AD-A256 332 -)
TR @

Domain Plan Reasoning in TRAINS-90

ELECTE £
0CT 081392 & ;a
| TRAINS Technical Note 91-2
June 1991
IN

o S,
UNIVERSITY OF

ROCHESTER

COMPUTER SCIENCE

i j ." . L -'_» (AL
boEte e e T ...__.—--————J

George Ferguson

Domain Plan Reasoning in TRAINS-90

s e W o & n mm e

George Ferguson Acce-si_o:-._i’fi'mww) \/ o
NTIS Crnfi!

The University of Rochester CTIC TA% "
Computer Science Department Unaniovic sl i
Rochester, New York 14627 Justitication
TRAINS Technical Note 91-2 BY e

Dist-ibuiion
June 1991 Al s
ot |
k |
]
AL G

Abstract

This report describes the domain plan reasoning aspects of the TRAINS-90 project, an
integrated, discourse-oriented system for natural language and planning research. The
domain planner provides an interface which is used by higher level (i.e., discourse level)
routines to address issues that require reasoning about the world. In particular, it must
support both planning and plan recognition, since these tasks are interleaved in a discourse-
driven system such as this. A uniform representation for both tasks is used, based on a
declarative, hierarchical description of actions and plans. Heuristic rules for both planning
and plan recognition are also represented declaratively. Descriptions of the system as a

whole and of the domain reasoner in particular are presented, as well as documentation of
the domain reasoner source code.

This material is based upon work supported by ONR/DARPA under Research Contract number N00014-
90-J-1811. Air Force - Rome Lab under Research Contract no. F30602-91-C-0010, and the National Science
Foundation under Grant number IR1-9003841. The Government has certain rights in this material.

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

READ INSTRUCTIONS
| _REPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM
. REPORT NUMBER 2. GOVT ACCESSION NO.| 3. RECIPIENT'S CATALOG NUMBER
TRAINS TN 91-2
4. TITLE (and Subtitie) 5. TYPE OF REPORT & PERIOD COVERED
Domain Plan Reasoning in TRAINS-90 Technical Note
6. PERFORMING ORG. REPORT NUMBER
7. AUTHOR(s) 8. CONTRACT OR GRANT NUMBER(s)
George Ferguson N00014-90-J-1811
9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT, PROJECT, TASK

. AREA & WORK UNIT NUMBERS
Computer Science Department

734 Computer Studies Bldg.
University of Rochester, Rochester. NY 14627, USA

1. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE
Defense Advanced Research Projects Agency June 1991
1400 Wilson Blvd. 13. NUMBER OF PAGES
Arlington, VA 22209 26 pages

4. MONITORING AGENCY NAME & ADDRESS(if different from Controlling Office) 15. SECURITY CLASS. (of this report)
Office of Naval Research
Information Systems

Ar] ington, VA 22217 15a. gg&ts.sals_lé’ICATlON/DOWNGRADmG

unclassified

16. DISTRIBUTION STATEMENT (of this Report)

Distribution of this document is unlimited.

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if dif{ferent from Report)

18. SUPPLEMENTARY NOTES

None.

19. KEY WORDS (Continue on reverse side if necessary and identify by block number)

planning: plan recognition; knowledge representation: declarative
representations; discourse-driven systems

20. ABSTRACT (Continue on reverse side If necessary and identify by block number)

This report describes the domain plan reasoning aspects of the TRAINS-90
project, an integrated, discourse-oriented system for natural Tanguage and
planning research. The domain planner provides an interface which is used by
high level (discourse level) routines to address issues that require reasoning
about the world. In particular, it must support both planning and plan recog-
nition, since these tasks are interleaved in a discourse-driven system such as
this. A uniform representation for both tasks is used, based on a declarative,

DD , %%, 1473 EviTion OF 1 NOV 65 15 OBSOLETE

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

20.

ABSTRACT (Continued)

hierarchical description of actions and plans. Heuristic rules for both
planning and plan recognition are also represented declaratively. Descriptions
of the system as a whole and of the domain reasoner in particular are

presented, as well as documentation of the domain reasoner source code.

1 Introduction

This report describes the domain reasoning aspects of the TRAINS-90 project, an integrated,
discourse-oriented system for natural language and planning research. The domain of dis-
course is the transportation world, with factories, warehouses, and trains all constituting
separate, autonomous agents. The model is one of a human user being aided in formulating
plans by an intelligent assistant (the system), and then interacting through the system with
a simulated world. In addition, the system might have goals of its own, such as scheduled
deliveries, and must reason about conflict and trade-offs. The aim of the initial phase of the
project being reported here and by others (see [Allen and Schubert, 1991] for a complete
list of related publications) was to develop a working system which future, more in-depth,
research problems could use as a foundation. In this respect the system can be considered
a success, since a human can in fact sit down in front of it and carry on a dialog. However,
in order to develop the system completely within a short time frame,! many simplifications
had to be made. That is, the human would rapidly run out of patience with the system.
Nonetheless, the system was designed to be extendible, with modules whose subtleties were
glossed easily replaceable.

Development took place on Sun workstations and Symbolics Lisp machines. The system
is implemented in Common Lisp and, except for the world simulator which uses Symbolics
specialties, would run in any Common Lisp environment. The domain reasoner itself is
written in a PROLOG dialect that is interpreted by a Lisp interp.eter developed specially
for the project.

The next section describes the TRAINS-90 project in more detail, illustrating the position
of the domain reasoner in the overall system organization. The third section describes the
goals we set for the domain reasoner and outlines design decisions and idealizations that
we made to accomplish these goals. The fourth and fifth sections of the report describe the
implementation of the domain reasoner in detail, focusing on the translation of high-level
intuitions about planning and plan recognition into declarative facts and rules. The details
of our chosen knowledge representation and inference procedures are also described in these
sections. Finally, we present a summary of some of the goals that were not met in the
prototype system and offer some additional directions for future research, then summarize
our results in the last section. Appendices are included that present sample runs and
cross-reference the source code.

2 System Overview

As mentioned in the introduction, the TRAINS-90 project was designed to support research
in natural language processing, discourse reasoning, and planning. The system organization,
shown in Figure 1, reflects these various aspects.

Natural language input entered on a terminal? is fed through a syntactic parser which

'The work described here was carried out during the Summer and early Fall of 1990.

?Additional research within the TRAINS-90 project is investigating using spoken natural language [Naka-
jima and Allen, 1991] but the current system accepts only typed input.

Discourse Reasoner

Queties/Conmands | 2 | Responses

Domain Reasoner
Toqnn\ /quem

Simulated World

Figure 1: System Organization

generates one or more parse trees corresponding to the preferred parse of the (possibly
several) sentences in the input. The parse tree is converted into a surface logical form
possibly containing indexical terms; these are eliminated in the third stage which generates
a complete, non-indexical logical form for the input. For more details on the current state
of the natural language parts of the system, see [Schubert, 1991; Light, 1991].

Due to the fact that the natural language and planning parts of the system were devel-
oped in parallel by separate groups, a small pattern-matching syntactic converter transforms
the de-indexicalized logical form into a set of surface speech acts. These are processed by
the discourse reasoner (see [Traum, 1991]) which is responsable for maintaining the cov-
ersation and accomplishing any goals that it is given. It maintains a set of belief spaces
corresponding to different types of user and system knowledge about the conversation. The
discourse reasoner can interact with the domain reasoner to determine the relevance of a
particular speech act, can generate speech acts based on responses from the domain reasoner
(or otherwise) by sending commands to a natural language generator, or can instruct the
domain planner to attempt various operations such as refining or dispatching a plan. The
rest of this report deals entirely with the domain reasoner.

