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The problem of linearly constrained least squares has many applications in signal processing. In this paper,
we present a perturbation analysis of a linearly constrained least squares algorithin for adaptive beamforming. The
perturbation bounds for the solution as well as for the iatest residual element are derived. We also propose an error

estimation scheme for the residual element. which can be incorporated into a systolic array implementation of the
algorithm.

Communications Research Laboratory. McMaster University
Hamilton. Ontario L8S 4K1 Canada

1. INTRODUCTION

The least squares pro-lem with linear equality constraints has important applications in signal processing.
e.g.. adaptive beamforming. To solve this problem, McWhirter and Shepherd [5] proposed a systolic algorithm and
architecture. In this paper. we present a perturbation analysis of the problem and propose an error estimation
scheme for the McWhirter-Shepherd (MS) algorithm [5]. This paper is organized as follows. The least squares
problem is defined in Section 2 and error bounds are derived in Section 3. An error estimation algorithm is given
in Section 4, and in Section 5 a numerical example is presented to illustrate how well our new algorithm works.

2. PROBLEM DEFINITION

Given an n x q complex data matrix X (n). the least squares problem with linear equality constraints is to find
a q-element complex vector w(n) such that

I.X(n)w(n)|| = min (2.1a)

subject to the linear constraints

Sw(n) = b, (2.1b)

where S is a k x ¢ (k < q) complex matrix and b is a k-element complex vector. Throughout this paper. we use
the 2-norm:

=1l

In signal processing, new data arrives continuously. Define the data matrix X (n) recursively by

N(n-1)
c(m)T '

represents a snapshot at time n. Our goal is to compute the n-th residual element

X(n)

i.e.. the nth row r(n)T

re = 2(m)yTw(n). (2.2)




T

Is the solution vector w(n) unique? Define a (k + n) x q matrix Sx(n) by

S
Sx(n) = (X(n)) ’

We assume that & + n > ¢. The solution is unique if and only if the matrix Sx(n) has full column rank: that i
the overdetermined matrix equation
Sy(njw(n)=20 (2.3)

has a unique solution w(n) = 0.

Next. we wish to transform (2.1) into a familiar unconstrained problem: see {3] and {4]. Let
p=q~Fk

and partition the matrix S as
S=(S Sa).

where S| is k x k and S, is k& x p. For simplicity, we assume that S| is nonsingular and upper triangular: for
example. S| may be the result of an initial QR decomposition of S. Accordingly. we also partition .X'(n) as

Nin) = (X {n) Xao(m)),

so that .X; is n x k and X5 is n x p. Then (2.3) becomes

whicl is equivalent to

where
C(n)= Xa(n) — .\'1(71)51'1.5'3.

The matrix C(n) is called the Schur complement of S| in Sx. The equation (2.3) has the trivial solution if and
only if ('(n) has full column rank. We proceed to eliminate the constraints. Let

ooy [ u(n)
win) = <u:g(n))‘
30 that t((n) is k x ! and wq(n) is p x 1. Since

Siw(n) + Sawa(n) = b,

we get
u‘l(n)zSl_lb-5l'153wg(n). (2.4)
Let
v(n) = =X (n)S7 .
We derive

[|C(n)w2(n) — ¢(n)|| = min, (2.5)

an unconstrained problem analyzed in [3]. [4]. Now. what about the residual element r,7 Define the Schur
complement matrix ('(n) recursively by

, _{Cin-1)

C'(n) = ( (‘(n)T ) .




Partition the row vector z(n)T so that
()T = (z21(m)T za(m)7).

where £(n)T is 1 x k and ra(n)T is 1 x p. We get

c(n)T = .r-)(n)T

—r(nm)Tsrtss.
Let v, denote the n-th element of v(n). The last residual element of (2.5) is then

e(mTwa(n) = vq = r2(n)Twa(n) + £y (n)Twi(n) + v — vy = 1o
i.e., the same residual element as desired by the constrained problem (2.1).

