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ABSTRACT

In this paper, various contact and c.rtck problems for an orthotropic substrate,

stiffened by elastic films, are considered. The film is modeled as a membrane and the

substrate as an orthotropic half-plane with the principal axes of orthotropy parallel and

perpendicular to the boundary. The problem is formulated in terms of a system of

singular integral equations. Various asymptotic analyses are carried out in order to

determine the nature of the stress singularities. The special cases for which the solution

is obtained and results are provided include the stiffened half-plane without the crack,

the cracked half-plane without any stiffeners, the orthotropic half-plane with a single

stiffener and a crack emanating from the endpoint of the stiffener, and a broken

stiffener on a cracked half-plane. In each case the influence of the relative

crack/stiffener dimensions, the film/substrate stiffness ratios, and the material

orthotropy on the stress intensity factors is studied and some sample results are given.

1. Introduction

The problem of stress concentrations caused by thin, elastic film overlays on

substrates has attracted a great deal of attention in recent years because of its

importance in a number of microelectronics, optical and structural applications. The

edges of these films are known to be regions of stress concentration [1, 2], the stresses

being produced by processing, thermal mismatch or mechanical and thermal loading.

The investigation cf the related stress analysis problem is essential for understanding
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the associated physical effects such as dislocation generation, film debonding and film

and substrate distortion and cracking. It is further known that especially for

applications in microelectronics and composites, both the film and the substrate

demonstrate significant anisotropy in their elastic properties [3]. This anisotropy must
be taken into account while studying the mechanics of the film-substrate composite

medium.

Among the early studies of the problem of a film bonded to an elastic substrate

one may mention those by Arutiunian[4, 5] who formulated the problem in terms of a

singular integral equation. In [4] the problem of a singleA iL ý.Ud in [5] ihc iuteraction

of periodically spaced films was considered. A simpler formulation of the same problem

including the interaction of multiple stiffeners was considered by Erdogan[6]. In the

solutions given in [4]-[6], the film was assumed to be very thin and hence the effect of

bending stiffness and the variation of stresses through film thickness was neglected.

Thus, the film was modeled as a membrane and the only contact stress was the

interfacial shear stress. In [6] a simple and efficietit numerical technique incorporating

the correct form of the stress singularities was used to solve the resulting integral

equation. Once the shear stress on the interface was determined, the stresses in both

the film and the substrate were easily calculated. It was shown that the Lontact shear

stress had a square root singularity having a Mode-Il stress intensity factor. The

magnitude of this stress intensity factor was shown to depend on a stiffness parameter

that is a measure of the relative stiffnesses of the half-plane and the film. Erdogan and

Gupta[7] considered the single stiffener problem and studied the regularity of the

solution in terms of the stiffness parameter. Delale and Erdogan[8] used these solutions

to study the associated failure problem. The membrane stiffener problem has also been

studied recently by Erdogan and Joseph[9] who gave a detailed asymptotic analysis of

the singular behavior of the solution for an arbitrary membrane-substrate contact angle

and showed that the power of the stress singularity varies between 0 and 1/2 as the

contact angle varies between 0 and 90 degrees.

In the present study, the contact stress problem for elastic films directly bonded

to an orthotropic substrate containing a crack is considered. In general, depending on

their relative dimensions, the film and the substrate can be modeled as membranes,

plates or half-planes [6, 10, 11]. The main thrust of this paper is towards applications
where the dimensions of the substrate are considerably greater than that of the film and

hence the substrate may be modeled as a half-plane and the film as a membrane. Th-

effect of material anisotropy is taken into account by assuming both the film and the

substrate as being orthotropic. The general problem is iormulated in terms of a system
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of singular integral equations which are solved for various film and crack geometries. A

particular emphasis is placed on the surface crack in the substrate initiating at the film

end.

2. The General Formulation of the Problem

Consider the plane elasticity problem for an..orthotropic half-plane stiffened by a

number of membranes and containing a crack (see, for example Figures 1 and 2). The

problem may easily be formulated by using the solutions for a pair of dislocations in the

half-plane and a pair of concentrated forces acting on the boundary as the Green's

functions. Let the half-plane contain a pair of dislocations at a point (X1, yj) having the

componentZ of the Burgers vector f, and f2 parallel and perpendicular to the boundary,

respectively. The stresses at a point (z, y) in the half-plane due to these dislocations

may be expressed as

al1 (X, y: *, yO) = K11(, Y, X1, Y• ) fA + K12 (X, Y, ;, YO f2

a12 (X, Y; Zi, Yi) = K21(X, Y, XD, , ) YO + K22 (z, Y, X1, YO) f2, (1)

a22 (X, Y; X1, YO) = K31(, Y, X, Yi) A + K32 (X, Y, y , y) f2,

where the functions Kj (i = 1, 2, 3, j= 1,2) are given in Appendix A (see [12]).

Similarly, the stresses in an orthotropic half-plane due to the boundary tractions

120(, y) = f3 6(y- Yo), a•1 (O, Y) = h 6 (Y- Yo), (2)

are given by

al (z, Y; Yo) = K13(z, y, Y0) fh + K1 4 (X, y, Yo) f4,

012 (X, Y; Y0) = K23(z, Y, Yo) f3 + K 24 (X, Y, Yo) f4, (3)

0'22 (X, Yi; Y) = K33(X, Y, y0 fL + K34 (X, Y/, Y-) k~

where the functions K,,, (i = 1, 2, 3 and j = 3, 4) are also given in Appendix A[13].

The functions Kj contain the parameter Ch defined by (A12) which characterizes

the anisotropy of the substrate. It was shown by Chou[14] that C1 has a range between

- 4 and cc. Physically, Ch = 0 corresponds to an isotropic material. It was further
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demonstrated that the sign of Ch has an important influence on the analysis of stress

fields. It turns out that the roots of the characteristic equation resulting from the

solution of the equilibrium equations for the plane orthotropic medium are real for Ch >

0 and complex for C,q < 0. The formulation considered here is valid for all values of Ch.

It should be noted that the constant CA is essentially the same as the orthotropy

parameter n defined in [15] and [16] (Ch = 2 (r, - 1), see [17] for discussion). In this

paper numerical results are presented for six different materials having the elastic

constants listed in Table 1. Materials 1 and 2 are fiber-reinforced composites. Material

3 is isotropic. Material 4 with Ch = - 0.0022 is nearly isotropic and is included largely

to verify the numerical procedure developed for orthotropic material-. ,_.,aterials 5 and

6 are Silicon and Gallium Arsenide, respectively.

Since the bending stiffness of the film is assumed to be negligible, it may be

modelled by a membrane in which the stress component all vanishes, a 22 is

independent of the thickness coordinate and the distributed interfacial shear stress a 12

= f3(y) may be treated as a body force. Thus we may assume that in (2) and (3) f4 = 0

and the crack-contact problem described, for example, in Fig.1 may be formulated by

considering f1, f2 and f3 as continuously distributed functions that satisfy the

appropriate continuity and equilibrium conditions. The continuity of displacements

along the film-substrate interface requires that

___vl(y) = _v,(o, y), a, < y < bi, i = 1,.., n(4)

where v1 and v2 are the y-components of the displacements in the film and the substrate

respectively, a, and b, refer to the film ends, and without any loss in generality the

continuity condition is expressed in differentiated form.