3 Domain Plan Reasoner Goals and Responsabilities

The domain plan reasoner provides an interface that is used by higher level (i.e., discourse
level) routines to address issues that require reasoning about the objects and agents in the
transportation world. One of the main goals of the project was to develop a representation
which could support both planning and plan recognition, since both of these are essential
within a discourse-driven system. Plan recognition is used to understand the content of
the user’s utterances, primarily in order to achieve the correct plan with respect to the
their intentions. It is also used however for disambiguation and reference, when linguistic
information is not sufficient. The planning aspect of the system is more traditionally under-
stood, namely it constitutes the “assistant” part of the system’s functions, completing and
checking plans before executing them. Both aspects can be used by the discourse module
to guide the conversation. Plan recognition can point out ambiguities in the input which
require that clarification sub-dialogs be initiated, or can provide additional information
about the plan as recognized that the discourse module can use to provide “helpful” sug-
gestions. Planning can indicate points in the plan where the system cannot proceed. again
necessitating additional interaction with the user, or can indicate that a plan is believed to
be executable.

This interleaving of planning and plan recognition raises some interesting issues not
normally addressed by systems which only have to do one or the other task, and only do
it once. As indicated above, ambiguities and choices can be postponed in the hopes that
further interaction with the human will provide sufficient details to make the choice. As
well, since the domain planner is in some sense a slave to the discourse reasoner, it must be
prepared to be called with an almost arbitrary sequence of requests. The implementation
cannot make any assumptions that it cannot later retract. The discourse-driven nature of
the project also places constraints on the amount of time taken by the domain reasoner
in any of its roles. The discourse system must keep the conversation going while the plan
reasoner computes, or might need to interrupt or restart it if new information arrives. While
this last has not been addressed in the prototype system, it remains an important area for
future system development.

Another main goal of the domain reasoner design was to explicitly represent planning
mechanisms. Thus the declarative knowledge base (described in the next section) describes
exactly how different types of statements from the human should be connected to the current
plan. Further, they describe how to complete the plan and test various aspects of it. These
are, of course, meta-level rules, in addition to the object-level rules about properties of
agents and objects in the transportation world and their relationships.

Main research issues to be addressed by the domain reasoner include using a temporally
explicit representation for reasoning about action and change (see, e.g., [Allen, 1984]), and
using a representation that allows reasoning in the presence of uncertainty. Both require-
ments are necessary for any complicated reasoning about interacting plans and independent
agents. The latter requirement is due to (a) the fact that the system does not have complete
knowledge of the world, but only what it obtains (at some cost) from the agents, and (b)
given this realistic restriction, it must reason about persistence of information that it has
gathered. Certainly probability models provide a suitable approach to the former problem,

and nonmonotonic formalisms (including probabilistic ones) to the latter.

Finally, the domain reasoner must be agent-oriented. That it, it must support reasoning
about multiple agents with different capabilities, and multiple levels of abstractions corre-
sponding to different ways of instructing these agents. New agents and changing capabilities
of old agents must be able to be accomodated in a straightforward manner. It will be seen
that the chosen representation allows exactly this type abstraction.

4 Domain Knowledge Representation

In this section we describe our approach to representing the transportation world (the object
level) and the domain reasoner’s capabilities (the meta level). Both types of knowledge are
expressed declaratively, using a PROLOG interpreter developed especially for the project.
In this section we describe how this language is used to represent the domain reasoner’s
knowledge. In the next section we describe how this knowledge is used. Further details of
the PROLOG interpreter language and implementation are available in an appendix.

4.1 Domain knowledge representation
The following syntax is used for our domain knowledge representation:

e Variables are names starting with a question mark, i.e., ?x, ?y, etc. The anonymous
variable 7_ can be used as well.

o Terms are represented by lists, i.e., (functor args...). The standard PROLOG use
of square brackets for lists is unnecessary; Lisp lists are used.

e Atomic formulas are also lists, i.e., (predicate terms...). The first element of the
list is the principal functor of the formula.

¢ Rules (clauses) are a list of atomic formulas; the first element is the head (consequent)
of the rule and the remaining elements are the body (antecedents). The input parser
accepts various syntactic variants of these such as the standard PROLOG notation
head :- body for rules.

Note that case is not significant in Common Lisp, and hence not in our PROLOG either.
Certain built-in and library predicates are used; they will be described as necessary.

Using this language, we had to represent two types of knowledge about the world: back-
ground information and action descriptions. First, background information and information
about the current state of the world were represented in a straightforward, first-order way.
For the sample system, the background knowledge is very simple, amounting to a description
of the initial location of objects in the world:

(at (ojfactory f1 ?_) (city cityB ?.)).
(at (car c1 ?.) (city cityI ?.)).

(at (oranges o1 ?7_) (city cityI ?.)).
(at (warehouse wi ?_) (city cityl ?7_.)).

As can be seen from this code, objects in the world are represented as terms (triples) of the
form (type name parm). 1he type field allows us to implement a flat tvpe system without
changing the unifier, since terms will only unify with like-typed terms. The name is simply
a constant term referring to the object. The parameter field allows us to keep bindings
consistent across different clauses when the name of the object is not known. Recall that
in PROLOG, variables in different clauses are distinct. However, in planning we may have
many clauses (facts) that refer to the same as-yet-unspecified object. Instantiating any one
instance ought to instantiate them all. Viewing these as parameters of the plan. we can
assign a new constant to the parameters of a new action when the clauses are asserted
in order to keep the bindings consistent.> Two other approaches are possible. First. we
might have used a global symbol table, but this would again require modifications to the
unifier. Alternatively, all facts about the plan could be stored as terms in a single clause.
but this seemed less persipicuous and less efficient (although whether it actually is or not
is not obvious). Other object-level predicates include coupled, in. and the like. concepts
ubiquitous to the transportation domain.

The other type of domain knowledge that we had to represent was the actions available
to the planner via the agents in the simulated world. We wanted a representation that could
be used for both planning and plan recognition, and that required the minimum commitment
to details of other aspects of the reasoner. We chose to represent actions by action schemas
that would list the major effects, preconditicas, and constraints on the actions. as well as
describing a hierarchy of actions, including abstract (non-executable) ones. for hierarchical
planning. The following is a typical example of a high-level action-schema:

(action_schema

(move_car 7Act ((agent ?E ?P1) (car ?C ?7P2)

(city ?S 7P3) (city ?D ?P4)))
(achieves ((at (car ?C ?P2) (city 7D ?P4))))
(enablers ((at (engine ?7E ?P1) (city ?S 7P3))
(coupled (engine ?E ?P1) (car ?C ?P2))))
(actions ((move_eng 7MAct ((engine 7E ?P1) (city 7D ?P4)))))
(constraints ((at (car ?C ?P2) (city ?S ?P3))

(not (at (car ?C 7P2) (city ?D ?P4))}}})).

The functor action_schema is the predicate under which this fact is stored in the database.
Its argument is a complex term consisting of

(a) the type of action, in this case move_car;

(b) an identifier (7Act) that will uniquely identify an instance of the schema when bound
to a new constant;

(e) a list of the parameters of the action, in the format described above, in this case the
agent moving the car, the car being moved, and the source and destination cities;

(d) terms for the various categories of information about the action.

3This problem is also addressed in similar way in [Pednault, 1986).

