta values at which functions are evaluated.
# The beta values are weighted by the quadrature weights.

x-natrix ((0:(npt-l))/(npt-l), nquad, npt, byrow=T)
b...atrix (b, nquad. npt) *matrix (gl$w, nquad, npt)
y-n.atrix (gl~x, nquad, npt)

8 -Argument fo~r t density and cdt.
arg..sqrt((d~f~lJ+d~f(2J) *(x*y/d~f[1)+C1-x)*(l-y)/df[21)))

8 -Argument for critical value statistic.
z..z*y/df[l) /Cx*y/df~l) +Cl-x)*(1-y)/dft[2J)

S -- Evaluate the gradient at the mean of the beta density
xpeak-. df (1)/(df [1)+df [2))
ipeak.. sum (gl~x < xpeak)
w gl$x[ipeak+1J-xpeak

8-- Now calculate the successive corrections
for (i in 1:(niter-1)) f

sp ..spline(x~l,), f[i,), Unnspl)
af -.approx(sp$x, sp~y, c(z))$y
mf -.matrix~mf, nquad, npt)
kO ..mypt Carg *mf, df[l]+df [2)) *b
kI ..mydt (arg *mf, df~l)+df[21)
dry ..kl~ipeak,]*C1-v) +kl[ipeak+1,]*w
v~ij _.apply (kO, 2, 'sum')
h[i+1,]--(v[i,)-g)/drv
f~i+1,)..f[i,) +h~i+l,)

r-g -v~niter-1,J
bf-.list (xIJ,, h, f, v, k1, r)
naues(bf)-.cC'x', Wh. If', 'g', 'ki', 'r')
return (bf)

gauleg-.function (n, xlow=-l, xhgh~l){

S Nark Vangel, Sept 1990

8 Calculate Gauss-Legendre abscissas and weights
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S

x.matrix(o,n, 1)
W_x
z_ .Fortran("gauleg",as.double (xlou),

as.double (xhgh),
x = as.double Wx),
v = as.double (w),
as.integer (n))

z.list(ztx, z$v)
names (z)W c(lx','v')
gauleg-z

}

C.2 The Conditional Expectation Algorithm

The following function is written in the S programming language (Becker, Chambers

and Wilks, 1988). For information on the use of external FORTRAN routines, see the

comments preceeding the code in Appendix C.1.

#
S Mark Vangel, Jan 1991
#

# Solve Behrens-Fisher integral equation
S

bffunction(niter=1O, npt=26, nquad=26, nspl=lO0,
conf=.95, initf=qnorm(conf), n=c(5,5)) {

#

S -- Matrices of successive corrections; sums of corrections;
# and approximate r.h.s.

h _matrix (0, niter, upt)
f -h
v -h

r -h

S -- d.f. of variance estimates; r.h.s for equation; initial guess for
X critical value.

df _n-I
g _matrix(conf, npt, 1)
f [I ,J]_initf
h[1,]._0

* -- Gauss-Legendre abscissas and weights; beta density evaluate. at
* abscissas.

gl-gauleg (nquad, 0, 1)
b _mydbeta (gl$x, df(1)/2, df[2]/2)

S -- Arrays of x, y and beta values at which furctions are evaluated.
S The beta values are weighted by the quadrature weights.

x-matrix ((0:(npt-1))/(npt-1), nquad, npt, byrow=T)
b-matrix (b, nquad, npt) *matrix (gl$w, nquad, npt)
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y..atriz (gl~x. aquad, apt)

8 -Argument for t density and cdf.
arg...qrt((df(1J+d1E2)1) *Cx*y/df~l)+(1-x)*C1-y)/df[2J))

8 -Argument for critical value statistic.
z-x.*y/d~f[1J /(x*y/df[lJ +(l-x)*CI-y)/d~f[2))

