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1. INTRODUCTION

1.1 jQop.

This document constitutes the final report on research into
"Reliability Techniques for Combined Hardware/Software Systems,"
performed for the U.S. Air Force under the contractual auspices
of Rome Air Development Center, Griffiss Air Force Base, Rome,
New York. This report fully satisfies the requirements of CLIN
0002, ELIN A004, of contract F30602-89-C-0111, Reliability
Techniques for Combined Hardware and Software Systems.

1.2 Research Problem Background

Many modern military and commercial systems and products contain
both hardware and executable software elements. The hardware
comprises the physical, tangible elements of the system.
Executable software is a logical element of the system,
consisting of sequences of instructions (programs). As speed,
capacity, and cost-effectiveness advance, an ever-increasing
number of applications are being found for computers. Society
and its institutions are becoming more and more dependent upon
computers. Microprocessors are being embedded into all manner of
devices and systems to add "intelligence." Computers lip at the
heart of real-time applications that control critical and vital
functions, where system failure can have catastrophic results.
High reliability is a crucial need of complex military systems,
which can inflict or prevent death. As hardware becomes more and
more reliable as the result of technological advances, software
is assuming an increasing role in achieving system reliability
requirements. System reliability considerations have in many
cases made a transition from hardware to software.

Methods for the prediction and measurement of hardware
reliability are considerably older and more mature than those for
software. The hardware methods have become standardized and
institutionalized throughout the defense and related industries
through military standards and handbooks. Over the past fifteen
years, the field of software reliability has made significant
progress. Major achievements have taken place in understanding
software reliability, including modeling, prediction, estimation,
its relationship to software quality metrics, and its
relationship to mission environment. These results are scattered
throughout the industrial and academic literature. This study is
intended to bring this research together, and build on it, adding
now theoretical and empirical results to create a comprehensive
methodology for software reliability assessment.

The methodology resulting from this study covers the entire life
cycle, is compatible with the military standard for defense
system software development--DOD-STD-2167A--and is aligned with
existing hardware reliability standards and practice, so that it

1



can be applied in a unified, integrated approach to total systems
reliability. To the end of moving software reliability
engineering towards standardization and institutionalization, a
draft military handbook on combined hardware/software system
reliability prediction and estimation is being written as part of
this study effort (ELIN A003).

1.3 &proach

The study team began the research project by establishing a
software error/failure database for use in developing techniques
for system decomposition and reliability allocation, reliability
prediction and modeling, reliability growth testing, and
reliability demonstration. The team populated this database with
error data, test failure data, and product/development process
metrics from eight projects. The projects were selected to
encompass a wide variety of size, product, and development
process characteristics. Two of the projects were ongoing
projects whose d3ta was set aside to be used solely for the
validation of the techniques.

Since the database required data from several life cycle phases
of each project, the data could not be collected all at once.
The data collection was spread out over several months. The
prediction task, which required the most data, was the last task
to be completed. While the database was being populated, work
began on the allocation, prediction, growth, and demonstration
tasks.

system decomposition consists of allocating functional
requirements to hardware and software subsystems and lower
indenture levels. Reliability allocation consists of
apportioning overall system reliability requirements to those
items. For software the indenture levels are Computer Software
Configuration Items (CSCIs), Computer Software Components (CSCs),
Computer Software Units (CSUs), and modules. The approach that
was taken was to allocate software reliability to processes (also
called tasks), which generally correspond to the CSCI level.

A Markov (combinations) approach for repairable systems and a
combinatorial approach for non-repairable systems were used for
reliability modeling. Reliability combination (i.e, calculation
of the reliability of assemblages of hardware and software
components) was studied as a prerequisite to researching
allocation.

Reliability prediction was approached by defining the problem as
predicting the parameters of a suitable software reliability
growth model. Predictive relationships based on regression
analysis of the product/process metrics and error/failure data
were developed.
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For growth testing, criteria for selecting a software reliability
growth model, goodness-of-fit techniques, and recalibration
techniques were developed. Special attention was paid to
sta Istically valid ways to perform the testing, including
acceieration by means of multiple copies.

For demonstration testing, an appropriate model for testing
frozen code was selected. The types of tests developed based on
that model were fixed-length tests, failure-free execution
interval tests, and sequential tests. Additional types of tests
were developed for the cases of demonstration test during growth
testing and for using multiple copies.

Each of the techniques developed for prediction, decomposition
and allocation, growth testing, and demonstration testing were
validated on ongoing projects. The techniques were organized
into a reliability methodology covering the entire life cycle.
The methodology forms the basis for the draft MIL-HDBK delivered
under contract as ELIN A003.

1.4 Report Oraanization

This report is organized to provide full detailed results for all
items in the SOW of contract F30602-89-C-0111 which are not
supplied under separate CLIN or ELINs. Coverage of the study
results for reliability modeling (SOW Task 2), allocation (SOW
Task 3), prediction (SOW Task 4), growth testing (SOW Task 5),
demonstration testing (SOW Task 6), and validation (SOW Task 7)
are provided in the main body of the report. The appendices
provide study activity reporting for reliability data base
establishment (SOW Task 1) and provide supplementary, detailed,
material for the other tasks in the SOW where appropriate.
Reporting on Reliability Technique Application Software (SOW Task
7) and Handbook Guidelines (SOW Task 8) is not provided. SOW
tasks 7 and 8 are deliverable under CLIN 0001 and CLIN 0002, ELIN
A003 respectively.

1.5 Introductory ConceRts

1.5.1 Software Failure

Software and hardware differ in several respects. Software does
not wear out; almost all hardware goes through a wearout phase.
All copies of software are perfectly identical; each manufactured
copy of a piece of hardware differs to some extent. Once a fault
is removed from software it is gone forever; many hardware faults
can recur. When viewed at the appropriate level of abstraction,
however, hardware and software reliability are very 3imilar.
Both a running program and an operating hardware item can be seen
as "black boxes." Every once in a while the black box fails.
The failure-inducing stress is time. For software, time brings

3



with it a succession of input states. The more time that goes
by, the higher the quantity of, and the more variety of, input
states the program encounters. Eventually, because of the
presence of faults, an input state will trigger a failure. With
hardware, time carries with it random stresses (such as friction,
shock, corrosion) which gradually or suddenly cause failure.
Thus both hardware and software reliability can be modeled as
random or stochastic processes.

An interesting trend is that some types of hardware are taking on
the characteristics of software. A VLSI chip cannot be
exhaustively tested; like software there are too many input
states and too many paths. Hermetically sealed integrated
circuit chips are claimed to have no wearout failure mode.
Firmware has both hardware and software failure modes. While a
particular version of a program does not wear out, program
maintenance is an entropy-increasing process, so that a program
will, in time, deteriorate.

A software failure occurs when the program produces output
(display, hardoopy, command, control, etc.) that deviates from
what the requirements specify. A failure can be one of
conformance, in which the program does not produce the right
answer, or one of performance, in which the program does not
perform a required function in a timely or resource-efficient
manner. Performance failures include crashes, hangs, and
software that does not meet its response or throughput time
requirements. Real-time systems need to respond to events in the
outside world as those events are happening.

Software failures can be classified along several different
dimensions. One classification is by the number of discrepancies
that comprise the failure. A discrepancy is a deviation of the
value of a single output variable from the required value.
Another way failures can be classified is by the severity of
their consequences: The impact of a failure could be as
innocuous as a misspelling or as catastrophic as loss of life or
limb.

Software reliability is one measure of software quality.
"Software quality" refers to those attributes that a program is
required to possess at all times. Examples include security,
robustness, maintainability, safety, availability, and
portability. Quantitatively, software reliability is defined as
the probability of failure-free operation of the software for a
specified period of time, in a specified environment. An
alternative figure of merit is the software's failure rate, the
instantaneous rate of software failures per unit time. By "time"
is meant execution time. The failure-inducing stress is
execution time, since software that is not running cannot fail.
When combining software failure rates with one another and with
hardware, the failure rate is re-expressed with respect to system
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operating tirue. The level at which software reliability should
be expressed needs to be a high one, snch as Computer Software
Configuration Item (CSCI), so that the interfaces between lower
level items will be included.

Software failures arise from a population of software faults. A
software fault (often called "bug") is missing, extra, or
defective code that has caused or can potentially cause a
failure. Every time a fault ir traversed during exeCution, a
failure does not necessarily ensue; it depends on the machine
jtate (values of intermediate variables). The extent to which a
source program contains faults is indicated by its fault density,
expressed in faults per thousand lines of executable source code
(KLOC). The fault density does not translate directly into a
failure rate because different parts of the program are executed
with different frequencies. Instructions inside loops will tend
to be executed more often than instructions outside loops.
Conditionally executed instructions tend to get executed less
than unconditional ones. How many loop iterations occur and
which branches take place depend on the machine state, which in
turn depends on the input state.

The origin of software faults lies in human fallibility.
Compounding factors are the lagging of software engineering
technology behind the increasing capabilities of computers, the
lcrge number of discrete states in programs, the novelty of
problems and solutions, and lack of standard off-the-shelf
software "parts" and designs. Software is very flexible because
tLere are no physical constraints such as power, weight, quantity
of parts, manufacturability, etc., so software engineers take on
tasks of sometimes enormous size and complexity.

1.5.2 Software Design Approaches To Reliability

High levels of software reliability are accomplished through a
triad of activities: fault avoidance, fault elimination, and
fault tolerance.

Fault avoidance consists of applying sound software engineering
practices, including standards (documentation, structured design
and programming, control), quality assurance (formal reviews,
audits; evaluation of personnel, methods), and verification ;.d
validation. These methods can go a long way in keeping down the
number of faults but, historically, many faults will remain.

Fault elimination is accomplished through testing, code reading,
and walkthroughs. The only way to uncover and remove all faults
in the code is through exhaustive testing. Exhaustive testing of
non-trivial programs is impossible from a practical point of view
because the number of inputs states is astronomically large.
Formal proof of correctness, given the current state of the art,
is likewise impractical for real-world software. In a program
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correctness proof, the program is treated as a static
mathematical object. The correctness proof is a formal
mathematical demonstration that a program is consistent with its
specfication. Such proofs are of great size and complexity,
although mechanical verifier systems help. A formal
specification of the program is required, and it is impossible to
demonstrate whether the specification captures the intentions of
the customer. Even if exhaustive testing or a formal proof of
correctness could be accomplished, the results of the activity
are as vulnerable to hitaan fallibility as programming is.

Fault tolerance is achieved through special programming tech-
niques that enable the software to detect and recover from
failure incidents. Software fault tolerance is a controversial
topic. The method requires "redundant" software elements that
provide alternative means of fulfilling the same function. The
different versions must be such that they will not all fail in
response to the same circumstances. Some have suggested that
diverse software versions developed using different specifica-
tions, designs, programming teams, programming languages, etc.,
might fail in a statistically independent manner. Empirical
evidence questions that hypothesis. However, almost all software
fault-tolerance experiments have reported some degree of
reliability improvement. Despite advances in software fault
avoidance, elimination, and tolerance, large-scale software will
have faults and it will occasionally fail. There is a need to
specify, predict, measure, allocate, model, and demonstrate
software reliability. Software reliability figures need to be
meaningfully combined with hardware reliability figures to yield
system reliability figures.

1.5.3 Software Reliability Growth

For the results of growth model parameter estimation and software
reliability growth testing to be valid, it is important that the
environment during test be the same as the actual field use
environment. The hardware platform (actual or emulated) and the
system software (such as the operating system version) must be
the same. A very important part of the environment is the
program's operational profile. An operational profile associates
each point (input state) in the program's input space with a
probability of occurrence. The operational profiles during
testing and field use must be identical. Since the input space
of most programs ic quite large, fully specifying the operational
profile is impractical. An operational profile can usually be
expressed as the relative frequencies of end-user functions,
resulting in a "functional profile." For real-time systems,
ordering and timing of inputs may also enter into a description
of the environment.

Just because faults lurk in the code, however, does not mean that
the program will provide unreliable service to end-users. Each
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user's individual operational profile will result in a different
rate at which faults are encountered. The operational profile
determines the probability of each input state and hence each
path through the program. The input state determines the machine
state (values of all intermediate variables) the computer will be
in when the fault is encountered. In certain machine states the
fault will cause a failure.

During a hardware item's useful life (between burn-in and
wearout) a constant failure rate model is generally employed.
For a program whose code is .frczen, subjected to input randomly
selected from a fixed operational profile, a constant failure
rate model is a reasonaile one (see Appendix B). During system
test, as the code is altered as the result of fault correction
activity, the failure rate will vary as a function of cumulative
execution time.

The failure rate of a piece of software is a function of the
number and location of faults in the code, how fast the program
is being executed, and the operational profile. Faults cannot
be directly observed, if only for the reason that any faults
whose whereabouts are known would presumably have already been
removed. The way to find faults is to execute the software
starting from various input states. When a failure occurs the
symptoms are recorded. Fault-correction personnel analyze the
symptoms and look at the code to try and locate the fault that
caused the failure. If the fault is not obvious, the personnel
will try to reproduce the failure, this time running with a
debugging tool or, having inserted additional output statements
into the program. A debugging tool typically allows the user to
execute the program a step at the time and lets him or her
examine and deposit variable values. Usually, the programmer
finds the fault and removes it. At times the repair activity
introduces new faults into the code.

While repair activity is imperfect, the hoped-for and generally
observed result is that the times between failures tend to grow
longer and longer as the process of testing and fault correction
goes on. A software reliability growth model mathematically
summarizes a set of assumptions about the phenomenon of software
failure. The model provides a general, form for the failure rate
as a function of time and contains unknown parameters that are
determined either by prediction or estimation.

Growth testing and modeling is used to estimate the time and
effort needed to reach intermediate or required reliability goals
and to track the progress the software is making toward those
reliability goals. If the software is falling short, management
can re-allocate resources or take other corrective action.
Growth testing thus provides visibility to management about where
the software reliability is currently and where it is expected to
be at a given milestone.
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A software reliability growth model makes assumptions about the
nature of the distribution that fits the failure data. Since
there is usually no prior statistical information about the
failure behavior of a specific program, a goodness-of-fit
procedure can be applied to assess how well the model is fitting
the data. If the fit is not good, an alternate model or
statistical estimation technique can be employed or a
recalibration technique can be applied to the model to improve
the results.

1.5.4 Basic Reliability Concepts

Quantitatively, the reliability of an item is expressed by its
reliability function R(t). To be meaningful, the environment in
which the item operates must be specified. The reliability
function gives the probability that the item will fail by time t.
The reliability of an item is usually specified for mission
oriented systems. An alternative way of expressing an item's
relative reliability is by its failure rate 1(t), which is the
rate of failures per unit time at the instant t. In situations
where the failure rate is a constant, A, the reliability function
and failure rate are related by the equation R(t) - exp[-Xt].
MTBF, the reciprocal of failure rate or availability are the most
common reliability figures of merit for systems which are
continuously operated and undergo repair when failures occur.
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2. SYSTEM AND SOFTWARE MODELING/COMBINATION

Reliability modeling of combined hardware and software systems is
analogous to reliability modeling of purely hardware systems.
The failure rates for both hardware and software are treated as
constant (see Appendix B). Reliability block diagrams of system
elements are developed and employed. Individual hardware
platforms and the software assigned to those platforms are
independent of other hardware/software platforms. State diagrams
that accurately portray the interrelationship between the
hardware platforms and the software executing on the platforms
are developed and used in estimating reliability figures of
merit.

This section provides a summary overview of the techniques
applicable to the reliability modeling of combined hardware and
software systems. An abbreviated overview of the system modeling
process is provided. This overview is used to help the analyst
identify those system properties which are unique to combined
hardware and software systems. The majority of this section is
dedicated to describing the development of suftware failure rates
that are a composite of the multiple processes that may be
executing during any time period. A major treatment of
reliability modeling of HW/SW systems was provided in [James It
el. (1982)). This report provides modest. clarification to the
major work on reliability modeling that has been previously done.
Specifically, some discussion of the reliability modeling detail
as it relates to active redundancy is provided.

Modeling methods used to model combined HW/SW systems for the
purposes of reliability estimation and allocation need to
accurately assess the interdependence between individual software
elements, the hardware platforms on which these ooftware elements
execute, and the services provided by the system being analyzed.
Additionally, the methods used need to be based on and compatible
with modern system engineering methods.

Reliability modeling is based on system FMEA (Failure Modes and
Effects Analysis), a traditional, bottom up, reliability analysis
technique that provides a mapping between failures and their
impact on system services. These FMEAs need not always be a
formal analysis since the results are expressed in the
reliability model block diagrams. Both fault tree analysis and
FMEA were critically examined for use in combined HW/SW system
reliability model development. Either fault tree analysis or
FMEA can produce the needed analysis of the dependencies between
system hardware elements and system services. However, fault
tree analysis of the loss of each system service, while accurate
and complete, creates a large amount of duplication of
information. FMEA techniques tend to result in a more compact
display of the needed data. However, traditional FMEAs that are
entered on multiple pages of FMEA forms create a large amount of
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data that is poorly organized for reliability model development.
The use of a system level adaptation of Matrix FMEA techniques
[Barbour (1977), Goddard (1984)] results in a compact readily
usable display of the needed FMEA information.

The modeling of combined HW/SW systems, whether for reliability
allocation or estimating purposes, is best approached on a
functional service basis using a matrix FMEA approach. The
resultant FMEA can then be used to develop a HW/SW system
reliability block diagram of independent elements. The
individual series/parallel elements of the reliability block
diagram can then be modeled. Non-redundant systems can be
modeled as series strings of hardware and HW/SW system elements.
Complex, redundant systems and system elements are modeled using
Markov state diagrams to accurately portray the possible
operational and non-operational states. In general, these state
diagrams will be complex enough to require access to automated
tools for solution. They are not, strictly speaking,
intractable. However, the labor required to manually determine a
specific closed form solution for a state diagram that has been
developed to model a specific design being analyzed is usually
prohibitive. Automated solutions of these state diagrams are
possible both analytically and through simulation. Tools for
analytic and simulation solutions of Markov state diagrams are
available to government offices and their contractors through
Rome Labs and NASA at nominal costs. The user of these tools
will need to determine whether or not the numerical accuracy
needed for their specific situation is supported. Analytic
solutions to these diagrams often require the solution of a
transition matrix with potentially significant losses in
numerical accuracy due to the multiple arithmetic operations
compounded by the accuracy limitations of the processing platform
being used. Monte Carlo solutions to Markov chains can result in
both numerical inaccuracy due to the methods employed and may
involve substantial cost for multiple program runs. The costs
associated with Monte Carlo solutions rise dramatically as the
degree of accuracy demanded increases.

Estimation of system reliability characteristics is based on the
reliability block diagrams and Markov state diagrams developed
from the system services FMEA and the individual hardware and
software component reliability. Estimation techniques for
hardware reliability and maintainability characteristics are well
known and can be applied to the hardware portions of combined
HW/SW systems. Software reliability characteristics can be
estimated using the methods described in this report. For
redundant, fault tolerant systems, software recovery
characteristics are system design and implementation dependent.
These recovery characteristics will need to be estimated on a
case by case basis in conjunction with performance modeling and
estimation.
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Software maintainability, the time required to isolate and
correct a fault in the design, is not used in the reliability
modeling and allocation discussed in this section. Software
maintenance is expected to proceed in parallel with ongoing
system operation following a software failure. Thus, the time
required to reestablish system operation following a software
failure is used as the repair or recovery rate in the modeling of
software elements of combined HW/SW elements. Software
maintenance will result in a software failure rate that is not
constant over time due to the software corrections being
implemented. However, for the purposes of modeling and
allocation of combined hardware and software systems, an
assumption of constant software failure rate at any operational
period (i.e., between software fixes) is justified. Estimations
of the software failure rate and of software reliability growth
rates are discussed elsewhere within this report.

2.1 Develonment of the System Model

The development of an accurate and representative system
reliability model for use in reliability estimation and
allocation is dependent on a thorough understanding of the system
being modeled. First a FMEA is developed for the system design
which relates the services provided by the system to the various
hardware and software components. This FMEA is then translated
into a system model.

2.1.1 Developina the System FMEA

Development of a reliability model for use in reliability
estimation and allocation begins with the use of the functional
decomposition that has been developed as a part of the system
engineering process. For small or relatively simple system
structures, system functional analysis may have been omitted as a
formal procedure. If the system level functional decomposition
is not available, the reliability engineer may find it necessary
to recreate this analysis using either Data Flow Diagrams
[DeMarco (1978)] or using the Real Time System Specification
Strategies of Hatley and Pirbhai [Hatley (1987)]. The functional
decomposition of the system is used to identify the hardware
configuration items (HWCIs), the computer software configuration
items (CSCIs) along with the processing provided by these CSCIs,
and the allocation of CSCIs to various HWCIs within the system.
The analyst can then begin to create the system level FMEA that
will support relia!ili.ty modeling of the combined HW and SW
system.

The system level FMEA, shown diagrammatically in Figure 2-1, is a
mapping of the hardware and software components of the system
onto the system services provided. To create the FMEA, the
analyst first constructs a matrix with each of the hardware CIs
and their associated software CSCIs or CSCs as appropriate along
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the vertical axis. The horizontal axis is formed by the system
services or outputs of the system grouped in convenient ways that
support the desired analysis. A grouping of system services by
system operating mode often supports development of the various
models required by the system specification. The HWCIs and CSCIs
(CSCs) are then mapped onto the system services or outputs based
on the impact on system services caused by the failure of each
hardware and software element. In performing this mapping, the
analyst will need to assess the impact of failure of both
hardware platforms and software elements. The failure impact of
software elements will need to be examined in depth based on the
data flow that has been established for the system design.
Similarly, the failure of hardware platforms will need to be
examined for its impact on software-provided services using the
data flow diagrams for the system software resident on the
hardware platform.

Once the system level FMEA has been completed, the analyst can
examine the hardware and software tI'at is required for any
particular mode or set of system services. A reliability model
for these services can then be developed.

2.1.2 System Model Development

2.1.2.1 Reliability Block Diagram Develogment

The reliability block diagram for combined HW/SW systems is
developed based on the system FMEA, using a procedure that is
analogous to that used for purely hardware systems. The FMEA
results are used to determine which hardware and software
elements are required to provide a set of system services of
interest. The analyst then proceeds to develop a reliability
block diagram that consists of a set of series blocks for each of
the independent HW/SW subsystems or elements that must be
operational to provide the services being modeled. In general,
the analyst should only separate software elements from the
hardware elements on which they execute as a final step in the
reliability block diagram modeling. Distinct separation of
hardware platforms and the software that executes on those
platforms is based on system application specific information
that is used in developing a state diagram(s) that accurately
represents the interaction between the hardware platform and the
software executing on it.
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Figure 2-1. Example of System Level Functional FMEA

2.1.2.2 State Diagram Development

The development of one or more state diagrams that accurately
represent the hardware and software interactions for all system
processing elements, both series and redundant, is the next step
in developing reliability models of combined HW/SW systems. The
notation that will be used for the presentation and discussion of
state diagrams in this section of the report is given in Figure
2-2. The reader should review that figure for notation prior to
proceeding with the remainder of this section.
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Figure 2.2. Notation Used in State Diagrams and Text

Software restart, which is used in the state diagrams discussed
below, is the time required to restart the failed software
without changing the software itself. As discussed previously,
software repair rates are not used in the state diagrams
discussed in this section. Instead, the software recovery rate
is adjusted to include those cases where software must be
"patched" prior to successful restart. Software failures are
assumed to be dependent on the state of the software execution
environment at the time of failure. Thus, the failed software
can often be restarted, without any change to the software
itself, and will resume operation as long as the environment that
was in existence at the time of the software failure has changed
sufficiently. Successful restart after failure is a reasonable
assumption for software with moderate maturity. The software
that has failed may have operated successfully for tens to
hundreds of hours prior to being presented with a specific
processing system state and set of inputs that were sufficient to
cause the failure to be manifested. However, successful restart
of the failed software will depend on the persistence of the set
of execution conditions that caused the original failure. If the
persistence of the failure is sufficiently long, repair of the
software may be required prior to any restart. For the purpose
of reliability modeling of HW/SW systems, a long persistence
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failure is one that will continue to cause software failure when
restart is attempted. Any set of execution conditions that
persists long enough to cause a failure upon attempted restart is
expected to result in system shutdown for most non-redundant
systems and effective loss of redundancy in cases of software
failure for redundant systems. The relative fractions of lnng
persistence to short persistence failures for mature software are
not known. James at al. (1982) reported an average of 60 percent
short persistence failures for imanture software undergoing
factory test.

The time required to restart software with a short persistence
failure may vary widely and may exceed the repair time required
for hardware failures in some cases. Long restart tiwaeb are
expected to occur for failures that "crash" the operating system
leaving system resources in an indeterminate state that must be
determined and corrected (if needed) manually. Software failures
that leave large data stores inconsistent are also expected to
require long restart times due to the difficulty in restoring the
data to a known acceptable state. For example, failures that
cause a data base to lose integrity may require restoration from
a backup tape with subsequent update using journal files.
However, the average time required for software restart is
expected to be less than the average hardware repair time since
restart of all system software is included in the hardware
maintenance time and at least some hardware failures may leave
system resources and/or data stores in an inconsistent state.

2.1.2.2.1 series Elements

The state diagrams used to represent series HW/SW elements are
simple state models as shown in Figure 2-3. The hardware and
software elements can be treated as independent paths that can
lead to failure since both hardware and software must be fully
operational for the system to be in a success state. The three
possible state models are shown in the figure as (a) for systems
undergoing a continuous operation and repair cycle, (b) non-
repairable systems that are not self healing in the case of
software failure (i.e., single shot systems), and (c) non-
repairable systems with self-healing for software failures.

As shown in part "a" of the figure, repairable systems experience
hardware and software failures and recover independently through
either hardware repair or software restart. The recovery time
for software in this model includes the impact of any long
persistence software failures (i.e., those which cannot be
repaired through restart). At any time that either the hardware
or software has failed and not yet been repaired or restarted,
the system is considered to be in a failed state. It is possible
to transition from state 2 (software failure) to state 1
(hardware failure) if a hardware failure occurs prior to
successful software restart. Since the hardware remains
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operational after a software failure, there is a continuous
exposure to the possibility of hardware failure. The transition
(2,1) can usually be safely ignored without undue loss of
accuracy since (2,1)<<(2,O) in most cases. The reliability
metrics of interest for repairable systems (e.g., availability,
MTBF) can be derived from the closed form semi-Markov process
shown.

HW
OPERATIONAL

0 9w S
0 RATIONALI

HW HW
OPERATIONAL % NW +46W OPERATIONAL

0 $W 6 0 Sw 8
OPERATIO.NAL IPOPERATIONAL

IS FAILED F

(a) REPAIRABLE SYSTEM (b) NON-REPAIRABLE (c) NON-REPAIRABLE
SYSTEM SYSTEM WITH SW

RESTART

Figure 2-3. State Diagrams for Simple Series IW/SW Elements
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Series non-repairable system elements are modeled as shown in
part "b" of the figure. The system element is considered fully
operational as long as both the hardware and software remain
operational. If a failure of either hardware or software occurs,
the system transitions from state 0 to state 1, which is an
absorbing failed state. The state diagram shown allows the
calculation of relevant reliability metrics of interest (MTTF,
Reliability, Probability of Saccess) through evaluation of the
probability of the transition (0,1) occurring during any given
time period tl to t2. In practice, completely non-repairable
systems are relatively rare. This type of system would be
expected to be found in systems where the critical duration of
operation is too short to allow software restart to be attempted.
Most critical real time military systems of interest are expected
to include the ability to restart software.

Series non-repairable elemknts with software restart are modeled
using the state diagram shown in part "o" of the figure.
Transitions from successful operation (state 0) to either
hardware failure (state 1) or software failure (state 2) occur at
the respective failure rates shown. Hardware failures cause the
system to enter a permanent failed state (state 1) that is
absorbing. Software failures cause the system to enter a
software failed state (state 2). The element then restarts the
software in an attempt to resume operation. This type of system
operation is commonly found in aircraft avionics that have
software (firmware) embedded into the equipment. Typically, upon
failure of a hardware or software element, the equipment removes
itself from any active operation, flags the pilot that an error
has occurred, and enters a self test mode. Following successful
completion of the self test, a restart is attempted. If the
failure was induced into hardware by the environment or was a
short persistence software failure, an equipment restart will be
successful, allowing the equipment to resume operation.

2.1.2.2.2 Redundant Elementa

Reliability models of redundant HW/SW elements are significantly
more complex than reliability models of series elements. The
addition of redundancy introduces complexity associated with the
ability of the HW and SW to correctly respond to failure events.
Reliability modeling of redundant HW/SW elements with hot standby
and automatic switchover capability significantly increases the
number of states required to properly account for system
behavior.

2.1.2.2.2.1 Hardware Systems

A general model for hardware redundancy using identical equipment
is shown in Figure 2-4. As shown in the figure, redundant system
elements transition to the next higher state upon the occurrence
of any HW failure. Hardware repairs transition the system
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element model to the next lower (numerically) state. The system
is a closed form semi-Markov process that can be solved for the
appropriate reliability measures using conventional methods.
Closed form solutions for the reliability measures of interest
for this type of model under most common repair restrictions,
types of standby, etc, are available in the literature (Kozlov
and Ushakov (1970)].

The model shown in Figure 2-4 provides an upper bound on the
reliability of redundant hardware systems. Estimation of the
expected reliability of hardware systems requires that the fault
tolerance employed in the redundancy be included in the model.
For cold standby system, where backup elements are not powered
and thus immune to failure occurrence, the model of Figure 2-4
provides a reasonable estimate if the transition rates shown from
each success state to the next higher number state are adjusted
to account for the constant number of elements in operation (m
units). However, for hot standby systems with automatic
switchover, the model of Figure 2-4 significantly overstates the
reliability achieved by the redundant hardware elements.
Failures in the fault detection mechanisms that may lead to
latent faults in backup equipment, as well as failures inl fault
detection, fault isolation, and fault recovery mechanisms that
may lead to an inability ho activate redundant system elements
and resume system services in response to primary element
failures, are not included in the model shown in the figure.

Figure 2-5 is a simplified reliability model for a hardware
system employing hot standby, and automatic switchover with one
of two identical elements required. The model accounts for
failures in the fault detection, isolation, and recovery
mechanisms. The concept of three types of "coverage" is
introduced as a part of the model. Fault detection coverage (Cd)
is the probability of detecting a fault given that a fault has
occurred. Fault Isolation coverage (Ci) is the probability that
a fault will be correctly isolated to the recoverable interface
(level at which redundancy is available) given that a fault has
occurred and been detected. Fault recovery coverage is the
probability that the redundant structure will recover system
services given that a fault has occurred, been detected, and
correctly isolated. The model shown in Figure 2-5 is a
simplified model since it does not separately consider the
possible impact of transient failures. The model also assumes
that fault detection coverage (Cd) is the same for both the
primary element and the backup element. In practice, there may
be different levels of fault detection coverage between primary
and backup equipments due to a difference in test exposure
intensity.
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As shown in the reliability model, the structure can transition
from the full up state (1) to one of three states. The structure
transitions to state 1 whenever a hardware failure occurs in the
primary element that is correctly detected, isolated, and
recovered from. Similarly, a detected failure in the backup
element results in a transition from state 0 to state 1. The
structure transitions from state 0 to state 4 when a failuire
occurs in the backup equipment which is not detectable. Failures
in the primary hardware element that cannot be correctly
detected, isolated, or recovered from result in a transition from
state 0 to state 3. State 3 is a system state to account for the
failure time accrued during manual intervention by the system
operator to restore lost system services. Transitions from
states 1, 3, and 4 to state 2 are caused by a hardware failure
occurring prior to repair of the first failure which occurred in
the system structure.

In actual practice, the model to be used will need to be based on
the specific fault tolerant characteristics of the design being
analyzed. Models that incorporate system fault behavior, such as
shown in Figure 2-5, do not specifically include SW as a part of
the model. However, the system control processing, a software
based functionality, determines the model structure to account
for system behavior under fault conditions.

The reliability estimates which result from the use of system
reliability models that account for fault detection, isolation,
and recovery are less optimistic than estimates from reliability
models based only on the quantity of hardware supplied and
required. The reliability of the system structure being modeled
is usually very sensitive to the total fault coverage provided by
the system design. System designs that feature well-designed
fault detection and isolation coupled with rapid and effective
recovery of system services avoid most sudden losses of system
services due to undetected latent failures in backup equipment or
due to the inability of backup equipment to successfully restore
system services when failures to the primary equipment occurs.
Similarly, models of HW/SW systems that include SW as well as the
fault tolerance characteristics of the system design are
sensitive to the overall effectiveness of the fault detection,
isolation, and recovery provided by the hardware and software
designs.

2.1.2.2.2.2 Systems

Inclusion of software into hardware reliability redundancy models
further increases the complexity of the models. As in the
hardware-only reliability models, accurate modeling of system
behavior requires that fault coverage (Cd, ci, Cr) be included
into the model. Similarly, software fault coverage and the
impact of long persistence faults must be included in the system
models where appropriate. This results in each model of
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redundant HW/SW elements being uniquely tailored to the design
being analyzed.

The examples of specific models given below are presented to
allow a skilled analyst to determine the system attributes that
need to be considered in deriving a reliability model for a set
of redundant elements. There is no attempt to fully develop all
of the possible modeling situations that may apply to a HW/SW
system. Most of the reliability models that will be needed to
evaluate the reliability of HW/SW systems will be specific to the
exact hardware and software design being evaluated. Only a
minimal level of generalization is possible.

2.1.2.2.2.1 Cold Standby Systems

Redundant hardware/software systems that use cold standby
techniques to provide fault tolerance can be modeled without
undue difficulty as long as automatic switchover and startup
schemes are not used in the design. In general, only the
hardware and software failure rates for the HW/SW elements need
to be considered in developing the reliability model. For
designs that use manual restoration of system services through
the activation of an unpowered backup unit, an adaptation of the
reliability model shown in Figure 2-6 can be used to estimate the
reliability of the redundant structure. The models shJwn in the
figure are based on the earlier work of James et al. (1982). As
shown in the figure, structure state transitions are caused by
either hardware or software failures. Hardware failures cause a
transition to a state with one less hardware element and
commencement of repair actions on the failed element if repair is
allowed. The reliability model of Figure 2-6 does not allow
latent failures in the backup element to be modeled. The model
assumes that failuras of unpowered elements are impossible.
Similarly, problems in recovering system services are not modeled
since the recovery of system services must be directly managed by
the system operator. Software failures result in system recovery
using the same processing hardware and a restart of the failed
software. Both repairable and non-repairable systems are allowed
to have software restarted to enable recovery from software
failures. Inclusion of the transition path allowing recovery
from software failures is optional for non-repairable systems.
The existence or lack of this transition path will depend on how
the equipment is operationally employed.
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2.1.2.2.2.2.2 Ho tnb ytm

Reliability modeling of hot standby HW/SW systems requires
consideration of hardware failure rates, software failure rates,
hardware fault detection, isolation, and recovery coverage,
software failure detection, isolation, and recovery coverage,
hardware repair rates and software restart/recovery rates. The
effect of long persistence software failures on the reliability
achieved by hot standby redundant structures is included in the
software fault coverage estimates for recovery coverage (Cr).
Depending on the system design being modeled, all or most of
these parameters will be used to help identify states and/or
transition rates between structure states. The exact state
diagrams that result from an FMEA of the HW/SW system will depend
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on the design being evaluated. An example of a reliability model
for a very simple system structure is discussed below.

Figure 2-7 presents a simplified state diagram for a HW/SW
structure with one of two identical elements required. The model
shown is for a hot standby system with automatic switchover.
This type of structure is very common in air traffic control,
command and control, and air defense systems where a high
probability of continuous system services is required. In
modeling this structure, five parameters of interest are
recognized. The model states depend on primary HW platform state
(operational or failed), primary SW state (operational or
failed), backup hardware platform state, backup software state,
and recovery status. Recovery status is defined to have two
states, successful or failed. A successful recovery indicates
that the structure has successfully transitioned from primary
equipment to the backup equipment after failure of either the
primary hardware or software. Alternatively, successful recovery
can indicate that a failure in a backup equipment was
successfully detected, allowing repair of the backup equipment to
commence. A failed recovery indicates that either recovery from
primary to backup equipment has failed or that a failure has
occurred in the backup equipment which has not been detected.

Since there are five parameters of interest, each of which has
two possible values, a total of 32 possible states would be
expected. However, some of the 32 possible states cannot exist
in practice. Also, some of the states that can exist are
functional duplicates that can be merged. For example, a state
with a hardware failure in the primary equipment and operational
software in the primary equipment can by shown to be one of the
32 possible states. However, the state is impossible because
software cannot be operational on a failed hardware platform.
The two states that can exist for (1) a failed backup equipment
with successful recovery and (2) a failed primary equipment with
successful recovery can be shown to be functionally equivalent
since successful recovery implies that whichever hardware remains
operational has been assigned to primary processing as a part of
the recovery process.
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For the model of Figure 2-7, a total of ten states result, with
the following definitions:

State 0: Success State - Fully Operational State

State 1: Success State - Backup has a detected SW failure which
is being recovered from.

State 2: Success State - System is operational with a latent SW
failure in the backup element.

State 3: Success State - System is operational with a detected
hardware failure in the backup element.

State 4: Success State - System operational with a latent HW
failure in the backup element.

Stato 5: Failed State - Primary SW has failed, recovery to the
backup HW and SW has not been success-
ful. System operations intervention
will be required to restore system
operation on either HW platform.

State 6: Failed State - Primary HW has failed. The recovery
process has failed. Either incorrect
detection, isolation, or incomplete
recovery has occurred. Manual inter-
vention by the system operator will be
required to restore system services on
the backup equipment.

State 7: Failed State - Software failures have occurred on both
primary and backup system elements.

State 8: Failed State - The primary MW and backup SW have
failed. Both elements are down,
recovery is not possible without manual
intervention by the system operator
and/or maintenance personnel.

State 9: Failed State - Both hardware elements have failed.
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As shown in the figure, transitions between states occur due to
either failures in the hardware or software or due to the status
of the recovery process. Using state diagrams that model the
impact of hardware, software, and fault coverage for both
hardware and software failures results in more accurate
approximations of the potential reliability of redundant systems.
Also, accurate models that reflect the system design decisions
which have been made provide a basis for evaluating the
reliability demands of candidate architectural approaches early
in the design process [Goddard (1989)).

2.1.3 System Model Evaluation

State diagrams that have been developed to model the reliability
of combined HW/SW structures tend to be relatively complex.
Manual solutions are possible, but not considered practical.
Numerous programs are currently available in the commercial
marketplace that can aid in the solution of closed form semi-
Markov state diagrams. Additionally, government procurement
offices and their contractors have access to both simulation and
analytic tools which allow solutions to these reliability models
through appropriate Rome Laboratory and NASA offices.
Acquisition of one or more of these tools should be considered
before attempting to accurately model HW/SW systems.

2.1.4 Estimation of Model Parameters

Reliability models of HW/SW systems are based on hardware failure
rates, hardware repair rates, software failure rates, software
recovery times, and the probability of fault detection,
isolation, and recovery for both hardware and software (hardware
and software coverage). Values for each of the model parameters
will need to be derived as a part of the reliability estimating
process.

2.1.4.1 Hardware Failure Rate Estimation

Hardware failure rates for use in combined HW/SW models should be
obtained from the same sources as those traditionally used for
hardware only reliability models. In service, field, reliability
records are the best estimators of expected hardware failure
rates. When field reliability records are not available,
reliability test results are the next best estimator of expected
hardware reliability performance. When neither field nor test
reliability records are available, MIL-HDBK-217 is the preferred
reference for obtaining component level failure rates that can be
used to predict hardware reliability performance. When MIL-HDBK-
217 predictions cannot be applied due to lack of equipment
definition, the reliability performance of the previous
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generation of similar equipment catl be used as an estimate of the
lower bound for the expected reliability of current generation
equipment.

2.1.4.2 Hardware RanAir Rate Estimation

Hardware repair rates for use in combined HW/SW models should be
obtained from the same sources as those traditionally used for
hardware only reliability models. In order of preference, field
repair time data, maintainability demonstration test data, MIL-
HDBK-472 predictions, and prior generation of equipment
maintainability performance should be used to estimate the
equipment repair time required.

2.1.4.3 Hardware and Software Coveraoe Estimation

Fault coverage estimates for use in combined HW/SW models can be
obtained from a combination of FMEA to assess hardware built-in
test (BIT) effectiveness, and fault tree analysis (FTA) to assess
the result of software failure. Assessing the likelihood for a
failure to be detected and to leave the system in a state where
fault isolation and recovery are possible will require an in
depth understanding of at least the part of the software design
dedicated to system control and to the handling of faults. The
determination of software fault coverage and software BIT
effectivennss is an area where further research will be required
to detail adequate and accurate methods of estimation.

2.1.4.4 Software RecoveryTime

Software reuovery time estimates for use in combined HW/SW models
can be deriVod using the methods of system performance analysis.
Accurate estimation of these times will depend on the hardware
available for processing, the loading on the system, and the
impact of the failure on system resources (eg. files). The
results of FMEAs and FTAs performed to support estimation of
hardware and software coverage should provide an estimation of
the amount of system resource damage that may be attributable to
a given software failure. Estimation of software recovery time
during early design phases, before test data is available, will
need to be based on performance analysis results. Further
research to develop methodologies for estimating system
performance metrics under various failure and recovery conditions
is needed.

2.1.4.5 Software Failure Rates

Software failure rates to be used in modeling combined hardware
and software systems, although constant, differ from hardware
failure rates in their dependency on operational profile and
workload. For purposes of illustration, a computer, containing
one or more individual processors, which is part of a system, is
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used along with its software to provide one or more system
functions. The rate at which these assigned system functions are
unavailable is dependent on the failure rate of the hardware and
the failure rate of the software. Calculating failure rates for
hardware elements was discussed in 2.1.4.2 above. The software
failure rate can be decomposed into three parts: the operating
system or executive failure rate, the failure rati associated
with any re-used software, and the failure rate for any newly
developed software. These software failure rates, once converted
to a common time frame of reference are additive. A reliability
block diagram for a hypothetical processor is shown in Figure 2-
8, below. V

__s Operating Re-Used Newly"•1 Hardware System RG-Se Dvloe
Softare CSlCScIS~ee~e

Processor Software

Processor

Figure 2-8. Reliability Block Diagram for a Processor

Failure rates for operating systems or executives can usually be
obtained from the supplier of the operating system or executive.
Failure rates obtained from the operating system supplier are
usually quoted in the number of outages caused over some period
of time (e.g., a year). Failure rates for operating systems are
generally quoted with respect to system operating time because
the operating system is active at all times when the computer is
powered and ready for processing. The reliability analyst will
need to convert the failure rate given to failures per hour for
compatibility with hardware failure rates. Operating system
failure rates can be substantial and should not be ignored.
Operating systems for mainframe computers can be several million
lines of code in size and are often very complex and difficult to
completely debug. Smaller computers, including single board
processor applications, sometimes use real-time executives which
can still contribute substantially to the overall software
failure rate. Failure rates for re-used code can be obtained
from applications where the code was previously used. These
failure rates should generally be much lower than the failure
rates for newly developed code. The availability of this data
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depends on the completeness of organizational record keeping ind
the amount of code modification that has been necessary to allow
the code re-use. If the failure rate for re-used code is
available in terms compatible with conversion to failures per
system operating hour, the failure rate can generally be used
directly in the reliability modeling. If the failure rate for
re-used code is known in failures per CPU operating period
(second, minute, hour, etc), the failure rate will have to be
converted to failures per system operating hour using the methods
discussed in paragraph 2.1.4.5.3 below.

Estimates of the failure rate for newly developed software are
obtained using the research results discussed in section 4 of
this report. The failure rate estimates produced by these
methods is provided in failures per CPU operating second for each
software element being developed. These failure rates must then
be combined as discussed in paragraph 2.1.4.5.4 to account for
the specific software topology and timing. Additionally, the
resultant software failure rate must be converted to a system
operating hour form an discussed below in paragraph 2.1.4.5.3.

For the purposes of developing software failure rates, a software
system can be viewed as a hierarchy. The hierarchy consists of
modules, computer software components (CSCs), computer software
configuration items, and so on, as described in DOD-STD-2167A.
Because of the different names for items at different levels, two
generic names will be used to represent software items at
adjacent levels in the discussion that follows. The first
generic name is "component." A component is an item at any level
in the system hierarchy. The second name is "aggregate." An
aggregate is an item composed of an interrelated set of
components. An aggregate lies at the next level up in the system
hierarchy from its components. For example, an aggregate of
CSCIs can be a software subsystem. The software components that
comlrise an aggregate will be related to one another in two ways:
a particular timing configuration and a particular relialbility
topology.

Timing configuration describes the time intervals during which
the various components are active and inactive during a period of
interest. Reliability topology is concerned with the number of
components in the aggregate that can fail before the aggregate
fails.

2.1.4.5.1 Timing Configurations

Several different timing configurations are possible. The major
timing relationships between software components are concurrent
and sequential. Components will be termed concurrent if they are
active simultaneously. The components are sequential if they are
active one after the other. A single component alternated
between active and inactive periods will be termed intermittent,
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and several components alternating their activity will be termed
interleaved. Hybrid timing configurations, for instance concur-
rent/sequential, may also occur.

Sote common examples of timing configurations: In most
electronic equipment, all hardware components are energized and
operating all the time. The components are therefore in a
concurrent timing configuration. Software components (in
computer science called "processes" or "tasks") execute in an
interleaved manner on a single central processing unit (CPU).
The software and the computer that hosts it are active
concurrently. In a multiprocessing system with three processors,
the three programs running on those processors are active
concurrently. In a distributed system, the local and remote
hardware and the local and remote software are active
concurrently. In a batch-oriented computer system, the programs
execute sequentially.

Software reliability topology can be expressed in the form "k-
out-of-n," where n is the number of components and k is the
number that must succeed. There are two distinguished cases: An
n-out-of-n configuration is the most common and is called a
series configuration; a 1-out-of-n configuration is called a
parallel configuration.