The achieves slot? describes the main effects of the action. at least those relevant to
planning. The enablers slot lists preconditions that the domain reasoner should work
to achieve, as in backward-chaining. The actions slot describes subactions that must be
performed to perform this abstract action. In this case. moving a cae requires moving the
relevant engine (which is the agent of the move-car action). This enforces a certain inten-
sional aspect on plan recognition: simply recognizing pre- and post-conditions of an action
is not always sufficient to assert that the action occurred. It also provides the framework
for decomposing actions to permit hierarchical planning. Finally. the constraints slot
represents preconditions that we would typically not work to achieve. These might typi-
cally be quantity conditions,® such as a relationship between the inputs and outputs of an
action. although they are not in this simple example. In effect, this slot and the enablers
slot allow the encoding of heuristic information for controiling backward-chaining deductive
planning.

Soin the example. we have described that moving a car ?C from ?S to 7D can be achieved
by having an engine ?E at ?S. coupling it to ?C, and moving the engine to ?D. Other actions
in the plan (probably higher-level ones) should ensure that the car is alreadv at 7S (to
avoid an infinite planning regress) and that the car is not alreadv at 7D (to avoid undoing
previous work).

The astute reader will have noticed that this representation is not temporally explicit.
In the interests of getting the prototype system running within the time constraints, we
were forced to not consider temporal reasoning. Thus actions are sequenced by their pre-
conditions. as will be described later when the dispatching functions are described. This
decision also affected some other aspects of the representation: the places where hacks were
required for things that would normally be handled by a temporal reasoner will be pointed
out as they arise.

Aside from this shortcoming. this declarative representation of states of the world and
of actions affords a modular design with a clean first-order semantics. New actions can be
added and existing actions modified fairly independently, as our experience showed us duriug
development. The “passive” description of actions also avoids making any committment to
how that knowledge might be used for planning or plan recognition, which is the subject of
the next section.

5 Domain Plan Reasoning

Since one of the principal goals for the domain reasoner was to represent planning and plan
recognition declaratively. we use the same language as before to describe these meta-level
operations. The PROLOG predicates assert and retract, along with gensym, are used to
modify the database to represent the state of knowledge of the current plan. Three types of
knowledge are represented, corresponding to the three main tasks required of the domain
reasoner: incorporating an observation into a plan (plan recognition). elaborating a plan
(planning), and dispatching a plan, which constitutes interacting with the agents to perform

*We borrow the frame representation [Hayes, 1979] terminology here, since the intuitions are very similar.
*These are called “resource conditions” by Wilkins [Wilkins, 1988].

the actions specified by the plan. Each of these will be described in turn. Description of
the actual linkage between these PROLOG routines and the rest of the system is described
later.

5.1 Incorporation

For plan recognition, the domain reasoner must attempt to incorporate a given item intc a
plan. We assume that the discourse module has determined which belief space and plan is
relevant. and so it asks the domain reasoner to incorporate the item into the plan, using as
its database the appropriate belief space. The method used by the domain reasoner depends
on the sort of item it is asked to incorporate. The reasoner returns (yes) if the information
was already in the plan, a list of items that were added to the plan to incorporate the item. or
an indication of why the incorporation failed. The general intuition behind incorporation is
that we are tryving to make a causal connection between the observation being incorporated
and the known plan. There are different ways of making this connection. and these are
reflected in the different strategies described below. The system hopes to find a unique
shortest connection to the plan. If one cannot be found then an ambiguity is signalled.
again as described below.

Plans are described by a set of meta-predicates that describe the current state of knowl-
edge of the plan.® The complete list of meta-predicates is given in Table I.

(plan_goal ?G ?P) ?G is a goal of plan ?P

{(plan_action_in ?& ?P) ?A s an action n plan ?P
(plan_constraint ?C ?P) ?C is a constraint on plan 7P
(plan_achieves ?A ?E ?P) 7E i1s an effect of action ?4 in plan ?P
(plan_enabler ?A ?E ?P) ?E enables action ?A in plan ?P
(plan_subaction ?A 7Aa ?P) ?Aa is a subaction of action ?4 in plan 7P
(plan_act_constraint 7A ?C 7P) 7?Cis a constraint on action ?4 in plan 7P

Table 1: Plan description meta-predicates

Generally a list of such predicates is returned by the domain reasoner for possible addition
to a database by the discourse reasoner. As we will see. these additions are also handled
by the domain reasoner in order that it can keep its knowledge base consistent. Note that
when we say a value is “returned”, we mean that a variable desigrated as the return value
in the query is instantiated. since these are predicates.

If asked to incorporate a goal ?G into a plan ?P, the domain reasoner will return the
clause (plan_goal ?G ?P). In addition. if the goal is the name of an action (as determined
from the action schemas). then it is assumed that the action is in the plan, since this is a
common intuition. In this case the clause (plan_action_in ?G ?P) will also be returned.

Continuing with possible incorporation requests, the domain reasoner may be asked to
incorporate the fact that a new action is in the plan into the current plan. If the domain

®In the current belief space (or database). Evervthing that follows is relative to the belief space. The
mapping from belief space to database is described below when the domain reasoner interface is discussed.

reasoner does not already believe that the action is in the plan (in which case it returns
(yes)). it must attempt to connect it to actions in the plan through conditions or subactions.
Furthermore. it will only do this if there is an unambiguous connection, otherwise it will
indicate that there is a choice point in its return value.

The handling of these disjunctive ambiguities is important. In keeping with the discourse-
driven nature of the system, their resolution might be postponed, hoping for the arrival of
new information. In other cases they have to be resolved immediately, for example when
a plan is about to be executed or when a definite answer is required for other reasoning.
The approach in the prototype svstem is to simply indicate the ambiguity to the discourse
reasoner by returning a term (choice termi term2 ...) that represents it. In some cases
the discourse reasoner makes the choice and subsequently incorporates it back to the domain
reasoner, in others it simply waits. Certainlv, more sophisticated handling of disjunction
and ambiguity is an important area foi future research.

In any event. the domain reasoner determines the possible wavs of incorporating the
action by checking the following two conditions. after first testing whethker the action is
already in the plan:

(a) The action is a subaction of an action already in the plan. and the constraints of both
actions are satisfied:

{b} The action achieves an effect that is an enabler of an action already in the plan. and
both actions” constraints are satisfied.

Together, these tests constitute a “one-step™ connection to the plan. In general. we might
want to reason about arbitrarily long such connections by iterating the one-step ones. For
the prototype system however, we simply enumerate the cases that make up two-step con-
nections. since that was sufficient for the demonstration dialog. In theory however. arbitrary
connections do not pose a problem, although they do increase the likelihood of ambiguity.
The setof builtin predicate is used to gather all instances satisfying the tests, and appro-
priate lists of plan description clavses are returned depending on the instances found. If
no such instances are found, then a term of the form (error no_action) is returned to
indicate that the action simply could not be connected to the plan.

If neither a goal nor an action is being incorporated. then the domain reasoner falls back
oL Its generic strategy to incorporate a fact. The reasoner first attempts to incorporate the
fact as an enabler of an action that can be incorporated into the plan. Failing that. it
attempts to incorporate the fact as a constraint on an action that can be incorporated into
the plan. Note that the acticn used for the connection needn’t be in the plan already: the
svstem will return whatever was required to incorporate it in addition to plan description
pre _icates for incorporating the fact itself. One interesting feature arises here with the
predicate one_good_action/2. This predicate prevents the existence of multiple ways of
connecting a fact to the plan from being interpreted as an ambiguity if there is only one
shortest such connectior.

