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Characterizations of linear independence and stability

of the shifts of a univariate refinable function

in terms of its refinement mask

AMOS RON

1. The problem

Let 0 be a compactly supported function in L2(]R), 0 being its Fourier transform. We

say that 0 is refinable (or more precisely 2-refinable) if there exists a 47r-periodic function

A that satisfies

(1.1) 4= AA (./2).

The equation (1.1) is usually termed the refinement equation, and the function A there

is known as the mask function. Refinable functions are exploited in stationary wavelet

decompositions of L2(IR) via the idea of multiresolution as originated in [Ma] and [Me];

see also [CW2], [JM2] and the references therein. The definition given here is taken from

[BDR3] (see also [JS]) and frees the mask function from various restrictions imposed on

it in earlier definitions. The adjective "stationary" follows the terminology of [CDM]

and distinguishes (1.1) from more general choices [BDR3] in which the two functions in

the refinement equation need not be a scale of each other. The two main compactly

supported families of refinable functions are the cardinal polynomial B-splines [CW1], and

Daubechies' orthogonal scaling functions [Dl].

For a given positive n, we consider in this paper principal n-shift-invariant (PSI,,

for short) subspaces of L2 (IR). By a shift we mean "an integer translate", and more

generally, by n-shift we mean a 2/n-translate. A closed subspace S of L2 (]R) is n-shift-

invariant if it is invariant under all possible n-shifts. Finally, such a space S is a PSI,,

space if there exists 0 E L2 (IR) whose n-shifts form a fundamental set in S (i.e., the finite

linear combinations of the n/n-translates of 0 are dense in S). Such 0 is termed an n-

generator of S. In case n = 1, it is suppressed from all the terminology and notations

above.

Given a refinable €, one considers the PSI space S:= S(O) generated by (the shifts of)

€. While 0 generates S by definition, there are many other functions in S which generate 0

it. For example, every non-zcro compactly supported Oo E S generates S (cf. [BDR2] for F

more details). For computational purposes, it is essential to find a favourable generator

€ for S, where "favourable" is meant in the sense of satisfying any of the following three

properties, which are listed in increasing difficulty of attainment.
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Definition 1.2. We say that the shifts of qb are:
(a) stable, if there exists C > 0 such that

(1.3) II E c(j)U(.- J)11L 2 (R) Ž C1Cfll 2(0)
jEZ

for every finitely supported c : 2Z -+ C;

(b) linearly independent, if the map

jE7Z

is injective;

(c) orthogonal if the shifts of 4, form an L 2 P(IR)-orthogonal system.

Somewhat loosely, we sometimes refer to 4, as a stable (linearly independent, orthog-
onal) generator of S, and mean by that that the shifts of the generator 4, for S are stable
(linearly independent, orthogonal).

While there are satisfactory characterizations of each of the above properties of 4, in

terms of 4,, it is desirable also to characterize the stability, independence and orthogonality

of the generator in terms of the mask A: in many instances the mask is the readily available
data, while 4 is only known as an infinite product of the mask and its dilates.

Problem 1.4. Given the mask A of a compactly supported 2-refinable function 4, char-
acterize the properties of stability, linear independence, and orthogonality of the shifts of
4, in terms of the mask A.

The interesting paper [JW] solves the above problem completely, and two of its three
main results are quoted in §5 of the present paper. Furthermore, [JW] contains a carefully

detailed discussion of earlier contributions to the orthogonality problem made by Meyer
[Me], Daubechies [D1,2], Cohen [C] and Mallat [Ma] (cf. §1 of [JW] for more details).
My interest in this problem was initiated with the reading [JW] and was stimulated by a
surprising asymmetry in the Jia-Wang results. A discussion of this point together with an
explanation for the source of that phenomenon is contained in §5.