2.1.4.5.2 Notation

Capital letters will be used to refer to the aggregate item and
lowercase letters to refer to the component item. The aggregate
reliability function will be denoted R(t) and the aggregate
failure rate will be denoted A(t) or A. The corresponding
component reliability figures of merit are: the component
reliability function, denoted r(t)mexp[-1t], :and tho component
failure rate, denoted 1.

One reason that aggregate failure rate A(t) can be a function of
time is that an aggregate of redundant constant-failure-rate
components will have a time-dependent failure rate; as the
redundant components fail, the aggregate "ages." Another reason
is that a component might not be active during the entire period
of interest. When the component changes state from active to
inactive or vice versa, the failure rate of the aggregate will
change.

2.1.4.5.3 Failure Rate Adjustment

A computer program's failure rate can be expressed with respect
to three different time frames of reference: execution (CPU)
time, system operating time, and calendar time.

A program can only fail when it is running. The failures uncover
faults, and the removal of the faults results in reliability
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growth. Thus, software reliability growth curves are based on
cumulative execution time and express a single program's failure
rate in terms of execution time. Such a failure rate is
sensitive to processor speed: The execution-time failure rate is
always linearly proportional to the processor speed. If the
failure rate I for a software component was measured on or
predicted for a processor with average instruction rate g, (e.g.,
instructions per second), and the target machine's processor has
average instruction rate g2, then the failure rate should be
adjusted [Musa aal. (1987)) to

During the operation of a system, programs may not operate
continuously. For example, some of the programs might time-share
a single CPU. Also, multiple CPUs may be present, allowing
program executions to overlap. In order to combine the failure
rates of the various programs with one another to arrive at an
overall software failure rate, it is first necessary to translate
all the program failure rates into a common time frame of
reference. This frame of reference is system operating time.

To convert an execution-time failure rate to a system-operating-
time failure rate, the program's utilization u** needs to be
determined. This is the ratio of execution time to system
operating time. The utilization can exceed 100% if the same
program executes on more than one CPU (each CPU reading a
different input stream).

The formula for converting a program's execution-time failure
rate 1. to the system-operating-time failure rate 1. is

A, uX . "uO (2)

Conversely, the execution-time failure rate can be recovered as

i.s a . (3)
U.'

If the programs are in a series configuration, then the (average)
failure rate is simply the sum of the system-operating-time
failure rates of the individual programs. This result can be
derived as follows. Suppose there are N software components that
run during the time period T. Let Ai be the execution-time
failure rate for the J-th software component. Let A(T) be the
expected number of failures during that period. The expected
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number of failures contributed by the i-th software component is
A)(u1T). Thus

p (T) )- I(ul 7 (4)

The overall failure rate is
A - P• i E1uj (,)

T

The sum EXu, is seen to be the sum of the programs' system-
operating-time failure rates.

2.1.4.5.4 Reliability Combination Models

This section is organized by type of aggregate. The type of
aggregate is a conjunction of timing configuration and reliabil-
ity topology. Table 2-1 shows the various combinations and
designates each model by a letter. The material presented
discusses both the software reliability calculation and
cumulative failure rate model for the timing configuration and
reliability topology being discussed. The cumulative failure rate
discussion is presented for use in calculation of software
failure rates for use in much of the system modeling previously
discussed.

Table 2-1. Reliability combination Models

Model Des- Reliability Timing Special Name
ignation , _ _ ,,

A Series General

B Series Indeterminate Mission Model

C Series Sequential

D Series Random Semi-Markov

E Series Concurrent

F Parallel Concurrent

G k-out-of-n Concurrent

H Parallel Concurrent N-Modular Redundancy

I Parallel Sequential Standby Redundancy

The failure rate and reliability function of a software aggregate
can in many cases be expressed as a closed-form function of the
component failure rates and/or reliability functions. The
following discussion focuses on those cases.
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2.1.4.5.4.1 Model (A) jeneral Series Model

The most copomon reliability topology for a software aggregate is
the series confiquration. In this coivfiguration, the aggregate
fails if and when any one of its components fails. The failure
rate of the aggregate is the sum of the failure rates c.,f 4-he
active components. Suppose the components are numbered 1, 2,
... , k. Let the function a1 (t) evaluate to unity if component i
is active at time t, and let it evaluate to zero otherwise. Then
the aggregate failure rate A(t) is

k

A(t) = Z. Aai(t) (6

where li is the failure rate of the i-th component.

The failure rate is useful when aggregating to higher levels and
is a reliability figuro of merit in its '.,n right. If the result
is a constant failure rate, or can be aI.?roximated by a constant
failure rate, then the rules given here can be applied to the
aggregate failure rates to find the failure rates and reliability
of even higher-level aggregates.

2.1.4.5.4.2 Model (BI Mission Reliability Model

A mission-oriented system is described by means of a mission
profile and consists of N consecutive time periods, called
phases. During each phase the mission has to accomplish a
specified task. An example of a space vehicle's mission phases
is ground operation, launch, and orbit. Furthermore, at any
point in time the system is in one of M possible operational
modes. The effective operating time X for the j-th operational
mode is given by

N

X tj•zj , j=1,2,..,M (7)

where t. is the duration of the i-th mission phase and zl is the
fraction uf time the j-th mode is utilized during that phase.

Suppose there are S components in the software aggregate. Let
ujk oe the utilization ("duty cycle") of component k during
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operating mode J. Then the amount of time component k is active
during the mission is

M Xj=Uj , k=l,2,...,M (I)

In matrix notation, the foregoing equations are

Xz= 'z; 2"-Z (9)

(Note that T' is merely the uppercase of active time -'r the
prime does not mean matrix transpose.) Let Xk be the failure
rate of the k-th component. Assuming that all components form a
series configuration, the expected number of failures from the k-
th component is

1k " kal,2,...,S (10)

and the expected number of failures for a given mission is

5P(tm) (•[k1111

Note that in practical situations these A values will all tie
fractional.

Because it is unknown which components are active at any zoment,
it is not possible to determine the instantaneous failure rate
A(t), Aowever, the average failure rate can be computed as

ANV - M(tM) (12)
t:

In situations where the activation/inactivation times are known,
it will be possible to determine A(t) for all t. Paragraphs
2.1.4.5.4.. through 2.1.4.5.4.5 discuss some common timing
situations in series configurations.
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2.1.4.5.4.3 Model (C) Series Seauential

In this situation, components 1 through k are active one after
the other. For software, this arrangement is commonly seen in
batch-oriented systems. The time t, is the point at which
component i finishes and component (i+1) is activated.

For t[(t 1 ,t,,] the failure rate of the aggregate is

A (t) - (13),

Sometimes the components ars not active consecutively; a time
period during which no component is active can be represented by
a pseudocomponent whose failure rate is zero. If a component is
active intermittently, that is, for several piecewise continuous
periods, then a pseudocomponent (with the same failure rate) can
be created for each such period.

2.1.4.5.4.4 Model (D) Semi-Markov

If the software system consists of k components that follow one
another sequentially according to known probabilities, then a
semi-Markov technique (Littlewood (1979b), Cheung (1980),
Siegrist (1988)] can be employed to obtain an overall failure
rate for the aggregate.

A Markov process is a stochastic process in which the future
development is completely determined by the present state. It
does not matter at all the way in which the current state arose.
A Markov chain 1s a Markov process that has a discrete state
space. A semi-Markov process [Ldvy (1954), Smith (1958)] is a
Markov chain in which the amount of time spent in each state
before a transition occurs (the "sojourn time") is random.

Let pN be the probability of the operation of component j
following the operation of component i. For software, this
transition consists of software component i passing control to
software component J. The equilibrium probabilities (also called
"limiting" or "steady-state" probabilities) are the probabilities
of being in each of the states when the aggregate is operated for
a long time. The equilibrium probabilities iri are found by
solving the system of equations

k
XJ- a .11jpj i I i,2,...,k (14)

together with Eff=l.
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Let m,, be the mean time that component i is active before it
finishes and is followed by component j (the "sojourn time").
Then the failure rate of the aggreqate is approximated by

k k

A TT(3.(5)

Failures can also occur during the transition from one component
to another. If r11, the reliability of the transition from
component i to compdnent j is considered, then the mi,1 1 in the
numerator can be replaced by i+(l-r 1 j)"to take transition
failure into account.

2.1.4.5.4.5 Model Mo Sqies Concurrent

If throughout a time interval [O,t*J, components 1, ... , k are
active, then the failure rate at time te[Ota) is

kA (t) - .•(16)

If all k components have the same failure rate 1, the aggregate
failure rate will be

A - T.X kX (17)

2.1.4.5.4.6 Redundant Software Configurations

Redundancy is the provision of additional software components
beyond the minimum needed to perform the functions of the
software aggregate. The purpose of this redundancy is to
increase the reliability of the aggregate. Unlike hardware, all
copies of a computer program are identical and will all fail
under tne same circumstances, so simple duplication of the
software is of limited benefit due to the potential for long
persistence software failures which were discussed previously.
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Software redundancy is accomplished by providing multiple
distinct versions of the software developed to the same require-
ments specification. The goal is for it to be very unlikely that
multiple versions will fail on the same inputs. By having each
version independently developed by a different programming team,
the hope is that the versions will turn out differently enough
that they will not often fail on the same inputs.

Multiversion programming is a controversial topic. Knight and
Leveson (1986) showed through a large-scale experiment that
independently developed versions do not necessarily fail
completely independently of one arnther. In fact, the number of
coincident failures was ,,surprisiiily high." Eckhardt and Lee
(1985) developed a detailed statistical model of multiversion
programming. "Independently developed programs" are modeled as
programs randomly selected from the universe of possible program
versions that purport to solve the problem at hand. The indepen-
denrce criterion is enforced by requiring the joint probability of
selecting the programs to equal the product of the marginal
probabilities of selecting each one.

Eckhardt and Lee, who concentrated on modeling N-version program-
ming, express the reliability of the N-version aggregate as

R-1- f ( 16 (x) I I-0 (x (18)

where m-(N+l)/2, a majority of, the N versions. The aggregate
fails whenever at least m versions fail. O(x) is the proportion
of versions failing when executing on input state x. Q(A) is the
usage distribution, the probability that the subset of input
states A is selected.

One of Eckhardt and Lee's major results was that independently
developed versions do not necessarily fail independently. Up
until the Eckhardt and Lee model came out, practitioners of
multiversion programming had set independent development as their
goal. Eckhardt and Lee show that the departure from independent
behavior is governed by Var(G), where e-0(X), where X is a
randomly chosen input. If this probability 8 is identical for
all the programs, then Var(e)-0 and the independently developed
programs fail independently; otherwise the reliability will be
overstated by Var({). The best candidates for multiversion
programming are those problems for which Var(e) is low.
Intuitively, Var(e) is the variation in difficulty in processing
different inputs. Different independently developed versions
will tcnd to fail on the same "hard" input cases, even though the
differAnt versions use different solutions. The independently
develo'ed versions do not necessarily fail via similar faults or
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output, but they will nevertheless tend to fail on the same
inputs.

Littlewood and Miller (1989) built on the Eckhardt and Lee model
to show that forced diversity can improve reliability to a point
where it is superior to independent failure behavior. Diversity
is modeled by design decisions that induce a partition on the
universe of possible programs. Much more research needs to be
done in how to practically inject diversity and how to quantify
the reliability benefits of such diversity. Since chance alone
does not guarantee the independence of the multiple versions,
diversity must somehow be deliberately built into the software;
this is also a topic for research.

2.1.4.5.4.6.1 Model (F) Parallel Concurrent

In an active parallel aggregate, all components operate simulta-
neously and all must fail for the system to fail. This
reliability-related use of the word "parallel" should not be
confused with its use in the computer science term "parallel
processing."

The parallel configuration is useful when the components
continuously perform some "chore." It is not useful in
situations where the components produce an "answer." Software
and some types of hardware produce information. If the
components differ in the answer produced, there is no provision
in a parallel system for reconciling the different answers.
Other techniques such as recovery blocks and N-modular
redundancy, do provide 'a means of deciding which, if any, answer
to consider correct.

If k components are active simultaneously and all components must
fail for the system to fail, then the aggregate reliability is

k k2- T-.( ep[1t IX~) (19)

The failure rate (Nieuwhof (1975)] is

k

A - (20)
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where

1 i, 2,..., k (21)
" -rj(t) '

In the case of the same fai2ure rate A for each component, then

R(t) - 1- (1-exp[-;.t])k I- [r()] (22)

and [Grosh (1982)J]

A(t) a kXkB(t) (23)

where

sk •:) exp [-; t] U -x [ -A. tI)
I - (I -exp [- k (24)

Note that the failure rate of the aggregate is not constant but
increases monotonically through time and converges to 1.
Intuitively, the reason is that, as time goes on, the redundant
components will eventually succumb one-by-one to random failurc,
causing the level of redundancy to degrade. However, this assumes
that individual software components are not restarted upon
failure

The effective aggregate failure rate (RADC (1988)] is a const<it
approximation based on time to first failure:

A-. 1
k (25)

2.1.4.5.4.6.2 Model MG) k-out-of-n Configuration

A k-out-of-n aggregate consists of n cnmponents such that the
aggregate succeeds if and only if k of its components succeed.
When the components have differing failure rates, computation of
the reliability function is more an algorithm than a formula.
The best way to calculate the reliability function of such a
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system is through a computer program such as described and listed
in Sarje and Prasad (1989). The most common situation, where the
components have equal failure rates, will be considered here.

If k out of n components with the same failure rate must succeed
for the aggregate to succeed, the reliability is

R(t* (26)

After R(t) is computed, the f',ilure rate can be obtained as [Rau
(1970)]

LU exp C-k I c (I -exp -t]):327
A (t) (n-k 1(k-1)1 (27)

The effective aggregate failure rate [RADC (1988)] is a constant
approximation based on time to first failure:

A
1 (26)

2.1.4.5.4.6.3 Model (H) N-Modular Redundancy

In an aggregate with N-modular redundancy, N-2n+l redundant
components are active concurrently. A voter compares the results
from the N components and chooses the results of the aggregate as
the output of a majority of the components. If there is no
majority, the aggregate fails. Furthermore, for the aggregate to
succeed, the majority must have the correct output. The
aggregate reliability is the same as that of an (n+l)-out-of-N
aggregate:

N

R() - N(29)

The effective failure rate [RADC (1980)] is a constant approxima-

tion based on time to first failure:
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"A (30)

An important caveat is that N-modular redundancy can result in
worse reliability than the component alone [Dhillon and Singh
(1981)]. For example, for Nu3--triple modular redundancy (TMR)--
the reliability of the aggregate is

(t) - [(z(t)] 2 [3-2z(t)J (31)

Solving R(t)-r(t) yields a crossover point of lta0.693. Before
the crossover point, TMR will have superior reliability; after
that point the simplex component will be better. In a mission-
oriented system the mission time should be such that 1<0.693.

The use of N-modular redundancy for software fault tolerance is
called N-version programming (Avizienis (1980)]. The reader is
referred to the Eckhardt and Lee (1985) model for insights into
the limitations of multiversion programming. The formulas given
in this section apply when it can be justified that the multiple
versions fail independently.

2.1.4.5.4.6.4 Model (I) Standby Redundancy

Software standby redundancy is a scheme in which k redundant
components are tried in sequence until one succeeds or all
components hsive been exhausted. The aggregate only fails if and
when all components have failed.

The reliability [Grosh (1989)] of the aggregate is

k k

The effective failure rate is a constant approximation based on
time to first failure:
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,t 1 (33)

In the usual case of all components having the same reliability,

R(C) - exp- tC (A)0- (34)9. it

The formula, based on the Erlang distribution, assumes perfect
sensing and switching, and no idle failure rate. If the
reliability of the switcher is R , then all terms in the
summation except the first must be wAghted by Raw:

R) - exp[-t] rI + Raw)ti + Ra (t) + Raw(k)
8W 2 k

The failure rate of the aggregate CBecker and Jensen (1977)] is

A(t) ... A ,*'W (36;)
(k-i) z•(X t)12k"/I, (3

The failure rate increases over time and slowly approaches the
constant failure rate A. The effective failure rate [RADC
(1988)] is a constant approximation based on time to first
failure:

A -(37)k

Software, standby redundancy is implemented through the technique
of recovery blocks [Randall (1975)]. The results of each
component version are checked through an acceptance test. The
acceptance test may itself be susceptible to failure. The
aggregate now can fail in three circumstnnces [Scott at al.
(1987)]: (E1) An incorrect result is acrepted; (E2) A correct
result is not accepted; and (E3) An incorr&-t result is not
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accepted. Suppose that the acceptance test has reliability rT
and therefore failure probability qT-l-rT. Each component has
failure probability q-1-r.

The formulas given here apply when it can be justified that the
multiple versions fail independently. To simplify the equations,
let X-q -2q q+q. If the reliability of the acceptance test is RT,
the probability of the first type of aggregate failure occurring
is

Pr: (E, n) - q.q(1-Xn) (38)
1-X

The probability of the second type of aggregate failure occurring
is

Px (E2 , n} - (qrTqr'Q) '-XV'1 (39)

and for the third type of aggregate failure it is

Pr(E,, n} - (q-q..q) . xn-1 (40)

The reliability of the aggregate is then calculated as

3

Rn a- -Pr '{E 1, n] (41)

If the recovery software is imperfect and exhibits reliability
r,, an error type E, of unsuccesaful recovery can occur. For the
case of n-1 independent versions of the software, Pr(E4,1)-O: for
n-2 the probability is

Pr t 4,•. 2) - X(I-X7)'-rJ + (1-X) Z'.rRI (42)

For na3, the recurrence relationship is

Pr(E4 ,n) - Pr{E4 ,n-1)+Pz(E 4 ,n-2)}(r.[(1-.rT)+(1-r)Tzr] (43)
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The reliability of the aggregate is then obtained as

4Rn = I - .Pr{(EVn) (44)

2.1.4.5.4.7 Combination Concurrent-Seauential Confiauration

To handle an aggregate that contains both concurrent and
sequential components, divide the time-line into time segments
such that one or more components are concurrently active
throughout each such time segment. For each time segment,
replace the components with a pseudocomponent. Let the failure
rate of the pseudocomponent be the sum of the failure rates of
the concurrently active components in that time segment. Once
this "collapsing" of time segments is completed for all time
segments, the aggregate can be treated as purely sequential.

2.1.4.5.4.8 Combination Series-Parallel Confiauration

If a system consists of series-connected parallel configurations,
first reduce each parallel configuration to a single
pueudocomponent, and handle as a series system. If a system
consists of parallel-connected series configurations, first
reduce each series configuration to one pseudocomponent, and
handle as a parallel system. These strategies can be applied
recursively to lower levels, until the component level is
reached.
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3. RELIABILITY DECOMPOSITION AND ALLOCATION

Reliability allocation is a planning technique for guiding design
and implementation toward meeting specified reliability
requirements. it is especially useful when different teams or
subcontractors work on different parts of a system. In system
functional decomposition, the functional requirements of the
system are allocated to subsystems and lower-level items. In
reliability allocation, the overall system reliability
requirements are apportioned to those same items.

In fulfillment of SOW Task 2, techniques were developed for
decomposing hardware/software systems and allocating quantitative
reliability requirements to the hardware and software subsystems
and to lower indenture levels.

3.1. ApprQach

Reliability allocation, in its simplest form, consists of finding
an achievable combination of failure rates and repair rates that
supports achievement of a system's or subsystem's specified
reliability requirements. One needs to start with a model, such
as obtained from the modeling techniques of Section 2, and
"solve" for the unknown failure rates and repair rates. The
failure rates and repair rates cannot have just any values; the
values are constrained by the range of values that are
realistically achievable. The reliability engineer begins the
allocation process by determining what the achievable range is
for each rate. An acceptable allocation is one in which all
rates lie within their achievable ranges and the overall
subsystem or system reliability meets or exceeds the specified
reliability requirement. The reliability model is evaluated to
assess whether the allocated values meet or exceed the specified
requirements. The process of finding the failure rates and
repair rates involves a systematic trial-and-error exploration of
alternatives. The reliability engineer makes an initial cut by
choosing rates from the achievable ranges. The values can be
chosen arbitrarily but ideally would be chosen based on intuition
and on experience with similar and previous-generation items.
Next, the reliability is evaluated through the reliability model.
If the allocated values (MTBF, MTTR, eta) ensure that the system
requirements are met, the allocation is complete and any "excess"
can be either allocated to another part of the system, or
reserved as a means of mitigating risk.

For software components, timing relationships, relative execution
frequency, complexity, and criticality are important
considerations. Several techniques were developed for
apportioning reliability requirements and goals through the
levels of a software hierarchy. One of these, "Allocation Based
On Achievable Failure Rate" is a bottom-up methodology. The other
allocation methods presented are top-down methodologies.
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3.2. Results

The trade-off between implementing functionality in hardware or
software often depends on cost considerations: Software
development costs can be amortized over each unit produced, but
hardware has a per-unit manufacturing cost. Once the system
functionality is partitioned into hardware and software
subsystems, the levels of software hierarchy are established
through DOD-STD-2167A and a software design methodology (such as
data structure-oriented design, data flow-oriented design, or
object-oriented design). The levels of software decomposition,
such a. computer software components (CSCs) and computer software
configuration items (CSCIs), refer to parts of the static program
as it is viewed for the purposes of configuration management.
When executing the software subsystem will exhibit a dynamic
structure--the timing relationships and reliability topologies of
different threads of execution. Reliability allocation should
take place at the level at which individual threads of execution
("processes" or "tasks") exist. Generally, this level
corresponds to the CSCI level. This level is also appropriate
for allocation because the interfaces among modules are included.

3.2.1. Software Reliability Allocation

If the utilization factors for each CSCI being allocated to are
known or can be estimated, the bottom-up method "Allocation Based
On Achievable Failure Rate" can be used. When utilization factors
for the CSCIs cannot be estimated, one of the top-down
allocations methods should be used. When using these top-down
allocation methods, several iterations may be required to ensure
that the allocations to the individual components are achievable
and fully support the system requirements.

3.2.2 Notation for Software Reliability Allocation Mogels

The term "aggregate" refers to an interrelated collection of
software "components." In systems, the aggregate is a software
subsystem as a whole, and a component is a CSCI within that
subsystem. In a distributed system, the aggregates of one
computer system can serve as the components of the overall
distributed system, and so the allocation would be perfornmed
twice, once to allocate from the distributed system as a wholia to
the individual computer systems, and once to allocate from the
individual computer systems to their respective processes
(generally, CSCls).

A.: Failure rate goal for a software aggregate.

RG(t): Reliability goal for a software aggregate. Note that
A0-[-ln R0 (t)]/t and RG(t)-exp[-A~t].
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A0 : Failure rate objective for a software component.

r.(t): Reliability objective for a software component.

Let R. be •he reliability goal for a mission. The purpose of
reliability allocation is to set reliability objectives (r.)1,
(rd) , ... , (r.), for components 1, 2, ... , $n so that

S( (r ;) I" (z(;) 2, 1 ... , (ra) n) 2 RG (45)

where f is defined by the rules of reliability combination
covered previously. An infinite number of different allocations
can satisfy the above inequality. A good allocation not only
meets or exceeds the overall system reliability requirements but
optimizes or "balances" the allocation in some way.

3.2.3 A _aIrn Technigues

The allocation t'cchniques that are presented here are Allocation
Based on Achievable Failure Rates, F qual Apportionment,
Proportional Allocation, Weighted Allocation, Constrained
Allocation, and Re-allocation. Appendix C covers the "Dynamic
Allocation" class of re-allocation techniques.

The bottom-up allocation method, "Allocation Based on Achievable
Failure Rates" requires the ability to estimate CSCI utilization
rates and the test time available for each CSý.X. This method
provides a set of failure rate allocations to each CSCI which are
achievable within the planned program test schedule and which
accurately reflect the planned usage and the execution time
available for achieving reliability growth. If failure rate
allocations provided by this method do not support achievement of
the system or subsystem specified reliability figures of merit,
it is an indication that there may be a problem with the
specification tequirements or one or more higher level
allocations with respect to the program schedule.

In "Equal Apportionment," the components of an aggregate are
allocated equal failure rates or equal failure probabilities in
such a way that the aggregate meets its reliability goal.

"Proportional Allocation" trt'es into account the length of time
each component is active. The longer a component is active, the
more exposure it has to the possibility of failure. The premise
of ,roportional allocation is that higher reliability should be
demanded of compciients that are active for a greater share of the
time relative to the other components.

In "Weighted AlloLatlon," the failure rate allocated to a
component is based on the criticality of the component and/or
feasibility of its meeting a reliability objective. The
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criticality ef the component includes the consequence.; of the
failure to mission success and safety. The feasibility [Fuqua
(1986)) of ,i reliability objective is dependent on the complexity
(number of parts for hardware, program size "or other measure]
for software), the state-of-the-art, and the skills and tools
available for the development process.

In "Constrained Allocation," the allocation is optimized with
respect to additional considerations such as cost.

In "Re-allocation," a previous allocation is revi,.ed bec.tuse one
or more components could not reet their reliabilJ.ty objtctives.
Dynamic allocation (Appendix C) is a technique for re-allocation
with minimized effort.. Table 3-1 simmarizeis the allocation
models.

Table 3-1. Allocation Models

Class Model Type of Allocation Topogy Timing
Il w;..

Bottom Up A Achievable Eailure Rate AII All

Top Down - Ecal Apportionm.ant Series Sequential

Top Down C Equal Appnrtior.mt,.nt Series Concurrent

Top Down D Equal Apportiomnar.t . Parallel Concurrent

Top Dcown E Equal Apportionment rarallel Sequential

Top Down F Equal Apportionment NKR Concurrent

Top Down G Proportional Allocation Series Sequential

Top Down H Proportional Allocation Parallel Concurrent

Top Down I n •ortance Factors series Concurrent

Top Dc4.1 J Weighted Allocation Series Concurrent

Top Down K Constrained Allocation Series Concurrent

Top Down L Re-Allocation Series Concurrent

Dynamic allouation models appear in Appendix C.

3.2.3.1 Model (A) Allocation Based On Achievable Failure Rate

Allocation Based on Achievable Failurn Rates uses each CSCT's
utilization (see paragraph 2.1.4.5.3). The utilization governs
the growth rate a CSCI will experience during system test. All
things being equal, the greater a CSCI's utilization, the faster
its reliability will grow during system test.
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A forecast is made of each CSCI's initial failure rate by using
predicted size and processor speed and assuming industry average
figures for fault density and other prediction model quantities
(see Chapter 4). Then the softwarpi reliability growth model
parameters are predicted to determine the growth curve for.rula.
An achievable failure rate figure is obtained from the growth
curve. The relative distribution of achievable failure rates is
used to apportion the aggregate's failure rate goal A0 to the
CSCIs.

Note that changing to a faster processor does not change the
system-operating-time failure rate; the reduction in ui is offset
by a proportionate increase in the execution-time failure rate.
Therefore, a CSCI's allocated system-operating-time failure rate
does not need to be changed if the hardware platform changes to a
faster processor.

The software aggregate's failure rate goal A. is assumed to be
expressed with respect to system operating time.

The allocation scheme is based on first determining an achievable
distribution of failure rates among the CSCIs, considering their
predicted initial failure rates and how much reliability qrowth
they can each expect to experience during system test. The
distribution of failure rates is then used tu allocate the
software aggregate's failure rate goal A. to the constituent
CSCIs.

A CSCI's achievable failure at release is determined by
predicting an initial failure rate A. and applying a software
reliability growth curve to forecast CSCI's failure rate at
release.

The i-th CSCI's initial failure rate is the failure rate at the
start of system test (timO). Using the Proposal/Pre-contractual
stage prediction model (see section 4.), a CSCI's initial failure
rate with respect to execution time is

r0 a*r. K - (OO/I (46)

where r Is the processor spend (average number of instructions
executed 1per unit of time), K is the fault exposure ratio
(4.20x10"" ndustry averaga), o0 is the CSCI's fault content
(dLyaloRed XLOC x 6 industry average), and I is the CSCT'E number
of object instructions). The number of object instructinns is
found by multiply' -g the number of predicted source instructions
by the progrumming language's code expansion ratio (see paragraph
4.2.2 and Table 4-2). For example, the code expansion ratio for
Ada is 4.5. Note that the initial failure rate i primarily
determined by fault density and prccessor speed, as opposed to
size.
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It is thus assumed that each CSCI is developed by a mature,
reproducible software development process that produces code. with
the industry-average of 6 faults per developed KLOC (developed
excludes reused code).
The growth curve relates failure rate decline to cumulative wall-
clock time expended in system test:

Al (C:•) " .o ' eXP [ -P -'e.u1] . Uj (47)

where 0 is the decrement in failure rate per failure experienced:

P # a • (48)

An industry-average value of 0.955 is recommended for B. B is
the fault reduction factor, the average net number of faults
removed per failure. The cumulative wall-clock time expended in
system test tj may differ from CSCI to CSCI if the software is
incremented in a series of successive "builds." If the software
is incremented all at once, then the ti's will be equal.

It is assumed that the CSCIs are in series, so the CSCI failure
rates with respect to system operating time must add up to the
overall software failure rate o. Once the achievable failure
rates A(t), 2(t), ... , (t) are determined, each CSCI is
assigned-a relative weight

Ex, (t:•)(4)WI - __._(_1

These relative weights add up to one. The failure rat6 i, with
respect to system operating time, to be allocated to nhe i-th
CSCI is

A,9 -'wI (50)

The allocation is acceptable since the CSCI failure rates add up
to the goal:

E wIA, -AX w, 493 uAc (51)

To change a CSCI's allocated system-operating-time failure rate
to execution time, the allocated failure rate is divided by the
CSCI's utilization ui.
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3.2.3.2 Ecual Apportionment

Let the failure rate goal of the aggregate be

AG = -lnR,(t) (52)
t

The strategy of equal apportionment is for the system never to be
exposed to an instantaneous failure rate exceeding k. This
results in an overall reliability of at least expC-At]-RN.
The formulas for equal apportionment are obtained by solving the
corresponding reliability combination formulas for component
failure rate or reliability.

3.2.3.2.1 Model (B) SBauential Series

Each sequentially active component is allowed a failure rate of
Aa-a, so that a constant, satisfactory failure rate is
maintained at all times regardless of which component is active.

3.2.3.2.2 Model (C) Concurrent SerieJ

Each of k concurrently active components is allocated a failure
rate objective of A.-A0 /k. This rQsults in an overall
reliability of at least

The reliability of each component is
.rt V~F (54)

Alternatively, consider the failure prohability (unreliability)

0, (t) - 1 - R 0 (t) (55)

Each componient can be allocated an equal portion of the failure
probability for a reliability objective of

ZG(t) - 1 (56)
k
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3.2.3.2.3 Model (D) Concurrent Parallel

If k components are connected in parallel, the failure rate IG to
be allocated to each component is

k

1c -A( (57)

A similar problem is to determine how many components with
reliability r are needed to meet an aggregate reliability goal of
P•. The solution is

IC • in (I-Re) (s9)
ln(1-r)

3.2.3.2.4 Model (2 Standby Redundancy

For recovery blocks (under the assumption that the multiple
versions fail independently) with k components, the reliability
allocation is

r2 0( k-R 1 - (59)

3.2.3.2.5 Model (F) N-Modular Redundancy

For N-version programming (under the assumption that the multiple
versions fail independently), the failure rate allocation is

N

Ao " (60)

3.2.3.3 Proportional Allocation

Let the expected-number-of-failures objective be

MG- -in [R,(t) (61)

The strategy of proportional allocation in for each component of
the aggregate to contribute the same expected number of failures.
The expected number of failures is a function of the failure
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rates and the time exposures of the components that comprise the
aggregate.

3.2.3.3.1 ModelCG) Seauential Series

For each of the k components, let the expected-number-of-failures
allocation be

I 1 (62)

and allow each component i a failure rate of

(k•) 0 - -- i-I1,2,...k (63)

where t,' is the ar-unt of time cormponent i is active. This
results in an overall reliability of at least

G~p[- .R(;(64)

The reliability objective for component i is

r,(r) a exp(-(X•) 0 t] , 1.1,2, ... k (6a)

Thus the longer the time exposure of the component the lower its
failure rate must be. This criterion is appropriate for hardware
and for software that is run repetitively.

3.2.3.3.2 Model (HI Concurrent Parallel

For proportional allocation of k components connected in
parallel, the reliability objective to be allocated to each
component is [Dennis (1974)]

Z -(t) - 1 - 'kV (R ) (66)
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and the failure rate objective is

Sin 11(___ • *I-1,2,...,k (67)
ti

3.2.3.4 Model (I) Importance Fagtors

Let k be the number of subsystems; n,, the number of items in
each subsystem i? R, the desired mission reliability; and t,
the mission time for subsystem i. Let

k
N s 9. n (66)

be the total number of components in the system. Assign each
subsystem i an importance index w, that is the probability that
the mission will fail if the i-th subsystem fails. The failure
rate objective to be allocated to the i-th subsystem [AGREE
(1957)] is

In [1- 1/ w, (1-,R"2"/N (]9

Software fault tree analysis [Leveson and Stolzy (1983)] is
useful for pinpointing safety- and reliability-critical sections
of computer programs. However, software fault tree analysis
examines the software at too low a level to provide quantitative
criticality figures which can be used in developing importance
indices. Regular fault tree analysis, which stops at the
interfaces to the software components, is capable of providing
quantitative criticality figures.

3.2.3.5 Model (JM Weighted Allocation

If the mission reliability goal is R , then the unreliability (I-
%) can be allocated proportionally to each phase in the mission
according to the distinct conditions at each stage [Amstadter
(1971)). If the weighting of phase i is wy, with

Uoi M 1 (70)

then the reliability objective for that phase is
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(R) l 4-a~i (71)

and the failure rate objective is
(12 A (72)

3.2.3.6 Model (K) Constrained Allocation

A software system consists of n serial stages. A reliability of

(R)I-*x (72)

is allocated to each of the n stages. The minimum number of
:edundant components at each stage i [Sandler (1963)] isC In (-Re) 1(74)In(I•- -zl)

If ci is the cost of components for the i-th stage, the lnast-
cost allocation is given bl [Moscovitz and McLean (1956)]

In (I -Re 7)[ in (I-x,')

where
Ci

in [ (76)
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3.2.3.7 Mndel (L) Re-Allocaticn

Suppose An is the failure rate goal and At is the current
reliability of the component. Then if N is less than A , a
suitable reliability goal )4 for each component (von Aýven
(1964)) is

A, (77)

It is most effective to raise the reliability of the least
reliable component in a series configuration,! and the most
reliable component in a parallel configuration.

Appendix C develops and presents "dynamic allocation" techniques
for minimizing the effort required for reallocation.

/
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4. SOFTWARE RELIABILITY PREDICTION

Reliability prediction has several important uses. Early in the
acquisition cycle it can be employed to determine the feasibility
of the system reliability requirements. It caa highlight which
components in a design can be anticipated to contribute most to
the system unreliability. It enables scW ,,0.e and cost forecasts
to he made. It allows tradeoffs to be, • between reliability
and other factorr (such as maintairbi yV. Often, absolute
prediction values are not as imp•,-.:..t as relative values,
especially when comparing alternative 1,onfigurationm or designs.

In fulfillment of SOW Task 4, a technique for modeling and
predicting the reliability of hardware/software systems was
developed. Emphasis was placed on reliability prediction for the
software part of the system, because hardware reliability
prediction techniques are already well established.

4.1 Aplroac

The goal of the prediction research was the development of a
method for the prediction of software reliability that could be
used in conjunction with MIL-HDBK-217 and other published failure
rate data to obtain a reliability prediction for the overall
system. Hardwar, reliability prediction provides a failure rate
for the inherent reliability, which, in theory, is the best
reliability achievable as the development and manufacturing
processes are perfected.

Software does not have the same kind of inherent reliability
limitation. The reliability of software will generally improve
over time as faults are uncoverad through testing and are fixed.
There are two conditions that limit the attainable reliability
for software: (1) There reaches a point at which a program that
has poor maintainability becomes a victim of entropy--the code
has been modified sc much that it has become a patchwork quilt
and an attempt to fix one fault results in the introduction of at
least as many new faults. (2) The software achieves a high level
of reliability, so that the times between failures are
excruciatingly long, with the result that further testing becomes
impractical. As discussed in the section o? this report on
Reliability Growth, the simultaneous execution of multiple
identical copies of the software can be helpful in postponing
that point in time.

When software reliability or combined hardware/software
reliability is predicted, that prediction must be related to a
point in time. The earliest point in time for which it makes
sense to predict reliability is when the system is fully
integrated and is operating in an environment that emulates field
use. This point in time is the beginning of "system test" and is
denoted by cumulative operating time r-0. The software
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reliability prediction methods developed in this section will
forecast the reliability the software can be expected to exhibit
at that point. Also forecast will be the parametero of the time
domain software reliability growth model described in Section 5
of this report, so that software reliability can be predicted for
points in time later during system test. It is assumed that when
the software code has been frozen and is being subjected to a
stationary operational profile (probability distribution of input
states--see Section 5), it will exhibit a constant failure rate
(see Appendix B).

The study team applied multivariate regression (SOW para.
4.1.3-2.3) and related statistical analysis to the data collected
in the reliability database (SOW para. 4.1.1.1). The team
explored which product (requirements, documentation, cude) and
software development process characteristics are signi.ficantly
correlated with fault content (SOW para. 4.1.3.3, 4.1.3.2.3).

The technique for software reliability prediction uses metrics
derived from characteristics of the software duvelopment process
and of the products. Also provided are techniques for taking
into account the influence of two additional factors o;n the
reliability figures: the program structure and the operational
profile.

The study team first investigated techniques for predicting
program size during the early stages of software development,
before the code has been written (SOW para. 4.1.3.1). Program
size is important for relating fault content to fault density,
and is a product metric in its own right.

4.1.1 Prediction of Softwara Size (SOW Dara. 4.1.3.1)

Halstead's (1977) software science was the first technique the
study team evaluated. Software science is an information-
theoretic approach to properties of representations of
algorithms. By invoking these properties, one can obtain
predictions of varioum quantities of interest such as program
size, complexity, and fault density. Surprisingly little data is
required for the predictions.

Using software science, the size of a program can be predicted if
the number of distinct operators (verbs) and the number of
distinct operands (nouns) in the program are known. Software
science defines the length of the program as

LENGTH m r0log 2r 11 + q321og 2T2  (78)

where Y71 is the total number of distinct operators "nd n is the
total number of distinct operands. The phenomenon that 4he size
of a program is a function of the size of its lexicon has
parallels in other fields. The linguist George Zipf (1965)
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observed this phenomenon in natural languages such as English,
and B. Mandelbrot, the father of fractals, saw the phenomenon in
unordered random symbols [Jones (1986)].

The number of executable source instructions is obtained as

is. LENGTH (79)

where Q-7 for higher-order languages (HOLs) and Q-4.5 for
assembly language. From no additional data, the fault density
can also be obtained. The software science "volume" metric is
defined as

VOLUME a LENGTH x log(, ÷ 01+) (80)

The volume is roughly defined as the number of characters that it
takes to encode the program. The number of faults is predicted
by

o VOLUME (81)
3000

and the fault density by

6(82

The number of distinct operators and the number of distinct
operands are available after coding but can usually be estimated
at the end of detailed design. However, software science
provides a means of making the same predictions based on data
obtainable even earlier, during preliminary design.

The early prediction method is based on the number of input and
output parameters and the "language level." Since module
interfaces are established during preliminary debign, the number
of input and output parameters for each module will be available.

Let nz* be the number of input/output parameters of a module.
Let t be the language level. Then the total number of distinct
operators, •. and the total number of distinct operands, ?I, can
be determined by simultaneously solving

*1 0• tlog 2 ((2÷2)/2] (i 1-2)/ 2.4n* + n+ (83)

and
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1(2+ n2) log12 (2+i)] 2 - 1(•11og091+121o9212) 10g2(1+q) (84)

A drawback to this method is that, while Halstead theorized that
language level is a function of the programming language, it
appears that it is also a function of the individual programmer
[Pressman (1982)]. IZ historical data is available on the
programmer who is expected to implement the module, an estimate
of the language level can be found from taking a sample of his
code and computing

(inlo0 2 17 2 1093112) [log 2 (13+1 2)] (85)

where N2 is the total number of operand appearances in the code.

The study team was skeptical of software science because of
research articles critical of the theoretical and empirical bases
of Halstead's work [Coulter (1983), Hamer and Frewin (1982,
1985), Shen et al. (1983)). The size of already written programs
was "predicted" using mean language level figures. The results
were mixed. Trying out the software science relationships on
already-written software, calculating language level
historically, to see if those relationships hold is recommended.

The next program size method the team inventigated was function
point analysis [Albrecht (1979), Albr.cht and Gaffney (1983)).
This method allows program size to be predicted after
requirements analysis, which is even earlier than predictions can
be made using software science. A function point is one end-user
function. The requirements statements are examined to deturmine
the number of logical end-user functions requirid, namely inputs,
outputs, inquiries, master files, and interfaces. Dreger (1989)
discusses the manner in which these functions should be counted.
The counts are multiplied by the empirically obtained factors
given in Table 4-1.

Table 4-1. Function Point Factors

Function Point Factor

Inputs 4

Outputs 5

Inquiries 4

Master Files 10

Interfaces 7
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The products of the counts and the factors are totaled and
adjusted ±25% based on the estimated processing complexity of the
program. The following characteristics are considered tc
increase processing complexity: data communications, distributed
dat;a or processing, performance objectives, heavily-used
configii.ration, transaction rate, on-line data entry, end use)7
efficiency, on-line update, complex processing, reusability,
conversion and installation ease, operational ease, multiple site
use, and facilitation of change. Dreger (19'9) provides
guidelines for quantifying the complexity added by each of the
characteristics.

The translation of the number of function points to the number of
lines of code depends on the programming language. For Ada,
Jones (1986) has determined that there are approximately 71
source statements per function point. For JOVIAL, the number is
106; for basic assembler, 320: for macro assembler, 213; for
FORTRAN and COBOL, 105; and for C, 128.

The use of function point analysis in software engineering is
expanding, espocially as a measure of productivity. The drawback
to function point analysis 4.i that it is currently geared to
business applications areas. Methods applicable to a wider
variety of app.ication areas were sought.

People in the defense industry involved in making -'zing
predictions were interviewed and a comprehensive comp ... tive
evaluation of software sizing models [AFCCE (1987)] was raviewed.
The sizing method that emerged at the top of the AFCCE assessment
is that implemented by an increasingly popular commercial product
called Software Sizing Model (SSM) [Bozoki (1987)]. This method
was developed by Dr. George Bozoki of Lockheed. SSM has also
been incorporated into RCA's computerized cost-estimating
software, PRICE. The method uses psychological scaling methods
to convert qualitative sizing information (relative sizes of
modules) to absolute sizes.

The exact inner workingo of SSM are not published, but the study
team has devised similar methods based on the scholarly
literature. An example of a psychological scaling method is the
technIque of paired comparisons: one or more "experts", persons
familiar with the type of application and who have worked cn
similar projects within the same organization, are presented with
random pairings of module names and asked to judge, for each
pairing, which module they would expect to be bigger. If at
least two of these modules are "reference modules" of known size,
then it is possible to compute predictions of the absolute sizes
of every module. Appendix D discusses some psychometric methods
that have been adapted for the purpose of program size
prediction.
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4.1.2 redictinia Fault Density an- Content (SOW para. 4.1.3.2)

A software failure is a discrepancy between the program's output
and that dictated by requirements [Musa et al. (1987)]. A
software fault is a missing, extra, or defective statement or set
of statements that is the cause of, or can potentially cause, a
software failure [Musa et al. (1987)]. Taking a snapshot of the
program at the start uf system test, the inherent fault density
of a program is the fault content (number of inherent faults)
divided by the number of executable lines of code. The term
"inherent faults" will be used to contrast with faults that are
inadvertently introduced during repair activity.

An industry average figure for fault density is 6 feults per
kiloline of executable source code [Musa et al. (198')]. This
figure may be useful in forming very early predictions of
software reliability, for example, in a proposal. For the
regression analysis, the team sought methods for determining the
number of faults in a program. Unfortunately, the faults in a
program are not directly observable. Any faults that have been
identified have presumably already been removed. What is
observable during system test are software failures. Each
software failure, by definition, is caused by a single fault.

Tho occurrence of a software failure is conclusive evidence that
a fault exists. But counting the number or rate of failures over
time does not by itself say anything about the number of faults
that remain. The only way to count all the faults in the program
is to keep testing until all faults have been exposed and
removed. This feat would require exhaustive testing of alJ
possible input states, which, for most programs, would take an
astronomical amount of time to complete. (One round of
exhaustive testing would not even be enough, because of the
possibility that repe.ir activity will introduce new faults.)

One proposed method for estimating the number of faults is called
"fault seeding." it is based on the same idea as "capture-
recapture" studies used in estimating the size of animal
populations. Such a study proceeds as follows: First comes the
"capture" phase. A group of animals, say, zebras, are caught,
counted, tagged, and released back into the wild. Next comes
the "recapture" phase. After a period of time the researchers go
out and capture a group of zebras. The numbers of tagged and
untagged zebras in this new group are noted. The proportion p of
tagged zebras in the group is calculated. The number of untagged
zebras in the entire population is estimated by dividing p into
the number of untagged zebras in the second group.

In software fault seeding, originally discussed by Mills (1972),
a number of artificially created faults are injected into the
code. Testing proceeds and, at some point, the number of seeded
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faults and indigenous faults found are noted. An estimate of the
numbor of indigenous faults in the program. is obtained from the
assumption that the proportion of indigenous faults found out of
the population of indigenous faults is the same as the proportion
of seeded faults found.

For software, let y be the number of faults injected initially;
u, the number of indigenous faults found so far; v, the number of
seeded faults found to date. Then the maximum likelihood
estima+*- nf the number of indigenous faults x is

[Feller (1957)).

The problem that fault seeding encounters in practice is that the
seeded faults are easier (usually much easier [Musa at al.
(1987)]) to find than the indigenous faults. To carry the animal
analogy further, suppose that the zebras that are originally
captured are "tagged" by having one leg amputated. Then the
three-legged zebras are released into the wild. Later, for the
recapture phase, a group of zebras is caught and the number of
three-legged zebras noted. Obviously the method is flawed
because the three-legged zebras are much easier to catch than the
untagged (four-legged) zebras.

