D-A256 347
(WM EAA AR

RL-TR-92-15
Final Technical Report
February 1992

RELIABILITY TECHNIQUES FOR COMBINED
HARDWARE AND SOFTWARE SYSTEMS

Hughes Aircraft Company DT ‘ C

Dr. M.A. Friedman, P.Y. Tran, P.L. Goddard T RCTE !
c1 1 5 1992

APPROVED FOR PUBLIC RELEASE, DISTRIBUTION UNLIMITED.

Qs i .) P’}Q 9 27093
S TSR

Rome Laboratory
Air Force Systems Command
Griffiss Air Force Base, NY 13441-5700

This report has been reviewed by the Rome Laboratory Public Affairs Office
(PA) and 18 releasable to the National Technical Information Service (NT1Z).
At NTIS it will be releasable to the general public, including foreign nations.

RL-TR-92-15 has been reviewed and is approved for publication.

APPROVED: d;/cw«\.yia/—;{nz)

EUGENE FIORENTINO
Project Engineer

FOR THE COMMANDER: 57 > & 4/Zz

RAYMOND C. WHITE, Colonel, USAF
Director
Electromagnetics & Reliabill y Directorate

1f your address has changed or if you wish to be removed from the Rome Laboratory
mailing list, or if the addressee is no longer employed by your organization,
please notify RL (ERSR), Griffise AFB NY 13441-5700. This will assist us in
maintaining a current mailing list.

Do not return coples of this report unless contractual obligations or notices
on a specific document require that it be returned.

REPORT DOCUMENTATION PAGE

" Form Approved
OMB No. 0704-0188

Puic raporung DL/cun for this colection of iformation I8 sstrnated to sversgs | Mo PIY rescnes, NS the e FOF VWG NelruCtons. SecHi Sty Cste SOUCes.

fatenng erdd rrartanng the dats reeciac, &0 COMPINENG Id reviewang tre colaction of forrmeon Send corTrreres rRQIGING this DU SEFMEte O ary CU W aspecY of trvs
colection of rformanon NouCing suggestions for NEKCLCING T DLICEN, t Weahingion Headouarnars Sersoss, Drectorate for informeton Operstions endlisnons. 1215 Jetferson
Davis righwey, Sute 1204, Afdngton YA 22202-4302, wnd to the Office o Marmgement e Bucger. Paperwork Reccnion Project (0704-01 08), Weshingtan, DC 20503

Hughes Aircraft Company
Ground Systems Group
P.0O. Box 3310

Fullerton CA 92634

1. AGENCY USE ONLY (Leave Blank) 2 REPORT DATE 3, REPORT TYPE AND DATES COVERED
February 1992 Final Jan 89 ~ Jan 91
¥ LIAABNIDL’IL';'?I TE IQUES R COMBIL AR A F‘ ING NUMBERS
RE CHNIQUES FO MBINED HARDWARE AND
C -F -89-C-
SOFTWARE SYSTEMS PE - 63382§ 89-C-0111
8. AUTHOR(S) PR - 2338
Dr. M. A. Friedman, P, Y, Tran, P. L. Goddard 1A - 02
eama an, [o] WU - 32
7. PERFORMING ORGANIZATION NAME($) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONTII ORING AGENCY NAME(S) AMD ADDRESS(ES)

Rome Laboratory (ERSR)
Griffiss AFB NY 13441-5700

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

RL-TR-92-15

11. SUPPLEMENTARY NOTES
Rome Laboratory Project Engineer:

Eugene Fiorentino/ERSR(315) 330-3476

12a. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited.

12b. DISTHIBUTION CODE

13. ABSTRACT (Marrum 200 wards)

and procedures.
was also prepared as a part of this study effort.

reliability assessment.

Technigues have been developed for reliability prediction, allocation, growth and
demonstration testing of systems that contain both hardware and software.
techniques are compatible with existing hardware reliability concepts, standards
A draft DOD-HDBK containing the various reliability techniques
It is intended that the study

results and handbook will form the basis for an approved DOD Handbook on software

The

14, SUBJECT TERMS
Reliability, Software Engineering, Software Reliability,

Software Quality

18 NUMBER OF PAGES
292

16 PRICE CODE

20. LUMITATION OF ABSTRACT
u/L

Starcerd F orm 298 (Rev 7 B9
Pragoriosd by ANS) 5td 23918
X122

17. SECURITY CLASSIFICATION
OF REPORT

UNCLASSIFIED
SN 754001 W55

18, SECURITY CLASSIFICATION [19. SECURITY CLASSIFIC
OF THIS PAGE TFLAé:Lf IFICATION
UNCLASSIFIED U ASS1F1ED

TABLE OF CONTENTS

1. INTRODUCTION . ., . . .
1.1 Scope

1.2 Research Problem Background .

1.3 Approach . .
1.
1

Ty

.5.
'5.
.5.

oW

2. SYS1TEM AND SOFTWARE MODELING,/COMBINATION
elopment of the System Model . .

2.1
Developing

Estimation

3. RELIABILITY DECOMPOSITION AND ALLOCATION . .

3.1 Approach
3.2 Results . . .

3.2.1 Software Reliability Allocation

4 Report Organization e o s & 4 e .
.5 Introductory Concepts
1.5.1 Software Failure . . , . .
Software Design Approaches To Rel
Software Reliability Growth .
Basic Reliability Concepts . . .

Devel .
2.1.1 .
2.1.2 System Model Development . . .
2.1.3 System Model Evaluation . . .
2.1.4 s

- . . [y .

L . . - . .

e o & o o o
L] L L L] L] .

e e o @ o

® o |esr o o & o 0 ¢
o
O»*» & ¢ o
-

¢ o b o o e s o
[

e o gt o o o o o« o
t<

the System FMEA .

of Model Parameter

3.2.2 Notation for Suftware Reliability

Allocation
3.2.3 Allocation

4. SOFTWARE RELIABILITY PREDICTION « . « .

4.1 Approach . .
4.1.1 Prediction
4.1,2 Predicting
4.1.3 Prediction

4.2 Results
4.2.1 Results of

MOdﬂl s L] L[] L] L] [] . L] L) L] [L] []
Techniques . . . + « « « « . &

of Software Size . o o .
Fault Density and Content .
of Software Failure Rate .

Prediction of éottware Feilure

Rate [] [[] [] . L] L[] L[] L] L] [] [. - . L[] . [] []
4.2.2 Predicting Hazard Rate/Fault and Related

Quantities . . e e e e e a e s e u
4.2.3 Fault Reduction Factor . . e e v s e

4.2.4 Sumnmary of

Prediction Technique o« o e w .

5. RELIABILITY GROWTH TESTING . . « « ¢ ¢« o« o o o o o o &

5.1 Approach
5.2 Results . . .
5.2.1 Major Tine
Models .

Domain'Software Reliability T

iii

OANMWWWNERPE

70
72
79
79
81
82

83

TABLE OF CONTENTS (con't)

5.2.2 Selected Software Growth Model 85

6. RELIABILITY DEMONSTRATION . . « « « « o« o . . 105

6.1 Approach « o ¢« ¢ o o o o . . o« o . 105

6.2 R@BULLSB ¢« ¢ ¢ ¢ ¢ ¢ e o o o o s o s o o 5 s ¢ o o 106

6.2.1 Test Procedures . . . « + o« « o s + o &+ o 106

6 . 2 . 2 Fixed-mngth T‘.t e o @ . . e . * o & e 108

6.2.3 Minimum Failure-Free Exacution

Period Test . ¢ ¢ ¢ ¢ ¢ o o o o o o o o @ 111

6.2.4 Sequential Test « . « o ¢« « « « & 113
6.2.5 Demonstration Testing during Growth

Testing . « « ¢« ¢ ¢ ¢ ¢« ¢ ¢ o o o o . . e 116

6.2.6 Multiple Copies . . « s s s v o w e s & s 119

7 L) VALIDATION L] L] [] . L] L] L] L] . L L] a L - L] - e L L] » L] L] 12 o
7 L] 1 Approach [] L] L] L[] . . L] L] L] [] L] L[] L] L L] L . L] . . 120

7.2 Results 120
7.2.1 Model A (Frozen Code) . . ¢« ¢ « ¢ o o o o 120
7.2.2 Model B (System Test) . . . o s s e 125

7.2.3 Validation of Software Failure Rato
Regression Models « « « & « & 130

8., CONCLUSIONS AND RECOMMENDATIONS ¢ ¢ ¢ o o o ¢ s o« 2 o @ 143
B8.1. Conclusions . . ¢ ¢ & ¢ ¢ o e o 2 6 o 8 s ow s s 143
8.2. Recommendations . « ¢ ¢ ¢ ¢ ¢ ¢ o & ¢ o o o o 144
Append ix A . RELIA‘BILITY DATABASE » [y A-l

Appendix B. CONSTANT FAILURE RATE MODEL FOR SOFIWARE . . . B-1

Appendix C. DYNAMIC ALLOCATION . . « &+ o« ¢ o o o o s o » o C=1
C.1. Assumptions . . « ¢ ¢ &+ ¢ o ¢ o ¢ o o o 0 0 s c=-2
C.2. Notation . . . « o e s s s e & s Cc-2
C.3. Dynamic Allocation Technique C e e s s e e e s e c-3
Appendix D. EARLY PREDICTION OF PROGRAM SIZE « . . D-1
D.1 Successive Ratings Metheod o e e D=2
D.2 Pairwise Comparisons . . . ¢« « « « ¢« ¢« o ¢ o o & D=3
D.3 Paired Comparisons Method + ¢« ¢« « « « « . D-8

Appendix E. MULTIVARIATE REGRESSION ANALYSES . . « « . . . E-1
E.1 Multivariate Linear Regraession Model

Gvelopment 0 . . E-G
E.1.1 Regression Models Based on Software
Development Phases . . . e« + s o o s + E=7
E.l.2 Regression Models Based on Correlations among
Independent Variables « « + ¢« + « . E=15

E.2 Multivariate Nonlinear Regression Model
Development . « o e e & @ . I .« e . . . « e E-l7

iv

E.3 Notation

REFERENCES

TABLE OF CONTENTS (con't)

Accession For

NTIS RAkl E?
DT1" Tak 0
Unacoonnsed O
Jusiistestion
By
_Ei;trlhntign[dA

v e e e bebdde

Avatlahility Condey
fynd) nodfor
Dint Speatal

-

K|

1 qRIoEESNT AZTTVOY 0Ld

LIST OF FIGURES

2-1 Example of System Level Functional FMEA 13
2-2 Notation Used in State Diagrams and Text 14
2-3 State Diagrams for Simple Series HW/SW Elements . . . Y]

2~4 General Hardware Redundancy Model: M Required of N
Supplied Identical Elements . . . ¢ « ¢ ¢ &+ ¢ s o o+ & 19

2-5 Hardware Reliability Model for 1:2 Identical Elements
Hot Standby with Automatic Switchover 19

2-6 HW/SW Reliability Model: M Required of N Supplied
Identical Elemants, Cold Standby . « + « « o+ « o & o o 22

2-7 Simplified State Diagram for 1:2, Hot Standby,
Hw/ Sw system L] .’ . . L] L] L) [] L] . L] L] L] . L . L] L] [] [] LJ 2 4

2-8 Reliability Block Diagram for a Processor « . « 28

2-1
3-1
4-1

4-2

5-2

7=1

7=2
7=3
7=4
7=5
7=6
7=7

7=9

7=10

LIST Or' TABLES

Reliability Combination Models .

Allocation

Models ., .

[L] . . .

Function Point Factors

Code Expansion Ratios

Standard Normal Deviates

Normal Approximation

Percentage

for a=.01 Two-Tailed

Points of

Data Sat B-l s o s s @

Data Set B-2

Data Set B-3

Data Set

8-4 e s & s s

Growth Data Sets . . .

Summary of
and M3 . .

Summary of
and M6 . .

Summary of
Summary of
Summary of

validation

Product/Process Metrics

Statistical

Statistical

Statistical
Statistical

Constants .

values of

values of

Values of

Values of

. . [} L] L]
L] . L] . L)
L] [] [] . L]
L] L]] . L]
[] . L] .

[L] L] L] L]

Models M1

Mcdels M4

. L] L] L] L)

Models M7

Models M9

Projects - Software Development

Projects .,

Fielded Projects . . .

Successive Ratings Method Example

Data Set Observations

’

the Chi-Square Distribution
Test . . .

32
48
60
73
92

93

123
126
127
127
128
129

134

1. INTRODUCTION

1.1 Scope

This document constitutes the final report on research into
"Reliability Techniques for Combined Hardware/Software Systems,"
perfcrmed for the U.S. Air Force under the contractual auspices
of Rome Air Development Center, Griffiss Air Force Base, Rome,
New York. This report fully satisfies the requirements of CLIN
0002, ELIN A004, of contract F30602-89-C-0111, Reliability
Techniques for Combined Hardware and Software Systems.

1.2 Research Problem Backdaround

Many modern military and commercial systems and products contain
both hardware and executable software elements. The hardware
comprises the physical, tangible elements of the system.
Executable software is a logical element of the system,
consisting of sequences of instructions (programs). As speed,
capacity, and cost-effectiveness advance, an ever-increasing
number of applications are being found for computers. Society
and its institutions are becoming more and more dependent upon
computers. Microprocessors are being embedded into all manner of
devices and systems to add "intelligence." Computers lie at the
heart of real-time applications that control critical and vital
functions, where system failure can have catastrophic results.
High reliability is a crucial need of complex military systems,
which can inflict or prevent death. As hardware becomes more and
more reliable as the result of technological advances, software
is assuming an increasing role in achieving system reliability
requirements. System reliability considerations have in many
cases made a transition from hardware to software.

Methods for the prediction and measurement of hardware
reliability are considerably older and more mature than those for
software. The hardware methods have become standardized and
institutionalized throughout the defense and related industries
through military standards and handbooks. Over the past fifteen
years, the field of software reliability has made significant
progress. Major achievements have taken place in understanding
software reliability, including modeling, prediction, estimation,
its relationship to software quality metrics, and its
relationship to mission environment. These results are scattered
throughout the industrial and academic literature. This study is
intended to bring this research together, and build on it, adding
new theoretical and empirical results to create a comprehensive
methodology for software reliability assessment.

The methodology resulting from this study covers the entire life
cycle, 1is compatible with the military standard for defense
system software development--DOD-STD-2167A--and is aligned with
existing hardware reliability standards and practice, so that it

1

can be applied in a unified, integrated approach to total systems
reliability. To the end of moving software reliability
engineering towards standardization and institutionalization, a
draft military handbook on combined hardware/software system
reliability prediction and estimation is being written as part of
this study effort (ELIN A003).

1.3 Apbroach

The study team began the research project by establishing a
software error/failure database for use in developing techniques
for system decomposition and reliability allocation, reliability
prediction and modeling, reliability growth testing, and
reliability demonstration. The team populated this database with
error data, test failure data, and product/development process
metrics from eight projects. The projects were selected to
encompass a wide variety of size, product, and development
process characteristics. Two of the projects were ongoing
projects whose data was set aside to be used solely for the
validation of the techniques.

Since the database required data from several life cycle phases
of each project, the data could not be collected all at once.
The data collection was spread out over several months. The
prediction task, which required the most data, was the last task
to be completed. while the database was being populated, work
began on the allocation, prediction, growth, and demonstration
tasks.

System decomposition consists of allocating functiocnal
requirements to hardware and software subsystems and lower
indenture levels. Reliability allocation consists of
apportioning overall system reliability requirements to those
items. For software the indenture levels are Computer Software
Configuration Items (CSCIs), Computer Softwara Components (CSCs),
Computer Software Units (CSUs), and modules. The approach that
was taken was to allocate software reliability to processes (also
called tasks), which generally correspond to the CSCI level.

A Markov (combinations) approach for repairable systems and a
combinatorial approach for non-repairable systems were used for
reliability modeling. Reliability combination (i.e, calculation
of the reliability of assemblages of hardware and software
components) was studied as a prerequisite to researching
allocation.

Reliability prediction was approached by defining the problem as
predicting the parameters of a suitable software reliability
growth model. Predictive relationships based on regression
analysis of the product/process metrics and error/failure data
were developed.

For growth testing, criteria for selecting a software reliability
growth model, goodness-of-fit techniques, and recalibration
techniques were developed. Special attention was paid to
sta’ istically wvalid ways to perform the testing, including
acceleration by means of multiple copies.

For demonstration testing, an appropriate model for testing
frozen code was selected. The types of tests developed based on
that model were fixed-length tests, failure~free execution
interval tests, and sequential tests. Additional types of tests
were develcped for the cases of demonstration test during growth
testing and for using multiple copies.

Each of the techniques developed for prediction, decomposition
and allocation, growth testing, and demonstration testing were
validated on ongoing projects. The techniques were organized
into a reliability methodology covering the entire life cycle.
The methodology forms the basis for the draft MIL~HDBK delivered
under contract as ELIN A003.

1.4 Report Organization

This report is organized to provide full detailed results for all
items in the SOW of contract F30602-89-C-0111 which are not
supplied under separate CLIN or ELINs. Coverage -of the study
results for reliability modeling (SOW Task 2), allocation (SOW
Task 3), prediction (SOW Task 4), growth testing (SOW Task 5),
demonstration testing (SOW Task 6), and validation (SOW Task 7)
are provided in the main body of the report. The appendices
provide study activity reporting for reliability data base
establishment (SOW Task 1) and provide supplementary, detailed,
material for the other tasks in the SOW where appropriate.
Reporting on Reliability Technique Application Software (SOW Task
7) and Handbook Guidelines (SOW Task 8) is not provided. SOW
tagsks 7 and 8 are deliverable under CLIN 0001 and CLIN 0002, ELIN
A003 respectively.

1.5 Introductory concepts
1.5.1 goftware Failure

Software and hardware differ in several respects. Software does
not wear out; almost all hardware goes through a wearout phase.
All copies of software are perfectly identical; each manufactured
copy of a piece of hardware differs to some extent. Once a fault
is removed from software it is gone forever; many hardware faults
can recur. When viewed at the appropriate level of abstraction,
however, hardware and software reliability are very s3imilar.
Both a running program and an operating hardware item can be seen
as "black boxes." Every once in a while the black box fails.
The failure-inducing stress is time. For software, time brings

3

with it a succession of input states. The more time that goes
by, the higher the quantity of, and the more variety of, input
states the program encounters. Eventually, because of the
presence of faults, an input state will triggsr a failure. With
hardware, time carries with it random stressec (such as friction,
shock, corrosion) which gradually or suddenly cause failure.
Thus bothh hardware and software reliability can be modeled as
random or stochastic processes.

An interesting trend is that some types of hardware are taking on

the characteristics of software. A VLSI chip cannot D)e
exhaustively tested; like software there are too many input
states and too many paths. Hermetically sealed integrated

circuit chips are claimed to have no wearout failure mode.
Firmware has both hardware and software failure modes. While a
particular version of a program does not wear out, progranm
maintenance is an entropy-increasing process, so that a program
will, in time, deteriorate.

A software failure occurs when the program produces output
(display, hardcopy, command, control, etc.) that deviates from
what the requirements specify. A failure can pe one of
conformance, in which the program does not produce the right
answer, or one of performance, in which the program does not
perform a required function in a timely or resource-efficient
manner. Performance failures include crashes, hangs, and
software that does not meet its response or throughput time
requirements. Real-time systems need to respond to events in the
outside world as those events are happening.

Software fallures can be classified along several different
dimensions. One classification is by the number of discrepancies
that comprise the failure. A discrepancy is a deviation of the
value of a single output variable from the required value.
Another way failures can be classified is by the severity of
their consequences: The impact of a failure could be as
ignocuous as a misspelling or as catastrophic as loss of life or
limb.

Software reliability is one measure of software quality.
"Software quality" refers to those attributes that a pregram is
required to possess at all times. Examples inciude security,
robustness, maintainability, safety, availability, and
portability. Quantitatively, software reliability is defined as
the probability of failure-free operation of the software for a
specified period of time, in a specified environment. An
alternative figqure of merit is the software's fallure rate, the
instantaneous rate of software failures per unit time. By "time"
is meant execution time. The failure-inducing stress |is
execution time, since software that is not running cannot fail.
When combining software failure rates with one another and with
hardware, the failure rate is re-expressed with respect to system

4

operating time. The level at which software reliability should
be expressed needs to be a high one, such as Computer Software
Configuration Item (CSCI), soc that the interfaces between lower
level items will be included.

Software failures arise from a population of software faults. A
software fault (often called “"bug") is missing, extra, or
defective code that has caused or can potertially cause a
failure. Every time a fault is traversed during execution, a
failure does not necessarily ensue; it depends on the machine
3tacte (values of intermediate variables). The extent to which a
source program contains faults is indicated by its fault density,
expressed in faults per thousand lines of executable source code
(KLOC) . The fault density does not translate directly into a
failure rate because different parts of the program are executed
with different frequencies. Instructions inside loops will tend
to be executed more often than instructions outside 1loops.
Conditionally executed instructions tend to get executed less
than unconditional ones. How many 1loop iterations occur and
which branches take place depend on the machine state, which in
turn depends on the input state.

The origin of software faults 1lies in human fallibility.
Coxpounding factors are the lagging of software engineering
technology behind the increasing capabilities of computers, the
li.rge number of discrete states in programs, the novelty of
problems and solutions, and lack of standard off-the-shelf
software "parts" and designs. Software is very flexible because
tl.ere are no physical constraints such as power, weight, quantity
of parts, manufacturability, etc., so software engineers take on
tasks of scmetimes enormous size and complexity.

1.5.2 Software Desian Approaches To Reliability

High levels of software reliability are accomplished through a
triad of activities: fault avoidance, fault elimination, and
fault tolerance.

Fault avoidance consists of applying sound software engineering
practices, including standards (documentation, structured design
and programming, control), quality assurance (fcrmal reviews,
audits; evaluation of personnel, methods), and verification a:..d
validation. These metheds can go a long way in keeping down the
number of faults but, historically, many faults will remain.

Fault elimination is accouplished through testing, code reading,
and walkthroughs. The only way to uncover and remove all faults

in the code is through exhaustive testing. Exhaustive testing of
non-trivial programs is impossible from a practical point of view
because the number of inputs states is astronomically large.
Formal proof of correctness, given the current state of the art,
is likewise impractical for real-world software. In a program

5

correctness proof, the program is treated as a static
mathematical object. The correctness proof is a formal
mathematical demonstration that 2 program is consistent with its
specification. such proofs are of great size and complexity,
although mechanical verifier systems help. A formal
specification of the program is required, and it is impossible to
demonstrate whether the specification captures the intentions of
the customer. Even if exhaustive testing or a formal proof of
correctness could be accomplished, the results of the activity
are as vulnerable to huwan fallibility as programming is.

Fault tolerance is achieved through special programming tech-
niques that enable the software to deteact and recover from
failure incidents. Software fault tolerance is a controversial
topic. The method requires "redundant" software elements that
provide alternative means of fulfilling the same function. The
different versions must be such that they will not all fail in
response tc the same circumstances. Some have suggested that
diverse software versions developed using different specifica-
tions, designs, programming teams, programming languages, etc.,
might fail in a statistically independent manner. Empirical
evidence questions that hypothesis. However, almost all software
fault-tolerance experiments have reported some degree of
reliability improvement. Despite advances in software fault
avoidance, elimination, and tolerance, large-scale software will
have faults and it will occasionally fail. There is a need to
specify, predict, mneasure, allocate, model, and demonstrate
softvare reliability. Sottware reliability figures need to be
meaningfully combined with hardware reliability figures to yield
system reliability figures.

1.5.3 Software Reliability Growth

For the results of growth model parameter estimation and software
reliability growth testing to be valid, it is important that the
environment during test be the same as the actual field use
environment. The hardware platform (actual or emulated) and the
system software (such as the operating system version) must be
the sanme. A very important part of the environment is the
progran's operational profile. An operational profile associates
each point (input state) in the program's input space with a
probability of occurrence. The operational profiles during
testing and field use must be identical. Since the input space
of most programs is quite large, fully specifying the operational
profile is impractical. An operational profile can usually be
expressed as the relative frequencies of end-user functions,
resulting in a "functional profile." For real-time systens,
ordering and timing of inputs may also enter into a description
of the environment.

Just because faults lurk in the code, however, does not mean that
the program will provide unreliable service to end-users. Each

6

user's individual operational profile will result in a different
rate at which faults are encounterad. The operational profile
determines the probability of each input state and hence each
path through the program. The input state determines the machine
state (values of all intermediate variables) the computer will be
in when the fault is encountered. In certain machine states the
fault will cause a failure.

During a hardware item's useful life (between burn-in and
wearout) a constant failure rate model is generally employed.
For a program whose code is .frczen, subjected to input randomly
selected from a fixed operational profile, a constant failure
rate model is a reasonavle one (see Appendix B). During system
test, as the code is altered as the result of fault correction
activity, the failure rate will vary as a function of cumulative
execution time.

The failure rate of a piece of software is a function of the
number and location of faults in the code, how fast the progran
is being executed, and the operatiocnal profile. Faults cannot
be directly observed, if only for the reason that any faults
whose whereabouts are known would presumably have already been

removed. The way to find faults is to execute the software
starting from various input states. When a failure occurs the
symptoms are recorded. Fault-correction personnel analyze the

symptoms and look at the code to try and locate the fault that
caused the failure. If the fault is not obvious, the personnel
will try to reproduce the failure, this time running with a
debugging tool or having inserted additional output statements
into the program. A debugging tool typically allows the user to
execute the program a step at the time and lets him or her
examine and deposit variable values. Usually, the programmer
finds the fault and removes it. At times the repair activity
introduces new faults into the code.

While repair activity is imperfect, the hoped-for and generally
observed result is that the times between failures tend to grow
longer and longer as the process of testing and fault correction
goas on. A software reliability growth model mathematically
summarizes a set of assumptions about the phenomenon of software
failure. The model provides a general form for the failure rate
as a function of time and contains unknown parameters that are
determined either by prediction or estimation.

Growth testing and modeling is used to estimate the time and
effort needed to reach intermediate or required reliability goals
and to track the progress the software is making toward those
reliability goals. If the software is falling short, management
can re-allocate resources or take other corrective action.
Growth testing thus provides visibility to management about where
the software reliability is currently and where it is expected to
be at a given milestone.

A software reliability growth model makes assumptions about the
nature of the distribution that fits the failure data. Since
there is usually no prior statistical information about the
failure behavinr o¢f a specific program, a goodness-of-fit
procedure can be applied to assess how well the model is fitting
the data. If the fit is not good, an alternate model or
statistical estimation technique can be employed or a
recalibration technique can be applied to the model to improve
the raesults.

1.5.4 pasic Reliability Concepts

Quantitatively, the reliability of an item is expressed by its
reliability function R(t). To be meaningful, the environment in
which the item operates must be specified. The reliability
function gives the probability that the item will fail by time t.
The reliability of an item is usually specified for mission
oriented systems. An alternative way of expressing an item's
relative reliability is by its failure rate A(t), which is the
rate of failures per unit time at the instant t. 1In situations
where the failure rate is a constant, A, the reliability function
and failure rate are related by the aquation R(t) = exp[-~it].
MTBF, the reciprocal of failure rate or availability are the most
common reliability figures of merit for systems which are
continuously opserated and undergo repair when failures occur.

2. SYSTEM AND SOFTWARE MODELING/COMBINATION

Reliakility modeling of combined hardware and software systems is
analogous to reliability modeling of purely hardware systems.
The failure rates for both hardware and software are treated as
constant (see Appendix B). Reliability block diagrams of system
elements are developed and employed. Individual hardware
platforme and the software assigned to those platforms are
independent of other hardware/software platforms. State diagrams
that accurately portray the interrelationship between the
hardware platforms and the software executing on the platforms
arei developed and used in estimating reliability figures of
merit.

This section provides a summary overview of the techniques
applicable to the reliability modeling of combined hardware and
software systems. An abbreviated overview of the system modeling
process is provided. This overview is used to help the analyst
identify those system properties which are unique to combined
hardware and software systems. The majority of this section is
dedicated to describing the development of software failure rates
that are a composite of the multiple processes that may be
executing during any time period. A pmajor treatment of
reliability modeling of HW/SW systems was provided in [James gt
al, (1982)]. This report provides modest. clarification to the
major work on reliability modeling that has been previously done.
Specifically, some discussion of the reliability modeling detail
as it relates tc active redundancy is provided.

Modeling methods used to model combined HW/SW systems for the
purposes of reliability estimation and allocation need to
accurately assess the interdependence between individual software
elements, the hardware platforms on which these software elemonts
execute, and the services provided by the system being analyzed.
Additionally, the methods used need to be based on and compatible
with modern system engineering methods.

Reliability moédeling is based on system FMEA (Failure Modes and
Effects Analysis), a traditional, bottom up, reliability analysis
technique that provides a mapping between failures and their
impact on system sarvices. These FMEAs need not always be a
formal analysis since the results are expressed in the
reliability model block diagrams. Both fault tree analysis and
FMEA were critically examined for use in combined HW/SW system
reliability model development. Either fault tree analysis or
FMEA can produce the needed analysis of the dependencies between
system hardware elements and system services. Howvever, fault
tree anzlysis of the loss of each system service, while accurate
and complete, <creates a large amount of duplication of
information. FMEA techniques tend to result in a more compact
display of the needed data. However, traditional FMEAs that are
entered on multiple pages of FMEA forms create a large amount of

9

data that is poorly organized for reliability model development.
The use of a system level adaptation of Matrix FMEA techniques
[Barbour (1977), Goddard (1984)]) results in a compact readily
usable display of the needed FMEA information.

The modeling of combined HW/SW systems, whether for reliability
allocation or estimating purposes, is best approached on a
functional service basis using a matrxix FMEA approach. The
resultant FMEA can then be used to develop a HW/SW systenm

reliability block diagram of independent elements. The
individual series/parallel elements of the reliability block
diagram can then be modeled. Non-redundant systems can be

modeled as series strings of hardware and HW/SW system elements.
Complex, redundant systems and system elements are modeled using
Markov stata diagrams to accurately portray the possible
operational and non-operational states. In general, these state
diagrams will be complex enough to require access to automated
tools for solution. They are not, strictly speaking,
intractable. However, the labor required to manually determine a
specific closed form solution for a state diagram that has been
developed to model a specific design being analyzed is usually
prohibitive. Automated solutions of these state diagrams are
possible both analytically and through simulation. Tools for
analytic and simulation solutions of Markov state diagrams are
available to government offices and their contractors through
Rome Labs and NASA at nominal costs. The user of these tools
will need to determine whether or not the numerical accuracy
needed for their specific situation is supported. Analytic
solutions to these diagrams often require the solution of a
transition matrix with potentially significant 1losses in
numerical accuracy due to the multiple arithmetic operations
compounded by the accuracy limitations of the processing platform
being used. Monte Carlo solutions to Markov chains can result in
both numerical inaccuracy due to the methods employed and may
involve substantial cost for multiple program runs. The costs
associated with Monte Carlo solutions rise dramatically as the
degree of accuracy demanded increases.

Estimation of system reliability characteristics is based on the
reliability block diagrams and Markov state diagrams developed
from the system services FMEA and the individual hardware and
software component reliability. Estimation techniques for
hardware reliability and maintainability characteristics are well
known and can be applied to the hardware portions of combined

HW/SW systemns. Software reliability characteristics can be
estimated using the methods described in this report. For
redundant, fault tolerant systens, softwvare recovery

characteristics are system design and implementation dependent.
These recovery characteristics will need to be estimated on a
case by case basis in conjunction with performance modeling and
estimation.

10

Software maintainability, the time required to isoclate and
correct a fault in the design, is not used in the reliability

modeling and allocation discussed in this section. Software
maintenance is expected to proceed in parallel with ongoing
system operation following a software failure. Thus, the time

required to reestablish system operation following a software
failure is used as the repair or recovery rate in the modeling of
software alements of combined HW/SW elements. Software
maintenance will result in a software failure rate that is not
constant over time due to the softwara corrections being
implemented. However, for the purposes of modeling and
allocation of combined hardware and software systems, an
assumption of constant software failure rate at any operational
period (i.e., between software fixes) is justified. Estimations
of the software failure rate and of software reliability growth
rates are discussed elsewhere within this report.

2.1 Development of the System Model

The development of an accurate and representative system
reliability model for use in reliability estimation and
allocation is dependent on a thorough understanding of the system
being modeled. First a FMEA is developed for the system design
which relates the services provided by the system to the various
hardware and software components. This FMEA is then translated
into a system model.

2.1.1 Developing the System FMEA

Davelopment of a reliability model for use in reliability
estimatlon and allocation begins with the use of the functional
decomposition that has been developed as a part of the system
engineering process. For small or relatively simple system
structures, system functional analysis may have been omitted as a
formal procedure. If the system level functional decomposition
is not available, the reliability engineer may find it necessary
to recreate this analysis using either Data Flow Diagrams
[DeMarco (1978)) or using the Real Time System Specification
Strategies of Hatley and Pirbhai [Hatley (1987)]. The functional
decomposition of the system is used to identify the hardware
configuration items (HWCIs), the computer software configuration
items (CSCIs) along with the processing provided by these CSClIs,
and the allocation of CSCIs to various HWCIs within the systemn.
The analyst can then begin to create the system level FMEA that
will support reliarility modeling of the combined HW and Sw
system.

The system level FMEA, shown diagrammatically in Figure 2-1, is a
mapping of the hardware and software components of the system
onto the system services provided. To create the FMEA, the
analyst first constructs a matrix with each of the hardware CIs
and their associated software CSCIs or CSCs as appropriate along

11

the vertical axis. The horizontal axis is formed by the: system
services or outputs of the system grouped in convenient ways that
support the desired analysis. A grouping of system services by
system operating mode often supports development of the various
models required by the system specification. The HWCIs and CSCIs
(CsCs) are then mapped onto the system services or outputs based
on the impact on system services caused by the failure of each
hardware and software element. In performing this mapping, the
analyst will need to assess the impact of failure of both
hardware platforms and software elements. The failure impact of
software elements will need to be examined in depth based on the
data flow that has been established for the system design.
Similarly, the failure of hardware platforms will need to be
examined for its impact on software-provided services using the
data flow diagrams for the system software resident on the
hardware platform.

Once the system level FMEA has been completed, the analyst can
examine the hardware and software that is required for any
particular mode or set of system services. A reliability model
for these services can then be developed.

2.1.2 gystem Model Development

2.1.2.1 Reliability Block Diagram Development

The reliability block diagram for combined HW/SW systems is
developed based on the system FMEA, using a procedure that is
analogous to that used for purely hardware systans. The FMEA
results are used to determine which hardware and software
elements are required to provide a set of system services of
interest. The analyst then proceeds to develop a reliability
block diagram that consists of a set of series blocks for each of
the independent HW/SW subsystems or elements <that must be
operational to provide the services being modeled. In general,
the analyst should only separate software elements from the
hardware elements on which they execute as a final step in the
reliability block diagram modeling. Distinct separation of
hardware platforms and the software that executes on those
platforms is based on system application specific information
that is used in developing a state diagram(s) that accurately
represents the interaction between the hardware platform and the
software executing on it.

OPER. MODE DEGRADED StARVICE FULL SERVICE

- SUB 1 HW Cls
g + C8Cla
z SUBn HW Cls
« CSCla
: g
. CSCIn’

Figure 2-1, Example of System Level Functional FMEA

2.1.2.2 §State Diagram Development

The development of one or more state diagrams that accurately
raepresent the hardware and software interactions for all system
processing elements, both series and redundant, is the next step
in developing reliability models of combined HW/SW systems. The
notation that will be used for the presentation and discussion of
state diagrams in this section of the report is given in Figure
2=-2., The reader should review that figure for notation prior to
proceeding with the remainder of this section.

13

SIiie SZ O - pa

§ = SUCCESS

STATES ~——» 0 OPERATIONAL d—-— STATE TYPE
F = FAILED

STATE NUMBER
TRANSITION RATES

TEXT NOTATION
STATEN: [N}
STATE TRANSITIONMTO N : (M, N)
DEFINITIONS
A HW - HARDWARE FAILURE RATE H HW - HARDWARE REPAIR RATE
A SW - SOFTWARE PAILURE RATE |4 8W - SOFTWARE REPAIR RATE
TR« TIME REQUIRED FOR MANUAL RECOVERY Cg- FAULT DETECTION COVERAGE

C | - FAULT ISOLATION COVERAGE
Cr- FAULT RECOVERY COVERAGE

Figure 2-2, Notation Used in Gtate Diagrams and Text

Software restart, which is used in the state diagrams discussed
below, is the time required to restart the faiied software
without changing the software itself. As discussed previously,
software repalr vrates are not used in the state diagrams
discussed in this section. 1Instead, the software recovery rate
is adjusted to include those cases where software must be
"patched" prior to successful restart. Software failures are
assumed to be dependent on the state of the software execution
environment at the time of failure. Thus, the failed software
can often be restarted, without any change to the software
itself, and will resume operation as long as the environment that
was in existence at the time of the software failure has changed
sufficiently. Successful restart after failure is a reasonalrle
assunption for software with moderate maturity. The software
that has failed may have operated successfully for tens ¢to
hundreds of hours prior to being presented with a sapecific
processing system state and set of inputs that were sufficient to
cause the failure to be manifested. However, successful restart
of the failed software will depend on the persistence of the set
of execution conditions that caused the original failure. 1If the
persistence of the failure is sufficiently long, repair of the
software may be required prior to any restart. For the purpose
of reliability modeling of HW/SW systems, a long persistence

14

failure is one that will continue to cause software failure when
restart is attempted. Any set of execution conditions that
persists long enough to cause a failure upon attempted restart is
expected to result in system shutdown for most non-redundant
systems and effective loss of redundancy in cases of software
failure for redundant systems. The relative fractions of long
persistence to short persistence failures for mature software are
not known. James et al. (1982) reported an average of 60 percent
short persistence failures for immature software undergoing
factory test.

The time required to restart software with a short persistence
failure may vary widely and may exceed the repair time required
for hardware failures in some cases,. Long restart tluies are
expected to occur for failures that "crash" the operating systenm
leaving system resources in an indeterminate state that must be
determined and corrected (if needed) manually. Software failures
that leave large data stores inconsistent are also expected to
require long restart times due to the difficulty in restoring the
data to a known acceptable state. For example, fallures that
cause a data base to lose integrity may require restoration from
a backup tape with subsequent update using Jjournal files.
However, the average time required for software restart is
expected to be less than the average hardware repair time since
restart of all system sgoftware is included in the hardware
maintenance time and at least some hardware failures may leave
system resources and/or data stores in an inconsistent state.

2.1.2.2.1 Series Elements

The state diagrams used to represent series HW/SW elamants are
simple state models as shown in Figurs 2-3. The hardware and
software elements can be treazted as independent paths that can
lead to failure since both hardware and software must be fully
operational for the system to be in a success state. The three
possible state models are shown in the figure as (a) for systems
undergoing a continuous operation and repair cycle, (b) non-
repairable systems that are not self healing in the case of
gsoftware failure (i.e., single shot systems), and (c) non-
repalrable systems with self-healing for software failures.

As shown in part "a" of the figure, repairable systems experience
hardware and software failures and recover independently through
either hardware repair or software restart. The recovery time
for software in this model includes the impact of any long
persistence software failures (i.e., those which cannot be
repaired through restart). At any time that either the hardware
or software has failed and not yet been repaired or restarted,
the system is considered to be in a failed state. It is possible
to transition from state 2 (software failure) to state 1
(hardware failure) if a hardware failure occurs prior to
successful software restart. Since the hardware remains

15

operational after a software failure, there is a continuous
exposure to the possibility of hardware failure. The transition
(2,1) can usually be safely ignored without undue loss of
accuracy since (2,1)<<(2,0) in most cases. The reliability
metrics of interest for repairable systems (e.g., availability,
MTBF) can be derived from the closed form semi-Markov process
shown.

HW
OPERATIONAL
1
OPERATIONAL

soRlis e SN

HW
OPERATIONAL
sw

FAILED

(a) REPAIRABLE SYSTEM {b) NON-REPAIRABLE (o) NON-REPAIRABLE
SYSTEM SYSTEM WITH 8W
RESTART

Figure 2-3. State Diagrams for Simple Series BW/SW Elements

16

Series non-repairable system elements are modeled as shown in
part "b" of the figure. The system element is considered fully
operational as long as both the hardware and software remain
operational. If a failure of either hardware or software occurs,
the system transitions from state 0 to state 1, which is an
absorbing failed state. The state diagram shown allows the
calculation of relevant reliability metrics of interest (MTTF,
Reliability, Probability of Success) tarough evaluation of the
probability of the transition (0,1) occurring during any given
time period t1 to t2. In practice, completely non-repairable
systems are relatively rare. This type of system would be
expected to be found in systems where the critical duration of
operation is tou short to allow software restart to be attempted.
Most critical real time military systems of interest are expected
to include the ability to restart software. ,

Series non-repairable elemunts with software restart are modeled
using the state diagram shown in part "c" of the figure.
Transitions Zfrom successful operation (state 0) to either
hardware failure (state 1) or software faillure (state 2) occur at
the respective failure rates shown. Hardware failures cause the
system to enter a permuanent falled state (state 1) that is
absorbing. Software failures cause the system to enter a
software failed state (state 2). The aelement then restarts the
software in an attempt to resume cperation. This type of system
operation is commonly found in aircraft avionics that have
software (firmware) embedded into the eguipmant. Typically, upon
failure of a hardware or software element, the equipment removes
itself from any active operation, flags the pilot that an error
has occurred, and enters a self test mode. Following successful
completion of the self test, a restart is attempted. If the
failure was induced into hardware by the environment or was a
short persistence software failure, an equipment restart will be
successful, allowing the equipment to resume operation.

2.1.2.2.2 Radundant Elements

Reliability models of redundant HW/SW elements are significantly
more complex than reliability models of series elements. The
addition of redundancy introduces complexity associated with the
ability of the HW and SW to correctly respond to failure events.
Reliability modeling of redundant HW/SW elements with hot standby
and automatic switchover capability significantly increases the
number of states required to properly account for system
behavior.

2.1.2.2.2.1 Haxdware Svstems

A general model for hardware redundancy using identical equipment
is shown in Figure 2-4. As shown in the figure, redundant system
elements transition to the next higher state upon the occurrence
of any HW failure. Hardware repairs transition the system

17

element model to the next lower (numerically) state. The system
is a closed form semi-Markov process that can be solved for the
appropriate reliability measures using conventional methods.
Closed form solutions for the reliability measures of interest
for this type of model under most common repair restrictions,
types of standby, etc, are available in the literature [Kozlov
and Ushakov (1%70)}.

The model shown in Figure 2-4 provides an upper bound on the
reliability of redundant hardware systenms. Estimation of the
axpected reliability of hardware systems requires that the fault
tolerance employed in the redundancy be included in the model.
For cold standby systaeam, where backup elements are not powered
and thus immune to failure occurrenca, the model of Figure 2-4
provides a reasonable estimate if the transition rates shown from
each success state to the next higher number state are adjusted
to account for the constant number of elements in operation (m
unita). Howaver, for hot standby systems with autematic
switchovar, the model of Figure 2-4 significantly overstates the
reliability achieved by the redundant hardware elements,
Failures in the fault detection mechanisms that may lead to
latent faults in backup equipment, as well as failures in fault
dataction, fault isolation, and fault recovery mechanisms that
may lead to an inability to activate redurdant system elements
and resume system services in response to primary element
failures, are not included in the mcdel shown in the figure.

Figure 2-5 is a simplified reliability model for a hardware
system employing hot standby, and automatic switchover with one
of two identical alements required. The model accounts for
fajlures in the fault detection, 1solation, and recovery
mechanisms. The concept of three types of ‘'"coverage" |is
introduced as a part of the model. Fault detection coverage (Cd)
is the probability of detecting a fault given that a fault has
occurred. Fault Isolation coverage (Ci) is the probability that
a fault will be correctly isoclated to the recoverable interface
(lavel at which redundancy is available) given that a fault has
occurred and been detected. Fault recovery coverage is the
probability that the redundant structure will recover system
services given that a fault has occurred, been detected, and

correctly isolated. The model shown in Figure 2-5 is a
simplified model since it does not separately consider the
possible impact of transient failures. The model also assumes

that fault detection coverage (Cd) is the same for both the
primary element and the backup element. In practice, there may
be differant levels of fault detection coverage between primary
and backup equipments due to a difference in test exposure
intensity.

18

« M";' ¢ o o A
()//

sznlie- T4 01081

M-1 UNITS

N UNITS F
OPERATIONAL

OPERATIONAL

e HHW RRW B Hw HHW

Figure 2-4. General Hardware Redundancy Model: M Required of N Supplied Identical Elements

3

’

PRIMARY 3

UNIT FAILED 3

3] BACKUPUNITOK | F 3
RECOVERY FAILED

le(1-Cd° Ciw Cr)

AHw
A HweGgth wwe Gy Cpe Cr
1 1UNIT
— OPERATING 2 UNITS
2 UNITS -
0 s 1 FAILED-BSING
OPERATING 1UNIT REPAIRED
HHW BEING REPAIRED
A HW Cd
A pw(1-Cd)
PRIMARY

' UNIT OPTRAYING

BACKUP UNIT
LATENT FAILURE

Figure 2-5. Hardware Reliability Model for 1:2 Identical Elements Hot Standby with
Autoraatic Switchover

As shown in the reliability model, the structure can transition
from the full up state (1) to one of three states. The structure
transitions to state 1 whenever a hardware failure occurs in the
primary element that is correctly detected, isolated, and
recovered from. Similarly, a detected failure in the backup
element results in a transition from state 0 to state 1. The
structure transitions from state 0 to state 4 when a fajlure
occurs in the backup equipment which is not detectable. Failures
in the primary hardware element that cannot be correctly
detected, isolated, or recovered from result in a transition from
state 0 to state 3. State 3 is a system state to account for the
failure time accrued during manual intervention by the system
operator to restore lost system services. Transitions from
gstates 1, 3, and 4 to state 2 are causcd by a hardware failure
occurring prior to repair of the first failure which occurred in
the system structure.

In actual practice, the model to be used will need to be based on
the specific fault tolerant characteristics of the design being
analyzed. Models that incorporate system fault behavior, such as
shown in Figure 2-5, do not specifically include SW as a part of
the model. However, the system control processing, a software
based functionality, determines the model structure to account
for system behavior under fault conditions.

The reliability estimates which result from the use of system
reliability models that account for fault detection, isolation,
and recoverv are less optimistic than estimates from reliability
models based only on the quantity of hardware supplied and
required. The reliability of the system structure being modeled
is usually very sensitiva to the total fault coverage provided by
the system design. System designs that feature well-designed
fault detection and isolation coupled with rapid and effective
recovery of system services avoid most sudden losses of system
services due to undetected latent failures in backup egquipment or
due to the inability of backup equipment to successfully restore
system services when failures to the primary equipment occurs.
Similarly, models of HW/SW systems that include SW as well as the
fault tolerance characteristics of the system design are
sensitive to the overall effectiveness of the fault detection,
isolation, and recovery provided by the hardware and software
designs.

2.1.2.2.2.2 HW/SW Systems

Inclusion of software into hardware reliability redundancy models
further increases the complexity of the models. As in the
hardware-only reliability models, accurate modeling of system
behavior requires that fault coverage (Ccd, Ci, Cr) be included

into the model. Similarly, software fault coverage and the
impact of long persistence faults must be included in the systen
models where appropriate. This results in each meodel of

20

redundant HW/SW elements being uniquely tailored to the design
being analyzed.

The examples of specific models given below are presented to
allow a skilled analyst to determine the system attributes that
need to be considered in deriving a reliability model for a seti
of redundant elements. There is no attempt to fully develop all
of the possible modeling situations that may apply to a HW/SW
system. Most of the reliability modeles that will be needed to
evaluate the reliability of HW/SW systems will be specific to tlLe
exact hardware and software design being evaluated. Oonly a
minimal level of generalization is possible.

2.1.2.2.2.1 gcold Standby Svstems

Redundant hardware/software systems that use cold standby
techniques to provide fault tolerance can be modeled without
undue difficulty as long as automatic switchover and startup

schemes are not used in <the design. In general, only the
hardware and software failure rates for the HW/SW elements need
to be considered in developing the reliability model. For

designs that use manual restoration of system services through
the activation of an unpowered backup unit, an adaptation of the
reliability model shown in Figure 2-6 can be used to estimate the
reliability of the redundant structure. The models shown in the
figure are based on the earlier work of James et al. (1982). As
shown in the figure, structure state transitions are caused by
either hardware or software failures. Hardware failures cause a
transition to a state with one 1less hardware element and
commencement of repair actions on the failed element if repair is
allowed. The reliability model of Figure 2~-6 does not allow
latent failures in the backup element to be modeled. The model
assumes that failures of unpowered elements are inmpossible.
Similarly, problens in recovering system services are not modeled
since the recovery of system services must be directly managed by
the system operator. Software failure=z result in system recovery
using the same processing hardware and a restart of the failed
software. Both repairable and non-repairable systems are allowed
to have software restarted to enable recovery from scftware
failures. Inclusion of the transition path allowing recovery
from software failures is optional for non-repairable systems.
The existence or lack of this transition path will depend on how
the equipment is operationally employed.

M-N)Anuw |

M-1 HW/SW
OPERATIONAL

N-(M+1) HW

N HW/SW N-1 HW/SW
OPERATIONAL

1 FAILED

(A) Repairable system

v oo o MARw (M-1)AHW

MAHW AHw

M-1 HW/SW
OPERATIONAL
N-(M+1) KW
FAILED

N-1 HW/SW
OPERATIONAL " e

1 FAILED

N HW UNITS
N-1 ELEMENTS
FAILED

{hsw (M-1)Asw 1hsw HHW

-1
+M FAILED °

(B) Non-Repairable system

sW
+1 PAlLED

Figure 2-6. HW/SW Reliabili.; Model: M Required of N Supplied Identical Elements, Cold Standby

2.1.2.2.2.2.2 Hot Standby Systems

Reliability modeling of hot standby HW/SW systems requires
corsideration of hardware failure rates, software failure rates,
hardware fault detaection, isolation, and recovery coverage,
software failure detection, isolation, and recovery coverage,
hardware repair rates and software restart/recovery rates. The
effect of long persistence software failures on the reliability
achieved by hot standby redundant structures is included in the
software fault coverage estimates for recovery coverage (Cr).
Depending on the system design being modeled, all or most of
these parameters will be used to help identify states and/or
transition rates between structure states. The exact state
diagrams that result from an FMEA of the HW/SW system will depend

22

(T2~ 2T 1

on the design being evaluated. An example of a reliability model
for a very simple system structure is discussed below.

Figure 2-7 presents a simplified state diagram for a KW/SW
structure with one of two identical elements required. The model
shown 1is for a hot standby system with automatic switchover.
This type of structure is very common in air traffic control,
command and control, and air defense systems where a high
probability of continuous system services is required. In
modeling this structure, five parameters of interest are
recognized. The model states depend on primary HW platform state
(operational or failed), primary SW state (operational or
failled), backup hardware platform state, backup scoftware state,
and recovery status. Recovery status is defined to have two
states, successful or failed. A successful recovery indicates
that the structure has successfully transitioned froem primary
equipment to the backup equipment after failure of either the
primary hardware or software., Alternatively, successful recovery
can indicate that a failure in a backup equipment was
successfully detected, allowing repair of the backup equipment to
commence. A failed recovery indicates that either recovery from
primary to backup equipment has failed or that a failure has
occurrad in the backup equipment which has not been detected.

