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ANALYTICAL CHARACTERIZATION OF BISTATIC
SCATTERING FROM ROUGH SURFACES: DEPENDENCE

ON SURFACE CORRELATION FUNCTION

1. INTRODUCTION

The short pulse width in high resolution radars has the effect of shortening the clutter cell

illuminated by the radar. This smaller area would result in smaller clutter returns if the

statistical distribution of the power scattered by the clutter does not change as the cell size is

decreased. The scattered power from large clutter cells, which have many similar sized

scattering facets, has a Rayleigh distribution. A large number of scattering facets is a

requirement for Rayleigh scattering. However, as the cell size is decreased, the number of

scattering facets is decreased, and Rayleigh scattering may no longer result. In this report. we

will see what effect decreasing the clutter cell size has on several different types of surfaces.

In studies by Papa and Woodworth' and Sharpe2 it is shown that decreasing the size of the

clutter cell can significantly affect the statistical distribution of the scattered power. These

studies have only examined surfaces which are described by a Gaussian correlation function.

In this report other surfaces that are described by a power law correlation function and an

Received for Publication 12 June 1992

I Papa, R.J. and Woodworth, M.B. (1991) The Mean and Variance of Diffuse Scattered Power
as a Finction of Clutter Resolution Cell Size, RADC-TR-91-09.

2 Sharpe. L.M. (1991) Analytical Characterization of Bistatic Scattering from Gaussian

Distributed Surfaces. RL-TR-91-35 1.

I1 

.... ..



exponential correlation function are studied. It is found that the type of surface, whether it is

smoothly varying or very Jagged. has a significant impact on the distribution of the scattered
power.

The first section of this report will give a brief description of the correlation functions that

are used, as well as the type of surfaces described by each one. Results for the different

correlation functions will then be presented and compared. Finally, some conclusions about
the effect of cell size and correlation functions on clutter statistics will be made.

2. CORRELATION FUNCTIONS

A complete statistical description of a random rough surface involves the correlation

function of the surface as well as the height distributions. The height distribution functions

at each point, which describe the height deviations from a certain mean level, are assumed

here to be Gaussian with a mean level of zero. The correlation function. C(T), is a function of

the separation of two points on the surface and is a measure of how closely related the
distributions at these two points are. The separation parameter. T. is given by T = (xI -x2 ). with

xI and x2 being points on the surface. When C(r)ý 1. the heights. ý1 and ý2 at x, and x2 are

fairly strongly correlated so that knowledge of the height at one point gives information about
the height at the other point, and when C()a=- 0. the heights are uncorrelated. so that

knowledge of the height at one point tells nothing of the height at the other point. For a
purely random surface. CQx) is an even function and:

linC(r) =1, limc(,T)=O. (1)
---) 0T-.oo

The correlation distance. T. is defined to be the distance in which C(T) drops to the value e-1 . It

is this correlation distance that determines whether a clutter cell is large or small. For

"infinite' cluiter cells. T << L where L Is the dimension over which the scattering occurs. The

total scattered power divided by L is the average scattered power. However, in the finite cell

size studies done here, the cell size ranges irom L•2T to L.12T. so the conditions necessary for

Rayleigh scattering are violated to different extents.

The correlation functions used in this study are the Gaussian. Power Law, and Exponential.

They are given by:

CVIT1 = e-xp (---2 /T 2) Gaussian (2)

2



C =(.Vf [1 + (./T)2 1-3/ 2  Power Law (3)

Cexp(•) = exp (-I ' I /T Exponential (4)

The Gaussian correlation is used to describe smoothly curving surfaces having height

derivatives at all points. 3 The power law correlation represents surfaces that are somewhat

less correlated than the Gaussian surface. Asphalt roads and gravel surfaces are typically

described by a power law correlation function.4 Barrick and Peake 5 found a power law

correlation empirically fitted measured points of an asphalt surface. Surfaces described by an

exponential correlation function are jagged and have many vertical facets, such as urball areas

having buildings and houses as the scattering surfaces. The three different correlation

functions are plotted in Figure 1. The correlation distance Is T= 1 for all three cases. Note that

at '=1. all three functions cross the e-1 point. Surfaces described by these different correlation

functions are quite different and can have quite different scattering statistics.

