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Chapter 1

Introduction

The study of low-frequency scattering was initiated by Rayleigh [1] in 1897 and today the
term "Rayleigh scattering" is often used instead of "low-frequency scattering". Kleinman [2]
gives the following definition of Rayleigh scattering:

We are dealing with Rayleigh scattering when the far-zone field may be expanded
in a convergent series in positive integral powers of the propagation constant k.

The starting point in a Rayleigh scattering calculation is the expansion of the unknown
fields in powers of k and then the determination, from Maxwell's equations and boundary
conditions, of the unknown expansion coefficients, which are functions of the geometry of the
scatterer and the angles of incidence and observation. This procedure is used by Stevenson 131
and by Asvestas and Kleinman [4] to determine the low-frequency electromagnetic scattering
from perfectly electrically conducting three-dimensional bodies.

However, as noted in [2] this definition of Rayleigh scattering cannot be used for two-
dimensional scattering problems since the scattered field in general does not have a conver-
gent expansion in powers of k. The two-dimensional fields cannot be expanded in powers
of k because the two-dimensional free-space Green's function is a Hankel function which
has a branch point at k=O, whereas the the three-dimensional free-space Green's function is
analytic in k.

In the literature much work on low-frequency scattering from general three-dimensional
bodies has been published [2], but it seems that only van Bladel [5] and MacCamy [6]
have done work on low-frequency scattering from general two-dimensional bodies. In [5] the
low-frequency scattering from arbitrarily shaped dielectric and conducting cylinders with
finite cross sections is considered. For transverse magnetic (TM) polarization [5] uses a
time-harmonic integral equation to obtain the low-frequency behavior of the total current
from which the low-frequency scattered field is calculated. For transverse electric (TE)
polarization an expansion of the current in integral powers of k is assumed. As seen from
the previous discussion and from the exact eigenfunction solutions for the circular cylinder [7,
ch.2] and strip [7, ch.4] such an expansion does not exist. However, only the first two terms
in this power series expansion are used in [5] and in this paper it will be shown that the final
TE results in [5] for perfect conductors are also correct. Reference [6] contains the formal
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low-frequency expansion of the scattered fields from two-dimensional perfect conductors with
finite cross section in cases where the incident field can be expanded in even powers of k.
However, no explicit expressions for the expansion coefficients are given.

There are several reasons for being interested in two-dimensional scattering solutions.
They can be used directly as approximate solutions to certain three-dimensional scattering
problems. For example, the field close to the middle of a long finite rod can often be
well approximated by the field from the corresponding infinite rod. Also, two-dimensional
scattering solutions can be helpful for validating computer codes.

Another important reason for being interested in two-dimensional solutions is that they
can be used to determine three-dimensional incremental length diffraction coefficients. These
incremental length diffraction coefficients can in turn be used to determine scattering contri-
butions from, for example, curved ridges (bumps) and channels (dents) that have constant
cross sections. The three-dimensional incremental diffraction coefficients can be found di-
rectly from the corresponding two-dimensional far fields using a direct substitution approach.
No integration, differentiation, or specific knowledge of the current on the conductor is
needed. This direct substitution procedure was first developed by Shore and Yaghjian [8] for
planar surfaces and then extended by Hansen and Yaghjian [9] to general two-dimensional
scatterers. To apply this procedure one must, in general, be able to evaluate the two-
dimensional far fields for both real and complex angles of observation. Therefore, one needs
analytical expressions for the two-dimensional far fields.

Analytical expressions for two-dimensional far fields from single cylindrical bumps and
dents can also be used in conjunction with the work of Twersky [10] to calculate the scattering
from a random distribution of bumps or dents.

The purpose of this report is to determine the leading terms in the low-frequency ex-
pansions of the scattered electromagnetic far fields for the following three types of two-
dimensional perfectly electrically conducting scatterers:

1. An arbitrarily shaped cylinder with finite cross section

2. An arbitrarily shaped cylindrical bump (protuberance) on a ground plane

3. An arbitrarily shaped cylindrical dent (indentation) in a ground plane.

The results of this paper apply to bumps and dents that are continuously lined by a
conductor and thus they are not generally valid for bumps and dents that contain slits. The
scatterers are illuminated by plane waves propagating in directions normal to the axis of
the cylinders, and the two polarization cases, TM and TE, are treated separately. Since
the scatterers are perfectly conducting the low-frequency solutions for normal incidence can
be immediately generalized to obtain low-frequency solutions for oblique incidence (see, for
example, [11, sec.8.15] or [7, ch.11).

As mentioned above, the unknown field for two-dimensional scatterers, unlike the field
for three-dimensional scatterers, cannot be expanded in powers of k. Instead we take the
following approach: The Green's functions and incident field in the time-harmonic integral
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equation for the current is expanded for small k to obtain an integral equation for the low-
frequency current. From this low-frequency integral equation we find the leading terms in
the low-frequency expansion of the current and calculate the low-frequency far field.

The low-frequency expressions for the scattered fields from the cylinders with finite cross
section are derived in Chapter 2. For the cylindrical bump and dent the scattered fields
are written as the sum of a known reflected field and a diffracted field. The low-frequency
expressions for the diffracted field from the bump and dent are derived in Chapter 3 and
Chapter 4, respectively. In Chapter 5 the low-frequency expressions are verified in cases
where exact time-harmonic eigenfunction solutions exist and the constants are calculated for
a number of geometries. A summary of this work was first presented in [121.

3



Chapter 2

Cylinder with finite cross section

The cylinder with finite cross section illuminated by the plane-wave field (Ei, Hi) is situated
in a rectangular coordinate system shown in Figure 2.1. The scatterer extends uniformly to
infinity in the +z and -z directions and the curve that describes the finite cross section of
the scatterer in the x - y plane is denoted by S. The outward normal to the scatterer is fi
and the tangent unit vector to S is i = i x fi. A characteristic dimension of the scatterer in
the x - y plane is denoted by d. In addition to the rectangular coordinates (x, y, z), circular
cylindrical coordinates (r, 0, z) given by x = r cos 4, y = r sin 4, and z = z will also bE used.

The incident plane-wave field propagates in a direction, designated by 4i, normal to the
z-axis. As usual, the scattered field (Ell, H8) is defined as the total field (E, H) minus the
incident field (Ei, Hi).

Throughout the report ejwt time dependence is suppressed in all the time-harmonic equa-
tions.

2.1 Transverse magnetic (TM) polarization

The incident electric field is given by

-i(f) = lejk(z coo4'+1#sin0') (2.1)

where k is the propagation constant. The low-frequency current is determined in Section
2.1.1 and in Section 2.1.2 it is integrated to get the low-frequency far field.

2.1.1 Low-frequency current (TM)

To determine the low-frequency far field we first determine the low-frequency current. As
we shall see, for the cylinder with finite cross section for TM polarization it is sufficient to
know the total current flowing in the z-direction on the cylinder. To find this current we
use the vector potential for the scattered field

A(f) = jG(,,f')R(f')ds' (2.2)
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Figure 2.1: Cylinder with finite cross section.

from which the scattered fields are found as

-j/V xVxA, H 3=VxA. (2.3)

Here G(f, f') is the two-dimensional free-space Green's function

G(, = e) -H(2)(k I - '' I) (2.4)

and Kf (f) = MK2 (f) is the current on the cylinder. Because the vector potential has only az-component and the free-space Green's function satisfies the scalar homogeneous Helmholtz
equation for f 6 f' we find from (2.2) and (2.4) that

E:(f) = -Jkv f •sG(, f')K2 (f)ds' (2.5)

which is a relation between the scattered electric field and the current on the cylinder.
Equation (2.5) and the boundary condition of zero tangential electric field on the con-

ductor yield the integral equation [13],[14]

E(. = jkr ! G(f, f')K.(f')ds', f E S (2.6)

where the bar on the integral sign indicates that the singularity at f = f' is excluded.
From the small argument approximation for the Hankel function we find that for f 6

IG"=--lnkd+O((kd)0), kd-+ (2.7)
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where d is a characteristic dimension of the cylinder.
Because the incident electric field in (2.1) for low frequencies is approximately equal to i

on the circumference S of the scatterer it is assumed that the total current for low frequencies
is non-zero, that is,

Js K,(f')ds' $ 0. (2.8)

This assumption is confirmed by the eigenfunction solutions for the circular cylinder [7, ch.2]
and strip [7, ch.4].

Inserting the expansion (2.7) for the Green's function into the integral equation (2.6) and
using (2.8) yields the low-frequency behavior of the total current

-ln kd k, If- Kz(f')ds' , I , kd -- 0. (2.9)
2r VE S (2.9

2.1.2 Low-frequency scattered far field (TM)

We will now find the low-frequency far field by integrating the low-frequency current given
in (2.9). From the asymptotic expansion of the Hankel function it is found that

e- jr/4 e-jkr ))

G(fr') e 2=t v [1 + jk(x'cos ¢ + y'sin 0) + O((kd)2 )], r --+ +oo. (2.10)

When we insert (2.10) into the integral (2.5) for the scattered field we find that the low-
frequency far field is given by

ke-j 3 'r 4 • --j- e-2Pf K, (f') ds . .12 V2_ -r V f kr=s

Substituting the integral of the current from (2.9) into the field expression (2.11) we find the
final low-frequency expression for the far field [5]

J_- _ -- ./4 e- krE•(r ,, e - /k• (2.12)

Note that In kd ,- In Akd as kd -- 0 when A is a positive constant so that d can be any
characteristic dimension of the cross section of the scatterer. Furthermore, it is noted that
the low-frequency scattered field does not depend on the shape of the finite cross section but
only on its characteristic dimension.

