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CHAPTER 1
INTRODUCTION

In recent years much of the work done in ccmputational fluid dynamics (CFD)

has been to produce high resolution flow solveis r25, 31. 32' and to develop domain

decomposition techniques in order to accurately model the aerodynamics of complex

geometries '4, 5, 11, 12, 13, 24'. Although these high resolution solvers can pro-

vide good answers they are still grid del .ndent and will usually require significant

computer time to converge for all but the simplest problems.

Grid dependency can be taken care of by generating "good" grids, where 4good"

grid simply means any grid that causes the numerical sc!ution to converge rapidly.

to the actual physical solution for a givcn geometry. Since most real geometries are
not necessarily simple it is difficult, if not impossible., to generate a single "good"

grid. Several techniques have been developed to dlloW the domain of interest to be

appro:imated by a combination of smaller "good" grids as opposed to using a single

complex grid. These domain decomposition techniques have been applied to the

analytic solution of partial differential equations for many years.

One of the simpler forms of domain decomposition is referred to as composite

blocked or multiblocked grid structures 14, 28, 29, 301. In this method each block

(separate grid) covers a given region of the domain and the interfaces between these

blocked regions match physical grid points exactly, although the slopes of the grid lines

through these boundaries may be discontinuous. In fact when a singularity is pre.ent

on a block boundary multiple lines from one block may merge at the singularity and

become a single grid line in the adjoining block.

Another widely used method is patched or zonal grids 118, 23, 24]. For zonal grids

the boundaries between tf.c zones must coincide: however, the grid lines i tersecting



these boundaries do not cross the boundary in a continuous manner. In fact t&e

common boundary between zines may not contain the same number of points. One

imnortant restriction with this grid system is that a sufficient number of point, must

be on the zonal boundaries to maintain conservation principles across such boundaries.

Blocked grids are a special case of zonal grids.

An even more general domain decomposition method is referred to as embedded.

overset, or Chimera grids '3. 5, 13. 14. 22:. WVhen using embedded grids no set bound-

ary correspondence 1, required between grids. Grid boundaries that lie in the interior

of the domain are set by interpolation. This method also requi-es sufficient grid points

for intergrid communication to occur in a conservative manner. Grid points that are

within the overlapped region and points that fall inside of solid surfaces are not used

as a part of the solution. These points are referred to as blanked or I-blanked. Since

these grids are generated independently they can be added, deleted. or moved in

order to make configuration changes without having to regrid the entire- domain. A

great deal of work has gone into automating the search for the intergrid interpolation

stencils and the grid movement procedure for grid, in relative motion •13, 22'. Both

zonal and blocked grids are special cases of embedded grids.

These dc-nain decomposition techniques allow the solution of more complex ge-

ometries: however. the amount of computer time required usually increases with the

number of artificial boundaries introduced into the domain. This has lead to the

development of several techniques for in-. xing convergence of the flow solvers.

One method for improving convergence of iterative schemes for solving systems

of equations is multigrid '2, 9, 10, 15, 16. 21'. Regular multigrid ;imply uses several

levels of increasingly coarser grids covering the same domain to solve a set of algebraic

equations. The solution is generated on the finest level and corrections to the solution

are calculated on the coarser i>vels. Multigrid techniques applied in CFD have shown

significant improvements in convergence over single level methods 2. 3. 20. 27.33
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Multigrid techniques have also been developed to provide increased resolution in

portions of the domain. These local refinement techniques [9, 11, 15, 21Y usually

generate the local grid levels by quartering (in two dimensions) existing cells in the

global grid and storing this refinement as a part of the next finer level. Boundary

information on the local level is usually obtained by interpolation from a lower level.

Accurate communication between these levels is critical 221i. These methods are

typically automated such that additional levels are added during the solution process.

Multigrid has also been used to provide increased convergence on blocked and em-

bedded grid systems. When this technique is applied to an embedded grid system.

typically a complete multigrid cycle is made in each grid independent of the other

grids I3' and the communications between grids is achieved on the finest grid level.

Special treatment of blanked points is required on the the coarser levels. Numerical

results show that when multigrid is applied to the blocked grid system it is better

to make calculations and communicate between blocks on each level than to perform

a full multigrid cycle in each block independently [33U. This would seem to indicate

that if multigrid could be applied in a way that would allow the lower levels of the

embedded grids to communicate that even better convergence rates would result. Ref-

erence 171 applies multigrid to an embedded grid system to solve an elliptic problem

in this fashion.

The purpose of this study is to show the feasibility of using a nonaligned multi-

grid technique to both communicate between embedded grids and to simultaneously

increase the convergence rate. Nonaligned multigrid 152 can be thought of as the

global application of multigrid to a general embedded grid system. In this case the

only blanked points will lie inside of solid surfaces and all communication between

grids and grid levels will be done through the multigrid techniques. This means that

overlapped regions will contain the solution on one grid and the other grids occupy-

ing the same region will be used to generate the corrections to that solution. The
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nonaligned multigrid is basically a local refinement technique with the local levels

generated independently of the global level. This method will be applied to the ex-

plicit flux difference splitting [26, 32! approximation of the two dimensional Euler

equations for inviscid compressible flow.

In Chapter 2 the nondimensional Euler equations and the flux difference splitting

(FDS) algorithm F26, 321 are presented in terms of a body conforming curvilinear co-

ordinate svstem. These partial differential equations are stated in strong conservation

law form and in quasi-linear form. The latter of these forms is necessary in order to

obtain the eigenvalues.and eigenvectors of the flux Jacobian matrices !4, 311 that are

needed for the FDS algorithm. Stability requirements for the explicit FDS P-d initial

conditions are stated. A phantom point formulation is also examined for t-.e solid

surface and supersonic inflow/outflow boundary conditions.

Multigrid methods are discussed in Chapter 3 and the formulation for the Full

Approximation Scheme (FAS, sometimes referred to as the full approximation stor-

age) ý2, 9, 21'ý is presented. The use of bi-linear interpolation, applied in the compu-

tational domain, for the restriction and prolongation operations is examined. Grid

scheduling and boundary conditions for different levels will al.o be discussed.

Chapter 4 presents a discussion of the embedded grid approach. This includes an

examinatinn of the stencil jumping, boundary interpolation, and blanking procedures.

In Chapter 5 the nonaligned multigrid (NAM) approach is described using FAS

for the nonlinear problem. The use of bi-linear interpolation, applied in the physi-

cal domain, for the restriction and prolongation operations is examined. Grid level

ordering and boundary conditions will also be discussed for the nonaligned grids.

A discussion of the results for the 50 ramp and the 5' ramp near a flat plate is

contained in Chapter 6. These include comparisons between single grid, multigrid,

embedded grid, and nonaligned multigrid calculations. Comparisons will be made by

looking at solutions, convergence histories, and CPU times for various methods.
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Conclusions and observations about the numerical techniques used in this study

are presented in Chapter 7.



CHAPTER 2
EULER EQUATIONS AND FLUX DIFFERENCE SPLITTING

This chapter states the strong conservation law form of the Euler equations in

two dimensions in terms of a body conforming curvilinear coordinate system. The

equation is converted to the quasi-linear form and the eigenvalues and eigenvectors

are given for the flux Jacobian matrices. The first order FDS algorithm used to

approximate the Euler equations and the resulting stability condition are presented.

Time stepping, initial conditions, and boundary conditions used in this study are also

discussed.