Since there are five parameters of interest, each of which has
two possible values, a total of 32 possible states would be
expected. However, some of the 32 possible states cannot exist
in practice. Also, some of the states that can exist are
functional duplicates that can be merged. For example, a state
with a hardware failure in the primary equipment and operational
scftware in the primary aequipment can by shown to be one of the
32 pousible states. However, the state is impossible because
software cannot be operational on a failed hardware platform.
The two states that can exist for (1) a failed backup equipment
with successful recovery and (2) a failed primary egquipment with
successful recovery can be shown to be functionally equivalent
3ince successful recovery implies that whichever hardware remains
operational has been assigned to primary processing as a part of
the recovery process.

23

waNsAs MS/MH ‘Aqpuels 10 “z-1 3oy weaderq aimg pagidung <£-z am3ig

By~ (g6)
MHy = (5'g)
NS4 = (c')
Mg (1'g)
Mz - (@)
Ll EX (V)
My - (59)
MSy- (g'9)

- (W) = (cg)
MHy= (g°g)
MSy= (2%)
MHy = {g5)
(%1 = (1g)
MHy= (5'p)
Msy=(g'y)

MHp MMy = (£'y)
MHy= {5€)
MsSy = (g'c)
Miid = (g'g)
MHy = (g2)
BSy={£2)
MHpo () MKy = (')
MH poy MHY = (£2)
My = (g'1)
msy={7°1)
MHy = (g'1)
BSH = {g'}))

M MHMH poy () MHy = (g°0)
WS 1aMS ;1 MSpr-1), WSy = (5°0)
{(WHpo—1) My = (y'g)

A s M 1 MH pry
MH vy +5AH p) My = (g ‘)
MSpo-j) M8y = (2'0)
MS 1) MS;MS poyy+MSpy MSy = (1°0)

dMIOVE NI 3UN UV LIN3LV1 HO AHIAOCI3H QI WV d
IHTAVL MDIOVE S0 NOLLO3130 HO AHIAODTFY HSSIAOIMNS 'S

2UVIS SHL HOS TINSNISTEVINIIIY 1ON = —
a3uvd=4
(3UMIV4 ON) TYNOLLYH3JO = 0

A AUIAOO3M 3

MS dIOVE a
MH ddVE D
MS AHWIRId ‘8

MH AHVIRID Y

{SS329nS HO G3WVH) 3uAL L
H3IONNN 31ViS #

19018-0 (9-25-91)M28

sgyey vonrsuel]

NOLLVION

(oo}

24

For the model of Figure 2-7, a total of ten states result, with
the following definitions:

State

State

State

State

State

State

State

state

State

State

0:

Success State

Success State

Success State

Success State

Success State

Faliled State

Falled State

Falled State

Failed State

: Pailed State

Fully Operational State

Backup has a detected SW failure which
is being recovered from.

System is operational with a latent SW
failure in the backup element.

System is operational with a detected
hardware failure in the backup element.

Systenm operational with a latent HW
failure in the backup element.

Primary SW has failed, recovery to the
backup HW and SW has not been success-~
ful. System operations intervention
will be required to restore systenm
operation on either HW platform.

Primary HW has failed. The recovery
process has failed. Either incorrect
detection, isolation, or incomplete
recovery has occurred. Manual inter-
vention by the system operator will be
required to restore system services on
the backup equipment.

Software failures have occurred on both
primary and backup system elements.

The primary HW and backup SW have
failed. Both elements are down,
recovery is not possible without manual
intervention by the system operator
and/or maintenance personnel.

Both hardware elements have failed.

25

As shown in the figure, transitions between states occur due to
either failures in the hardware or software or due to the status
of tha recovery process. Using state diagrams that model the
impact of hardware, software, and fault coverage for both
hardware and software failures results in more accurate
approximations of the potential reliability of redundant systems.
Also, accurate models that reflect the system design decisions
which have been made provide a basis for evaluating the
reliability demunds of candidate architectural approaches early
in the design process [Goddard (1989)).

2.1.3 §Svstenm Model Evaluation

State diagrams that have been developed to model the reliability
of combined HW/SW structures tend to be relatively complex.
Manual solutions are possible, but not considered practical.
Numerous programs are currently available in the commercial
marketplace that can aid in the solution of closed form semi-
Markov state diagrams. Additionally, government procurement
offices and their contractors have access to both simulation and
analytic tools which allow solutions to these reliability models
threugh appropriate Rome Laboratory and NASA offices.
Acquisition of one or more of these tocols should be considered
before attempting to accurately model HW/SW systems.

2.1.4 Estimation of Model Parameters

Reliability models of HW/SW systems are based on hardware failure
rates, hardware rapair rates, software failure rates, software
recovery times, and the probability of fault detection,
isolation, and recovery for both hardware and software (hardware
and software coverage). Values for each of the model parameters
will need to be derived as a part of the reliability estimating
process.

2.1.4.1 Hardware Failure Rate Estimation

Hardware failure rates for use in combined HW/SW models should be
obtained from the same sources as those traditionally used for
hardware only reliability models. In service, field, reliability
records are the best estimators of expected hardware failure
rates. When field reliability records are not available,
reliability test results are the next best estimator of expected
hardware reliability performance. When neither field nor test
reliability records are available, MIL-HDBK-217 is the preferred
reference for ohtaining component level failure rates that can be
used to predict hardware reliability performance. When MIL-HDBK-
217 predictions cannot be applied due to lack of equipment
definition, the reliability performance of <the previous

26

generation of similar equipment cau be used as an estimate of the
lower bound for the expected reliability of current generation
equipment.

2.1.4.2 Hardware Repair Rate Egtimation

Hardware repair rates for use in combined HW/SW models should be
obtained from the same sources as those traditionally used for
hardware only reliability models. 1In order of preference, field
repair time date, maintainability demonstration test data, MIL-
HDBK=472 ©predictions, and prior generation of eguipment
maintainability performance should be used to estimate the
equipment repair time required.

2.1.4.3 Hardware and Software Coverace Estimation

Fault coverage estimates for use in combined HW/SW models can be
obtained from a combination of FMEA to assess hardware built-in
test (BIT) effectiveness, and fault tree analysis (FTA) to assess
the result of software failure. Assessing the likelihood for a
failure to be detected and to leave the system in a state where
fault isolation and recovery are possible will require an in
depth understanding of at least the part of the software design
dedicated to system control and to the handling of faults. The
determination of software fault coverage and software BIT
effectivenass is an area where further research will be required
to detail adequate and accurate methods of estimation.

2.1.4.4 Softvare Recovery Tine

Software recovery time estimates for use in combined HW/SW models
can be derived using the mathods of system parformance analysis.
Accurate estimation of these times will depend on the hardware
available for processing, the loading on the system, and the
impact of the fallure on system resources (eg. files). The
results of FMEAs and FTAs performed to support estimation of
hardware and software coverage should provide an estimation of
the amount of system resource damage that may be attributable to
a given software failure. Estimation of software recovery time
during early design phases, before test data is available, will
need to be based on performance analysis results. Further
research to develop methodologies for westimating systenm
g.rformancc metrics under various failure and recovery conditions
s needed.

2.1.4.5 Software Fallure Rates

Software failure rates to be used in modeling combined hardware
and software systems, although constant, differ from hardware
failure rates in their dependency on oparational profile and
workload. For purposes of illustration, a computer, containing
one or more individual processors, which is part of a system, is

27

used along with its software to provide one or more system
functions. The rate at which these assigned system functions are
unavailable is dependent on the failure rate of the hardware and
the failure rate of the software. Calculating failure rates for
hardware elements was discussed in 2.1.4.2 above. The software
failure rate can be decomposed into three parts: the operating
system or executive failure rate, the failure rate associated
with any re~-used software, and the failure rate for any newly
developed software. These scftware failure rates, once converted
to a common time frame of reference are additive. A reliability
block diagram for a hypothetical processor is shown in Figure 2-
8, below.

g
E
5
Operating Newly
Processor 3 Re-Uged
——1 yatem Developed
Hardware Software CSCls CSCls

Processor Soltware

Processor

Figure 2-8. Reliability Block Diagram for a Processor

Failure rates for operating systems or executives can usually be
obtained from the supplier of the operating system or executive.
Failure rates obtained from the operating system supplier are
usually quoted in the number of outages caused over some period
of time (e.g., a year). Failure rates ror operating systems are
generally quoted with respect to system operating time because
the operating system is active at all times when the computer is
powered and ready for processing. The reliability analyst will
need to convert the failure rate given to failures per hour for
compatibility with hardware failure rates. Operating system
failure rates can be substantial and should not be ignored.
Operating systems for mainframe computers can be several million
lines of code in size and are often very complex and difficult to
completely debug. Smaller computers, including single board
processor applications, sometimes usa real-time executives which
can still contribute substantially to the overall software
failure rate. Failure rates for re-used code can be obtained
from applicatinns where the code was previously used. These
failure rates should generally be much lower than the failure
rates for newly developed code. The availability of this data

28

depends on the completeness of organizational record keeping nd
the amount of code modification that has been necessary to allow
the code re-use. If the failure rate for re-used code is
available in terms compatible with conversion to failures per
system operating hour, the failure rate can generally be used
directly in the reliability modeling. If the failure rate for
re-used code is known in failures per CPU operating pericd
(second, minute, hour, etc), the failure rate will have to be
converted to failures per system operating hour using the methecds
discussed in paragraph 2.1.4.5.3 below,

Estimates of the failure rate for newly developed software are
obtained using the research results discussed in section 4 of
this report. The failure rate estimates produced by these
methods is provided in failures per CPU operating second for each
software element being developed. These failure rates must then
be combined as discussed in paragraph 2.1.4.5.4 to accourit for
the specific software topology and timing. Additionally, the
resultant software failure rate must be converted to a system
operating hour form as discussed below in paragraph 2.1.4.5.3.

For the purposes of developing software failure rates, a software
system can be viewed as a hierarchy. The Lierarchy consists of
modules, computer software components (CSCs), computer software
configuration items, and so on, as described in DOD-STD-2167A.
Because of the different names for items at different levels, two
generic names will be used tc represent software items at
adjacent levels in the discussion that follows. The first
genaeric name is "component." A component is an item at any level
in the system hierarchy. The mecond name is "agyregate." An
aggregate is an item composed of an interrelated set of
components. An aggregate lies at the next level up in the systen
hierarchy from its components. For example, an aggregate of
CSCIs can be a software subsystam. The software components that
compyrise an aggregate will be related to one another in two ways:
a particular timing configuration and a particular reliability
topology.

Timing configuration describes ths time intervals during which
the various components are active and inactive during a period of
interest. Reliability topology is concerned with the number of
components in the agJregate that can fail before the aggregate
fails.

2.1.4.5.1 Timing Configurations

Several different timing configurations are possible. The major
timing relationships between software components are concurrent
and sequential. Components will be termed concurrent if they are
active simultaneously. The components are sequential if they are
active one after the other. A single component alternated
between active and inactive periods will be termed intermittent,

29

and several components alternating their activity will be termed
interleaved. Hybrid timing configurations, for instance concur-
rent/sequential, may also occur.

Scne common examples of timing configurations: In most
electronic equipment, all hardware components are energized and
operating all the time. The components are therefore in a
concurrent timing configuration. Software components (in
computer science called '"processes" or "tasks") execute in an
intsrleaved manner on a single central processing unit (CPU).
The software and the computer that hosts it are active
concurrently. In a multiprocessing system with three processcrs,
the three programs running on those processors are active
. concurrently. In a distributed system, the local and remote
hardware and the local and remote software are active
concurrently. In a batch-oriented computer system, the programs
axecute sequentially.

Software reliability topology can he expressed in the form "k-
out-of-n," where n is the number of components and k is the
number that must succeed. There are two distinguished cases: An
n-out-of-n configuration is the most common and is called a
series configuration; a 1l-out-of-n configuration is called a
parallel configuration.

2.1.4.5.2 Notation

Capital letters will be used to refer to the aggraegate item and
lowercase letters to raefer to the component item. The aggregate
reliability function will be denoted R(t) and the aggregate
failure rate will be denoted A(t) or A. The corresponding
component reliability figures of merit are: the component
reliability function, denoted r(t)mexp(-At], and the component
failure rate, denoted A.

One reason that aggregate failure rate A(t) can be a function of
time is that an aggregate of redundant constant-faillure-rate
components will have a time-dependent failure rate; as the
redundant components fail, the aggregate "ages." Another reason
is that a component might not be active during the entire period
of interest. When the component changes state from active to
inactive or vice versa, the failure rate of the aggregate will
change.

2.1.4.5.3 Fajlure Rate Adjustment

A computer program's failure rate can be expressed with respect
to three different time frames of reference: execution (CPU)
time, system operating time, and calendar time.

A program can only fail when it is running. The failures uncover
faults, and the removal of the faults results in reliability

30

growth. Thus, software reliability growth curves are based on
cunulative execution time and express a single program's failure
rate in terms of execution time. Such a failure rate is
sensitive to processor speed: The execution-time failure rate is
alwvays linearly proporticnal to the processor speed. If the
failure rate A for a software component was neasured on or
predicted for a processor with average instruction rate g, (e.qg.,
instructions per second), and the target machine's prccessor has
average instruction rate g,, then the failure rate should be
adjusted [Musa et al. (1987)

ao= 32y, (1)

/1

During the operation of a system, programs may not operate
continuously. For example, some of the programs might time-share
a single CPU. Also, nultiple CPUs may be present, allowing
program executions to overlap. 1In order to combine the failure
rates of the various programs with one another to arrive at an
overall software failure rate, it is first necessary to translate
all the program failure rates into a common time frame of
reference. This frame of reference is system operating time.

To convert an execution-time failure rate to a system-oparating-
time failure rate, the program's utilization u, needs to be
determined. This is the ratio of execution time to system
operating time. The utilization can exceed 100% if the same
program executes on more than one CPU (each CPU reading a
different input stream).

The formula for converting a program's execution-time failure
rate A, to the system-operating-time failure rate A, is ’

Ay = A, " U, (2)

Conversely, the execution-time failure rate can be recovered as

A. = —l:_‘.'.- (3)
u..

If the programs are in a series configuration, then the (average)
failure rate is simply the sum of the system-operating-time
failure rates of the individual programs. This result can be
derived as follows. Suppose there are N software components that
run during the time period T. Let A1 be the execution-time
failure rate for the i-th software component. Let u(T) be the
expected number of failures during that pericd. The expected

31

number of failures contributed by the i-th software component is
A, (wT). Thus

w(T) = YA (uD (4)
The overall failuwe rate ia

Aw .P_(}'L = ¥ Ay (8)

The sum ZA,u, is seen to be the sum of the programs' system-
operating-time failure rates.

2.1.4.5.4 Reliability combination Models

This section is organized by type of aggregate. The type of
aggregate is a conjunction of timing configuration and reliabil-
ity topology. Table 2-1 shows the various combinations and
designates each model by a letter. The material presented
discusses both the software reliability calculation and
cumulative failure rate model for the timing configuration and
reliability topology being discussed. The cumulative failurae rate
discussion is presented for use in calculation of software
fiilure rates for use in much of the system modeling previously
discussed.

Table 2-1. Reliability Combination Models

Model Des- | Reliability | Timing Special Name
ignation

A Series General

B Series Indeterminate | Mission Model

C Series Sequential B

D Series Random Samni-Markov

E Series Concurrent

F Parallel concurrent

G k=out-of-n Concurrant

H Parallel Concurrent N-Modular Redundancy

" I Parallel Sesgcntial _?;andbx Rndundancz

The failure rate and reliability function of a software aggregate
can in many cases be expressed as a closed-form function of the
component failure rates and/or reliability functions. The
following discussion focuses on those cases.

32

2.1.4.5.4.1 Model (A) General Series Model

The most common reliability topology for a software aggregate is
the series configuration. 1In this corfiguration, the aggregate
fails if and when any one of its components fails. The failure
rate of the aggregate is the sum of the failure rates of the
active components. Suppose the components are numbered 1, 2,
..+, K. Let the function a,(t) evaluate to unity if component i
is active at time ¢, and let it evaluate to zero otherwise. Then
the aggregate failure rate A(t) is

A(t) zx,a () (6)

1=

where A, is the failure rate of the i-th component.

The failure rate is useful when agyregating to higher levels and
is a reliability figurc of merit in its ~wn right. If the result
is a constant failure rate, or can be approximated by a constant
failure rate, then the rules given here can be applied to the
aggregate failure rates to find the failure rates and reliability
of even higher-level aggregates.

2.1.4.5.4.2 Mode]l (B) Mission Reliability Model

A nission-oriented system is described by means of a mission
profile and consists of N consecutive time periods, called

phases. During each phase the mission has to accomplish a
specified task. An example of a space vehicle's mission phases
is grcund operation, 1aunch, and orbit. Furthermore, at any

point in time the system is in one of M possible operational
modes. The effective operating time xj for the j-th operational
mode is given by .

Z £z, J=1,2,..,M (7)
11

where t, is the duration of the i-th mission phase and z,, is the
fraction of time the j-th mode is utilized during that phase.

Suppose there are S components in the software aggregate. Let
u;, oe the utilization ("duty cycle") of component k during

33

operating mode j. Then the amount of time component k is active
during the mission is

N
T = ;xjujk . k=1,2,..,M (8)
w1

In matrix notation, the foregoing equations are

X=72 T =XU (9)

(Note that 7' is merely the uppercase of active time 7'; the
prime does not mean matrix transpose.) Let A, be the failure
rate of the k-th component. Assuming that all components form a
series configuration, the expected number of failures from the k-
th component is

By = ATk, K=1,2,..,5 (20)

and the expected number of failures for a given mission is

S
Wty -;uk . (1)
-1

Note that in practical situations these u values will all te
fractional.

Because it is unknown which components are active at any inoment,
it is not possible to determine the instantanecus failure rate
A(t). rdowever, the average failure rate can be computed as

M(t,)

£, (22)

Ay =

In situadtions where the activation/inactivation times are known,
it will be possible to determine A(t) for all ¢t. Paragraphs
2.1.4.5.4.2 through 2.1.4.5.4.5 discuss some common timing
situations in series confiqurations.

2.1.4.5.4.3 Model (C) Serijes Sequential

In this situation, components 1 through k are active one after
the other. For software, this arrangement is commonly seen in
batch-oriented systems. The time t;, is the point at which
comporient i finishes and component (i+1) is activated.

For te(t{,t,,;] the failure rate of the aggregate is

A(t) = A’i*l ‘13)

Sometimes the components ars not active consecutively; a tine
period during which no component is active can be represented by
a pseudocomponent whose failure rate is zero. If a component is
active intermittently, that is, for several piecewise continuous
periods, then a pseudocomponent (with the same failure rate) can
be created for each such period.

2.1.4.5.4.4 Jodel (D) Semi-Markov

If the software system consists of k components that follow one
another sequentially according to known probabilities, then a
semi~Markov technique ([Littlewood (1979b), Cheung (1980),
Siegrist (1988)) can be employed to obtain an overall failure
rate for the aggregate.

A Markov process 1is a stochastic process in which the future
development is completely determined by the present state. It
does not matter at all the way in which the current state arosa.
A Markov chain is a Markov process that has a discrete state
space. A semi-Markov process [Lévy (1954), Smith (1958))] is a
Markov chain in which the amount of time spent in each state
before a transition occurs (the "sojourn time") is random.

Let p,;; be the probability of the operation of component
following the operation of component 1i. For software, this
transition consists of software component i passing control *o
software component j. The equilibrium probabilities (also called
"limiting" or "steady-state" probabilities) are the probabilities
of being in each of the states when the aggregate is operated for
a long time. The equilibrium probabilities =7, are found by
solving the system of equations

k
“i = ;“jpjx ’ .i=1,2,...,k (1‘)

together with I =1.

35

Let m,, be the mean time that component i is active before it
finishes and is followed by component j (the "sojourn time").
Then the failure rate of the aggregate is approximated by

k k
“.tpijmi_-/"i
A= ;;; (18)

k k
;; ; RiPyyMyy

Failures can also occur during the transition from one component
tc another. If r,,, the reliability of the transition from
component i to compénant j is considered, then the m;;A, in the
numerator can be replaced by m”).,-t-(l-r”) to take {ransit'.ion
tailure into account.

2.1.4.5.4.5 Model (E) Serles concurrent

If throughout a time interval (0,t,], components 1, ..., k are
active, then the failure rate at time te[0,t,] is

k
Ale) = 3 A, (16)
.l

If all k components have the same failure rate A, the aggregate
fajlure rate will be

k
A=) A =kA (17)
2

2.1.4.5.4.6 Redundant Software Configurations

Redundancy is the provision of additional software components
beyond the ninimum needed to perform the functions of the
software aggregate. The purpcse of this redundancy is to
increase the reliability of the aggregate. Unlike hardware, all
copies of a computer program are identical and will all fail
under the same circumstances, so simple duplication of the
goftware is of limited benefit due to the potential for 1long
persistence software failures which were discussed previously.

36

Software redundancy is accomplished by providing multiple
distinct versions of the software developed to the same require-
ments specification. The goal is for it to be very unlikely that
multiple versions will fail on the same inputs. By having each
version independently developed by a different programming team,
the hope is that the versions will turn out differently enough
that they will not often fail on the same inputs.

Multiversion programming is a controversial topic. Knight and
Leveson (1986) showed through a large~scale experiment that
independently developed versions do not necessarily fail
completely independently cf one ancther. In fact, the number of

coincident failures was "surprisiigly high." Eckhardt and Lee
(1985) developed a detailed statistical model of multiversion
programming. "Independently developed programs" are modeled as

programs randomly selected from the universe of possible program
versions that purport to solve the problem at hand. The indepen-
derice criterion is enforced by requiring the joint probability of
selecting the programs to equal the product of the marginal
probabilities of selecting each one.

Eckhardt and Lee, who concentrated on mocdeling N-version prcgran-
ming, express the reliability of the N-version aggregate as

R=1 'ffam [8(x)1'[1-8(x)]%dp (18)

where m=(N+1)/2, a majority of the N versions. The aggregate
fails whenever at least m versions fail. 6(x) is the proportion
of versions failing when executing on input state x. Q(A) is the
usage distribution, the probability that the asubset of input
states A is selected.

One of Eckhardt and lLee's major results was that independently
developed versions do not necessarily fail independently. Up
until the Eckhardt and Lee model came out, practitioners of
multiversion programming had set independent development as their
goal. Eckhardt and Lee show that the departure from independent
behavior is governed by Var(®}, where 6=0(X), where X is a
randonly chosen input. If this probability © is identical for
all the programs, then Var{e)=0 and the independently developed
programs fail independently; otherwise the reliability will be
overstated by Var(e). The best candidates for multiversion
programming are those problems for vwhich Var{(e} is low.
Intuitively, Var(e) is the variation in difficulty in processing
different inputs. Different independently developed versions
will tend to fail on the same "hard" input cases, aven though the
differunt versions use different solutions. The independently
develored versions do not necessarily fail via similar faults or

37

output, but they will nevertheless tend to fail on the same
inputs.

Littlewood and Miller (1989) built on the Eckhardt and Lee model
to show that forced diversity can improve reliability to a point
where it is superior to independent failure behavior. Diversity
is modeled by design decisions that induce a partition on the
universe of possible programs. Much more research needs to be
done in how to practically inject diversity and how to gquantify
the reliability benefits of such diversity. Since chance alone
does not gquarantee the independence of the multiple versions,
diversity must somehow be deliberately built into the software:
this is also a topic for research.

2.1.4.5.4.6.1 Model (F) Parallel Concurrent

In an active parallel aggregate, all components operate simulta-
neously and all must fail for the system to fail. This
reliability~-related use of the word "parallel" should not be
confused with its use in the computer science term '"parallel
processing."

The parallel configuration is wuseful when the components

continuously perform some "chore." It is not wuseful in
situations where the components produce an "answer." Software
and some types of hardware produce information. If the

components differ in the answer produced, there is no provision
in a parallel system for reconciling the ditfferent answers.
Other techniques such as recovery blocks and N-modular
redundancy, do provide 'a means of deciding which, if any, answer
to consider correct.

If k components are active simultaneously and all components must
fail for the system to fail, then the aggregate reliability is

k x
R(t) = 1-1‘[(1-exp[-A,t]) = 1-]_’[(1-z,(8)] (19)
=] =]

The failure rate [Nieuwhof (1975)] is

x
; Ai (ul‘l)
Alt) = 22

-] -

(20)

38

where

1

€, 7 ——————
T e ()

i=1,2,..,k (21)

In the case of the same failure rate A for each component, then
R(t) =1 - (1-expl[-At])k =1 - [z(E)]F (22)

and [Grosh (1982)]

L(E) = kAB,(t) (23)

where

) o expl-At] (1-exp[-At))*
B (¢) 1-(1-exp - 1% (24)

Note that the failure rate of the aggregate is not constant but
increases monotonically through time and converges to A.
Intuitively, the reason is that, as time goes on, the redundant
components will eventually succumb one-by-one to random failure,
caucing the level of redundancy to degrade. However, this assumes
th?t individual software components are not restarted upon
fajilure

The effective aggregate failure rate [RADC (19€8)] is a const:at
approximation based on time to first failure:

P SR
A k (25)
;:(ik)“
el

2.1.4.5.4.6.2 Model (G) k-out-of-n Configuration

A k-out-of-n aggregate consists of n components such that the
aggregate succeeds if and only if k of its components succeed.
When the components have differing failure rates, computation of
the reliability function is more an algorithm than a formula.
The best way to calculate the reliability function of such a

39

systam is through a computer program such as described and listed
in sarje and Prasad (1989). The most common situation, where the
components have equal failure rates, will be consjidered here.

If k out of n components with the same failure rate must succeed
for the aggregate to succeed, the reliability is

R(t) = g;(?)[r(t)litl-r(C)]“* (26)

After R(t) is computed, the f»ilure rate can be obtained as [Rau
(1970)]

A

nl _ _ } i
A(t) = —(B=KV1 (k=171 exp [-kA] (L-exp[-A¢t])”

R(&)

(27)

The effective aggregate failure rate [RADC (1988)] is a constant
approximation based on time to first failure:

Aw 2

n

1 (28)
% 1

2.1.4.5.4.6.3 Model (H) N-Modular Redundancy

In an aggregate with N-modular redundancy, N=2n+l1l redundant
components are active concurrently. A voter compares the results
from the N components and chooses the results of the aggraegate as

the output of a majority of the components. If there is no
majority, the aggregate fails. Furthermore, for the aggregate to
succeed, the majority must have the correct output. The

aggregate reliability is the same as that of an (n+l)-out-of-N
aggregate:

N
R(t) = ¥ (g) [r(e)17 (1-2(E) 1% (29)
Junel

The effective failure rate [RADC (1988)] is a constant approxima-
tion based on time to first failure:

40

A
A=

S 1 (30)
irnel 1

An important caveat is that N-modular rodundanci can result in
worse reliability than the component alone ([Dhillon and Singh
(1981)1. For example, for Nas3--triple modular redundancy (TMR)=--
the reliability of the aggregate is

R(t) = [r(t)]13[3-2x(¢t)] (31)

Solving R(t)=r(t) yields a crossover point of At=0.693. Before
the crossover point, TMR will have superior reliability; after
that point the simplex component will be better. 1In a mission-
oriented system the mission time should be such that A<0.693,

The use of N-modular redundancy for software fault tolerance is
called N-version programming [Avizienis (1980)). The reader is
referred to the Eckhardt and lLee (1985) model for insights into
the limitations of multiversion programming. The formulas given
in this section apply when it can be justified that the multiple
versions fail independently.

2.1.4.5.4.6.4 Model (I) Standby Redundancy

Software staandby redundancy is a scheme in which k redundant
comporients are tried in sequence until one succaeds or all
components have been exhausted. The aggregate only fails if and
when all comnponents have failed.

The reliability [Grosh (1989)] of the aggregate is

k A
R(t) = exp[-li tl (32)

j:

[0S

The effective failure rate is a constant approximation based on
time to first failure:

41

1
A=

1 (33)
X3,

In the usual case of all components having the same reliability,

n=1
R(E) = expl-he) Y SAD- ‘“" (34)

The formula, based on the Zrlang distribution, assumes perfect
sensing and switching, and no idle failure rate. If the
reliability of the switcher is R, then all terms in the
sunmation except the first must be weightod by R,

r k
R(E) = expl-AEl[L + Byyh c+5.-.~z.(_2’:_°_’_ bt fg%t_’._ (35)

The failure rate of the aggregate [Becker and Jensen (1977)] is

ACE) = - g
(k-1) !?; (A E)dra=ksq (36)

The fallure rate increases over time and slowly approaches the
constant failure rate A. The effective fallure rate [RADC
(liaa)] is a constant approximation based on time ¢to first
failure:

A
A= < (37)

Software, standby redundancy is implemented through the technique
of recovery blocks {Randell (1975))]. The results of each
component version are checked through an acceptance test. The
acceptanca test may itself be susceptible to failure. The
aggregate now can fall in three circuistancas ([Scoit et al,

(1987)): (E,) An incorrect result iz accepted; (E,) A correct
result is nnt accepted; and (Ey) An incorrest renult is not

42

accepted. Suppose that the acceptance test has reliability r,
and therefore failure probability gq,=1-r,. Each component has
failure probability g=l-r.

The formulas given here apply when it can be justified that the
multiple versions fail independently. To simplify the equations,
let x-qL-quq+q. If the reliability of the acceptance test is R,,

Eho probability of the first type of aggregate failure occurring
s
= Q'r'Q'(i"xn) (30
Pr {EI' n} --—l—_x———)

fhe probability of the second type of aggregate failure occurring
8

Pr{E,, n} = (gr=-qrq) *+ X** (39)
and for the third type of aggregate failure it is

Px (E,, n} = (g-gpq) * X" (40)
The reliability of the aggregate is then calculated as

k)
R, = 1-;_:1 Pr{E;, n} (42)

If the recovery software is imperfect and axhibits reliability
ry, an error type E, of unsuccesaful recovery can occur. For the
case of n=1 independent versions of tha software, Pr(E,,1)=0; for
n=2 the probability is

PriE,,2} » r(l-rp)rp+ (1-I)rpr, (42)

For n23, the recurrence relationship is

Pr{E,,n} = Px{E,, n-1}+Pz{E,, n-2}r'[r*(1-r,) +(1-r) 'z, (43)

43

The reliability of the aggregate is then obtained as

4
R,=1 - ;PI{E_,.H} (44)
=l

2.1.4.5.4.7 combination cConcurrent-Sequential Configuration

To handle an aggregate that contains both concurrent and
sequential components, divide the time-line into time segments
such that one or more components are concurrently active
throughout each such time segment. For each time segment,
replace the components with a pseudocomponent. Let the failure
rate of the pseudocomponent be the sum of the failure rataes of
the concurrently active components in that time segment. Once
this "collapsing” of time segments is completed for all tinme
segments, the aggregate can be treated as purely se«guential.

2.1.4.5.4.8 gcombination Series-Parallel Configuration

If a system consists of series-connected parallel configurations,
first reduca each parallel configuration to a single
pseudocomponent, and handle as a series systenm. If a system
consists cf parallel-connected series configurations, first
reduce each series configuration to one pseudocomponent, and
handle as a parallel system. These strategies can be applied
rccurnévoly to lower levels, until the component level is
reached,

3. RELIABILITY DECOMPOSITION AND ALLOCATION

Reliability allocation is a planning technique for guiding design
and implementation toward meeting specified reliability
requirements. It is especially useful when different teams or
subcontractors work on different parts of a system. In systen
functional decomposition, the functional requirements of the
system are allocated to subsystems and lower-level items. In
reliability allocation, the overall system reliability
requirements are apportioned to those same items.

In fulfillment of SOW Task 2, techniques were developed for
decomposing hardware/software systems and allocating quantitative
reliability requirements to the hardware and software subsystems
and to lower indenture levels.

3.1. Approach

Reliability allocation, in its simplest form, consists of finding
an achievable combination of failure rates and repair rates that
supports achievement of a system's or subsystem's specified
reliability raquirements. One needs to start with a model, such
as obtained from the modeling techniques of Section 2, and
"golve" for the unknown failure rates and repair rates. The
failure rates and repair rates cannot have just any values; the
values are constrained by the range of values that are
realistically achievable. The reliability engineer bagins the
allocation process by determining what the achievable range is
for each rata. An acceptable allocation is one in which all
rates lie within their achievable ranges and the overall
subsystem or system reliability meets or exceeds the specified
reliability reguirement. The reliability model is evaluated to
assess whether the allocated values meet or exceed the specified
requirements. The process of finding the failure rates and
repair rates involves a systematic trial-and-error exploration of
alternatives. The reliability enginaer makes an initial cut by
choosing rates from the achievable ranges. The values can be
chosen arbitrarily hut ideally would be chosen based on intuition
and on experience with similar and previous-generation items.
Next, the reliability is evaluated through the reliability model.
If the allocated values (MTBF, MTTR, etc) ensure that the system
requirements are met, the allocation is complete and any "excess"
can be elther allocated to another part of the system, or
reserved as a means of mitigating risk.

For software components, timing rolationshifs, relative execution
frequency, complexity, and criticality are important
considerations. Several techniques were developed for
apportioning reliability requirements and goals through the
levels of a software hisrarchy. One of these, "Allocation Basad
On Achievable Failure Rate" is & bottom-up methodology. The other
allocation methods presented are top-down methodologies.

45

3.2. Results

The trade-off between implementing functionality in hardware or
software often depends on cost considerations: Software
development cnsts can be amortized over each unit produced, but
hardware has a per-unit manufacturing cost. Once the system
functionality is partitionead into hardware and software
subsystems, the levels of software hierarchy are established
through DOD-STD-2167A and a software design methodology (such as
data structure-oriented design, data flow-oriented design, or
object-orientad design). The levels of software decomposition,
such as computer software components (CSCs) and computer softwara
configuration items (CSCIs), refer to parts of the static program
as it is viewed for the purposes of configuration management.
When executing the software subsystem will exhibit a dynamic
structure-~the timing relationships and reliability topologles of
different threads of execution. Rellability allocation should
take place at the level at which individual threads of aexecution
("processes" or ‘Ytagks") exist. Generally, this level
corresponds to the CSCI level. This level is also appropriate
for allocation because the interfaces among modules are included.

3.2.1. §Software Reliability Allocation

If the utilization factors for each CSCI being allocated to are
known or can be estimated, the bottom-up method "Allocation Based
On Achievable Failure Rate" can be used. When utilization factors
for the CSCIs cannot be estimated, one of the top-down
allocations methods should be used. When using thesa top-down
allocation methods, several iterations may be required to ensure
that the allocations to the individual components are achiavable
and fully support the system requirements.

3.2.2 Notation for Software Reliability Allocation Models

The term "“aggregate" refers to an interrelated collection of

software "components." In systems, the agyregate is a software
subsystem as a whole, and a component is a CSCI within that
subsystem. In a distributed system, the aggregates of one

computer system can serve as the components of the overall
distributed system, and so the allocation would be performed
twice, once to allocate from the distributaed system as a whola to
the individual computer systems, and once to allocate from the
individual computer systems to thelr respective processaes
(generally, CSCls).

Aa‘ Failure rate goal for a software aggregate.
Ri(t): Rellability goal for a software aggregate. Note that -
Ao-[-ln R,(t) 1/t and R, (t)=exp[-A,t].

46

A,: Failure rate objective for a software component.
ro(t): Reliability objective for a software compcnent.

Let R, be <.he reliability goal for a mission. The purpose of
reliability allocation is to set reliability objectives (1y),,
(rg)as ++.; (X;), for components 1, 2, ..., n so that

£((zg)q, (ZQar v (ZQp) 2 Rg (45)

where f is defined by the rules of reliability combination
covered previously. An infinite number of different allocations
can satisfy the above inequality. A good allocation not only
meets or exceeds the overall system reliability requirements but
optimizes or "balances" the allocation in some way.

3.2.3 Allecatincn Technigues

The allocation tzzhniques that are presented here are Allocation
Based on Achievable Failure Ratas, Fgual Apporticonmenc,
Proportional Allocation, Weighted Aliccation, Constrained
Allocation, and Re-allocation. Appendix C covers the "Dynamic
Allocation" class of re-allocation tachniques.

The bottom-up allocation method, "Allocation Based on Achieveble
Failure Rates" requires the ability to estimate CSCI utilization
rates a.id the test time available for each CS.I. This method
provides a set of failure rate allocations to each CSCI which are
achievable within the planned program test schedule and which
accurately reflect the planned usage and the execution time
available for achieving reliability growcth. If failure rate
allocations provided by this method do not support achievement of
the system or subsystem specified reliability figures of merit,
it is an indication that there may be a problem with the
spacification requirements or one or wore higher 1level
allocations with respect to the program schedule.

In "Equal Apportionment," the components of an aggregatc are
allocated equal failure rates or equal failure probabilities in
such a way that the aggregate meets its reliability goal.

"Proportional Allocation" tzkes into account the length of time
each component is active. The longer a component is active, the
more exposure it has to the possibility of failure. The premise
of yroportional allocation is tnat higher reliability should be
demanded of compcnents that are active for a greater share of the
time relative to the other components.

In "Weighted Allocation," the fallure rate allocated to a
component is based on the criticality of the component and/or
feasibility of its meeting a reliability objective. The

47

criticality cf the component includes the consequences of the
failure to mission success and safety. The fsasibility ([Fuqua
(1986)) of » reliability objective is dependent on the complexity
(number of parts for hardware, prrgram size [or other measure]
for software), the state-of-the—-art, and the skills and tools
available for the development process.

In "Constrained Allocation," the allocation is optimized with
respect to additional considerations such as cost.

In "Re-allocation," a previous allocation is revised hecause one
or more components could not meet their relialbility objectives.
Dynamic allocation (Appendix C) is a tachnique fox re-allocation
with minimized effort. Table 3-1 simmarizes the allocation
models.

Table 3-1. Allocation Models

Class : Model | Type of Allocation i Toprlogy | Timing
' Achievable E’-f.lzxj.lure Rate l ﬁii_ All |
Top Down R Equal Apportionment Series Sequential
Top Down c Equal Apportiorment Series Concurrent
Top Down D Equal Apportionment Parallel | Concurrent
Top Down E Equal Apportionment ravallel | Sequential
| _Top Down F Equal Apportionment NMR Concurrent
Top Down G Proportional Allocation | Series Sequential
Top Down H Proportional Allocation | Parallel | Concurrent
Top Down I T +=ortance Factors Series Concurrent
Top Dcwii J Weighted Allocation Series Concurrent
Top Down K Constrained Allocation Series Concurrent
Top Down i L Re—Allocqtion Series Concurrent

Dynamic allocation models appear in Appendix C.

Allocation Based on Achievable Failure Rates uses each CSCi's
utilization (see paragraph 2.1.4.5.3). The utilization governs
the growth rate a CSCI will experience during system test. All
things bheing equal, the greater a CSCI's utilization, the faster
its reliability will grow during system test.

48

A forecast is made of each CSCI's initial failure rate by using
predicted size and processor speed and assuming industry average
figures for fault density and other prediction model quantities
(see Chapter 4). Then the softwar® reliability growth mcdel
parameters are predicted to determine the growth curve foruiula.
An achievable failure rate fiqure is obtained from the growth
curve. The relative distribution of achievable failure rates is
used to apportion the aggregate's fallure rate goal A, to the
CSClIs.

Note that changing to a faster processor does not change the
system-operating-time failure rate; the reduction in u, is offset
by a proportionate increase in the execution-time failure rate.
Therefore, a CSCI's allocated system-operating~time failure rate
does not need to be changed if the hardware platform changes to a
faster processor.

The software aggregate's failure rate goal A, is assumed to be
expressed with respect to system operating time.

The allocation scheme is based on first determining an achievable
distribution of failure rates among the CSCIs, considering their
predicted initial failure rates and how much reliability qgqrowth
they can each expect to experience during system test. The
distribution of failure rates is then used to allocate the
software aggregate's failure rate goal Aa to the constituent
CSClIs.

A CSCI's achievable failure at release is determined by
predicting an initial failure rate A, and applying a software
reliability growth curve to forecast CSCIl's failure rate at
release.

The i~th ¢SCI's initial failure rate is the failure rate at the

start of system test (t,=0). Using the Proposal/Pre-Contractual
stage prediction model (see saction 4.), a CSCI's initial failure
rate with respect to execution time is

Ao =TI * K wy/I {46)

where r is the processor speed (average number of instructions
executed per unit of time), K is the fault sxposure ratio
(4.20x10"" industry average), o, is the CSCI's fault content
(developed XLOC x 6 industry average), and I is the CSCI's numher
of object instructions). The number of object instructinns is
found by multiplv’ '3 the number of predicted source instructions
by the progrumming language's code expansion ratio (see paragraph
4.2.2 and Table 4-2). For example, the code expansion ratio rfor
Ada is 4.5, Note that the initial failure rate is primarily
diterminad by fault density and precessor speed, as opposed to
size.

49

It is thus assumed that each CSCI is developed by a mature,
reproducible software development process that produces code with
the industry-average of 6 faults per developed KLOC (developed
excludes reused code).

The growth curve relates failure rate decline to cumulative wall-
clock time expended in system test:

A,(Ci) - AO * exp[-ﬂ‘ti'uil * Uy (47)
where f is the decrement in failure rate per failure experienced:

p-s~-%9- (48)
0

An industry-average value of 0.955 is recommended for B. B is
the fault reduction factor, the average net number of faults
removed per failure. The cumulative wall-clock tlme expended in
system test t; may differ from CSCI to CSCI if the software is
incremented in a series of successive "buillids." If the software
is incremented all at once, then the t;'s will ke equal.

It is assumed that the CSCIs are in series, so the CSCI failure
rates with respect to system operating time must add up to the
overall software failure rate + Once the achievable failure
rates (t), XH(t), ..., }n(t) are determined, each C8CI is
assigned a relative weight

A (L)

R s A L 49
£} TR (49)

These relative weights add up to one. The failure rate i with
respagt to system operating time, to be allocated to e i-th
CSCI 1is

Ay = Ay wy (50)

The allocation is acceptable since the CSCI failure rates add up
to the goal:

T Wy = A w, = Ag 1 u A, (51)

To change a CSCI's allocated system-operating-time failure rate
to execution time, the allocated failure rate is divided by the
CSCI's utilization uy.

3.2.3.2 Equal Apportionment

Let the failure rate goal of the aggregate be

-1lnRg(t)

A; = z

(52)

The strategy of equal apportionment is for the system never to be
exposed to an instantaneous failure rate exceeding . This
results in an overall reliability of at least exp[~At]=R..

The formulas for equal apportionment are obtained by solving the
corresponding reliability combination formulas for component
failure rate or reliability.

3.2.3.2.1 Model (B) Secuential Sexies

Fach sequentially active component is allowed a fajllure rate of
Ac»A,, so that a constant, satisfactory failure rate is
naintained at all times regardless of which component is active.

3.2.7.2.2 Model (C) Concurrsnt Saries

Each of k concurrently active components is allocated a failure

rate objective of A=A /k. This results in an overall
reliability of at least
k A +
exp -c?_;-f = Ry(t) (33)

The reliability of each component is
r(t) = YRGUET (54)

Alternatively, consider the failuie prohability (unreliability)
Optt) =1 « R (£) (58)

Each component can be allocated an equzl portion of the failure
probability for a reliability objective of

0, (8)

6
T (56)

ra(t) = 1 -

51

3.2.3.2.3 Model (D) cConcurrent Parallel

If kX components are connected in parallel, the failure rate A, to
be allocated to each component is

X 1
bomhdor 3 (57)

A similar problem is to determine how many components with
reliability r are needed to meet an aggregate reliability goal of
R, The solution is

in(1-R,)

k= (s8)

3.2.3.2.4 Medal (E) Standby Redundancy

For recovery blocks (under the assumption that the multiple
versions fail independently) with k components, the reliability
allocation is

rg(t) =1 - YTITRGTETRY (59)

3.2.3.2.5 Model (F) N-Modular Redundangy

For N-version programming (under the assumption that the multiple
versions fail independently), the failure rate allocation is

N
1
2. 3 _ (60)

jsnel

Ag = v

3.2.3.3 pProportional Allocation

Let the expected-number-of-failures objective be
Mg = -1n[Ry(¢)] (61)

The strategy of proportional allocation is for each component of
the aggregate to contribute the same expected number of failures.
The expected number of failures is a function of the failure

52

rates and the time exposures of the components that comprise the
aggregate.

3.2.3.3.1 Model (G) Sequential Series

For each of the k components, let the expected-number-of-failures
allocation be

and allow aach component 1 a failure rate of

(Ai)q""t&, , 1%1,2,...,k (63)
1

where t,' is the ar-unt of time component i is active. This
results in an overall reliability of at least

K
exp[-fv_; A ti] = Ry (64)

The reliability objective for component i is .
Ii(t) 'pr['(ll)a t] ’ i-1,2,...,.k (6%)

Thus the longer the time exposure of the component the lower its
fallure rate must be. This criterion is appropriate for hardware
and for software that is run repetitively.

3.2.3.3.2 Model (H) concurrent Parallel

For proportional allocation of k components connected in
parallel, the reliability objective to be allocated to each
component is [Dennis (1974)]

zo(t) = 1 - YITRTEY ~ (ee)

53

and the failure rate odjective is

¥ 4
(Ag){ = '1“[1"’:,'“"(5” , 1=1,2,....k (67)
1

3.2.3.4 NModel (I) Importance Factors

let k be the number of subsystems; n,, the number of items in
each suksystem i; R, the desired mission reliability; and t,',
the mission time for subsystem i. Let

Na éni (68)

be the total nunber of compeonents in tha system. Assign each
subsystem i an importance index w, that is the probability that
the mission will fail if the i-th subsystem fails. The failure
rate objicctivo to be alloccated to tha i=-th subsystem [AGREE
(1957)) is

1n[1-1/w,(1-R0™))

(€9)
-t}

(Ai)q -

Software fault tree analysis [Leveson and 8Stolzy (19683)] is
useful for pinpointing safety- and raliability-critical sections
of conmputer programs. However, software fault tree analysis
examines the software at too low a level to provide quantitative
criticality figures which can be used in developing importance
indices. Regular fault tree analyazis, which stops at the
interfaces to the software components, is capable of providing
quantitative criticality figures.

3.2.3.5 Model (J) Waeilghted Allocation

If the mission reliability goal is R,, then the unreliability (1~

) can be allocated propcrtionalll(© each phase in the nmission
according to the distinct conditions at each stage [Amstadter
(1971)]. 1If the weighting of phase i is w,, with

2;“: -1 (70)

then the reliability objective for that phase is

54

(Rd)i s 1“[(1"Rq) (I)i] (71)

and the failure rate objective is
(la)i -Aa.mi (72)

3.2,3.6 Model (K) Congtrained Allogation

A softvare system consists of n serial stages. A reliability of
(Rg); = ':/R; (73)

is allocated to each of the n stages. The minimum number of
redundant components at each stage i [Sandler (1963)] is

ni - l- 1n (l'Ra)

n 1"2'1) (74)

If ¢, is the cost of components for the i-th stage, the lnast-
cost allocation is givaen by [Moscovitz and McLean (1956))

ln(:l.-R;‘)} (78)

Rl b v (1-1,)

where

(76)

3.2.3.7 Madel (L) Re-Allocation "

Suppose A, is the failure rate goal and A, is the current
reliability of the component. Then if A, is less than A, a
suitable reliability goal l: for each component (von Alven
(1964)] is

A; = Ai ¢ %‘: (77,

It is most effective to raise the reliability of the least
reliable component in a series confiquration, - and the most
reliable component in a parallel configuration.

Appendix C develops and presents "dynamic allocaﬁion" techniques
for minimizing the effort requirad for reallocation.

56

4. SOFTWARE RELIABILITY PREDICTION

Reliability prediction has several important uses. Early in the
acquisition cycle it can be employed to determine the feasibility
of the system reliability requirements. It caun highlight which
components in a design can be anticipated to contribute most to
the system unreliability. It enables scletule and cost forecasts
to he made. It allows tiadeoffs to be ncte hetween rellability
and other factores (such as maintair. “:.ilivy, Often, absoluta
prediction values are not as impu. it as relative valuas,
especially when comparing alternative configurations or designs.

In fulfillment of SOW Task 4, a technique for modeling and
predicting the reliability of hardware/software systems was
developed. Emphasis was placed on reliability prediction for the
software part of the system, because hardware reliabllity
predicticn technigques are already well established.

4.1 Aapproach

The goal of the prediction research was the development of a
method for the prediction of software reliability that could bhe
used in conjunction with MIL-HDBK=-=217 and other publishad failure
rate data to obtain a reliabllity prediction for the overall
system. Hardwar: reliability prediction provides a failure rate
for the inherent reliability, which, in theory, is the best
raliabilicy achievable as the development and manufacturing
processes are perfected.

Software does not have tHe same kind of inherent reliability
limitation. The reliability of software will generally improve
over time as faults are uncoverad through testing and are fixed.
There are two conditions that limit the attainable reliability
for software: (1) There reaches a point at which a program that
has poor maintainability becomas a victim of entropy--the code
has been modified sc¢ much that it has become a patchwork quilt
and an attempt to fix one fault results in the introduction of at
least as many new faults. (2) The software achieves a high level
of reliability, so that the times betweon failures are
excruciatingly long, with the result that further testing becomes
impractical. As discussed in the section o¥ this report on
Reliability Growth, the simultanecus execution of multiple
identical copies of the software can be helpful in postponing
that point in time.

When software reliability or combined hardvare/software
reliability is predicted, that prediction must be related to a
point in time. The earliest point in time for which it makes
sense to predict reliability is when the =system is fully
integrated and is operating in an environment that emulates field
use. This point in time is the beginning of "system test" and is
denoted by cumulative operating time =0, The software

57

L

reliability prediction methods developed in this section will
forecast the reliability the software can be expected to exhibit
at that point., Alsc forecast will be the parameters of the time
domain software reliability growth model described in Section 5
of this repnrt, sc that software reliability can be predicted for
points in time later during system test. It is assumed that when
the software code has been frozen and is baeing subjected to a
stationary operational profile (probability distriiwtion of input
states--ses Saction 5), it will exhibit a constant failure rate
(see Appendix B).

The study team applied multivariate regression (SOW para.
4.1.3.2.3) and related statistical analysis to the data collected
in the reliability database (SOW para. 4.1.1.1). The tean
axplored which product (requirements, documentation, cude) and
software development process characteristics are significantly
correlated with fault content (SOW para. 4.1.3.3, 4.1.3.2.3).

The technique for software reliabllity prediction uses metrics
derived from characteristics of the softwara developnent procass
and of the products. Also provided are tachniques for taking
into account the influence of two additional factors &n the
roli;?ility figures: the program structure and the oparational
profile.