Figures 2 through 7 show two different realizations for surfaces with the three correlation

functions studied. The rms height of these surfaces is o=0.5m, which is obviously not a
realistic value for asphalt surfaces, where one would expect a << 0.5m. or urban areas where

a >> 0.5m. but for comparing the different correlation functions, a common value for a was

used. To determine these sample surfaces a random set of uncorrelated Gaussian heights was

generated and multiplied by the appropriate correlation matrix. The generation of the

correlation matrix and correlated surfaces is discussed in Appendix A. The result will be the

correlated surface heights. For Figures 2. 3 and 4. the same set of random numbers was used to

generate the surfaces. In comparing these three figures It is obvious that the exponential

surface is much more Jagged and has many more scattering facets than the Gaussian correlated

surface. The surface with a power law correlation is not as jagged as the exponential and not

as smooth as the Gaussian surface. Even though the surfaces are all quite different, the same

large scale structure can be seen in all three because the same set of random numbers was used

to generate all three surfaces. The surfaces shown in Figures 5, 6 and 7 were generated by

different sets of random numbers. Again we see that the Gaussian correlated surface is fairly

smooth, the exponential surface is quite Jagged. and the power law correlated surface lies

somewhere between the other two In terms of Irregularities. Because these three surfaces were

generated by different sets of random numbers, the large scale structure is not common to the

three surfaces.

3 Ruck. G.T.. Barrick. D.E.. Stuart. W.D.. and Krichbaum. C.K. (1970) Radar Cross Section
Handbook. 2. Plenum Press. New York.

4 Cohen. E.. Bell. M., Lin. C.. Hoist. J.. and Tomasanis. D. (1988) Mathematical Analsqsis and
Programming for Electromagnetic Applications, RADC-TR-88-18. ADB 124496.

5 Barrick. D.E.. and Peake. W.H. (1967) Scattering from Surfaces with Different Roughness
Scales: Analysis and Interpretation, BAT- 197A- 10-3.
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3. ONE-DIMENSIONAL SCATTERING MODEL

Scattering from large clutter cells Is typically assunLed to have a Rayleigh distibUtion.

The equation for a Rayleigh distribution is:

lX) = exp (-x/p),

where x is the power. The mean is p. and the variance Is given as o°7 = (xX2 )- 2 , where l is

the mean, and (x 2 )is the second moment given by:

(x 2 ) J exp (- x) dx = 2 P2.

0

The variance is therefore given as o°°= 2p2 - p12 = p 2, and the relationship between the mean

and the variance of the scattered power for Rayleigh scattering is a°° = (00)2. 1lowever, a- the

cell size is decreased, violating the condition T- L, this relationship may no longer be valid.

In previous studies, the mean value of the scattered power for a finite clutter cell of a one

dimensionally rough surface was given as t .2 :

,1/2 L/2

(,O3r2U I dxij dx, 2[X. 2-X.X~jcos(v x ) (6)

-L/2 4,/2

where:

II



T = Xl-X2

X:2 = exp[-. 2 (I-C(T)j is the characteristic function for bivariate height distribution
X) = exp (-1 2 /2) is the characteristic function for univariate height distribution

2

Y2 = o2v = Rayleigh parameter squared

S= rms surface height
.x = (2rn/X.}sin(0,)-sin[(0s)j

V'7 = -(21t/X)|cos(9O)+cos(9,)j

2R (1 + cos (0, + ))

cos 0i + cos 6S

However. performing a change of variables from x, and x2 to x and cy makes it possible to

solve the integral over o analytically, leaving a single integral for the mean value of the
scattered power given by (See Appendix B):

S= FdtIL-t X2 -fX cos(vXt).L f 2 YX (7)
0

The variance for the finite clutter cell is calculated from:

Cy = 2 /I 2 dxFdX2dX,( dx4 COS (vx (xI - x 2 + x3- x4)) X4- X[ 2 X..
2 I.JJf d2 24( 34 1 3 (8)

L/2

where

X 12 = exp [_-2 (1IC 12 )I

X'0 = exp 1-12 (1--C,34 )

Ct = C{t) as defined in Eq. (2). (3). or (4).

The calculated variance is compared to the Rayleigh value of the variance. af 0  (00)2 to

determine if decreasing the cell size will cause the scattering to become non-Rayleigh. Note
'hat the suirface correlation function Is used in the calculation of both the mean and the
vatiance ol the scattered power.

12



Because of the intensive calculations done in this study. particularly for the varianve,.

efficient numerical integration techniques were required. The integration scheme used is a

Sobol sequence.' It is considerably more efficient than conventional Integration schemes. in

this method, the n-space that is being integrated over is filled by quasi-random points that are
"maximally avoiding" each other, and therefore fill the space more uniformly than a purelv

random sequence. Figure 8 shows a two-dimensional space being filled by Sobol sequences.

The algorithm used for Sobol sequence integration as well as a description of the technique is

given in Reference 5.

