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Hamilton's principle and the equations of motion of an elastic shell with and
without fluid loading

Cleon E. Dean® and Michael F. Werby?

2Code 221, Numerical Modeling Division, Naval Research Laboratory, Building 1100, Stennis
Space Center, MS 39529-5004 USA

Abstract

It has proven quite difficult to employ exact elastodynamic theory to describe the behavior of
elastic vibrations on arbitrary bounded shells. In addition, exact theories preclude direct
interpretation of particular features observed due to the excitation of elastic shell surfaces. A
rather interesting approach to describe surface vibrations may be obtained by constructing a
Hamiltonian in some approximate form that assumes some correlation of motion of the outer
and inner shell surface. The class of theories that allow for this approach are referred to in
applied mechanics as shell theories. The interesting feature of this Hamiltonian approach is that
one can add various physical mechanisms to the Hamiltonian such as extensional motion, rotary
inertia, fluid loading, etc., and thereby study the individual contributions to resonance patterns
while adding physical insight to the fundamental processes that occur on shell surfaces. We
develop shell theories in this manner and examine various contributions via Hamilton's
principle. We believe that fluid loading has by and large not been treated adequately in the past,
and we place particular emphasis on the treatment of that contribution to this work.

1. INTRODUCTION

Sound scattering from submerged elastic shells is of interest to a broad community of
scientists and engineers. For example in the area of nondestructive testing ultrasonic scattering
is of considerable interest to the structural engineering community, while in the area of remote
sensing or object identification scattering from objects proves invaluable. The acoustical
scattering from elastic objects or more simply the generation of resonances from bounded elastic
shells involves the use of acoustic and elastodynamic theory. Exact solutions for scattering from
elastic targets exist for target shapes for which the elastodynamic equation is separable. For
three dimensional targets separability is only possible for spherical and rectangular targets. For
more complicated targets numerical techniques must be used. For axisymmetric smooth targets
the extended boundary method of Waterman has proven useful though limited and an
approximate theory would be desirable for more complicated targets. The purpose of this work
is to develop an approximate theory based on shell theory that would be of use for general
shapes that could also include structural loading. Shell theories afford a very powerful
methodology to "build in" structural features usually via a variational principle in which some
Largrangian or Hamiltonian is constructed by introducing physical features. The simplest
theories which always assume correlated motion of the inner and outer surfaces of the target
include kinematic features and potential energy terms based on the generalized Hooke's law
which leads to the lowest order symmetric mode. One can add rotational inertia to the
Hamiltonian which allows an antisymmetric mode. However the antisymmatric mode with just
this added feature does not have the correct asymptotic behavior. Timoshenko noted that by
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including shear distortion the antisymmetric mode cbeyed the correct asymptotic features. One
goes on from there to include higher order corrections. Further, proper fluid loading -- which
from our experience is no easy task -- must be introduced correctly. The proper inclusion of
fluid loading introduces a fluid borne wave: the pseudo-Stoneley wave. Clearly thin shell
theories are rather geometrical and must be constructed for each shape due to their dependence
on shape dependent dynamic factors. Non-spherical three dimensional objects present a
problem which we seek to address in the future. In this work we wish to develop and test a
suitable shell theory for spherical shells that can be readily generalized to spheroids and finite
cylinders. In the following section we outline the derivation of a shell theory with many of the
featured described. The theories, with various levels of sophistication, are then used to compare
with the exact method. The results are then discussed and future work is described.

2. DERIVATION OF EQUATIONS OF MOTION

In spherical shells membrane stresses (proportional to 8) predominate over flexural stresses

(proportional to %) where
1 h
PrTEa @

We differ from the standard derivation for the sphere [2] by retaining all terms of order 8%in
both the kinetic and potential energy parts of the Lagrangian and by considering the resonance
frequencies for the fluid loaded case to be complex. We note that this level of approximation
will allow us to include the effects of rotary inertia in our shell theory, as well as damping by

fluid loading. The parameter f3 itself is proportional to the radius of gyration of a differential
element of the shell and arises from integration through the thickness of the shell in a radial
direction. We will use an implicit harmonic time variation of the form exp(—icwr). We begin
our derivation by considering a u,v,w axis system on the middle surface of a spherical shell of

radius a (measured to mid-shell) with thickness 4, where u increases meridionally southward,
v increases latitudinally eastward, and w increases radially outward.

