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1. SYNOPSIS

The AFOSR University Research Initiative at A.S.U. on "Spatio-Temporal Complexity

and Large-Scale Structures in Problem of Continuum Mechanics" focusses on effective low-

dimensional behavior in such systems. In FY91, we have further expanded our research

on:

"* "Inertial Sets" or "Exponential Attractors": these are fractal enlargements of global

attractors for dissipative systems; they capture not only the ultimate asymptotic states, but

also all the slow transient dynamics;

a Intermittent Coherent Structures in some moderately turbulent Navier-Stokes Flows,

which are rule i by a low-dimensional dynamical "skeleton structure"; symmetry invariances

and symmetry breaking shadow the turbulent dynamics far beyond the critical transitions;

e Explicit Symmetry-breaking in the Taylor-Couette problem;

* Problems of estimating low-dimensional dynamics from experimental data.
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2. INFINITE DIMENSIONAL DYNAMICAL SYSTEMS: INERTIAL SETS

VERSUS INERTIAL MANIFOLDS

In many fluid mechanical flows, the dissipative effects due to diffusion, friction or

damping are reflected in the global, infinite-dimensional, phase picture of the partial

differential equations modelling these flows. Such e,'tuations (with -pp,3priate Ioundary

conditions) are called dissipative if they define a forward regularizing flow in an adequate

phase space containing an absorbing set. In general an absorbing set is a bounded set that

attracts all bounded solutions in finite time, at an exponential rate [3,4].

The basic property of dissipative Partial Differential Equations (P.D.E.'s) is that their

global asymptotic behavior is controlled by a finite number of parameters. A global attractor

X exists, which is the largest compact set both positively and negatively invariant under the

flow, and uniformly attracting all bounded sets in the phase space and is unique. One of the

properties that makes the attractors an important object to study is the fact that often they

have finite dimension. Various notions of dimensions have been considered in conjunction

with attractors, among them the Hausdorff and fractal dimensions seem to stand up.

Once the importance of the attractors for the long time behavior of dissipative PDE's is

established, the next stage is to unravel and/or compute global bifurcations of the attractor.

This turns out to be quite a difficult task. Since the attractor is finite dimensional, it is

natural to expect that it can be recovered by solving a large enough system of ODE's, that

is, the solutions on the attractor satisfy a system of ODE's. An indirect way of obtaining

such a system is to imbed the attractor into a finite dimensional smooth manifold. An

inertial manifold is an exponcn'ri-,1iv attracting, finite dimensional, Lipschitz manifold that

is invariant under the forward fl(,w '. Clearly, an inertial manifold when it exists will contain

the attractor and when constructed properly will satisfy the desired conditions mentioned

above. Within the context of ODE's. an inertial manifold resembles a global central unstable

manifold and can even be constructed by using similar tools. (Note, however, that the two
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notions do not coincide.)

Many methods have been devised to construct inertial manifolds [4]. No matter which

method is chosen, a variation of the same type of condition appears; this condition is called

a spectral gap condition. It requires the linear part of the PDE to have large enough gaps.

The spectral gap condition remains the Achilles heel in this theory. Even for the simplest

linear partial differential operators in, say, two-space dimension, it is not possible to obtain

an explicit control over the gaps of consecutive eigenvalues; the simplest such example is the

2D Laplace operator for which the eigenvalues are known explicitly, yet the gap condition

is only satisfied by a suitably chosen subsequence. Returning back to our quintessential

equation, the 2D Navier-Stokes equations (N-S), the existence of a true inertial manifold is

still an open problem.

Fundamentally, we do not know the optimal rate of convergence for the trajectories of

a dissipative PDE to its global attractor X. It need not be exponential. As we cannot yet

construct a true inertial manifold for the N-S equations, we can still address the following

problem: what is the smallest compact set which is forward invariant under the flow and

which attracts at a uniform exponential rate all bounded trajectories? Can one define

a generalized (i.e., with noncontinuous coefficients) system of ODE's on such a set? The

principal investigator and his collaborators have (partially) resolved these questions through

construction of Inertial Sets [3,4,81; an inertial Set (also called Global Exponential Attractor):

1) is compact and forward invariant under the flow; hence it contains the attractor X;

2) has a finite fractal dimension

3) it attracts at a uniform exponential rate all trajectories which start in a bounded

initial ball.

We have constructed such sets for 2-D N.S. equations (periodic boundary conditions),

damped hyperbolic systems (Sine-Gordon, Klein-Gordon, Compressible Van der Waals gases

with Korteweg capillarity phase change models) and many other dissipative equations (see
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below) [3,4,5,6,7]. Like inertial manifolds, inertial sets are not unique.

