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NOMENCLATURE

a = tube's bore radius

0 = tube's outer radius

E material's modulus of elasticity

p a pressure

pi a internal pressure at the tube's bore

po 3 external pressure at the tube's outer diameter

r a radial distance

u = displacement

z a coordinate's direction in a cartesian coordinate system

C strain

q (1-2v) 2

9 . material's Poisson's factor

a stress

ao 3 material's yield strength

p a radius of elastic-plastic interface

Subscrip s

S= at the tuoe's inner diameter

o = at the tube's outer diameter

r 3 a coordinate's plane and/or a coordinate's direction in a cylindrical
coordinate system

z 3 a coordinate's plane and/or a coordinate's direction in a cylindrical
coordinate system

O a a coordinate's plane and/or a coordinate's direction in a cylindrical
coordinate system

a a subscript inside parentheses indicates a specific geometrical location,
Se. , ' 3rr(a) = arr @ r = a or age(c) = a00 @ r = c

iii



INTRODUCTION

Autofrettage is a process in which a thick-walled tube is pressurized

internally beyond its elastic limit. Reaching the elastic limit initiates

plastic flow at the tube's bore (inner surface, r=a). Gradual increases of

the pressure at the bore are accompanied by a progressive thickening of the

plastically deformed inner sleeve. This plastically deformed sleeve is in the

range a 4 r 4 p, with the elastic-plastic interface at r=p (where a < p < b).

This process is commonly used in the manufacturing of some thick-walled pressure

vessels. l7s application as a manufacturing process generated an interest in

correlating the imposed pressure (usually an internal one) with the elastic-

plastic interface at r=p, and with the distribution of the retained state of

stress throughout the wall thickness upon the removal of that pressure.

The elastic stress distribution in plane-stress in an axisymmetrically

loaded thick-walled tube, according to Timoshenko and Goodier (ref 1), is shown

in Eqs. (la) and (1b) (otherwise known as the Lam6 solution).

b2 b b
[(-) + (b) 2 ]po - [(-) + 1]Pia r - - - - -r ( a"66e(r) =--------------------------------------(la)

ba~
a

and

b b + b -

"arr(r) -------- (1b)
(V) - 1

a

where pi a an internal pressure and Po a an external pressure. These equations

satisfy the Airy stress function (ref 2), as required, throughout the elastic

1S. Timoshenko and J. N. Goodier, Theory of Elasticity, Second Edition,
Engineering Societies Monographs, 1951.

2 A. E. H. Love, A Treatise of the Mathematical Theory of Elasticity, Fourth
Edition, nn"ir Publications, New York, 1944, pp. 102-103.



wall thickness of the tube, provided arr(i) m -pi and arr(o) a -po are applied

az 7ad-uses ri nd r = ro, respectively. These can be either within :-)e

eiast'c region r 3.t ':s ocurdar"es.

It can be shown that if either of the boundaries, r=a or r=b, is replaced

by an inner surface at r=d (where a < d < b) and the radial stress, arr(d) (at

r=d), that prevails under the above imposed external pressure at that surface is

assigned to it (as if it were an external pressure on an external surface at

r=d), then the Lame equations describe the stress distribution in the remaining

elastic sleeve. That is,

[( 2 + (b 2] b+d( ) ()]po + ) + 1]arr(d)

a@e (r) b - ... ... ...

[( ) - (1)]Po - )- l]rr(d)
arr(r)- bd - 1 (1'b)(8) - I

for the range d • r < b, or

d2 d2 dz
[(r)a r ) ]rr(d) - [-) + 1ppi---r -- - - -- - -(r -- - - - (11"3 )

(-) - 1
a

dz da dz
[(q)2 _ (d) ]arr(d) + [() - 1]pi

•rr(r) g ( (1"b)

a

for the range a ( r < d. Thus, if the surface r=p (where a < p • b) is the

elastic-plastic interface, then the stress at that surface satisfies the Lame

equations (1'a) and (i'b) and the selected yield criterion simultaneously.
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After determining the radial stress, 0rr(p), at the elastic-plastic inter-

face and knowing the external pressure, p., at the tube's external surface at

r=b, one can use Eqs. (l'a) and (1'b) (with d being replaced by p) to determine

the stress distribution in the tube's elastic region, p 4 r 4 b.

