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Abstract

The classification of forward looking infrared (FLIR) imagery is explored using

Gabor transform decomposition and relative locations of non-homogeneous regions com-

bined with feedforward neural networks. A feature saliency metric is developed from a

Bayesian sensitivity analysis of feedforward neural networks. This metric is then used to

reduce the dimensionality of the feature vctors used to identify FLIR imagery without any

degradation of classification accuracy. Several system architectures are developed using a

roving window combined with a series of Gabor filters to produce feature vectors for pre-

sentation to a neural network classifier. One architecture uses the Gabor filter coefficients

to learn the gestalt of known images. Several of the gestalt networks are then combined to

determine the class of an unknown image. Another architecture uses centroid metrics for

the cluster of Gabor resonances to feed a backpropagation network acting as a traditional

Bayesian classifier. A system architecture is developed which uses the relative locations

of texture regions within a user defined template to classify imagery. The relative location

architecture is shown to outperform traditional matched filter classifiers. The relative lo-

cation architecture is shown to be robust in solving the problems presedted by crepuscular

lighting conditions.

x
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Feature Extraction and Classification of FLIR Imagery

Using Relative Locations of Non-Homogeneous Regions

with Feedforward Neural Networks

L Introduction

1.1 Problem Statement

The problem addressed in this dissertation is that of recognizing objects in forward

looking infrared (FLIR) imagery. Several approaches to solving this problem are reported

along with their success in classifying objects. In addition, a Bayesian saliency measure

(36) is introduced to aid in determining which features introduced to a feedforward,

backpropagation trained, neural network (29, 46, 58) are useful in classifying objects. A

database of FUR imagery was used to develop and test the techniques described in this

dissertation.

The primary goal of this research was to develop and test a recognition system based

upon a combination of preprocessing techniques and neural network architectures which

allow the recognition system to perform feature extraction and classification in a single

step. An additional goal was to test the approach against matched filter approaches used

in target classification today.

Figure I is a block diagram of the general system architecture used in the dissertation.

The object to be classified is presented to the system. Several features (measurements)

are extracted which describe the various spatial properties of the object. The features

are processed with the results stored in a feature vector. The feature vector is then

presented to several class specific neural network classifiers. Each neural network makes

an independent assessment of the class of the target and the results are then sent to a



comparator for analysis. In the comparator the outputs of each of the neural networks

are compared and the class of the network with the best match via error measurement

or the largest in-class output is chosen as the class of the object. During the course of

this dissertation several different preprocessing techniques will be discussed as well as

two separate neural network classification algorithms. The application of this general

architecture resulted in several contributions to the body of scientific knowledge in the

neural network and pattern recognition fields.

The contributions of this research are: 1) the development of a processing architec-

ture which is capable of determining the gestalt of a target from the spatial information

available from Gabor filter techniques, 2) a saliency method for determining the optimum

features for any feedforward neural networks based upon a Bayesian sensitivity analysis,

3) a neural network architecture which allows for the addition of new class types without

retraining, and 4) the use of relative locations of spatial features in object recognition. The

philosophical, theoretical and practical aspects of these contributions are discussed in the

following chapters.

The rest of this chapter is divided into four sections. Motivating factors for con-

ducting the research are discussed in the next section. This is followed by background

material which is pertinent for understanding pattern recognition, Gabor transforms and

backpropagation neural networks. Next, the significant results are summarized. The

chapter concludes with an overview of the organization of the dissertation.

1.2 Motivation

The problem of target identification from FLIR, ladar or radar information has been

of keen interest to the Air Force for several decades. The typical tracker used in our

missiles today is nothing more than a hot spot tracker. Even with human intervention, the

missile is dependent upon a laser spot to home into the target. The ideal situation for the

combat operator would be to either have the capability to program the missile beforehand

or the capability to highlight a certain type of target and then have the missile search until it

2
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Figure 1. Block Diagram of General Architecture Used for Target Classification
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finds the desired target. Currently this type of target matching is performed in laboratories

using various correlation techniques (10, 17, 19, 20, 59). The correlator is one of the best

target identification techniques because it precisely matches the target. But therein lies

the rub: the correlator must have many templates to match all of the aspect angles, scale

changes and rotations of objects. The goal of correlation based research is then to find an

optimal match between accuracy/flexibility and storage. An alternative approach has been

to use invariant features such as Zemike moments (41, 42) as inputs to neural networks

or Bayesian (37, 38) statistical approaches to distinguish between targets and non-targets.

While many of these approaches have been successful they all suffer from an inordinate

amount of storage for matched filtering or preprocessing in order to create the invariant

features.

Because of the processing bottleneck and storage limitation problem, the initial phase

of the research was directed at determining a reduced representation for each class of target

in the classification task. The research effort explored the use of Gabor filtering (2, 7, 13)

as a means to reduce the required representation of each target. Initially an architecture

was developed which used the inner product between scene data contained in a roving

window and a bank of Gabor filters (fixed weights) to train a separate neural network to

learn the gestalt representation of each target as depicted in Figure 2. Hence, instead of

storing many matched filters, the weights of the trained neural network store the gestalt

or reduced representation of the desired target. More traditional classification approaches

were used with various distance metrics between selected Gabor spatial textures as features.

In addition, the concept of using the relative locations of specific spatial textures was

exploited for feature extraction and classification. The relative location system developed

in this dissertation has the same architectural form (see Figure 3) as the Gabor approach

but is significantly better at classifying objects with greatly reduced training times and far

fewer features. Finally, because of the extensive use of artificial neural networks in this

research, a method was developed to determine which features presented to a network

were of importance in determining the proper class.

4
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Figure 2. Neural Network Based Automatic Target Recognizer Using Roving Window

1.3 Target Identification

The entire process of picking out objects of interest from a scene and then classifying

them by their features is complex. One of the big issues today is the inability of machines

to segment and extract features from a scene of interest. The literature is replete with

different techniques currently being tried by researchers (8, 40, 53) to solve the target
identification problem.

Target Identification consists of three basic steps: 1) find areas of interest in the

scene (segmentation), 2) make measurements on the areas of interest (feature extraction),

and 3) based on the feature set, determine the appropriate classes for the areas of interest
(classification). Figure 4 outlines the basic steps used in pattern recognition. Current

techniques today might use edges, blobs, or spatial frequency for segmentation. These

techniques use large amounts of computer processing before areas of interest are located

in the input scene. The feature extraction process often involves calculation of moments,

tosemntan xtac eaursfrm cee finers. helteatr i rpet 5t
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boundaries and pixel densities for blobs in the scene that also require large amounts of

computer processing. The last step in the process, classification, usually involves large

amounts of computer processing as well. To gain a better understanding of the pattern

recognition process and how it is implemented in this dissertation research, each of the

steps will be explained in terms of their implementation in the system architecture shown

in Figure 1. The first step in pattern recognition is termed segmentation. Segmentation

using Gabor functions is discussed in the next subsection.

The Pattern Recognition Process

Input Image
I• ~Segmentation •

Feature Extraction

Classify Feature Vector 1.22 3.456 29.234 9.002

TRUCK

Output the Result

Figure 4. The Pattern Recognition Process

1.3.1 Segmentation Using Gabor Functions The process of segmentation involves

choosing the items of interest from an image. There are many techniques to segment images

but we will limit the discussion to those which show promise for implementation optically

or via neural network algorithms. Hubel and Wiesel (21) discovered groups of neurons

which preferentially respond to particular orientations of line segments in the field of view

of the eye of a cat. Several auth-ýrs (6, 55, 22) have shown that these "edge detectors" can

be explained as behaving as Gabor filters (13) with particular Gaussian widths and spatial

frequencies. Several authors (1, 54, 56) have segmented items of interest from image data

7



using a series of Gabor filters. Figure 5 is an example of the two-dimensional cosine Gabor

function with its associated two-dimensional Fourier transform.

Fy

JY

(a) (b)

Figure 5. Two-Dimensional Cosine Gabor Function. a) 0 Degrees Rotation at Six Cycles
Per Window, b) Fourier Transform of (a)

The Gabor function is represented in the Fourier domain as a pair of Gaussian

profiles separated by twice the spatial frequency (± f) of the sine or cosine function. The

radius of the Gaussian profiles is inversely proportional to the radius of the Gaussian

window function used to window the sine/cosine function. Figure 6 is an example of

a combination of two Gabor Filters, one at zero degrees rotation and the other at 90

degrees rotation and the resultant Fourier transform. In addition to the Gabor-like filtering

properties of the brain, sets of pre-processic:g neuirons in the retina perform a coordinate

transformation as information is relayed from the retina to the mapping area in the striate

cortex. This transformation has been shown to approximate a log-polar transformation

(52). The log-polar transformation allows for changes in scale and in-plane rotation to be

represented as shifts in the mapping plane. This log-polar mapping may also be useful

in motion detection. Thus, the mapping area appears to be optimized for a correlator

which is capable of handling shifts but not scale changes and rotations in images. Indeed,

we may very well have a correlator in the inner mind which correlates the object of

interest with a database of stored images. The human visual system performs a series of

segmentations and transformations which makes it easier to extract useful features and

8



subsequently classify an object of interest. There are many other techniques available for

segmenting objects from a scene. For instance, Tong (51) used sharp gradients to segment

objects from ladar and FLIR images while Roggemann (37:14) used planar patches to

help pick out objects from similar ladar data. As Duda and Hart (8:5) point out, many

of the measurements which are taken for a particular problem depend a great deal on the

problem. The reader may ask "Why are we looking at visual systems to gain knowledge

about segmentation?" The simple answer, and the most convincing, is that we have not yet

invented a segmenter that works nearly as well as the human visual system. This research

investigated the use of Gabor functions to perform the segmentation task as well as the

feature extraction and classification tasks.

Gabor Filter :4 Cycles per window (0, 90 Degrees)

Transform To Fourier
Spatial Frequency Domain

Fourier Transform of Composite Gabor Filter

Figure 6. Transformation of Cosine Gabor Filter Between Normal Spatial Domain and
the Fourier Spatial Frequency Domain

Once the segmentation has taken place the next step in the identification process

is that of making meaningful measurements on the areas of interest which will allow the

classifier to distinguish one type of object from another.

9



1.3.2 Feature Extraction The process of taking measurements on the object of

interest is known as feature extraction. For instance, if we were interested in describing

an electrical signal we would probably describe it in terms of its amplitude, phase, and

frequency. These three attributes could be measured and used to represent the electrical

signal. These measurements would be the features which, hopefully, uniquely describe the

electrical signal. The brain also performs feature extraction on objects of interest. Kabrisky

(23:82) has shown that the brain can perform a Fourier-based correlation. Ginsburg (14),

a previous Kabrisky student, reports that many of the optical illusions we see can be

explained using a low-order Fourier spatial frequency mapping. In addition, Oberndorf

(35) has shown results similar to Ginsburg's work using Gabor filters. Because the brain

extracts spatial information in the mapping area in a way which can be imitated using

Fourier spectral analysis, the Fourier domain appears to be a place to start. In addition

to Fourier spectral analysis, which has been used for decades to describe objects, other

methods are also used for feature extraction. Some authors (9, 41, 50) have used invariant

Zernike moments as features of an object. Other techniques for extracting features may

involve line descriptors, clustering techniques, and topological measurements. Other

authors (3, 18) have used Hough transform coefficients as features. We are not sure what

is involved with picking out objects from a scene when the brain is involved. From

Ginsburg we know that spatial features are extracted. We also know that color could be

used as a discriminant, and that the scale and rotation of an object are virtually eliminated

because of the approximate log-polar transformation. Perhaps the brain uses a correlator

to perform much of the classification task while using the various features extracted from

other methods to double check and enhance the choice of the classifier. Luria (30:134)

asserts that the brain is constantly updating its perceptual model, while performing a
"perceptual hypothesis", by incorporating features which support the hypothesis while

rejecting those which are of little or no value. This leads us to the final task in a target

identifier the classification of the target.