Table 2 summarizes the possible forms of incorporation requests and their possible re-
sults. We believe that these possibilities cover a broad range of phenomena that might
be encountered when providing plan recognition services within the transportation domain

Request

Return

Condition

(goal 7G 7P)

(yes)

(plan_goal ?G ?P)
(plan_action_in ?A ?P)

(plan_goal ?G ?P)
(plan_constraint ?G ?P)

(plan_goal 7G ?P)

?G matches action-schema 7A

otherwise

(action_in 7A ?P)

(yes)

(plan_action_in ?A ?P)
(plan_subaction 7Aa ?A ?P)

(plan_action_in 7A ?P)
(plan_achieves ?A 7E 7P)
(plan_enabler ?Aa ?E ?P)

(plan_action_in ?A 7P)
(plan_gsubaction 7Aa 7A 7P)
(plan_action_in ?7Aa 7P)

(plan_subaction 7Aaa 7Aa 7P)

(plan_action_in ?A ?P)
(plan_subaction 7Aa 7A 7P)
(plan_action_in ?7Aa 7P)
(plan_achieves 7Aa ?E ?P)
(plan_enabler ?Aaa ?E 7P)

(plan_action_in 7A 7P)
(plan_achieves ?A ?E ?P)
(plan_enabler 7Aa ?E 7P)
(plan_action_in 7Aa 7P)
(plan_subaction 7Aaa 7A 7P)

(plan_action_in 7A ?P)
(plan_achieves ?A ?E 7P)
(plan_enabler 7Aa ?E 7P)
(plan_action_in ?Aa ?P)
(plan_achieves 7Aa 7Ee 7P)
(plan_enabler 7Aaa 7Ee 7P)

(error no_action)

(plan_action_in 7A 7P)

(plan_action_in 7Aa ?P)
and one-step subaction

(plan_action_in 7Aa ?P)
and one-step condition

(plan_action_in 7Aaa ?P)
and two subaction links

(plan_action_in ?Aaa ?P)
and one subaction and
one condition link

(plan_action_in 7Aaa ?P)
and one subaction and
one condition link

(plan_action_in 7Aaa ?P)
and two condition links

otherwise

(fact ?F 7P)

(yes)
(yes)

(plan_enabler 7A ?F 7P)
and results of incorporating 7A

(plan_act_constraint 7A ?F 7P)

and results of incorporating 7A

(plan_constraint ?A 7F ?7P)

(plan_enabler 7F 7P)
(plan_constraint ?F 7P)

7A can be incorporated

7A can be incorporated

otherwise

Table 2: Incorporation request and return summary

9

(and presumably elsewhere also). The declarative rules are clearly and concisely expressed,
and would be ewen more so but for our ad hoc treatment of iterated connections.

5.2 Elaboration

The incorporation process described above provides plan recognition facilities to the higher
level modules ira the TRAINS-90 system. Whenever the discourse module determines that it
should take the initiative (usually whenever it gets the “turn,” again see [Traum, 1991] for
details), it calls the domain reasoner to elaborate a plan in a belief space. This corresponds
to more standard notions of planning, and is broken into two aspects: elaborating subactions
and elaborating preconditions. As with incorporation, a list of plan description predicates is
returned and, as opposed to incorporation, they are also asserted to the current belief space.
The reason for the difference is that while something that the system plans is definitely
known by it, in :some sense, the conclusions reached by plan recognition are always in some
sense tentative, thus requiring finer discourse-level control.

As we notedt when the action-schema representation was described, subaction slots
provide a means of defining actions hierarchically. The first task of the elaboration phase is
to ensure that any subactions that are not already part of the plan are added to it. These
new actions are also subject to the elaboration process. As long as the action hierarchy is
acyclic (as seems reasonable), no infinite regress is possible.

Besides the action decomposition, the elaboration phase must ensure that all precondi-
tions (enablers) are fulfilled. It does this by gathering up all those enablers of actions in
the plan that are not already explicitly listed as part of the plan by a plan_enabler clause.
It removes those which are already true for any reason (thus performing opportunistic plan-
ning) and tries to achieve the rest by adding new actions to the plan. These actions are
subject to further elaboration, and care must be taken to avoid an infinite regress. The
distinction between enablers and constraints provides a mechanism for controlling the
backward chaining. In both cases the method of achieving the enabler must be unambiguous
or a choice error will be returned in addition to whatever could be elabcrated nnambigu-
ously. Interestingly, the test for an enabler already being true can introduce ambiguity, for
example when am unbound parameter can be instantiated in several ways.

As might be expected, this simple approach to planning yields far too many ambiguities
far too quickly to be of much use as a real planner, although it performs adequately for
demonstration prurposes. The use of a perspicuous declarative formalism for expressing the
planning rules, however, makes it easy to alter and improve the elaboration procedures as
part of future work on the system. By way of example, we note that the elaboration module
was added to the system after the initial deadline for development, with no problems.

5.3 Dispatching

The final major phase of the domain reasoner’s job is to dispatch a plan for execution. It
does this, as always, under the guidance of the discourse system when that module has
determined that the plan is executable (usually after a nil elaboration return) and that
the user wants it executed. The main reason that this is a separate phase is that the

10

agents and their simulated world were developed separately (again, see [Martin and Miller.
1991] for details) thereby necessitating certain syntactic transformations. As part of future
research however, the domain reasoner’s tasks may be interleaved with execution of plans
and plan fragments by the agents. It is expected that this dispatching module will contain
the routines required to react to changes in the world, and modify plans or inform the
discourse module of more serious problems.

For current purposes, the predicate make_executable_plan/2 simply gathers the prim-
itive actions of the plan (those with no subactions, which will actually be executed) and
converts them to condition-action pairs for the reactive agents. The conditions for an action
are

(a) Any enablers listed as part of the plan;
(b) Any constraint listed in the schemas;

(c) Any preconditions of actions of which this action is a subaction.

The domain reasoner removes any of these that are already true (although it needn’t tech-
nically). Note that only those enablers that were explicitly recognized as important and
therefore described by plan_enabler clauses are considered, whereas all constraints are
listed. This is essentially an artifact of our poor handling of constraints, although it does
not seem to be an incorrect approach.

It is in this phase that our lack of explicit temporal notation is most obvious. Several
preconditions required for the sample dialog must be explicitly mentioned in order that they
not be removed. That is, the domain reasoner thinks they are already true, although they
will really only be true at some point in the future. A temporally explicit representation
would not have this problem and the hacked-in cases could be removed.

Finally, the minor syntactic transformations required for the agents are performed and
a term representing the plan in executor format is returned.

5.4 Domain Reasoner Interface

Since the rest of the TRAINS-90 system is written in Common Lisp, interface routines are
provided that connect to the PROLOG meta-predicates described above. In general these
rely on using the 1isp/2 builtin predicate to set a special variable from within PROLOG
during a call to prove. This variable can then be accessed after the proof has finished and
its value used by Lisp routines. The Lisp functions incorporate, elaborate, and execute
correspond to the three phases described above. All three accept a plan or item parameter
and a belief space in which to operate. They convert the parameter into a goal statement
and call prove_in_prolog which sets the special variable *database* to the given belief
space and then calls prove.

It is clear from the above that belief spaces are PROLOG databases; the planning meta-
predicates are oblivious to them. In general, the discourse system might maintain more
sophisticated information in these spaces, but for the prototype system they contain only
plan description and object-level predicates. Functions are provided to create, move, and

11

copy belief spaces, and these also provide the inheritance between the *shared* space
and all the others. The function print-plan pretty-prints plans by proving the PROLOG
predicate printPlan/1 in the given belief space.

6 Future Work

Future work on the TRAINS-90 project domain plan reasoner can be divided into two phases.
Initially, those aspects of the systems that were implemented cheaply due to time constraints
must be improved. First, we need a real type system within the unifier to provide true
hierarchical typing and clarify the language. Secondly, constraints should be posted on
variables and propagated during inference, rather than being tested at more or less arbitrary
points. Finally, the as the previous discussion clearly illustrated, we must modify the
representation to be temporally explicit. None of these developments are seen as major
hurdles, and indeed most of this functionality can be found in the RHET system [Allen and
Miller, 1989].