In the absence of such equations as Hooke's Law for the plastically

deformed material (while certain continuities in strain and stress have to be

satisfied), exact solutions for such problems are, in general, difficult to

obtain (ref 3). However, in problems such as beam bending and autofrettage

where the plastic deformation is constrained by the elastic portion of the

subject body, some solutions can be offered. The key to a solution for the

stress distribution in the plastic region of an autofrettaged tube is the stress

equilibrium. As shown by Manning (ref 4) and as demonstrated in Figure 1 of

this report, equilibrium in the r-9 plane is satisfied when

darr dr
- --- (2)

aq@- arr r

It can be shown that the Lam4 equations satisfy Eq. (2) and thus

equilibrium prevails throughout the elastic region. Furthermore, if one

expresses agg - arr in terms that explicitly satisfy a given yield criterion,

then the solution to Eq. (2), with that condition at r=p as a boundary con-

dition, describes the stress field in the plastic region, a 4 r 4 p.

MISES' YIELD CRITERION IN PLANE-STRESS

Mises' yield criterion assumes that when

r1[(a9OO-rr)2 + (arr-azz)2 + (aeo-azz) 2 ] = a 0  (3)

JBetzalel Avitzur, Metal Forming: Processes and Analysis, McGraw-Hill Book
Company, 1968, Chapters 4 and 5.

4 W. R. D. Manning, "The Overstrain of Tubes by Internal Pressure," Engineering,
Vol. 159, 1945, pp. 101-102 and 183-184.

3



vieldina takes olace. In plane-stress, where azz = 0. Ea. (3) reduces to

a;'rT - G'90 * ar z 170 .

Accordina to the Lame solution for the elastic reaion

00 -+ ]arr(o)
age(,) ------------ ------------- (5)

0

Thus, at the elastic-olastic interface. r=o, Eq. (4) becomes

b2  t)2  2
12 + F(D) + l]arr(p)} 2

------- 112 arr(p)

+Z b +
2() D o [() + l1 rr(p) 2

+ z - arr(p) = ao

or

0 0rp 0

bb 2 2 2 2

-- ar(p) + 4(- r - -( + 0
0 0

or

" arr(p) 3() + 1]() Po arr(p) + 4(e) o

S 2 0
- [( ) - I]ao~ = 0

Thus,

4



[3( ) +1](-' "Po Y '3p# *.O]p
b b 4
'. .. $ 0 - 3 ÷ ]40 •- ( ) - ] J

•'"VP) +
3 +÷!

or

[3( ) +1](6) "p0o ± [() -1]21[3()4+13ao -3(ý) p 2ý
arr (p ) -- - - - - - - - - --: - - - - - - - - -

3(-) + I
p

from which

ba b 2b 2  
- [3ý4+]Y -3 'a4[3( )+11( -) po ± [(0) - 0

arr(p) = (6)
3(0) + 1

For po = 0 and due to internal pressuriz3tion, Eq. (6) is reduced to

b•Z - 1

arr(p) 1 a (7)

With the radial stresses known at the boundaries of the elastic region,

arr(b) = -p0 at the tube's outer surface, r=b, and arr(p) as expressed by Eq.

(6) (or Eq. (7) in the absence of pressure at the tube's outer diameter (00)),

the stress distribution throughout the elastic range is determined by Eqs. (1'a)

and (1b), where d = p. For the case of p0 = 0, one gets

(ý)2 +I

agg(r) =-------ao (8a)
( ) + 1

5



and

o

r

/ 3(

:trom Ea. (4) one aets

2'
-a~r t /4a -777~

ag e = -- 2 -9-

and thus

• - a.t 2

Hence, for the case of internal oressurization, where art < 0 and ago > 0, Ea.

