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ANALYTICAL CHARACTERIZATION OF BISTATIC
SCATTERING FROM ROUGH SURFACES: DEPENDENCE
ON SURFACE CORRELATION FUNCTION

1. INTRODUCTION

The short pulse width in high resolution radars has the effect of shortening the clutter cell
illuminated by the radar. This smaller area would result in smaller clutter returns if the
statistical distribution of the power scattered by the clutter does not change as the cell size is
decreased. The scattered power from large clutter cells, which have many similar sized
scattering facets, has a Rayleigh distribution. A large number of scattering facets is a
requirement for Rayleigh scattering. However, as the cell size is decreased, the number of
scattering facets is decreased, and Rayleigh scattering may no longer result. In this report. we
will see what effect decreasing the clutter cell size has on several different types of surfaces.

In studies by Papa and Woodworth! and Sharpe? it is shown that decreasing the size of the
clutter cell can significantly affect the statistical distribution of the scattered power. These
studies have only examined surfaces which are described by a Gaussian correlation function.
In this report other surfaces that are described by a power law correlation function and an

Recéi&ea for Pui;llcaiia;l 12 June 1992

! Papa, R.J. and Woodworth, M.B. (1991) The Mean and Variance of Diffuse Scattered Power
as a Function of Clutter Resolution Cell Size, RADC-TR-91-09.

2 Sharpe, L.M. (1991) Analytical Characterization of Bistatic Scattering from Gaussian
Distributed Surfaces, RL-TR-91-351.




exponential correlation function are studied. It is found that the type of surface, whether it is
smoothly varying or very jagged. has a significant tmpact on the distribution of the scattered
power.

The first section of this report will give a brief description of the correlation functions that
are used. as well as the type of surfaces described by each one. Results for the different
correlation functions will then be presented and compared. Finally, some conclusions about
the effect of cell size and correlation functions on clutter statistics will be made.

2. CORRELATION FUNCTIONS

A complete statistical description of a random rough surface involves the correlation
function of the surface as well as the height distributions. The height distribution functions
at each point, which describe the height deviations from a certain mean level, are assumed
here to be Gausstan with a mean level of zero. The correlation function, C(1). is a function of
the separation of two points on the surface and is a measure of how closely related the
distributions at these two points are. The separation parameter, t, is given by t = (x; -x, ). with
x; and x, being points on the surface. When C(t)= 1. the heights, {; and {,; at x, and x, are
fairly strongly correlated so that knowledge of the height at one point gives information about
the height at the other point. and when C(1)z O, the heights are uncorrelated. so that
knowledge of the height at one point tells nothing of the height at the other point. For a
purely random surface, C{1) is an even function and:

HmC”)=l‘ 1im C(T)=O (1)
T—0 T—yoo

The correlation distance. T, is defined to be the distance in which C(1) drops to the value e 1. It
is this correlation distance that determines whether a clutter cell is large or small. For
“infinite’ clutter cells. T << L where L is the dimension over which the scattering occurs. The
total scattered power divided by L is the average scattered power. However, in the finite cell
size studies done here, the cell size ranges trom L=2T to L=12T, so the conditions necessary for
Ravleigh scattering are violated to different extents.

The correlation functions used in this study are the Gaussian, Power Law. and Exponential.
They are given by:

Cyl1) = exp (~2/T2) Gaussian 2)




Coil®) = [1 + (/T2 3/2 Power Law (3)

Cexp(ﬂ =exp (-t /T) Exponential 4)

The Gaussian correlation is used to describe smoothly curving surfaces having height
derivatives at all points.? The power law correlation represents surfaces that are somewhat
less correlated than the Gaussian surface. Asphalt roads and gravel surfaces are typically
described by a power law correlation function.# Barrick and Peake5 found a power law
correlation empirically fitted measured points of an asphalt surface. Surfaces described by an
exponential correlation function are jagged and have many vertical facets. such as urban areas
having buildings and houses as the scattering surfaces. The three different correlation
functions are plotted in Figure 1. The correlation distance is T=1 for all three cases. Note that
at t=1, all three functions cross the e-! point. Surfaces described by these different correlation
functions are quite different and can have quite different scattering statistics.