Inertial sets possess a deeper and more practical property: they remain more robust

under perturbations and numerical approzimations than global attractors. We elaborate

on this point, snce the literature sometimes gives the wrong impression that attractors are

robust under perturbations. One can only establish upper-semi-continuity of attractors for

approximations of semigroups and partial differential equations. Specifically, ;f X, is the

approximation to the attractor X, and the functional space is equipped with a norm 1:

max mran jz - al} E,
TEX, faEX

that is, there exists a ,pherical c-neighborhood of X which contains the approximate X,.

The reverse is not true.' Similar problems plague the many constructions of approximate

inertial manifolds: these are in the vicinity of the exact attractor only in the sense of upper-

semicontinuity. Whereas, we prove, at least for classical Galerkin approximations, denoting

by X and M the exact global attractor and inertial set; by X, and M, the approximate

ones:

Iiaxr min ju-uj} < EuEX fu(EAc I

(that is, the exact attractor X is within an c-spherical neighborhood of the approximate

inertial set M,). Moreover:

max {rrnjnu-uJ} < f
u, E\X, fuEM I

(that is, the approximate altrac-or X, is within an f-spherical neighborhood of the exact

inertial set M). Essentially. -'.,. ,!,o prove that approximate and exact inertial sets are

continuous with respect to t01w, l!tJdorff distance, modulo a time-shift (E-dependent), at

least for classical Galerkin app:vr,\irlations [3,4].

What we effectively rna.ar,, or compute are trajectories on inertial sets. The latter

contain the slow transients as wrill as the global attractor. In the theory of dynamical

Note that the above expression is not the' liawdor"ff distance between two compact sets, but rather one of the two asymmetric
pseudo-distances necessary for the exact definmton of the Hausdorff distance.



systems, the slow transients correspond to slowly converging stable manifolds. Numerical

simulations of infinite-dimensional dynamical systems often capture both the slow transients

and parts of the attractor. After a large but finite time, the state of the system obtained

from the numerical calculation may often be at a finite distance from the global attractor

but at an infinitesimal distance to the inertial set. In this sense, we also call the inertial set

an Exponential Attractor [8] to be consistent with the physical intuition. Specifically, after

a short transient time the infinite-dimensional system is arbitrarily close to an Exponential

Attractor whenever the latter exists.

The intrinsic interest of the exponential attractor for N-S turbulence lies in the fact that

there is no natural single time scale for the N-S global attractor. In addition, the exponential

attractor allows for a study' of large intermittent deviations at small scales. This phenomenon

of turbulent intermittency has been pre-excluded in the theory of inertial manifolds since,

in the latter, small scales are assumed to be globally slaved to large scales, which implies

no amplification of disturbances propagating towards small scales. Other time scales also

appear in the analysis of the equations that leads to the existence of exponential attractors;

these might or might not be related with the above mentioned scale. In this sense, the study

of exponential attractors might shed light to those physically observed and thus relevant

behaviors, no matter whether they are on the global attractor or not [8].

We are preparing a book on "Inertial Sets for Dissipative Partial Differential Equations."

During FY91, two-thirds of the) book has been completed and is available to the scientific

community as an IMA (U. of N.irm;rsota) preprint Series #812. The contents (135 pages)

give a good idea of the range of our applications:

1. Introduction

2. Construction of Inertial Sets for Maps

3. Inertial Sets for Dissipative Evohition Equations of First Order

4. Approximations of Inertial Sets
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5. Applications:

1. Kuramoto-Sivashinsky Equation

2. Kolmogorov-Sivash insky- Spiegel Equation

3. 2D Navier-Stokes Equations

4. 3D Navier-Stokes Equations

5. Non-local Burgers Equations

6. Chaffee-Infante Equations in n-dimensions

6. Exponential Attractors for Second Order Evolution Equations with Damping and Ap-

plications

7. Inertial Manifolds, Review and Comparison

We have also expanded our construction to cover classes of weakly dissipative problems

whose semi-flows are not compact and only asymptotically regularizing [5-7]. Indeed,

any dynamical system for which some weak squeezing property can be established is a

good candidate for applying our construction. Our treatment depends heavily on the

Lipschitzianity of the nonlinearity under different norms. We cover general classes of damped

semilinear wave equations: damped Sine-Gordon (in RN, N < 4). Klein Gordon (in RN,

N < 3) systems of Sine-Gordon equations [6], and compressible (viscous) gas dynamics with

a nonconvex Van der Waals equation of state and a capillarity Korteweg dispersive term

modelling phase changes (in 1-D) [7] and extensible beams equations [5]. The results are

significant since there are well-known examples of damped wave equations that have global

attractors but generically fail to admit Cl-inertial manifolds. This adds weight to our claim

that the exponential attractors are as common as attractors.