The expression (2.12) checks with the low-frequency results for the circular cylinder [7,
ch.2] and strip [7, ch.4] obtained from exact eigenfunction solutions.

It should be noted that the expression in (2.12) for the far field cannot be obtained from
the solution to the purely electrostatic or magnetostatic problem in which the scatterer is
situated in the static field Eit k=0 or /'ilko, respectively:

Since the total electrostatic field has only a z-component one finds from Maxwell's
equations that it must be a constant and therefore zero because it is zero on the surface

6



of the scatterer. Consequently, the scattered electrostatic field equals the negative of the
incident field. The normal component of this electrostatic solution is zero everywhere so
that the charge on the conductor is zero. Moreover, this electrostatic solution gives no
information about the current on the conductor and thus no information about the scattered
time-harmonic fields.

As part of the solution to the magnetostatic equations (V x ft = 0, V - H = 0, and
n • ft = 0 on S) we can have a total current on the conductor. However, the value of this
current is not determined by these magnetostatic equations.

2.2 Transverse electric (TE) polarization

In this section we will determine the low-frequency far field in the case of TE polarization.
In Section 2.2.1 we determine a low-frequency expansion of the current and in Section 2.2.2
we integrate this low-frequency expansion to get the far field.

The incident electric and magnetic fields are here given by

/i(f) = i k(xcos 0+y in ') (2.13)

and and V-/Y-(sin 4'_C - cos ) k'+ysin k). (2.14)

2.2.1 Low-frequency current (TE)

To obtain tho low-frequency current we will insert the low-frequency expansions for the
Green's function and the incident field into the two-dimensional magnetic field integral
equation. We will start by deriving this integral equation. Using the relations (2.2)and
(2.3) invo'vi the vector potential and the fact that

V x a•#f() -iKt(f') nG(f , f (2.15)

where t and - refer to the tangent -d normal unit vectors in Figure 2.1, we obtain

H;(1)(= - (f K() a-G(r, i')ds' (2.16)
S On'

which is a relation between the current and the scattered magnetic field.
We now let f in (2.16) approach a point on S and use the result from [14, App.] of an

integration near the singularity at r' = f and the boundary condition H, = -Kt on S to get
the magnetic field integral equation [14]

Hi (r) K I (f'-G(r )ds' - IK,(f), f• S. (2.17)
is O~n' '2
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The bar on the integral sign indicates that this is a Cauchy principal value integration. To
determine the low-frequency expansion of the current we use the small argument expansion
of the Hankel function to show that

a-G(f, 1') = 4-9GO(f, ') + O((kd)2 In kd) (2.18)
Oin' Oin'

where GO(V, i') is the static two-dimensional free-space Green's function given by

1 27r - (2.19)

The term of order (kd) 2 In kd in (2.18) is non-singular at f = f' ; in fact, it tends to zero as

Letting kd -- 0 in the integral equation (2.17) and using the expansion (2.18) we find
that the first term Kt in the low-frequency expansion of the current Kt satisfies the integral
equation

1 = IO(f -7 G0 (ff')ds' - -K?(f), f E S. (2.20)

The uniqueness of the solution to this integral equation has been proven in [15].
We will now show that the solution to the integral equation (2.20) is related to a magne-

tostatic problem: A static magnetic field and current satisfy the relation (2.16) with G(f, f')
replaced by G°(f, f'). Furthermore, because the second term in the expansion (2.18) of the
derivative of the Green's function is non-singular at f' = f it follows that the integral equa-
tion (2.17) holds in the static case. Equation (2.20) is thus the integral equation for the
static current when the scatterer is situated in the impressed magnetostatic field

H-ltatic = Hjlk=O = i. (2.21)

Let H° be the solution to this static problem. Then since V x H0° = 0 we find that H° is
a constant. Furthermore, the impressed magnetostatic field in (2.21) satisfies the boundary
condition fi • f•o = 0 on the conductor, and since the scattered field must vanish far away
from the scatterer it follows that

H-I° = fIHtatic = z. (2.22)

We can therefore write the current K#(r) as

Kt() = -1 + Kt(f) (2.23)

where KT(O) --+ 0 as kd --+ 0. We have hereby obtained the first term in the low-frequency
expansion of the current and we will now find the second term.

If we use the expansion (2.23) of the current, the expansion (2.18) of the Green's function,
and (2.20) in the integral equation (2.17) we find that the second term 1(t in the low-
frequency expansion of the currcnt Kt satisfies the integral equationr a 1

jk(xcosq0 + ysin 0() = G(f,f')ds'- -KI(f), f; E S. (2.24)2(



Consequently, the second term is of order kd and we can expand the current as

Kt(f) = -1 + kdK°1(f) + KNr(O) (2.25)

where IK' = 'K1 and -Ef" -- 0 as kd - 0
We will now show that the current K°', which is independent of kd, can be found from

the solution to the electrostatic problem in which the scatterer is situated in the impressed
electrostatic field

tatic = Ek=O sin ' cosq€j. (2.26)

Let the electrostatic solution be denoted by Ro. Then V = 0, that is, the electrostatic
field is solenoidal. In Appendix A it is shown that because of this and because the total
charge on the conductor is zero the field -Eoi + E_ is conservative. We can therefore
introduce a scalar potential Fn so that -Eoi + EUj -r- 1 VFT. Defining F = ; one
finds that

BOP /-/V XP (2.27)

and the electrostatic field is thereby written in terms of the vector potential FO. Because
the electrostatic field is irrotational, that is, V x Po = 0 it follows that f? satisfies Laplace's
equation V 2F- = 0. Since the tangential component of the electric field is zero on the con-
ductor, F? satisfies the Neumann boundary condition on the conductor. Hence, F0 satisfies
the same differential equation (Laplace's equation) and the same boundary conditions on the
conductor (Neumann type) as the z-component of a magnetostatic field. If we furthermore
require that the potential FO" for the scattered electrostatic field tend to zero at infinity we
find that F? satisfies the integral equation (2.17) with H, G, and Kt replaced by FP, Go,
and -F°, respectively. The impressed electrostatic field given in (2.26) corresponds to the
impressed vector potential

Fý(f) = xcos 0'+ ysin 0 + C (2.28)

where C is a constant. The integral equation for F? is thus

xcosqi + ysin~' + C = - F !0(() G(f ,• ')ds' + f E S. (2.29)
is 8n' 2Z(.9

Using the result from [14, App.1 of the integration near the singularity at f' = f and the
divergence theorem in the region bounded by S one finds that

C = - j G(f, f)Cds' + IC, f; E S. (2.30)
,sOn' 2

Consequently, the constant function C on the left hand side of the integral equation (2.29)
only adds the constant C to the solution to (2.29) with C = 0. Because we may add a
constant to the potential P0 without changing the field E0 we can let C = 0 in the integral
equation (2.29).

9



By comparing the integral equations (2.29) with C = 0 and (2.24) and noting that the
solutions are unique one finds K(t'(f) = -fJF (f), E F S, which completes the proof that the
second term in the low-frequency expansion of the current can be found from the electrostatic
soli'tion. The low-frequency expansion of the current is thus

K#) = -1 - jkF• (f) + Ktrr(f) (2.31)

where FO satisfies the electrostatic integral equation (2.29) and -I(' -- 0 as kd -+ 0.
In this Section we have shown that the first and second term in the TE low-frequency

expansion of the current are of order (kd)° and kd, respectively. Since the second term in
the low-frequency expansion (2.18) of the derivative of the free-space Green's function is of
order (kd)2 In kd it is seen from the integral equation (2.17) that the third term in the low-
frequency expansion of the current, in general, will be a function of kd and In kd. Therefore,
as noted in the Introduction, the current cannot be expanded in a power series in kd.

2.2.2 Low-frequency scattered far field (TE)
We will now calculate the far field scattered by the current given in the expansion (2.31).
Using the asymptotic expansion of the Hankel function one finds that

a G(ff') ,, k- e--kr [1 + jk(x' cos 0 + y' sin 0) + O((kd)2 )]h' . (2.32)

as r --* +o0. Inserting (2.32) and the current expansion (2.31) into the expression (2.16) for
the scattered magnetic field one finds that the scattered field to order (kd)2 is given by

H '(f) - -(kd) 2 e"V/4 -jk[ J I cos 0 + y' sin q)'ds' + r. F•(i')fi'ds']. (2.33)

Applying the divergence theorem one finds that the first term in the brackets of (2.33) equals
the area bounded by S, that is, the area of the cross section of the scatterer. Integrating the
second term in the brackets of (2.33) by parts, and using that

il (f -Apm O(f), f E S. (2.34)
ECas

where 0° is the electrostatic charge on the conductor, we find that the scattered field is given
by

H;'(i;) - -(kd)e -- -L [[1 As r + x - ( )
- -d) ___ d1 P " (2.35)

where As is the area of the cross section of the scatterer. From this expression it is seen
that the scattered field consists of a magnetic dipole in the z-direction (the term with As)
plus an electric dipole in the x - y plane (the integral term) [11, Sec.3.8].