4. GAUSSIAN AND POWER LAW CORRELATION FUNCTION RESULTS

The normalized mean and variance or the scattered power for the Gaussian correlated

surfaces are shown in Figures 9 through 16. The curve with the small boxes represents the

mean value of the scattering &•. the curve with the triangles represents the Rayleigh value ()I

the variance (00)2, and the curve with the large boxes represents the calculated variance for the

finite clutter cell. In Figures 9. 10. and 11. 0,=75', X=0.25m. 3=0.5. and L decreases from 12rn

in Figure 9, to 6m in Figure 10. and to 3m in Figure 11. It is clear that as the cell size

decreases, the scattering becomes less Rayleigh, particularly in the backscatter region. due to

fewer scattering facets oriented in this direction. This means that decreasing the cell size for

this type of surface will have more severe consequences for a monostatic radar than for a

bistatic radar.

Figure 12 is the same as Figure 11 except that the wavelength is decreased to ,=O. 1 m

Comparing Figures 11 and 12 shows that the scattering is closer to Rayleigh for the longer

wavelength. This is because there are more scatterers per wavelength as the wavelength is

increased.

Figure 13 is the same as Figure 12 except the surface roughness is decreased to o0-'0.2m.

For the smoother surface the scattering is concentrated more in the specular direction while

the rougher surface scatters more diffusely.

For Figures 14 through 16 the angle of incidence is 0,=30'. These results show the same

trends as seen for the 0,=75' case. that is, for the longer wavelength the scattering is (loser to

Rayleigh. and the scattering from the rougher surface is more diffuse over the scattering

region.

6 Press, W.H. and Teukolsky. S.A. (1989) Quasi- (that is sub -) random numbers. Corripmters in
Physics: 76-79.

13



z E
wU LO)

ci

zo0
F- J

zz
LU
o)o

U-

ULLD
X C'4J CO

C,)

(W) iH913H 30V=IflS

14



00
wl 0
cc .
LIJJ

0 a

u0 0 v )

L-.J

LLLu

0) oiE

00 01c 0 0 >

C'C)
Cq.

(SP) 3ONVIUVA (INV NV3VYJ

15



0- 00

wU

o 00
CLL

- 0

LL- z 0
00-
Ln<

LL,'0

c- o

0 0)o0 0 0 <~
LOU) u) E -

(0 0

LIg

z 016



wM
00

31.0 Ii

o
C)) buci

o0) I-
Ci, 0)

LLZ (D

U- z w
CY) %-.

0 
I-

LO Lo E
C~LW - -

C)u

Ioco

o C0 0 0 0 0 0 C0 C'J CY)v
at S I

(SP) 30NVRJVA OINY NV3VN

17



ar- 06

0 ()
C) a)~

C l) 0) c

-L -j

ZcZ
0 0U

z o EEE

:>P -A NVIU-Ain

cn N -C5 Co8



w:-
o0)

a-
m- 0 U)

LEE U l) In.

090

< zO
:>o

co

0 /

LLAI

P-49



cc:
LUj

3: 0

0: -1

(I- 0 0

0- (DV)

U.EE
OULO

ifC 
w

00

20



cr:

LU

LU 0

09U cy)

LLZ

_ OiLO

L)?

0011

0~ - --

CL) <
I I ICI

(s)3NVHAay V1J

rl21



LUJ
0 oi

0 0)

w C)

LO

Co o
COZ C:) '~

= I-

0'
o. E 0 C1

z 0 LO 0) Z

LO C5J 0 1 -
I I b I I

(SP)3ONVUVA NV N~V-

22O



The scattering from surfaces having a power law correlation function are shown in
Figures 17 through 24. The results for the power law correlated surfaces are quite similar to

those obtained with a Gaussian correlated surface. The trends due to changing wavelength.

rms height. cell size. and scattering angles are all the same for surfaces with a power law

correlation function as they were for the Gaussian correlated surface. One notable difference

can be seen in comparing the results for the two surfaces. It is clear that in the backscatter
region, where scattering from both surfaces deviates from Rayleigh. the deviation for the

power law case Is not as severe. This is a consequence of the increased number of scattering

facets oriented to cause backscatter for the surface with a power law correlation. In comparing

Figures 3 and 6 to Figures 2 and 5, it is obvious that the power law correlated surface is
somewhat more Jagged and will therefore have more scattering facets than the Gaussian

correlated surfaces. The increase in the number of scattering facets results in scattering

statistics that are closer to Rayleigh.