The compressible gas problem highlights the nature of difficulties for hyperbolic damped

equations. An elastic compressible fluid with pressure given by the non-convex Van der

\'aals equation of state generates complex propagating phase boundaries. Typically, stable

liquid and gas domains can coexist with an unstable spinoidal decomposition domain; the

latter corresponds to the monotone increasing part of the Van der Waals isotherm curve
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(pressure versus specific volume). New mathematical issues appear which are not present in

the classical hyperbolic equations of inviscid compressible fluid dynamics; indeed, the initial

value problem is mixed hyperbolic-elliptic, with the Hadamard instability of solutions lying

in the unstable elliptic regime. Regularizing the problem with standard viscosity terms is

unsatisfactory, as it rules out certain physically observed propagating phase boundaries [7].

One way to circumvent this difficulty is to introduce a higher order correction term given by

Korteweg's theory of capillarity [7]. Interfacial capillarity effects become important precisely

for the initial value problem in the elliptic domain. For such a model, the conservation laws

have the form:

wt= U: Ut +P(w)z-?1U.z+ 6wz.=0, (1)

where -q,6 > 0 are small coefficients describing, respectively, dissipative and dispersive

(capillarity) effects, and w: specific volume, u: lagrangian velocity, 9: temperature, p:

pressure, with the specific pressure term

(- B (2)
w--b WJ'

and R, b, B and & > 0. For the abuve model, the fluid iS imrnci 5d -;., heat bath, forcing

the temperature to remain constant. For a fluid initially in the elliptic region, Marsden

and Slemrod have exhibited homoclinic chaos as a result of small time periodic temperature

fluctuations. Initial conditions in the unstable spinoidal region clearly generate complex

dynamics. In [7], we have estalished, for (1) with periodic boundary conditions, the

existence of:

"* a global compact attract,,r, f,,ilowing Hale's a-contraction theory,

"* an exponential attractor.

"* an inertial manifold (with much larger dimension than the exponential attractor).

The major difficulty is not :". the ,,-t,,ivexity of the energy functional, but its very

unboundedness as w - b, w > b. The existence of an attractor in the mixed hyperbolic-
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elliptic regime is delicate. Numerical simulations [7] suggest a wealth of steady states in the

spinoidal region.

3. COHERENT STRUCTURES VERSUS SYMMETRY BREAKING

Inertial sets are an appropriate tool for a deeper mathematical understanding of complex

spatio-temporal structures in chaotic and turbulent flows. For Reynolds numbers (Re)

substantially beyond the first transitions to instability, to what extent does the random

occurrence of coherent large-scale events reflect intermittent dynamics on much lower

dimensional manifolds? Generally, a most intriguing problem in the theory of hydrodynamic

turbulence is the formation of large-scale structures in a flow performing random turbulent

motion at small scales.

The dynamics of Coherent Structures (C.S.) in developed 2-D turbulence are better

understood (than 3-D) from a phenomenological point of view. They correspond to a

condensation of the vorticity field, and confine the major part of enstrophy. Such coherent

vortex structures reflect a rate of rotation which dominates their rate of deformation. They

survive on time scales much larger than the mean eddy turnover time, and yet are observed

along the whole scale of the "inertial" range (of the Energy Spectrum).

Spatio-temporal intermittency seems to be liuked with Lhe spatiaiy ii.termittent lo-

calization of quasi-singular (cusped) C.S.; and the temporal intermittency of events when

such structures undergo strong interactions. Temporal intermittency indeed seems to be

correlated with strongly nonlinear interactions between C.S. on a short time scale. Such

strong interactions sharply localized both in time and space are regions of much more in-

tense dynamics, vested with local Reynolds numbers much larger than those encountered in

the remainder of the flow. Fluid mechanists conjecture that intermittency stems from such

a mixing betweer regions which are -patio-temporally active (at arbitrarily small scale) and

much more stable and dynamically passive regions. Indeed, one may conjecture that these

are the most fundamental characteristics of turbulent flows.



