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This report describes ihe extension of the DTNS computer codes o treat A _—
non-inertial reference frames. Both laminar and turbulent flow calculations are -
performed. Additionally, the applicability of currently available turbulence models| 1+ - . 7
in non-inertial reference frames is investigated. It is found that the typical .
algebraic eddy viscosity and nvo-equation k—e models used in inertial reference |-—- = T
frames are not capable of predicting the effects of rotation. Two-equation k—e Dist ’”;‘;u' i“;
et ! uli

and algebraic Reynolds stress models that have been modified, to account for |
rotation, perform somewhat better but still have problem arens and it is not vet g/\
known to what extent they can be used with confidence for complex flow fields.
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INTRODUCTION

There has been a tremendous effort in recent years to develop Navier-Stokes flow solvers for
computing complex flow ficlds. The results provide numerical pictures of flow ficlds by which
complex fluid dynamics phenomena can be investigated in more detail than typically available with
experiments. As these Navier-Stokes flow solvers become more reliable they can be used to
impact the design process as demonstrated i Refs. [1] and [2].

A primary motivation for this work is to investigate the use of Reynolds averaged Navier-
Stokes flow solvers for studying the effect of propulsors on the stability performance of a
submersible vehicle in turn. Although this i1s in reality an unsteady flow phenomenon it can be
modelled as a body rotating about an axis and solved with the steady state Navier-Stokes equations
in a non-inertial reference frame. Another area of interest is the flow through turbomachinery and
propulsors. These flows are particularly complex because of the tip vortex formation, rotation of
the flow field, and mteraction of blade and hub boundary layers. Current theories used in the
design process are based on potential flow assumptions, that are not strictly applicable for the
complexity of the flow, or experimental data bases. Simple body force models added to Navier-
Stokes flow solvers, Refs. [2-4], have done an adequate job of modelling the gross features of
turbomachiniery flow fields but do not provide a detailed description of the flow and are of hinmited
usc because of the basic reliance on potential theories. A full Navier-Stokes soluiion capability for
such flow fields can have a considerable impact on the design and understanding of this complex
flow phenomena. Although the flow 1s unsteady in the absolute frame it is often steady in the
rotating frame. By augmenting the David Taylor Navier-Stokes (DTNS) flow code to include non-
inertial reference frames a tool will be available to begin investigating complex flows with rotation.

The DTNS Reynolds-averaged Navier-Stokes (RANS) flow solvers were developed under
the Numerical Analysis of Naval Fluid Dynamics Accelerated Research Initiative sponsored by the
Office of Naval Research. The purpose was the development of methods to facilitate the analysis
ot high Reynolds number flows in naval geometries in which viscous effects can neither be
neglected nor modelled by approximate formulations. The codes, including two-dimensional
(DTNS2D), axisymmetric (D'TNSA). and thrce-dimensional (DTNS3D) versions, were designed to
be relatively easy to usc for computational fluid dynamics (CEFD) analysis. These codes can be
applied to a wide variety of mternal and external flow fields as demonstrated in Refs. [1.2.5-10].




An important aspect of this work 1s an investigation of which presently available turbuience
models are adequate for the calculation of flows in non-inertial reference frames. The original
DTNS computer codes contain the Baldwin-Lomax [11] and standard k —¢ [12] models but, as
shown by Speziale [13], these models are incapable of accurately predicting rotational effects.
Speziale also points out inconsistencics with the various modifications that others have made to the
two-equation models but with the unavailability of anything better these will be tested for the flow
in a rotating channel. The only other recourse would be to include a second-order closure scheme
such as that of So and Peskin [14], Mellor and Yamada [15], or Launder et al [16] but it is doubtful
that these models, which require the solution of six additional partial differential equations, would
be generally applicable in three-dimensional flow fields for which the DTNS computer codes were
developed. Additionally, these more complex models have their own problems when computing
rotating flows as demonstrated by Speziale [17]. The scope of this work will be limited to
conventional eddy viscosity and algebraic Reynolds stress models.