2.1. Lagrangian Variational Analysis
Our Lagrangian, L, is

L=T-V+W, (2)

where T is the kinetic energy, V is the potential energy, and W is the work due to the pressure
at the surface. The kinetic energy is given by

T = [+ i2)a+ x)sin 6eabdp, 3)

-h/2

where the surface displacements are taken to be linear:

x x ow
L =(1+2w-222 4
“ (+a)u a 2o 4)
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W, = W. (5)

The motion of the spherical shell is axisymmetric since the sound field is torsionless. Thus
there is no motion in the v-direction. Substitution of Eqgs. (4) and (S) into Eq. (3) yields, after

integration over x and ¢,

* S K h’ oW
T = —+ haHia? - 2A—— + — ) —
np, . + 3 + Yu (80 4 i 20
h h3 oW, 2
e e e ) —— ha
oo+ 50 2+ )W’ 1de, (6)

or, in terms of S,

T = np,ha? [ [(1.88* + 687 + D (368" + 632),;%‘5

+(1.86* +/3’)( )2 + (B + 1)%?]sin 646, (7

where the first and last terms in square brackets in Eq. (7) are associated with linear
translational kinetic energies and the middle two terms are associated with rotational kinetic
energies of an element of the shell.
The potential energy of the shell is
2% ph/2 2.
= -j L (Osee + Opy€04)(x + @)’ sin Bdxd6dg, (8)

A/2

where the nonvanishing components of the strain are

£ l(a“+w)+ ﬂ‘-—i— 9)
® a\de 30 06’

and

£, = -‘l;(cot9u+w)+§cot0(u-—%w5), (10)

and where the nonzero stress components are

l-Ev’(e"+V£”)' (11)

O =
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and

E
Oy = i—_—_7(e,, + VEgy), (12)

where E is Young's modulus. By substitution the potential energy becomes

2% phi/2 X au xaz xaw
=".[J .[ [ VG +a)2 [A+=)— - +w2]+{cot9[(l+—)u—;-a—]+w}2

A12 a 90 a0é*
2
+2v{cot9[(1+—)u———]+ }[(1+5-)ﬁ—5a — +w] | |(x +a)’ sin 8dxd0, (13)
aod 00 adb
which after integration is
_ _REh 2 Ju
l_vzj ((w —)2+(w+ucot9) +2V(w + = )(w+ ucot 6)
ou iw, ow ow ou Fw
+B(— 6 392) cot? O(u — — 5 )2+2vcot8(u—-55)(—a—0-— a‘92)]} sin 6d6. (14)

Terms in the potential energy proportional to 32 are due to bending stresses.
And finally, the work done by the pressure of the surrounding fluid on the spherical shell is
given by

W =2za* [ p,wsin 640, (15)

where p, is the pressure at the surface.

2.2. The Lagrangian density and its equations of motion

Integration along the polar angle @ is intrinsic to the problem, therefore we must turn to a
Lagrangian density formulation to solve for the equations of motion. Our Lagrangian density is
just

L = np,ha’[(1+ 6B* +1.8f*)a* - (682 + 3. 6ﬁ‘)u +(;32 18B‘)(

+(1+ﬁ2)W ]Slne——l *Eh {(w+_8 )2+(w+ucot0)’+2v(w+—a )(w+ucot9)
*w ow., ow_odu J*w
2 e— — 2 -— — o— — —
+p [( 3 5 902) +cot? O(u —) +2vcot 8(u 39)( 20 36 —)]}sin@

+27a p.wsme (16)




with corresponding differential equations

L doL _daL
u  d0du, dtou,’

and

0=

0= dL d IL daL+ d? 8L+d2 L
ow  dOow, dtow, dbdtow, db* dw,,’

where subscripts der.ote differentiation of the variable with respect to the subscript.
By substitution of Eqgs. (17) and (18) into (16) we obtain

2
0=(1+p5% [iozli+cot0%-(v+cot B)u} ﬁ’ 38’ —ﬂ’ te%

2 2 2’1_‘_’1 2 4 2
H(A+ v)+B}(v+cot 9)]3‘9 c:[(1.8ﬁ‘+6[3 +1) -(1.88*+38 )aw2
and
(l—v’)a =p? 3+2ﬁ2cotaa

Eh 20 26”
+cot0[(2 - v+cot? 8)B% — (1 + V)Ju - /32——-2;3’ cot f——

2
+B2(1+ v+ cot? 0) - p*cot6(2 - v+cot? 9)-———2(l+ v)w

- [+ v)Q + %)+ B cot® 0)]

3 2

2 Q
303:’ +3B%)cot@

3‘2
+(1.88* +/32) 2 cotd-(B? +1)

+—2[-(1.8ﬂ‘ +38%)
C’
ad
36%or?