A main tool employed by Jia and Wang is their analysis was part (a) of Result 3.2
below. Alternatively, I tried to understand their characterizations with the aid of part (b)
of that result. This, in turn, led to seemingly new characterizations of the stability and
linear independence, and the attempt to draw the connection between the characterizations
of [JW] and these here sheds new light on former results. Also, the characterizations here
arc proved to be valid in a setting more general than the one considered in [JW]. The
generalization is done in two different directions: (i) while [JW] preassumes the mask A
to be a trigonometric polynomial, we will not impose any a-priori restriction on A; (ii) the
new characterizations immediately extend to an n-refinable 4. An analogous extension of
the Jia-Wang characterization (given in §5, too) is shown to be more involved.
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Our two main results are stated in §2, and various (mostly known) facts concerning

shift-invariant spaces and the stability and linear independence properties are presented
in §3. The proofs of the main results are then provided in §4, while in §5 we show how

to derive Jia-Wang characterizations from our characterizations, and how to extend the

former characterizations to n-refinable functions. We finally provide in §6 an algorithm

that, given an arbitrary mask of a compactly supported n-refinable (unknown) function

0, finds the mask A' of the linearly independent generator of S(4) (whose existence is
guaranteed by Result 3.2).

We emphasize that the terminology "compactly supported" should always be inter-
preted in this paper as "compactly supported non-zero". U stands for the unit circle.

2. Main Results

Let 0 E L2 (IR) be compactly supported, and let n > 1 be an integer. 0 is said to be
n-refinable if there exists a 21rn-periodic function A such that

(2.1) •= Aq(./n).

No restriction on A is imposed here,, but, still, A must be a rational trigonometric polyno-

mial (see Proposition 3.8).
The stability and linear independence properties rely on the distribution of the ze-

ros of A. To avoid the redundancy induced by the periodicity of A, one may consider,

alternatively, the symbol a of the refinement equation defined by the equation

(2.2) a(eiw/n) :A= A(w).

By the above discussion a is a rational algebraic polynomial.
The main results of this paper characterize the stability and linear independence of

the shifts of an n-refinable 0 in terms of the symbol a. While the theorems below are stated
for 0 E L2 (IR), we note that the results are valid for a compactly supported distribution
0 (with the same proofs) if we modify appropriately the definition of stability.

Theorem 2.3. Suppose that 0 E L2(IR) is compactly supported and n-refinable with
mask A and symbol a. Then, the shifts of 0 are linearly independent if and only if the

following two conditions hold:

(a) a(1)= 1.
(b) If a can be written in the form

(2.4) a(z) = ao(z) b(Z)

for some Laurent polynomials ao, b, then the only possible zeros of b are 0 and 1.
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Theorem 2.5. Let #, A and a be as in the previous theorem. Then, the shifts of 4, are
L2 -stable if and only if the following two conditions hold:

(a) a(1)= 1.
(b) If a can be written in the form

b(zn)
(2.6) a(z) = ao(z)b(z)

for some Laurent polynomials ao, b, then b vanishes nowhere on 'UE'\{1}.

3. Background

We collect here several results which are relevant to our topic. Some of these results
are needed for proofs and discussions in subsequent sections and the rest can be regarded as
general background. For the readers' benefit, results which are not specifically univariate
are stated in their natural multivariate setting. (The multivariate extension of the notions
and definitions from the introduction is, by large, self-understood, and can be found e.g.,
in [JM2] and [BDR2,3].)

We start the discussion with a quick overview of stability and linear independence.
Generally speaking, the issues of stability and linear independence of the shifts of one (or
several) compactly supported (or not) function(s) received close attention in the spline and
wavelet literature (e.g., there are at least 15 papers that discuss the linear independence
problem for box splines). Results that deal with special choices of generators are not
needed here, hence are not mentioned. We do mention in passing that general discussion
of the non-compactly supported case can be found in [JM2] and [BDR2], and that results
concerning the case of several compactly supported generators are obtained in [JM1].

The basic result concerning the independence of the shifts of a compactly supported
was obtained in [R1] (see also [DM1]):

Result 3.1. Let 0 be a compactly supported distribution defined on a1 d; let 4 be the
analytic extension of its Fourier transform. Then, the Zd /n-shifts of 4 are linearly inde-
pendent if and only if 0 does not possess in Cd any 2r7n-periodic zeros, i.e., 4 vanishes
identically on no set of the form 0 + 27rn2id, 0 E Cd.