Longer-term research in domain plan reasoning will center on the introduction of mech-
anisms for dealing with uncertainty. This will probably include the introduction of non-
monotonic methods for plan reasoning and of probablistic methods for sensor and agent
modelling. In particular, the treatment of ambiguity in incorporation and elaboration is
insufficient for a real system. We will want to reason more effectively about alternatives
before signalling a choice to the discourse reasoner. As well, techniques for plan monitor-
ing, replanning, and the interleaving of planning and execution need to be developed and
implemented to replace the simple dispatching routine used currently.

7 Conclusions

We have described the domain reasoning aspects of the TRAINS-90 project in detail. We
have described the way this module interacts with the rest of the TRAINS-90 system to the
level of Lisp functions. We have also described the intuition behind the various services
required of the domain reasoner, and described in some detail how these services are imple-
mented. It is hoped that this report will provide not only a summary of the work done to
date on the prototype system, but also a guide to further development. Appendices provide
(a) a description of the domain reasoning aspects of the sample dialog, (b) a description of
the PROLOG subsystem, and (c) a cross-reference guide to the source code.

12

References

[Allen and Schubert, 1991] James F. Allen and Lenhart K. Schubert, “The TRAINS
Project,” TRAINS Technical Note 91-1, Department of Computer Science, University
of Rochester, Rochester, NY, 1991.

[Allen, 1984] J.F. Allen, “Towards a general theory of action and time,” Artificial Intelli-
gence, 23:123-154, 1984, Also in Readings in Planning, J. Allen, J. Hendler, and A. Tate
(eds.), Morgan Kaufmann, 1990, pp. 464-479.

[Allen and Miller, 1989] J.F. Allen and B.W. Miller, “The Rhetorical knowledge represen-
tation svstem: A user’s manual (for Rhet version 15.25),” Technical Report 228 (revised),
Department of Computer Science, University of Rochester, Rochester, NY, March 1989.

[Hayes, 1979] P.J. Hayes, “The logic of frames,” In D. Metzing, editor, Frame Conceptions
and Text Understanding, pages 46-61. Walter de Gruyter and Co., Berlin, 1979, Also in
Readings in Knowledge Representation, R.J. Brachman and H.J. Levesque (eds.), Morgan
Kaufmann. 1985, pp. 287-296.

[Light, 1991]) Marc Light, “Semantic interpretation in TRAINS-90,” TRAINS Technical
Note 91-3. Department of Computer Science, University of Rochester, Rochester. NY.
1991.

[Martin and Miller, 1991] Nathaniel Martin and Bradford Miller, “The TRAINS-90 simu-
lator,” TRAINS Technical Note 91-4, Department of Computer Science, University of
Rochester, Rochester, NY, 1991.

[Nakajima and Allen, 1991} Shinya Nakajima and James F. Allen, “A study of pragmatic
roles of prosody in the TRAINSdialogs,” Trains technical note, Department of Computer
Science. University of Rochester, Rochester, NY, 1991, To appear.

[Nilsson, 1984] M. Nilsson, “The world’s shortest Prolog interpreter?,” In J.A. Campbell,
editor, Implementations of Prolog, pages 87-92. Ellis Horwood, Chichester, England,
1984.

[Pednault. 1986] E.P.D. Pednault, “Formulating multi-agent, dynamic-world problems in
the classical planning framework,” In M.P. Georgeff and A.L. Lansky, editors, Reasoning
about Actions and Plans: Proceedings of the 1986 Workshop, Los Altos, CA, 30 June-
2 July 1986. Morgan Kaufmann, Also in Readings in Planning, J. Allen, J. Hendler. and
A. Tate (eds.), Morgan Kaufmann, 1990, pp. 675-710.

[Schubert, 1991] Lenhart K. Schubert, “Language processing in the TRAINSproject,”
Trains technical note, Department of Computer Science, University of Rochester,
Rochester, NY, 1991, To appear.

[Traum, 1991] David Traum, “The discourse reasoner in TRAINS-90,” TRAINS Technical
Note 91-6, Department of Computer Science, University of Rochester. Rochester, NY,
1991.

13

[Wilkins, 1988] D.E. Wilkins, Practical Planning: Eztending the Classical AI Planning
Paradigm, Morgan Kaufmann, San Mateo, CA, 1988.

14

A System Traces

A.1 Sample Dialog

The following is a trace of the domain reasoner’s execution on the sample dialog for the
prototype system, which was as follows:

Manager: We have to make OJ.

Manager: There are oranges at I and an OJ factory at B.
Manager: Engine E3 is scheduled to arrive at I at 3 pm.
Manager: Shall we ship the oranges?

System: Ok.

System: Shall I start loading the oranges into the empty car at I?
Manager: Yes, and we'll have E3 pick it up.

Manager: Ok?

System: Ok.

In what follows, user input and system natural language output are shown in italics, and
calls from the discourse reasoner to the domain reasoner and values returned to the discourse
reasoner are in constant-width. Calls to the domain reasoner use mixed-case while returns
from it are entirely uppercase.

Manager: We have to make OJ.

(incorporate ’(goal (make_oj (:*var* Act) (:*var* Parms)) plani) *hprop#*)

((PLAN_GOAL
(MAKE_OJ #:ACT1062
((OJFACTORY (:*VAR* F) #:PARM1063)
(ORANGES (:*#VAR* 0) #:PARM1064)
(0J (:*VAR* 0J) #:PARM1065)
(CITY (:*VAR* L) #:PARM1066)))
PLAN1)
(PLAN_ACTION_IN
(MAKE_0J #:ACT1062
((OJFACTORY (:#VAR* F) #:PARM1063)
(ORANGES (:*VAR* Q) #:PARM1064)
(0J (:*VAR* 0J) #:PARM1065)
(CITY (:*VAR* L) #:PARM1066)))
PLAN1))

Manager: There are oranges at I and an OJ factory at B.

(incorporate ’'(fact (at (oranges ol (:*var* _1))
(city cityI (:svar* _2))) plani) *hprop*)

15

((PLAN_ACT_COKSTRAINT
(MOVE_ORANGES #:ACT1067
((AGENT (:*VAR* A) #:PARM1068) (ORANGES O1 #:PARM1064)
(CAR (:*VAR* C) #:PARM1069) (CITY CITYI #:PARM1070)
(DJFACTORY (:*VAR* F) #:PARM1063)))
(AT (ORANGES 01 #:PARM1064) (CITY CITYI #:PARM1070)) PLAN1)
(PLAN_ACTION_IK
(MOVE_ORANGES #:ACT1067
((AGENT (:*VAR* A) #:PARM1068) (ORANGES 01 #:PARM1064)
(CAR (:*VAR* C) #:PARM1069) (CITY CITYI #:PARM1070)
(OJFACTORY (:#VAR* F) #:PARM1063)))
PLAN1)
(PLAN_ACHIEVES
(MOVE_ORANGES #:ACT1067
((AGENT (:*VAR* A) #:PARM1068) (ORANGES 01 #:PARM1064)
(CAR (:*VAR* C) #:PARM1069) (CITY CITYI #:PARM1070)
(OJFACTORY (:*VAR+* F) #:PARM1063)))
(AT (ORANGES 01 #:PARM1064) (OJFACTORY (:*VAR* F) #:PARM1063))
PLAN1)
(PLAN_ENABLER
(MAKE_DJ #:ACT1062
((OJFACTORY (:+VAR* F) #:PARM1063)
(ORANGES 01 #:PARM1064) (0J (:*VAR+ 0J) #:PARM1065)
(CITY (:#VAR* L) #:PARM1066)))
(AT (ORANGES 01 #:PARM1064) (OJFACTORY (:#VAR* F) #:PARM1063))
PLAN1))

(incorporate ’'(fact (at (ojfactory fi (:#var* _1))
(city cityB (:*var* _2))) planl) *hprop*)

((PLAN_ACT_CONSTRAINT
(MAKE_DJ #:ACT1062
((OJFACTORY F1 #:PARM1063) (ORANGES 01 #:PARM1064)
(0J (:*VAR+* 0J) #:PARM1065) (CITY CITYB #:PARM1066)))
(AT (OJFACTORY F1 #:PARM1063) (CITY CITYB #:PARM1066)) PLAN1)
YES)

Manager: Engine E3 is scheduled to arrive at I at 3 pm.