10



1.3.3 Classification Using Neural Networks Classification is the identification of

a particular object based upon a set of known measurements or features. Once all of the

preprocessing is finished, the results are sent to a classifier which makes the final decision

based upon the feature vector presented as the input to the classifier. Several neural

networks are available today for use as a classifier. Lippmann (29) has a good description

of the classification properties of many of the neural network architectures available today.

The classifier used in this dissertation is known as a feedforward backpropagation neural

network. This neural network has the interesting property of being able to determine the

underlying a priori probability distribution (15, 45) for each class being considered in

the classification problem. This allows for direct comparison with traditional Bayesian

classifiers. In addition, it will be shown in Chapter 4 in this dissertation that the saliency

(usefulness) of features can be determined through exploiting the Bayesian properties

of the backpropagation network. To gain a better understanding of the backpropagation

neural network a short review is presented.

The backpropagation neural network is based upon the perceptron (39). The per-

ceptron was envisioned by Rosenblatt to solve classification problems. The perceptron

as shown in Figure 7 is patterned after the neuron. It has weighted inputs which are

then summed in the node. As the node's bias is overcome it "fires" raising the output to

maximum. Rosenblatt used nonlinear activation functions such as the signum function.

Today the nonlinear activation function of the perceptron is generally the sigmoid function

which is described mathematically as:

l
sigmoid(a) - ! - (I)

where

M=M

mr=0

II



x,, input to node

Wm -- weight between input xm and node

The perceptron was soon found to be able to solve classification problems which were

linearly separable, but was inadequate (33:189) for problems in which the classes were

not linearly separable. This led to the formulation of interconnected sets of perceptrons

in feedforward networks. The biggest problem was finding a training rule for the weights

between the interconnected perceptrons. This was solved by Werbos (58) in his PhD

dissertation and led to the current backpropagation architecture (46:324)(48:236). A

typical backpropagation net is depicted in Figure 8. Note the similarity between the

perceptron and the hidden layer and output nodes. The weights between the nodes are

trained by presenting the net with a training set of exemplars from each data class and

updating them based upon the change in the output as the weights and training vectors are

varied.

The backpropagation feedforward neural network has been shown to have a Bayesian

character (15, 24, 36, 45) in how it processes data during training. The Bayesian character

is a direct result of the use of a mean squared error (MSE) cost criterion. This enable.- the

backpropagation network to perform Bayesian estimation (53:283) of functions as well as

Bayesian classification. The apparent ease with which the backpropagation network can

be used for either function estimation or classification makes it ideal for the back end of

the system architecture developed in this dissertation research.

The architectures explored in this dissertation led to a number of results which

are of interest to the scientific community and are summarized in the next section. The

methodologies used to obtain the results and the details of the results are given in chapters 2

through 5.

12
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Figure 8. Diagram of Typical Backpropagation Net With A Single Hidden Layer

1.4 Significant Results

There are four major contributions to the scientific body as a result of the dissertation

research: 1) A new architecture based upon the gestalt representation of objects using

Gabor coefficients as inputs. 2) A new classification architecture which uses relative

location information of selected textures as a method of classifying tactical targets. 3) A

neural network architecture which allows for the addition of new classes without extensive

retraining. 4) A feature saliency metric based upon the Bayesian nature of feedforward

neural networks.

The neural network architectures used as classifiers for the target recognition problem

were based upon two themes. The first was that of learning the gestalt representation

(see Chapter 2) of each of the classes with the neural network performing as a function

estimator with the classification task performed using a MSE measurement. The overall

classification accuracy obtained using the gestalt representation was 62 percent which was

an improvement over the 43 percent reported by Lazofson (27:70), but inadequate for

a classifier. The second theme was to use the neural network as a Bayesian statistical

14



classifier for either a two-class or multi-class problem. The first use of the neural network

as a Bayesian classifier was for a multi-class problem which used various distance metrics

between the centroid of a cluster of the most resonant Gabor filter correlations and the

locations of the resonant correlations. The distances between the centroid and each of the

Gabor filter correlation peaks were used as feature vector descriptors for the target classes

with the classifier performing as a Bayesian statistical classifier (see Chapter 3). The best

result using the various distance metrics in Chapter 3 was a classification accuracy of

73 percent which was also inadequate. After the first two system architectures showed

limited classification accuracy, a third approach using the relative locations of specific

spatial features feeding a bank of two-class neural networks was developed as described

in Chapter 5. The results obtained using the relative location concept were 100 percent

for the three class problem used in the two previous approaches. This technique was then

applied to a seven class problem which included crepuscular (twilight) conditions in the

FLIR imagery. In the seven class problem the relative location technique was able to

correctly classify 93 percent of the FLIR images. An outgrowth of the second approach

was that it readily became apparent that a limitation on the number of features would be

required to preclude memorization (4, 11) problems in the statistical classification scheme.

This led to a major contribution in the area of feature saliency from a Bayesian point of

view. Ruck (45) and Gish (15) proved in separate but similar analyses that the multilayer

feedforward neural network is indeed a Bayesian classifier. Ruck showed that the outputs

of a feedforward neural network, when trained under fairly minimal requirements, become

the a posteriori class conditional probabilities when the network converges. A logical

extension of the Bayes result was to explore using the probability of error as a means

of determining which input features were the most influential, as described in Chapter 4.

An interesting result of the analysis was that the intuitive metric proposed by Ruck (44)

was actually the same (within a multiplicative scaling constant) as that obtained from

the Bayesian analysis. This further removes any doubt as to the Bayesian behavior of

feedforward networks. The results highlighted in this section are discussed in detail in
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subsequent chapters of this dissertation.

1.5 Dissertation Overview

The general flow of the dissertation is organized along the path taken during the

dissertation research. Chapter 2 discusses the gestalt representation and the associated

architecture in detail along with the results obtained from the research. Chapter 3 presents

alternative approaches to the gestalt method using traditional backpropagation classifiers

while retaining the Gabor processing front-end and cnanging the way the Gabor coeffi-

cient information is processed for presentation to the classifier. Chapter 4 presents the

feature saliency derivation along with the subsequent improvements in processing speed

with lower computational cost while maintaining accuracy. Chapter 5 presents the relative

location concept and the classification results. Chapter 6 presents conclusions and rec-

ommendations. Each chapter in the dissertation is written to be self-contained for better

readability.
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II. Using Gabor Filter Methods to Learn The Gestalt

This chapter explores the use of Gabor filtering methods in learning the gestalt

representations of objects. The foundation for the use of Gabor filtering methods and

neural network approaches to solving the pattern recognition problem are presented in the

background section. The Lazofson architecture (27) is described in detail following the

background. The concept of the gestalt is then introduced along with the rationale for

modifying the Lazofson architecture to improve its classification performance.

2.1 Background

The basic concept (15) that will be developed and subsequently tested in this chapter

is learning the "gestalt" of an image. The term gestalt is defined by Webster (34) as:

gestalt - a structure, configuration, or pattern of physical, biological,
or psychological phenomena so integrated as to constitute a functional
unit with prorerties not derivable by summation of its parts.

In an effort to learn the gestalt representation of a set of objects, some researchers

(27, 28) have used the traditional backpropagation network fed by feature vectors obtained

from using Gabor filter processing. Lazofson modeled much of his processing architecture

after Le Cun (5) and Fukushima (12). Both Le Cun and Fukushima were solving a

handwritten character problem by presenting the characters to a neural network architecture

for classification. Le Cun used backpropagation networks to process the input character,

while Fukushima uses a winner takes all approach in training his network nodes. Both of

these approaches to solving the handwritten character problem are computationally intense.

To better understand why these approaches are so demanding consider the Le Cun approach

as shown in Figure 9 and the neocognitron as depicted in Figure 10. As can be seen seen

in Figure 9 there are 256 input nodes, 768 nodes in the first hidden layer, 192 nodes in the

second hidden layer, 30 nodes in the third hidden layer and 10 nodes in the output layer.

Similarly, the neocognitron shown in Figure 10 uses approximately 35,000 processing
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elements for its solution to the character recognition problem. Obviously the number of

nodes required to solve the handwritten character task using either the neocognitron or the

Le Cun architecture is significant. Lazofson (27:43) sought to combine the windowing

ideas of Le Cun and Fukushima with results obtained from studies of the visual system in

cats (16, 21, 22) to produce an improved recognition architecture, This was an ambitious

undertaking because Le Cun and Fukushima both used characters on a pristine background

while the forward looking infrared (FLIR) imagery selected by Lazofson used natural

backgrounds. The Lazofson architecture is discussed in detail in the next section.
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Figure 9. Architecture for the Solution of Handwritten Characters Developed by Le Cun
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Figure 10. Neocognitron Architecture for the Solution of Handwritten Characters De-
veloped by Fukushima (12:121)

2.2 The Lazofson Pattern Recognition Architecture

The pattern recognition system architecture used by Lazofson is shown in Figure 11.

The architecture used an 8x8 roving window, termed the receptive field, which ran across

the image with an overlap of one-half the window size. The portion of the image "ontained

in the receptive field is processed through each of the four Gabor orientation group filters

with the results for each of the 434 possible correlation values of each Gabor filter stored in

an array. The "phase synchrony" summation nodes look at 5x5 windows shifted only one

node per measurement across the Gabor orientation filter output array. Phase synchrony is

a term which is descriptive of the locking up of neurons in the brain when certain stimuli

are observed (27:22). Phase synchrony combines local information to express global

information. Thus the phase synchrony nodes are combining groups of neurons which are

tuned to the same orientation. These summation nodes result in four groups of 270 nodes

or 1080 total which fed the output layer of the system network. The final output layer is a

backpropagation neural network trained to solve a four class recognition problem.
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Figure 11. Biologically Inspired Pattern Recognition Architecture Used by Lazofson
(27:45)
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The results of the Lazofson architecture are shown in Figure 12. Lazofson was not

able to obtain suitable results ' 3.2 percent) for the classification task. The dissertation

research was started using the Lazofson architecture as a baseline with variations on the

theme of localized windows and Gabor filter techniques.

One of the drawbacks to the Lazofson architecture was the large number of inputs

(,-1080). This presented a two-fold problem because of the computational time required

to train the network and the required number of training samples to ensure that the solution

obtained by the backprop output layer was unique. According to Foley (11), the number

of training samples per class should be at least three times as large as the number of

inputs (features) to a neural network. Because of the processing limitations and the

limited number of training samples, a faster and more efficient method of extracting Gabor

features for classification of FLIR imagery was developed. This new system architecture

is developed in the next section and is termed the Gestalt network (GNET).
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Figure 12. Image Classification Results For Lazofson Architecture (27:70)
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2.3 The Gestalt Network System Architecture

The basic architecture of the Gestalt Network (GNET) pattern recognition system is

depicted in Figure 13. Each portion of the GNET system will be described in detail later

in this chapter. The GNET architecture consists of the input image, Gabor filters, neural

networks and, finally, the classifier. Since each neural network is trained to recognize only

one class, the neural networks.

The Gabor filters extract pertinent texture information from the input image which is

then processed by each neural network. A windowed portion of the image is correlated with

each Gabor filter with the result used to train the neural networks. The mean squared error

(MSE) between the predicted Gabor correlation value and the actual Gabor correlation

value is calculated for each network. The network with the smallest MSE is declared to

be the winner and the input object is assigned to the class the network represents. The

gestalt, "tankness", of each class is stored in the weights of its particular neural network.

Thus the neural network forms a representation of the object which, hopefully, is unique

based upon the Gabor data presented during training. The first component of the GNET

architecture is the Gabor processing layer.