Stronger results concerning linear independence are valid for d = 1. We record two of
them (which are taken from [R1] and [R2] respectively) in the next statement. The first of
which was an important tool in the approach taken by Jia and Wang in [JW]. The second
one is our main tool in this paper.

Result 3.2. Let 0 and 4 be as in Result 3.1, asstme that d = 1, and let n > 0 be given.
Then:
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(a) 4 has only a finite number of 27rn-periodic zeros.

(b) The PSI, space S that the n-shifts of 0 generate, is also generated by a compactly
supported Oo whose n-shifts are linearly independent. Every compactly supported
function in S (in particular 4) is a finite linear combination of the n-shifts of 40.

Finally, €o E L2 (IR) if 0 is so.

We refer to [BDR2] for a further elaboration of (b) above. For the purposes here,
we need to convert (b) of Result 3.2 to the Fourier domain. The fact that 4 is finitely

generated by n-shifts of 00 is equivalent to the representation

(3.3) 4= Boo,

for some 27rn-periodic trigonometric polynomial. Because of the linear independence prop-
erty of Oo, 00 does not have any 27rn-periodic zeros, and the 27rn-periodicity of B then
implies the following:

Corollary 3.4. Let 0 be a univariate compactly supported distribution. Then, for ev-
ery positive n, there exists a compactly supported distribution Oo and a 2irn-periodic

trigonometric polynomial B such that
(i) The n-shifts of Oo are linearly independent;

(ii) 0 = Boo;

(iii) the 2-n-periodic zeros of € coincide with the zeros of B.

Note that, incidently, the last corollary show how (a) of Result 3.2 can be derived
f om (b) there.

The next result collects several characterizations of stability of a compactly supported

generator 0.

Result 3.5. Let 0 be a compactly supported L 2(IRd)-function. Then the following con-

ditions are equivalent
(a) The 2Zd /n-shifts of 4 are stable.
(b) 4 has no real 27n-periodic zero.

(c) The kernel of the map
C 2zd D c c(j)¢(- - j)

jE2Zd

contains no bounded non-zero sequences.
(d) The above kernel contains no tempered non-zero sequences.

The equivalence of (a) and (b) is mentioned in [SF] and proved in [DM2]. A proof of
the equivalence of (b), (c), and (d) can be found in [R1].

For univariate functions, the understanding of the stability issue is facilitated by (b)

of Result 3.2:
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Corollary 3.6. Let 4, n, 4o, and B be as in Corollary 3.4. Assume further that 4 E
L2 (]R). Then the n-shifts of 0 are stable if and only if B has no real zero.

Proof. By Corollary 3.4, the 27rn-periodic zeros of 4 coincide with the zeros of B,

and hence B has no real zeros if and only if 4 has no 27rn-periodic real zeros. Now apply
the equivalence of (a) and (b) in Result 3.5. 4

In the second part of this section we present selected results on PSI spaces.

We first recall the following result from [BDR1]:

Result 3.7. Let S be a PSIn space, and let 4 be a generator of S. Then, for f E L 2 (IRd),

f E S if and only if there exists a 2rn-periodic function A such

f = A0,,ae

Our next interest is in the nature of A in Result 3.7. We show below that A is always
a rational polynomial provided that 4 and f are compactly supported, and that, further,

A, in times, is guaranteed to be a polynomial.

Proposition 3.8. Assume that the L 2 (iRd)-functions 4 and f are compactly supported,
and that f = A4 for some 27rn-periodic A. Then A is a rational trigonometric polynomial.
If, further, the ZZd In-shifts of 4 are linearly independent, A is necessarily a trigonometric

polynomial.