9

Recently, we have extensively investigated 2D turbulent bursting flows which strikingly

fit the phenomenological C.S. picture outlined above. These are generalized Kolmogorov

flows with spatially periodic forcing [1,11-13], Moreover, there is recent renewed interest in

the actual experimental realization of these 2D flows, via electric or magnetic fields. The

classical two-dimensional Kolmogorov flow is the solution of the 2D Navier-Stokes equation

with a unidirectional force f = (vk3' sin kfy, 0). It was introduced by Kolmogorov in the late

fifties as an example on which to study transition to turbulence. For large enough viscosity,

v, the only stable flow is a plane parallel periodic shear flow uO = (vkf sin kfy,O), usually

called the "basic Kolmogorov flow." The macroscopic Reynolds number of the basic flow is

easily found to be /Iv; this will be used later as a free parameter to define the bifurcation

sequence. It was shown by Meshalkin and Sinai that large-scale instabilities are present for

Reynolds numbers exceeding a critical value, v/'2. In a 27r-periodic box, the equations are:

0 +u- 7u+ p= vV U + f, 7 .U=0,at (3)

f = (k] sin kjy,0), 0< x, y 2r.

Sequences of bifurcations have beenii investigated by She. But the most interesting transitions

occur at even higher Reynolds number; they lead to sparsely distributed bursts in time for

a fairly large range of Revnolds number above a certain threshold, i.e., Re - 20.8 for

kf = 8 [11-13]. The most striking feature of this transition is that the bursts generate

substantial spatial disorder an, ,!ie (l-\ eloped turbulence. We have also investigated such

bursting regimes in gercralt:,c ..',Tn, r•,,orOv flows, where the force is an eigenfunction

of the 1ineartzed Stoke'.s -, V, r instance, a forcing stream function of the type

cos(k 1 :)cos(kfy) generates a : .- ;c ftow of square eddies. Generally, quiescent states

associated to large scale c,,u':," -,rtices dominate the dynamics between the bursts.

The burst corresponds first ,. '. L#,ri to strong interactions between these C.S., with

turbulent dynamics at rnmcl ,'.,:i•:r .?aital scales. Cusped, near singular vortices are

sharply localized both in space and in time. during the bursts [11-13]. As the Reynolds
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number increases beyond 100, the same dynamical regime persists, with a striking role

reversal: "bursting" regimes now become prevalent (with homogeneous shear turbulence

at smaller scales) whereas the intermittencies now reflect brief reorganization of the flow

around the larger-scale, more symmetric coherent vortices: we have "bursts of reordering";

remarkably, dynamics around the C.S. are now turbulent, not laminar (as for the lower Re).

We have established that symmetry-breaking mechanisms are the prime engine behind such

pers.,itent (in Re) dynamics [11-13].

We establish both computationally and analytically that the Kolmogorov bursting

regimes are linked with symmetry-breaking heteroclinic connections which generate per-

sistent (in Re ) homoclinic cycles [11-13]. The coherent vortices are invariant under isotropy

subgroups of symmetries of the Kolmogorov flow. The heteroclinic connections correspond to

invariant submanifolds with further reduced symmetries; they exchange the slow-stable and

unstable manifolds of the coherent vortices. Similar phenomena have first been unravelled

for the ID Kuramoto-Sivashinsky equations. The lattices of isotropy subgroups play a key

role in the analytic theory of these heteroclinic-homoclinic cycles and substantial literature

has appeared on this subject, for symmetries simpler than the Kolmogorov flow's (e.g., 0(2),

0(3). D4, etc.).

For the Kolmogorov flows, small-scale dynamics prevail in a neighborhood of the

heteroclinic connections, whereas large-sca!e dynamics are linked with slow-stable manifolds

of the hyperbolic T-in (C.S.) [1, 11-131. This is another paradigm of transient dynamics on

an inertial set. The ideal global attractor is made of the hyperbolic tori and their multiple

heteroclinic connections. Theorc:ical dynamics should get closer and closer to the ideal

geometric connections, and pse,; ,&- periods between bursts should increase monotonically to

infinity. This is not observed i:M practice, where bursts occur randomly, and (numerical)

noise throws the trajectories onto larger slow manifolds of the hyperbolic tori. So, for a very

long time, (computationally, forever) dynamics fluctuate within a tubular neighborhood of
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the ideal geometric heteroclinic connections. These results might suggest slow transients on

an inertial set. Even more, for larger Reynolds numbers, the heteroclinic connections are

probably not strictly attracting (for t -- +oo).