/Neural Networ

| (ClanN)4)

Figure 13. Neural Network Based Automatic Target Recognizer
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Figure 14. Two-Dimensional Cosine Gabor Function for Various Rotation Angles and
Spatial Frequencies: a) 0 Degrees Rotation, b) 45 Degrees Rotation, c) 90
Degrees Rotation, and d) 135 Degrees Rotation
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2.3.1 Gabor Processing A great deal of interest has been generated (2, 7) about

the texture discrimination properties of the Gabor transform. The Gabor filters used in

this research are two-dimensional filters such as those shown in Figure 14. They are

represented mathematically by:

Two-Dimensional Cosine Gabor

G,,(x,yf,,f, )= cos(2. 7r(x -f, + y - fy) + 0) e-KT( (2.
G=Xyf~f,)-2 (2)2 -7r - or, • or

Two-Dimensional Sine Gabor

G8 (x,y,f, f0,) sin(2 -r(x + y f) + 9) .' (3)

where:

x, y = position in x. y direction

"FJ,9# centroid of Gaussian envelope in x, y direction

f I fy x , y spatial frequency component

a,, Cr y standard deviation of Gaussian in x, y direction

0 phase shift for sine/cosine wave

As can be seen in Eqs (2) and (3) on page 26, there is a great deal of flexibility

(x. y. f,, fy, 0, 7,, ory) available to the filter designer. This flexibility allows a wide variety

of Gabor filters to be constructed for implementation with just a couple of equations.
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The Gabor processor is depicted in Figure 15. It consists of a series of two-

dimensional perceptron (29) (57:28) arrays input image. As can be seen two-dimensional

array has a receptive specific portion of the input image. sampled values of the two-

dimensional of (fr, fy, a1 , au, 0) values which correspond to its filter.

G abor FFilte s
"• tl•O° as•£ghts)

GbrFilter

Representations
of Input Image

'igure 15. Simplified Diagram of Gabor Processor with Two-Dimensional Arrays

The input image is windowed and the data in each window is processed by subtracting

the average pixel brightness in the window from every pixel value for the window and then

each pixel value is divided by the average energy in the window to normalize the pixels

relative one to another. This process, known as Lambertization (25:3-15), eliminates

the dc bias present in the window and consequently edge enhances any objects in the
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window. Then each window value is tied by a weight vector to a perceptron in each filter

array. Because a linear output rather than a sigmoidal output is used for the perceptron, a

correlation is obtained between the windowed portion of the input image and the Gabor

filter. The correlation process is represented mathematically as

C =Y -- Iij.- Gi, (4)
j .7

where:

lij = image value at position i, j in window

Gj= associated Gabor weight value at position i, j in window

C'I = correlation value at window position x, y in image

(5)

To further illustrate how a perceptron can be used as a correlator consider Figure 16

which is a diagram of the traditional perceptron. The inputs (xi) to the perceptron for the

system architecture are the sampled values of the windowed portion of the input image

while the weights (v,.) are the sampled values of the two-dimensional Gabor filter which is

matched to the window. The nonlinear activation function (f) of the perceptron is replaced

by a constant activation function, producing a linear output.

The perceptron nodes form the unit building blocks of the network feature extractor.

Because each image may need several Gabor filter descriptions to properly extract the

features, several perceptrons with different sets of weights may be tied to the same window

position as depicted in Figure 15.

Once the image is presented to the architecture, the correlation values are calculated

by the perceptrons. Because each individual perceptron has only one receptive field, its

output can be thought as being a mapping from a window in image space to a point
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in correlation space. This mapping concept allows us to consider the two-dimensional

perceptron arrays shown previously in Figure 15 as correlation views of the image.

Because the mapping is for particular receptive fields, each perceptron's output is

precisely determined as a function of window position (x, y) and filter with frequency

(fr, fy). The inputs (x, y, f, fy) and their respective correlation value, C(x, y, f•, fy), can

be used to train neural networks in an effort to learn the "gestalt" of an image.

2.3.2 The Neural Network Processor The neural network processor is actually a

collection of specific neural networks each trained on only one class. The inputs to the

network are (x, y, f•, fy) with the correlation value (perceptron output) used to train the

network and later test the network.

The network used in this research is a three-layer (two hidden, one output) back-

propagation network (47) as shown in Figure 17. inputs with twenty nodes in the first

sigmoidal the C(x, y, f•, fy) value given the input (x, y, f•, fy). Once training is complete,

-,100,000 iterations, no longer be trained, inserted the C(x, y, f•, fy) value based upon

over the entire input data set. The output of the network is then a MSE value which

represents how well the input images matches its gestalt of the image. The outputs of each

class neural network are then fed to the MSE classifier.

2.3.3 The Mean Squared Error Classifier The MSE classifier shown in Figure 13

compares the outputs of each of the neural network processors and assigns the input image

to the class represented by the neural network processor with the smallest MSE. The mean

squared error is calculated using Eq (6).

MSE = E f,' = -Lv-I (C(x, y, f, f) - C(x, y, f., fy)) 2  (6)
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Figure 17. Diagram of Single Neural Network Processor

where

MSE Mean Squared Error

f., f - spatial frequency pair for Gabor filter

x window location in x direction within the image

y window location in y direction within the image

K total number of spatial frequency pairs

C(x, y, fz, fy) predicted correlation coefficient

C(x, y, f•, fy) actual correlation coefficient

After the mean squared error is calculated for each "gestalt" neural network for the

image in question, the class is declared to be the class of the network with the smallest
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MSE. Once the class assignment is made classification is complete.

2.4 Understanding the Gestalt Representation

The gestalt representation of the input image is represented by a five-dimensional

surface (x, y, fz, fy) comprised of C(x, y, fz, fv) values. An analog to this five-dimensional

problem which is easy to see in three dimensions is that of a cylinder which is heated on

one end and cooled on the other. For each (x, y, 1) position, where 1 is length, there is a

corresponding temperature value T(x, y, 1). Hence, in the five-dimensional space there is

a corresponding value for the correlation coefficient C(x, y, f•, fy).

In an effort to better visualize this representation process we will convert from

(fe, fy) to the polar coordinate system with the following definitions:

= p. cos(O) (7)

= p.sin(O) (8)

X V (9)

= arctan()

where:

p = modulation in cycles per window

0 = angle of rotation in clockwise direction

Once the polar conversion is made, a fixed value for p will yield different filters as

0 is allowed to vary as shown in Figure 18. If all possible values for 0 are plotted a circle

of filters would result as indicated by the dashed circle in Figure 18. By allowing p to
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vary as well we would simply be defining an area of possible filter values as depicted in

Figure 19.

f y

Filtr 4Filter 5
Filter 4 .

Filter 3Filt.
' F'

Filter 2

Figure 18. Filters With Fixed (p) Variable (0) in (fe, fy) Coordinate System

Now extending this concept to higher dimensions we would note that in the case

of three dimensions volumes of possible filter values can be defined and in even higher

dimensions, hypervolumes of possible filter values could be defined. Because each percep-

tron in Figure 15 has a unique receptive field and assuming that adjacent nodes don't yield

an appreciable amount of information about the input image, we could use linear arrays

of perceptrons rather than two-dimensional arrays of perceptrons in the Gabor processor.

This change is depicted in Figure 20.

Expanding our representation to three dimensions, with the linear arrays, we can

represent the five-dimensional space (x, y, f•, fy) as a three dimensional space (p, 4, 1),
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where 1 is the window, as shown in Figure 21. Each window would be represented as a

discrete position 1 along the axis of the cylinder, with the particular filter for that window

repeisented by (p, k) or (f•, fv).

fy Other Window
Positions

-- ------------------------------- Position

Window Position I Window Position n

Figure 21. Three Dimensional View of Correlation Space

For constant p and all possible values of 0 and I we would have filter data for the

outer surface of the cylinder. As we begin to vary p the data points within the cylinder begin

to fill. Because each filter in the current architecture is tied to every window a particular

(f., fy) pair would appear as a line segment through the cylinder along the position axis.

The C(x, y, f t, fy) values for each filter/window combination could then be represented by

the temperature in the three-dimensional analogue explained earlier. Hence, the cylinder

describes the known filter data points, while the actual correlation values are the outputs

of the particular perceptrons which have the proper (x, y, f•, fy) identification.

Now that we can visualize the correlation surface as the temperature as a function of

position in the cylinder, we can begin to see how a, hopefully unique, description of each
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class is possible. Charged with the zeal of our new-found knowledge we proceed to test

our system with the results presented in the next section.

2.5 Testing the Notion of Learning the Gestalt

The next step in the process was to test the GNET architecture on a simple classifi-

cation problem which is depicted in Figure 22. The gestalt concept is dependent upon the

backprop network's ability to reduce the error between its estimate of the C(x, y, f•, fy)

coefficient and the actual C(x, y, fz, fy) to an acceptable margin before attempting the

classification task. Typical mean-squared error (MSE) versus training iteration curves for

each of the classes are given in Figure 23. Note that the MSE for each class is small versus

the range of the data. Typical C(x, y, f,, fy) values range between -2 and 2. The actual

error between the predicted Q(x, y, fx, fy) and the actual C(x, y, fl, fy) value is only 0.03.

Thus the backprop network was doing a good job of estimating the gestalt of each class.

Tables I and 2 show the results of the MSE classifier for the two four class )roblems

depicted in Figure 22. The columns in the tables represent the actual class of each network

(the class used to form the weights), while the rows represent the class of the input image.

The figures of merit (FOMs) in the tables are given by

FOM = MSE
smallest MSE of all Nets (11)

As can be seen in the tables all of the low FOM values correspond to the proper

class. The results presented here show that the combination of Gabor filters and neural

networks can solve pattern recognition problems.

Armed with the success of the "toy" problem, the next problem attempted was

identification of tactical targets obtained from FUR imagery as shown in Figure 24. The

tactical target data set constrained a total of 53 targets. One of the targets from each

class was chosen as a template and used to train a gestalt network. Once the three gestalt

networks were trained, the entire data set was tested with the results given in Table 3. The
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Figure 22. Class Problem for Network Training
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Figure 23. Mean Squared Error as a Function of Training Iteration For Each of The
Classes in The Four Class Problem.
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First Four Class Problem
Class I Class 2 Class 3 Class 4

Image 1 1 75.7 10.2 50.4
Image 2 49.1 1 10.3 12.2
Image 3 570.8 894.7 1 634.3
Image 4 46.7 23.1 10.4 1

Table 1. Figures of Merit for First Four Class Problem

Second Four Class Problem
Class 1 Class 2 Class 3 Class 4

Image 1 1 89.0 3.4 7.1
Image 2 9.0 1 5.8 4.3
Image 3 6.3 71.6 1 3.2
Image 4 9.7 64.0 1 4.6 1

Table 2. Figures of Merit for Second Four Class Problem

tactical target result of 62.3 percent is inadequate for a classifier. To improve upon the

results, alternative architectures were used to classify the tactical target data set.