The study team first investigated techniques for predicting
program size during ‘the early astages of software development,
befora the code has been written (SOW para. 4.1.3.1). Program
size is important for relating fault content to fault density,
and is a product metric in its own right.

4.1.1 Prediction of Softwara Size (SOW para, 4.1.3.,1)
Halstead's (1977) software sclence was the first technique the

atudy team evaluatad. Software scisnce is an information-
theoretic approach tc properties of reprssentations of
algorithms. By invoking these properties, one can obtain

predictions of various quantities of interest such as program
size, complaxity, and fault density. Surprisingly little data ia
required for the.prodictionl.

Using software science, the size of a program can be predicted if
the number of distinct operators (verhs) and the number of

distinct operands (nouns) in the program are known. Software
science defines the langth of the progranm as
LENGTH = n,log,n, + n,log,;n, (78)

where n, is the total number of distinct operators und n, is the
tntal number of distinct operands. The phenomenon that %he size
of a program is a function of the size of its lexicon has
parallels in other fields. The linguist George Zipf (1965)

58

observed this phenomenon in natural languages such as English,
and B. Mandelbrot, the father of fractals, saw the phenomenon in
unordered random symbols [Jones (1986)].

The number of executables source inatructions is obtained as

Iy = .E_E.Ng.:f'ﬂ (79)

where Q=7 for higher~order languages (HOLs) and Qw4.5 for
assembly language. From no additional data, the fault density
caniallo be obtained. The softwars scisnce "volume" metric is
defined as

VOLUME = LENGTH x log, (n,+n,) (80)

The volume is roughly defined as the number of characters that it
takes to encode the program. The number of faults is predicted

by

. VOLUME
9o * —3000 (81)
and the fault density by
W, = -"i,)-?- (82)

The number of distinct operators and the number of distinct
operands are available after coding but can usually be estimated
at the end of detailed design. However, software science
provides a means of making the same predictions bassad on data
obtainable even earlier, during preliminary design.

The early prediction method is based on the number of input and
output parameters and the "language level." Since module
interfaces are established during preliminary deslgn, the number
of input and output parameters for each module will be available.

Let nz" be the number of input/output parameters of a modula.
Let £ be the language level. Then the total number of distinct
operators, n, and the total number of distinct operands, n,, can
ba determined by simultaneocusly solving

n, = nilog; [(2+n3) /2] (n,-2)/(2+n;) + n; (e3)

and

59

[(2+ n2) log, (2+n3)]? = {(n,log,n, +n,10g;n,) log; (n, +n,) (84)

A drawback to this method is that, while Halstead theorized that
language level is a function of the programming language, it
appears that it is also a function of the individual programmer
[Preasman (1982)]. If historical data is available on the
programmer who is expected to implement the module, an estimate
of the language level can be found from taking a sample of his
code and computing

‘e ({1}\%—) (n log;n, +n,log;n;) [log, (n,+n,)] (85)
12

where N, is the total number of operand appearances in the code.

The stuiy team was skaeptical of software science because of
research articles critical of the theoretical and empirical bases
of Halstead's work ([Coulter (1983), Hamer and Frewin (1982,
1985), Shen et al. (1983)). The size of already written prograns
was '"predicted" using mean language level figures. Thas results
were mixed, Trying out the software science relationships on
already-written software, calculating language level
historically, to see Jif those relationships hold is recommended.

The next program size method the team investigated was function
point analysis ([Albrecht (1979), Albrscht and Gaffney (1983)].
This method allows program size to be predicted after
requirements analysis, which is even earlier than predictions can
be made using software science. A function point is one end-user
function. The requirements statements ars examined to deturmine
the number of logical end-user functions requirad, namely inputs,
outputs, inguiries, master files, and interfaces. Dreger (1989)
discusses the manner in which these functions shculd be counted.
The counts are multiplied by the empirically obtained factors
given in Table 4-1.

Table 4~1. Function Point Factors

Function Point

Inputs 4
Outputs 5
Inquiries 4
Master Files 10
Interfaces 7

60

The products of the counts and the factors are totaled and
adjusted +25% based on the estimated processing complexity of the

program. The following characteristics are considered tc
increase processing complexity: data communications, distributed
data or processing, performance ohijuctives, heaviiy-used

configuration, transaction rate, on-~line data entry, 2and user
efficiency, on-line update, complex processing, reusability,
conversion and installation ease, operational ease, multipie site
use, and facilitation of change. Dreger (1779} provides
guideliines for quantifying the complexity added by each of the
characteristics.

The translation of the number of function points to the number of
lines of code depends on the programming language. For Ada,
Jonas (1986) has determined that there are approximately 7.
source statements per function point. For JOVIAL, the number is
106; for basic assembler, 320: for macro assembler, 213; for
FORTRAN and COBOL, 105; and for C, 128.

The use of function point analysis in software engineering is
expanding, espccially as a measure of productivity. The drawback
to function point analysis is that it is currently geared to
business applications areas. Methcds applicable to a wider
variety of app..ication areas were sought.

People in the defense industry involved in making :'zing
predictions were interviewed and a comprehensive comp-:.tive
evaluation of software sizing models [AFCCE (1987)] was raviewed.
The sizing method that emerged at the top of the AFCCE assessment
is that implemented by an increasingly popular commercial product
called Software Sizing Model (SSM) [Bozoki (1987))]. This method
was developed by Dr. George Bozoki of Lockheed. SSM has also
been incorporated into RCA's computerized cost-estimating
software, PRICE. The method uses psychological scaling methods
to convert qualitative sizing information (relative sizes of
modulies) to absolute sizes.

The exact inner workings of SSM are nct published, but the study
team has devised similar methods based on the scholarly
literature. An example of a psychological scaling method is the
technique of paired comparisons: one or more "experts", persons
familiar with the type of application and who have worked cn
similar projects within the same organization, are presented with
randor pairings of module names and asked to judge, for each
pairing, which mecdule they would expect to be bigger. If at
least two of these modules are "reference modules" of known size,
then it is possible to compute predictions of the absolute sizes
»f every module. Appendix D discusses some psychometric methods
that have been adapted for the purpose of program size
prediccion.

61

4.1.2 Predicting Fault Density and Content (SOW para. 4.1.3.2)

A software failure is a discrepancy between the program's output
and that dictated by rejuirements (Musa et al. (1987)]. A
software fault is a missing, extra, or defective statement or set
of statements that is the cause of, or can potentially cause, a
software failure [Musa et al. (1987)]. Taking a snapshot of the
program at the start of system test, the inherent fault density
of a program is the fault content (number of inrherent faults)
divided by the number of executable lines of code. The term
"inherent faults" will be used to contrast with faults that are
inadvertently introduced during repair activity.

An industry averaga figure for fault density is 6 feults per
kiloline of executable source code [Musa et al. (1987)]. This
figure may be wuseful in forming very early predictions of
software reliability, for example, in a proposal. For the
regression analysis, the team sought methods for determining the
number of faults in a program. Unfortunately, the faults in a
program are no? directly observable. Any faults that have been
identified have presumably already been removed. What is
obgservable during system test are software <failures. Each
softwara failure, by definition, is caused by a single fault.

The cccurrence of a software failure is conclusive evidence that
a fault exists. But counting the number or rate of failures over
time does not by itself say anything about the number of faults
that remain. The cnly way to count all the faults in the progran
is to Kkeep testing until all faults have been axposed and

removed., This feat would require exhaustive testing of all
possible input states, which, for most programs, would take an
astronomical amount of time to conplete. (One round of

exhaustive testing would not even be enough, because of the
possibility that repesir activity will intiroduce new faults.)

One propcsed method for estimating the number of faults is called
"fault seeding." It is based on the same idea as '"capture-
recapture" studies used in estimating the size of animal
populations. Such a study proceeds as follows: First comes the
"capture" phase. A group of animals, say, zebras, are caught,
counted, tagged, and released back into the wild. Next comes
the "recapture" phase. After a period of time the researchers go
out and capture a group of zebras. The numbers of tagged and
untagged zebras in this new group are noted. The proportion p of
tagged zebras in the group is calculated. The number of untagged
zebras in the entire population is estimated by dividing p into
the number of untagged zebras in the second group.

In software fault seeding, originally discussed by Mills (1972),
a number of artificially created faults are injected intc the
code. Testing proceeds and, at some point, the number of seeded

62

faults and indigenous faults found are noted. An estimate of the
numbar of indigenous faults in the program is obtained from the
assumption that the proportion of indigenous faults found out of
the population of indigenous faults is the same as the proportion
of seeded faults found.

For software, let y be the number of faults injected initially;
u, the number of indigenous faults found so far; v, the number of
seeded faults found to date. Then the maximum likelihood
estimat~- nf the number of indigenous faults x is

X = l-‘z, . uJ - (86)

(Feller (1957)].

The problem that fault seeding encounters in practice is that the
seeded faults are easier (usually much easier ([Musa

(1987)]) to f£ind than the indigenous faults. To carry the animal
analogy further, suppose that the zebras that are originally
captured are '"tagged" by having one leg amputated. Then the
three~-legged zekras are released into the wild. Later, for the
recapture phase, a group of zebras is caught and the number of
three~-legged zebras noted. Obviously the method is flawed
because the threc-iegged zebras are much easier to catch than the
untagged (four-legged) zebras.

Variations on fault seeding have been proposed. Myers (1976)
suggests having two independent teams test the software. The
faults that the two teams find in common are treated as if thay
had been tagged. The foruula is (Shooman (1983))

W, = —=5B, (87)

where B, is the number of faults that tester #1 found, B, is the
numbex of faults that tester #2 found, and b, is the number of
faults found in common. This variation has the advantage that no
artificial faults have tc be created. However, several
conditions need to be met. First, the faults found during the
tect period must be representative of the total population of
faults. Second, the independent testing and debugging must
result in similar program versions, and third, the common faults
must be representative of the total fault population. (It could '
be argued that the faults found in common will tend to be the
easiest ones to find.)

Ideally, the dependent variable in the multivariate regression is
fault density. The study team concluded that the state of the art
in fault seeding is not advanced enough to provide good estimates

63 !

of fault content. Since neither software science nor fault
seeding can currently provide accurate fault content figures, the
study team decided to choose an observable quantity, the Basic
Execution Time Model initial failure rate parameter, A,, as the
dependent variable for the regression analysis. Additional
methods provide the parameters B and K. Established parametric
relationships (SOW para. 4.1.3.3) are then employed to derive
fault density, fault content, and growth rate predictions.
Because processor speed varied from project to project, the
observed failure rates were standardized to an instruction
execution rate of 3 million instructions per second (MIPS).

Automated support for the multivariate regression was provided by
the SAS (Statistical Analysis System) package. Custom 3oftware
to pre- and postprocess the data and perform additional
calculations was also written.

In predicting fault density, the two product characterintics that
immediately came to mind were size and corplexity. The two most
commonly employed complexity mearures are McCabe's (1976)
"cyclomatic complexity" and Halstead's (1977) "E",

To calculate McCabe's metric a program graph is drawn to depict
flow of control. The metric¢ V(3) is computed a2 the number of
enclosed areas on the plane of the graph. The metxic can be
obtained after the detailed design is complete.

Halstead "E", which denotes "“effort", is given by

(n,log,n,+n,log.n,) [log, (n,+n,)] -
21, (88)
n,N;

Em

where N, is the total number of distinct operators and N, is the
total number of distinct operands. Because of the presence of
the quantity N,, this metric can only be ocbtained afier coding.

Halstead even provides the following formula to obtaln the number
of faults from the effort:

= EZ/S

o 3000 (89)

Several studies have shown that complexity correlates with
program size [Shen et al. (1983), Sunohara et al. (1981), Basili
and Hutchens (1983), Gremillion (1984)]. For this reason the
study team decided not to collect a separate complexity metric.

4.1.3 Prediction of Software Iajlure Rate (SOW para. 4.1.3.2)
As detailed in Appendix A, <tnis study has hypothesized 24

characteristics that affect the software fallure rate as shown
below broken down by software life cycle phase.

Raquirements Analysis:

- %,: Errors in requirements specification (SRS)
- X, Requirements statements in the SRS

~ X%yt Psges in the SRS

- x ! Mar.-months for requirements analysis

- x,: Reguirements changes after baseline’

Praliminary Dasign:

- X,¢ Errors in preliminary design documents
X,: Number cf computer software components (CSCs)
Xyt Units (or Ada packages) in design structura
: Pages in design documents
Xy: Man-months for praliminary design

Detailed Design:

Xy¢ Errors in design documents

Xy;¢ Man-months for detail design

X,3¢ Design flaws identifiad after baselire

X, Design flaws identified after ar internal review

Coding:’

X;s¢ Number of executable lines of code (LOC)

Xyt Faults found through code reviews

X,;: Programmer skill level (average years of experience)
X,q¢ Number of units undargoing review

X! Average number of source LOC per unit

Unit Test:

X! Average number of branches in a unit
X, ¢ Percent of branches covered

X;;¢ Nesting depth average

X,s¢! Number of times a unit ia unit-tested
X,,: Man-months for coding and unit test

Xy = X3 + X, + X;, (Dafects identified iIrom walkthroughs
and reviews)

Some of the independent variables were normalized based on kilo
lines of executable code (KLOC). The normalized independent

variables are X,,....,X,,X,, X, , X, The formula to normalize x,
where i ¢ (1,2,...,14,1%,21,2§3 is

X, = (%, / %) * 1000 (80)
Recall that X, is the number of LOC in each observation.

For each pnase of the software development process, a new
regression model was formed which involves Y (software failure
rate as the dependant variable) and x,, i= 1,2,...,k where k S n,
and contains more software characteristics as they become
available. Therefore, several regression models were formulated
for each software development phase (such as Requirements
Analysis, Preliminary Design, Detailed Design, Coding and Unit
Tast).

Scatter plots of Y (software failure rate) versus x, (software
characteristic), 1 = 1,2,...,n, based on the collected data fronm
Appendix A, were drawn. These scatter diagrams suggest that the .
regression models can be linear in terms of all the variables
exXcept X, X, Xy Fyr Xy XKoo However, both linear and
nonlinear ragrosalon models involving software failure rate
(dependent variablaes) and the software characteristics
(independent variables) described above were developed for each
phase of software development.

The general linear regression model is of the form
Y = a; + ax, + 8% + ... + ax (81)

where k assumes different values depending on the software
development. phase. Similarly, the non-linear regression model
for each phase of the software davelopment is a sum of the linear
combination of items in a subset of (XyreoerXerXgrooerXygrKyg) Xyg)
« oo 1 X9, X¥p, %X} and the linear combination of items in the subset
of (f/xé, /%40 L/Rmr 1/%y 1/%yq, 1/Xyp): the sizes of these
subsets depend on the phase of the software development. Notice
that x,, is not used in any of the regression models, except to
normallze appropriate indepsndent variables, since the software
failure rete Y should not depend on the size (x,) of the
softwvare.

Due to the fact that the number of metrics exceeded the number of
observations in all software development phases, except for the
Requirements Analysis phase, full regression models cannot be
formulated. Advanced statistical techniques were applied to
reduce the number of independent variables which can participate
in the ragression model after each phase of software development.
The reduction was accomplished in two alternative ways. One way
was to work with only the subset of metrics that was determined
to most influence the reliability of the software. This was done
by using the stepwise selection method. The other approach taken

66

was to work not with the metrics themselves but with aggregates
of the metrics. Principal component analysis was employed to
achieve this goal.

The regression models that were formulated after each software
development phase were compared to one another in the Validation
Task. The comparisons were done based on the values of their
statistical characteristics (such as: R?, p-values, 955%
confidence limits, etc.), and on how well they can predict the
failure rates of known software. A model was chosen to be used
to describe the relationship between software failure rate and
software characteristics.

The following is the discussion of the '"stepwise selection®
method and principal components analysis.

a. Stepwise Selaection Method

Since it would have been impractical to try all subsets of
independent variables, the stepwise selection method was usaed to
effectively eliminate some independent variables which have a
small contribution to the regression model.

Stepwise regression is a composite of two different procedures:
forward selection and backward elimination.

The forward selection technique begins with no variables in the
model. Then it selects the independent variable that is most
highly correlated with the dependent variable. For each of the
independent variables, forward selection calculates F-statistics
that reflect the variable's contribution to the model if it is
included. The F-statistic is the ratio of the explained variance
to the unexplained variance. The p=-values for these F-statistics
are compared to a predetermined value, f£. If no F~statistic has
a significance 1level smaller than f, forward selection
terminates. Otherwise, forward selection adds to the model the
remaining independent variable that has the largest F-statistic
(accomplishes the greatest reduction in unexplained varicace).
Forward selection then calculates F-statistics again for the
variables still remaining outside the model, and the evaluation
process is repeated. Thus, variables are added one by one to the
model until no remaining variable produces a significant F-
statistic. Once a variable is added to the model, it stays
thera.

The backward elimination technique begins by calculating
statistics for a model, including all of the independent
variables. Then the variables are deleted from the model one by
one until all the variables remaining in the model produce F-
statistics significant at a pre-specified 1level, b. At each

67

step, the variable showing the smallest contribution to the model
is deleted.

The stepwise method is a cross between forward selection and
backward elimination. The variables already in the stepwise
model do not necessarily stay there; the decision is reversible.
As in forward selection, variables are added ocne by one to the
model, and the F-statistic for a variable to be acdded must be the
largest among the outside variables and it must be at the ¢
significance 1level. After a variable is added, however, the
stepwise procedure looks at all the variables already included in
the model and deletes any variable that does not produce an F-
statistic significant at the b significance level. Only after
this check is mades and the necessary deletions are accomplished
can another variable be added to the model. The process ends
only when none of thae outside variables has the F statistic
significant at the f level, and none of the inside variables has
the F statistic significant at the b level.

Morsover, the value of R? (the coefficient of multiple
determination) is also <taken into consideration, when the
Stepwise regression analysis is performed. The R!® quantifies the
degree of association that exists among the variables. C.,
Mallow's statistic, is another factor which is used in generatiﬁg
a stepwise regression model. C, was introduced by Mallows (1964)
as a criterion for evaluating the adequacy of multiple regression
functions of differing orders. It is a measure of total asquared
error, defined as

cp-(sszp/sa)-ku-z*p) (82)

where s is the mean square error (MSE) for the full model, and
SSE. is the sum~of-squares error for a modal with p parameters
inciuding the intercept, if any. Ir C, is plotted against p,
Mallows reccmmends the model whare C_ first approaches p. When
the correct model is chosen, theé paramecar estimates are
unbiased, and this is reflected in C, near p. If the full model
is not avallable due to lack of a '"reasonable" number of
observations, only the value of R?® is taken into the decision-
making process.

The main advantages of the stepwise procedure are that it is
tast, easy to compute, and availabl: in statistical packages for
most computers. Also, the cost of the computation rises slowly
as the number of variables increases. Another advantage of the
stepwise procedure is that it possesses order independence,
(i.e.., the order which the independent varliables are fed into the
ragression model does not affect the final outcome of the
analysis). Unfortunately, there are some drawhacks to the use of
stepwise regression. The model chosen by stepwise regrassion
need not be the best by criterion of interest; indeed, because of

68

the nature of the one-at-a-time philoscphy of the stepwise
method, there is no guarantee that the ncdel chosaen will in fact
include any of the variables that would be in the best subset.
The stepwise procedure is beat whan the independent variables are
nearly uncorrelated, but this is a condition that im seldom
satisfied in practice.

b. Principal component Analvsis

An alternative approach to alleviate the difficulty of having
fewar data points than the number of regressors is the principal
components analysis (PCA) Method. The tachnique uses as few
principal components of the original independent variables as
possible in the regression model.

Principal components P,, ++e., P are linear combinations of the
original independent variagleu, aay Xy pee ey x (in the study's
case nw=25). P,, P,,..., P, have npociaf proper ties in terms of
variances; for nxample, tRe first principal component P, is the
normalized 1linear combination with maximun varianco. The
coefficients in the 1linear combinations for the principal
components turn out to be the normalized eigenvectors of the
variance~covariance matrix of x,,%X,,...,X, Y, called £. Since I
is a non-negative definite matrf it" has non-negative real
eigenvalues 4, 2 4, 2 ... 2 4 and associated eigenvectors a,,
az,ll.' an.

n

Suppose a,, Q,,..., «, are normalized: i.o., a,'a; = 1, where '
means '‘transpose." L.t 2, = a'X, wvhere X = [X,, X3,.¢+,%,]]' and i
= 1,2,...,n7 then 2z, is the ith pr incipal component. Tt can be
lhown that the varianco of Z, is the eigenvalue A,, where i =
1,2,...,n. The idea of the principal components methcd is to use
tho first k principal components us the independent variables in
the regression model, where k satisfies

A,
%% 2 C whare C= 0.90 , 0.95 (83)

5

since it can be proven that the first k principal components can
explain at least ¢C*100% of the total variation of the sampled
standardized software failure rates.

Often, k is much less than n. Therefore, the new regression model
has many fewer independent variables than the old model, but it
still contains all the original characteristics, since these

69

independent variables are linear combinations of the original
variables.

The major advantages of the principal components method are that
it works well if the original data is highly correlated, and that
all the information pertinent to the model is reserved. Also, as
in the stepwise procedure, principal components analysis is order
independent. One of the disadvantages of the principal
components method is that the results may be unstable since thare
is too much data contributing to the model (a small perturbation
of the data may result in a significant change in the result).
Another drawback of this taechnique is that the eigenvalues and
eigenvectors of T must be calculated, but ¥ is usually large and
may be ill-conditioned; therefore, this task can be troublesome
in some cases.

4.2 Rasults
4.2.1 Results of Prediction of Soffware Failure Rate

Several regression models were formulated to describe the
relationship batween the software failure rate and the software
characteristics. Comparisons were done to salect an appropriate
regression model to be used to predict software failure rate for
each phase of the software development. .

The comparisons were done basaed on several statistical values of
the regression models (such as: R?, p-values of hypothesis tests
(I) and (II), standard errors of the parameter estimates, etc.),
and on how well the models predict known software failure rates.
In afdition to these criteria, the following ground rules were
applied:

1. The model with the best correlation to the observed software
failure rate was chosen whenever there were any significant
differences in correlation between the twe models.

2. When two models produced essentially identical correlation
between the predicted software failure rate and the failure
rate observed on the projects, the model which accounted for
the largest number of metrics (most recent information) was
selected.

The need to seleact the model which provided a software failure
rate with the best statistical correlation tc the observed
tailure rate is obvious. The study team's preference for a
prediction model which used the largest number of metrics is
based on two areas of concern with respect to the data collected
during the study period. The data collected ¢to support
development and validation of the prediction models was all
collected after all system integration testing on the program was

70

complete. In most cases, the software was in use at the customers
facility. As a result, the metric data collected on th=2 projects
was essentially complete. Thus, the data available to the study
team was much more accurate and complete than the data which
would normally be available at the end of a given program phase
(eg reguirements analysis). This may have resulted in much better
accuracy for the early program phase models than would normally
be expectaed. Also, the metr.c data collected during the project
was limited to one company (Hughes Aircraft) and thus potantially
valuable variations in values of the netric data which would
occur between companies was omitted, pessibly yielding better
stability and accuracy for the sarly prediction models than would
ordinarily result,

A complete discussion of the regression analyses is provided in
Appendix E. Also, details of the comparisons among the devuloped
regression models are included in the Validation section of this
report.

Three regression models were chosen for use through the software

development phases to predict software failure rate. These
models ara:

- Model M3
¥ = 18.04 + 0.05 P, (¥ is restricted to be non-negative)
P, = 0.009%, + 0.99x%, + 0.10%; = 0.0001x, + 0.0005%,

- Model M6:
Y = 17.90 + 0.04 P, (Y is restricted to be non-negativae)

0.00009%, + 0.0043%, + 0.013X, + 0.6X, + 0.003%,,

- Model M1Q:
Y = 17.88 + 0.04 P, (Y is restricted to be non-negative)

P, = 0.007%, + 0.80x%, + 0.08%, + 0.01x, + 0.6X, + 0.008x, +
0.03%,,

M3 1is used to predict the software failure rate during the
Preliminary Design phase. M6 can then be used during the
Detailed Design phase and the Code and Unit Test phase. Mcdel
M10 can be used after Code and Unit Test phase has passed.

71

ey S — A —— RS

4.2.2 Predicting Hazard Rate/Fault and Related Quantities (SOW
para, 4,1.3.3)

The relationship hetween software fault content and the software
failure rate is as follows: Let ¢, be the hazard rate of the ith
software fault in a program. Then the overall pregran

failure rate is

Wo
Yo w30, (84)

The Basic Execution Time Modal, discussed more fully in Section 5
of thie report, asserts that every fault hazard rate ¢, is equal
to a constant, the per~fault hazard rate ¢. In thls case the
overall program failure rate is

A, = icb = dw, (8s5)

The multiple regression mndals predict a standardized failurc
rate that corresponds to the Basic Execution Time Model's
parametar. To obtain the same two Basic Execution Time Modef
parameters that ara supplied by estimation during growth testing
(see Section %), v, and g, the following formulas are employed.
For total failures, .

l'0
- 86
Vo " FRE (86)
and for B,
B=B¢pnBf 'K (87)
where the linear execution frequency f is
- X
b4 7 (88)

The linear execution frequency is the number of program passages
there would be in unit axecution time if the prcgram's
instructions werea executed in linear sequence. I is the number
of object instructions and is obtained by multiplfing the number
of source instructions by a code axpansion rat Table 4-2

providea the code expansion ratios for selected programming
languages [Jones (1986)].

Table 4-2. Code Expansicn Ratios

Assembler 1

Macro Assembler 1.5

C 2.5

COBOL 3

FORTRAN 3

JOVIAL 3 |
Ada 4.5 "

A nethod of relating fault content (obtained from applicable
product/process related metrics) to failure rate, based on
program structure and operational profile was developed. In the
framework of the Basic Execution Time Model, fault content is
related to failure rate through the fault exposure ratio, K.
Specifically, if there are o, faults in the program, then the
failure rate is

Ay = LK 0, (89)

With regard to faults, the failure rate depends nrimarily on
fault density, not on fault content. The initial failure rate,
Ay, and the inherent faults, 0wy, &re the faillure rate and fault
content at the start of system test, but in actuality any point
during system tast could be arbitrarily designated the "official
start" of system test, so the relationship holds throughout
system test and during field use.

Zeroing in on a single, "typical" fault, the Basic Execution Time
Model definres the per-fault hazard rate as

¢p=f K (90)

The per-fault hazard rate is the equal contribution each fault
makes to the overall program failure rate. The method developed
also handles the situation in which a program departs from that
assumption. In that situation, faults will fall into various
hazard rate clagsifications (hazard rate profile) (SOW pura.
4.1.3.3.1).

Musa introduced the factor K to account for two distinct
phenomena, the dynamic structure of the proygram and the varying
machine state. The dynamic structure of the program is the
looping and conditional and unconditional branching that takes

73

place during aexecution. The machine state is the values of all
program variables. The machine state can change upon execution
of each instruction. When a fault is encountered during
execution, a failurs may or may not occur during a perticular
encounter; it depends on the machine stats. When K=1,

¢~ £ (91)

This occurs only when the program is executed linearly and all
faults cause failures ragardless of the mactiine state.

The gtudy team separated K into two factors

K=3S'M (92)
wvhere S is a structure factor and M is a machine stats factor.
In relation to a single fault, 8 and M are dafined as

Me failure-causing machine gstates
total machine atates

(93)

and

g = Actual encounters (94)
1inear encounters

Both M and 8 are multiplicative fuctors because doubling eithex
of them doublez thea failure rate. 8o now

¢-f's"M (95)

The product £‘S is the frequency with which a fault is
encountered. Once the fault is encountered, the probability of a
failure ensuing is M. Stochastically, 8 is the probability of an
arbitrary fault being encountered during one precgram passage (of
which there are f per unit time). M is the probability of a
failure ensuing (because of an unfavorable machine state), given
that a fault is encountered.

If, as in the Basic Execution Time Model, K is assumed to be
constant for a particular program, what about 8 and MT Since K =
S * M is a constant, there &rs two possibilitias: (1) 8 and M
are themselves constant; or (2) 8 and M countervail each other so
as always to equal a constant. Alternative 2 is the suggestion
Ehat when S8 is large, M=K/S is small, arnd when M is large S=K/M
s small.

Since 8 is a function of {the structure (loops, branches) of the
program, &and M is a function of the arithmetic and loglc within
the fault, it s reasonable to assume that S and M are
independent quantities. Hence, slince K=3'M is a constant, and S
and M vary independently, it can ba concluded that & and M are

74

each by itself a constant for a particular program, which is
alternative 1. The ramification of K being separable into S and
M is that the two quantities can be studied individually. 1If K
is affected by the structure of the program, then the effect
should be seen in S and not M.

S is the rate at which a particular fault is encountered during a
single program passage. One way to estimate S would be to inject
a program with a single fault and see how often that fault is
encountered. By injecting several faults, a more accurate and
quicker estimate would be obtained. But as discussed earlier in
this section, it is difficult to fabricate faults <that are
representative of a program’s indigenous faults. '

But why inject a fault? A fault is in essence just a place in
the program. The major issue is how often an arbitrary place in
the program is reached per program passage. S can be estimated by
observing how often one or more randomly chosen places in a
program are encountered during execution. The assumption that is
being made here is that a fault can occur anywhere in a program,
and every place in the program is as likely as any other to have
a fault. That is, the fault density of a progranm
(faults/kilolines of executable code) is uniform. This
assumption has been borne out through empirical studic~ ([Basili
and Hutchens (1983), Takahashi and Kamayachi (1985)].

Here, then, is the method developed for estimating S and vusing
that estimate tc ra2fine K to better reflect program structure and
operational profile.

1. An array of counters is declared. In Ada, the declaration
would be

counter: array(l..n) of integer:=(0,0,0,..,0); (96)

2. A random sample i3 taken of n "places" within the program.
Thase places must lie in between existing program statements. At
each place a counter iteration statement is inserted. For
example, the following statement is inserted into the program at
the i-th such place:

counter (i) := counteri{i) + 1; (97)

3. The program is executed for w time units. During the period
of execution the operational profile should, ideally, be
stationary and representative of field use. When the execution

75

period is complete, the values of elements of the COUNTER array
are examined, and the sample values for S are calculated fron

COUNTER(1)
f w !

8, = i=1,2,.,n (98)

Note that f'w is the number of program passages that take place
during the w time unit*s. If S is a constant for a particular
program, as implied by the Basic Execution Time Model, then any
variability in the observed values (s;} can be attributed to
"gsampling fluctuations." The best estimator for S will be the
sample mean

n
% (99)

Under the assumption that K is constant, 'the Gaussian law of
arrors applies. The sample standard deviation is

n
8 = J; (9,-8)%/(n-1) (100)
Y
A 100(1-a)% confidence interval for S has endpoints
3 8
St tn-z,x-./z—ﬁ (101)
where t_ is that value of the t-distribution with n-1
degrees o% freedom that has 1-~a/2 to the left,. The <¢-

distribution is tabulated in many statistics textbooks. A
numerical method suitable for programmable calculators and
computers is given in (Volk (1982)]}. For n>30, t_,,,, can be
replaced by the standard normal deviate x, .. !

If no information is available about K for this program, the
industry average value of 4.20 x 107 is recommended [Musa et al.
(1987)]. If the same or a similar program has gone through

76

growth testing, then the value can be obtained from the following
parametric relationship:

K2 e ¢ (102)

In any case, the value of M can then be recoverad as

Mioosted ® ';,-(' (103)

Here is a summary of the dimensions of the various quantities
involved in predicting the parameters of the Basic Execution Time
Model:

. Program passages
d execution time (104)
S: encounters

program passages

failures (106)
encounters
K: failures
’ faults (107)
program passages
w,: faults (108)
o failures (109)

execution time.

If the s, values are highly variable or skewed, then the
asgumption of a constant per-fault hazard rate should bhe

»
Ll

questioned. Skewness--the degree of symmetry in the shape of the
distribution--can be measured by

Sk = l‘ﬁ._a;_'ié.’. (110)

where Md is the median of the (s,). A large positive score
indicates that the distribution is skewed to the right, and a
large negative score indicates that it is skewed to the left.
For the purposes of prediction, a skewed distribution suggests
that the Basic Execution Time Model may not be appropriate.

If the (s,) are highly skewed or highly variable, then the hazard
rate for each countar should be computed individually as

b, =8, M f (112)

The distribution of hazard rates can be expressed through a
*hazard rate profile." The range of fault hazard rate values is
partitioned into n subranges, which will be termed classes.
Adams (1984) researched a similar situation and devised a
classification scheme. Adapted here to the purposes of fault
hazard rate classification, the first step is to f£ind the highest
fault hazard rata, Phigh? and the lowest fault hazard rate, ¢ .
Starting from ¢,,,, the class boundaries are formed 'i'ay
successively multipiying Bpigh LY 10"%20.31623:

Snizns Pnagn (107%) | by (1074) 2, by (1074) 3, ., by (412)

Dencte the proportion of fault hazard rates falling into the

Cclasves as

P.s Pys v Py (113)
with
n
;p, =1 (3124)
=1

Let the mean hazard rate value in each class j be denoted m,.
Class j as a whole contributes uw,p;m, to the overzll progrém
failure rate, which will be

n
A, = w‘,; pym, (118)

If a similar program is predicted to have a fault content of o,
and it is presumed that the hazard rate profile is the

78

same, then the program failure rate is

4.2.3 Fault Reduction Factox

Another quantity that appears in the Basic Execution Time Model
is the fault reduction factor, B. The fault reduction factor is
the nat number of faults removed per failure occurrence. B is
not generally egqual to unity because of imperfect debugging.
Repair activity can fail to find the causative fault, can find
and remove saveral related faults, or can inadvertently generate
new faults. The fault reduction factor can be computed [Musa
(1984)] from

B=D(1+4)(1-G) : (117)

where D is the "detectability ratio"~-the proportion of faults
whose causative faiilures can be found. The quantity A is the
"agsociability ratio"--the ratio of faults discovered by code
reading to faults discovered by testing. G is the "fault growth
ratio=~the increase in faults per fault corrected. Generally, D
is close to 1, A is close to 0, and G ranges from O to 0.91
[Miyanoto (1975), Musa (1980)].

If data from growth testing on a similar project is available,
then B can be obtained from the relationship

5.2 (118)

wheie f is a parameter of the Basic Execution Time Model (see
Sect:ion 5).

Another option, when no information is available, is to use the
industry average figure 0.955 [Musa et al. (1987)).

4.2.4 psummary of Prediction Technique

a. With no prior information, use

6 faults
1000 source instructions

W, = (119)

Predict the number of developed source instructions AI, (omitting
reused code). Then compute the inherent fault density as

Wo = Wy * AT (120)

Use 0.955 for B, or obtain it from historical data, and obtain
the total failures as

Vo = =2 (121)

Using the appropriate code expansion ratio, compute the number of
object instructions I. From manufacturer's specifications or
benchmarking, find out the average instruction execution rate r.
Obtain the linear execution frequency as

= £
£ (122)

Use 4.20 x 107 as the value for K, or obtain K from historical
information on a similar project. Predict the initial program
failure rate as

Ao = LKW, : (123)
and the time-dependent failure rate as

A(t) = A exp

)'0
-__’;.,-] (124)

vhere 7 is cumulative execution time since the start of systen
test.

b. As product/process metrics come in during requirements
analysis, prelininary design, detailed design, and coding and
unit test, use the regression model to cbtain a better prediction
of A,.

¢. Once system test begins, use actual failure data to estimate
the software reliability model parameters, as described in
Section 5.

80

5. RELIABILITY GROWTH TESTING

Reliability growth is the positive improvement in reliability
over time. For hardware, reliability growth occurs over a period
of time due to improvements in the product design or
manufacturing process, For software, reliability growth occurs
through systematic testing and debugging resulting in effective
removal of software faults.

Growth management is part of the system engineering proceas, and
complements other basic reliability program activities such as
prediction, allocation, and demonstration testing. Growth
management consists of planning the achievement of reliability as
a function of time and other resources.

The rate of software reliability growth depends on how fast the
test-debug-test loop can be accomplished. The rate is
constrained by the failure rate of the software, the amount of
computer time available, and the availability of failure
identification personnel (testers) and failure resolution
personnel (debuggers). The rate is controlled by reallocation of
resources and other forms of intervention, based on comparisons
between planned and assessed reliability values.

In fulfillment of SOW Task 4, a sgtandard methodology for
reliability growth testing, measurement, and management was
developed. The techniques are built around a time domain
software reliability model. Methods were developed for selecting
random test cases from an operational profile that emulates field
use, and established procedures for data collection, parameter
estimation, determination of the calendar time/execution time
ratio, assessment of model goodness-of-fit, recalibration, and
use of multiple copiles.

5.1 approach

First, criteria were identified for selecting an appropriate time
domain software reliability model around which to build the
growth, testing methodology (SOW para. 4.1.4.1). An important
consideration was that the model had to be compatible with
existing hardware reliability standards, concepts, and
procedures. The model should be mathematically tractable, so
that the formulas can be easily invertible to find out various
quantities of interest (such as forecasting when a future
reliability objective will be met). The parameters of the model
needed to have simple interpretations that are meaningful to
software engineers.

Another important consideration is the predictive validity of the
model. Ideally, the model should be one that has been validated
on a broad selection of software development projects. Because

81

no software reliability model has been completely validated on
all types of applications across different organizations, it was
decided that the growth testing methodology should include a
goodness-of-fit technique and a recalibration technique. A
goodness-of~fit technique would allow a user to gauge how well
the software reliability model is working on a given program. If
the fit is poor, the user can switch to an alternative model or
parameter estimation technique. In many cases, the reason for
poor fit will turn out to be a systematic bijas (consistent
optimism or pessimism) or noisiness in the estimations. These
problems can be corrected by recalibration. The study team
sought to develop a new type of recalibration technique that is
numerical, as opposed to the existing graphical techniques. A
numerical technique is more accurate and has the advantage of
being eusily implemented on a programmable calculator or
computer.

The team paid special attention to the procedures for conducting
growth testing. The prevailing objective of testing in recent
years has been to aggressively seek faults by testing at high
workload and at boundary values of the input variables, This
type of testing should be completed prior to grewth testing.
During growth testing, the input states must be chosen
"gtatistically," which is to say that the input states must be
randomly selected from a stationary operational profile
(probabilities of input states). The operational protile during
growth taesting should be close to the operational precfile the
program will experience during field use. Statistical testing is
effective in contributing to improved reliability, because it
finds the faults that the user will tend to encounter most. On
the other hand, stress testing or coverage testing might find
many faults, but because the user will rarely encounter those
faults, their removal may not significantly improve the failure
rata.

5.2 Results

The team chose a variation of the Basic Execution Time Model
(Musa gt al, (1987)] as the time domain software reliability
model on which to base the growth testing methodology. This
model has a wide follewing among software practitioners in large
corperations. Much practical knowledge and many auxiliary
techniques have come out of the model's real-world experience,
which enable the model to be adapted to a wide variety of
software development technologies and project situations.

The Basic Execution Time Model has simple parameters that are
easy for software «ngineers and project managers to understand
and to which they can relata. The model is fully compatible with
existing hardware reliability assessment methods and 1is
mathematically tractable. The data needed to estimate the model
parameters is minimal and relatively easy to collect. Another

B2

reason for choosing the Basic Execution Time model is that it
represants a synthesis of many of the advances that have takan
place in almost 20 years of research in the field of software
reliability modeling.

5.2.1 Major Time Domain Software Reliability Models

Jelinski and Moranda (1972) developed the first reliability
growth model created specifically for software. The modal
assumes that the failure rate is linearly proportional to the
number of faults in the software. When a failure occurs it is
assumes that the fault that caused it is removed instantaneously,
without spawning any new faults. The failure rate renmains
plecewise constant between failures, and drops by a constant
amount at each failure. The interfailure times are independent
exponentially distributed random variables. Around thae same
time, Shooman (1973) presented a similar model but introduced
additional concepts: The failure rate is not only a function of
the number of faults in the program, it is also a function of the
instruction processing rate, the program size, and the program
structure. Fault correction occurs at a different time than
failure occurrence and is affected by the nature of the project
and the number of available personnel.

Musa (1975) developed a model that built on the Jelinski-Moranda
and Shooman models and included several new concepts. Execution
(CPU) time, not calendar time, is the failure-inducing stress
placed on a program. During field operation the failure rate
remains constant; only during periods of fault correction
activity does the failura rate change. Musa accounts for the
dissimilarity batween the testing and operational environments by
means of a testing compression factor.

Goel and Okumoto (1979) presented a model based on a
nonhomogeneous Poisson process (NHPP). This model assumed that
the number of faults in the program at the start of testing is
not fixed but is a Poisson random variable. 1In earlier models
each interfailure period is gcverned by a distinct (homogeneous)
Poisson process, whereas now the entire system test phase is
governed by a single nonhomogeneous Poisson process. At the
axpense of conformance to an intuitive desire for a piecewise
continuous failure rata, Coel and Okumoto achieve the analytical
simplicity of a smooth failure rate curve. New concepts included
the idea thau repair of the underlying fault occurs at some
variable time after failure occurrence. Other concepts included
were that a program can ba "perfect" and have no faults and that
the effectiveness of repair actions is imperfect.

The concept of imperfect dsbugging is an important ona. Evidence
strongly suggests that most faults originate in the requirements
and design phases [Lipow (1979)]. A fault caused by a
requirements misunderstanding or design deficiency may require

83

extensive reworking of the program, and this reiteration of the
original development process will likely spawn new faults.

Musa and Okumoto crecated a model called the Basic Execution Time
Model ([Musa et al., (1987)] that embodies all of the foregoing
concepts.

One concept championed by Littlewood (1978) was that different
frults in the program make different contributions to the overall
failure rate. The most frequently encountered faults (those that
contribute most to the overall program failure rate) are detected
and corrected first. Because some programs are subjected to a
highly nonuniforu operation profile, Musa and Okumoto developed a
model, called the Logarithmic Poisson Model, that considers the
hazard rates of the faults in the program to form a geometric
p-ogression, an idea similar to Littlewood's. The Logarithmic
Poisson Model should be tried if the goodness-cof-fit procedure is
showing a poor fit with the Basic Execution Time Model.

The Basic Execution Time Model (as well as the Logarithmic
Poisson Model) is & nonhomoganeous Poisson process (NHPP) model.
The NHPP framework is the most commonly used for modeling
reliability growth. An NHPP conforms to four axioms. The
failure counting process (N(r),720), which gives the cumulative
nurber of failures in the execution time interval ([0,7), is an
?gPP with intensity function (time-dependent failure rate) Ai(r),
|

(i) N(0) = 0; | -

(14) (N(7),720) has independent increments:

(1i1) Pr(N(r+A7)=N(7)22) = o(A7):

(iv) Pr (N(7+A7)-N(r)=l) = A(7)A7+0(A?) »
where the function o(A7) is defined by '

o(At)
m 2k - o zs)

The mean value function of the NHPP is the expected number of
failures occurring in the execution time¢ interval ([0,7] and is
defined by

pit) = fz(s) ds (126)
o]

84

Yamada and Osaki (1983) surveyed the NHPP applied to growth
modeling. One of the most prominent models is the power law
model or the Duane model. It was developed empirically by Duane
(1964) and is often called the Duane model. Duane based his
model on the observation that the plot of cumulative failure rate
versus cumulative test time closely follows a straight line on
log~log paper. Crow (1974) represented his postulate
stochastically as an NHPP with a Weibull failure rate curve and a
mean value function of

pit) = Atf (127)

where { is a growth rate parameter, generally between 0.1 and
0.65. This model is also known as the AMSAA model.

Since the Basic Execution Time Model, which has been selected is
also an NHPP model, the failure rate projections of the AMSAA and
Basic Execution Time models can be combined to project the systenm
reliability of concurrent-sequential hardware/software systems,

50202 ﬂwmm-m
5.2.2.1 Failure Component

A software failure is a dsparture in program output (hardcopiles,
displays, commands, control, etc.) from that specified by the
requirements. The "departure" from regquirements consists of an
output variable that differs from its correct value. Each
incorrect output variable is counted as a software failure in its
own right if it arose from a separate fault. This definition of
software failure differs slightly from that used in demonstration
testing, where the simultaneous appearance of several incorrect
output variables would count as a single failure. In growth
testing, if several output variables have incorrect values and
the discrepancies were caused by multiple faults, then fault
correction activity will address all those faults and the failure
rate will improve by several decrements, just as if the
discrepancies had occurred over the course of several runs.

As a program is debugged, the amount of execution time that
elapses between failures tends to increase. In the Basic
Execution Time Model, it is postulated that each failure results
in fault correction activity that causes the failure rate to drop
ky a fixed amount. When the program is released, the code is
frozen and, as long as the operational profile is stationary, the
software will exhibit a constant failure rate (see Appendix B).

Let v, be the (expected) total failures. This is the number of
fajilures that need to occur to expose and remove all faults.
This parameter can be predicted (see Section 4) or can be

1)

estimated from observed failure data. Exposing and removing all
faults can conceivably take an infinite amount of time. Let i
be the initial failure rate, at the start of system test {r=0).
This parameter can also be predicted (see Section 4) or can be
estimated from observed failure data. Any stress testing should
take place prior to r=0. 1If u is the mean cumulative number of
failures exparienced at suvme point after the start of system
test, the failure rate as a function of u is

Ap) = A, (1--}) (128)

0

Thus the failure rate A(u) is a linear function of mean failures
experienced u. Note that the failure rete A(u) is a smooth
function. 1In early software reliability models, the failure rate
drops discontinuocusly at each failure; in the Basic Execution
Model the failure rate glides smoothly down <%o raflect the
uncertainty in the times that the faults are actually removed.
The slope of failure rate is

dh Ao
& (129)

The decrement of failure rate per failure as LV OVATE

Another way to express the railure rate is as the product of g3
and the number of failures remaining:

A(p) = B(vg-p) (130)

or, since the mean failures experienced is a function of
execution time 7:

A(t) = Plvy=-p(e)] (131)

The function u(7) is called the mean value function. The time
derivative of the mean value function is the time-dependent
failure rate A(r). Thus one can form the differential equation

86

D, puin) = By, (132)

the solution to which is

p(t) = vy(1-exp[-pzl) (133)

Differentiating, one obtains the failure rate

A(s) = vyPexp(-B7] (134)

The initial failure rate is found by setting r=0:

Ao = v P (138)

The model is thus completely determined by two parameters: S and
the total failures v,.

5.2.2.2 Fault component

A software fault is an extra, missing, or defective instruction
or set of instructions that has caused, or can potentially cause,
a software failure. Whon a fault is aencountered during
execution, a software failure may or may not ensue, depending on
the machine state (values of program variables). The growth that
is being modeled is in the 1reliability (decrease in failure
rate). The number and location of faults affects the reliability
only indirectly.

The modal contains additional elements to describe the role of
software faults. The number of failures experienced and the
number of faults removed are related by a quantit{ called the
fault reduction factor, denoted B. The fault reduction factor is
the net number of faults removed per failure. B accounts for
imperfect debugging. Ordinarily, the causative fault behind a
failure is found and removed. But sometimes the causative fault
will not be found, resulting in 2zero faults removed. Other
times, the failure will result in the discovery--by code reading-
-and removal of several related faults. Sometimes fault
correction activity will introduce additional faults into the
program. The average number of faults removed per failure is B.
Since the occurrencea of one failure results in the failure rate

87

declining by the quantity B, the amount that each fault
contributes to the overall prcaram failure rate must be

¢ = _% (1.36)

which will be termed the per-fault hazard rate. It is called &
hazard rate (force of mortality [FOM]) because a fault has a
lifetime. When the fault is removed it is gone for good. The
overall program has a failure rate (rate of occurrence of
failures [ROCOF)) because it is "repairable" via restart.

Let the number of inherent faults be danoted w,, This is the
number of faults present at the start of system test and does not
include any faults introduced later as the inadvertent result of
repalr activity. The initial failure rate can then be expressed
as tha product of the per-fault hazard rate and the number of
inherent faults.

Ay = Pw, (137)

The per-fault hazard rate ¢ can belfurthcr broken apart into

=L K (138)

The quantity K is called the fault exposure ratio and is
discussed below. The antity £ is the 1linear execution
frequency of the program, i.e., how many times the program would
be executed per unit time if its instructions were executed in a
linear sequence. The linear execution fregquency can be
calculated by dividing the average instruction execution rate r
by the number of machine-level inatructions I:

1
£= 3 (139)

The average instruction execution rata is the number of
instructions executed per unit time. It is frequently exprassed
in terms of MIPS (millions of instructions per second). The
"MIPS rating" of a computer is often available from the vendor
and can be refined by customer benchmarking to reflect the
instruction mix of the customer's own applications. To get the
number of machine-level instructions, it is easiest to multiply
the number of source-level instructions I, by an average
expansion ratio for the programming language, such as tabulated
by Jones (1986).

88

In general, programs are not executed linearly. They contain
looping constructs and unconditional and conditional branches, so
the number of times an individual fault is encountered per unit
time can be greater or less than the linear execution frequency
f. Every time a fault is encountered a failure will not
necessarily happen:; a failure might only occur during certain
machine states. The fault exposure ratio K is meant to account
for both the structure of the program (loops and branches) and
the varying machine state. The value of K can be determined from
historical data. On the same project or one that is similar,
failure data is collected and used to statistically estimate the
value of . Then K is obtained as

K= 'éa'f (140)

When no information is available, the industry average value of
K=4,20%x10°7 [Musa et al., (1987)] is recommended. The section in
this report on Prediction discusses the quantities K, S, and M in
detail. K is broken down into two independent factors:

K=8'M (141)

where S8 accounts for structure and M accounts for machine state.

5.2.2.3 Estimation

Growth testing takes place during system test, once the software
has been fully integrated and stress testing has been completed.
Upon the occurrence of each software failure, the failure
identification personnel (testers) must record the cumulative
execution time from the start of growth testing. Musa et al,
(1987) furnish auxiliary techniques for evolving software
(integrated in successive builds) and for situations in which
grouped failure data or calendar time failure data is the only
data available. Failure data is said to be grouped when the only
information available is the nunber of failures that occurred in
disjoint time intervals.

The Basic Execution Time Model provides general forms for the
time-dependent failure rate and the mean value function. As
derived earlier, the formulas are

89

[

Alt) = -}exp[-ﬂt] (142)
]

and

p(t) = vo(1-exp(-B~]) (143)

The unknown parameters are S and v,. (It is also possible to
parameterize the model in terms of other cquantities.) Let the
observed failure times be denoted

Tyr T30 wr T (144)

where n is the number of observed failures. Let 71,27, be the
time at which the test ends. In statistical qualfty control
terminology, this type of test is called a "time-truncated test."
All times are measured in cumulative execution time from the
start of system test.

A number of statistical estimation methods can be employed to
estimate the values of 8 and v, from the failure times. One of
the best general methods for statistical estimation--and by fair
the most popular--is the method of maximum likelihood. The
maximum likelihood estimators are the values of f and v, that
maximize the probability of the observed outcome 7., Tor ooy Tpe
Maximum Jikelihood estimators exhibit many tavorab!l.a large-sample
properties. They are consistent (variance tends to 2zero and
expectation tends to the true population parameter as the number
of nbservations increases), eftficient (lowest wvuriance), and
asymptotically normal (so that confidence intervals can be easily
aestablished). Another property of maximum likelihood estimators
is invariance, which means that the maximum likelihood estimator
of a function of an estimator can often be obtained by
substitution. As an example, if the maximum likelihood estimator
of w is @, the maximum likelihood estimator of w is @°.