Proof. The second assertion of the proposition is equivalent to the statement that
f is a finite linear combination of the ad/n-shifts of 4, with the latter statement implied

by Theorem 1.3 of [BR], as observed in [JM2].
To prove the first assertion, we multiply both sides of the equation f = Ai by an L2

band-limited function a (the standard choice is a := 0) and sum all the 27rn2d-shifts of
the resulting equatiuai to obtain

(3.9) Z (fo)(. +a) = A Z (oak)(" +a).
OE27rn2Zd &E21rn2Z'd

We observe that both foa and ýa are in L1 (IRd) and are Fourier transforms of compactly
supported functions. At the same time, a standard application of Poisson's summation
formula shows that -C2f-,,fn K(. + a) is L1 -convergent to a trigonometric polynomial,
whenever g is compactly supported and ? E Li(IRd). Thus, the two sums in (3.9) are
trigonometric polynomials, and hence A is a rational polynomial. 4

Finally, we invoke Theorem 2.4 of [JM2] to conclude the following:
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Proposition 3.10. Assume that the compactly supported L2 (,Rd)-function 4) satisfies the

n-refinement equation

Assume further, that A is continuous at the origin. Then either A(O) = 1, or 4 vanishes

on 27rZZd (and hence, by Result 3.5, its shifts are not stable).

Proof. We want to use Theorem 2.4 of [JM2]. This theorem, which is stated for

a 2-refinable 4, extends verbatim to an n-refinable 4. It assumes that 4 E LI(IRd), an

assumption that our 4, being compactly supported and square-summable, satisfies. It also

assumes that the Fourier coefficients of A are summable, but a closer look at the proof

there reveals that the only property of A which is used is its continuity at the origin. Thus

we are entitled to invoke that theorem.

The theorem tells us that 0 vanishes on the lattice 21r27d, with the possible exception

of the origin. However, if A(O) 5 1, then, substituting 0 into the refinement equation, we

obtain that €(O) = 0, making € vanishing on the full lattice 21rTZd.

4. Proofs of main results

The following result is straightforward, but, nonetheless, is the key for the proof of

Theorems 2.3 and 2.5.

Theorem 4.1. Let 0 be an n-refinable compactly supported L 2 (IR)-function, with mask

A and symbol a. Let 00 and B be as in Corollary 3.4. Then 0o is also n-reflnable, its mask

Ao is a trigonometric polynomial, and its symbol ao is a Laurent polynomial that satisfies

(4.2) ao(z) = a(z) b(z)b(z-)'

with the Laurent polynomial b being the symbol of B(./n), i.e.,

b(e" := B(w).

Proof. From Corollary 3.4, we know that

hence also
0"(./n) =B(./n)o(./n).

A combination of the above two equations with the refinement equation 4 =

provides us the relation
A B(./n) &o('/n) = B 0o,
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which implies that Oo is refinable with mask

A B(.In)

Ao =B

an equality which is equivalent to (4.2).
It remains to show that a0 is a Laurent polynomial or equivalently that A0 is a

trigonometric polynomial. The n-refinability of 00 implies (by Result 3.7) that 00 lies in the

space generated by the n-shifts of 0(n.) (we are using here the fact that, up to a constant,
0(./n) is the Fourier transform of 0(n.).) On the other hand, the linear independence of

the shifts of €0 trivially implies the linear independence of the n-shifts of q 0(n.). Thus, in

the equation

Oo = A0 40(./n),

0 is the Fourier transform of a compactly supported function, and O-o(./n) is the Fourier

transform of a compactly supported function whose n-shifts are linearly independent. Re-

sult 3.8 (and also Result 3.2 (b)) then implies that A0 is a polynomial.

Proof of Theorem 2.3. We first prove the sufficiency claim of the theorem. Letting

00, A0, a0, and b be as in Theorem 4.1, that theorem implies that

(4.3) a(z) = ao(z) b ,

and that a0 and b are Laurent polynomials. Since the shifts of 00 are linearly independent,

Proposition 3.10 implies that Ao(0) = 1, or equivalently, ao(l) = 1. Since we assume (a),

it follows that

lim b(zn) = 1.
z-1 b(z)

Since the above limit is nk, with k being the multiplicity of the root 1 of b, we conclude

that b(1) # 0.