Tactical Target Results
Total Targets Total Correct Percent Correct

Tank 21 11 52.4%
Truck 23 19 82.6%
Target Board 9 3 33.3%
Overall 53 33 62.3 %

Table 3. Results For Tactical Target Problem

The gestalt representation scheme presented in this chapter may at first appear to be

complicated but in practice it is fairly straightforward to implement. The backpropagation

neural network with linear output nodes was shown to have the capacity to learn the

gestalt representation of input images based upon spatial features obtained from the use
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Figure 24. FLIR Image of Tank and Truck in Clutter

of Gabor functions as filters. The concept was tested upon simple spatial patterns and

shown to be adequate for recognition tasks. The real test of any recognition system or

technique is it ability to perform on real world data. Because of the low performance of

the gestalt network on the tactical target data, other classification schemes were developed

to improve performance. The next chapter examines the use of alternative classification

schemes using the Gabor front end tied to a roving window across the scene of interest.
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III. Alternative Classification Schemes Using Distance Metrics

In the previous chapter the gestalt network (G^ -1 ...hitecture was presented along

with results for a simple problem and a tactical target pri .,. This chapter will present

the research efforts used to overcome some of the problems associated with the GNET

architecture. As a baseline for comparison a traditional backpropagation neural network

solving a three class problem (tank, truck, target board) was trained using the ,2 x, y, f•, fy)

coefficients for each window position as features. The typical window used for processing

the scene was (8x8) pixels with one-half of a window overlap for each successive receptive

field within a (64x128) FLIR image. This resulted :n a total of 465 C(x, y, f•, fy) values

for each filter. Typically four filters were chosen for the segmentation task. This resulted in

1860 features to be sent to the backpropagation network. With 1860 features and only 53

targets available, the network would be able to memorize the test data (4, 11, 31). Because

Foley's (11) rule is violated with this arrangement, the number of features presented to the

network must be reduced while maintaining the relative locations and Gabor textures as

inputs to the neural network classifier. The first approach attempted limited the number

of features used by choosing the top N Gabor coefficients and their locations and then

processing the data using a variety of distance metrics.

3.1 Choosing the top N Gabor Coefficients and Their Locations

The initial feature vector data set was generated by choosing an (S,3) window with a

two cycles per window cosine Gabor function at angles of (0, 15, 30, ... 150, 165) degrees

which mimics the biology (6, 55, 16, 22). Once these windows are mapped over the input

a composite image is formed from the various filter representations depicted in Figure 25.

The composite image is created using to the rule below:

if IGabor[k][I[jUI > IComposite[ilU]]I
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Composite[i][JI = Gabort[k] ([Jl (12)

where

k Gabor filter image number (one per filter)

i x window location

j My window location

Gabor[k][i][I] coefficient of Gabor filter image k at location ij

Composite[i] [j] Composite image coefficient at location ij

Once the composite image is formed the top N (by magnitude) Gabor values and

their locations are selected. These N values and their locations form the 3IN features

(Composite[iI U], x, y) of the feature vector which represent the gestalt of the image. This

process is continued for all of the images in the data set. Once these feature vectors are

calculated, they are then processed for input to a multilayer perceptron classifier. The final

results of this rrocess are given in Figure 26. As can be seen in Figure 26, the location

of the Gabor coefficient with the largest magnitude is marked with an "X" while the next

nine largest magnitude locations are marked with a number 0.. .9. These locations are the

reduced representation of the input image.

This method prc luced moderately successful results with fairly good training. The

typical run had an overall training accuracy of 85 percent while averaging 68 percent on

test set accuracy. The overall results were not satisfactory, although for the same test set as

Lazofson (27:69) the test set accuracy was better (68 percent vs 43.2 percent) using fewer

features (30 vs 1080). One of the key ideas for the research effort was not yet invoked at

this point and that idea was to use the relative locations of associated textures as features

to the neural network classifier. The initial hypothesis was that the network would learn

the importance of these relative textures such as wheels or cabs and their relationship one

to another from the data set. Unfortunately the neural network was unable to learn the
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Figure 25. Truck With Associated Gabor Filter Images (16x 16) Window.
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Class 0 Class 1

Class 2

Figure 26. Three Class Problem Overlayed With Top Ten Gabor Locations.

spatial relationships from the data set. Because of the failure of the GNET to learn the

spatial relationships, several sophisticated data representations were attempted. The first

approach was that using the change in the (x, y) positions between the N maxima. This

method is termed the Delta method.

3.2 Delta Method

The Delta method was simply a measure of the difference in the x and y positions

between each of the N maxima. Once the maxima are found they are sorted from highest

to lowest value. The position of the maximum magnitude is then set as the origin for the

set. Then the deltas are calculated for each of the other N- I maxima from the origin. The

feature vector is made up of the origin and then the consecutive delta pairs from the origin.

A typical run for the Delta method is given in Figure 27. As can be seen in Figure 27 the

test set accuracy is 45 percent after 20,000 iterations.

The limited success obtained with this method led to the use of a Euclidean distance

metric.
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Accuracy Over 100 Runs Using Delta Distance Metric
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Figure 27. Comparison of Training Accuracy and Test Set Accuracy For Delta Rule
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3.3 Euclidean Distance Metric

The Gabor coefficients were again rank ordered from the composite image with the

top N coefficients selected. Then the Euclidean distance from the maximum to each of the

N-I Gabor coefficients was then calculated. The results of this method are given in Fig 28.

Comparism of Training and Test Set Accuracy (100 rums) for Euclidean Metric
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Figure 28. Comparison of Training Accuracy and Test Set Accuracy For Euclidean
Metric

As can be seen in Figure 28 the overall test set accuracy was only 45 percent.

This result led the research in a direction to improve performance while maintaining the

character of relative locations of spatial textures. The obvious place to look for clues lies

in the locations of the maxima themselves. The biggest problem was due to the shifts of

targets within the (64x 128) picture window. The target shifts resulted in different locations

for the top N Gabor maxima. The sensitivity of the Gabor filters to the texture they were

correlated with caused the values of the correlation to vary widely even if the target had

shifted only a few pixels in the scene. This is best illustrated in Figure 29 where the
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shift of the maxima can be observed while the target is shown to be nearly identical in

each picture. The next section describes a series of metrics which eliminated most of the

problems due to the overall shift of a target within the (64x 128) picture window and which

provided scale invariance as well. These metrics are all based on using the centroid of

the N maxima as the origin and then performing traditional distance metrics. The class of

metrics can be collectively termed centroid metrics.

Tank17b Tank1 8b

Figure 29. Shift of Gabor Maxima For Two Similar Images

3.4 Centroid Metrics

The previous sections described two metrics which were based upon the distance

from the maximum to each of the other N-I Gabor coefficients. This process while an

interesting method was very susceptible to changes in the input image. For instance the

method is very dependent upon the position of the object in the scene. The result of these

dependencies was that the position of the maximum Gabor coefficient would change for

different FLIR images for the same class. This is best understood by observing Figure 29.

Even when the Gabor maximum is in the same approximate location, the other maxima

are changing positions. Because of this problem, the next step employed to improve

performance was to use the relative distances from the centroid of the ensemble of N

locations corresponding to each of the Gabor coefficients as given in Eq (13).

Centroid[x][y] = E[ ][ "1 (13)
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where

Centroidlxl[y] the x,y position of the centroid

Xi -x position of Gabor maxima i

yj =y position of Gabor maxima i

N total number of Gabor maxima

Once the centroid was selected the distances from each of the maxima to the centroid

were rank ordered from longest to shortest with the longest distance used to normalize

the data vector. The first element in the data vector was then discarded because it was

unity for all data classes due to the normalization scheme. The normalization provided

invariance to scale while the rank ordering provides rotation invariance. Once the centroid

was determined, various distance metrics were used to create feature vectors. The first

metric used was the Euclidean distance metric.

3.4.1 Centroid Euclidean The Euclidean distance from the centroid calculated

by Eq 13 to each of the N maxima locations was calculated with dhe longest distance

occupying the first position in the feature vector and the other N-I distances in descending

order. After the distances were rank ordered then each distance feature in the vector was

divided by the longest distance. The normalized features were then stored in a feature

vector which was sent to a backpropagation network solving a three class problem. The

results obtained using this method were much better than those previously obtained from

the standard backprop classifier trained on the locations and their Gabor coefficient. The

results of using the centroid Euclidean metric are given in Figure 30. Figure 30 shows the

results for 100 runs using different seeds for initial weight values, training presentation and

partitioning the training and test set. The results are much better with a peak in performance

of approximately 62 percent at 2000 iterations. Because the number of vectors for two of
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the classes are roughly equal at 40 percent apiece and the remaining class at 20 perent,

the reported accuracy is well above that obtained from guessing a class at random (33

percent) or that obtainable from only guessing the class with the largest number of vectors

(44 percent).

Accuracy Over 100 Runs Using Centroid Euclidean Data
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Figure 30. Comparison of Training Accuracy and Test Set Accuracy For Centroid Eu-
clidean Metric

While this was very encouraging, other methods still remained for testing the concept

of relative locations of spatial textures.

3.4.2 Centroid Taxi Distance The next distance metric for measuring between

maxima was that of the taxi-cab distance, as given in Eq 14, from the centroid to each

of the N locations and then ordering the distances from longest to smallest. The results

obtained using the taxi metric were similar to those obtained using the centroid Euclidean

metric and are given in Figure 31.
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N

taxi distance = I I Centroid[x] - Max[il[x] I + I Centroid[y] - Maxti[y] I (14)
i=1

Accuracy Over 100 Runs Using Centroid Taxi Distance Metric
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Figure 31. Comparison of Training Accuracy and Test Set Accuracy For Centroid Taxi
Metric

3.4.3 Centroid Delta The centroid delta metric was extracted as shown in Fig-

ure 32. After each of the top N Gabor coefficients and their Az, AY locations were recorded

they were presented to the neural network classifier for training and classification. The

results obtained using the centroid Delta metric were similar to those obtained using the

delta metric.
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The centroid delta metric is calculated using

delta x[i], y[i] =1 Centroid[x] - Max[i][x] I I Centroid[y] - Max[i][y] I (15)

5

Figure 32. Extraction of Centroid Delta Position Data

3.5 Relative Locations of Spatial Textures

The final method used for this portion of the research was to use the relative locations

of spatial textures such as tire-like objects for the classes. The centroid Euclidean metric

was used to create the feature vectors for each class. The training and test files were created

from correlation data obtained from correlating each tank with a drive sprocket from a

representative tank and from correlating each truck with a tire from a representative truck.

Once the correlation files were created, the top five maxima and their locations were used as

inputs to the centroid Euclidean distance estimator. The resultant feature vectors were then

fed to a standard backprop classifier with one class representing tanks and the other class

representing trucks. Figure 34 is a representative sample of the output from the correlator

for the truck data which has been correlated with a tire while Figure 35 is representative

of the tanks which have been correlated with a cog. The overall performance was better
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Accuracy Over 100 Runs Using Cernroid Delta Distance Metric
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Figure 33. Comparison of Training Accuracy and Test Set Accuracy For Centroid Delta
Metric

52



than that previously obtained. The data was preseried to the classifier as a two-class

(tank or truck) problem. The results in Figure 36 are considerably better than chance and

demonstrate the viability of relative locations of spatial textures as a means of identifying

man-made objects.

Figure 34. Result of Correlating a Truck With a Tire From a Truck in the Data Set.

Figure 35. Result of Correlating a Tank with a Cog From a Tank in the Data Set.
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Accuracy Ovr 100 Runs Using Relative Location Data
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Figure 36. Comparison of Training Accuracy and Test Set Accuracy For Relative Loca-
tion Data Set

54



The results in Figure 36 were very encouraging and the research was directed along

a path which would alluw a machine to find the best relative locations for segmentation

and subsequent classification. The segmentation problem is non-trivial and a considerable

amount of research was conducted in an attempt to make the concept work. The research

centered around using a Gabor filter template of the desired correlation object, such as the

tire for a truck, which would produce a similar result as that obtained with correlation.

The template is a feature vector made up of Gabor filter coefficients of the object to be

correlated with the input scene. V e output from a roving window in the input image is

processed using the Gabor filter outputs as features. The roving window feature vector is

then correlated with the stored template and a correlation image is produced for all shifts of

the roving window. The results of this correlation process, while easy e-, igh for a human

to assimilate, are not good enough for machines. An example of a truck with the resulting

correlaaon picture is givc. in Figure 37. Depending upon the number of cycles/window,

Gaussian roll-off, filters and orientations very different results could be obtained. The

ability of machines to use Gabor coefficient maxima and their i, cation is imprecise with

approximately 60-70 percent accuracy possible.