Musa et al., (1987) derive the maximum 1likelihood estimation
equation for 8 as

B explfr,l-1

n
2 __f’.‘ie.__?:gi.o (145)
=]

The estimate for § is obtained by solving the equation for #. The
maximum likelihood estimator for v, is

n
l1-exp[-Bt,]

v, = (146)

In that equation there is nothing to solve; the estimate for B

(already obtained) is simply inserted into the equation to obtain
Vg-

The two equations above provide point estimates--single values--
for the parameters. It is often more informative to provide an
interval estimation. Interval estimation provides a range of
values within which the true value is asserted to lie. The
probability that a correct interval estimate is obtained is the
confidence coefficient 1-a. The interval is bounded by lower and
upper confidence limits. A confidence interval that has an
associated confidence interval of 1-a is called a 100(l=-a)$
confidence interval. The lower and upper 100(l-a)% confidence
limits for £ are denoted B and By respectively. The "Fisher
information" [Fisher (192233'] is a measure of the amount of
information supplied by an unknown parameter. It is the
reciprocal of the variance of the estimator.

The Fisher information for f's estimator is

2
1 tiexp(fr,]
I(B) »n|—=— - 2 (147)
P g2 (exp[fr,] -1)2
Then the lower and upper confidence limits are obtained as
K /
p ow = B - (iw)/a (148)
! VITH)
and
Bnign = R+ WIEETVE (149)

VI

21

where «x.. ., is the corresponding normal deviate. The normal
deviate 18 found as follows: The cumulative distribution
function for the standard normal distribution is

F(x) = f—‘/l? exp [-—tz—z} de (150)
e VO

where 7=3.14159... and =-w<x<®. The standard normal deviate
X 1.0)/2 is that value of x for which

F(x) = (1-a/2) (151)

Tables of F(x) can be found in most statistics textbooks. Table
5-1 provides some common values for K(1-ay/2®

Table 5-~1. Standard Noal Daviates

0.2 1.282
0.1 1.645
0.05 1.960
0.02 2.326
0.01 2.576
0.002 3.090

On a programmable calculator or computer, the value of F(x) can
be computed to tlhe four significant figures usually found in
tables, using the approximation formula

F(x) = 1-W(x) (a,u+a,u?+a,u®) (152)
where |
Wix) = 1’: exp --‘;—2] (183)
and

92

1
l+a,x

(154)

The constants a,, a,, a,, and a; are provided in Table 5-2.

Table 5-2. Normal Approximation Constants

Constant

0.33267
a, 0.4361836
a, -0.1201676
0.9372980

Because of the invariance property of -maximum likelihood
estimators, the corresponding confidence intervals for v, can be
established by successively substituting g, and Phign into the
estimation equation for v,:

n
1-exp| 'Blowfo]

(Vo) 1ow = (155)

n
T-e%p [-Pargat]

(Vo) pigh = (156)

5.2.2.4 Goodness of Fit

It was concluded that Littlewood's (1979a) prequential likelihood
statistic and u-plot are helpful during growth modeling to
determine the model's '"goodness of fit." When the tester uses
the Basic Execution Time Model or some other time domain software
reliability model, it is not enough to blindly apply the model.
The tester should monitor how well the model is fitting the
failure data. If the model is not fitting well, then the user
should switch tu an alternative model, such as the Logarithmic
Poisson Model.

A u-plot is constructed according to the following scheme. During
growth testing, the user employs a statistical inference
procedure, such as maximum likelihood, to estimate the parameters
of the Basic Execution Time Model.

93

The estimated cumulative distribution function (cdf) is

Fi(z) =1 -expl-A(z,) 1)) (157)

" where 7, is the cumulative execution time, A(7) is the failure
rate at that time, and 7' is execution time measured from the
present. When the interfailure time 7', is later observed, the
probability integral transform

ui = ﬁi(ti) (153)

is recorded. Each failure results in another u,. The
probability integral transform implies that the u,'s should look
like a random sample from a uniform distribution over the
interval (0,1), if the seaquence of predictions was good. The
accuracy of the model with respect to the particular program can
be gauged by drawing a u-plot. In & u-plot the sample cumulative
distribution function of the u,'s is compared with the cumulative
distribution function of the uniform distribution over (0,1),
visually or through use of numerical goodness-of-fit measures
such as the Kolmogorov distance. The specific points plotted to
form the cumulative distribution function are

(u(1) W1/ (z+1))
(U .2/ (z+2))
@2/ (159)
(Ugy I/ (r+1))
where u.,,, U,y +e., Ug,,, are the u;'s rearranged in ascending

order.

5.2.2.5 Recalibration

Brocklehurst gt _al., (1990) show how the u-plot can be employed to
perform a kind of "adaptive modeling." The u-plot shows how well
the model is fitting the failure data. The information in the u-
plot can be used as a feedback mechanism to modify and improve
the model, to "recalibrate" it. The recalibrated model corrects
for systematic bias or noisiness that the model is experiencing
when being used on a particular program. The recalibration takes
place by applying a function G () to the estimated cdf. The
Brocklehurst paper only describes G'(‘) graphically. The study
team has developed a recalibration formula based on the same
principles as the graphical technique.

94

The function G'(') is expressed as

(r+1) (Ugg.) +uey)

GiLF, ()] = , Uy SESU(4u (169)

where u,, is the j-th value when the u,'s are put in ascending
order of magnitude, and r is the number of u;'s, with u,=0 and
u,.,q,"l.

(reh)

To perform the recalibration the user applies the transformation

Fl(x) = G{[F, ()] (161)

The accuracy of recalibrated models has been shown [Brocklehurst
et al, (1990)])] to be generally better than that of the original
model.

The study team has developed a computer program to automatically
create a u-plot and perform recalibration of the model.

5.2.2.6 Qperational Profile

During growth testing, the environment in which the program
executes must be controlled. The environment includes the
hardware platform, the system generation parameters, and the
workload. An important part of a program's execution environment
is the operational profile.

An input state is a set of input variable values for a particular
run. Each input variable has a declared data type--a range and
ordering of permissible values. The set of all possible input
statas for a program is the input space. Each input state is a
point in the input space. An operational profile is a function
p(+) that associates a probability p(i) with eact point i in an
input space I. Since the points in the input sp.ce are mutually
exclusive and exhaustive, all the probabilities must add up to
one:

;p(i) =] (162)
€I

To illustrate these definitions, consider a program with three
input variables. They are each of data type Boolean, meaning
that they have two possible values: TRUE and FALSE. The input
space has eight points: (FALSE,FALSE,FALSE), (FALSE,FALSE,TRUE),
(FALSE, TRUE, FALSE) , (FALSE, TRUE, TRUE) , (TRUE, FALSE, FALSE) ,

95

(TRUE, FALSE, TRUE), (TRUE,TRUE,FALSE), (TRUE,TRUE,TRUE). Letting
T stand for TRUE and F for FALSE, an operational profile for the
program might look like:

D(FFF) = 0.1

P(FFT) = 0.2

p(FTF) = 0,1

P(FTT) = 0.3 (163)
p(TFF) = 0,025

p{TFT) = 0,02

p(TTF) = 0.025

p(TTT) = 0.05

The distribution of input states is thus established by the
operational profila.

The concept of operational profile formalizes what is meant by a
consistant input environment.

During growth (and demonstration) <testing must be kept
stationary: The »(i)'s must not change. The input atates chosen
for test cases must form a random sample from the input state in
accordance with the distribution of input states that the
operational profile specifies.

The concept of a stationary operational profile is a crucial
assunption in building software reliability models such as the
constant failure rate model for frozen code (see Appendix B) and
the Coincident Failures model for multiversion software (see
section on Reliability Allocation).

It is generally not practical to fully express or specify an
operational profile, because the number of input states for aven
a sinple program can be enormous. As an example, if a program
has three input variables, each of which is a 32-bit integer, the
number of distinct input statas is

233 . 232 . 232 45 298 4 7, 9x103¢ (164)

At best, the customer will express or specify software usage in
terms of end-user-oriented functions. For examplae, the customer
might state that the usage of the softwara is 40% user function
A, 45% user function B, and 15% user function C. To convert that
statement into an operational profile, 1let u be the input

98

variable corresponding to user function selection. Thus, u can
take on the values A, B, or C, The input space can be
partitioned into three classes defined as follows:

CLASS, = {i€I|i =A}
CLASS, = {i€I|i,=B} (165)
CLASS, = {i€I|i,=C}

where i 6 is the value of the input variable u in input state i.
The probability of each individual input state in class A is

1

p(i) = ,40 X Tﬁgg__ﬂ (1“,

For class B it is

- 1

and for class C it is

1

p(i) = ,15 x Tcm-s——c‘- (168)

where the vertical lines mean "number of alements."

Once the operational profile is established, a procedure for
selecting a random sample of input states is required, so that
test cases can be generated for growth testing and demonstration
testing. The following procedure for selecting the input states
is recommended.

5.2.2.7 Random Input-State Selection

The strategy employed is to associate each input state 1 with a
subinterval of the real interval [0,1] whose size is equal to the
input state's probability of selection p(i). As an example,
suppose that there are only three possible input states and the
operational profile says that state #1 occurs 28% of the time,
stata #2 occurs 11% of the time, and state #3 occurs 61% of the
time. State #1 should be associated with the real interval
[0,0.28): state #2 should be associated with the real interval

97

(0.28,0.39]; and state #3 should be associated with the real
interval (0.39,1.0].

The next step is, for each test case needed, to generate a random
number in the interval ([0,1]. In the example, if that random
number falls in the interval (0,0.28), input state #1 is
selected; if it falls in the interval ([0.28,0.39], input state #2
is selected; and, if it falls in the interval [0.39,1], input
state #3 is selected.

To generalize and formalize this procedure, suppose that the
input space contains k input states. Further suppose that the
probabilities associated with the input states are

Pir» P+ s Py (169)
Let
START, = 0 (170)
and
J-1
START, = 2}:m) 3m2,3,.,k (171)
w}
and let
and
END, = 1 (173)

Each input state is now associated with a subinterval
[START ,END;] of the interval [0,1]. The length of the
subinterval is equal to the input state's probability of
selection.

Now a random number uniformly distributed in the interval (0,1)
is generated. The random number will fall into exactly one of

98

the intervals [STAKT|,END;]. The input state so selected is
input state j.

The cardinal rule for increasing the efficiency of growth and
demonstration testing is not to repeat the same test case more
than once. ("Regression testing" after a program change is
another matter.) This rule per se is not that helpful because
the large number of input states that most programs have means
that the repetition of a randomly selected test case is a rare
aevent. However, the nonrepetition rule combined with the
technique of equivalence partitioning can indeed increase testing
efficiency. Equivalence partitioning was first described by
Myers (1979).

Imagine a "test oracle" e(i) that evaluates to 1 if a run
starting from input state i will result in software failure
(crash, hang, or erronecus output) and evaluates to 0 if the run
will result in success. Consider a set W of input states defined
as follows:

W {1€I](V1 e(1)=0]V[VL e(1)=1]} (174)

That is, W is a subset of the input space such that all input
states in the subset fall alike: 1If any input state would cause
the program to fail, then so would any other input state in the
subset. If the program starting from' any input state in the
subset would succead, then the program would also succeed
starting from any other input state in the subset. Such a subset
is caliled an equivalence class, of which there may be many.

Testing personnel can detarmine equivalence classes from an
understanding of the program structure and logic. Oonce an
equivalence class is identified, only one representative input
state from the class needs to be tested; if a run starting from
the representative input state results in success, then it can be
concluded that runs starting from all members of the class would
result in success. If a run starting from the representative
input state results in failvre, then it can be concludad that
runs starting from all members of the claiss would fail.

The input states that are members of an eguivalence c.iass are
removed from the operacional profile and replaced by their one
representative input state. The probubility associated with the
ropresantative input state 1is assigned the sum of the
probabilities of the members of the eguivalence class.

Since the probability of nelection of the representative of an
equivalence class is a sum, it can be relatively large compared
to individual input states, and consequently the representative
will 1likely be sele~ted more than once during testing. The

99

second and subsequent tines the representative is selected, the
test dces not have to be re-run, only the results from the
original run recounted.

5.2.2.8 Software Reliabjility Growth Management

The demonstrated reliability is an Aassessment of the current
reliability of the software. It is obtained by recording the
cumulative execution times at which failures have cccurred so far
during system test. The operational profile from which the
random test cases were selected has to have been stationary
during the testing and representative of the program's tield use.
The statistical estimation technique presented previously is
employed to obtain estimates of the Basic Execution Time Model's
f and v, parameters. Then a number of derived quantities [Musa
(1987)] can be obtained to support reliability growth management.
The demonstrated reliability is then given by

R(t) = exp[-A(7,)7] (175)

where 7 is the point in cumulative execution time at which the
assessment is made. The projected reliability for A7, execution
time units from now is

R(z) = exp{~A(t,+A%,) %] (176)

The additional execution time required to reach a failure rate
objective A, can be computed from

Alt,)

At,= B In T

(177)

The additional number of expected failures to reach the objective
is given by

Ap = B(A(T,) -Ay] (178)

During system test, project managemant should expect that certain
levels of reliability will be attained at certain milestones, to
assure that reliability gcrowth is progressing at a sufficient
rate to meet the ultimate reliability requirement.

100

Since the time-dependent failure rate is

A(t) = :?-exp[-br] (179)
o]

the reliability growth curve can be plotted as a straight line on
semi-log paper as

1ni = 1n-v9- - Bt (180)
[+]

The next section discusses how to relate execution time to
calandar time.

5.2.2.9 cCalendar Tire Modeling

Early software reliability models used calendar time (or did not
specify what type of time was being measured). Musa introduced
the idea of execution time as the failure-inducing stress on a
progranm. Software can only fail when it is executing. This
simple primal idea resulted in increased accuracy in software
reliability modeling [Trachtenberg (1985), Musa and Okumoto
(1984), Hecht (1981)). Concentrating on execution time, though,
left a void. Project management and even software engineers
usually think in terms of calendar time. Project deadlires and
milestones are all expressed in terms of calendar time. Project
personnel are paid for calendar time. To fill this void, Musa
added 2 "calendar time component" to his Basic Execution Time
Model. The calendar time component provides the ratio between
calendar time and execution time. The model takes into account
the constraints involved in applying personnel and computer
resources to the software development project during syster test.

The available quantities of failure identification (testing)
personnel; failure resolution (debugging) personnel, and computer
time are considered to be constant during system test becaure of
the 1long lead times |usually required for training and
prccurement.

At any point in time during system test, one of the three
resources will be 1limiting and will determine the execution
time/calendar time ratio. Typically, system test consists of
three consecutive resource-limited segments: (1) a failure
resolution personnel limited segment, (2) a failure

identification personnel segment, and (3) a computer limited
segment [Musa et al. (1987)].

101

Segment #1 is 1limited by the number of failure resolution
paersonnel, because they cannot keep up with the large number of
failures that occur in a short period of time when A(r) is high.
In segment #2, the failure identification personnel become the
bottleneck as they become fully occupied in testing and analysis
of the results. In segment #3, the interfailure times grow
longer and longer and the bottleneck is the availability of
computer time.

Various quantities in the model have an index subscript r
appended to identify the resource referenced:

r=F: failure identification personnel (people who find the
causative faults behind the software failures)

r=I: failure identification personnel (people who run test
cases and watch for failures)

r=C: computer time

The usage 3 of resource r is a function of cumulative execution
time 7 and the expected number of failures experienced u(r):

Xr = 6,0 + popi(s) (181)

Each resource r has an execution time coefficient €.

6,: average failure identification work expended per unit
execution time (=0)

0,: average failure identification work expended per unit
execution time

Gc: average chargeable computer time expended per hour of
test execution time

Each resource k has a failure coefficient u.:

Me: average failure resolution work required per failure

Byt average failure identification work required per
failure

k.: average chargeable computer time required per failure

Work is typically measured in person-hours and computer time in
hours. Hours would ordinarily be divided into eight hours
segments tc allow conversion to standard shifts and workdays.

The change in resource usage per unit of execution time is given
by differentiating %, with respect to execution time:

102

%";’- =8, + pA(T) (182)

The calendar time/execution time ratio in each resource-limited
segment is given by the maximum rate among the three resources in
that segment:

dt dt,) . 1 (182)
ot 'm‘,’x(&) "X\ B, O T AL
where P, is the amount of resource r available:
P;: number of available failure resolution personnel
P;: number of available failure identification personnel

available computer time (number of prescribed work
periods, e.g., 40-hour weeks)

and p, is the resource utilization factor:

Pyt failure resolution personnel utilization factor
Py =1
,pé: computer utilization factor

The boundaries of the resource~limited segments, in terms of
failure rate values, are given by the following formula. It
provides potential transition points, which must be individually
checked for plausibility.

Plplex'Pxpzen

= . I®S8 (184)
xe Prpxp'.l'Plpl"r

If r, and r, are two points of cumulative execution time with a
rasource~-limited segment limited by resource r, the increment of
calendar time between the two points is given by

- 1 A(tl) - (185’
Atx m {G,In [m + px[A'(ti) A(ti)]}

If the interval (7,,7,] spans more than one segment, the
increment of calendar time should be calculated separately for

103

each subinterval that lies in a different segment and the results
added together.

For growth management, project management can influence the
resource quantities P, P,, and P, to stimulate software growth.
Because of long lead times for training and procurement, the
resource guantities are usually constant during system test,
except perhaps for personnel overtime. Overtime is only
effective for a limiting resource.

104

6. RELIABILITY DEMONSTRATION

In fulfillment of SOW Task 5, techniques for formally
demonstrating the achievement of specified reliability
requirements for software products and combined hardware/
software systems were developed.

6.1 Approach

A rTeliability demonstration test is an experiment conducted to
determine whether an item has achieved a specified level of
reliability. One problem with such a test is that the results
are subject to chance variation. Occasionally the test results
will turn out especially "lucky," allowing a bad item to be
accepted, or especially "unlucky," allowing a good item to be
rejected. By designing tha test using sound statistical
principles, the risks of accepting a bad item or rejecting a good
item can be quantified and contained.

To design reliability demonstration tests, it is necessary to
determine an appropriate time domain reliability model for
software products and combined hardware/software systems. In
particular, the applicability of <the exponential (constant
failure rate) model was investigated (SOW para. 4.1.5.2).

Three types of MIL-STD~-781-like reliability demonstration tests
were developed: fixed-length test, minimum failure-free execution
period test, and sequential test. Since software reliability
demonstration tests sometimes have to be performed concurrently
with growth testing, how to adapt those same tests for pericds
dt:ring which <the software is subject to repair activity is
discussed.

Statistical random testing procedures for use during software
raeliability demonstration testing are the same as those described
in the section of this report on Reliability Growth Testing
(Section 4). The test cases must be selected randomly in
accordance with a stationary operational profile that represents
anticipated field usage. (SOW para. 4.1.5.3) An operational
profile is the probability distribution of the various possible
input states. When a combined hardware/software system is
tested, the environmental specification is generally derived from
the specified mission profile. The operating conditions will
normally include thermal stress, electrical stress, vibration,
and humidity. MIL-HDBK-781 addresses test sample size and burn-
in requirements for hardware.

105

6.2 Results
6.2.1 Test Procedures

The test environment must be stipulated or agreed on. The
environment for software includes the hardware platform, the
operating system, system generation parameter settings, and the
operational profile. The operational profile associates aach
point in the input space with a probability of occurrence. The
system workload must also be specified. The important thing
about the environment is that it must be representative of the
conditions the software will experience in field use, if the test
is to have any validity.

Let the true failure rate of the software be denoted A. A
demonstration test plan has two failure rate parameters:

The "upper test failure rate" A, is typically the failure rate
the customer "wants" or requirea. If the producer produces a
product that just barely meets the failure rate A,, then the
producer is taking a big risk that chance variation will result
in the demonstration test failing. To reduce that risk the
producer must produce a product with a lower failure rate, A,
called the "lower test failure rate." It should be mentioned
that MIL=-STD-781 uses mean time between failures (MTBF)--the
reciprocal of failure rate--and so the upper and lower points are
reversed. MTBF is a problematical concept in software
reliability because if there is a nonzero probahility, however
slight, of a particular program having zero faults, the program's
MTBF will be infinite [Littlewood (1975)]. Consequently, in
this section, only failure rates are used.

The producer's risk a is the probability of rejecting a software
product or hardware/software systam whose true failure rate is
equal to A,. The consumer's risk B is the probability of
acceptinq sottware whose true failure rate is equal to A,. (SOW
para. 4.1.5.3).

A statistical test that answers a yes/no question is called a
"test of hypothesis." Specifically, a reliability demonstration
test tests the simvle null hypothesis

Hy: A = A, (186)
(accept the itenm) against the alternative hypothesis

Hyt A=A, (187)

(reject the item). In terms of these hypotheses,

106

« = Pr{H, accepted|H, true} (188)

and

p = Pr{H, accepted|H, true} (189)

To develop demonstration tests, it is necessary to choose
appropriate time domain reliability models for software products
and combined hardware/software systenms.

During a software reliability demonstration test, the code ia
frozen, that is, it is not modified to remove faults or for any
other reason. The reason is that any modification can introduce
new faults. Frozen code, subjected to a stationary operational
profile, can reasonably be modeled as having a constant failure
rate. (See Appendix B). Multiple discrepancies appearing at the
same time need to be counted as a single failure, becauss the
random variable of interest is time to first failure.

For a combined hardware/softwvare system, the model is also a
constant failure rate, based on the following reasoning. MIL-
STD-781 applies to demonstrating the reliability of sinple series
systems as well as '"complex maintained electronic equipment®
[(O'Connor (1985)], so the hardware during its "useful life"
period is already modeled by a constant failure rate. According
to Appendix B, software whose code is frozen, being subjected to
a stationary oparational profile, can reasonably be modeled as
having a constant failure rate. According to the section in this
report on Reliability Combination, if the software executes
concurrently and in series with the hardware, then the combined
hardware/software system can be modeled by a constant failure
rate that is the sum of the hardware failure rate and the
software failure rate. Therefore, the demonstration test plans
developed in this section apply to both software products and
most combined hardware/software systems (SOW para. 4.1.5.2).

Under the constant failure rate model, the number of failures
during a time interval [0,r] obeys Poisson's law, which states

that the probability of exactly i failures occurring in a tinme
interval of length 7 is

P, = expl-At] LAl (190)

107

The probability of n or fewer failures occurring during that same
period is given by the Poisson cumulative distribution function
(cag)

n
F(nih,t) = ; (“)’e;t!g[-hl (191)
=0

6.2.2 [Eixed-Length Test

A fixed length software reliability demonstration test plan
(Singpurwalla (1985a)] provides a predetermined test duration and
an acceptable number of failures the software is allowed ¢to
accunulate during that test time. The test is terminated with a
decision to accept or reject. The statistical basis of the
fixed-length test derives from Epstein and Sobel (1953).
Suppose that the acceptance criterion is x or fewer failures in
time r. If the true failure rate is A, then F(aji,,7) is the
fraction of time that x or fewer failures will occur. However,
in [1-F(x1Ay,7)] fraction of the time, greater than x failures
will occur. When greater than x failures occur during the test,
the test will reject the software even though the true failure
rate is A, To limit the probability of rejecting good software,
therefore, x and 7 must be chosen such that

1-F(x;Ayt) s @ (192)

Likewise, if the true failure rate is Ai,, then F(x,i,,r) is the
fraction of time that the software will be accepted, even though
the true failure rate is A4,. To limit the probability of
accepting bad software, x and 7 must be chosen such that

F(x;A,,%) s B (193)

Thus, x and r must simultaneously satisfy both Equations 7 and
Equation 8.

A test plan provides x and 7 values as a function of failure
rates A, and A,, and risk levels a and B. Since time units are
arbitrary, a test plan can be made more general by replacing A,
and A, by their ratio d=i,/A,, called the discrimination ratio.
Then, for example, the same test plan will be valid for the
combination A,=0.000006 and A,=0.000002, and the combination
Ay=0.0045 and A,=0.0015. For this scheme to work, the time unit
is chosen so that A=1. Hence, A;=d. As a typical example, if
the original time unit was seconds, then the new time unit will

108

be l;’ seconds. The test time r is multiplied by A;’ to convert
to seconds.

A test plan provides an accept number x. If x or fewer failures
are observed during the test period, the software is accepted.
The reject number is rax+l. If r or more failures are observed,
the software is rejected. To design the test, the smallest x and
r values need to be found such that simultaneously

x
T
exp[-r]; 4731« (194)

(because A,~1) and

exp[-rd]f\: “d) <P (195)

(because A,=d).

For determining the reject number r, one can exploit the
relationship between the Poisson and chi-square distributions.
The cumulative distribution function of the chi-gquare
distribution is

P(x3[v) '[2"31‘(-})].1?(t)*'lexp[--g-]dt, (057 <) (196)
[}

where for an integer argument n, I'(n+l)=n!. The parameter v is
the number of degrees of freedom (i.e., the number of free
variables entering into the statistic). The values of the chi-
square Cdf are tabulated in many statistics textbooks.

109

On a programmable calculator or computer a series expansion
[(Abramowitz and Stegun (1970)] can be utilized:

P(x3|v) = (_;-_xz)'/’ e_:_c_gp([;xé/)ﬂ

2 (197)

- z_ﬂl
[1+,§ (v+2) (v+4) « (v+2r)]

':ll.‘ho relationship between the Poisson and chi-square distributions
] .

c-1

1=-P(x3|v) -;exp[-m]-’;'—j ' c-—‘z'-,m-x’/z.veven (198)
L]

8o to deternine r one finds the smallest integer r such that

2
d » Xa.p (199)

xgx. 1-a

where x’m is that %, value which solves the equation

z = P(x3|y) (200)
Then x=r-1 is inserted into the equation

expl-t]Y L1 1. 201
'p !01] ; -;T - 1 -0 ()
=0

Equation 16 is then solved for r. Call this solution r,. Then x
is inserted into

- =~ (td)?
exp [rd]g——i—!— (202)

which is also solved for 7. Call this solution 7,. Because of
the discrete nature of the distribution, r, and r, can be
expected to differ slightly. Taking r to be the average
T=(7,+7,)/2 is a reasonable compromise. The a and g risk levels
will® change slightly. 1Inserting x and 7 back into Equation 16
and 17 and solving for a and B will provide the actual risk
levels. The original a« and f used to construct the taeast are
called the ncminal risk levels.

The probability of the fixed-length test accepting the software
is given by

P, (A) = expl- M]; “"’1 (203)

This yields a family of operating characteristic (0OC) curves.
The OC is a plot of the probability of acceptance versus the
failure rate: The steeper the slope of the 0C curve, the greater
the efficiency of the test in discriminating between items of
differing reliability.

6.2.3 Minimum Failure-rree Execution Period Tegt (SOW para,
4.1.5,3)

A special case of the fixed-length test is the one in which the
acceptable number of fallures x=0. The probability of zero
failures in a test of duration r is

¥y (Ao (204)
P,.o = expl-Act = @xXp [-AT] 204
0-0 P E 1] Xp L]
Solving

exp[-A,t] 21 -« (208)
and

exp[-A,t] < P (206)

gives

111

Agt = -1n(1-a); A,t = -1nfP (207)

In terms of the decision risks, the discrimination ratio is
M oMt In '
T Totier " % (208)

This discrimination ratio can be quite large. For instance, in
the ocase a=0,15, p5=0.15, the producer is saddled with a
discrimination ratio of 11.67. This discrimination ratio is
high; it is usual to design to a discrimination ratio on the
order of 1.5 to 3. A less stringent typa of failure-free tast
will now be described, in which the required discrimination
ratios are lower.

In a ninimum failure-free period life test [Angus et al. (1985)],
the item is given a time limit of T time units to achieve a
failure free interval of t time units. The null hypothesis is
Hyt A=y, and the alternative hypothesis is H,: A=A,. Note that
tgxo null and alternative hypotheses are reversed from those of
the fixed-length test. A test plan can be designed for any
discrimination ratio d<d_. Let the function F, be the
cumulative distribution function of the waiting time to
completion of the failure-free period. Renewal theory [Feller
(1966)] provides

- - (A w) 8-3
By (wid,t) = | SR T I@ . we0 (209)
0, wlt
where
n -
g(n) = 2; (-1)*(‘;) (1-}:73)" ! (210)
and

112

u® =1, u>0; ul=0, uso0; u? = [max(u,0))® (211)

The function g(n) represents the probability that (n-l1l) points,
chosen randomly in the interval (0,w), partition the interval
into parts all of which are nf length less than or equal to t.

Test plans can be constructed by fixing the ratio t/T and
iteratively finding A,t and A,t so that

1-a=F,(Tik, t): (212)

and

B wrF,(Tik,t) (213)

6.2.4 Saquential Test

In a fixed-length test, a failed test can be stopped just as soon
as the rejact number r is reached. In a failure-free execution
period test, a successful test can be stopped once the failure-
free interval is achieved.

A sequential test can be stopped early when the test reveals its
true character ([Wald (1947), Epstein (1954), Singpurwalla
(1985b) 3. The item is operated and the cumulative number of
faillures and time on test are continuously monitored.

Let the null hypothesis be

Hyth = A, (214)

and let the alternative hypothesis be

H:h = A (218)

Let

As LB (216)

and

B w _1'95 (217)

Let Po be the probakility of a software failures in time 7 if
A=, %and Py ba the probubility of a faiiures in time 7 if A=A,
Than the :oquential probability ratio is

b, expl-A] (Alr)-"/ exp[~A 1] (A,0)* (218)
Po X! x!
» d*exp (Ag ~ Ay) 1) {219)

where x is the total number of failures observed by time .
Testing continues as long as the inaquality

B¢ 2 ¢a (220)
Po

holds. Then, when p,/p, S B for the first time, testing stoups
and H, is accepted. When P,/Py 2 A occurs for the first time,
testing stops and H, is rnjocL d.

Graphically, the ‘'"continue test" region is bounded by two
straight lines with common slope s and intercepts -h, and h,.

The x~axis is the cumulative number of failures k, and the y-axis
is the time on test 7.

Solving for r gives

~h, + ks < © < h, +ks (221)
where
Ind
g = 222
j::x: ()

114

-A_‘:To (223)

and

(224)

The acceptancs tiuc line is 7 = hy + ks. The moment the plot of
failures k versus time 7 crosses thic line, the scftware can be
accepted. The rejection time line is ~h, + ks. The moment the
plot of failures k versus time r crosses that line, the software
can be rejected. As long as the staircase plot of failures k
versus time r stays between the two lines, the test continues.

In terms of x, the rule is

T(Ag - M)-1nA T(A-d,)-1nB

2
“Ind < “ind (223)

Because a sequential test can theoretically go on indefinitely,
it is desirable to stop ("truncate") the test at some point to
provide a reasonable maximum test time. Truncation will tend to
increase tha decision risks a and B, but research ([Epstein
(1954)] has shown that the risks are not increased significantly
if the test is truncated at

I, = 3r (226)

where r, danotes truncation number of failures and r is the
reject number for the corresponding fixed-length test. Recall
that r is the smallest integer such that

73
d» 238 (227)
F
Xar,1-a

The truncation operating time 7, is then

Ta=8 I, (228)

where, as before, s is the common slops of the decision lines

- ind
8 T—-r (229)

1 70

The IJemonstration ¢test can be terminated and the software
accepted if k<r, and

T 2 min(hy,+ks, t,) (230)

The test can be terminated just as soon as

TS ~h + ks (231)

or k-ro and

T < T, {232)

6.2.5 Demonstration Testing during Growth Testing

Consider the counting process (N(7),r 2 0}, where N(r) is the
number of software failures that occur by cumulative execution
time 7. In Musa et al.'s (1987) software reliability growth
models (the Basic Execution Time Model and the Logarithmic
Poisson Model), software failures are generated according to a
nonhomogeneovs Poisson process (NHPP),. The probability of k
failures occurring by time r is

Py(t) = Pr{N(c)=k} = exp[-p(%)] '.E_.%:!_)lf, k20 (233)

116

vhere

4
B(%) = E{N(z)} = fA(x)dx (234)
[+]

is the "mean value function" and A(r) is the time-dependent
failure rate. In particular, the Basic Execution Time Model is
characterized by the mean value function

B(t) = vo(l-exp[-pt]) (238)
and failure rate
Ale) = SEL) < gy exp(-Br) (236)

where § and v, are the parameters of tho model.

The techniques for reliability demonstration described in this
saction are based on the assumption of a constant failure rate,
which implies a homogeneous Poisson process (HPP). When software
is subject to repair, one expects that the softwara will exhibit
a decreasing failure rate. Barlow and Proschan (1967) showed
that, in a constant failure rate fixed-length test, a decreasing
failure rate favors the consumer. Fortunately, a transformation
of the time scale reduces an NHPP to an HPP, as shown below.
Then, the methods for fixed-length, failure-free execution
period, and sequential test design can be used without change.

Let the new time variable be denocted u, and define it by

usp(s) (237)

That is, transform time 7 into the mean value function evaluated
at time r.

Consider the stochastic process

{M(u), u20} (238)

117

where
M(u) = N(p-2(u)), u20 (239)

The mean value function is

E{M(u)} = E{N(p-*(u))} = p(p-2*(u)) = u (240)

and the failure rate is

- R
Au) = <2 =12 (241)

Since the rate parametor' is a constant, M is an HPP. Thus

Py (u) = Pr{M(u)=k} = exp[-u] -%; (242)

To transform a time on tha u scale back to the original r scale,
the inverse relationship

t = poi(u) (243)

is employed. For the Basic Execution Time Model,

. in|1-+
244
p'l(u) = _L:.Elo-l’ B'vo>o ()

The exponential/HPP model of frozen code is completely specified
by the failure rate parameter A. The NEPP nodel of code under
repair requires two parameters, A and v,. (It is also possible
to parameterize the model in terms of other quantitiaes such as
A, w,, but two parameters will always be needed.)

In summary, the values of g and v are obtained through the
parameter estimation techniques described in the section of this
report on Reliability Growth Testing. Ncxt an appropriate fixed-
length, failure-free execution interval, or sequential test is
selected. Then each failure time experienced r, is transformed
into u=u(r;) in determining the results of the test.

118

6.2.6 Multiple Copies

Demonstration testing of highly reliable software can be time-
consuming (the fixed-length test time for given set of a, A, and
d parameters is proportional to A, Y. Another time-consuming
situation is when A, and A, are close together. One solution is
to test multiple copies of the software simultaneously. Each
copy nhust be identfzal and must be subjected to test cases
randomly selected from the same operational profile. The test
cases for each copy must be selected independently. The total
time on test V(t) is the sum of the individual times on test of
each copy. When a copy fails, it is restarted (that is, this is
a test with replacement). Wherever time on test r appears in the
formulas for fixed-length, minimum failure-free execution periodq,
and sequential tests, it can be replaced with V(t), where

N
vit) = ;xi(c) (245)
=]

is the total time on test up to (wall clock) time t, N is the
number of copies, and x,(t) is the time on test of copy i up to
(wall clock) time t.

119

7. YALIDATION

In fulfillment of SOW Task 6, the models and techniques for
software reliability prediction, growth, and demonstration were
validated on actual projects.

7.1 Appreoach

The techniques are based on several models for software not
subject to repair, a model for software subject to repair, and a
set of models for software reliability prediction. When software
is not subject to repair, the study employs a constant failure
rate model (discussed in Appendix B). When software is subject
to repair, the study employs a nonhomogeneous Poisson process,
the Basic Execution Time Model. For software reliability
prediction, the study uses models that were developed based on
rogro:aion analysis of measurable product/process characteristics
(metrics).

The techniques based on these models were used on ongoing
projects to assess workability and accuracy. The feedback from
the projects' personnel was exploited to refine the techniques
and the presentation of the techniques in the draft military
handbocok. Since the models and techniques were validated in one
organization, it is recommended that the validation be ropcatod
in a wide variety of organizations.

7.2 Resulis

The first medel, which will be designated Model A, is developed
axiomatically in Appendix B and assumes a constant failure rate
for frozen code subjected to a stationary operationally profile.
This model forms that basis for software and hardware/softwarc
relibility demonstration tasts.

The second model, which will be designated Model B, is the Basic
Execution Time Model for software going through system test.

7.2.1 Model A (Frozen Code)

The study team first testad the validity of the assumption that
the underlying time-to-failure distribution is exponential. The
assumption of an exponential distribution of failure times 1is
equivalent to an assumption of constant fallure rate or the
assumption that failures are generated by a Poisson process. The
cumulative distribution function (Cdf) of the exponential

. diutribution is given by

F(‘)‘O' £t <0
= l-exp[-At], T20 (246)

Suppose that the interfailure times are

120

. Ths w0 Th (247)

A graphical procedure [Epstein (1960)] for testing the validity
of the exponential asumption is to put the interfailure times
into ascending order

Ta) $ %3 S 2 Ty (248)
Form the empirical cdt
Flry) = === (249)
and plot the points
(fg,10[2/(1=F(e4))])), i=1,2,.,n (250)

If the exponential agsumption holds, then the plotted points will
form a straight line passing through the origin. The slope of
the line will be the failure rate A. The graphical procedure was
found to be a "quick and dirty" method that could be useful as a
check after a reliability demonstration test but was too inexact
and subjective for final validation of the exponential
assumption. A numerical procedure that would allow a formal test
of hypothesis was sought. -

The most well-known test for goodness of fit is the chi~-square
test. To use this test the time axis is divided into a number of
intervals. Each of the k intervals forms a "class." Denote the
class boundaries by

The failure rate parameter is estimated by the reciprocal of the
sample mean:

-0 (252)
T
w]

121

One computes the statistic

x 2
(o4~e))
2 . 1S4 (253)
* 2; €y

where o, is the number of observed interfailure times that fall
into class and e, is the expected (theoretical) number of
interfailure times timt would fall into class i. The expected
number of interfailure times falling into class i is

1 L n[F(:1) -F(ci-l)] (25‘)

The statistic %2 is distributed as chi-square with (k-1) degrees
of freedon. 'I'hc test is very sensitive to the number, size, and
position of the chosen intervals. The sensitivity problem would
only go away with larger sample sizes (number of observed
interfailure times) than weres available.

A number of studies ([see Moran (1951), Bartholomew (1957)] have
shown that an increasingly popular method called Bartlett's test
is the most powerful available #est for discriminating among
increasing, constant, and decreasing failure rates. The test

i

1+(n+1)/6n

(2585)

B, =

L]

Under the null hypothesis of exponentially ' distributed
interfailure times, the statistic B, is chi-square distributed
with (n-1) degrees of freedom. A two-tailed test is used. Let
the lavel of significance be denoted a. The critical values for
the two-tailed test are

xi-n/z,n-:. and xf-/z.n-z (256)
If the statistic falls between thcse two values, the test does
not contradict tha null hypothesis that the exponential model

applies to the failure data. Table 7-1 provides some percentage
points of the chi-square distribution [AMCP (1968)].

122

Table 7-1. Percentage Points of the Chi-Square
Distribution for a=.01 Two-Tailed Test

Degrees of Freedom '

|F_ 2 .0100 10.597 4J
3 . 0717 12.838
IF 4 207 14.860
5 412 16.750
| - 3 .676 18.548
U .989 20.278
8 1.344 21.955
9 1.735 23.589
10 2.156 25.188
11 2.603 26,757
12 3.074 28.300
13 3.565 29.819
14 4.07% 31.319
15 4.601 32.801
16 5.142 34.267
17 ' 5.679 35.718

Table 7-1 (con't).

Percentage Points of the Chi-Square
Distribution for a=.01 Two-Tailed Test

Degrees of Fresdom 008

18 6.255 37.156
19 6.844 38.582
20 7.434 39.997
|[: 22 8.034 41.401
L 22 8.643 42.796
| 23 9,260 44,181
24 9,886 45.558
25 10.520 46.928
26 11.160 48.290
27 11.808 49.645
28 12.461 50.993
29 13.121 52.336
30 13.787 53,672
35 17.156 60.304
40 20.674 66.792

It is important that the data be from one series of runs and not
"pooled," because this could cause misleading results [Kapur and
Lamberson (1977) . Cox and Smith (1954)].

Fallure data saet A-1 consists of the following collection of 14
interfailure times (in CPU minutes): 136, 304, 231, 13, 136,
145, 13, 306, 231, 47, 462, 326, 33, and 142. The computed value
of Bartlatt's statistic is 17.526, Since at 13 degrees of
freedom, lies between x? ,=3.565 and x°,,=29.819, the null
hypothesis that the interfailure times are exponentially
digtributed is acceptad.

Failure Data Set A-2 conasists of the following collection of 17
interfailure times (in CPU minutes): 9, 110, 9, 32, 3, 19, 18,
12, 65, 58, 9, 16, 20, 42, 2, 15, and 86. The computed value of
Bartlett's statistic is 14.519., Since at 15 degrees of freadon,
14,159 lies between x?,.=5.142 and x?,,=34.267, the null
hypothesis that the ig%erfailure times = are exponentially
distributed is accaepted.

124

Failure Data Set A-3 consists of the following collection of 17
interfailure times (in CPU minutes): 22, 10, 3, 130, 69, 26, 15,
34, 55, 31, 139, 181, 41, 259, 43, 201, and 2681. The computed
value of Bartlett's statistic is 15.532. Since at 17 dagrees of
freedom, 15.532 lies between x2%=5,697 and %2°-0%=35.718, the
null hypothesis that the interfailure times are sxponentially
distributed is accepted.

Failure Data Set A-4 consists of the following collection of 9
interfailure times (in CPU minutes): 1, 63, 107, 23, 71, &2, 212,
39, and 246. The computed value of Bartlett's statistic is
9,763, Since at 8 degrees of freedom, 95.763 lies between
% gos=1.344 and x? ,,=34.267, the null hypothesis that interfailure
times are cxponengfally distributed is accepted.

7.2.2 Model B (System Test)

The Basic Execution Time Model [Musa et al. (1987)] is based on
the nonhomogeneous Poisson process (NHPP). An NHPP is completely
characterized by its intensity function (failure rate) A(r) or -
its mean value function u(r). The intensity function of the
Basic Execution Time Model is not a new innovation; Parzen (1962)
described the intensity function form

A(z) =~ aexpl-bt] (257)

where a and b are empiric~l'ly determined positive constants, as
"frequently chosen" for events that hava a decreasing intensity
of occurrence. In the case of the Basic Execution Time Model,
the constant a is interpreted the initial failure rate 4,, and b
is interpreted as A, the decrement of failure rate per mean
failure experianced.

As discussed in the chapter on Demonstration Testing, an NHPP can
be turned into a homogeneous Pocisson process via a transformation
of the time scale. Each observed failure time epoch 7, 1is
transformed to

U = p(ty) (288)

Now that a hecmogeneous Poisson process is obtained, Bartlett's
test can be performed as above.

To determine the mean value function u(r), it is necessary to
obtain estimates for the Basic Execution Time Model parameters §
and v,. Then is the transformed failure time epoch is

Uy = ulty) =vy(l-expl-Pr;]), 1=1,2,.,k (259)

The interfailures times are calculated as

125

with

U;' Uy = Ujg

UJ{'U1

For failure data set B-l (Tablc 7=2),

between the critical values x?

=5,142 and x°

B=1, the null hypothesis is accepted.

(Table 7-3),

%22 osm1.344 and yx?

accepted.

which lies
=28.300.

fa!qfuro data set B-4

batween the critical values x? .,

B=3.9958,
#23%1

between

=21.955.

"20

1-2’3'-00'

For fa

values

B, =16. 073745,

B, 19 056111,
=34.267.

i ure data

B=4, the null hypothesis is accapted.

Data Set B-1

Time (CPU min) Interfailure

126

1 Q. 359

2 24 0.773 0.414
3 21 0.992 0.219
4 48 1.513 0.521
5 50 1.573 0.060
6 89 2.708 l1.132
7 98 2.954 0.249
8 128 3.758 0.804
9 136 3.965 0.207
10 156 4.469 0.504
11 178 $.003 0.534
12 249 6.586 1.583
13 574 11.702 5.116
14 587 11.850 0.148
15 1023 15.230 3.380
16 1391 16.587 1.3850
17 2240 17.701 1.114
18 2449 17.796 0.095

which lies

set B-2
which lies between the critical values
So for B=2, the null hypothesis is
ure data set B-~3 (Table ‘7--‘.)5 B=14.828652,
critical

80 for B-3, the null hypothesis is accepted,
(Table 7~5),

90s™3.074
which lies

B-2 Failure #

T&e 7=3.

Time (C?U»min)

Data Set B-2

Time (u) Interfailure

35 2.878
l 2 37 3.018 0.140
3 55 4.171 1.153
4 58 4,346 0.175
5 71 5.005 0.659 |
6 85 5.735 0.730 |
7 93 6.087 0.352
8 127 7.341 1.254
9 135 7.586 0.245
10 170 8.480 0.894

Table 7-4. Data Set B=3

Tine (CPU min)

127

-1 0.355

2 19 1,608 1.253
3 25 2.077 0.469
4 -1 4.167 2.090
5 57 4.292 0.125
6 63 4.659 0.367
7 93 6.296 1.637
8 130 7.926 1.630
9 135 8.118 0.192
10 138 8.230 0.112
11 139 8.268 0.038
%12 166 9.180 0.912
13 441 13.176 3.996
14 576 13.654 0.478

L, -

Table 7-5.

Data Set B-4

‘ E _Interfailure
1l 1l 0.550

2 18 0.892 0.342
3 50 2.381 1.489
4 71 3.295 0.914
5 80 3.672 0.377
6 107 4.752 1,080
7 144 6,117 1.365
8 1583 6.430 0,313
9 205 8.107 1,677
10 342 11.597 3.490
11 350 11.766 0.169
12 351 11.786 0.020
13 358 11.931 0.145
14 364 12.052 0.121
15 494 14.284 2.232
16 558 15.140 0.856
17 620 15.847 0.707

Next, growth techniques were applied to ongoing developuent
projects. Demonstration testing techniques served to validate
the results of the growth testing. The team chuse 4 "short run
high risk test plan" because the test duration is short and so
could be rereated many times. Tha Growth Data Sets are shown in
Table 7=6. The failure rate A(ry,) is assigned to the lower test
failure rate A,. The decis.on rinks are 30%. The demonstration
test test has a discrimination ration of 3, 80 A, is sat to A, x
3. The test duration is 1.1 x I, The test rejects i€ 1L or
more failures occur. The test accepts only if 0 failures occur.

128

Table 7-6.
=

Growth Data Sets

Failure Number c-1
[1 7 11
| 2 18 18
3 21 109
4 22 128
5 52 133
~ 6 66 172
v 96 192
8 107 209
9 129 — 290
10 135 325
11 158 660
12 166 761
13 173 935
14 203 - 1.060 .
15 303 1444 165 — 303 |
16 321 1404 169 321
17 407 115 21 407 |
18__ 416 1615 253 | 416 |
19 438 1632 308 | 438 |
B 20 446 1730 | 312 446
21 456 1746 418 456 ||
“ 22 462 1813 433 462 |
25 400 1845 419 480 |
“_"_—24 525 1892 | 468 525 |l
25 562 | 1992 492 562
26 8578 | 2293 492 | 578 |l
2T S LS U T A
28 635 3430 604 ~ 635
29 ~701 3452 648 | 701 |
30 993 3520 ~ 727 993 |
129

For Data Set C=-4, the growth model provided a failure rate
estimation, at the 30th failure, of 0.,0011365. The test duration
ie computed to be 28.24. The demonstration test was repeated 13
times. The software passed 9 %ests and failed 4 tests. Tf the
true failure rate is that given by the growth model and set to
A,y then the demonstration test should falsely reject the
software 30% of the time. Since this in fact happened
3

<5 " 0.3076923 (262)

fraction of the time, the agreement with this data sat is gquite
close. On the other data sets, the raw growth model provided an
overly optimistic failurs rate, with the result that the software
could not pass the demonstration test. When the model wvas
racalibrated (as described in Section 5), the optimism was
corrected. The recalibration technique, however, does not alter
the failure rate, only the probabil*tias of failure. A future
topic of research would be to set A, hasad on the results of a
recalibrated model.

7.2.3 Yalidatjon of Software failure Rate Reqrassion Models

In response to SOW paragraph 4.1.6.4, the software reliability
prediction techniques were applied *+o actual projects. The
results wers tne compared to the actual raliability measurad
during growth testing.

7.2.3.1 Approach

In Appandix E, severa2l regresssion models that describe the
relationship betwesn software failure rate (YY) and software
characteristics (X,,...,X,) are described. 1In this section, only
the iinear rsgression moéels that avre developed for each phase
(including the model that was chosen for the previovs phase) of
the software development are compared to one another, since it
was discovered that the nonlinear regression models possess the
same stat'stical characterlstics as those of the linear models.
Finally, only one regrassion model is clivsen to predict the
software failure rate ufter each phase of the software
developmernt.,

As a selection criteria for +*ha prediction model for each phase,
the following ground rules were applied:

1. The model with the best correlation to the observed software
failure rate was chosen whenever there were any significant
differences in correlation bLetween the two models.

130

2. When two models produced essentially identical correlation
between the predicted software failure rate and the failure
rate observed on the projects, the model which accounted for
the largest number of metrics (most recent information) was
selected.

The need to select the model which provided a software failure
rate with the best statistical correclation to the observed
failure rate is obvious. The study team's preference for a
prediction model which used the largest numbar of metrics is
based on two areas of concern with respect to the data collectad
during the study period. The data collected to support
development and validation of the predicticn imodels was all
collected after all system integracion testing on the program was
complete. In most cases, the software was in use at the customers
facility. As a result, the metric data collected on the projects
was essentially complete. Thus, the data available to the study
team was mnuch more accurate and completa tnan the data which
would normally be available at the end of a given program phase
(eg requirements analysis). This may have resulted in much better
accuracy for the early program pvhase models than would normally
be expected. Also, the metric data c<ollected during the project
was limited to one company (Hughes [.i.craft) and thus potentially
valuable variations in values of the metric data which would
occur between companies was cmmitted, possibly yielding bhetter
stability and accuracy for the aarly pred;ction models than would
ordinarily result.

Two more observations, besides the nine observations that were
used to derive <the regression models in Appendix E, were
available to validate thesa mudels. These two observations are
identified as obs.10 and obs.1l.

The following statistics will be used for comparison:

- Relative error of thie predicted failure rate of each
o?servation (obs.10 or obs.l1ll) in the regression model
R
Residuals »lots
Prob > F
Prok > |T|
Standard errors of the parameter estimates

The length of the 9%% confidence limits for a mean
pradicted values for each observation (ocbs.l10 or obs.ll), with
the lower limit being 0, if its calculated value is negative.