If we now designate the stress state in the half-plane by a,, ar, a.., and define

the coordinate system (s, n) shown in Fig.1, the remaining conditions refer to the fact

that the crack surfaces are traction-free, that is

a,,(s) = a sin2 O + ayy cos2o - ary sin28 = 0, (A < s < B), (5)

0"J8) = (ar - ax:_) cosO sinO + oa, cos20 = 0, (A < s < B), (6)

By observing that 9v/iy = f,, and that f3 is the only applied force acting on the film,

from the equilibrium of the film it may easily be shown that
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T-(13= 2 f3( o) dyo, (a, < y < b,), i = 1, ..,•n, (7)

4.

where the film is assumed to be orthotropic having the stiffness coefficients Ci and •2

is defined by1

2 = c , )}(8)

Similarly, on the boundary of the half-plane from (1), (3) and oa(0, y) 0, a"•(0, y) =

f3(y) it may be shown that

B

Sv2(0' Y) = 222 ao + JK 31(0, y; Zx, YI) 11(t) dt
B 

A 6i

+ fK 3,(o. y; x,, 1/i) f2(t) dt + f JK33 (01 Y, Yo) f~i(y0 ) d.(9)
A

where

=1 01zX ± 0), (10)

x s scosO, y = s sinO,x =, t cosO, y, = t si 9 , ( 1)

{2 Cll C22 -C, 2 I )C2 }(12)

C,, being the stiffness coefficients of the half-plane (see Appendix A). In solving the

problem it is assumed that the substrate is subjected to uniform tension a., = Co away

from the film-crack region. Other simple forms of practical 'loading may be uniform

temperature changes and residual stresses which may be interpreted in terms of a

constant strain mismatch along the film-substrate interface. Observing that a,, is the

only external load amplitude, it may easily be considered as being also a measure of the

strain mismatch on the interface[9].

Substituting from (1), (3), (7) and (9) into (4)-(6) we obtain a system of integral

equations for the unknown functions f,, f2 and f31, where f~i is the interface shear for the
ith film, (i = 1,.,n). The conditions of equilibrium of the films and the single-
valuedness of the displacements require that the solution of the integral equations be

1ý3,, and 1,are the coefficients of the compliance matrix for the substrate and the

film, respectively.
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subject to
4.

J f3 ,(y) dyo = O, i= 1, 2, ... ,n, (13)
4i1

B B

f1(t) dt = 0, Jf,(t) dt = 0. (14)
A A

3. The Integral Equations

In materials stiffened by 'istic membranes the endpoints of the stiffener are

known to b- points of singularity. Thus, aside from the cracking of the membrane due

to high tensile stresses, the most likely modes of failure in the bonded medium appear

to be debonding along the interface and crack initiation and propagation in the

substrate around the singular points. With the membrane model, debonding may be

interpreted simply as the shortening of the film and, therefore, does not require any new

concepts and analysis. Cracking of the substrate normally requires the sol-tion of the

problem for a crack growing radially from the singular point (Fig.1, A = 0, 0 = 0cr)

The direction of the crack growth must be determined by maximizing the ratio of the

strain energy release rate to the fracture toughness. Since the material is orthotropic, in

the problem under consideration, both of these quantities are dependent on 9 and 0,,

and may not be determined without the full fracture toughness characterization of the

orthotropic medium. However, in orthotropic materials the principal planes of

orthotropy are also known to be the weak cleavage planes. Furthermore, under the

Mode-II conditions prevailing around the film end for - 30"< 9 < 30" (where 0,, falls)

the 9 variation of the strain energy release rate is relatively weak. It is, therefore, safe

to assume that in the film problem considered 9 = 0 is by far the most likely fracture

plane (Fig.1).

By substituting 0 = 0, from (5), (6) and (4) it may then be shown that
d d d bi

fJ {'~t dt + f Nllx, t) Jikt) d+ fJA 1 2 (x, t ()d + f 1(,y) ~~. y
C C C '

= g,(x), (c < x < d), (15)

n6.

f f t) dt+ fN 2i(x, t) fý(t) dt + fNý2 (z, t) f2 (t) dt + fJ N2 3 (z, yo) faj(yo) dyo
c C c i=a

= g,(x), (c < x < d), (16)
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d

fk T;=-y) dy, + fJNI(y, t)fA(t) dt + f 3(,t)f 2(t) dt + JN.(y, y0,)f3,(yv0) dy.
4. C C a

= g3(y), (aj < y < bj), (j = 1,.., n) (17)

where the Cauchy kernels and the Fredholm kernels N~i follow from K8, (i, j 1, 2, 3)

given in Appendix A. Thus referring to Appendix A it may be shown that

2 ,f(CA+4) - {2x+t(Ch+2)} (18)

Nl(•,t) =2(z+t) {C F+(C,+2)t+t2 I

Ni2(, t) = 0, (19)

2 (C-h+4)y3A3  (20)
N13 (z, Yo) K,, {(y + A2 2)2 + C/ 2A2y}

N21 (z, t) = 0, (21)

N22 (X, t) = N11(X, t), (22)

2~~~ Y2c• 4) A323(, y (Ch+4)(23)

N23(x, 0) - -K,, {(y.2 + A2 x 2)2 + C4 xA~y}

K,( C + -)•- ' V (24)

N31(y,7 t)J (t + A2  VI) 2  + CA Y2A2t2}

3

Ke(GA + 4)2 A t2 y (25)
N3 -(y. t) 7r- K t2± A' y 2 + Ct 2y2t2

f

012 A H(y - yO) (26)
N33(y, Yo) = 2 h ,(Ch+ 4)

022 ____

2no (27)
g (x)- K a,

K,ý(28

g2(X) = 0, (28)

9Y = (29)

g3(y) ( 4)

where H(y - y,) is the Heaviside function and the constants Ch, K,, X, and K, are

defined in Appendix A.
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4. The Special Cases

In the special case of an orthotropic half-plane without any cracks and stiffened

by a single membrane along z = 0, - a < y < a, the integral equations of the problem

are reduced to

JF -y -Y dy AT-- '22 f3- (yo) dyo 0 c(o, a < y <a, (30)
Y. h Y 0 2 (C 4 (Ch+4)

subject to

f f3(yo) dy, = 0. (31)

We now define

yo= at, y = ar, /32 2 ý(-C-h+4) A$1 -o EA._ -.. (2

By using the following results [9]

0, n=0, -1<r<1,

T, (t) dt =•• U,_ 1(r), n=1,2,..., -1<r<1, (33)

f~ ~ 1t- P T Ir - (Irl/r)•rr "-- ] n --Oa ,1, rl > I

f .(t) T,(t) dt = _ U,, 1(r) 47 - ra, n > 0, (34)
-1

and a method of collocation, (30) may be reduced to

An U.,(r,)jl- = 1, i=1,2,..., (35)

where T,(t) and Un(t) are the Chebychev polynomials of the first and second kind,

respectively. The linear system (35) is solved by truncating the series at n = N and by

monitoring the convergence of the results. The selection of the collocation points ri is,

in general, arbitrary. It is known that good convergence is obtained by selecting more

pcint: near the ends[9]. For the present study, the collocation points are selected as

(2 i - 1) 7r
T,{r,) = 0, r, = cos9i, 9,2 N (i = 1....I). (36)
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From (30) it may be seen that f3(yo) has a form similar to the stress field due to a crack

under pure Mode-II loading and, therefore, it is possible to define a stress intensity

factor at the film edges as follows:

2(a) = lirn .2(a - y) o,(O, y). (37)
y "•+

The value of this stress intensity factor is dependent on the stiffness parameter A, which

is proportional to the ratio of the stiffness of the substrate to the stiffness of the film in

the y direction. Figure 3 shows the variation of the normalized stress intensity factor at

the film edge a-s a function of A,. For A, = 0, that is, for an inextensible film, (30) has a

closed-form solution (6] and the value of the normalized stress intensity factor is unity

which is the upper bound. Similarly, from (30) and (32) it, may be seen that as the

stiffness of the fihn decreases (i.e., as A,--+ oc), the shear stress fy and, consequently the

,tress intensity factor k2 tends to zero.