8 -Now calculate the successive corrections
for (i in 1:(niter-1)) (

up ...pline(x(1,J, f~ij, nmnspl)
.1 -approx(sp$x, sp~y, c(z))$y

mf -atrix(mf, nquad. apt)
kO ...ypt (arg *at, df[I)+df[2J) *b
kI ..mydt (axg *mf, df [1J+d:f [2J) *b *arg
drv -.apply (kI, 2, 'sum')
v~i~l _.apply (kO, 2, 'sum')
h[i+1,]--(v~i,]-g)/drv

r-.g -v[niter-l,,)
bf-list (x[ll, h, i, v, kI, r)
na~mes(bf)-.c(Ix', Wh, I'V, Wg, 'k1i, 'r')
return (bf)
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Appendix D

S Code for The Coditional
Expectation Algorithm for the
Tolerance Limit Problem

The following function is written in the S programming language (Becker, Chambers and

Wilks, 1988). The function gauleg calls a FORTRAN routine as documented in Appendix

C. The function dtnc calls a FORTRAN subroutine to determine the noncentral-t density

and cummulative (Lenth, 1988)

# Mark Vangel, September 1990

8 Function to determine critical values for tolerance limit problem.
8

t•wfunction (niter=10, i=S, j%5, npt=25, nquad=25, p=.9, g=.95,
kO=welch (r, p. g, i, j, accel=F),
kfact=3.406632){

#

# -- Degrees of freedom between, within, total
dfli-i
df2_i*(j-1)
df _dfl+df2

8

* -- Matrices of successive corrections; sums of corrections;
0 and approximate r.h.s.

h -matrix (0, niter, npt)
f _h
v _h

# -- Normal quantile, beta function.
z _qnorm (p)
conlganma((dfl+df2)/2) -lgamma(dfl/2) -igamma(df2/2)

$

8 -- Gauss-Legendre abscissas and weights
gpt-gauleg(nquad, 0, 1)
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* -n.atrix(gpt~x, upt, nquad, byrow=T)

N - uisance parameter values
r -.gl$x/(I-gl$x)
tau-n.atrix(r, apt, nquad) +1

S -- Limiting value for I
klim ..kf act
f (1 * .kO

S -Iterate quasi-Newton algorithm
for (i in 1:niter){

S - Determine maximum value of argument of f
in ..x~i,nptj
to ..tau~npt,1J
rm ..tm *df2 *xm /Cdfl *(I-=))
rlim _.rm

* -Interpolate f
mar -tau cdf2 cx /(dfi c(i-x))
k -.array(approx (c~r,rlim),

cdf~i,J ,klim),
c~msr), rule=2)$y, dim~msr))

S -Evaluate V-.1 and find the peak
a~rg _.k *sqrt C(dfl+df2)cdi*x/C1-1) +(i-x)/tau))

ncp _.z csqrt (ic(i +(j-i)/tau))
u ..dtnc(arg, ncp, dfi+df2)
beta-.exp(con +(dfl/2-i)*log(x) +(df2/2-1)clog(1-x))
browser (
v1 - beta *u~dens carg Ak
v~i,) - (beta *u$cdf) %c% gpt$v
vmax..applydvi ,1, 'max')
vnax-.apply(vi<=vmax, 1, 'sum')
xmax..x[1O,vmax[lOJ)
browser C

S -Transform the nuisance parameter estimate
tau2..tau *dfl 1 (1-xmax)/Cdf 2 cimax)

* -Determine new maximum value of argument of f
in ..x[1,npt)
to ..tau2 (npt, 1)
am -tm cdf2 cj.m /Cdfl *CI-xm))
rlum _rm

S -Interpolate f again
mar _tau2 cdf2 cx /Cdfi c*i-x

k ..array(approx (c~r,rlim),
c(f Ei,) ,klim),

c(msr), rule=2)$y, dim(msr))