(2) reads

d-rr 1 dr
- - - - -- ------ (10 )
r ag2 rarr + -ra 3ar'r

ana the solution to Ea. (10), with Ea. (8b) as its boundarv condition, is (ref

5)

14 a 0  2 -r -- )3 - 1r r + 1 1, 4 (ý )

Zn ---- --- - (--- - 2n -- - - - (11)0 4 a0  b b4
4 -- -- 3(-) -arr(r) O

4(a .. ..2 _ 3- + 1
-2 * v3(tan' ---- tanr'-----------3 arr(r) b

b +

Equation (11) yields an explicit relation between the surface at r an'! the

radial stress, arr(r), on it. Having arr(r) determined and with the aid of Eq.

(9), which for the case of internal pressurization assumes the form

5R. 4eigqe, "Elastic-Plastic Analysis of a Cylindrical Tube," WVT-RP-6007,
Watervliet Arsenal, Watervliet, NY, March 1960.
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2 (9')

one can compute the corresponding tangential (hoop) stress, 0ee(r), at any sur-

face r, within the plastic region, a 4 r 4 p.

MISES' YIELD CRITERION IN PLANE-STRAIN

The Lam6 equations, which have been derived for the stress distribution in

the elastic region, are two-dimensional in nature and thus apply to plane-stress

problems. However, their resultant axial strain, czz, as shown by Eq. (12), is

uniform throughout the elastic region, p 4 r 4 b.

S2 () " Po - arr(p)ezz " (arr + a99) 3= - --- --- --- --- -- {12)
(-) - I
P

Therefore, if a physical constraint of ezz = 0 is imposed, the axial stress

distribution, azz, throughout the elastic region is uniform. Thus, it is

assumed that Lame's relation of the tangential (hoop) and the radial stresses to

the stresses at the boundaries also prevails in the plane-strain condition. In

conjunction with these stresses, a uniform axial stress of

(b) Z Po - arr(p)

azz= - 2-b --- (13)(ý) _ I

exists.

Thus, at the elastic-plastic interface, r=p, where yielding commences,

Mises' criterion can be reduced to

l-v+v2)a20 - (1+2v-2u 2 )a60 " arr + (1-v+"2) - art = ao (14)

.7



from which

(1+2v-2v 2)arr ± 14(1-u+'v)a2 - 3(1-2v) rra@9 =: - - - - - - - - 2(l-v+v2) -0 - - - - - - r(15)

By applying the values of a•e and arr from the Lam6 solution (Eqs. ('a)

and (1'b)) at the elastic-plastic interface to Eq. (14), one gets

b 2 2  b2 b 2 4 b 2b 2
3( +(1-2v ) .p o ±(() -1]- 3(-) +(1-2v) ]ao-3(1-2') () "po

a'rr(p) -

3 () + (-2v)2

p

(16)

which for an internally pressurized tube with no external pressure, po = 0, is

reduced to

b2
(ý) _ I

arr(p) 3 ------- ao (17)

3 ) + (1-2v)
2

By applying Eq. (17) to Eqs. (I'a) and (1'b), one gets Eqs. (18a) and

(18b), respectively. This procedure is similar to the one used in deriving Eqs.

(8a) and (8b) and in the absence of external pressure, po = 0 (at the tube's

outer surface, r=b), one gets the following for the stress distribution in the

elastic region, p 4 r 4 b, of the tube:

(b2
(q) + 1
r

a@O(r) b - - - - - ° o (18a)
3(-) + (1-2v)

(ý) - 1
arr(r) = ------- - ---------- - (18b)

3(4) + (1-2v)2

8



Since the plastic strain is the same order of magnitude as the elastic

strain, it is assumed that in the case of plane-strain, the axial stress in the

plastic region :omplies with Hooke's Law (as expressed in Eq. (13)). Thus, Eq.

(15) yields

(1-20))2 0rr + 14(1-_+V 2 )a' - 3(1-2i) 'rag rr ` - - - - - - - - - - - - --- -- -- -- -- -
•e8 •rr= -2(1-v+vz)

and equilibrium prevails when

darr r1 dr

(1-2v)2arr + /4(1-v+v2)a2 - 3(12-) 2vr) - 2(-'+' ) (19

The solution of which with Eq. (17) as its boundary condition, is

In~= 1 [V ~ ,!2--)~2 -1+ 1j2
I- .fin-- a0- n - - In - P_0

P 4 .[ 3(-) 4•+
47 ;j; (;. ) P

-21 ( tan-I - ---- tanr ---- 26-----(2077 Ar a,.r.(r.) JV'jn [-) 2 - 1

wh re 6 = I-v+v2 and n = (1-2v)2 = 1-4u+40 2 , and 3+n = 46.

