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NOMENCLATURE

a = tube's bore radius

o) =  tube's outer radius

E = material’'s modulus of elasticity

p = pressure

P; = 1internal pressure at the tube's bore

bo 3 external pressure at the tube's outer diameter

r = radial distance

U = displacement

z =z coordinate's direction in a carcesian coordinate system
6 s 1 -v + w2

€ s strain

(1-2v)?

3
L]

v s material's Poisson's factor

Q
w

stress
0o 3 material's yield strength

o sz radius of elastic-plastic interface

Subscrip*s

o
]}

at the tupe's inner diameter
0 = at the tube's outer diameter

r 3 a ccordinate's plane and/or a coordinate's direction in a cylindrical
coordinate system

r4 sz a coordinate’s plane and/or a coordinate's direction in a cylindrical
coordinate system

] a2 a coordinate's plane and/or a coordinate's direction in a cylindrical
coordinate system

~
iH

a subscript inside parentheses indicates a specific geometrical location,
‘.8, Jrp(a) T 0dpp @ r = a0r Ogg(c) = 0gg @ r = ¢
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INTRODUCTION

Autofrettage is a process in which a thick-walled tube is pressurized
internally beyond its elastic limit. Reaching the elastic limit initiates
plastic flow at the tube's bore (inner surface, r=a). Gradual increases of
the pressure at the bore are accompanied by a progressive thickening of the
plastically deformed inner sleeve. This plastically deformed sleeve is in the
range a € r € p, with the elastic-plastic interface at r=p (where a < p € b).
This process is commonly used in the manufacturing of some thick-walled pressure
vessels. I+s application as a manufacturing process generated an interest in
correlating the imposed pressure (usually an internal one) with the elastic-
plastic interface at r=p, and with the distribution of the retained state of
stress throughout the wall thickness upon the removal of that pressure.

The elastic stress distribution in plane-stress in an axisymmetrically
loaded thick-walled tube, according to Timoshenko and Goodier (ref 1), is shown

in Egs. (la) and (1b) (otherwise known as the Lamé solution).

[+ (D71, - (D)7 + 11y
9gg(r) = = =—==—====-=- pTTTTTTTTT (1a)
(5) -1
and
(D" - (Do + 1D - 1Ip;
Opp(r) = = —===—====--- BT (1b)
(;) -1 i

where p; = an internal pressure and py = an external pressure. These equations

satisfy the Airy stress function (ref 2), as required, throughout the elastic

Is. Timoshenko and J. N. Goodier, Theory of Elasticity, Second Edition,
Engineering Societies Monographs, 1951.

2. E. H. Love, A Treatise of the Mathematical Theory of Elasticity, Fourth
Edition, Nover Publications, New York, 1944, pp. 102-103.




wall thickness of the tube, provided Trr(i) = ~P5 and Orr (o) = ~Pg are applied
at radiuses © = ry and r = rgy, respectively. These can pe 2ither within ne
2las+* ¢ region or at <s :ouﬂdér‘es.

It can be shown that if either of the boundaries, r=a or r=b, is replaced
oy an inner surface at r=d (where a < d ¢ b) and the radial stress, Irr(g) (at
r=d), that prevails under the above imposed external pressure at that surface is
assigned to it (as if it were an external pressure on an external surface at

r=d), then the Lamé equations describe the stress distribution in the remaining

elastic sleeve. That is,

[(V]

i
PO

0gg(r) = < "TTSmTmTommsmpmgmoossoossmse-o-o- {

Tpp(r) = = ==Tmmmmossosspmgmsmmomseoeoooooo- (1'b)

for the range d < r ¢ b, or

Tgg(r) = ""Tm-oTommoo-es TFTT Tt (1"a)

(J o8

Irr(r) = = bt St Ol (1"d)

for the range a < r ¢ d. Thus, if the surface r=p (where a < p ¢ b) is the
elastic-plastic interface, then the stress at that surface satisfies *he _amé

2quations (l'a) and (1'b) and the selected yield criterion simultaneously.