131

The linear regression models which are derived in Appendix E are
of the form

Y =8, +8x +e (263)

where

"Y: software failure rate
pqz the y-intercept
B': an 1 x m vector of real numbers
X: an 1 x n vector of indepundent variables
¢: error variable of the regression model
ms 24

these zegression models are fomulated based on the following
assumptions:

1) E(e) = 0 (i.e., the expected value of ¢ is 0)
ii) The variance ¢f ¢ is the same for all value of x
iii) The values of ¢ ara independent’

iv) ¢ is a normally distributed random variable.

The validity of these assumptions in each regression model is
determined based on its residuals plot.

7.2.3.2 Regults

The regression models which were developed for each phase of the
software developmant (Appendix E), were compared to one another.
Then, the chosen modsl was conparaed to the model that had been
selected for the previous phase. Che reagression model was
selacted for each software development phase to describe the
relationship between software failure rate and software
characteristics.

(1) Requirements Analysis FPhase

Three regression models were formulated for <the regquirements
analysis phase by using the least squares method, stepwisce
regression and principal components analysis.

Only five softwars charactaristics can be identified after the
Requirements Analysis ohase. Therefore, only five indepandent
variablas are involved in these regression models.

A conplete output of these models is provided at the end of
Appendix E. A summary of these regression models (least squares
model, stepwise model, and principal components model) is given
below.

132

K

- Least squares model (Ml):
Y = 5.13 + 15.72x, - 0.17x, + 0.52%; + 0.39%, - 0.23x,

Y is restricted to be non-negativae.

- Stepwind model (M2):

Y = 11,46 + 12.858x, - 0.08x, (Y is restricted to be non-
negative)

- Bxincipal components regression model (M3):
Y = 18.04 + 0.05 P, (Y is restricted to be non-negative)
P, = 0,009%, + 0.99X, + 0,10%, = 0.0001x, + 0,0005X,

Table 7-7 providos a summary of the values of statistical
characteristics of models M1, M2 and M3.

Although the value of R?’, in model M1, is high (> 0.80, i.s.,
more than 80% of the total variation in the failure rates sampled
is explained by the regression model M1l), the value of Prob > F =
0.18, which is bigger than 0.15 (the predetermined significarcae
level), suggested that the null hypothesis in the hypothesis test
(I), described below, should be accepted. Thus, M1l is not an
adagnate model to dascribe the relationship between Y and the
independent variables x,,...,%.

Hypothesis test (I):

Hy: all coefficients of the independent variables in the
regression model are 0,

H,: there exists at least one coefficient, that is not
equal to 0, of an independent variable.

Other reasons to reject M1 are that the values of the relative
error of the predicted Y in obs.10 are too high, and the length
of the 95% confidence limits of the predicted value for obs.l1l0 is
extrenmely large (% 592).

Table 7-7. Summary of Statistical values of Models M1, M2 and M3

X, 8.32 3.48 0.02
Standard
Error X, 0.14 0.04 n/a
Xy 0.85 n/a n/a
X, 2.54 n/a n/a
Xe 2.44 n/a n/a
y=-intercept 0.72 0.04 0.03
Xy 0.16 0.01 0.06
X, 0.29 0.08 n/a
Prob > |T| Xy 0.58 n/a n/a
X, 0.89 n/a n/a
Xy 0.93 n/a n/a
Obs. 10 234.4 182.9 18.5
Predicted
Obs. 11 2° .97 24.98 21.03
Actual Obs. 10 36 36 36
Obs. 11 15 15 15
sW Abs. Obs. 10 198.4 146.9 17.5
Failure Error
Rate Obs. 11 6.97 9.98 6.03
Rel. Obs. 10 5.51 4.08 0.486
Error
Obs. 11 0.46 0.66 0.402
95% Obs. 10 0-~-592.. | 68=-297 0-62.9
Conft.
Limits Obs. 11 0-72.7 0-52.7 0-65,2

| SRR WSS S R S SRS ——

Model M2 is better than model M1, since it yields smaller values
of relative errors and smaller lengths of the 95% confidence
limits for the predicted values of obs.l10 and obs.l1ll compared to
those of M1, But, because Xx,,...,%X; are highly correlated,
stepwise regression analysis 1s not reliable for producing a
valid regression model. 1In fact, even though, M2 is better than
M1, the predicted failure rates of obs.10 are still too high
compared to the actual value, and the 95% confidence interval of
the predicted value for obs.10 does not contain the actual
failure rate.

Compared to models M1 and M2, model M3 is preferable, even though
the value of R? of M3 is much smaller than that of M1 and M2 (in
model M3, only 41% of the total variation of the failure rate
samples is explained by the regression model). The p=-value of
hypothesis test (I) and the p-value of hypothesis test (II)
(which is defined on page E-=21) of each parameter estimate are
smaller than 0.15 (the predetermined significance level). This
means P, (independent variable) is relevant in prcdicting the
-cftwaro failure rate (the dependent variable) in M3,

Other reasons for choosing M3, instead of M1 and M2, are that the
relative errors of the predicted failure rate in obs.10 and
obs.ll are reduced substantially from those of Ml and M2, and
that these relative errors are similar to each other (i.e., M3
ylelds consistent errors in predicting failure rates for
different softwarae). Furthermore, based on the residuals plot of
M3 (P, versus residuals), on page E-36, it is ocbserved that all
aslumptionu listed above hold (i.e., the residuals are of
constant variance, and independent). Therefore, M3 is a good
model to use for predicting software failure rate based on the
software characteristics that <c¢an be obtained after the
requirements analysis phase.

(2) Pxeliminary Design Phase .

Similar to the requirements analysis phase, there are three
regression models that are davelsped for use to predict the
software failure rate after the preliminary design phasea. Thaese
models were formulated by using stepwise regression and principal
components analysis. Specifically, two of the models are
developed by using principal components analysis. All of these
models can be summarized as below.

- Stepwise model (M4);

Y = 11.92 + 14.12%, - 0.14%, (Y is restricted to be non-
negative)

- Principal components rearession model MS:

Y = 17.90 + 0.04 P, + 0.01 P, (Y is restricted to be non-
negative)

P = 0.007x, + 0.796x, + 0.08%, = 0.0003x, + 0.0003x, +
0.00b09x, +0.0043x, + 0.013%, + 0.6X, + 0.003X,

P, = 0.03x%, + 0.45%, + 0.56x; + 0.11x, + 0.08X, - 0.008x, +
0.07%, + 0.01X) ~ .67+ 0.08x, " ¢ ¢

- Erincipal Components reqression model M6;
Y = 17.90 + 0.04 P, (Y is restricted to be non-rnegative)
P, ¢ sama as above

Table 7-8 rovides the summary of the statistical values
associated with the above models.

Model M6 is derived in order to eliminate P, in M5, since the p-~
value of the hypothesis test (II) for varlable P, is too high
compared to 0.15 (the predetermined significance 1level).
Therefore, only models M4é and Mé and the previously chosen model
(M3) will be compared to one another.

Model M4 is inferior M6 in describing the relationship between
software failure rate (the dapendent variable) and software
characteristics (the independent variables) which <can be
identified after the preliminary design phase. The reason for
this is that, even though the value of R’ is high and the p-
values of hypothesis tests (I) and (II) are low for M4, the
absolute error (hence, the relative error) of the predictaad
software failure rate of obs.10 is quite large: Also, the 95%
confidence limits interval of the predicted failure rate in
obs.10 does not contain the actual value, and the length of the
entire interval is too large. Again, it is not surprising that
the stepwise regression model is not good in predicting software
failure rate in this case, since there is a high correlation
betwaen the independent variables x,,...,X,,.

136

Table 7-8. Summary of Statistical Values of Models M4, M5 and
M6

M4 M5
R® 0.6584 0.4016 0.40
I Prob > F 0.0024 0.21 0.07 "
Standard y=-intercept 3.64 7.13 6.60
Error
x, 3.07 0.02 0.02
X, 0.05 . 0.42 0.03
PTO? > y~intercept 0.02 0.05 0.07
T
X, 0.003 0.09 18.66
x! ‘ 0003 0098 21.58
Predicted | Obs. 10 202.2 18.75 18,66
Obs. 11 22.68 21.39 21.58
Lictual Obs. 10 36 36 36
SW Obs., 11 15 15 15
Failure
Rate Abs. Obs. 10 166.2 17.25 17.34
Error
Obs. 11 7.68 6.39 6.58
Rel. Obs. 10 4.62 0.48 0.48
Error -
Obs. 11 0.51 0.43 0.44
95% Conf. | Obs. 10 101~-303 0-69.58 0-63.3
Limits
Obs. 11 0-46.14 0=74.52 0~65.9
[R e e e R e W

137

Models M3 and M6 were compared to each other. Notice that
although model M6 has similar residuals plot as that of M3, model
Mé has better values for all statistics compared to M3.
Therefore, M6 was chosen to ke the regression model that
describes the relationship between software failure rate and
software characterigtics that are available after the preliminary
dasign phase.

(3) Detailad Design Phase

A summary of the regression models that were developed for the
detailed design phase is provided below:

- Stepwise model (M7):

(Y is restricted to bs non-negative)

- Principal components recaression model (M8):

Y = 36,62 + 0,13 P, = 2.47 P, - 0.64 P, (Y is restricted to be
non-negative)

P = 0.007%, + 0.80x, + 0.08%, - 0.0003x, + 0.0003%, +
0.00b1x, + 0.004%, + 0.01%, + 6.6, + 0.003%,) + 0.11%,, + 0.002x, +
0.004%,5 = 0,003%,,’

P, = 0.01x, + 0.40x, + 0,49%, + 0.13%, + 0.08x%, + 0.02%x, + 0.08x,

0.49x,,

Table 7-9 provides a summary of the statistical values associated
with these models (M7 and M8).

Similar to reasons given above for rejection of stepwise
regression model M4, stepwise model M7 should also be discarded.
Even though the valuas of all statistics of this model are
reasonably good, whan it is used to predict the software failure
rates of obs..0, the ahsolute error (hence, the relative error)
of the predicted value is too high. Also, basaed on the relative

138

Table 7-9. Summary of Statistical Values of Models M7 and M8
Model
M7 M8
) 0.9972 0.7988
Prob > F 0.0305 0.0342
y-intercept 3.06 7.49
X, 0.83 0.03
Srandard X, 0.11 0.79
Xy 0.53 0.33
X, 0.02 n/u
Xy 0.11 n/a
y=-intercept 0.003 0.,0045
B X, 0.0003 0.0089
X, 0.11 0.256
it Xy 0.02 0.1073
X, 0.02 n/a
X 0.002 n/a
Predicted Obs. 10 212.8 21.54
SW - Obs. 11 15.19 26.90
F;i%:ra Actual Obs. 10 36 36
Obs. 11 15 15
Abs. Obs. 10 176.8 14.236
trror Obs. 11 0.19 11.90
Rel. Ohs. 10 4.91 0.40
prror Obs. 11 0.01 0.79
95% Cont. Obs. 10 178-247 0-55.4
Limits
Obs. 11 5.95=24.4 0~-62.1

139

errors of the predicted values of obs.10 and obs.ll, it can be
stated that M4 is not consistent in predicting the software
failure rate. In one case (obs.ll), it vields very good
prediction and 95% confidence 1limits, but in the other case
(obs.10), M4 predicts the value of the software failure rate
poorly (the predicted value is 491% of the actual value!).

Next, model M8 is compared to model M6, which was chosen as the
regression model aftsr the preliminary design phasa.

M8 seams to yield good predicted value for the ncttwarn failure
rate in the case of obs.10, and the value of R? of M8 is high.
Also, thae value of Prod > F is much smaller than that of M6, But,
M8 is inconpistent in predicting the dependent variable (Y). For
instance, the relative error of obs.l0 is only 0.4, but the
relative error of cbs.ll is 0.79. Also, even though the actual
failure rute in obs.l10 is twice as much as that of obs.ll, the
upper bound of the 95% confidence limita of obs.l0 is smaller
than tha upper bound for obs.l1li. Another disturbing factor of
model M8 is that the p-value of the hypothaesis test (1I) of P, is
much higher than 0.15 (the predetermined significance luval) .
This suggested that P, is not relevant in predicting software
failure rate using M8S.

Therefore, once again, M6 is chosen to bs the regression model
that can be used to pradict the software failure rate based on
tgo software characteristics available after the detailed design
phasae.

(4) Code.and Unit Test Phase

It can be safely stated that stepwise regression models should
not be considered in comparsion with principal components models,
since there is substantial evidence that stepwise analysis doces
not work well with correlated independent variables, whaereas
principal components analysis does. Thus, in this section, only
regression models that are developed using principal components
analysis are examined. .

Two principal-components regression models were formed. These
modals can be summarized below.

~ Regression model (M9);

Y = 38,03 - 2.59 P, (Y is restricted to be non-negative)

0.00002%, - 0.00003x, = 0.000017%, = 0.00002¥%, = 0.0006%,
0.0001%;, = 0.,0001X,) = 0.00%, + 0.000004X; = 0.00001x,

- Regression Model (M10):

Y = 17.88 + 0.04 P, (Y is restricted to be norn-negative)

P = 0.007%, + 0.80x, + 0.08X, + 0.01%, + 0.6X, + 0.008Xy
+ 0.b03x, |

Table 7-10 provides the summary of the statistical values
assoclated with these models (M9 and M10).

It is obvious that the regression model M9 should be rejected.
Since both p=-values of hypothesis tests (I) and (II) (of the
independant variable P,) are much higher than 0.15 (the
predeternmined significance level), P, is not relevant in
predicting software failure rate using model M. But, if P, were
eliminated from the modsl, a new model cannot be formud. Another
reason to reject model M9 is that its residuals plot indicaies
that assumption (ii) is violated. A surprising element was
noticed in model M9: the absolute errors (hence, the relative
errors) of the predicted failure rates in both obs.10 and obs.ll
are much smaller than those of any of the previous models.

When model M10 was compared to modal M6 (which was chosen after
the detailed design phase), it was noticed that all values of the
statistics obtained for M6 and M10 are very similar to each
other, including the residuals plots. Therefore, theoret'~=ally,
elther Mé or M10 can be used to predict the scftware failure rate
after the code and unit test phasae.

Model M10 is recommended for used in predicting software failure
rates aftar code and unit test because M10 includes a larger saet
of the independent variables than M6 and thus may be less
succeptable to any inadvertant result variations caused by the
data collection limitations of the study project.

141

Table 7-19.

Summary of Statistical Values of Models M9 and
Mlo0

Model "

142

M9 M10 "
R, 0.0748 0.4012 —“
Prob > F 0.4764 0.0670 |
Standard y=intercept 19,72 . 6,61
Error
X, 3.43 0.02
PrTb > y=intercept 0.0952 0.0304
T
| X, 0.4764 0.0670
Predicted Obs. 10 22.72 18.68
Obs. 11 11.20 21.5%9
Actual Obs. 10 36 36
Oke. 11 15 15
SW Failure
Abs. Obhs. 10 13.28 17.32
Rate Exrror
Obs. 11 3.80 6.59
Rel. Obs. 10 0.37 0.48
Error
Obhs. 11 0.25% 0.44
95% Cont. Obs. 10 0=77.9 0=63.3
Linits
obs. 11 0-79.8 0-65.9

€. CONCLUSIONS AND RECOMMENDATIONS

8.1. conclusions

This st..dy has developed techniques for reliability predistion,
allocation, growth testing, and demonstration testing of combined
hardwvare/software systems. The software reliability techniques
are compatible with existing hardware ireliability standards and
procedures and are aligned with DOD=-STD-2167A.

The main findings of the research are:

A. Software whose code is frozen, and that is being subjected to
u stationary operational profile, can be reasonably modeled as
having a constant failure rate (see Appendix B)., Before this
result was obtained, ressarchers in softwar: reliability
justitied the constant failure rate model primarily on intuitive
considerations. The work dcne here puts the model on a
theoretical foundation. Because hardware components during their
useful 1life period and maintained electronic systems are
conventionally modelad by a constant failure rate, this means
that certain hardware reliability techniques have analogies in
softwvare. furthermore, hardware and software failures can Le
combined with each other. For example, lf the hardware has a
certain failure rate and operates concurrently and in series with
the software, the hardware and software failure rates :an he
added to cbtain the overall failure rata.

B. Softvare reliakility can be predicted based on measurable
characteristics of the software development process and work
pcoduct's., Predintionr models based on metrics initially available
early »n in the software life cycle appear to have about the same
pradiction power as those mocdels that add metrics available
later, when the early metrics are revised to reflect updated work
products.

C. A program's failure rate is related to the program's fault
hazard rate profile. Previously, the hazard rate profile could
only be determined by "fault seeding" or by retrospective failure
analysis. Neither method is practical. The study developed a
way of determining a program's hazard rate profile, under a
particular operational profile, by adding randomly placed
count2rs to the code. These counters provide information about
the frequency with which potential faults are encountered.

0. Morkov modeling c&n be employed for the mcdeling and
allocation cf hardwvare/software systems that involve
hardware/software repair and hardware redundancy. Modeling and
allocation of software under different reliability topologies and
timing configuracions c¢=2n generclly be handled by closed-form
expressions.

143

" -~ - Lo

F. Software reliability growth, from the start of system test,
can be modeled by the Basic Execution Time Model. I the number
of obserratjions 1is small (<30) or when the faults in a prcgram
have widely different hazard rates, then the mcdel may falter.
In both cases, the reliability estimations and projections can be
improved through numerical 1recalibraution. A drawback to
recalibration 1is that it currently works by altering the
cumulative Aistribution function (time--dependent failure
probabilities), rather than by altering the failure rate. An
estimate of the failure rate is useful in designing demonstration
test plans.

Durirg growth testing, +the operational profile must be Kkept
s-aticnary and enmulate field use. Testers must record failure
times (or, equivalently, interfailure tiwes) in terms of
execution time. This "statistical" approach tc testing is an
efficient way of uncovering those faults that contrikute the most
to the overall program failure rate. Current testing practice is
either to stress the scftware by <choosing inputs--such as
boundary valucs-=-that are likely to %utrigger a failure, or to
atteapt to "cover" tha inpul space or code in some way.

F. Three tvpes cf software reliability cdemonstration test have
been develnped: flxed-length ‘tasts, failure-free execution
interval tests, and serquentiai tests. In addition, a method was
presented for performing a demornstration test concurrently with
growth testing. '

G. Beth growth testing and denongtration testing can be
accelerated by simultaneous executicn of multiple copies of the
program. When a failure occurs,, the time recorded is the total
execution time accumulated on all copieas. When the code is
nodified, it must be modified on all versions. The test cases
for each copy must be selected independently according to the
same oparational! cofile.

H. The random selection of test inputs from a given operational
profile can be performed or automated based on the fact that the
operational profile induces a partition of the real interval
(0,1). Each input state, or class of input states, is associated
with a subinterval of (0,1) whose length is ite probability of
occurrence. Testing efficiency can be improved through the use
of equivalence partitioning.

8.2. Recommendations

Future research is recommended to aduress Lhe fcllowing areeas:

A. The prediction models have been validated in one corporation
only. The product/process metrics and failure data should be
collected from projects in many organizations so that the model

144

can be validated more universally. Additional metrics should be
hypothesized and collected, to find more that are useful for
predicting software reliability.

B. The values of the many product/process metrics will change as
early work products &re updated. The time or phase at which the
value of a metric is sampled should be made a part of the
regression analysis.

C. The <current recaiilbration technique alters the failure
probabilities. A method should be developed for recalibrating of
the failure rate, altering the fallure rate from one constant
value to ancother. One approach is to fit, in a least-sguares
sense, the recalibrated cumulative distribution function %o that
of the exponential distribution, the constant rate paramater
treated an as unknown.

D. Thsory and technigques need to be developad for quantifying
the benefits and costs of multiversion programming. A a
prerequisite, technigques should be developed for injecting
diversity into software in euch a way as to deterministically
increase the reliability. Currently, there is no way of knowing
if the expense of creating multiple versions is cost effective
compared to additional testing and review.

E. An automated test generator program should be developed that
uses information on the cperational profile, and the data types
and ranges of the input variables.

F. The effect of software engineering technoiogies on software
reliability should be quantified through a series of controlled
expariments.

G. Automated tools should be devaloped for accurately recording
cumuiative execution time. Currently, testers use culendar tine.

H. Research should be performed on designing software to
facilitate reliability prediction. As an example, consider an
abridged operationel profile that specifies the ralative
frequency of the user-orientad functions, A, B, and C. Suppose
that the gsoftware is designed so that A, B, and C are implenented
in separate CSCs. Lat cperational prcfile #1 sp.cify that tho
relative frequency of A is 20%; for B, 30%; and for C, 50%. The
failure rate measured under this operational profile A A,, A,,
and A,. Now, suppose that operational profile #2 is A, 365: ﬂ,
40%; and ¢, 30%. Without performing any testing under
operational profile #2, the failvre rates can be predicted by

Ah = .g%:-z‘ (264)

145

u Y - . Lo N P . -~ S —

/ 40%

Ay = 3eihs (265)
/ 30%
he = Zrehe (266)

I. Appendix B shows that if clusters of software discrepanciass
(differences Dbetween actual and correct values of output
variables) ocour according to a Poisson process, then the number
of individual discrepancies is governed by a "stuttering Poisson
. process." Since for many programs it may be more natural or
meaningful to count discrepancies, a set of demonstration tests
should be developed that are based on a stuttaring Poisson modal.

J. More research should be done regarding the affect of
complexity on software reliability. The complexity measuraes
commonly used today tend to correlate with size, and soc are not
of use in prediction. If complexity is measured not as intricacy
of structure but as the number of paths, then it would appear
that it nmust influence fault content, since a program is only
free of faults to the extent that it has beén tasted. The
structure factor S8 should be studied for its relationship to
conplexity measures.

¥. This study provides a separata growth model for software that
can be combinsd with an existing hardware reliahility growth
nodel for a given time r of interest. The developrent of a
single growth model--perhaps a mathematical merging of the AMSAA
nodel and the Basic Execution Time Model--should ke developed, so
that a single growth curve can be used for the combined
hardware/software system.

L. Section 2 of this report provides an overview of the
significant issues raised in modaling HW and SW systems along
with limited guidance in the modeling of these aystems. Research
into advanced modeling techniques to support HW/SW aystem design
is neaded. This resesarch is needed to update previous RADC
research in this area [James et al. (1982)].

M. Methods of instrumenting software code to ensure that any
fault which may occur can be rapidly identified und accurately
isolated to the mection of the code (ie. module) which causad the
problen should be investigated. Development of monitoring methods
which can ensure improved software fault isolation with minimum
or no operational ©penalty wil) help accelerate software
reliability growth and minimize the potential for naintenanca
induced software faults.

146

APPENDIX A
RELIABILITY DATABASE

A. RELIARILITY DATABASE

The development and validation of the techniques presented in
this report required the collection of empirical data which was
organized into a dQatabase. The database contains metrics on the
characteristics of each project's software development process
and the intermediate work products that emerged from the
development process. Also data was collected on the software
failures that occurred during each project's system test period.
The primary use of the data was to develop a regression model for
the early prediction of software reliability.

For developing the predictive equations of SOW para. 4.1.3.2,
the study team sought data from a set of projects that were
diverse in size, application, and development strategy, yet had
produced similar kinds of well-kept documentation. These
projects had to be ocld enocugh to have started system test (so
that failure data was available), yet young enough that project
documentation, management, and development staff were still
accessible as sources of information. Six projects were chosen
from which to collect the data.

Many projects at Hughes already collect metrics, similar to the
24 metrics used in this study, for the purposes of management
reporting and, increasingly, for use in improving the software
development process. The Software Engineering Institute (SEI) at
Carnegie Mellon University is under contract to the Department of
Defense to examine the quality of the software development
process used by potential software development contractors. SEI
conducts assessments of organizations' software engineering
practices. Organizations are graded by the maturity level (1-5)
that SEI determines that they have reached. To reach level 4,
the organization must establish and maintain a set of
product/process metrics and establish, manage, and maintain a
database of those metrics. It must use the metrics to assess
product dquality, track progress <toward meeting quantitative
quality targets, and compare the nmetrics with historical
experience on similar projects. At level 5, the metrics are
automatically collected, and, in the spirit of Total Quality
Management (TQM), the metrics are used to improve the
organization's software development process [Humphrey (1590)].

Which metrics to collect for the purpose of software reliability
prediction were based on (1) how promising the metric was for
predicting software reliability, from a review of the literature
and in 1light of the team's collective software engineering
experience; and (2) the availability of the metric across the six
projects. Furthermore, to be useful, each metric had to be
easily collectible for a project following the draft MIL-HDBK
and, ideally, represent a controllable characteristic.

A=-2

Most influential was the excellent paper by Takahashi and
Kamayachi (1989). This paper presented their research on ten
factors that could influence fault density and concluded that the
following were significant factors: frequency of changes to
program specification, programmers' skill, and volume of program
design documents. The team generalized these factors to three
corresponding classes of metrics: (1) volatility--how often work
products change (whether because of misunderstanding, mistakes,
or fickleness); (2) skill and effort brought to bear on the
development task; and (3) magnitude of the task. Twenty~four
metrics were then chosen from among those three catagor.es.
Ultimately, the inclusion of a particular . ric was a
hypothesis. The metric may or may not be useful for predicting
softwvare reliability. Conversely, there are undoubtedly other
metrics that werae not collected that could have been useful for
prediction. Indeed, one of the risks of the study was that the
set of matrics chosen would be insufficient. Fortunately the set
of metrics did turn out to be useful.

The Hughes study te.n either personally performed or oversaw the
data collection prucess on each project, so that consistent
conventions and judgments could be made in transforming the raw
data into the metrics. To encourage cooperation and candor, each
project was promised anonymity.

The six Hughes Ground Systems projects selected for the
collection of software development and failure data are
summarized in Table
A-l .
Tabl. A-l -
SUMMARY OF PROJECTS = SOFTWARE DEVELOPMENT DATA

*"-_—_“
PROJECT TYPE # KLOC
CSCIs LANGUAGE
1 Avionics 1 140 JOVIAL
2 c’r 3 53 | Ada, C,
Assembly
3 Data Comm 3 230 Ada
4 Trainer 1 40 | Fortran
5 Diagnostic 1 7 | Fortran
6 Radar 2 295 Fortran,
ULTRA=16

For the Validation task two additional projects were
usaed employed. These appear in Table A=-2.

Table A-2. Validation Projects

project # |mype |4 cscts Iwroc | ranguage
7 Weapon 1 18 Pascal

8 Trackin 1 120 Ada

Table A-3 summarizes the metrics that were collected from these 8
projects. The first column shows the phase the data originates
in. The second column is a short identification code for the
metric. The third column is a description of the metric. The
fourth column is the class of metric (1, 2, or 3).

The study team was successful in collecting all 24 metrics from
all CSCIs of the six projects. The team had contingency plans
for dealing with missing data but did not need to invoke them.

The failure data recorded consisted of the cstimated failure rate
at the start of system testing, adjusted to a standardized
average execution rate of three million instructions per second.
Fault data was in the form of program trouble reports (PTRs) and
library change requests (LCRs). Where necessary, calendar time
was nmapped to execution time and randomization [Musa et al.
(1987)] was emploved to minimize the effacts of uncertainty in
failure times.

Metrics were normalized, where applicable, by dividing by the
number of kilo lines of code.

TABLE A-3:
PRODUCT/PROCESS METRICS

DESCRIPTION CLASS

PHASE CODE

Regquirements 1 Errors in requirements specification (snsi 1
-2 Requirements statements in the SRS 3

3 Pages in the SRS 3

4 Man-months for requirements analysis 2

5 Requirenents changes after baseline 1

Preliminary 6 Errors in praliminary design documents 1
Design 7 Conputer Software Components (CSCs) 3
8 Units (Ada packages) in dc-;gn structure 3

§ | Pages in design documents (SDDs) 3

10 Man-months for preliminary design 2

Detailed 11 Errors in design documents 1
Design 12 Man-months for detailed design 3
13 Design flaws identiflied after bascline 3

14 Design flaws after an internal review 3

Coding 18 Total executable lines of code (LOC) 3
16 Faults found through code reviews 3

17 Programmer skill level (avg. years of exp.) 1

18 Number of units undergoing review 2

19 Average number of source LOC per unit 3

Unit test 20 Average numbar of branches in a unit 1
21 Percent of branchaes covered 2

22 Nesting depth average 3

23 Times a unit is unit-tested 2

24 Man-months for coding/unit tect 2

25 Defects identified through walkthroughs and | 1,2

ravievws

Historical <failure/fault field data was collected from four
projects, summarized in Table A-~4.

TABLE A-4:
FIELDED PROJECTS

Mobile ‘ ULTRA-16
Radar

10 Alir Defonse 3 220 ULTRA=-16
Radar

11 Target 2 280 Fortran,
Acquisition ULTRA-16

12 Air Defense 3 270 ULTRA=16 |
Radax .

The hazard rate per fault was not discernable from the available .
data. The PTRs from the field did not contain information about
how many times a particular failure recurred. Generally, the
uger community eventually devised and disseminated among
themsalves some type of work-around that avoided the problen
until the next version became available. The study team pursued
SOW paragraph 4.1.1.2 by adopting an approach that allows a
program's fault hazard rate ©profile to be deternmined
experimentally. The fielded systoms were not close enough
geographically to be used in the validation task (mection 7), so
ongoing projects were employed for the validation.

APPENDIX B
CONSTANT FAILURE RATE MODEL FOR SOFTWARE

‘ i

- - _ raw—" ’ —

LMY, X

B. QONSIANT FAILURE RATE MODEL FOR SOFTWARE

Frozen code subiuctad to input randomly selected from a
stationary operational profile is 2reasonubly modeled as a
homogenaous Pocisson process (HPP). Such a stochastic process is
characterized by a constant failure rate and exponantially
distributed intertailure times. This appendix provides an
axiomatic derivation of the constant failure .ute mecdel. It is
shown that each axiom is reasonably satisfied b software.

Let I be the input space of a computer program. The operational
profile assigns to each possible input state ie¢I a probability
p(i) of being selected, with Ip(i)=l. One can imagine a '"test
oracle" e(i) associated with each input state i that evaluates to
1 if the program fails when exacuted with that input state, and
evaluates to 0 if the program succeads [Kopetz (1981},
MacWilliams (1973)]. In practical situations, the values of the
e(i)'s will not be knowr, but the actual values are immaterial to
this discussion.

'The probability of failure in a single run is given by
Q. ;p(.ﬁe(i) (B-1)

The probability of success is Rwl-Q. The rcliabilitz of the
program for n independent runs is R", The probability of k
failures in n runs is governed by the binomial law

B(n, k) = (z)pno"-* (B=2)

This model im called a "data domain" software reliakility model
bgcause it employs the run as the unit of exposura. A data
domain model is described by Nelson (1973). Aanalogous hardware
reliability models use kilomaters, cycles, and nissions as units
of exposure. Must hardware and software reliahility modsls,
however, are "time domain" modele; they use the continuum of
time as the failure-exposing force.

In the time domain, a run starting from input atate i has a
duration t(i). Like the e(i)'s, the t(i)'s would not in general
be known a priori.

To tranaoform the Jdata-domain model into the time domain, five
axioms are introduced. It will' be shown that ths data-domaln
model satisfios the axioms, and that the conasequence of the
axioms is an HPP.

Consider the counting process (N(t),t20)}. N(t) represents
cunulative number of softwara failures by cumulative execution
time t. As shall be proved later, if the followirg five axioms
are satisfied, the process is an HPP [Parzen (1962)]:

Axiom 1--Initialization: N(0)=0. The counting of failures
begins at time 0.

Axiom 2--Independent increments: N(t+a)=N(t) is independent
of N(t).

Axiom 3==0<Pr(N(t)>0)<l, t>0., It is neither impossible nor
certain that a failure will ocour in any interval.

Pr{N(t+At)=N(t)>1 i} 3}
H&? Pr%NKc+Kt)—N§c).1} ° (B=3)

Failures do not occur simultaneously

Axiom 4--

Axiom S--Stationary inércmontls For any two times t and s
and any At>0, it is true that ‘

Pr{N(t+At)-N(t)=n} = Pxr{s+At)-N(s)=n} (B=4)

It will now be shown that the data domain model satisfies the
five axioms.

Axiom 1 merely defines when the counting of failures begins.

Axiom 2 says that the number of fuilures in a future interval is
noet influenced by the number of failures in the past. Software
satisfies this axiom as long as any data corruption a fajilure
leaves is cleaned up before resuming execution.

Axiom 3 says that, in any interval, there is a positive
probability that a failure will occur, but failure in ths
interval is not a certainty. A zero probability of faillure
requires perfect software. The possibility of any substantive
piece of software having no faults is exceedingly remote.

Axiom 4 says that only one failure can occur at a time. ANSI~-
IEEE Standard 100-1988 defines software reliability as ‘'the
probability that software will not cause the failure of a systenm
for a specified time under specified conditions." This
definition implies that a software failure is a crash, hang, or
bad output that causes system failure. A program run on input
set i will either cause system failure [e(l)=1] or it will not
(e(i)=0]., More than one software failure cannot occur at once,

P=3

because a software failure is the sum total of what the program
d4id (or did not do) to cause cne system failure.

Axiom 5 says that the distribution of failures in a time interval
depends on the length of that interval, not on when the interval
begins. For software, the number of Zfailures in an interval
depends on the number of runs that occur during that interval,
ot on when thu interval begins. Different runs mnight take
different anounts of time, but the probability of n failures in
an interval depends sole on the probability of failure per run
ind the long-run average number of runs that occur in the time
nterval.

Every non-neguative, integer-valued random variable X has an
associated probability generating function (pgf). There ls a
ons-to-one relationship bsestween a random variable's pgf and
probability distribution. Given one, the other is uniquely
daterminad and vice versa. The pgf is a power series
transformation of the probahility mass function into a function
of the (usually complex) variable z. It is defined as

Gy(z) = ipz, (Xax}z* = E{z %} (B-5)
Xn

The dummy variable z must ba restricted to a range in which the
power series is convergent. The series is always absolutely and
vniformly convergent for |z|<l, and may also converge for a more
axtensiva range. Hence, G(z) is a continuous function. The
probability mass function of X can ba reccvered by

LX)
Pr (Xmx} = SX_10) (B=6)
xi

which is the x-th derivative of G,(z) evaluated at z evaluated at
2=0, since G,(z) is the Taylor series expansion for G,(z) about
2=0.

If X and Y are independent random variables, the pgf of their sum
is the product of their pgf's:

Gx*y(Z) = GX(Z)GY<Z) (B-7)
bacause
E{zXY) = E{zX}E(2z "} (B=8)

The pgf for the Poisson distribution is

Gp(2) =Elz%)} = Zexp[—lt]_“‘_t)_fzx‘
X=0 X

(B-9)
= exp[-A t],g _(i’g_f)_"
Since the sories
g L’;’P‘.;)_‘i (B=20)
converges to Atz for all Aw0, Egquation B-9 beconas

expl-Atlexp(Atz] = exp[At(z-1)] (B~11)

To prove that the counting process (N(t),t20) satisfying <the
axioms is a HPP, it suffices to show that the por of N(t) is that
of an HPP [Parzen (1962)]:

pi(z, t) =expl(At(z-1)] , Jzi1 (3=-12)

The proof is divided into two parts. The first part shows that
the pgf is a2 consequence of assuming that a positive counstant A
axists satisfying three key aquations. The second p.ai.t shows
that a gositive constant A satisfying those key equatio-:: doas in
fact exist,

The three key equations are

1im J-Px{N(At)=0} _ o (B-13)
At-0 At '
1im PriN(At)=1} _, - (B~14)
ac-o At
lim EX{(aE) 22} 4 (B=15)
At-0 At
From the independent increments axiom it follows that
E{zNt+a0} « B{zN(teat)-NE)} g gNle)) (B-1¢€)

From the stationary increments axiom it follows that
¥iz, t+AL) = ¢(z,0) ¥(2,40) (B-17)

and

1 -
<z {p(z, c+A¢t)-y(z, ¢t)]

(B=-18)
. ¥lz, ""&"E“'""" -1]
It is now shown that ‘
1 - - _ -
H_xgﬂ{v(z,At) 1} = A(z 1)‘ (B~29)
Expanding ¥(z,at), one may write
-A?'-Ew(z.u) -1)
= -ﬁ[?: {N(AL)=0}-1} + Z%EPI {N(At) =1} (B=20)
+ —51-62 z 5Pz (N(At) =2}
fae
But, for |z|<1,
E;zﬂ pri{N(At)=n} r Pr{N(At)=22} (B=21)
ne

Therefore, to obtain Equaticm' B-1¢

1 5 -
%2-52-&—6 (¥(z,AL) 1]

= 1 'm0} =1) _-.1-'- = -
}HJTE [Pr{N(AL;=0}-1] +]A.z:lgletPr{N(At) 1} (B=22)

+ lim-l-Pr {N(At) 22} = =A + zA = A(z-1)
at-0 At

Next it is shown that from Equations B-18 and B-19, Equation B-12
ig obtained. Let at-0 in Equation B-18:

1 -
}}.‘fg‘z—: ['(z; t+A t) ’(20 t)]

- _l.f - -] (B-22)
i.imvp(z, £) At.W(a.At) 1)

-0

= ¥(z,t)A(z-1)
The pgf satisfies the diffarential equation from Equation B=-19

£ ¥z = A1z, t20 (B-24)
with initial condition ¢(z,0)=1. The solution to this
differentlial equation is :

¥z, t) = explat(z-1)1, |z|<1 (B-28)

Let P;(t) denote Pr(N(t)=j). Aasume that P,(t) is bounded.
Since

Pr{N(t,+t;) =0}

(B=26)
= PX{N(t,+t,) -N(t,) =0 A N(t,) =0}

it follows from the axioms of stationary and independsnt
increments that

Py(t,+8,) = Py(t,) By(ty) (B=27)
If for some arbitrary time t,, P,(t,)=0, and P,(t) is bounded, it
can be shown that
By (t) = exp(-At] (B=28)

The case A=0 corresponds to a deganerate distribution in which no
svents ever occur. By Axiom 3, 0<P,(t)<l for all t, so Equation
B~-28 holds with A>0.

a. Next, it is shown that from Equation B-28 one obtains the
first key equation

1-Pr (W(At) =0} _ ., 1-P(At)
Lim At S

= 1im 1""§ g‘“l (B-29)
At=0

= lim Aexp[-AAt] = A

Ac¢~0

Now the second key equation (B-14) can be proven by using the
fact that

(B=30)

1-F,(At) _ P (At) 1. R(AL)
At At

and

,Ac) - - .
}m-g:(m- 0 (B=31)

(by Axiom 3), where Q(t)=Pr(N(t)22}. From Equations B-30, B-
31, and the first key equation (B~13), one can write

- l-Po(At) - P1 (At) W At
L R N T Y [1* B (At (3-32)
« 1inDlBE Ly Ly BIAE)

At=0 t Atm0 t

From the second key eqguation (B-14) and from Equation B-31, the
third key equation (B=15) holds, since

. 1im Fa(AE) At) _ 1imQ(AL)
0 = Mn=rinfdy - Hn e

= 1im Pr jN(A t) 22!
At=0 A

{(B=33)

Empirical evidence ([Musa (1979)]) also supports the constant
- failure rate model for software.

It should be noted that the way failures are counted for the
Basic Execution Tims Model during growth testing is difforent
than that described here. Growth testing is a completely
different context. Because repair activity is going on, the
failure rate is not constant but varies over time. The Basic
Execution Time Model allows for multiple simultaneous "software
failures," contrary to Axiom #3. During growth testing, each
discrepancy (difference bet esn the output variable value and the
value dictated by the requirements) caused by a distinct fault is
connted as a separate software failure. The reascn is that the
debugging will address all of the discrepancies. The subsequent
removal of each underlying fault will cause a decrement in the
program failure rate.

If each discrepancy were counted as a separate failure during
demonstration testing, the result would not be an HPP. 1In fact,

the distribution of failures is given by the "stuttering Poisson
distribution" [Haight (1967)). Axiom 4 does not hold. Let the
probahility of k software failures in the time interval (t,t+At)
be

Apkdt - O(dt) (3-3‘)

The probability of zero faiiures in an interval is .
Ly(t) = exp[-~-At] (3-38)

The time ¢to first fajilure is thus still exponentially
distributed. The probability of n+l failures in time t is given
by the recurrence ralation [Adelson (1966)]

At o -
boa (£) = - ?:; (R=F+1) Bpoyus by . (B=36)

The same stuttering Poisscn distribution can alsc¢ be derived by
providing a finite probability 7 that the gap between successive
failures will be zero. Then the cumulative distribution function
of the gap betvween successive failures (Smith (1957), Smith
(1.958a), Smith (1958h)] is

F(x) =% + (1-%) (L-exp[-Ax]) (B=37)

APPENDIX C
DYNAMIC ALLOCATION

The following conditions are asasumed to hold:

i) the component failures are statistically independent
ii) the failure of any component results in failure of the
aggregate -
"1ii) the component failure rates are constant

C.2. Notation ‘
R": t%? required reliability for the aggregate for the mission
time ¢, '

A't the required failure rate for the aggregate.

R;(t;)¢: the allocated reliability for the i-th component

n: the total number of components

n: the total number of time intervals

A, the allocated failure rate for the i-th component

t: mission time for the aggregate

t',:ithc time at which the j-th time interval ends;
-0,1,2,..-1'0. :

t;: total mission time for the i-th component; i=1,2,...,n.

Note the following relationships:
a) b, .t =t
B) €' S &' S ... S E,.
c) t,' = t.
d) The relationship between A’ and R' can be written as
R*(t) = @'t

A+ = ~ADR(E)® (e-1)

or
¢

where t is the aggregate mission time.

C.3. Dynamic Allocation Taechnicauae

Suppose that an acceptable value of the allocated failure rate
for each component i must belong to [A,ﬂb), im=1,2,...n.

By using the proportional allocation technique (see Section 3 of
this report), a failure rate A, can initially be assigned to the
i-th component, i=1,2,...n, based on the tinming relationship
among the components (sequential, interleaved or simultaneous
processes). If one of the A;'s does not belong to its accepted
region, without loss of generality, say A, then tha Effort
Minimization Algorithm can be used to reallocate the failure rate
of each component to A", iw1,2,...,n.

Before discussing this algorithm, some notation needs to be
introduced:

A;: pre-allocated failure rate for tha i-th co?Ponontns
:-.1'oon'no
At the smallest acceptable value for the allocated failure
, rate of the i-th component; i:« 1,...,n.

A new allocated failurs rate for the i-th component.

G(A;,A,"): effort function; the amount of effort needed to
decrease tho'failuro rate of the i-th component
from A' to A' (1:- l'oco'n)o

Note: The effort function G(x,y), x > y 2 0, is assumed to
satisfy the following conditions ([Kapur et al. (1977)]:

a) G(x,y) 2 0.

b) G(x,y) is nonincreasing in y for a fixed value of %
and nondecreasing in x for a fixed valua of y
G(X,Y) 2 G(x,y+ay), Ay > 0,
G(x,y) S G(x+ax,y) X » 0.

c) G(x,y) is additive:r {i. .. r G(y,2z) = G(x,2)
Z<y<x.

d) G(y,0) has a derivative h(y) such that h(y) is
strictly decreasing in y.

@) G(x,y) = G(tx,ty), VWVt > o.

Four different effort minimization problems will be presented in
light of the timing relationship among the componants
(sequential, interleaved and/or simultaneous processes), and the
complexity factor ¢, of each component, i=1,2,...n, with

a

gci =1, (c~2)

If A, < Ay, then let the new allocated failure rate of the first
component be A,” = A,; 80, at least one of the remaining A,
i=3,2,..40, music be decreased. To do this, a certain amount of
effort is needed (such as: further engineering development, extra
manpower, extensive testing, etc.) Let the effort function be
G(A, A7), iw1,2,...,ns and assume this function satisfies the
above conditions. Now, the new allocated failure rates).,',\
i=2,...,n, can be calculated by solving one of the following
ninimization problens.

I) Problem I:

If the aggregate has sequentially active components and the
complexity factors arae not taken into consideration in the
objective function, then the new allocated failure rates for the

components 2 to n can be computed by solving the following
optimization problem:

n
(P) Minimize ; G(hy, A7)

such that Azt,+....+Azt,=A*t-A ¢t
A, $ A3 S Ay

!
A, s Ay s A,

(c=-3)

Rewriting the above optimization problem (P) yilelds:

]
(P Minimize ?_; Gy, AY)

8.6, Ajby+. .. +Aqt, = At-A L,
Az -4, 20
: M (C=4)
An -4, 20
Az +A, 20
|
=An + A, 20

By Kuhn~Tucker conditions [Phillips et al. (1976)] , there exist
Mys s e rlby,, @nd A such that the following relations hold:

(1) A3+ .. +Aat,=Att+d &, =~ O

(2) A; -4, 20
!
An-4,20
-1;*1320
!
“Az+A,20
(3) Ba(Az - 4,) =0
I

(C=8)
“ﬂ'l(kn; - Ln) - o
By(=A] + A;) = 0

i

Bapea (=47 . Ap) = 0
(4) Barvoorbana 2 0

(5) G/ (AgsA3) +ALy=p,*+p, = O
@/ (A3) A3) +Aty=py+Pp,y = 0
i

G’(ln' L;) +A t—'n"ﬂ'n-:.“l‘zn-z =0

Now, multiplyigq each formula of Egquation C=5 with the
corresponding A, yields:

(6) AxG! (Mg, AR) +ARA Ex=Arihy s *AkM koneg ™ O (C=6)

By Equations C-3 and C-4, one of the following cases holds:
(1) 4f W, > 0 then A" = A and u,, , = 0.
(11) 4f W, > O then A" = A and u,, = O.
(1ii) Both ., = u,,.o = 0.

Thus, for the values of k such that y, , = 5, . = 0, Equation C-6
can be rewritten as

AL (Mg AD) +AJAE, = O (C=7)
or
/ .
A a -ii."_gu.ﬁﬁ. (c=8)
k
Next, assume that
G(ALAD = Glthy, tA)), for all t,> 0, kwi,2,....,n% "

then, A = =G! (Aktk,lk't,‘)/tr ‘for all values of k's such that

Byt ™ Hiyon-z ™ 0. Since G'(y) is a strictly decreasing function
Ay, = ¢ } t, is true, Zfor all values of k's such that

Mgy ™ MByp2 = 0,and some constant c.

Now, without loss of generality, suppose A,t, < x,tihs eoe S AL
e

Next, assume for the first Kk, variables, and last ﬂ-?c‘
variables, case (i) and (ii) hold, respectively, then
T UREERL VI (C=10)

TV R VR Ve

where K, < k,. Under these assumptions, a pair, k, and X,, necds
to be found that satisfies the following relaticns:

&) Ata"‘l [*Lk tkl*(n-kl- (n"‘kz> "1) C+Ak’tk'*o .0 *;\ntn L k‘t"&tx
By cz20 (G-11)

o A s -t‘—'m $hy Yk+lsms k-l

From (a), it is true that
k.t-thl-chz"c (] -Lk‘tkl-kk.ck.-' " ‘Aﬂtn

(C=12)
kz -kl -1

Cs=

Substituting the above equation into (¢) ylelds
for all k+1 s m S k,~1.

Therufore, k, and k, must be found such that k, < and (7) holds
for all m, where k,i-l s ms< Kk, -1. One choice for k, and k, is as
follows:

C=6

Y

N S SURE_————-

A‘t-Ll t’_'htz"o Ve “thtk‘-)ck.tk:'o " -lntn

) dpta s Kok, 1

1) Let k, be the minimum value of index ¢ such that
A‘tl < A‘.L.-L;c:L-A'JtJ-LIOItI‘l-' ’ .*latn

2) Let k, be the maximum value of index j such that

A‘t-&1tl-tha~. " "thj"kk'tk.“u (3 "Antn

< Aptn

(C=13)

(C=14)

C=158)
hyty Bm(7+0) ‘
Hence, a solution of (F) can ba written as:
If k-1 S K, then :
A, for 2sdick
* 4 . 1 ™
Ai {).,. or k; sisn (e-18)
eloa
&, for 2 sd < k,
Ay, for k, < isn

A; - A‘t-'altl-Lﬂtz-' e -Akxtkl-lk'tk'-. . ukntn
l k:'(j(l*'l) ti

2) Problem II:

L . for k, <15k

(C=17)

This is similar to Problem I, but this time the complexity

factors of each componant are incorporated into the

optimization

(P) to compute the failure rates for the components 2 to n. (P)
can be rewritten as follows:

n

(P) Minimize ;cic(zi,x;)
=3
such that Azt +...+kat, = A°t-4, ¢,
£ Az sA
= o (C=18)
A, S A, S A,

c:zo' 18-1,2.-.-12
n
gci -'1

Using Kuhn-Tucker conditions as in the above problem, a solution
for Proplcm II is obtained that can be written as:

Let k, be the minimum value of index & such that

A't‘ < l't-thi-Mt.-"‘-K,,tn ' (C=19)
c min ¢ ' -
2gisn

Lat k, be the maximum value of index j such that
thj > 3’.c*ﬁtl-Lzriﬂ-.“-Ljtj-a’k.tkL-'“‘A'ntn

(c=20)
cj 0.1.1.‘.001.‘.c*..’I
If k,~1 s k, then
. [A&, if 2sisk, -
Aj = {;., if k,<isn (c-2i)

else

A, if 25isk,
A, 3f k,<i<n

Al= l-t'zucl'Agtz"""'z'-kitk,,'lk,tk,""—lntn ¢y (C=22)
Cryet* """ *Cxyer £,

if k,+lsmgk, -1

III) Problem III:

If <the aggregate has concurrently active components, and
complexity factors are not taken into consideration in the
objective function, then the new allocated failure rates for the
components 2 to 1 can be computad by solving the following
minimization problem:

n
(P) Minimize }_;au,.w

‘uch that l;*’- " *A; = A‘-Aﬂ. (6'23)
A, s A <A,
!
A, sy g A,

This problem has the aume objective function as that of problen
I, but the first constraintas in these *two problems are not the
same. However, the Kuhn-Tucker conditions ([Phillips et al.
(1976)] can still be applied to obtain a solution that can be
written as:

Lat k, be the minimum value of index ¢ such that
A, < A‘-A.I-A,-).,.l-. LA (C=24)

Let k, be the maximum value of index j such that

gy Mohah o oh Ay A Ay (c-25)

. [&, 2sdsk -
"i'{x,‘, k <4 s n (c-26)
else
AJ' 2sizs kl
. Ay, k,s1sn
A; = 1‘-&(-‘3,' .. 'th'}'k,"' oAy . ‘x (C-27)
kz'k1°1 4 1*1 4 3 3"'1

IV) Problem IV:

‘This prohlem is similar to problem III, except the complexity
tactors of each component are incorporated into the objective
function. Therefore, in this case the optimization proklem can
be written as

n

(P) Minimize ;; €,;G(A;, A})

such that Az+...+A, = AT-d,
A s A; 5,

A, 4 <A,
Ci 2 0, i-l,Z,...n
n
FLE)

(C-28)

Applying the Kuhn-Tucker conditions to this problem, a solution
can be expressed as follows:

Let ¥, be the minimum value of index ¢ such that

C-10

Ay Mohoheody

c, min c; (c-29)
23isn
Let k, be the maximum value of index j such that
_A.‘.Z , A "L;"%'""LJ‘A&,‘“"‘:: (C-30)
cj cj‘l - “.*ck. -
If k,-1 5 k, then
. A, if 2gick, -
M= {xi if k,<dsn (e-ad)
else
, 1f 2sisky
1! if k,si‘n
1;-J ?-"'Ll'L,""‘lk&“’-k,"""-n _C:i (C=32)
Cryot* "+ Chymz ty'

c-11

__ . _ e e ————

APPENDIX D

EARLY PREDICTION OF PROGRAM SIZE

D. [EARLY PREDICTION OF PROGRAM SI2E

This appendix discusses some of the methods for predicting the
size of a software program prior to coding.