(incorporate ’'(fact (at (engine eng3 (:»vars _1))
(city cityl (:#var* _2))) plani) shprop*)

((PLAN_EKABLER
(MOVE_CAR #:ACT1071
((AGENT ENG3 #:PARM1068) (CAR (:*VAR#* C) #:PARM1069)

(CITY CITYI #:PARM1070) (CITY (FACTORY-CITY F1) #:PARM1063)))

(AT (ENGINE ENG3 #:PARM1068) (CITY CITYI #:PARM1070)) PLAN1)
(PLAN_ACTIOK_IN
(MOVE_CAR #:ACT1071
((AGENT ENG3 #:PARM1068) (CAR (:*VAR+# C) #:PARM1069)

16

(CITY CITYI #:PARM1070) (CITY (FACTORY-CITY F1i) #:PARM1063)))

PLAN1)
(PLAN_SUBACTION

(MOVE_ORANGES #:ACT1067

((AGENT ENG3 #:PARM1068) (ORANGES 031 #:PARM1064)

(CAR (:*VAR* C) #:PARM1069) (CITY CITYI #:PARM1070)

(OJFACTORY F1 #:PARM1063)))
(MOVE_CAR #:ACT1071

((AGENT ENG3 #:PARM1068) (CAR (:#VAR+* C) #:PARM1069)

(CITY CITYI #:PARM1070) (CITY (FACTORY-CITY F1) #:PARM1063)))
PLAN1))

Manager: Shall we ship the oranges?

(incorporate ’(action_in (move_oranges (:*var*x Act)
((agent (:xvar* _1) (:*xvar* _2))
(oranges ol (:*var* _3))
(car (:*var* _4) (:*var*x _5))
(city (:»var* _6) (:#varx _7))
(ojfactory (:svar* _8) (:*var* _9)))) plani)
hprop#)

(YES)

(move-plan ’plani *hprop* *shared*)
T

(elaborate ’plani *splan%*)

((PLAN_ACTION_IN
(MOVE_ENG #:ACT1072
((ENGIKE ENG3 #:PARM1068) (CITY (FACTORY-CITY F1) #:PARM1063)))
PLAN1)
(PLAN_SUBACTION
(MOVE_CAR #:ACT1071
((AGENT ENG3 #:PARM1068) (CAR (:*VAR* C) #:PARM1069)
(CITY CITYI #:PARM1070) (CITY (FACTORY-CITY F1) #:PARM1063)))
(MOVE_ENG #:ACT1072
((ENGINE ENG3 #:PARM1068) (CITY (FACTORY-CITY F1) #:PARM1063)))
PLAN1)
(PLAN_ACTION_IN (RUN #:ACT1073 ((OJFACTORY Fi #:PARM1063))) PLAN1)
(PLAN_SUBACTION
(MAKE_OJ #:ACT1062
((OJFACTORY F1i #:PARM1063) (ORANGES 01 #:PARM1064)
(0J (:*VAR* 0J) #:PARM1065) (CITY CITYB #:PARM1066)))
(RUN #:ACT1073 ((DJFACTORY F1 #:PARM1063))) PLAN1)
(PLAN_ACTION_IN
(UNLOAD_ORANGES #:ACT1074

17

((OJFACTORY F1 #:PARM1063) (CAR (:*VAR* C) #:PARM1069)
(CITY CITYB #:PARM1066) (ORANGES O1 #:PARM1064)))
PLAN1)
(PLAN_ACHIEVES
(UNLOAD_ORANGES #:ACT1074
((OJFACTORY F1 #:PARM1063) (CAR (:*VAR* C) #:PARM1069)
(CITY CITYB #:PARM1066) (ORANGES 01 #:PARM1064)))
(HAS_ORANGES (OJFACTORY F1 #:PARM1063)) PLAN1)
(PLAN_ENABLER (RUN #:ACT1073 ((OJFACTORY F1 #:PARM1063)))
(HAS_ORANGES (OJFACTORY F1 #:PARM1063)) PLAN1)
(PLAN_ACTION_IN
(LOAD_ORANGES #:ACT1075
((CAR (:#VAR* C) #:PARM1069) (ORANGES 01 #:PARM1064)
(CITY CITYI #:PARM1070)))
PLAN1)
(PLAN_ACHIEVES
(LOAD_ORANGES #:ACT1075
((CAR (:*#VAR* C) #:PARM1069) (ORANGES O1 #:PARM1064)
(CITY CITYI #:PARM1070)))
(IN (CAR (:*VAR* C) #:PARM1069) (ORANGES O1 #:PARM1064)) PLAN1)
(PLAN_ENABLER
(MOVE_ORANGES #:ACT1067
((AGENT ENG3 #:PARM1068) (ORANGES 01 #:PARM1064)
(CAR (:*VAR* C) #:PARM1069) (CITY CITYI #:PARM1070)
(OJFACTORY F1 #:PARM1063)))
(IN (CAR (:*VAR* C) #:PARM1069) (ORANGES 01 #:PARM1064)) PLAN1)
(CHOICE ((AT (CAR C2 #:PARM1069) (CITY CITYI #:PARM1070))
(AT (CAR C1 #:PARM1069) (CITY CITYI #:PARM1070)))))

(move-plan ’plani *splan% *sprop*)
T
System: Ok. Shall I start loading the oranges into the empty car at I?

(incorporate ’(fact (at (car c1 (:*var* _1)) (city cityl (:#var* _2)))
plani) *sprop#*)

((PLAN_ENABLER
(MOVE_ORANGES #:ACT1067
((AGENT ENG3 #:PARM1068) (ORANGES 01 #:PARM1064)
(CAR C1 #:PARM1069) (CITY CITYI #:PARM1070)
(OJFACTORY F1 #:PARM1063)))
(AT (CAR C1 #:PARM1069) (CITY CITYI #:PARM1070)) PLAN1)
YES)

Yes, and we’ll have E3 pick it up.