NAVIER-STOKES EQUATIONS

The Reynolds averaged Navicr-Stokes equations for steady incompressible flow in a non-
inertial reference frame can be written as (c.f., Batchelor [18])

dup 9 p o ou, o)
—_— =l = p——— — T = €ipalait {1 X — 2e;:. (b1, 1
ot v v vy oy Ox; T gtk et Rk k=TT (1)

This is the conservative form of the equations writlen in cartesian tensor notation. Here () is the
rotation rate of the non-inertial reference frame relative to the nertial frame, X; is the position
vector, and e;;; 1s the alternating unit tensor. The Reynolds stresses, T,']:, need to be modelled for
turbulent flow and «re zero for laminar flow. The Navier-Stokes equations for a non-inertial
reference frame take the same form as the equations for an inertial frame except for the last two
tcrms on the right hand side of Eq. (1) which are the centrifugal and Coriolis accelerations
respectively. It should be noted that Fulerian and translational accelerations are not included in
the above equation because of the assumption of a steady state flow field. The local velocities in
the non-inertial reference frame, u; in Eq. (1), can be related to the absolute velocities 1n the
inertial frame, Uj, using the {ollowing relation

U =u; + eijkﬂj/\,k 2)

The flow n a non-inertial reference tframe is also governed by the continuity equation which
for an incompressible flow is

Qs

i;

=0 (3)
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The continuity equation is frame invariant and so takes the same form for both inertial and non-
inertial reference frames. Because the above equations (1 and 3) have the same basic form in both
inertial and non-inertial reference frames the DTNS codes can be directly applied in a non-inertial
reference frame. The rotation terms are treated as source terms and do not affect the basic
cquation solver. It must be iemembered that the code will now solve for the flow field relative to
the rotating coordinate system.

Solution Procedure

Only a brief description of the solution procedure is given here as details can be found
clsewhere [5,6]. The Navier-Stokes equations contain both first derivative convective terms and
second derivative viscous terms. The viscous terms are numerically well-behaved diffusion terms
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and are discretized using standard central differences. The upwind differenced Total Variational
Diminishing (TVD) scheme developed by Chakravarthy et. al.[19] was used for discretizing tice
convective part of the equations. The Jacobian matrices of the convective terms are used to
generate eigenvectors and eigenvalues for the system of equations. The convective terms are then
forward or backward differenced based on the sign of the eigenvalues. This produces a third order
accurate numerical scheme without any artificial dissipation terms being added to the equations for
stability. The equations are transformed to a body fitted coordinate system and solved using a
finite volume procedure.

The artificial compressibility technique of Chorin [20] is used to add a time derivative term
for pressure to the continuity equation. This allows the system of equations to be marched in time
in an implicit coupled manner using approximate factorization. The implicit side of the equations
are discretized with a first-order accurate upwind scheme for the convective terms. This creates a
diagonally dominant system which requires the inversion of block tri-diagonal matrices. The
implicit side of the equations are only first order accurate but the final converged solution has the
high order of accuracy of the explicit part of the equations.

Laminar Flow Calculation

To test the DTNS code in a non-inertial reference frame, the laminar flow between two

concentric cylinders was computed with the inner cylinder rotating and the outer cylinder at rest,
Fig. 1
g L.

Fig. 1. Concentric cylinder problem.

This is analogous to a turbomachinery flow field with a hub rotating within an annulus without the
complexity of blades. For this flow an exact solution can be obtained for the tangential velocity
from the Navier-Stokes cquations in polar coordinates (c.f., Schlichting [21]) since the radial
velocity and all derivatives in the tangential direction are zero. However, this 1s a good test case
for RANS codes, such as DTNS, which are written in cartesian coordinates as none of the
velocities or derivatives can be eliminated and all the convective and viscous terms are tested.
Thus, the X and Y velocity components would be different at each tangential location but when




they are combined to form a tangential velocity component 1t should be the same on cach
tangential plane.

The typical way to compute this flow s to generate a gnd for the flow fictd and obtain the
solution 1 an nertial frame. The tangential velocity on the inner cylinder would be set to some
value and the tangential velocity on the outer evlinder would be set to zero. Note that for the
DD'ITNS codes these tangential velocities at the boundaries would need to be converted to
appropriatc velocities i the Xand Y directions. To solve the problem i a non-inertial frame the
same grid can be used but now it is assumed that the grid has an angular velocity 2 in the Z
direction where REY = Uy on the inner eylinder. In the nen-inertial frame the boundary condition
on the iner surface is now no-slip with ¢ and v set to zero. The outer cylinder is not moving in
the absolute frame and hence the absolute velocities U and V must be zero there. With this
information and Fq. (2) we can get the following boundary conditions for the relative velocities on
the outer cylinder

u =1 and v = -

The flow fictd was computed with an outer cylinder having twice the radius of the mner
cylinder. This flow is independent of Reynolds number, R.(=U R /i¥), and was computed with a
Rossby number, R, (=R /U;). of 1. The computed relative velocity in the tangential direction is

shown n Fig. 2.
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Fig. 2. Relative velocity for the concentric cyhnders.