Variations on fault seeding have been proposed. Myers (1976)
suggests having two independent teams test the software. The
faults that the two teams find in common are treated as if they
had been tagged. The formula is [Shooman (1983)]

(aE0 L2•Ei (87)

where B1 is the number of faults that tester #1 found, B2 is the
number of faults that tester #2 found, and b© is the ndmber of
faults found in common. This variation has the advantage that no
artificial faults have to be created. However, several
conditions need to be met. First, the faults found during the
teot period must be representative of the total population of
faults. Second, the independent testing and debugging must
result in similar program versions, and third, the common faults
must be representative of the total fault population. (It could
be argued that the faults found in common will tend to be the
easiest ones to find.)

Ideally, the dependent variable in the multivariate regression is
fault density. The study team concluded that the state of the art
in fault seeding is not advanced enough to provide good estimates
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of fault content. Since neither software science nor fault
seeding can currently provide accurate fault content figures, the
study team decided to choose an observable quantity, the Basic
Execution Time Model initial failure rate parameter, X,, as the
dependent variable for the regression analysis. Additional
methods provide the parameters B and K. Established parametric
relationships (SOW para. 4.1.3.3) are then employed to derive
fault density, fault content, and growth rate predictions.
Because processor speed varied from project to project, the
observed failure rates were standardized to an instruction
execution rate of 3 million instrictions per second (MIPS).

Automated support for the multivariate regression was provided by
the SAS (Statistical Analysis System) package. Custom 3oftware
to pro- and postprocess the data and perform additional
calculations was also written.

In predicting fault density, the two product characteristics that
immediately came to mind were size and complexity. The two most
commonly employed complexity mearures are McCabe's (1976)
"cyclomatic complexity" and Halstead's (1977) "E".

To calculate McCabe's metric a program graph is drawn to depict
flow of control. The metric V(G) is computed am the number of
enclosed areas on the plane of the graph. The metric can be
obtained after the detailed design is complete.

Halstead "E", which denotes "effort", is given by

Eu(11log 2 711"1 2-1g212) (log2 ('1.+q2)1(B
2112
vn N2

where N, is the total number of diatinct operators and N2 is the
total number of distinct operands. Because of the presence of
the quantity N2, this metric can only be obtained after coding.

Halstead even provides the following formula to obtain the number
of faults from the effort:

0 Us/ (89)
3000

Several studies have shown that complexity correlates with
program size [Shen et al. (1983), Sunohara et al. (1981), Basili
and Hutchens (1983), Gremillion (1984)). For this reason the
study team decided not to collect a separate complexity metric.
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4.1.3 Prediction of Software Failure Rate (SOW para. 4.1.3,2)

As detailed in Appendix A, this study has hypothesized 24
characteristics that affect the software faJ.lure rate as shown
below broken down by software life cycle phase.

Raquirements Analysib:

x1: Errors in requirements specification (SRS)
x2 : Requirements statements in the SRS

- X3 : Pages in the SRS
- ;• Man-months for requirements analysis
- x,: Requirements changes after baseline'

Preliminary Design:

x6 : Errors in preliminary design documents
- xV. Number cf computer software components (CSCs)
-- x Units (or Ada packages) in design structure
- x.: Pages in design documents
- x 10: Man-months for preliminary design

Tetailed Design:

- x11: Errors in design documents
- x 12 : Man-months for detail design
- x13: Design flaws identified after baselirne
- x14: Design flaws identified after an internal review

Codt.ng :'

- x 15: Number of executable lines of code (LOC)
- x16: Faults found through code reviews
- X16: Programmer skill level (average years of experience)
- x1?: Number of unito undergoing review
- x19 : Average number of source LOC per unit

Unit Test:

- x20, Average number of branches in a unit
- x21 : Percent of branches covered
- x22 : Nesting depth average
- Number of times a unit is unit-tested
- x24 : Man-months for coding and unit test

- X13 + + x16 (Defects identified Zrom walkthroughs
and reviews)

Some of the independent variables were notmalized based on kilo
lines of executable code (KLOC). The normalized independent
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variables are x1, ,x,x 1 , x xX 25. The formula to normalize x,

where i e 1,62,.i4 ,;24,2?) is

x, - (xI / x15) • 1000 (80)

Recall that xi, is the number of LOC in each observation.

For each pnase of the software development process, a new
regression model was formed which involves Y (software failure
rate as the dependent variable) and x,, i- 1,2,...,k where k S n,
and contains more software characteristics as they become
available. Therefore, several regression models were formulated
for each software development phase (such as Requirements
Analysis, Preliminary Design, Detailed Design, Coding and Unit
Test).

Scatter plots of Y (software failure rate) versus x (software
characteristic), i - l,2,...,n, based on the collecteA data from
Appendix A, were drawn. These scatter diagrams suggest that the
regression models can be linear in terms of all the variables
except xV, x11 , x 1 , Y14, X16 0 X23. However, both linear and
nonlinear regression models involving software failure rate
(dependent variables) and the software characteristics
(independent variables) described above were developed for each
phase of software development.

The general linear regression model is of the form

Y - a0 + aAx1 + a 2x2 + ... + akxk (81)

where k assumes different values depending on the software
development phase. Similarly, the non-linear regression model
for each phase of the software development is a sum of the linear
combination of items in a subset of (xI,...,X•,x7,...xIOX12,X17,

... x,) and the linear combination of items in the subset
of (1/x6 1/x 11 , I/x 13, l/x 14, i/x 16, i/xn); the sizes of these
subsets depend on the phase of the software development. Notice
that x 5 is not used in any of the regression models, except to
normalize appropriate independent variables, since the software
failure rcte Y should not depend on the size (x,,) of the
software.

Due to the fact that the number of metrics exceeded the number of
observations in all software development phases, except for the
Requirements Analysis phase, full regression models cannot be
formulated. Advanced statistical techniques were applied to
reduce the number of independent variables which can participate
in the regression model after each phase of software development.
The reduction was accomplished in two alternative ways. One way
was to work with only the subset of metrics that was determined
to most influence the reliability of the software. This was done
by using the stepwise selection method. The other approach taken

66



was to work not with the metrics themselves but with aggregates
of the metrics. Principal component analysis was employed to
achieve this goal.

The regression models that were formulated after each software
development phase were compared to one another in the Validation
Task. The comparisons were done based on the values of their
statistical characteristics (such as: R2, p-values, 95%
confidence limit., etc.), and on how well they can predict the
failure rates of known software. A model was chosen to be used
to describe the relationship between software failure rate and
software characteristics.

The following is the discussion of the "stepwise selection"
method and principal components analysis.

a. Stenwise Selection Method

Since it would have been impractical to try all subsets of
independent variables, the stepwise selection method was used to
effectively eliminate some independent variables which have a
small contribution to the regression model.

Stepwise regression is a composite of two different procedures:
forward selection and backward elimination.

The forward selection technique begins with no variables in the
model. Then it selects the indepehdent variable that is most
highly correlated with the dependent variable. For each of the
independent variables, forward selection calculates F-statistics
that reflect the variable's contribution to the model if it is
included. The F-statistic is the ratio of the explained variance
to the unexplained variance. The p-values for these F-statistics
are compared to a predetermined value, f. If no F-statistic has
a significance level smaller than f, forward selection
terminates. Otherwise, forward selection adds to the model the
remaining independent variable that has the largest F-statistic
(accomplishes the greatest reduction in unexplained variwnce).
Forward selection then calculates F-statistics again for the
variables still remaining outside the model, and the evaluation
process is repeated. Thus, variables are added one by one to the
model until no remaining variable produces a significant F-
statistic. Once a variable is added to the model, it stays
there.

The backward elimination technique begins by calculating
statistics for a model, including all of the independent
variables. Then the variables are deleted from the model one by
one until all the variables remaining in the model produce F-
statistics significant at a pre-specified level, b. At. each
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step, the variable showing the smallest contribution to the model
is deleted.

The stepwise method is a cross between forward selection and
backward elimination. The variables already in the stepwise
model do not necessarily stay there; the decision is reversible.
As in forward selection, variables are added one by one to the
model, and the F-statistic for a variable to be added must be the
largest among the outside variables and it must be at the f
significance level. After a variable is added, however, the
stepwise procedure looks at all the variables already included in
the model and deletes any variable that does not produce an F-
statistic significant at the b significance level. Only after
this check is made and the necessary deletions are accomplished
can another variable be added to the model. The process ends
only when none of the outside variables has the F statistic
significant at the f level, and none of the inside variables has
the F statistic significant at the b level.

Moreover, the value of R2 (the coefficient of multiple
determination) is also taken into consideration, when the
Stepwise regression analysis is performed. The R2 quantifies the
degree of association that exists among the variables. C ,
Mallow's statistic, is another factor which is used in generati2g
a stepwise regression model. C was introduced by Mallows (1964)
as a criterion for evaluating t~e adequacy of multiple regression
functions of differing orders. It is a measure of total squared
error, defined as

C - ( SSEP/s 2 ) N - 2*p) (82)

where s2 is the mean square error (MSE) for the full model, and
SSE is the sum-of-squares error for a model with p parameters
including the intercept, if any. If Cp is plotted against p,
Mallows recommends the model where C f?rst approaches p. When
the correct model is chosen, thJ parameter estimates are
unbiased, and this is reflected in C_ near p. If the full model
is not available due to lack of Pa "reasonable" number of
observations, only the value of R2 is taken into the decision-
making process.

The main advantages of the stepwise procedure are that it is
fast, easy to compute, and availabli in statistical packages for
most computers. Also,, the cost of the computation rises slowly
as the number of variables increases. Another advantage of the
stepwise procedure is that it possesses order independence,
(i.e.. the order which the independent variables are fed into the
regression model does not affect the final outcome of the
analysis). Unfortunately, there are some drawbacks to the use of
stepwise regression. The model chosen by stepwise regrassion
need not be the best by criterion of interest; indeed, because of
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the nature of the one-at-a-time philosophy of the stepwise
method, there is no guarantee that the model chosen will in fact
include any of the variables that would be in the best subset.
The stepwise procedure is best when the independent variables are
nearly uncorrelated, but this is a condition that in seldom
satisfied in practice.

b. Prinoigal ComDonant Analysis

An alternative approach to alleviate the difficulty of having
fewer data points than the number of regressors is the principal
components analysis (PCA) Method. The technique uses as few
principal components of the original independent variables as
possible in the regression model.

Principal components P1, P,"..I P. are linear combinations of the
original independent variables, say x,, x ,..., x (in the study's
case nw25). Pi, P, ... , Pm have speciad propeAies in terms of
variances; for example, the first principal component P, is the
normalized linear combination with maximum variance. The
coefficients in the linear combinations for the principal
components turn out to be the normalized eigenvectors of the
variance-covariance matrix of xx 2 .,xmy, called E. Since E
is a non-neative definite matrix, it has non-negative real
eigenvalues A1  2 A2 ... - AIn and associated eigenvectors a.,
a2 I., G-fo

Suppose a, a,..., am are normalized; i.e., of ,a a 1, where 1
means "transpose." Let ZI - a1 'X, where X - (x1, x2,...,x ]' and i
- 1,2,...,n; then Z, is the ith principal component. A' can be
shown that the variance of Zi is the eigenvalue AI, where i -
1,2,...,n. The idea of the principal components method is to use
the first k principal components as the independent variables in
the regression model, where k satisfies

k

T- a C : where C a 0.90 , 0.95 (83)n

since it can be proven that the first k principal components can
explain at least C*l00% of the total variation of the sampled
standardized software failure rates.

Often, k ic much less than n. Therefore, the new regression model
has many fewer independent variables than the old model, but it
still contains all the original characteristics, since these
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independent variables are linear combinations of the original
variables.

The major advantages of the principal components method are that
it works wall if the original data is highly correlated, and that
all the information pertinent to the model is reserved. Also, as
in the stepwise procedure, principal components analysis is order
independent. One of the disadvantages of the principal
components method is that the results may be unstable since there
is too much data contributing to the model (a small perturbation
of the data may result in a significant change in the result).
Another drawback of this technique is that the eigenvalues and
eigenvectors of E must be calculated, but E is usually large and
may be ill-conditioned; therefore, this task can be troublesome
in some cases.

4.2 Results

4.2.1 Results of Prediction of Software Failure Rate

Several regression models were formulated to describe the
relationship between the software failure rate and the software
characteristics. Comparisons were done to select an appropriate
regression model to be used to predict software failure rate for
each phase of the software development.

The comparisons were done based on several statistical values of
the regression models (such as: R2, p-values of hypothesis tests
(I) and (I1), standard errors of the parameter estimates, etc.),
and on how well the models predict known software failure rates.
In addition to these criteria, the following ground rules were
applied:

1. The model with the best correlation to the observed software
failure rate was chosen whenever there were any significant
differences in correlation between the two models.

2. When two models produced essentially identical correlation
between the predicted software failure rate and the failure
rate observed on the projects, the model which accounted for
the largest number of metrics (most recent information) was
selected.

The need to select the model which provided a software failure
rate with the best statistical correlation to the observed
failure rate is obvious. The study team's preference for a
prediction model which used the largest number of metrics is
based on two areas of concern with respect to the data collected
during the study period. The data collected to support
development and validation of the prediction models was all
collected after all system integration testing on the program was
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complete. In most cases, the software was in use at the customers
facility. As a result, the metric data collected on th3 projects
was essentially complete. Thus, the data available to the study
team was much more accurate and complete than the data which
would normally be available at the end of a given program phase
(eg requirements analysis). This may have resulted in much better
accuracy for the early program phase models than would normally
be expected. Also, the metric data collected during the project
was limited to one company (Rughes Aircraft) and thus potantially
valuable variations in values of the metric data which would
occur between companies was omitted, possibly yielding better
stability and accuracy for the early prediction models than would
ordinarily result.

A complete discussion of the rogression analyses is provided in
Appendix E. Also, details of the comparisons among the devuloped
regression models are included in the Validation section of this
report.

Three regression models were chosen for use through the software
development phases to predict software failure rate. These
models are:

Y - 18.04 + 0.05 Pi (Y is restricted to be non-negative)

P1  0.009xi + 0-99x 2 + 0"10x 3 - 0-0001x 4 + 0"0005x5

- Modg.jl M6:

Y - 17.90 + 0.04 PI (Y is restricted to be non-negative)

P1 " 0a007xi + 0.796x 2 + 0.08x3 - 0.0003x 4 + 0.0003xs +
0.00009x 6 + 0.0043x 7 + 0.013x8 + 0.6x9 + 0.003x,0

Y - 17.88 + 0.04 FA (Y is restricted to be non-negative)

PA- 0.007xi + 0.80x 2 + 0.08x3 + 0.01x8 + 0.6x9 + 0.008x 23 +
0.03x,5

M3 is used to predict the software failure rate during the
Preliminary Design phase. M6 can then be used during the
Detailed Design phase and the Code and Unit Test phase. Model
M10 van be used after Code and Unit Test phase has passed.
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4.2.2 Predicting Hazard Rate/Fault and Related Quantities (OW
2ara. 4.1.3.31

The relationship between software fault content and the software
failure rate is as follows: Let 01 be the hazard rate of the ith
software fault in a program. Then the overall program
failure rate is

WO
X0 " :. 01 (84)

The Basic Execution Time Model, discussed more fully in Section 5
of this report, asserts that every fault hazard rate *, is equal
to a constant, the per-fault hazard rate *. In this case the
overall program failure rate is

S(85)

The multiple regression models predict a standardized failure
rate that corresponds to the Basic Execution Time Model's I0
parameter. To obtain the same two Basic Execution Time Model
parameters that are supplied by estimation during growth testing
(see Section 5.), v0 and P, the following formulas are employed.
For total failures,

f- (86)

and for /,

D R -f - K(87)

where the linear execution frequency f is

I

The linear execution frequency is the number of program passages
there would be in unit execution time if the program's
instructions were executed in linear sequence. I is the number
of object instructions and is obtained by multiplying the number
of source instructions by a code expansion ratio. Table 4-2
provides the code expansion ratios for selected programming
languages [Jones (1986)].
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Table 4-2. Code Expansicn Ratios

Programming Language Expansion Ratio

Assembler 1

Macro Assembler 1.5
C 2.5

COBOL 3

FORTRAN 3

JOVIAL 3

Ada 4.5

A method of relating fault content (obtained from applicable
product/process related metrics) to failure rate, based on
program structure and operational profile was developed. In the
framework of the Basic Execution Time Model, fault content Is
related to failure rate through the fault exposure ratio, K.
Specifically, if there are w, faults in the program, then the
failure rate is

A* - f'K'c 0  (89)

With regard to faults, the failure rate depends primarily on
fault density, not on fault content. The initial failure rate,
A,, and the inherent faults, w,, are the failure rate and fault
content at the start of system test, but in actuality any point
during system test could be arbitrarily designated the "official
start" of system test, so the relationship holds throughout
system test and during field use.

Zeroing in on a single, "typical" fault, the Basic Execution Time
Model defines the per-fault hazard rate as

S- f • K (90)

The per-fault hazard rate is the equal contribution each fault
makes to the overall program failure rate. The method developed
also handles the situation in which a program departs from that
assumption. In that situation, faults will fall into various
hazard rate classifications (hazard rate profile) (SOW para.
4.1.3.3.1).

Musa introduced the factor K to account for two distinct
phenomena, the dynamic structure of the program and the varying
machine state. The dynamic structure of the program is the
looping and conditional and unconditional branching that takes
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place during execution. The machine state is the values of all
program variables. The machine state can change upon execution
of each instruction. When a fault is encountered during
execution, a failure may or may not occur during a particular
encounter; it depends on the machine state. When K-1,

This occurs only when the program is executed linearly and all

faults cause failures regardless of the machine state.

The atudy team separated K into two factors

KX SM (92)

where S is a structure factor and M is a machine state factor.
In relation to a single fault, S and M are defined as

M . failure-causing machine states (93)total machine states

and

S - actual encounters (94)
linear encounters

Both M and S are multiplicative factors because doubling either
of them doubles the failure rate. So now

S- f. S M (95)

The product fVS in the frequency with which a fault is
encountered. Once the fault is encountered, the probability of a
failure ensuing is M. Stochastically, S is the probability of an
arbitrary fault being encountered during one program passage (of
which there are f per unit time). M is the probability of a
failure ensuing (because of an unfavorable machine state), given
that a fault is encountered.

If, as in the Basic Execution Time Model, K is assumed to be
constant for a particular program, what about S and MT Sinc.e K -
S ' M is a constant, there are two possibilitilst (1) S and M
are themselves constant; or (2) S and M countervail each other so
as always to equal a constant. Alternative 2 is the suggestion
that when S is large, M-K/S is small, and when M is large S-K/M
is small.

Since S is a function of the structure (loops, branches) of the
program, and M is a function of the arithmetic and logic within
the fault, it is reasonable to assume that S and M are
independent quantities. Hence, since K-S.M is a constant, and S
and M vary independently, it can be concluded that S and M are
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each by itself a constant for a particular program, which is
alternative 1. The ramification of K being separable into S and
M is that the two quantities can be studied individually. If K
is affected by the structure of the program, then the effect
should be seen in S and not M.

S is the rate at which a partiunlar fault is encountered during a
single program passage. One way to estimate S would be to inject
a program with a single fault and see how often that fault is
encountered. By injecting several faults, a more accurate and
quicker estimate would be obtained. But as discu3sed earlier in
this section, it is difficult to fabricate faults that are
representative of a program's indigenous faults.

But why inject a fault? A fault is in essence just a place in
the program. The major issue is how often an arbitrary place in
the program is reached per program passage. S can be estimated by
observing how often one or more randomly chosen places in a
program are encountered during execution. The assumption that is
being made here is that a fault can occur anywhere in a program,
and every place in the program is as likely as any other to have
a fault. That is, the fault density of a program
(faults/kilolines of executable code) is uniform. This
assunption has been borne out through empirical studic ([Basili
and Hutchens (1983), Takahashi and Kamayachi (1985)].

Here, then, is the method developed for estimating S and using
that estimate to refine K to better reflect program structure and
operational profile.

1. An array of counters is declared. In Ada, the declaration
would be

counter: array(l..n) of integer:=(C,0,0,...,0); (96)

2. A random sample i3 taken of n "places" within the program.
Thase places must lie in between existing program statements. At
each place a counter iteration statement is inserted. For
example, the following statement is inserted into the program at
the i-th such place:

counter(i) counteri) + 1; (97)

3. The program is executed for w time units. During the period
of execution the operational profile should, ideally, be
stationary and representative of field use. When the execution
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period is complete, the values of elements of the COUNTER array
are examined, and the sample values for S are calculated from

= COUNTER(i) i=1,2,...,n (98)
f 'w

Note that f'w is the number of program passages that take place
during the w time un±ts. If S is a constant for a particular
program, an implied by the Basic Executizn Time Model, then any
variability in the observed values (s,) can be attributed to
"sampling fluctuations." The best estimator for S will be the
sample mean

n

Under the assumption that K is constant, the Gaussian law of
errors applies. The sample standard deviation is

8 (31s-S)2/(n-1) (100)

A 100(1-a)% confidence interval for S has endpoints
8±•.~z.• c.O 1)

where t is that value of the t-distribution with n-i
degrees • "'2 freedom that has 1-a/2 to the left. The t-

distribution is tabulated in many statistics textbooks. A
numerical method suitable for programmable calculators and
computers is given in (Volk (1982)]. For n>30, tn.I,1.*/ 2 can be
replaced by the standard normal deviate

If no information is available about K for this program, the
industry average value of 4.20 x 10.7 is recommended [Musa et al.
(1987)]. If the same or a similar program has gone through
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growth testing, then the value can be obtained from the following
parametric relationship:

S. _1 . )- _lO

K (102)Bf v.

In any case, the value of H can then be recovered as

Mieat, - K (103)
S

Here is a summary of the dimensions of the various quantities
involved in predicting the parameters of the Basic Execution Time
Model:

program passages (104)
execution time

encountersfaults (105)

program passages

M: failures (106)
encounters

K: failures
faults (107)

program passages

W.: faults (108)

failures (109)° execution time,

If the sa values are highly variable or skewed, then the
assumption of a constant per-fault hazard rate should be
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questioned. Skewness--the degree of symmetry in the shape of the
distributAon--can be measured by

Sk 3(S- Md

where Md is the median of the (sl). A large positive score
indicates that the distribution is skewed to the right, and a
large negative score indicates that it is skewed to the left.
For the purposes of prediction, a skewed distribution suggests
that the Basic Execution Time Model may not be appropriate.

If the (si) are highly skewed or highly variable, then the hazard
rate for each counter should be computed individually an

i - as . M f (111)

The distribution of hazard rates can be expressed through a
"hazard rate profile." The range of fault hazard rate values is
partitioned into n subranges, which will be termed classes.
Adams (1984) researched a similar situation and devised a
classification scheme. Adapted here to the purposes of fault
hazard rate classification, the first step is to find the highest
fault hazard rate, 0hlh, and the lowest fault hazard rate, *.
Starting from Oh, h the class boundaries are formed $ 6y
successively multipplying 0 hIgh by 10"uO.31623:

O.; (0ipU0 -A

Denote the proportion of fault hazard r&tes falling into the
classes as

P1 O P2, ., Pn (113)

with
n

P, (114)

Let the mean hazard rate value in each class j be denoted m
Class j as a whole contributes w0piml to the over&ll program
failure rate, which will be

-o.••.pm (115)

If a similar program is predicted to have a fault content of wo,

and it is presumed that the hazard rate profile is the
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same, then the program failure rate is
n

x/ A) a ~pm (116)

4.2.3 Fault Reduction Factor

Another quantity that appears in the Basic Execution Time Model
is the fault reduction factor, B. The fault reduction factor is
the net number of faults removed per failure occurrence. B is
not generally equal to unity because of imperfect debugging.
Repair activity can fail to find the causative fault, can find
and remove several related faults, or can inadvertently generate
new faults. The fault reduction factor can be computed [Musa
(1984)3 from

BaD(U+A)(1-G) (117)

where D is the "detectability ratio"--the proportion of faults
whose causative failures can be found. The quantity A is the
"associability ratio"--the ratio of faults discovered by code
reading to faults discovered by testing. G is the "fault growth
ratio"--the increase in faults per fault corrected. Generally, D
is close to 1, A is close to 0, and G ranges from 0 to 0.91
S[Mliy&aoto (1975), Musa (1980)].

If data from growth testing on a similar project is available,
then B can be obtained from the relationship

B - (116)if'

where A is a parameter of the Basic Execution Time Model (see
Section 5).

Another option, when no information is available, is to use the
industry average figure 0.955 [Musa et al. (1987)].

4.2.4 Summary of Prediction Technique

a. With no prior information, use
6 faults

1000 source instructions

Predict the number of developed source instructions AI, (omitting
reused code). Then compute the inherent fault density as

WO aO'AIs (120)
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Use 0.955 for B, or obtain it from historical data, and obtain
the total failures as

= C= 0  (121)

Using the appropriate code expansion ratio, compute the number of
object instructions I. From manufacturer's specifications or
benchmarking, find out the average instruction execution rate r.
Obtain the linear execution frequency as

f -(122)I

Use 4.20 x 10.7 as the value for K, or obtain K from historical
information on a similar project. Predict the initial program
failure rate as

X0 fKciO (123)

and the time-dependent failure rate as

!11

I W) - 10 exp[_ ;.0, (124)

where 7 is cumulative execution time since the start of system
test.

b. As product/process metrics come in during requirements
analysis, preliminary design, detailed design, and coding and
unit test, use the regression model to obtain a better prediction
of 10 0

c. Once system test begins, use actual failure data to estimate
the software reliability model parameters, as described in
Section 5.
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5. RELIABILITY GROWTH TESTING

Reliability growth is the positive improvement in reliability
over time. For hardware, reliability growth occurs over a period
of time due to improvements in the product design or
manufacturing process. For software, reliability growth occurs
through systematic testing and debugging resulting in effective
removal of software faults.

Growth management is part of the system engineering proceas, and
complements bther basic reliability program activities such am
prediction, allocation, and demonstration testing. Growth
management consists of planning the achievement of reliability as
a function of time and other resources.

The rate of software reliability growth depends on how fast the
test-debug-test loop can be accomplished. The rate is
constrained by the failure rate of the software, the amount of
computer time available, and the availability of failure
identification personnel (testers) and failure resolution
personnel (debuggers). The rate is controlled by reallocation of
resources and other forms of intervention, based on comparisons
between planned and assessed reliability values.

In fulfillment of SOW Task 4, a standard methodology for
reliability growth testing, measurement, and management was
developed. The techniques are built around a time domain
software reliability model. Methods were developed for selecting
random test cases from an operational profile that emulates field
use, and established procedures for data collection, parameter
estimation, determination of the calendar time/execution time
ratio, assessment of model goodness-of-fit, recalibration, and
use of multiple copies.

5.1 Approach

First, criteria were identified for selecting an appropriate time
domain software reliability model around which to build the
growth, testing methodology (SOW para. 4.1.4.1). An important
consideration was that the model had to be compatible with
existing hardware reliability standards, concepts, and
procedures. The model should be mathematically tractable, so
that the formulas can be easily invertible to find out various
quantities of interest (such as forecasting when a future
reliability objective will be met). The parameters of the model
needed to have simple interpretations that are meaningful to
software engineers.

Another important consideration is the predictive validity of the
model. Ideally, the model should be one that has been validated
on a broad selection of software development projects. Because
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no software reliability model has been completely validated on
all types of applications across different organizations, it was
decided that the growth testing methodology should include a
goodness-of-fit technique and a recalibration technique. A
goodness-of-fit technique would allow a user to gauge how well
the software reliability model is working on a given program. If
the fit is poor, the user can switch to an alternative model or
parameter estimation technique. In many cases, the reason for
poor fit will turn out to be a systematic bias (consistent
optimism or pessimism) or noisiness in the estimations. These
problems can be corrected by recalibration. The study team
sought to develop a new type of recalibration technique that is
numerical, as opposed to the existing graphical techniques. A
numerical technique is more accurate and has the advantage of
being easily implemented on a programmable calculator or
computer.

The team paid special attention to the procedures for conducting
growth testing. The prevailing objective of testing in recent
years has been to aggressively seek faults by testing at high
workload and at boundary values of the input variables. This
type of testing should be completed prior to growth testing.
During growth testing, the input states must be chosen
"statistically," which is to say that the input states must be
randomly selected from a stationary operational profile
(probabilities of input states). The operational protile during
growth testing should be close to the operational profile the
program will experience during field use. Statistical testing is
effective in contributing to improved reliability, because it
finds the faults that the user will tend to encounter most. On
the other hand, stress testing or coverage testing might find
many faults, but because the user will rarely encounter those
faults, their removal may not significantly improve the failure
rate.

5.2 Results

The team chose a variation of the Basic Execution Time Model
[Musa at . (1987)) as the time domain softwara reliability
model on which to base the growth testing methodology. This
model has a wide following among software practitioners in large
corporations. Much practical knowledge and many auxiliary
techniques have come out of the model's real-world experience,
which enable the model to be adapted to a wide variety of
software development technologies and project situations.

The Basic Execution Time Model has simple parameters that are
easy for software 6ngineers and project managers to understand
and to which they can relate. The model is fully compatible with
existing hardware reliability assessment methods and is
mathematically tractable. The data needed to estimate the model
parameters is minimal and relatively easy to collect. Another
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reason for choosing the Basic Execution Time model is that it
represents a synthesis of many of the advances that have taken
place in almost 20 years of research in the field of software
reliability modeling.

5.2.1 Major Time Domain Software Reliability Modelg

Jelinski and Moranda (1972) developed the first reliability
growth model created specifically for software. The model
assumes that the failure rate is linearly proportional to the
number of faults in the software. When a failure occurs it is
assumes that the fault that caused it is removed instantaneously,
without spawning any new faults. The failure rate remains
piecewise constant between failures, and drops by a constant
amount at each failure. The interfailure times are independent
exponentially distributed random variables. Around the same
time, Shooman (1973) presented a similar model but introduced
additional concepts: The failure rate is not only a function of
the number of faults in the program, it is also a function of the
instruction processing rate, the program size, and the program
structure. Fault correction occurs at a different time than
failure occurrence and is affected by the nature of the project
and the number of available personnel.

Musa (1975) developed a model that built on the Jelinski-Moranda
and Shooman models and included several new concepts. Execution
(CPU) time, not calendar time, is the failure-inducing stress
placed on a program. During field operation the failure rate
remains constant; only during periods of fault correction
activity does the failur. rate change. Musa accounts for the
dissimilarity between the testing and operational environments by
means of a testing compression factor.

Geel and Okumoto (1979) presented a model based on a
nonhomogeneous Poisson process (NHPP). This model assumed that
the number of faults in the program at the start of testing is
not fixed but is a Poisson random variable. In earlier models
each interfailure period is governed by a distinct (homogeneous)
Poisson process, whereas now the entire system test phase is
governed by a single nonhomogeneous Poisson process. At the
expense of conformance to an intuitive desire for a piecewise
continuous failure rata, Coel and Okumoto achieve the analytical
simplicity of a smooth failure rate curve. New concepts included
the idea thai: repair of the underlying fault occurs at some
variable time after failure occurrence. Other concepts included
were that a program can be "perfect" and have no faults and that
the effectiveness of repair actions is imperfect.

The concept of imperfect debugging is an important one. Evidence
strongly suggests that most faults originate in the requirements
and design phases [Lipow (1979)]. A fault caused by a
requirements misunderstanding or design deficiency may require
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extensive reworking of the program, and this reiteration of the
original development process will likely spawn new faults.

Musa and Okumoto created a model called the Basic Execution Time
Model [Musa etl. (1987)] that embodies a11 of the foregoing
concepts.

One concept championed by Littlewood (1978) was that different
faults in the program make different contributions to the overall
failure rate. The most frequently encountered faults (those that
contribute most to the overall program failure rate) are detected
and corrected first. Because some programs are subjected to a
highly nonuniform operation profile, Musa and Okumoto developed a
model, called the Logarithmic Poisson Model, that considers the
hazard rates of the faults in the program to form a geometric
progression, an idea similar to Littlewood's. The Logarithmic
Poisson Model should be tried if the goodness-of-fit procedure is
showing a poor fit with the Basic Execution Time Model.

The Basic Execution Time Model (as well as the Logarithmic
Poisson Model) is a nonhomogeneous Poisson process (NHPP) model.
The NHPP framework is tho most commonly used for modeling
reliability growth. An NHPP conforms to four axioms. The
failure counting process (N(T),0ro), which gives the cumulative
number of failures in the execution time interval [p,r], is an
NHPP with intensity function (time-dependent failure rate) X(r),
if

4.

(i) N(O) - 0;

(ii) (N(7),-kO) has independent increments;

(iii) Pr(N(r+A•)-N(7)k2) - o(Ar);

(iv) Pr (N(r+&r)-N(r)-l) - X(r)AT+o(A?)

where the function o(Ar) is defined by

lim o(Af . 0 (125)A'1-0 Y

The mean value function of the NHPP is the expected number of
failures occurring in the execution time interval (0,!] and is
defined by

IL (.0 *fl(.)ds (126)
CI
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Yamada and Osaki (1983) surveyed the NHPP applied to growth
modeling. One of the most prominent models is the power law
model or the Duane model. It was developed empirically by Duane
(1964) and is often called the Duane model. Duane based his
model on the observation that the plot of cumulative failure rate
versus cumulative test time closely follows a straight line on
log-log paper. Crow (1974) represented his postulate
stochastically as an NHPP with a Weibull failure rate curve and a
mean value function of

IL ( - te(1.27)

where 4 is a growth rate parameter, generally between 0.1 and
0.65. This model is also known as the AMSAA model.

Since the Basic Execution Time Model, which has been selected is
also an NHPP model, the failure rate projections of the AMSAA and
Basic Execution Time models can be combined to project the system
reliability of concurrent-sequential hardware/software systems.

5.2.2 Selected Software Growth Model

5.2.2.1 Failure Component

A software failure is a departure in program output (hardcopies,
displays, commands, control, etc.) from that specified by the
requirements. The "departure" from requirements consists of an
output variable that differs from its correct value. Each
incorrect output variable is counted as a software failure in its
own right if it arose from a separate fault. This definition of
software failure differs slightly from that used in demonstration
testing, where the simultaneous appearance of several incorrect
output variables would count as a single failure. In growth
testing, if several output variables have incorrect values and
the discrepancies were caused by multiple faults, then fault
correction activity will address all those faults and the failure
rate will improve by several decrements, just as if the
discrepancies had occurred over the course of several runs.

As a program is debugged, the amount of execution time that
elapses between failures tends to increase. In the Basic
Execution Time Model, it is postulated that each failure results
in fault correction activity that causes the failure rate to drop
by a fixed amount. When the program is released, the code is
frozen and, as long as the operational profile is stationary, the
software will exhibit a constant failure rate (see Appendix B).

Let v0 be the (expected) total failures. This is the number of
failures that need to occur to expose and remove all faults.
This parameter can he predicted (see Section 4) or can be
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estimated from observed failure data. Exposing and removing all
faults can conceivably take an infinite amount of time. Let 10
be the initial failure rate, at the start of system test (t=O).
This parameter can also be predicted (see Section 4) or can be
estimated from observed failure data. Any stress testing should
take place prior to r-O. If g is the mean cumulative number of
failures experienced at some point after the start of system
test, the failure rate as a function of A is

*(A) %. •(1- -P-) (,28)

Thus the failure rate X(p) is a linear function of mean failures
experienced A. Note that the failure rLte A(A) is a smooth
function. In early software reliability models, the failure rate
drops discontinuously at each failurei in the Basic Execution
Model the failure rate glides smoothly down to reflect the
uncertainty in the times that the faults are actually removed.
The slope of failure rate is

dX X0 (129)

The decrement of failure rate per failure as pI1%/V 0 .

Another way to express the tailure rate is as the product of
and the number of failures remaining:

X( *) - O(vO-p) (130)

or, since the mean failures experienced is a function of
execution time T:

X(*) - P[VO-i.(] (131)

The function .(r) is called the mean value function. The time
derivative of the mean value function is the time-dependent
failure rate X(r). Thus one can form the differential equation
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d (-c) -F PVo (132)
dT

the solution to which is

S- v0  (I-exp t -P ) (133 )

Differentiating, one obtains the failure rate

X(T) a voPexp[-fr (134)

The initial failure rate is found by setting r-0:

10 " Vo (135)

The model is thus completely determined by two parameters: 0 and
the total failures v0.

5.2.2.2 Fault Component

A software fault is an extra, missing, or defective instruction
or set of instructions that has caused, or can potentially cause,
a software failure. When a fault is encountered during
execution, a software failure may or may not ensue, depending on
the machine state (values of program variables). The growth that
is being modeled is in the reliability (decrease in failure
rate). The number and location of faults affects the reliability
only indirectly.

The model contains additional elements to describe the role of
software faults. The number of failures experienced and the
number of faults removed are related by a quantity called the
fault reduction factor, denoted B. The fault reduction factor is
the net number of faults removed per failure. B accounts for
imperfect debugging. Ordinarily, the causative fault behind a
failure is found and removed. But sometimes the causative fault
will not be found, resulting in zero faults removed. Other
times, the failure will result in the discovery--by code reading-
-and removal of several related faults. Sometimes fault
correction activity will introduce additional faults into the
program. The average number of faults removed per failure is B.
Since the occurrence of one failure results in the failure rate
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declining by the quantity 3, the amount that each fault
contributes to the overall program failure rate must be

S. 13 (2.36 )B

which will be termed the per-fault hazard rate. It is called a
hazard rate (force of mortality [FOM]) because a fault has a
lifetime. When the fault is removed it is gone for good. The
overall program has a failure rate (rate of occurrence of
failures [ROCOF]) because it is "repairable" via restart.

Let the number of inherent faults be denoted WV This is the
number of faults present at the start of system test and does not
include any faults introduced later as the inadvertent result of
repair activity. The initial failure rate can then be expressed
as the product of the per-fault hazard rate and the number of
inherent faults.

(17)

The per-fault hazard rate 0 can be further broken apart into

(138)

The quantity K is called the fault exposure ratio and is
discussed below. The quantity f is the linear execution
frequency of the program, i.e., how many times the program would
be executed per unit time if its instructions were executed in a
linear sequence. The linear execution frequency can be
calculated by dividing the average instruction execution rate r
by the number of machine-level instructions I:

f - (139)I

The average instruction execution rate is the number of
instructions executed per unit time. It is frequently expressed
in terms of MIPS (millions of instructions per second). The
"MIPS rating" of a computer is often available from the vendor
and can be refined by customer benchmarking to reflect the
instruction mix of the customer's own applications. To get the
number of machine-level instructions, it is easiest to multiply
the number of source-level instructions I by an average
expansion ratio for the programming language, such as tabulated
by Jones (1986).
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In general, programs are not executed linearly. They contain
looping constructs and unconditional and conditional branches, so
the number of times an individual fault is encountered per unit
time can be greater or less than the linear execution frequency
f. Every time a fault is encountered a failure will not
necessarily happen; a failure might only occur during certain
machine states. The fault exposure ratio K is meant to account
for both the structure of the program (loops and branches) and
the varying machine state. The value of K can be determined from
historical data. On the same project or one that is stmilar,
failure data is collected and used to statistically estimate the
value of p. Then K is obtained as

A'= A (140)
Bf

When no information is available, the industry average value of
K-4.20x10"7 (Musa et gl. (1987)] is racommended. The section in
this report on Prediction discusses the quantities K, S, and M in
detail. K is broken down into two independent factors:

K = SH M (141)

where S accounts for structure and M accounts for machine state.

5.2.2.3 ~Estimat~ion

Growth testing takes place during system test, once the software
has been fully integrated and stress testing has been completed.
Upon the occurrence of each software failure, the failure
identification personnel (testers) must record the cumulative
execution time from the start of growth testing. Musa et al.
(1987) furnish auxiliary techniques for evolving software
(integrated in successive builds) and for situations in which
grouped failure data or calendar time failure data is the only
data available. Failure data is said to be grouped when the only
information available is the number of failures that occurred in
disjoint time intervals.

The Basic Execution Time Model provides general forms for the
time-dependent failure rate and the mean value function. As
derived earlier, the formulas are
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( exp(- Pc (142)
V0

and

P (,I) - VO (1-exp [-Pr] )(143)

The unknown parameters are 0 and v.. (It is also possible to
parameterize the model in terms of other quantities.) Let the
observed failure times be denoted

TIO T21 ... 1* n (144)

where n is the number of observed failures. Let T 2, be the
time at which the test ends. In statistical qualityn control
terminology, this type of test is called a "time-truncated test."
All times are measured in cumulative execution time from the
3tart of system test.

A number of statistical estimation methods can be employed to
estimate the values of P and v, from the failure times. one of
the best general methods for statistical estimation--and by far
the most popular--is the method of maximum likelihood. The
maximum likelihood estimators are the values of P and v0 that
maximize the probability of the observed outcome r 721, *"'',Tn.
Maximum likelihood estimators exhibit many favorable large-sample
properties. They are consistent (variance tends to zero and
expectation tends to the true population parameter as the number
of observations increases), efficient (lowest variance), and
asymptotically normal (so that confidence intervals can be easily
established). Another property of maximum likelihood estimators
is invariance, which means that the maximum likelihood estimator
of a function of an estimator can often be obtained by
substitution. As an example, if the maximum likelihood estimator
of w is 0, the maximum likelihood estimator of w3 is 3.

Musa etl. (1987) derive the maximum likelihood estimation
equation for p as

n -v i~~- 0 (145)0 exp[P - - .• "o
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The estimate for A is obtained by solving the equation for P. The

maximum likelihood estimator for v.0 is

n

V0 = 1-exp [-PT.] (146)

In that equation there is nothing to solve; the estimate for P
(already obtained) is simply inserted into the equation to obtain

V0•

The two equations above provide point estimates--single values--
for the parameters. It is often more informative to provide an
interval estimation. Interval estimation provides a range of
values within which the trus value is asserted to lie. The
probability that a correct interval estimate is obtained is the
confidence coefficient 1-a. The interval is bounded by lower and
upper confidence limits. A confidence interval that has an
associated confidence interval of 1-a is called a 100(l-a)%
confidence interval. The lower and upper 100(1-a)% confidence
limits for A are denoted P and Ph respectively. The "Fisher
information" [Fisher (1921T] is a measure of the amount of
information supplied by an unknown parameter. It is the
reciprocal of the variance of the estimator.

The Fisher information for A's estimator is

( I (exp(CO.J"x[ 2] (147)02 (ep O a - 1)i

Then the lower and upper confidence limits are obtained as

plow M 0 - (1-,)/2 0.48)

and

hgh + + (.,)/2 (149)
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where K..--- is the corresponding normal deviate. The normal
deviate s5 found as follows: The cumulative distribution
function for the standard normal distribution is

F(x) - exp [_ t2- dt (2.50)

where r-3.14159... and -w<x<o*. The standard normal deviate

K%0-,0/ 2 is that value of x for which

F(x) - (1-a/2) (.52.)

Tables of F(x) can be found in most statistics textbooks. Table
5-1 provides some common values for KI1.,)/2:

Table 5-1. Standard Normal Deviates

0.2 1.282

0.1 1.645

0.05 1.960

0.02 2.326

0.01 2.576

0.002 3.090

On a programmable calculator or computer, the value of F(x) can
be computed to tle four significant figures usually found in
tables, using the approximation formula

F(x) _ l-W(x) (au,+aýu2 +a 3 zU) (252)

where

W~x) I exp [- X2 (2.53)

and
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u 1 (154)
1 +aoX

The constants a0 , a,, a 2 , and a3 are provided in Table 5-2.

Table 5-2. Normal Approximation Constants

Constant Value

an 0.33267

aj 0.4361836

a,, -0.1201676

a_ 0.9372980

Because of the invariance property of maximum likelihood
estimators, the corresponding confidence intervals for v0 can be
established by successively substituting Ptw and ihigh into the
estimation equation for v0 :

(I 0) -exp n- o,]

(Vo)high - n[_ (156)

5.2.2.4 Goodness of Fit

It was concluded that Littlewood's (1979a) prequential likelihood
statistic and u-plot are helpful during growth modeling to
determine the model's "goodness of fit." When the tester uses
the Basic Execution Time Model or some other time domain software
reliability model, it is not enough to blindly apply the model.
The tester should monitor how well the model is fitting the
failure data. If the model is not fitting well, then the user
should switch tu an alternative model, such as the Logarithmic
Poisson Model.

A u-plot is constructed according to the follovzing scheme. During
growth testing, the user employs a statistical inference
procedure, such as maximum likelihood, to estimate the parameters
of the Basic Execution Time Model.
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The estimated cumulative distribution function (Cdf) is

P,('0 = 1 - exp[-X (-C.)1 (1s7)

where r* is the cumulative execution time, 1(Tm) is the failure
rate at that time, and r' is execution time measured from the
present. When the interfailure time 7'1 is later observed, the
probability integral transform

U1 1(r) (IS$)

is recorded. Each failure results in another u,. The
probability integral transform implies that the us's should look
like a random sample from a uniform distribution over the
interval (0,1), if the sequence of predictions was good. The
accuracy of the model with respect to the particular program can
be gauged by drawing a u-plot. In a u-plot the sample cumulative
distribution function of the u1 's is compared with the cumulative
distribution function of the uniform distribution over (0,1),
visually or through use of numerical goodness-of-fit measures
such as the Kolmogorov distance. The specific points plotted to
form the cumulative distribution function are

(uiji, I/ (.r*))

(u( 2)12/(z+2)) (159)

(u(),r, /(r+l) )

where U(0), u(2,D ... , ,,(rl) are the ui's rearranged in ascending
order.