This expression for the scattered field may be rewritten in a form that is more convenient
for the following section which deals with the cylindrical bump. From the expression (2.26)
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for the impressed electrostatic field Ejtaic it follows that the total electrostatic charge a° can
be written as

a= sin -Of. - cos O'oi° (2.36)

where au' and oa' are the electrostatic charges in the electrostatic problems where the
scatterer is situated in the impressed electrostatic fields i and ý, respectively. Using the
expression (2.36) for a0 and the dipole moment reciprocity theorem

LS a°z (r)y'ds' = is a"Y(r)x'ds' (2.37)

proven in Appendix B the scattered magnetic far field may be written as

f -- (kd)2e e! [As + C, sin 4 sin 0" (2.38)

+C2 cos 0 cos 0" + C 3 sin(4' + 0")]

where

C1 =1 (;)xs C2  I yds, C3  -,. 39C S is (2S

We will now present integral equations that determine the electrostatic charges a°' and
a~y. An integral equation for a'O can be derived from the scalar potential k for the electro-
static field. The potential 4 satisfies Laplace's equation and the potential for the impressed
electrostatic field is given by 0/9 = -x + C, where C is a constant. Noting that the potential
for the scattered field is given by ?k' = fs Gla°"leds' and that the total potential is constant
on S, one obtains an integral equation involving an unknown constant. This constant is eval-
uated at an arbitrary observation point r0 = (xo, Yo) E S so that aro satisfies the integral
equation

J [G0(,,') - GO(f 0,f')] 'd = - xo, f E S. (2.40)

In [15] it is shown that the integral equation (2.40) along with the condition that the total
charge on the conductor is zero, that is, fs &Or°ds = 0, determine the electrostatic charge ao
uniquely. Similarly, a°" is determined by

s [G°(ff') - G°(i°i')]° (')ds'= y - Yo, r E S. (2.41)

along with the condition that the total charge on the conductor is zero, that is, fs ao'0 ds = 0.
Alternatively, the three constants C1, C2, and C3 in (2.39) can be written in terms of

vector potentials for the electrostatic fields. From the integral equation (2.29) with C = 0 it
is seen that we may introduce vector potentials P' and FOo satisfying

0 1f0'= G° f•)F•~x(f')ds' + -F• (i), i E S. (2.42)
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and
y = - j G(jf')F.'0 (f')ds' + f E S (2.43)

so that
F. = cos O'F:0 + sin q'F'•Fy. (2.44)

The integral equations (2.42) and (2.43) are of the same form as the time-harmonic two-
dimensional magnetic field integral equation and they should therefore be easy to solve
numerically when no part of the scatterer is flat [16, p.168]. (For flat scatterers, (2.40) and
(2.41) can be used.) Using the relation (2.34) between o° and F? and the relations (2.36)
and (2.44) one finds that

a = ( -) Fjr (f), f E S (2.45)

and o0.(i) _ a
f = -SF-•(f), f E S. (2.46)

Inserting the relations (2.45) and (2.46) into the expressions (2.39) for the constants C1, C2,
and C3 and integrating by parts one finds

JF X aax

which gives the three constants in terms of the vector potentials Po and F*Y.
We have now given the exact analytical expressions for the first terms in the TM and

TE low-frequency scattered far fields from the cylinder with finite cross section. We found
that these expressions were completely determined by calculating three constants that only
depended on the shape of the cross section of the cylinder. These three constants are in turn
found from the electrostatic solutions for x and y directed impressed electrostatic fields.

12



Chapter 3

Cylindrical bump on an infinite
ground plane

In this chapter the low-frequency expressions are derived for the field diffracted by a cylin-
drical bump on a ground plane illuminated by a plane wave. Both the bump and the ground
plane are perfectly conducting. The bump extends uniformly to infinity in the +z and -z
directions and the curve that describes the cross section of the bump in the x - y plane
is denoted by B as shown in Figure 3.1. The outward normal to the bump is fi and the
tangent unit vector to B is 1 = i x fi. The equation for the ground plane is y = 0 and the
intersections between the bump and the ground plane are given by y = 0, x = ±d.

The incident field (Ei, t') and the cylindrical coordinates (r, 4', z) are the same as in
Section 2. The field reflected in the ground plane y = 0 when there is no bump is denoted
by (E', Hr). We write the total field as (E,H) = (P,/fti) + (Er,, f) + (Ed,Hid), where
(Ed, fd) is by definition the diffracted field.

It will be shown that the diffracted field is the scattered field in an equivalent scattering
problem where the scatterer is the bump plus its image in the ground plane, and the incident
field is (Pi + Er, f/i + fjr) as shown in Figure 3.2. The curve that describes the image of the
bump in the y = 0 plane is denoted by Bi and the cross section of the equivalent scatterer
is therefore enclosed by B U Bi.

By considering the TM and TE polarizations separately it is easily seen that the scattered
field in the equivalent scattering problem satisfies the boundary conditions on the ground
plane. Since (Li + Pr, fli + [p.) also satisfies these boundary conditions it is clear from the
uniqueness of the solution that the scattered field in the equivalent scattering problem is the
diffracted field in the bump scattering problem. This method of images for constructing an
equivalent scattering problem was first used by Rayleigh [17] when he solved for scattering
from the semi-circular bump.
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Figure 3.1: Cylindrical bump on a ground plane.
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Figure 3.2: Equivalent bump scattering problem.
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3.1 TM polarization

We first consider the TM case where the incident electric field is given by (2.1) and the
incident magnetic field is given by

= (- sin O'i + cos c (3.1)

The reflected electric field is given by (2.1) with i and y replaced by -i and -y, respectively.
Similarly the reflected magnetic field is given by (3.1) with j and y replaced by -P and -y,
respectively.

If we use the formula (2.12) for the scattered far field and add the contributions from the
incident field P' and the reflected field R' we get zero because the two contributions cancel.
Consequently, the diffracted field is zero to order ' and we cannot use the results from
Section 2.1 because we need higher order terms. We will therefore start by investigating the
low-frequency current on the equivalent scatterer given by B U Bi.

3.1.1 Low-frequency current (TM)

From the integral equation (2.6) it is found that the current K. on the equivalent scatterer
satisfies the integral equation

E:(f) + E;(f) = ikJ-j G(i, f')K2 (f')ds', f E B U B,. (3.2)
re •JBuBj

From the small argument approximation of the Hankel function it is found that

G(f, f) = G0(, P) -1 In kd j - + O((kd)2 In kd) (3.3)
2r- 2 4 27r

where GO(i, f') is the static free-space Green's function in (2.19), y is Euler's constant, and
the last term is non-singular at f = f', in fact it tends to zero as f - f'. Because E. + Er
is an odd function of y and the equivalent scatterer is symmetric around the y = 0 plane it
follows that the current K, is also an odd function of y, that is,

Kz(x,y) = -Kz(x,-y). (3.4)

Consequently, the total current flowing along the equivalent scatterer is zero, that is,

fB, K(f )ds = 0. (3.5)

If we expand E +Ez' in powers of k, and use the expansion (3.3) of the Green's function along
with (3.5) in the integral equation (3.2), we find that the first term K' in the low-frequency
expansion of the current satisfies the integral equation

sfi = Bi GO(', f')K°(')ds', f E B U Bi. (3.6)
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The uniqueness of the solution to this integral equation has been proven in [15].
We will now show that KO is the current in the magnetostatic scattering problem with

the equivalent scatterer situated in the impressed magnetostatic field

H'ttic = H'k=o +rrlko = =-2 sin o'i. (3.7)

The magnetostatic current in this scattering problem with the equivalent scatterer is denoted
by K' and a vector potential for the scattered magnetostatic field is given by (2.2) with G
replaced by Go and / replaced by iK' . From the boundary condition, fh. Hf = 0, for the
magnetostatic field we find that the total magnetostatic vector potential must be constant
on the conductor, and we therefore require that it be zero there. From the expression (3.7)
for the impressed magnetostatic field it is seen that the impressed vector potential must
be -2y V 5/sin 09 + C where C is a constant, which is undetermined at this point of the

derivation. An integral equation for KO is thus

2y sino -(C= f•f,')K°z(f')ds', f E BUB,. (3.8)

Because the impressed magnetostatic field is parallel to i and the equivalent scatterer is
symmetric around the plane y=O the current excited by this impressed field must be an odd
function of y. Therefore, the integral in (3.8) must be an odd function of y and the constant
C must be zero.

If we compare (3.8) with C = 0 to the integral equation (3.6) for the current k 0 we see
that KO, = KO and we have shown that k 0 is the current in the magnetostatic problem.
The leading term in the low-frequency expansion of the current is thus of order (kd)0 . From
the integral equation (3.2) it follows that the next term, in general, is a function of kd and
In kd so that the current cannot be expanded in powers of kd.

It is convenient to define a current K.B which is the magnetostatic current when the
equivalent scatterer is situated in the impressed magnetostatic field i. From the expression
(3.7) for the impressed magnetostatic field and from the integral equation (3.6) it follows
that the current KB is determined by the integral equation

y o GO°(i;'r')K°S(.O d" B" UB
-- = Gu(B , f E B u B. (3.9)

and the condition (3.4) that it must be an odd function of y. We then can write the low-
frequency expansion of the current as

KZ -2j sin O9K. + KZ (3.10)

where KAB is an odd function of y and satisfies the magnetostatic integral equation (3.9),
and Kr --+ 0 as kd -- 0.
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3.1.2 Low-frequency diffracted far field (TM)

We will now calculate the low-frequency diffracted far field from the bump, which is the
scattered far field in the equivalent scattering problem of the bump and its image.