Figures 2 through 7 show two different realizations for surfaces with the three correlation
functions studied. The rms height of these surfaces is ©=0.5m, which is obviously not a
realistic value for asphalt surfaces, where one would expect ¢ << 0.5m, or urban areas where
o >> 0.5m. but for comparing the different correlation functions. a common value for ¢ was
used. To determine these sample surfaces a random set of uncorrelated Gaussian heights was
generated and multiplied by the appropriate correlation matrix. The generation of the
correlation matrix and correlated surfaces is discussed in Appendix A. The result will be the
correlated surface heights. For Figures 2, 3 and 4, the same set of random numbers was used to
generate the surfaces. In comparing these three figures it is obvious that the exponential
surface 18 much more jagged and has many more scattering facets than the Gaussian correlated
surface. The surface with a power law correlation is not as jagged as the exponential and not
as smooth as the Gaussian surface. Even though the surfaces are all quite different. the same
large scale structure can be seen in all three because the same set of random numbers was used
to generate all three suriaces. The surfaces shown in Figures 5, 6 and 7 were generated by
different sets of random numbers. Again we see that the Gaussian correlated surface is fairly
smooth, the exponential surface is quite jagged. and the power law correlated surface lies
somewhere between the other two in terms of irregularities. Because these three surfaces were
generated by different sets of random numbers, the large scale structure is not common to the
three surfaces.

3 Ruck, G.T.. Barrick, D.E., Stuart. W.D., and Krichbaum, C.K. (1970) Radar Cross Section
Handbook, 2, Plenum Press, New York.

4 Cohen, E.. Bell, M., Lin, C.. Holst, J., and Tomasanis. D. (1988) Mathematical Analysis and
Programming for Electromagnetic Applications, RADC-TR-88-18. ADB124496.

5 Barrick. D.E.. and Peake, W.H. (1967) Scattering from Surfaces with Different Roughness
Scales: Analysts and Interpretation, BAT-197A-10-3.
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3. ONE-DIMENSIONAL SCATTERING MODEL

Scattering from large clutter cells is typically assumed to have a Raylcigh distribution.
The equation for a Rayleigh distribution is:

P(X) =L11 exp (=x/p) .

where x is the power. The mean is g, and the variance is given as ¢% = (xz) - (x) . where x is

the mean, and (xz)ls the second moment given by:

— 2
() [ 3 o) oxeast
o

The variance is therefore given as 6%°= 2u2 - p2? = 42, and the relationship between the mean
and the variance of the scattered power for Rayleigh scattcring is 690 = (6%)2. Howcver, as the
cell size is decreased, violating the condition T« L, this relationship may no longer be valid.
In previous studies, the mean value of the scattered power for a finite clutter ccll of a one
dimensionally rough surface was given as!-2:

Lz L2

o’ = !‘Fz dx, | dx [X, - X.ICOS(" 7)
2L 1 2 (X2 T XKy x 6)

2 2

where:

11




To= XX

X2 = expl-L2 (1-C(1)] is the characteristic function for bivariate height distribution
X1 = exp (-£2/2) is the characteristic function for univariate height distribution
2 = o% f = Rayleigh parameter squared
o = rms surface height
vy = (2r/M\)Isin(0,)-sin(8,)]
v, = —(2r/Aicos(8)+cos{6,)]

poZR(1rcos (o +0,))

cos o| + COs OS

However, performing a change of variables from x, and x, to t and ¢ makes it possible to
solve the integral over o analytically, leaving a single integral for the mean value of the
scaltered power given by {See Appendix B):

2 -
¢ = RLF) J‘dt[L-t X, = £,X, €Os (v t).

; 7
0

The variance for the finite clutter cell is calculated from:

0’)

S

]“‘J. dx dx,dx,dx, cos (v (X, =X, + X, =X,)) +[X, = X5 Xy 8)

/2
where
Xiz = expl-F(1-Cyy)l
Xas = expl-I2(1-Cy,)l
C,, = Cl1) as defined in Eq. (2). (3), or {4).

The calculated variance is compared to the Rayleigh value of the variance, ¢%0 = (692 (o
determine if decreasing the cell size will cause the scattering to become non-Rayleigh. Note
*hat the surface correlation function is used in the calculation of both the mean and the
variance of the scattered power.