5.2.2.5 Recalibration

Brocklehurset al. (1990) show how the u-plot can be employed to
perform a kind of "adaptive modeling." The u-plot shows how well
the model is fitting the failure data. The information in the u-
plot can be used as a feedback mechanism to modify and improve
the model, to "recalibrate" it. The recalibrated model corrects
for systematic bias or noisiness that the model is experiencing
when being used on a particular program. The recalibration takes
place by applying a function G () to the estimated Cdf. The
Brocklehurst paper only describes G'(') graphically. The study
team has developed a recalibration formula based on the same
principles as the graphical technique.
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The function G*(' ) is expressed as

G! [Pi (t)] 0 fit+J uW -+ u ))u U(1)U(10

I (rt l) (U(j÷ 1) ÷U(j)) ,uu(J)

where uP is the j-th value when the Ut's are put in ascending
order o magnitude, and r is the number of u ' sa, with u(0as nand
U("1)01.

To perform the recalibration the user applies the transformation

The accuracy of recalibrated models has been shown [Brocklehurat
et al. (1990)] to be generally better than that of the original
model.
The study team has developed a computer program to automatically
create a u-plot and perform recalibration of the model.

5.2.2.6 ODerational Profile

During growth testing, the environment in which the program
executes must be controlled. The environment includes the
hardware platform, the system generation parameters, and the
workload. An important part of a program's execution environment
is the operational profile.

An input state is a net of input variable values for a particular
run. Each input variable has a declared data type--a range and
ordering of permissible values. The set of all possible input
states for a program is the input space. Each input state is a
point in the input space. An operational profile is a function
p(') that associates a probability p(i) with eacl point i in an
input space I. Since the points in the input sp~ce are mutually
exclusive and exhaustive, all the probabilities must add up to
one:

6p(i) - 1 (162)

To illustrate these definitions, consider a program with three
input variables. They are each of data type Boolean, meaning
that they have two possible values: TRUE and FALSE. The input
space has eight points: (FALSE,FALSE,FALSE), (FALSE,FALSE,TRUE),
(FALSE,TRUE,FALSE), (FALSE,TRUE,TRUE), (TRUEFALSEFALSE),
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(TRUE,FALSE,TRUE), (TRUE,TRUE,FALSE), (TRUETRUE,TRUE). Letting
T stand for TRUE and F for FALSE, an operational profile for the
program might look like:

p (FFF) = 0.1

p(FFT) = 0.2

p (FTF) a 0.1

p(FTT) - 0.3 (13)
P(TFF) . 0.025
p ( TFT) m 0.02

p(TPT) - 0.025

p(T7T) - 0.05

The distribution of input states is thus established by the
operational profile.

The concept of operational profile formalizes what is meant by a
consistent input environment.

During growth (and demonstration) testing must be kept
stationary: The p(i)'s must not change. The input states chosen
for test cases must form a random sample from the input state in
accordance with the distribution of input states that the
operational profile specifies.

The concept of a stationary operational profile is a crucial
assumption in building software reliability models such as the
constant failure rate model for frozen code (see Appendix B) and
the Coincident Failures model for multiversion software (see
section on Reliability h1location).

It is generally not practical to fully express or specify an
operational profile, because the number of input states for even
a simple program can be enormous. As an example, if a program
has three input variables, each of which is a 32-bit integer, the
number of distinct input states is

232 . 232 • 232 - 24 x 7. 9X10 2 1 (164)

At best, the customer will express or specify software usage in
terms of end-user-oriented functions. For example, the customer
might state that the usage of the software is 40% user function
A, 45% user function B, and 15% user function C. To convert that
statement into an operational profile, let u be the input

96

SI OI II i•



variable corresponding to user function selection. Thus, u can
take on the values A, B, or C. The input space can be
partitioned into three classes defined as follows:

CLASSA = {iGIIiu=A}

CLASS8 - {iEIIi,.B} (165)

CLASSO - (iEIjIIC}

where iu is the value of the input variable u in input state i.
The probability of each individual input state in class A is

p(i) u .40 x 1 (166)j CLASS A

For class B it is

p(I) .45 1 (167)

and for class C it is

p(i) .15 . x (168)

where the vertical lines mean "number of elements."

Once the operational profile is established, a procedure for
selecting a random sample of input states is required, so that
test cases can be generated for growth testing and demonstration
testing. The following procedure for selecting the input states
is recommended.

5.2.2.7 RJdom Input-State Selection

The strategy employed is to associate each input state i with a
subinterval of the real interval [0,1] whose size is equal to the
input state's probability of selection p(i). As an example,
suppose that there are only three possible input states and the
operational profile says that state #1 occurs 28% of the time,
state #2 occurs 11% of the time, and state #3 occurs 61% of the
time. State #1 should be associated with the real interval
[0,0.281; state #2 should bo associated with the real interval
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[0.28,0.39]; and state #3 should be associated with the real
interval (0.39,1.0].

The next step is, for each test case needed, to generate a random
number in the interval [0,1). In the example, if that random
number falls in the interval [0,0.28], input state #1 is
selected; if it falls in the interval [0.28,0.39), input state #2
is selected; and, if it falls in the interval [0.39,1], input
state #3 is selected.

To generalize and formalize this procedure, suppose that the
input space contains k input states. Further suppose that the
probabilities associated with the input states are

P, P. , A .. , Pk (169)

Let

START• 0 (170)

and

STARTj . .p , J.2,3,,.,#k (171)

and let

ZNDJ n START>÷• ,Jul,k- 1 (172)

and

ENDk w . (173)

Each input state is now associated with a subinterval
(STARTm,ENDj] of the interval [0,1]. The length of the
subinterval is equal to the input state's probability of
selection.

Now a random number uniformly distributed in the interval (0,1)
is generated. The random number will fall into exactly one of
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the intervals [START,,END1 ]. The input state so selected is
input state J.

The cardinal rule for increasing the efficiency of growth and
demonstration testing is not to repeat the same test case more
than once. ("Regression testing" after a program change is
another matter.) This rule per se is not that helpful because
the large number of input states that most programs have means
that the repetition of a randomly selected test case is a rare
event. However, the nonrepetition rule combined with the
technique of equivalence partitioning can indeed increase testing
efficiency. Equivalence partitioning was first described by
Myers (1979).

Imagine a "test oracle" e(i) that evaluates to 1 if a run
starting from input state i will result in software failure
(crash, hang, or erroneous output) and evaluates to 0 if the run
will result in success. Consider a set W of input states defined
as follows:

W . (IEI1[Vi e(i)uO]V[Vl e(i) .l]} (174)

That is, W is a subset of the input space such that all input
states in the subset fail alike: If any input state would cause
the program to fail, then so would any other input state in the
subset. If the program starting from' any input state in the
subset would succeed, then the program would also succeed
starting from any other input state in the subset. Such a subset
is cailed an equivalence class, of which there may be many.

Testing personnel can detnrmine equivalence classes from an
understanding of the progiam structure and logic. Once an
equivalence class is identified, only one representative input
state from the class needs to be tested; if a run starting from
the representative input state results in success, then it can be
concluded that runs starting from all members of the class would
result in success. If a run starting from the representative
input state results in failure, then it can be concluded that
runs starting from all members of the cliss would fail.

The input states that are members of an equivalence c.iass are
removed from the operational profile and replaced by their one
representative input state. The probability associated with the
representative input state is assigned the sum of the
probabilities of the members of the equivalence class.

Since the probability of selection of the representative of an
equivalence class is a sum, it can be relatively larqe compared
to individual input states, and consequently the representative
will likely be selected more than once during testing. The
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second and subsequent times the representative is selected, the
test dces not have to be re-run, only the results from the
original run recounted.

5.2.2.8 Software Reliability GrowthManaape&

The demonstrated reliability is an assessment of the current
reliability of the software. It is obtained by recording the
cumulative execution times at which failures have occurred so far
during system test. The operational profile from which the
random test cases were selected has to have been stationary
during the testing and representative of the program's field use.
The statistical estimation technique presented previously is
employed to obtain estimates of the Basic Execution Time Model's
0 and v, parameters. Then a number of derived quantities (Musa
(1987)] can be obtained to support reliability growth management.
The demonstrated reliability is then given by

R(t) - exp[(175)

where t. is the point in cumulative execution time at which the
assessment is made. The projected reliability for Ar, execution
time units from now is

R(?) - exP.(-X.(?*4A,&,)T) (176)

The additional execution time required to reach a failure rate
objective 1, can be computed from

ATO ln (177)

The additional number of expected failures to reach the objective

is given by

A k [ -v - (178)

During system test, project management should expect that certain
levels of reliability will be attained at certain milestones, to
assure that reliability growth is progressing at a sufficient
rate to meet the ultimate reliability requirement.
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Since the time-dependent failure rate is

-1 -exp4-z] (179)

the reliability growth curve can be plotted as a straight line on
semi-log paper as

IA - in-' - Pr (180)
V0

The next section discusses how to relate execution time to
calendar time.

5.2.2.9 Clendar Time Modelina

Larly software reliability models used calendar time (or did not
specify what type of time was being measured). Musa introduced
the idea of execution time as the failure-inducing stress on a
program. Software can only fail when it is executing. This
simple primal idea resulted in increased accuracy in software
reliability modeling [Trachtenberg (1985), Musa and Okumoto
(1984), Hecht (1981)]. Concentrating on execution time, though,
left a void. Project management and even software engineers
usually think in terms of calendar time. Project deadlines and
milestones are all expressed in terms of calendar time. Project
personnel are paid for calendar time. To fill this void, Musa
added a "calendar time component" to his Basic Execution Time
Model. The calendar time component provides the ratio between
calendar time and execution time. The model takes into account
the constraints involved in applying personnel and computer
resources to the software development project during system test..

The available quantities of failure identification (testing)
personnel, failure resolution (debugging) personnel, and computer
time are considered to be constant during system test becau,'e of
the long lead times usually required for training and
procurement.

At any point in time during system test, one of the three
resources will be limiting and will determine the execution
time/calendar time ratio. Typically, system tert consists of
three consecutive resource-limited segments: (1) a failure
resolution personnel limited segment, (2) a failure
identification personnel segment, and (3) a computer limited
segment [Musa el.. (1987)].
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Segment #1 is limited by the number of failure resolution
personnel, because they cannot keep up with the large number of
failures that occur in a short period of time when I(r) is high.
In segment #2, the failure identification personnel become the
bottleneck as they become fully occupied in testing and analysis
of the results. In segment #3, the interfailure times grow
longer and longer and the bottleneck is the availability of
computer time.

Various quantities in the model have an index subscript r
appended to identify the resource referenced:

r-F: failure identification personnel (people who find the
causative faults behind the software failures)

r-I: failure identification personnel (people who run test
cases and watch for failures)

r-C: computer time

The usage Zr of resource r is a function of cumulative execution
time 7 and the expected number of failures experienced A(r):

Each resource r has an execution time coefficient er:

eeu average failure identification work expended per unit
execution time (-0)

. average failure identification work expended per unit
execution time

O.: average chargeable computer time expended per hour of
test execution time

Each resource k has a failure coefficient Ar:

A,: average fdilure resolution work required per failure
A,: average failure identification work required per

failure
Ac: average chargeable computer time required per failure

Work is typically measured in person-hours and computer time in
hours. Hours would ordinarily be divided into eight hours
segments to allow conversion to standard shifts and workdays.
The change in resource usage per unit of execution time is given
by differentiating Xr with respect to execution time:
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Q - + (182)

The calendar time/execution time ratio in each resource-limited
segment is given by the maximum rate among the three resources in
that segment:

dt -max d [M+ r= 1[o1J} (1W2)

where P. is the amount of resource r available:

PF: number of available failure resolution personnel
PI: number of available failure identification personnel
Pc: avqilable computer time (number of prescribed work

periods, e.g., 40-hour weeks)

and p. is the resource utilization factor:

pr: failure resolution personnel utilization factor
p1 M 1

.Pc: computer utilization factor

The boundaries of the resource-limited segments, in terms of
failure rate values, are given by the following formula. It
provides potential transition points, which must be individually
checked for plausibility.

s M PZPrP8_PSPffP s , XOs (184)

If r, and r, are two points of cumulative execution time with a
resource-limited segment limited by resource r, the increment of
calendar time between the two points is given by

A 1 r I( ) 1 1

If the interval [7 1 , 2 ] spans more than one segment, the

increment of calendar time should be calculated separately for
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each subinterval that lies in a different segment and the results
added together.

For growth management, project management can influence the
resource quantities P,, PF- and P. to stimulate software growth.
Because of long lead times for training and procurement, the
resource quantities are usually constant during system test,
except perhaps for personnel overtime. Overtime is only
effective for a limiting resource.
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6. RELIABILITY DEMONSTRATION

In fulfillment of SOW Task 5, techniques for formally
demonstrating the achievement of specified reliability
requirements for software products and combined hardware/
software systems were developed.

6.1 h22roach

A reliability demonstration test is an experiment conducted to
determine whether an item has achieved a specified level of
reliability. One problem with such a test is that the results
are subject to chance variation. Occasionally the test results
will turn out especially "lucky," allowing a bad item to be
accepted, or especially "unlucky," allowing a good item to be
rejected. By designing the test using sound statistical
principles, the risks of accepting a bad item or rejecting a good
item can be quantified and contained.

To design reliability demonstration tests, it is necessary to
determine an appropriate time domain reliability model for
software products and combined hardware/software systems. In
particular, the applicability of the exponential (constant
failure rate) model was investigated (SOW para. 4.1.5.2).

Three types of MIL-STD-781-like reliability demonstration tests
were developed: fixed-length test, minimum failure-free execution
period test, and sequential test. Since software reliability
demonstration tests sometimes have to be performed concurrently
with growth testing, how to adapt those same tests for periods
during which the software is subject to repair activity is
discussed.

Statistical random testing procedures for use during software
reliability demonstration testing are the same an those described
in the section of this report on Reliability Growth Testing
(Section 4). The test cases must be selected randomly in
accordance with a stationary operational profile that represents
anticipated field usage. (SOW para. 4.1.5.3) An operational
profile is the probability distribution of the various possible
input states. When a combined hardware/software system is
tested, the environmental specification is generally derived from
the specified mission profile. The operating conditions will
normally include thermal stress, electrical stress, vibration,
and humidity. MIL-HDBK-781 addresses test sample size and burr-
in requirements for hardware.
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6.2 Results

6.2.1 Test Procedures

The test environment must be stipulated or agreed on. The
environment for software includes the hardware platform, the
operating system, system generation parameter settings, and the
operational profile. The operational profile associates each
point in the input space with a probability of occurrence. The
system workload must also be specified. The important thing
about the environment is that it must be representative of the
conditions the software will experience in field use, if the test
is to have any validity.

Let the true failure rate of the software be denoted 1. A
demonstration test plan has two failure rate parameters:

The "upper test failure rate" X0 is typically the failure rate
the customer "wants" or requires. If the producer produces a
product that just barely meets the failure rate %,, then the
producer is taking a big risk that chance variation will result
in the demonstration test failing. To reduce that risk the
producer must produce a product with a lower failure rate, A,,
called the "lower test failure rate." It should be mentioned
that MIL-STD-781 uses mean time between failures (MTBF)--the
reciprocal of failure rate--and so the upper and lower points are
reversed. MTBF is a problematical concept in software
reliability because if there is a nonzero probability, however
slight, of a particular program having zero faults, the program's
MTBF will be infinite [Littlewood (1975)]. Consequently, in
this section, only failure rates are used.

The producer's risk a is the probability of rejecting a software
product or hardware/software system whose true failure rate is
equal to 10. The consumer's risk 0 is the probability of
accepting software whose true failure rate is equal to 11. (SOW
para. 4.1.5.3).

A statistical test that answers a yes/no question is called a
"test of hypothesis." Specifically, a reliability demonstration
test tests the sim'ple null hypothesis

Ho: I - 10 (186)

(accept the item) against the alternative hypothesis

HI: I - 11 (187)

(reject the item). In terms of these hypotheses,
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a - Pr (H1 acceptedlH0 true) (188)

and

= - Pr {H, accepted IH. true) (189)

To develop demonstration tests, it is necessary to choose
appropriate time domain reliability models for software products
and combined hardware/software systems.

During a software reliability demonstration test, the code is
frozen, that is, it is not modified to remove faults or for any
other reason. The reason is that any modification can introduce
new faults. Frozen code, subjected to a stationary operational
profile, can reasonably be modeled as having a constant failure
rate. (See Appendix B). Multiple discrepancies appearing at the
same time need to be counted as a single failure, because the
random variable of interest is time to first failure.

For a combined hardware/software system, the model is also a
constant failure rate, based on the following reasoning. MIL-
STD-781 applies to demonstrating the reliability of simple series
systems as well as "complex maintained electronic equipment"
[O'Connor (1985)], so the hardware during its "useful life",
period is already modeled by a constant failure rate. According
to Appendix B, software whose code is frozen, being subjected to
a stationary operational profile, can reasonably be modeled as
having a constant failure rate. According to the section in this
report on Reliability Combination, if the software executes
concurrently and in series with the hardware, then the combined
hardware/software system can be modeled by a constant failure
rate that is the sum of the hardware failure rate and the
software failure rate. Therefore, the demonstration test plans
developed in this section apply to both software products and
most combined hardware/software systems (SOW para. 4.1.5.2).

Under the constant failure rate model, the number of failures
during a time interval [O,?] obeys Poisson's law, which states
that the probability of exactly i failures occurring in a time
interval of length 7 is

P1 - exp[-Av1 (190)
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The probability of n or fewer failures occurring during that same
period is given by the Poisson cumulative distribution function
(cdlf)

n

6. 2.•2 Fixed-Lenath Test

A fixed length software reliability demonstration test plan
[Singpurwalla (1985a)]3 provides a predetermined test duration and
an acceptable nu£mber of failures the software is allowed to
accumulate during that test time. The teat is terminated with a
decision to accept or reject. The statistical bauis of the
fixed-length test derives from Epstein and Sobel (1953).
Suppose that the acceptance criterion is x or fewer failures in
time r. If the true failure rate is )0 then F(a;A0 ,T) is the
fraction of time that x or fewer failures will occur. However,
in [l-F(xt?0,r)] fraction of the time, greater than x failures
will occur. When greater than x failures occur during the test,
the test will reject the software even though the true failure
rate is )Ao. To limit the probability of rejecting good software,
therefore, x and v must be chosen such that

I-F(x;A0 ,•) • a (192)

Likewise, if the true failure rate is ).A then F(x,X1 ,v) is the
fraction of time that the software will be accepted, even though
the true failure rate is ).t. To limit the probability of
accepting bad software, x and v must be chosen such that

Thus, x and 7 must simultaneously satisfy both Equations 7 and
Equation 8.
A test plan provides x and r values as a function of failure
rates X0 and A , and risk levels a and •. Since time units are
arbitrary, a test plan can be made more general by replacing Xo
and X,, by their ratio d-At/X0 , called the discrimination ratio.
Then, for example, the same test plan will be valid for the
combination X0-O .000006 and ,11-0.000002, and the combination
%m-00045 and Ai-0.00l5. For this scheme to work, the time unit
is chosen so that %m-i. Hence, ).1-d. As a typical example, if
the original time unit was seconds, then the new time unit will
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be A0' seconds. The test time r is multiplied by A10" to convert
to seconds.

A test plan provides an accept number x. If x or fewer failures
are observed during the test period, the software is accepted.
The reject number is r=x+l. If r or more failures are observed,
the software is rejected. To design the test-, the smallest x and
r values need to be found such that simultaneously

exp[T] T k 1(194)

(because 10-1) and

(-t d) I • 5

exp -d] t (195)

(because X1-d).

For determining the- reject number r, one can exploit the
relationship between the Poisson and chi-square distributions.
The cumulative distribution function of the chi-square
distribution is

0

where for an integer argument n, r(n+l)mnl. The parameter v is
the number of degrees of freedom (i.e., the number of free
variables entering into the statistic). The values of the chi-
square Cdf are tabulated in many statistics textbooks.
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on a programmable calculator or computer a series expansion
[Abramowitz and Sterun (1970)] can be utilized:

.p(x2 jv) (_ *2)/ _X2 /21\2 / Sr__],2\ (197)

A v. (v+2) (V 44)...(v+2r)]

The relationship between the Poisson and chi-square distributions
is

1-P(X2 1v)c- ue•p(-M] , c- ,m-X2/2,veven (h95)

So to determine r one finds the smallest integer r such that

d x (199)
x2r, 1-4

where X2y, is that X2 value which solves the equation

Z - P(X2 Iy) (200)

Then x-r-l is inserted into the equation

a

ex acý1. (201.)
exp• J-.a1~..x/

Equation 16 is then solved for r. Call this solution r*. Then x
is inserted into

exp[- -] ( -d) (202)
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which is also solved for r. Call this solution Tb. Because of
the discrete nature of the distribution, r. and Tb can be
expected to differ slightly. Taking r to be the average
T--(Ta*$*Tb)/ 2 is a reasonable compromise. The a and 0 risk levels
will change slightly. Inserting x and r back into Equation 16
and 17 and solving for a and P will provide the actual risk
levels. The original a and P used to construct the test are
called the nominal risk levels.

The probability of the fixed-length test accepting the software
is given by

Po.X(•) m exp[-IT] (203)

This yields a family of operating characteristic (OC) curves.
The OC is a plot of the probability of acceptance versus the
failure rate: The steeper the slope of the OC curve, the greater
the efficiency of the test in discriminating between items of
differing reliability.

6.2.3 Minimum Failure-Free Execution Period Test (SOW Vara.

A special case of the fixed-length test is the one in which the
acceptable number of failures x-0. The probability of zero
failures in a test of duration r is

0

P0.0-- exp.r I U 0 exp -;] (204)

Solving

exp[-A0?] 2 1 - a (205)

and

gives
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lot a -ln(1-a): X? z -1nP (207)

In terms of the decision risks, the discrimination ratio is

X1 w1  (206)

This discrimination ratio can be quite large. For instance, in
the case a-0.15, 0-0.15, the producer is saddled with a
discrimination ratio of 11.67. This discrimination ratio is
high; it is usual to design to a discrimination ratio on the
order of 1.5 to 3. A less stringent type of failure-free test
will now be described, in which the required discrimination
ratios are lower.

In a minimum failure-free period life test [Angus et al. (1985)),
the item is given a time limit of T time units to achieve a
failure free interval of t time units. The null hypothesis is
Ig la'm, and the alternative hypothesis is HI: X-A . Note that
te anull and alternative hypotheses are reversed Irom those of
the fixed-length test. A test plan can be designed for any
discrimination ratio d<d . Let the function FWt be the
cumulative distribution Tunction of the waiting time to
completion of the failure-free period. Renewal theory [Feller
(1966)] provides

S

exp- ) W g(n), wn>o (209)

0, (w<0

where

and
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u+ = I, u > o; u+ a 0, u 1 0; u+ - [max(u,0)]" (211)

The function g(n) represents the probability that (n-i) points,
chosen randomly in the interval (0,w), partition the interval
into parts all of which are of length less than or equal to t.

Test plans can be constructed by fixing the ratio t/T and
iteratively finding A0t and A)t so that

I - * Fw,(T;A0,,); C)12)

and

r- F.(T;X 1, t) (213)

6.2.4 Sential Te4t

In a fixed-length test, a failed test can be stopped just as soon
as the reject number r is reached. In a failure-free execution
period test, a successful test can be stopped once the failure-
free interval is achieved.

A sequential test can be stopped early when the test reveals its
true character [Wald (1947), Epstein (1954), Singpurwalla
(1985b)]. The item is operated and the cumulative number of
failures and time on test are continuously monitored.

Let the null hypothesis be

-O: 10 (214)

and let the alternative hypothesis be

* (215)

Let

A -(216)
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and

B -(217)

Let p0 be the probability of a software failures in time r if
JL n, and p, be the probability of a failures in time 7 if -Aw.i
Then the sequential probability ratio is

1 / 0 0 (213)

dxexpr(l. - 1,)%] (21-9)

where x is the total number ot failures observed by time r.
Testing continues as long as the inequality

B < L" < A (220)

holds. Then, when Pj/Po S B for the first time, testing stops
and H, is accepted. When p /p ? A occurs for the first time,
testing stops and H0 is rejected.

Graphically, the "continue test" region is bounded by two
straight lines with common slope s and intercepts -h, and h0."
The x-axis is the cumulative number of failures k, and the y axis
is the time on test r.

Solving for r gives

-hi + ks< r < h., +ks (221)

where

SInd (222)
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ho -- lB (223)

and

1nA (224)

The acceptance tmen line is 7 - N + ks. The moment the plot of
failures k versus time r crosses thic line, the software can be
accepted. The rejection time line is -hi + ks. The moment the
plot of failures k versus time r crosses that line, the software
can be rejected. As long as the staircase plot of failures k
versus time r stays between the two lines, the test continues.

In terms of x, the rule is

T(o - X1 )-lnA < X < .(10-11) -lnB (225)
-1nd -ind

Because a sequential test can theoretically go on indefinitely,
it is desirable to stop ("truncate") the test at some point to
provide a reasonable maximum test time. Truncation will tend to
increase th.a decision risks a and 0, but research [Epstein
(1954)] has shown that the risks are not increased significantly
if the test is truncated at

r. W 3r (226)

where r. dinotes truncation number of failures and r is the
reject number for the corresponding fixed-length test. Recall
that r is the smallest integer such that

d 2 X2f, 0 (227)
aXar. i-s
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The truncation operating time to is then

To - s'ro (228)

where, as before, a is the common slope of the decision lines

s . md (229)

The lemonstration test can be terminated and the software
accepted if k<r 0 and

Sk min(ho0 ks,i 0 ) (230)

The test can be terminated just as soon as

or k-r 0 and

'c < TO (232)

6.2.5 Demonstration Testing durina Growth Tasting

Consider the counting process (N(7),r Z 0), where N(v) is the
number of software failures that occur by cumulative execution
time T. In Musa et al.'I (1987) software reliability growth
models (the Basic Execution Time Model and the Logarithmic
Poisson Model), software failures are generated according to a
nonhomogeneou.s Poisson process (NHPP). The probability of k
failures occurring by time r is

Pk(r) - Pr {N(T) -k) - exp P- (T) (c r 1'k k(0 (232)
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where

(9) - E fA (x) dK (234)
a

is the "mean value function" and A(,) is the time-dependent
failure rate. In particular, the Basic Execution Time Model is
characterized by the mean value function

is ( V) - v. (1-exp (-P1]) (235)

and failure rate

(-r) - v(%) . lvoexp[-P'I (236)dv

where 0 and v0 are the parameters of the model.

The techniques for reliability demonstration described in this
section are based on the assumption of a constant failure rate,
which implies a homogeneous Poisson process (HPP). When software
is subject to repair, one expects that the softwara will exhibit
a decreasing failure rate. Barlow and Proschan (1967) showed
that, in a constant failure rate fixed-length test, a decreasing
failure rate favors the consumer. Fortunately, a transformation
of the time scale reduces an NHPP to an HPP, as shown below.
Then, the methods for fixed-length, failure-free execution
period, and sequential test design can be used without change.

Let the now time variable be denoted u, and define it by

U a IL(r) (237)

That is, transform time r into the mean value function evaluated
at time T.

Consider the stochastic process

(M(u) , uO} (238)
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where

M(u) - N(Pj'(U)), UaO (239)

The mean value function is

E(M(u)) - E(N(P&1 (U))} P p(P-.(u)) - u (240)

and the failure rate is

(u) (243.)
du

Since the rate parameter is a constant, M is an HPP. Thus

Pk,(U) = Pr tM(U) -C) a eXP I-_U]U(2)

To transform a time on the u scale back to the original r scale,
the inverse relationship

T , U (243)

is employed. For the Basic Execution Time Model,

Pin(U) = I ... , (244)

The exponential/HPP model of frozen code is completely specified
by the failure rate parameter 1. The NHPP model of code under
repair requires two parameters, 0 and v.. (It is also possible
to parameterize the model in terms of other quantities such as
100 w0, but two parameters will always be needed.)

In summary, the values of 1 and v are obtained through the
parameter estimation techniques described in the section of this
report on Reliability Growth Testing. Next an appropriate fixed-
length, failure-free execution interval, or sequential test is
selected. Then each failure time experienced r, is transformed
into ul-jh,(v) in determining the results of the test.
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6.2.6 Multiple Copies

Demonstration testing of highly reliable software can be time-
consuming (the fixed-length test time for given set of a, P, and
d parameters is proportional to 0"'1). Another time-consuming
situation is when I0 and KI are close together. One solution is
to test multiple copies of the software simultaneously. Each
copy must be identical and must be subjected to test cases
randomly selected from the same operational profile. The test
cases for each copy must be selected independently. The total
time on test V(t) is the sum of the individual times on test of
each copy. When a copy fails, it is restarted (that is, this is
a test with replacement). Wherever time on test T appears in the
formulas for fixed-length, minimum failure-free execution period,
and sequential tests, it can be replaced with V(t), where

N

is the total time on test up to (wall clock) time t, N is the
number of copies, and x1(t) is the time on test of copy i up to
(wall clock) time t.
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7. MALIIDALTON

In fulfillment of SOW Task 6, the models and techniques for
software reliability prediction, growth, and demonstration were
validated on actual projects.

7.*1 &An.r9ach

The techniques are based on several models for software not
subject to repair, a model for software subject to repair, and a
set of models for software reliability prediction. When software
is not subject to repair, the study employs a constant failure
rate model (discussed in Appendix B). When software is subject
to repair, the study employs a nonhomogeneous Poisson process,
the Basic Execution Time Model. For software reliability
prediction, the study uses models that were developed based on
regression analysis of measurable product/process characteristics
(metrics).

The techniques based on these models were used on ongoing
projects to assess workability and accuracy. The feedback from
the projects' personnel was exploited to refine the techniques
and the presentation of the techniques in the draft military
handbook. Since the models and techniques were validated in one
organization, it is recommended that the validation be repeated
in a wide variety of organizations.

7.2 eaasult

The first model, which will be designated Model A, is developed
axiomatically in Appendix B and assumes a constant failure rate
for frozen code subjected to a stationary operationally profile.
This model forms that basis for software and hardware/software
relibility demonstration tests.
The second model, which will be designated Model B, is the Basic
Execution Time Model for software going through system test.

7.2.1 Model A (Frozen Code)

The study team first tested the validity of the assumption that
the underlying time-to-failure distribution is exponentLal. The
assumption of an exponential distribution of failure times is
equivalent to an assumption of constant failure rate or the
assumption that failures are generated by a Poisson process. The
cumulative distribution function (Cdf) of the exponential
distribution is given by

F(T) = 0, T < 0 (246)
I i-exp[-] , r k 0

Suppose that the interfailure times are
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T/, T21 ... , , / (247)

A graphical procedure (Epstein (1960)] for testing the validity
of the exponential asumption is to put the interfailure times
into ascending order

T u) :9 , (2) 9 -.. '( (248)

Form the empirical Cdf

," * -. 1i(249)
n+1

and plot the points
(T (),1n [I/ (I-F(,r(j))]) i-1,#2,..n (250O)

If the exponential assumption holds, then the plotted points will
form a straight line passing through the origin. The slope of
the line will be the failure rate X. The graphical procedure was
found to be a "quick and dirty" method that could be useful as a
check after a reliability demonstration test but was too inexact
and subjective for final validation of the exponential
assumption. A numerical procedure that would allow a formal test
of hypothesis was sought.

The most well-known test for goodness of fit is the chi-square
test. To use this test the time axis is divided into a number of
intervals. Each of the k intervals forms a "class." Denote the
class boundaries by

t 1  C2 - ... tJ.1 (251)

The failure rate parameter is estimated by the reciprocal of the
sample mean:

2.__

(252)
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One computes the statistic
k (oe) (253)

where o, is the number of observed interfailure times that fall
into class i and e is the expected (theoretical) number of
interfailure times that would fall into class i. The expected
number of interfailure times falling into class i is

e, n (254)

The statistic X2 is distributed as chi-square with (k-1) degrees
of freedom. The test is very sensitive to the number, size, and
position of the chosen intervals. The sensitivity problem would
only go away with larger sample sizes (number of observed
interfailure times) than were available.

A number of studies [see Moran (1951), Bartholomew (1957)] have
shown that an increasingly popular method called Bartlett's test
is the most powerful available test for discriminating among
increasing, constant, and decreasing failure rates. The test
statistic is

2n In (255)
Br ') . (n~1+(n+1)/6n

Under the null hypothesis of exponentially distributed
interfailure times, the statistic Br is chi-square distributed
with (n-1) degrees of freedom. A two-tailed test is used. Let
the level of significance be denoted a. The critical values for
the two-tailed test are

X-.,/2,,-l and XZ/2,n-I (256)

If the statistic falls between these two values, the test does
not contradict tha null hypothesis that the exponential model
applies to the failure data. Table 7-1 provides some percentage
points of the chi-square distribution [AMCP (1968)].
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Table 7-1. Percentage Points of the Chi-Square
Distribution for a-.01 Two-Tailed Test

Degrees of Froeedom x2 2o __

2 .0100 10.597

3 .0717 12.838

4 .207 14.860

5 .412 16.750

6 .676 18.548

7 .989 20.278

8 1.344 21.955

9 1.735 23.589

10 2.156 25.188

11 2.603 26.757

12 3.074 28.300

13 3.565 29.819

14 4.075 31.319

15 4.601 32.801

16 5.142 34.267

17 5.679 35.718
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Table 7-1 (con't). Percentage Points of the Chi-Square

Distribution for a-.01 Two-Tailed Test

Degrees of Freedom X2  X2

18 6.255 37.156

19 6.844 38.582

20 7.434 39.997

21 8.034 41.401

22 8.643 42.796

23 9.260 44.181

24 9.886 45.558

25 10.520 46.928

26 11.160 48.290

27 11.808 49.645

28 12.461 50.993

29 13.121 52.336

30 13.787 53.672

35 17.156 60.304

40 20.674 66.792

It is important that the data be from one series of runs and not
"pooled," because this could cause misleading results [Kapur and
Lamberson (1977) Cox and Smith (1954)].

Failure data set A-1 consists of the following collection of 14
interfailure times (in CPU minutes): 136, 304, 231, 13, 136,
145, 13, 306, 231, 47, 462, 326, 33, and 142. The computed value
of Bartlett's statistic is 17.526. Since at 13 degrees of
freedom, lies between X2 09,,3.565 and X2.005-29.819, the null
hypothesis that the interfailure timed are exponentially
distributed is accepted.

Failure Data Set A-2 consists of the following collection of 17
interfailure times (in CPU minutes): 9, 110, 9, 32, 3, 19, 18,
12, 65, 58, 9, 16, 20, 42, 2, 15, and 86. The 'momputed value of
Bartlett's statistic is 14.519. Since at 15 degrees of freedom,
14.159 lies between ;(2  -5.142 and X2.o0g-34.267, the null
hypothesis that the iiTerfailure times are exponentially
distributed is accepted.
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Failure Data Set A-3 consists of the following collection of 17
interfailure times (in CPU minutes): 22, 10, 9, 130, 69, 26, 15,
34, 55, 31, 139, 181, 41, 259, 43, 201, and 261. The computed
value of Bartlett's statistic is 15.532. Since at 17 degrees of
freedom, 15.532 lies between X2-"1-5.697 and X2°'°°5-35.718, the
null hypothesis that the interfailure times are exponentially
distributed is accepted.

Failure Data Set A-4 consists of the, following collection of 9
interfailure times (in CPU minutes): 1, 63, 107, 23, 71, 62, 212,
39, and 246. The computed value of Bartlett's statistic is
9.763. Since at a degrees of freedom, 9.763 lies between
X 2,m-1.344 and X2.,00-34.267, the null hypothesis that interfailure
tfimes are exponentially distributed is accepted.

7.2.2 Model R (System Test)

The Basic Execution Time Model [Musa et al. (1987)] is based on
the nonhomogeneous Poisson process (NHPP). An NHPP is completely
characterized by its intensity function (failure rate) )(r) or
its mean value function A(v). The intensity function of the
Basic Execution Time Model is not a new innovation; Parzen (1962)
described the intensity function form

a On b-ti (257)

where a and b are empiric.--1y determined positive constants, as
"frequently chosen" for events that have a decreasing intensity
of occurrence. In the case of the Basic Execution Time Model,
the constant a is interpreted the initial failure rate 10, and b
is interpreted as 0, the decrement of failure rate per mean
failure experienced.

As discussed in the chapter on Demonstration Testing, an NHPP can
be turned into a homogeneous Poisson process via a transformation
of the time scale. Each observed failure time epoch r, is
transformed 'to

U, CC ja() (258)

Now that a homogeneous Poisson process is obtained, Bartlett's
test can be performed as above.

To determine the mean value function M(r), it is necessary to
obtain estimates for the Basic Execution Time Model parameters
and v0. Then is the transformed failure time epoch is

q,~ - IA (I) * v. (1-exp [-Pcil)), I -l1,2,...,k (259)

The interfailurn times are calculated as
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U U1 - UI., - 1 2,3,...,k (260)

with

UI -, u(261)

For failure data set B-1 (Table 7-2), Br- 1 9 . 0 5 6 1 1 1 , which lies
between the critical values j2 .- 5.142 and X2 nM 3 4 .267. SO for
B-I, the null hypothesis is accepted. For fd1ure data met B-2
(Table 7-3), B -3.9958, which lies between the critical values
S2 Mm1.344 and xZ -21.955. So for B-2, the null hypothesis is
addepted. For faIlure data set B-3 (Table 7-4)1 B&-14.828652,
which lies between the critical values x •M-3. 074 and
z2. -28,300. So for B-3, the null hypothesis is accepted. For
failure data set B-4 (Table 7-5), B-16.073745, which lies
between the critical values X2 -4.601 and X2

00,-32.801. So for
B-4, the null hypothesis is accepted.

Table 7-2. Data Set B-I

B-I Failure * Time (CPU min) Time (A) Interfailure

1 11 0.359

2 24 0.773 0.414

3 31 0.992 0.219

4 48 1.513 0.521

5 50 1.573 0.060

6 89 2.705 1.132

7 98 2.954 0.249

8 128 3.758 0.804

9 136 3.965 0.207

10 156 4.469 0.504

1i 178 3.003 0.534

12 249 6.586 1.583

13 574 11.702 5.116

14 587 1I1.850 0.148

15 1023 15.230 3.380

16 1391 16.587 1.350

17 2240 17.701 1.114

i8 2449 17.796 0.095
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Table 7-3. Data Set B-2

B-2 Failure # Time (CPU min) Time (g) Interfailure

1 35 2.878

2 37 3.018 0.140

3 55 4.171 1.153

4 58 4.346 0.175

5 71 5.005 0.659

6 85 5.735 0.730

7 93 6.087 0.352

8 127 7.341 1.254

9 135 7.586 0.245

10 170 8.480 0.894

Table 7-4. Data Set B-3

B-3 Failure # Time (CPU min) Time (g) Interfailure

1 4 0.355

2 19 1.608 1.253

3 25 2.077 0.469

4 55 4.2167 2.090

5 57 4.292 0.125

6 63 4.659 0.367

7 93 6.296 1.637

8 130 7.926 1.630

9 135 8.118 0.192

10 138 8.230 0.112

11 139 8.268 0.038

12 166 9.180 0.912

13 441 13.176 3.996

14 576 13. T654 0.478
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Table 7-5. Data Set B-4

B-4 Failure # Time (CPU min) Time (A) Interfailure

1 11 0.550

2 18 0.892 0.342

3 50 2.381 1.489

4 71 3.295 0.914

5 80 3.672 0.377

6 107 4.752 1.080

7 144 6.117 1.365

8 153 6.430 0.313

9 205 8.107 1.677

10 342 11.597 3.490

11 350 11.766 0.169

12 351 11.786 0.020

13 358 11.931 0.145

14 364 12.052 0.121

15 494 14.284 2.232

16 558 15.140 0.856

17 620 15.847 0.707

Next, growth techniques were appliod to ongoing development
projects. Demonstration testing techniques served to validate
the results of the growth testirng. The team chose a "short run
high risk test plan" because the test duration is short and so
could be repeated many times. Thn Growth Data Seto are shown in
Table 7-6. The failure rate X(r 3) is assigned to the lower t.est
failure rate X0. The decislon r1sks are 30%. The demonstration
test test has a discrimination ration of 3, so 11 is set to %a X
3. The test duration is 1.1 x r[l" . The test rejects if I or
more failures occur. The test accepts only if 0 failures occur.
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Table 7-6. Growth Data Sets
Failure Times

Failure Number C-1 j C-2 C-3 C-4
1 7 11 3 7
2 18 18 4 18
3- 21 109 7 21
4 22 128 10 22
5 =2 133 16 52
6 -1 172 "1 61-66
7 96 192 i
8 107 209 28 107
9 129 290 29 :

10 " 135 325 31 .133
11158 66--6 - 95 5

12 166 761 71 166
13 173 935 89 --- 3-
14 203 060 7 203
15 303 =d44 1• 303
16 -321 1.54 169 3-T-
17 407 1-15 21?. 407
is 416 1615' -- • " T "
19 438 1632 308 . .438_
20 446 1730 3 -10- 446
21 456 1746J T1 4
22 462 1813 Z33 462
23 400 1845 479 486
24 1 525 1892 4t28 428

- 25 562 1992 et•2 562
26 578 .2293 4r27 578'
27 601 2614 587 601
28 635 3430 604 635
29 701 3452 648 701
30 - 993 3520 727 993
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For Data Set C-4, the growth model provided a failure rate
estimation, at the 30th fail-are, of 0.0011365. The test duration
is computed to be 28.24. The demonstration test was repeated 13
times. The software passed 9 tests and failed 4 tests. If the
true failure rate is thit given by thE growth model and set to
I0, then the demonstration test should falsely reject the
software 30% of the time. Since this in fact happened

3 0.3076923 (262)

fraction of the time, the agreement with this data set is quite
close. On the other data sets, the raw growth model provided an
overly optimistic failure rate, with the result that the software
could not pass the demonstration test. When the model was
recalibrated (as described in Section 5), the optimism was
corrected. The recalibration technique, however, does not alter
the failure rate, only the probabilities of failure. A fliture
topiu of research would be to set 1o based on the results of a
recalibrated model.

7.2.3 Validation of Software Pailure Rate Reagrsssion Models

In response to SOW paragraph 4.1.6.4, the software reliability
prediction techniques were applied to actual projects. The
results were tne compared to the actual reliability measured
during growth testing.

7.2.3.1 A92roach

In Appendix E, several regreassion models that describe the
relationship between software failuve rate (Y) and software
characteristics (x,... , x2 ) are described. In this section, only
the linear regression models that are developed for each phase
(including the model that was chosen for the provious phase) of
the software development are compared to one another, since it
was diLcovered thtt the nonlinear regression models possess the
same statistical characteristics as those of the linear models.
Finally, only one regression model is chosen to predict the
software failure rate auter each phase of the software
devolopment.

As a selection criteria for the prediction model for each phase,
the following ground rules were applied:

1. The model with the best correlation to the observed software
failuz'o rate was chosen whenever there were any significant
differences in correlation botween the two models.
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2. When two models produced essentially identical correlation
between the predicted software failure rate and the failure
rate observed on the projects, the model which accounted for
the largest number of metrics (most recent information) was
selected.

The need to select the model which provided a software failure
rate with the best statistical correlation to the observed
failure rate is obvious. The study team's preference for a
prediction model which used the largest number of metrics is
based on two areas of concern with respect to the data collected
during the study period. The data collected to support
development and validation of the prediction models was all
collected after all system integration testing on the program was
complete. In most cases, the software was in use at the customers
facility. As a result, the metric data collected on the projects
was essentially complete. Thus, the data available to the study
team was much more accurate and complete th&n the data which
would normally be available at the end of a given program phase
(eg requirements analysis). This may have resulted in much better
accuracy for the early program phase models than would normally
be expected. Also, the metric data collected during the project
was limited to one company (Huqhes .4icraft) and thus potentially
valuable variations in values of the metric data which would
occur between companies was ommitted, possibly yielding better
stability and accuracy for the early prediction models than would
ordinarily result.

Two more observations, besides the nine observations that were
used to derive the regression models in Appendix E, were
available to validate these models. These two observations are
identified as obs.10 and obs.il.

The following statistics will be used for comparison:

Relative error of the predicted failure rate of each
observation (obs.10 or obs.11) in the regression model

-R 2

Residuals plots
Prob > P

Prb> I T
Standard errors of the parameter estimates

The length of the 95% confidence limits for a mean
predicted valuen for each observation (obs.10 or obs.ll), with
the lower limit being 0, if its calculated value is negative.
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The linear regression models which are derived in Appendix E are
of the form

y _ po + pTz + e (263)

where
Y: software failure rate
P,: the y-intercept

an 1 x m vector of real numbers
z: an . x m vector of indepondent variables
t: error variable of the regression model
m 5 24

these regression models are formulated based on the following
assumptions:

i) E(e) a 0 (i.e., the expected value of t is 0)
ii) The variance of e is the same for All value of x
iii) The values of t are independent
iv) e is a normally distributed random variable.

The validity of these assumptions in each regression model is
determined based on its residuals plot.

7.2.3.2 Results

The regression models which were developed for each phase of the
software development (Appendix E), were compared to one another.
Then, the chosen model was compared to the model that had been
selected for the previous phase. One regression model was
selected for each software development phase to describe the
relationship between software failure rate and software
characteristics.

(1) gequirement. Ana1ysisjnhai

Three regression models were formulated for the requirements
analysis phase by using the least squares method, stepwioe
regression and principal components analysis.

Only five software characteristics can be identified after the
Requirements Analysis phase. Therefore, only five independent
variables are involved in these regression models.

A complete output of these models is provided at the end. of
Appendix E. A summary of these regression models (least squares
model, stepwise model, and principal components model) is given
below.
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- Least squares model (MXI:

Y - 5.13 + 13.72x, - 0.17x 2 + 0.52x3 + 0.39x4 - 0.23x5

Y is restricted to be non-negative.

- StUNwiid model (M2hL

Y - 11.46 + 12.58x1 - 0.08x2  (Y is restricted to be non-
negative)

- Principal comgonents regression model (M3):

Y - 18.04 + 0.05 PI (Y is restricted to be non-negative)

P1  0.009x1 + 0"99x 2 + 0'10x3 - 00001x4 + O'0005Xs

Table 7-7 provides a summary of the values of statistical
characteristics of models Mlp M2 and M3.