Using the electric field expression (2.5) and the far-field approximation (2.10) to the
Green's function we find that the diffracted far field is

.d e -j1/4e- jkr 2 ] I
E_•=V---- /• [ [1 + jk(x'cos0 + y'sin €) + O((kd)2 )]K (f')ds'. (3.11)

Because the current is an odd function of y and because the equivalent scatterer is symmetric
around the ground plane y = 0 we find that

IsuB, xKl(f)ds = 0, J yI(z)ds=2JyK.(i)ds. (3.12)

Furthermore, using the fact that the total current is zero (3.5) together with the expansion
(3.10) of the current we find that the diffracted far field (3.11) to order (kd) 2 is given by

E d(j) , - d)2 e-j'r/4r e 1jk
() - r(kd)e / 7% 2-B sin 0 sin 0' (3.13)

where
BO = JfyKB(,)dS. (3.14)

The magnetostatic current K OB is an odd function of y and satisfies the static integral
equation (3.9).

From the formula (3.13) it is seen that the diffracted field is the field of a magnetic dipole
in the x-direction [11, sec.3.8].

3.2 TE polarization

In the TE case the incident magnetic and electric fields are given in (2.13) and (2.14).
Because the contributions from the incident and reflect-d fields in the TE case do not cancel
we can use the results from Section 2.2 directly so we do not have to investigate the current
on the equivalent scatterer.

3.2.1 Low-frequency diffracted far field (TE)

If we let Ay denote the area of the region bounded by B and the line y = 0, lxi <5 d (see
Figure 3.1) then the diffracted far field is given by

H(= H,(f)1A=2Aa + H"(r)lAs=2AB,..--.-,' (3.15)
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where H-' is the scattered field given in (2.38). The first term in (3.15) is the contribution from
(•i,•') and the second term is the contribution from (Er, Hr). Because of the symmetry
of the scatterer we find that

JBuB, xo01°(f)ds = 0, JBoB y0°U(,)ds = 2 JBya°y(f)ds (3.16)

where a°x and aoy are the electrostatic charges in the electrostatic problems with the equiv-
alent scatterer situated in the impressed electrostatic fields i and ý, respectively.

With substitution of (3.16) into the field expression (2.38), equation (3.15) becomes

H(P,(kd) e- &ikr 1 [A +cos 4cos 0' J, ar(o)y'ds'] (3.17)
r V/k-r d2 JB f

The diffracted field therefore consists of the contribution from a magnetic dipole in the
z-direction and an electric dipole in the y-direction [11, sec.3.8].

Alternatively, using (2.45) the integral in (3.17) may be written in terms of the vector
potential Fo satisfying (2.42) with S replaced by B U Bi.

We will now show that, remarkably, the integral in the expression (3.17) for the TE
diffracted field equals the negative of the constant B0 in (3.14) occurring in the expression
(3.13) for the TM diffracted field. To do this we introduce a scalar potential for the elec-
trostatic field and use the fact that the impressed scalar potential must be C - y where C
is a constant. Furthermore the boundary condition of zero tangential electric field requires
that the total scalar potential be constant on the equivalent scatterer, and we find that the
charge a&y therefore must satisfy the integral equation

y = f GO(, (r, ) ds', f E B U Bi (3.18)
C BB, G0i'i'0'Y

where C is undetermined at this point of the derivation.
Because the impressed electrostatic field is symmetric around the ground plane y = 0 the

electrostatic charge a~y must be an odd function of y. Consequently, the integral in (3.18)
must be an odd function of y and the constant C must be zero.

Comparing the integral equation (3.18) with C = 0 to the integral equation (3.9) for the
current K°B one finds that cK°B = -. olI and therefore the TE diffracted field is given by

)2j ,1r -jkr 1
-H(kd)2& -'-(k- e-- i - [AB - Bocosq¢ cosqi] (3.19)ud(•)~ ~ ~ 7 ""-k)e-'4 '-k-r d21

where B0 is given in (3.14) or (3.17).
We have now derived the exact expressions for the leading terms in the low-frequency

expansions of the diffracted far fields from arbitrarily shaped bumps. Our general analysis
has proven the rather remarkable result that the constant in the TM magnetic dipole term
equals the negative of the constant in the TE electric dipole term for arbitrarily shaped
bumps. In the following chapter we will show that this result also holds for diffraction from
a two-dimensional dent in a ground plane.

18



Chapter 4

Cylindrical dent in an infinite ground
plane

In this chapter we derive the low-frequency expressions for the fields diffracted by a cylindrical
dent in a ground plane illuminated by a plane wave. Both the dent and the ground plane are
perfectly conducting. The dent extends uniformly to infinity in the +z and -z directions
and the curve that describes the cross section of the dent in the z - y plane is denoted by
D as shown in Figure 4.1. The ground plane is given by y = 0 and the dent intersects
the ground plane at y = 0, x = ±d. The line segment given by y = 0, lxi _< d that caps
the dent is called the aperture and is denoted by A. The image of D with respect to the
ground plane y = 0 is denoted by Di, and the part of the upper half plane (y > 0) which is
outside the image Di is called F. The normal to D is hi and the tangent unit vector to D is
t= x fi. Normal and tangent unit vectors to A are j and -i, respectively. The incident
field (E , ft'), the reflected field (PT , Ht ), the diffracted field (Ed, f/d), and the cylindrical
coordinates (r, 0, z) are defined as in the previous chapter.

Although the dent problem is very similar to the bump problem, the analysis of the dent
is much more complicated and thus warrants a separate analysis. The main reason for the
complication is that the dent problem, unlike the bump problem, cannot be reduced using
image theory to an equivalent problem that involves only a cylinder of finite cross section
without a ground plane. One therefore has to deal with integral equations more complicated
than the usual two-dimensional electric and magnetic field integral equations. It is essential
to the derivation that the integral equation involves only fields and currents in a region
whose maximum dimension tends to zero as the characteristic dimension of the dent tends
to zero. We found that the most convenient integral equations for this purpose were coupled
integral equations first derived by Asvestas and Kleinman [18]. In Hansen and Yaghjian [19]
these integral equations have been derived straightforwardly by means of the Stratton-Chu
formulas [201. Here they will be derived as in [18] by means of Green's identities.
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Figure 4.1: Cylindrical dent in a ground plane.

4.1 Transverse magnetic (TM) polarization

The incident electric and magnetic fields are here given by

i(j) = ejk(xcos'+ysinJ) (4.1)

and

i() =i ( sin 0';i + cos Oij)eik(xco•+in•') (4.2)

The reflected electric field is given by (4.1) with i and y replaced by -i and -y, respectively.
Similarly, th. reflected magnetic field is given by (4.2) with ý and y replaced by -ý and -y,
respectively.

4.1.1 Integral equation for the current (TM)
We will start by giving a short derivation of Asvestas and Kleinman's [18] coupled TM
integral equationm for the current in the dent and the magnetic field in the aperture. We
need the details of this derivation to derive our low-frequency results.

Let SI(R) be the part of the x-axis given by IxI < R with R > d and let S2(R) be the
part of the circle r = R which is in the region y 2> 0. Furthermore, let Ls be that normal
unit vec•or to S1(R) U S2(R) which points into the region enclosed by S,1(R) U S2(R) shown
in Figure 4.2. Let GD be the Dirichlet Green's function for the region y > 0, that is,

Go(ff') = G(, f') - G(ff') (423)
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Figure 4.2: Half-circle in the upper half-plane y > 0.

where G(i, f') is the two-dimensional free-space Green's function in (2.4) and

f, = xi - yý (4.4)

is the image in the ground plane of the point f. If we use Green's second identity and the

fact that the diffracted field E' satisfies the scalar homogeneous Helmholtz equation we find

that the diffracted field satisfies

= - Js(R)uS2(R) [G(i; ')V'Ed(f') - Ed(f')V'GD(, f')] . d,', y >0. (4.d)

Because of the boundary conditions for GD and Ed on the ground plane, (4.5) becomes

Ed(i) =~ ' L ~ f

ad+ I (u[Ed(i)•,G(,)-GD(f,)-rr)( -s' y O
S(I, rf') E 0 (4.6)

Using the asymptotic relations for GD and that Ed satisfies the two-dimensional radiation

condition [11, sec. 1.34] one may show that the last integral in (4.6) tends to zero as R --+ oo.

Thus (4.6) implies

EZ Eý (f ') '9 --- ;,o(Pz')1ds', Y > 0
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Using the property of the Dirichlet's Green's function that -& GD(f, f') = 2-1a-G(f, f'), f' E A
and that E,(f) + E7(f) = 0, f E A, (4.7) becomes

E, (= 2 ] E 2(f')-aG(, f')ds' + E (F) + E:(f,), y > 0 (4.8)
A ay 1

which is an expression for the total field outside the dent in terms of the field in the aperture.
Taking the curl of (4.8) to get the magnetic field, we find

-Jk fH() I (j;-' 02 _,,
2= - 2jEz( )---G(f, f')ds'

- jkJkv[H•(F) + H.(f)], y > 0. (4.9)

Because the integral in this equation is an even function of y we have

ay2

- jki•[H,(Fi) + HE(F,)j, e int(A U D) (4.10)

where f, is given in (4.4) and int(A U D) is the region bounded by A U D. To get rid of
the integral involving the second derivative of the Green's function we will derive another
relation involving this second derivative and then combine these two relations.