Once the shear stress in the contact region is determined, the tensile stress in the

film may be obtained from the following relation

I ) - 1- (y/a)2 " AU.- 1(y/a) (38)(7,Y (Y) f fa(y,) dyo, = o-,a En(8
Sh -4h n=

A typical plot of this film stress is shown in Fig.4. It is seen that the maximum normal

film stress is at the center of the film i.e. at y = 0. This implies that the y = 0 is the

most likely site for potential film failure. Once the film fails completely in the center, a

crack can propagate either along the interface or into the substrate. The latter case is a

strong possibility as demonstrated in [6]. For the case of two stiffeners placed

symmetrically with respect to the x-axis, it was shown that there was a "strong"

singularity in the state of stress in the half-plane for the limiting case as the distance

between the stiffeners approaches zero. Recognizing that complete film rupture

represents this limiting case, one would expect that the crack would almost certainly

propagate into the substrate or along the interfaces. This problem for the cracked

substrate is considered in Section 6 of this paper.

The second special case which is of considerable practical interest is the case of a

crack perpendicular to the boundary of a symmetrically loaded orthotropic half-plane

without any stiffeners. In this case f, is the only unknown function and the integral

equations (15)-(l7) are reduced to

f " fL~ dt+ J N(z,t) f1 (t)dt - , (c<x<d) (39)
C= t • K, = ;,(< z<d),(39



where

N(z t) 2fJ(Ch +4) 12 x+ t (Ch±+2)1 40
l+Ch 2 (x+t) (4)'

the dislocation density fl(t) is defined by

fA(t) = - t2(t, +0) - v2(t, -0)}, (41)

and the constants K, and Ch are given in Appendix A.

Note that for isotropic materials Ch = 0 and from (40) it may easily be shown
that

11m N(z, t, CA) = 1' 1 2 t (zx t)} (42)Ch--• T X# ( + t) + (X + t' ( 2

which is the known result for an isotropic half-plane with a crack perpendicular to the
boundary.

If c > 0, the function fj(i) must satisfy the following single-valuedness condition:

ffl(t) dt = 0. (43)

The integral equation (39) may then be solved by following the procedure described
previously in this section. After determining fl(t) the stress intensity factors may be
defined by and evaluated from

k()= hrn ,2(z - d (,O)= -f-urn K•
S-d)u(z,0)2(d - x) f1 (z), (44)

ki(c) = urn m42(c - x) o',,(x, 0) =-1imK42x ~lx.(5Kr 22(x - c) fZ(z). (45)

From (39), (40) and (42), it may be observed that the kernel is independent of the
elastic constants in the isotropic case, and depends only on a single dimensionless
material constant Ch for orthotropic materials. The stiffness constants K"/2 in (39) and
2 p/(1 + K) in the isotropic case -imply serve as scaling parameters for the crack opening
displacement. Thus the stress intensity factors would be independent of the material
coustants in isotropic materials and would be a function of Ch only in orthotropic solids.
The results for the internal crack problem are given in Table 2. From this table it may
be seen that the stress intensity factors are monotonically decreasing functions of Ch
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and the relative distance { (d + c)/(d - c)} from the surface. As { (d + c)/(d - c)} -.-

1, i.e. as c --* 0, kh(c) becomes unbounded (because of diminishing ligament size c) and

k1 (d) approaches the value given b , the edge crack solution.

A second observation that is important in this problem concerns the effect of a

90-degree rotation in the axes of orthotropy. From the defiaition given by (A12), CA is

seen to be invariant with respect to a 90-degree material rotation. Hence the kernel of

the integral equation and consequently the stress intensity factors would also remain

invariant with respect to a 90-degree material rotation. Similar invariance has been

previously observed by Delale and Erdogan[18] for the problem of an orthotropic strip

with internal and edge cracks. This invariance is conditional in that the boundary

conditions at x = 0 are required to be independent of the y-coordinate[18]. In the

internal and edge crack problems involving membrane stiffners, where the boundary

conditions depend on the y coordinate, it is shown that the stress intensity factors

indeed vary with a 90-degree material rotation.

From its derivation it is clear that the integral equation (39) is valid for the edge

crack as well as for the inte -ial crack problem. However, for c = 0 it is seen that the

kernel N(s, t) becomes unbounded as (z, t) -- 0 simultaneously. Thus, apart from the

Cauchy singularity, the equation contains a generalized Cauchy kernel which may have

an effect on the behavior of the unknown function f1(t) at t = 0. This behavior may be

examined quite simply by following a function-theoretic method (19]. For a sectionally

holomorphic function F(z) defined by the density function fl(t) as

F(z)= f t'~ Zt, (46)
0

assuming that

A (t) = t) (0 < Re(B, w) < 1), (47)- P(d- t)w

we have the following asymptotic expression [19]

F(z) = cb(0) eir - 41(d) + Fo(z), (48)
d' sin3-r (z - c)13 d3 slnwvr (z - d)W

where 61(t) is bounded in 0 < t < d and nonzero at t = 0 and t = d, and F0(z) is

either bounded or has singularities that are of lower order than that of F(z). If we now

express the kernel N(z, t) in terms of the following partial fractions
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N' t) = (p + 2) 2 (2 + p p,)
C1, (t + X) Ch(p1 - P2) (t - P1I)

2 (2 + p p2)
+ CI(p 1 - p2 ) (t - p 2 )' (49)

P1.2= 2  4 = Ch+2, (50)

the integrai equation (39) becomes

I 2(+ (p + 2) 1 ' (t)

"j - ) C, f (t + X) dt
0 0

2 (2 + ppl) 1! f,(t) d

Ch(P, - P') 0 t-p2
d

2 (2 +pp 2 ) 1 d f1(t) 2+ c•v • j - -v) dt = o,(0 < x < d). (1
Ch(p 1-p') 0 J(t -P') -o

Thus, from (43) and (51) it follows that

61(0) cot37r + (p + 2) 2 (2 + p p,) ei?•

dwx3 Ch sinfhr zAp - .2 i/3rp

2 (2 + p~ p,2) eZ~ i;r0(d) coOf=0() 5
+ GA(Pj - P,) si~n/3r PO dO. (d - wcowr=(x)

where O(z) represents all lower order terms. Multiplying (52) by (d - x)w and taking

the l;mit as z --+ d we obtain

01(d) cotwir = 0. 
(53)dO

Similarly, multiplying (52) by z- and letting z -+ 0 we find

61(0) +cot3+ (p + 2 ) 2 (2 + p pl) e t

Ch sin& Ch(p, - p,) sin& pý

+ 2(P P2 ) + p =0 . (54)

±Ch(p, - p,)sinPr p~ 21

12



Since 0,(0) and 0,(d) are non-zero, from (53) and (54) we obtain the following

characteristic equations to determine w and B.

cotw7r = 0, (55)

cotýir + (p+2) 2{2+pp,
Ch sinor Ch(P - p2) sin&3ir p"

2 {2 + p P2} 0
+ C5(p1 - p2) sin•3r p13  = (56)

From (55) it is seen that w = 1/2 which is the expected result for the singularity at a

crack tip embedded in a homogeneous medium. Equation (56) has to be solved
numerically to determine the value of #. From (50) it can be seen that p1 and P2 are

real for Ch > 0 and are complex for Ch < 0. This implies that, depending on the sign of

CA, (56) gives two separate characteristic equations. A numerical code was developed to
solve (56) for positive and negative values of Ch and it was determined that it does not

have a root in the strip 0 < Re(/) < 1. 0 = 1 is seen to be a root but is unacceptable

[191. This implies that the unknown function fl(t) does not have a power singularity at

the end point z = t = 0.

The next step in the analysis is to check for a weaker, namely for a logarithmic

singularity in the unknown function when c = 0. From the foregoing analysis we note

that for c = 0 the solution of the integral equation is of the form

fA(t) = 6(t) (57)
(d- t)-

thus from (46) and (57) the asymptotic behavior of F(z) near the ends z = 0 and z = d,

respectively, is found to be

F(z) = 0(0) log z + F1(z), (58)

F(z) = 0(d) log(z - d) + F2(Z), (59)

where 0(t), F1(z) and F 2(z) are bounded functions. By substituting from (57) and (58)

into (51) it may be easily shown that the coefficient of the singular term log z vanishes.