Although the value of R2, in model Ml, is high (> 0.80, i.e.,
more than 80% of the total variation in the failure rates sampled
is explained by the regression model Ml), the value of Prob > F a
0.18, which is bigger than 0.15 (the predetermined significance
level), suggested that the null hypothesis in the hypothesis test
(I), described below, should be accepted. Thus, M1 is not an
adequate model to describe the relationship between Y and the
independent variables x,1 ... , x5.

Hypothesis test (I):

Ho: all coefficients of the independent variables in the
regression model are 0.

H1: there exists at least one coefficient, that is not
equal to 0, of an independent variable.

Other reasons to reject MH are that the values of the relative
error of the predicted Y in obs.10 are too high, and the length
of the 95% confidence limit, of the predicted value for obs.10 is
extremely large (f 592).
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Table 7-7. Summary of Statistical Values of Models MI, M2 and M3

Model

M1 M2 M3

.8419 .8137 .4064

Prob > F .1839 .0065 .0648

y-intercept 13.38 4.35 6.54

X1 8.32 3.48 0.02
Standard........

Error x2 0.14 0.04 n/a

X3 0.85 n/a n/a

X4 2.54 n/a n/a

X9 2.44 n/a n/a

y-intercept 0.72 0.04 0.03

X1 0.16 0.01 0.06

X2 0.29 0.08 n/a

Prob > ITI X3 0.58 n/a n/a

x4 0.89 n/a n/a

x9 0.93 n/a n/a

Obs. 10 234.4 182.9 18.5
Predicted

Obs. 11 2 .97 24.98 21.03

Actual Obs. 10 36 36 36

Obs. 11 15 15 15

Sw Abs. Obs. 10 198.4 146.9 17.5
Failure Error ... 03
Rate Obs. ii 6.97 9.98 6.03

Rol. Obs. 10 5.51 4.08 0.486
Error

Obs. 11 0.46 0.66 0.402

95% Obs. 10 0-592.":. 68-297 0-62.9
Conf.
Limits Obs. 11 0-72.7 0-52.7 0-65.2
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Model M2 is better than model M1, since it yields smaller values
of relative errors and smaller lengths of the 95% confidence
limits for the predicted values of obs.lO and obs.ll compared to
those of Ml. But, because xj .. x, are highly correlated,
stepwise regression analysis is not reliable for producing a
valid regression model. In fact, even though, M2 is better than
M1, the predicted failure rates of obs.10 are still too high
compared to the actual value, and the 95% confidence interval of
the predicted value for obs.10 does not contain the actual
failure rate.

Compared to models M1 and M2, model M3 is preferable, even though
the value of R2 of M3 is much smaller than that of M1 and M2 (in
model M3, only 41% of the total variation of the failure rate
samples is explained by the regression model). The p-value of
hypothesis test (I) and the p-value of hypothesis test (II)
(which is defined on page E-21) of each parameter estimate are
smaller than 0.15 (the predetermined significance level). This
means P1 (independent variable) is relevant in predicting the
software failure rate (the dependent variable) in M3.

Other reasons for choosing M3, instead of M1 and M2, are that the
relative errors of the predicted failure rate in obs.l0 and
obs.ll are reduced substantially from those of Ml and M2, and
that these relative errors are similar to each other (i.e., M3
yields consistent errors in predicting failure rates for
different software). Furthermore, based on the residuals plot of
M3 (P1 versus residuals), on page E-36, it is observed that all
assumptions listed above hold (i.e., the residuals are of
constant variance, and independent). Therefore, M3 is a good
model to use for predicting software failure rate based on the
software charactezistics that can be obtained after the
requirements analysis phase.

(2) Preliminary Design Phase

Similar to the requirements analysis phase, there are three
regression models that aze developed for use to predict the
software failure rate after the preliminary design phase. These
models were formulated by using stepwise regression and principal
components analysis. Specifically, two of the models are
developed by using principal components analysis. All of these
models can be summarized as below.

- SteDwise model (M4):

Y - 11.92 + 14.12x, - 0.14x9  (Y is restricted to be non-
negative)
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- Principal components rearession model M5:

Y - 17.90 + 0.04 Pi + 0.01 P2  (Y is restricted to be non-
negative)

P O + .O7xI 4 0.796x + 0.08x3 - 0.0003x4 + 0.0003Yx5 +
0.0.0043x 7 + O.013x, 8  0.6x, + 0.003X1 o

P2 - 0.03x1 + 0.45x; + 0.56x3 + 0.11X4 + O.08X5 - 0.005X6 +
0.07x, + 0.01; - 0.67; + 0.08x10

- PXrincinal Components rearlesion model M6:

Y - 17.90 + 0.04 PI (Y ;s restricted to be non-negative)

PI : same as above

Table 7-8 provides the summary of the statistical values
associated with the above models.

Model M6 is derived in order to eliminate P in MS, since the p-
value of the hypothesis test (II) for variable P' is too high
compared to 0.15 (the predetermined significance level).
Therefore, only models M4 and M6 and the previously chosen model
(M3) will be compared to one another.

Model M4 is inferior M6 in describing the relationship between
software failure rate (the dependent variable) and software
characteristics (the independent variables) which can be
identified after the preliminary design phase. The reason for
this is that, even though the value of RP is high and the p-
values of hypothesis tests (1) and (11) are low for M4, the
absolute error (hence, the relative error) of the predicted
software failure rate of obs.10 is quite larger Also, the 95%
confidence limits interval of the predicted failure rate in
obs.10 does not contain the actual value, and the length of the
entire interval is too large. Again, it is not surprising that
the stepwise regression model is not good in predicting software
failure rate in this case, since there is a high correlation
between the independent variables x1 ,...,x10.
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Table 7-8. Summary of Statistical Values of Models M4, M5 and
M6

Model

M4 M5 M6

R2 0.6584 0.4016 0.40

Prob > F 0.0024 0.21 0.07

Standard y-intercept 3.64 7.13 6.60
Error

X, 3.07 0.02 0.02

x2 0.05 0.42 0.03

Prob > y-interoept 0.02 0.05 0.07
ITI

x1 0.003 0.09 18.66

X2 0.03 0.98 21.58

Predicted Obs. 10 202.2 18.75 18.66

Obs. 12 22.68 21.39 21.58

A;ctual Obs. 10 36 36 36

SW Obs. 11 15 15 15
Failure

Rate Abs. Obs. i0 166.2 17.25 17.34

Error
Obs. 11 7.68 6.39 6.58

Rol. Obs. 10 4.62 0.48 0.48
Error -

Obs. 11 0.51 0.43 0.44

95% Conf. Obs. i0 101-303 0-69.58 0-63.3
Limits

Obs. 11 0-46.14 t_0-74.52 0-65.9
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Models M3 and M6 were compared to each other. Notice that
although model M6 has similar residuals plot am that of M3, model
M6 has better values for all statistics compared to M3.
Therefore, M6 was chosen to be the regression model that
describes the relationship between software failure rate and
software characteristics that are available after the preliminary
dasign phase.

(3) Detailed Desian Phase

A summary of the regression models that were developed for the
detailed design phase is provided below:

- SteDwise model (M71:

Y - 28.97 + 15.63xI + 0.25x6 - 2.39xa - 0.08x9 - 1.2x11

(Y is restricted to be non-negative)

- Principal com~onents rearession model (MS11

Y - 36.62 + 0.13 P1 - 2.47 P2 - 0.64 P3 (Y is restricted to be
non-negative)

P u 0.007x, + 0.80x + 008x1 - 0.0003X 4 +00003x, +
0 0oblX6 + 0.004x, + o0.01 + .6X9  o 0.803x,. + o.11x1 I + ;.002x°o +
O.004x1 3 - 0.003x1 4'

P - 0OOx 1 + 0.40x + 0.49xý + 0.13x + O.O0xs + 0.02X6 + O.O8x 7
+ 0.•1x8 0.69 + 0.+ 061 O.IGx11 40.X 1 2 4 0.09x13 - 0.35x1 4

-0.25x1  + 0.02X2 - 0.26X3 . 0.20x4 .5 0.07x, + O.63x 6 +
0 1 x, - 0.12; + 0.01; + O.11XIO + 0.35xO. + O.llXI2 - 0.10K 13 -
0.49x,4

Table 7-9 provides a summary of the statistical values associated
with these models (M7 and M8).

Similar to reasons given above for rejection of stepwise
regression model M4, stepwise model M7 should also be discarded.
Even though the values of all statistics of this model are
reasonably good, when it is used to predict the software failure
rates of obs.L0, the absolute error (hence, the relative error)
of the predicted value is too high. Also, based on the relative
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Table 7-9. Summary of Statistical Values of Models M7 and MS

Model

M7 MS

0.9972 0.7988

Prob > F 0.0005 0.0342

y-intercept 3.06 7.49

x1 0.83 0.03
Standard
Error x2 0.11 0.79

X3 0.53 0.33

x4 0. 02 n/.

x5 0.11 n/a

y-intercept 0.003 0.0045

xi 0.00C03 0.0089

x2 (. 11 0.256
Prob > -0 0.1073
ITI_. _0.02 0.1o73

4 0.02 n/a

xS 0.002 n/a

Predicted Obs. 10 212.8 21.64

SW Obs. 11 15.19 26.90
Failure
Rate Actual Obs. 10 36 36

Obs. 11 15 15

Abs. Obs. 10 176.8 14.36
Error

Obs. 11 0.19 11.90

Rol. Obs. 10 4.91 0.40
Error

Obs. 11 0.01 0.79

95% Conf. Obs. 10 178-247 0-55.4
Limits

Obs. 11 5.95-24.4 0-62.1

139



errors of the predicted values of obs.10 and obs.11, it can be
stated that M4 is not consistent in predicting the software
failure rate. In one case (obs.ll), it yields very good
prediction and 95% confidence limits, but in the other case
(obs.10), M4 predicts the value of the software failure rate
poorly (the predicted value is 491% of the actual valuel).

Next, model MS is compared to model M6, which was chosen as the
regression model after the preliminary design phase.

MS seems to yield good predicted value for the software failure
rate in the case of obs.10, and the value of RI of MS is high.
Also, the value of Prob > F is much smaller than that of M6. But,
MS is inconoistent in predicting the dependent variable (Y). For
instance, the relative error of obs.10 is only 0.4, but the
relative error of obs.ll is 0.79. Also, even though the actual
failure rate in obs.10 is twice as much as that of obs.ll, the
upper bound of the 95% confidence limits of oba.10 is smaller
than the upper bound for obs.ll. Another disturbing factor of
model MS is that the p-value of the hypothesis test (I1) of P2 is
much higher than 0.15 (the predetermined significance level).
This suggested that P2 is not relevant in predicting software
failure rate using MS.

Therefore, once again, M6 is chosen to be the regression model
that can be used to pradict the software failure rate based on
the softwore characteristics available after the detailed design
phase.

(4) Cod aand Unit Test Phase

It can be safely stated that stepwise regression models should
not be considered in compa'sion with principal components models,
since there is substantial evidence that stepwise analysis does
not work well with correlated independent variables, whereas
principal components analysis does. Thus, in this section, only
regression models that are developed using principal components
analysis are examined.

Two principal-components regression models were formed. These
models can be summarized below.
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Regression model (M9):

Y - 38.03 - 2.59 P1  (Y is restricted to be non-negativa)

o -0.000oo X1 - 0.0009X2 o-.0001X - 0 o00002X4
.0 2 o.oooo3x o.000017X, 0.o00002 - 0.00x, -

0. 002x,, + o.o00O0lxi 0.00002xi 2  0.00001xi7 + 0.005xis -
0.O001X1, - O. O001X2  - 0'. 00x, 1 + 0.000004X22  - O.O00O01X2
0.00002x4 - 0.0001X25

- Repression Model (M111

Y - 17.88 + 0.04 PA (Y is restricted to be nor-negative)

P - 0.007x1 + 0.80x, + 0.08x3 + 0.01X; + 0.6x9 + 0.008X2
+ O.A3x,

Table 7-10 provides the summary of the statistical values
associated with these models (M9 and M10).

It is obvious that the reqression model M9 should be rejected.
Since both p-values of hypothesis tests (1) and (I1) (of the
independent variable PI) are much higher than 0.15 (the
predetermined significance level), P1  is not relevant in
predicting software failure rate using model M9. But, if P, were
eliminated from the model, a new model cannot be formad. Another
reason to reject model M9 is that its residuals plot indicaLt.es
that assumption (ii) is violated. A surprising element was
noticed in model M9: the absolute errors (hence, the relative
errors) of the predicted failure rates in both obs.10 and obs.11
are much smaller than those of any of the previous models.

When model MIO was compared to model M6 (which was chosen after
the detailed design phase), it was noticed that all values of the
statistics obtained for M6 and MI0 are very similar to each
other, including the residuals plots. Therefore, theoretý.ially,
either M6 or M10 can be used to predict the software failure rate
after the code and unit test phase.

Model M10 is recommended for used in predicting software failure
rates after code and unit test because M10 includes a larger set
of the independent variables than X6 and thus may be less
succeptable to any inadvertant result variations caused by the
data collection limitations of the study project.
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Table 7-10. Summary of Statistical Values of Models M9 and
M10

Model

M9 M10

R2 0.0748 0.4012

Prob > F 0.4764 0.0670

Standard y-intercept 19.72 6.61
Error

x, 3.43 0.02

Prob > y-intercept 0.0952 0.0304
xi 0.4764 0.0670

Predicted Obs. 10 22.72 18.68

Obs. i1 11.20 21.59

Actual Obs. 10 36 36

Obc. 11 15 15
SW Failure Abs. Obs. 10 13.28 17.32

Rate Error
Obs. 11 3.80 6.59

Rel. Obs. 10 0.37 0.48
Error -.-

Obs. 11 0.25 0.44

95% Conf. Oo. 10 0-77.9 0-63.3
Limits -

Obs. 11 0-79.8 0-65.9
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e. CONCLUSIONS AND RECOMMENDATIONS

8.-1. CoQncus~ions

This stdy has developed techniques for reliability predirttion,
allocation, growth testing, and demonstratiou testing of combined
hardwaze/software systems. The software reliability techniques
are compatible with existing hardware reliability standards and
procedures and are aligned with DOD-STD-2167A.

The main findings of the research are:

A. Software whose code is frozen, and that is being subjected to
a stationary operational profile, can be reasonably modeled as
having a constaitt failure rate (see Appendix B). Before this
result was obtained, researcherb in softwarre. reliability
justified the constant failure rate model primarily on intuitive
cons iderat.ons. The work dcne here puts the model on a
theoretical foundation. Because hardware components during their
useful life period and maintained electronic systems are
conventionally modeled by a constant failure rate, this means
that certain hardware reliability techniques have analogies in
software. !irthermore, hardware and softwar3 failures can be
combined with each other. For example, 'if the hardware has a
certain failure rate and operates concurrently and in series with
the softwaro, the hardware and software failure rates coan be
added to nbtain the overall failure rate.

B. SoftlTare reliability can be predicted based on measurable
characteristics of the software development process and work
produots. Prediftion mode~s based on metrios initially available
ear1V on in the software life cycle appear to have about the same
prediction power as those models that add metrics available
latea, when the early metrics are revised to reflect updated work
products.

C. A program's failure rate is related to the program's fault
hazard rate profile. Previously, the hazard rate profile could
only be determined by "fault seeding" or by retrospective failure
analysis. Neither method is practical. The study developed a
way of determining a program's hazard rate profile, under a
particular operational profile, by adding randomly placed
countOX3 to the code. Those counters provide information about
the frzquency with which potential faults are encountered.

1. Markov modeling CLn be employed for the modeling and
allocation rf hardware/software systems that involve
hardware/software repair and hardware redundancy. Modeling and
allocation of software under different reliability topologies and
timing configurations c-n generally be handled by closed-form
expressions.
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P. Software reliability growth, from the start of system test,
can be modeled by the Basic Execution Time Model. It the number
of obserations is small (<30) or when the faults in a program
have widely different hazard rates, then the model may falter.
In both cases, the reliability estimations and projections can be
improved through numerical recalibrzition. A drawback to
recalibration is that it currently work*s by altering the
cumulative distribution function (time-dcpendent failure
probabilities), rather than by altering the failure rate. hn
estimate of the failure rate is useful in designing demonstration
test plans.

Duriir growth testing, the operational pzofile must be kept
stationary and emulate field use. Testers must record failure
times (or, equivalently, interfailure tit'es) in terms of
execution time. This "statistical"c approach tr testing is an
efficient way of uncovering those faults that contriLute the most
to the overall program failure rate. Cur.-ent testing practice is
either to stress the scftware by chooseing inputs--such as
boundary valuns--that are likely to .;rigger a failure, or to
atteApt to "cover" ths input space or codoi in some way,

F. Three types cf software reliability demonstration test have
been developed: fixed-length tests, failure-free execution
interval tests, and sequentiai irpsts. in addition, a method was
presented for performing a demorstration tout concurrently with
growth testing.

G. Both growth testing and demonstration testing can be
accelerated by simultaneous executiorx of multiple copies of the
program. When a failure occurs,, the time recorded is the total
execution time accumulated on all copieu. When the code is
modified, it must be modified on all versions. The test cases
for each copy must be selected independently according to tha
same operationa2 cofile.

H. The random selection of test inputs from a given operational
profile can be performed or automated b)ased on the fact that the
operational profile induces a partition of the real interval
(0,I). Each input state, or class of input states, is associated
with a subinterval of (0,1) whose length is itr probability of
occurrence. Testing efficiency can be improved through the use
of equivalence partitioning.

8.2. Recommendations

Future research is recommended to adcdress the following areas:

A. The prediction models have been validated in one corporation
only. The product/process metrics and failure data should be
collected from projects in many organizations so that the model
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can be validated more universally. Additional metrics should be
hypothesized and collected, to find more that are useful for
predicting software reliability.

B. The values of the many product/process metrics will change as
early work products &re updated. The time or phase at %hich the
value of a metric is sampled should be made a part of the
regression analysis.

C. The current recalibration technique alters the failure
probabilities. A method should be developed for recalibrating of
the failure rate,. altering the failure rate from one constant
value to another. One approach is to fit, in a least-squares
sense, the recalibrated cumulative distrib'ition function 1o that
of the exponential distribution, the constant rate parameter
treated an as unknown.

D. Thsory and techniques need to be developed for quantifying
_ the benefits and costs of multiversion programming. Am a

diversity into software in such a way as to deterministically

increase the reliability. Currently, there is no way of knowing
if the expense of creating multiple versions is cost effective
compared to additional testing and review.

E. An automated test generator program should be developed that
uses information on the operational profile, and the data types
and ranges of the input variables.

F. The effect of software engineerJng technologies on software
reliability should be quantified through a series of controlled
experiments.

G. Automated tools should be developed for accurately recording
cumulative execution time. Currently, testers use calendar time.

H. Research should be performed on designing software to
facilitate reliability prediction. As an example, consider an
abridged operational profile that specifies the relative
frequency of the user-oriented functions, A, B, and C. Suppose
that the software is designed so that A, B, and C are impleiented
Jn separate CSCs. Let operational profile #1 si.oify that tho
relative frequency of A is 20%; for B, 30%; and for C, 50%. The
failure rate measured under this operational profile A A, I 1,
and A Now, suppose that operational profile #2 is A, 3N %9,
40%; and C, 30%. Without performing any testing under
operational profile #2, the failure rates can be predicted by

2 30% (264)
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B 30%(265)

"•'-c (266)
1/ 3%50% C(2)

1. Appendix B shows that if clusters of software discrepancies
(differences between actual and correct values of output
variables) occur according to a Poisson process, then the number
of individual discrepancies is governed by a "stuttering Poisson
process." Since for many programs it may be more natural or
meaningful to count discrepancies, a set of demonstration tests
should be developed that are based on a stuttaring Poisson model.

J. More research should be done regarding the effect of
complexity on software reliability. The complexity measures
commonly used today tend to correlate with size, and so are not
of use in prediction. If complexity is measured not as intricacy
of structure but as the number of paths, then it would appear
that it must influence fault content, since a program is only
free of faults to the extent that it has been tested. The
structure factor S should be studied for its relationship to
complexity measures.

K. This study provides a separate growth model for software that
can be combined with an existing hardware reliahility grotth
model for a given time -r of interest. The develoiment of a
single growth model--perhaps a mathematical merging of the AMSAA
model and the Basic Execution Time Model--should be developed, so
that a single growth curve can be used for the combined
hardware/software system.

L. Section 2 of this report provides an overview of the
significant issues raised in modeling HW and SW systems along
with limited guidance in the modeling of these systems. Research
into advanced modeling techniques to support HW/SW system design
is needed. This research is needed to update previous RADC
research in this area [James et al. (1982)1.

M. Methods of instrumenting software code to ensure that any
fault which may occur can be rapidly identified and accurately
isolated to the section of the code (is. module) which caused the
problem should be investigated. Development of monitoring methods
which can ensure improved software fault iwolation with minimum
or no operational penalty will. help accelerate software
reliability growth and minimize the potential for maintenance
induced software faults.
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A. LIABILITYABS

The development and validation of the techniques presented in
this report required the collection of empirical data which was
organized into a database. The database contains metrics on the
characteristics of each project's software development process
and the intermediate work products that emerged from the
development process. Also data was collected on the software
failures that occurred during each project's system test period.
The primary use of the data was to develop a regression model for
the early prediction of software reliability.

For developing the predictive equations of SOW para. 4.1.3.2,
the study team sought data from a set of projects that were
diverse in size, application, and development strategy, yet had
produced similar kinds of well-kept documentation. These
projects had to be old enough to have started system test (so
that failure data was available), yet young enough that project
documentation, management, and development staff were still
accessible as sources of information. Six projects were chosen
from which to collect the data.

Many projects at Hughes already collect metrics, similar to the
24 metrics used in this study, for the purposes of management
reporting and, increasingly, for use in improving the software
development process. The Software Engineering Institute (SEI) at
Carnegie Mellon University is under contract to the Department of
Defense to examine the quality of the software development
process used by potential software development contractors. SEX
conducts assessments of organizations' software engineering
practices. Organizations are graded by the maturity level (1-5)
that SEI determines that they have reached. To reach level 4,
the organization must establish and maintain a set of
product/process metrics and establish, manage, and maintain a
database of those metrics. It must use the metrics to assess
product quality, track progress toward meeting quantitative
quality targets, and compare the metrics with historical
experience on similar projects. At level 5, the metrics are
automatically collected, and, in the spirit of Total Quality
Management (TQM), the metrics are used to improve the
organization's software development process [Humphrey (1990)].

Which metrics to collect for the purpose of software reliability
prediction were based on (1) how promising the metric was for
predicting software reliability, from a review of the literature
and in light of the team's collective software engineering
experience; and (2) the availability of the metric across the six
projects. Furthermore, to be useful, each metric had to be
easily collectible for a project following the draft MIL-HDBK
and, ideally, represent a controllable characteristic.
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Most influential was the excellent paper by Takahashi and
Kamayachi (1989). This paper presented their research on ten
factors that could influence fault density and concluded that the
following were significant factors: frequency of changes to
program specification, programmers' skill, and volume of program
design documents. The team generalized these factors to three
corresponding classes of metrics: (1) volatility--how often work
products change (whether because of misunderstanding, mistakes,
or ficklenesms)l (2) skill and effort brought to bear on the
development task; and (3) magnitude of the task. Twenty-four
metrics were then chosen from among those thrai categories.
Ultimately, the inclusion of a particular .. ric was a
hypothesis. The metric may or may not be useful for predicting
software reliability. Conversely, there are undoubtedly other
metrics that were not collected that could have been useful for
prediction. Indeed, one of the risks of the study was that the
set of metrics chosen would be insufficient. Fortunately the set
of metrics did turn out to be useful.

The Hughes study te".A either personally performed or oversaw the
data collection pyocess on each project, so that consistent
conventions and judgments could be made in transforming the raw
data into the metrics. To encourage cooperation and candor, each
project was promised anonymity.

The six Hughes Ground Systems projects selected for the
collection of software developmqnt and failure data are
summarized in Table
A-I.

Table A-1.
SUMMARY OF PROJECTS - SOFTWARE DEVELOPMENT DATA

PROJECT TYPE KLOC
# CSCIs LANGUAGE

1 Avionics 1 140 JOVIAL

2 C2I 3 53 Ada, C,
,_ Assembly

3 Data Comm 3 230 Ada

4 Trainer 1 40 Fortran

5 Diagnostic 1 7 Fortran

6 Radar 2 295 Fortran,
ULTRA-16

- -

For the Validation task two additional projects were
used employed. These appear in Table A-2.
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Table A-2. Validation Projects

Project # Type # CSCIs KLOC Language
7 Weapon 1 18 Pascal

8 Tracking 1 . 120 Ada

Table A-3 summarizes the metrics that were collected from these 8
projects. The first column shows the phase the data originates
in. The second column is a short identification code for the
metric. The third column is a description of the metric. The
fourth column is the class of metric (1, 2, or 3).

The study team was successful in collecting all 24 metrics from
all CSCIs of the six projects. The team had contingency plans
for dealing with missing data but did not need to invoke them.

The failure data recorded consisted of the estimated failure rate
at the start of system testing, adjusted to a standardized
average execution rate of three million instructions per second.
Fault data was in the form of program trouble reports (PTRs) and
library change requests (LCRe). Where necessary, calendar time
was mapped to execution time and randomization [Musa et al.
(1987)) was employed to minimize the effects of uncertainty in
failure times.

Metrics were normalized, 4here applicable, by dividing by the
number of kilo lines of code.
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TABLE A-3:
PRODUCT/PROCESS METRICS

PHASE CODE DESCRIPTION CLASS

Requirements 1 Errors in requirements specification (SRI) 1
2 Requirements statements in the ORS 3

3 Pages in the SRO 3

4 man-months for requirements analysis 2
S Requirements changes after baseline I

Preliminary 6 Errors in prsliminary design documents 1
Design 7 Computer Software Components (CSCs) - 3

a Units (Ad& packages) in design structure 3

9 Pages in defsig doouments (SDDs) 3

10 Man-months for preliminary design 2

Detailed 11 Errors in design documents I
Design 12 Man-months for detailed design 3

13 Design flaws identified after baseline 3

14 Design flaws after an internal review 3
coding 15 Total executable lines of code (LOC) 3

16 Faults fotund through code reviews 3

17 Programmer skill level (avg. years of exp.) I
18 Number of units undergoing review 2

19 Average number of source LOC per unit 3

Unit test 20 Average number of branches in a unit 1

21 Percent of branches covered 2

22 Nesting depth average 3
23 Times a unit is unit-tested 2

24 Man-months for coding/unit teat 2
25 Defects identified through walkthroughs and 1,2

reviews
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Historical failure/fault field data was collected from tour
projects, summarized in Table A-4.

TABLE A-4:
FIELDED PROJECTS

Project Type # KLOC LanguageCSCIN

9 Mobile 150 ULTRA-16
Radar

L0 Air Defense 3 220 ULTRA-16
Radar

1i Target 2 280 Fortran,
Acquisition ULTRA-16

12 Air Defense 3 270 ULTRA-16
Radar _

The hazard rate per fault was not discernable from the available
data. The PTRs from the field did not contain information about
how many times a particular failure recurred. Generally, the
user community eventually devised and disseminated among
themselves some type of work-around that avoided the problem
until the next version became available. The study team pursued
SOW paragraph 4.1.1.2 by adopting an approach that allows a
program's fault hazard rate profile to be determined
experimeoutally. The fielded systems were not close enough
geographically to be used in the validation task (section 7), so
ongoing projects were employed for the validation.
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B. S= TbNT FAILURE -RTE MODEL FOR SOFTWARE

Frozen code subjwcted to input randomly selected from a
stationary operational profile is reasonably modeled as a
homogenaous Poisson process (HPP). Such a stochastic process is
characterized by a constant failure rate and exponentially
distributed interfailurs times. This appendix provides an
axiomatic derivation of the constant failure :,,ate model. It is
shown 'Chat each axiom is reasonably satisfied by software.

Let I be the input space of a computer program. The operational
profile assigns to each possible input state iel a probability
p(i) of being selected, with Ep(i)-l. One can imagine a "test
oracle" e(i) associated with each input state i that evaluates to
1 if the program fails when executed with that input state, and
evaluates to 0 if the program succeeds [Kopet, (1981),
MacWilliam. (1973)]. In practical situations, the values of the
e(i) Is will not be known, but the actual values are irimaterial to
this discussion.

Tha probability of failure in a single run is given by

Q a .p(1)e(i) (3-1)

The probability of success is R-l-Q. The reliability of the
program for n independent runs is Rn. The probability of k
failures in n runs is governed by the binomial law

B(n,k) n) (Dm2)

This model is called a "data domainr" software reliability model
because it employs the run as the unit of exposure. A data
domain model is described by Nelson (1973). Analogous hardware
reliability models use kilometers, cycles, and missions as units
of exposure. Most hardware and -oftware reliability' models,
however, are "time domain" models; they use the continuum of
time as the failure-exposing force.

In the time domain, a run starting from input state i has a
duration t(i). Like the s(i)'s, the t(i)'s would no~t in general
be known a priori.

To transform the data-domain model into the time domain, five
axioms are introduced. It will. be shown that the data-domain
model satisfion the axioms, and that the consequence of the
axioms is an HPP.
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Consider the counting process (N(t),taO). N(t) represents
cumulative number of software failures by cumulative execution
time t. As shall be proved later, if the following five axioms
are satisfied, the process is an HPP [Parzen (1962)]:

Axiom 1--Initialization: N(O)-O. The counting of failures
begins at time 0.

Axiom 2--Independent increments: N(t+A)-N(t) is independent
of N(t).

Axiom 3--O<Pr(N(t)>0)<l, t>0. It is neither impossible nor
certain that a failure will occur in any interval.

Axiom 4--
lim P:N•A)N•>},0 (B-3)c-a Pr {N( tt) ) t -Q (Ini}

Failures do not occur simultaneously

Axiom 5--Stationary increments: For any two times t and a
and any At>0, it is true that

Pr (N( ÷+A t) -N(t) -n) a Pr (s+A 0) -N(s) -n) (3-4)

It will now be shown that the data domain model satisfies the

five axioms.

Axiom 1 merely defines when the counting of failures begins.

Axiom 2 says that the number of failures in a future interval is
not influenced by the number of failures in the past. Software
satisfies this axiom as long as any data corruption a failure
leaves is cleaned up before resuming execution.

Axiom 3 says that, in any interval, there is a positive
probability that a failure will oc,ur, but failure in ths
interval is not a certainty. A zero probability of failure
requires peofect software. The possibility of any substantive
piece of software having no faults is exceedingly remote.

Axiom 4 says that only one failure can occur at a time. ANSI-
IEEE Standard 100-1988 defines software reliability as "the
probability that software will not cause the failure of a system
for a specified time under specified conditions." This
definition implies that a software failure is a crash, hang, or
bad output that causes system failure. A program run on input
set i will either cause system failure [e(i)-lJ or it will not
[e(i)-0]. More than one software failure cannot occur at once,
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because a software failure is the sum total of what the program
did (or did not do) to cause cne system failure.

Axiom 5 says that the distribution of failures in a time interval
depends on thia length of that interval, not on when the interval
begins. F~r software, the number of failures in an interval
depends on the number of runs that occur during that interval,
not on when tho interval begins. Different runs might take
different amiounts of time, but the probability of n failures in
an interval depends sole on the probability of failure per run
and the long-run average number of runs that occur in the time
interval.

Every non-negative, integer-valued random variable X has an
associated probability generating function (pgf). There Ins a
ons-to-one relationship between a random variable's pgf and
probability distribution. Given one, the other is uniquely
determined and vice versa. The pgf is a power series
transformation of the probability mass function into a function
of the (usually complex) variable z. It is defined as

U

Gx(Z) " .Pz(.x.x}zzx. z ) (3-5)

The dummy variable z must be restricted to a range in which the
power series is convergent. The series is always absolutely and
vniformly convergent for I I?~l, and may also converge for a more
extensive range. Hence, G(z) is a continuous function. The
probability mass function of X can be recovered by

Pr X-X) (o) (3-)

which is the x-th derivative of Gx(z) evaluated at z evaluated at
z-0, since Gx(z) is the Taylor series expansion for Gx(z) about
Z.0.

If X and Y are independent random variables, the pgf of their sum
is the product of their pgf's:

-,. (z) G,(z)Gy(z) (B-7)

because

E(zx}) .E{zX}E{zy) (B-S)

The pgf for the Poisson distribution is
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GX(Z) - EIZX} meyxp[-Xt] 7.x
C)(3-9)

Since the series
O (t.z)* 1-0

converges to Atz for all AoO, Equation B-9 becomes

exp[E( -A exp [A•tz] - exp [A.t(z-1)] (I-1)

To prove that the counting process (N(t) ,t20) satisfying the
axioms is a HPP, it suffices to show that the pgf of N(t) is that
of an HPP [Parzen (1962)]:

O.(Z, t) - exp.(z-I)) , (kiZ- (I-12)

The proof is divided into two parts. The first, part shows that
the pgf is a consequence of assuming that a positive constent A
exists satisfying three key equations. The second t! shows
that a positive constant A satisfying those key equ~ti• does in
fact exist.

The three key equations are

lirn I-P.c tN(A t)-O} -0 (3-13)
&c-o t

Ae-O At
m Prz M(A t) -1,)AC-0 At

lim ra W.•{(L t) k2) o.0(-S
AA-t A t

From the independent increments axiom it follows that
• E ( zN(e&• I) } E { zN(•'h ) .N(e)) Ef{z M(•)) (3- 36 )



From the stationary increments axiom it follows that
Of(z, t +A) - (z, t) * (Z A t) (-

and
1

*((Z, [+A) -(z.A - (-1

It is now shown that
Jljm-•-1 {(z, At) -1} - X(z-l) (3-1w)

Expanding *(z,At), one may write

1

r .. (.p:(1(At)O)-0 1) + z-•P(N&Mt)01) (3-20)

+ zP:NWA 0 -2)

But, for IzI<l,

.tz" PN {N(A 0-n2 K Pr{N(At)-2) (B-21)

Therefore, to obtain Equation B-1•

lim• I (• A€

P lim 1 (l [p{N(A ,0113 + 1imz _l Pr {N(At)0.}) (B-22)
A C-0 A C-0 At

+ 1im--J!-Pr'N(At) k2) - - + z1 - I (z-1)

Next it is shown that from Equations B-18 and B-19, Equation B-12
is obtained. Let At-*O in Equation B-18:

B-6



AC-o At:
A 9•-0

* 1imor(z, t) ILrior(r,at) -1iJC2t-0 At

The pgf satisfies the differential equation Irom Equation B-19
•r * (Z, 0) -1 (Z-1) *( ) 0 -o2: (3-24)

with initial condition *(z,O)-l. The solution to this
differential equation is

Up(z,) - exrEX(z-)], 1:1<1 (3-25)

Let Pj(t) denote Pr(N(t)-J). Aasume that P0 (t) is bounded.

Since
Pr WNC t.+ ta) -0)

M PX{N,(t.4t.2)-,V(t,) so A N(tL,) no)

it follows from the axioms of stationary and independent
increments that

* P 0 t 1 )P(t2 )(9-27)

If for some arbitrary time to, P0 (t,)-O, and P0 (t) is bounded, it
can be shown that

PO(W) a exp(-At] (3-28)

The case 1-0 corresponds to a degenerate distribution in which no
events ever occur. By Axiom 3, 0<P0 (t)<l for all t, so Equation
B-28 holds with )>0.

a. Next, it is shown that from Equation B-28 one obtains the
first key equation

lir 1-PUr(A0 0) - lim1-P0 (At)
Ac-o AC AC-0 At

- lie l-exp[.-;.t] (3-.29)
A C-0 A t

- lirn I exp [-;A t] - A,
A t-0
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Now the second key equation (B-14) can be proven by using the

fact that

1 -PC (/,&C) aP, (,&t) ) + (3-30)A: ~ ~ ~ 1 " : L"'(A t)

and
lim M(AO)

(by Axiom 3), where Q(t)-Pr(N(t)a22. From Equations B-30, B-
31, and the first key equation (B-13), one can write

I a lim -o(, .lim P., (A t) 1+ V_ r! _
A,.o . . A ,,0" X. t (3-32)

SlimAS.O (A [1+01 - lim

From the second key equation (B-14) an4 from Equation B-31, the
third key equation (B-15) holds, since

0 li P t(At).lim 0( li A0)
A-o 0 t: Ae-o-0 •.( 3 " Ate (.33)

.limPr {N(A t) k2)
AA-

A 19-0 A

Empirical evidence [Musa (1979)] also supports the constant
-failure rate model for software.

It should be noted that the way failures are counted for the
Basic Execution Time Model during growth testing is different
than that described here. Growth testing is a completely
different context. Because repair activity is going on, the
failure rate is not constant but varies over time. The Basic
Execution Time Model allows for multiple simultaneous "software
failures," contrary to Axiom #3. During growth testing, each
discrepancy (difference betieen the output variable value and the
value dictated by the requirements) caused by a distinct fault is
colinted as a separate software failure. The reason is that the
debugging will address all of the discrepancies. The subsequent
removal of each underlying fault will cause a decrement in the
program failure rate.

If each discrepancy were counted as a separate failure during
demonstration testing, the result would not be an IPP. In fact,
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the distribution of failures is given by the "stuttering Poisson
distribution" [Haight (1967)]. Axiom 4 does not hold. Let the
probability of k software failures in the time interval (t,t+At)
be

A.Pkdt + o(dt) (3-34)

The probability of zero failures in an interval is
L0 (W) - exp[-A•) (-35)

The time to first failure is thus still exponentially
distributed. The probability of n+. failures in time t is given
by the recurrence ralation CAdelson (1966)3

,(t) .--- * n (n-J÷±) .,. (-6)
n+1.

The same stuttering Poisson distribution can also be derived by
providing a finite probability r that the gap between successive
failures will be zero. Then the cumulative distribution function
of the gap between successive failures [Smith (1957), Smith
(1958a), Smith (1958b)3 is

F(x) 7C + (1-71) (1-eXP[-XX) (3-37)

B-9



APPENDIX C

DYNAMIC ALLOCATION

C-I



C. DYNAMIC ALLOCATION

C 1. 1.ASSum.tioQn

The following conditions are assumed to hold:

i) the component failures are statistically independent
ii) the failure of any component results in failure of the

aggregate
iii) the component failure rates are constant

C.2. ation

R': the required reliability for the aggregate for the mission
time t.X*: the required failure rate for the aggregate.

R, (t 1 ) : the allocated reliability for the i-th component
n: the total number of components
m: the total number of time intervals

: the allocated failure rate for the i-th component
t: mission time for the aggregate

: the time at which the j-th time interval endsi
j =0,1,2,...m.e

t,: total mission time for the i-th component: iwl,2,...,n.

Note the following relationships:

a) tl+tz+...+tn - t.

b) to0 < t' 1 * S t'

C) tM " t.

d) The relationship between X* and R* can be written as

R*(t) - e'-'e

or lnR(t) (0-(t

where t is the aggregate mission time.
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C.3. Dynamic Allocation Techniaun

Suppose that an acceptable value of the allocated failure rate
for each component i must belong to [A1,•), i-1,2,...n.

By using the proportional allocation technique (see Section 3 of
this report), a failure rate A1 can initially be assigned to the
i-th component, i-i,2, ... n, based on the timing relationship
among the components (sequential, interleaved or simultaneous
processes). If one of the If's does not belong to its accepted
region, without loss of generality, say X1, then the Effort
Minimization Algorithm can be used to reallocate the failure rate
of each component to 11*, ial,2,...,n.

Before discussing this algorithm, some notation needs to be
introduced:

AO" pre-allocated failure rate for the i-th components;
i:-. 1a * o , n.

A,: the smallest acceptable value for the allocated failure
rate of the i-th component; i:- 1,...,n.
new allocated failure rate for the i-th component.

G(A1 ,A'*) : effort function, the amount of effort needed to
decrease the failure rate of the i-th component
from 1, to X1' (i:- 1,...,n).

Note: The effort function G(x,y), x > y t 0, is assumed to

satisfy the following conditions [Kapur et al. (1977)]:

a) G(x,y) ? 0.

b) G(x,y) is nonincreasing in y for a fixed value of x
and nondecreasing in x for a fixed value of y

G(x,y) 5 G(x+AXty) • 0.

c) G(x,y) is additivei i. r G(y,z) - G(x,z);
z<y<x.

d) G(y,0) has a derivative h(y) such that h(y) is
strictly decreasing in y.

6) G(x,y) - G(txfty), Vt > 0.

Four different effort minimization problems will be presented in
light of the timing relationship among the components
(sequential, interleaved and/or simultaneous processes), and the
complexity factor c1 of each component, i-!,2,...n, with
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c -1.-2)

If 11 < &,, then let the new allocated failure rate of the first
component be Ij &,; po, at least one of the remaining X.,
i-L,2,...n, must be decreased. To do this, a certain amount of
effort is needed (such as: further engineering development, extra
manpower, extensive testing, etc.) Let the effort function be
G(A1 1X,'), i-l,2,...,nj and assume this function satisfies the
above conditions. Now, the new allocated failure rates AX,,
i-2,...,n, can be calculated by solving one of the following
minimization problems.

I) Problem I:

If the aggregate has sequentially active components and the
complexity factors are not taken into consideration in the
objective function, then the new allocated failure rates for the
components 2 to n can be computed by solving the following
optimization problem:

n

(P) Minimize G(X1, 1*)

such that X; t2 + +An'At-11 (C-3)

~In In An;

Rewriting the above optimization problem (P) yields:
n

W?') Minimize G(Ij, )I)

S. •, Aht:÷. .. - A* t- .

2 (C-4)

-X.; + X2 k 0

An +. A 0
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By Kuhn-Tucker conditions (Phillips at al. (1976) , there exist
/14"0 92n-2 and A such that the following relations hold:

2 A2 h

(3) lL1(; - A) U 0(1) ~ ~ LX) C2 0Xtl

(2 Ak 0

-ka ' (÷ k. An 0
(3) 

II(;. - 1 ) - 0 0P.., (1.* - I A ) a 0
G'A(-I.; + )) a 0

corspnin k'yels

(I)2. a(-In* + Adk 0 0

(4) if 0 the2B'2 ". ,a 0

(5) if(A,2, n.) + 0 th-n P. + an 0

((A3 i Bot +t) - 92 +•Pn.l 0

Now, multiplying each formula of Equation C-5 with thecorresponding Ik" Yialda:
Xk*) ka(4,, 1") +I;xk•klx•kk~~~ (C-4)

By Equations C-3 and C-4, one of the following cases holds:

(i) if Ak-1 > 0 then lk* m Ik and lk~n-2 - 0.-

(ii) if 'Uk+n-2 > 0 then ;.,' m Ik and AW- " 0.

(iii) Both AW-1 - AWkn-2 - O.
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Thus, for the values of k such that Ak-W " ;Ijn-• 0, Equation C-6

can be rewritten as

*G, (;.k, 1.;) +÷ ski - 0 (C-7)

or
. Gg)A . (', •[,,. (0-8)

ek

Next, assume that

G(•kA) ' G(tk'%k,e,)4), for a"l k "> 0 k-l,2,(o).

then, I - -G' (XktkIA*tk)/ti for all values of k's such that
Au- :0÷,-a " 0. Since G I(y) is a strictly decreasing function
k- c / t is true, for all values of k's such thaA.

S-w " /kmn.a a 0,and some constant c.

Now, without loss of generality, suppose )11t1 S A tz . ... A ),t
Next, assume for the first k, variables, and he last n-
variables, case (i) and (ii) hold, respectively, then

and I, u,... X k. 1 k - (M0)

where k1 < ku. Under these assumptions, a pair, k, and k,, needn
to be found hat satisfies the following relations:

a) 12 C- tI%+k(n-kl-(n-k2 )-1) c+kk. 46. , m It-

b) Ck0(0

C) M., CM ' Im

From (a), it is true that

k2 -kj-I

Substituting the above equation into (c) yields
for all k1+l S m aS 3c-1.

Ther'fore, k and k must be found such that k, < kand (7) holds
for all m, where k1 l 5 m 5 k2 -1. One choice for k and k, is as
foll.ows:
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(C-13)

1) Let k be the minimum value of index t such that

.%It, < )' 1 c.-A•Cj-X 2, 1:,-.. ,-aen (0-314)

2) Let k, be the maximum value of index j such that

, > U_ . ,I .... - _kw aa 2I-2- (J+1)

Hence, a solution of (P) can be written as:
it k-1 s ki then

%IIf or 2 sI & It
1,for k, g (0-%6)

f or 2 :gd < k
- for k, < i s n

2) Problem 1I:

This is similar to Problem I, but this time the complexity
factorp of each component are incorporated into the optimization
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(P) to compute the failure rates for the components 2 to n. (P)
can be rewritten an follows:

n

(P) Minimize CjG(1•.;•)

such that 1 + Xt-Ltl

cj I O, 1:-1,2,...nJ
n

Using Kuhn-Tucker conditions an in the above problem, a solution
for Problem IZ is obtained that can be written as:

Let k, be the minimum value of index I such that

c, rai C, a-|

2 xi gn

Let kI be the maximum value of index j such that

dO j-J7 1-4to el tcs naC(-20)

If k2-1 : k, then

f•/ if 2£ik2  (C.,1);'; " if k2<I~n
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else

if 2siskl
if k2 gi<n

xj. ( 1; ;_ 2 Jtt1 1JStJS I n (C-22)

if k 1÷lsmgk2-1

III) Problem III:

If the aggregate has concurrently active components, and
complexity factors are not taken into consideration in the
objective function, then the new allocated failure rates for the
components 2 to n can be computed by solving the following
minimization problem:

D0

(P) Minimize G(X•,11)

such that X. +X,* - P.-4 (-23)

This problem has the same objective function as that of problem
I, but the first constraints in these two problems are not the
same. However, the Kuhn-Tucker conditions [Phillips et al.
(1976)] can still be applied to obtain a solution that can be
written as:

Let k2 be the minimum value of index t such that
it < 14-11-11-10,1-.9 .-0An (0-2'4)

Let kI be the maximum value of index j such that
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- 1 .. . k-J1 a*fl (C-25)

else

k2-1 - kk2- I k-a
"I k2--- ,ý k,1 then-

IV) Problem IV:

'•his problem is similar to problem III, except the complexity
factors of each component are incorporated into the objective
function. Therefore, in this case the optimization problem canbe 2ritten as

(F) Minimize c•G(A.1 , A;)
such that, ..... . -

cI • 0, i-1,2,...fl

k2-kj. C1 * 12

Applying the Kuhn-Tucker cinditions to this problem, a solution
can be exprensed as follows:

etz be the minimum value ct index I such that
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I Cm (C-29)

Lt k1 be the maximum value of index j such that

> iii 2 -* -L&I a n( 30

c• cJ.1 *'"r-

If k2- i-A.< ki then

Ili if 211:0c2(-1
11 if k2<i:cn (-

else

, if 2lIski
11 if k2girn

____ ____ ____ ____ ____(C-32)

if k 1+1 s m i k2 -1
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D. EARLY PREDICTION OF PROGRA Z

This appendix discusses some of the methods for predicting the
size of a software program prior to coding.