TRESCA'S YIELD CRITERION

'-esca's yield criterion is based on the assumption that yielding prevails

when a critically resolved shear stress is attained. In isotropic materials

this is equivalent to saying that yielding prevails when the difference between

the maximum principal stresses reaches a constant equal to the material's yield

strength in uniaxial loading. In an internally pressurized thick-walled tube,

9



where the radial stress is compressive (negative) and the tangential (hoop)

stress is tensile (positive), Tresca's yield criterion can be written as

1 aeO - arr I co (21)

as long as Orr < Gzz < coo. This is certainly the case in plane-stress, and it

is reasonable to assume that it prevails in plane-strain as well (however, in

both cases only as long as the radial and the hoop stresses are of opposite

signs).

As mentioned before, at the elastic-plastic interface, r=p, the Lamd

solution and the yielding prevail simultaneously. As a result, one gets the

following:

b2
(-)- 1

"arr(p) = b2a (22)
2( b)
P

at the elastic-plastic interface, r=p, and accordingly, the stress distribution

in the elastic region, p 4 r 4 b is

b 2

(-) + 1
"6e(r) a-- - " ao (23a)

2(-)l
p

and

(b) - 1

arr(r) = 2( )2 ao (23b)
2(-)
P

However, with I age - Orr I= constant = ao, the solution to Eq. (2) is

In C = --- o- 2 . (24)

C0 2(p)
P

10



when Eq. (22) is applied as the boundary condition at the elastic-plastic

interface, r=p. The solution to Eq. (2), when Tresca's yield criterion is

assumed, is given in Eq. (24) for comparison with the equivalent solutions when

Mises' yield criterion is assumed--in Eq. (11) for plane-stress and in Eq. (20)

for plane-strain. Equation (24) can be rewritten, however, as

=()b - 1

rr(r)P 2() ( nO(24'a)

for the reader's perception of the correlation between the radius, r, and the

radial stress at that surface, arr(r), as well as for a comparison with the

tangential (hcop) stresses, aeo(r), at the same surface within the plastically

deformed region, a 4 r 4 p

r b2 1
()+ 1

aOg(r) = (in + a° (24'b)

AN UPPER BOUNO SOLUTION

Lode (ref 6) has demonstrated that Mises' yield criterion in plane-stress

deviates from Tresca's by no more than a factor of 2/1r3 a 1.155. Thus, by

multiplying the yield strength by 2/1/3 and applying it to Eqs. (22), (23a), and

(23b), one can compute an upper bound solution for the radial stress at the

elastic-plastic interface, r=p, and throughout the plastic region, a 4 r 4 p,

respectively. By applying the higher yield strength (-- * o) to Lams'sr3
equations (Eqs. (l'a) and (1'b)), one gets a stress distribution in the elastic

outer sleeve (p 4 r 4 b) which is uniformly greater by a factor of -- than that

5W. Lode, "Versuche uber den Einfluss der mittleren Hauptspannung auf das
Fliessen der Metalle Eisen, Kupfer und Nickel," Z. Physik, Vol. 36, 1926,
pp. 913-939.

11



which was obtained for Tresca's vield criterion. Indeed, if one compute: the

ratio between arr(o) for Mises' yield criterion in olane-stress and arr(0 ) for

Tresca's yield criterion from Ecs. (7) and (22), respectively, one gets

arr @ yield for Mises' yield criterion in plane-stress 2()
-- (25)

arr @ yield for Tresca's yield criterion ( )3) + 1

where

1 2

< 3() +

b

depending on the elastic wall ratio. -

Furthermore, comparing the radial stress at the elastic-plastic interface,

r=o, for Mises' yield criterion in plane-stress and in plane-strain, as

expressed in Eqs. (7) and (17), respectively, suggests that arr(p) in plane-

stress 4 rr(O) in plane-strain, and that

lim f arrel2 for Mises' yield criterion in plane-strain _2

u-0.5 arr(p) for Mises' yield criterion in plane-stress r3

Thus, Tresca's yield criterion and its multiplication by 2//3 Provides us with

two limiting solutions--a lower and an uooer bound solution--lower and higher,

resoectively, than those offered here for Mises' yield criterion in plane-stress

and in plane-strain. However, these findings apply to the elastic region only

and only while under pressure.