After determining the radial stress, Opp(p), at the elastic-plastic inter-
face and knowing the external pressure, p,, at the tube's external surface at
r=b, one can use Egs. (1'a) and (1'b) (with d being replaced by p) to determine
the stress distribution in the tube's elastic region, p ¢ r ¢ b.

In the absence of such equations as Hooke's Law for the plastically
deformed material (while certain continuities in strain and stress have to be
satisfied), exact solutions for such problems are, in general, difficult to
obtain (ref 3). However, in problems such as beam bending and autofrettage
where the plastic deformation is constrained by the elastic portion of the
subject body, some solutions can be offered. The key to a solution for the
stress distribution in the plastic region of an autofrettaged tube is the stress
equilibrium. As shown by Manning (ref 4) and as demonstrated in Figure 1 of

this report, equilibrium in the r-8 plane is satisfied when

Bt - (2)
999 - Irr r
It can be shown that the Lamé equations satisfy Eq. (2) and thus
equilibrium prevails throughout the elastic region. Furthermore, if one
expresses Ogg - Opp in terms that explicitly satisfy a given yield criterion,
then the solution to Eq. (2), with that condition at r=p as a boundary con-
dition, describes the stress field in the plastic region, a ¢ r € p.
MISES' YIELD CRITERION IN PLANE-STRESS
Mises' yield criterion assumes that when
Y%[(0gg-0rr)? + (Orr-077)% + (0ge-022)%] = 0o (3)

JBetzalel Avitzur, Metal Forming: Processes and Analysis, McGraw-Hill Book
Company, 1968, Chapters 4 and 5.

4w. R. D. Manning, "The Overstrain of Tubes by Internal Pressure,"” Engineering,
vol. 159, 1945, pp. 101-102 and 183-184.




vielding takes place. In plane-stress. where 0z, = 0, Ea. (3) reduces to

—

2 2
/699 + Opr - 0gg * Trp = 09

According to the Lamé solution for the elastic region

o] b 2
-2(5) * DBg - r(s) + 110?(’(0)
ggg(p) = —~——--==-- przmTToomoomo---oe-
(5) -1

Thus. at the elastic-plastic interface. r=o, Eq. (4) becomes

(27 +0g + 1)« Nopr))
"""""""""""""""" * Orr(p)
(2 -1y
b, 2 b 2
2(5) 2 + [(5) + 1lopr(p) 2
L R EE D . C =g
b,z rr(p) o
(=) =1
Q
or
b,? 2 b,? 2 b,* 2 b, 2
(G + 117+ Q) - 11° « 102 = 1lofe(p) + {8 [(5) + 1]
b, ? b, 2 b,* b, 2
+ 2[(5) - 1]}(5) . oo b Ur‘r(p) + 4{5) * DS - [(5) - 1120(2) =0
or
b, * b, ? b, 2 b, *
(3(3) + 11o8r(p) - 2[3(5) + 11(J) P * Orr(p) + 4(35) %
b,?2
- (G - 11%05 = 0
Thus,




U < IR R 2 N2 D e b b , 5 2 .
) L3(5) +1J(;\ *Pp //[3(5) *1]2(5) -03'[3(5) *1]{4(5) po_[(B) 1] I
0””(0) = TTTEEEET """""““""--‘5-; ----------------------------------
3(=y + 1
2
or
b,2 b.2 2 2 B e > R -
v O\, b,?_ b .. B, ",
[3(9) #ll(p) Po * [(p) 1] {[3(9) +13l0g 3(9’ po}
Orp(p) = ~-"ToTTTSoToSoosooosmoen O e b
3(5) + 1
from which
z
39711 00 = 17 - 11,/13(2) 41108 -3(2) %03
p fo] o]
Urr(p) = TTTTETEETE e T 6“: --------------------- (6)
3(p) +1