How do we calculate r, recursively? Suppose that we have available a QR decomposition of the (n — 1) x p
matrix C'{n —1):

C(n-1)=Q{n~1)R(n-1).

where @(n — 1) is (n — 1) x p with orthonormal columns and the matrix B(n — 1) is p x p upper triangular. The

problem (2.5) is reduced to
n—l wa(n) — u(n - 1) = min
c(n) - Un - '

where u(n — 1) = Q(n — 1)" v(n — 1). We triangularize the coefficient matrix by a unitary matrix P. Then

PH(R(n—l) u(n—l))_(R(n) u(n))
= 7 ,

C(n)T U 1] ¥

so that R(n) is p x p upper triangular. The matrix P consists of p Givens matrices. From P and Q(n — 1) we can
construct an n x p orthonormal matrix @(n) such that ((n) = Q(n}R(n) and u(n) = Q(n)"v(n). The desired
element r, is given by

rn=—(c1...cp)7.

where ¢, ..., ¢p denote cosines of the p rotations that make up P.

3. PERTURBATION ANALYSIS

Eldén [1] presented a perturbation analysis of the linearly constrained least squares problem. Since his theory
is general. it involves weighted pseudoinverses and their corresponding condition numbers. In this section, we
derive simpler perturbation bounds for the solution w(n) as well as for the residual element r,. To simplify our
presentation, we will drop the argument (n) for the matrices and vectors. and let k() denote the condition number
of a matrix M with respect to the 2-norm.

Let i solve the perturbed least squares problem
NEX1 +€Ex, Xo+eEx,)w||=min (3.1a)
subject to the perturbed linear equality constraints
(S;1+¢€Es, S2+eEg,yd=b+cfy. {3.1b)
Suppose that ¢t > 0 is a real variable and let
CH+tEc =(Xa+tEx,) —(X| +tEx NS\ +tEs,) ' (S2 + tEs,)

and
v tfe=—(X) +tEx Sy +tEs,) ' (b+tfy).
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Recall that S, is nonsingular and that (' has full column rank. Suppose ¢ is sufficiently small so that for t € [0.¢]
we have S| + { £~ is nonsingular and (" + tE,- has full column rank. Let w(t) solve the matrix equation

(gl +tEs, Sa+tEs, wlt) = b+tfy (3.2)
N (CH+tEH(C+LE,) TNCHEEDT ety ) -

Then 1{0) and (¢) are solutions to problems (2.1) and (3.1). respectively. Define v = w(0) and @& = u(¢). Then
@ = wil0) + e (0) + O(?).

Differentiate (3.2) with respect to t and set t = 0. We get

Es, Es, _ St S oy fo )

- Sy S - _ (1 0 b _{fi
b:(OI 1>' (=<0 (,). (1:(() and fdz(flb).

/@ ; -1 5 “H ; g
S\ :‘?..) = S7HCMEYT and ICY < NCH

Then

Solving for 1:(0) in (3.3}, we obtain

Sl S'Z =1 fb _ f;sl [‘:52 ) v+ 0 _ 0 0 w
0o CHC CcHf, 0 CHE-, EHy 0 EHC
_ a=ly e =1 "Es, Es,\ RPN
=S YCHC) [fd - ( o B ) u] —STYCHEYy (Eﬁr) . (3.4)

where r = (‘19 — v denotes the residual vector. Furthermore, by assumiug

w(0)

ol < Jiell. A0 < el NECH < N (3.5a)
I E)l=10 2)

Nl < JS=HI Kyt Cy) {HdH + IS Hu‘ll] +HSTH T T HCI

and

< ISt HC (3.5b)

we derive the inequality

Consequently. we obtain the following perturbation resnlt.

Lemma. Using the notations defined above and assuming that ¢ in (3.1) is sufficiently small so that the inequalities
(3.5) are satisfied, we get

[| i — wi { - ( | ) Sy 2 1l } 2
e <RV —m————— + 1) + KOO + O(¢”). 0 (3.6)
T NCN HSH el NCH IS ]

To illustrate the effect of A(S) on the solution of {2.1). consider a simple example in which S = (S5, 0) and
XN = (I, I,). where I, is an n x n identity matrix and n < k < 2n. By observation. v = Sl_lb and wo = —uwy.
Since x{.S) = K(51) in this example, we see why the presence of k() 1s necessary in (3.6).

4




We proceed to derive a bound for the error in the residual. Let

0N _(Si+tEs, Sp+tEs, ) (b+ih
r(t)}' 0 C+tec )Y~ \v+tf )

differentiate the equation, and then set ¢ = 0. Using (3.4) to substitute for w(0), we get

()= (55 5)e (3 )
=(I-CChH [(EOS gj ) w — fd] -y (EZH) ,
where C't = (CHC)"'CH. Consequently,
#0) = (I - CCY(Ecua - f,) - C(CHC)y EEr.