Euler Equations

The equations of motion in strong conservation law form for inviscid compressible

flow are presented here for two dimensions. These equations are nondimensional and

are expressed in terms of a general curvilinear (body fitted) coordinate system [4, 26,

31].
8Q +F + OFn

Where the primary variables Q and the flux vectors Fk (k is • or 77 denoting the

curvilinear component) are given by

u~puOk 1 ~

Q= Fk=J (2)pv 'PV~k + kvp
e (e +p) P)

In this notation p is the fluid density, u and v are the Cartesian components of

velocity, p is the pressure, and e is the total energy per unit volume. Since there are

6
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only four equations and five unknowns the perfect gas assumption is made in order

to relate the energy and pressure.

p (U2 + v2) (3)
•-i 2

The remainder of the terms in Eq. 2 are the metrics, k. and ky, of the transformation

from Cartesian to curvilinear coordinates, the Jacobian of this transformation, J, and

the contravariant velocity components 0k.

J-'Y, (4)

J= -- ', (5)

77= - J-lvý (6)

77Y, = J-Ixý ((7)

J = XCy,7- yýx, (8)

Ok = uk. + vk, (9)

The nondimensionalization [4, 26] of Eq. 1 is obtained from the following defi-

nitions. First, all dimensional quantities are indicated by a" and a convenient

length I is defined. The quantities subscripted by oc denote reference values in the

undisturbed gas.

Uv v, e e P - (10)

Where • = (7b,/•)1/2, is the speed of sound in the undisturbed gas. Applying

this nondimensionalization to the Euler equations (Eq. 1) yields exactly the same

equation in terms of nondimensional quantities.

The quasi-linear form of the Euler equations is obtained from Eq. 1 by defining

the flux Jacobian matrices as Ak = OFk/&Q and applying the chain rule.

Oo7 O°Q 8
- + Ac--K7+ A-=0 (11)
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When evaluated Ak becomes

0 ký ky 0

k4O- u~ k Ok + k.(2 --)u kyu - k,(-, - 1)v k(-Y - (12)Ak = kjO - V~k k,,v - ky(-y - 1)u Ok - kv(2 - -Y)v k (,V - 1) ( 2

with =3 - ye/p, and

- (u2 + v). (13)

The eigenvalues and the left and right eigenvectors of this matrix are needed in order

to implement the FDS algorithm presented later in this chapter. In the following

equations Ak are the eigenvaiues, the columns of Tk are the right eigenvectors, and

the rows of Tk-1 are the left eigenvectors [4, 31].

AI = Ok (14a)

Ak = k (14b)

A3 = Ok + c(k± 2 + k 2)1/2  (14c)

A4 = Ok- c(kx2 + kY2)1/2  (14d)

1 0 P

u -Pk -E( kx) -(Y (1k)
v p -V( ±2 - (15)

V-2 C2 v/- c

.- 1 P(vlc., - uky) -ýE(9, + -cjC) P + - 9,,)
S ~~V- 72= u(v1) (-yi)C-

S_1 h_0
2_ 0

T(O - 0kc) T(k.,c-(y-1)u) T(k•yc - (-y - 1)v) T('y - 1)
T(O +± Oc) -T(kc + (-y - 1)u) -T(k•,c + (y - 1)v) T(W - 1) j

Where "" indicates division by (k.,' + k, )'/ 2 and

c = p/P (17)

1T -
(18)

vOpc.
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First Order Flux Difference Splitting

Now that the eigenvectors and eigenvalues of the flux Jacobian matrix have been

defined the flux differcnce splitting can be used to approximate Eq. 1. The following

equation is the explicit finite volume discretization [25, 26, 321 used for this study.

j %+, , 1/2,,7 + 2,,,÷12 1,-1/2 0 (19)At Aý -A'77

Where fk is the numerical flux in the k direction and AZ A= \= 1 for the uniform

curvilinear coordinate system. For a first order approximation the numerical flux is

given by

4

(f•)+1/'2,, (f),, + Z (),A.-<m)(T.)m (20 a')
m=1

4

(-), (f,) • Z(ci)m -)(T, 7 )m. (20b)

The flux vector Fk is evaluated at (ij) to obtain fk and A-(') is the mth non-positive

eigenvalue given by

- -) ( -) - Am)- (21)

The subscript m on Tk indicates the corresponding right eigenvector contained in the

rMth column of the matrix Tk defined in Eq. 15. The ak term in Eq. 20 is defined for

the first order scheme as

- (T()m,i(q>,-- - q,)i,(22a)

(a,7) = (T, )mnt(q',,. - q,,)i. (22b)

In this case the subscript m indicates the left eigenvector corresponding to the eigen-

value (and right eigenvector) previously discussed. The left eigenvector is contained

in the mth row of the T;1 matrix defined in Eq. 16. The subscript I indicates mul-

tiplication of the row vector of left eigenvectors by the column vector of differenced

dependent variables.
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These eigenvalues and eigenvectors given by Eqs. 14, 15, and 16 in the previous

section are evaluated using the "Roe" averaged variables defined by

P = XfP Pý+i (23a)

U = P 1  U (23b)

-V/-P + /-•av,+,
V = 1- Pý+iV%+i (23c)

P/X + VP1+i

c2=(-y - 1)[H - I1(U2 + v2 )] (23d)
2
11

H = I(e +p) (23e)
P p (u2 + v2)(2fP - + p(U+V2 (23f)
•- 1 2

These equations are for the • coordinate direction. The terms are evaluated at the i

index indicated and j. The equations for the 77 direction are obtained by substituting

j for i.

The "Roe" averaging is selected to ensure uniform validity across discontinu-

ities [25]. By using Roe's numerical fluxes shocks and contact discontinuities can

be captured in as few as one to two grid cells [26, 32]. This method also allows the

use of fewer grid points than the flux vector splitting schemes to capture viscous shear

layers. The two (and three) dimensional applications of this method assumes that

the characterisLic waves propagate in a direction normal to the grid interfaces ]32].

Choice of Time Step

Applying the von Neumann stability analysis [1] to Eq. 19 yields the following

condition for stability (see the Appendix), analogous to the one dimensional Courant

Friedrichs-Lewy (CFL) condition with the Courant number, (CFL), given by

CFL = At(1041 + cv/•--+ + 191I + Ci77± + 77) <1. (24)

Two variations on this equation are implemented. The first is known as global

time stepping and is necessary for time accurate calculations. In this approach the
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time step, AXt, is chosen to satisfy the stability condition and all cells are advanced

the same amount of time each iteration. In the local time stepping formulation the

Courant number ( labeled CFL) is selected and held constant. This method is only

valid for steady state problems because each cell may be advanced by a different time

step.

Initial and Boundary Conditions

The entire domain is initially assumed to be at free stream conditions. The Mach

number is specified and the remainder of the free stream values are determined as

rollows for the nondimensionalized variables.

PoW=1 (25a)

(pv)• = M. (25b)

(pv)" = 0 (25c)

1 12

- 2 ' _ M ( 2 5 d )
1

po. = (-Y 1)(e. - -M2) (25e)
2 c

The boundary conditions are applied using an explicit image point or phantom

point formulation ý31j. This formulation works by selecting a set of fictitious points

just outside of the domain with each cell center on the boundary having a correspond-

ing phantom point. Cell centers at the corners will have three phantom points, one

for each coordinate direction and a corner point to fill out the boundary. This corner

phantom point is not required or used by the FDS algorithm. tEjqs. 26, 27, and 28 are

used to set the values of these phantom points for the specified boundary conditions.