The methods outlined below in Parts D.1, D.2, and D.3 are based
on the psychometric techniques pioneeraed by Thurstone, further
daveloped and applied by Souder and Saaty. These methods are
employed to assign a positicn to each module along an interval
scale. Such an interval scaie can then be used toc compute the
estimated lengths of the modules; the sum o©of these estimated
lengths is the predicted size of the software program in hand.

In order for the methods to predict the absoclute size of each
module, the set of modules needs to be augmented by at least two
"rafarence" modules. These are modules that the experts are
familiar with and whose sizes are known. These reference modules
would ordinarily come from other projects in the orgaanization.
One reference module must be the shortest of all the modules.

D.1 gsuccesaive Ratings Method

The Successive Ratings Method was first introduced by Souder
(1980). The modules are (first ordered according +to their
conceptual lengths (based on the experts' judgments of how long
or short the modules are relative to each other). Then, the
modules can be entered into the successive ratings form (Table D=-
1), based on their order, from the longest to the shortest.

Table D-1: Successive Ratings Method Example

column 1 | Selumn 2 | column 3
Compare Compare Compare to
Modules to to longest and

longest shortest |shortest

1 a0 120 420

3 60 70 65

4 30 20 25

2 20 ig ig

Note: In the above table, module 1 is the longest and mcdule 2 is
the shortest. .

The numbers 100 and 10, underlined in the table, are pre-recorded
parts of the standard successive ratings form.

D=2

In the first column each lower-ordered module is then
successively compared to the highest-ordered (longest) module and
a number corresponding to its relative value is assigned. For
example, the number 60 for module 3 in Table D-1 indicates that
the length of module 3 is 60% of the 1length of module 1.
Similarly, module 4 is 30% as long as module 1, and module 2 is
20% as long as module 1.

When column 1 is filled in, the comparison process is reversed to
obtain the data in column 2. For example, module 4 is judged to
be twice as long as module 2; module 3 is seven times as long as
module 2; and module 1 is twelve times as long as module 2.

Each number in column 3 should reflect the values of the modules
relative to the longest and shortest modules.

The seguence of numbers in column 3 can be thought of as an
interval scale for the lengths of the modules. '

D.2 Pairxwise Comparisons

The Pairwise Comparisons Method was developed by Saaty (1982) for
solving decision making problems. A judgmental matrix of the
relative lengths of the modules (in a software program) is
formed, using the experts' evaluation. Then, by applying either
the Geometric Mean Approach or the Power Method, an interval
scale for the lengths of the modules can be calculated.

In the Pairwise Comparisons Method, the user nust assign numbers
to the first row of a judgmental matrix of the form

M, M, M, M,
M, 1
- M, 1
M, 1
M, 1

based on the following definition.

If module A is being compared to module B then
Numbex Definition

1 A is equal to B

3 A is moderately longer than B

5 A is longer than B

7 A is very much longer than B

9 A is extremely longer than B

2,4,6,8 Intermediate values between two adjacent
judgments
Reciprocals If module i has one of the preceding

numbers assigned to it when it is com-
pared with module j, then module 9

has the reciprocal value when it is
compared with module i

For instance, if M, and M, are moderately longer than M., and M4
is extremely longer than ﬁ then the first row of matrix A can
be written as

M M, M, M,
M,y 1 3 9 4
M, 1

M, 1

M, 1

Now, the remaining entries in the upper triangle of the matrix A
can be computed from the information of the first row. For
example, from the first row we have M, = 3M., M3 = 9M

- 4“1 thus, M; = (9/3)M, = 3, M, (4/3) and M,
-?4/9) Therefore, the upper triangle of matrix A can be
written as

My M, M, M,
My 1 3 9 4
M, 1 3 4/3
My 1 4/9
M, 1

The value of each entry in the lowar triangle of matrix A is the
reciprecal of the value of the symmetric elemant with respect to
that entry in matrix A. So, A is

M, M, M, M,
M, 1 3 9 4
M, 1/3 1 3 4/3
M, 1/9 1/3 1 4/9
M, 1/4 3/4 9/4 1

Next, we will compute an interval scale for the lengths of the
modules based on the judgmental matrix, by using either the
Geometric Mean Approach or the Power Method.

i) Geometric Mean Approach:

For each row i of matrix A, 1 = 1,2,3,4, take the product of the
ratios in that row and denote it by . Calculate the
corresponding geaometric mean P;, whare P, =)1/4, i=12,2,3,4.
Let P = LP Wd normalize the P; (i.e., transform them so that

their rasuléant sum equals unity) by forming Py = (Py/P). Each
Py is a corresponding value assigned to module i, i = 1,2,3,4.
Rearranging the p,;'s in descending order gives us an intarval
scale for the lengths of the modules.

For exanmple,

My My | My | oM, Tk Py=([g) /% | py=Py/P
Ml 1 3 9 4 108 3.2237 0.%9
Mz 1/3 1 3 4/3 4/3 1.0746 0.19
M3 1/9 1/3 1 4/9 [0.01646 0.3582 0.07
M4 1/4 3/4 9/4 1l 0.42188 0.805%9 0.15
.P-5.4624

So, an interval scalae of the lengths of My, My, My, M, is

Interval Scale
My 0.59
M3 0.19
Mg 0.15
M, 0.07

One deficiency of the Geometric Mean Approach tc¢ obtain an
interval scale is that it can reverse the order of the lengths of
the modules. To detect this phenomenon, assume the lengths of
two of the modules are known. If the interval scale value of
module A is longer than the interval scale value of B, but the
length of module A is shorter than the length of module B, then
the Geometric Mean Approach has reversed the order of the lengths
of the modules. In that case, the Power Method must be used
instead.

ii) Power Method:

The matriyx A is multiplied repeatedly ky an arbitrary vector, say
[1,1,1,1]*. At each step, the resultant vector is normalized by
making its largest component equal to unity. This recursive
procedure can be stopped when the following relation holds:

maxl‘i“ (QbS((fk>1-(fk*1) 1)) < e,

where & can be any predetermined small number, say ¢ = 0.0000001,
and (fy); denote the i=-th component of the unnormalized fx.

Below is the illustration of the Power Method when it is applied
to matrix A,

1 3 9 4] [1] T T
/3 1 3 4/3 1 5.666667 0.33333
1/9 1/3 1 4/9 1| | 1.888889 | t 0.111211
1/4 3/4 9/4 1 1 4.25 0.25
L L I 1 i]

L)

£1
I 3 s 4 |] 1] []]
1/3 1 3 4/3 0.33333 1.3333 0.33333
1/9 1/3 1 4/9 0.11211| | 0.4444 -4 0.11111
1/4 374 9/4 1 0.25 1 0.25
B L oL] . .
— _
£

B 3 9 a4 | [1 1 [] 1]
/3 1 3 4/3 0.33333 1.3333 0.33333
1/9 1/3 1 4/9 0.12211 | | 0.4444 " f e
/4 3/4 9/4 1 0.25 1. 0.25
— L . L i L J
l - J
3

So, [1, 0.3333, 0.1111, 0.25]T gives an interval scale for the
lengths of the modules M,, My, My, M, to ke

Intaerval Scalg
M, 1
M, 0.33333
M, 0.25
M, 0.11111

Notice that for the ahove interval scale and the one in part
(II) (i), one can be converted to the other by means of a linear
transformation. For example, if we multiply 0.59 with each
element in the above interval scale, we will obtain the interval
scale in part (II)(i).

D.3 pPaired cComparisons Method

The idea of the Paired Comparisons Method was developed by
Thurstone (1959). In the Paired Comparisons Method the experts
are prompted with the names of two modules, selected at randonm,
and asked to decide which one in his estimation is the larger.
Several experts make their judgments on many modules.

The first step is to summarize the responses in a matrix. Below
is an example of such a matrix.

l| Module (k)
M A B C D E
g A |.50 79 16 +43 +67
3 B |.21 50 .03 .21 .25
1 c |.84 .97 .50 .76 .01
(1) |D .52 .79 .24 .50 .68
E

The value of each entry in the table above indicates the
proportion of experts who judged module (K) tc be larger in size
than each of the other modules (l). Note that the diagonal

elements contain proportion .50 and that for each pair Pij it
must be the casae that Pij + Pji = 1.00,

The next step is to create a new matrix by converting sach
proportion to a z-3core. The normal deviate is used, with all
proportions over .30 yielding positive 2z-scores and those under
yielding negative z-scores:

(e.g.,

score which corresponds to 0.79,

(0,00 0.80 =-.99 -,05 .44]
-0.80 0.00 -1.88 .81 ~-.67
.99 1,88 0.00 .71 .88
.05 .81 =-,71 0,00 .47
| -.44 .67 =~.88 =-,47 0,00

in the first table of this section,
believe that module B is longer than module A;

79% of the experts
to find the z-

a valuea of 2 needs to be

calculated such that Pr(2

£ 2) =
Therefore,

0.79,
Z (or z~score) = 0.80.)

where 2 € N(0,1).

To obtain an interval scale,

the sums and arithmetic means of
each column are calculated.

The column sums are

-.21 4.17 -4.46 -62 1.12

and the averages are

-104 -83 --89 -.12 -22

From any of the above mathods, an interval scale can be obtained
for the 1lengths of the modules in a software program. For
example, in Part(I), an interval scale was obtained for the four
modules in a software systenm:

Modules Interval Scale
1 100
3 65
4 25
2 | 10

Now, assume the lengths of modules 3 and 2 are known, say 1000
and 500, respectively. Then, the lengths of the modules 1 and 4
can be calculated as follows: :

the length of module 4 = 500~(3-9-6959—_'15T°9-)(25-10)

w636,

the length of module 1 = 500+(i°6°—:_-'1—5°9-2)(100-10)

= 1318,

Below is the general formula to compute the estimated sizes of
the modules in a software progran:

Agsume that there exist n modules, and that an interval scale for
the lengths of the modules has been obtained by the Successive
Ratings Mathod. Also, assume that the lengths of modules i,3,k,n
(dencted by Li'Lj'Lk'Ln) , l<j<k<n, are known.

Inlg.ﬂgliﬂh NOC

(obtained from the 4th

column of the Successive

Ratings Form)
I .
l1 i
I L
li li
I L
Ij p
X L
lk lk

Then, the length of the l-th module is

r -
Ly+ (Z-Z) (L-I), Vicl<d, 14
(Ly=Ly)
Ll = 4 Lk+ (IJ"Ik (IJ"I&) ’ A4 j<l<k

(Ly=L,)
L""Tff:._r:T(I‘ T, VYV k<l<n

Note: Any one of the thres methods in Parts I, II and III can be
used for producing an interval scale for the lengths of the
modules. The mathod to use depends on the level of familiarity
of the software engineering staff with the software concerned.
The Successive Ratings Method requires the most understanding of
the software compared to the other two methods, while the Paired
Comparisons Method requires the least.

D-11

APPENDIX E

MULTIVARIATE REGRESSION ANALYSES

E. MULTIVARIATE REGRESSION ANALYSES

This appendix presents a detailed description of the multivariate
regression models which were formulated as a part of developing
prediction models for software failure rate (SOW 4.).3.2). The
appendix is organized into four sections:

1. Presentation of the notation that is used in the regression
analyses.

2. A detailed discussion of the multivariate regression analyses.

3. The correlation matrix for standardized software failure rate
(Y) and software characteristics (x,,...,Xy)

4. Printed computer outputs of stepwise selection analyses,
stepwise regression model, principal component analyses, and
least squares method (using principal components) for each
software development phase.

Summary results of these analyses are provided within the
appropriate sections of the main body of the report.

Table E-~1 contains the data set for nine observations (CSCIs)
which are collected from the reliability database described in
Appendix A. This data will be used in regression analyses in
this section.

Some of the independent variables were normalized based on kileo
lines of executable code (KLOC). The normalized independent
variables are Xypoooor X Xygr Koo Xog o The formula to normalize X;
where i € {1,2,...,14,16,24,2%} is

X, = (%X; / X4) * 1000
Recall that x, is the number of LOC in each observation.

For each phase of the software development process, a new
regression model was formed which involves Y (software failure
rate as the dependent variable) and x;, i= 1,2,...,k where k s n,
and contains more software characteristics as <they become
available. Therefore, several regression models were formulated
for each software development phase :(such as requirements
analysis, preliminary design, detaiied design, coding and unit
test).

The scatter plots Y (software failure rate) versus x, (software
characteristic), i = 1,2,...,n, based on the collectea data from

E-2

Appendix A, were drawn. These scatter diagrams suggest that the
regression models can be linear in terms of all the variables
except X,, Xy, Xy Xy Xygr Xoge However, both linear and
nonlinear regress}.on models involving software failure rate
(dependent variables) and the software characteristics
(independent variables) described above were developed for each
phase of software development. '

The general linear ragression model is of the form
Y = oa, + ax, + 2% + ...+ ax

where k assumes different values depending on the software
development phase. Similarly, the non-linear regression model
for each phase of the software development is a sum of the linear
combination of items in a subset of (X, ..., Xe/Xp 000, X0rXq, Xyp,
eoe s Xy %y, Xpc) ard the linear combination of items in the subset
of (1/%,, 1/%y, 1/%y3+ L/%y 1/%Xy 1/Xx)}: the sizes of these
subsets depend on the phase of the software development. Notice
that %, is not used in any of the regression models, except to
normalize appropriate independent variables, since, the software
failure rate ¢ should not depend on the size (xys) of the
software.

Table E-1. Data Set Observations
Obs. #1 Obs. #2 Obs. #3 Obs. #4 Oks. #5

X, 352 30 50 323 280
Xy 929 740 4248 680 1356
p 653 140 472 1367 452

ka 7 5 8 201 55
Xe 80 37 13 141 280

L%y 11 14 30 18 2086
X, 36 19 28 4 44
Xa 1470 120 100 842 1100
Xo | 206 939 3260 500 6959
Rep 44 5 20 22 7.8
%, | 26 40 90 426 4920
X 1 18 82 7.8
p o 23 32 250 29

[X, | 65 23 20 2750 445
Rqx 230000 40000 5091 140000 24190C

| R.2P 359 85 201 424 600
Xy 5 6 4 5 2
Xy 1470 120 100 842 1100
X.0 150 35 50 50 60
%00 8 10 10 5
%y, 0.95 1 1 1 1
X, 3 3 2
Xon 1 1 10 1 1

I %, | 160 11 12 156 60
p o 447 112 253 3424 1074
b4 36 31 64 48 10

Table E-1. Data Set Observations (con't)
ﬂ e) |]
Obs. #6 Obs. #7 Obs. #8 Obs. #9
" X, 50 0 0 0
X, 700 296 504 270
Xy 75 63 186 97
X, 55 53 42 35
Xe 50 a8 39 0 "
X, 898 32 38 113 1'
X, 22 29 26 22
| X, 300 36 45 22 "
| %, 2565 312 274 169 i}
o 2.5 34 31 20 |
X, 1080 6 12 36 J|
X,s 2.5 51 46 16
¥z 6 1 3 31
Xy 300 86 109 94
Xoe 53100 4889 5769 4135
X1 400 39 36 53
X,y 2 7 7 7
| % 300 36 45 22
Xyo 60 136 128 188
X0 48 52 18
Xay 1 1
Xy 3 1 1
Xy 1 4.1 4.1 2.6
Xop 20 42 53 21
Xon 706 126 148 178
Y 8 6.5 6 8.8 ‘

In addition to the regression models that are developed as the
softwvare development advances, other regression models were
formulated by examining the correlations of the independent
variables. But, only linear relationships between Y and x,, i =
1,2,...,n, are examined in these models.

E.1 Multivariate Linear Regression Model Development

The correlation matrix of x,,...,x&'and y, based on the collected
data, c¢an be found on pages E~21 through E=24,. Moat of the
variables are highly correlated to one another. For exanmplae,
consider the sets {(Xy) Xy, Ry) Xg, Xgy Xpz) Xyg),
(X, 1 Xg s Xy) Xqgr Xqgr Xqgr Xqgs Xag s Xg2¢

x:)fseéé.w Tz. %ar?ab?hsnin each set have high correlation to
one other.

Several prediction models will now be systematically presented.
A different model. is developed for each phase of the software
development life cycle, using the metrics that are cunmulatively
available at that stage. Using the successive models, the user
can update the prediction at each design phase when the metrics
from that stage become available. After system test begins,
actual failure data will become available, and the results of
growth testing will supersede the prediction model.

The regression is performed by using the method of least squares.
Least squares finds the "best-fitting" hyperplana, where best
fitting means to find the hyperplane such that the sum of the
squares of the deviations of the predicted Y values from the
observed Y values is a minimum, which is the criterion of minimum
variance unbiased estimation. Bacause the number of metrics
available in latter phases exceeds the number of observations,
two different approaches were taken: selecting a subset of the
most significant predictors using stepwise regression, and
aggregating metrics using principal components analysis.
Additionally, a regression model was formulated that is based on
the correlations of the independent variables.

Although more than one regression model was developed, only one
was ultimately chosen by comparisons among the models in the
validation task. That model is the one that will be used in the
draft MIL-HDBK.

(Note that all regression analyses are done based on a 0.15
significance level.)

E.1.1.1 Requirements Analysis

There are only five independent variables involved in the
regression model for the requirements analysis phase.

X,¢ number of errors in the reguirements specification
(SRS)
X,: Requirements statements in the SRS
%3¢ Pages in SRS
¢ Man=months for requirements analysis
¢ Requirements changes after baseline

Since the number of observations is greater than the number of
independent variables in this case, an attempt hus been made to
produce the regression model by using the method of least squares
(1.e., the surface of the regression model f£its the corresponding
set of data points such that the sum of the squared errors is
smallest). The result of this technique is:

with ¥ restricted to nonnegative values.

The complete ocutput of the above regression model is on pages E-
25 and E-26 of this appendix. Based on this output one can
observe that the value of the coefficient of determination (R?)
is rather significant (= 0.85). This number represents the
percentage of total variation in the failure rate sampled that is
explained by the regression surface. But, since the p-values of
hypothesis tests (I) and (II) are all higher than 0.15 (the
predetermined significance level), and the values of the standard
deviations of the parameter estimates are also quite high, it is
suggected that all of the variables x,, x;,..., X are too
insignifiicant to be included in the model. This phenomenon
occurred as the result of too few data points (nine observations)
involved in the regression analysis (with five independent
variables). Therefnre, either stepwise regression or principal
components analysis is preterable.

Most of the regression analyses in this section are similar to:
each other. The list of formulas for the items that appeared in
the outputs of the regression analyses were taken from the
SAS/STAT user's guide and are included in this appendix starting
on page E-18.

Using the stepwise regression technique, a new regression model
for the requirements analysis phase involving only x, and x, was
developed. It can be written as follows:

Y = 11.46159363 + 12.5764363 x, - 0.08453592 x,
where Y is restricted to nonnegative values.

(Note: The complete output of the stepwise reyression analysis
for this phase is provided on pages E-27 through E-30)

The value of R? of each variable involved in the final stepwise
regression model for requirements analysis is substantial, and
all the p-values of hypothesis tests (I) and (II) are smaller
than 0.15. Note that x,, x, and X, are highly correlated, as well
as x, and x, (hased on Iche correlation matrix on page E=21), and
the values of the standard deviations of the parameter estimates
are high (for y=-intercept and x,). This fact suggested that the
above stepwise regression model is inferior to the model that is
produced using principal components analysis. This is because
stepwise ragression does not work well with correlated variables,

whereas principal components does.

Principal components are linear combinations of the original
variables; i.e., if P, is a principal component of (X,,...,%)},
for im1,2,...,5, then P, is of the form :

Pi - alixz + dzin - [Y +* asix!

The coefficient a, is the k™ component of the i*" normalized
eigenvector of the sample variance-covariance matrix. For
example, in the case i=1,

P, = 0,008548x, + 0.99488x; + 0.100704x, - 0,000135x, + 0.000478x,

The 1list of eigenvalues and normalized eiganvectors of the
estimated variance-covariance matrix for the reguirements
analysis phase is provided on page E-31,

Since the first eigenvalue is greater than 99.7% of the sum of
all eigenvalues, it is only needed to form a linear regreasion
model linvolving the software failure rate (dependent variable)
and P,, the first principal component (independent variablas).

The data set of P, was formed based on the original data set of

X, Xy ++0,%Xs. The linear regression model (based on principal
components analysis) can be summarizad as

E-8

Y = 18.04246146 + 0.05053379 P,
where
P, = 0.008548x, + 0.99488x, + 0.100704x, - 0.000135%, + 0.000478%
and Y is restricted to nonnegative values.

On page E=-33, the output of the least squares regression analysis
of ¥ and PJ is provided. All components in the column titled
"Prob > |T|" and the p-value of hypothasis test (I) are much less
than the 0.15 significance level. This indicates that the y-
intercept and P, variables are relevant to the model. The ninor
disadvantages of this model ares that R?® = 0.4064, (i.e., only
40.7% of the total variation in the failure rate sampled is
explained by the 1regression surface), and that the standard
deviation of the y-intercept is large.

Although the stepwise regression mothod, in this case, gives a
model with better values for R® than principal components
analysis, the fact that only x, and X, are chosen by the stepwise
method (even though these two variaglal are highly correlated)
suggests that the stepwise model should not be preferred.

E.1.1.2 pPreiiminary Design Phasa

In addition to the variables identified in the requirements
analysis phase, five more variables are involved in the
regression analysis in this phase. They are:

X,: number of errors in preliminary design documents

X,: number of computer software components (CSCs)

Xg! number of units (or Ada packages) in the design
structure

Xyt Pages in design documents (SDDs)

X4 Man-months for preliminary design

It is clear that a valid least sguares regrassion cannot be
obtained here, since the number of cbservations is less than the
number of independent variables. So, only stepwvise regression
and principal components analysis were performed.

The stepwise regression technique in this case chooses x, and
to be in the final stepwise rcgrolsion model. This model can ba
written as:

Y = 11.91767775 + 14.11517877 X, - 0.13589515 x,

where Y is restricted to nonnegative values.

E-9

The output for stepwise regression analysis for the preliminary
design phase can be found on pages E-35 through E-38. The value
for R? is high, and the components in the column titled "Prob >
IT|*, as well as the value of "Prob > F", on page E-37 are all
below the predetermined 1level of significance. Since the
stepwise procedure only allows a variable to stay or enter the
regression model if that variable mecets the 0.15 significance
level, the fact that variables x,,...,%,, X, are not in the final
stepwise model shows that they are irrelevant to the model.

Since there are¢ 10 independent variables involved in the stepwise
analysis, and only 9 observations are available, the MSE for the
full model cannot be computed. Therefore, C_., the Mallow's
statistic cannot be computed; so, only R® is used in decision-
making for the model.

From the correlation matrix, it can be detscted that most of the
variables in (%,,...,%X,,) are highly correlated to each other,
especially x, and x,. This indicates that the stepwise
regression model may not be good in terms of predicting the
software (failure rate. Other factors used to examine the
validity of the stepwise regression model are the standard
deviations of parameter estimates. Since these values of the y~-
intercept and x, are high, it is further evidence that the
stepwise rmgresalon model may not be adequate to describe the
relationship between software failure rate and software
characteristics which are available after the preliminary design
phase.

In order to perform principal components regression analysis, the
eigenvalues and eigenvectors of the estimated variance=-covariance
matrix of x%,,...,%, and y were computed and are shown on page E-
41, Since the sum of the first two aeiganvalues is greater than
99.7% of the sum of all the eigenvalues, only P, and P, will be
involved in the principal components regression model. Recall
that

means 99.8% of the total variation of the sampled software
faillure rate can be explained by only two principal components,
P, and P,. '

The data set for P, and P, can be oasily computsd by using the
following formulas:

P, = 0.006892x, + 0.795885x, + 0.07994x%, - 0,000288x, + 0.000323x,
+ 0.000094%, + 0.004297x, + 0.012784%, + C.59995%, + 0.002784x,,

P, = 0.032916x, + 0.448504%, + 0.562345x%; + 0.115656x, + 0.077519%,
= 0.004974x, + 0.071291x%, + 0.014141x, - 0.671443%, + 0.077466X,,

The output of the least squares regression model for Y, P, and P,
can be found on pages E-42 and E=-43,

The value of R! (the coefficient of determination) is similar to
that of the principal components regression model for the
requirements analysis phase. For a 0.15 level of significance,
the values of the components in the column titled "Prob > |T|"
and the values of standard deviations of parameter estimates
imply that only the y-intercept and P, are relevant to the
regression model. Since the value of "Prob > F" is bigger than
0.15, the null hypothesis of (I) should be rejected (i.e., all.
coefficients of independent variables must be 0).

This phencmenon may occur as the result of achieving too large a
number for the total variation of software failurs rate which is
explained by the regression model. Thus, a new regression model
that only involves Y and P, was considered at this point. The
complete output of this regression model is on page E-44. Below
is the summary of the regression model with Y and P, as dependent
and independent variables, respectively. '

Y = 17.89874335 + 0,04016008 P,
whare

P, = 0.006892x, + 0,795885x, + 0.07994x%; - 0.000288x, + 0.000323x,
+ 0.000094%, + 0.004297%, + 0.012784%, + 0.59995x, + 0.002784X,,

Y is restricted to nonnegative values.

This model possesses very good statistical characteristics. For
example, all p-values of hypothesis tests (1) and (II) are below
0.15 and the value of the coefficient of datermination R? is not
too small. Also, the values of the standard deviations of
parameter estimates are reasonable, except for that of the y-
intercept.

E.1.1.3 Detajled Design Phase

Fcur new variables are introduced for this phase:

Xy,¢ number of errors in design documents

X,,¢ Man-months for detailed design

Xy Design flaws identified after baseline

X,,: Design flaws identified after an internal review

The stepwise regression analysis and principal compenents
analysis were performed to obtain different regrassion models.
Then, after the validation task is completed, one of these
regression models will be chosen.

From stepwise regression analysis, a regression model can be
written amr follows:

Y = 28.96925965 + 15.63285056x, + 0.2540362x, - 2.38561282X, ~
0.08100319%, - 1.1992758x,,

where Y is restricted to nonnegative valuas.

The output of the stepwise regression analysis for the detailad
design phase can be found on pages E-46 through E=50. Similar to
previous phases, the value of R° is high, and the values vf the
components in the column titled "Prob > |T|", as well as the p-
value of hypothesis testing (I) are relatively small compared to
0.15. But, since high correlations exist between the variables
involved in the stepwise process, and the values of the standard
deviations of parameter estimates are high (except for that of

) the stepwise regression model is not good for predicting the
software failure rate, after the detailed design phase.

The output of the computed eigenvalues and eigenvectors of the
estimated variance-covariance matrix for x,,..., X, Y is
provided on page E-53. The first three principal components of
{Xy9+.¢,%,) are selected for the regression model, sinca the sum
of the tlrlt three eigenvalues is greater than 99.7% of the sun
of all the eigenvalues for the matrix.

The least squares ragression analysis involwving ¥, P,,...,P; can

be found on pages E-55 and E-56, The principal components

regression model for the detailed design phase can ba written as
Y = 36.61996444 + 0.12930799 P, - 2.4687751 P, - 0.64069017 P3

where

E-12

P, = 0.006891x, + 0.795821x, + 0.07993%; - 0.000289x, + 0.000322x,
+ 0.000097x, + 0.004296x, + 0,012792%, + 0.599912x, + 0.002783x,, +
0.10963x%,, + 0.001742%,, + 0.003708x,; - 0.003289x,,

P, = 0.010031%, + 0.403242x, + 0.485487x; + 0.131773x, + 0.07455%,
+°0.018274x%, + 0.077214x, + 0,009831x, - 0.595055x, + 0.08573x,, =
0.261383x,, + 0.113134x,, + 0.089211x,, - 0.348945%,,

P, = -0.25458x, + 0.016768x, = 0.263973x, + 0.202666%, = 0.072133%,
+0.62971x, + 0.103537%, - 0.120209x, + 0.013861x, + 0.106051x,, +
0.348472x,, + 0.111607%,, = 0.104901x,5 - 0.490828x,,

where Y is restricted to nonneygative valuas.

Notice that in this case the value of R?® is quite high and the
componants of the column titled "Prob > |T|" (see page E-55) are
relatively lower than 0.15 (level of significance); but the
valuas of tha standard deviations of y-intercspt, P, and P, are
high. Hence, further examination is required to validate the
credibility of the above model.

E.1.1.4 Coding and Unit Test Phase

Below is the 1list of the additional variables that were
considered in the regression analysis after the Coding and Unit
Testing phase:

%,,¢ Faults found through code reviews

X.;: Programmer skill level (average years of expsrience)
X,g¢ number of units undergoing review

X! Average number of source LOC per unit

X, number of branches in a typical unit

X,,: Percent of branches covered

X,,: Nesting Depth average

X,e! number of times a unit is unit-tested

X,,: Man-months for Coding and Unit test

X, ¢ Defects identified from walkthroughs and reviews

(Note: x,, = Xy + x,, + X,,; therefore, only x, was considered in
the regression analysis.)

As in the previous phases, the stepwise regression and principal
components analyses were also performed for the coding and unit
test phase.

From stepwise regression analysis, the regression model can be
described as follows:

E=13

Y = 23.91 + 16.4x, + 0.33x, = 2.02x, = 0.10%, = 1.46%, = 1.33%,, -
0.N04K,, + 12.99%,

(In case the calculated value of Y is negative, this number
should not be used as the predicted software failure rate.)

The stepwise regression analysis can be found on pages E-57
through E=-é1. Notice that the F values for the selected
variables in Step 8 are extremely large (999999.99), which
indicates +hat this model is not reliable in describing the
relationship between software failure rate and software
characteristics. Devpite this, an attempt was made to perform
the least squares regression analysis based on Y, X, X,, qu, x{,
X,r Xy70 Xgs Xy The results can be found on page E-63. t is
not surpri’.sing that this attempt failed for the 3ame reason as
menticned above. A stepwise regression model cannot be formed at
this point, and the model was therefore discarded.

Based on the results of eigenvalues of the estimated variance-
covariance matrix of X;, ..., XjprccerXyproee Xy, only the <iirst
principal componant is solecteé to be in the regression model
(for the principal components analysis approach).

The principal components regression analysis gives

Y = 38.02688694 - 2.58584501P,
where

P, = -0.00001x, - 0.000851x, = 0.00C137x%; = 0.000021x, = 0.000015x,
=' 0.000025x, = 0.000017x, = C.00002%, - 0.000631% = 0.00017%, +
0.000014x,, =~ 0.00002x,, - 0.080012x,, + 0.005288x, -
0.000125%,y = 0.000108%, = 0.000X, + 0.008004x, - 0.000013x, -
0.000019%,, - 0.000117%y,

and Y is restricted to nonnegative viulues.

In this case, the value of R? is very low (0.0748,1.e., only
7.48% of the total variation of the sampled software failure
rates can be explained by the above model). Also, sinrce the
second component in the column titled "Prob > |T|" is much
greater than 0.15 (level of significance), and the values of the
standard deviations ot parameter estimates are high, P, is not
"relevant! to the regression model. But, P, cannot be deleted
from:l the model; if it is deleted, there will be no model to
consider.

Since the regressors Xx,,...X, are correlated, it is difficult to
disentangle the effects of one regressor from those of another,
and the parameter estimates may be highly dependent on which
regressors are used in the model. 1Instead of formulating new
reqgression models based on the progress made in software
development, another way to annrcach *the task ol finding the
relationship Letwean software failure rate and scftware
characteristics was used. This method is discussed below.

Independent variables are assigned to different sets such that
the elements of a set are highly correlated to one another. 1In
this case, based on the correlation matrix on pages E~21 through
E-24, it was determined that independent variables can be divided
into four disjoint sets { x,,%,, Xy, X5/ Xgr X5/ Xas } o+ { X,0Xgr%p) Ryqs
timu independent variables have been normalized, sc that the
mere effect of program size is canceled out.

Next, after performing principal components analysis for each set
with more than one elenment, regression models can be formulated
using either the method of least squares or stepwise regression
analysis. It was determined that only the first principal
component of @ach set needed to be involved in regression
analyses, since the fewest number of independent variables
involved in regression models as peossible is dasired. (Note that
in case of a singleton, the element in that set is its first
principal component.

This approach was expected to yield reasonable regression models,
since the independent variables involved are uncorrelated.

Notation:
A= { X, X3, X3, Xg, Xy X301 Xy)
B = { X, X51 Xp) Xygr Xigr Xygr Xygr Xpor Xpp0 Xp)
C= { Xy, X7)}
D= { x,
E= (%)
P,: the first principal component of A
P,: the first principal component of B
P.: the first principal component of C
P,: the first principal comporent of D; in this case P, = x,
Pg: the first principal component of E; in this case P, = x,,

E-15

A new data set for P,, P,, P, P,, P, was computed based on the
original data of x,,...,X,.

E.1.2.1 Leagt Squaxes Methods Applied to Principal cComponents

Below is the formula of the regression modal involving Y,
P,/+..,B which is produced by using the Least Squares method

Y = 303.72 + 0.049 P, + 0.015 P, + 0.041 P, = 0.647 P, - 290.93 P,
wvhere

P, = 0.006891x, + 0.795466x, + 0.079926x, + 0.012782%, + 0.599617X,
+ 0.008398x, + 0,032006x,

P, = - 0.004142x, = 0.002728%, = 0,003202%, = 0.003143X%,, =
0.003841X,, + 0.999722X,, - 0.013048%,, = 0.017678x,, +
0.00063x,, = 0.003551x,,

P, = 0.981742x,, - 0.190218x,,

Py = %,

Pg = X

and Y is restricted to nonnegative values.

Although the value of R? for this regression model is large
(0.7455)=--1.e., a large percentage of the total variation in the
failure rate sampled can be explained by the regression surface,
the j-value of the hypothesis test (I) and most of those of
hypothesis test (II) are much bigger than 0.15 significance
level. This suggests that all the coefficients of the
independent variables in the regression model should be 0. Thus,
the model is not adequate to describe the relationship between
software failure rate and its characteristics.

Notice that all p-values of hypothesis test (II), on page E-=79,
are much greater than 0.15 (the predetermined significance
level), except for the p-value of the hypothesis test for P,.
This indicates that another regression model which only involves
Y and P, needed to be considered.

This model can be summarized as follows:
Y = 17.88125956 + 0.04011814 P,
where P, is defined previously. (In case the calculated value of

Y is negative, this number should not be used as the predicted
software failure rate, in this case.)

E-16

-

Although the value of R? is smaller than that of the regression
model which involved ¥, P,,..., Py, this model is preferable
since the all p-values of both hypothesis tests (I) and (II) are
lower than 0.15 (the predetermined significance level), also, the
value cf the standard deviations of parameter estimates is
reasonably small.

Since P, is a linear cembination ef x,, 1, i, Xg ¢ Xg, and
the comp..ate data of these indepondont variaglu wﬂl not be
available until after the Code and Unit Test phase of software
development, this regression model cannot ba used in the early
stages of software development.

E.1.2.2 gStepwise Regression Applied to Principal Components

Another way to correctly eliminate some of the independent
variakles in reoe,Py), Dbesides examining the p-values of
hypothesis taest (&I), is to perform stepwise regression analysis.

As mentioned earlier, stepwise regression allows a variabla to
enter or leave the regression model based on the value of R? and
Mallow's statistic Cpe The result of the stepwise regression
analysis in this case is:

Y = 27,78996571 + 0.03884431 PA - 1.20635275% P5
where

P, = 0.006891x, + 0.795466x, + 0.079926X, + 0.012782x%, +
0 599617x, + 0.008398x, + 0.035006x,

-and P, = x,. (In case the calculated value of Y is negative,
this number should not be usad as the predicted software failure
rate, in this case.)

Although the values of R? and p-values are reascnably good, the
values of the standard deviations of parameter estimates of the
y-intercept and P, are substantial. Therefore, this regression
model is not adaquata in term of describing the relationship
between software failure rate and software characteristics.

E.2 Multivariate Nonlinear Rearession Models Development

Based on the scatter plots of Y versus x,, i = 1,2,...,25, it was
noticed that Y is inversely proportional to each of the following
independent variables, o Xyq0 Xy of . Therefore, in
this section, new regression mod is o} sofgware failure rate and
software characteristics are formulated based on

E-17

11/'x or i/xzb, 1/:’:23. 2 15(Ree:all "tRat” some of the 1néepandont
variables were normalized based on KLOC.)

There were more than one regression model which were built for
each phase of the software development by using the least sguaras
method, stepwise regression, and principal components analysis.
The nuaker of ruyiresscrs involved in the regression analysis for
each softwace development phase, in this section, is the same as
that in section E.1.

These regrassion models are almost identical to or possess the
same characteristics as the corresponding models in the
discussion on Multivariate Linear Regression Models. Therefore,
creating new regression models based on the inverse proportional
relationship between Y and x, , where i belongs to (6, 11, 13
14, 16 ,23), results in neg&igibln improvements to the linear
regression models. Thus, the models in this section can be
ignored in the process of validation.

E-18

E.3 NOTATION

= n: number of observations

= k: number of independent variables in a regression model

= Yy actual value of software failure rate of the i-th
observation; i:= 1,2,...,n.

~ 9, predicted value of software failure rate of the i-th

observation; i:= 1,2,...,n.

by: estimated coefficient of the i-th independent variable;
i= 0,1,2,...,,Nn7 by: estimated y-intercept

= 8,: estimated standard deviation of the random variable b;
13- 0,1,2,..-,!‘1

Z;y:

Dep. Mean : y = -~

Sum of Squares Model s SSR
n
u E (?1 - 37)3
Sum of Squares Error = SSE
R
= g (Yy - }’1)2

Sum of Squares C Total = SST
= SSR + SSE

Mean Square Model = MSTR

. SSR
3

SSE

Error = 222 _
Mean Sgquare r A= (k+1)

E-19

. MSTR
F - Value (Model) sE !

this is the F-statistic of the hypothesis testing with

(I) Hotbo-b1-ooo-bk-o
H,: 3 at least one b; » b, » 0 where 0 s i s X

= Prob > F (Model): p-value of the above hypothesis teating (I):
this is the significance probability, or the probability of

getting a greater F-statistic than that observed if the
hypothesis in (I) is true.

Root MSE = (/MSE

Root MSE is an estimate of the standard deviation of tﬁ. error
ternm. .

~ C.V: coefficient of variation: this number expresses the
standard deviation of the error term in unitless value.

C.V = (100 * Root MSE) / Dep. Mean
- R?: coefficient of determination; a measure between 0 and 1
which indicates the portion of the (corrected) total variation
that is attributed to the fit rather than left to residual error.
R? = SSR / SST

- Adj R-sq: the adjusted R?, this is a version of R? that has
been adjustad for degrees of freedom.

Adj Re8q¢ = 1 = [((n = 1)(1 - R})) / (n - p)):

where i is aqual to 1 if there is an intercept, 0 otherwise; and
p is the number of parameters in the model.

The parameter estimates and associated statistics are all
printed; and they include the following:

- The parameter estimates

- the Standard Erroy, the estimate of the standard deviation of
the parameter estimate

E-20

-iT for H, Parameter = 0 gives the T-ratio of hypothesis tests
with :

(II) Hy: by = 0
H;: b, » 0; where 0 < i S Kk

T-zratio = JEL
8y,

- Prob > L?l column on page !l1!!! provides the p-value for each
of the hypothesis test in (II). This is the two-tailed

significance probability, or the probability that a t statistic
would obtain a greater absolute value than that observed given
that the true parameter is zeroc.

X1

1.0000
0.9362
0.8452
-0.3836
-0,1201
=0.2176
0.2094
0.9073
0.9411
«0,0041
0.4038
-0.1623
-0,1006
=0.3104
-000429
=0.4256
-0.,3302
0.0368
0.4056
0.7783
-0.2630
0.5060

CORRELATION MATRIX

X2

0.9362
1.0000
0.9635
-0.0651
0.1014
=0.0439
0.5114
0.9670
0.9963
0.3049
0.3674
0.1224
«0.,3707
-0.1038
-0.3204
-0.2358
-0,0663
0.1637
0.1948
0.9378
0.0317
0.6775

X3

0.8452
0.9635
1.0000
0.1145
0.2110
0.0347
0.6461
0.9496
0.9416
0.4660
0.258%
c.2788
=0.4807
0.0814
=0.4223

=-0.0807

0.1197
0.2210
=0.0149
0.9648
0.2346
0.7958

E-22

X4

-0.3536
-0.0651
0.1145
1.0000
0.6895
0.4258
0.8147
0.0130
-0,0932
0.9189
-0,3284
0.9134
-006175
0.7137
-0,6001
0.6879
0.84587
0.30851
-0.8787
0.2588
0.9287
0.5172

XS

~0.1201
0.1014
0.2110
0.689%
1.0000
=0.1743
0.6155
0.2251
0.0891
0.7586
=-0.3100
0.9108
=0.4669
0.4812
=-0.4598
0.2103
0.9220
0.2667
=0.7942
0.4084
0.8501
0.2281

Xé

-0.2176
~0.0439
0.0347
0.4298
=0.,1743
1.0000
0.3814
-0.0898
=0.0360
0.3108
0.4513
0.1270
=0.3673
=0.0085
=0.4065
0.4592
0.01852
0.3339
=-0.0878
0.0107
0.2057
0.4316

X7

0.2094
0.5114
0.5461
0.8147
0.6135
0.3814
1.0000
0.540¢
0.4829
0.9626
-0.0715
0.8360
-0.7474
0.572%
-0.7104
0.4956
0.6732
0.3261
-0.6003
0.7499
0.8059
0.8077

CORRELATION

X8

0.9073
0.9670
0.9496
0.0130
0.2251
-0.0898
0.5406
1.0000
0.9599
0.3728
0.3060
0.2278
-0.3308
-0.0808
~0.2481
=0.1399
0.0556
0.0706
0.0643
0.9465
0.1392
0.6900

MATRIX (con't)

X9

0.9411
N.9963
0.9416
-0.,0932
0.0891
=-0,0360
0.4829
0.9599
1.0000
0.2732
0.4215
0.0962
-0,3567
-0!1668
-0,3140
=0,2796
-0.1020
0.1819
0.2346
0.9234
=0.0079
0.6492

X10

-0.0041
0.3049
0.4660
0.9189
0.7586
0.3108
0.9626
0.3728
0.2732
1.0000

-0.2308
0.9476

=-0.7003
0.6689

-006656
0.5772
0.8372
0.2933

=0.7761
0.6047
0.9286
0.6798

X1l

0.4035
0.3674
0.2585
=-0.3284
=-0.3100
0.4513
-0.0718
0.3060
0.4218
=0.2305
1.0000
=0.3468
0.0920
-0,8177
0.0002
~0,3857
=0.4753
0.3494
0.5157
0.2108
=-0.3908
0.159%

X12

-0.1623
0.1l224
0.2788
0.9134
0.9108
0.1270
0.8360
0.2278
0.0962
0.9476

=0.,3468
1.0000

-0,6153
0.6621

-0,5899
0.5032
0.9504
0.2796

-0.8821
0.4580
0.9692
0.4740

X15

-0.,1006
-003707
«0.4807
-0.6175
=0.4669
-0,3673
«0.7474
-003308
=0.3567
=-0.7003

0.0920
-006153

1.0000
-0.5222

0.9756
~0.1376
-005186
-005707

0.4671
-0.5400
~0.6024
-0.6567

CORRELATION

X17

-0.3104
=-0.1035
N.0814
0.7137
0.4612
-0.,0085
0.5725
-0,0808
-0,1668
0.6689
-0.8177
0.6621
-0.5222
1.0000
-0.4545
0.5969
0.6913
0.0000
-Q.7217
0.1381
0.7206
0.3210

MATRIX
X18

-0.0429
-0.3204
=0.4223
-0.6001
-0.4598
-0.4065
=0.7104
=0.2481
-0.3140
=0.6656

0.0002
-0.5899

0.97856
~0.4545

1.0000
-0.0563
-0.4951
-0,7011

0.4395
-0.4858
-0.5728
=-0.5954

E-24

X19

~0.4256
-0.2358
~0.0807
0.6879
0.2103
0.4592
0.4956
-0.1399
-0.2796
0.5772
-0.3857
0.5032
=0.1376
0.5969
~0.0863
1.0000
0.4933
-0.3709
-0.5073
-0.0231
0.6015
0.2408

X20

-0.3302
~-0.0665
0.1197
0.8457
0.9220
0.0152
0.6732
0.0556
=0.1020
0.8372
-0.4753
0.9504
=-0.5186
0.6913
=-0.4951
0.4933
1.0000
0.2078
=0.9286
0.2782
0.9699
0.2867

X21

0.0368
0.1637
0.2210
0.3051
0.2667
0.3339
0.3261
0.0706
0,1819
0.2933
0.3494
0.2796
~0.8707
0.0000
-007011
=0.3709
0.2078
1.0000
-0.2887
0.2343
0.2492
0.4182

X1
X2
X3
X4
X8
X6

X8

X9

X10
X1l
X12
X15
X17
' X18
X19
X20
X21
X22
X23
X24
Xa5

X22

0.4056
0.1948
=0.,0149
-0.8757
«0,7942
«0. 0875
«0.6003
0.0643
0.2346
-0.7761
0.5157
-0.8821
0.4671
-0,7217
0.4395%
~0.5073
-0.9286
-0.,2887
1.0000
-0,13583
=0.9220
-0.3584

CORRELATION MATRIX (con't)

X23

0.7783
0.9375
0.9648
0.2588
0.4084
0.0107
0.7499
0.9465
0.9234
0.6047
0.2108
0.4580
=0.5400
0.1381
-0.4858
=0.0231
0.2782
0.2343
=0.1353
1.0000
0.3734
0.7711

X24

-0.2630
0.0317
0.2346
0.9257
0.8501
0.2087
0.8059
.0.1392
=0.,0079
0.9286
=0.3908
0.9692
-0.6024
0.7206
-0.5728
0.6015
0.9659
0.2452
-0.9220
0.3734
1.0000
0.4698

X25

0.5060
0.6775
0.7958
0.5172
0.2281
0.4317
0.8077
0.6900
0.6493
0.6798
0.1599
0.4740
-0.6567
0.3210
=-0,5954
0.2408
0.2867
0.4182
-0.,3584
0.7711
0.4698
1.0000

REQUIREMENTS ANALYSIS PHASE: Least Squares Method

DEP VARIABLE:

SOURCE

MODEL 5
ERROR 3
C TOTAL 8

ROOT MSE
DEP MEAN
c.vV.

DF

VARIABLE

INTERCEP

VARIABLE
INTERCEP

Y

DF

PFRPRPPRP

D

e |

PRPRPP

ANALYSIS OF VARIANCE
SUM OF MEAN
SQUARES SQUAKE ¥ VALUE
3099.68840 619.93768 3.195
582.01382 194.00461
3681.70222
13.92855 R-SQUARE 0.8419
24.25556 ADJ R-SQ 0.5%84
57.42418
PARAMETER ESTIMATES
PARAMETER STANDARD
ESTIMATE ERROR
5.12618938 13.38038672
18.71786692 8.32103039
-0,17215913 0.13550831
0.51992600 0.85056011
0,38956606 2.53978622
-0.23386176 2.43926235
PROB > |T|
0.7272
0.1553
0.2935
0.5842
0.8878
0.9297

PROB>F
0.1839

T FOR HO:
PARAMETER=0Q

0.383
1.889
-1.270
0.611
0.153
-0.096

PREDICT STD ERR LOWER95%
OBS ID ACTUAL VALUE PREDICT MEAN
1 1.53043 36.0000 29.8926 6.8038 8.2395
2 0.75 31.0000 15.3818 8.9610 -13.1366
3 9.82125 64.0000 64.0621 13.9284 19.7350
4 2.30714 48.0000 45,3538 12.9698 4.6773
5 1.157%5 10.0000 23.1440 6.8621 1.3053
6 0.94162 8.0000 18.5746 7.3890 =-4.9410
7 0 6.5000 3.8082 13.8177 =40.1666
8 0 6.0000 8.1040 13.7796 ~35.7495
9 0 8.8000 9.3788 13.8826 ~34.8026
10 13.6698 . 234.4 111.5 =120.5
11 1.47059 . 21.9711 7.7646 ~2.7396
UPPER25% LOWER95% UPPER95%
oBS ID MEAN PREDICT PREDICT RESIDUAL
1 1.53043 51.5458 =19.4409 79.2262 €.1074
2 0.75 43,9001 =37.3272 €8.0907 15.6182
3 9.82125 108.4 1.3737 126.8 -0.0621
4 2.30714 87.2304 =14.6159 106.5 2.0462
5 1.1578 44.9827 -26.2713 72.5592 =13.1440
6 0.94162 42.0902 =31.6043 68,7538 -10.5746
7 0 47.7830 -58.6315 66.2480 2.6918
8 0 51.9576 =54.2503 70.4584 -2.1040
S 0 53.5603 -53.2066 71.9643 -0.5788
10 13,6698 589.4 -123.3 §92.1 .
11 1.47059 46.6817 =-28.7789 72.7210 .
STD ERR
OBS ID RESIDUAL
1 1.83043 12,1837
2 0.75 10.6633
3 9.82125 0.0653
4 2.30714 5.0782
5 1.1575 12.1209
6 0.94162 11.8071
7 0 1.7539
8 0 2.0317
9 0 1.1302
10 13.6698 .
11 1.47059
SUM OF RESIDUALS 1.57652E~14
SUM OF SQUARED RESIDUALS 582.0138
PREDICTED RESID SS (PRESS) 8041231

REQUIREMENTS ANALYSIS PHASE: Stepwise Selections

STEPWISE REGRESSION PROCEDURE FOR DEPENDENT VARIABLE Y

WARNING:

< OBSERVATIONS DELETED DUE TO MISSING VALUES.

NOTE: SLENTRY AND SLSTAY HAVE BEEN SET TO
.15 FOR THE STEPWISE TECHNIQUE.