As for the residual element we have r, = ezr’, where e, = (0,....0.1) denotes the n-th unit coordinate vector.
Using the assumptions (3.5a) and noticing that w, = Ctv and » = (I — CCt)v. we derive our major result.

Theorem. Under (he same conditions as in the Lemma, we get

It — i

flell

< e[l = CCMI(2k(C) + 1)) + O(e?) (3.7)

and X
|7'n - rn‘

lell

< eIl = CCNRCY+ I ICTenll + D] + O(*). @ (3.8)

Here are some additional remarks. If weset S = [ anq b =0, then (3.6) leads to a perturbation bound for the
standard least squares problem {2]. We also note that ||C'Sw||* + ||7]|* = {|d|{*. Thus, we can define

cos 8 = ||CSwll/||d|

and use (1/cosf) and tand in (3.6). The bound (3.7) is similar to a result derived in [2]- The inequality (3.8)
indicates that |#, — r,| depends on x(C) as well as on [|v]|. Both (3.7) and (3.8) can be simplified by using the
relation that || — CC'|| = min{1, n — p}.

4. ERROR ESTIMATION

Although the error bound (3.8) is simple, it requires C'e,, whose computation involves at least a back-solve.
In this section, we present an error estimation scheme for the desired residual element. When the new data vector
r{m)T arrives, it is first processed by S so that £1(n)7 is annihilated. In particular, let

L0 (0) T
I

p and u'”) =0.

) = z(n)

Then the preprocessing proceeds as follows:

(51,I Sti4t - Slg ) ( 1 0) ( Sty SLisr - S )
i =4 =1 -1 =1}
0 5y g 1/ \3 Sl T e
b\ _ (1 0 b\
7L N B N | u“‘”} )
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forl{i=1.2 ... k. where q; = :;‘1_”/5“. Writing in algorithmic form, we have
forl=1.2...., k
begin

ii=1)
gr = /s

for j={4+1, ..., q

W = qli-o gzbr
end.
The above process shows that

(k) . el .
(Zep1 - :;k))ng(ll)T—Il(n)Tbl 'Sy and u'*) = —r (n)T ST,

These two variables are then used for updating the (J/ decomposition of ('(n — 1) and computing the residual
element. We present below the algorithm derived in [4].

for{=1,2.... D

begin

“(1,'1” — \/IC}T;—LWQ + ':LE[‘” 2,
cos ) = (-[,_';_“ c(,";':

sind; = :;::,l—” C:T:

for j=1+1,....p

begin
(n}y _ (n=1) ki) . .
o= c050(+-,¢+]- sinf;:

Ukl _ (n-1) kHI-1)
Sy, =0, sin 8 + Tkp cos f;
end:
-1 1
vf") = v}" Ycos O + u'* -V sing,;
(n=1) . -
uFH) = " "sin + u¥ -1 cos 6,

end:

rn = ulk+re) Hlecos(?.-.

In the above, Cii‘ (for k = n — 1, n) denotes the (i.j)-element of C'(k) and t':“ the i-th element of (k).




Now, we discuss an error estimation scheme for the preprocessing. Let * denote the corresponding computed
value and f! the floating point computation. In the above procedure we calculate
- =10 s
= ez~ /s,
S0 e sti=1) s
5= flE fl(ngI,_,)),
fl(l)zfl(fl”_” fl{gimy)

Define the relations between the exact and computed quantities as follows:

Sij = 8ij(1 +0:;0i;(6)),
5(_l1= (”(1+ N \l)(()).
gitl + a&ile)).

@l = w1+ '8 ().

by = b(1 + ﬂlél(f))w

QS)
Il

where 0; j(€})] = O(e), | (“ (6)] = Ofe). [&i(e)] = Ofe). |18 (e)] = O(e) aud |i(€)] = O(e). The five quautities o, IE
C;”, ay, ’I“’ and y; are all real and nonnegative. We also assume that the errors such as 0; ;¢; ;(¢) and g)(“i.;“(()

are so small that higher order terms like (o, ;01,(€))* and (07.:01.(¢)) (C,( -”u;l_”(c)) can be ignored. Using the

lemma in (3], we obtain the following algorithm for estimating the errors in preprocessing.

forl=1,2,. ..k
begin

ap = max{(,';l'”. K

=1 .(t=1)

A <, [+Hlgese, maxiare,
J 0 '
M
i = [ = 0" N gi b max{ay wi}
re= Tah]

end.