The methods outlined below in Parts D.1, D.2, and D.3 are based
on the psychometric techniques pioneered by Thurstone, further
developed and applied by Souder and Saaty. These methods are
employed to assign a position to each module along an interval
scale. Such an interval scale can then be used to conpute the
estimated lengths of the modules; the sum of these estimated
lengths is the predicted size of the software program in hand.

In order for the methods to predict the absolute size of each
module, the set of modules needs to be augmented by at least two
"reference" modules. These are modules that the experts are
familiar with and whose sizes are known. These reference modules
would ordinarily come from other projects in the organization.
One reference module must be the shortest of all the modules.

D.1 Successive Ratings Method

The Successive Ratings Method was first introduced by Souder
(1980). The modules are first ordered according to their
conceptual lengths (based on the experts' judgments of how long
or short the modules are relative to each other). Then, the
modules can be entered into the successive ratings form (Table D-
1), based on their order, from the longest to the shortest.

Table D-1: Successive Ratings Method Example

Clmn 1 oum n 2 Colmn_3
Compare Compare Compare to

Modules to to longest and
longest shortest shortest

2. 120 100

3 60 70 65

4 30 20 25

2 20 11

Note: in the above table, module 1 is the longest and module 2 is
the shortest.

The numbers 100 and 10, underlined in the table, are pro-recorded
parts of the standard successive ratings form.
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in the first column each lower-ordered module is then
successively compared to the highest-ordered (longest) module and
a number corresponding to its relative value is assigned. For
example, the number 60 for module 3 in Table D-1 indicates that
the length of module 3 is 60% of the length of module 1.
Similarly, module 4 is 30% as long as module 1, and module 2 is
20% as long as module 1.

When column 1 is filled in, the comparison process is reversed to
obtain the data in column 2. For example, module 4 is judged to
be twice as long as module 2; module 3 is seven times as long as
module 2; and module 1 is twelve times as long as module 2.

Each number in column 3 should reflect the values of the modules
relative to the longest and shortest modules.

The sequence of numbers in column 3 can be thought of as an
interval scale for the lengths of the modules.

D.2 Pairwise Comparisons

The Pairwise Comparisons Method was developed by Saaty (1982) for
solving decision making problems. A judgmental matrix of the
relative lengths of the modules (in a software program) is
formed, using the experts' evaluation. Then, by applying either
the Geometric Mean Approach or the Power Method, an interval
scale for the lengths of the modules can be calculated.

In the Pairwise Comparisons Method, the user must assign numbers
to the first row of a judgmental matrix of the form

M1  M2  M3  M4

M1  1

A- M2  
1

M3  1

M4

based on the following definition.
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If module A is being compared to module B then

Number Dfnto

1 A is equal to B
3 A is moderately longer than B
5 A is longer than B
7 A is very much longer than B
9 A is. extremely longer than B

2,4,6,8 Intermediate values between two adjacent
judgcments

Reciprocals If module i has one of the preceding
numbers assigned to it when it is com-
pared with module J, then module j
has the reciprocal value when it is
compared with module i

For instance, if M2 and M4 are moderately longer than M1 , and M3
is extremely longer than k, then the first row of matrix A can
be written as

M1 M2 M3 M4

M1 1 3 9 4

M2 1

M3 1

M41

Now, the remaining entries in the upper triangle of the matrix A
can be computed from the information of the first row. For
example, from the first row we have M1 - 3M, M3 - 9M,
M- 4MJ; thus, M3 (9/3)M - 3?2, ?4 . (4/3)12, and 14
-14/9)M3. Therefore, the upper triangle of matrix A can be
written as
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M1  M2 M3  M4

141 1 3 9 4

M2 1 3 4/3

M3 1 4/9

M4 1

The value of each entry in the lower triangle of matrix A is the
reciprocal of the value of the symmetric element with respect to
that entry in matrix A. So, A is

M1 M2 M3 M4

MI 1 3 9 4

M2 1/3 1 3 4/3

M3 1/9 1/3 1 4/9

M4 1/4 3/4 9/4 1

Next, we will compute an interval scale for the lengths of the
modules based on the judgmental matrix, by using either the
Geometric Mean Approach or the Power Method.

i) Geometric Mean Approach:

For each row i of matrix A, i - 1,2,3,4, take the product of the
ratios in that row and denote it by f_. Calculate the
corresponding geometric mean Pi, where Pj - (fl)1/4, i - 1,2,3,4.
Let P P . Wd normalize the Pi (i.e., transform them so that
their resulfant sum equals unity) by forming Pi " (Pj/P). Each
pi is a corresponding value assigned to module i, ± - 1,2,3,4.
Rearranging the p 's in descending order gives us an interval
scale for the lengihs of the modules.
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For example,

M1 M2  M3  M4  Pi" ) 1 / 4  pijPi/P

M1  1 3 9 4 108 3.2237 0.59

M2  1/3 1 3 4/3 4/3 1.0746 0.19

M3  1/9 1/3 1 4/9 0.01646 0.3582 0.07

M4  1/4 3/4 9/4 1 0.42188 0.8059 0.15

P-5.4624

So, an interval scale of the lengths of MI, M2, M3, M4 is

Interval Scale

M1 0.59
142 0.19
144 0.15
143 0.07

One deficiency of the Geometric Mean Approach to obtain an
interval scale is that it can reverse the order of the lengths of
the modules. To detect this phenomenon, assume the lengths of
two of the modules are known. If the interval scale value of
module A is longer than the interval scale value of B, but the
length of module A is shorter than the length of module B, then
the Geometric Mean Approach has reversed the order of the lengths
of the modules. In that case, the Power Method must be used
instead.
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ii) Power Method:

The matri6 A is multiplied repeatedly by an arbitrary vector, say
[1,,1,11 . At each step, the resultant vector is normalized by
making its largest component equal to unity. This recursive
procedure can be stopped when the following relation holds:

where e can be any predetermined small number, say e - 0.0000001,
and (fk)i denote the i-th component of the unnormalized fk.

Below is the illustration of the Power Method when it is applied
to matrix A.

1 3 9 4 1 17 1

1/3 1 3 4/3 1 5.666667 0.33333
m -17

1/9 1/3 1 4/9 1 1.888889 0.11111

1/4 3/4 9/4 1 1 4.25 0.25

ft

1 3 9 4 1 4 1

1/3 1 3 4/3 0.33333 1.3333 0.33333
- -4

1/9 1/3 1 4/9 0..1111 0.4444 0.11111

1/4 3/4 9/4 1] 0.25 1 0.25

f 2
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[1 3 9 4 1 41

3 1 3 4/3 0.33333 1.3333 0.33333

1/9  1/3 1 4/9 0.11111 0.4444 0.111
1/4 3/4 9/4 1 0.25 1 0.25

J 6

So, CI, 0.3333, 0.111, 0 . 2 5 3T gives an inter'al scale for the
lengths of the modules MI, M2, M3, M4 to be

Intaeral Scale

M42 0.33333
144 0.25
M3 0.11111

Notice that for the above interval scale and the one in part
(I) (i), one can be converted to the other by means of a linear
transformation. For example, if we multiply 0.59 with each
element in the above interval scale, we will obtain the interval
scale in part (II) (i).

D.3 Paired Comparisons Method

The idea of the Paired Comparisons Method was developed by
Thurstone (1959). In the Paired Comparisons Method the experts
are prompted with the names of twQ modules, selected at random,
and asked to decide which one in his estimation is the larger.
Several experts make their judgments on many modules.

The first step is to summarize the responses in a matrix. Below
is an example of such a matrix.
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Module (k)

M A B C D E
0
d A .50 .79 .16 .48 .67

u B .21 .50 .03 .21 .25

* C .84 .97 .50 .76 .0i

(1) D .52 .79 .24 .50 .68

E .33 .75 .19 .32 .50
m - -il

The value of each entry in the table above indicates the
proportion of experts who judged module (k) to be larger in eize
than each of the other modules (1). Note that the diagonal
elements contain proportion .50 and that for each pair Pij it
must be the case that Pij + Pji - 1.00.

The next step is to create a new matrix by converting each
proportion to a z-3core. The normal deviate is used, with all
proportions over .50 yielding positive z-scores and those under
yielding negative z-scores:

0.00 0.80 -. 99 -. 05 .44
-0.80 0.00 -1.88 .81 -. 67
.99 1.88 0.00 .71 .88
.05 .81 -. 71 0.00 .47

-. 44 .67 -. 88 -. 47 0.001

(e.g., in the first table of this section, 79% of the experts
believe that module B is longer than module A; to find the z-
score which corresponds to 0.79, a value of z needs to be
calculated such that Pr(Z c z) - 0.79, where Z E N(0,1).
Therefore, z (or z-score) - 0.80.)

To obtain an interval scale, the sums and arithmetic means of
each column are calculated. The column isums are

-. 21 4.17 -4.46 -62 1.12

and the averages are
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-. 04 .83 -. 89 -. 12 .22

From any of the above methods, an interval scale can be obtained
for the lengths of the modules in a software program. For
example, in Part(I), an interval scale was obtained for the four
modules in a software system:

Modules Interval Scale

1 100

3 65

4 25

2 10

Now, assume the lengths of modules 3 and 2 are known, say 1000
and 500, respectively. Then, the lengths of the modules 1 and 4
can be calculated as follows:

the lenghof module 4 - 500(100500 (25-10)

" 636,

the length of module I - 500+( 1%0000 )(100-20)

a 1318.

Below is the general formula to compute the estimated sizes of
the modules in a software program:

Assume that there exist n modules, and that an interval scale for
the lengths of the modules has been obtained by the Successive
Ratings Method. Also, assume that the length. of modules i,j,k,n
(denoted by Li,LjLkLn), i<j<k<n, are known.
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Interval -Scale O
(obtained from the 4th
column of the Successive
Ratings Form)

*11 I

! Ili Li

L

I Iin Ln

Then, the length of the l-th module is

Lj + (LI-LO) (ZI-XI) V lISZO, 1 01

- (L -L)

Lj ÷L B (I•-I) , V k<l<n

Note: Any one of the three methods in Parts I, II and III can beused for producing an interval scale for the lengths of the
modules. The method to use depends on the level of familiarity
of the software engineering staff with the software concerned.The Successive Ratings Method requires the most understanding ofthe software compared to the other two methods, while the Paired
Comparisons Method requires the least.
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E. IVRATE REGRESSION ANALYSES

This appendix presents a detailed description of the multivariate
regression models which were formulated as a part of developing
prediction models for software failure rate (SOW 4.1.3.2). The
appendix is organized into four sections:

2. Presentation of the notation that is used in the regression
analyses.

2. A detailed discussion of the multivariate regression analyses.

3. The correlation matrix for standardized software failure rate
(Y) and software characteristics (x,,...,.X,)

4. Printed computer outputs of stepwise selection analyses,
stepwise regression model, principal component analyses, and
least squares method (using principal components) for each
software development phase.

Summary results of these analyses are provided within the
appropriate sections of the main body of the report.

Table E-l contains the data set for nine observations (CSCIs)
which are collected from the reliability database described in
Appendix A. This data will be used in regression analyses in
this section.

Some of the independent variables were normalized based on kilo
lines of executable code (KLOC). The normalized independent
variables are x1,.. .,x 14,x 16 x, 4x2,. The formula to normalize xi
where i e (1,2,...,,,,16,24,25)?S

x1 - (xi / x1s) 1000

Recall that x15 is the number of LOC in each observation.

For each phase of the software development process, a new
regression model was formed which involves Y (software failure
rate as the dependent variable) and x,, in 1,2,...,k where k : n,
and contains more software characteristics as they become
available. Therefore, several regression models were formulated
for each software development phase .(such as requirements
analysis, preliminary design, detailed design, coding and unit
test).

The scatter plots Y (software failure rate) versus x (software
characteristic), i - 1,2,...,n, based on the collectel data from
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Appendix A, were drawn. These scatter diagrams suggest that the
regression models can be linear in terms of all the variables
except x6, x1 F x31 x14 1 X16, FX 230. However, both linear and
nonlinear regression models involving software failure rate
(dependent variables) and the software characteristics
(independent variables) described above were developed for each
phase of software development.

The general linear regression model is of the form

- a0 + alxI + a2x2 + ... + akxk

where k assumes different values depending on the software
development phase. Similarly, the non-linear regression model
for each phase of the software development is a sum of the linear
combination of items in a subset of (x1,... ,xs,x 7, • ..
;**,X22,X24,X20 ard the linear combination of items in the subset
of ({/x6, l/x1., 1/x 13, f/x 14, '/x 16 , I/x,); the sizes of these
subsets depend on the phase of the software development. Notice
that x 5 is not used in any of the regression models, except to
normalize appropriate independent variables, since, the software
failure rate i should not depend on the size (x15 ) of the
software.
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Table E-1. Data Set Observations

Obs. #1 Obs. #2 Obs. #3 Obs. #4 Obs. #5

X, 352 30 50 323 280

X2 929 740 4248 680 1356

653 140 472 1367 452

X,_ 7 5 8 201 55

Y- 80 37 13 141 280

X, ii 14 30 18 2086

X, 36 19 28 4 44

xrt 1470 120 100 842 L100

-0 206 939 3260 500 6959

Xin 44 5 20 22 7.5

xll 26 40 90 426 4920

X12 1 4 16 82 7.5

XI' 23 4 32 250 29

_X4. 65 23 20 2750 445

XI 230000 40000 5091 140000 241900

XIA 359 85 201 424 600

X17, 5 6 4 5 2

xig 1470 120 100 842 1100

X19 150 35 50 50 60

x 8 8 10 10 5

x2 0.95 1 1 1 .

X22 3 3 3 2 3

X2 1 1 10 1 1

X9, 160 11 12 156 60

X: 447 112 253 3424 1074

y 36 31 64 48 10
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Table E-1. Data Set Observations (con't)

Cbs. #6 Obs. #7 Obs. #8 Obs. #9

x, 50 0 0 0

.. 700 296 504 270

n 75 63 186 97

XA 55 53 42 35
At_ 50 38 "_ 39 0

X& 898 32 38 113

X7 22 29 26 22

x_ 300 36 45 22

XO 2565 312 274 169

XIn 2.5 34 31 20

X41 1080 6 12 36

X12 2.5 51 46 16

XIN 6 1 3 31

X14 300 86 109 94

XI% 53100 4889 5769 4135

XIA 400 39 36 53

X17 2 7 7 7

xlf 300 36 45 22

Xio 60 136 128 1.88

x,= 5 48 52 18

X9 1 1 1 1

X11 3 1 1 2

X2,% 1 4.1 4.1 2.6

XU 20 42 53 21

7q 706 126 148 178

Y 8 6.5 6 8.8
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In addition to the regression models that are developed as the
software development advances, other regression models were
formulated by examining the correlations of the independent
variables. But, only linear relationships between Y and x,, i =
1,2,...,n, are examined in these models.

E.1 Multivariate Linear Rearession Model Development

The correlation matrix of x1,.. x and y, based on the collected
data, can be found on pages i-21 through E-24. Most of the
variables are highly correlated to one another. For example,
cons ider the * st s t x1, x 2 , x 32 x3, x 9,1x 2 3, x 25 ),
(x4 ,x5,x 7 ,x 10oX X x XTe, 0 x 2 2,
x24), etc. The variables in each set have high correlation to
one other.

Several prediction models will now be systematically presented.
A different model, is developed for each phase of the software
development life cycle, using the metrics that are cumulatively
available at that stage. Using the successive models, the user
can update the prediction at each design phase when the metrics
from that stage become available. After system test begins,
actual failure data will become available, and the results of
growth testing will supersede the prediction model.

The regression is performed by using the method of least squares.
Least squares finds the "best- fitting" hyperplane, where best
fitting means to find the hyperplane such that the sum of the
squares of the deviations of the predicted Y values from the
observed Y values is a minimum, which is the criterion of minimum
variance unbiased estimation. Because the number of metrics
available in latter phases exceeds the number of observations,
two different approaches were taken: selecting a subset of the
most significant predictors using stepwise regression, and
aggregating metrics using principal components analysis.
Additionally, a regression model was formulated that is based on
the correlations of the independent variables.

Although more than one regression model was developed, only one
was ultimately chosen by comparisons among the models in the
validation task. That model is the one that will be used in the
draft MIL-HDBK.

(Note that all regression analyses are done based on a 0.15
mignificance level.)
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E.1.1 Rearession Models Based On Software Development Phases:

E.1.1.1 Reauirements Analysis

There are only five independent variables involved in the
regression model for the requirements analysis phase.

x,: number of errors in the requirements specification
(SRS)

x2: Requirements statements in the SRS
x3: Pages in SRS
x4 : Man-months for requirements analysis
x,: Requirements changes after baseline

Since the number of observations is greater than the number of
independent variables in this case, an attempt has been made to
produce the regression model by using the method of least squares
(i.e., the surface of the regression model fits the corresponding
set of data points such that the sum of the squared errors is
smallest). The result of this technique is:

Y - 5.126 + 15.717xI - 0.172x2 + 0.52x3 + 0.39X4 - 0.234xs

with Y restricted to nonnegative values.

The complete output of the above regression model is on pages E-
25 and E-26 of this appendix. Based on this output one can
observe that the value of the coefficient of determination (R2)
is rather significant (w 0.85). This number represents the
percentage of total variation in the failure rate sampled that is
explained by the regression surface. But, since the p-value, of
hypothesis tests (I) and (II) are all higher than 0.15 (the
predetermined significance level), and the values of the standard
deviations of the parameter estimates are also quite high, it is
suggested that all of the variables x,, xi,. , x5 are too
insignificant to be included in the model. This phenomenon
occurred as the result of too few data points (nine observations)
involved in the regression analysis (with five independent
variables). Therefore, either stepwise regression or principal
components analysis is preferable.

Most of the regression analyses in this section are sizqilar to
each other. The list of formula& for the items that appeared in
the outputs of the regression analyses were taken from the
SAS/STAT user's guide and are included in this appendix starting
on page E-18.
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Using the stepwise regression technique, a new regression model
for the requirements analysis phase involving only x, and x2 was
developed. It can be written as follows:

Y - 11.46159363 + 12.5764363 xi - 0.08453592 x2

where Y is restricted to nonnegative values.

(Note: The complete output of the stepwise reir.asion analysis
for this phase is provided on pages E-27 through E-30)

The value of R2 of each variable involved in the final stepwise
regression model for requirements analysis is substantial, and
all the p-values of hypothesis tests (1) and (II) are smaller
than 0.15. Note that x, x2 and x3 are highly correlated, as well
as x4 and x5 (based on Vhe correlation matrix on page E-21), and
the values of the standard deviations of the parameter estimates
are high (for y-intercept and x,). This fact suggested that the
above stepwise regression model is inferior to the model that is
produced using principal components analysis. This is because
stepwise regression does not work well with correlated variables,
whereas principal components does.

Principal components are linear combinations of the original
variables: i.e., if P is a principal component of (x1 ,...,x 5 ),
for i-1,2,...,5, then is of the form

p* .~x + ax ... +asx

The coefficient aof is the kth component of the ith normalized
eigenvector of Zhe sample variance-covariance matrix. For
example, in the case i-1,

P1 - 0.008548X1 + 0.99488x2 + 0.100704x, - 0.000135x + i,000478x,

The list of eigenvalues and normalized eigenvectors of the
estimated variance-covariance matrix for the requirements
analysis phase is provided on page E-31.

Since the first eigenvalue is greater than 99.7% of the sum of
all sigenvalues, it is only needed to form a linear regression
model Involving the software failure rate (dependent variable)
and P1, the first principal component (independent variables).

The data set of P1 was formed based on the original data set of
x1, x2,...,x 5. The linear regression model (based on princip&l
components analysis) can be summarized as
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Y - 18.04246146 + 0.05053379 P1

where

P1 - 0.008548x, + 0.99488x 2 + 0.100704x3 - 0.000135x4 + 0.000478xs

and Y is restricted to nonnegative values.

On page E-33, the output of the least squares regression analysis
of Y and P is provided. All components in the column titled
"Prob > ITI" and the p-value of hypothesis test (I) are much less
than the 0.15 significance level. This indicates that the y-
intercept and P1 variables are relevant to the model. The minor
disadvantages of this model are that R2 - 0.4064, (i.e., only
40.7% of the total variation in the failure rate sampled is
explained by the regression surface), and that the standard
deviation of the y-intercept is large.

Although the stepwise regression method, in this case, gives a
model with better values for R2 than principal components
analysis, the fact that only x, and x are chosen by the stepwise
method (even though these two varalales are highly correlated)
suggests that the stepwise model should not be preferred.

E.l.1.2 Preliminary Design Phase

In addition to the variables identified in the requirements
analysis phase, five more variables are involved in the
regression analysis in this phase. They are:

xV: number of errors in preliminary design documents
x.: number of computer software components (CSCs)
x.: number of unite (or Ada packages) in the design

structure
x.: Pages in design documents (SDDu)
x10 ; Man-months for preliminary design

It is clear that a valid least squares regression cannot be
obtained here, since the number of observations is less than the
number of independent variables. So, only stepwise regression
and principal components analysis were performed.

The stepwise regression technique in this case chooses x, and x,
to be in the final stepwise regression model. This model can be
written as:

Y - 11.91767775 + 14.11517877 x1 - 0.13589515 x9

where Y is reetricted to nonnegative values.
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The output for stepwise regression analysis for the preliminary
design phase can be found on pages E-35 through E-38. The value
for R2 is high, and the components in the column titled "Prob >
ITi", as well as the value of "Prob > F", on page E-37 are all
below the predetermined level of significance. Since the
stepwIse procedure only allows a variable to stay or enter the
tegression model if that variable mcets the 0.15 significance
level, the fact that variables x2,...,x 3,x 10 are not in the final
stepwise model shows that they are irrelevant to the model.

Since there ar6 10 independent variables involved in the stepwise
analysis, and only 9 observations are available, the MSE for the
full model cannot be computed. Therefore, C , the Mallow's
statistic cannot be computed; so, only R2 is uied in decision-
making for the model.

From the correlation matrix, it can be detected that most of the
variables in (x1,...,x 10 ) are highly correlated to each other,
especially x, and x,. This indicates that the stepwise
regression model may not be good in terms of predicting the
software failure rate. Other factors used to examine the
validity of the stepwise regression model are the standard
deviations of parameter estimates. Since these values of the y-
intercept and x are high, it is further evidence that the
stepwise regression model may not be adequate to describe the
relationship between software failure rate and software
characteristics which are available after the preliminary design
phase.

In order to perform principal components regression analysis, the
eigenvalues and eigenvectors of the estimated variance-covariance
matrix of x,,...,x10 and y were computed and are shown on page E-
41. Since the sum of the first two sigenvalues is greater than
99.7% of the sum of all the eigenvalues, only Pi and P2 will be
involved in the principal components regression model. Recall
that

2

- 0.99810

moans 99.8% of the total variation of the sampled software
failure rate can be explained by only two principal components,
P1 and P2.

The data set for P1 and P2 can be easily computed by using the
following formulas:
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P1  0.006892x, + 0.795885x2 + 0.07994x 3 - 0.000288X + 0.000323xs+ 0. 0094x9x7,°'l•sx
.000094;6 + 0.004297X7 + 0.012784x + 0.5999SX, + o.002784xo

P2 - 0.032916x i + 0.448504X2 + 0.562345x 3 + 0.115656X4 + 0.077519x,
- 0.004974x6 + 0.071291x7 + 0.014141X8 - 0.671443x9 + 0.077466xio

The output of the least squares regression model for Y, P1 and P2
can be found on pages E-42 and E-43.

The value of R2 (the coefficient of determination) is similar to
that of the principal components regression model for the
requirements analysis phase. For a 0.15 level of significance,
the values of the components in the column titled "Prob > IT"..
and the values of standard deviations of parameter estimates
imply that only the y-intercept and P, are relevant to the
regression model. Since the value of "Prob > F" is bigger than
0.15, the null hypothesis of (I) should be rejected (i.e., all
coefficients of independent variables must be 0).

This phenomenon may occur as the result of achieving too large a
number for the total variation of software failure rate which is
explained by the regression model. Thus, a new regression model
that only involves Y and P, was considered at this point. The
complete output of this regression model is on page 1-44. Below
is the summary of the regression model with Y and P, as dependent
and independent variables, respectively.

Y - 17.89874335 + 0.04016008 PI

where

PI - 0.006892x, + 0.795885x + 0.07994x3 - 0.00028Bx4 + 0.000323x
+ 0.000094x, + 0.004297x7 + 0.012784x, + 0.59995x9 + 0.002784XI0

Y is restricted to nonnegative values.

This model possesses very good statistical characteristics. For
example, all p-values of hypothesis tests (I) and (II) are below
0.15 and the value of the coefficient of determination R2 is not
too small. Also, the values of the standard deviations of
parameter estimates are reasonable, except for that of the y-
intercept.
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E.1.1.3 Detailed Design Phase

Four new variables are introduced for this phase:

x 11 : number of errors ijr design documents
x12: Man-months for detailed design
x13: Design flaws identified after baseline
x14; Design flaws identified after an internal review

The stepwise regression analysis and principal components
analysis were performed to obtain different regreosion models.
Then, after the validation task is corpleted, one of these
regression models will be chosen.

From stepwise regression analysis, a regression model can be
written an follows:

Y a 28.96925965.+ 15.63285056x1 + 0.2540362x6 - 2.38561282x, -
0.08100319x, - .1992758x,,

where Y is restricted to nonnegative values.

The output of the stepwise regression analysis for the detailed
design phase can be found on paqes E-46 through E-50. Sivilar to
previous phases, the value of R6 is high, and the values of the
components in the column titled "Prob > ITI", as well as the p-
value of hypothesis testing (I) are relatively small compared to
0.15. But, since high correlations exist between the variables
involved in the itepwise process, and the values of the standard
deviations of parameter estimates are high (except for that of
x•) the stepwise regression model is not good for predicting the
software fAilure rate, after the detailed design phase.

The output of the computed eigenvalues and eigenvectors of the
estimated variance-covariance matrix for x ,..., x,4 , Y is
provided on page E-53. The first three principal components of
(X .,x} )are selected for the regression model, sinc the sum
of the first three eigenvalues is greater than 99.7% of the sum
of all the eigenvalues for the matrix.

The least squares regression analysis involving Y, PI,...,P3 can
be found on pages E-55 and E-56. The principal components
regression model for the detailed design phase can be written as

Y - 36.61996444 + 0.12930799 PI - 2.4687751 P2 - 0.64069017 P3

where
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P1 - 0"006891xi + 0.795S821x 2 + 0.07993x 3 - 0.000289x, + 0.000322x,
+ 0.000097x 6 + 0.004296x 7 + O.012792xS + 0.599912x 9 + 0.002783xo +
0.i0963x11 + 0.001 7 42Xi2 + 0.003708x13 - 0.003289x14

P20= 0.010031XI + 0.403242xZ + 0.485487x 3 + 0.131773x, + 0.07455x5
+ 0.018274X + 0.077214X7 + 0.009831X - 0.595055X9 + 0.08573XI -

0.261383X1 , + 0.113134x, 2 + 0.069211X1 3 - 0.348945X14

P3 - -0.25458x + 0.016768x - 0.263973x + 0.202666X - 0.072133x,
+ 0.62971x + b.103537x? - t.l20209x + .013S61l+ ÷.106051x10 +

0.34t472x1 1 + 0.1i1607XII - 0.i4901X13 - 0. 90828X14

where Y is restricted to nonnegative values.

Notice that in this case the value of R2 is quite high and the
components of the colunn titled "Prob > IT |" (see page E-55) are
relatively lower than 0.15 (level of significance); but the
values of tha standard deviations of y-intercspt, P2 and P3 are
high. Hence, further examination is required to validate the
credibility of the above model.

E.1.1.4 Coding and Unit Test Phase

Below is the list of the additional variables that were
considered in the regression analysis after the Coding and Unit
Testing phase:

x16 : Faults found through code reviews
x47: Programmer skill level (average years of experience)
x15 : number of units undergoing review
X19 : Average number of source LOC per unit
x20: number of branches in a typical unit
x21: Percent of branches covered
x22: Nesting Depth average
x23: number of times a unit is unit-tested
x24: Man-months for Coding and Unit test
x25: Defects identified from walkthroughs and reviews

(Note: x25 - x 13 + X14 + X 16 ; therefore, only x2, was considered in
the regression analysis.)

As in the previous phases, the stepwise regression and principal
components analyses were also performed for the coding and unit
test phase.

From stepwise regression analysis, the regression model can be
described as follows:
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Y - 23.91 + 16.4x1 + 0.33x 6 - 2.02x8 - 0.10x 9 - 1.46X11 - l.33x,? -
0.n04A,, + 12.99x21

(In case the calculated value of Y is negative, this number
should not be used as the predicted software failure rate.)

The stepwise regression analysis can be found on pages E-57
through E-61. Notice that the F values for the selected
variables in Step 8 are extremely large (999999.99), which
indicates that this model is not reliable in describing the
relationship between software failur, rate and software
characteristics. Deepite this, an attempt was made to perform
the least squares regression analysis based on Y, x,,x•, x3, x,
x11, x17, xI., X21. Tne results can be found on page E-62. Nt
not surpri'sing that this attempt failed for the same reason as
mentioned above. A stepwise regression model cannot be formed at
this point, and the model was therefore discarded.

Based on the results of eigenvalues of the estimated variance-
covariance matrix of X1,...,x , ,*,X17F * only the Zirst

principal component is selected to be in•the regression model
(for the principal components analysis approach).

The principal components regression analysis gives

w - 38.02688694 - 2.58584501P1
where

P1 " -0.0000xI1 - 0.000851x, - 0.00C137x3 - 0.000021x4 - 0.000015x;
- 0.000025x6 - 0.000017X7 - .00002x - 0.000631x - 0.00017xi0 +
0.000014x11  - 0.00002x1 2  - 0.0 8 0012x16  + .005288x1 8 -

0.000125x19 - 0.000108x2 - 0.000x2 1 + 0.000004x22 - 0.00O003xO2 -

0.000019X24 - 0.007l 7 x2

and Y is restricted to nonnegative vulues.

In this case, the value of R2 is very low (0.0748,i.e., only
7.48% of the total variation of the sampled software failure
rates can be explained by the above model). Also, since the
second component in the column titled "Prob > ITI" is much
greater than 0.15 (level of significance), and the values of the
standard deviations of parameter estimates are high, P1 is not
"relevant" to the regression model. But, P, cannot be deleted
from the model; If it is deleted, there will be no model to
consider.
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E.1.2 Rearession Models Based on Correlations among Independert
Variablgs

Since the regressors x , ,... x2 are correlated, it is difficult to
disentangle the effects of one regressor from those of another,
and the parameter estimates may be highly dependent on which
regressors are uned in the model. Instead of formulating new
regression modeli based on the progress made in software
development, anoither way to "pyroatch tha task o: finding the
relationship between software failure rate and software
characteristics was used. This method is discussed below.

Independent variables are assigned to different sets such that
the elementa of a set are highly correlated to one another. In
this case, based on the correlation matrix on pages E-21 through
E-24, it was determined that independent variables can be divided
into four disjoint sets { x1,,Xs,X31 ,X9,X,,X 2 s ) If x4,xs,x 7,x1 0,
X xI•,x1,,gxx•, X220X24 ) , ( x1 ,x 17 ) , ( X6 } , I X21 ). (Some of
tzlese inidependent variables have been normalized, so that the
mere effect of program size is canceled out.

Next, after performing principal components analysis for each set
with more than one element, regression models can be formulated
using either the method of least squares or stepwise regression
analysis. It was determined that only the first principal
component of each set needed to be involved in regression
analyses, since the fewest number of independent variables
involved in regression models as possiblq is dasired. (Note that
in case of a singleton, the element in that set is its first
principal component.)

This approach was expected to yield reasonable regression models,
since the independent variables involved are uncorrelated.

Notation:

A x { x 2, x0, x3, x8, xI, x9 , x2 }
B " { x, x 5 , X7, X10 , X12 , X 18 , X1 9, X20, X2 2 , X2 4

C- X11,0 x17
D x.4
E = ( x21

PA: the first principal component of A
PI: the first principal component of B
PC: th. first principal component of C
PD: the first principal component of D; in this case P0 - 6
PI: the first principal component of E; in this case P, - 21
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A new data set for PA, Pop Pc, PD, PE was computed based on the

original data of xl,...,x,.

E.l.2.1 Least Scruares Methqd Applied to Principal Components

Below is the formula of the regression model involving Y,
PA,....,PE which is produced by using the Least Squares method

Y - 303.72 + 0.049 PA + 0.015 P9 + 0.041 Pc " 0.647 P0 - 290.93 Pt

where

PA - 0.006891x, + 0.795466x2 + 0.079926x3 + 0.012782x8 + 0.599617x;
+ 0.008398XZ + 0.032006x25

P a - 0.004142x4 - 0.002728x " 0.003202x 7 " 0.003143x10 -
0.003841x1 ,2 + 0.g99722x18 - 0.013048x19 - 0.017678x 20 +
0.00063x. - 0.003551X24

PC - 0.981742x11 - 0"L 9 0218xiT

PO - X6

pE M X 21

and Y is restricted to nonnegative valu,.

Although the value of R2 for this regression model is large
(0.7455)--i.e., a large percentage of the total variation in the
failure rate sampled can be explained by the regression surface,
the j.-value of the hypothesis test (I) and most of those of
hypothesis test (II) are much bigger than 0.15 significance
level. This suggests that all the coefficients of the
independent variables in the regression model should be 0. Thus,
the model is not adequate to describe the relationship between
software failure rate and its characteristics.

Notice that all p-values of hypothesis test (II), on page E-79,
are much greater than 0.15 (the predetermined significance
level), except for the p-value of the hypothesis test for PA.
This indicates that another regression model which only involves
Y and PA needed to be considered.

This model can be summarized as follows:

Y - 17.88125956 + 0.04011814 PA

where PA is defined previously. (In case the calculated value of
Y is negative, this number should not be used as the predicted
software failure rate, in this case.)
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Although the value of R2 is smaller than that of the regression
model which involvedY , Ps,..., P1, this model is preferable
since the all p-values of both hypothesis tests (I) and (II) are
lower than 0.15 (the predetermined significance level), also, the
value of the standard deviations of parameter estimates is
reasonably small.

Since P. is a linear cr.-b'natir ,f !#, ::%, x v, x9 1c,, x25, and
U10e complete data of these independent variables will not be
available until after the Code and Unit Test phase of software
development, this regression model cannot be used in the early
stages of software development.

E.1.2.2 Stlewise Rearessign Applied to Princial Componenta

Another way to correctly eliminate some of the independent
variables in (P,..,P,), besides examining the p-valves of
hypothesis test (Yi), is to perform stepwise regression analysis.

As mentioned earlier, stepwise regression allows a variable to
enter or leave the regression model based on the value of R2 and
Mallow's statistic C_. The result of the stepwise regression
analysis in this case is:

Y - 27.78996571 + 0.03884431 PA - 1.20635275 PC

where

P - 0.006891xI + 0.795466x, + 0.079926x; + 0.012782x8 +
0.599617; + 0.008398x. + 0.033006x2 5

and P0 " x6. (In case the calculated value of Y is negative,
this number should not be used as the predicted software failure
rate, in this case.)

Although the values of R2 and p-values are reasonably good, the
values of the standard deviations of parameter estimates of the
y-intercept and P0 are substantial. Therefore, this regression
model is not adequate in term of describing the relationship
between software failure rate and software characteristics.

E.2 Multivariate Nonlinear Regression Models Develooment

Based on the scatter plots of Y versus x,, i - 1,2,...,25, it was
noticed that Y is inversely proportional to each of the following
independent variables, x, xW, X1I x1 , x1, x2. Therefore, in
this section, new regression models of softAware failure rate and
software characteristics are formulated based on

E-17



X 1 ,... ,X,XS,.7., XI 0 1 X 12 1 X 1 5 1X 1 7P,*I,X 2 2,X 241 X2 5 and l/x , l/x 1  I/x13
l/x , i/x 16, l/x2. * (Recall that some of the independent
variables were normalized based on KLOC.)

There were more than one regression model which were built for
each phase of the software development by using the least squares
method, stepwise regression, and principal components analysis.
The number of 4i-esscrt inr-lved in the regression analysis for
each software development phase, in this section, is the same as
that in section E.I.

These regression models are almost identical to or possess the
same characteristics as the corresponding models in the
discussion on Multivariate Linear Regression Models. Therefore,
creating new regression models based on the inverse proportional
relationship betweon Y and x , where i belongs to (6, 11, 13
,14, 16 ,23), results in neg'ligible improvements to the linear
regression models. Thus, the models in this section can be
ignored in the process of validation.
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- n: number of observations
- k: number of independent variables in a regression model
- yl: actual value of software failure rate of the i-th

observation; i:- 1,2,...,n.
"- 9t: predicted value of software failure rate of the i-th

observation; i: m 1,2,...,n.
- bl: estimated coefficient of the i-th independent variable;

i: - O, 12,..., n; b0: estimated y-intercept
- G,,: estimated standard deviation of the random variable bf;

Dep. Mean : F a 9-
12

Sum of Squares Model = SSR
n

Sum of Squares Error. SSE

Sum of Squares C Total - SST

U SSR + SSE

Mean Square Model . MSTR

SSR
k

Mean Square Error SSE

n- (k+l)
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F- VaIlu (Model) - MSTR
MSE

this is the F-statistic of the hypothesis testing with

(1) H0: b-"bim 00. ' bk" O
H-: 3 at least one bD bi 0 0 where 0 S i S k

- Prob > F (Model): p-value of the above hypothesis testing (I)i
this is the significance probability, or the probability of
getting a greater F-statistic than that observed if the
hypothesis in (1) is true.

Root MSE .

Root MSE is an estimate of the standard deviation of the error
term.

- C.V: coefficient of variationi this number expresses the
standard deviation of the error term in unitless value.

C.V - ( 100 * Root MSE ) / Dep. Mean

- R0: coefficient of determination; a measure between 0 and I
which indicates the portion of the (corrected) total variation
that is attributed to the fit rather than left to residual error.

RI - SSR / SST

- Adj R-sq: the adjusted R2 , this is a version of R2 that has
been adjusted for degrees of freedom.

Adj R-sq - 1 - C((n - i)(1 - R2)) / (n - p)J•

where i is equal to 1 if there is an intercept, 0 otherwise; and
p is the number of parameters in the model.

The parameter estimates and associated statistics are all

printed: and they include the following:

- The parameter estimates

- the Standard Erro2', the estimate of the standard deviation of
the parameter estimate
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- T for H0 Parameter - 0 gives the T-ratio of hypothesis tests
with

(II) H0 : bi - 0
HI: b! 0 0; where 0 : i k

T-za~io * b

- Prob > I T I column on page 111111 provides the p-value for each
of the hypothesis test in (II). This is the two-tailed
significance probability, or the probability that a t statistic
would obtain a greater absolute value than that observed given
that the true parameter is zero.
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CORRELATION MATRIX

Xi X2 X3 X4 X5 X6

Xi 1.0000 0.9362 0.8452 -0.3536 -0.1201 -0.2176
X2 0.9362 1.0000 0.9635 -0.0651 0.1014 -0.0439
X3 0.8452 0.9635 1.0000 0.1145 0.2110 0.0347
X4 -0.3536 -0.0651 0.1145 1.0000 0.6895 0.4298
X5 -0.1201 0.1014 0.2110 0.6895 1.0000 -0.1743
X6 -0.2176 -0.0439 0.0347 0.4298 -0.1743 1.0000
X7 0.2094 0.5114 0.6461 0.8147 0.6155 0.3814
X8 0.9073 0.9670 0.9496 0.0130 0.2251 -0.0898
X9 0.9411 0.9963 0.9416 -0.0932 0.0891 -0.0360
X1O -0.0041 0.3049 0.4660 0.9189 0.7586 0.3108
Xli 0.4035 0.3674 0.2585 -0.3284 -0.3100 0.4513
X12 -0.1623 0.1224 0.2788 0.9134 0.9108 0.1270
X15 -0.1006 -0.3707 -0.4807 -0.6175 -0.4669 -0.3673
X17 -0.3104 -0.1035 0.0814 0.7137 0.4612 -0.0085
X18 -0.0429 -0.3204 -0.4223 -0.6001 -0.4598 -0.4065
X19 -0.4256 -0.2358 -0.0807 0:6879 0.2103 0.4592
X20 -0.3302 -0.0665 0.1197 0.8457 0.9220 0.0152
X21 0.0368 0.1637 0.2210 0.3051 0.2667 0.3339
X22 0.4056 0.1.948 -0.0149 -0.8757 -0.7942 -0.0875
X23 0.7783 0.9375 0.9648 0.2588 0.4084 0.0107
X24 -0.2630 0.0317 0.2346 0.9257 0.8501 0.20S7
X25 0.5060 0.6775 0.7958 0.5172 0.2281 0.4316
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CORRELATION MATRIX (con't)

X7 X8 X9 X10 Xi1 X12

Xi 0.2094 0.9073 0.9411 -0.0041 0.4035 -0.1623
X2 0.5114 0.9670 0.9963 0.3049 0.3674 0.1224
X3 0.6461 0.9496 0.9416 0.4660 0.2585 0.2788
X4 0.8147 0.0130 -0.0932 0.9189 -0.3284 0.9134
X5 0.6155 0.2251 0.0891 0.7586 -0.3100 0.9108
X6 0.3814 -0.0898 -0.0360 0.3108 0.4513 0.1270
X'7 1.0000 0.5406 0.4829 0.9626 -0.0715 0.8360
X$ 0.5406 1.0000 0.9599 0.3728 0.3060 0.2275
X9 0.4829 0.9599 1.0000 0.2732 0.4215 0.0962
X1O 0.9626 0.3728 0.2732 1.0000 -0.2305 0.9476
Xl -0.0715 0.3060 0.4215 -0.2305 1.0000 -0.3468
X12 0.8360 0.2275 0.0962 0.9476 -0.3468 1.0000
X15 -0.7474 -0.3308 -0.3567 -0.7003 0.0920 -0.6153
X17 0.5725 -0.0808 -0,1668 0.6689 -0.8177 0.6621
Xi8 -0.7104 -0.2481 -0.3140 -0.6656 0.0002 -0.5899
X19 0.4956 -0.1399 -0.2796 0.5772 -0.3857 0.5032
X20 0.6732 0.0556 -0.1020 0.8372 -0.4753 0.9504
X21 0.3261 0.0706 0.1819 0.2933 0.3494 0.2796
X22 -0.6003 0.0643 0.2346 -0.7761 0.5157 -0.8821
X23 0.7499 0.9465 0.9234 0.6047 0.2108 0.4580
X24 0.8059 0.1392 -0.0079 0.9286 -0.3908 0.9692
X25 0.8077 0.6?00 0.6493 0.6798 0.1599 0.4740
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CORRELATION MATRIX

XI5 X17 X18 X19 X20 X21

Xi -0.1006 -0.3104 -0.0429 -0.4256 -0.3302 0.0368
X2 -0.3707 -0.1035 -0.3204 -0.2358 -0.0665 0.1637
X3 -0.4807 0.0814 -0.4223 -0.0807 0.1197 0.2210
X4 -0.6175 0.7137 -0.6001 0.6879 0.8457 0.3051
X5 -0.4669 0.4612 -0.4598 0.2103 0.9220 0.2667
X6 -0.3673 -0.0085 -0.4065 0.4592 0.0152 0.3339
X7 -0.7474 0.5725 -0.7104 0.4956 0.6732 0.3261
Xe -0.3308 -0.0808 -0.2481 -0.1399 0.0556 0.0706
X9 -0.3567 -0.1668 -0.3140 -0.2796 -0.1020 0.1819
X1O -0.7003 0.6689 -0.6656 0.5772 0.8372 0.2933
Xli 0.0920 -0.8177 0.0002 -0.3857 -0.4753 0.3494
X12 -0.6153 0.6621 -0.5899 0.5032 0.9504 0.2796
X15 1.0000 -0.5222 0.9756 -0.1376 -0.5186 -0.5707
X17 -0.5222 1.0000 -0.4545 0.5964 0.6913 0.0000
X18 0.9756 -0.4545 1.0000 -0.0563 -0.4951 -0.7011
X19 -0.1376 0.5969 -0,0563 1.0000 0.4933 -0.3709
X20 -0.5186 0.6913 -0.4951 0.4933 1.0000 0.2078
X21 -0.5707 0.0000 -0.7011 -0.3709 0.2078 1.0000
X22 0.4671 -0.7217 0.4395 -0.5073 -0.9286 -0.2887
X23 -0.5400 0.1381 -0.4858 -0.0231 0.2782 0.2343
X24 -0.6024 0.7206 -0.5728 0.6015 0.9699 0.2492
X25 -0.6507 0.3210 -0.5954 0.2408 0.2867 0.4182
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CORRELATION MATRIX (con't)

X22 X23 X24 X25

Xl 0.4056 0.7783 -0.2630 0.5060
X2 0.1948 0.9375 0.0317 0.6775
xi -0.0149 0.9648 0.2346 0.7958
X4 -0.8757 0.2588 0.9257 0.5172
X5 -0.7942 0.4084 0.8501 0.2281
X6 -0.0875 0.0107 0.2057 0.4317
X7 -0.6003 0.7499 0.8059 0.8077
X8 0.0643 0.9465 .0.1392 0.6900
X9 0.2346 0.9234 -0.0079 0.6493
X10 -0.7761 0.6047 0.9286 0.6798
Xli 0.5157 0.2108 -0.3908 0.1599
X12 -0.8821 0.4580 0.9692 0.4740
XI5 0.4671 -0.5400 -0.6024 -0.6567
XI7 -0.7217 0.1381 0.7206 0.3210
XiS 0,4395 -0.4858 -0.5728 -0.5954
X19 -0.5073 -0.0231 0.6015 0.2408
X20 -0.9286 0.2782 0.9699 0.2867
X21 -0.2887 0.2343 0.2492 0.4182
X22 1.0000 -0.1353 -0.9220 -0.3584
X23 -0.1353 1.0000 0.3734 0.7711
X24 -0.9220 0.3734 1.0000 0.4698
X25 -0.3584 0.7711 0.4698 1.0000
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REQUIREMENTS ANALYSIS PHASE: Least Squares Method

DEP VARIABLE: Y
ANALYSIS OF VARIANCE

sum OF MEAN
SOUTRCE DF SQUARES SQUARE f VALUE PROB>F

MODEL 5 3099.68840 619.93768 3.195 0.1839
ERROR 3 582.01382 194.00461
C TOTAL 8 3681.70222

ROOT MSE 13.92855 R-SQUARE 0.8419
DEP MEAN 24.25556 ADJ R-SQ 0.5784
cove 57.42418

PARAMETER ESTIMATES

PARAMETER STANDARtD T FOR HO:
VARIABLE DF ESTIMATE ERROR PARAMETER=O

INTERCEP 2. 5.12618938 13,38038672 0.383
xi 1 15.71786692 8.32103039 1.889
X2 1 -0.17215913 0.13550831 -1.270
X3 1 0.51992600 0.85056011 0.611
X4 1 0.38956606 2.53978622 0.153
X5 1 -0.23386176 2.43926235 -0.096

VARIABLE DF PROB > tTI

INTERCEP 1 0.7272
xi 1 0.1553
X2 1 0.2935
X3 21 0.5842
X4 1 0.8878
X5 1 0.9297
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PREDICT STD ERR LOWER95%
OBS ID ACTUAL VALUE PREDICT MEAN

1 1.53043 36.0000 29.8926 6.8038 8.2395
2 0.75 31.0000 15.3818 8.963.0 -13.1366
3 9.82125 64.0000 64,0621 13.9284 19.7350
4 2.30714 48.0000 45.3538 12.9698 4.6773
5 1.1575 10.0000 23.1440 6.8621 1.3053
6 0.94162 8.0000 18.5746 7.3890 -4.9410
7 0 6.5000 3.8082 13.8177 -40.1666
8 0 6.0000 8.1040 13.7796 -35.7495
9 0 8.8000 9.3788 13.8826 -34.8026

10 13.6698 . 234.4 111.5 -120.5
11 1.47059 • 21.9711 7.7646 -2.7396

UPPER95% LOWER95% UPPER9S5%
OBS ID MEAN PREDICT PREDICT RESIDUAL

1 1.53043 51.5458 -19.4409 79.2262 6.1074
2 0.75 43.9001 -37.3272 C8.0907 15.6182
3 9.82125 108.4 1.3737 126.8 -0.0621
4 2.30714 87.2304 -14.6159 106.5 2.0462
5 1.1575 44.9827 -26.2713 72.5592 -13.1440
6 0.94162 42.0902 -31.6043 68.7535 -10.5746
7 0 47.7830 -58.6315 66.2480 2.6918
8 0 51.9576 -54.2503 70.4584 -2.1040
9 0 53.5603 -53.2066 71.9643 -0,5788

10 13.6698 589.4 -123.3 592.1
11 1.47059 46.6817 -28.7789 72.7210

STD ERR
OBS ID RESIDUAL

1 1.53043 12.1537
2 0.73 10.6633
3 9.82125 0.0653
4 2.30714 5.0782
5 1.1575 12.1209
6 0.94162 11.8071
7 0 1.7539
8 0 2.0317
9 0 1.1302

10 13.6698
11 1.47059

SUM OF RESIDUALS 1.57652E-14
SUM OF SQUARED RESIDUALS . 582.0138
PREDICTED RESID SS (PRESS) 8041231
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REQUIREMENTS ANALYSIS PHASE: Stepwise Selections

STEPWISE REGRESSION PROCEDURE FOR DEPENDENT VARIABLE Y

WARNING: 2 OBSERVATIONS DELETED DUE TO MISSING VALUES.

