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ABSTRACT DTrj QUXIAJAT flSCFTED 3

The problem of linearly constrained least squares has many applications in signal processing. In this paper,
we present a perturbation analysis of a linearly constrrined least squares algorithm for adaptive beaniforming. The
perturbation bounds for the solution as well as for the alaest residual element are derived. We also propose an error
estimation scheme for the residual element, which can be incorporated into a systolic array implementation of the
algorithm.

1. INTRODUCTION

The least squares pro~lcm with linear equality constraints has important applications in signal processing.
e.g., adaptive beamforming. To solve this problem, McWhirter and Shepherd [5] proposed a systolic algorithm and
architecture. In this paper. we present a perturbation analysis of the problem and propose an error estimation
scheme for the McWhirter-Shepherd (MS) algorithm [5]. This paper is organized as follows. The least squares
problem is defined in Section 2 and error bounds are derived in Section 3. An error estimation algorithm is given

in Section 4, and in Section 5 a numerical example is presented to illustrate how well our new algorithm works.

2. PROBLEM DEFINITION

Given an n x q complex data matrix Ar(n), the least squares problem with linear equality constraints is to find
a q-element complex vector u'(n) such that

IjX(n)wv(n)jj = min (2.1a)

subject to the linear constraints
Sw(n) = b, (2.1b)

where .5 is a k x q (k < q) complex matrix and b is a k-element complex vector. Throughout this paper. we use
the 2-norm:

II ii = 112.

In signal processing, new data arrives continuously. Define the data matrix X(n) recursively by

,(n- X(n -1))
X~ n) - ( (n )r )

i.e., the nth row x(n)T represents a snapshot at time n. Our goal is to compute the n-th residual element

r,, = .(n)Trv(n). (2.2)



Is the solution vector w(n) unique? Define a (k + n) x q matrix Sx(n) by

Sx(n) ; ,(i))•

We assume that k + n > q. The solution is unique if and only if the matrix Sx(n) has full columni rank: that is.

the overdetermiined matrix equation
SNx(n) w(n) 0 (2.3)

has a unique solution w'( n) = 0.

Next, we wish to transform (2.1) into a familiar unconstrained problem: see [3] and [4]. Let

p = q - k

and partition the matrix S as
K=(S1 S_).

where S, is k x k and S2 is k x p. For simplicity, we assume that S 1 is nonsingular and upper triangular: for

example. S1 may be the result of an initial QR decomposition of S. Accordingly, we also partition X (n) as

A( n) = ( X.I(n) X.,(n)

so that X, is n x k and X 2 is it x p. Then (2.3) becomes

(S, $2 )wn)=O,

Xj(n) XN(n))

wicihi is equivalent to
(S, C(n)) w(n) = 0,

where
C(n) =\ X,,(n) - X,(r)S- ,S2.

The matrix C(n) is called the Schur complement of .51 in Sx. The equation (2.3) has the trivial solution if and

only if (U(n) has full column rank. We proceed to eliminate the constraints. Let

uw(n) it-, ( n)

uw,(n)}

so that uI(n) is k x I and wi,(n) is p x 1. S;nce

S.1wl(n) + S 2 u 2 (n) = b,

we get
ml(n) = S,'i1b - S_ 1 .52wv(n). (2.4)

Let

r(n) = -XN(n)S- 1b.

We derive
IIC(Yn)u9( n) - r(n)II = min, (2.5)

an unconstrained problem analyzed in [3], [4]. Now, what about the residual element r,? Define the Schur

complement matrix C(n) recursively by
~)2( ('(n -1 I)

(n) c(n) )

2



Partition the row vector x(n)T so that

x(n)r T x 1(n)T x, 2(n)T)

where xt(1 )T is 1 x k and x1 (n)T is 1 x p. We get

c(n)T = x2(n)T - xi(n)T SI,.

Let r, denote the n-th element of v(n). The last residual element of (2.5) is then

c(n)Tw'9 (n) - v, = x 2 (n)T u'(n) + x. (n)TUw(n) + -v, - = rn,

i.e., the same residual element as desired by the constrained problem (2.1).