As can be seen it goes from 0 on the inner cylinder to -2 on the outer cylinder. When this is
converted to the absolute trame using Eq. (2) excellent agreement with the exact solution is
obtained as shown in g, 3.




x x x Exact solution
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Fig. 3. Absolute velocity for the concentric cyhnders.

TURBULENCE MODELLING

The calculation of laminar flow in a non-inertial reference frame poses no great difficulty
with an cexisting Navier-Stokes flow solver. In order to compute turbulent flow the Reynolds stress
terms in Eq. (1) must be computed using an appropriate turbulence model. Full Reynolds stress
closure models have produced promising results for certain rotating flow fields (ie. Launder et al.
[22]) but it is doubtful that these models would be generally applicable in three-dimensional finw
fickds for which the DTNS computer codes were designe.l. The added computational time o six
extra partial difterential equations for the stresses, with questionable degrees of accuracy, is also
undesirable. A practical alternative is to model the Reynolds stresses using the Boussinesq eddy
viscosity assumption

"
T o= ::kéi]-Ql/,(—_ + =) . (4)

Where K is the turbulent kinetic energy, 6;; is the Kronecker delta, and v is the cddy viscosity.
The kinctic encrgy can be absorbed into the pressure term of the Navier-Stokes equations but it is
necessary to compute the eddy viscosity using an appropriate turbulence model. A variety of
turbulence models have been proposed for computing rotating tlows within the cddy viscosit::
tramework, some ot which are discussed by Lakshminarayana [23]. Speziale [13] has shown
trcorctically that most of these models are not strictly applicable in rotating flows bit since nothing
better is currently available some of these models have been evaluated here.

A varicty of modecls have been tested for the flow in a rotating channel as measured by
Iohnston et al. [24], Fig. 4. This is a fully developed two-dimensional channel flow for which
centrifugal effects are negligible and the Coriolis forces dominate the rotating flow field. The cases
considered are for a Reynolds number ol 11500 with Rossby numbers of 0.069 and 0.210 and a
Reynolds number of 35000 with a Rossby number of 0.068. These Reynolds and Rossby numbers

S
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Fig. 4. Rotating channel problem. -

are based on the bulk mean velocity within the channel and the channel diameter. I'he nonrotating
flow 1s symmetric about the channel centerline and can be computed quite well with existing
algebraic and A —e models, Fig. <.

1.2

14
0.8 —
U /U pax 0.6 |

0.4 "

0.2 X X X Johnston et al. [24] data for Ro=0

——— Computed solution for Ro=0

0 r T | l
0 0.2 0.4 0.6 0.8 1
‘:‘
Fig. 5. Computed profile for Ro=0.

The laminar low for the rotating cases is also symmetric about the channel centerline because of
the neghigible centritugal forces. The turbulent flow is nonsymmetric about the channcl centerline
and the asyminctry in the problem is due to the Reynolds stresses. Therefore, even though the
flow atself 1s relatively simple, it is necessary to model the correct turbulent flow behaviour to
compute the flow accurately. As stated by Launder et al. [22] eddy viscosity models developed for
mcrtial reference frames will produce a symmetric profile for this problem. Evidence -f this can
be scen m Fig. 6 for the Baldwin-L.omax model at a Rossby number of 0.21. The profile is
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y
Fig. 6. Computed profilc with the Baldwin-Lomax model for Ro=0.21

symmetric about the channel centerline and does not exhibit any effects of rotation on the flow
field. Because of this shortcoming of algebraic eddy viscosity models most of the reported
attempts at predicting rotating turbulent flow have relied on the k—e model.

k—c Model

The modelled torm of the k—¢ equations for an inertial reference frame can be written as

Ok ok, ) Ak A,
T = (Ut )T — T — (5)
o Jy; N ax; ox i
e e d Je e O €2
- — =——W+ o)/ - Ci—7j— — Cr—
ot oy a\-i( /o) x; Yk o "k
"The values of A and ¢ arc then used to compute an eddy viscosity using
k?_
v = C,,T (6)