For pg = 0 and due to internal pressurization, Eq. (6) is reduced to

7 -1

. I L (7)
rr(p) 751%)'* 1 0

With the radial stresses known at the boundaries of the elastic region,
Orr(b) = ~Po at the tube's outer surface, r=b, and Opp(p) as expressed by Eq.
(6) (or Eq. (7) in the absence of pressure at the tube's ouier diameter (0D))},
the stress distribution throughout the elastic range is determined by Eqgs. (1'a)

and {1'b), where d = p. For the case of py = 0, one gets

. Yee(r) = === * % (8a)
/ 3(5) + 1




and

5. ¢
.;) -1
O'nn(r-} = e e m e ——————— « T~ 1 3b¢
—————=—= ]
/ 1
/3(?) + !
Q2

“rom £qa. {(4) one qets

Tgg = ~w-m-m-gmmmm-o- (9

and thus

Hence, for the case of internal oressurization, where o.. < 0 and ggg > 0, Ea.

{2) reads

and the solution to Ea. (10), with Egq. (8b) as its boundary condition, is {(ref

5)
/‘ 4 o) 2 b 4
v3 - 5( ------ ) -1+ 1] 4(=)
r 1 Tre(r)
In - = = 2 {gn ;e - - In —----oee- (11)
[ 4 Oq 2 4
4{---=-- 3(=) =1
Irr(r)
— b.2
3(=) + 1
_ g 2
-2 - /3[tan"//fe(—--9——) -1 - tan™! --9---; ----- 1}
3 %rr(r) _ b
Var(=) - 1]

Equation (11) yields an explicit relation between the surface at r and the

radial stress, Orp(r), On it. Having Opp(r) determined and with the aid of

m
o]

{3), which for the case of internal pressurization assumes the form

°q. We1gie, "Elastic-Plastic Analysis of a Cylindrical Tube," WVT-RR-5007,
Watervliet Arsenal, Watervliet, NY, March 1960.




Tgg = --===-==-3-----=- (9)

one can compute the corresponding tangential (hoop) stress, oggg(r)., at any sur-

face r, within the plastic region, a ¢ r £ p.

MISES' YIELD CRITERION IN PLANE-STRAIN

The Lamé equations, which have been derived for the stress distribution in
the elastic region, are two-dimensional in nature and thus apply to plane-stress
problems. However, their resultant axial strain, €5, as shown by Eq. (12), is

uniform throughout the elastic region, p ¢ r £ b.

v 2
€2z * E (Opp + Ogg) = - ET Y TTTTTTpTERTTTITTTTT (12)

Therefore, if a physical constraint of €z; = 0 is imposed, the axial stress
distribution, ¢,,, throughout the elastic region is uniform. Thus, it is
assumed that Lamé's relation of the tangential (hoop) and the radial stresses to
the stresses at the boundaries also prevails in the plane-strain condition. In

conjunction with these stresses, a uniform axial stress of

Opz = = 2V o =Pmmempozeeemoeaeo (13)

exists.
Thus, at the elastic-plastic interface, r=p, where yielding commences,

Mises' criterion can be reduced to

V(1-v+v?)adg - (1+420-20%)0gg * Trp + (1-v4v?) + Opp = 0g (14)




from which

(1+2v—2v2)orr t /2(1—v+v2)oé - 3(1—2v)zcﬁr

L i ¥ Putyis-1 S (15)

By applying the values of ogg and on. from the Lamé solution (Egs. (1'a)

and (1'b)) at the elastic-plastic interface to Eq. (14), one gets

/[3(5)‘+(1-zv)2]a3-3<1-2v)2(2)2-p3
g i ettt bl
rr(p) 3(2) . (1-20)°

(16)
which ror an internally pressurized tube with no external pressure, p, = 0, is

reduced to

S - SS—— . % (17)