One may, therefore, conclude that at z = 0 fl(z) and, consequently, the stresses are

13



nonsingular.

We now observe that for c = 0 by defining the normalized quantities

X = d (r + 1), t= .(u + 1), =l(0 = (u), (60)

the integral equation (39) may be expressed as

f f -i dr u+ f Ns(r), t(4u)] (t) dt = -1,(-1< r < 1), (61)
-1 -1

where N[s(r), t(u)] is given by (40) for the orthotropic and (42) for the isotropic half-

plane. From (57) it is clear that the solution of (61) is of the form

I

oa(u) = w(u) G(u), w(u) = ( - u) I(1 + u)P. (62)

One way to solve the problem would be to express the bounded function G(u) in terms

of a series of the related orthogonal polynomials, in this case the Jacobi polynomials, as

follows:
G(u) = 1AIZP ,2' 0) (63)

Equation (61) may now be reduced to a system of linear algebraic equations in A, by

truncating (63), substituting into (61), and using a collocation technique. The

collocation points are choZen according to (36). The following expressions are useful in

evaluating the singular integral[20]:

1 j P•° (t) (1 - t), (1 + ) dt = cotcr (1 - s)a(1 + S)3P(' ')(•
-1

_2(aQ±3) F(ca) F(n + 13+1) fn1, na ( a)r(n+a+/3+ 1) V+ n( )f

(64)
"1 ip ' 3)(t) (1 t)c (1 + t dt = co?/i (1 + - (6)

- t+ tu
-1

2 2(a±ý) I'(/) P(n + a +1) In1) n-a-(I A
r(n•+ + /3 + 1) {+ (2-f (6()(65)

The hypergeometric function F(n, a, b, c), appearing in (64) and (65), is computed by

using the summation formula given in [20]. The integral containing the generalized
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Cauchy kernel is evaluated by Gaussian quadrature. The convergence behavior of the

numerical scheme is presented in Table 3 which gives the solution for the isotropic half-

plane. It is seen from the table that excellent convergence is obtained with an

increasing number of terms in the series. For N -- 45 the value of normalized stress

intensity factor matches the exact value computed in [21] upto seven digits beyond the

decimal point. The exact value of 1.12152226 was computed in [21] where it was stated

that the only possible error might be in the last digit. This technique is used in all edge

crack problems in this study.

After determining the unknown function, the stress intensity factor for an edge

crack in an orthotropic half-plane may be obtained from (44). For different Ch values,

the normalized stress intensity factor is tabulated in Table 4. The results are seen to

deviate significantly from the the familiar isotropic result (= 1.1215), when CA is

different from zero. As in the internal crack case, the stress intensity factor is a

decreasing function of Ch. Convergence in the numerical solution was observed to be

very rapid for positive values of Ch. However, it becomes increasingly difficult to obtain

convergent results for Ch < - 1. The results presented in Table 4 are accurate upto the

digits shown. They have been obtained by increasing the number of terms in the series

and the quadrature points. Convergence for Ch < - 3.9 was extremely difficult and the

present scheme yields unreliable results. By letting Ch = - 4 + e, a singular

perturbation technique may be developed to solve the problem. However, the results

would be of no practical interest. In the other limiting case, for Ch --+ oo from (27) it

may be shown that the Fredholm kernel becomes

N(X t) = 1 1 (66)
"~ (t + z)

Thus, by substituting from (66) into (39) and assuming fl(t) = -f"(- t), the integral

equation may be reduced to

f fl(t) dt = 0267SJ~t - -K-,'(-d<x<d)' (67)

giving

fj (x) 2 ao X , (68)
= K• ,•d (68

From (44) and (68) it then follows that
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k/(d) = ,47o , (69)

that is, in Table 4 the normalized stress intensity factor would approach one as CQ goes

to infinity.

5. Solution of the Crack Problem for a Single Stiffener

Referring to Fig.1, for c > 0, the system of singular integral equations (15)-(17)

may be solved by using, for example, the technique described in the previous section in

a straightforward manner. The quantities of interest to be calculated are the stress

intensity factors which, for the case of a single film shown in Fig.1 may be defined as

follows:

k(c) = lirn 2(c - x) a,,(z, 0) (70)
X -- + C

k1(d) = irn 42(x - d) o-,(x, 0) (71)
r -4 d

kl(c) = lirn `2(c - z) Or,,(0, 0) (72)X• -- +) e

k((d) = dim ,]2(x- d) o,,(x, 0) (73)

k2(- 2a) = irn 2(y+ 2a) o.,(y, 0) (74)y --- -2a

k2(0) = lirn - y a,(y, 0). (75)
-40

An examination of the kernels Nj given by (18)-(26) would show that, for a fixed crack

length (d - c) and the film length 2a, as the crack distance (d + c)/2 goes to infinity,

the kernels Nil, N 13, N23 , N31 and N3 2 would go to zero and the integral equations would

uncouple. Also, since Nil and N22 are invariant with respect to a 90-degree material

rotation, the crack tip stress intensity factors would remain unchanged through such a
I

rotation. However, since N33 is explicitly dependent on A = (C11/C 22)4, even in the

uncoupled case the film end stress intensity factors would be affected by a 90-degree

material rotation. In the coupled case all kernels are dependent on A. Consequently,

the crack tip as well as the film end stress intensity factors would be affected by a 90-

degree material rotation.

Some sample results showing the normalized stress intensity factors in an

orthotropic half-plane stiffened by a single membrane and containing an internal crack
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are given in Tables 5-7. In these examples, too, it is assumed that the crack angle 6

shown in Fig.1 is zero and the elastic properties of the substrate are given in Table 1.

Note that the problem has two dimensionless length parameters, {(d - c)/2a}

characterizing the relative crack length and {(d + c)/2a} giving the relative crack

location. Aside from the magnitude of the external load ao, the third additional
variable in the problem is the relative compliance of the film characterized by

A1  = 2 ý (76)
'22

Table 5 shows the results for a fixed crack length {(d - c)/2a} = 1, and Table 6 for a

fixed (average) distance {(d + c)/2a} = 1. From Table 5 it may be seen that as the

stiffness of the film decreases, (i.e. as A1 increases) the primary crack tip stress intensity

factors kh(c) and kj(d) increase and approach the values given in Table 2 (for which Av =

oc). As the crack distance from the surface increases, k2(c) and k2(d) tend to zero and
the remaining stress intensity factors approach the uncoupled results given in Table 2

and Fig.3 regardless of the value of the film stiffness AP The rapid increase in k2(0), the

stress intensity factor for the interface shear at the film end z = 0, as the crack tip

approaches the surface, (i.e. as c - 0 or {(d + c)/2a} -* 1) is due to the interaction of

singular stress fields at the crack tip and the film end. Table 6 shows some sample

results for the normalized stress intensity factors for a fixed crack distance {(d + c)/2a}

= 1 and various values of the crack length {(d - c)/2a} and film compliance coefficient

Af. Referring to the integral equation (30) and Fig.3, note that the normalizing stress in

the figure is

,0 OA0 (77)-C4 -+

which, for isotropic materials becomes a; = jo/2. Therefore, in comparing the results

in Tables 5 and 6 with that of Fig.3, the values given in Fig.3 need to be multiplied by

a factor of tA{/,Ck + 4}.

The results found in this study for isotropic materials compare well with that of

[8] (see also [171). The slight discrepancy that may exist is due to different techniques

used in the respective numerical analyses. The effect of 90-degree material rotation on

the stress intensity factors is shown in Table 7. The example is given only for CA =

6.8222, Material 1A. Except for a 90-degree rotation, the substrate material (Mat.1A)

used in Table 7 is the same as that used in Tables 5 and 6 (Mat.1), and in both cases CA

= 6.8222. That is, referring to Table 1, it is assumed that in Tables 5 and 6 C11 =
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1.0100 x 10l, C22 = 0.3592 x 1011 and in Table 7 C11 = 0.3592 x 10", C22 = 1.0100 x

1011 N/m 2 , C12, C6 and Ch being the sane. Note that the stress intensity factors for

thc material orientation used in Tables 5 and 6 are consistently higher than that given

in Table 7 and the differences appear to be significant.