Now, if the shifts of € are linearly dependent, then, by Corollary 3.4, B above must

vanish somewhere, or, equivalently, b vanishes at some point 0 E C\0. Since b(1) $ 1, we

must have 0 j 0, 1, and thus (4.3) is a factorization of a that violates condition (b). The

sufficiency is thus established.

The fact that condition (a) is necessary follows from Proposition 3.10. It remains

to show that condition (b) is necessary as well. For this, we assume that we are given

a factorization of a that violates condition (b). We will show that the shifts of 0 are

dependent. Such a factorization gives rise to a factorization of the mask A of the form

B
(4.4) A = Ao B(./n)
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with B (respectively Ao) being 27r-periodic (respectively 27rn-periodic) trigonometric poly-
nomial. Since b vanishes at some z 0 0, 1, B vanishes at a point 0 V 27r7Z. We will show

that € vanishes on 0 + 27r2Z. From this, the linear dependence will follow by Result 3.1.

Iterating with the refinement equation, we see that, for any positive integer k,

k-i

]IJ~ A(./ni) ý(-/nk)
j=O

and substituting (4.4) here, we obtain that

(4.5) , B
B./nk) 0-n)

with rk a trigonometric polynomial. Since B is 21r-periodic and vanishes at 0, it also

vanishes everywhere on 0 +27r2,. Thus, given any a E 0+27r2Z, (4.5) proves that 0(a) = 0,

unless B(a/nk) = 0. But since k is arbitrary, the assumption 0"(a) : 0 implies that

B(a/nk) = 0, for every positive integer k, which is impossible, since by the choice of 0 we

know that a 5 0. Thus, indeed, 0 vanishes everywhere on 0 + 27r2. This completes the

proof of the necessity part, thereby the proof of the entire theorem. 4

Proof of Theorem 2.5. The proof closely follows that of the previous one, and all

the major steps needed here were already prepared there.

We first prove the sufficiency part. For that, we let 00, A 0 , B, ao and b be as in the

first part of the proof of Theorem 2.3. The proof there provides us with the factorization

a(z) = ao(z)b(zn)/b(z), and invokes (a) to prove that b(1) # 0. Further, condition (b)

asserts that b cannot vanish on UI\1, and, consequently, b vanishes nowhere on Ur. This

last condition is equivalent to B having no real zeros, and an application of Corollary 3.6

shows that the shifts of 0 are stable.

Assuming that the shifts of 0 are stable, condition (a) follows (as before) from Propo-

sition 3.10. We prove the validity of condition (b) by contradiction: we assume that

condition (b) is invalid, and prove that the shifts of 0 are unstable. Let a(z)= ao(z) b(=n)

be a factorization the violates condition (b). Following the argument used in the second

part of the proof of the previos theorem, we see that every zero e"9 0 1 that b has, is

translated to the existence of a 27r-periodic zero 0 for Z. Since b is known to vanish at

some z E '91\1, € had a real 2-,r-periodic zero, and hence, by Result 3.5, the shifts of € are

unstable.

5. Jia-WVang characterizations revisited and extended

The following two theorems were proved in [JW]:
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Result 5.1. Assume that 0 E L2 (R) is compactly supported and 2-refinable with respect
to a trigonometric polynomial mask A and corresponding symbol a. Assume also that

a(1) = 1. Then the shifts of 0 are linearly independent if and only if the following two

conditions hold:

(a) a does not have symmetric zeros, i.e., if a(r) = 0 then a(-r) 5 0, all r E C\0.

(b) For any odd integer m > 1 and a primitive mth root ý of unity, there exists an integer
d, such that a(Oý2d) # 0.

Result 5.2. Let 0, A, and a be as in the previous theorem. Then the shifts of 0 are stable
if and only if the following two conditions hold:

(a) a does not have symmetric zeros on the unit circle.

(b) Same condition as (b) of the previous theorem.