The failure of the Gabor maxima approach to obtain adequate classification accuracy

led the research to the relative location idea. The results obtained in Figure 36 were due in

large measure to user inputs as to which peaks in the correlation images, such as Figure 35,

were the brightest. The large amount of user input into the generation of the relative

location made it difficult to transition the results to an autonomous process. The relative

location results presented in this chapter were encotiraging and the research was directed at

making the relative location process as autonomous as possible. Chapter 5 discusses how

the final relative location architecture was implemetnted and presents .1te results for the

three class problem presented in this chapter as well as a seven class problem. Because of

the large number of features generatet! using the Gabor filter coefficient approach a method

of determining which features vere important and which were useless was needed. The

ne-xt chapter discusses feature saliency from a Bayesian perspective.
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(a) (b)

(c) (d)

Figure 37. Output Images obtained from Correlating Gabor Templates with Original Im-
age. (a) Original Image. (b) Correlation Result for 4 Filters, 2 cycles/window,
or = 0.3. (c) Correlation Result for 4 Filters, 3 Cycles/Window, a = 0.3. (d)
Correlation Result for 4 Filters, 4 Cycles/Window, or = 0.3.
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IV Searching the Input Space for Optimal Features

The last chapter described the gestalt neural network architecture which is imple-

mented in this research. This chapter describes the path taken in the quest for the optimal

feature set. I have heard it said many times by my thesis committee: "find a good feature

set and I'll give you a good classifier ". The solution to this dilemma is not easy to find and

is as elusive as the snail darter. This chapter describes the methods used to solve this issue

of what makes a good feature as well as introduce a foundation for using neural networks

to find the appropriate features for the classification task.

4.1 The Curse of Dimensionality

One of the easiest traps to fall into when performing pattern recognition is the trap of

taking too many measurements. This is known as the curse of dimensionality. Duda and

Hart (8:136) point out that the increase in computation is not sufficient enough to justify

the gain in classification accuracy. Not only that, poor measurements can skew the actual

results by introducing confusing and overlapping data sets. This leads us to the question

of how do you select the best features without first trying them out? The answer is that you

can't just pick otv the optimal features. You either must use clustering algorithms such as

the Karhunen-Lo~ve transform (8:246) (53:269) to find important features or test for the

salient features after the classifier has been trained (36, 44). The next section describes

how feature saliency can be determined from a Bayesian perspective.

4.2 Saliency of Features

Saliency can be defined as a measure of a feature's ability to influence the classifier.

If the feature, when varied, has little effect on the decision of the classifier then it is of

little use and will have a low saliency value. On the other hand, when minor perturbations

of a feature have a dramatic effect on the output of the classifier, then the feature is highly

desirable and has a high saliency value. The question is to come up with a methodology
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for determining the saliency of a feature. Ruck (43) proposed a method for computing

the saliency of a feature on the input to a feedforward neural network. This section will

establish the same measurement from a statistical point of view. Ruck (45) also showed that

when the sample data accurately represents the underlying probability density functions

and the output nodes are trained to be 1 and -1 respectively, the final state of the output

nodes for a feedforward neural network actually represent the a posteriori probabilities of

a given class, j, given an input feature vector, Y. This is shown below:

zj - P(Cj 1) (16)

where

zj -output of node j on output layer

P(Cj I[) the a posteriori probability of class Cj given input vector !?

I -input feature vector

A relationship between the a posteriori probability and an error criterion which will

be used to measure the saliency of a given input feature is now developed. From Bayesian

statistics we know that (32:37):

ZP(Cj 1) = I

The probability of error for a particular output node can be defined as the likelihood

that the input feature vector belongs to a class other than that indicated by the value of

that particular output node. The probability of error for an output node (j) given an input

vector 1 can be computed as:
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PerTO(j, X-) = 1 - P(CjI")

where

Pe,,o,(j, 1) - the likelihood that the input feature vector - belongs to a class other than that indicated b,

or in equivalent form:

Peo,(j,, ) = ZP(CkIIE) (17)

k~j

Based upon (16) and (17), when we take the partial derivative of the summed

outputs £k#jZk of the feedforward network we are in actuality taking the partial derivative

of Pero,.(j, F). By taking the partial derivative of the summed outputs Ek•jZk with

respect to an input feature we can measure the sensitivity of the output to the input feature.

This provides a meaningful metric for feature saliency. Now take the derivative of the

probability of error, P,,,., with respect to a given input feature, xi, to measure its saliency.

aPero.U(j, 1F) aaxj = x--. E• P(C•I:y)

a
- zk (18)

kgjj

The output of a three layer neural network as depicted in Figure 38 is typically

represented by (46:329):

zj = fh(Zx X . w3 + 03) (19)
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Figure 38. Three-Layer Feedforward Network With Accompanying Expansion of a Hid-
den Node (44)
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where

zj _output of node j on the third layer

wj =weight value from node m on second layer to node j on third layer

2x, =output of node m on second layer

0 3 -threshold for node j on layer 3j

fh - sigmoid function

Now substitute for zk by inserting (19) into (18) we obtain

OPeror(j, X) 0--- X2 . W3n -+OOx, x= - fh(Z-•x2 3 03O )

k m

Using the fact that the derivative of the sigmoid function, fh, is simply the sigmoid

times one minus the sigmoid leads to

19Pe,,o,(j , X) XI.W=) 1: E Z(l Z •( X+ 0) (20)

ax1 j O '

where

Zk output of node k on layer 3

xi feature i on input layer

Applying the derivative yields

OPerr((j,:) =0,63Zw3 (X2'9Xi k • E M3' O

x1j m OXi
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where

k = Zk (1 - zk)

Continuing the process yields:

6k (~k n in. o
oPertor(j,ix ) = Z6 .- WE w3 -. lx x..~ O

mj nO

k ... InUn nt " n "in

kq~j rn n

where

b2 =, X2 2

= x,. (I -x)

n= n

Note that thc derivative of an output node (zj) of a feedforward network with respect

to a given input node (xi) can be generalized to any number of layers as shown below:

aXi w• N cN-1 " w N-ibN-2 . . w o p 3 2 w2b w (21)
= ~ m n Ep qp9i

Also note that if the feedforward network uses linear transfer functions on the output

nodes rather than sigmoidal transfer functions then 67j = 1.

Now that a relationship has been established between an input feature and the

probability of error, we can define a Bayesian-based saliency metric .; for feature x, of
•.2- . , veLL•r i.. The saliency metric presented is based on the magnitude of the

changes in P,,,, as the feature x; is varied over its range of values.
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Because we are measuring the sensitivity of the P .... to changes in xi, a feature

which causes little or no change in Per,., is of little relevance while a feature which causes

substantial changes in Per.,, is very relevant and should be retained.

The saliency (Qj) can be calculated as follows: Take each training vector (11) in the

training set S. For the ith feature, sample at various locations over the expected range of

the feature while holding all other features in I constant. N'w compute the magnitude

of the partial derivative of the output Zk for the sample values. Sum the magnitude of

the partial derivative of P,,o,. over the outputs (j), the sampled values of xi (Di), and the

training set S. See (44) for a discussion of this method of forming Qj.

E E aPerror(j, Y)
3 9ESXiED,

which can be rewritten as:

J=Z S XOiZk (22)
.1 FESxiED, kq~jqx

where

Di = Set of sample points for feature xi

The variable -y7, which is the absolute value term in Eq (22) is introduced.

E• azi, (23)

Now show that -yi is bounded.

Because Zk is a sigmoid function, each 0zk exists and is finite. Thereforeax.
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_ _C (24)

and by the triangle inequality (26:70) -y is bounded by Eq (24)

-<i < C (25)
k#j i

Combining Eqns (22 - 25) yields

aox Oxi
3 £ESXiED, k"j X E ,ESXEDk, O",

Rearranging the order of summation and choosing the right hand side, yields the

metric Ai which is a simplification of (22).

AZZ 1O (27)

i ;ESk~Xi.ED,

The proposed metric, Ai is more sensitive to changes in the Pe,,o, as xi is varied

than the fj.

The saliency metric can be readily calculated by substituting the result from (21) into

(27). The required weights and outputs are available in the normal feedforward algorithm

and the required storage for intermediate results is quickly inserted into the feedforward

algorithm.

4.3 Comparison With A Previous Saliency Metric

Now that we've established saliency from a probability perspective, how does it

compare with a previeisly used saliency metric? Ruck (44) proposed a saliency metric

which is given below:
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OZk (28)

:ES k XiEDX

Note the similarity between the Ruck saliency metric and the metric defined in (27).

Ruck's metric is actually the same as that obtained from the probability of error derivation

to within a factor of n- I where n is the number of output nodes for the feedforward network.

To illustrate this relationship, consider the following:

-II +z E k I~+._.+k E k
kjAI;EES XiEDi X k02;?ES XiED, OXkj4 gE S X,ED.. OI

=(n-I)ZZ EI OZk

iES k XiEDI Ox,
= (n - I). A

The results given in this chapter show that the Ruck saliency metric, while chosen

intuitively, was actually a metric which measured the sensitivity of the probability of error

to a given input feature. With the foundation of the saliency metric developed from a

Bayesian point of view, it can be used to determine meaningful features.

4.4 Application of the Saliency Metric For Feature Selection

The previous section developed the concept of saliency from a Bayesian perspective.

This section uses the saliency measure to reduce the dimensionality of the input feature

vectors to a neural network. With this concept firmly in hand we will look at how the

metric classifies useful features for the three class problem given in Figure 39.

The initial feature vector data set was generated by choosing an (8x8) window with a

two cycles per window cosine Gabor function at angles of(0, 15, 30, ... 150, 165) degrees.
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Class 0 Class 1

Class 2

Figure 39. Three Class Problem For Classification

Class 0 Class 1

Class 2

Figure 40. Three Class Problem Overlayed With Top Ten Gabor Locations
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Once these windows are mapped over the input a composite image is formed according to

the rule below:

if jGabor[k][i][jil > IComposite[i] [jl

Composite[i][ ] = Gabor[k][i][] (29)

where

Gabor[k][i][j] Gabor coefficient of Gabor filter k at location ij

Composite[i][]= Composite image coefficient at location i, j

k Gabor filter image number (one per filter)

i =x window location

j y window location

Once the composite image is formed the top N (by magnitude) Gabor values and

their locations are selected. These N values and their locations form the 3-N features of

the feature vector which represent the gestalt of the image. This process is continued for

all of the images in the data set. Once these feature vectors are calculated, they are then

processed for input to a multilayer perceptron classifier. The final results of this process

are given in Figure 40. As can be seen in Figure 40, the location of the maximum Gabor

coefficient is marked with an "X" while the next nine locations are marked with a number

0.. .9. These locations are the reduced representation of the input image.

Once the N locations have been determined then more processing is used to reduce

the feature vector even further. In the final result the input feature vector is reduced to

nine features. The results shown in Figure 41 are obtained by training 100 separate neural
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networks using the nine features as inputs to the neural network classifier.

Accuray Over 100 Runs Using All Features for Centroid Euclidean Metric
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Figure 41. Accuracy Using All Nine Features from Centroid Euclidean Distance Metric
Averaged over 100 Runs

The Bayesian saliency metric is then applied for each of the 100 runs and the results

are recorded in Table 4. As can be seen in Table 4, a histogram of each feature is formed.