STEP 1

REGRESSION
ERROR
TOTAL

INTERCEPT
X1

VARIABLE X1 ENTERED

DF SUM OF SQUARES

1 2484.58798182

7 1197.11424040

8 3681.70222222

B VALUE STD ERROR
13.81140806

5.69406301 1.49387362

BOUNDS ON CONDITION NUMBER:

STEP 2

REGRESSION
ERROR
TOTAL

INTERCEPT
X1
X2

BOUNDS ON CONDITION NUMBER:

VARIABLE X2 ENTERED

SUM OF SQUARES

2 2995.77625834

DF

6

8 3
B VALUE

11.46159363
12.57643630
=0.08453592

685.92596389
681.70222222

STD ERROR

3.47633170
0.03997734

R SQUARE = 0.67484762

C(P) =
MEAN SQUARE
2484.587982

171.016320
TYPE II SS

2484.587982
1,

1.17054544
F PROE>F
14.53 0.006%
F PROB>F
14.53 0.0066
b

R SQUARE = 0.81369325

C(P) =
MEAN SQUARE
1497.888129

114.320994
TYPE II SS

1496.231406
511.188277

8.100769,

0.53561689
¥ PROB>F
13.10 0.0065
F PROB>F
13.09 0.0111
4.47 0.0789

32.40308

NO OTHER VARIABLES MET THE 0.1500 SIGNIFICANCE LEVLL FOR

E-28

e

SUMMARY OF STEPWISE REGRESSION PROCEDURE FOR DEPENDENT VARIABLE Y

VARIABLE NUMBER PARTIAL
STEP ENTERED REMOVED IN R¥*#*2
1 Xa 1 0.6748
2 X2 2 0.1388
VARIABLE
STEP ENTERED REMOVED F
1 Xl 14.5284
2 X2 4.4715

MODEL

Rw#2 C(P)
1.17055
0.53562

0.6748
0.8137

PROB>F

0.0066
0.0789

REQUIREMENTS ANALYSIS PHASE: Stepwise Regression Analysis

DEP VARIABLE:

SOURCE DF

MODEL 2
ERROR 6
C TOTAL 8

ROOT MSE

DEP MEAN
c.v.

VARIABLE
INTERCEP
Xl
X2
VARIABLE
INTERCEP

X1
X2

OBS

POWONOOMESEWN R

[l

Y
ANALYSIS OF VARIANCE
SUM OF MEAN
SQUARES SQUARE F VALUE PROB>F
2995,77626 1497.88813 13.102 0.0065
685.92%96 114.32099
3681.70222
10,6921 R-SQUARE 0.8137
24,25556 ADJ R-SQ 0.7516
44,08103
PARAMETER ESTIMATES
PARAMETER STANDARD T FOR HO:
DF ESTIMATE ERROR PARAMETER=0
1 11.46159363 4.35386975 2,633
1 12.57643630 3.47633170 3,618
1 -0.08453592 0.03997734 -2.115
DF PROB > |T|
1 0.0389
1 0.0111
1 0.0789
PREDICT STD ERR LOWER95%
ID ACTUAL VALUE PREDICT MEAN
1.53043 36.0000 30.3676 5.1568 17.7494
0.75 31,0000 19.3300 3.8476 9.9152
9.82125 64.0000 64.4400 10.6835 38,2983
2.30714 48.0000 40.0666 7.1778 22,5031
1.1575 10.0000 25.5450 4.3932 14.7952
0.94162 8.0000 22.1894 3.9907 12.4248
0 6.5000 6.3434 5.4949 -7.1021
0 6.0000 4.0762 6.2383 ~11.1883
0 8.8000 5.9417 5.6189 =7.8072
13.669¢ . 182.9 45.6505 71.1989
1.47059 . 24.9837 3.8277 15.6176

E~30

UPPER95% LOWER95% UPPERS5%

OBS ID MEAN PREDICT PREDICT RESIDUAL
1 1.53043 42.9857 l1.321¢ 59.4141 5.6324
2 0.75 28.7449 -8.4751 47.1351 11.6700
3 9.82125 90.5817 27.4553 101.4 =-0.4400
4 2.30714 57.6301 8.5553 71.5779 7.9334
5 1.1575 36.2947 -2.7400 53.8300 =15.5450
6 0.94162 31.9543 =5.7362 50.1150 =14.1894
7 0 19.7889 -23.0720 35,7588 0.1566
8 0 19.3408 -26.2139 34.3663 1.9238
9 0 19.6906 -23.6136 35.4970 2.8583

10 13.6698 294.6 68.1760 297.6 .
11 1.47059 34.3497 =2.8049 52.7723 .
STD ERR

OBS ID RESIDUAL
1 1.53043 9.3664
2 0.75 9.9758
3 9.82125 0.4280
4 2.30714 7.9246
5 1.1575 9.7479
6 0.94162 9.9194
U 0 9.1721
8 0 8.6836
9 0 9.0967

10 13.6698 .
11 1.47059 .

SUM OF RESIDUALS
SUM OF SQUARED RESIDUALS
PREDICTED RESID SS (PRESS)

1.84297E~-14
685.926
76527.44

REQUIREMENTS ANALYSIS PHASE: Principal Component Analysis

PRINCIPAL COMPONENT ANALYSIS

11 OBSERVATIONS

5 VARIABLES
SIMPLE STATISTICS
X1 X2 X3 X4 X5
MEAN 2.87712 105.297 20.0766 2.83031 2.59865
ST DEV 4.52637 243.706 26.775%4 3.99664 3.05383
COVARIANCES
X1 X2 X3 X4 X5
X1 20.488 507.627 76.7436 -6.88532 4.59364
X2 507.627 59392.6 6000.55 -9.22677 26.4418
X3 76.7436 6000.55 716.922 11.1813 23,2099
X4 -6.88532 -9.22677 11.1813 15.9732 5.96383
X5 4.59364 26.4418 23.2099 5.96383 9.32588
TOTAL VARIANCE=60155.27
EIGENVALUE DIFFERENCE PROPORTTION
CUMULATIVE
PRIN1 60004.3 59883.3 0.997491
0.99749
PRIN2 121.0 98.2 0.002012
0.99950
PRIN3 22.9 17.3 0.000380
0.999838
PRIN4 5.6 4.2 0.000093
0.99998
PRINS 1.4 . 0.000024
1.00000

E-32

X1
X2
X3
X4
X5

PRIN1

0.008548
0.994880
0.100704
=.000135
0.000478

EIGENVECTORS

PRIN2

0.229267
-.097623
0.944222
0.104725
0.188107

PRIN3

-.593818
0.003010
0.020841
0.782781
0.184906

E-33

PRIN4

0.443844
0.024948
-.287915
0.146934
0.835401

PRINS

0.630671
0.007280
-.122369
0.595565
«.482213

REQUIREMENTS ANALYSIS PHASE: Least Squares Method
(using Principal Components)

DEP VARIABLE:

SOURCE DF
MODEL 1
ERROR 7
¢ TOTAL 8

ROOT MSE

DEP MEAN
c.v.

VARIABLE

INTERCEP
Pl

VARIABLE

INTERCEP
Pl

OBS

POOVOJOOREWNP

P

Y
ANALYSIS OF VARIANCE
SUM OF MEAN
SQUARES SQUARE F VALUE PROB>F
1496.13872 1496.13872 4.792 0.0648
2185.56350 312,22336
3681.70222
17.66984 R-SQUARE 0.4064
24.25556 ADJ R-SQ 0.3216
72.84864
PARAMETER ESTIMATES
PARAMETER STANDARD T FOR HO!
DF ESTIMATE ERROR PARAMETER=0
1 18.04246146 6.53814173 2.760
1 0.05053379 0.02308493 2.189
DF PROB > |T|
1 0.0281
1 0.0648
PREDICT STD ERR LOWER95%
ID ACTUAL VALUE PREDICT MEAN
4.31759 36.0000 18.2606 6.4955 2.9011
18,7646 31.0000 18.9907 6.3621 3.9467
839.563 64.0000 60.4687 17.5602 18.9451
5.83555 48.0000 18.3374 6.4808 3.0126
5.7755 10.0000 18,3343 6.4814 3.0082
13,2658 8.0000 18.7128 6.4111 3.5528
61.534 6.5000 21.1520 6.0582 6.8266
90.1651 6.0000 22.5988 5.9384 8.5567
67.323 8.8000 21.4445 5.0283 7.1898
9.03386 . 18.4990 6.4503 3.2462
59,2754 . 21.0379 6.0706 6.6831

E-34

UPPER95% LOWER95% UPPER95%

OBS ID MEAN PREDICT PREDICT RESIDUAL
1 4.31759 33.6202 -26,2559 62.7772 17.7394
2 18,7646 34.0347 -25.4180 63.3994 12.0093
3 839.563 102.0 1.5618 119.4 3.5313
4 5.83555 33,6621 =-26,1672 62.8419 29,6626
5 5.7755 33,6605 -26.1707 62.8394 -8.3343
6 13.2658 33.8729 ~25.7353 63.1€10 =10.7128
7 61.534 35.4774 ~-23.0184 65.3224 -14.6520
8 90.1651 36.6410 =21.4808 66.6782 -16.5988
9 67.323 35,6993 =-22.7030 65.5921 =12.6445

10 9.03386 33,7517 -25.9809 62.9788 .
11 59.2754 35.3927 =23.1421 65.2178 .
STD ERR

OBS ID RESIDUAL
1 4.31759 16.4326
) 18.7646 16.4848
3 839.863 1.96852
4 5.83555 16.4384
5 5.7755 l16.4382
6 13.2658 16.4687
7 61.534 16,5988
8 90.1651 16.6421
9 67.323 16.6097

10 9.03386 .
11 59.2754 .

SUM OF RESIDUALS
SUM OF SQUARED RESIDUALS
PREDICTED RESID SS (PRESS)

3.46390E-14
2185.563
84362.07

E=35

PRELIMINARY DESIGN PHASE: Stepwise Selections

STEPWISE REGRESSION PROCEDURE FOR DEPENDENT VARIABLE Y
WARNING: 2 OBSERVATIONS DELETED DUE TO MISSING VALUES.

NOTE: SLENTRY AND SLSTAY HAVE BEEN SET TO
.15 FOR THE STEPWISE TECHNIQUE.

STEP 1 VARIABLE X1 ENTERED R SQUARE = 0.67484762
C(P) = ,
DF SUM OF SQUARES MEAN SQUARE F PROB>F
REGRESSION 1 2484,.58798182 2484.587982 14.8%52 0.0666
ERROR 7 1197.11424040 171.016320 _
TOTAL 8 3681.70222222
B VALUE STD ERROR TYPE II 8S ' F PROB>F
INTERCEPT 13.81140806
Xl 5,.69406301 1.49387362 2484.587982 14.53 0.0066
BOUNDS ON CONDITION NUMBER: 1, 1
STEP 2 VARIABLE X9 ENTERED R SQUARE = 0.,86541068
C(P) = ,
DF SUM OF SQUARES MEAN SQUARE F PROB>F
REGRESSION 2 3186.18444000 1593.092220 19.29 0.0024
ERROR 6 495.51778222 82.586297
TOTAL 8 3681.70222222
B VALUE €TD ERROR TYPE II SS F PROB>F
INTERCEPT 11.91767775
X1 14.11517877 3.07005978 1745.770281 21.14 0.0037
X9 ~-0.13589515 0.04662451 701.596458 8.50 0.0268

BOUNDS ON CONDITION NUMBER: 8.748719, 34.98288

NO OTHER VARIABLES MET THE 0.1500 SIGNIFICANCE LEVEL FOR ENTRY

E=36

SUMMARY OF STEPWISE REGRESSION PROCEDURE FOR DEPENDENT VARIARLE Y

VARIABLE NUMBER PARTIAL MODEL
STEP ENTERED REMOVED IN Rw#2 R##»2 C(P)
1 Xl 1 0.6748 0.6748 .
e X9 2 0.1906 0.8654 .
VARIABLE
STEP ENTERED REMOVED F PROB>F
1 X1 14.5284 0.0066

2 X9 8.4953 0.0268

PRELIMINARY DESIGN PHASE: Stepwise Regression Analysis

DEP VARIABLE: Y
ANALYSIS OF VARIANCE

MEAN

SUM OF
SOURCE DF SQUARES SQUARE F VALUE PROB>F
MODEL 2 3186.18444 1593.09222 19.290 0.0024
ERROR 6 495.51778 82.58629704
C TOTAL 8 3681.70222
ROOT MSE 9.0877 R-SQUARE 0.8654
DEP MEAN 24.25556 ADJ R-8Q 0.8205
c.V. 37.46647
PARAMETER. ESTIMATES .
PARAMETER STANDARD T FOR HO:
VARIABLE DF ESTIMATE ERROR PARAMETER=0
INTERCEP 1 11.91767775% 3.63650384 3.277
X1 1 14.11517877 3.07005978 4.598
X9 1 -0.13589515 0.04662451 -2.915
VARIABLE DF PROB > |T|
INTERCEF 1 0.0169
X1 . 1 0.0037
X9 1 0.0268
PREDICT STD ERR LOWER95%
OBS ID ACTUAL VALUE PREDICT MEAN
1 1.53043 36.0000 33.3983 4.8157 21.6148
2 0.75 31.0000 19.3139 3.2591 11.3392
3 9.82125% 64.0000 63.5265 9.0808 41.3065
4 2.30714 48.0000 43.9981 6.6057 27.8345
5 1.1578 10.0000 24.3466 3.3915 16.0483
6 0.94162 8.0000 18.6444 3.1730 10.8804
7 o £.5000 3.2483 5.0935 -9.2181
8 o 6.0000 5.4633 4.5832 -5.7513
9 0 8.8000 6.3636 4.3968 -4.3949
10 13.6698 . 202.2 39.9995 104.4
11 1.47059 . 22.6830 3.0574 15.2017
E-38

UPPER95% LOWERS5% UPPERS5%
OBS ID MEAN PREDICT PREDICT RESIDUAL
1 ~1,53043 45.1818 8.2323 58.5643 2.6017
2 0.75 27.2887 -4.3096 42.9375 11.6861
3 9.82125 85.7466 32.0908 94.9623 0.4735
4 2,30714 60.1616 16.5074 71.4887 4.0019
5 1.1878% 32.6449 0.6119 48.0813 =14.3466
6 0.94162 26.4084 -4.9089 42.1976 =10.6444
7 0 18.7086 ~22.2461 28,7367 3.2547
8 0 16.6779 =-19.4414 30.3680 0.5367
9 0 17.1221 -18.3391 31.0662 2.4364,
10 13.6698 300.1 101.9 302.6 .
I § 1.47059 30.1643 ~0.7786 46.1446 .
STD ERR
OBS ID RESIDUAL
1 1.53043 7.7069
2 0.75 8.4832
3 9,82125 0.3528
4 2.30714 6.2411
5 1.1578 8.4312
6 0.94162 8.5188
7 0 7.5261
8 0 7.8473
9 0 7.9533
10 13.6658)
1l 1.47059 .
SUM OF RESIDUALS 9.99201E-15
SUM OF SQUARED RESIDUALS 495.5178
PREDICTED RESID SS (PRESS) 99409.95

PRELIMINARY DESIGN PHASE: Principal component analysis

11 OBSERVATIONS

PRINCIPAL COMPONENT ANALYSIS

10 VARIABLES

SIMPLE STATISTICS

Xl

MEAN 2.87712

ST DEV 4.52637

X6

MEAN 7.11788

ST DEV 8.,39976
X1
Xl 20.488
X2 507.627
X3 76,7436
X4 =6.88532
XS 4.59364
X6 =-13.2208
X7 ~0.495505
X8 15.039
X9 391.763
X10 =-2.19708

X2 X3
105,297 20.0766
243.706 26.7754

X7 X8
2.11232 8.02100
2.56330 4.62116

COVARIANCES

X2 X3
807.627 76.7436
59392.6 6000.55
6000.55 716.922
=-9,232677 11.1813
26.4418 23.2099
5.33683 -0.19%098
327.701 41.0176
9498.037 108.598
44639.8 4421.27
215.614 30.1225

E-40

X4

2.83031
3.99664

X9

90.035
183.950

X4

-6.88532
-9,22677
11.1813
15.9731
5.96383
15,8104
8.56419
-1.976
-24.1497
9.80594

X5

2.59865
3.085383

X10

2.05379
2.65265

X5

4.59364
26.4418
23.2099
5.96383
9.32588
-6.66383
3.46024
3.52089
12.0465
4.3422

X1

X3
X4
X5
X6
X7

X9

X10

X6

-13.2205
5.33685

=0.195098

15.8104
-6.66383
70.556
9.12385
-6.63936
7.76958
8.10716

X7

=-0.495505

327.701
41.0176
8.56419
3.46024
9.12385

6.5705
4.27394
230.478
6.54925

X8

15.039
949.037
108.598

-1.976
3.52059

-6.,63936
4.27394
41,3551
721.786
2.82043

E-41

X9

391.763
44639.8
4421.27
-34.1497
12.0465
7.76958
230.478
721.786
33837.8
144.485

X10

-2.19708
215.614
30,1225
9.80594

4.3422
8.10716
6.54925
2.82043
144.485
7.03654

PRIN1
PRIN2
PRIN3
PRIN4
PRINS
PRING6
PRIN?
PRINS
PRINS
PRIN10O

PPINCIPAL COMPONENT ANALYSIS

TOTAL VARTANCE=94098.5¢

EIGENVALUE DIFFERENCE PROPORTION

93667.6 93421.9 0.995421

245.8 157.5 0.002612

88.2 15.3 0.,000938

72.9 53.2 0.000775

19.7 17.21 0.000209

2.6 1.3 0.000027

1.3 1.0 0.000014

*+ 0.3 0.3 0.000004

0.1 el 0.000001

0.0 . 0.002000

EIGENVECTORS

PRIN1 PRIN2 PRIN3 PRIN4
0.006892 0.032916 0.366908 0.150251
0.795885 0.448504 -.211750 -.308118
0.079940 0.562345 0.444684 0.560961
=-.000288 0.115656 -.208398 0.157267
0.000323 0.077519 0.152115 0.114932
0.000094 -.004974 -.671152 0.629435
0.004297 0.071291 -.112194 0.094569
0.012784 0.014141 0.18599% 0.094390
0.599950 -.671443 0.214720 0.329098
0.002784 0.077466 -.111784 0.086729
PRIN6 PRIN?7 PRINS PRIN®
=.132385 0.833557 0.225988 0.007562
0.025944 0.072973 0.113615 -.021007
-.079061 -.277114 -.276344 0.026034
0.0538668 0.353501 -.348731 -.566503
-.268882 -.193451 0.777313 -.139691
0.014661 0.023119 0.233663 =-.031726
-.008912 0.219785 -.048807 0.613538
0.938085 0.003176 0.244888 -.072321
-.042748 -.071209 ~-.121775 0.018832
0.135658 0.082206 -.045238 0.524752

E-42

CUMULATIVE

0.99542
0.99803
0.99897
0.99975
0.99995
0.99998
1.00000
1.00000
1.00000
1.00000

PRINS

~.254943
-,079096
-.068881
0.588020
0.472312
=.310480
0.296663
0.017227
0.112776
0.397160

PRIN10O

-.114912
~.005793
0.011202
0.047860
0.035931
-.024293
0.676878
0.103053
0.003802
-.716705

PRELIMINARY DESIGN PHASE: Least Squares Method
(using two Principal Components)

DEP VARIABLE: Y
ANALYSIS OF VARIANCE

SUM OF MEAN
SOURCE DF SQUARES SQUARE F VALUE PROB>F
MODEL 2 1478.6594). 739.32971 2.014 0.2143
ERROR 6 2203.04281 367.17380
C TOTAL 8 3681.70222 -
ROOT MSE 19.16178 R-SQUARE 0.4016
DEP MEAN 24.25556 ADJ R~SQ 0.2022
c.v. 78.99955
PARAMETER ESTIMATES
PARAMETER STANDARD T FOR HO:
VARIABLE DF ESTIMATE ERROR PARAMETER=0
INTERCEP 1 17.90009142 7.12992838 2.511
P1 1 0.04015744 0.02001400 2.006
P2 1 0.01016278 0.42464199 0.024
VARIABLE DF PROB > |T|
INTERCEP 1 0.0459
P1 1 0.0916
P2 1 0.9817
PREDICT STD ERR LOWER9S5%
0BS ID ACTUAL VALUE PREDICT MEAN
1 4.07256 36.0000 18.0942 7.2177 0.4330
2 29,1337 31.0000 19.0161 7.2326 1.3186
3 1056.04 64.0000 60.2882 19.0892 13.5786
4 6.88223 45.0000 18.2343 7.4892 =0.0912
5 21,9383 10.0000 18.6229 9.5496 -4.7440
6 39.6677 8.0000 19.2342 12.7410 =11,.9419
7 87.6421 6.5000 21.3631 6.939). 4.3838
g8 100.738 6.0000 22.2260 13.4384 =10.6566
9 78.4684 3.8000 21.2210 9.7140 =2.5482
10 18.9421 . 18.7546 8.0228 =0.8766
11 91.6716 . 21.3924 10.2067 -~3.5825

UPPER95% LOWER95% UPPER95%
OBS ID MEAN PREDICT PREDICT RESIDUAL
1 4.07256 35.7553 -32.0090 68.1973 17.9058
2 29.1337 36.7136 =-31.0998 69.1321 11.9839
3 1056.04 107.0 -5.8949 126.5 3.7118
4 6.88223 36.5598 =-32.1069 68.5755 29.7657
S 21.9383 41.9899 «33.7643 71.0102 -8.6229
6 39.6€77 50.4102 -37.0718 75.5401 =11.2342
7 87.6421 38.3424 -28.5038 71.2300 -14.8631
8 100,738 55.1086 ~35.0425 79.4945 =16.2260
9 78.4684" 44.9902 -31.3469 73.7889 -12.4210
10 18.9421 38.3857 =-32.0765 69.5856 .
1l 91.6716 46.3674 -31.7316 74.5164 .
STD ERR
OBS ID RESIDUAL
1 4.07256 17.7504
e 29.1337 17.7444
3 1056.04 1.6655
4 6.88223 17.6376
5 21.9383 16.6126
6 39.6677 14.3123
7 87.6421 17.8612
3 100.738 13.6595
9 78.4684 16.5170
10 18.9421 .
11 91.6716 .
SUM OF RESIDUALS 9.50351E-14
SUM OF SQUARED RESIDUALS 2203.043
PREDICTED RESID SS (PRESS) 245131.3

E-44

PRELIMINARY DESIGN PHASE: Least Squares Method
(using one Principal Component)

DEP VARIABLE: Y
ANALYSIS OF VARIANCE

E-45

SUM OF MEAN
SOURCE DF SQUARES SQUARE F VALUE FROB>F
MODEL 1 1478.44911 1478.44911 4.697 0.0669
ERROR 7 2203,25312 314.75045
C TOTAL 8 3681.70222
ROOT MSE 17.74121 R-SQUARE 0.4016
DEP MEAN 24.25556 ADT R~SQ 0.3161
c.v. 73.14286 -
PARAMETER ESTIMATES
PARAMETER STANDARD T FOR KO:
VARIABLE DF ESTIMATE ERROR PARAMETER=(
INTERCEP 1 17.89874335 6.60114006 2,711
Pl 1 0.04016008 0.01852996 2.167
VARIABLE DF PROB > |T]
INTERCEP 1 0.0301
Pl 1 0.0669
PREDICT STD ERR LOWER95%
OBS ID ACTUAL VALUE PREDICT MEAN
1 4.07256 36.0000 18.0623 6.5680 2.5314
2 29.1237 31.0000 19,0688 6.3796 3.9832
3 10%6.04 64.0000 60.3093 17.6552 18.5611
4 6.88223 48,0000 18.1751 6.5455 2.6974
5 21,9383 10.0000 18.7798 €.4308 3.5732
6 39.6677 8.0000 19.4918 6.3090 4.5733
7 87.6421 6.5000 21.4185 6.0569 7.0961
8 100.738 6.0000 21.9444 6.0091 7.7350
9 78.4684 8.8000 21,0500 5.0959 6.6354
10 18.9421 . 18.6595 6.4528 3.4008
11 91.6716 . 21.5803 6.0412 7.2950

OBS

OBS

e

-

HPOWONOAALWNE

POWO-IOULWNE

ID

4.07256
29.1337
1056.04
6.88223
21.9383
39.6677

.87.6421

100.738
78.4684
18.9421
91.6716

ID

4.07256
29.1337
1056.04
6.88223
21.9383
39.6677
87.6421
100.738
78.4684
18.9421
91.6716

SUM OF RESIDUALS
SUM OF SQUARED RESIDUALS
PREDICTED RESID SS (PRESS)

UPPER95%
MEAN

33.5932
34.1543

102.1
33.6528
33.9864
34.47.03
35.7408
36.18538
35.4646
33.9181
35.8655

STD ERR
RESIDUAL

16.4807
16.5545

1.7449
16.4896
16.5347
16.5815
16.6753
16.6928
16.6611

5.2

LOWER95%
PREDICT

-26.6719
-25.5128

1.1244
=-26.5406
-25.8429
~25.0335
-22.9106
-22.3483
~23.3089
=-25,9810
~-22.7368

4025E-14
2203.253

148443.6

UPPER95%
PREDICT

62.7965
63.6503

119.5
62.8909
63.4024
64.0171
65.7476
66.2371
65.4090
63.2999
65.8974

RESIDUAL

17.9377
11.9312
3.6907
29.8249
-8.7798
=11.4918
-14.9185
-15.9444
-12.2500

DETAILED DESIGN PHASE: Stepwise Selections

STEPWISE REGRESSION PROCEDURE FOR DEPENDENT VARIABLE Y
WARNING: 2 OBSERVATIONS DELETED DUE TO MISSING VALUES.

NOTE: SLENTRY AND SLSTAY HAVE BEEN SET TO
.15 FOR THE STEPWISE TECHNIQUE.

STEP 1 VARIABLE X1 ENTERED R SQUARE = 0.67484762
c(p) = ,
DF SUM OF SQUARES MEAN SQUARE F PROB>F
REGRESSION 1 2484.58798182 2484.587982 14.53 0.0066
ERROR 7 1197.11424040 171.016320
TOTAL 8 3681.70222222
B VALUE STD ERROR TYPE II S8 F PROB>F
INTERCEPT 13.81140806
Xl 5.69406301 1.49387362 2484.587982 14.53 0.0066
BOUNDS ON CONDITION NUMBER: 1, 1
STEP 2 VARIABLE X9 ENTERED R SQUARE = (.86541068
C(P) = .
DF SUM OF SQUARES MEAN SQUARE F PROB>F
REGRESSION 2 3186.18444000 1593.092220 19.29 0.0024
ERROR 6 495.51778222 82.586297
TOTAL 8 3681.70222222
B VALUE STD ERROR TYPE II SS F PROB>F
INTERCEPT 11.91767775
Xl 14.11517877 3.07005978 1745.770281 2l.14 0.0037
X9 =0.13589515 0.04662451 701.596458 8.50 0.0268
BOUNDS ON CONDITION NUMBER: 8.745719, 34.98288

E-47

STEP 3 VARIABLE X11 ENTERED R SQUARE = 0.97400689
C(P) = .,
DF SUM OF SQUARES MEAN SQUARE F PROB>F
REGRESSION 3 3586.00334120 1195.334447 62.45 0.0002
ERROR 5 95.69888102 19.139776 '
TOTAL 8 3681.70222222
B VALUE 8TD ERROR TYPE II 88 F PROB>F
INTERCEPT 17.61432258
X1 14.26567506 1.47832193 1782.310925 93.12 0.0002
X9 =-0.12192015 0.02265278 554.427691 28.97 0.0030
X1l -0.889859153 0.19463790 399.8189501 20.89 0.0060
BOUNDS ON CONDITION NUMBER!: 8.908018, 56.62403

STEP 4 VARIABLE X8 ENTERED R SQUARE = 0.99235831
C(P) = .,
DF SUM OF SQUARES MEAN SQUARE F PROB>F
REGRESSION 4 3653.56779471 913.3919487 129.86 0.0002
ERROR 4 28.13442751 7.0336069
TOTAL 8 3681.70222222
B VALUE STD ERRCR TYPE II 8S F PROB>F
INTERCEPT 30.24108727
Xl 14.41817104 0.89751810 1815.147839 258.07 0.0001
X8 -2.32512285 0.75019785 €7.564454 9.61 0.0362
X9 -0.06824032 0.02210312 67.042926 9.53 0.0367
X1l =1.04402729 0.12808083 467.340884 66.44 0.0012
BOUNDS ON CONDITION NUMBER: 23.07832, 193.2544

STEP 5 VARIABLE X6 ENTERED R SQUARE = 0.99716673
. C(P) = .
DF SUM OF SQUARES MEAN SQUARE F PROB>F
REGRESSION 5 3671.270975.73 734.2541943 211.17 0.0005
FRROR 3 15.43125049 3.4770835
TOTAL 8 3681.70222222
B VALUE STD ERROR TYPE II SS F PROB>F
INTERCEPT 28.96925965
X1 15.63285056 0.82946548 123%5.079284 355.21 0,0003
X6 0.25403620 0.11258423 - 17.703177 5.09 0.1093
X8 -2,38561282 0,52814664 70.942420 20.40 0.0203
X9 -0,08100319 0.01653809 83.415842 23.99 0.0163
X11 -1.19927580 0.11332964 389.373377 111.98 0.0018
BOUNDS ON CONDITION NUMBER: . 26.13549, 304,9335

NO OTHER VARIABLES MET THE 0.1500 SIGNIFICANCE LEVEL FOR ENTRY
SUMMARY OF STEPWISE REGRESSION PROCEDURE FOR DEPENDENT VARIABLE Y

VARIABLE NUMBER PARTIAL MODEL
STEP ENTERED REMOVED IN R¥#»2 Rw*2 c(P)
1 X1 1 0.6748 0.6748 .
2 X9 2 0.1906 0.8654 .
3 Xl 3 0.1086 0.9740 .
4 X8 4 0.0184 0.9924 .
5 X6 5 0.0048 0.9972 .
VARIABLE

STEP ENTERED REMOVED F PROB>F

1 Xl 14.5284 0.0066

2 X9 8.4953 0.0268

3 Xl 20.8894 0.0060

4 X8 9.6059 0.0362

5 X6 5.0914 0.1093

E=-49

DETAILED DESIGN PHASE: Stepwise Regression Analysis

DEP VARIABLE:

SOURCE DF
MODEL 5
ERROR 3
C TOTAL 8

ROOT MSE

DEP MEAN
c.V.

VARIABLE
INTERCEP

VARIABLE
INTERCEP

Y
ANALYSIS OF VARIANCE
SUM OF MEAN
SQUARES SQUARE
3671.27097 734.25419
10.43125049 3.47708350
3681,70222
1.864694 R-SQUARE
24,2558%6 ADJ R-SQ
7.687698
PARAMETER ESTIMATES
PARAMETER STANDARD
DF ESTIMATE ERROR
1 28.96925965 3.05969593
1 15.63285056 0.82946548
1 0.25403620 0.11258423
1 -2.38561282 0.52814664
1 -0,08100319 0.01653809
1 =1.19927580 0.11332964
DF PROB > |T|
1 0.0025
1 0.0003
1 0.1093
1 0.0203
1 0.0163
1 0.0018

E-50

F VALUE
211.170

0.9972
0.9924

PROB>F |
0.0008

T FOR HO:
FARAMETER=0

9.468
18.847
2.256
=-4.517
-4.898
=-10.582

PREDICT STD ERR LOWER95%
OBS ID ACTUAL VALUE PREDICT MEAN
1 1.53043 36.0000 37.4512 l.2162 33.5806
2 0.75 31.0000 30.5251 1.8107 24.7626
3 9.82125 64.0000 64.0698 1.8639 58.1379
4 2.30714 48.0000 46.7829 1.4536 42.1568
5 1.1575 10.0000 11.6845 1.4654 7.0209
6 0.94162 8.0000 6.2026 1.2781 2.1350
? 0 6.5000 6.4245 1.2872 2.3278
8 o 6.0000 5.6922 1.3460 1.4086
9 0 8.8000 9.4672 1.8078 3.7141
10 13.6698 . 212.8 10.7106 178.8
1l 1.47059 . 15.1868 2.2232 8.1115
UPPER9SY LOWER9 5% UPPER95%
oBS ID MEAN PREDICT PREDICT RESIDUAL
1 1.53043 41.3218 30.3661 44,5363 =1.4512
2 0.75 36.2877 22.2532 38.7971 0.4749
3 9.82125 70.0018 55,6791 72.4606 ~0.0698
4 2.30714 51.4089 39.2584 84,3073 1.2171
5 1.1575 16.3480 4.1369 19.2320 =1.6845%
é 0.941¢62 10.2702 ~0.9920 13.3972 1.7974
7 0 10.5211 -0.7886 13.6358 0.0755
8 0 9.9758 -1.6267 13.0111 0.3078
9 0 15.2204 1,2019 17.7326 =0.6672
10 13.6698 246.9 178.2 247.4 .
11 1.47059 22.2620 5.9823 24.4213 .
STD ERR
ORS ID RESIDUAL
1 1.53043 1.4135
2 0.75 0.4454
3 9.821238 0.0539
4 2.30714 1.1680
5 1.1578% 1.1532
6 0.94162 1.3578
7 0 1.3491
8 0 1.2908
9 0 0.4573
10 13.6698 .
11 1.47059 .
SUM OF RESIDUALS 1.32561E-13
SUM OF SQUARED RESIDUALS 10.43128
PREDICTED RESID SS (PRESS) 7220.791

DETAILED DESIGN PHASE: Principal component analysis

11 OBSERVATIONS

14 VARIABLES

X1

MEAN 2.87712

8T DEV 4.52637

X6

MEAN 7.11785

8T DEV 8.39976

X1

MEAN 7.29776

8T DEV 8.21082
X1l
X1 20.488
X2 507.627
X3 76.7436
X4 -6,885832
X8 4.59364
X6 =13.2208
X7 =-0.4955%085
X8 18.039
X9 391.763
X10 =-2.19708
X1l 0.7312235
X)a -3.84748
X13 15.3442
X1l4 =-16.7971

PRINCIPAL COMPONENT ANALYSIS

SIMPLE STATISTICS

X2 X3
105,297 20.0766
243.706 26,7754

X7 X8
2.11232 8.02100
2.%56320 4,62116
X12 X13
2.43642 2.65967
3.64045 4.22452

COVARIANCES

X2 X3
507.627 76.7436
59392,6 6000.5%
. 6000.58 716.922
“9022677 1101813
26,4418 23.2099
5,.3368%5 =0,195%098
327.701 41,0176
949.037 108.598
44639.8 4421.27
215.614 30.122%
78%.26 46,8588
139.987 25,7475
279.528 62,0205
-206.739 8.92737

E-52

X4

2.83031
3.99664

X9

90.035%
183.950

X1l4

8.51365
9.09873

X4

-6.88532
-9,22677
11.1813
15,9731
5.96383
15.8104
8.56419
»1.976€
=34.1497
9.80594
-6.66139
13.3912

=0.0315304

29.6529

X5

2.59865
3.05383

X1l0

2.05379
2.65268

X5

4.59364
26.4418
23,2099
5.96383
9.32888
-6,.66383
3.46024
3.5820859
12.0465
4.3422
-8.98976
7.72508%
3.65136
6.2227

X1
X2
X3
X4
X5
X6
X7
X8
X9
X10
X1l
Xl2
X13
X14

X6

-13.2205
5.33685

=0.195098

15.8104
-6.66383
70.856
9.12385
-6.63936
7.76958
8.10716
34.3681
5.65109
4.16506
34.3645

Xll

0.731238
785,26
46.8588
-6.66139
-8,98976
34,3681
0.495098
6.72668
662.567
-2,72536
67.4176
=7.23447
-1,97936
-13, 1373

COVARIANCES
X7 X8
«0.495505 15.039
327.701 949,037
41.0176 108.598
8.56419 -1,976
3.46024 3.52089
9,12385 -6.63936
6.5708 4.27394
4.27394 21.3551
230.478 721.786
6.549285 2.82043
0.49%058 6.72668
7.941 1.76349
2.2108 9.27088
13.8536 =-8.64942
Xl2 X13
=3.84745 15,3442
139,987 279.528
25.7478 62.0208
13,3912 =0,0315304
7.74508 3.65136
5.65109 4,16506
7.941 2.2108
1.76349 9.27088
83.1111 199.47
9.17345 0.768962
=7.23447 -1.97936
13.28529 -0.967642
~0.967642 17.8466
21.8739 0.119897

E-53

PRINCIPAL COMPONENT ANALYSIS

X9

391.763
44639.8
4421.27
=34.1497
12.0465
7.76958
230.478
721.786
33837.8
144.485
662.567
83.1111
199.47
=-239.719

X14

=-16.7971
=-206.739
8.22737
29.6529
6.2227
34.3645
13.8836
=-8.64942
-239.719
16.2101
=-13.1373
21.8739
0.119597
B2.73232

Xlo0

-2, 19708
215.614
30,1225
9.80594

4.3422
8.10716
6.54925
2.82043
144.485
7.03654

=2.72536
9.17343

0.768962

16,2201

PRINL
PRIN2
PRIN3
PRIN4
PRINS
PRING
PRIN7
PRINS
PRINS
PRIN1O
PRIN11
PRIN12
PRIN13
PRIN14

PRINCIPAL COMPONENT ANALYSIS

TOTAL VARIANCE=94279.81

EIGENVALUE DIFFERENCE PROPORTION

936381.5 93378.8 0.993654¢

302.6 170.3. 0.003210

132.4 45.4 0.001404

87.0 42.8 0.000923

44.2 28.8 0.000469

15.5 3.5 0.000164

12.0 8.8 0.000127

3.2 2.0 0.000034

1.2 1.0 0.000013

0.2 0.2 0.000002

0.0 0.0 0.000000

0.0 0.0 0.000000

0.0 0.0 0.000000

0.0 . 0.000000

EIGENVECTORS

PRIN1 PRIN2 PRIN3 PRIN4
0.006891 0.010031 =-.254580 0.269774
0.795821 0.403242 0.016768 -.311843
0.079930 0.485487 ~-.263973 0.651541
=.000289 0.131773 0.202666 0.030697
0.000322 0.074550 =-.072133 0.123923
0.000097 0.018274 0.629710 0.333602
0.004296 0.077214 0.103537 0.026186
0.012783 0.009831 ° =-,120209 0.132078
0.599912 -.595058 0.013861 0.314392
0.002783 0.085730 0.1060851 0.012106
0.010963 -,2612383 0.348472 0.229051
0.001742 0.113134 0.111607 0.001101
0.003708 0.089211 =.104901 0.329080
-.003289 0.348945 0.490828 0.001316

E=54

CUMULATIVE

0.99365
0.99686
0.99827
0.99919
0.99966
0.99982
0.9999%
0.99999
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000

PRINS

=-.048789
-.275479
=.036734
0.299039
0.284615
-.290808
0.138031
0.100100
0.376196
0.199331
-.409717
0.355924
=-.124027
0.380947

PRING

0.065220
-, 008989
0.124301
-.169591
0.090926
-,534051
=.147464
=,045080
=.010021
-.138017
0.602462
-, 061338
-.161653
0.471376¢

PRIN11

0.121428
0.012142
-,058%022
=.374842
0.131140
0.050973
=-.314298
-.083031
-.009516
0.838748
=.015001
=-.102931
0.001998
0.041114

EIGENVECTORS

PRIN7 PRINS
-.185084 0.318798
0.074080 0.043256
0.152766 =,233068
0.216492 0.224524
0.384482 0.140738
-.048653 ~.138761
0.1%6599 0.148703
-.118376 =.662186
-.125001 ~-.021633
0.200346 0.019376
0.377237 0.068697
0.382822 0.040467
-.310900 0.533749
-.509939 0.003508

PRIN12 PRIN13
0.028732 -.209447
0.003778 0.006262
-.0853056 =.019333
-.601314 0.275238
0.082213 9.421095
0.011588 -.037910
0.784849 0.240080
0.043435 0.110332
-.005255 -.005790
0.014480 0.092226
0.000861 0.010199
0.074573 -.789099
0.021967 0.004358
0.060967 0.007364

E-55

PRINCIPAL COMPONENT ANALYSIS

PRINS

0.339223
0.131509
=.344909
0.232286
=-.019361
-.085276
0.084184
0.681261
=-.155073
0.158105
0.251417
0.139263
0.288358
-.032622

PRIN14

0.528654
=,028462
0.109401
0.275655
=:441733
-,024237
0.284081
~.134874
0.020%943
0.196460
0.004646
=-.194181
=-,5099'74
-.017769

]

PRIN1O

0.515518
0.070023
-.179224
-.131803
0.565857
0.297339
-.187037

0.005320 -

«.,068002
=-.325802
=.127454
0.013158
=,325483
0.055718

DETAILED DESIGN PHASE: Least Squares Method
(using Principal Comporients)

DEP VARIABLE: Y

SOURCE DF

MODEL 3
ERROR 5
C TOTAL 8

ROOT MSE
DEP MEAN
c.V.

VARIABLE

INTERCEP
Pl
P2
P3

VARIABLE

INTERCEP
Fl
P2
P3

DF

ey

D

<}

ey

ANALYSIS OF VARIANCE

PROB > |T!

0.0045
0.0089
0.0256
0.1073

E-56

SUM OF MEAN
SQUARES SQUARE
2940.81345 980.27315
740.88277 148.17655
2681.70222
12.17278 R=SQUARE
24.25556 ADJ R-SQ
50.18553
PARAMETER ESTIMATES
PARAMETER STANDARD
ESTIMATE ERROR
36.€1996444 7.48811514
0.1293C799 0.03115062
-2.46877510 0.78585547
=-0.64069017 0.32689299

F VALUE
. 6.616

0.7988
0.6780

PROB>F
0.0342

T FOR HO:
PARAMETER=0

4.830
4.15.
-3.142
-1.260

PREDICT STD ERR LOWER95%

OBS ID ACTUAL VAUIE ERELCICT MEAN
1 4.08355 36.0000 36.1923 7.3742 17.2367
e 29.1378 31.0000 34.4870 6.6722 17.3359
3 1055.35 64.0000 62.7505 .12.1539 21.5085%
4 6.94778 48.0000 30.0118 6.3234 14.5280
5 22.1509 10.0000 15.724% 6.6366 =1.3435
5 39.8631 8.0000 €.2566 9.2345 =17.4811
7 87.6266 6.5000 15.6072 4.5599 3.8857
8 100.724 6.0000 19.1111 8.5167 =2.2675
9 78.4%93 8.8000 -1.8305 9v.5147 -26.286%4

10 19.0778 . 21.8373 4.9104 9.0149
11 91.6872 . 2€.92036 6.4962 10.7180
UPPERS5% LOWEROS% UPPER95 %

(871 ID MEAN PREDICT PREDICT RESIDUAL
1 4.08355 55.1480 =0.,2911 72.7768 =0.1923
2 29.1376 £1.6381 -1.1959 70.1698 -3.4870
3 1055.35 93.9926 1€.5332 107.0 1.2495
4 6.94778 45,4950 ~4.9005 64.9235 17.9885
5 22.150¢ 32.773Y -19.9248 51.3532 -5.7142
6 39.8681 29.9944 -33.0192 45.5324 1.7434
7 87.6266 27.3287 ~17.8069 49.0213 -9.1072
8 100.724 40.489¢€ -18./850C 57.0076 =13.1111
9 78.4993 22.6275 -41.5457 37.8847 10.6305

10 19.0778 34.2598 ~12.1034 55.3780 .
11 91.6872 43.0883 -8.3249 62.1322 .
STD ERR

OBS ID RESIDUAL
1 4.08355 9.6849
2 29.1376 10.1813
3 1055.35 0.6783
4 6.94778 10.5780
5 22.1509 10.2045
6 39.8681 7.9309
7 87.6266 11.2864
8 100.724 8.8887
9 78.4993 7.5926

10 19.0778 .
11 91.6872 .

1.31672E~-13
740.8828
164097.7

SUM OF RESIDUALS
SUM OF SCUARED RESIDUALS
PREDICTED RESID SS (PRESS)

CODE AND UNIT TEST PHASE: Stepwise Selections

STEPWISE REGRESSION PROCEDURE FOR DEPENDENT VARIABLE Y
WARNING: 2 OBSERVATIONS DELETED DUE TO MISSING VALUES.

NOTE: SLENTRY AND SLSTAY HAVE BEEN SET TO
.15 FOR THE STEPWISE TECHNIQUE.

STEP 1 VARIABLE X1 ENTERED R SQUARE = 0.67484762
C(P) = ,
DF SUM OF SQUARES MEAN SQUARE F PROB>F
REGRESSION 1l 2484,58798182 2484.587982 14.53 0.0066
ERROR K 1197.11424C40 -171.016320
TOTAL 8 3681.70222222
B VALUE STD ERRCR TYPE II SS F PROB>F
INTERCEPT 13.81140806 '
X1 5.6940630) 1.49387762 2484.587982 14.53 0.0066
BOUNDS ON CONDITION NUMBER: 1, 1l

STEP 2 VARIABLE X9 ENTERED R SQUARE = 0,86541068
C(P) u .

.DF SUM OF SQUARES MEAN SQUARE F PROB>F
REGRESSION 2 3186.18444000 1593.092220 19.29 0.0024
ERROR 6 495.51778222 82.586297
TOTAL 8 3681.70222222

B VALUE STD ERROR TYPE II S8 F PROB>F
INTERCEPT 11.91767775
X1 14.11517877 3.07005978 1745.770281 21.14 0.0037
X9 -0.13589515 0.04662451 701.596458 8.50 0.0263
BOUNDS ON CANDITION NUMBER: 8.745719, 34.98288

STEP 3

VARIABLE X11 ENTERED

R SQUARE = 0.97400689

C(P) - ,)
DF SUM OF SQUARES MEAN SQUARE F PROBF
REGRESSION 3 3586.00334120 1195.334447 62.45 0.0002
ERRCR 5 95.69888102 19.139776
TOTAL 8 3681.70222222
B VALUE STD ERROR TYPE II SS F PROB>F
INTERCEPT 17.61432258
Xl 14.26567506 1.47832193 1782.310925 93.12 0.0002
X9 «0,12192010 0.02265278 554.427691 28.97 0.0030
Xl1 -0.88959153 0.19463750 399.818901 20.89 0.0060
BOUNDS ON CONDITION NUMBER: 8.908018, 56.62403

- S G D S D W D A WD D D S D G D 45 0 P b S GUD U b I S N S WD G N SR A S S S e

STEP 4 VARIABLE X8 ENTERED R SQUARE = 0.99235831
C(P) = ,
DF SUM OF SQUARES MEAN SQUARE F PROB>F
REGRESSION 4 3653.56779471 913.3919487 129.86 0.0002
ERROR 4 28.13442751 7.0336069
TOTAL 8 3681.70222222
B VALUE STD ERROR TYPE II 8S F PROB>F
INTERCEPT 30.24108727
X1 14.41817104 0.89751810 1815.147839 258.07 0.0001
X8 -2.32512285 0.75019785 67.564454 9.61 0.0362
Xe -0.06824022 0.0221031i2 67.042926 9.8%3 0.03s87
X1l =-1.04402729 0.12808083 467.340584 66.44 0.0012
BOUNDS ON CONDITION NUMBER: é3.07832, 193.2544

R L

PROB>F
0.0008

PROB>I

0.0003
0.1093
0.0203
0.0163
0.0018

STEP § VARIABLE X6 ENTERED R SQUARE = 0.99716673
C(P) = .