+(1.88* +B*)

d8or’

These differential equations of motion (19) and (20) have solutions of the form

— dP
-— - 2 1/2_.
u(n) = got!.(l n?) dn,

and

wm = S W.em.
a=0
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(17)

(18)

(19)

(20)

(21)

(22)
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where 1) = cos@ and P,(n) are the Legendre polynomials of the first kind of order n. When
the differential equations of motion (19) and (20) are expanded in terms of Eqgs. (21) and (22),

we obtain a set of linear equations in terms of U, and W,, whose determinant must vanish. We
shall consider two cases: with and without fluid loading.

2.3. Vacuum case
The simpler case is that when the spherical shell is surrounded by a vacuum such that there is

no damping. In this case, the pressure at the surface vanishes: p, = 0. The set of linear
equations the expansion coefficients must satisfy are

0=[Q*(1+68%+1.8B8*)-(1+BH)«x|U, +[Q*(3B% +1.88%) - B*x - (1 + V)IW,, (23)
and

0=-21,[(x-3)B*-188* +1+ viU_ +[Q*(1+2B* +1.88*)-2(1+ v) - B*xA W, (24)

where Q=wa/c,, x=v+A,~1, and 4, = n(n+1). In order for Eqgs. (23) and (24) to be
satisfied simultaneously with a non-trivial solution the determinant of the system must vanish:

0=0%1+68% +1.88%)(1+28% +1.86*)

+Q*((38% + .82, [(x -3)B* - 1.88* +1+ v]

—H2(1+ v) + B*xA, )1+ 6B% +1.88*) — (1+ B*)x(1 + 2% + 1.88*))

+(1+BH)K(2(1+ v)+ B2kA ] - A, [(x - 3)B2 - 1.88* + 1+ V(B2 k +1+ v). (25)

Since there are no damping terms, the shell vibrates theoretically forever. Thus, the normalized

frequency Q can be taken to be real. Equation (25) is quadratic in Q?, thus we expect two real
roots to (25) and thus two modes for the motion of the shell. They are the symmetric and
antisymmetric modes.

2.4. Fluid loaded case
For the fluid loaded case, we must consider a modal expansion of the surface pressure in

terms of the specific acoustic impedance z,. In its most general form this is

p(a,6,¢) = 2 i z W, P"(cos6)cosmg, (26)
=0 m=0

where

z, =ipc W () (27)

The specific acoustic impedance z, can be split into real and imaginary parts:
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z, =r,—iom, (28)
where
ih (ka)
= Red —2——3, 29
e °{h:<ka)} @2
and
m, = —PE 1| () | (30)
] h(ka)
For the case we are considering of axisymmetric motion, the surface pressure is given by
P.(0) = - z,W,P.(cos), (31)
a=0
or
P.(6) = =) (~iwW,r, — *W,m,)P,(cos ). (32)

a=0

Use of Eq. (32) in our set of differential equations of motion (19) and (20) yields the following
set of linear equations for the expansion coefficients in the case of a fluid loaded spherical shell:

0=[Q*(1+6B8* +1.88*) - (1+B)x|U, +[Q*(3B* +1.88*) - B*x - (1+ V)IW,, (33)

and

0=-4,[(x-3)*-188+1+ V|U,

HQ (1 + @ +20% + 1.88*) - 21+ v) + Qiy - B*xA, W, (34)
where
m
= -t 3
Yy >

and
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r,
hP.

Again the determinant of Eqs. (33) and (34) must vanish. However, in this instance the value

of Q must be taken to be complex; the resonances have a width that depends on the damping.
The result of setting this determinant to zero is

(36)

0= Q%01 +6B +1.88*)(1+a +25* +1.86*)

+Qliy(1+6p% +1.88*)

+Q*{(38% +1.88*)A.[(x - 3)B* - 1.88° +1+ v]

201+ V) + B kA, J(1+ 6% +1.88*) - (1+ B*)x(1 + a + 2% +1.88*))

+Q[~iy(1+ p*)x]

+H1+ 821+ v) + B2xA, 1 - A [(x = 3)B% —1.88* + 1+ VI(Bix +1+ V). 37

Equation (37) has four complex roots. From work with an exact modal solution to the
problem, we expect two roots to be associated with the symmetric and antisymmetric modes of
the shell. We expect the other two roots to be associated with a water-borne psecudo-Stoneley
wave. :

3. CONCLUSIONS

The next step is to plot the roots of Egs. (25) and (37) to compare the resonances predicted
by these models with those given by exact modal expansion solutions. By suppressing @ and

7, the model associated with Eq. (37) reverts to the vacuum case model associated with Eq.