For instance, feature 0 was the most important 75 times, second most important 19 times,

third four times and so on. After th histogram is formed the features are ranked using the

formula

N

rank= 1 K,, -.(N- n- 1) (30)
n --
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where

n Importance of Feature

N Total Number ,,f Features

K&, Number of times feature had importance n

The saliency computed using Eq (30) is given in Table 5

Oacc thd lop three features for the centroid Euclidean metric were chosen, a new run

using 100 separate neural networks for training was conducted. Figure 42 shows virtually

identical results as those obtained using all of the features. The Bayesian saliency metric

has helped eliminate features which were ambiguous and detrimental to finding a good

solution space for the neural network classifier. In addition, by reducing the number of

features requirec :o solve the pattern recognition problem computational time to train the

neural nctworks is reduce.. and the likelihood of violating Cover's (4) or Foley's (11) rules

is greatly diminished.

In this chapter a new method based upon the Bayesian properties of a feedforward

neural network was used to determine the importance of features fed to a neural network.

The new method was found to be compatible with the saliency metric previously used

by Ruck (44). The consistency of the features chosen by the Ruck saliency metric was

previously demonstrated by Ruck (43) for backpropagation, k-nearest neighbor, and Parzen

window classifiers. As a result of the application of the new metric, virtually identical

results were found between using all of the features and only the top three features in a

classification problem. The new saliency metric further supports the proofs provided by

Ruck (45) and Gish (15) that the feedforward neural network is performing as an optimal

Bayesian clas.sifier. The next chapter expands upon the idea of reducing the number of

featres by utilizing the relative locations of spatial textures to form a greatly reduced set

of featureF to classify FLIR imagery.
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Importance 9th 8th 7th 6th 5th 4th i3rd i2nd1st
Feature 0 0 0 0 0 0 2 4 19 75
Feature 1 15 17 13 8 12 20 9 5 1
Feature 2 4 4 8 4 19 20 24 15 2
Feature 3 24 9 11 23 15 10 7 0 1
Feature 4 16 24 12 19 8 11 8 2 0
Feature 5 24 17 23 15 10 9 0 2 0
Feature 6 14 18 19 10 21 6 10 2 0
Feature 7 2 6 13 16 8 11 19 24 1
Feature 8 1 5 1 51711119 31 20

Table 4. Importance of Each Centroid Euclidean Feature Over 100 Runs. A histogram
is given of how many times the given feature was ranked in importance.

Feature Saliency Valuej

Feature 0 767
Feature 1 312
Feature 2 473
Feature 3 260
Feature 4 254
Feature 5 207
Feature 6 274
Feature 7 457

Feature 8 596

Table 5. Saliency of Each Centroid Euclidean Feature over 100 runs. Features 0, 2, and
8 are the most salient.
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Accuracy Over 1NV Runs Using Top Three Features for Centroid Euclidean Metric
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Figure 42. Accuracy Using Top Three Features from Centroid Euclidean Distance Metric
Averaged over 100 Runs
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V Relative Locations and Their Importance in Object Recognition

During the course of the research, it became apparent that the roving window

architecture would not yield the desired classification accuracy. The major drawback to

the roving window architecture with its fixed window locations was that the objects of

interest were not consistently in the same place in the scene. This observation led the

research in a direction which could overcome the limitations due to the fixed data locations

for the roving window architecture. The process described in this chapter overcomes the

problems encountered in the roving window architecture and is able to extract features in

a consistent manner. The heart of the new system lies in the concept of using the relative

locations of non-homogeneous regions to solve the feature extraction, and classification

problems nearly simultaneously. One of the concepts which was always of interest during

the course of the research was that of using the relative locations of distinguishing features

or characteristics to aid in the classification task. Indeed, many of the qualified successes

found with the Gabor front-end were due to using various distance metrics from the

centroid of the Gabor orientation maxima to each maxima's location. This concept was

very useful but had severe limitations due to the fixed measurement locations for the

roving window. Thus a better and more consistent method of data retrieval was required

for the feature extraction and classification tasks. The relative location concept allows

the classifier to retain the global characteristics of the image in question while extracting

specific information from localized regions within the image. The architecture presented

in this chapter is based upon the relative location concept for object recognition. The

architecture uses an operator's input to define what features in an image are important for

classification. Perhaps for a tank the tracks, turret and barrel are important. The operator

would simply use a mouse to select the areas of the tank to be used for the classification

task. The algorithm then stores each of the desired regions and their relative locations

with respect to each other for feature extraction and subsequent classification. The concept
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of using relative locations for data extraction and classification is introduced in the next

section.

5.1 The Concept of Relative Locations

As mentioned previously, the results of the research pointed to the relative locations

of distinguishing features or characteristics as a good point to improve system performance.

This hypothesis is based on the research done by Luria (30) on the perception of objects

and eye movement. Luria asserts that the brain makes a "perceptual hypothesis" based

upon key signs (features) of an object. This is accomplished in the human visual system

via saccadic eye movement with subsequent processing in the brain. A good example

of the saccadic process can be seen in Figure 43. As can be seen in the Figure, the

eye movements seem to be clustered about the eyes and the mouth with some movement

around the perimeter of the face.

• /

Figure 43. Eye Scanning Pattern For Girl Used by Luria (30:135)
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The relative locations of the eyes and nose and their particular characteristics are

extremely important for face recognition (25). The picture of the girl with the correspond-

ing saccadic eye movement shows how the eye position is used by the brain to process the

position of the eyes and mouth in developing a recognition model as pointed out by Luria

(30). The concept of relative locations of distinguishing spatial features is implemented

using the system architecture presented in the next section.

5.2 The Relative Location System Architecture

The system architecture presented in this section uses a combination of templates

which contain relative locations of distinguishing characteristics to preprocess the data fed

to a feedforward neural network for training. In addition, a user interface was developed

to assist in the task of identifying which characteristics are important in performing the

recognition task. A block diagram of the relative location architecture is given in Figure 44.

The architecture consists of a series of independent templates along with their associated

neural network classifier. The image is first presented to the system. Each template is

used to find the best match in the scene and extract data from the relative locations of

selected windows. The output of the feature extractor is then fed to the neural network

associated with the template. Each neural network has been trained to recognize objects

that are of the same type as the template and to reject all others. Once all of the templates

have been applied to the input image, the class is declared to be the class associated with

the neural network with the largest in-class output. With this in mind the NeuralGraphics

(49) computer code was modified to incorporate the relative location concept.

To illustrate the concept consider Figure 45 which is a snapshot of the revised

NeuralGraphics interface. The user uses a mouse to select the desired portions of the

image in the "Template Creation" window. Once the user is finished selecting the relative

location windows, they stored as a template in the "Template Storage" window. The

process is continued until all of the desired templates are created. The user stores the

template(s) by selecting the proper menu option with the mouse. Once the desired number
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Figure 44. Neural Network Based Automatic Target Recognizer Using Relative
Locations
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of templates are selected and stored, the templates are used to create feature vectors for

subsequent training of a neural network. The feature vectors are created by first centering

the template as shown in the "Centered" window in Figure 45. The centered template

is correlated with the input image and the result is stored in the "Correlated" window

in Figure 45. This correlation uses the global characteristics of the template to find the

best match for the template in the scene. Once the best match is found, the centroid of

the template is placed at the correlation peak and data is extracted from the input image

using the relative location windows defined in the template. This process allows the local

variations within each window to be used in the modeling process as well. The relative

location data is extracted from the template in the "Template Rel Locations" window and

from the image in the "Image Rel Locations" window. One of the relative location windows

for the template is shown in the "Template Var Window" with its corresponding window

in the image shown in the "Image Var Window". The windows are processed to create the

feature vectors for training and classification of the input image. One of the benefits of this

architecture is that new classes can be added without requiring extensive retraining because

each neural network classifier is solving an in-class/out-of-class problem. Hence only the

new neural network representing the new class needs to be trained over the entire database.

To further illustrate how the system works, each portion of the system architecture will be

presented in detail.

5.3 Template Creation

The user defined template is crucial in obtaining a consistent location for extracting

data from scenes in the database. The selection process is depicted in Figure 46. The user

can select either the entire scene as a template or up to twenty variably-sized windows

from the scene for the template. When the user is finished creating the desired template,

the data associated with each window (xsize, ysize, delta-x, delta-y, xmean, ymean) are

stored along with all of the values in the template.

While the word description of the template creation process is easy to understand,
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Figure 45. The Relative Location Screen running within NeuralGraphics. The various
windows are used to extract desired features, find objects in the image and
process relative location windows.
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Original FLIR Image Highlight Desired Relative Locations

Final Template

Figure 46. Creation of a Template Via Highlighting The Desired Portions of The Input
Image and Storing Only The Highlighted Portions As The Template.

there is a considerable amount of processing which is going on as the template is created.

As each new window in the image is selected for inclusion in the template, several

parameters are calculated and stored. The first parameter calculated in the relative location

process is the centroid (x-mean, y-mean) of the ensemble of variable windows selected for

inclusion in the template. Next comes the delta-x and delta-y values from the centroid to

each variable window in the template. The size of each variable window is stored as well.

After the template is stored, it is used as a matched filter to find the best match in the input

image for the template. The next section describes how the template is used for registering

on the best match in the input image and then how the centroid is used to insure the best

fit between the image and the template.
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5.4 Template Registration

Once the template is created and stored, it is used for processing the input image as

well as finding the desired object in the scene of interest. The process is best described

by viewing Figure 47. The input image and the centered template are correlated together

with the result displayed in the correlation window. The location of the maximum value in

the correlation plane represents the best match between the template and the input image.

The maximum in the correlation plane is then used as the registration point for the data

extraction process. The data is then extracted from variably sized windows from the input

image based upon the delta-x and delta-y locations from the maximum. !t should be

noted here that if the input image is the reverse of the template, black-on-white versus

white-on-black, that the minimum in the correlation plane would be the best match. This

is a definite problem with FLIR imagery because of crepuscular conditions in dawn and

dusk viewing situations where objects such as tanks may be cooling or heating rapidly

while the background has not changed temperature appreciably. This condition is often

termed the diurnal shift and is depicted in Figure 48. To overcome this problem for the

purposes of data extraction, the location of correlation peak for the template representing

the class for each image in the database was stored and recalled. Using this technique,

the images could be mixed at will and the features extracted without considering whether

the maximum or minimum location was required for the correct registration. Once the

location is obtained, the data is extracted from the input image by centering the centroid of

the template at the max/min location and then extracting data from the scene based upon

the stored delta-x and delta-y locations for each variable window as depicted in Figure 47.

After the data is extracted from the image, the data within each window is processed and

the results are stored as a feature vector. The feature vector creation process discussed in

the next chapter processes the data extracted from both the scene and the input image.
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Figure 47. Using the Correlation of the Template and the Input Image for Registration
for Subsequent Processing

5.5 Feature Vector Creation

The feature vectors created by the relative location architecture are based upon

processing each template window and its corresponding window in the image together.

Initially, the magnitude of the correlation between each window pair was used to create

features for subsequent inclusion in a feature vector. After studying the problem in further

detail, it became obvious that the correlation concept was limited because of diurnal shifts

and crepuscular problems. The processing was subsequently changed to allow for the

variation in scene contrast. The second method of calculating the features was to perform

an inner product of the magnitude of each Fourier coefficient from a discrete Fourier

transform (DFT) of each window pair with the dc component removed from each DFI

calculation before performing the modified dot product.

Initially the feature vectors were created using the process described in Eq (31).