They also invoked results of Cohen and Daubechies to derive from Result 5.2 a char-

acterization of the orthogonality property of the shifts.

In the first part of the section we show how Result 5.1 can be explained via the result

of Theorem 2.3. Result 5.2 can be approached very similarly. In the second part of the
section, we discuss suitable generalizations of the [JW] results to n-refinable functions.

One should notice in the two theorems an apparent asymmetry between symmetric
roots on the unit circle and other symmetric roots. Precisely, if we regard the existence of a
symmetric zero in a as the standard trace of linear dependence, then only real 27r-periodic
zeros of 0 can escape without leaving that trace behind. Such a phenomenon deserves a

closer look.

We let a, a0 , and b be as in Theorem 4.1 with respect to n = 2. In particular,

b( z 2 )
(5.3) a(z) = ao(z) b(Z)

b(z)

Recall that a0 and b are known to be (Laurent) polynomials. But there is no reason to
believe that a she',! t be a polynomial. In fact, the assumption that a is a polynomial
excludes most of the compactly supported functions q whose shift.q are dependent, among
which many might still have stable shifts. Off-hand, one might guess that the asymmetry
between the real roots and the other roots of the mask (mentioned in the previous para-
graph) is due to the fact that all the cases of rational masks were not covered in the [JW]
study. This, however, is not true: if a is properly rational, it must have a symmetric zero.
The truth is straightforward: the lack of symmetric zeros leaves only very little room for
linear dependence. Here are the details (compare with Lemma 1 of [JW]).
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Suppose that we are given the linearly independent 00 (of Corollary 3.4 and Theorem

4.1) and look for a trigonometric poljnomial B such that the symbol a corresponding to

the resulting 0 (defined by 0 = Bqo) is a polynomial. Considering the relation (5.3) that

a satisfies, there are many ways to achieve such a goal, for example, we can choose B
such that b divides the original a0 . However, almost all such choices leaves in a a factor

z2 - r of b(z2 ), which means that a has a symmetric zero or equivalently that the mask
A, hence 0, has a 27r-periodic zero. In such a case, the dependence assertion for the shifts

of 0 is evident from Result 3.1 (in this context see the discussions in [CW2], and in §5 of

[BDR3]).
The only way to avoid symmetric zeros, is that during the cancellation of the various

factors of b(z), at least one factor from the two of each factor z2 - r of b(z2 ) is canceled.
This implies that all factors of b must be employed for such cancellation, and that no two of
them are canceled against the same z2 - r factor (otherwise, there are not enough of them

left to complete the job). This means that the polynomial b must satisfy the following
exceptional property: with rl, r 2 , ... , rk being the roots of b, there exists a permutation a
of 1,..., k such that z - rj divides z2 - raj, Vj. Since we are assuming linear dependence,
we know that b must vanish at a point other than 0, 1, which means that a cannot be the
identity. Thus a has at least one cycle of length m > 1, which involves, without loss, the
first m roots, and in their previous order. In other words, the first m roots are of the form

t, t2,t4,...,t2m- 1 , t 2 m = t.

Thus we immediately conclude that t is a root of unity or order 2 ' - 1, and that a must
vanish at all the points

--t) --t2 , --t4 . .... , -- 2m'- t

which are roots of b(z2 ) that are not canceled by b.

The above observations can be combined to produce a proof of the sufficiency part

of Theorem 5.1, with one minor change: instead of checking all primitive roots of unity
of odd ordei, the condition we obtain requires the checking of all roots of unity of order
2k - 1, k integer.

As a matter of fact, a similar argument allows us to provide extensions of Results 5.1
and 5.2 from n = 2 to a general n, and without assuming the polynomiality of the symbol.

The statements and proofs of these results occupy the rest of this section.