5. EXPONENTIAL CORRELATION FUNCTION RESULTS

The surfaces described by an exponential correlation function, as stated previously, are
very Jagged and have many vertical facets. Also, this type of surface has more fine scale

structure than the other surfaces. Because of this. the scattering from this type of surface is
quite different than that of the Gaussian or power law correlated surfaces. The most

significant result found for the exponentially correlated surface is that the cell size has very
little effect on the Rayleighness of the scattering statistics. The results for the exponentially
correlated surface are shown in Figures 25 through 32. For cell sizes of L = 3m, no noticeable

deviation from Rayleigh scattering occurs over the entire scattering region. Because at L = 3m
the agreement with Rayleigh scattering was so close, larger cell sizes were not examined. The

smallest cell size studied is L = 2m. In this case we see that there is still very little deviation

from Rayleigh scattering. This is a very significant result because it means that for very small

clutter cells. Rayleigh scattering can be assumed even for monostatic radars when the surface

is described by an expone,,-,. correlation function. In the Gaussian and power law cases, the

deviation from Rayleigh scattering is quite large in the backscatter region.

23
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The reason why the exponentially correlated surface exhibits Rayleigh scattering for small

cell sizes while the other surfaces do not can be understood by considering the geometry of the

exponentially correlated surface shown in Figures 4 and 7. In the Gaussian and power law

cases, where the surface is smoothly varying, the deviation from Rayleigh could be quite

significant for small cell sizes, particularly in the backscatter region, because there are so few

scattering facets oriented properly to cause backscatter. However, the exponential surface.

which is very jagged and has many vertical facets, has a sufficient number of scattering

surfaces oriented in all directions to cause the scattering to remain Rayleigh over the entire

region of scattering angles. For the exponential surface, the direction in which the maximum

scattering occurs is -900. due to the large number of vertical facets, while the minimum

scattering is in the specular direction.

The mean value of the scattering from an exponentially correlated surface is almost

always lower than e for the Gaussian correlated surface. For the 300 angle of incidence, when

the wave is incident upon vertical facets, a considerable amount of the energy will be reflected

downward, and since second reflections are not accounted for in this study, this energy

disappears. However, for the 750 angle of incidence, much of the scattering Is reflected back by

the vertical facets causing very high backscatter and very little forward scatter. In comparing

the mean value of the scattering from the Gaussian correlated surface and the exponential
surface we see that a0 is higher for the exponential correlation in the backscatter region but

lower than scattering from Gaussian correlated surfaces in the forward scatter region. This

result agrees with intuition because higher backscatter would be expected from urban areas for

low grazing angles. Table 1 compares a0 for the backscatter direction for the exponential and

Gaussian correlated surfaces.

Table 1. Comparison of Backscatter for Exponential
and Gaussian Correlated Surfaces.

o .Xm) a (m) L(m) 0° 0dB) c°

30 0.25 0.5 3 -8.50 2.90

30 0.1 0.5 3 -12.48 2.95

75 0.25 0.5 3 8.79 -9.18

75 0.1 0.2 3 6.81 -13.65

6. CONCLUSIONS

In Ihis report it is shown that as the size of a clutter cell is decreased, the distribution of

the power scattered from that clutter cell depends on several factors. The wavelength of the

Incident field. the roughness of the surface, and the incident angle will all have some effect on

the Ravleighness of the scattered power. as discussed in the report by Sharpe2 . but the results

40



shown in this report demonstrate that the correlation function of the surface can have a

dramatic influence on the statistcs of the scattered power. For surfaces described by a

Gaussian correlation function, deviation from Rayleigh scattering can be significant,

particularly in the backscatter region. For surfaces having a power law correlation function.

the scattering also shows a noticeable departure from Rayleigh in the backscatter region.

although the difference is not quite as large as for the Gaussian correlated su'rfaces.

For surfaces having an exponential correlation function, the scattering statistics did not

deviate from Rayleigh over the entire scattering region studied, even for very small sizes. This

is not surprising because there is still a large number of scattering facets in the exponentially

distributed surface, even for the very small cell sizes, which causes the scattering to remain

Rayleigh. while the number of scattering facets on the Gaussian distributed surface decreases

rapidly with cell size. From these results we can conclude that the number of scatterinj4 facets

in a clutter cell has a significant effect on the statistics of the scattered power.

Knowledge of the type of terrain which is to be encountered in a radar system can therefore

he very important. If the expected clutter is known to have a Gaussian correlation or power

law correlation, problems may be encountered due to large returns from the clutter. However.

if the surface causing the clutter is known to have an exponential correlation function, the

assumption of Rayleigh scattering will be valid, even for very small cell sizes. Because an

exponential correlation function is used to describe cities and other urban areas, this is an

important result.
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Appendix A
Generation of the Correlation Matrix and Correlated Surfaces

To generate a surface having a Gaussian height distribution function and a specified

correlation function, C(QJ. one must take the desired correlation matrix, transform it into an

upper triangular matrix, and multiply it by the set of independent Gaussian distributed
heights.AI Let u = iu 1 u2... . UN]f be the set of uncorrelated. Gaussian distributed random

variables, and C be the correlation matrix.