In the important case of an edge crack (c = 0, 0 = 0, Fig.1) the integral

equations (15)-(17) are still valid. However, they now have generalized Cauchy kernels

which become unbounded as z, t, y, y. approach the end point z = 0, y = 0

simultaneously. Unlike the edge crack problem in the absence of a stiffner, described in

the previous section, in this case it is not possible to make an intuitive statement about

the nature of the singularity at the common end points of the crack and the film. This

singularity may be examined in a straightforward manner by defining

t= P (d t)' , (0 < Re(3, w) < 1) (78)
K fxt)= /(d-t)w

K- e 2(t) = t) - (0 < Re(O, -) < 1) (79)T P t =t (d - t-

(Y) 03(=) , (0 < Re(3, a) < 1) (80)-=-yo),3 (yo + 2a)'

and by following a function-theoretic mathod briefly described in the previous section.

For the remote singular points the characteristic equations are found to be

co&,,r = 0, cot-/pr = 0, cotar = 0. (81)

giving ý, = - = a = 1/2. The characteristic equation found for the endpoint x = 0 = y

is rather complicated[171. However, its examination shows that it has no root in the

complex strip 0 < Re(O) < 1. Thus the unknown functions fl, f2 and f3 have no power

singularity at z = y = 0 and, hence, may be expressed as

K G,(t) Kf G2(t) G3 (Y°) (82)-fft (t) = t) t' 2 Ayo + 2a'

where Gi, (i = 1, 2, 3) are bounded functions and are nonzero at the end points.

Searching now for a logarithmic singularity at the point z = y = 0, after performing the

appropriate asymptotic analysis from (15)-(17) and (82) it ,1. a be sLown that the

coefficients of the logarithmic terms cancel out and

- G3(0) log - y < oc, y < 0, (83)
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giving G3(0) = 0. This would imply that the apex of the 90-degree wedge formed by

the intersection of the crack and the membrane is stress free.

In the case of a single stiffener and an edge crack (Fig.1, c = 0, 0 = 0), after

normalizing the intervals, from (82) it may be shown that for f, and f2 the weight
I 1 , 0)

function and the related orthogonal polynomial are (1 - t) 2 (1 + t)° and P1 2 (t) and

for f3 (1 - t)0 (1 + t)- and Fo' 2)(t), respectively. The technique to solve the integral

equations would then be quite similar to that described in the previous section. Note

that in this edge crack problem the equilibrium condition (13) is the only external

condition that needs to be satisfied in solving the integral equations.

After solving the integral equations the stress intensity factors are determined

from (71), (73) and (74). Some sample results obtained for Ch = 6.8222, 3.0358,

- 1.0944 and - 1.3137 corresponding to materials 1, 2, 5 and 6, respectively (see Table

1), are shown in Table 8 for various stiffness ratios A! and relative dimensions d/a.

Physically it is expected that as (d/a) --* oo (for all values of Af) and as A! -- o o ( for all

values of (d/a)), k(d) would approach zero and ki(d) would tend to the edge crack

results for an unstiffened orthotropic half-plane given in Table 4. This trend may

indeed be observed in Table 8. Similarly, as (d/a) -+ 0 the stress intensity factor for

the interface shear, k( - 2a) would be expected to approach the results given in Fig.3.

This, too, may be seen in Table 8 again with the understanding that to conform to the

notation given in Fig.3, the results given in Table 8 must be multiplied by

, (CA + 4)/A. Note that the interaction between the membrane stiffener and the crack

is much stronger in the edge crack case than it is for the internal crack problem. The

table shows that generally all stress intensity factors decrease with both increasing CA

and increasing compliance constant A1. One of the more significant results of the edge

crack problem is, of course, the fact that the interface shear stress intensity factor k2(0)

at the film end x = 0 is zero. The effect of a 90-degree material rotation on the stress

intensity factors is shown in Table 9. The results given in Table 8 are based on the

material constants shown in Table 1. In Table 9 the 90-degree rotation is accomplished

simply by interchanging Cn and C22 in the substrate. In this case, too, the stress

intensity factors for the material orientation corresponding to Table 8 are seen to be

consistently greater than that given in Table 9. Not unexpectedly, the differences

between the two sets of results are seen to be much more pronounced for small values of

(d/a).

Some sample results for the distribution of the interface shear stress in an

isotropic half-plane containing a crack and stiffened by a single membrane are also given
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in Fig.5. Curve 1 shows the result for the edge crack case c = 0. Note that in this

particular case at the endpoint y = 0, the interface shear stress is zero. For reference,

the figure also shows the shear stress for c = oo (curve 4) corresponding to the

uncoupled problem. Also note that as the ligament size c decreases, there is a

considerable increase in the interface shear near y = 0.

6. The Broken Film on a Cracked Substrate

The problem is described in Fig.2. In this case by observing that f2(t) = 0 and

by using the symmetry conditions, the integral equations (15)-(17) may be expressed as

d d 0

fl f() dt + f Q11I(x, t) f1(t) dt + f Q13(X, y0) f3(y0) dy0,
0 0 -2a

= g,(x), (0 < x < d), (84)

1o MY d 0

-dyo + Q2 1 ,(y, t) f1(t) dt + jQ(y, yo) f3(y 0) dyo

-2a 0 -2a

= g92(y), (-2a < y < 0), (85)

where

Qu,(z,t) = h2 {(C& + 4) {2 x + t (C+ 2)} } (86)
Q (2(X-t) {02 + (CA + 2)Xt + t2 (86

Q( ) - 4 +4)V.A 3  (87)
Q13XI ,) r K,, 1(y,2 + 2 X2)2 + C

Q2(y 0) K. K(Ch + 4) t A 3y2  (N ) (88)
r {(t2 + A' y2)2 + C, yVAt•2}

12(Y Yo #122 A H(y - yj(89)
= r ( Y + Y) 022 h j(C'h-+ 4)

g(X) =(2 o 2A a, (90)& g--'g2Y (Ca+ 4)"

In this case too, the asymptotic analysis shows that at the end point x = y = 0 the

functions f, and f3 are bounded and have the form as given by (82) (see [17]). The
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solution may, therefore, be obtained by normalizing the intervals and by expressing G1

and G2 in terms of series of Jacobi polynomials.

Some sample results for normalized stress intensity factors are listed in Table 10.

Table 11 shows the effect of the 90-degree material rotation. Comparing the results

given in Tables 8 and 9 with those of Tables 10 and 11, it may be seen that the stress

intensity factors for the case of two symmetric membranes are consistently greater than

the single membrane case. It may also be observed that, in general, the stress intensity

factors increase with decreasing Ch.