Theorem 5.4. Let 0 be a compactly supported n-relinable L 2 (llr)-function, with a mask
A and symbol a. Then the shifts of 0 are linearly independent if and only if the following

three conditions hold:

(a) a(l)= 1.
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(b) a(z) is not divisible by polynomials of the form z" - r, r E C\O.
(c) Given any positive integer m, and any root of unity ý # 1 of order n't - 1, there exists

an nth root of unity C # 1 and an integer 0 5 t < m - 1 such that a((•l') #O.

Note that we are not assuming a to be a polynomial; still, it must be a rational

polynomial. Correspondingly, any divisibility properties should be understood as referring
to the numerator of the reduced form of a. Note also that, for n = 2, C is necessarily -1.

Proof. By Theorem 2.3, the condition a(1) = 1 is necessary for linear indepen-

dence, hence can be assumed without loss.

Further, the condition "a(z) is divisible by zn - r, r E C \O" implies that A vanishes

on 9 + 2rZr, with ei -= r, and hence, by Result 3.1, implies also the linear dependence of

the shifts of 0. Thu-, this condition is necessary, too, and we can assume that it holds.

It remains to show that, assuming (a) and (b), condition (c) is equivalent to the linear
independence. Suppose that condition (c) does not hold, and let ý be the number that
violates it. Defining

m

b(Z) := J(z -

j=1

one checks that the polynomial
b(Zn)

b(zz)

divides a, since the roots of this polynomial are exactly the numbers of the form (Qnf men-

tioned in condition (c). This means that we had found a factorization a(z) = a'(z)b(zn )/b(z)
with a' and b being Laurent polynomials. Invoking Theorem 2.3, we conclude that the

shifts of 0 are linearly dependent.

Now assume that the shifts of 0 are linearly dependent and let a(z) = ao(z)b(zn)/b(z)

be the factorization provided by Theorem 2.3. Let rl, r 2 , ... , rk be the roots of b ordered

in any fashion. Since factors of the form zn - r do not exist in a(z), b(zn) must contain at
least k linear factors which appear also in b, one per each factor of the form zn - r. This

means that a is a polynomial and (as in the case n = 2) that there is a permutation 0 of

the numbers 1, 2, ... , k such that r7' = rqj. Again, we choose a cycle of this permutation

which does not consist of 0 or 1 alone (such a cycle exists since b vanishes at points other

than 0, 1), and assume without loss that this cycle consists of the first m roots, and in

their present order. We denote C := ri. Since C"" = C, C is a root of unity of order nm - 1
and certainly C 34 1. Now, we know that the polynomial

t~o tz- en')=o1(Z2
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divides a, and hence a vanishes at all the roots cf this polynomial. But the roots of this
polynomial are exactly all the numbers of the form (C' I specified in condition (c) with

respect to the present ý and m. Hence, condition (c) is violated. 4

Theorem 5.5. Let 4 be a compactly supported n-refinable L 2(]R)-function, with mask A

and symbol a. Then the shifts of 4 are stable if and only if the following three conditions

hold:

(a) a(1) = 1.

(b) a(z) is not divisible by polynomials of the form z" - r, r E Uf\1.

(c) The same as (c) of Theorem 5.4.

Proof. One possible proof can be obtained by modifying the arguments in the

proof of the previous theorem. Instead, we give a proof that employs Theorem 5.4.
Assume first that the shifts of 4 are stable. The necessity of a(1) = 1 was proved

before. Let 00 and B be as in Corollary 3.4. By Corollary 3.6, B has no real zeros, hence,
with b as in Theorem 4.1, b has no zeros on UIF, and the same thus holds for b(z"). Further,

by the same theorem,
, ,b(z")

a(z) = ao(z) b(z)

with ao being the symbol of 00. We conclude that the 'll-zeros of a and a0 are the same.

Since ao is the symbol of the linearly independent 00, Theorem 5.4 implies that a0 satisfies
the conditions (b) and (c) there, and the fact that our a has the same zeros on U' as a0

than implies that a satisfies conditions (b) and (c) of the present theorem.