The correlation matrix is derived directly from the correlation function. C(T). The

deminsions of the matrix are equal to the number of points, N, on the surface of length. L. The
distance between two adjacent points on the surface is d=L/(N-1). T is equal to the distance

between point I and point J and Is given by r--d 1-- I. The matrix can then be filled in by using
the correlation function and making C,=C(,r). The matrix will be square and symmetric.

For example, if a surface is 10 units in length and we want to determine the correlation

matrix of six points on the surface, we would have L=10. and N=6. Therefore. d=2 and r=2 I I-I I.
For an exponential correlation function, C(}r)=exp(- lz I /T) where T is the correlation length
which we will set to one for this example. We can then fill in the correlation matrix by the
equation, Ci,=exp(-2 lI -J l). For i=J. C =1. Also, C i=Ci.

Al Geist. J.M. (1979) Computer generation of correlated Gaussian random variables. Proc.

IEEE. 67 (No. 5).
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I -j = IJ- I = 1. cij = exp(-2)= 0.135

i - I = IJ-iI = 2. Cj) = exp(-4) = 0.018
t I-j I = lj-t I = 3. Cjj = exp--6) = 0.0O2
l -j I = Ij-iI = 4, C 1 = expf-8) = 0.0003

I i-j I = Ij-iI = 5. Ct) = exp(-10 = 0

The correlation matrix for the exponential correlation function is then:

1 0.135 0.018 0.002 0.0003 0
0.135 1 0.135 0.018 0.002 0.0003

C = 0.018 0.135 1 0.135 0.018 0.002
U 0.002 0.018 0.135 1 0.135 0.018

0.0003 0.002 0.018 0.135 1 0.135
0 0.0003 0.002 0.018 0.135 1

The next step is to convert the matrix Into upper triangular form. The method used to
transform the correlation matrix into upper triangular form is the Cholesky decomposition.A2

Let A be the upper triangular representation of the corelation matrix. Subroutine CHFAC.
which Is part of the IMSL library. performs the decomposition.A3 Subroutine RNMVN. also
from the IMSL library, generates psuedorandom Gaussian distributed numbers. u. to simulate
heights having a Gaussian distribution function. These heights are then multiplied by the
upper triangular matrix found In CHFAC. resulting in a vector. y

y = Ax (A2)

The vector y represents the heights of a surface that Is Gaussian distributed and has a

correlation function. CUO).

A2 Stark. H. and Woods. J.W. (1979) Probability, Random Processes, and Estimation Theory
for Enrqineers, Prentice Hall. Inc.. Englewood Cliffs. New Jersey.

A3 MSL, Inc. (1987) Subroutine CHFAC and Subroutine RNMVN. Fbrtran Subroutines for
Mathematical Applications. IMSL. Inc., Houston, Texas.
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Appendix B
Solving the Integral for Scattered Power Over Y

The mean value of the scattered power from a one dimensionally rough surface of length L

is given by:

W L/2 FW
(7 2 L XI dx I d - F(,r)(B1

(BI)

-L/2 -L/2

where:

¢T= xi-x 2

F(, =2 - XX] COS (vx4
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Perform a change of variables:

S=x 1 -x 2  x, = (/2){T+ a)

SX1 + X2 x2 = (1/2) (a -') (1B2)

Determine new limits:

T X1  - X2 = -( )L
max .max -2.mna 2 2

~~2 2
T x + -L L=-L 3

max .max 2.max 2 2

.mI, 1m.n X2.min 2 2

The integral is now over F(r) as shown in Figure BI.
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Combining regions I and 4 and regions 2 and 3 and including the factor of (1/2) from the

Jacobian gives:

1 =2 (L+ T) FT + (L - -) F(T) dc

L 0 L (B4)
I = f L F(t) d¶ + J t F(T) dT- f T F() dT.

-L -L 0

Because F(T) is an even function, we can write:

L

ILt F(T) dt = -f tF(x) dct

0

and (B5)

L

L L F(t) dt = 2fLF(r)c dT.

0

The total integral can then be written as:

11

I = 2f F(T) (L-T) dx . (B6)

0

The double integral for the mean scattered power can then be written as:

L

~~x - X•k I. x;- ýl cos (v.,,) (L - -t) dr .
LX (B7)

0
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