By applying Eq. (17) to Egs. (1'a) and (1'b), one gets Egs. (18a) and
(18b), respectively. This procaedure is similar to the one used in deriving Egs.
(8a) and (8b) and in the absence of external pressure, pg = 0 (at the tube's
outer surface, r=b), one gets the following for the stress distribution in the

elastic region, p £ r € b, of the tube:

3"+
Jg9g(r) = T-pesssssaszassas * Op (18a)
3(2) + (1-2v)
2 -1
Irr(r) = - ~-pEESgEsssssssas * Go (18b)
3(5) + (1-2v)°2




Since the plastic strain is the same order of magnitude as the elastic
strain, it is assumed that in the case of plane-strain, the axial stress in the
plastic region zomplies with Hooke's Law (as expressed in Eq. (13)). Thus, Eq.

(15) yields

Jgg - 9rr = - T T T T T 2 (1w vy T TS

and equilibrium prevails when

dopp . 1 dr

------------- 7 s T T 5T1I03vEY TR (19)
(1-2v)°0pp + Va(1-v+0%)05 - 3(1-2v)°0pr 2{1-v+v?) r

The solution of which with Eq. (17) as its boundary condition, is

3 48 9% . 112 b
« /3 32 (gz=7=7 -1+1 3+n) (2
I U 5./_;___L/_é-n-f‘_'::x:zl-__-_-i-_l- g M)
2} te] OO 2 b
4 5z Srr(r) 3(5) +n
//5- //25 % .\ _ 4 3(5) T
-2 />« [tan™t [zo (o--2-- ) -1 - tan™! e—eefeeee 1} (20)
n 3N Frr(r) Yan ()" - 1]

wh e 6 = 1-v+v2 and n = (1-2v)? = 1-4v+4v2, and 3+n = 45.

TRESCA'S YIELD CRITERION

Tresca's yield criterion is based on the assumption that yielding prevails
when a critically resolved shear stress is attained. In isotropic materials
this is equivalent to saying that yielding prevails when the difference between
the maximum principal stresses reaches a constant equal to the material's yield

strength in uniaxial loading. In an internally pressurized thick-walled tube,




where the rzdial stress is compressive (negative) and the tangential (hoop)

stress is tensile {positive), Tresca's yield criterion can be written as

| 0gg - orr | = 0 (21)
as long as Opnp € 0z7 € Ogg. This is certainly the case in plane-stress, and it
is reasonable to assume that it prevails in plane-strain as well (however, in
both cases only as long as the radial and the hoop stresses are of opposite
signs).

As mentioned before, at the elastic-plastic interface, r=p, the Lamé
solution and the yielding prevail simultaneocusly. As a result, one gets the

following:

Orr(p) = - ---5-3-- ¢ Og (22)

at the elastic-plastic interface, r=p, and accordingly, the stress distribution

in the elastic region, p € r € b is

2
I
Uee(r) = “TopTETT * Ogp (23a)
2(=)
P
and
b.2
(z) -1
OPP(P) = - =TI * Op (23b)
2(~)
]
However, with | dgg - onp | = constant = oy, the solution to Eq. (2) is
b,?2
(%) -1
n E = {EEEXEI + _e__-:__} (24)
o %o 2(2)°
o

10




when Eq. (22) is applied as the boundary condition at the elastic-plastic
interface, r=p. The solution to Eq. (2), when Tresca's yield criterion is
assumed, is given in Eqg. (24) for comparison with the equivalent solutions when
Mises' yield criterion is assumed--in Eq. (11) for plane-stress and in Eq. (20)

for plane-strain. Equation (24) can be rewritten, however, as

-1
Opr(r) = {n g - emmoeo—- o Oo (24'a)

b 2
2(5)

VI

for the reader's perception of the correlation between the radius, r, and the
radial stress at that surface, opn(pr), as well as for a comparison with the
tangential (hcop) stresses, Ogg(r), at the same surface within the plastically

delo' med |eg\lon, a $ T ‘ p
2 1
oee(r) 3 {2n - _.._---Z—} . ao ( 4 b)