7. Conclusions

The membrane model used in this paper for thin film overlays on elastic

substrates appears to be a good first approximation to various stress concentration

problems in the composite medium. The results obtained in the form of stress intensity

factors may be useful in the study of such mechanical failure problems as film

debonding, film rupture and substrate cracking. The analysis was carried out for

orthotropic films and orthotropic substrates. The results found indicate that the

material orthotropy may have a significant influence on the stress intensity factors at

the crack tips and along the film edges. One major limitation of the model is neglecting

the bending stiffness of the film. As a consequence of this the normal component of the

stress along the interface is assumed to be zero, which is not realistic. Since the elastic

continuum model for thin films leads to rather insurmountable analytical and

computational difficulties, a "plate" model appears to be the obvious compromise. The

crack problem for an orthotropic half-plane stiffened by a plate will be the topic of our

next paper on the subject.
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Appendix A

Green's Functions for Stresses in an Orthotropic Half-Plane

Consider an orthotropic elastic solid having the constitutive relations

0.1 CI C012 C13 0 0 0 611

0.'22 012 C022 C23 0 0 0 "22

("33 C 013 C23 C33 0 0 0 '33 (Al)

0'23 0 0 0 C44 0 0 723L"13 0 0 0 0 C55 0 I13
0,12 0 0 0 0 0 C66 712 _

where QC, ] is the stiffness matrix. The Green's functions due to a pair of dislocations

at a point (z,, y1) in the half-plane, appearing in (1) are found to be [12]

KI, (x, y,, x,. y) =

K X, A2 {(z + X - j)'( - A'(y -, )2

2 {- X -f- x

K÷ \ <q 'U {2 ÷ +0 (z/ + )\ I> {2 (z•/ + z,)+~~~ ~~ -~0 x1 9+A(x+x)(z + 3 z) +zA( ')}},(

K12 (z, y, z-1, yj) =

KA,\2 (y -YO) y{(C + 3) (z - zj)2 + A2 (y _ yl)2}

' {Ch + 3) (z + x)' + A2 (2 - y_)2}}

.+ { y - Y") {2 ( + c0 (Z + .,)21
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7-- Y{2 C + CQ + x) (A3)

K21 (X, y, Xl, I) =

2  {r Xl J~) - x)2 - A' (y

(y - J y )_ ,2 (y

- Yý {(X + )2 - A 2 (y - y)

+ K {.(y - ){ + Cf2C + ( )+ )}

-(y- X3 ){2 C+ ch(x'+ x)} (AM)

K22 (X, Y, z, ul) =

gL (z- {(x- fx2 - A2 (y - y)2}27r X I

(x + ( I) _X +{J)2 - A'(y -

Ke fx~ { i2 C~ + CA A 2 (y _ yiYJl ( 2 (x + x1 ) CSCh X2 X

+ c z{ x x? + x (x + xl) (3 x + xi) + xA '(y - yW}}}, (A5)

K31 (XI Y, X,, yJ) =

g{(x - xi){( -{( )2 + (CA + 3) A' (y - y1)2}2 lr Xi
(x + x) 2}(

x2 (h +{(+x )2±(CA+3)A2(y -

-n fC {(z +2 {if2 C + CA' (y - y21-L 1.2 (x + x;)

+ C{CCZx+ x (Z+ l) (3Z+ xl) +ZA2(y _ y)2}}}, (A6)

K32 (z, y, XI, Yi) =
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Kf{(Y Y'){(• - ,)2 - A2 (y - V1)2}

_Y YI {(z + ;2 - A2 (y _ yJ)2

K . f( -Y ) y .'2 C + & A2(y - ,)2} (Y - Y1) {2
7r C X2 X3

+ C A{(C + 4) x + 2 x + A (Y -2 (A7)

where

A , (A 8)

C2 (A9)

K" (C12  + CI 2 C6 (C'12 ± 12  + 2 C6) )'(
1

DI2 = {C1 C22}•, (AlO)

K,, KA2 (All)

Ch - (ý012 + C12) (• 1 2 - C,2 - 2 C66) (A12)
CI 2 C66(A2

= (z + z) 2 + A' (y - y)2, (A13)

= {(x -)2 + A2 (y - yl)2} + Ch (z - X)2 A2 (y - Yl) 2, (A14)

X2 = (2 + CA (X+ X) 2 A2 (y _ yD)2, (A15)

X3 = (C + Ch xz)2 + Ch (X - z) 2 A2 (y - yl)2. (A16)

Similarly the Green's functions for a pair of concentrated forces acting at a point (0, yo)

on the boundary are given by [13]

K13(X, Y, Y0) =

A3 2(Y ) (CA + 4) (A17)

7r {z4 + A 2 (Ch + 2) z (y - y0 )2 + A' (y - y.)"}'
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K14(X, Y, y, ) =

A ?~ J(Ch -+4) .4(AS

7r {4 + A'(C + 2) x2(y- y )+ (y- y)}') (A"()

K23(X, y, Yo) =

SA 3 z (y - yo)2 (C + 4) (A19)

-f{x4 + A2 (C4 + 2) x 2 (y y,)2  A4 (y.- y.)}' '

K24 (z, Y, y0 ) =

A xi (y - yo) ](CA + 4) (A20)

T,{z4• + A' (Ch + 2) x (y - y) 2 + A•(y - y.)4}'

K 33(z, Y, Yo) =

A 3 (y _ y-)3 C, +4) (A21)

7- { 4 + A 2 (Ch + 2) x (y - y.) 2 + A4 (y - y.)4}'

K 3 4 (X, Y, Yo) =

Az(y - )2 (C + 4) (A22)

7r- { + A' (Ch + 2) x (y - y.)2 + A4 (y - y.)4}"
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Fig.1. Schematic diagram illustrating the loading and geometry for the

problem of an internally cracked half-plane stiffened by a film.
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I.< ! (0, -2a) (0, 2 a)
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8 (d, 0)

x

Fig.2. Schematic diagram illustrating the loading and geometry for the

problem of an edge cracked half-plane stiffened by symmetric film.
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Fig.3. Variation of the normalized film edge stress intensity factor

with stiffness parameter A,
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Fig.4. Typical variation of the normalized film stress along the contact

region.
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Fig.5. Interface shear distribution for an isotropic half-plane containing a crack
and stiffened by a single membrane (Fig. 1, 6 = 0); the curves 1 through 4
correspond to c/a = 0 (the edge crack), 0.1, 1.0 and oo.
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C, 1  CI 2  C2 2  C66Material xlO" N xlOO A xii N x11ol N
2 2 2 M2 CA

1 1.0100 2.7430 0.3592 0.4905 6.8222

2 0.5966 0.6764 0.1712 0.5592 3.0358

3 0.2097 0.8989 0.2097 0.5993 0.0000

4 0.2088 0.9012 0.2101 0.5971 -0.0022

5 1.6800 6.6000 1.6800 8.4000 -1.0944

6 1.1904 5.3840 1.1904 5.9520 -1.3137

Table 1. Stiffness coefficients Cj, for the orthotropic half-planes used in the examples.
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CA 6.8222 3.0358 0.0000

d+c k1(c) k1 (d) k, (c) k, (d) k, (c) k1(d)
d -c ko ko ko ko ko ko

1.02 2.6753 1.2436 2.7540 1.2646 2.8820 1.3009

1.04 2.1411 1.2127 2.2048 1.2321 2.3081 1.2661

1.06 1.8925 1.1922 1.9485 1.2106 2.0394 1.2430

1.08 1.7402 1.1768 1.7910 1.1943 1.8740 1.2253

1.10 1.6348 1.1643 1.6816 1.1810 1.7584 1.2108

1.12 1.5563 1.1537 1.5999 1.1698 1.6719 1.1985

1.14 1.4952 1.1447 1.5360 1.1602 1.6040 1.1879

1.16 1.4459 1.1367 1.4849 1.1517 1.5487 1.1786

1.18 1.4052 1.1298 1.4415 1.1441 1.5027 1.1703

1.20 1.3709 1.12J4 1.4053 1.1373 1.4637 1.1626

1.24 1.3164 1.1126 1.3473 1.1254 1.4008 1.1493

1.28 1.2794 1.1034 1.3028 1.1155 1.3521 1.1382

1.32 1.2418 1.0954 1.2677 1.1069 1.3131 1.1284

1.36 1.2152 1.0887 1.2387 1.0994 1.2811 1.1199

1.40 1.1932 1.0827 1.2148 1.0929 1.2544 1.1123

1.50 1.1520 1.0706 1.1799 1.0793 1.2035 1.0967

1.60 1.1236 1.0611 1.1387 1.0690 1.1676 1.0844

1.80 1.0872 1.0475 1.0984 1.0537 1.1203 1.0664

2.00 1.0653 1.0382 1.0740 1.0434 1.0913 1.0539

--+00 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

T7dle 2. Normalized stress intensity factors in an orthotropic half-plane with an

internal crack, Fig.4, 0 = 0, k, = ao',(d- c)/2, Materials 1-3.
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1.121518230454 10