Zk= main j * g k (31)
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Figure 48. Two Separate Representations of The Same Target With Diurnal Differences
With Associated Data Extraction.
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where

zk feature value for window k

fk image window k

gk template window k

i, j pixel location within the window

Because of the diurnal problem a better method of extracting features from the

variable windows was developed. The key idea used in the approach to solve the (black-

on-white) versus (white-on-black) recognition problem was that the reverse video image

can be considerea to be the normal image subtracted from a constant background of the

maximum pixel value. By observing the Fourier transform of each image a simple solution

was obvious. Define the normal image as n.,v and the reverse video image as r•,,. As

shown in Eq (32), r,, is simply the result of subtracting n•,, from a constant background

equal to the maximum pixel brightness. By taking the Fourier transform of both n,,, and

r,,, as shown in Eqs (33) and (34), a simple relationship is found for feature extraction as

described mathematically by Eq (35).

r•, = C - n, (32)

Yfr,,y = ._{C - n.,,} (33)

"*R(u, v) = C. 6(0, 0) - Ai(u, v) (34)

which when the dc component is thrown away reduces to

Z(U, v) = -A/(uv) (35)
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where

C maximum pixel value

x pixel position in x direction

y pixel position in y direction

u pixel position in u spatial frequency direction

v pixel position in v spatial frequency direction

n,,, M normal image

r.,• - reverse video image

IZ(u, v) Fourier transform of reverse image

.AV(u, v) Fourier transform of normal image

R•u, v) Fourier transform of reverse image with dc component removed

.f(u, v) Fourier transform of normal image with dc component removed

The initial step was to take the discrete Fourier transform (DFT) of each window.

The dc spatial frequency component was then set to zero for each DFT. Then the features

were calculated using the process described in Eq (36).

Z k ZZI IQ-jI. (36)
i .1

where

2-k M feature value for window k using second method

T ii coefficient of modified DFT of image window k
,, ij coefficient of modified DFT of template window k
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Along with the crepuscular problem, many images may have varying degrees of

contrast between the object and the background. The images contained in the data set

used in the research contained a wide variation in contrast. The methodology used to

create features to solve the crepuscular problem was also adequate for images with various

contrast ratios. Once the features for the variable windows in a template are calculated,

they along with the class of the input image are stored in a file for training the neural

network classifier. The feature vector creation process is also used in the identification

process, but the resultant vector is sent to a feedforward layer with fixed weights for the

classification task. The training and classification tasks will be described in the next two

sections.

5.6 Neural Network Training

Once the feature vector is created for an image it is stored in a data file. The next

image is presented and the resultant feature vector is added to the data file. Once the entire

database of images is processed, the feature vector file is used to train a backpropagation

neural network (58) for training. Most of the feature vectors used in training each neural

network used for the classification task had three features while the rest had four features.

This limited number of features was sufficient to perform the classification task without

memorizing the input training set. In addition, the limited number of features was necessary

to insure that the dimensionality of the feature space was sufficiently small for the number

of exemplars available for each class (4) (11). The backpropagation algorithm used for

the classifier in this dissertation research was a modified version of the code developed by

Ruck (43). The code was modified to store the statistical properties of the input training set

as well as the weights produced during training. The statistics of the input training set are

required before the weights can be used because of the transformation initially performed

on the data before training the neural network. The data is initially transformed using the

relation given by Eq (37).
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xi -= 
(37)

O(i

where

xi -feature i of input feature vector

ii -- average value of feature i over entire training set

ai standard deviation of feature i over entire training set

This transformation must be applied to any feature vector presented to the back-

propagation network to preserve the relative relationships between features in the feature

vector in terms of the weight space represented by the stored weights.

Once the statistics of the training set are calculated, each vector is transformed as

it is randomly called for training. The system architecture chosen consists of one neural

network for each template. This results in each neural network being trained to recognize

objects in its class (high output) while rejecting objects not in its class (low output).

Figure 49 shows the results of a typical training run. As can be seen in Figure 49, there

were 150 total feature vectors with 100 used for training and 50 used for testing the progress

of the training. A neural network configuration of three inputs, ten hidden nodes and two

output nodes was trained. After about ten epochs (1000 iterations), the neural network has

been trained to within a few percentage points of its final classification accuracy (10,000

iterations). The first column in Figure 49 represents the iteration number, the second

column is the training error, the third column is the training accuracy, the fourth column is

the test set error and the last column is the test set accuracy. As can be seen in Figure 49

the training error is reduced as the network is trained longer and longer. Once the neural

network is finished training, the weights along with the training set statistics are stored for

use by the classifier in the system architecture. Figure 50 shor"s the entire training process.
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The database contains 150 total vectors.
127 in class 0
23 in class 1

The number of vectors assigned to training by class are:
85 training vectors in class 0.
15 training vectors in class 1.

Means: 65562546.080000 215811838.480000 168215949.480000
Stddev: 31467133.595636 93980204.813248 80735503.810511

Wt Selection seed (initialseed): 123456789
Db Partition seed (part-seed): 1918940490
Training Vector Selection seed(trn...seed): 1191645590
Weights file: demo0.wts0
Network Size: 3-10-0-2
Source database: demo0.ruck
Training Rate (eta): 0.3
Momentum (alpha): 0.7
Batch Size: 1
Features Used: All Features in demo0.ruck.
Fraction vectors assigned to training: 0.67
Normalization: 1

1: 0, ERR: 1.3191 e-01, ACC: 8.5000e-01, TS1ERR: 1 .2127e-01, TSACC: 8.4000e-01
1: 500. ERR: 1 .3180e-02, ACC: 9.9000e-01, TSERR: 6.3784e-03, TSACC: 1 .0000e+00
1: 1000. ERR: 1. .1050e-02, ACC: 9.9000e-01, TSERR: 2.9547e-03, TSACC: 1 .0000e+00
1: 1500, ERR: 1 .4735e-02. ACC: 9.8000e-01, TSERR: 1 .3206e-02, TSACC: 1 .0000e+00
1: 2000. ERR: 1 .0046e-02, ACC: 9.9000e-01, TSERR: 1 .7777e-03, TSACC: 1 .0000e+00
1: 2500, ERR: 6.1060e-03, ACC: 9.9000e-01, TSERR: 2.4001e-03, TSACC: 1 .0000e+00
1: 3000, ERR: 8.0301 e-03, ACC: 1 .0000e+00, TSERR: 5.9739e-03, TSACC: 1 .0000e+00
1: 3500, ERR: 4.3853e-03, ACC: 1 .0000e+00, TSERR: 1.6871 e-03, TSACC: 1 .0000e+00
1: 4000, ERR: 4.7236e-03, ACC: 9.9000e-01, TSERR: 1 .534le-03, TSACC: 1 .0000e+00
1: 4500, ERR: 3.9299e-03, ACC: 1 .0000e+00, TSERR: 1 .7096e-03, TSACC: 1 .0000e+00
1: 5000, ERR: 4.3609e-03, ACC: 9.9000e-01, TSERR: 1 .4958e-03, TSACC: 1 .0000e+00
1: 5500, ERR: 3.3909e-03, ACC: 1 .0000e+00, TSERR: 1 .5677e-03, TSACC: 1 .0000e+00
1: 6000, ERR: 3.3964e-03, ACC: 1 .0000e+00, TSERR: 1 .9260e-03, TSACC: 1 .0000e+00
1: 6500, ERR: 2.8120e-03, ACC: 1 .0000e+00, TSERR: 1 .3994e-03, TSACC: 1 .0000e+00
1: 7000, ERR: 3.0464e-03, ACC: 1 .0000e+00, TSERR: 1.841 6e-03, TSACC: 1 .0000e+00
1: 7500, ERR: 2.9063e-03, ACC: 1 .0000e+00, TSERR: 1 .5992e-03, TSACC: 1 .0000e+.00
1: 8000, ERR: 2.4936e-03, ACC: 1 .0000e+00, TSERR: 1 .7030e-03. TSACC: 1 .0000e+00
1: 8500, ERR: 2.5644e-03, ACC: 1 .0000e+00, TSERR: 1 .7902e-03, TSACC: 1 .0000e+00
1: 9000, ERR: 2.5772e-0~3, ACC: 1.0000e+00, TSERR: 1.5121 e-03, TSACC: 1.0000e+00

1. ElP* ?.6502e-03, ACC: 1 .0000e+00, TSERR: 1 .4633e-03, TSACC: 1 .0000e+00
1: 1 0000, ERR: 2.4046e-03, ACC: I .0Crn0e-M, TSERR: 1 .4952e-03, TSACC: 1 .0000e+00

Figure 49. Typical Output From a Training Run for The Neural Network
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Figure 50. Block Diagram of Neural Network Training

5.7 Input Image Classification

When all of the neural networks associated with each of the desired classes have been

trained, the system can perform classification on an unknown image. The classification

process is depicted in Figure 51. As can be seen in the figure, the entire process is

dependent upon the ability of each neural net classifier to accept or reject the object in

question. Ideally one neural network would have a high in-class value while all others

would have a low in-class value. Due to out-of-plane rotations, dissimilar object types

within the same class, and contrast differences, more than one neural net output may be

large or all may be fairly small. As can be seen in Figure /refclassifier, the input image

is presented to the system and feature vectors are generated to feed each of the neural

networks in the system. The template is registered at the best match location in the scene

and the data is extracted from the input image at the variable window locations and a

feature vector is created for processing. The feature vector is presented to the template's

associated neural network for 'lassification and the in-class output value is stored. This

process is repeated until all of the. templates and their associatckd n,.iral network outputs

have been stored. If the maximum output is larger than a predetermined threshold the
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class of the object is declared to be the class associated with the largest in-class output.

If the threshold value is not exceeded then no class is declared the winner. This could be

due to an entirely new object being introduced or a known object in an orientation which

would not allow for discrimination via the features extracted by the preprocessing steps.

For instance, it is difficult to tell whether an El Camino is a car or a truck if you're looking

at it from the front.

Input Image Centered Template

Template Database

Figure 51. Block Diagram of Classifier

Once the image is classified, the next image in question is presented and the process

is repeated until all of the unknown images are classified. The system architecture used for

classification was fairly effective. The next section presents the classification performance

for the system.
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5.8 System Performance

The relative location architecture as described in the previous section was by far the

best classification system for the data set used in this dissertation research. The results

from the relative location system are compared to those using matched filter templates

(whole scene and segmented templates). The general recognition capability of the relative

location system was generally greater than 90 percent while the matched filter using the

entire scene was 82 percent. When the cropped templates are used, the classification

accuracy drops to 51 percent. In addition, when a direct matched filter approach is used

with the templates developed for the relative location concept the classification accuracy

drops to 41 percent. The results obtained using the relative location concept are presented

in detail in the next section.

5.9 Discussion of Results

The results obtained using several different matched filters as well as the relative

location architecture are presented in Tables 6-10. Table 6 contains the results obtained

when the templates are full images. The actual templates used in the classification task are

shown above the results in Table 6. The templates were correlated with the FLIR database

and the template with the maximum correlation was chosen as the class of the object in

question. The results are fairly good (82 percent), but they are deceptive. The majority

of the correlation value is determined by the background. This becomes evident as we

consider the results given in Table 7 which represent a more realistic matched filter set.

The templates were generated by removing the background from the image while retaining

the desired object to be recognized in the template. The overall result of 52 percent would

never be acceptable in a classification system. The results presented in Table 8 are the

matched filter classification accuracy when the templates used for the relative location

architecture are used as matched filter templates. The result of 41 percent is very low and

shows how the energy in the template plays a significant role in matched filter correlation.

Table 9 gives the results when the relative location architecture is used for the classification
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task. The result of 93 percent is much better than that obtained using traditional matched

filter approaches. In addition, the reverse video classification problem is overcome using

the methodology of section 5.5. Table 10 gives the result for a combination of normal

and reverse video images and the associated classification accuracy of the relative location

architecture. As can be seen, the overall accuracy of the system is unchanged. The next

section explains why the relative location concept is better than matched filter methods in

classifying FLIR imagery.