As explained in (3], the above estimation scheme can be incorporated with the preprocessing procedure and imple-
mented on the same systolic architecture. Additional time is minimal because the calculations can be carried out
during the otherwise idle time of the processors.

The error estimate for r, can be obtained by the algorithm presented in [3] using (Q;c+)1 e g:,“) and n'*) as
the error estimates for (:L':_’l :f,“) and u'¥', respectively. Again, we list the error estimation algorithm and

refer the details to (3]. Define the relations between the exact and computed quantities as follows:

AnH = en V6o (), &n =1+ o400, (0).
3“” = '“(1 + '(k'u;k’(c)), cosé, = cos (1 +m_;o,"l (c)),
ﬁ(k) — u(k)(l + U(HB(k)(())- Siﬂé[ = sin (1 +Ul.lo(jj‘(())v
Aln—1 -1 .
l': )=l':n ‘(1+£|.p+l"|.p+l(f))- v:n)z (n)(1+0’:p+10, p+1(())

and
Fn=ra(l + ’70(())




The following algorithm estimates the error in the last elemeunt of the residual vector:

begin

skl
= max{fl,.’-kLH '}

fory=1{+1.....p

begin
in~t) k4+i—1) NEE TR
S ! cos 8 max{ €, 7y ,}|+|;‘kf' sin #y max{g:‘,“ Tt
1; = i T e R 9l
O os s L sin éy
- YR Akl by
bk |r;'; Ysin 8 max{ ;0 ‘H+I:LQ "os Hlii\'{gl+n’ YAl
= ICEEN AT
k4 |v‘l", ! slnl)‘—l,‘*f’ ""5"l|
end;
. _ lt‘l"““cosv, max{€; p41 a4 u™ " s g "‘a"{"‘k“_” Bl .
Lp+1 !l“"'”':osf?,+u“‘+'"“5m"l|
a-1) - -
,)(k+[) _ f:“ Yain g, max{&r p41 a,,,}H—fu‘“" Yeos 8 maxin'* Yoo
|1‘:"—”sm&.—u“‘""‘”ﬁﬁ?’ll
end:
_ c4+p)
n=n wmax{oy 1. . Opp}-

5. AN EXAMPLE

The example in this section shows that the computed residual element may be accurate even when the matrix
(" is ill-conditioned. In this case, the proposed scheme gives a better error estimate than (3.8). Both the MS
algorithm and the error estimation algorithm were implemented using MATLAB and run on a VAX 8300 with
machine precision ¢ = 11102 ~ 10~ in the Communications Research Laboratory at McMaster University.

Example. Suppose the exact constraint matrix and corresponding right side vector are

10 0 0 1 0 0 —120000v2/7
Ss=[0 107 0 0 1 o and b= V10/700
0 0 100 1 6v5/7

Thus we set the error estimates as g; ; = gy = 1 and 0, ;(¢) = &;(¢) = ¢. The data matrix at time n — 1 is

-1 -5 =210 0 0 0
X(n-1)= 0 -1 2 0 0 0
0 0 -1 0 0 0

Suppose we know the exact R(n — 1) and u{n —1):

0.001 1000v5 2V10 -10v2/7
R(n-1)= 0 1000 -2v2 | and u(n-1)=| 4,/10/7
0 0 1 6v/5/7

Similarly, the error estimates of their elements are all initialized as ¢. Now the new data

)T =(=1 =5 —2/10 0001 0 0) and u'V =0




. : , C 0 : ., .

ar« available and their error estimates are nitialized as ‘»;\ =1l fory=1_. .6.and " = 1. respectiv-ly. After

preprocessing. we get ' = (0002 10005 2/10) and Yy = —10\/5/7. The correspouding error estimates
a3 . KN - . . . . .

are (7' = 1, for j = 4.5.6. and 1,'?" = 23, The QR updating scheme and its error estimation algorithm are then

applied to Hin — 1), u{n — 1), ¢(n). 1., and their error estitnates. The exact residual element r,, = 6235 The

t'umputt-(] error s
I a -8
iF, —ral =111 x 107"

The condition unmber of €1} is 46 « 10”7 and the error bound as given by (3.8) equals 3.40 = 10~ . The estunation

algorithm gives a much more accurate value of 962 < 10717,
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