In these equations the subscript a denotes the phantom point and subscript b the

corresponding point in the domain.
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Supersonic inflow

S= 1 (26a)

(pu), = (26b)

(Pv), = 0 (26c)

1y(-1) 2 (26d)
1

P = (-y - 1)(e. - 1M2). (26e)
2

Supersonic outflow

Pa = Pb (27a)

(pU), = (pU)b (27b)

(PV)a = (pv)b (27c)

ea = eb (27d)

Pa = Pb (27e)

Solid surface (zero pressure gradient)

Pa = Pb (28a)

(PU), = (pu)b - 2(PAk.)b (28b)

(PV)a = (pv)h - 2(pOklc)b (28c)

ea = eb (28d)

Pa = Pb. (28e)



CHAPTER 3
MULTIGRID APPROACH

The idea behind multigrid is to accelerate the convergence of a relaxation scheme

by adding corrections to the fine grid solution based on solutions generated on coarser

grids f9, 10, 21]. In order to describe why multigrid works two important pieces of

information need to be recognized. First, most relaxation schemes eliminate the

high frequency error in as little as 2 or 3 iterations, while the same scheme can take

thousands of iterations and may never satisfactorily eliminate the lower frequency

errors. Secondly the low frequency errors on a fine grid appear as high frequency

errors on coarser grids. It would then appear that nearly all of the error could be

treated as high frequency error when the correct sequencing of grids is used. The

following is a description of the multigrid method used in this work.

Full Approximation Scheme (FAS)

The full approximation scheme [2, 8, 9, 16] is used a great deal in computational

fluid dynamics (CFD) due to its ability to handle nonlinear problems such as the Euler

or Navier-Stokes equations. FAS restricts both the residual and dependent variables

to the coarser grids. This differs from the multigrid designed for linear systems of

equations which only restricts the residual to the coarser grid.

Letting a symbol superscripted by h denote that the symbol belongs to the fine

grid level then the grid sequence is denoted by superscripts (h, 2h, 4h,. . . nh). Where

2h indicates a grid over the same domain as h with half the number of grid points

in each direction and recursively for each subsequent grid. In order to apply FAS,

Eq. 19 is written in the following form

Lh(Qh) = 0 (29)

13



14

where Qh is the exact steady state solution to the finite difference equation and L is

the finite difference operator on the fine grid, defined for the explicit flux difference

splitting algorithm as
Lqh) (7)n 7/, )n '

Lh(q (f)-1/2, 3 + (f7)0 1,31/ 2 - (fn)7j-1/,'2 ' (30)

Applying an iterative scheme

Lh(qh) = Rh (31)

where Rh is the residual obtained by subtracting Eq. 31 from Eq. 29.

Lh(Qh) - Lh(qh) = -Rh (.32)

This equation is then approximated on the next coarser grid as

L 2h(Q2h) = Ilhh(--R h) - L 2h(I~h qh) (33.)

with the restriction operators jI•h and I•h to be discussed in the next section. Eq. 31

is then used to substitute for Rh.

L 2h(Q 2h) = Lh(Jh2 hqh) _- IIjh(Lhqh) (34)

The right hand side of this equation is now the defect correction (or the relative

truncation error) between the solution on finest (level h) and the coarse (level 2h)

grids. This defect correction acts as a forcing function on the coarser levels in order to

maintain the accuracy of the finest level. Note that if the Lh(qh) = 0, then qh = Qh

and the exact solution for Q"h in Eq. 34 is J•hqh = IhhQh. Designating the defect

correction as 7 2h the previous equation becomes

L2h(Q 2 h) = r 2 h. (35)

Equations for any number of levels can be generated by this same procedure. For

example, treating Eq. 35 with the same procedure used on Eq. 29 the equation on

the 4h level becomes

L4h(Q 4h) :4h. (36)
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The defect correction on this level is actually a measure of the relative truncation

error between level h and 4h.

T 4
h r 4h(4hq 2 h) - 4h rr(L h(q 2 h 114hr2h (37"L 12hq 2h _.- 12h

Observing Eqs. 29, 35, and 36 it can be seen that the same system of equations

are solved on each level (rh = 0) making FAS an easy technique to program (see

references 12, 81 for more details). These equations also indicate that the residual

(obtained from the iterative procedure) minus the defect correction is driven to zero

on the coarse grids in the FAS procedure. The only real drawback to this procedure

is the need to store the solution at all levels. Fortunately each grid level requires only

a quarter (in two dimensions) of the previous level's storage requirement.

The remainder of the FAS procedure is to calculate the coarse grid correction. U.

and pass it to the next finer level. The following equations are used to cilc-,:-ate the

correction on the 4h level and to prolongate (interpolate) it to the 2h level.

y4h Q4h 14h9 2 h 38)=.2h-38),

2h = 2h 12h -4h '9)q q 4h

Restriction and Prolongation Operators

These operators simply define the interpclation needed to move quantities between

grids. The type of interpolation to be used is fairly arbitrary and theoe is no require-

ment that the restriction and prolongation operators be of the same type o: order. It

is actually better to chose a prolongation operator that will ncot pass high frequency

errors due to the increased iteration , ,st on the finer grid levels p9].

The restriction operator for a point quantity given by,

(i~hqh), = 1 ,2j-1 h

, (q - 1,27-1 1- qat.21-1 -4- q2t- .21, -- qa. 23 ), (40)

is bi-linear interpolaion applied in the computational domain. Since the computa-

tional domain is uniform all of the coefficients are equal and constant. Defining the
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restriction operator in this way will allow conservative transfer of mass, momentum.

and energy only when the grid is uniform. The subscripts (ij) denote a general point

in the coarser grid.

The restriction operator for the residual,
li12h R• h ( h -Rh Rh Rh 4
( h 21-, 1.2 -1 2%2 12 2

simpiv sums the residuals on the fine grid that lie inside of th- coarse grid cell. This

formulation gives an exact conservative transfer of residuals ý2ý (reference ý2' also uses

a conservative restriction operator for the conserved variables).

Bi-linear interpolation applied in the computational dcmaii. is also used for the

prolongation operator. In this case point quantities are transferred back to the finer

grid levels using

9hh 1,-2h I2 9 1-,72h (42a)
)2- 2- 1 _ -( c -• 3(•: + 1:2h,,_ (42a)

2I• 16 + +-- .7 42b'1

"h -h 1 9-h4 tI'h4 ,2 "h (2'h 92h j, 3( -h 1,-2h v-2h

16
h )2,,21 -- (42d)

Boundary Conditions

The boundary conditions applied to the fine grid are given in Chapter 2, with the

exception of the corner phantom points which are set by taking the average of the

two nearest phantom points. These points are not used in the flux difference splitting

but they do come into play during the transfer of information between grid levels.

The fine grid boundary conditions cannot be applied directly to the coarser grid

levels without causing large trancation errors ý16J. This can be corrected by a bound-

ary condition defect correction generated in a manner similar to the defect correction
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for the interior region. The problems with this are that the boundary conditions must

have a flux formulation, the calculation of the correction itself can be very complex,

and a correction of this type can make the program problem dependent 1161. An

alternative to this is to pass the boundary conditions from the fine grid then perform

relaxation on the boundaries of the coarser levels [91. Another option is to update the

boundary conditions only on the fine grid and freeze them on the coarser levels [16..

For finite volume schemes using a phantom point boundary condition formulation

simply applying the fine grid conditions to the coarse grid is acceptable when only

the change on the coarse grid is transferred to the fine grid [16]. This last method

of applying boundary conditions was selected in order to avoid the need for special

interpolation (and extrapolation) that would be necessary to update the phantom

points.