12




Because of the intensive calculations done in this study. particularly for the variance,
efficlent numerical integration techniques were required. The Integration scheme used is a
Sobol sequence.® It is considerably more efficient than conventional integration schemes. In
this method, the n-space that is being integrated over is fllled by quasi-random points that are
“maximally avoiding” each other, and therefore fill the space more uniformly than a purely
random sequence. Figure 8 shows a two-dimensional space being filled by Sobol sequences.
The algorithm used for Sobol sequence integration as well as a description of the technique is
given in Reference 5.

4. GAUSSIAN AND POWER LAW CORRELATION FUNCTION RESULTS

The normalized mean and variance of the scattered power for the Gaussian correlatec
surfaces are shown in Figures 9 through 16. The curve with the small boxes represents the
mean value of the scattering o, the curve with the triangles represents the Ravleigh value of
the variance (69)2, and the curve with the large boxes represents the calculated variance for the
finite clutter cell. In Figures 9, 10, and 11, ,=75°, A=0.25m. 0=0.5. and L decreases from 12m
in Figure 9, to 6m in Figure 10, and to 3m in Figure 11. It is clear that as the cell size
decreases, the scattering becomes less Rayleigh. particularly in the backscatter region. due to
fewer scattering facets orfented in this direction. This means that decreasing the cell size for
thts type of surface will have more severe consequences for a monostatic radar than tor a
bistatic radar.

Figure 12 is the same as Figure 11 except that the wavelength is decreased to #=0.1m
Comparing Figures 11 and 12 shows that the scattering is closer to Rayleigh for the longer
wavelength. This is because there are more scatterers per wavelength as the wavelength is
increased.

Figure 13 is the same as Figure 12 except the surface roughness is decreased to 59=0.2m.
For the smoother surface the scattering is concentrated more in the specular direction while
the rougher surface scatters more diffusely.

For Figures 14 through 16 the angle of incidence is 6,=30”. These results show the same
trends as seen for the 8,=75° case, that is, for the longer wavelength the scattering is closer to
Rayleigh. and the scattering from the rougher surface ts more diffuse over the scattering
region.

5  Press, W.H. and Teukolsky. S.A. (1989) Quasi- (that is sub -) random numbers. Computers in
Physics: 76-79.

13
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The scattering from surfaces having a power law correlation function are shown in
Figures 17 through 24. The results for the power law correlated surfaces are quite similar to
those obtained with a Gaussian correlated surface. The trends due to changing wavelength.
rms height, cell size, and scattering angles are all the same for surfaces with a power law
correlation function as they were for the Gaussian correlated surface. One notable difference
can be seen in comparing the results for the two surfaces. It is clear that in the backscatter
region, where scattering from both surfaces deviates from Rayleigh, the deviation for the
power law case is not as severe. This is a consequence of the increased number of scattering
facets oriented to cause backscatter for the surface with a power law correlation. In comparing
Figures 3 and 6 to Figures 2 and 5, it is obvious that the power law correlated surface is
somewhat more jagged and will therefore have more scattering facets than the Gaussian
correlated surfaces, The increase in the number of scattering facets results in scattering
statistics that are closer to Rayleigh.

5. EXPONENTIAL CORRELATION FUNCTION RESULTS

The surfaces described by an exponential correlation function, as stated previously. are
very jagged and have many vertical facets. Also, this type of surface has more fine scale
structure than the other surfaces. Because of this. the scattering from this type of surface is
quite different than that of the Gaussian or power law correlated surfaces. The most
significant result found for the exponentially correlated surface is that the cell size has very
little effect on the Rayleighness of the scattering statistics. The results for the exponentially
correlated surface are shown in Figures 25 through 32. For cell sizes of L = 3m, no noticeable
deviation from Rayleigh scattering occurs over the entire scattering region. Because at L = 3m
the agreement with Rayleigh scattering was so close, larger cell sizes were not examined. The
smallest cell size studied is L = 2m. In this case we see that there is still very little deviation
from Rayleigh scattering. This is a very significant result because it means that for very small
clutter cells, Rayleigh scattering can be assumed even for monostatic radars when the surface
is described by an expone’.-.l correlation function. In the Gaussian and power law cases, the
deviation from Rayleigh scaitering is quite large in the backscatter region.
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The reason why the exponentially correlated surface exhibits Rayleigh scattering for small
cell sizes while the other surfaces do not can be understood by considering the geometry of the
exponentially correlated surface shown in Figures 4 and 7. In the Gaussian and power law
cases, where the surface is smoothly varying, the deviation from Rayleigh could be quite
significant for small cell sizes, particularly in the backscatter region, because there are so few
scattering facets oriented properly to cause backscatter. However, the exponential surface,
which is very jagged and has many vertical facets, has a sufficient number of scattering
surfaces orlented in all directions to cause the scattering to remain Rayleigh over the entire
region of scattering angles. For the exponential surface, the direction in which the maximum
scattering occurs is -90°, due to the large number of vertical facets, while the minimum
scattering is in the specular direction.