AN UPPER BOUND SOLUTION

Lode (ref 6) has demonstrated that Mises' yield criterion in plane-stress
deviates from Tresca's by no more than a factor of 2/¥3 = 1.155. Thus, by
multiplying the yijeld strength by Z/Vs and applying it to Egs. (22), (23a), and
{23b), one can compute an upper bound solution for the radial stress at the
elastic-plastic interface, r=p, and throughout the plastic region, a € r < p,
respectively. By applying the Bigher yield strength (;E * O0g) to Lamé's
equations (Eqs. (1'a) and (1'b)), one gets a stress diszribution in the elastic

outer sleeve (p ¢ r € b) which is uniformly greater by a factor of ;E than that
3

- BW. Lode, "Versuche iiber den Einfluss der mittleren Hauptspannung auf das
Fliessen der Metalle Eisen, Kupfer und Nickel," Z. Physik, Vol. 36, 1926,
pn. 913-939.

11




which was obtained for Tresca's vield criterion. Indeed, if one computes the
ratio between Opnpn(,) for Mises' yield criterion in plane-stress and opn(p) for

Tresca's yield criterion from Eas. (7) and (22), respectively, one gets

Orr @ yield for Tresca's yield criterion

where

depending on the elastic wall ratio, g

Furthermore, comparing the radial stress at the elastic-plastic interface,
r=o, for Mises' yield criterion in plane-stress and in plane-strain, as
expressed in Egs. (7) and (17), respectively, suggests that Opp(p) in plane-

stress ¢ Opp(p) in plane-strain, and that

i = .2
vl;Ts {Urr(p) for Mises' yield criterion in plane-stress} - Y3

Thus, Tresca's yield criterion and its multiplication by 2/Y¥3 provides us with
two limiting solutions--a Tower and an uobper bound solution--lower and higher,
respectively, than those offered here for Mises' yield criterion in plane-stress
and in plane-strain. However, these findings apply to the elastic region only
and only while under pressure,

Comparing Egs. (11) and (20) for the radial stress distribution in Mises'
plastic zone in plane-stress and in plane-strain, respectively, with Eq. (24)

for the radial stress distribution in Tresca's plastic zone. suggests that the

12




proportionality (between the two Mises' solutions and the two Tresca's limiting
solutions) that prevails in the elastic region, p € r € b, does not necessarily
prevail in the plastic region, a < r ¢ p. This also applies to that pressure at
the bore, r=a, that is computed as the one which brings about the elastic-
plastic interface at r=p. The retained stress distribution after depressuriza-
tion is the difference between that which is attained under load, elastic and/or
plastic, minus the elastic recovery due to the removal of the applied (internal)
pressure. Since the proportionality between these pressures, as computed for
the two Mises' yield criteria and for the two Tresca's criteria, differs from
that which prevails in the elastic region, the ratio between the corresponding
retained stress distribution bears no similarity to either of them. Namely, the
two Tresca solutions are not necessarily upper and lower solutions with the two
Mises solutions falling between them, when comparing the retained stress

distributions.

REVERSE PLASTIC DEFORMATION

The stress distribution in thick-walled tubes pressurized internally is one
of radial compressive stresses and tangential (hoop) tensile stresses. If and
when plastic deformation takes place in an inner sleeve, a € r < p, upon the
removal of the pressure that causes such a deformation, it results in retained
stress distribution whose radial component is compressive everywhere (except
Zero at its boundaries, r=a and r=b) and whose tangential (hoop) component
varies from tensile at the tube's 0D to compressive at its inner diameter (ID).
In thick-walled tubes when a significant portion of the wall thickness undergoes
plastic deformation upon pressurization, yielding might commence near the tube's