V-Cycle Procedure

Level

nV2 2 2h

8h

A/ 8h

Figure 1: FAS V-Cycle Grid Schedule

Several meLhods of scheduling levels can be used for multigrid [2, 101. The V-Cycle

procedure is used in this study. This procedure is recursive and is easily applied to

any number of levels. The actual grid scheduling for a four level scheme is shown in

Figure 1 and the corresponding solution procedure follows.
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1. Iterate Vh times on Aqh =At(Lh(qh))

for ( n = 2h; n < 8h;n= 2*n ) {

2. Calculate the residual R'1 2 = L-/2(qn/2)

3. Restrict solution to coarser level q'f = IJ7 / 2 q n/2

4. Restrict residual minus defect correction to coarser level R -I/2(R -

(recall 7rh = 0)

5. Calculate the defect correction 7' = L I(I/ 2qh/2) -R

6. Iterate vn times on Aq= -At(Ln(q') - -r n)

}

for ( n = 8h; n > 2h; n = n/2 ) {

7. Calculate the coarse grid correction(CGC) V = - q

8. Prolongate CGC and add to solution on finer level qn/ 2 = q-/2 + I•/ 2V1,

9. Iterate j,• times on Aq -/2 = -At(Ln/ 2 (qn/ 2 ) - rn/2

}

10. If solution is not converged go to 1



CHAPTER 4
EMBEDDED GRID APPROACH

Embedded grids are also referred to as Chimera or overset grids. This domain de-

composition method uses independently generated grids to accurately model different

regions of the domain. Since these grids are generated independently, configuration

modifications will not require regridding the entire problem. This also makes it easy

to add components to the configuration, to move two bodies relative to one another,

and to add higher resolution grids in areas of interest.

Blanking or I-blanking as it is sometimes called is used to avoid updating the

solution inside of holes. These holes come about in several ways. The most obvious

way is when part of an embedded grid lies outside of the domain of interest (as occurs

when a cell is inside of a solid boundary). This case is not encountered in this study

but is mentioned for completeness. Holes are also caused when two or more grids

cover the same region in the domain. This is done to prevent the large number of

interpolations that would be necessary if all of the points in the overlapping region of

one of the grids were to be set by the other overlapping grid. Not only could a large

number of interpolations be expensive, they could also degrade the global accuracy

when cells of the overlapping grids are different sizes [5]. In this case the grid that

provides the best physical solution should be used for the solution procedure in the

overlap region. This can be difficult to determine in most cases and is usually up to

the engineer to decide which grid will yield the best solution.

Once a point is determined to be in a hole or on a hole boundary it becomes

blanked. The residuals calculated for these blanked points are set to zero so that

no correction is made to the solution. Since no corrections are made to the solution

for blanked points boundary conditions need to be applied on the hole boundaries.

19
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This is accomplished by interpolating the dependent variables from the grid that is

causing the blanked points. Grid boundaries that lie within another grid must also

obtain boundary information in this way. This requires interpolation stencils to be

found in the grid causing the hole for these boundary points. It can be difficult to

find valid interpolation stencils. Valid stencils do not use points that are themselves

set by interpolation. In the case where no valid stencil can be found the point ir

question is referred to as an "orphan point" [121. This requirement. usually leads to

an overlap of two to three cells depending on the interpolation stencil. Best results

tend to be obtained when grid cells are aDijroximately the same size in overlapping

grids [5, 12].

In order to carry out the intergrid communication a method of finding the interpo-

lation stencils must be employed. The "stencil jumping" or "stencil walking" '5. 12I

technique is a very efficient method of finding the nearest neighboring point. Since

the FDS algorithm is a finite volume method (ie. the dependent variables are stored

at the cell centers) the cell centered meshes must be constructed in order to search

for interpolation stencils.

This stencil jumping technique is actually an inverse transfinite interpolation prob-

lem. By assuming a linear variation in • and i between 0 and 1 in each interpolation

stencil with cell centers as corners Eq. 43 can be obtained.

Aa,ý =Y (43)[ } ayc ayc

Where

AX X,1, 3 - P (44a)

- "V (44b)

- 1/2 (44c)

Aý = ,., - 1/2 (44d)
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a ,, C j is the lower left corner point of the cell being searched. The point

XA, Y', is the cell center from another grid that requires an interpolation stencil. The

derivatives in the matrix in Eq. 43 are given by

OXC 1 (Xr - X , + +, - - C (4
S 2 I\ ,3 +t1,3 -• +,j+1I - j,+I) -- +÷,j -x , 4

__y_ 1 (y5 - <t,, + Y,,t~÷ -.y,5+) ,+ , - Yr,. (45d)

oj 2

Eq. 43 is in the form of a Newton's method and will converge at nearly a quadratic

rate as LŽXC and AYC go to zero. This method works well on fairly uniform grids

without singularities.

Once the nearest neighbor is found interpolation can be applied to obtain values

at the boundary points. This study uses bi-linear interpolation given by

qp:=(1 -) [(1 - )q1,, +q+i,j] + X [(1 -+)q 2,+, - qiq+1,+, . (46)

This interpolation procedure in general does not maintain conservation principles but

it is commonly used in this fashion with satisfactory results [5]. The use of conser-

vative techniques (such as those in references [6, 20] ) would require a substantial

programming effort in order to determine areas of intersection between overlapping

cells. This would also complicate interpolation stenciles and can cause stability prob-

lems.

Note that in the equations in this section (i,j) denotes a general point on the cell

centered grid.



CHAPTER 5
NONALIGNED MULTIGRID (NAM)

The idea here is -o treat the overlapping grids of the embedded approach as in-

dependent levels of a multigrid FAS procedure. As with the FAS scheme, defect

corrections and dependent variables are restricted to the lower levels and corrections

are prolongated to the upper levels. Unlike the standard FAS where one level directly

communicates with only the next coarser level, NAM levels may directly restrict or

prolongate information to any or all levels depending on the particular system of

grids. NAM is actually a generalized local refinement method [9, 11, 211 in the sense

that the various levels are in general not related and may not have any information

restricted to portions of their domain. The lack of relationship between levels cov-

ering the same domain is similar to the multigrid methods applied to unstructured

grids [20]. Unlike embedded grids where blanked hole points are eliminated from the

solution, NAM uses the regions of overlapping grids to generate lower level corrections

producing the faster convergence of a multilevel scheme. This is possible because the

defect correction stops grid cells of different sizes from degrading the global solution.

Blanking is still appropriate in NAM for cases where the cell centers of one grid level

are located inside of a solid surface on another level or when a portion of one of the

levels is outside of the domain of interest. Problems with blanked points in the lower

levels of a multigrid procedure are discussed in references [3] and [173.

The communications between levels can be illustrated by applying the NAM pro-

cedure to the system of embedded grids depicted in Figure 2. Treating this system

with the NAM procedure the levels are as indicated, assuming that level 1 provides

the best resolution and that level 2 provides better resolution than level 3. In this

case Level 1 restricts information to level 2 in region 1 and the remainder of level

22
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1 restricts information to level 3. Level 2 restricts information to level 3. The re-

stricted information in region 1 contains information from level 1 in the level 2 defect

correction. On the way back up level 3 prolongates the lower level correction to all

of level 2 (including region 1) and to level 1 except in region 1. Level 2 prolongates

a correction to level 1 in region 1. A grid schedule analogous to the FAS V-Cycle

diagram is shown in Figure 4 for the three level treatment of grids just described.

Another interesting aspect of local refinements in general is having multiple grids

on the same level as indicated in Figure 3 where level 1 contains two grids as indicated.

This grid is treated as part of level 1 because it receives no information from a higher

level. When this occurs the numerical algorithm is applied to both grids independently

and information is restricted to levels 2 and 3 as required. In general, multiple grids

can occur on every level and when coding the NAM procedure no designation needs

to be made between levels and grids. This means that grid 2 could be treated as just

another level without any prolongation or restriction with non-overlapping levels.

For faster convergence of this problem any of the grids may be coarsened and

added as additional levels. Care should be used when coarsening levels other than

the lowest leve!, For example, coarsening level 1 and inserting it as level 2 may result

IgMeNI 3

Figure 2: NAM Three Level System
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in a grid with worse resolution than the level receiving the restricted information.

This would result in forcing lower resolution onto the lower levels. The lowest level

(typically the global grid) is usually the safest to coarsen. Coarsening the global grid

will in general provide faster convergence by allowing larger time steps for a more

rapid development of the flow structure.