Typical constants for the model are C = 1.44, C; = 1.92, and C,, = 0.09. The k—¢ equations
have the same torm as the Navier-Stokes equations with convective and diffusion terms and hence
can be solved with the same discretization technique. Details of the upwind differenced scheme as
applied to the k—f cquations can be found in Ref. [6]. All of the models studied here have been
previously applied using the law of the wall boundary conditions of Launder and Spalding [12] or
the ship velocity of Kreskovsky et 21 [25], which is essentially equivalent. However, these
boundary conditions can produce substantial errors for complex three-dimensional flows as alluded
to by Gorski ct al. {26]. Therefore, the present computations bridged the viscous sublayer using
the near-wall formulation of Gorski [27]. The k—¢ equations are invariant under the




transformation to a non-inertial reference frame and hence the equations (5) are the same whether
or not the system is rotating. As shown by Raj [28] therc is a rotation term in the ¢ equation but
this vanishes with the assumption of isotropic turbulence. Hence, the standard kK —¢ model will
also produce a symmetric profile about the channel centerline for a Rossby number of 0.21 as
shown in Fig. 7.

1.2

1
0.8 —

1 i gax 0.6

0.4 |
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0 T I i I
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v
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Fig. 7. Computed profile with the k —¢ model for Ro=0.21

Because the channel flow is fully developed at the experimental measuring station it is fairly
straightforward to examine why the A—e model produces a symmetric profile. For this flow all
derivatives are zero except d/dv . The v velocily component is also zero. To produce an
asymmetric flow field the equations need an asymmetric term. The term du /3y is asymmetric
being positive below the centerline and negative above the centerline but the derivative of this with
respect to ¥ as it appears in the Navier-Stokes equations is symmetric. Similarly the Reynolds
stress term 715 changes sign across the channel centerline but its derivative is symmetric. This is
why the flow is symmetric withont rotation. For the rotation to produce an asymmetric flow field
there must be an asymmetric term linked to the angular velocity, (1. The centrifugal force term in
the Navier-Stokes equations is not symmetric across the channcl centerline but this term is
negligible for this flow. The Coriolis force term is symmetric across the channel centerline and
cannot produce an asymmetric flow field. Therefore the asymmetric rotational term must be
contained in the turbulence model. There is no asymmetric term in the standard k—¢ model and
hence it cannot produce an asymmetric flow. Several models have been proposed to account for
rotation in the turbulence model most of which have been investigated in the present work.

Modified kK —¢ Models

Various models, two of which are investigated here, have included rotation effects directly in
the k and ¢ equations. Wilcox and Chambers [29] modified the equations by adding




9, %l:—
to the kinetic energy equation and
Ou
C?y
to the dissipation equation. A similar approach was taken by Howard et al. [30] who did not modify

the kinetic energy equation but replaced the constant C» in the dissipation equaticn by a turbulent
Richardson number of the form

€
9M(k

du

9

Since no such terms appear explicitly in the exact kinetic energy equation these techniques appear
to be quite ad hoc. However, it can be argued that adding rotation terms to the dissipation

equation is an attempt to model the anisotropic rotation terms that appear in the exact form of the
equation. The results obtained with the two models are necarly identical as shown in Figs. 8-10.

Cy(1 + 0.4(§)ZQ

1.2

1 A

W/ pax 0.6 —

0.4 f

x x x Johnston et al. [24] data Re=11500, Ro=0.069

0.2 -f Prediction using model of Ref, [29]

........ Prediction using model of Ref. [30]

laaaa,

: i
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0 0.2 0.4 0.6 0.8 1
y

Fig. 8. Computed profiles with the modified X —¢ models for Re=11500, Ro=0.069.

The mcdels do produce asymmetry in the flow because of the Ju /v term. Because this term
changes sign across the channel it enhances production on the unstable side of the channel, below
the centerline where O /Oy is positive (y = 0 ), and decreases production on the stable side of the
channel where it /Oy is negative. Both models underpredict the velocity on the unstable side of
the channel for all Rossby numbers. Although the predictions right next to the wall are quite good
the predictions do not compute the stcep rise in velocity evident in the experiment. This seems to
indicate that the near-wall model used is adequate and the discrepancies on the unstable side are
more a result of the rotation effects in the Kk —¢ models. For the low Rossby number cases the
predictions on the stable side of the channel are very good out past the symmetry plane. However,




1 Jlt max

x x X Johnston et al, [24] data Re=11500, Ro=0.21 "x

0.2 Prediction using model of Ref. [29]
........ Prediction using model of Ref. [30]
0 T I | l
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Fig. 9. Computed profiles with the modified kK —¢ models for Re=11500, Ro=0.21.
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Fig. 10. Computed profiles with the modified k —¢ models for Re=35000, Ro=0.068.
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there are considerable differences between the predicted and experimental values near the wall for
the high Rossby number case (Ro=0.21). This can be due to problems with thc modelled rctation
terms at high rotation rates or to improperly accounting for high rotation rates in the near-wall
region. The experiments also indicate there is a significant laminar region on the stable side of the
channet for this high Rossby number case and use of k—e turbulence models may be inadequate
here in general.