A suitable tool to extract phase-space information out of large scale PDE simulations

seems to be the proper orthogonal decomposition (POD) also known as Karhunen-Loeve

decomposition [1]. Simulations for Kolmogorov flow by [11] clearly give the impression of

a finite, in fact very low dimensional dynamics for this regime. Consequently, our long

term goal is to come up with a reasonable low dimensional dynamical system derived via a

proper orthogonal decomposition and amenable to traditional phase space analysis. While

we have not yet synthesized such a system, we have analyzed the simulations. We think

our preliminary results give very interesting partial answers and raise some new and crucial

questions about the nature of turbulence [1].

Using POD we extract the dominant features of the data as spatial eigenfunctions of

the covariance matrix and project the data onto the first few eigenfunctions. Doing this for

a time sequence, we can reconstruct the time evolution of the flow using a suitable number

of these eigenmodes. Specifically, we are reconstructing two regions of the simulations: The

region believed to be predominantly laminar and the region containing a burst, respectively.

While the PDE numerical code integrates a stream function, turbulence theory prefers to deal

with vorticity. Performing a POD on both, we get the surprising result that the dimensions

derived from an energy criterion on the POD and visual comparison of reconstructed and

original data, as well as those derived from an embedding algorithm [1], do not coincide for

stream-function and vorticity data. We offer interpretations and speculations on the reasons

for that discrepancy in terms of low-dimensional phase-space dynamics versus enstrophy

cascade.
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4. EXPLICIT SYMMETRY BREAKING IN THE TAYLOR-COUETTE PROB-

LEM

There are two types of symmetry breaking events that often occur in fluid dynamics.

They are: (i) solution symmetry breaking and (ii) system symmetry breaking. rhere exists

a vst literature on solution symmetry breaking bifurcations. Much less is known about

system symmetry breaking. In the latter case, the whole system reduces its symmetry. A

number of examples of system symmetry breaking in Hamiltonian and dissipative situations

are discussed in Marsden (1991), Guckenheimer and Mahalov (1991).

We consider an infinitely long Taylor-Couette problem which is translationally and

reflectionally symmetric along the cylinders. We investigate the bifurcation to Taylor vortices

[21 when the reflection symmetry in the axial direction is broken in two ways: (i) by applying

a constant pressure gradient in the axial direction, (ii) by sliding cylinders relative to each

other. We calculate the effect of these symmetry breaking perturbations and find in both

cases a slow drifting of the Taylor vortices along the axial direction. We discuss a total

symmetry breaking of the translational and reflectional symmetry along the axial direction

[2]. This forces the system either to choose a state from a circle of states of the unperturbed

system or into an inhomogeneous drifting state. The efforts of these symmetry breaking

perturbations on the system are studied using normal forms [2].

5. LOW DIMENSIONAL DYNAMICS

5.1. Problems in Estimating Dynamics from Data

We have investigated some difficulties in estimating dynamics from time-delay embed-

dings of experimental data that can be characterized as low-dimensional. A new procedure

is developed to reduce noise by exploiting the properties of saddle periodic orbits on the

reconstructed attractor [91.

There are several different approaches to noise reduction in time series data whose

underlying dynamics can be described as low dimensional. Kostelich and Yorke outlined a
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procedure that uses an approach originally suggested by Eckmann and Ruelle for computing

Lyapunov exponents. Farmer and Sidorowich describe another method for use when the

dynamics are known. Schreiber and Grasshberger describe a simple time-series based

approach. Cawley and Hsu have suggested an approach based on projecting trajectories

ofito planes that locally approximate the manifold containing the attractor.

Most of these methods involve the estimation of a derivative from the data or in some way

require a least squares estimate of the location of some portion of the attractor. Our work [9]

addresses some of the problems inherent in the estimation of dynamics from data, regardless

of the type of model used to approximate the dynamics. These difficulties may arise from

the fractal structure of the attractor and errors in all the observations. The problems persist

regardless of the amount of available data and affect one's ability to determine an accurate

local model of the dynamics, even when an accurate model should be obtainable in principle.

Many of these problems can be circumvented by using as much dynamical information

as possible in the formulation of the statistical relationship between the observations. Our

attempt to do this involves the use of recurrent orbits to derive an accurate linear model of

the dynamics in the vicinity of saddle periodic orbits on the attractor. We have applied our

method to two experimental data sets from Taylor-Couette flows [9].