If we recall that E, satisfies the homogeneous Helmholtz equation and apply Green's
second identity in the region bounded by A U D we find that

E.(f) = Iu[G(f,f')-E Ez(f') - E.(F') G(f,f')Ids', f E int(A U D). (4.11)
AuD an'Z n

Taking the curl of (4.11)and applying the boundary condition of zero tangential electric field
in the dent produces the following equation for the x-component of the magnetic field,

-Jk f~H.(f) =-LD 7 G(f ,f')a E, (fl)ds'

+ Ez(f') ya'G(f, f')ds', f E int(A U D). (4.12)

Insert the integral in (4.10) involving the second derivative of the Green's function into (4.12)
to get

- [ -G(,f') aE(')ds' = -H,(f) + I[-Hx(-,)kp lAUD 8 1 \rl JOnZ', 2
+Hx(f,) + H.(fi)], f E int(A U D). (4.13)
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We now let f approach the aperture and use the results of the integration near the singularity
in [14, App.], the induction law of Maxwell's equations, the following expression for the
current on D,

K.(, E.(f,), E• D, (4.14)

and the relation
a-IG(ff)=0, y=y'=O, xX' (4.15)

to get from (4.13)

ID 7(, G i',K(e)ds' = H, - H,(f), f E A (4.16)

which is a relation between the current in the dent and the magnetic field in the aperture.
To determine the current in the dent we need one more relation of this kind. To obtain

this we apply Green's second identity in the region bounded by A U D and find that

E.(f) = Ni; ID iz8l' E P~

+ 2 L G(f, e') -;E(r')ds', 7f E int(A U D) (4.17)
JA oyI

where GN is the Neumann Green's function for the region y > 0, that is,

GN(ff') = G(f, f) + G(,fi). (4.18)

Let f approach D in (4.17), and use the boundary condition of zero tangential electric field
in the dent along with the expression (4.14) for the current, and the induction law to get
the second integral equation

IGN (f, fI)KI(f')ds' + 2 f G(f, f')H:(e)ds' = 0, f E D. (4.19)

The relations (4.16) and (4.19) constitute a pair of coupled integral equations that determine
the current K. in D and the magnetic field H, in A.

4.1.2 Low-frequency current (TM)

We will now use the coupled integral equations (4.16) and (4.19) to determine the first term
in the low-frequency expansion of the current in the dent.

Using the low-frequency expansion (2.18) of the derivative of the Green's function in the
integral equation (4.16) we find that

I GO , °')K°(V)dS' = H.(f)Ik= o- H°(f), f E A (4.20)
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where K° and H° are the first terms in the low-frequency expansions of the current in the
dent and the magnetic field in the aperture, respectively. Go is the static two-dimensional
free-space Green's function given in (2.19). By using the low-frequency expansion of the
free-space Green's function (3.3) and the corresponding expansion of the Neumann Green's
function in the integral equation (4.19) we find that

ID KI(r')ds' + j H°(f')ds' = 0 (4.21)

and
GDolf ,)g?(r')ds' + 2 L f')H.(f')ds' = 0, f E D. (4.22)

The relations (4.20), (4.21), and (4.22) constitute a set of coupled integral equations that
determine the low-frequency current on D. In [15] it is shown that these three coupled
integral equations have a unique solution.

We will now show that these integral equations are the integral equations for the mag-
netostatic current when the scatterer is situated in the impressed magnetostatic field

- - jie sin qS'. (4.23)

We consider the magnetostatic problem in which the magnetostatic solution Ho satisfies
h ?RO = 0 and hix f× o = -•o on the conductor. Furthermore, it can be proven that these

boundary conditions make the total static field zero below the ground plane and dent. Since
the total magnetostatic field is zero below the ground plane and dent it is convenient to divide
the total field into three components as R-1 = f + tatic + H.dtaiic where -fItatic is the-td
scattered field when there is no dent and tatic is by definition the diffracted magnetostatic
field..

We introduce a vector potential A,0 = AOi such that RI = V x A,,= 0, and
1Z = 0 on the conductor and see that AO satisfies Laplace's equation and the Dirichlet

boundary condition on the conductor just as the z-component of an electrostatic field.
Therefore the potential for the diffracted magnetostatic field A' satisfies (4.6) with GD
replaced by Go which is the static Dirichlet Green's function for the region y > 0, that is,

= L )Al(f) A=

+s [A° a) Go(f, P)- G (r' ')r'A°z(y)]ds y > 0. (4.24)

The diffracted magnetostatic field, at infinity, behaves as if it were scattered from a cylinder
with a finite cross section. This assumption is confirmed by the fact that the corresponding
magnetostatic field for the bump (see Chapter 3) indeed behaved as if it was scattered by
a cylinder with finite cross section. From [20, sec. 4.4] it then follows that in the two-
dimensional case IV ln IVjIn rl and = - as r -- oo. Furthermore, sinceZ r 2Z ry
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G(r,r') In r and i oL(, G 'D -f, as r --+ oo we find that the last integral in (4.24) tends
to zero as R --+ oo. Hence,

mo(f) = Af A((y•G ,()ds" y >0 (4.25)

which is the static version of (4.7). We now use exactly the same procedure which in the
time-harmonic case led from (4.7) to (4.16) and find that (4.25) leads to the relation

ID _ (f KO (f,)ds,= Hta~tii - -Hx(f ), f E A (4.26)

which corresponds to (4.16). Similarly one finds

(f,')K()ds' + 2L( = fED (4.27)

which corresponds to (4.19). Because the z-component of the vector potential Ao satisfies
Laplace's equation the field II° and the current /fo also satisfy the relation (4.21). We have
now shown that the magnetostatic current and field satisfy the integral equations (4.20),
(4.21), and (4.22) and consequently the first term in the low-frequency expansion of the
current in the dent equals this magnetostatic current.

If we let kOD and ftOD be the magnetostatic current and field in the magnetostatic field
problem where the scatterer is situated in the impressed magnetostatic field 11 we obtain
from (4.23) the following low-frequency expansion of the current in the dent

K, = -2 rjsin0i oboD +Kr (4.28)

where K' - 0 as kd -+ 0. From the integral equations (4.20), (4.21), and (4.22) it follows
that ff-OD and /pOD satisfy the static integral equations

ID GO HOD(i), fE A (4.29)

ID K°D(r')ds' + fA "(r')ds' = 0 (4.30)

and ID G•(fr, j)I( Dfi)ds + 2J G j(f'1')HOD(f')dst = 0, f E D.Go f'ds +2 (4.31)

(In [19] (4.29), (4.30), and (4.31) are derived directly from the Stratton-Chu formulas.) In
summary, we have determined the first term in the low-frequency expansion of the current
in the dent and in the next section we integrate this low-frequency current to get the low-
frequency diffracted far field.
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4.1.3 Low-frequency diffracted far field (TM)

To determine an expression for the low-frequency diffracted far field we will first derive a
relation between the current in the dent and the diffracted field in F, the region in the upper
half plane (y > 0) outside the image of the dent.

When f E F and f' E int(A U D) the Dirichlet Green's function GD(, f') satisfies the
homogeneous Ilclmholtz equation, and Green's second identity gives

a a
0= fA [GD(f,f') -E.(f') - E(f')--GD( ,f')Ids', f E F. (4.32)

JAUD 
an'

With the boundary conditions E, = 0 on D and GD = 0 on A (4.32) becomes

GD D(f, f') a E,(i)ds' = IA E(i;') -GD(f,i')ds', f E F. (4.33)

Use of the expression (4.7) for the diffracted field, the fact that E. + E. = 0 on A, and the
relation (4.14) between the current and the electric field transform (4.33) to

S= -jkr-iJ GD( f')Kz(FI)ds', f E F (4.34)

which is the relation between the current in the dent and the diffracted field in F. This
expression was first derived by Asvestas and Kleinman [18].

From the asymptotic expansion of the Hankel function one finds that

ejr]4 e-jkr
GD(f,r') - - - ksinq[y' + O(kd)J, r -- oo. (4.35)

The expansion (4.35) and the current expansion (4.28) inserted into the field expression
(4.34) gives the diffracted far field to order (kd)2 as

d~f) , )2e-• /4'2 e-jkr
E1 _(kd -- Do sin 4 sin 0' (4.36)

where
D= JD KOD(f')y'ds' (4.37)DoZ

which is the final expression for the TM low-frequency diffracted far field of the dent D in
the ground plane. We see that this TM low-frequency far field is that of a magnetic dipole
in the x-direction [11, sec.3.8].

4.2 Transverse electric (TE) polarization

The incident electric and magnetic fields are here given by

Pi(f) = -ejk¢xsO+V.i-¢') (4.38)
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and aEi(f) = \/i(sin 'i, - cos oi9)ejk(XCO,•'+Y~if4') (4.39)

The reflected magnetic field is given by (4.38) with y replaced by -y- Similarly, the reflected
electric field is given by (4.39) with & and y replaced by -i and -y, respectively.

4.2.1 Integral equation for the current (TE)

We will start by giving a short derivation of Asvestas and Kleinman's [18] coupled TE integral
equations for the current in the dent and the magnetic field in the aperture since we need
the details of the derivation to derive our low-frequency results.

Performing a derivation similar to the one that led to (4.8) yields the following relation
between the magnetic field in the region y > 0 and the magnetic field in the aperture.