A recent investigation by Bardina [31] produced a modified & —¢ model for rotation based on
full simulation data. The constants C} and C» in the dissipation equation were modified by a term
of the form

+ChHp—
-~ Q
€
This term is symmetric across the channel and hence canuot produce the asymmetric profile of the
experiment.

Modified C, Models

An alternative approach to modifying the k—¢ equations is to solve the standard k—¢
equations but modify the computation for eddy viscosity, Eq. (6). This method typically starts with
the full Reynolds stress equations which are then simplified to produce an algebraic model for the
Reynolds stresses as demonstrated by Galmes and Lakshminarayana [32]. This algebraic model is
then tuther simplified to obtain a relation for the eddy viscosity based on the angular velocity. The
standard Boussinesq cddy viscosity assumption is still used for the Reynolds stresses so only the
eddy viscosity 1s modified from the original equations. This modification is introduced into the
eddy viscosity computation by changing the constant C,,. One such variation is that of Pouagare
and Lakshminarayana [33] where

Q
C, =0.09 + T Jo
which reduces to the standard definition of C,, for no rotation. A more involved model was
developed by Warfield and Lakshminarayana [34] which takes the form

2 P
C,= ‘T’(CS - 1)(C3‘6— +Cy —1)/D; + D)

where
P P 5
Dy =(7) +2(Cs = 1) + (Cy ~ 1)
D> =[2R,(2 — Cy > +4(C3 — 1)(2 = C3)R1*R;
with
k() Ou /Oy
Ry =— and Ry = .
1 p AN 2 0
P is the production of kinetic energy given by
p 81(,‘ (7
- Ix; )

The constants C3 and Cy were set to 0.6 and 1.5 respectively. Because of the change in sign of

Ju [y across the centerline these models produce an asymmetric profile by increasing C,,, and

1




hence eddy viscosity, on the unstable side and decreasing it on the stable side of the channel. Care
must be taken when using these models as C,, will increase or decrease depending on the sign of
du /i Near the centerline du /Oy approaches zero creating very large, or small values for C,
which cannot be allowed to become negative as this would produce a negative eddy viscosity which
is not realistic. If C,, becomes too large there are also numerical difficulties and hence its value
was limited to the range 0<C ,<0.4. The results for these two models are shown in Figs. 11-13.

1.2

1
0.8 —

0 Upax 0.6

0.4 -
: x x x Johnston et al. [24] data Re=11500, Ro=0.069 b
0.2 -f Prediction using model of Ref. [33]
. ........Prediction using model of Ref. [34]
¢ i
0 l T T I
0 0.2 0.4 0.6 0.8 ° 1
y

Fig. 11. Computed profiles with the modified C, models for Re=11500, Ro=0.069.

Neither model performs significantly better than the other nor much differently than the modificd
k —¢ models tried earlier.

Algebraic Reynolds Stress Models

In an attempt to get better results two algebraic Reynolds stress models were tried. These
modcls compute cach of the individual Reynolds stress terms, 7;; , with an algebraic equation so
that the flow is no longer assumed to be isotropic. The first model investigated is that of Galmes
and Lakshminarayana [32] whose equation for the stresses takes the form

Cs 2
Rij(1 = —==) + (P — géijp)(l — Cy

/)
7[-/- = ‘:’5‘/\(5,/ + k C4P (8)
where
p ( 8u,~ n a“i
o= =P\ T T Tik =
1y f ik d-\.k I/I‘ C)’\k
R[.]. = —QpQP (e,'pk Tjk + e;‘pk Tik)

and P 1s production given by Eq. (7). This is a nonlinear set of algebraic equations for the stresses
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Fig. 12. Computed profiles with the modified C,, models for Re=11500, Ro=0.21.
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Fig. 13. Computed profiles with the modified C, models for Re=35000, Ro=0.068.
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and can be difficult to solve lor a complex flow field but reduces to a fairly simple form for the
two-dimensional channel flow of interest. The previously investigated model of Pouagarc and
[akshminarayana [33] is a simplification of this model and basically computes the shear stress term
71> from it. The inclusion of the full algebraic model will differ from the model of Ref. [33] only
by the inclusion of anisotropic effects in the normal stress terms. The results for the full model are

shown in Figs. 14-16.
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Prediction using model of Ref. [32]
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Fig. 14. Computed profiles using Algebraic Reynolds stress models for Re=11500, Ro=0.069.