Lvlv,. 1, Grid 1

SLrevel 1, an£d 2

Figure 3: NAM Three Level System with Multiple Grids per Level

Restriction and Prolongation Operators

As in Chapter 3 these operators define the interpolation needed to move quantities

between grids. The arbitrary orientations permissible with NAM require a more gen-

eral set of operators. The interpolation stencils are found using the "stencil jumping"

technique discussed in Chapter 4. Bi-linear interpolation is used for both restriction

and prolongation operators as indicated in Eqs. 47, 48, and 49. The subscripts (i,j)

denote a general point in the higher level and (k, 1) denotes a general point in the

lower level.

=Iq (1q - +) [- n)q, , + 4- ' [(1 - ý)q ,+- + (47)
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(IIn Rn)k,1 k, 1 -l1(1 - 1 )(R/) (1 (R/9)nj] +

•,) +l ' (1 )n , 4- " ,/7) i (48)

In tne previous equatlion z9 is the volume. The appearance of the volume is due to

treating the residuals as point quantities during the interpolation process.

",( ,,,, 7+ ,+ ] + [ 4 + q ( l (49)
(I•,,q ),: =( --£)[(1 -•)k,1 + • k+1,, +k1, l, k+l

The bi-linear interpolation is not conservative, but is selected here based on its abil-

ity to handle communications with embedded grids [5]. In Chapter 6 FAS produces

the same results as the single grid calculation using nonconservative prolongation

and restriction operators. These results combined with successful applications on

embedded grids would tend to indicate that bi-linear interpolation is worth trying.

Alternatives include the conservative techniques used in unstructured multigrid 2̀ 0 i

and the techniques discussed in references [6, 71.

V-Cycle Procedure

Level

V2  22

V3  3

Figure 4: NAM Three Level Grid Schedule

The cycling procedure and grid scheduling is similar to that of the FAS method

and FAS is actually a special case of NAM. The NAM grid schedule shown in Figure 4

is for a three level configuration as in Figure 2. Several methods of scheduling are

possible depending on the system of grids to be used. The solution procedure follows

for the grid schedule in Figure 4.
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1. Iterate uv times on Aql = -At(L'(ql))

for ( n = 2 n < 3; n = n+l ) {

2. Calculate the residual R'-1 = L'-'(qn-')

for (m = n+; rm_< 3; m = m+l1){

3. Restrict solution to lower level qm =1i•jq-

4. Restrict residual minus defect correction to lower level R' IIm I(R-

(recall r.l = 0)

}

5. Calculate the defect correction r'• = L(n q n- 1) - R n

6. Iterate V, times on Aq = -At(Ln(qn) -_,)

}

for ( n = 3; n > 2; n = n-i ) {

7. Calculate the lower level correction(LLC) V = - q

for ( m = n-l; m > 1; m = m-1 ) {

8. Prolongate LLC and add to solution on finer level q- = qn -77;7f

}

9. Iterate i',• times on Aq'-1 = -At(Ln'-1(qn-') _ 'n-1

}

10. If solution is not converged go to 1



CHAPTER 6
RESULTS

The two dimensional 5' ramp near a flat plate shown in Figure 5 provides the test

case for comparing the techniques discussed in Chapters 2 through 5. By accurately

predicting the flow field for this test configuration the feasibility of the nonaligned

multigrid technique is shown. Solutions generated by the rest of the methods discussed

are to show the relative improvement of the nonaligned multigrid and to provide an

understanding of how the various components of the nonaligned multigrid work. The

algorithms are coded in "C" and the numerical solutions are generated using double

precision numbers on an Iris 4D/320VGX workstation. No attempt was made to

parallelize on this two processor machine.

Theoretical Solution

The theoretical solution to this test case is obtained from the oblique shock charts

and the normal shock tables for isentropic flow [191. The weak shock solution is given

in Table 1 and the shock angles are depicted in Figure 5.

Table 1: Theoretical Solution

Region I Region II Region III
M 2.00 1.83 1.60
p 1.00 1.20 1.49

pu 2.00 2.28 2.58
pv 0.00 0.20 0.00
e 3.79 4.49 5.37

p 0.71 0.93 1.25

27
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33.5

34.2

Figure 5: Problem Geometry

Single Grid Calculations

A single grid solution is obtained by applying the flux difference splitting (FDS)

algorithm to the 40 by 32 grid in Figure 6. Density contours from the solution are

plotted in Figure 7 after converging to machine zero. This solution does show the

general features of the shock structure; however, the first order FDS and the fairly

coarse grid combine to smear the shock waves and the zero pressure gradient boundary

conditions cause the shocks to curve near the solid surfaces. In order to gain better

accuracy grids with dimensions 80 by 64 and 160 by 128 are also uscd to generate

solutions. The 80 by 64 grid plotted in Figure 8 is obtained by quartering the grid

cells in the 40 by 32 grid. The 160 by 128 grid is too dense to be plotted clearly and

is obtained by quartering the 80 by 64 grid cells. Density contours of the resulting

solutions are shown in Figures 9 and 10. The contour plots show that as the number

of grid points is increased the dissipation becomes less and the curving near the solid

boundaries decreases causing the solution to come closer to the theoretical values in

Table 1.

The next area of interest is to determine the efficiency of the solution procedure

and the overall cost. In order to do this the following measure of the change in the

solution is generated for each iteration.
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R log1  [,a 4 )77 f- (f,)n,_/ - (f,)n2 ) 1 (50)
EN E1 E1 L1 7c Jtj11, , /

By looking at the history of this residual, plotted in Figure 11. and the CPU times

in Table 2 the cost of using an explicit scheme becomes apparent. The explicit FDS

scheme converges in a fairly slow manner due to the stability condition indicated in

Eq. 24. Since this is a steady state problem local tirre stepping is applied with a

Courant number of 0.96 in order to provide the largest time step in each grid cell.

With the addition of grid pcints the already slow convergence rate becomes even

slower due to the stability condition requiring smaller time steps as the grid spacing

decreases. This addition of grid points not only decreases the convergence rates. but

it also increases the CPU time as indicated in Table 2. Although these differences

in CPU time and convergence rates may not seerri that important for a problem of

this size, these factors become very limiting for more complicated three dimensional

problems.

_ _I _ _ __;

* ..... -- ---+---------J ------ 4_ _ _ _ _ _ _ _ _

I " I

SFi• gure-6:-40 3Sner

Figure 6: 40 X 32 Single Grid
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Figure 7: 40 X 32 Single Grid Density Contours

Figure 8: 80 X 64 Single Grid
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Figure 9: 80 X 64 Single Grid Density Contours

CONTOUR LEVELS

1.00000

1.02000

1 .04000

1.06000

1.08000

10000

1.2000

1.14000
I.16000

18000

1 20000

1.22000

24000

26000

1.28000
I . 30000

I .32000

1 34000

1 . 36000

1 .38000

1.40000

1,42000

1.44000

1 .46000

48000 Figure 10: 160 X 128 Single Grid Density Contours



32

Table 2: Single Grid Calculation Statistics

Grid Iteration CPU Time
40 X 32 550 131.6 sec
80 X 64 855 900.2 sec

160 X 128 1412 5863.0 sec

0iI i
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Figure 11: Single Grid Residual Histories
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Multigrid Calculations

Tht full .pprcxi-matilor. szheme (FAS) discussed in Chapter 3 is applied to the

g-ids of the previous section in order to obtain faster convergence.

Grid Coarsening

The first step is to coarsen the grids as indicated in Figure 12 for the 40 by 32

grid. The coarsening used here simply removes every other grid point on the current

level in each curvilinear coordinate direction to produce the next coarser grid which

will contain 1/4 the number of points of the current level [9, 10]. When doing this

it is important to preserve the geometry on the lower levels. This is accomplished

here by placing a sufficient number of grid points in front of the ramp such that the

leading edge point will not be eliminated by the coarsening procedure for the number

of levels that are used in these calculations.