Comparing Eqs. (11) and (20) for the radial stress distribution in Mises'

plastic zone in plane-stress and in plane-strain, respectively, with Eq. (24)

for the radial stress distribution in Tresca's plastic zone, suggests that the

12



proportionality (between the two Mises' solutions and the two Tresca's limiting

solutions) that prevails in the elastic region, p < r 4 b, does not necessarily

prevail in the plastic region, a 4 r < p. This also applies to that pressure at

the bore, r=a, that is computed as the one which brings about the elastic-

plastic interface at r=p. The retained stress distribution after depressuriza-

tion is the difference between that which is attained under load, elastic and/or

plastic, minus the elastic recovery due to the removal of the applied (internal)

pressure. Since the proportionality between these pressures, as computed for

the two Mises' yield criteria and for the two Tresca's criteria, differs from

that which prevails in the elastic region, the ratio between the corresponding

retained stress distribution bears no similarity to either of them. Namely, the

two Tresca solutions are not necessarily upper and lower solutions with the two

Mises solutions falling between them, when comparing the retained stress

distributions.

REVERSE PLASTIC DEFORMATION

The stress distribution in thick-walled tubes pressurized internally is one

of radial compressive stresses and tangential (hoop) tensile stresses. If and

when plastic deformation takes place in an inner sleeve, a 4 r 4 p, upon the

removal of the pressure that causes such a deformation, it results in retained

stress distribution whose radial component is compressive everywhere (except

zero at its boundaries, r=a and r=b) and whose tangential (hoop) component

varies from tensile at the tube's 00 to compressive at its inner diameter (ID).

In thick-walled tubes when a significant portion of the wall thickness undergoes

plastic deformation upon pressurization, yielding might commence near the tube's

inner wall where both the radial and the tangential components of the retained

13



stress are compressive. In such a case, Eqs. (4) and (14) still represent

Mises' yield criterion in plane-stress and in plane-strain, respectively.

However, Eq. (21) does not represent Tresr-a's yield criterion for reverse

yielding since agg and arr have the same sign. Thus, the maximum shear is nor-

mal to the r axis and is on surfaces that are 45 degrees to the x and the 8

axes--and not normal to the x axis and on surfaces that are 45 degrees to the r

and the 8 axes, as it is upon pressurization. The suggestion that mathemati-

cally the deformation upon unloading is not the reversal of the deformation upon

loading is another reason to question the applicability of Tresca's yield cri-

terion to the process at hand, unless of course, it can be demonstrated that the

value of the axial stress component is always between those of the radial and

the tangential components. Tresca's yield criterion, by its own nature, ignores

the third component of stress.

RESULTS

The various radial stresses for each of the above-mentioned modes of defor-

mation at the elastic-plastic interface, r=p, were computed by using Eqs. (7),

(17), and (22). With these values as the respective boundary conditions, Lam6's

Eqs. (1'a) and (1'b) were applied to compute the stress distribution in the

elastic region, p 4 r 4 b, and Eqs. (11), (20), and (24) were employed to com-

pute the radial stress distribution in the plastic region, a 4 r < p. Equations

(9), (15), and (24'b), respectively, were used in the calculation of the

corresponding tangential stress distribution.

The determination of the internal pressure, Pi = -Orr(a), that corresponds

to any given elastic-plastic interface, r=p, was included in the above process.

These respective values were used with the Lame solution (Eqs. (la) and (1b)) to

14



determine the stress distribution of the elastic recovery, which was then

subtracted from the respective stress distributions obtained earlier for the

tube under (internal) pressure. This process was repeated for several elastic-

plastic interfacial radiuses at intervals of 10 percent of the tube's wall

thickness.