R

‘They are nearly identical to the results computed using the model of Pouagare and
I akshminarayana [33] indicating that the normal stresses in the Navier-Stokes equations have little

unpact on the mean tflow for this case.
In all of the above models, except that of Wilcox and Chambers [29], rotational effects

depend on the Richardson number

ou
— 20))

(all, 2

ay
Bardina et al. [35] showed that for rotating homogencous shear flow the turbulent Reynolds stresses
do not scale with the Richardson number indicating that these turbulence models may not be
cenerally applicable to rotating shear flows. One model that does not depend on the Richardson

number is that of Speziale [13] which is an extension of his earlier work {36]. This is another
algebraic Reynolds stress model where the equations for the Reynolds stresses take the torm

20
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x x X Johnston et al. [24] data Re=11500, Ro=0.21 "x
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........ Prediction using model of Ref. [13]
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Fig. 15. Computed profiles using Algebraic Reynolds stress models for Re=11500, Ro=0.21.
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Fig. 16. Computed profiles using Algebraic Reynolds stress models for Re=35000, Ro=0.068.
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) 2

ny = Sk —2C, A =8 +4CpC,7° (5,, + )
) 1
Sikskj - »%Snmsmnéll + W:kSk] 2 ijki)

where Cp = 1.68 and
SA - 4 l] J S ! S S
i =g T O D T ikOk T Wik

Y2 | oy ax;

W[j = Wjj + emjiﬂm

1| 9u; oy
= —|—-— — —
Y 2 | ox j ().’Ci

Howecver, when the present flow was computed with this model it produced a profile which was
symmetric about the centerline like the standard A—e model! To understand this we need to look
at the contribution the rotation terms make to the Reynolds stresses. The normal stresses get
modified by rotation in much the same way as that of the Galmes and Lakshminarayana [32] model
with 71 increased on the stable side and decreased on the unstable side. Conversely, 72 gets
increased on the unstable side and decreased on the stable side of the channel. The problem is
that the shear stress dominates this flow as we saw earlier when the inclusion of normal stresses
made little difference to the predictions. With the model of Speziale [13] the rotation has only a
minor effect on the shear stress for the present flow and cancels out completely when the flow
becomes fully developed.

To better include the effects of rotation in the model of Speziale [13] the current author
made a simplc modification based on the algebraic model of Ref. [32]. In the full Reynolds stress
cquations the shear stress is dependent on the normal stresses and this is modelled by Galmes and
LLakshminarayana [32] in the form

k ..
12 = CQ—=(r1, — m™3) + additional terms
¢

This term was added to the definition of 75 of Eq. (9) using C = 0.25. The results of this
modification are shown in Figs. 14-16. As can be seen this modification does produce the desired
asymmetry in the flow but the results are no better than thosc obtained with any of the other
models and in fact are slightly worse.

CONCLUSIONS

The extension of the DTNS computer codes to compute flow in non-inertial reference
frames is a rather straightforward process. However to find a turbulence model that can
adequately compute the flow field is another matter. Standard algebraic eddy viscosity and two-
equation k —¢ models cannot properly account for the effects of rotation of the flow field. A
variety of turbulence models have been investigated across the spectrum from simple modifications
of the k—¢ equations to somewhat complex algebraic relations for the individual Reynolds stresses.
For the rather simple flow in a rotating channel the results were reasonable but all of the models
underpredicted the velocity on the unstable side of the channel for all Rossby numbers studied.
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The predictions did not compute the steep rise in the velocity evident in the experiment. Tor low
Rossby numbers the predictions on the stable side of the channel are very good out past the
symmetry plane. However, there are considerable differences between the predicted and
experimental values near the wall for the high Rossby number case. Although 1t is difficult to
determine which model 1s best, since all of the results are so similar, the models of Wilcox and
Chambers [29] and Howard et al. [30] seem to slightly outperform the other more complex models.
The above turbulence models should perform well enough for complex flows at relatively low
Rossby numbers, such as a body in turn and some turbomachinery flows, but they would be quite
questionable for high Rossby number cases. A more thorough comparison of these models and
perhaps more complicated ones, needs to be done for more realistic flow ficlds before any firm
conclusions can be made. Such an effort is beyond the scope of this work.
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