Work Units

Before making any calculations the multigrid work unit [2, 9, 10] needs to be

defined. The work unit is the ratio of the number of grid points on the current level

to the number of grid points on the fine level. This means the work units are I on level

h, 1/4 on level 2h, and 1/16 on level 4h for the grid coarsening discussed above. With

this definition the work required for the restriction and prolongation operations is

neglected. This is the standard multigrid work unit definition which seems reasonable

since the cost of interpolation between levels is insignificant compared to the cost of

the FDS solution procedure. With this definition the work unit provides a means of

comparison between the single grid and multigrid convergence histories.
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FAS Results

Applying the FAS procedure to the g..ds (40 by 32, 80 by 64, and 160 by 128) dis-

cussed in the previous section yields the same solution (to double precision accuracy)

as those in Figures 7, 9, and 10, respectively. This result would seem to indicate that

the nonconservative restriction and prolongation operators defined in Chapter 2 are

accurate enough to keep from introducing significant error into the solution.

The residual histories for the two and three level calculations on the 40 by 32

grid are plotted in Figure 13 along with the single grid residual. Several calculations

were made varying the iteration count on each level in order to find the maximum

gain in convergence. It was fairly easy to find a good two level calculation, but

when an additional level is added the possible number of variations becomes large.

The iteration counts used for Figure 13 are given in Table 3. Comparing the two

and three level residuals indicates that the three level calculation could not achieve

an increase in performance over the two level calculation. Also note that the best

convergence on the three level calculation was achieved by running one iteration per

multigrid cycle on the coarsest level. The combination of these two would seem to

indicate that the 4h level is too coarse to handle the shock wave. The wider cells on

the 4h level, depicted as the bottom grid in Figure 12, are more likely to cause the

restriction and prolongation operators to straddle the shock wave resulting in faulty

communication between levels [9]. A conservative set of operators should help to

overcome this problem.

Similar results are obtained by looking at the convergence histories for the 80 by 64

grid in Figure 8. Figure 14 plots the residual histories for the single grid calculation

and for the two and three level FAS calculations. In this case the convergence is

slightly better for the three level calculation. The residual history indicates that the

third level helps to accelerate convergence early in the calculations, but the gain is

lost as the solution becomes more accurate. No four level calculations are attempted
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for this case since the three level results on the 40 by 32 grid did not provide any

improvement. The iteration counts used in these calculations are given in Table 3.

Figure 15 shows the residual histories for the single grid and the two, three, and

four level calculations on the 160 by 128 grid. In this case the four level V-Cycle

provides the best results as expected.

Several observations can be made from the convergence histories. First, the best

results occur when smoothing iterations are made (i - 0) when prolongating the

coarse grid correction. Secondly, the 40 by 32 grid results show that there is a practical

limit as to how course the grids can be and still help to reduce the number of work

units for the hyperbolic problem when nonconservative interpolation operators are

used. Additionally, a method of automatically determining the iteration count on the

various levels [9, 17] needs to be implemented based on the number of runs made to

find the iteration counts for the calculations presented here.

A direct consequence of the faster convergence rate provided by multigrid is the

reduced CPU time. As noted previously the restriction and prolongation operations

were neglected in the work unit calculations but are included in the CPU time. This

explains why the savings in CPU time indicated in Tables 3, 4, and 5 may not be as

large as the savings indicated by the work units.

Table 3: FAS Calculation Statistics on the 40 X 32 Grid

Levels 1/h V2h V4h V2h Vh Work Units Multigrid Cycles CPU Time
1 1 - - - - 550.000 - 131.6 sec
2 2 6 - - 2 396.000 61 94.8 sec
3 3 5 1 4 2 411.000 48 96.3 sec
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Table 4: FAS Calculation Statistics on the 80 X 64 Grid

Levels Vh V2h V4h V2h Th Work Units Multigrid Cycles CPU Time
1 1 - - - - 855.000 - 900.2 sec
2 2 4 - - 2 552.000 92 547.9 sec
3 4 4 14 4 4 545.625 45 547.0 sec

Table 5: FAS Calculation Statistics on the 160 X 128 Grid

Levels Vh V2h V4h V8h V4h V2h vh Work Units Multigrid Cycles CPU Time
1 1 - - - - - - 1412.00 - 5863.0 sec
2 4 8 - - - - 5 804.00 61 3345.3 sec
3 10 8 18 - - 8 10 791.25 30 3316.9 sec
4 12 9 8 14 8 9 12 775.78 25 3034.7 sec
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Figure 12: 40 X 32 Grid and Two Coarser Levels
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Figure 13: FAS Residual Histories on 40 X 32 Grid
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Figure 14: FAS Residual Histories on 80 X 64 Grid
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Figure 15: FAS Residual Histories on 160 X 128 Grid

Embedded Grid Calculations

The embedded grid approach is used here to provide an improved solution by

inserting local grids over the regions where the shock waves occur. Several variations

are attempted in order to predict the theoretical solution as accurately as possible.

50 Ramp Calculations

In order to provide a better understanding the embedded approach is first imple-

mented on a 5' ramp. This eliminates the reflected shock and makes the results easier

to interpret. A 16 by 16 local grid is embedded into a 40 by 32 grid as indicated in

Figure 16. The cell centered grids are plotted in Figure 17 to show the hole caused by

the local grid. Since all boundary points are blanked the overlapping regions appear

to be much narrower than they actually are.
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Aligning the local grid lines parallel to the shock wave allows the FDS to produce

a much more accurate solution than is possible on the global grid. The reason for

the improved accuracy is due to the assumption in FDS that the characteristic waves

propagate in a direction perpendicular to the grid interfaces [321.

The density contours from this two grid solution are plotted in Figure 18. This

solution is much better than could be obtained on the global grid alone and is virtually

the same as the theoretical solution ( regions I and II in Table 1 and in Figure 5).

Figure 19 shows the residual histories for the global grid alone and for the two

grid case. The residual for the embedded grid is obtained by using Eq. 50 on each

grid. For blanked points no contribution is made to the residual. This plot shows

that the cost of the embedded grid calculation (340.4 seconds) is greater than for

the single grid calculation (96.2 seconds); however, the solution on the embedded

system is so superior to that of the single grid that this cost comparison is virtualiv

meaningless. For the single grid calculation the dissipation of the first order FDS

causes the width of the predicted shock to be slightly wider than the width of the

local grid in Figure 16 at the back plane. The increased accuracy of this embedded

solution becomes apparent when comparing the width of the smeared shock to that

of the shock predicted in Figure 18.
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Figure 16: Embedded Grids for the 5° Ramp
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Figure 17: Blanking for the 50 Ramp
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Figure 18: Density Contours for the 5' Ramp Embedded Solution
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Figure 19: Residual Histories for the 50 Ramp Embedded Calculation
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5' Ramp Near a Flat Plate Calculations

Two grid case

Figure 20 shows the embedded grid configuration with the lines of the local grid

again parallel to the shock. The hole created in the global grid can be seen in

Figure 21.

Density contours of the solution obtained on this grid system are shown in Fig-

ure 22. Notice how much more accurately the initial shock is captured than in the

single grid solution (compare to Figure 7). The reflected shock is not resolved due to

the alignment of the local grid lines.

Comparing the residual histories plotted in Figure 23 with those in Figure 11

for the 40 by 32 single grid calculation shows that the number of iterations is more

than double that of the single grid at machine zero. A large part of this is due

to the introduction of the artificial boundaries into the domain (the front and back

boundaries of the local grid). The explicit communication between grids at these

boundaries hinders the development of the solution.

The solution on this system of grids requires 425.3 CPU seconds to converge to

machine zero. This is more than three times the cost of the single grid calcuiation.