1.121522319145 15

1.121522334904 20

1.121522287226 25

1.121522267425 30

1.121522259954 35

1.121522255943 45

Table 3. Convergence of the calculated stress intensity factor for an edge crack in an
isotropic halIf-plane under tension.
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CA ,(d)

--+o0 1.0000

10.0 1.0556

9.00 1.0584

8.00 1.0615

7.00 1.0650

6.00 1.0692

5,00 1.0740

4.00 1.0797

3.00 1.0866

2.00 1.0952

1.00 1.1064

0.00 1.1215

-1.00 1.1436

-2.00 1.1803

-3.00 1.2605

-3.40 1.3360

-3.60 1.4074

-3.80 1.5563

-3.90 1.7442

Table 4. The normalized stress intensity factor as a function of Ch for an orthotropic

half-plane containing an edge crack under far-tieid Lý-nsion.
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d + c k1(d) k, (c) k.(d) k2(C) A;2(0) (-2a)
2a __0 ad-C ý- -coQý-C a-7

A, = 0.00

1.1 1.0778 1.4322 0.0454 -0.0965 0.9847 -0.4760

1.5 1.0288 1.0416 0.0309 0.0184 0.5718 -0.5219

2.0 1.0170 1.0132 0.0223 0.0269 0.4758 -0.4946

3.0 1.0089 1.0073 0.0136 0.0188 0.4222 -0.4466

5.0 1.0040 1.0038 0.0065 0.0088 0.4006 -0.4123

A) = 0.20

1.1 1.0823 1.4367 0.0438 -0.0882 0.9495 -0.4488

1.5 1.0313 1.0481 0.0291 0.0178 0.5440 -0.4955

2.0 1.0183 1.0165 0.0209 0.0253 0.4521 -0.4708

3.0 1.0094 1.0084 0.0127 0.0176 0.4016 -0.4256

5.0 1.0042 1.0041 0.0061 0.0083 0.3816 -0.3930

At = 1.00

1.1 1.0961 1.4521 0.0386 -0.0634 0.8382 -0.3678

1.5 1.0390 1.0679 0.0238 0.0158 0.4592 -0.4157

2.0 1.0223 1.0263 0.0168 0.0205 0.3803 -0.3989

3.0 1.0110 1.0116 0.0101 0.0141 0.3394 -0.3621

5.0 1.0046 1.0048 0.0048 0.0066 0.3239 -0.3346

Table 5. Stress intensity factors in an orthotropic half-plane stiffened by a single
membrane and containing an internal crack; Fig.1, 9 = 0, {(d - c)/2a} = 1, AI=

(31 /)(a/h), Material 1, Ch = 6.8222.
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d - c k, (d) k, (c) k2(d) k2 (C) k-(0) (-2a)

2a d- Jd d ,7d -

Af = 0.00

0.10 0.9465 0.9401 0.0193 0.0172 0.3962 -0.3952

0.25 0.9560 0.9417 0.0210 0.0151 0.4099 -0.4033

0.50 0.9806 0.9677 0.0253 0.0070 0.4684 -0.4293

0.75 1.0212 1.0859 0.0336 0.0235 0.6257 -0.4582

0.9r' 1.0685 1.3993 0.0431 -0.0997 0.9256 -0.4536

A, = 0.20

0.10 0.9500 0.9440 0.0182 0.0163 0.3775 -0.3766

0.25 0.9594 0.9461 0.0198 0.0144 0.3905 -0.3841

0.50 0.9842 0.9736 0.0240 0.0071 0.4463 -0.4081

0.75 1.0254 1.0930 0.0320 -0.0207 0.5983 -0.4339

0.90 1.0731 1.4033 0.0417 -0.0913 0.8923 -0.4280

A1 = 1.00

0.10 0.9604 0.9556 U.0149 0.0135 0.3210 -0.3202

0.25 0.9695 0.9594 0.0162 0.0122 0.3318 -0.3260

0.50 0.9948 0.9912 0.0198 0.0071 0.3791 -0.3442

0.75 1.0381 1.1151 0.0273 -0.0128 0.5134 -0.3611

0.90 1.0874 1.4171 0.0371 -0.0663 0.7874 -0.3514

Table 6. Stress intensity factors in an orthotropic half-plane stiffened by a single

membrane and containing an internal crack; Fig.l, 0 = 0, {(d + c)/2a} = 1, A1 =

(3,1,/ý,)(a/'h), Material 1, Ch = 6.8222.
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d + c kj(d kl(c) k(d k2(c) k2(o) •(2a)

2 a 7IWo j7W~ c 01',7 O

A, = 0.00

1.1 1.1041 1.3985 0.0276 -0.0174 0.6571 -0.4018

1.5 1.0515 1.0817 0.0139 0.0196 0.3452 -0.3744

2.0 1.0307 1.0424 0.0080 0.0136 0.2789 -0.3161

3.0 1.0148 1.0186 0.0039 0.0065 0.2476 -0.2678

5.0 1.0058 1.0068 0.0014 0.0022 0.2372 -0.2435

A, = 0.20

1.1 1.1062 1.4043 0.0268 -0.0159 0.6409 -0.3880

1.5 1.0522 1.0843 0.0134 0.0189 G.3343 -0.3634

2.0 1.0310 1.0433 0.0077 0.0130 0.2702 -0.3071

3.0 1.0149 1.0188 0.0037 0.0062 0.2402 -0.2602

5.0 1.0058 1.0068 0.0014 0.0021 0.2304 -0.2365

A1 = 1.00

-.1 1.1130 1.4244 0.0240 -0.0110 0.5852 -0.3420

1.5 1.0546 1.0932 0.0116 0.0166 0.2974 -0.3261

2.0 1.0319 1.0463 0.0067 0.0113 0.2411 -0.2767

3.0 1.0152 1.0195 0.0032 0.0054 0.2155 -0.2347

5.0 1.0059 1.0070 0.0012 0.0018 0.2073 -0.2132

Table 7. The effect of a 90-degree material rotation on the stress intensity factors in an

orthotropic half-plane stiffened by a single membrane and containing an internal crack;

Fig.5, 0 = 0, {(d - c)/2a} = 1, A1 = (301•2 $)(a/h), Material 1A, Ch = 6.8222.
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f af
d 1(• k•(d k2(-2a) k1(d k2(d k2(-2a)

C4 = 6.8222 CA = 3.0358

0.10 1.6923 -0.2201 -0.3535 1.9196 -0.3354 -0.4747

0.0 0.25 1.2998 -0.0973 -0.3169 1.3803 -0.1600 -0.4345

0.50 1.1138 -0.0356 -0.2411 1.1751 -0.0671 -0.3515

1.00 1.0704 -0.0005 -0.1253 1.0982 -0.0134 -0.2059

0.10 1.6568 -0.2078 -0.3386 1.8592 -0.3118 -0.4485

0.2 0.25 1.2492 -0.0916 -0.3051 1.3593 -0.1482 -0.4130

0.50 1.1114 -0.0336 -0.2333 1.1690 -0.0622 -0.3364

1.00 1.0702 -0.0005 -0.1221 1.0975 -0.0124 -0.1989

0.10 1.5480 -0.1701 -0.2923 1.6869 -0.2439 -0.3726

1.0 0.25 1.2159 -0.0742 -0.2677 1.2985 -0.1143 -0.3492

0.50 1.1035 -0.0272 -0.2081 1.1514 -0.0478 -0.2903

1.00 1.0695 -0.0004 -0.1115 1.0954 -0.0100 -0.1767

Table 8. Stress intensity factors in an orthotropic half-plane stiffened by a single

membrane and containing an edge crack; Fig.1, 9 = 0, c = 0, A = ,/O,,)(a/h),

Materials 1 and 2.
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A d k1(d) k(d) Ak2( -2a) k1(d) k-2( d) k2( -2a)