NOTE: SLENTRY AND SLSTAY NAVE BEEN SET TO
.15 FOR THE STEPWISE TECHNIQUE.

STEP 1 VARIABLE X1 ENTERED R SQUARE - 0.67484762
C(P) - 1.17054544

DF SUM OF SQUARES MEAN SQUARE F PROB>F

REGRESSION 1 2484.58798182 2484.587982 14.53 0.0065
ERROR 7 1197.11424040 171.016320
TOTAL 8 3681.70222222

B VALUE STD ERROR TYPE II SS F PROB>F

INTERCEPT 13.81140806
Xl 5.69406301 1.49387362 2484.587982 14.53 0.0066

BOUNDS ON CONDITION NUMBER: 1, 1

STEP 2 VARIABLE X2 ENTERED R SQUARE - 0.81369325

C(P) = 3.53561689

DF SUM OF SQUARES MEAN SQUARE r PROB>F

REGRESSION 2 2995.77625834 1497.888129 13.10 0.0065
ERROR 6 685.92596389 114.320994
TOTAL 8 3681.70221222

B VALUE STD ERROR TYPE II SS F PROB>F

INTERCEPT 11.46159363
X1 12.57643630 3.47633170 1496.231406 13.09 0.0111
X2 -0.08453592 0.03997734 511.188277 4.47 0.0789

BOUNDS ON CONDITIO11 NUMBER: 8.100769, 32.40308

NO OTHER VARIABLES MET THE 0.1500 SIGNIFICANCE LEVLL FOR ENTRY
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SUMMARY OF STEPWISE REGRESSION PROCEDURE FOR DEPENDENT VARIABLE Y

VARIABLE NUMBER PARTIAL MODEL
STEP ENTERED REMOVED IN R**2 R**2 C(P)

1 X1 1 0.6748 0.6748 1.17055
2 X2 2 0.1388 0.8137 0.53562

VARIABLE
STEP ENTERED REMOVED F PROB>F

I X1 14.5284 0.0066
2 X2 4.4715 0.0789
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FR&UIREMENTS ANALYSIS PHASE: Stepwise Regression Analysis

DEP VARIABLE: Y
ANALYSIS OF VARIANCE

SUM OF MEAN
SOURCE DF SQUARES SQUARE F VALUE PROBF

MODEL 2 2995.77626 1497.88813 13.102 0.0065
ERROR 6 685.92596 114.32099
C TOTAL 8 3681.70222

ROOT MSE 10.6921 R-SQUARE 0.8137
DEP MEAN 24.25556 ADW R-SQ 0.7516
C.V. 44.08103

PARAMETER ESTIMATES

PARAMETER STANDARD T FOR HO:
VARIABLE DF ESTIMATE ERROR PARAMETER-0

INTERCEP 1 11.46159363 4.35386975 2.633
Xl 1 12.57643630 3.47633170 3.618
X2 1 -0.08453592 0.03997734 -2.115

VARIABLE DF PROB > ITI

INTERCEP 1 0.0389
Xl 1 0.0111
X2 1 0.0789

PREDICT STD ERR LOWER95%
OBS ID ACTUAL VALUE PREDICT MEAN

1 1.53043 36.0000 30.3676 5.1568 17.7494
2 0.75 31.0000 19-3300 3.8476 9.9152
3 9.82125 64.0000 64.4400 10.6835 38.2983
4 2.30714 48.0000 40.0666 7.1778 22.5031
5 1.1575 10.0000 25.5450 4.3932 14.7952
6 0.94162 8.0000 22.1894 3.9907 12.4245
7 0 6.5000 6.3434 5.4949 -7.1021
a 0 6.0000 4.0762 6.2383 -11.1883
9 0 8.8000 5.9417 5.6189 -7.8072

10 13.669C . 182.9 45.6505 71.1989
11 1.47059 . 24.9837 3.8277 15.6176
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UPPER95% LOWER95% UPPER95%
OBS ID MEAN PREDICT PREDICT RESIDUAL

1 1.53043 42.9857 1.3210 59.4141 5.6324
2 0.75 28.7449 -8.4751 47.1351 11.6700
3 9.82125 90.5817 27.4553 101.4 -0.4400
4 2.30714 57.6301 8.5553 71.5779 7.9334
5 1.1575 36.2947 -2.7400 53.8300 -15.5450
6 0.94162 31.9543 -5.7362 50.1150 -14.1894
7 0 19.7889 -23.0720 35.7588 0.1566
8 0 19.3408 -26.2139 34.3663 1.9238
9 0 19.6906 -23.6136 35.4970 2.8583

10 13.6698 294.6 68.1760 297.6
11 1.47059 34.3497 -2.8049 52.7723

STD ERR
OBS ID RESIDUAL

1 1.53043 9.3664
2 0.75 9.9758
3 9.82125 0.4280
4 2.30714 7.9246
5 1.1575 9.7479
6 0.94162 9.9194
7 0 9.1721
8 0 8.6836
9 0 9.0967
10 13.6698
11 1.47059

SUM OF RESIDUALS 1.842974-14
SUM OF SQUARED RESIDUALS 685.926
PREDICTED RESID SS (PRESS) 76527.44
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REQUIREMENTS ANALYSIS PHASE: Principal Component Analysis

PRINCIPAL COMPONENT ANALYSIS

11 OBSERVATIONS
5 VARIABLES

SIMPLE STATISTICS

Xl X2 X3 X4 X5

MEAN 2.87712 105.297 20.0766 2.83031 2.59865
ST DEV 4.52637 243.706 26.7754 3.99664 3.05383

COVARIANCES

X1 X2 X3 X4 X5

X1 20.488 507.627 76.7436 -6.88532 4.59364
X2 507.627 59392.6 6000.55 -9.22677 26.4418
X3 76.7436 6000.55 716.922 11.1813 23.2099
X4 -6.88532 -9.22677 11.1813 15.9731 5.96383
X5 4.59364 26.4418 23.2099 5.96383 9.32588

TOTAL VARIANCE-60155.27

EIGENVALUE DIFFERENCE PROPORTION
CUMULATIVE

PRINI 60004.3 59883.3 0.997491
0.99749

PRIN2 121.0 98.2 0.002012
0.99950

PRIN3 22.9 17.3 0.000380
0.99988

PRIN4 5.6 4.2 0.000093
0.99998

PRXN5 1.4 . 0.000024
1.00000
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EIGENVECTORS

PRINM PRIN2 PRIN3 PRIN4 PRIN5

X1 0.008548 0.229267 -. 593818 0.443844 0.630671
X2 0.994880 -. 097623 0.003010 0.024948 0.007280
X3 0.100704 0.944222 0.020841 -. 287915 -. 122369
X4 -. 000135 0.104725 0.782781 0.146934 0.595565
X5 0.000478 0.188107 0.184906 0.835401 -. 482213
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REQUIREMENTS ANALYSIS PHASE: Least Squares Method
(using Principal Components)

DEP VARIABLE: Y
ANALYSIS OF VARIANCE

SUM OF MEAN
SOURCE DF SQUARES SQUARE F VALUE PROB>F

MODEL 1 1496.13872 1496.13872 4.792 0.0648
ERROR 7 2185.56350 312.22336
C TOTAL 8 3681.70222

ROOT MSE 17.66984 R-SQUARE 0.4064
DEP MEAN 24.25556 ADJ R-SQ 0.3216
C.V. 72.84864

PARAMETER ESTIMATES

PARAMETER STANDARD T FOR HO:
VARIABLE DF ESTIMATE ERROR PARAMETER-o

INTERCEP 1 18.04246146 6.53814173 2.760
Pi 1 0.05053379 0.02308493 2.189

VARIABLE DF PROS > ITI

INTERCEP 1 0.0281
P1 1 0.0648

PREDICT STD ERR LOWER95%
OBS ID ACTUAL VALUE PREDICT MEAN

1 4.31759 36.0000 18.2606 6.4955 2.9011
2 18.7646 31.0000 18.9907 6.3621 3.9467
3 839.563 64.0000 60.4687 17.5602 18.9451
4 5.83555 48.0000 18.3374 6.4808 3.0126
5 5.7755 10.0000 18.3343 6.4814 3.0082
6 13.2658 8.0000 18.7128 6.4111 3.5528
7 61.534 6.5000 21.1520 6.0582 6.8266
8 90.1651 6.0000 22.5988 5.9384 8.5567
9 67.323 8.8000 21.4445 4.0283 7.1898

10 9.03386 18.4990 6.4503 3.2462
11 59.2754 21.0379 6.0706 6.6831
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UPPER95% LOWER95% UPPER95%
OBS ID MEAN PREDICT PREDICT RESIDUAL

1 4.31759 33.6202 -26.2559 62.7772 17.7394
2 18.7646 34.0347 -25.4180 63.3994 12.0093
3 839.563 102.0 1.5618 119.4 3.5313
4 5.83555 33.6621 -26.1672 62.8419 29.6626
5 5.7755 33.6605 -26.1707 62.8394 -8.3343
6 13.2658 33.8729 -25.7353 63.1610 -10.7128
7 61.534 35.4774 -23.0184 65.3224 -14.6520
8 90.1651 36.6410 -21.4805 66.6782 -16.5988
9 67.323 35.6993 -22.7030 65.5921 -12.6445

10 9.03386 33.7517 -25.9809 62.9788
11 59.2754 35.3927 -23.1421 65.2178

STD ERR
OBS ID RESIDUAL

1 4.31759 16.4326
2 18.7646 16.4848
3 839.563 1.9652
4 5.83555 16.4384
5 5.7755 16.4382
6 13.2658 16.4657
7 61.534 16.5988
8 90.1651 16.6421
9 67.323 16.6097

10 9.03386
11 59.2754

SUM OF RESIDUALS 3.46390E-14
SUM OF SQUARED RESIDUALS 2185.563
PREDICTED RESID SS (PRESS) 84362.07
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PRELIMINARY DESIGN PHASE: Stepwise Selections

STEPWISE REGRESSION PROCEDURE FOR DEPENDENT VARIABLE Y

WARNING: 2 OBSERVATIONS DELETED DUE TO MISSING VALUES.

NOTE: SLENTRY AND SLSTAY HAVE BEEN SET TO
.15 FOR THE STEPWISE TECHNIQUE.

STEP I VARIABLE X1 ENTERED R SQUARE - 0.67484762
C(P) a .

DF SUM OF SQUARES MEAN SQUARE F PROB>F

REGRESSION 1 2484.5879818; 2484.587982 14.53 0.0066
ERROR 7 1197.11424040 171.016320
TOTAL 8 3681.70222222

B VALUE STD ERROR TYPE II SS F PROB>?

INTERCEPT 13.81140806
X1 5.69406301 1.49387362 2484.587982 14.53 0.0066

BOUNDS ON CONDITION NUMBER: 2, 1

STEP 2 VARIABLE Xg ENTERED R SQUARE - 0.86541068

C(P) = I

DF SUM OF SQUARES MEAN SQUARE F PROB>F

REGRESSION 2 3186.18444000 1593.092220 19.29 0.0024
ERROF 6 495.51778222 82.586297
TOTAL 8 3681.70222222

B VALUE STD ERROR TYPE II SS F PROB>F

INTERCEPT 11.91767775
X1 14.11517877 3.07005978 1745.770281 21.14 0.0037
X9 -0.13589515 0.04662451 701.596458 8.50 0.0268

BOUNDS ON CONDITION NUMBER: 8.745719, 34.98288

------------------- mmmmmmm----------------------ammm --m-mm -

NO OTHER VARIABLES MET THE 0.1500 SIGNIFICANCE LEVEL FOR ENTRY
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SUMMARY OF STEPWISE REGRESSION PROCEDURE FOR DEPENDENT VARIABLE Y

VARIABLE NUMBER PARTIAL MODEL
STEP ENTERED REMOVED IN R**2 R**2 c(P)

1 X1 1 0.6748 0.6748
2 X9 2 0.190.6 0.8654

VARIABLE
STEP ENTERED REMOVED F PROB>F

1 X1 14.5284 0.0066
2 X9 8.4953 0.0268
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PRELIMINARY DESIGN PHASE: Stepwise Regression Analysis

DEP VARIABLE: Y
ANALYSIS OF VARIANCE

SUM OF MEAN
SOURCE DF SQUARES SQUARE F VALUE PROB>F

MODEL 2 3186.18444 1593.09222 19.290 0.0024
ERROR 6 495.51778 82.58629704
C TOTAL 8 3681.70222

ROOT MSE 9.0877 R-SQUARE 0.8654
DEP MEAN 24,25556 ADJ R-SQ 0.8205
C.V. 37.46647

PARAMETER ESTIMATES

PARAMETER STANDARD T FOR HO:
VARIABLE DF ESTIMATE ERROR PARAMETER-0

ZNTERCEP 1 11.91767775 3.63650384 3.277
X1 1 14,11517877 3.07005978 4.598
X9 1 -0.13589515 0.04662451 -2.915

VARIABLE DF PROS > ITI

INTERCEP 1 0.0169
X1 1 0.0037
X9 2 0.0268

PREDICT STD ERR LOWER95%
OBS ID ACTUAL VALUE PREDICT MEAN

1 1.53043 36.0000 33.3983 4.8157 21.6148
2 0.75 31.0000 19.3139 3.2591 11.3392
3 9.82125 64.0000 63.5265 9.0808 41.3065
4 2.30714 48.0000 43.9981 6.6057 27.8345
5 1.1575 10.0000 24.3466 3.391: 16.0483
6 0.94162 8.0000 18.6444 3.1730 10.8804
7 0 0.5000 3.2453 5.0935 -9.2181
8 0 6.0000 5.4633 4.5832 -5.7513
9 0 8.8000 6.3636 4.3968 -4.3949
10 13.6698 2 202.2 39.9995 104.4
11 1.47059 . 22.6830 3.0574 15.2017
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UPPER95% LOWER95% UPPER95%
OBS ID MEAN PREDICT PREDICT RESIDUAL

1 1.53043 45.1818 8.2323 58.5643 2.6017
2 0.75 27.2887 -4.3096 42,9375 11.6861
3 9.82125 85.7466 32.0908 94.9623 0.4735
4 2.30714 60.1616 16.5074 71.4887 4.0019
5 1.1575 32.6449 0.6119 48.0813 -14.3466
6 0.94162 26.4084 -4.9089 42.1976 -10.6444
7 0 15.7086 -22.2461 28.7367 3.2547
8 0 16.6779 -19.4414 30.3680 0.5367
9 0 17.1221 -18.3391 31.0662 2.4364

10 13.6698 300.1 101.9 302.6
11 1.47059 30.1643 -0.7786 46.1446

STD ERR
OBS ID RESIDUAL

1 1.53043 7.7069
2 0.75 8.4832
3 9.82125 0.3528
4 2.30714 6.2411
5 1.1575 8.4312
6 0.94162 8.5158
7 0 7.5261
8 0 7.8473
9 0 7.9533

10 13.6698
11 1.47059

SUM OF RESIDUALS 9.99201E-15
SUM OF SQUARED RESIDUALS 495.5178
PREDICTED RESID SS (PRESS) 99409.95
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PRELIMINARY DESIGN PHASE: Principal component analysis

PRINCIPAL COMPONENT ANALYSIS

11 OBSERVATIONS
10 VARIABLES

SIMPLE STATISTICS

X1 X2 X3 X4 X5

MEAN 2.87712 105.297 20.0766 2.83031 2.59865
ST DEV 4.62637 243.706 26.7754 3.99664 3.05383

X6 X7 X8 X9 X10

MEAN 7.11785 2.11232 8.02100 90.035 2.05379
ST DEV 8.39976 2.56330 4.62116 183.950 2.65265

COVARIANCES

X1 X2 X3 X4 X5

Xl 20.488 507.627 76.7436 -6,88532 4.59364
X2 507.627 59392.6 6000.55 -9.22677 26.4418
X3 76.7436 6000.55 716.922 11.1813 23.2099
X4 -6.88532 -9.22677 11.1813 15.9731 5.96383
X5 4.59364 26.4418 23.2099 5.96383 9.32588
X6 -13.2205 5.33685 -0.195098 15.8104 -6.66383
X7 -0.495505 327.701 41.0176 8.56419 3.46024
X8 15.039 949.037 108.598 -1.976 3.52059
X9 391.763 44639.8 4421.27 -34.1497 12.0465
X10 -2.19708 215.614 30.1225 9.80594 4.3422
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X6 X7 X8 X9 Xio

X1 -13.2205 -0.495505 15.039 391.763 -2.19708
X2 5.33685 327.701 949.037 44639.8 215.614
X3 -0.195098 41.0176 108.598 4421.27 30.1225
X4 15.8104 8.56419 -1.976 -34.1497 9.80594
X5 -6.66383 3.46024 3.52059 12.0465 4.3422
X6 70.556 9.12385 -6.63936 7.76958 8.10716
X7 9.12385 6.5705 4.27394 230.478 6.54925
X8 -6.63936 4.27394 21.3551 721.786 2.82043
X9 7.76958 230.478 721.786 33837.8 144.485
XIO 8.10716 6.54925 2.82043 144.485 7.03654
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PRINCIPAL COMP-ONENT ANALYSIS

TOTAL VARIANCE=94098.56

EIGENVALUE DIFFERENCE PROPORTION CUMUTLATIVE

PRINI 93667.6 93421.9 0.995421 0.99542
PRIV2 245.8 157.5 0.002612 0.99803
PRIN3 88.2 15.3 0.000938 0.99897
PRIN4 72.9 53.2 0.000775 0.99975
PRINS 19.7 17.1 0.000209 0.99995
PRIN6 2.6 1,3 0.000027 0.99998
PRIN7 1.3 1.0 0.000014 1.00000
PRINS • 0.3 0.3 0.000004 1.00000
PRIN9 0.1 '.l 0.000001 1.00000
PRIN10 0.0 & 0.000000 1.00000

EIGENVECTORS

PRINI PRIN2 PRIN3 PRIN4 PRINS

Xl 0.006892 0.032916 0.366908 0.150251 -. 254943
X2 0.795885 0.448504 -. 211750 -. 308118 -. 079096
X3 0.079940 0.562345 0.444684 0.560961 -. 068881
X4 -. C00288 0.115656 -. 208398 0.157267 0.588020
X5 0.000323 0.077519 0.152115 0.114932 0.472312
X6 0.000094 -. 004974 -. 671152 0.629435 -. 310480
X7 0.004297 0.071291 -. 112"194 0.094569 0.296663
X8 0.012784 0.014141 0.185999 0.094390 0.017227
X9 0.599950 -. 671443 0.214720 0.329098 0.112776
XIo 0.002784 0.077466 -. 111784 0.086729 0.397160

PRIN6 PRIN7 PRINS PRIN9 PRINI0

Xi -. 132385 0.833557 0.225988 0.007562 -. 114912
X2 0.025944 0.072973 0.113615 -. 021007 -. 005793
X3 -. 079061 -. 277114 -. 276344 0.026034 0.011202
X4 0.053866 0.353501 -. 348731 -. 566503 0.047860
X5 -. 268552 -. 193451 0.777313 -. 139691 0.035931
X6 0.014661 0.023119 0.233663 -. 031726 -. 024293
X7 -. 008912 0.219785 -. 048807 0.613538 0.676878
X8 0.938085 0.003176 0.244888 -. 072321 0.103053
X9 -. 042748 -. 071209 -. 121775 0.018832 0.003802
X1O 0.135658 0.082206 -. 045238 0.524752 -. 716705
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PRELIMINARY DESIGN PHASE: Least Squares Method
(using two Principal Components)

DEP VARIABLE: Y
ANALYSIS OF VARIANCE

SUM OF MEAN
SOURCE DF SQUARES SQUARE F VALUE PROB>F

MODEL 2 1478.65943. 739.32971 2.014 0.2143
ERROR 6 2203.04281 367.17380
C TOTAL 8 3681.70222

ROOT MSE 19.16178 R-SQUARE 0.4016
DEP REAN 24.25556 ADJ Rf-SQ 0.2022
C.V, 78.99955

PARAMETER ESTIMATES

PARAMETER STANDARD T FOR HO:
VARIABLE DF ESTIMATE ERROR PARAMETER-O

INTERCEP 1 17.90009142 7.12992838 2.511
P1 1 0.04015744 0.02001400 2.006
P2 1 0.01016278 0.42464199 0.024

VARIABLE DF PROB > IT'

INTERCEP 1 0.0459
P1 1 0.0916
P2 1 0.9817

PREDICT STD ERR LOWER95%
OBS ID ACTUAL VALUE PREDICT MEAN

1 4.07256 36.0000 18.0942 7.2177 0.4330
2 29.1337 31.0000 19.0161 7.2326 1.3186
3 1056.04 64.0000 60.2882 19.0892 13.5786
4 6.88223 40.0000 18.2343 7.4892 -0.0912
5 21.9383 10.0000 18.6229 9.5496 -4.7440
6 39.6677 8.0000 19,2342 12.7410 -11.9419
7 87.6421 6.5000 21.3631 6.9393. 4,3838
8 100.738 6.0000 22.2260 13.4384 -10.6566
9 78.4684 3.8000 21.2210 9.7140 -2.5482

10 18.9421 . 18.7546 8.0228 -0.8766
11 91.6716 . 21.3924 10.2067 -3.5825
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UPPER95% LOWER95% UPPER95%
OBS ID MEAN PREDICT PREDICT RESIDUAL

1 4.07256 35.7553 -32.0090 68.1973 17.9058
2 29.1337 36.7136 -31.0998 69.1321 11.9839
3 1056.04 107.0 -5.8949 126.5 3.7118
4 6.88223 36.5598 -32.1069 68.5755 29.7657
5 21.9383 41.9899 -33.7643 71.0102 -8.6229
6 39.6677 50.4102 -37.0718 75.5401 -11.2342
7 87.6421 38.3424 -28.5038 71.2300 -14.8631
8 100.738 55.1086 -35.0425 79.4945 -16.2260
9 78.4684' 44.9$O2 -31.3469 73.7889 -12.4210

10 18.9421 38.3857 -32.0765 69.5856
11 91.6716 46.3674 -31.7316 74.5164

STD ERR
OBS ID RESIDUAL

1 4.07256 17.7504
2 29.1337 17.7444
3 1056.04 1.66bv
4 6.88223 17.6376
5 21.9383 16.6126
6 39.6677 14.3123
7 87.6421 17.8612
3 100.738 13.6595
9 78.4684 16.5170

10 18.9421
11 91.6716

SUM OF RESIDUALS 9.50351E-14
SUM OF SQUARED RESIDUALS 2203.043
PREDICTED RESID SS (PRESS) 245131.3
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PRELIMINARY' DESIGN PHASE: Least Squares Method
(using one Principal Component)

DEP VARIABLE: Y
ANALYSIS OF VARIANCE

SUM OF MEAN
SOURCE DF SQUARES SQUARE F VALUE PROB>F

MODEL 1 1478.44911 1478.44911 4.697 0.0669
ERROR 7 2203.25312 314.75045
C TOTAL 8 3681.70222

ROOT MSE 17.74121 R-SQUARE 0.4016
DEP MEAN 24.25556 ADJ R-SQ 0.3161
C.V. 73.14286

PARAMETER ESTIMA.TES

PARAMETER STANDARD T FOR No:
VARIABLE DF ESTIMATE ERROR PARAMETER-O

INTERCEP 1 17.89874335 6.60114006 2.711
P1 1 0.04016008 0.01852996 2.167

VARIABLE DF PROB > IT'

INTERCEP 1 0.0301
P1 1 0.0669

PREDICT STD ERR LOWER95%
OBS ID ACTUAL VALUE PREDICT MEAN

1 4.07256 36.0000 18.0623 6.5680 2.5314
2 29.1337 31.0000 19.0688 6.3796 3.9832
3 1056.04 64.0000 60.3093 17.6552 18.5611
4 6.88223 48.0000 18.1751 6.5455 2.6974
5 21.9383 10.0000 18.7798 6.4308 3.5732
6 39.6677 8.0000 19.4918 6.3090 4.5733
7 87.6421 6.5000 21.4185 6.0569 7.0961
8 100.738 6.0000 21.9444 6.0091 7.7350
9 78.4684 8.8000 21.0500 6.0959 6.6354
10 18.9421 • 18.6595 6.4528 3.4008
11 91.6716 21.5803 6.0412 7.2950
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UPPER95% LOWER95% UPPER95%
OBS ID MEAN PREDICT PREDICT RESIDUAL

1 4.07256 33.5932 -26.6719 62.7965 17.9377
2 29.1337 34.1543 -25.5128 63.6503 11,9312
3 1056.04 102.1 1.1244 119.5 3.6907

4 6.88223 33.6528 -26.5406 62.8909 29.8249

5 21.9383 33.9864 -25.8429 63.4024 -8.7798
6 39.6677 34. %.03 -25.0335 64.0171 -11.4918
7 .87.6421 35.7408 -22.9106 65.7476 -14.9185

8 100.738 36.1538 -22.3483 66.2371 -15.9444

9 78.4684 35.4646 -23.3089 65.4090 -12.2500
10 18.9421 33.9181 -25.9810 63.2999
11 91.6716 35.8655 -22.7368 65.8974

STD ERR
OBS ID RESIDUAL

1 4.07256 16.4807
2 29.1337 16.5545
3 1056.04 1.7449
4 6.88223 16.4896
5 21.9383 16.5347
6 39.6677 16.5815
7 87.6421 16.6753
8 100.738 16.6925
9 78.4684 16.6611

10 18.9421
ii 91.6716

SUM OF RESIDUALS 5.24025E-14
SUM OF SQUARED RESIDUAIS 2203.253
PREDICTED RESID SS (PRESS) 3.48443.6
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DETAILED DESIGN PHASE: Stepwise Selections

STEPWISE REGRESSION PROCEDURE FOR DEPENDENT VARIABLE Y

WARNING: 2 OBSERVATIONS DELETED DUE TO MISSING VALUES.

NOTE: SLENTRY AND SLSTAY HAVE BEEN SET TO
.15 FOR THE STEPWISE TECHNIQUE.

STEP 1 VARIABLE Xl ENTERED R SQUARE - 0.67484762
C(P) =

DF SUM OF SQUARES MEAN SQUARE F PROB>?

REGRESSION 1 2484.58798182 2484.587982 14.53 0.0066
ERROR 7 1197.11424040 171.016320
TOTAL 8 3681.70222222

B VALUE STD ERROR TYPE II SS F PROB>F

INTERCEPT 13-.81140806
X1 5.69406301 1.49387362 2484.587982 14.53 0.0066

BOUNDS ON CONDITION NUMBER: 1, 1

a a~ - -- - ---- -m a ----------- -- a- a------------------------------- a - a -- --- - mm-

STEP 2 VARIABLE X9 ENTERED R SQUARE m 0.86541068

C(P) = ,

DF SUM OF SQUARES MEAN SQUARE F PROB>F

REGRESSION 2 3186.18444000 1593.092220 19.29 0.0024
ERROR 6 495.51778222 82.586297
TOTAL 8 3681.70222222

B VALUE STD ERROR TYPE II SS F PROW>?

INTERCEPT 11.91767775
Xi 14.11517877 3.07005978 1745.770281 21.14 0.0037
X9 -0.13589515 0.04662451 701.596458 8.50 0.0268

BOUNDS ON CONDITION NUMBER: 8.745719, 34.98288
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STEP 3 VARIABLE Xl1 ENTERED R SQUARE - 0.97400689

C(P) = .

DF SUM OF SQUARES MEAN SQUARE F PROB>F

REGRESSION 3 3586.00334120 1195.334447 62.45 0.0002
ERROR 5 95.69888102 19.139776
TOTAL 8 3681.70222222

B VALUE STD ERROR TYPE 1I SS F PROB>F

INTERCEPT 17.61432258
X1 14.26567506 1.47832193 1782.310925 93.12 0.0002
X9 -0.12192015 0.02265278 554.427691 28.97 0.0030
Xli -0.88959153 0.19463790 399.818901 20.89 0.0060

BOUNDS ON CONDITION NUMBER: 8.908018, 56.62403

STEP 4 VARIABLE X8 ENTERED R SQUARE - 0.99235831

C(P) a .

DF SUM OF SQUARES MEAN SQUARE F PROB>F

REGRESSION 4 3653.56779471 913.3919487 129.86 0.0002
ERROR 4 28.13442751 7.0336069
TOTAL 8 3681.70222222

B VALUE STD ERROR TYPE II SS F PROBWF

INTERCEPT 30.24108727
X1 14.41817104 0.89751810 1815.147839 258.07 0.0001
Xe -2.32512285 0.75019785 67.564454 9.61 0.0362
X9 -0.06824032 0.02210312 67.042926 9.53 0.0367
Xli -1.04402729 0.12808083 467.340584 66.44 0.0012

BOUNDS ON CONDITION NUMBER: 23.07832, 193.2544
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STEP 5 VARIABLE X6 ENTERED R SQUARE - 0.99"716673

C(P) - .

DF SUM OF SQUARES MEAN SQUARE F PROB>F

REGRESSION 5 3671.27097173 734.2541943 211.17 0.0005
ERROR 3 li.43125049 3.4770835
TOTAL 8 3681.70222222

B VALUE STD ERROR TYPE II SS F PROB>F

INTERCEPT 28.96925965
X1 15.63285056 0.82946548 1235.079284 355.21 0.0003
X6 0.25403620 0.11258423 17.703177 5.09 0.1093
X8 -2.38561282 0.52814664 70.942420 20.40 0.0203
X9 -0.08100319 0.01653809 83.415842 23.99 0.0163
Xli -1.19927580 0.11332964 389.373377 111.98 0.0018

BOUNDS ON CONDITION NUMBER: 26.135491 304.9335

NO OTHER VARIABLES MET THE 0.1500 SIGNIFICANCE LEVEL FOR ENTRY

SUMMARY OF STEPWISE REGRESSION PROCEDURE FOR DEPENDENT VARIABLE Y

VARIABLE NUMBER PARTIAL MODEL
STEP ENTERED REMOVED IN R**2 R**2 C(P)

1 X1 1 0.6748 0.6748
2 X9 2 0.1906 0.8654
3 Xl1 3 0.1086 0.9740
4 X8 4 0.0184 0.9924
5 X6 5 0.0048 0.9972

VARIABLE
STEP ENTERED REMOVED F PROW>F

1 X1 14.5284 0.0066
2 X9 8.4953 0.0268
3 Xll 20.8894 0.0060
4 X8 9.6059 0.0362
5 X6 5.0914 0.1093
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DETAILED DESIGN PHASE: Stepwise Regression Analysis

DEP VARIABLE: Y
ANALYSIS OF VARIANCE

SUM OF MEAN
SOURCE DF SQUARES SQUARE F VALUE PROB>W

MODEL 5 3671.27097 734.25419 211.170 0.0005
ERROR 3 10.43125049 3.47708350
C TOTAL 8 3681.70222

ROOT MSE 1.864694 R-SQUARE 0.9972
DEP MEAN 24.25556 ADJ R-SQ 0.9924
C.V. 7.687698

PARAMETER ESTIMATES

PARAMETER STANDARD T FOR HOt
VARIABLE DF ESTIMATE ERROR PARAMETERwO

INTERCEP 1 28.96925965 3.05969593 9.468
X1 1 15.63285056 0.82946548 18.847
X6 1 0.25403620 0.11258423 2.256
XS 1 -2.38561282 0.52814664 -4.517
X9 1 -0.08100319 0.01653809 -4.898
X1li 1 -1.19927580 0.11332964 -10.582

VARIABLE DF PROS > ITI

INTERCEP 1 0.0025
Xi 1 0.0003
X6. 1 0.1093
Xe 1 0.0203
X9 1 0.0163
X1i 1 0.0018
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PREDICT STD ERR LOWER95%
OBS ID ACTUAL VALUE PREDICT MEAN

1 1.53043 36.0000 37.4512 1.2162 33.5806
2 0.75 31.0000 30.5251 1.8107 24.7626
3 9.82125 64.0000 64.0698 1.8639 58.1379
4 2.30714 48.0000 46.7829 1.4536 42.1568
5 1.1575 10.0000 11.6845 1.4654 7.0209
6 0.94162 8.0000 6.2026 1.2781 2.1350
7 0 6.5000 6.4245 1.2872 2.3278
8 0 6.0000 5.6922 1.3460 1.4086
9 0 8.8000 9.4672 1.8078 3.7141

10 13.6698 212.8 10.7106 178.8
11 1.47059 15.1B68 2.2232 8.1115

UPPER95% LOWER95% UPPER95%
OBS ID MEAN PREDICT PREDICT RESIDUAL

1 1.53043 41.3218 30.3661 44.5363 -1.4512
2 0.75 36.2877 22.2532 38.7971 0.4749
3 9.82125 70.0018 55.6791 72.4606 -0.0698
4 2.30714 51,4089 39.2584 54.3073 1.2171
5 1.1575 16.3480 4.1369 19.2320 -1.6845
6 0.94162 10.2702 --0.9920 13.3972 1.7974
7 0 10.5211 -0.7366 13.6355 0.0755
8 0 9.9758 -1.6267 13.0111 0.3078
9 0 15.2204 1.2019 17.7326 -0.6672

10 13.6698 246.9 178.2 247.4
11 1.470S9 22.2620 5.9523 24.4213

STD ERR
OBS ID RESIDUAL

1 1.53043 1.4135
2 0.75 0.4454
3 9.82125 0.0539
4 2.30714 1.1680
5 1.1575 1.1532
6 0.94162 1.3578
7 0 1.3491
8 0 1.2905
9 0 0.4573

10 13.6698
11 1.47059

SUM OF RESIDUALS 132561E-13
SUM OF SQUARED RESIDUALS 10.43125
PREDICTED RESID SS (PRESS) 7220.791
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DETAILED DESIGN PHASE: Principal component analysis

PRINCIPAL COMPONENT ANALYSIS

11 OBSERVATIONS
14 VARIABLES

SIMPLE STATISTICS

X1 X2 X3 X4 X5

MEAN 2.87712 105.297 20.0766 2.83031 2.59865
ST DEV 4.52637 243.7U6 26.7754 3.99664 3.05383

X6 X7 X8 X9 X10

MEAN 7.11786 2.11232 8.02100 90.035 2.05379
ST DEV 8.39976 2.56330 4.62116 183,950 2.65265

Xli X12 X13 X14

MEAN 7.29776 2.43642 2.65967 8.51365
ST DEV 8.21082 3.64045 4.22452 9.09573

COVARIANCES

xl X2 X3 X4 X5

Xl 20.488 507.627 76.7436 -6.88532 4.59364
X2 507.627 59392.6 6000.55 -9.22677 26.4418
X3 76.7436 6000.55 716.922 11.1813 23.2099
X4 -6.88532 -9.22677 11.1813 15.9731 5.96383
X5 4.59364 26.4418 23.2099 5.96383 9.32588
X6 -13.2205 5.33685 -0.195098 15.8104 -6.66383
X7 -0.495505 327.701 41.0176 8.56419 3.46024
X8 15.039 949.037 108.598 -1.976 3.52059
X9 391.763 44639.8 4421.27 -34.1497 12.0465
X10 -2.19708 215.614 30.1225 9.80594 4.3422
Xli 0.731235 785.26 46.8588 -6.66139 -8.98976
X12 -3.84745 139.957 25.7475 13.3912 7.72505
X13 15.3442 279.528 62.0205 -0.0315304 3.65136
X14 -16.7971 -206.739 8.92737 29.6529 6.2227
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PRINCIPAL COMPONENT ANALYSIS

COVARIANCES

X6 X7 X8 X9 XIO

Xi -13.2205 -0.495505 15.039 391.763 -2.19708
X2 5.33685 327.701 949.037 44639.8 215.614
X3 -0.195098 41.0176 108.598 4421.27 30.1225
X4 15.8104 8.56419 -1.976 -34.1497 9.80594
X5 -6.66383 3.46024 3.52059 12.0465 4.3422
X6 70.556 9.12385 -6.63936 7.76958 8.10716
X7 9.3,2385 6.5705 4.27394 230.478 6.54925
X8 -6.63936 4.27394 21.3551 721.786 2.82043
X9 7.76958 230.478 721.786 33837.8 144.485
XIO 8.10716 6.54925 2.82043 144.485 7.0365,4
Xli 34.3681 0.495098 6.72665 662.567 -2.72536
X12 5.65109 7.941 1.76349 83.1111 9.17345
X13 4.16506 2.2108 9.27088 199.47 0.768962
X14 34.3645 13.8536 -8.64942 -239.719 16.2101

XlI X12 X13 X14

X1 0.731235 -3.84745 15.3442 -16.7971
X2 785.26 139.957 279.528 -206.739
X3 46.8588 25.7475 62.0205 8.92737
X4 -6.66139 13.3912 -0.0315304 29.6529
X5 -8.98976 7.72505 3.65136 6.2227
X6 34.3681 5.65109 4.16506 34.3645
X7 0.495098 7.941 2.2108 13.8536
Xe 6.72665 1.76349 9.27088 -8.64942
X9 662.567 83.1111 199.47 -239.719
XIO -2.72536 9.17345 0.768962 16.2101
Xli 67.4176 -7.23447 -1.97936 -13.1373
X12 -7.23447 13.2529 -0.967642 21.8739
X13 -1.97936 -0.967642 17.0466 0.119597
X14 -13.1373 21.8739 0.119597 82.7332
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PRINCIPAL COMPONENT ANALYSIS

TOTAL VARIANCE-94279.81

EZGENVALUE DIFFERENCE PROPORTION CUMULATIVE

PRINI 93681.5 93378.8 0.993654 0.99365
PRIN2 302.6 170.3 0.003210 0.99686
PRIN3 132.4 45.4 0.001404 0.99827
PRIN4 87.0 42.8 0.000923 0.99919
PRIN5 44.2 28.8 0.000469 0.99966
PRIN6 15.5 3.5 0.000164 0.99982
PRIN7 12.0 8.8 0.000127 0.99995
PRINS 3.2 2.0 0.00-0034 0.99999
PRIN9 1.2 1.0 0.000013 1.00000
PRINIO 0.2 0.2 0.000002 1.00000
PRINII 0.0 0.0 0.000000 1.00000
PRIN12 0.0 0.0 0.000000 1.00000
PRIN13 0.0 0.0 0.000000 1.00000
PRIN14 0.0 0.000000 1.00000

EIGENVECTORS

PRINI PRIN2 PRIN3 PRIN4 PRIN5

Xl 0.006891 0.010031 -. 254580 0.269774 -. 048789
X2 0.795821 0.403242 0.016768 -. 311843 -. 275479
X3 0.079930 0.485487 -. 263973 0.651541 -. 036734
X4 -. 000289 0.131773 0.202666 0.030697 0.299039
X5 0.000322 0.074550 -. 072133 0.123923 0.284615
X6 0.000097 0.018274 0.629710 0.333602 -. 290808
X7 0.004296 0.077214 0.103537 0.026186 0.138031
X8 0.012783 0.009831 -. 120209 0.132078 0.100100
X9 0.599912 -. 595055 0.013861 0.314393 0.376196
X1O 0.002783 0.085730 0.106051 0.012106 0.199331
Xli 0.010963 -. 261383 0.348472 0.229051 -. 409717
X12 0.001742 0.113134 0.111607 0.001101 0.355924
X13 0.003708 0.089211 -. 104901 0.329080 -. 124027
X14 -. 003289 0.348945 0.490828 0.001316 0.380947
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PRINCIPAL COMPONENT ANALYSIS

EIGEWJECTORS

PRIN6 PRINT PRINS PRTN9 PRINIO

X1 0.065220 -. 185084 0.318798 0.339223 0.515515
X2 -. 008989 0.074080 0.643256 0.131509 0.070023
X3 0.124301 0.152766 -. 233068 -. 344909 -. 179224
X4 -. 169591 0.216492 0,224524 0.232286 -. 131803
X5 0.090926 0.384482 0.14C738 -. 019361 0.565857
X6 -. 534051 -. 048653 -. 138761 -. 085276 0.297339
X7 -. 147464 0.156b99 0.148703 0.084184 -. 187037
X8 -. 045080 -. 118376 -. 662186 0.681261 0.005320
X9 -. 010022 -. 125001 -. 021633 -. 155073 -. 068002
XIO -. 138017 0.200346 0.019376 0.158105 -. 325802
Xli 0.602462 0.377237 0.068697 0.251417 -. 127454
X12 -. 061335 0.382822 0.040467 0.139263 0.013158
X13 -. 163.653 -. 310900 0.533749 0,288358 -. 325483
X14 0.471376 -. 509939 0.003508 -. 032422 0.055718

PRINI1 PRIN12 PRIN13 PRIN14

X1 0.121428 0.028732 -. 209447 0.528654
X2 0.012142 0.003778 0.006262 -. 028462
X3 -. 055022 -. 053056 -. 019333 0.109401
X4 -!.374842 -. 601314 0.275238 0.275655
X5 0.131140 0.082213 3.421095 -. 441731
X6 0.050973 0.011588 -. 037910 -. 024237
X7 -. 314295 0.784849 0.240080 0.284081
X8 -. 083031 0.043435 0.110332 -. 134874
X9 -. 009516 -. 005255 -. 005790 0.020943
XIO 0.838748 0.014480 0.092226 0.196460
Xli -. 015001 0.000861 0.010199 0.004646
X12 -. 102931 0.074573 -. 789099 -. 194181
X13 0.001998 0.021967 0.004358 -. 509974
X14 0.041114 0.060967 0.007364 -. 017769
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DETAILED DESIGN PHASE: Least Squares Method
(using Principal Components)

DEP VARIABLE: Y
ANALYSIS OF VARIANCE

SUM OF MEAN
SOURCE DF SQUARES SQUARE F VALUE PROB>F

MODEL 3 2940.81945 980.27315 06.616 0.0342
ERROR 5 740.88277 148.17655
C TOTAL 8 3681.70222

ROOT MSE 12.17278 R-SQUARE 0,7988
DEP MEAN 24.25556 ADW R-SQ 0.6780
C.V. 50.18553

PARAMETER ESTIMATES

PARAMETER STANDARD T FOR HO:
VARIABLE DF ESTIMATE ERROR PARAMETER-0

INTERCEP 1 36.61996444 7.48811514 4.890
P1 1 0.1293C799 0.03115062 4.!.5i
P2 1 -2.46877510 0.78585547 -3.142
P3 1 -0.64069017 0.32689299 -1.160

VARIABLE DF PROB > IT

INTERCEP 1 0.0045
Pi 1 0.0089
P2 1 0.0256
P3 1 0.1073
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PREDICT STD ERR LOWER95%
OBS ID ACTUAL VALUE PREDICT MEAN

1 4.08355 36.0000 36.1923 7.3742 17.2367
2 29.1376 31.0000 34.4870 6.6722 11.3359
3 1055.35 64.0000 62.7505 .12.1539 71.5085
4 6.94778 48.0000 30.011F 6.1234 14.5280
5 22.1509 10.0000 15.7142 6.6366 -1.3455
6 39.8681 8.0000 6.2566 9.2345 -17.4811
7 87.6266 6.5000 15.6072 4.5599 3.8057
8 100.724 6.0000 1.9.1111 8.:.167 -2.2675
9 78.4r93 8.8000 -1.8305 9.5147 -26.2694

10 19.0778 . 23.6373 4.9104 9.0149
11 91.6872 2f.V036 6.2962 10.7190

UPPER95% 1,O0AER95% UPPE.R95%
uBS ID MEAN PPSW'0T PREDICT RESIDUAL

1 4.08355 55.1480 -0.29.. 72.7768 -0.1923
2 29.137G 51.6381 -1.1959 70.1698 -3.4870
3 1055.35 93.9926 18.5332 107.0 1.2495
4 6.94778 45.4950 "-4.9005 64.9235 17.9885
5 22.1509 32.,;739 -19.9218 51.3532 -5.7142
6 39.8681 29.,9944 -33.0192 45.5324 1.7434
7 87.6266 27.3287 -17.8069 49.0213 -9.1072
8 100.724 40.4896 -18.155 57.0076 --13.1111
9 78.4993 22.6275 -41.5457 37.8847 10.6305

10 19.0778 34.2598 -12.1034 55.3780
11 91.6872 43.0883 -8.5249 62.1322

STD ERR
OBS ID RESIDUAL

1 4.08355 9.6849
2 29.1376 10.1813
3 1055.35 0.6783
4 6.94778 10.5780
5 22.1509 10.2045
6 39.8681 7.9309
7 87.6266 11.2864
8 100.724 8.8887
9 78.4993 7.5926

10 19.0778
11 91.6872

SUM OF RESIDUALS 1.31672E-13
SUM OF SCUARED RESIDUALS 740.8828
PREDICTED RESID SS (PRESS) 164097.7
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CODE AND UNIT TEST PHASE: Stepwise Selections

STEPWISE REGRESSION PROCEDURE FOR DEPENDENT VAPIABLE Y

WARNING: 2 OBSERVATIONS DELETED DUE TO MISSING VALUES.