This increase reflects the cost of making additional calculations on the local grid, the

cost of interpolations between grids, and the cost of running more iterations due to

the slower convergence.
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Figure 20: Two Embedded Grids for the 5' Ramp Near a Flat Plate

Figure 21: Two Grid Blanking for the 5' Ramp Near a Flat Plate
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Figure 23: Two Embedded Grid Residual Histories
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Three grid case

Based on the results of the two grid calculations a third grid that is aligned with

the reflected shock is inserted as indicated in Figure 24. The plot of the cell centered

grids in Figure 25 shows the holes for this grid system. In this case the local grid

from the previous section (referred to as grid 1) punches holes in both the new local

grid (grid 2) and in the global grid while grid 2 only punches a hole in the global grid.

The solution obtained with this grid arrangement is shown in Figure 26. The solu-

tion remains good for the initial shock but the reflected shock is still not sufficiently

resolved. Since the reflected shock is not resolved on grid I it cannot feed good values

to grid 2 hence grid 2 is incapable of capturing the reflected shock accurately.

Residual histories for this calculation are in Figure 27. Once again the cost is

increased by the addition of the embedded grid. This grid system requires 514.9

CPU seconds to reach machine zero.

F r4 h E d Gd re R Neara. Fa P

Figure 24: Three Embedded Grids for the 5' Ramp Near a Flat Plate
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Figure 25: Three Grid Blanking for the 5' Ramp Near a Flat Plate
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Four grid case

The addition of a third local grid (grid 3) is made in hopes of accurately repre-

senting both shocks near the reflection point. Grid 3 is a semicircle with its center at

the shock reflection point as indicated in Figure 28. The radial lines in this grid are

arranged such that one grid line will coincide with the initial shock and another line

with the reflected shock. In using this grid a singularity is introduced at the shock

reflection point. When the FDS scheme is applied to this grid the fluxes at this point

are set to zero to prevent flow through the solid wall. This new grid punches holes in

the three previous grids as shown in Figure 29.

Density contours of the solution obtained for this system are plotted in Figure 30.

This new solution is very accurate and is almost indistinguishable from the theoretical

solution.

The residual history for this grid system is plotted in Figure 31 and the CPU

time to reach this point is 865.0 seconds. Although this embedded system requires

many times the amount of work needed for the single grid, the solution obtained here

is far superior '.3 that in Figure 7. Actually, this embedded solution is better than

the solution generated on the 160 by 128 single grid and costs less to produce. The

iterations in Figure 11 must be multiplied by 16 to compare with the embedded grid

work units (this is due to one embedded work unit being equal to one iteration on

the 40 by 32 grid).
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Figure 28: Four Embedded Grids for the 5' Ramp Near a Flat Plate

Figure 29: Four Grid Blanking for the 50 Ramp Near a Flat Plate
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Nonaligned Multigrid Calculations

The goal of this section is to combine the improved solution obtained in the em-

bedded approach with the improved convergence of the multigrid in order to show

the feasibility of the nonaligned multigrid approach.

Restriction and Prolongation Operators

Prior to applying the nonaligned multigrid the restriction and prolongation oper-

ators need to be changed as indicated in Chapter 5. In order to determine how well

these new operators perform one of the two level FAS calculations was repeated. The

same solution was achieved requiring the same numoer of work units for both sets of

operators. Since the same solution was obtainable in the same number of work units

it appears that conservation is no more of a problem for the new operators than for

the old operators; however, this does not indicate what will happen when the grids

are no longer aligned. The new operators required approximately two seconds more

than the old operators for the test case (the two level 2-4-2 V-Cycle on the 40 by 32

grid). This slight increase in cost is attributed to the time used to apply the more

complicated interpolations and the time required for the "stencil jumping" procedure.

50 Ramp Calculations

Here the NAM procedure is applied to the embedded grid system of Figure 16 to

provide accelerated convergence. Designating the local grid as level 1 and the global

grid as level 2 the solution in Figure 32 is obtained.

Several calculations were made varying the iteration counts on the two levels in

an attempt to achieve optimal convergence. The resulting number of work units

required to reach machine zero are listed in Table 6 for five of these runs. This

shows the difficulty of finding the best iteration count per level to provide maximum
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convergence. This problem was also discussed in the FAS results. Since the severity

of this problem increases with the addition of more levels an automated switching

scheme is needed.

Eq. 50 is applied to the highest level at each point in the domain to obtain the

residuals. This is accomplished by removing any point from the residual calculation

that receives information from a higher level. The residual histories for the best case

from Table 6, for the embedded grid calculations, and for the single grid calculation

are plotted in Figure 33. This shows that the NAM calculations require approximately

one third the number of work units required by the embedded grid procedure. For the

run plotted, NAM requires 137.6 CPU seconds compared to the 340.4 CPU seconds

required by the embedded approach. This is a 59% reduction in CPU time.

Three attempts are made to further increase the convergence rates for this set of

grids. The first attempt is to coarsen level 1 to produce a new level 2 and moving the

global grid to level 3. The resulting three level NAM procedure requires 524.8 work

units and 133.6 CPU seconds to reach machine zero for the best iteration count per

level (vl = 2, V2 = 0, V3 = 3, i 2 = 1, ii = 2). This is not a significant improvement

over the two level NAM results. Level 2 in this case acts as a filter to smooth the

solution and residual being passed from level 1 to level 3. The same solution is

obtained as in the two level calculation.

A second three level NAM procedure is defined by making the local grid level 1,

the global grid level 2, and coarsening level 2 to make level 3. This system takes

only 469.7 work units requiring 114.3 CPU seconds to converge to machine zero. The

iteration count used here is L11 = 3, V2 = 2, V3 = 2, i2 = 1, and Ti = 4. This system

requires only 69.7 more work units (5.2 seconds) than the single grid calculation while

producing a far superior solution. This is a 69% reduction in the CPU time required

by the embedded grid approach.
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Figure 32: Density Contours for the 5' Ramp NAM Solution

The final attempt to converge faster than the single grid is made by generating

a four level NAM system by coarsening level 3 in the first three level procedure

discussed. The best case obtainable here was 474.95 work units. This may be caused

by the speed at which the solution is being generated on the coarse grid being hindered

by the two sets of artificial boundaries (the left and right sides of levels 1 and 2).

These results seem to indicate that the most significant gain in convergence will

come from simply implementing NAM on the existing embedded grid system. It also

appears to be better to coarsen the global grid to provide additional convergence.

Table 6: NAM Work Units

V1 V2  • Work Units

1 3 2 563.4
3 2 2 588.4
3 3 3 558.2
3 4 2 571.0

2 3 3 549.6
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Figure 33: Residual Histories for the 5' Ramp 2 Level NAM Calculation
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5' Ramp Near a Flat Plate Calculations

Two grid case

This calculation uses the grids of Figure 20 with the local grid considered to be

level 1 and the global grid to be level 2. Density contours of the resulting solution

are plotted in Figure 34. This shows the same inability to capture the reflected shock

as the embedded solution (Figure 22).

The residual plot in Figure 35 compares the residuals from the two grid embedded

calculations with the residuals of the current calculation. This plot shows that NAM

requires under half the number of work units needed for the embedded calculation.

This could be improved by coarsening the global grid but it is not attempted here

since the solution is not that good. The CPU time for the NAM is 174.8 seconds

while the embedded approach requires 425.3 seconds. The iteration count for this

case was v, = 1, V2  2, and L 1.
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Figure 34: NAM 2 Level Density Contours
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Three grid case

In this case the grids of Figure 24 are used. Level 1 contains the local grid covering

the initial shock, level 2 is the grid covering the reflected shock., and level 3 is the

global grid. Density contours of the resulting solution are plotted in Figure 36. The

solution is similar to the embedded results (Figure 26), both are having difficulty

capturing the reflected shock accurately. Once again this is due to the inability of

the grids to accurately model the physics near the top wall.