H = Hi(f) + Hr ()- 2 L G(f, f')"- H,(;')ds', y > 0. (4.40)

Since the integral in this equation is an even function of y we have

H.(fi) = H.(f,) + H:(fi) - 2 ] G(f, f') -aH(f')ds', f E int(A U D) (4.41)

JA a'y 1(.1

where fi is the image in the ground plane of the point f given in (4.4). To get rid of the
integral involving the derivative of the magnetic field in the aperture we will derive one more
relation containing this integral.

Using Green's second identity and the fact that H. satisfies the homogeneous Helmholtz
equation we obtain

= LM G(f,f')aHz (f')ds'ay

vDH,,(f')1-G(f, f')ds', f E int(A U D). (4.42)

Substitution of the integral in (4.41) into (4.42) yields

LuDH 2(f') -- G(lf ')ds' = -H,(f) + 1[H.(fi)

+H*(fi) + Hz(fi)], f E int(A U D). (4.43)

Letting f approach A, using the result of the integration near the singularity from [14, App.]
with the boundary relations

aG(fF')= 0, y= = 0, x X', (4.44)
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and

H() K(f), f ED (4.45)

(4.43) converts to

ID Kt(r') - G(fr')ds' = -Ht(f) + H.(f), f E A. (4.46)

This is a relation between the current in the dent and the magnetic field in the aperture.
To determine the current in the dent we need one more relation of this kind. Using Green's
second identity, the fact that H. satisfies the scalar Helmholtz equation, and the boundary
condition that -- H2 = 0 on D yield that

an z

H.(f)= - H.(f)oaGD(f, ')ds', f E int(A U D). (4.47)
luD aN1

Letting f approach D in (4.47), using the result of the integration near the singularity from
[14, App.], and using (4.45) gives us

1 I- JA(') ?')ds', f E D (4.48)

which is the second relation between the current in the dent and the magnetic field in the
aperture. The relations (4.46) and (4.48) constitute a pair of coupled integral equations for
the current in the dent. (They also can be derived directly from the Stratton-Chu formulas
[19].)

4.2.2 Low-frequency current (TE)

We will now use the coupled integral equations (4.46) and (4.48) to determine the first two
terms in the low-frequency expansion of the current in the dent. Using the low-frequency
expansion (2.18) for -G and the similar expansion for - GN in the integral equations (4.46)
and (4.48) we find that

ID K°()') -G°(, f')ds' = -H°(f) + 1, f E A (4.49)

and

K°(f)= /(f(')-GD (f' f)ds'- 2H°-G°( d" E D (4.50
2 IDh t n - A I ZJYI0ff~S, (4.50)

where K° and H° are the first terms in the low-frequency expansions of the current Kt and
magnetic field H., respectively. In [151 it is shown that these two coupled integral equations
have a unique solution.

We will now show that these are the integral equations for the magnetostatic current and
field in the case where the scatterer is situated in the impressed magnetostatic field

tatic H'I=o = (4.51)

28



To do this we define a reflected and a diffracted magnetostatic field as in the TM case (see
the discussion after (4.23)). We find that the reflected magnetostatic field is i for y > 0
and -, for y < 0. Similarly, it is found that the diffracted magnetostatic field is 2i in the
region bounded by A U D and zero everywhere else. These observations make it very easy to
use the same procedure that gave us the time-harmonic equations (4.46) and (4.48) to show
that (4.49) and (4.50) indeed are the equations for this magnetostatic field which simply
equals 2i in the free-space region. Thus the current in the dent and the magnetic field in
the aperture may be expanded as

Kt = 2 + Kt, H, = 2 + H; (4.52)

where K' and H' tends to zero as kd --+ 0. We have hereby determined the first term in the
low-frequency expansion of the current in the dent and we will now determine the second
term in this low-frequency expansion.

If we insert the expansions (4.52) of the current and field as well as the low-frequency
expansions of the Green's functions into the integral equations (4.46) and (4.48) we get from
the static integral equations (4.49) and (4.50)

ID K(P) a-G°(f'f )ds'= -Hl(f) + jkx cos 0', f E A (4.53)

and

I K(f) =lfl a GO f-I')s 2 H1(fl)a GO (f f') ds', f E D (4.54)
2J D W A ZI T~y I

where K,' and H. are the second terms in the low-frequency expansion of the current in the
dent and the magnetic field in the aperture. We therefore have the following expansions

Kt = 2 + kdKlt' + K", H, = 2 + kdHo' + HTr (4.55)

where KI'" = KI't and H"1 = H are independent of kd. Furthermore, K" and H
tend to zero as kd --+ 0. Thus, the first two terms in the low-frequency expansion .f the
current in the dent are of order (kd)0 and kd. Because the second term in the expansion of
the derivative of the Green's function (see (2.18)) is of order (kd) 2 In kd the third term in the
expansion of the current will in general be a function of both kd and In kd. Consequently,
the current does not have a power series expansion.

Next we will show that the current Ktol can be found from the solution to the electrostatic
problem with the scatterer situated in the impressed electrostatic field

Estatic = -fcos qit. (4.56)

To do this we introduce a vector potential Po = Fk for the electrostatic solution E 0 so
that

t =O •V xFO (4.57)
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We find that F.0 satisfies Laplace's equation and the Neumann boundary condition on the
conductor. As we did for the magnetostatic problem, divide the scattered electrostatic field
into reflected and diffracted electrostatic fields. The diffracted electrostatic field at infinity
behaves as if it were scattered from a cylinder with a finite cross section. This assumption
is confirmed by the corresponding electrostatic field in the bump problem (see Chapter 3).
Because the total charge on the conductor is zero it follows from [20, sec.3.11] that the
potential Fd for the diffracted field satisfies F',d - IV InrI = 1 and - FZd a r- oo.
Using these facts and the same derivation that led to the time-harmonic equations (4.46) and
(4.48) implies that F1o satisfies these two equations with GD, G, Kt, H,, and H' replaced
by Go, F,, F,, and Ff, respectively. Here F,', is the potential for the impressed
electrostatic field (4.56). We find that this potential must be given by

F'i(f) = cos 0ix + C (4.58)

where C is a constant. The coupled integral equations for P0 are thus

ID F0(r'1) a-Go(f', ')ds'= -FO(f) + x cos 0' + C, f E A (4.59)

and

IFf)= -I F2,(f')-09GO~,(2Y)ds' 21 (P F a "Go(,P)d' ED. 460
2 ID fn' D IA F, (if)d' ED (.0

Using the divergence theorem and the result of the integration near the singularity [14, App.]
one finds

CD GO (,')d'- -- •C, • e A4 (4.61)

and 1 5-aC I CC 4 -•GoD(f, i')ds' - 2 C a-G°(f, ')ds', f E D. (4.62)
2 ID ' D A Y

Consequently, the constant C on the right hand side of the integral equation (4.59) only
adds the constant C to the solution to (4.59)-(4.60) with C = 0. Because a constant may
be added to the potential F0 without changing the electrostatic solution P', let C = 0 in
(4.59). By comparing the integral equations (4.53)-(4.54) to (4.59)-(4.60) with C 0 we
find that KI'(f) = iF-,(f) when f E D. This completes the proof that the second term in
the low-frequency expansion of the current can be found from the electrostatic solution.

It is convenient to introduce a potential F,°D which is the solution to the equations

ID FzOD(i)2 o (f°,f')ds' = +F~D(j) +x, f E A. (4.63)

and

22O IfFZD E2(r;)j-Dr i')ds) -2 Go( ,') ds', f E D (4.64)

The low-frequency expansion of the current can now be written in terms of F?-D as

Kt = 2 + 2 jkcost€iF°° + K" (41.65)

where --I K --+0 as kd -4 0.
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4.2.3 Low-frequency diffracted far field (TE)

Having derived a low-frequency expansion of the current in the dent in the previous section,
we will now integrate this low-frequency expansion to get the low-frequency diffracted far
field. We start by deriving a formula that - presses the TE diffracted field in the region F
in terms of the current in the dent.

To do this, note that the Neumann Green's function GN(f, f') satisfies the homogenous
Helmholtz equation when f E F and f' E int(A U D). Green's second identity therefore gives

0=a[N~r)---H(F')-- H=(I')-aGN(f,r')]ds', f E F. (4.66)
lA",uD f ')5 .f) .i On' ZNf

Because GN and H, satisfy the Neumann boundary condition on A and D, respectively, and
because GN, = 2G on A, (4.66) implies

IDH,(fl)--GN(7,f')ds' = 2 LaG(f, F')o-H2 (f')ds', f E F. (4.67)

On'A

Using this in the field expression (4.40) gives [18]

da
Hi(f) -/ Kt(e') '9GN(V, f')ds', f E F (4.68)

which is the relation between the diffracted field and the current in the dent.
From the asymptotic expansion of the Hankel function it is found that

a eiw/4 e-3kr ^
an;GN(f, f') ,,' k-w4 -- kr h • [i cos € + &jkx' cos2 2

+ýjky'sin2 2 + O((kd)2 )], r -- oo. (4.69)

If the expansion (4.65) of the current and the expansion (4.69) of the Green's function are
inserted into the field expression (4.68) one finds that to order (kd) 2 the diffracted far field
is given by

"d(F) ,ed' 4 e-jkr 2j[I (X cos2 0 + jy'sin 20) - thds'Z 12irvf- d2 D (.xcs

+±Cos 0 Cos OIDfL Tzf;,dl1 (4.70)09'

With the help of the divergence theorem one finds that the first integral in this equation
simply equals the area of the region bounded by A U D, that is, the area of the cross section
of the dent. The second integral in (4.70) may be written as