inner wall where both the radial and the tangential components of the retained

13




stress are compressive. In such a case, Egs. (4) and (14) still represent
Mises' yield criterion in plane-stress and in plane-strain, respectively.
However, Eqg. (21) does not represent Tresca's yield criterion for reverse
yielding since ggg and gpp have the same sign. Thus, the maximum shear is nor-
mal to the r axis and is on surfaces that are 45 degrees to the x and the 9
axes--and not normal to the x axis and on surfaces that are 45 degrees to the r
and the 6 axes, as it is upon pressurization. The suggestion that mathemati-
cally the deformation upon unloading is not the reversal of the deformation upon
loading is another reason to question the applicability of Tresca's yield cri-
terion to the process at hand, unless of course, it can be demonstrated that the
value of the axial stress component is always between those of the radial and
the tangential components. Tresca's yield criterion, by its own nature, ignores

the third component of stress.

RESULTS

The various radial stresses for each of the above-mentioned modes of defor-
mation at the elastic-plastic interface, r=p, were computed by using Eqgs. (7),
(17), and (22). With these values as the respective boundary conditions, Lamé's
Eqs. (1'a) and (1'b) were applied to compute the stress distribution in the
elastic region, p < r € b, and Egs. (11), (20), and (24) were employed to com-
pute the radial stress distribution in the plastic region, a € r € p. Equations
(9), (15), and (24'b), respectively, were used in the calculation of the
corresponding tangential stress distribution.

The determination of the internal pressure, p; = -Orr(a)r that corresponds
to any given elastic-plastic interface, r=p, was included in the above process.

These respective values were used with the Lamé solution (Eqgqs. (la) and (1b)) to

14




determine the stress distribution of the elastic recovery, which was then
subtracted from the respective stress distributions obtained earlier for the
tube under (internal) pressure. This process was repeated for several elastic-
plastic interfacial radiuses at intervals of 10 percent of the tube's wall
thickness.

Some of the results obtained for a tube's wall ratio of b/a = 5.00 inches/
2.00 inches, material's yield strength g, = 160,000 psi, modulus of elasticity
E = 30 « 10¢ psi, and Poisson's ratio v = 0.25, are given in Figures 2 through
7. Figures 2, 3, and 4 show that there is a spread of about 15.5 percent
between the stress distribution (under load) as computed by Tresca's yield cri-
terion and by the .sdme crilerion with the yield strength being multiplied by
2/Y3. Furthermore, the stress distributions computed for Mises' yield
criterion, both in plane-stress and in plane-strain, fall within the above-
mentioned range, but with a spread of only about 4 percent between them.
Figures 5, 6, and 7 display the retained stress distributions computed for the
same elastic-plastic interfaces (as in Figures 2, 3, and 4, respectively), after
removal of the internal pressure.

It is apparent that the relative position of the curves for the stress
distributions computed for the Mises' yield criterion in plane-stress and in
plane-strain, respectively, vis-a-vis the two Tresca's solutions, shifted from
their relative position in the "stresses under load" curves.

Computations of the stress distribution in the “reverse plastic" region and
corrections of the "retained stress distribution" accordingly, are beyond the
scope of this work. Nevertheless, the approximate range of sucih a deformation
has been computed for each of the four modes considered here and has been

marked accordingly on Figure 7a.
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CONCLUSIONS

Plane-strain solutions for the stress distribution during autofrettage and
for the retained stresses after autofrettage have been offered here for an
assumed Mises' yijeld criterion. Furthermore, it has been demonstrated that in
conjunction with a similiar solution (ref 5) in plane-stress, Mises' yield cri-
terion offers a narrower range than Tresca's yield criterion and its upper bound

solution (when multiplied by Z/Vs) as two 1limiting conditions.

S5R. Weigle, "Elastic-Plastic Analysis of a Cylindrical Tube," WVT-RR-6007,
Waterviiet Arsenal, Watervliet, NY, March 1960.
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