S - Calculate next step
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arg _k *sqrt (Cdtl+df2)*(isx/(i-1) *(I-x)Itau2))

ncp _.z *sqrt (i*(l +Cj-l)/tau2))
u ..dtnc(arg, ncp, dfl+dt2)

beta..exp(con +(dtl/2-1)*log~x) .(df2/2-1)*log(l-x))
vi _ (beta *u$dens *arg Ak) /**% gpt$u
vO - (beta *u$cdf) %%gpt$w

h[ij -g -vO) /yi
f~i+1,j..f~i,J +h~i.J

* -Return arg of k, old k, new k, F(k)
tw-liut (h. f, V)
names(tv)-c(lh', 'fs, 'g#)

return(tw)

welch-.function~msra, p=.9, g=.96, k=S, 1=6){

* eich-Aspin series critical value for tolerance limit problem

xkp _.qnorm(p)
xkg _.qnorm~g)
len ..length~msra)
msr -.array (msra, len)
n .k*l

ti _.sqrt (l/(i+C1-i)/msr))
t2 ....qrt C1/(msr-2 +C1-i)*msr))
rtk ..sqrt (k)
rtu -.sqrt (n)

Ak _.xkp +ti/rtn *Cxkg +i/C4*Ck-i)) *
xkg *Cxkg*xkg +1) +xkp*xkp*xkg *n *ti*tl *xli
+xkp *rtn *tl*tl*tl *xlI +xkp*xkg*xkg *rtn *tI /1)

+i/C4*k*Cl-i)) *(
+xkp*xkp* xkg *n *t2*t2 *x12 +xkp *rtn *t2*t2*t2 *x12))

idx-.sum((1:length(xk))* (xk==min~xk)))

if (idx > 1) xk[i:idx-ii-xk[idx)
if (sum (dim Cmsra)) != 0) xk-.array (xk, dim(msra))
return (xk)

dtnc-t.uzxction (ta. ncpa, df)

8 Mark Vangel, Sept. 1990

* Ioncentral-t density and cdf

n ..length(ta)
tnc -.array(O. n)
fault-.array(O, n)
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t ..array(ta. n)
ncp ..array(ncpa. n)

zL-.FortranC"tncI--, as.double~t*sqrt(Cdf+2)/d~f)),
as .doublo~df+2),
as .double~ncp),
tault~as. integer(lault),
tnc~as .double~tuc),
as. inatger(n))

z2-..Fortran("tncl", as .double(t),
as.double(df),
as .double(ncp),
fau~lt~as. intager(fault),
tnc~as .double~tuc),
as. integer Ca))

p..df/t * (zl$tnc-z2$tnc)

it (sum(dim~ta)) != 0) n-.dim~ta)

p ..array(p. n)
tac ..array(z2$tnc ,a)
faultl-array(zl~fault ,n)
iault2-.array~z2$fault ,n)

.... t~nc fault)

z-.list(p, tac, laultl+tault2)
naaus(z)..c('dens', 'cdt', 'fault')
return (Z)
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Appendix E

S Code for Conditional
Expectation Algorithm for
Random Sphere Problem

The following function, written in the S programming language, (Becker, Chambers and

Wilks, 1988), can be used for solving the integral equationI (7.13). The function gauleg

calls a FORTRAN routine to determine Gauss-Legendre quadrature abscissas and weights,

and is documented in Appendix C.

spheres-function(rhs, npt=25, niter=25, xl=O, xh=l)
$

S Mark Vangel Nov 1990
U

*; Stereology problem
U

h -matrix (0, niter, npt)
f _h

V _h
gl-gauleg (npt, xl, xh)
x -matrix (glSx, npt, npt, byrow=T)
y _t(x)
w -matrix (gl$w, npt, npt)

U

k _x *(xh-x)/ sqrt (y**2*(xh-x)**2 +2 *x*y *(xh-x))
U

fx _c(xl, gl$x, xh)
d _gl$x *(log(xh +sqrt(xh -glSx**2)) -log(gl$x))
tp -c ((l-x)*y +x)

for (i in 1:(niter-1)) {
ty _(c(O, fIi,, 0)
Iz _approx (fx, fy, xout=tp, rule=2)
vdi.] -apply (k*v*aatrix(fzSy, npt, npt). , 'sum')
h[i,j _(rhs-v[i,]) /d
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Ci~i.,]_jCi,J +h~i,]
fi~il,J._.iCi+ 1 ]*(t Ci+l ,)>0)

}

spheres-list (h. f. v. rha, k)
namau(sphere)_('h', 'f', g', 'u', 'k')
return (spheres)
}
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