Some of the results obtained for a tube's wall ratio of b/a = 5.00 inches/

2.00 inches, material's yield strength ao = 160,000 psi, modulus of elasticity

E = 30 - 106 psi, and Poisson's ratio v = 0.25, are given in Figures 2 through

7. Figures 2, 3, and 4 show that there is a spread of about 15.5 percent

between the stress distribution (under load) as computed by Tresca's yield cri-

terion and by the .dme c>iri, with the yield strength being multiplied by

2/163. Furthermore, the stress distributions computed for Mises' yield

criterion, both in plane-stress and in plane-strain, fall within the above-

mentioned range, but with a spread of only about 4 percent between them.

Figures 5, 6, and 7 display the retained stress distributions computed for the

same elastic-plastic interfaces (as in Figures 2, 3, and 4, respectively), after

removal of the internal pressure.

It is apparent that the relative position of the curves for the stress

distributions computed for the Mises' yield criterion in plane-stress and in

plane-strain, respectively, vis-d-vis the two Tresca's solutions, shifted from

their relative position in the "stresses under load" curves.

Computations of the stress distribution in the "reverse plastic" region and

corrections of the "retained stress distribution" accordingly, are beyond the

scope of this work. Nevertheless, the approximate range of suchi a deformation

has been computed for each of the four modes considered here and has been

marked accordingly on Figure 7a.

15



CONCLUSIONS

Plane-strain solutions for the stress distribution during autofrettage and

for the retained stresses after autofrettage have been offered here for an

assumed Mises' yield criterion. Furthermore, it has been demonstrated that in

conjunction with a similiar solution (ref 5) in plane-stress, Mises' yield cri-

terion offers a narrower range than Tresca's yield criterion and its upper bound

solution (when multiplied by 2/13) as two limiting conditions.

*R. Weigle, "Elastic-Plastic Analysis of a Cylindrical Tube," WVT-RR-6007,
Watervliet Arsenal, Watervliet, NY, March 1960.
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18



/ ciCD m

E--

<3 m

a. L-.

Z 0 V)

E-L 
_ -

_L L%0  E

-ý (2 0I

cm z

rw a

4 -

0 4m 4-m

-- / - z D
/sal a* i0 HC

2- -19



0S O-

as

C,,

_) zz

- -

w_ u* 4 0

0 -

w- a. CL (f
E-jJ m 0

C44

-) U

00

E- -

001/ 1D

SSsals aziZI11RON

20



ELD
E-J

C13A

E-

E--

00

CD C

CDC

C~o m 40C'm cl, c0

CDJI -u D/

ssmsa~zlYWH0

21-



1/D

I; -

-- J z 4'-1

/- 0 CL

- -

9 LLI_

-- Cl)

E-

_L 
03

a) 03

"". in 0

- 7, 4c z
9- c

E- 4o N1

C%!C

C303

C-- 0

-U

%n CP an"12 D -q "M " t
cc! all 49 -ý C c; V %

40 to C

6-.ej

SMIS azlIVA03

22~



CEO)

3-

a-

""3 CO

E-~ :4.r
C03 0

ia CO

z CD

a.U

-i C/c;.0

XCI)IIa,

SUM I ailfl

w23



asI

E--

C\2n
CAD
cm;

E-- L

m Li

E- - C

CD LA.

-S I aaiyNO

244



I,

CLLI W

E- a.

E- 440

m I

E- C\2

ýr~ 00

E-CO Q, -o
-MC 0l 0 O

L CL

W- * W c
E- -mc N-

43 0

-Cl)4.

r~r~ Cl)

- aj

E- C,

LL

C ,C, ci ci ý cm; di C, C

0 / 06.0

25



CLi

2-.
E-

CD

E-.
a- l6

6-~ m C

r=r. a:

E- w z,

CL Cl

zz

U).

z
ClCD

'Pb 2 U1 g c I

-sal amiywO

C26

.. .. .......



I -

--

r~5-

4-

COC

E- 0~

z m

C%

_ C/D

osul aaiyw

-- 27



a 0- - Q

_a L

6- I

WI

Lx'-"

E- C-,-

(a L~

w W 0
E-

w I
zL 0 a

'-4 0 L

zz h~z

E-- 0 co a

- Co

CC-

C/3 F
c4.