Now, we assume that the shifts of 4 are unstable, and retain the meaning of 40,
B, b and a0 as above. We factor B = B 1 B 2 such that B1 has only real zeros and B2

has no real zeros. By Corollary 3.6, B, has a positive degree, i.e., vanishes somewhere.
The factorization of B gives rise to an analogous factorization b = b1 b2 , hence to the

representation

Sao(z)1(Zn) b2 (z)
= 0 (z) b2(Z)

By Theorem 4.1, the rational polynomial a,(z) := ao(z)bi(zn)/bl(z) is the refinement

symbol of the function €1 defined by

01 = B 1 o.

The shifts of 01 are dependent, since B1 has zeros (these shifts are even unstable). Thus,
by Theorem 5.4, a, must violate one of the conditions (a-c) there. However, a, cannot
be divisible by anything of the form z" - r, r V 'IE, since a0 was not divisible by such

a factor (being associated with the linearly independent 40), and b, has zeros only in

13



U. We conclude therefore that a, must violate one of conditions (a-c) of the present

theorem. Since a is obtained from a, by multiplying by the expression b2 (zn)/b,2(z), and

that function takes the value 1 at 1 and has no poles on UI', a must violate the same

condition al does. 4

6. An algorithm

In this final section we sketch an algorithm which does the following: given the symbol

a of the mask A of the compactly supported function 0, the algorithm produces the symbol

a0 of the linearly independent qo that appears in Corollary 3.4. It is a finite algorithm if

we assume that all roots and poles of a are known.

The input of the algorithm is a list N of the roots of the numerator of a and list D of

the roots of the denominator of a. N is assumed to be disjoint of D. The output is a list

A of the roots of a0 .

Step 1: For each d E D, we add to N and D any root of z' - d which is not yet in N.

The procedure must terminate after finitely many steps, although D is being continuously

changed during that process.

Step 2: For each d E D, we remove from N all roots of z" - d.

Step 3: We check whether N contains a set R, of all the nth order roots of some

r E C\0. If it does, we replace Rr by r.

Step 4: We compute the product IMrEN(1 - r). It must be a power of n, say, n". We

remove from N k appearances of each nth root of unity other than 1 (each such root must
appear with multiplicity at least k).

Step 5: We move to A every r E N, unless r is an mth root of unity, with m relatively

prime to n.

Step 6: WVe take ý E N, and check whether ý generates a cycle: first, we multiply

by all nth roots of unity, to obtain a collection Al of n products, and define a new set T

by T := Ml. If N misses at least two numbers from M, we move T n N to A, and pick a

new ý in the (smaller) N. If N misses only one number, we replace ý by ýn and repeat the

process, which means that, at any intermediate iteration, we generate an n-set Al, update

T = T U Il, and check: if N misses two (or more) of the numbers in the present M, we

move N n T into A. Otherwise, we proceed. After finitely many iterations we must obtain

Sagain. In such a case, we remove N n T from N. We repeat this step until N becomes

empty.

Discussion: We want to find the factorization

a(z) = ao(z)b(z")/b(z).
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Since a and b are polynomials, if z - d appears in the present denominator, it must be a
factor of b. Thus z" - d must divide the numerator. If it does not, this can be only as a
result of previous cancellations with other factors of b. Step 1 undoes these cancellations.
At the end of Step 1, every factor z - d in the denominator has its z' - d counterpart in
the numerator. The self-understood Step 2 leaves us then with no denominator.

Step 3 checks for a possible division of a (which now is a polynomial) by an expression
zn - r. If such divisor exists, then we divide a by (z" - r)/(z - r). Step 4 takes care of
possible occurrences of the root I in b. The proof of Theorem 2.3 provides the necessary

background.

After the completion of Step 4, the only parts of b(zn)/b(z) which can still remain in
a are the "cycles" that violate condition (c) of Theorem 2.3. Since all the corresponding
roots of such cycles are roots of unity of order nm - 1, for some m, we can already move
to ao all factors which do not vanish at such unity roots. This is Step 5.

Finally, Step 6 is a careful check of condition (c) of Theorem 2.3. It removes factors
identified as a "cycle" and moves to a0 all the rest.
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