(move-plan ’plani *sprop* *shared*)
P

18

T

(incorporate ’'(action_in (couple (:*var* Act)
((engine eng3 (:*var* _1)) (car ci (:*var* _2))
(city (:»var* _3) (:¥var* _4)))) plani)
hprop#)

((PLAN_ACTION_IN
(COUPLE #:ACT1076
((ENGINE ENG3 #:PARM1068) (CAR C1 #:PARM1069)
(CITY (:*VAR* L) #:PARM1077)))
PLAN1)
(PLAN_ACHIEVES
(COUPLE #:ACT1076
((ENGINE ENG3 #:PARM1068) (CAR C1 #:PARM1069)
(CITY (:*VAR* L) #:PARM1077)))
(COUPLED (ENGINE ENG3 #:PARM1068) (CAR C1 #:PARM1069)) PLAN1)
(PLAN_ENABLER
(MOVE_CAR #:ACT1071
((AGENT ENG3 #:PARM1068) (CAR C1 #:PARM1069)
(CITY CITYI #:PARM1070) (CITY (FACTORY-CITY Fi) #:PARM1063)))
(COUPLED (ENGINE ENG3 #:PARM1068) (CAR C1 #:PARM1069)) PLAN1))

Manager: Ok?
(move-plan ’planl *hprop* *shareds*)
T
(elaborate ’plani *splan*)
NIL
(execute ’'planil *splan*)
((C(AT ENG3 CITYI)) (COUPLE ENG3 ENG3 C1))
(((IN c1 01) (AT C1 CITYB)) (UNKLOAD Fi C1))
(NIL (LOAD W1 Ci O1))
(((IN €1 01) (AT €2 CITYI) (COUPLED ENG3 C1i) (AT ENG3 CITYI))

(GOTO ENG3 CITYB))
(((HAS_ORANGES F1)) (RUN F1)))

A.2 Alternate Dialog

In addition to the dialog described above, the user might not accept the system'’s suggestion
to use the car at city I (C1), and suggest instead that the car attached to E3 (C2) be used
instead. This leads to a different sequence of elaborates, and of course to a different plan.
Since the dialogs are identical up to the point following the system’s utterance, we do not

repeat the initial part of the trace.

Manager: No, use the empty car at city I instead.

19

(incorporate ’(action_in (load_oranges (:*var* Act)
((car ¢2 (:»var* _1)) (oranges ol (:*var* _2))
(city (:#var* _3) (:#var* _4)))) plani)
hprop#)

((PLAN_ACTION_IN
(LOAD_ORANGES #:ACT1076
((CAR C2 #:PARM1069) (ORANGES 01 #:PARM1064)
(CITY (:#VAR* L) #:PARM1077)))
PLAN1)
(PLAN_ACHIEVES
(LOAD_ORANGES #:ACT1076
((CAR C2 #:PARM1069) (ORANGES 01 #:PARM1064)
(CITY (:#VAR* L) #:PARM1077)))
(IN (CAR C2 #:PARM1069) (ORANGES O1 #:PARM1064)) PLAN1)
(PLAN_ENABLER
(MOVE_ORANGES #:ACT1067
((AGENT ENG3 #:PARM1068) (ORANGES 01 #:PARM1064)
(CAR C2 #:PARM1069) (CITY CITYI #:PARM1070)
(OJFACTORY F1 #:PARM1063)))
(IN (CAR C2 #:PARM1069) (ORANGES 01 #:PARM1064)) PLAN1))

Manager: Ok?

(move-plan ’plani *hprop* *shared#)
T

(elaborate ’'plani *splan+)

((PLAK_ACTION_IN
(MOVE_ENG #:ACT1078
((ENGINE ENG3 #:PARM1068) (CITY (FACTORY-CITY F1) #:PARM1063)))
PLAN1)
(PLAN_SUBACTION
(MOVE_CAR #:ACT1071
((AGENT ENG3 #:PARM1068) (CAR C2 #:PARM1069)
(CITY CITYI #:PARM1070) (CITY (FACTORY-CITY F1) #:PARM1063)))
(MOVE_ENG #:ACT1078
((ENGINE ENG3 #:PARM1068) (CITY (FACTORY-CITY F1) #:PARM1063)))
PLAN1)
(PLAN_ACTION_IN (RUN #:ACT1079 ((OJFACTORY F1 #:PARM1063))) PLAN1)
(PLAN_SUBACTION
(MAKE_OJ #:ACT1062
((OJEACTORY F1 #:PARM1063) (ORANGES 01 #:PARM1064)
(0J (:#VAR* 0J) #:PARM1065) (CITY CITYB #:PARM1066)))
(RUN #:ACT1079 ((OJFACTORY F1 #:PARM1063))) PLAN1)
(PLAN_ACTION_IN
(UNLOAD_ODRANGES #:ACT1080
((OJFACTORY F1 #:PARM1063) (CAR C2 #:PARM1069)

20

(CITY CITYB #:PARM1066) (ORANGES 01 #:PARM1064)))
PLAN1)
(PLAN_ACHIEVES
(UNLOAD_ORANGES #:ACT1080
((OJFACTORY F1 #:PARM1063) (CAR C2 #:PARM1069)
(CITY CITYB #:PARM1066) (ORANGES 01 #:PARM1064)))
(HAS_ORANGES (OJFACTORY F1 #:PARM1063)) PLAN1)
(PLAN_ENABLER (RUN #:ACT1079 ((OJFACTORY F1 #:PARM1063)))
(HAS_ORANGES (OJFACTORY F1 #:PARM1063)) PLAN1))

(execute ’'planl *splans)

((((I¥ ¢2 D1) (AT C2 CITYB)) (UNLDAD F1 C2))
(((HAS_ORANGES F1)) (RUN F1))
(((AT C2 CITYI)) (LOAD W1 C2 01))
(((IN €2 01) (AT C2 CITYI) (AT ENG3 CITYI)) (GOTQ ENG3 CITYB)))

21

B Prolog Interpreter Description

Our implementation of PROLOG is a simple one, based on that described in {Nilsson. 1984]). The
decision to build our own interpreter was simply motivated by the desire to axiomatize the domain
and the domain reasoner declaratively and the fact that we did not have such a tool for our Lisp
machine environment. Certainly many aspects of the implementation are sub-optimal. However,
any other PRGLOG subsystem could be substituted with only a change in syntax if necessary.

B.1 Interpreter Description
The following syntax is used:

e Variables are names starting with a question mark. 1.e., 7x, 7y, efc. The anonymous variable
?7_ can be used as well.

e Terms are represented by lists. 1.e.. (functor args...). The standard PROLOG use of
square brackets for lists is unnecessary; Lisp lists are used.

o Atomic formulas are also lists, i.e., (predicate terms...). The first element of the list is
the principal functor of the formula.

o Rules (clauses) are a list of atomic formulas: the first element is the head {consequent) of the
rule and the remaining elements are the body (antecedents). The input parser accepts various
syntactic variants of these such as the standard PROLOG notation head :- body for rules.

Note that case is not significant in Common Lisp, and hence not in our PROLOG either.

The following evaluable predicates are provided as built-in. since they require access to the
unification mechanism:

(cut) The standard cut predicate. which always succeeds and removes choice paints for the parent
goal.

(bago? ?x ?y ?2) True if 7z is the list (*bag”) of ?x’s such that ?y is provable.
(1isp ?x ?y) True if 7y unifies with the result of evaluating ?x in Lisp.

{(retract ?x) True if ?x matches a clause in the database. As a side-effect the clause is removed
from the database. Backtracking into this predicate will remove successive clauses.

The following evaluable predicates are provided as library predicates:

Control Predicates

(true) Always succeeds (once).
(call ?x) True if ?x can be proved.
(not ?x) True if ?x cannot be proved.

(and ?x ?y) True if both ?x and ?y can be proved.
Meta-level Predicates

(= ?x ?y) True if ?x unifies with ?y.

(var ?x) True if ?x is currently bound to a variable.

(gensym ?x ?y) True if ?y unifies with a new symbol created by calling (gensym ?x) in
Lisp.

22

I/0 Predicates

(write 7x) Always succeeds. Writes 7x to the the default output stream as a side-effect.
(nl} Always succeeds. Writes a newline to the the default output stream as a side-effect.

(writeln ?x) Equivalent to (and (write ?7x) (nl)).
Database Predicates

(assertz ?x) Always succeeds (once). Adds the clause ?x to the database as a side-effect,
at the end of the list of clauses for its head formula.

(asserta ?x) Like assertz but adds 7x at the beginning of the list of clauses for its head
formula.

(assert ?x) Equivalent to (assertz 7x).