How do we calculate r. recursively? Suppose that we have available a QR decomposition of the (n - 1) x p
matrix C'(n - 1):

C'(n - 1) = Q(n - 1)R(n - 1).

where Q(n - 1) is (n - 1) x p with orthonormal columns and the matrix R(n - 1) is p x p upper triangular. The
problem (2.5) is reduced to

(J(n - 1)\ fu(n -1)\ucn) n - , min,

where u(n - 1) = Q(n - 1 )H1t(n - 1). We triangularize the coefficient matrix by a unitary matrix P. Then

PH n- 1) u(n -1)) R(n) u(n)
S¢(n)T tVn oT

so that R(n) is p x p upper triangular. The matrix P consists of p Givens matrices. From P and Q(n - 1) we can

construct an n x p orthonormal matrix Q(n) such that (Qn) = Q(n)R(n) and u(n) = Q(n)Hz,(n). The desired

element rn is given by
rnn = -(ci ... cp)-t .

where cl .  cp denote cosines of the p rotations that make up P.

3. PERTURBATION ANALYSIS

Eld6n [1] presented a perturbation analysis of the linearly constrained least squares problem. Since his theory

is general. it involves weighted pseudoinverses and their corresponding condition numbers. In this section, we

derive simpler perturbation bounds for the solution w(n) as well as for the residual element r,. To simplify our

presentation, we will drop the argument (n) for the matrices and vectors, and let K(M) denote the condition number
of a matrix M! with respect to the 2-norm.

Let i&, solve the perturbed least squares problem

I1( X, + Ex, X 2 + Ex, ) i'11 = min (3.1a)

subject to the perturbed linear equality constraints

(S 1 + cEs, S2 + Es,)= b + (fb. (3.1b)

Suppose that t > 0 is a real variable and let

C + tEc = (X,. + tEx,) - (X 1 + tEx, )(S5 + tEs, )-1(S2 + IEs,)

and

S+ t f,. = -(X 1 + tEx,)(Si + tEs,)-(b + tfb).

3



Recall that S, is nonsingular and that C has full column rank. Suppose c is sufficiently small so that for t E 10, t

we have S, + ItE'l- is ronsingular and C + t E,- has full column rank. Let w(u) solve the matrix equation

0 (C +tE(.)"(+tE + ))) + ( +tE,.)H( If + ) f,()3

Then i'(O) and iv(() are solutions to problems (2.1) and (3.1). respectively. Define i = u,(O) and d-i r(t). Then

6, = If(O) + (?i'(O) + 0(c 2 ).

Differentiate (3.2) with respect to t and set t = 0. We get

/s, S1 (Si "9
.! Ec +( (0) + .0 C U1  c ) (3.3)

Let
Le (i 0 ' (", - > 1 0 '1 ) and fh- (fb)

Then

( (,H() ='- 1 (c' ()- and IlCII _ ll,.

Solving for 6,(0) in (3.3), we obtain

i.0(0) ; ( ,i ) 0[( ) If( H, ( ,, " ), + (E ) -, (00 E;C) ,]

= - ( 0 E .) W' - '- 1 (( 4 1
c.)- 0 ( ) (3.4)

where r E ("it' - i, denotes the residual vector. Furthermore, by azsuiiiilg

Ijfbll < flbfl, 111,11 < Ilrfl. flEL' Ijl < 11C11 (3.5a)

and Es Es, I 191I'l 3b
0 Ec1 -ý C1 - 3.b

we derive the inequality

jjz,•(O)jj < jj.9-• I I( • (?-j? l [lldjj + IIJC Jl jjýýJj 1J,,ll1 + m c,"ON-11 nl• (' - llIc l I'.11

Consequently. we obtain the following perturbation result.

Lemma. Using the notations defined above an(1 assuming that ( in (3.1) is sufficiently small so that the inequalities

(3.5) are satisfied, we get

< 4{1(d + 1) + (:)((-.)2 'rl + ,((±2). C (3.6)IIV ,,l <I,(g.,( • ~' !l IIq'llII I~ II I ll l
( 11011 -1ý1 "l 1 II(0 11 I11£ 11 I1,1.1i

To illustrate the effect of K(No) on the solution of (2.1), consider a simple example in which S = .51 0 ) and

= ( I,, 1, ). where 1, is an n x nt identity matrix and it < k < 2n. By observation. 111 = 'ý-lb and ?v, -

Since x(S,) = K(Si ) in this example, we.ee why the presence of K(Sý) is necessary in (3.6).