The residuals for this calculation and the three grid embedded solution are plotted

in Figure 37. 71'his case also requires approximately half the number of work units

required for the embedded procedure. NAM requires 259.7 seconds compared to 514.9

for the embedded calculation.
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Figure 36: NAM 3 Level Density Contours
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Four grid case

For this case the NAM is applied to the four grid system in Figure 28 treating

the circular grid as level 1, the grid aligned with the initial shock as level 2, the grid

aligned with the reflected shock as level 3 and the global grid is level 4. The four

level grid scheduling diagram is shown in Figure 38. The circled numbers indicate

the number of iterations performed on each level for a single NAM cycle. Density

contours of the resulting solution are plotted in Figure 39. These are similar to that

obtained by the embedded system.

Residual histories for this case are plotted in Figure 40. Comparing these to the

embedded grid residuals in Figure 31 shows faster convergence is achieved by the

NAM. CPU time required for NAM is 712.5 seconds compared to the 865.0 seconds

required by the embedded grids.

To further increase the convergence the global grid in this four level system is

coarsened to produce a five level system. The grid schedule is as shown in Figure 41

with the iteration count as indicated in the circles. The same solution is obtained in

only 623.8 CPU seconds. The residual histories are as indicated in Figure 42. This

is 27.9% faster than the equivalent embedded system.
Level
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4

Figure 38: NAM 4 Level Grid Schedule
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CHAPTER 7
CONCLUSIONS

The explicit first order flux difference splitting (FDS) was used to solve the equa-

tions governing inviscid fluid flow on a single grid for the 50 ramp and the 5' ramp

near a flat plate. Calculations were made for the Mach 2 case using local time step-

ping at a Courant number of 0.96. A grid refinement study was also performed on

the 50 ramp near a flat plate to show grid dependency of the solution and to show

thc iicreasilg ,o~t as the grid becomes finer.

The multigrid full approximation scheme (FAS) was applied to this nonlinear prob-

lem to provide increased convergence rates and reduced central processing unit (CPU)

time requirements. The solution was obtained independent of the number of levels

and independent of the number of iterations performed on those levels. The conver-

gence rate was determined to be very sensitive to the number of iterations performed

on the various levels.

Several systems of embedded grids were implemented to provide increased accuracy

near shock waves. Embedded grids were aligned with the shocks to take advantage of

the excellent shock capturing capability of the FDS scheme. Although this method

increased accuracy it degraded the convergence rate and increased the required CPU

time.

The nonaligned multigrid was introduced to provide increased convergence for the

embedded grid systems by treating the individual grids as levels in the multigrid so-

lution procedure. This technique was able to converge 69% faster than the embedded

grid procedure for the 50 ramp, and 28% faster for a more complex reflected shock

case.
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A great deal of work is still required to make the method into a "black box" en-

gineering tool. Some of the topics include automatic determination of the number

of iterations to perform on each level, automated grid scheduling for optimal perfor-

mance, and determining the allowable change in grid spacing between levels. Another

very important topic is developing a conservative procedure for communication be-

tween levels.

The current follow-on plan is to implement the NAM procedure in a viscous three

dimensional higher order implicit computational fluid dynamics (CFD) code currently

under development.
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The first order linear wave equation has the same form as the Euler equations

written in matrix form (Eq. 1, Chapter 2).

.q +2 f+aaf, 0 (51)o-9q+ M + o-17 = 0(1

In this case q is the dependent variable and the fluxes are fý = aq and f, = bq where

a and b are constants.

Applying the flux difference splitting (FDS) described in Chapter 3 produces the

following discretization, which is simply the scalar equivalent of Eq. 19.
nL+1

qi,j q ,J + (-f ,)n~ / , -n (fn, (52)
At i 1 /2,3  -1/2,, +( - (T1 )-, 1/2 = 0 (52)

Using Eqs. 20, 22, and noting that the left and right eigenvectors are simply reciprocals

for the scalar case, the numerical fluxes are reduced to
-- )n n' ( n t

f¢i+1/2 = aqi. + AC(q ,+ - qi'3) (53a)
-- , n 

n n- +

f)+1/2 = bq + A- (qw+• - q',)' (53b)

The actual fluxes fk evaluated at the discret- points are also represented in terms of

the dependent variable. The values for the non-positive eigenvalues depend on a and

b as indicated below. The case of a or b equal to zero is not considered since it is

trivial for the two dimensional case.

Case 1 fora >0 and b>O0-- A- =0, A- =0

Case2 for a<Oand b> 0 A- =a, A- =0

Case3 fora>0and b<0-- A =0, A- =b

Case4 fora<0and b<0 A- = a,A- =b

Substituting the numerical fluxes into Eq. 52 and rearranging yields

n,+1 n n nt +~~ n
i,. = q,- At [a(q - q'-'7) + A-(q,+l,, - 2q,, +q

- At [b(q,n - qn,- 1 ) + 1(q,,+ - 2q% + qn.-1 • (54)
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The next step is to apply the von Neumann (or Fourier) stability analysis [1]. This

is done by substituting

q n = (ne~ie"J. (55)

Where i = V/-ET into Eq. 54. Making the substitution, using trigonometric relations

and grouping terms in real and imaginary parts yields

= 1-2At [(a - 2A- )sin 2(!3/2) + (b - 2A)sin2 (a/2)j -iAt [asin 3 + bsinaj. (56)

Once the equation is in this form require II <- 1 to obtain the stability condition

on the time step size. Applying this restriction and solving for At.

4 [(a - 2Af-)sin 2(/3/2) + (b - 2A-) sin2(a/2)]
At <" < a sin (57)

[4 (a - 2 ) sin 2(06/2) + (b - 2,-,) sin2(a/2)] + [asinO + bsin

The four possible variations on the eigenvalues listed previously are now applied

to this equation and the most restrictive values for a and 0 are sought.

Case 1. Eq. 57 becomes

4 (a sin2(03/2) + bsin2(a/2))A t _ <.. (58)
4 (a sin2(3/2) + bsin2(a/2)) 2+ (asinO3 + bsin a) 2

The minimum value of the right hand side of this equation occurs at a =

0 = 7r causing the stability condition to become

At < 1  (59)

Case 2: Eq. 57 becomes

At < 4 (-a sin2 (3/2) + bsin2(a/2)) (60)

4 (-asin2(,3/2) + bsin2(a/2)) 2 + (asinO + bsin a) 2

The minimum value of the right hand side of this equation occurs at a =

7= r causing the stability condition to become

At< I (61)
- b-a
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Case 3: Eq. 57 becomes

4 (a sin'(i3/2) - bsin2(a/2))At < . (62)

4 (asin'(0/2) - bsin2(a/2))' + (asinL3 + bsina)2

The minimum value of the right hand side of this equation occurs at a

7= r causing the stability condition to become

1
At < 1 (63)

-- a-b"(3

Case 4: Eq. 57 becomes

4 (-asin'(0/2) - bsin'(a/2))

4 (-asin'(0/2) - bsin2(a/2)) 2 + (asin8 + bsina)2 (

The minimum value of the right hand side of this equation occurs at a

S= r causing the stability condition to becom e

1
At < I . (65)-a -a- b

The stability condition in general for FDS algorithm applied to the two dimensional

wave equation can be written as

1
At _<alb" (66)

It should be noted that this analysis assumes a linear difference equation with

periodic boundary conditions. The standard practice is to ignore these assumptions

which usually provides good results. To apply this condition to the Euler equations

the maximum eigenvalues (Eq. 14, Chapter 2) of the flux Jacobian matrix are sub-

stituted into the stability condition for the wave equation.

1
At < - (67)-ei+ c V/•2 + + ýV, + + c '7, + q
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