E- 2
C/3

CD V2

I I

OD/OGO

sMI~s a~zflyRHON

28



C ;. a 0

C- W -

a.

C\',

LU

cc,

0

CW

C%- O w0

co z

cw U317b

29



LI

E-- c. 1

@5 (A

E- C\

a:

E- -D

X . u

@5 L

CDV

E.-. M .

E- .%

C/ I

E~C%%2

E- CD. LC)4

4)

I- CC C -

300



C-7 l I z. cc, Wa i
-- Cf. r z C

W Z
V.- 0. -

C\ I LL

a4a cuO

Cý (UN 41

co L

"00
-L. E

CD~ N 4) 0

42;J 0 0
zt (U )

(U
C- C 4

en ( U

Lfl

4= -M Uic 0 i ic ý

I.0.0/00D
LL

sssal aszlywaC

31 4



Li

E-U

E- - p-

W -U

CD 4

< 4)

Cl~CL
- 0,

.~ a-.D

a-L
N '

- ~ -

_m 
c;

z0/11-0
SS31 N w 2RH

320



ILA

a.)

9.P

E-

-- a_,

E- M

r-'

00

E- &jcm

C~0p

0.2 CQ0
4= lc Cý m; C; Cý C( )

OD112 PUT 1)160

SMISa~ziywH0

- . L33



Clgh

E-~ >* 
4

-ij z U) W

5l 
-j 

i
E- 0-0

Sw w

E -< (i.f

- 4.

0 4d
- -

I -

__ýý 
C20%

W% 0D C- W" 0r

_ II I

344



w'a

raoa

-~ '~ w -;

-. z wi z

E- <

0 . 0 C
z CD,

C> 'L cl) *N I

E- a J V\'N

wL -. V)J

2 0
C- j 4"lCl

*m c

_f 00

w ir C.

< 4 "W /

0ý %0 ci

CD-Q

02

I- - i ~~L-

C%2 -W $a -

00111D
SS3I1S a~ZIlywHON

35



o--

Z-1,

a4-1

.~ - 0

E- .

_ 41
ORn

E--

.. % cm- 4= = i

IIII 0lvO10

SMIS a~llyRU,

36,



TECHNICAL REPORT INTERNAL DISTRIBUTION LIST

NO. OF
COPIES

CHIEF, DEVELOPMENT ENGINEERING DIVISION
ATTN: SM(NR-CCB-OA I

-DC 1
-DI 1
-DR 1
-DS (SYSTEMS) 1

CHIEF, ENGINEERING SUPPORT DIVISION
ATTN: SMCAR-CCB-S 1

-SD 1
-SE 1

CHIEF. RESEARCH DIVISION
ATTN: SMCAR-CCB-R 2

-RA I
-RE 1
-RM 1
-RP 1
-RT i

TECHNICAL LIBRARY 5
ATTN: SMCAR-CCB-TL

TECHNICAL PUBLICATIONS & EDITING SECTION 3
ATTN: SMCAR-CCB-TL

OPERATIONS DIRECTORATE 1
ATTN: SMCWV-ODP-P

DIRECTOR, PROCUREMENT DIRECTORATE 1
ATTN: SMCWV-PP

DIRECTOR, PRODUCT ASSURANCE DIRECTORATE 1
ATTN: SMCWV-QA

NOTE: PLEASE NOTIFY DIRECTOR, BENET LABORATORIES, ATTN: SMCAR-CCB-TL, OF
ANY ADDRESS CHANGES.



TECHNICAL REPORT EXTERNAL DISTRIBUTION LIST

NO. OF NO. OF
COPIES COPIES

ASST SEC OF THE ARMY COMMANDER
RESEARCH AND DEVELOPMENT ROCK ISLAND ARSENAL
ATTN: DEPT FOR SCI AND TECH 1 ATTN: SMCRI-ENM
THE PENTAGON ROCK ISLAND, IL 61299-5000
WASHINGTON, D.C. 20310-0103

DIRECTOR
ADMINISTRATOR US ARMY INDUSTRIAL BASE ENGR ACTV
DEFENSE TECHNICAL INFO CENTER 12 ATTN: AMXIB-P
ATTN: DTIC-FDAC ROCK ISLAND, IL 61299-7260
CAMERON STATION
ALEXANDRIA, VA 22304-6145 COMMANDER