NOTE: SLENTRY AND SLSTAY HAVE BEEN SET TO
.15 FOR THE STEPWISE TECHNIQUE.

STEP I VARIABLE X1 ENTERED R SQUARE - 0.67484762
C(P) - .

DF SUM OF SQUARES MEAN SQUARE F PROB>F

REGRESSION 1 2484.58798182 2484.587982 14.53 0.0066
ERROR 7 1197.11424040 171.016320
TOTAL 8 3681.70222222

B VALUE STD ERROR TYPE II SS F PROB>F

INTERCEPT 13.81140806
X1 5.69406301 1.49387162 2484,587982 14.53 0.0066

BOUNDS ON CONDITION NUMBER: 1, 1

-------------------------------------- ------------------ m-----------

STEP 2 VARIABLE X9 ENTERED R SQUARE - 0,86541068

C(P) -

.DF SUM OF SQUARES MEAN SQUARE F PROB>F

REGRESSION 2 3186.18444000 1593.092220 19.29 0.0024
ERROR 6 495.51778222 02.586297
TOTAL 8 3681.70222222

B VALUE STD ERROR TYPE II SO F PROB>F

INTERCEPT 11.91767775
X1 14.11517877 3.07005978 1745.770281 21.14 0.0037
X9 -0.13589515 0.04662451 701.596458 8.50 0.0268

BOUNDS ON OnNDITION NUMBER: 8.745719, 34.98288
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STEP 3 VARIABLE Xll ENTERED R SQUARE = 0.97400689

C(P) -

DF SUM OF SQUARES MEAN SQUARE F PROW>F

REGRESSION 3 3586.00334120 1195.334447 62.45 0.0002
ERROR 5 95.69888102 19.139776
TOTAL 8 3681.70222222

B VALUE STD ERROR TYPE II SS F PROB>F

INTERCEPT 17.61432258
X1 14.26567506 1.47832193 1782.310925 93.12 0.0002
X9 -0.12192015 0.02265278 554.427691 28.97 0.0030
Xli -0.88959153 0.19463790 399.818901 20.89 0.0060

BOUNDS ON CONDITION NUMBER: 8.908018, 56.62403

-- - -- - ---- - ----- - -- - --m ---- m -- tm

STEP 4 VARIABLE X8 ENTERED R SQUARE - 0.99235031

C(P) = .

DF SUM OF SQUARES MEAN SQUARE F PROB>F

REGRESSION 4 3653.56779471 913.3919487 129.86 0.0002
ERROR 4 28.13442751 7.0336069
TOTAL 8 3681.70222222

B VALUE STD ERROR TYPE II SS F PROB>F

INTERCEPT 30.24108727
X1 14.41817104 0.89751810 1815.147839 258.07 0.0001
Xe -2.32512285 0.75019785 67.564454 9.61 0.0362
X9 -0.06824032 0.02210312 67.042926 9.53 0.0367
Xli -1.04402729 0.12808083 467.340584 66.44 0.0012

BOUNDS ON CONDITION NUMBER: 23.07832, 193.2544
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STEP 5 VARIABLE X6 ENTERED R SQUARE - 0.99716673

C(P) -

DF SUM OF SQUARES MEAN SQUARE r PROB>F

REGRESSION 5 3671.27097173 734.2541943 211.17 0.0005
ERROR 3 10.43125049 3.4770835
TOTAL 8 3681.70222222

B VALUE STD ERROR TYPE II SS F PROB>r

INTERCEPT 28.96925965
Xl .15.63285056 0.829465A8 1235.079284 355.21 0.0003
X6 0.25403620 0.11258423 17.703177 5.09 0.1093
Xe -2.38561282 0.52814664 70.942420 20.40 0.0203
X9 -0.08100319 0.01653809 83.415842 23.99 0.0163
X1l -1.19927580 0.21332964 389.373377 111.98 0.0018

BOUNDS ON CONDITION NUMBER: 26.13549, 304.9335

STEP 6 VARIABLE XIS ENTERED R SQUARE - 0.99965209

C(p) - .

DF SUM OF SQUARES MEAN SQUARE F PROB>F

REGRESSION 6 3680.42132510 613.4035542 957.77 0.0010
ERROR 2 1.2s089-712 0.6404486
TOTAL 8 3681.70222222

B VALUE STD ERROR TYPE II SS F PROB>F

INTERCEPT 28.34682750
Xl 16.87615739 0.48468544 776.4463286 1212.35 0.0008
X6 0.20563632 0.04998622 10.8388523 16.92 0.0543
X8 -1.V9036494 0.24962427 40.7170268 63.58 0.0154
X9 -0.11274143 0.01099462 67.3427958 105.15 0.0094
X1i -1.10981860 0.05409062 269.6151332 420.98 0.0024
Xis -0.00386060 0.00102136 9.15C3534 14.29 0.0634

BOUNDS ON? CONDITION NUMBER: 62.71203, 709.8545
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STEP 7 VARIABLE X17 ENTERED R SQUARE - 0.99999735

C(P) - .

DF SUM OF SQUARES MEAN SQUARE F PROB>F

REGRESSION 7 3681.69247422 525.9560677 9999.99 0.0001
ERROR 1 0.00974801 0.0097480
TOTAL • 8 3681.70222222

B VALUE STD ERROR TYPE II SS F PROB>F

INTERCEPT 35.34086513
Xi 16.55363291 0.06613116 610.7875117 9999.99 0.0001
X6 0.29622944 0.01004828 8.4720459 869.11 0.0216
Xe -2.00284334 0.03081597 41.1773272 4224.18 0.0098
X9 -0.10483743 0.00152282 46.2011223 4739.55 0.0092
Xll -1.38270678 0.02481132 30.2744491 3105.71 0.0114
X17 -1.08045895 0.09461672 1.2711491 130.40 0.0556
XlS -0.00423198 0.00013014 10.3087888 1057.53 0.0196

BOUNDS ON CONDITION NUMBER: 79.0415, 1475.295

STEP 8 VARIABLE X21 ENTERED R SQUARE m 1.00000000

C(P) - I

DF SUM OF SQUARES MEAN SQUARE F PROB>F

REGRESSION 8 3681.70222222 460.2127778 9999.99 0.0001
ERROR 0 0.00000000 0.0000000
TOTAL 8 3681.70222222

B VALUE STD ERROR' TYPE II SS F PROB>F

INTERCEPT 23.91179944
Xl 16.40108872 0 94.85822032 9999.99 0.0001
X6 0.32541684 0 1.08333040 9999.99 0.0001
Xe -2.01511923 0 35.97475149 9999.99 0.0001
X9 -0.10108771 0 6.08156755 9999.99 0.0001
Xli -1.46447109 0 2.86348417 9999.99 0.0001
X17 -1.33068597 0 0.24119088 9999.99 0.0001
XiS -o.00380003 0 0.69167302 9999.99 0.0001
X21 12.99647065 0 0.00974801 9999.99 0.0001

BOUNDS ON CONDITION NUMBER: 558.2853, 13148.58

a-------aa------a a----- m--m--------------- ---a-

NO OTHER VARIABLES MET THE 0.1500 SIGNIFICANCE LEVEL FOR ENTRY
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SUMMARY OF STEPWISE REGRESSION PROCEDURE FOR DEPENDENT VARIABLE Y

VARIABLE NUMBER PARTIAL MODEL
STEP. ENTERED REMOVED IN R**2 R**2 C(P)

1 Xi 1 0.6748 0.6748
2 X9 2 0.1906 0.8654
3 Xll 3 0.1086 0.9740
4 X8 4 0.0184 0.9924
5 X6 5 0.0048 0.9972
6 Xis 6 0.0025 0.9997
7 X27 7 0.0003 1.0000
8 X21 8 0.0000 1.0000

VARIABLE
STEP !7ATERED REMOVED F PROB>F

1 Xi 14.5284 0.0066
2 X9 8.4953 0.0268
3 X11 20.8894 0.0060
4 X8 9.6059 0.0362
5 X6 5.0914 0.1093
6 XiS 14.2874 0&0634
7 X37 130.4009 0.0556
8 X21 9999.9999 0.0001
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CODE AND UNIT TEST PHASE: Stepwiss Regression Analysis

DEP VARIABLE: ANALYSIS OF VARIANCE

SUM OF MEAN
SOURCE DF SQUARES SQUARE F VALUE PROB>F

MODEL 8 3681.70222 460.21278
ERROR 0 9.95121E-12
C TOTAL ' 8 3681.70222

ROOT MSE. R-SQUARE 1.0000
DEP MEAN 24.25556 ADJ R-SQ
C.V.

PARAMETER ESTIMATnS

PARAMETER STANDARD T FOR HO:
VARIABLE DF ESTIMATE ERROR PARAMETER-0

INTERCEP 1 23.91179944
Xi 1 16.40108872
X6 1 0.32541684 .
X8 1 -2.01511923
X9 1 -0.10108771
X1I I -1.46447110
X17 1 -1.33068597 .
X18 1 -0.003800033
j(21 1 12.99647065

VARIABLE DF PROB > ITI

INTERCEP 12
X1 1 .
X6 1 a
X8 1 .
X9 1 a
Xli 2 .
X17 1 a
X18 1 .
X21 I
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CODE AND UNIT TEST PHASE: Principal Component Analysis

PRINCIPAL COMPONENT ANALYSIS

11 OBSERVATIONS
22 VARIABLES

SIMPLE STATISTICS

X1 X2 X3 X4 X5

MEAN 2.87712 105.297 20.0766 2.83031 2.59865
ST DEV 4.52637 243.706 26.7754 3.99664 3,05383

X6 X7 X8 X9 X10

MEAN 7.11785 2.11232 8.02100 90.035 2.05379
ST DEV 8.39976 2.56330 4.62116 1834950 2,65265

Xli X12 X15 X17 Xi8

MEAN 7.29776 2.43642 70585.5 S.45455 419.000
ST DEV 8.21082 3.64045 90661.0 2.33939 494.511

Xi9 X20 X21 X22 X23

MEAN 102.455 21.1818 0.990909 2.36364 2.52727
ST DEV 55.682 17.9990 0.020226 0.80904 2.77708

X24 X25

MEAN 2.74685 22.6800
ST DEV 3.34931 15.8044
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PRINCIPAL COMPONENT ANALYSIS

COVARIANCES

Xi X2 X3 X4 X5 X6

X1 20.488 507.627 76.7436 -6.88532 4.59364 -13.2205
X2 507.627 59392.6 6000.55 -9.22677 26.4418 5.33685
X3 76.7436 6000.55 716.922 11.1813 23.2099 -. 195098
X4 -6.88532 -9.22677 11.1813 15.9731 5.96383 15.8104
X5 4.59364 26.4418 23.2099 5.96383 9.32588 -6.66383
X6 -13,2205 5.33685 -. 195098 15,8104 -6.66383 70.556
X7 -. 495505 327.701 41.0176 8.56419 3.46024 9.12385
Xe 15.039 949.037 108.598 -1.976 3.52059 -6.63936
X9 391.763 44639.8 4421.27 -34.1497 12.0465 7.76958
X10 -2.19708 215.614 30.1225 9.80594 4.3422 8.10716
Xll 0.731235 785.26 46.8588 -6.66139 -8.98976 34.3681
X32 -3.84745 139.957 25.7475 13.3912 7.72505 5.65109
X15 -85891.3 -6993472 -1125733 -173297 -121470 -208659
X17 -2.24013 -67.8237 -2.55027 3.42;44 0.814652 -. 740503
X18 -310.767 -34904.1 -5612.36 -1011,46 -665.931 -1412.74
X19 32.6381 -3627.07 7.38965 105.698 65.6658 123.696
X20 -7.72981 -467.318 35.1436 43.4028 37.4768 -7.76181
X21 -0.04723 1.00458 .0225336 0.02798 -. 011351 .0709393
X22 1.63621 31.2285 0.970624 -2.6418 -1.18823 -. 977816
X23 4.00557 630.372 67.4554 3.63113 2.43762 1.78892
X24 -3.33469 49.5614 21.6735 12.3389 7.18182 6.57276
X25 29.9385 2403.47 323.785 25.635 11.0381 46.6303
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X7 Xg X9 XIO Xll X12

XI -. 495505 15.039 391.763 -2.19708 0.731235 -3.84745
X2 327.701 949.037 44639.8 215.614 785.26 139.957
X3 41.0176 108.598 4421.27 30.1225 46.8583 25.7475
X4 8.56419 -1.976 -34.1497 9.80594 -6.66139 13.3912
X5 3.46024 3.53059 12.046C 1.3422 -8.98976 7.72505
XG 9.12385 -6.63936 7.76cr:1 ,1 0716 34.3681 5.65109
X7 6.5705 4.27394 23C 4;l' S.54925 0.495098- 7.941
X8 4.27394 21.3551 721.7!6 2.82043 6.72165 1.76349
X9 230.478 721.786 33837.8 144.485 662o567 83.1111
XIO 6.54925 2.82043 144.485 7.03654 -2.72536 9.17345
Xll 0.495098 6.72665 662.567 -2.72536 67.4176 -7.23447
X12 7.941 1.76349 83.1111 9.17345 -7.23447 13.2529
X15 -139309 -161883 -5188362 -137945 115772 -165204
X17 1.54663 0.804153 -62.6251 2.38462 -12.4703 2.99725
XI8 -782.588 -635.836 -26117.9 -767.761 18ni637 -938.115
X19 46.1192 -1.1.0482 -3110.33 57.2551 -206.265 71.0751
X20 20.9603 14.0138 -413.461 30.1997 -72.7273 47.5335
X21 .0180623 -. 009843 0.799326 .0186701 .0701341 .0221496
X22 -1.17045 0.360237 28.9647 -1.60379 2.74265 -2.43871
X23 5.48843 9,75502 466.099 4.68082 6.06845 5.06006
X24 6.99544 0.741977 8.56358 8.19207 -8.53385 11.7909
X25 27.366 51.4449 1758.18 24.0727 12.0449 22,1815
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PRINCIPAL COMPONENT ANALYSIS

COVARIANCES

X15 X17 Xis X19 X20 X21

X1 -85891.3 -2.24013 -310.767 32.6381 -7.72981 -0.04723
X2 -6993472 -67.8237 -34904.1 -3627.07 -467.318 1.00458
X3 -1125733 -2.55027 -5612.36 7.38965 35.1436 .0225336
X4 -173297 3.42244 -1011.46 105.698 43.4028 0.02798
X5 -121470 0.814652 -665.931 65.6658 37.4768 -. 011351
X6 -208659 -. 740503 -1412.74 123.696 -7.76181 .0709393
X7 -139309 1.54663 -782.580 46.1192 20,9603 .0180623
X8 -161883 0.804153 -635.836 -1.10482 14.0138 -. 009843
X9 -5188362 -62.6251 -26117.9 -3110.33 -413.461 0.799326
X10 -137945 2.38462 -767.761 57.2551 30.1997 .0186701
Xli 115772 -12.4703 183.637 -206.265 -72.7273 .0701341
X12 -165204 2.99725 -938.115 71.0751 47.5335 .U221496
X15 8.2Z+09 -100343 43466853 -1027794 -886084 -531.93
X17 -100343 5.47273 -421.9 47.1727 30.3091 .0045455
"X15 43466853 -421.9 244541 -3143.5 -4314.1 -4.18
X19 -1027794 47.1727 -3143.5 3100.47 451.909 -. 620455
X20 -886584 30.3091 -4314.1 451.909 323.964 .0319182
X21 -531.93 .0045455 -4.18 -. 620455 .0318182 4.1E-04
X22 29464.8 -1.18182 153.7 -13.9818 -12.0727 -. 006364
X23 -110036 -. 103636 -585.29 -15.2036 7.29455 .0152727
X24 -155027 3.02282 -866.958 89.9873 45.7 .0147347
X25 -964771 11.8092 -4723.07 242.107 93.5026 .0678547
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X22 X23 X24 X25

Xi 1.63621 4.00557 -3.33469 29.9385
X2 31.2285 630.372 49.5614 2403.47
X3 0.970624 67.4554 21.6735 323.785
X4 -2.6418 3.63113 12.3389 25.635
X5 -1.18823 2.43762 7.18182 11.0381
X6 -. 977816 1.78892 6.57276 46.6303
X7 -1.17045 5.48843 6.99544 27.366
X8 0.360237 0.75502 0.741977 51.4449
X9 28.9647 466.099 8.50358 1758.18
XIO -1.60379 4.68082 8.19207 24.0727
Xll 2.74265 6.06845 -8.53385 12.0449
X12 -2.43871 5.06006 11.7909 22.1815
XIS 29464.8 -110036 -155027 -964771
X17 -1.18182 -. 103636 3.02282 11.8092
Xis 153.7 -585.29 -866.958 -4723.07
X19 -13.9818 -15.2036 89.9873 242.107
X20 -12.0727 7.29455 4&.7 93.5026
X21 -. 006364 .0152727 .0147347 .0678547
X22 0.65454S -. 330909 -2.29616 -4.01265
X23 -. 330909 7.71218 3.83036 29.4533
X24 -2.29616 3.83036 11.2179 21.0877
X25 -4.01265 29.4533 21.0877 249.778

E-68



PRINCIPAL COMPONENT ANALYSIS

TOTAL VARIANCE-8219758114

EIGENVALUE DIFFERENCE PROPORTION CUMULATIVE

PRINI 8.23+09 8.2E+09 0.999987 0.99999
PRIN2 84900 69761.1 0.000010 1.00000
PRIN3 15138.8 12949.2 0.000002 1.00000
PRIN4 2189.6 1964.14 0.000000 1.00000
PRIN5 225.454 65o7749 0.000000 1.00000
PRIN6 159.679 69.6715 0.000000 1.00000
PRIN7 90.0073 16.6248 0.000000 1.00000
PRINS 73.3826 54.1628 0.000000 1.00000
PRZN9 1962198 9.49877 0.000000 1.00000
PRINlO 9.72102 9.72102 0.000000 1.00000
PRIN12 0 0 0.000000 1.00000
PRIN12 0 0 0.000000 1.00000
PRIN13 0 0 0.000000 1.00000
PRIN14 0 0 0.000000 1.00000
PRINIs 0 0 0.000000 1.00000
PRIN16 0 0 0.000000 1.00000
PRIN17 0 0 0.000000 1.00000
PRINIS 0 0 0.000000 1.00000
PRXN19 0 0 0.000000 1.00000
PRIN20 0 0 0.000000 1.00000
PRIN21 0 0 0.000000 1.00000
PRIN22 0 . 0.000000 1.00000
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PRINCIPAL COMPOITENT ANALYSIS

EIGENVECTORS

PRINi PRIN2 PRIN3 PRIN4 PRIN5 PRIN6

Xl -. 000010 0.006547 0.008942 0.015709 -. 056049 -. 027712
X2 -. 000851 0.792770 -. 005018 0.125958 0.290333 -. 394896
X3 -. 000137 0.074101 0.013055 0.136146 0.177494 -. 283701
X4 -. 000021 -. 002599 -. 004742 0.041235 0.080102 0.033727
X5 -. 000015 -. 001226 -. 000662 0.022608 0.095339 0.062615
X6 -. 000025 -. 002694 -. 018707 0.063500 -. 286712 0.012262
X7 -. 000017 0.002939 -. 002872 0.027039 0.039931 0.012168
X8 -. 000020 0.012140 0.012796 0.006392 0.010191 0.068581
X9 -. 000631 0.598875 -. 025286 -. 062719 -. 394262 0.584968
X10 -. 000017 0.001283 -. 002044 0.026875. 0.067131 0.033779
X11 0.000014 0.013522 -. 031911 -. 011518 -. 272706 0.155914
X12 -. 000020 -. 000226 -. 003417 0.030181 0.127467 0.068530
XI5 0.999985 0.000881 -. 005163 0.001263 0.000170 0.000130
X17 -. 000012 -. 002327 0.007790 -. 000286 0.060955 0.020186
XI8 0.00r788 0.032807 0.978640 -. 195482 -. 016331 -. 011999
X19 -. 000125 -. 070327 0.195277 0.947814 -. 146752 0.081288
X20 -. 000108 -. 018550 0.031153 0.074918 0.6983.84 C.606836
X21 -. 000000 0.000008 -. 000099 -. 000159 0.000a: 0.000162
X22 0.000004 0.000876 -. 000384 -. 002532 -. 034i4 J. -. 012485
X23 -. 000013 0.007887 -. 001381 0.011288 0.038796 0.007426
X24 -. 000019 -. 001483 -. 001897 0.034407 0.120677 0.029016
X25 -. 000117 0.023148 0.023930 0.095601 -. 029662 -. 062825
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PRIN7 PRIN8 PRIN9 PRIN10 PRINI1 PRIN12
X1 -. 293858 0.275821 -. 025936 0.014946 0.048740 -. 348375
X2 0.156175 -. 179663 0.062062 -. 093238 -. 025203 0.014341
X3 -. 267890 0.565052 0.420062 0.125267 -. 031861 -. 029553
X4 0.180554 -. 109308 -. 111397 0.454105 -. 192343 0.075215
X5 -. 135989 0.058072 0.063965 0.407151 -. 150030 0.219978
X6 0.567977 -. 094870 0.336352 -. 094909 -. 011000 -. 089616
X7 0.083063 -. 070265 -. 049460 0.186226 -. 082482 0.300076
X8 -. 077519 0.151142 0.034662 -. 085038 0.041736 0.409439
X9 -. 200525 0.123037 -. 131569 0.092745 0.037645 -. 021297
X1O 0.094753 -. 076646 -. 049870 0.215596 -. 098653 -. 019585
Xll 0.237169 0.146081 0.614340 0.052314 -. 040643 0.012401
X12 0.084185 -. 097099 -. 033303 0.452755 -. 194558 -. 285452
X15 -. 000084 0.000099 -. 000199 -. 000126 0.000011 0.000013
X17 0.057001 -. 035248 -. 174552 -. 320315 0.110811 -. 133557
X18 0.025319 -. 005396 0.033735 0.024263 -. 001820 -. 003126
X19 -. 099915 -. 108883 -. 045596 -. 042101 0.001505 0.004463
X20 0.141469 0.093127 0.161746 -. 225223 -. 048940 -. 025880
X21 0.001300 -. 000066 -. 000282 -. 000126 -. 000093 0.334952
X22 -. 040800 0.002275 0.013730 -. 052786 0.026725 0.546899
X23 0.022714 -. 030572 0.013111 0.137401 -. 060137 -. 210299
X24 0.001935 -. 061950 0.063160 0.333376 0.926134 -,000054
X25 0.524962 0.664756 -. 472468 0.034461 0.020334 0.035530

PRINCIPAL COMPONENT ANALYSIS

EIGENVECTORS

PRIN13 PRIN14 PRINI5 PRIN16 PRIN17 PRINIS

Xl 0,199128 -. 359479 0.391893 -. 136960 0.390616 -. 196401
X2 0.005427 -. 199781 -. 003183 -. 016528 0.027346 -. 014632
X3 -. 008700 0.490104 0.008092 0.067065 -. 027554 0.041603
X4 -. 022381 0.180401 -. 260259 -. 007030 0.73-5978 0.000068
X5 -. 095413 -. 248823 0.111701 -. 681884 -. 243781 0.148275
X6 0.041258 0.287062 0.507988 -. 286705 0.118915 0.007171
X7 -. 173016 0.181651 0.076335 0.003010 -. 240268 -. 697337
X8 -. 297886 -. 030281 0.284005 0.299489 0.195084 0.109361
X9 -. 004497 0.214741 0.004291 0.004041 -. 030021 0.017103
X10 0.037686 0.083519 0.084083 0.105474 -. 164224 0.633405
XlI 0.007912 -. 401870 -. 377370 0.191306 -. 057342 -. 031783
X12 0.228759 -. 087482 0.364731 0.492725 -. 251713 -. 094534
Xi5 -. 000013 -. 000004 0.000016 0.000001 0.000002 0.000008
X17 0.044937 0.246077 0.002049 -. 055759 -. 088485 0.066265
X18 0.003053 0.005759 0.000606 -. 002667 0.000074 -. 001606
X19 -. 008090 -. 040399 -. 045695 0.018790 -. 018198 0.003918
X20 0.*047828 -. 025298 0.026223 -. 057862 0.065408 -. 047505
X21 -. 268063 -. 077573 0.275962 0.175039 0.048879 0.135981
X22 0.829799 0.039323 0.022126 0.011990 0.023361 0.005436
X23 0.106060 0.262388 -. 229525 -. 106444 -. 121024 -. 05068F
X24 0.000030 0.000775 0.000021 0.000048 -. 000068 0.000024
X25 0.029472 -. 135545 -. 083447 -. 010290 -. 101755 0.003187
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PRIN19 PRIN20 PRIN21 PRIN22

Xl 0.312574 0.192387 0.164207 0.120852
X2 0.013817 0.033314 -. 010028 0.052385
X3 -. 042890 -. 019354 0.032367 -. 167744
X4 -. 088692 0.142406 0.058971 -. 103824
X5 -. 257313 0.163611 -. 030508 0.008069
X6 -. 022146 -. 084717 -. 069407 0.018173
X7 0.424621 0.228990 0.049723 -. 060920

-. 112328 0.282543 -. 425997 0.451916
;J -. 019425 -. 054921 0.011163 -. 071648
XIO 0.649457 0.205211 0.003963 -. 031687
XlI 0.024771 0.277025 0.134527 0.011138
X12 -. 350791 0.050171 -. 036486 -. 034579
X15 -. 000016 -. 000024 -. 000027 0.000020
X17 -. 274292 0.764548 0.286583 -. 091256
XIS 0.002874 0.003550 0.005124 -. 005044
X19 -. 011927 -. 008882 0.000199 0.002506
X20 0.063823 -. 103640 0.010887 -. 017095
X21 -. 083387 -. 217809 0.791683 0.033157
X22 -. 008422 0.006488 0.040242 0.034118
X23 0.012418 -. 058269 0.220111 0.846512
X24 -. 000033 0.000167 0.000161 -. 000250
X25 -. 017378 -. 066171 -. 006465 0.021055
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CODE AND UNIT TEST PHASE: Least Squares Method
(using Principal Components)

DEP VARIABLE: Y
ANALYSIS OF VARIANCE

SUM OF MEAN
SOURCE DF SQUARES SQUARE F VALUE PROB>F

MODEL 1 275.45981 275.45981 0.566 0.4764
ERROR 7 3406.24241 486.60606
C TOTAL 8 3681.70222

ROOT MSE 22.05915 R-SQUARE 0.0748
DEP MEAN 24.25556 ADJ R-SQ -0.0574
C.V. 90.94473

PARAMETER ESTIMATES

PARAMETER STANDARD T FOR HO:
VARIABLE DF ESTIMATE ERROR PARAMETER-O

INTERCEP 1 38.02688694 19.72530460 1.928
P1 1 -2.58584501 3.43686223 -0.752

VARIABLE DF PROD > ITI

INTERCEP 1 0.0952
P1 1 0.4764

PREDICT STD ERR LOWER95%
OBS ID ACTUAL VALUE PREDICT MEAN

1 5.76979 36.0000 23.1071 7.5098 5.3491
2 6.215126 31.0000 22.1207 7.8815 3.4836
3 3.13332 64.0000 29.9246 10.5281 5.0295
4 5.2445 48.0000 24.4654 7.3583 7.0656
5 2.27999 10.0000 32.1312 12.7921 1.8825
6 2.27047 8.0000 32.1558 12.8189 1.8438
7 7.61732 6.5000 18.3297 10.7750 -7.1493
8 7.55941 6.0000 18.4794 10.6304 -6.6577
9 7.90488 8.8000 17.5861 11,5172 --9.6479

10 5.91787 • 22.7242 7.6205 4.6830
11 10.373 • 11.2038 18.8412 -33.3490
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UPPER95% LOWER95% UPPER95%
OBS ID MEAN PREDICT PREDICT RESIDUAL

1 5.76979 40.8651 -31.W948 78.2090 12.8929
2 6.15126 40.7577 -33.2708 77.5121 8.8793
3 3.13332 5448198 -27.8737 87.7229 34.0754
4 5.2445 41.8653 -30.5221 79.4530 23.5346
5 2.27999 62.3798 -28.1669 92.4292 -22.1312
6 2.27047 62.4679 -28.1741 92.4857 -24.1558
7 7.61732 43.8087 -39.7225 76.3819 -11.8297
8 7.55941 43.6165 -39.4235 76.3823 -12.4794
9 7.90488 44.8201 -41.2575 76.4297 -8.7861
10 5.91787 40.7653 -32.4696 77.93.80
11 10.373 55.7566 -57.3952 79.8028

STD ERR
OBS ID RESIDUAL

1 5.76979 20.7415
2 6.15126 20.6031
3 3.13332 19.3847
4 5.2445 20.7957
5 2.27999 17.9714
6 2.27047 17.9522
7 7.61732 19.2485
8 7.55941 19.3288
9 7.90488 18.81S8

10 5.91787
11 10.373

SUM OF RESIDUALS 9.14824E-14
SUM OF SQUARED RESIDUALS 3406.242
PREDICTEP RESID SS (PRESS) 6058.221
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Regression Models Using Principal Components Analysis

for Highly Correlated Variables

PRINCIPAL COMPONENT ANALYSIS

11 OBSERVATIONS
7 VARIABLES

SIMPLE STATISTICS

Xi X2 X3 XS

MEAN 2.S7712 105.297 20.0766 8.02100
ST DEV 4.52637 243.706 26.7754 4.62116

X9 X213 X25

MEAN 90.035 2.52727 22.6800
ST DEV 183.950 2.77708 15.8044

COVARIANCES

X1 X2 X3 X8

Xl 20.48802 507.6274 76.7436 15.03902
X2 507.6274 59392.56 6000.551 949.0371
X3 76.7436 6000.551 716.922 108.5977
X8 15.03902 949.0371 108.5977 21.35512
X9 391.7628 44639.85 4421.269 721.7865
X23 4.005569 630.3725 67.45542 9.755015
X25 29.93848 2403.468 323.7854 51.44488

X9 X23 X25

X1 391.7628 4.005569 29.93848
X2 44639.85 630.3725 2403.468
X3 4421.269 67.45542 323.7854
X8 721.7865 9.755015 51.44488
X9 33837.77 466.0989 1758.177
X23 466.0989 7.712182 29.45329
X25 1758.177 29.45329 249.7776

E-75



PRINCIPAL COMPONENT ANALYSIS

TOTAL VARIANCE-94246.59

EIGENVALUE DIFFERENCE PROPORTION
CUMULATIVE

PRINI 93767.7 93474.0 0.994919
0.99492

PRIN2 293.6 163.8 0.003116
0.99803

PRIN3 129.8 81.3 0.001377
0.99941

PRIN4 48.5 43.9 0.000515
0.99993

PRIN5 4.6 2.5 0.000049
0.99998

PRIN6 2.1 1.8 0.000022
1.00000
PRIN7 0.3 -0.000003

1.00000

EIGENVECTORS

PRINI PRXN2 PRIN3 PRIN4

Xi 0.006891 0.053822 0.138704 0.458959
X2 0.795466 0.322656 -. 460802 -. 164212
X3 0.079926 0.560871 0.141991 0.674916
X8 0.012782 0.040068 0.121577 0.146618
X9 0.599617 -. 533522 0.553546 0.147258
X23 0.008398 0.031659 -. 015624 -. 029001
X25 0.032006 0.539598 0.653317 -. 512696

PRIN5 PRIN6 PRINT

X1 0.658582 -. 466968 0.339683
X2 0.151586 -. 020767 0.020326
X3 -. 421264 0.072819 -. 143518
XS 0.500471 0.840668 -. 068991
X9 -. 164496 0.006469 -. 024806
X23 -. 280461 0.248635 0.925940
X25 0.098187 -. 087309 0.029412
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PRINCIPAL COMPONENT ANALYSIS

11 OBSERVATIONS
10 VARIABLES

SIMPLE STATISTICS

X4 X5 X7 XIo X12

MEAN 2.83031 2.59865 2.11232 2.05379 2.43642
ST DIV 3.99664 3.05383 2.56330 2.65265 3.64045

Xi8 X19 X20 X22 X24

MEAN 419.000 102.455 21.1818 2.36364 2.74685
ST DIV 494.511 55.682 17.9990 0.80904 3.34931

COVARIANCES

X4 X5 X7 X1o X12

X4 15.9731 5.96383 8.56419 9.80594 13.3912
X5 5.96383 9.32588 3.46024 4.3422 7.72505
X7 8.56419 3.46024 6.5705 6.54925 7.941
X1o 9.80594 4.3422 6.54925 7.03654 9.17345
X12 13.3912 7.72505 7.941 9.17345 13.2529
X18 -1011.46 -665.931 -782.588 -767.761 -938.115
X19 105.698 65.6658 46.1192 57.2551 71.0751
X20 43.4028 37.4768 20.9603 30.1997 47.5335
X22 -2.6418 -1.18823 -1.17045 -1.60379 -2.43871
X24 12.3389 7.18182 6.99544 8.19207 11.7909

Xis X19 X20 X22 X24

X4 -1011.46 105.698 43.4028 -2.6418 12.3389
X3 -665.931 65.6658 37.4768 -1.18823 7.18182
X7 -782.588 46.1192 20.9603 -1.17045 6.99544
X1o -767.761 57.2551 30.1997 -1.60379 8.19207
X12 -938.115 71.0751 47.5335 -2.43871 11.7909
Xis 244541 -3143.5 -4314.1 153.7 -866.958
X19 -3143.5 3100.47 451.909 -13.9818 89.9873
X20 -4314.1 451.909 32-3.964 -12.0727 45.7
X22 153.7 -13.9818 -12.0727 0.654545 -2.29616
X24 -866.958 89.9873 45.7 -2.29616 11.2179

E-77



PRINCIPAL COMPONENT ANALYSIS

TOTAL VARIANCE-248029.9

EIGENVALUE DIFFERENCE PROPORTION CUMULATIVE

PRINI 244676 241553 0.986480 0.98648
PRIN2 3123 2921 0.012591 0.99907
PRIN3 202 180 0.000813 0.99988
PRIN4 22 17 0.000084 0.99997
PRINS 5 4 0.000020 0.99999
PRIN6 1 1 0.000006 1.00000
PRIN7 0 0 0.000001 1.00000
PRINS 0 0 0.000000 1.00000
PRIN9 0 0 0.000000 1.00000
PRIN10 0 . 0.000000 1.00000

EIGENVECTORS

PRINI PRIN2 PRIN3 PRIN4 PRINS

X4 -. 004142 0.030741 0.074788 0.557404 -. 255778
X5 -,002728 0.019341 0.093433 0.086419 0.933384
X7 -. 003202 0.011849 0.017808 0.359227 -. 076413
X1O -. 003143 0.015895 0.057780 0.362158 -. 098286
X12 -. 003841 0.020303 0.124832 0.480350 0.144420
X18 0.999722 0.015776 0.016865 0.004420 0.000214
X19 -. 013048 0.988986 -. 145044 -. 023291 -. 000806
X20 -. 017678 0.137151 0.965536 -. 190685 -. 090993
X22 0.000630 -. 004264 -. 039851 -. 062573 0.079428
X24 -. 003551 0.026534 0.106152 0.387360 0.111473

PRIN6 PRIN7 PRINS PRIN9 PRINIO

X4 -. 580518 0.358151 -. 282895 0.259850 -. 067073
X5 -. 059107 0.189811 -. 259442 0.043326 0.050209
X7 0.679620 0.062402 -. 365802 0.049403 -. 512465
XIO 0.392905 0.100794 -. 033061 0.024990 0.830259
X12 0.022076 0.164348 0.739272 -. 348577 -. 191995
Xis 0.000998 0.000412 -. 000880 0.000605 -. 000169
XIa 0.003909 -. 000096 0.008653 -. 008030 -. 000077
X20 0.033509 0.0264-29 -. 018878 0.038192 -. 018449
X22 0.152950 0.083966 0.412597 0.885806 -. 053252
X24 -. 135011 -. 887066 -. 023766 0.140904 0.002716
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PRINCIPAL COMPONENT ANALYSIS

11 OBSERVATIONS
2 VARIABLES

SIMPLE STATISTICS

Xli X17

MEAN 7.29776 5.45455
ST DEV 8421082 2.33939

COVARIANCES

Xli X17

Xii 67.41757 -12.4703
X17 -12.4703 5.472727

TOTAL VARIANCE-72.89029

EIGENVALUE DIFFERENCE PROPORTION
CUMULATIVE

PRINI 69.8338 66.7772 0.958067
0.95807

PRIN2 3.0565 . 0.041933
1.00000

EIGENVECTORS

PRINI PRIN2

XiI 0.981742 0.190218
X17 -. 190218 0.981742
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Regression Model: using the first Principal cowponent
of each highly correlated set -f variabloe

DEP VARIABLE: Y
ANALYSIS OF VARIANCE

SUM OF MEAN
SOURCE DF DQUARES SQUARE F VALUE PROB>F

MODEL 5 2744.60060 548.92012 1.757 0.3408
ERROR 3 937.10162 312.36721
C TOTAL 8 3681.70222

ROOT MSE 17.67391, R-SQUARE 047455
DEP MEAN 24.25556 ADW R-SQ 0.3213
C.V. 72.86542

PARAMETER ESTIMATES

PARAMETER STANDARD T FOR MO:
VARIABLE DF ESTIMATE ERROR PARsTERu0

INTERCEP 1 303.72064 432.56932 0.702
P1 1 0.04912381 0.02107148 2.331
P2 1 0.01548917 0.01901178 0.815
P3 1 0.04067242 0.06340874 0.641
P4 1 -0.64732832 0.89593575 -0.723
P5 1 -290.92605 439.15510 -0.6C2

VARIABLE DF PROB > ITI

INTERCEP 1 0.5332
P1 1 0.1020
P2 1 0.4749
P3 1 0.5669
P4 1 0.5222
P5 1 0.5550
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PRE.DICT STD ERR LOWER95%
OBSID ACTUAL VALUE PREDICT MEAN

1 4.1398 36.0000 36.0000 17.6739 -20.2472
2 29.2134 31.0000 30.4031 17.6639 -25.8124
3 1057.11 64.0000 63.1191 17.6608 6.9137
4 7.66955 48.0000 26,1961 12.3981 -13.2608
5 22.0749 10.0000 26.1133 14.5357 -20.1464
6 40.0765 8.0000 9.2445 8.7823 -18.7051
7 88.4097 6.5000 13.4096 11.7090 -23.8543
8 101.506 6.0000 14.2004 11.3907 -22.0504
9 79.7902 8.8000 -0.3861 15,1309 -48.5401

10 19.8917 31.4122 21.2165 -36.1092
11 92.54 , 19.3664 8.4602 -7.5580

UPPER9S% LOWER95% UPPER954
OBS ID MEAN PREDICT PREDICT RESIDUAL

1. 4.1398 92.2472 -43.5456 115.5 3,8E-12
2 29.2134 86.6186 -49.1201 109.9 0.5960
3 1057.11 119.3 -16.3969 142.6 0.8809
4 7.66955 65.6530 -42.5105 94.9027 21.8039
5 22.0749 72.3730 -46.7133 98.9399 -16.1133
6 40.0765 37.1941 -53.5642 72,0532 -1.2445
7 88.4097 50.6734 -54.0615 80.8807 -6.9096
8 101,506 50.452.3 -52.7165 81.1174 -8.2004
9 79.7902 47.7679 -74.4304 73.6582 9.1861

10 19.8917 98.9336 -56.4678 119.3
11 92.54 46.2909 -42.9928 81.7257

SVD ERR
OBS ID RESIDUAL

1 4.1398 1.4E-05
2 29.2134 0.5934
3 1057.11 0.6812
4 7.66955 12.5958
5 22.0749 10.0540
6 40.0765 15.3375
7 88.4097 13.2388
8 101.506 13.5137
9 79,7902 9.1337

10 19.8917
11 92.54

SUM OF RESIDUALS 1.52323E-12
SUM OF SQUARED RESIDUALS 937.1016
PREDICTED RESID SS (PRESS) 637811.6
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Regression Model: usinq only the first Principal component
of the highly correlated not of variables
(x1 ,x2 1x3I ,x8 ,x91 ,x2 5 )

DEP VARIABLE: Y
ANALYSIS OF VARIANCE

SUM OF MEAN
SOURCE DF SQUARES SQUARE F VALUE PROB>F

MODEL 1 1477.14894 1477.14894 4.690 0.0670
ERROR 7 2204.55328 314.93618
C TOTAL 8 3681.70222

ROOT MSE 17.74644 R-SQUARE 0.4012
DEP MEAN 24.25556 AW.'R-SQ 0.3157
C.V. 73.16444

PARAMETER ESTIMATES

PARAMETER STANDARD T FOR HOs
VARIABLE DF ESTIMATE ERROR PARAMETERwO

INTERCEP 1 17.88125956 6.60725342 2.706
P1 1 0.04011814 0.01852422 2.166

VARIABLE DF PROB > ITI

INTERCEP 1 0.0304
P1 1 0.0670

PREDICT STD ERR LOWER95%
OB8 ID ACTUAL VALUE PREDICT MEAN

1 4.1398 36.0000 18.0473 6.5735 2.5035
2 29.2134 31.0000 19.0532 6.3846 3.9559
3 1057.11 64.0000 60.2907 17.6592 18.5330
4 7.66955 48.0000 18.1889 6.5452 2.7119
5 22.0749 10.0000 18.7669 6.4355 3.5492
6 40.0765 8.0000 19.4891 6.3116 4.5643
7 88.4097 6.5000. 21.4281 6.0578 7.1035
8 101.506 6.0000 . 21.9535 6.0102 7.7414
9 79.7902 8.8000 21.0823 6.0942 6.6716

10 19.8917 • 18.6793 6.4516 3.4237
11 92.54 • 21.5938 6.0418 7.3071
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UPPER95% LOWER95% UPPER95%
OBS ID MEA1 PREDICT PREDICT RESIDUAL

1 4.1398 33.5912 -26.7030 62.7976 17.9527
2 29.2134 34.1505 -25.5439 63.6504 11.9468
3 1057.11 102.0 1,0903 119.5 3.7093
4 7.66955 33,6660 -26.5382 62.9161 29.8111
5 22.0749 33.9846 -25.8712 63.4049 -8.7669
6 40.0765 34.4138 -25.0500 64.0281 -11.4891
7 88.4097 35.7527 -22.9134 65.7696 414.9261
8 101.506 36.1655 -22.3518 66.2588 -15.9535
9 79.7902 35.4930 -23.2871 65.4517 -12.2823

10 19.8917 33.9349 -25.9717 63.3303
11 92.54 35.8805 -22.7355 65.9231

STD ERR
OBS ID RESIDUAL

1 4.1398 16.4841
2 29.2134 16.5582
3 1057.11 1.7577
4 7.66955 16.4953
5 22.0749 16.5384
6 40.0765 16.5861
7 88.4097 16.6805
8 101,506 16.6977
9 79.7902 16.6672
10 19.8917
11 92.54

SUM OF RESIDUALS 5.24025E-14
SUM OF SQUARED RESIDUALS 2204.553
PREDICTED RESID SS (PRESS) 145859.2
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