The mean value of the scattering from an exponentially correlated surface is almost
always lower than of for the Gaussian correlated surface. For the 30° angle of incidence, when
the wave is incident upon vertical facets, a considerable amount of the energy will be reflected
downward, and since second reflections are not accounted for in this study. this energy
disappears. However, for the 75° angle of incidence, much of the scattering is reflected back by
the vertical facets causing very high backscatter and very little forward scatter. In comparing
the mean value of the scattering from the Gaussian correlated surface and the exponential
surface we see that o0 is higher for the exponential correlation in the backscatter region but
lower than scattering from Gaussian correlated surfaces in the forward scatter region. This
result agrees with intuition because higher backscatter would be expected from urban areas for
low grazing angles. Table 1 compares o? for the backscatter direction for the exponential and
Gaussian correlated surfaces.

Table 1. Comparison of Backscatter for Exponential
and Gaussian Correlated Surfaces.

9‘ A(m) o (m) L (m) oexp (dB) cﬂm (dB)
30 0.25 0.5 3 -8.50 2.90
30 0.1 0.5 3 -12.48 2.95
75 0.25 0.5 3 8.79 -9.18
75 0.1 0.2 3 6.81 -13.65

6. CONCLUSIONS

In this report it is shown that as the size of a clutter cell is decreased. the distribution of
the power scattered from that clutter cell depends on several factors. The wavelength of the
incident field. the roughness of the surface, and the incident angle will all have some effect on
the Ravleighness of the scattered power. as discussed in the report by Sharpe?, but the results




shown in this report demonsirate that the correlation function of the surface can have a
dramatic influence on the statistics of the scattered power. For surfaces described by a
Gaussian correlation function, deviation from Rayleigh scattering can be significant,
particularly in the backscatter region. For surfaces having a power law correlation function.
the scattering also shows a noticeable departure from Rayleigh in the backscatter region.
although the difference is not quite as large as for the Gaussian correlated surfaces.

For surfaces having an exponential correlation function, the scattering statistics did not
deviate from Rayleigh over the entire scattering region studied. even for very small sizes. This
is not surprising because there is still a large number of scattering facets in the exponentially
distributed surface, even for the very small cell sizes, which causes the scattering to remain
Rayleigh. while the number of scattering facets on the Gaussian distributed surface decreases
rapidly with cell size. From these results we can conclude that the number of scattering facets
in a clutter cell has a significant effect on the statistics of the scattered power.

Kriowledge of the type of terrain which is to be encountered in a radar system can therefore
be very important. If the expected clutter is known to have a Gaussian correlation or power
law correlation, problems may be encountered due to large returns from the clutter. However.
if the surface causing the clutter is known to have an exponential correlation function. the
assumption of Rayleigh scattering will be valid, even for very small cell sizes. Because an
exponential correlation function is used to describe cities and other urban areas, this is an
important result.
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Appendix A

Generation of the Correlation Matrix and Correlated Surfaces

To generate a surface having a Gaussian height distribution function and a specified
correlation function, C(t), one must take the desired correlation matrix, transform it into an
upper triangular matrix, and multiply it by the set of independent Gaussian distributed
heights.A! Let u = [u}, u,, . . . uyJT be the set of uncorrelated. Gaussian distributed random
variables. and C be the correlation matrix.

The correlation matrix is derived directly from the correlation function, C(z). The
deminsions of the matrix are equal to the number of points, N, on the surface of length, L. The
distance between two adjacent points on the surface is d=L/(N-1). tis equal to the distance
between point i and point | and is given by t=dli~{|. The matrix can then be filled in by using
the correlation function and making Cq=C(t). The matrix will be square and symmetric.

For example, if a surface is 10 units in length and we want to determine the correlation
matrix of six points on the surface, we would have L=10, and N=6. Therefore, d=2 and t=21i-{l.
For an exponential correlation function, C{t)=exp(-It!/T} where T is the correlation length
which we will set to one for this example. We can then flll in the correlation matrix by the
equation, Cy=exp(-21i-j1}). For i=j. Cy=1. Also, Cy=C;.