US ARMY TANK-AUTMV R&D COMMAND
COMMANDER ATTN: AMSTA-DDL (TECH LIB)
US ARMY ARDEC WARREN, MI 48397-5000
ATTN: SMCAR-AEE 1

SMCAR-AES, BLDG. 321 i COMMANDER
SMCAR-AET-O, BLDG. 351N 1 US MILITARY ACADEMY
SMCAR-CC 1 ATTN: DEPARTMENT OF MECHANICS
SMCAR-CCP-A 1 WEST POINT, NY 10996-1792
SMCAR-FSA 1
SMCAR-FSM-E 1 US ARMY MISSILE COMMAND
SMCAR-FSS-D, BLDG. 94 1 REDSTONE SCIENTIFIC INFO CTR 2
SMCAR-IMI-I (STINFO) BLDG. 59 2 ATTN: DOCUMENTS SECT, BLDG. 4484

PICATINNY ARSENAL, NJ 07806-5000 REDSTONE ARSENAL, AL 35898-5241

DIRECTOR COMMANDER
US ARMY BALLISTIC RESEARCH LABORATORY US ARMY FGN SCIENCE AND TECH CTR
ATTN: SLCBR-DD-T, BLDG. 305 1 ATTN: DRXST-SD
ABERDEEN PROVING GROUND, MD 21005-5066 220 7TH STREET, N.E.

CHARLOTTESVILLE, VA 22901
DIRECTOR
US ARMY MATERIEL SYSTEMS ANALYSIS ACTV COMMANDER
ATTN: AMXSY-MP 1 US ARMY LABCOM
ABERDEEN PROVING GROUND, MD 21005-5071 MATERIALS TECHNOLOGY LAB

ATTN: SLCMT-IML (TECH LIB) 2

COMMANDER WATERTOWN, MA 02172-0001
HQ, AMCCOM
ATTN: AMSMC-IMP-L
ROCK ISLAND, IL 61299-6000

NOTE: PLEASE NOTIFY COMMANDER, ARMAMENT RESEARCH, DEVELOPMENT, AND ENGINEERING
CENTER. US ARMY AMCCOM, ATTN: BENET LABORATORIES, SMCAR-CCB-TL,
WATERVLIET, NY 12189-4050, OF ANY ADDRESS CHANGES.

. ........ .



TECHNICAL REPORT EXTERNAL DISTRIBUTION LIST (CONT'D)

NO. OF NO. OF
COPIES COPIES

COMMANDER COMMANDER
US ARMY LABCOM, ISA AIR FORCE ARMAMENT LABORATORY
ATTN: SLCIS-IM-TL I ATTN: AFATL/MN
2800 POWDER MILL ROAD EGLIN AFB, FL 32542-5434
ADELPHI, MD 20783-1145

COMMANDER
COMMANDER AIR FORCE ARMAMENT LABORATORY
US ARMY RESEARCH OFFICE ATTN: AFATL/MNF
ATTN: CHIEF, IPO 1 EGLIN AFB, FL 32542-5434
P.O. BOX 12211
RESEARCH TRIANGLE PARK, NC 27709-2211 MIAC/CINDAS

PURDUE UNIVERSITY
DIRECTOR 2595 YEAGER ROAD
US NAVAL RESEARCH LAB WEST LAFAYETTE, IN 47905
ATTN: MATERIALS SCI & TECH DIVISION 1

CODE 26-27 (DOC LIB) 1
WASHINGTON, D.C. 20375

DIRECTOR
US ARMY BALLISTIC RESEARCH LABORATORY
ATTN: SLCBR-IB-M (DR. BRUCE BURNS) 1
ABERDEEN PROVING GROUND, MD 21005-5066

NOTE: PLEASE NOTIFY COMMANDER, ARMAMENT RESEARCH, DEVELOPMENT, AND ENGINEERING
CENTER, US ARMY AMCCOM, ATTN: BENET LABORATORIES, SMCAR-CCB-TL,
WATERVLIET, NY 12189-4050, OF ANY ADDRESS CHANGES.