(consult ?x) Always succeeds. The file given by 7x (which should be a string) is read and
the clauses in it asserted to the database.

(listing) Always succeeds. The database is dumped to the default output stream.

(listing ?x) Always succeeds. Only clauses that are have heads whose principal functor is
?x are dumped.

Utility predicates

(length ?1 7?n) True if the length of the list ?1 is ?n.
(member ?1 ?x) True if ?x is a member of the list ?1.
(member 711 712 ?713) True if ?13 is the result of appending 712 to the end of 711.

B.2 Interpreter Implementation

The PROLOG database is implemented as a hash table using the special variable *database#*, which
should be let to the appropriate database. An empty database can be created with the new-db
function. An existing one can be cleared or copied using clear-db or copy-db respectively. The
function init-db resets the given database to a state where it contains only the PROLOG builtins
and library functions.

The main function provided by the interpreter package is the function prove which, given a list
of goals attempts to prove them all. For each successful proof branch, it calls the function given
by *success-func#, passing the current binding environment as the only parameter. This function
should return nil to force backtracking, or t to not try alternate proofs. Typically *success-funcx
is 1et to a function that prints the top-level bindings and prompts the user for backtracking. During
a proof of setof/3 however, it is 1let to a function that gathers up the instances of 7x for later
return. prove returns t or nil depending on whether the last proof succeeded or failed.

For interactive use, the interpreter package provides the function prolog. that implements the
“read-prove-print” loop of a standard PROLOG. It returns when (halt) is given as the goal to
prove. This function and consult use the function read-clause to implement a simple PROLOG
parser. Clauses are terminated with a period. Either ampersands or commas may be used to
separate conjuncts. Either :- or <~ may be used to separate the heads and bodies of rules.

This set of functions provides both interactive and non-interactive interfaces to the PROLOG
interpreter. The former is used by the functions that implement the linkage between the domain
reasoner and the rest of the TRAINS-90 system. The interactive mode is useful for debugging since
it allows the database to be examined and queried without reloading or changing the system.

23

C System Cross-reference

In the following table, V indicates a special variable, M a Lisp macro, F a Lisp function, and P a
PROLOG predicate. The third column indicates the source file containing the definition of the

construct.

achieveEnabler/4
achievedEnabler/s
achieves/2
action_in/2
action_schema/5
(add-to-db rule db)
(add-to~db-a rule db)
(add-to-db-z rule db)
(assert-plan-item item space)
assertItem/1
assertNewActions/2
assertNonActions/1
assertPlanItems/1
(bagof to-prove nlist env p)
bagof-env
bagof-list
(bagof-topfun env)
(bind x y e)
bindParms/1

(bond x y)
(but-first-goal x)
(check-rule rule)
check2/2
checkParent/4
check_constraints/1
(clear-db db)
clearPlan/1
constraint/2

(consult filename)
(copy-db src dst)
(cut to-prove nlist env n)
*databasex
distributeBindings/1
(elaborate plan space)
elaborate/2
elaborateEnablers/2
elaborateSubactions/2
enabler/2

(execute plan space)
filterAct/2
filterArg/2
filterCond/2
filterConds/2
filterForExecutor/4
findall/3

24

-v'v-v-o'v'un-lv'o'u-u'u-u<’n'f1'~n'v-u-n-v*v*u'rl::::-v=~1<<'rr-u'v'v-u-1'u'u'-1'u'u'v'v'v

elaborate.lp
elaborate.lp
actions.lp
actions.lp
actions.lp
prolog.lsp
prolog.lsp
prolog.lsp
planner.lsp
database.lp
database.lp
database.lp
database.lp
prolog.lsp
prolog.lsp
prolog.lsp
prolog.lsp
prolog.lsp
database.lp
prolog.lsp
prolog.lsp
prolog.lsp
incorporate.lp
dispatch.lp
incorporate.lp
prolog.lsp
database.lp
actions.lp
prolog.lsp
prolog.lsp
prolog.lsp
prolog.lsp
database.lp
planner.lsp
elaborate.lp
elaborate.lp
elaborate.lp
actions.lp
planner.isp
dispatch.lp
dispatch.lp
dispatch.lp
dispatch.lp
dispatch.lp
incorporate.lp

fulfillAll/3
fulfillEnabler/3
fulfilledEnabler/5
gather/3

gatherill/3
hack-parm/2
hack-parms/2

hprop#

incorp/2
incorp_action/4
incorp_actionili_p/4
incorp_action12_p/4
incorp_actioni_p/4
incorp_action2/4
incorp_action2_p/6
incorp_constraint/4
incorp_constraint_p/4
incorp_enable_p/4
incorp_enabler/4
(incorporate item space)
(init-builtins db)
(init-db)
(init-library db)
(init-planner)
(init-prolog)

(inst p env)

(lisp to-prove nlist env p)
listifySubactions/3
(lookup p env)
]p-directory

(1vl x)
makePrintableAction/2
makePrintableFormula/2
makePrintableParm/2
makePrintableParms/2
make_executable_plan/2
(molec x y)

(move-plan plan src dst)
my_assert/1
my_retract/1

(new-ddb db)
one_good_action/2
plan_item/1
splanner-verbosex*
(print-db db &test)
(print-plan plan space)
printAction/1
printFormula/1
printPlan/1

(prolog)
prolog~return#

<’ﬂ’U'v'U"l“1<'U'U'ﬂ'U'U'ﬂ:!'O'U'!"U'0:‘<’l‘!'U"l’ﬁ"‘.l"l’ﬂ"!"l'ﬂ'ﬂ’ﬂ’v’ﬁ’d'O'O'U‘O'U'ﬂ<'ﬁ'0‘U'U'U‘U‘U

elaborate.lp
elaborate.lp
elaborate.lp
dispatch.lp
dispatch.lp
elaborate.lp
elaboratelp
planner.lsp
incorporate.lp
incorporate.lp
incorporate.lp
incorporate.lp
incorporate.lp
incorporate.lp
incorporate.lp
incorporate.lp
incorporate.lp
incorporate.lp
incorporate.lp
planner.lsp
prolog.lsp
prolog.lsp
prolog.lsp
planner.lsp
prolog.lsp
prolog.lsp
prolog.lsp
elaborate.lp
prolog.lsp
planner.lsp
prolog.lsp
database.lp
database.lp
database.lp
database.lp
dispatch.lp
prolog.lsp
planner.lsp
database.lp
database.lp
prolog.lsp
incorporate.lp
database.lp
planner.lsp
prolog.lsp
planner.lsp
database.lp
database.lp
database.lp
prolog.lsp
planner.lsp

(prove goals)
(prove-in-prolog clause space)
proveill/1

(read-clause &stream ...)
removeTrueConds/2
requiredSubaction/3
(retract to-prove nlist env p)
schema_achieves/2
schema_action_in/2
schema_constraint/2
schema_enabler/2

(seek to-prove nlist env n)
shared

(show env)

(show-all term env)
(space-name space)

splan

*Sprop#

success-func
unfulfilledEnabler/3
(unify x y env)
updateFact/1

(variablep item)
(variablize formula)

(xpr x)

26

XMoo Td<TM M <Y YW'DMD YN YU

prolog.lsp
planner.lsp
incorporate.lp
prolog.lsp
dispatch.lp
elaborate.lp
prolog.lsp
actions.lp
actions.lp
actions.lp
actions.lp
prolog.lsp
planner.lsp
prolog.lsp
prolog.lsp
planner.lsp
planner.lsp
planner.lsp
prolog.lsp
elaborate.lp
prolog.lsp
incorporate.lp
prolog.lsp
prolog.lsp
prolog.lsp