Al Getst, J.M. (1979) Computer generation of correlated Gaussian random variables. Proc.
IEEE, 87 (No. 5).




-l = 1341 = 1, Cy = expl-2) = 0.135
l-g1 = 1j+41 = 2, C; = exp(4) = 0.018
Il = Ij-11 = 3, C; = expl-6) = 0.002
l-1 = 1311 = 4, C, = expl-8) = 0.0003
=)t = 1j-41 =5. C = exp(-10) ~ O

The correlation matrix for the exponential correlation function is then:

1 0.135 0.018
0.135 1 0.135

c = 0018 013 1

4~ 0.002 0018 0.135
0.0003 0.002 0.018
0 0.0003 0.002

0.002
0.018
0.135
1

0.135
0.018

.0003

.002

.0
1

~00000
G

| —

The next step iIs to convert the matrix into upper triangular form. The method used to
transform the correlation matrix into upper triangular form is the Cholesky decomposition.A2
Let A be the upper triangular representation of the corelation matrix. Subroutine CHFAC,
which is part of the IMSL library, performs the decomposition.A3 Subroutine RNMVN, also
from the IMSL library. generates psuedorandom Gaussian distributed numbers. u, to simulate
heights having a Gaussian distribution function. These heights are then multiplied by the
upper triangular matrix found in CHFAC, resulting in a vector, y

(A2)

The vector y represents the heights of a surface that 18 Gaussian distributed and has a

correlation function, Cft).

A2 Stark. H. and Woods, J.W. {1979) Probabtlity, Random Processes, and Estimation Theory
for Engineers, Prentice Hall, Inc.. Englewood Cliffs, New Jersey.

A3 MSL, Inc. (1987) Subroutine CHFAC and Subroutine RNMVN, Fortran Subrouttnes for
Mathematical Applications, IMSL, Inc., Houston, Texas.
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Appendix B

Solving the Integral for Scattered Power Over ¢

The mean value of the scattered power from a one dimensionally rough surface of length L
is given by:

L L2 w2
0 an dx F(t)
G =] —-—- T
2LA 1] Yo (B1)
/2 4/2
where:
= XXy

F(t) = [Lz - xlx:J cos (vxt)
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Perform a change of variables:

T=E X - Xy x,={(1/2) {t + o)
G=X| +X x=(1/2) (o-1) (B2)
0%, 0%, |
J=,‘at acl‘,=l.
‘ax23x2| 2
9T Jo .
Deternine new lmits:
= =L_{_L)=
“max = X1.max x2mjn-§ ( 2) L
= -~ =L _L o _
1’mm—xl.mln x2.max- 2 2 L
G =X + X =Ll (B3)
max 1.max 2max 9o 9
--L LY=o
mia 1.min x2.min— 2+( 2) L

The integral is now over F(t} as shown in Figure Bl.




o-axis

L
region 1 region 2
F(x)
L r-axis
region 4 region 3
-L

Figure B1. New Integration Area
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Region 1: J' dt F(1)
-L
L
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¥

T o

do=j (L+ 1) Fr)de
~-L

t L

d0=f (L-1) F(ryde

o

OQ_ITO'-——-.

:
L L
Reglon3: jdtF(t) | do=] (L-1)F(r)de
° : o
o

o
Region 4: dt F(r) do =J- {(L-1)F(t)dr
L
-L

-L L

[ o ég—-.o
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Combining regions 1 and 4 and regions 2 and 3 and including the factor of (1/2) from the
Jacobian gives:

NN

j (L +1t)F(7) dt+g.[ (L-1) F(t)dt

I =

L—r

o L (B4)
L F(t)dt+ J T F(1) dt—Jt F(t)ydr.
-L o

Because F(t) is an even function. we can write:

L
o]
J- T F(t)dr =—jTF(t) dr
-L
o

and (BS)
L L
J- L F(t) dt = ZILF(t) drt.
-L
o
The total integral can then be written as:

L

I= ZJ'F(t) (L-t)drt.
(B6)
(o]
The double integral for the mean scattered power can then be written as:
F2 L
=T * cos (v_1) (L-1)dT.
e I = XXy €08 (v, 1) (L= 7) 57
o
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