5.2. Calculating Low Dimensional Stable and Unstable Manifolds

A numerical procedure is constructed [10] for computing the successive images of a

curve under a diffeomorphism of RNv. Given a tolerance, c, we show how to rigorously

guarantee that each point on the computed curve lies no further than a distance f from the

"true" image curve. In particular, if c is the distance between adjacent points (pixels) on a

computer screen, then a plot of the computed curve coincides with the true curve within the

resolution of the display. A second procedure is developed [10] to minimize the amount of

computation of parts of the curve that lie outside a region of interest. We apply the method

to compute the one-dimensional stable and unstable manifolds of the HWnon and Ikeda maps,
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as well as a Poincar6 map for the forced damped pendulum.

Thus, we have developed a procedure to calculate the stable and unstable manifolds of

fixed points of diffeomorphisms to a prespecified precision, provided that the manifolds are

one-dimensional. If a Lipschitz constant can be determined for the map and its derivatives,

and if a lockout region can be identified, then the procedure produces a rigorous plot of a

portion of the stable and unstable manifolds within a region of interest around the fixed

point. In other words, the manifolds can be computec to an accuracy that is smaller than

the resolution of the plotting device. Moreover, the procedure guarantees that no point

is omitted that should be plotted, and no extra point is plotted that does not belong. A

simpler method can also be used if suitable Lipschitz constants cannot be determined easily.

Although the resulting plots are not rigorous, numerical evidence suggests that they are still

very accurate, and they can be generated in a few minutes on a workstation computer.
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[12] B. Nicolaenko and Z.S. She, Symmetry Breaking homoclinic chaos and vorticity bursts in periodic
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to appear.
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7. Conference and Seminar Presentations

A) Dieter Armbruster

1) The Karhunen Lo6ve decomposition as a tool to analyze PDE data.

Applied Dynamics and Bifurcations, Oberwolfad 1/92

Arizona Days, Los Alamos 2/92

Metz Days, Metz, France 7/92

Seminar, Institut for Information Science, Universitit Tubingen 7/92

Workshop on 'Reactive Turbulence', Los Alamos 8/92

2) Topological constraints for explicit symmetry breaking

Int. Conf. on "Bifurcations in differentiable dynamics," Limburg, Belgium 6/92

3) Same lecture presented at:
AMS Summer Seminar "Exploiting symmetry in Applied and Numerical Analysis," Ft.
Collins, Colorado 7/92

Workshop on "Reactive Turublence," Los Alamos 8/92

4) Structurally stable heteroclinic orbits

Appl. Math Seminar, Colorado State University, Ft. Collins, CO 3/92

B) Eric Kostelich

1) Naval Research Laboratory, Seminar, Washington, D.C. 7/16/92
2) International Union of Theoretical and Applied Mechanics Symposium on Interpretation

of Time Series from Nonlinear Mechanical Systems (also a NATO conference), invited
lecture, University of Warwick, Coventry, England 8/28/91.

3) First experimental chaos conference, invited lecture, sponsored by the Office of Naval
Research, Arlington, Virginia 10/1-3/91

4) University of Maryland, Instructional Television System, one-hour lecture in nationally
televised, closed-circuit short course on chaotic dynamics 3/5/92

5) American Geophysical Union, Annual Meeting, invited workshop lecture, Montreal,
Canada 5/12/92

6) American Geophysical Union, Annual Meeting, contributed presentation, Montreal,
Canada 5/13/92

7) Santa Fe Institute, workshop on prediction in nonlinear time series, contributed lecture,
Santa Fe, NM 5/15/92

8) SPIE, annual meeting, contributed lecture, San Diego, CA 7/23/92

9) Second workshop on Dynamical Measures of Complexity and Chaos, invited lecture,
Bryn Mawr, PA 8/14/92
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C) Basil Nicolaenko

1) "Phase Space Analysis of Bursting Behavior in Kolmogorov Flow," IUTAM Symposium

on Interpretation of Time Series from Nonlinear Mechanics Systems, U. of Warwick (U.K.)

8/91
2) "Turbulent Bursts in Kolmogorov Flows," Colloquium, Dept. of Mechanical Engineer-

ing, U.C. Berkeley 2/92

3) "Exponential Attractors and Inertial Sets," Colloquium, U. of Paris, Orsay 10/91

4) Same presentation at:

Colloquium, U. of Bordeaux (France) 12/92

5) "Non Trivial Dynamics for the Kolmogorov Navier-Stokes Equations," International
Conf. on Nonlinear Analysis, Tampa, Florida 8/92

8. Graduate Students Advised
R. Hedges
R. Heiland
A. Lopez
K. Madsen
A. Palacios
Weijie Qian

N. Smaoui

P. Vaz
Sharon Walker
Qi Zhao