Results Using Correlation With Full Templates
Target Type Total Targets Correct Pct Correct

Truck 23 23 100%
Large Tgt Board 10 9 90%
Small Tgt Board 13 13 100%
Jeep 24 24 100%
Tank Set 1 43 17 40%
Tank Set 2 21 21 100%
Tower 16 16 100%

Overall 150 123 82%

Table 6. Classification Results Using Full Templates As Matched Filters
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Results Using Correlation With Cropped Templates
Target Type Total Target,; Correct Pct Correct

Truck 23 23 100%
Large Tgt Board 10 6 60%
Small Tgt Board 13 0 0%
Jeep 24 24 100%
Tank Set 1 43 2 5%
Tank Set 2 21 21 100%
Tower 16 0 0%

Overall 150 76 51 %

Table 7. Classification Results Using Cropped Templates As Matched Filters

Results Using Relative Locations As Matched Filter
Target Type Total Targets Correct Pct Correct

Truck 23 14 61 %
Large Tgt Board 10 5 50%
Small Tgt Board 13 0 0%
Jeep 24 24 100 %
Tank Set 1 43 4 9%
Tank Set 2 21 15 71 %
Tower 16 0 0%

Overall 150 62 41 %

Table 8. Classification Results Using Relative Location Templates As Matched Filters
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Results Using Relative Locations
Target Type Total Targets Correct Pct Correct

Truck 23 23 1009
Large Tgt Board 10 10 1)M
Small Tgt Board 13 12 92%
Jeep 24 23 96 17
Tank Set I 43 40 93%
Tank Set 2 21 17 817
Tower 16 15 947

Overall 150 140 93 3

Table 9. Classification Results Using Relative Locations

Results Using Relative Locations On Hot and Cold Object Input Images

Target Type Total Targets Correct Pct Correct

Truck 46 46 100%
Large Tgt Board 20 20 100 %
Small Tgt Board 26 23 88 %
Jeep 48 46 96%
Tank Set I 86 80 93%
Tank Set 2 42 35 83 %
rower 32 30 94 %

Overall 300 280 93 %

Table 10. Classification Results Using Relative Locations For Both Reverse and Normal
Input Images
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5.10 Why Relative Locations Are Better Than Matched Filter Techniques

The relative location technique was able to improve upon the matched filter technique

(93 percent versus 41 percent) using the same templates. This section will discuss why this

is possible. The matched filter correlator can be considered as a global type operation. The

individual correlations of the windows in the template are summed together to produce an

output value. In addition, when the input image is energy normalized it uses a different

normalization constant than the template. Other templates with greater area will tend to

have higher correlation values than might otherwise be expected simply due to the larger

number of pixels which can be summed during the correlation process. Ideally the matched

filter pair would produce a value of unity (autocorrelation) each time an image containing

an object of the same type as the matched filter was encountered. In real world imagery

the autocorrelation value of the matched filter is never unity unless full image templates

are used. In the case of full templates the autocorrelation value of unity is obtained when

the input image is identical to the one selected as the template. In addition, the matched

filters used in this dissertation research are not all to the same scale because the images

themselves are not to the same scale. The scale differences does cause some difficulties

because of the normalization problem presented earlier. The scale problem is probably

the biggest factor in the failure of the towers and small target boards to match even the

image from which the template was created. The relative location concept uses local as

well as global information to produce a classification decision. The initial registration of

the template on the input image is identical to matched filter correlation which is a global

process. The global sum is used to find the best match in the scene with the template. The

difference is that once the best match location is found, the local information cxtracted

from the locations of the variably sized windows in the template is used to mak the

classification decision. This is possible because the backpropagation neural network is

using the relative values between the windows rather than the sum of the values. To better

understand the process consider Figure 52. The truck in the input image is correlated with

both the truck template and the small target board template. The resultant feature vectors
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as developed using Eq (36) and statistically normalized using Eq (317) are presented as well

as the output of the truck and small target neural networks. As can be seen in the figure,

the best match in the scene for the small target template occurs in the first feature. Note

however, that for the small target feature vector all three values are high while the normal

in-ciass response would have one feature high and the other two features low. The truck

template has a good match a:-J all three features have high values. Each neural network

classifier has the ability to parse the input feature space into the appropriate decision

regiols and produces the desired result - a high value for the truck in-class output and

a low value for the small target in-class output. The significance of the relative location

concept lies in the fact t-at the relati,,e window locations are in effect ahle to extract data

tf'om areas where it is the most useful and reject information in the regions which are not

useful in the classification task. This is precisely what the eye scan patterns in Figure 43

are indicating. The really important locations are revisited a number of times while the

brain performs "perceptual hypotheses." The relative location process does have some

drawbacks which are discussed in the next section.

5.11 Limitations of the Relative Location Concept

The previous sectioi. liscussed why the relative location concept is better able to

classify the FLIR image set used in the dissertation research. This section will discuss

some of the limitations of the concept and possible solutions to overcome the limitations.

The biggest limitation of t..- relative location concept is that the relative spacing of the

windows themselves is not scale invariant. Ilowever, the DFT calculation performed

within each window is scale invariant. The solution is simple as long as the range to the

target is known. The scale factor required to transform the observed input image to the

same scale as the template is given by Eq (38).

SF = Template Range (38)
Image Range
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Comparison of Truck and Small Target Classification Results
For The Same Input Image

Input Image Input Image

Trua Template Small Target Template

Normalized Feature Vector Normalized Feature Vector

1.1599 1.7676 1.6064 0.6991 0.9137 0.1900

Neural Network Output Neural Network Output
In-Class Out-of-Class In-Class Out-of-Class

0.873246 0.128573 0.162555 0.838695

Figure 52. Comparison of Two Separate Templates And Their Separate Neural Network
Outputs For The Same Input Image
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Once the scale factor is determined then, through the use of similar triangles, the

following transformation can be used to translate an image into the same space that the

templates were generated in.

Sr0
[P,.Y] = [xy]. 0(39)

0S

where

S; = SF. length of image in x direction

Sy = SF. length of image in y direction

- transformed pixel location in x direction

transformed pixel location in y direction

The scaling problem was determined to be of some concern but certainly one which

was manageable. The other limitation of the relative location concept is that of registering

the template properly on the scene of interest. This is due in part because of the crepuscular

conditions inherent in the early morning and late evening. The problem is that even though

tie classifier is able to overcome the black-on-white versus white-on-black dilemma, the

registration is dependent upon knowing what type of image is being viewed. Of course

two templates could be stored with the maximum from each used as the centroid for

data processing. This results in a considerable amount of processing overhead. Another

solution would be to use windows based upon the centroid of the object being classified.

5.12 Conclusions

The relative location architecture developed in this chapter has been shown to be

useful in classifying FLIR imagery over a wide range of conditions. The relative location

architecture was able to correctly classify 93 percent of the images as compared to 41
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percent when using the same templates as matched filters. The relative location concept

allows for the localized application of windows to extract features while retaining the

global perspective because the relative locations of the windows are fixed once defined

by the user in the creation of the template. The next chapter reviews the contributions

made using the relative location concept as well as the other principles presented in the

dissertation.
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VI. Conclusions and Recommendations

6.1 Conclusions

The research conducted in this dissertation was directed at finding ways to improve

upon the classification techniques currently employed in identifying objects in forward

looking infrared imagery. The results presented in the dissertation are excellent consid-

ering the various aspect angles and lighting conditions encountered in the FLIR imagery.

Three different approaches to solving the pattern recognition problem are presented along

with a method for determining which features are the most salient for performing the

classification task. The first approach used the combination of a roving window, Ga-

bor filters and a bank of backpropagation neural networks acting as a Bayesian optimal

estimator. The second approach used the roving window, locations of resonant Gabor

filters, various distance metrics, and a backpropagation neural network performing as a

Bayesian classifier. The third method departed from the Gabor approach and used instead

a user defined template which contained a number of relative location windows for data

extraction and processing combined with a bank of backpropagation neural networks per-

forming as Bayesian classifiers. As was shown in the course of the research, the relative

location concept is a robust method for extracting useful features from FUR imagery.

The relative location architecture allows for user defined template creation which when

combined with the extraction of data from the best match location in the scene provides an

improved method of classifying FLIR imagery. The results presented in Chapter 5 show

conclusively that the relative location architecture outperformed more traditional matched

filter techniques.

As a direct result of the initial research a method was developed (see Chapter 4)

to identify the most useful features in performing the pattern recognition task. This

method was developed from the Bayesian properties of feedforward neural networks. The

application of the method to the pattern classification problem resulted in a reduction

of features from 1080 to three with no loss in accuracy. The next section presents the
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contributions made to the body of scientific knowledge as a direct result of the research

conducted in this dissertation.

6.2 Contributions

There were four major contributions to the scientific body as a result of the disser-

tation research: 1) A new architecture based upon the gestalt representation of objects

using Gabor coefficients as inputs. 2) A new classification architecture which uses relative

location information of selected textures as a method of classifying tactical targets. 3) A

neural network architecture which allows for the addition of new classes without extensive

retraining. 4) A feature salien'-y metric based upon the Bayesian nature of feedforward

neural networks.

The neural network architectures used as classifiers for the target recognition problem

were based upon two main themes. The first was that of learning the gestalt representation

(see Chapter 2) of each of the classes with the neural network performing as a function

estimator with the classification task performed using a MSE measurement. The overall

classification accuracy obtained using the gestalt representation was 62.3 percent which

was an improvement over the 43.2 percent reported by Lazofson (27:70), but inadequate for

a classifier. The second approach was a more traditional approach of using various distance

metrics from the centroid of a cluster of the most resonant Gabor filter correlations. The

distances between the centroid and each of the Gabor filter correlation peaks were used as

feature vector descriptors for the target classes with the classifier performing as a Bayesian

statistical classifier (see Chapter 3). The best result using the various distance metrics of

Chapter 3 was a classification accuracy of 73 percent which was also inadequate. After

the first two system architectures showed limited classification accuracy, a third approach

using the relative locations of specific spatial features was developed as described in

Chapter 5. The results obtained using the relative location concept were 100 percent over

the three class problem used in the two previous approaches. This technique was then

applied to a seven class problem which included crepuscular (twilight) conditions in the
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FLIR imagery. In the seven class problem the relative location technique was able to

correctly classify 93 percent of the FLIR images. An outgrowth of the second approach

was that it readily became apparent that a limitation on the number of features would be

required to preclude memorization (4, 11) problems in the statistical classification scheme.

This led to a major contribution in the area of feature saliency from a Bayesian point of

view. Ruck (45) and Gish (15) proved in separate but similar analyses that the multilayer

feedforward neural network is indeed a Bayesian classifier. Because the outputs of a

feedforward neural network, when trained under fairly minimal requirements, become the

a posteriori class conditional probabilities when the network converges, a logical extension

was to explore using the probability result as a means of performing a sensitivity analysis,

as described in Chapter 4, between the output and a given input feature. An interesting

result of the analysis was that the intuitive metric proposed by Ruck (44) was actually the

same (within a multiplicative scaling constant) as that obtained from the Bayesian analysis.

Hence the metric Ruck proposed was an optimal one from an feature saliency viewpoint.

This further removes any doubt as to the Bayesian behavior of feedforward networks. The

results highlighted here are discussed in detail in the dissertation.

6.3 Recommendations

The dissertation research was successful in classifying FLIR imagery but had some

problems unrelated to the classification task. These problems were due to certain assump-

tions being made concerning the best location to extract data from the scene of interest.

The registration problem is due to not knowing whether there is a black-on-white scene or

white-on-black scene being presented to the system architecture. Once the type of scene

is known, the registration dilemma is solved. In the absence of this knowledge a pair of

templates would need to be maintained for each class to be identified. This results in a

doubling in processing time. There is plenty of research which could be done to improve

upon the registration problem.
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Many of the contributions made in this dissertation followed work done by others

which had a few "what if " questions remaining. When the "what if' questions were

solved new insights were made for solving the pattern recognition problem. Take the

results presented here and build upon them to make even better pattern classifiers in the

future.
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