ID LY'FVD (j;t)dS1 yi, O

ID FODs--- d = D ' ' EO (FP)ds' (4.71)

after integrating by parts once and introducing the electrostatic solution kOD to the problem
in which the scatterer is situated in the impressed electrostatic field 1.
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Before writing the final expression for the diffracted far field, we shall prove the relation-
ship

i. 'POD(j;) = KOD(j), f E D (4.72)

between the TE electrostatic solution in (4.71) and the TM magnetostatic solution in (4.28).
To do this introduce a scalar potential 4' so that RID = -Vik with 4k satisfying Laplace's

equation and the Dirichlet boundary condition on the conductor exactly as does the vector
potential A' in Section 4.1.2. Furthermore, because the total charge on the conductor is
zero the potential 0' for the diffracted field also behaves like the potential A•d at infinity
[20, sec.3.11I]. Therefore, the relations KO o H o = 0 Ao, and 0' = -Y + C where

C is a constant and 4' is the potential for the impressed electrostatic field, imply from the
coupled integral equations (4.26)-(4.27) that 4 satisfies the coupled integral equations

a 1 (9ID - - - -7P(f), f E A, (4.73)

and /I GoN(fi9') - 2 -•(')ds' + 2j G°(f•') a 0(i')ds' = 0, ? E D. (4.74)

Using the fact that 4' satisfies Laplace's equation and employing the divergence theorem in
the region bounded by A U D give

uD P)-()ds' = it' -= LV(auD) Vo4(f')ds' = 0. (4.75)

Using the relation h . Eo0D() = -20(r), f E D, and comparing (4.73), (4.74), and (4.75)
to (4.29), (4.31), and (4.30), respectively, shows that (4.72) indeed is a correct identity.

According to the relations (4.71) and (4.72), the diffracted far field in (4.70) may be
written as [•2 -jkr1

H(f) , (kd) 2e-J 4l-rV v2/e... 1 [AD + Docosq0cos 0'. (4.76)

where AD is the area of the cross section of the dent and

D0= K°O(I')y'ds' = F1 O(i' ads'. (4.77)
D Z Das,

The magnetostatic current A'OD is found from the coupled integral equations (4.29), (4.30),
and (4.31) and the electrostatic vector potential foD is found from the coupled integral
equations (4.63) and (4.64).

The diffracted far field in (4.76) is the contribution from a magnetic dipole in the
z-direction (the term with AD) and an electric dipole in the y-direction (the cosine term)
[11, sec.3.81. Furthermore, the constant in the TE electric dipole term in (4.76) is the same
as in the TM magnetic dipole term (4.36).

We have now shown that the low-frequency scattering from a two-dimensional dent in
a ground plane, as for bump scattering, reduces to the evaluation of a single constant Do.
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This constant is determined from a static solution and depends only on the shape of the
cross section of the dent.

Throughout the derivation that led to (4.76) it was assumed that the dent was contin-
uously lined by a conductor so that our results in this paper do not apply to the slit in a
ground plane. However, since the slit is the complement of the strip it is seen from Chapter
2 that the low-frequency fields diffracted by a slit for TE polarization must be of order d
where d is the width of the slit. Thus, the low-frequency fields diffracted by slits and dents
are of different order and, in particular, the slit scatters more strongly than the dent at
low frequencies. The physical reason for this enhanced scattering is that the slit completely
"stops" the currents on the ground plane while the dent only "diverts" them.
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Chapter 5

Evaluation of constants and
verification of low-frequency
expressions

This section evaluates numerically the constants occurring in the low-frequency far-field ex-
pressions for particular geometries. Furthermore, the expressions will be verified by compar-
ing them to low-frequency results obtained from exact time-harmonic eigenfunction solutions
when such solutions exist.

5.1 Circular cylinder

Begin by considering the circular cylinder with radius a situated with its center at the origin
of the coordinate system. From the exact eigenfunction solution it is found that the low-
frequency expression for the scattered far fields are [7, sec.2.2.1.2, sec.2.2.2.2]

T M : E " ( f ) -4,• -• e• j / 4 e- j k r

T 2 lnka v-r (5.1)

e'jr/4 e-jkrTE: H.'(f) -(ka)'- - r-[7r ["+ 27r sin 0sin €

+21r cos 0 cos 0Y]. (5.2)

We see that (5.1) and (5.2) agree with the general results in (2.12) and (2.38) provided the
three constants in (2.39) are

Cl C2 _

C- = C2 = 2r, c = 0. (5.3)

We can check the expressions (9.39) for the three constants in two ways.
'The first way is to find exact expressions for the electrostatic charges oa° and oa0y using

the method of separation of variables and then insert these into (2.39). It is easily found
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that [21, pp.11 8 4 -11 8 5]
ao° = 2ccos 0, a"9 = 2csin4 (5.4)

and by inserting these into (2.39) one recovers (5.3).
The second way of verifying the constants is to solve the integral equations (2.42) and

(2.43) numerically and then use (2.47) to evaluate the constants. These two integral equa-
tions were solved numerically by using pulse expansion functions and point matching. The
moment matrix elements were calculated using Simpson's rule of integration. The following
values of the constants were obtained with 400 pulse expaiision functions

Cl = C 2a2 - 6.283069, C'3 = 0.4. 10-14 (5.5)
a2 a2

which verify our general low-frequency results for scattering from cylinders with finite cross
section. We also solved the integral equations (2.40) and (2.41) for 0°. and aoy and inserted
these numerical solutions into (2.39). Again the result agreed with (5.3).

5.2 Semi-circular bump

Next consider the semi-circular bump of radius a. Rayleigh [17] used the exact eigenfunction
solution for the circular cylinder to show that

TM Ed(f) _ a)2,,,4 2 -jkr

TM- z() ~((k -" •--- 7r sin sin ý (5.6)

V- r -jk[7 + rCos 0 os4'). (5.7)

We see that this agrees with the general low-frequency expressions (3.13) and (3.19) provided
that

B o - (5.8)

a2

Again from the method of separation of variables, oroy = 2 c sin 0 and one finds that K'B -

-2 sin 0. Inserting these functions into (3.14) one recovers the value of B0 given in (5.8).

One may also combine the numerical results for the circular cylinder obtained by numerically
solving the integral equation (2.42), with the relation B0o -IC2 where C 2 is given in (5.3).
Alternatively, we can solve the simple integral equation (3.9) for the current KOB. This was
done using pulse expansion functions and point matching. The following value of B0 was
obtained with 400 expansion functions

B0aO = -3.1415965 (5.9)a22

which confirms our general low-frequency expression for the diffracted far fields of a cylin-
drical bump.
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5.3 Knife-edge bump

Consider the vertical knife-edge bump with height h. Using the exact time-harmonic eigen-
function solution for the strip [7, ch.4] and Rayleigh's method of constructing an equivalent
scattering problem, it is found that the low-frequency expressions for the knife-edge bump
are

[2-,,1r e '1 r I
TM: E-() - - sin €sin0 (5.10)V k •-r 2

S•,-~/42 e-jkr 7ri (.1

TE: HI(f) - -(kh)2e- e ,. Cos r Cos 2o. (5.11)

We see that these expressions agree with the general expressions (3.13) and (3.19) provided
that

B - (5.12)
h2 2

Again we shall verify that (3.14) gives this value for B0 in two different ways. First we will
find the static current K°B using separation of variables in elliptic coordinates and second
we will find K°0B by solving the simple integral equation (3.9) numerically.

To determine K B from the method of separation of variables it is convenient to use
the results in Morse and Feshbach [21, pp.1195-1197]. K°B is the static current in that
magnetostatic problem in which a strip of width 2h, which has its cross section directed
along the y-axis, is situated in the magnetostatic field i. Therefore, we define the elliptic
coordinates (y,O) by

x = -h sinhp• sin 0, y = hcosh ycos0 (5.13)

where y > 0 and 0 < 0 < 21r. The 9-coordinate and the strip given by P = 0 are shown in
Figure 5.1. The scattering problem for K°B can be solved using a vector potential AO = iA°
for the magnetostatic field. The impressed magnetostatic field can be represented by the
impressed vector potential

AO' = y, = h coshp cos 0i. (5.14)

The total vector potential A° must be constant on the strip p = 0 and the vector potential
A,0' for the scattered field must tend to zero at infinity. Therefore A0' is given in terms of
the elementary solution e-P cos0 [21, p. 1 19 5], that is,

A°' = Ce-" cos Oi (5.15)

where C is a constant. Requiring that the vector potential A0 for the total magnetostatic
field be zero on the strip implies that C = -h, that is,

Cos 9
A]o = hsinhP cosO, = _XsinOZ (5.16)
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0=0 0=27r

0 :7r

Figure 5.1: Strip of width 2h in an elliptic coordinate system.

Consequently, the current K°B is

K OB (0) = . 0 < 0 < ,7(517
S 7r < 0 < 27r (5.17)

The constant B0 in (3.14) isB0 2 ~O 1 2 t2w 'S

B= yKOB(&-ds =Od1 =cos2edd= -rh2 (5.18)2o =o i's= 2 G(

which agrees with (5.12).
Another verification is obtained by solving the integral equation (3.9) numerically and

then integrating the numerical solution to get B0 . The following value of B0 was obtained
with 400 pulse expansion functions

B0 = -1.5706168 (5.19)

which again verifies the general low-frequency expressions for the diffraction from cylindrical
bumps.