(25). Similarly suppression of factors of f in Eq. (25) will result in a reversion to a previously
derived solution [1]. We may then rank the three different models according to their degree of
physicality and compare their results for various relative shell thicknesses against each other and
against the exact results of the modal expansion model. We may also consider the limitations of
each of the models including the exact solution, as well as those of shell models in general.
These models, fluid loaded, vacuo case, and membrane, are successively less physically
sophisticated and give successively less good comparison with exact (modal expansion) results.
Starting with the least sophisticated model, we see in Fig. 1 thick spherical steel shell
dilatational (symmetric) and flexural (antisymmetric) mode resonances calculated by the
membrane model. Here and in the succeed’ng figures thick means A/a = 0.1; thin means h/a =

0.01. The shell material is a generic steel with density p, = 7.7 times that of water, shear
velocityv, = 3.24 km/s, and longitudinal velocity v, = 5.95 km/s. The surrounding fluid is

taken to be water with density p = 1000 kg/m3 and sound velocityc, = 1.4825 knys. The
symmetric mode shows a good comparison between exact and shell theory predictions, but the
antisymmetric shell theory results for this approximation compare poorly with the exact flexural
results. Note that some symmetric mode resonances were not found by our exact theory
algorithm. In Fig. 2 we see thin spherical steel shell dilatational (symmetric) and flexural
(antisymmetric) mode resonances calculated by the membrane model. Again there is good
comparison between dilatational (symmetric) mode resonances calculated by the two methods,
except for the first couple of resonances. The exact flexural resonances are highly damped; the
few resonances seen are water-borne pseudo-Stonely resonances. And again the shell theory
flexural (antisymmetric) mode resonances do not asymptote properly with increasing order. In
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Fig. 3. we have thick spherical steel shell dilatational (symmetric) and flexurai (antisymmetric)
mode resonances calculated by shell theory without fluid loading (vacuum). As in the
membrane model the shell theory and exact calculations compare well for the dilatational
(symmetric) mode resonances. In contrast with the membrane model, however, the exact cnd
shell theory calculations for this model show much better agreement for the flexural
(antisymmetric) mode resonances. This model does not include fluid loading, but does include
the effects of rotary inertia. The vacuum shell theory flexural mode resonances do not
asympto.c for large size parameter ka to the exact results, however. In Fig. 4. we see thin
spherical steel shell dilatational (symmetric) and flexural (antisymmetric) mode resonances
calculated by shell theory without fluid loading (vacuum). As in the membrane model the shell
theory and exact calculations compare well for the dilatational (symmetric) mode resonances
except for the first couple f resonances. This vacuum model does not have fluid loading, and
has insufficient damping for the first two dilatational (symmetric) mode resonances. Again, the
flexural (symmetric) mode resonances show roughly the correct behavior, but it is not possible
to tell what the asymptotic value of the phase velocity would be for large size parameter on this
scale. Nextin Fig. 5. we have a plot of thick spherical steel shell dilatational (symmetric) and
flexural (antisymmetric) mode resonances calculated by shell theory with fluid loading. As in
the vacuum case as well as for the membrane model, the dilatational (symmetric) mode
resonances compare well for exact and shell theory methods. The flexural (antisvimmetric)
mode resonances, as calculated by shell theory with fluid loading, do not have tiie correct
asymptotic limit for large size parameter, although they do exhibit the correct behavior for lower
values of ka. Finally, in Fig. 6. we see thin spherical steel shell dilatational (symmetric) and
flexural (antisymmetric) mode resonances calculated by shell theory with fluid loading. The
exact and shell theory calculations agree well for the dilatational (symmetric) resonances and
exhibit a marked improvement for the first several shell theory symmetric mode resonances.
This 1s due to the inclusion of fluid loading in the model. The flexural (antisymmetric) mode
resonances show the appropriate behavior on this rather limited size parameter scale.

The proper correction for the large ka asymptotic resonance behavior is most easily found by
including the shear stress distortion along with a Timoshenko-Mindlin{2,3] shape factor.
Inclusion of the shear distortion in the potential energy would make the flexural modes
asymptote to the coincidence velocity and the shape factor can be adjusted so that they
asymptote (o the Rayleigh velocity as expected.
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