4



We proceed to derive a bound for the error in the residual. Let

0 \ S, + tEs, S2 +tEs, w(t) - + f
r(t) ) 0 C C+tEc ) ,r+ tf,

differentiate the equation, and then set t = 0. Using (3.4) to substitute for d'(0), we get

0 (I-C Es') [(, + ) S1 f 52H ~ (Ed)

where C't - ((.H(.)-lCH Consequently,

i'(O) = (I - CCt)(EcU,2 - fr,) - C((CHC)- HEr.

T
As for the residual element we have r, = e.r, where e,, 1  (0, .... 0,1) denotes the n-th unit coordinate vector.
Using the assumptions (3.5a) and noticing that a,,2 = Ct1 and 7' = (I - CCt)v, we derive our major result.

Theorem. Under Jhe sduie conditions as in the Lemma, we get

I HP - r._ <f [III - CC.411(2K(C) + 1)] + ((2) (3.7)

and
I r, I < ( [111 - CCtll(,(C) + IIC'II IIC•e,,I + 1)] + 0( 2 ). a (3.8)I1 '11, -

Here are some additional remarks. If we set S = I and b = 0, then (3.6) leads to a perturbation bound for the
standard least squares problem [21. We also note that IICw,11-2 ± It- = 1ld11-. Thus, we can define

cos9 = IIS0 ,ll/lldll

and use (1/cosO) and tanO in (3.6). The bound (3.7) is similar to a result derived in [2]. The inequality (3.8)

indicates that IP, - r,,I depends on K(C) as well as on Ilvii. Both (3.7) and (3.8) can be simplified by using the

relation that IlI - CCl1 = min{l, n - p}.

4. ERROR ESTIMATION

Although the error bound (3.8) is simple. it requires C. te, whose computation involves at least a back-solve.

In this section, we present an error estimation scheme for the desired residual element. When the new data vector

x(n)T arrives, it is first processed by S so that Xl(n)T is annihilated. In particular, let

(ZI(°) .... Z(0))) = x(n)T and u'') = 0.

Then the preprocessing proceeds as follows:
S1.1 S1,+ 1 ' ".. ( 1 S. s1,1+ 1 ... - s,,

(Si ) 1q) = -gi ~~ji iI
0 + "-/+1 -q

and
- 51 0



for 1 = 1,2.... k, where gj = z;_-1 /sI s. Writing in algorithmic form, we have

for 1= 1.2,..., k

begin

tII-l)/s l ;
91 = '11 - s

forj=1+l...q

11) _ 1(I-I)

- gb,

end.

The above process shows that

( " X)" I2 (I)T 1,5(n)TSjIS and u(k) -Xl(fl)TSjl1b.
"(-k+l . . q ) - -- "l•)T

These two variables are then used for updating the QR decomposition of C(n- 1) and computing the residual
element. We present below the algorithm derived in [4].

for l= 1,2_..p

begin

I ) (l - 1I)I
CIJ = V I,, 1- + 1k+l F

0 = 1i - I (n)

sin 0 = --k+I /j

for j =I±+ 1. p

begin
(r&)i (n -1) (k+(-i) snO

= c I cos 01 + z sin 0

_.k+N

end:

u(n) k n- I I

I t= cos 01 + U, -')sin O0

it (k+l) V -vn-1) sin 01 + uk+ -1 cos 01

end:

r, u +(kP C)H COSOi

In the above, c(k (for k = n - 1.n) denotes the (i.j)-element of C(k) and r (k) the i-th element of r(k).

'11



Now, we discuss an error estimation scheme for the preprocessing. Let - denote the corresponding computed
value and fI the floating point compuhftion. In the above procedure we calculate

(1)-1 __

f = fl(%1 f/ 1. )

f 1& - f1(j 1rn)).

Define the relations between the exact and computed quantities as follows:

s•3= si4(1 +{ Ori.,'O'. 2 (C')),

-= =. C (1+, i•'j (c)).

S= gj(1 + alI(M)).