Ch, -1.0944 Ch = -1.3137

0.10 2.1371 -0.3809 -0.5481 2.1853 -0.4030 -0.5708

0.0 0.25 1.5102 -0.1818 -0.4938 1.5377 -0.1940 -0.5159

0.50 1.2592 -0.0742 -0.3941 1.2751 -0.0805 -0.4145

1.00 1.1585 -0.0110 -0.2030 1.1668 -0.0124 -0.2168

0.10 2.0570 -0.3508 -0.5140 2.0990 -0.3701 -0.5340

0.2 0.25 1.4814 -0.1670 -0.4666 1.5061 -0.1776 -0.4864

0.50 1.2509 -0.0684 -0.3760 1.2659 -0.0739 -0.3946

1.00 1.1578 -0.0102 -0.1964 1.1659 -0.0116 -0.2095

0.10 1.8369 -0.2678 -0.4190 1.8645 -0.2804 -0.4325

1.0 0.25 1.4006 -0.1256 -0.3883 1.4187 -0.1325 -0.4023

0.50 1.2270 -0.0517 -0.3216 1.2393 -0.0554 -0.3357

1.00 1.1556 -0.0008 -0.1757 1.1635 -0.0009 -0.1866

Table 8. Contd., Materials 5 and 6.
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A d k, (d) k.(d) k2 (-2a) k, (d) k2(d) _2(_-_2a

CA = 6.8222 C4 = 3.0358

0.10 1.4105 -0.0865 -0.2042 1.5155 -0.1121 -0.2443

0.0 0.25 1.1389 -0.0289 -0.1578 1.1889 -0.0400 -0.1941

0.50 1.0754 -0.0006 -0.0937 1.1017 -0.0008 -0.1194

1.00 1.0658 0.0000 -0.0219 1.0864 0.0000 -0.0264

0.10 1.3987 -0.0836 -0.1993 1.4983 -0.1076 -0.2374

0.2 0.25 1.1365 -0.0279 -0.1546 1.1850 -0.0384 -0.1894

0.50 1.0752 -0.0006 -0.0921 1.1012 -0.0008 -0.1171

1.00 1.0658 0.0000 -0.0218 1.0865 0.0000 -0.0262

0.10 1.3586 -0.0733 -0.1824 1.4415 -0.0926 -0.2140

1.0 0.25 1.1284 -0.0244 -0.1433 1.1721 -0.0330 -0.1735

0.50 1.0742 -0.0005 -0.0865 1.0995 -0.0007 -0.1091

1.00 1.0658 0.0000 -0.0213 1.0865 0.0000 -0.0257

Table 9. The effect of a 90-degree material rotation on the stress intensity factors in au

urthotropic half-plane stiffened by a single membrane and containing an edge

crack;Fig.1, 0 = 0, c = 0, A1 = (013 2// 22)(a/7h), Materials lA and 2A.
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A d k(d) k2 (- 2a) ki(d) k2(-2a) ki(d) k(-2a)

Ch = 6.8222 Ch = 3.0358 Ch = 0.0000

0.10 2.4567 -0.3718 2.9870 -0.5085 2.9926 -0.4978

0.0 0.25 1.4614 -0.3236 1.6926 -0.4475 1.7074 -0.4218

0.50 1.1613 -0.2413 1.2629 -0.3531 1.2809 -0.3195

1.00 1.0750 -0.1247 1.1099 -0.2051 1.1360 -0.1535

0.10 2.3702 -0.3545 2.8327 -0.4771 2.8477 -0.4686

0.2 0.25 1.4392 -0.3112 1.6480 -0.4244 1.6666 -0.4014

0.50 1.1564 -0.2335 1.2510 -0.3379 1.2710 -0.3070

1.00 1.0746 -0.1216 1.1085 -.0.1982 1.1352 -0.1494

0.10 2.1112 -0.3021 2.4076 -0.3891 2.4418 -0.3852

1.0 0.25 1.3705 -0.2720 1.5200 -0.3564 1.5475 -0.3405

0.50 1.1409 -0.2083 1.2160 -0.2914 1.2410 -0.2683

1.00 1.0732 -0.1110 1.1043 -0.1763 1.1330 -0.1357

Table 10. Stress intensity factors in an orthotropic half-plane stiffened by two
symmetric membranes and containing an edge crack; Fig.2, A1 = (#122/022)(a/h),

Materials 1-3.
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d k(d) k2(- 2a) ki(d) k2(- 2a) ki(d) k2(- 2a)
Af

Ch = -0.0022 Ch = -1.0944 Ch = -1.3137

0.10 2.9899 -0.4882 3.3935 -0.5885 3.5018 -0.6139

0.0 0.25 1.7063 -0.4174 1.8914 -0.5077 1.9418 -0.5310

0.50 1.2805 -0.3157 1.3697 -0.3951 1.3947 -0.4157

1.00 1.1359 -0.1522 1.1705 -0.2022 1.1804 -0.2159

0.10 2.8453 -0.4596 3.1908 -0.5477 3.2821 -0.5697

0.2 0.25 1.6656 -0.3975 1.8310 -0.4787 1.8753 -0.4994

0.50 1.2705 -0.3037 1.3534 -0.3769 1.3765 -0.3958

1.00 1.1352 -0.1482 1.1691 -0.1957 1.1787 -0.2088

0.10 2.4405 -0.3780 2.6537 -0.4378 2.7079 -0.4520

1.0 0.25 1.5469 -0.3378 1.6628 -0.3958 1.6930 -0.4102

0.50 1.2407 -0.2661 1.3066 -0.3224 1.3244 -0.3367

1.00 1.1329 -0.1348 1.1649 -0.1752 1.1738 -0.1861

Table 10. Contd., Materials 4-6.
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/ d k(d) k2( -2a) k,(d) k2(-2a) k1(d) k2 (-2a)

CA = 6.8222 C4 = 3.0358 Ch = -0.0022

0.10 1.7900 -0.2123 1.9944 -0.2551 2.9962 -0.4988

0.0 0.25 1.2115 -0.1585 1.2909 -0.1954 1.7090 -0.4227

0.50 1.0850 -0.0932 1.1169 -0.1190 1.2816 -0.3204

1.00 1.0658 -0.0216 1.0865 -0.0264 1.1361 -0.1542

0.10 1.7639 -0.2069 1.9561 -0.2473 2.8507 -0.4694

0.2 0.25 1.2068 -0.1552 1.2832 -0.1906 1.6680 -0.4022

0.50 1.0844 -0.0917 1.1158 -0.1167 1.2716 -0.3078

1.00 1.0658 -0.0215 1.0865 -C.0262 1.1354 -0.1501

0.10 1.6761 -0.1884 1.8304 -0.2215 2.4437 -0.3858

1.0 0.25 1.1907 -0.1439 1.2574 -0.1745 1.5484 -0.3410

0.50 1.0825 -0.0862 1.1124 -0.1088 1.2414 -0.2689

1.00 1.0659 -0.0210 1.0866 -0.0256 1.1331 -0.1363

Table 11. The effect of a 90-degree material rotation on the stress intensity factors in

an orthotropic half-plane stiffened by two symmetric membranes and containing an

edge crack; Fig.2, A1 = (/32 2/0322)(a/h), Materials 1A-3A.
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LIST OF FIGURES

Fig.1. Schematic diagram illustrating the loading and geometry for the

problem of an internally cracked half-plane stiffened by a film.

Fig.2. Schematic diagram illustrating the loading and geometry for the

problem of an edge cracked half-plane stiffened by symmetric films.

Fig.3. Variation of the normalized film edge stress intensity factor

with stiffness parameter A,.

Fig.4. Typical variation of the normalized film stress along the contact

region.

Fig.5. Interface shear distribution for an isotropic half-plane containing a crack and

stiffened by a single membrane (Fig. 1, 9 = 0); the curves 1 through 4

correspond to c/a = 0 (the edge crack), 0.1, 1.0 and oo.
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