5.4 Right-angled cylinders and bumps

We now present numerically evaluated constants for the low-frequency expressions in cases
where no exact time-harmonic eigenfunction solutions exist.
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Using the integral equations (2.42) and (2.43) with 400 pulse expansion functions it was
found that Ci C2 _

C1 - C2 = 8.7596, C 3 = 0 (5.20)
d2 d2

for a square cylinder with side length 2d and sides parallel to the x and y axes. It was
.'urthermore found that the constants changed to

S= 13.3361, C2 = 25.1541, C3 = 0 (5.21)

for a rectangular cylinder with a 4d side length parallel to ý and a 2d side length parallel to

;i.

The following bump constants were obtained by solving numerically the simple integral
equation (3.9) using 400 pulse expansion functions. For the square bump with side length
2d it was found that Bo

-- = -12.5666 (5.22)d2

and for the right-angled triangular bump with height V/2d we computed

Bo
T2 - 2.1881684. (5.23)
d2

5.5 Semi-circular dent

Consider the semi-circular dent with radius a situated with its center at the origin of the

coordinate system. The dual-series eigenfunction solution [22] shows that to order (ka) 2

)2e ",/4• e-jkr
TM : Ed(f) -,-(ka) 2 e- I - (0.58) sin qsin 0/ (5.24)

TE: Hg((),, (ka)e- / -' j[ + (0.58) cos q cos €']. (5.25)Vfk__r 2

These expressions agree with our general result in (4.36) and (4.76) provided that

D_ = 0.58. (5.26)a 2

To determine the value of Do we solved numerically the coupled integral equations (4.29),

(4.30), and (4.31) determining the magnetostatic current Kz . In the numerical solution we
used pulse expansion functions and point matching and the equation (4.30) was incorporated
by simply adding it to the linear equations obtained from (4.29) and (4.31). Simpson's
rule of integration was used to evaluate the moment matrix elements. Using 150 pulse

expansion functions for both the current in the dent and the magnetic field in the aperture

(300 unknowns in total) we found using (4.37) to determine Do that

- = 0.58236. (5.27)

a
2
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We also solved numerically the coupled integral equations (4.63) and (4.64) for the elec-
trostatic vector potential F-,OD. These equations were also solved using pulse expansion
functions and point matching. Again Simpson's rule of integration was used to evaluate the
moment method matrix. Using 225 pulse expansion functions for both the potential in the
dent and the potential in the aperture (450 unknowns in total) we found using (4.77) that

Do = 0.58238. 
(5.28)

Comparing the values of Do obtained solving static integral equations with the one ob-
tained from the dual-series eigenfunction solution [22] confirms our general low-frequency
results.

5.6 Rectangular dents

Finally some results will be given for the constant Do in the case of rectangular dents.
The following results were found using the integral equations (4.63) and (4.64) with 225

pulse expansion functions for both the potential in the dent and aperture (450 unknowns in
total). For the rectangular dent with depth 4d, 2d, d, 0.5d, and 0.1d we found that --D equals
0.63320, 0.63304, 0.60591, 0.49679, and 0.16790, respectively. The length d in is shown in
Figure 4.1.
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Chapter 6

Conclusion

We have evaluated the low-frequency electromagnetic scattering from the perfectly conduct-
ing cylinder with finite cross section and the perfectly conducting cylindrical bump and dent
in a ground plane.

For the cylinder with finite cross section the low-frequency scattered far field for TM
polarization is independent of the shape of the cross section of the cylinder and of order U

where d is a characteristic dimension of the cylinder. This low-frequency result is not related
to a corresponding static field problem.

For TE polarization the scattered field is of order (kd) 2 and it consists of a contribution
from a magnetic dipole along the axis of the cylinder and an electric dipole in a direction
normal to the axis of the cylinder. The magnetic dipole moment is found directly from the
area of the cross section of the cylinder. The electric dipole moment is found by solving an
electrostatic problem, that is, a two-dimensional potential problem, for two impressed fields
and integrating these two electrostatic solutions around the cylinder. These electrostatic
solutions are determined from simple static integral equations and depend only on the shape
of the cylinder.

For both the cylindrical bump on a ground plane and dent in a ground plane the low-
frequency diffracted field for TM and TE polarization is of order (kd)2 , where d is a charac-
teristic dimension of the bump or dent. The low-frequency TM diffracted far field is that of
a magnetic dipole normal to the axial direction and parallel to the ground plane.

The low-frequency TE diffracted far field for both the cylindrical bump and dent consists
of a contribution from a magnetic dipole in the axial direction and an electric dipole normal
to both the axial direction and the ground plane. The TE magnetic dipole moment is found
directly from the area of the cross section of the bump or dent.

Both the TM magnetic dipole field and the TE electric dipole field can be written as
a constant times a known simple function. It is proven that, remarkably, this constant,
which depends only on the shape of the bump or dent, is the same for both the TM and TE
polarizations. This constant can be found by solving either a magnetostatic or electrostatic
field problem, that is, a two-dimensional potential problem, and performing an integration of
these solutions over the bump or dent. This means that both the TM and TE low-frequency
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diffracted far fields for an arbitrarily shaped bump or dent are completely determined by
calculating a single constant for the bump or dent.

The low-frequency expressions were confirmed from exact time-harmonic eigenfunction
solutions, and constants were evaluated for a number of geometries. As mentioned in the
Introduction, the low-frequency expressions derived in this report are given in closed form
and can therefore be used directly to determine incremental length diffraction coefficients
for calculating the scattered fields from curved narrow ridges and channels in conductors
[9]. These incremental length diffraction coefficients determined from the low-frequency
expressions derived in this report have been applied recently to calculate the effects of ridges
and channels on the fields of a reflector antenna [23].
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Appendix A

Existence of an electrostatic vector
potential

Let L0 be the total electrostatic field in the TE electrostatic problem in which the scatterer
is the cylinder with finite cross section shown in Figure 2.1. From Maxwell's equations we
find that . 0 has zero divergence, that is,

VR" =0 (A.1)

and because the total charge on the conductor is zero we have

sEO.fds =0 (A.2)

where S is the curve that describes the cross section of the cylinder.
We will show that (A.1) and (A.2) imply that there exists an electrostatic vector potential

K= F•Z (A.3)

so that
EB = V x P. (A.4)

We start by proving that

eE .it ds =0 (A.5)

for every closed curve C in the free-space region of the x - y plane of Figure 2.1. Here
ii = i x ., where i is the tangent unit vector to C.

Consider first the case where C does not enclose the cylinder S: Then, since the electro-
static field has zero divergence it follows from the divergence theorem that (A.5) is satisfied.

Consider then the case where C encloses S: The divergence theorem shows that the
integral over C equals plus or minus the integral over S, which by (A.2) is zero.

We have now shown that the integral over every closed free-space curve C of h • P' is
zero.
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Let (E., Es', 0) be the rectangular components of the electrostatic field E0 , then we have
the following identity on C

ht. - , = i. [-E-,i + E-OJ. (A.6)

Because of (A.5) we know that the field -Evi + E•j is conservative and it follows then from
Phillips [24, p.521 that there exists a scalar potential 0 such that

- E°YO + E.,O = tk. (A.7)

By inspection one finds that (A.4) holds with

FO =(A.8)

and the existence of a vector potential for the electrostatic field Eo, satisfying (A.1) and
(A.2), is proved.
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Appendix B

Dipole moment reciprocity theorem

Consider the two electrostatic problems where the cylinder in Figure 2.1 is situated in the
impressed electrostatic fields El = : and R2 = . Let the solution to these two static
problems be •,o -/•,(B. 1)

P,2 = E1 ,2 + E 1,2

where EP', 2 are the scattered fields.
We will prove the dipole moment reciprocity theorem:

which states that the y component of the dipole moment in tL. scattering problem with
P' = i equals the x component of the dipole moment in the scattering problem with R' _ y.
To prove this we introduce the scalar potentials 0 1,2 such that

B1,2 = -V4' 1 ,2. (B.3)

The potentials 0k 2 for the impressed fields are given by

= -x + C1  (B.4)

and
S= -y + C 2  (B.5)

where Cl and C2 are constants. Since the total charge on the conductor is zero, that is,

Ls ii" °'R2dS = 0 (B.6)

it is seen that (B.2) is equivalent to

L901 d Vti 802 ds. (B.7)
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Because the potentials Oi2 satisfy Laplace's equation inside S we obtain from Green's second
identity

ansds = j I On ds. (B.8)

If we require that 0 1,2 = 0 on S we see from (B.8) that (B.7) and therefore also (B.2) is
equivalent to

s 2 andN (B.9)

where 0,2 = •t1,2 - 01,2 are the potentials for the scattered electrostatic fields.
Let ER be the circle with radius R and center at x = y = 0. Assume that ER encloses

S. Then since 0,82 satisfy Laplace's equation outside S, we get from Green's second identity
that

-910 LRsa -/2~ki] (B-10)

Now, the total charge is zero, so it follows from [20, sec.3.11] that for two-dimensional
problems

1P 8 1
1,2 ' IVlnrI = -, r --. oo (B.11)

r
and

0 " 1,28 1o% f'r2 I r -- 00. (B.12)

The asymptotic conditions (B.11) and (B.12) imply that the last integral in (B.10) goes to
zero as R goes to infinity. Thus, (B.9) and therefore the dipole moment reciprocity theorem
is proven.
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