DF 8UM OF SQUARES MEAN SQUARE F
REGRESSION 5 3671.27097173 734.2541943 211.17
ERROR 3 10.43125049 3.4770835
TOTAL 8 3681.70222222 '

B VALUE STD ERROR TYPE II 8S F
INTERCEPT 28.96925965 :
X1 .15.63285056 0.82946548 1235,079284 355.21
X$ 0.25402620 0.11258423 17.703177 5.09.
X8 -2.38561282 0.52814664 70.942420 20.40
X9 =0.08100319 0.01653809 83.415842 23.99
X1l =1.19927580 0.11332964 389.373377 111.98
BOUNDS ON CONDITION NUMBER: 26.13549, 304.9338

L 1 ¥ X X T Y ¥ I ¥ I ¥ X 7 Q& T J1T5¥ ¥ J1 N L X X J T T 1 X T X 2 T T2 2 T X T 2 T ¥ X T T X J 2 X YT X T X T 1 ¥ T % J T X XX Y }J

PROB>F
0.0010

PROB>F

0.0008
0.0543
0.0154
0.0094
0.0024
0.0634

STEP 6 VARIABLE X18 ENTERED R SQUARE = 0.99965209
c(p) =,

DF SUM OF SQUARES MEAN SQUARE F
REGRESSION 6 3680.42132510 13.4035542 9%57.77
ERROR 2 1.28089712 0.6404486
TOTAL 8 3681.70222222

B VALUE STD ERROR TYPE II S8 F
INTERCEPT 28.3468275C
X1 16.87615739 0.48468544 776.4463286 1212.35
X6 0.20563632 0.04998622 10.8388523 16.92
X8 -=1.99036494 0.24962427 40.7170268 63.58
X9 =0.11274143 0.01099462 §7.3427958 108.15
Xl ~1.10981860 0.05409062 269.6151332 420.98
X18 -0.00386060 0.00102136 9.15C3534 14.29
ROUNDS ON CONDITION NUMBER: 62.71203, 709.8545

E-60

STEP 7 VARIABLE X17 ENTERED R SQUARE = 0.99999735

C(P) = ,

DF SUM OF SQUARES MEAN SQUARE F PROB>F
REGRESSI1ION - 7 3681.69247422 525.,9560677 9999.99 0.0001
ERROR 1 0.00974801 0.0097480
TOTAL . 8 3681.70222222

B VALUE STD ERROR TYPE II SS F PROB>F
INTERCEPT 35.34086513
X1 16,53363291 0,06613116 610.7875117 9999.99 0.0001
X6 0.29622944 0.01004828 8.4720459 869.11 0.0216
X8 -2.00284334 0.03081597 41.1773272 4224.18 0.0098
X9 -0.10483743 0.00152282 46.2011223 4739,.55 0.0092
X11 -1,38270678 0.,02481132 30.2744491 3105.71 0.0114
X17 -1.08045895 0.09461672 1.2711491 130.40 0.0556
Xl8 =0,00423198 0.00013014 10.3087888 1057.53 0.0196

BOUNDS ON CONDITION NUMBER: 79.0418, 1475.295%

PROB>F
0.0001

PROB>F

C.0001
0.0001
0.0001
0.0001
0.0001
0.0001
0.0001
0.0001

STEP 8 VARIABLE X21 ENTERED R SQUARE = 1.00000000
C(P) = ,
DF SUM OF SQUARES MEAN SQUARE F
REGRESSION 8 3681.70222222 460.2127778 9999.99
ERROR 0 0.00000000 0.0000000
TOTAL 8 3681.70222222
B VALUE STD ERROR' TYPE II SS F
INTERCEPT 23.91179944
X1 16,40108872 0 94.85822032 9999.99
X6 0.32541684 0 1.08333040 9999.99
X8 -2,01511923 0 35.97475149 9999.99
X9 -0,10108771 0 6.081%6755 9999.99
X11 -1,46447109 0 2.86348417 9999.99
X17 -1.33068597 0 0.241195088 9999.99
X18 -0.00380003 0 0.69167302 9999.99
x21 12.95647065 0 0.00974801 9999.99
BOUNDS ON CONDITION NUMBER: 558.2853, 13148.58

NO OTHER VARIABLES MET THE 0.1500 SIGNIFICANCE LEVEL FOR ENTRY

E-61

SUMMARY OF STEPWISE REGRESSION PROCEDURE FOR DEPENDENT VARIABLE Y

VARIABLE NUMBER PARTIAL MODEL
STEP. ENTERED REMOVED IN Rw#2 R¥%2 c(P)
1 X1 1 0.6748 0.6748 .
2 X9 2 0.1906 n.8654 .
3 Xli 3 0.1086 0.9740 .
4 X8 4 0.0184 0.9924 .
5 X6 L 0.0048 0.9972 .
6 X18 6 0.0025 0.9997 .
7 X117 7 0.0003 1.0000 .
8 X2l 8 0.0000 1.0000 .
VARIABLE

STEP T™NTERED REMOVED F PROB>F

1 Xl : 14,5284 0.0066

2 X9 8.4953 0.0268

3 X1l 20.8894 0.0060

4 X8 9.6059 0.0362

5 X6 5.0914 0.1093

6 Xl18 14.2874 0:0634

7 X17 130.4009 0.0856

8 X21 9999,9999 0.0001

E-62

CODE AND UNIT TEST PHASE: Stepwise Regression Analysis

DEP VARIABLE: ¥ ,
ANALYSIS OF VARIANCE

SUM OF MEAN
SOURCE DF SQUARES SQUARE F VALUE PROB>F
MODEL 8 3681.70222 460.21278 . 5
ERROR 0 9.98121E-12 .
¢ TOTAL ' 8 3681.70222
ROOT MSE ' R=SQUARE 1.0000
DEP MEAN 24.25556 ADJ R-SQ ‘
c.v. o
PARAMETER ESTIMATES
PARAMETER STANDARD T FOR HO:
VARIABLE DF ESTIMATE ERROR PARAMETER=0
INTERCEP 1 23.91179944 . .
X1 1 16.40108872 . .
X6 1 0.32541684 . .
X8 1 -2.01511923 . .
X9 1 -0.10108771 . .
X11 1 =1.46447110 . .
X17 1 -1.33068597 . .
X18 1 =0.003800033 ‘ .
X21 1 12.99647065 . .
VARIABLE DF PROB > |T|
INTERCEP 1 .
X1 1 .
X6 1 .
X8 1 .
X9 1 .
X1l 1 .
X17 1 .
X18 1 .
X21 1 .
E-63

CODE AND UNIT TEST PHASE: Principal Component Analysis

11 OBSERVATIONS

PRINCIPAL COMPONENT ANALYSIS

22 VARIABLES

X1

MEAN 2.87712
8T DEV 4.52637
Xé

MEAN 7.11788
8T DEV 8.39976
X1l

MEAN 7.29776
8T DEV 8.21082
X119

MEAN 102.485
8T DEV 55.682
X24

MEAN 2.74685
8T DEV 3.34931

SIMPLE STATISTICS

X2
105.297
243.706

X7
2.11232
2.56330

X132
2.43642
3.64045

X20
21.1818
17.9990

Xas

22.6800
15.8044

X3
20.0766
26.7754

X8
8.02100
4.62116

X1S
70585.5
30661.0

X21

0.990909
0.020226

E-64

X4
2.83031
31.99664

X9

90.038
183,950
X7
8,45485
2.33939
X22

2.36364
0.80904

X5
2.59865
3.08383

Xlo0
2.08379
2.65265

Xlse
419.000
494.511

X23

2.54727
2.77708

Xl
Xa
X3
X4
Xs
X6
X7
X8
X9
X10
X1l1
Xl12
X185
X17
X18
X19
X20
X2l
X22
X23
X24
X228

X1

20.488
507.627
76.7436
-5§.88532

4.59364
-13.,2208
-.4958505

15,039

391.763
=2.19708
0.731238
=3.84745
-85891.3
-2.24013
=310.767
32.6381
=7.72981
=0.,04723
l1.63621
4.00837
«3,33469
49.9385

PRINCIPAL COMPONENT ANALYSIS

X2

507.627
59392.6
6000.55
=9,22677
26.4418
5.33685
327.701
949.037
44639.8
215.614
7885.26
139,957
-6993472
-67.8237
=34904.1
=3627.07
=-467.318
1.00458
31.2285
630,372
49.5614
2403.47

COVARIANCES
X3 X4
6000.58 =9,22677
716.922 11.1813
11,1813 15,9731
23.2099 5.96383
-,195098 15,8104
41.017¢ 8.56419
108.598 -1.976
4421.27 <=34,1497
30.1228 9.80594
46.8588 =6,66139
25.74758 13,3912
=1125733 -173297
-2.58027 3.42244
-8612.36 =1011.46
7.38968 105.698
35.1436 43.4028
+ 02238336 0.02798
0.970624 =2.6418
67.4554 3.63113
21.6738 12.3389
323.785 25,635

E=65

X5

4.59364
26.4418
23.2099
5.96383
9.32588
-6.66383
3.46024
3.82059
12.0465
4.3422
=-8.98976
7.72508
=121470
0.814652
=665.931
65,6658
37.4768
-,011351
-1,18823
2.43762
7.18182
11.0381

X6

=-13.2205%
5.33685
=-.195098
15.8104
-6,66383
70.556
9.12388
-6.63936
7.76958
8.1071¢
34.3681
5.65109
-208659
=,740503
=1412.74
123,696
=7.76181
+0709393
-.,977816
1.78892
6.57276
46,6303

X7

-.495505
327.701
41.0176
8.56419
3.46024
9.12388

6.5705
4.27394
230.478
6.54928

0.495098

7.941
=139309
1,54663

-782,.588
46.1192
20.9603

«0180623

-1,17048
5.48843
6.99544

27.366

X8

15.039
949.037
108.598

=-1.976
3.52059

=6,63936
4.27394
21.3551
721.786
2.82043
6.72668
1.76349
-161883
0.804153
-635.836
-1.10482
14.0138
«.009843
0.360237
9.75502
0.741977
51.4449

X9

391.763
44639.8
4421.27
=-34.1497
12.046%
7.76¢:3
230 473
721(?!6
33837.8
144.485
662,567
83.1111
-51883G2
-62.6251
-26117.9
~-3110.33
«413,481
0.799326
28.9647
466.099
8.,563%8
1758.18

X10

~-2.19708
215.614
30.1225
9.80594

".3422
. €.10716
©.54925
2.82043
144.485
7.03684
-2.72536
9.17245%
=137945
2.38462
-767.761
57.2551
30.19%7
0186701
-1,60379
4,68082
8.,19207
24,0727

X1l

0.731235
785.26
46.8538
=6.66139
-8.98976
34.3681

0.495098 -

6.72568
662,567
-2.72536
67.4176
=7.23447
115772
-12.4703
182.637
~-206.265
-72.7273
« 0701341
2.74268C
6.06845
-8,.53388
12.0449

X1l2

~3.84745
139.957
25.7475
13.3912
7.725085
5.65109
7.941
1,76349
83.1111
9.17345
-7.23447
13.2529
«165204
2.99728
-938.115
71,0781
47.5338
«0221496
~2.43871
5.06006
11.7909
22,1815

X1
X2
X3
X4
X35
X6
X7
X8
X9
X10
X1l
Xl12
X158
X17
X18
X19
X20
X21
X223
X223
X24
X258

X158

-85891.3
-6993472
-~1125733
-173297
=121470
=208639
=139309
-161883
-51l88362
=137945
118772
-165204
8.2E+09
=1003423
43466852
=1027794
-886584
=-531.93
29464.8
«110036
=155027
-964771

PRINCIPAL COMPONENT ANALYSIS

x17

=2.24013
=-67.8237
-2.55027
3.42244
0.814652
=,740503
1.54663
0.804153
-63.6251
2.38462
~12.4703
2.99725
=100343
5.47272
-421.9
47.1727

30.3091

+ 00454553
-1l.18182
-.103636
3.02282
11.8092

COVARIANCES
Xl8 X119
=310.,767 32.6381
=34904.1 -3627.07
-5812.36 7.38968
«1011.46 105,698
-665.931 65.6658
=1412.74° 123.696
-782.588 46,1192
-635.836 =1,10482
=-26117.9 =3110.,33
=767.761 57.2551
183.637 =206.265
=938,115 71.0781
43466853 =1027794
-421.9 47.1727
244541 =3143.5
-3143.8 3100.47
=4314.1 451.909
-4.18 =~,620438
153.7 =13.9818
-585.29 =15,2036
-866.958 89,9873
-4723.07 242.107

X20

=7.72981
-467.318
35.1436
43.4028
37.4768
=~7.76181
30.9603
l4.0138
~413.461
30.1997
-72.7273
47.8338
=-886084
30.3091
=4314.1
451.909
323.964
.0318182
=12.0727
7.29458
45.7
93.5026

X21

=0.04723
1,00458
. 02253236
0.02798
-,011381
«0709393
« 0180623
=.009843
0.799326
.0186701
+ 0701341
0221496
=531.93
« 0045458
=-4.18
-.620458
.0318182
4.1E-04
=.006364
« 0152727
« 0147347
+ 0678547

Xl
X2
X3
X4
b L]
X6
L7
X8
X9

X10

X1l1
Xl12
X18
X17
X18
X19
X320
X21
Xa2
X231
X24
X258

X22

1.63621
31.2285
0.970624
-2.6418
-1,18823
-, 977816
«1.17045
0.360237
28.9647
-1,60379
2.74265
-2.43871
29464.8

-1.18182

183.7
=-13.9818
~12.0727
-,006364
0.654548

=-,330909

-2.29616
-4.,01265

X213

4.00857
630.372
67.4554
3.63113
2.43762
1,.78892
5.48843
9.78502
466.099
4.68082
6.06845
5.06006
«110036
=.103636
-585.29
-15.2036
7.29455
0152727
=-.330909
7.71218
3.83026
29.4533

X24

=3.33469
49.5614
21.6735
12,3389
7.18182
6.57276
6.99544
0.741977
8.5€358

' 8.19207

-8.53385
11.7909
-155027
3.02282

-866.958
89.9873

45.7

« 0147347

“2,.29616
3.83038
11.2179
21,0877

E-68

X25

29.9385
2403.47
323.785

25.635
11.0381
46.6302

27.366
51.4449
17%8.18
24,0727
12.0449
22.1815
=964771
11.8092
=4723.07
242.107
93.5026
. 0678547
~4.01268
29,4823
21.0877
249.778

PRIN1
PRIN2
PRINJ
PRIN4
PRINS
PRINS
PRIN7
PRINS
PRINS
PRIN1O
PRIN11
PRIN12
PRIN13
PRIN14
PRIN15
PRIN16
PRIN17
PRIN18
PRIN1S
PRIN20
PRIN21
PRIN22

PRINCIPAL COMPONENT ANALYSIS

TOTAL VARIANCE=8219758114

EIGENVALUE

8.2B+09
84900
15138.8
2189.6
225.454
159.679
90.0073
73.3826
19.2198
9.72102

000COCCO0OD0000O0

DIFFERENCE

8.2E+09
69761.1
12949.2
1964.14
65.7749
69.6718
16.6248
54.1628
9.49877
9.72102

s 0O000O0C00000O0

PROPORTION

0.999987
0.000010
0.000002
0.000000
0.000000
0.000000

0.000000

0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000

CUMULATIVE

0.99999
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000

PRIN1

=.000010
=-.000851
=-.000137
-,000021
=.000015
=.000025
=,000017

=.000020

-.000631
=.000017
0.000014
=,000020

0.999985 -

-.000012
0.005288
-.000125
=.000108
=-.000000
0.000004
-.000013
=-.000019
=.000117

PRINCIPAL COMPOMNENT ANALYSIS

PRIN2

0.006547
0.792770
0.074101
=.002599
=-.001226
=-,002694
0.002939
0.012140
0.598875
0.001283
0.013522
«.000226
0.0003881
=.002327
0.032807
=.070327
-,018550
0.000008
0.000876
0.007837
-.001483
0.023148

EIGENVECTORS

PRIN2

0.008942
-.005018
0.013055

-,004742

-.000662
-.018707
-.002872
0.012796
-.025286
=.002044
-.031911
-.003417
-.005163
0.007790
0.978640
0.1985277
0.0311583
-.000099
=-.000384
-.001381
-.001897
2.023930

E-70

PRIN4

0.015709
0.125958
0.136146
0.042235
0.022608
0.063500
0.027039

. 0.006392

-.062719

0.026875.

-.011518
0.030181
0.001263
-.000286
-.195482
0.947814
0.074918
~-.000159
~.002532
0.011288
0.034407
0.095601

PRINY

-.056049
0.290333
0.1774%94
0.080102
0.095339
-,286712
0.039931
0.010191
-.394262
0.067121
-.272706
0.127467
0.000170
0.060958
-,016331
-,146752
0.698184
0.C001 3%
-503404.1.
0.038796
0.120677
-.029662

PRING

-.027712
-.394896
~.283701
0.033727
0.062615
0.012262
0.022168
0.068581
0.584968
0.033779
0.155914
0.068530
0.000130
0.020186
-.011999
0.081288
C.606836
0.000162
~-.012485
0.007426
0.029016

-.062825

X1
L2
X3
X4
X5

X285

PRIN7
-.293858
0.156175
-.267890
0.180554
-.135989
0.567977
0.083063
-.077519
-.200525
0.094753
0.237169
0.084185
-.000084
0.057001
0.025319
-.099915
0.141469
0.001300
~-.040800
0.022714
0.081935
0.524962

PRIN13

0.199128
0.005427
-.008700
-.022381
i) 095413
0.0412£8
-.173016
=.297886
=.004497
0.037686
0.007912
0.228759
=,000013
0.044917
0.003053
-.008090
0.'047828
~.268063
0.823799
0.106060
0.000030
0.019472

PRINS
0.275821
=.179663
0.565052
-.109308
U.058072
=-.094870
~.070265
0.151142
0.123037
=.076648%
0.146081
«-. 097099
0.000099
-.035248
=-.005396
~.108883
0.093127
-.000066
0.002275
-.030572
=-.0619850
0.664756

PRINCIPAL COMPONENT ANALYSIS

PRIN14

=.359479
-.199781
0.490104
0.180401
~-.248823
0.287062
0.181651
-.030281
0.214741
0.083519
~.401870
-.087482
=-.000004
0.246077
0.005759
-.040399
-.025298
-.077573
0.039323
0.262388
0.000775
=.135545

PRINY
-.025936
0.062062
0.420062
=.111397
0.063965
0.336252
-.049460
0.034662
-.131569
~.049870
0.614340
=-.033303
-.000199
-.174552
0.033735
-.045596
0.161746
-.000282
0.013730
0.013111
0.063160
=.472468

PRIN10O
0.014946
-.093238
0.125267
0.454105
0.407151
~=.094909
0.186226
-.085038
0.092745
0.215596
0.052314
0.452755
-.000126
-.320315
0.024263
=.042101
-.225223
=.000126
-.052786
0.137401
0.333376
0.034461

EIGENVECTORS

PRIN1S

0.291893
-.003183
0.008092
-.260259
0.111701
0.507988
0.076335
0.284005
0.004291
0.084083
-.377370
0.364731
0.000016
0.002049
0.000606
-.045695
0.026223
0.275962
0.022126
=-.229525
0.000021
-.083447

E-71

PRIN16

-.136960
=-.016528
0.067065
=.007030
-,.681884
-.286705
0.003010
0.299489
0.004041
0.105474
0.191306
0.492725
0.000001
-.055759
-.002667
0.018790
~-.057862
0.175039
0.011990
~.106444
0.000048
-.01029%0

PRIN11
0.048740
=-.025203
-.031861
-.192343
-.150030
=-.011000
-.082482
0.041736
0.037645
-.098653
=-.040643
-.194558
0.000011
0.110811
-.001820
0.001505
=-.048940
«.000093
0.026725
-.060137
0.926134
0.020334

PRIN17

0.290616
0.027346
-.027554
0.735978
-.243781
0.118915
-.240268
0.195084
-.030021
~.164224
=.057342
-.251713
0.000002
-.088485
0.000074
-.018198
0.065408
0.048879
0.023361
-.121024
-.000068
-.101755

PRIN12
-.348375
0.014341
-.029553
0.075215
0.219978
-.089616
0.300076
0.409439
-.021297
-.019585
0.012401
-.285452
0.000013
-.133557
-.003126
0.004463
-.025880
0.334952
0.546899
-.210299
-.000054
0.035530

PRIN18

-.196401
-=.014632
0.041603
0.000068
0.148275
0.007171
-.697337
0.109361
0.017193
0.633405
=.031783
-.094534
0.000008
0.066265
-.001606
0.903918
-.047505
0.135981
0.005436
=~,0506EF
0.000024
0.003187

PRIN19

0.312574
0.0113817
=-,042890
-.088692
-,257313
~.022146
0.424621
-,112328
~-.019425
0.649457
0.024771
-.350791
-.000016
-.274292
0.002874
-.011927
0.063823
-.083387
-.008422
0.012418
=-.000033
-.017378

PRIN20O

0.192387
0.033314
~.019354
0.142406
0.163611
-.084717
0.228990
0.282543
-,054921
0.205211
0.277025
0.050171
-,000024
0.764548
0.003550
-,008882
-,103640
0,006488
-,058269
0.000167
-,066171

PRIN21

0.164207
-.010028
0.032367
0.058971
-,030508
-,.069407
0.049723
-,425997
0.011163
0.003963
0.134527
-.036486
-,000027
0.286583

0.005124

0.000199
0.010887
0.791683
0.040242
0.220111
0.000161
=, 006465

PRIN22

0.120852
0.052385
-.167744
-.103824
0.008069
0.018173
-.060920
0.451916
~-.071648
-,031687
0.011138
-.034579
0.000020
-.091256
-,005044
0.002506
-.017098
0.033157
0.034118
0.846512
-.000250
0.021055%

CODE AND UNIT TEST PHASE: Least Squares Methed
(using Principal Components)

DEP VARIABLE: Y
ANALYSIS OF VARIANCE

E-73

SUM OF MEAN
SOURCE DF SQUARES SQUARE F VALUE PROBE>F
MODEL = 1 275.45981 275.45981 0.566 0.4764
ERROR 7 3406.24241 486.60606
¢ TOTAL 8 3681,70222
ROOT MSE 22,05915 R-SQUARE 0.0748
DEP MEAN 24,25556 ADJ R-SQ -0.0574
C.V. 90,94473
PARAMETER ESTIMATES
PARAMETER STANDARD T FOR HO:
VARIABLE DF ESTIMATE ERROR PARAMETER=O
INTERCEP 1 38.02688694 19.72530460 1.928
Pl R! -2.58584501 3.43686223 -0,752
VARIABLE DF PROB > |T|
INTERCEP 1 0.0952
P1 1 0.4764
PREDICT STD ERR LOWERSS5%
OBS ID ACTUAL VALUE PREDICT MEAN
1 5.76979 36.0000 23.1071 7.5098 5.3491
2 6.15126 31.0000 22.1207 7.8815 3.4836
3 3.13332 64.0000 29.9246 10.5281 5.0295
4 5.2445 48.0000 24.4654 7.3583 7.0656
5 2.27999 10.0000 32.1312 12.7921 1.8825
6 2.27047 8.0000 32.1558 12.8189 1.8433
7 7.61732 €.5000 18.3297 10.7750 -7.1493
8 7.55941 6.0000 18.4794 10.6304 «6.6577
9 7.90488 8.8000 17.5861 11.5172 ~9.6479
1n 5.91787 . 22.7242 7.6208 4.6830
11 10.373 . 11.2038 18.8412 =33,3450

UPPER95% LOWER95% UPPER95%
OBS IiDb MEAN PREDICT PREDICT RESIDUAL
1 5.7€979 40.80651 =-31.9948 78.2090 12.8929
2 6.15126 40.7577 =-33.2708 77.85121 8.8793
3 3.13332 54.8198 -27.8737 87.7229 34.0754
4 5.2445 41.8653 -30.5221 79.4530 23.5346
s 2.27999 62.3798 -28,1669 92.4292 =-22.1312
6 2.27047 62.4679 -28.1741 92.4857 -24,1558
7 7.61732 43.8087 =39.7225 76.3819 =-11.8297
8 7.55941 43.6165 =39,.4235 76.3823 =-12.4794
9 7.90488 44.8201 =41.2578 76.4297 -8.7861
10 5.91787 40.7653 -32.4696 77.9)80 .
11 10.373 55.7566 -57,3952 79.8028 .
STD ERR
OBS ID RESIDUAL
1 5.76979 20.7415
2 6.15126 20.6031
3 3.13332 19.3847
4 5.2445 20.7937
5 2.27999 17.9714
6 2.27047 17.9522
7 7.61732 19.2485
8 7.55941 19.3288
9 7.90488 18.8138
10 5.91787 .
11 10.373 .
SUM OF RESIDUALS 9.14824E-14
SUM OF SQUARED RFESIDUALS 3406.242
PREDICTED RESID SS (PRESS) 6058.221

E-74

Regression Models Using Principal Components Analysis

for Highly Correlated Variahles

PRINCIPAL COMPONENT ANALYSIS

11 OBSERVATIONS

7 VARIABLES
SIMPLE STATISTICS
Xl X2 X3 X8
MEAN 2.87712 105.297 20.0766 8.02100
8T DEV 4.52637 243,706 26.7754 4.62116
X9 Xa3 1325
MEAN 90.035 2.52727 22.6800
ST DEV 183.950 2.77708 15.8044
COVARIANCES
X1 X2 X3 X8
X1 20.48802 507.6274 76.7436 15.,03%02
L2 507.6274 59392.56 6000.551 949.0371
X3 76.7436 6000.551 716.922 108.5977
X8 15.03902 949.0371 108.5977 21.35512
X9 391.7628 44639.885 4421.269 721.7865
X23 4.005569 630.3725 67.45542 9.755018
X285 29.93848 2403.468 323.7854 51.44488
X9 X213 X25
X1 391.7628 4.008569 29.93848
X2 44639.85 630.3728 2403.468
X3 4421.269 67.45542 323.7854
X8 721.7865 9.755018 51.44488
X9 33837.77 466.0989 1758.177
X23 466.0989 7.712182 29.45329
X25 1758.177 29.45329 249.7776

E=75

PRINCIPAL COMPONENT ANALYSIS

TOTAL VARIANCE=94246.59

EIGENVALUE
CUMULATIVE
PRIN1 93767.7
0.99492
PRIN2 293.6
0.99803
PRIN3 129.8
0.99941
PRIN4 48.5
0.99993
PRINS 4.6
0.99998 .
PRING 2.1
1.00000
PRIN7? 0.3
1.,00000
PRIN1
Xl 0.006891
X2 0.795466
X3, 0.079926
X8 0.012782
X9 0.599617
X23 0.008398
X25 0.032006
PRINS
X1 0.658582
X2 0.151586
X3 -.421264
X8 0.500471
X9 =.164496
X23 -.280461
X25 0.098187

DIFFERENCE

93474.0

163.8

81.3

43.9

2.5

' 1) 8

EIGENVECTORS

PRIN2 PRIN3
0.053822 0.138704
0.322656 -.460802
0.560871 0.141991
0.040068 0.121577
-.533522 0.553546
0.031659 =-.015624
0.539598 0.653317
PRING PRIN7
-.466968 0.339683
-,020767 0.020326
0.072819 -,143518
0.840668 =-,068991
0.006469 -,024806
0.248635 0.925940
-,087309 0.029412

PROPORTION

0.994919
0.003116
0.001377
0.000515
0.000049
0.000022
*0.,000003

PRIN4

0.458959
-.164212
0.674916
0.146618
0.147258
-.029001
-,.512696

PRINCIPAL COMPONENT ANALYSIS

11 OBSERVATIONS
10 VARIABLES

MEAN
8T DEV

MEAN
ST DEV

X4
2.83031
3.99664

X18

419.000
494.511

SIMPLE STATISTICS

X4

15.9731
5.96383
8.56419
9.80594
13.3912
=1011.46
105.698
43.4028
=2.6418
12.3389

X1l8

=1011.46
-665.931
=-782.588
-767.761
=938.115
244541
=3143.8%
153.7
-866.958

p (. X7
2.59868 2.11232
3.,08383 2.56330

X19 X20
102.455 21,1818
55,682 17,9990
COVARIANCES
X5 X7
5.96383 8.56419
9.32588 3.46024
3.46024 6.5708
4.3422 6.54925
7.728%05% 7.941
-665.931 -782.588
65,6658 46,1192
37.4768 20.9603
-1,18823 -1.17045
7.18182 6.99%44
X19 X20
105,698 43,4028
65,6658 37.4768
46.1192 20.9603
57.2581 30,1997
71.0751 47.5338
-3143.5 -4314,1
3100.47 4%1,909
451,909 323.964
-13.9818 -12.0727
89.9873 45,7

E-77

X10

2.05379
2.65268

X22

2.36364

0.80904

X10

9.80594
4.3422
6.54925
7.03654
9.17345
-767.761
57.2851
30.15997
=1.60379
8.19207

X22

-2.6418
-1.188213
-1.17045
-1.60379
=2.43871

153.7
=13.9818
-12.0727
0.654545
-2.29616

Xl12
2.,43642

 3.64045

X24

2.74688
3.34931

Xla

13.3922
7.72508
7.941
9.172345
13.2829
=-9$38.115
71.0751
47.5338
-2.43871
11.7909

X24

12,3389
7.18182
6.99544
8.19207
11.7909
-866.958
89.9873
45.7
=-2.29616
11.2179

PRIN1
PRIN2
PRIN3
PRIN4
PRINS
PRING
PRIN7
PRINS
PRINS
PRIN1O

X4

X5

X7

X10
X12
X18
X19
X20
X22
X24

PRINCIPAL COMPONENT ANALYSIS

TOTAL VARIANCE=248029.9

EIGENVALUE DIFFERENCE PROPORTION

244676 2415852 0.986480

3123 2921 0.012591

202 180 0.000812

22 17 0.000088

5 4 0.000020

1 1 0.000006

0 0 0.000001

0 0 0.000000

0 0 0.000000

0 . 0.000000

EIGENVECTORS

PRIN1 PRIN2 PRIN3 PRIN4
=-.004142 0.030741 0.074788 0.557404
=.002728 0.019341 0.093433 0.086419
-,003202 0.011849 0.017808 0.359227
=.003143 0.015%58953 0.057780 0.362158
~.003841 0.020303 0.124832 0.480359%
0.999722 0.015776 0.0168653 0.004420
=,013048 0.988986 -.145044 -,023291
-,017678 0.137151 0.965536 =-.190685
0.000630 =-.004264 -.039851 -.062873
=-,003551 0.026534 0.106152 0.387360
PRING PRIN? PRINSB PRINS
-.580518 0.358151 -.282898 0.259850
-.059107 0.189811 -.289442 0.04332¢
0.679620 0.062402 -.365802 0.049403
0.392508 0.100794 -.033061 0.024990
0.022076 0.164348 0.739272 =,348577
0.000998 0.000412 =.000880 0.0006083
0.003909 «.000096 0.008653 =-.008030
0.033509 0.026429 -.018878 0.038192
0.15295%0 0.083966 0.412597 0.885806¢
=.135011 ~.887066 =-.023766 0.140904

E-78

CUMULATIVE

0.98648
0.99907
0.99988
0.99997
0.99999
1.00000
1.00000
1.00000
1.00000
1.00000

PRINS

-,255778
0.933384
=-,076413
=-.,098286
0.144420
0.000214
-.000808
~.090993
0.079428
0.111473

PRIN1O

-,067073
0.089%20¢%
~.512465
0.830259
~.191995
-,000169
-.000077
=,018449
-.053282
0.002716

PRINCIPAL COMPONENT ANALYSIS

11 OBSERVATIONS

2 VARIABLES
SIMPLE STATISTICS
X1l X17
MEAN 7.29776 5.45455
8T DEV 8.21082 2.33939
COVARIANCES
X1l X17
X1l 67.41757 =12.4703
X17 =12.4703 5.472727
TOTAL VARIANCE=72,89029
EIGENVALUE DIFFERENCE PROPORTION
CUMULATIVE
PRIN1 69.8338 66.7772 0.958067
0.95807
PRIN2 3.0565 . 1 0.,041933
1.00000
EIGENVECTORS
PRIN1 PRIN2
X1l 0.981742 0.190218
X17 -.190218 0.981742
E=-79

Regression Mcdel: using the first Principal coinponent
of each highly correlated set f variables

DEP VARIABLE: Y

SOURCE DF
MODEL 5
ERROR 3
C TOTAL 8

ROOT MSE
DEP MEAN
c.v.

VARIABLE

INTERCEP
Pl
P2
P3
P4
PS

VARIABLE
INTERCEP

D

o
|

F

PRPRPRPRR

PRRERP P

ANALYSIS OF VARIANCE

SUM OF MEAN
SQUARES SQUARE F VALUE
2744 .60060 548.92012 1.787
937.10162 312.36721
3681.70222
17.67391 R=8SQUARE 0.7458
24.2555¢6 ADJ R-8Q 0.32i2
72.8€542 :
PARAMETER ESTIMATES
PARAMETER STANDARD
ESTIMATE ERROR
303,.72064 432,.56932
0.04912381 0.02107148
0.01548917 0.01901178 °
0.040€7242 0.06340874
-0.64732832 0.89593575
=290.92608 439.15810
PROB > |T|
0.5332
0.1020
0.4749
0.5669
0.5222
0.5550

PROB>F
0.3408

T FOR MO:
PARAMETER=()

0.702
2.331
0.818
0.641
=0.733
-0.6€2

PRECICT STD ERR LOWER95%
OBS ID ACTUAL VALUE PREDICT MEAN
1 4.1398 36.0000 36.0000 17.6739 ~20.2472
2 29.2134 31.0000 30.4031 17.6639 -25.8124
3 1057.11 64.0000 63.1191 17.6608 6.9137
4 7.66985 48.0009 26.1961 12,3981 ~13.2608
5 22.0749 10.0000 26.1133 14.5387 -20.1464
6 40.0765 8.0000 9.2448 - 8.7823 =18,7051
7 88.4097 6.5000 13.4096 11.7090 -23.8543
8 101.506 6.0000 14,2004 11,3907 =22.0504
9 79.7902 8.8000 -0.3861 15.1309 -48.8401
10 19.8917 . 31.4122 21.2165 =-36.1092
11 92.54 . 19.3664 8.4602 ~-7.5580
UPPER9SS LOWERSS5Y UPPER9S%
OBS - ID MEAN PREDICT' - PREDICT RESIDUAL
1 4.1398 92.2472 -43,.5456 115.5 3.8E=-12
2 29.2134 86.6186 ~-49.1201 109.9 0.5969
3 1057.11 119.3 -16.3969%9 142.6 0.8809
4 7.66955 €5.6530 ~«42.5105 94,9027 21.8039
5 22.0749 72.3730 -46.7133 98.9399 =-16.1133
6 40.0765 37.1941 ~53.5642 72.0832 =1,2445
7 88.4097 50.6734 =54.0615 80.8807 =€.9096
8 101.506 50.4513 -52.7165 81.1174 =-8,2004
9 79.7902 47.7679 -74.4304 73.6582 9.18¢€1
10 19.8917 98.9336 ~56.4678 119.3 .
11 92.54 46.2909 -42.9928 8l1.7287 .
8TD ERR
oBS ID RESIDUAL
1 4.1398 1.4E-05
2 29.2134 0.5934
3 1057.11 0.6812
4 7.6695% 12.5958
5 22.0749 10.0540
6 40.0765 15,3375
7 88.4097 13,2388
8 101.506 13.5137
9 79.7902 9.1337
10 19.8917 .
11 92.54 .
SUM OF RESIDUALS 1.52323E-12
'SUM OF SQUARED RESIDUALS 937.1016
PREDICTED RESID S5S (PRESS) €37811.6

E-81

Regression Mcdel: using only the first Principal component
of the highly correlated set of variables

(%) Xy Xy, Xg, Xg) Xpy) Xpx)

DEP VARIABLE: Y
ANALYSIS OF VARIANCE

SUM OF MEAN
SOURCE DF SQUARES SQUARE F VALUE PROB>F
MODEL 1 1477.14894 1477.14894 4.690 0.0670
ERROR 7 2204.55328 314.93618
CTOTAL & 3681.70222
ROOT MSE 17.74644 R-SQUARE 0.4012
DEP MEAN 24.28556 ADJ R~SQ 0.3157
c.v. 73.16444
PARAMETER ESTIMATES
PARAMETER STANDARD T FOR HO!
VARIABLE DF ESTIMATE ERROR PARAMETERwO
. INTERCEP 1 17.88125956 6.60725342 2.706
P1 1 0.04011814 0.01882422 2,166
VARIABLE DF PROB > |T|
INTERCEP 1 0.0304
P1 1 0.0670
PREDICT STD ERR LOWER95Y
oBs ID ACTUAL VALUE PREDICT MEAN
1 4.1398 36.0000 18.0473 6.5735 2.5035
2 29.2134 31.0000 19.0532 6.3846 3.9559
3 1057.11 64.0000 60.2907 17.6592 18.5330
4 7.66955 48.0000 18.1889 6.5452 2.7119
5 22,0749 10.0000 18.7669 6.4355 3.8492
6 40.0765 8.0000 19.4891 6.3116 4.5643
7 88.4097 6.5000. 21.4281 6.0578 7.1038
8 101.506 6.0000 . 21.9538 6.0102 7.7414
9 79.7902 8.8000 21.0823 6.0942 6.6716
10 19.8917 . 18.6793 6.4516 3.4237
11 92.54 . 21.5938 6.0418 7.3071

OBS

oB8

Iy

e

POVONORE WD

HOWONOOGM~EWNK

ID

4.1388
29.2134
1057.11
7.66958
22.0749
40.07635
88,4097
101.506
79.7902
19.8917

92.54

ID

4.1398
29.2134
1057,11
7.66958
22.0749
40.07653
88.4097
101,506

79.7902 .

19.8917
92.54

SUM OF RESIDUALS
SUM OF SQUARED RESIDUALS
PREDICTED RESID 88 (PRESS)

UPPER95%
MEAN

33.5912
34.1505

10<.0
33,6660
33.9846
34.4138
35.7527
36.1658
35.4930
33.9349
35.8808

STD ERR
RESIDUAL

16.4841
1s.5582

1.7577
16.4953
16.5384
16.5861
16.6805
16.6977
16.6672

5'2

LOWER95%
PREDICT

-26.7030
-25.5439

1.0903
-26.5382
-25.8712
-25,0%00
-22.9134
=22,.3518
=-23.2871
-25.9717
-22.7355

4025E-14
2204.553
145859.2

E-83

UPPERS 5%
PREDICT

62.7%76
63.6504

119.5
62.9161
63.4049
64,0281
€65.7696
66,2588
€5.4517
63.3303
65,9231

RESIDUAL

17.9527
11.9468
3.7093
29.8111
=-8.,7669
=11.4891
+14,92861
-15.95138
=-12.2823

REFERENCES

Abramowitz, M. and I. A. Stegun, Z.A. (eds.) 1970. Hapdbook of
Mathematical Functions with Formulas, Graphs _ and
Mathematical Table:, u. S. Department of Commerce,
National Bureau of Standards, Appliad Mathematics Series
85.

Adams, E.N., "optimizing Preventive Service of Software

Products." IBM Journal of Research and Development, June
1.984.

Adelson, R.M., "“Compound Poisson Distributions." Operational
Researxch ouarxtexly, V. 17, pp. 73-75, 1966,

AFCCE, A__Degcriptive Evaluation of Software Sizina Models,
ﬁeadquarters USAF/Air Force Cost Center, Washington, DC,
1987. NTIS document #A241678.

AGREE (Advisory Group of Electronic Equipment), Reliability of
Office of the Aassistant
Sacretary of Defense (Research and Enginearing), 1957.

Albrecht, A.J., "Measuring Application Development Productivity."
Proceedings of the Joint IBM/SHARE/
Revelopment Symposium, pp- 83-92, October 1979.

Albrecht, A.J. and Gaffney, J.E., "Software Function, Source
Lines of Code, and Development Effort Prediction: A Software
Science Evaluation."

ZEEE __Transac
Engineering, SE-9(6), pp. 639-647, November 1983.

Anstadter, B.L., Reliab H
Practices, Procedures, McGraw-Hill, New York, 1971.

Angus, J., Schafer, R.E., Van Den Berg, S. and Rutemiller, H.,

“Failure-Free Period Life Tests." Technometrics, 27(1), 49-
56, 1985,

Aviziensis, A., Grnarov, A. and Arlat, J. "On the
Performance of Fault-Toierance Strategies." Proceedinas 10tn
national Symposium on Fault-Tolerant Compyting

Inter » PP.
251-253, 1980.

Barbour, G.L., "Failure Modes and Effects Analysis by Matrix

Methods. "
Maintainability Synposium, 1977.
Barlow, R.E., and Proschan, F.,

statistical Assocjation, V. 62, pp. 548-560, 1967.

R-1

Bartholomew, D.J., "Testing for Departure from the Exponential
Distribution." Bjometrika, V. 44, pp. 253-256, 1957.

Basili, V.R. and Hutchens, D.H., "An Empirical Study of a
Syntactic Complexity Family." ra tions Qil
Software Engineerindg, SE-2(6), pp. 664--672, 1983,

Baecker, P.W. and Jensen, F., 3

, McGraw-

Hill, New York, NY, 1977.

Bezoki, G., SSM User's Guide, Galorath Associates, Marina del
Ray, CA, 1987.

Brocklehurst, S., Chan, P.Y., Littlewood, B. and Snell,
"Recalibrating Software Reliability Models."

1EEE
! .ﬁgxsun:a_zngingsxing SE~16(4), pp. 458-470,
1990.

Cheung, R.C., "A User-Oriented Software Reliability Model." IEEE
Irxansactions on Software Engineering, SE-6(2), pp. 1l18-
125, 1980.

Coulter, N.S., "Software Science and Cognitive Psychology."
IEEE Transactions on Software Engineering, SE-9(3), 1983,

Cox, D.R. and Smith, W.L., "On the Superposition of Renewal
Processes." Biometrika, V. 41, 1954.

Crow, L.H, "Reliability Growth Modeling," Army Matariel Systems
Analysis Activity Technical Report, No. 55, Aberdeen Proving
Ground, Maryland, 1972. NTIS Document #AD747000.

De Marco, T., Structured 2Analvsis and Svstem Specification,
Yourdon Press, 1978,

Dennis, N. G., "Insight Into Standby Redundancy Via
Unreliability", IEEE Transactions on Reliability, Vol R-23,
No. 5, 1974,

Dhillon, B.S. and Singh, ., Engineering Reliability: New
Techniques and Applications

, John Wiley & Sons, New York,
NY, 19s81.

DOD=-STD~2167A, Defense System Software _Development, U.s.
Department of Defense, Washington, DC, 1988.

.Dreger, J.B., Function Point Analysis, Prentice Hall, Englewond
Cliffs, NJ, 1989.

Duane, J.T., "Learning Curve Approach to Reliability Monitoring."
, V. 2, pp. 563-566, 1964.

Eckhardt, D.E. and Lee, L.D. "“A Theoretical Basis for the
Analysis of Multiversion Programming Subject to Coincident
Errors." JILEE Transactions on Software Enaineering, SE-
11(12), 1985.

Epstein, B., "Statistical Techniques in Life Testing." U.S.
Department of Commerce, Office of Technical Services Report
171580, pp. 2.24-2.27, 1954. NTIS Document #AD21145.

Epstein, B., "sStatistical Techniques in Life Testing," National
Technical Information Service, U.S. Department of Commercs,
Washington, DC., 1960.

Epstein, B. and Sobel, M.,
Association, V. 48, pp. 486-502, 1953,

Abplications, V. 1, 2nd ed., Wiley, New York, NY, 1957,

Feller, W., ; ’
» V. 2, Wiley, New York, NY, 1966.

Fisher, R.A.,
? V. 222; ppo 309-368' 1922.

Fuqua, N.B., Reliability Engineering for Electronic Desiagn, M.
Dekker, New York, NY, 1986.

Goddard, P. L. and Davis, R., Automated FMEA Technigques, Final
Technical Report, RADC-TR-84-244, AD-A154161, 1984

Goddard, P. L., "Coverage As A Tradeoff Issue In System
Architectural Design", Proceedings of the AIAA Computexs In

Aerospace VII Conference, pp. 761-766, 1989

Goel, A.L. and Okumoto, K., "Time-Dependent Error-Detection Rate
Model for Software Reliability and Other Performance

Measures." JIEEE Transactions on Reliability, R-28(3), pp.
206-211, 1979.

Gremillion, L.L., "Determinants onf Program Repair Maintenance
Requirements." communications of the ACM, 27(8), pp. 826-
832, 1984.

Grosh, D.L., "A Parallel System of CFR Units is IFR." IEEE
Iransactions on Reliability, R-31(4), p. 403, 1982.

Grosh, D.L., A _Primexr of Reliability Theory, John Wiley & Sons,

New York, NY, 1989,

R-3

Haight, F.A., Handbook of the Poigson Digtribution, Tohn Wiley &
Sons, New York, NY, 1667.

Halstead, M.H., Elements of Software Science, Elsevier North
Holland, New ¥York, NY, 1977,

Hamer, P.G. and Frewin, G.D., "M.H. Halstead's Software
Science~~-a Critical Examination."
1982.

Hamer, P. G. and Frewin, G.D., "Software Metrics--A Critical
Overview." in The Software Development Process, State of the
Art Report, Series 13, No. 2, Pergamon Infotech, 198%5.

Hatley, D.J. and Pirbhai, I.A.,
Specification, Dorset House Publishing, 1587,

Hecht, H., ""Measurement, Egtimation, and Prediction of
Software Rallability." in Software Engineering Technoloay,
2, Infotech International, Maidenhead, Berkshire, UK, pp.
209-224: also in NASA report CR145135, Jan. 1277.

Hecht, H., "Allocation of Resources for Software Reliability."

Pxocasdings COMPCON Fall 1981, Washington, DC, pp. 74-82,
1981.

Humphrey, W.S., Managing the Software Process, Addison-Wesley,
Reading, MA, 1989.

James, L.E., Angus, J., Bowen, J.B. and Mcbaniel, J., '
, Final Technical Report, RADC-82-
68, 1l1982.

Jelinski, 2. and Moranda, P.B., "Software Reliability Research."
(W. TFreiberger, Editor), gtatigtical cComputer Perfoxrmance
Evaluation, Academic, New York, pp. 465-484, 1972.

Jones, C.L., Programming Productivity, McGraw-Hill, New York, NY,
1986.

Kapur, K.C. and Lamberson, L.R., Reliabilitvy in Engingerina
Design, John Wiley & Sons, New York, 1977.

Knight, J. C. and Leveson, N.G., "An Experimental
Evaluation of the Assumption of Independence in Multi-
Version Programming." ac

Engineering, SE-12(1), pp. 96-109, 1986.

Kopetz, H., Software Reliability, Springer-Verlay, New York,
pp. 10-11, 1980.

Kozlow, B.A. and Ushakov, I.A., Reliability Handbook, Holt,
Rinehart, and Winston, Inc., 1970.

Leveson, N, G. and Stolzy, J.L., "Safety Analysis of Ada
Progrars Using Fault Trees."
, R=32(5), prp. 479-240, 1983.

Lévy' P., L
Mathematics (Amgterdam), V. 3, pp. 314-426, 1954,

Littlewvod, B., "MTBF is Meaningless in Software Reliability."
Correspondence in IEEE Transactions on Reliability, 24(1),
p. 82, 1975,

Littlewood, B., "How to Measure Software Reliability and How
Not to." __IEEE Transactions on Reliability, R-28(2), pp.
103=-110, 197%a. -

Littlewoocd, B., "Software Reliability Model for Modular Progran
Structure." IEEE Transactions on Reliability, R-28(3), pp.
241-246, 1979b.

Littlewood, B. and Miller, D.R. "Concaeptual Modeling of
Coincident Failures in Multiversion Software." IEEE Transac-
fions on Software Engingering, 15(2), 1989.

Littlewood, B., and Verrall, J.L., "A Bayesian reliability Growth
Model for Computer Software."
, C (Applied Statistics), V. 22, pp. 332-
346,, 1973.

MacWilliams, W. H., "Reliability of Real Time Control Software
Systems." o
, Pp. 1=6, 1973,

Mallowa, C.L., "Some Comments on cp." Technometrics, 15(4), pp.
661-675, November 1973.

McCabe, T.J., "A Complexity Measure."
neering, SE-2(4), pp. 308-320, 1976.

MIL-HDBK~217. Reliability Prediction of Electronic Eguipment.

MIL-STD~-781. 1
ien, U.S. Department of

Defensa, Washington, DC.
Mills, H.D., "On the Statistical validation of Computer
Programs." FSC-72-6015, IBM Federal Systems Div.,

Gaithersburg, MD, 1972.

Miyamoto, 1I., "Software Reliability in On-Line Real Time
Environment." Proceedjngs of the 197 [
, Los Angeles, pp. 195-203,
1975.

Meran, P.A.P., "The Random Division of an Interval. Part II."
, Series B, V. 13,
PP. 147-150, 1951.

Moscovitz, F. and Mclean, J.B., "Some Reliability Aspects of
System Design." IRE Transactions on Reliability and ouality

ml, PQRQC-B' Sept. 1956.

Musa, J.D., "A Theory of Software Reliability and 1Its
Application." IEEE Transactions on Software Engineering, SE-
1(3), pp. 312-327, 1975.

Musa, J.D., "Validity of the Execution Timc'Thcory of Software
Reliability." IEEE Transactions on Reliability, R-28(3), pp.
181-191, 1979. .

Musa, J.D., Software Reliability Measurement." Jouxrnal of Svstems
and Softwarxe, 1(3), pp. 223-241, 1980.

Muga, J.D., "A Theory of Software Reliability and 1Its
Application." IEEE Transactions on Software Encineering, SE-
1(3), 1975.

Musa, J.D., Iannino, A. and Okumoto, K., Software Reliabilitv:

, McGraw-Hill, New York,
1987,

Musa, J.D., and Okumoto, K., "A Logarithmic Poisson Execution
- Time Model for Software Reliability Measurement."

Engineering, IEEE Computer Society, Orlando, pp. 230- 238,
March 1984.

Musa, J.D.,, and Okumoto, K., "A Comparison of Time Domains for

Software Reliability Modeis." Journsl of Svgtems and
Software, 4(4), pp. 277-287, 1984.

Myers, G.J., Tha Art of Softwares Testing, Wiley, New York, NY,
1979.

Myers, G.J., H '
Wiley-Interscience, New York, NY, 1976.

Nelson, E.C., "A Statistical Basis for Software Reliability
Assegsment." TRW-SS-73-03, March 1973.

Nieuwhof, G.W.E., "An Introduction to Fault Tree Analysis with
Emphasis on Failure Rate Evaluation." Microelectronics and
Reliability, 14, pp. 105-119, 1975.

o'Connor, P.D.T., Practical Reliability Enaineerina, 2nd ed.,
John Wiley & Sons, Chichester, UK, 1985.

Parzen, E., Stochastic Processes, Holden-Day, San Francisco,
1962.

Phillips, D., Ravindran, I. and Solberg, J., Qperations Research,
J. Wiley & Sons, New York, NY, 1976.

Pressman, R.S., Software Enginesring: A Practitioner's Approach,
1st ed., McGraw-Hill, New York, NY, 1982,

RADC' ' H -

. Qriented cuide for the Practicing Reliability Engineex, Rome

Air Development Center, Systems Reliability and Engineering
Division, 1988,

Randell, B., "System Structure for Software Fault Tolerance."
’ 83‘1(6), ppo 220=-
231, 1975.

Rau, J.G., Qptimization and Probability in Svstemas Engineering,
van Nostrand Reinhold, New York, NY, 1970.

Saaty, T., H

. Lifetime
Learning Publications, Belmont, CA, 1982,

Sandler, G.H., Svstem Reliability Engineering, Prentice-Hall,
Englewood Cliffs, NJ, 1963.

Sarje, A. K. and Prasad, E.V., "An Efficient Non=-Recursive
Algorithm for Computing the Reliability of k-out-of-n
Systems." JEEE Transactions on Reliability, R-38(2), pp.
234-235, 1989,

Scott, R. K., Gault, J.W. and McAllister, D.F., "Fault-Tolerant
Software Reliability Modeling."
Softwaxe Engineaering

AEEE Transac
, SE=13(5), pp. 582=592, 1987.

Shen, V.Y, Conte, 8.D. and Dunsmore, H.E., "Software Science
Revisited: a Critical Analysis of the Theory and Its
Empirical Support." IEEE _ Transactions on Software
Engineering, SE-9(2), March 1983.

Shooman, M.L., "Operational Testing and Software Reliability
Estimation During Program Development." in Racord IEFEE

R=7

Symposium on Computer Software Reliability, pp. 51-57,
1973.

Shooman, M.L., Software Enagineerina: Desjian, Reliabilitv, and
ngngggmgn; McGraw-Hill, New York, NY, 1983.

Siegrist, K., "Reliability of Systems with Markov Transfer of
Control." IEEE Transactions on Software Engineerindg, SE-
14(7), pPp. 1049-1053, 1988,

Singpurwalla, N.D. 198%a. "Military Standards for Fixed-Length
Tests." Engvelopedia of gtatistical Sciences, 5, John Wilay
& Sons, New York, NY, pp. 489-490, 1985a.

Singpurwalla, N.D., "Military Standards for Sequential
Life Testing." Encyclopadia of Statistical Sclancas, 5, John
Wiley & Sons, New York, NY, pp. 490-493, 1983b.

Smith, W.L., "On Renewal Theory, Counter Problems, and
- Quasi=-Poisson Processes." Prccesdings
» V. 53, pp. 175=193, 1557,

smith, W.I.., "Renewal Theory and its Ramifications." _Journal of
the Roval Statistical Society, Series B, V. 20, pp. 245-302,
1958a,

smith, W.L., Addendum, Procsedings. cCambgidge Philosophical
[54' ppo 305' 1958b.

Souder, W.E.

, Van Nostrand Rsinhold, New York,
NY, 1980,

Sunohara, T., Takano, A., Uehara, K. and Ohkawa, T., "Program
Complexity Measure for Software Development Management."

Engineexing, San Diego, CA, pp. 100-106, 1981.

Takahashi, M. and Kamayachi, Y., "An Empirical Study of a
Model for Program Error Prediction."

Software Enaineuring, 15(1), pp. 82-86. 1989,

Thurstone, L.L., Tho_Measurement of Values, University of Chicago
Press, Chicago, IL, 1959.

Trachtenberg, M. "The Linear Software Reliability Model and
Uniform Testing." IEEE Transactlons on Rellability, R-34(1),
pp. 8-18%, 1985,

von Alven, Willian (ed.), Reliability Enagineering, Prentice-
Hall, Englewood Cliffs, MJ, 1964.

R-8

1Y)

Volk, W.,
McGraw-Hill, New York, NY, 1982,

Wald, A. Seguential Analvsis, Wiley, New York, NY, 1947.

Yamada, S. and Osaki, S., "Reliability Growth Models for
Hardware and Software Systems Based on Nonhomogeneous

Poisson Processes: A Survey."
Raliability, 23(1), pp. 91-122, 1983,
Zipf' VGO' hnd

Dvnamic Philology, MIT, Cambridge, MA, 1965.