L= b,(1 + pi6t(),

where ,(c)l = O(c), I,'j')(c)I O(c), I,(f)I = O(c), jO")(()j = O(c) and 161(c)l 0((). The five quantities i,.t/) . !l tI }

(11, It, j and pt are all real and nonnegative. We also assume that the errors such as o (() arid (j i ()

are so small that higher order terms like (rTuo,t(c)) 2 and (uti~i,(c))(y-a-(,)) can be ignored. Using the
lemma in [3], we obtain the following algorithm for estimating the errors in preprocessing.

for I= 1,2,...,k

begin

ot max{l-) (r71,1}

f,. - +

l i-t•~ gs ,maxia 'U ."l }

I:, (. - I+Is, rfa{kJI)I

rli) = 1 .. 1-•+ gab, lu~ ax{a! ill

end.

As explained in [31, the above estimation scheme can be incorporated with the preprocessing procedure and imple-
mented on the same systolic architecture. Additional time is minimal because the calculations can be carried out

during the otherwise idle time of the processors.
.(k) .k) (k)

The error estimate for r, can be obtained by the algorithm presented in [31 using ((k+l ... 4q ) and 17 as
the error estimates for t l(k .- ) and u(, respectively. Again, we list the error estimation algorithm and

refer the details to [3]. Define the relations between the exact and computed quantities as follows:

-I n -II n I) 1n)
C.)_ = _C2 + . c) = cRn)( + a0,1•6o,()).

,(k) _ _ k) (k) (k)ý, -j (I + (i V (c))(. CosO = COSOI(i +ai.i(c)),

j =(k) 1,k)(1( + , o( I)(()). sin9 1  = sin Oj(l +

and

= r(1 + (



The following algorithm estimates tile error in the last element of the residual vector:

for I= 1.2,..., p

begin

a1 j = nax{•' l-k+ }1

for j =+ 1+. p

begin

%in 4, Inax( 1  c "O i"',

eind:

It=Is It, -1 P + I + .I - si ll n IaX + )

.t~ ~~~~~~~~~~0 p,++ k +1 -1t• 1 sin •IIxl , ""k"' "O i llt• t+ r l

(k+[) sinn8, rnnax'l4ý +1 '7'l' )+1,k+,- ),o~s t max'rl +- `..,t I I
ItI -• sin01-uik÷'-z 1)"s Oil

end:

71 ti, k+P) Max{O ," .. (Tpp}

5. AN EXAMPLE

The example in this section shows that tile computed residual element may be accurate eveni whelt thlt-xlatrix
( is ill-conditioned. In this case, the proposed scheme gives a better error estimate than (3.8). Both the MS
algorithm and tne error estimation algorithm were implemented using MATLAB and run on a VAX 8300 with
machine precision ( = 1.1102 ^ 1 0 -l1 in the Communications Research Laboratory at McMaster University.

Exaniple. Suppose the exact constraint matrix and corresponding right side vector are

103 0 0 1 0 01200u i7

, 0 1 0 0 10) and b= /TO/7000 0 1 0 0 1.6 v-/ 7

Thus we set the error estimates as 7i,, = MI = 1 and 6,,(() = = . The data matrix at time n - 1 is

1 - v'5/- -2V'PY0 0 00

1 0 -1 0 00)

Suppose we know the exact R(n - 1) and u(n - 1):

10.001 1000v'5 2V'\ -10v2 /7
R(n - 1) = 0 1000 -2viI and u(n - 1) = 4vT'/7

0 0 1 6V 7

Similarly, the error estimates of their elements are all initialized as I. Now the new data

x(n)T -1 -v5 -2v/ 0001 0 0) and u"' = 0

8



ar' available and their e-rror e.,tiriates, are Initialized as < I. for j = 1, 6. and r; I. respect 6, liv. After

preprocoi(.ng, we get r,( n~ r = ( 0 00 2 1000 v5ý 2 v/i10 ) and ?,, = - 10 V'2/17. The correspIond~ing error 'r .t iiiiates

are =1. for j 4. 5. 6. and Y,'i = 23. The QI? updating sýcheine anil it., error v.,tiiiatioii algorithim are then

applied to 1011i - 1). o(Il - 1). iii), i ., and th.ojr error estimates. The exact residual element r, -56'~23.'. The

Coilipiited erro r is

The condition numriber of Yoiii is 4 6 10"V' and the error bound ýLs given by (5.8) eqas3.40) 10- '. The. -- tiiliai itin

alg''ridhizi gives, a niuchi iiore accurate value of 9 62 -10-l"
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