
AD-A256 268AL-TP-1992•-0019 liilrlllJIlllIll

DTIC
ELECTE

A OCT1 619920
R • C "D

MC
S INFORMATION SYSTEM CONSTRAINT

R LANGUAGE (ISyCL) TECHNICAL REPORT
0
N

Louis P. Decker
Richard J. Mayer

KNOWLEDGE BASED SYSTEMS LABORATORY
DEPARTMENT OF INDUSTRIAL ENGINEERING

L TEXAS A& M UNIVERSITY
A COLLEGE STATION, TX 77843

HUMAN RESOURCES DIRECTORATE

0LOGISTICS RESEARCH DIVISIONR
A
T SEPTEMBER 1992

0
R FINAL TECHNICAL PAPER FOR PERIOD JANUARY 1990 - MARCH 1991

Approved for public release; distribution is unlimited. I
S92-27 153

AIR FORCE MATERIEL COMMAND
WRIGHT-PATTERSON AIR FORCE BASE, OHIO 45433-6573

NOTICES

When Government drawings, specifications, or other data are used for any
purpose other than in connection with a definitely Government-related
procurement, the United States Government incurs no responsibility or any
obligation whatsoever. The fact that the Government may have formulated or in
any way supplied the said drawings, specifications, or other data, is not to be
regarded by implication, or otherwise in any manner construed, as licensing the
holder, or any other person or corporation, or as conveying any rights or
permission to manufacture, use, or sell any patented invention that may in any
way be related thereto.

The Public Affairs Office has reviewed this paper and it is releasable to the
National Technical Information Service, where it will be available to the general
public, including foreign nationals.

This paperhas been reviewed and is approved for publication.

.. 1 %ICHAEL K. PAINTER, Capt, USAF
Program Mana r

BERTRAM W. CREAM, Chief
Logistics Research Division

Form Approved
REPORT DOCUMENTATION PAGE OMB No 0704-0188

P ~Di('ID .�r 0U f I. -r '-•, -. •etrnn At ,tormf'3th- ,,nmatpc To -ti •P ' four Der respsose ,n(ludain the time for r -i. w n
1

instructio s •e•ar, h..rj- %l 1s-• Jata sour•es.
p-Ithe " - i,'c* i• 0' j r h• o h ,ata needed Irnd -on'letn-4 A`n re, •,-. fitre :llerton of ih,rf atiOn Send commernts r5peaq ailg this b-rden ,st-i tete ir nv Dther isoert Of this

,ole! '0 " 1' , i , lrinh q su•,entcls 4 •dLrrn ths Oufden t, JV,,aish-lton -eaddquarf er -er DieTOratertO -f t- r ann ODPratiOns Ond RPIetS, Ii IS etferson"D.),'srr •, t-.,i r~le'24 .,rifl ,.n. A 22202 4302 I'd tO th. Off. e 1 %iMna-lemet rmd Eludget. Pa'sur.OrK Redu1ton Prro et (0104 0/t)•') Aash,hn iton i (20503

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

September 1992 Final - January 1990 - March 1991
4. TITLE AND SUBTITLE S. FUNDING NUMBERS

Information System Constraint Language (ISyCL) Report C - FQ7624-90-00010
Technical Report PE - 63106F

6. AUTHOR(S) PR - 2940
Louis P. Decker TA - 01

Richard J. Mayer 'U - 15

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
REPORT NUMBER

Knowledge Based System Laboratory KBSL-89-1002
Department of Industrial Engineering
Texas A&M University
College Station, TX 77843

9. SPONSORING/ MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/ MONITORING

Armstrong Laboratory AGENCY REPORT NUMBER

Human Resources Directorate AL-TP-1992-001 9
Logistics Research Division
Wright-Patterson AFB, OH 45433-6573

11. SUPPLEMENTARY NOTES
Armstrong Laboratory Technical Monitor: Capt Michael Painter
(AL/HRGA), (513) 255-7775

12a. DISTRIBUTION /AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Approved for public release; distribution is unlimited

13. ABSTRACT (Maximum 200 words)

This paper describes a constraint language designed to serve as a Neutral Information
Representation Scheme (NIRS) tying together model languages, procedural programming languages.
database languages, transaction and process languages, as well as knowledge representation and
reasoning control languages for information system specification. In one of its primary roles, the
Information System Constraint Language (ISyCL) serves to augment the expressive power of
existing systems engineering methods supported by a graphical languages. ISyCL is designed to be
both powerful as a constraint language for completed information systems specification and easy to
use by the various classes of users involved in information systems development. Expressive
power is imparted to the language through the use of first-order predicate logic and set-theoretic
constructs which provide the theoretical foundations of the language. Ease of use is promoted by
providing layers within the language, ranging from natural language expressions to precise
programming constructs, which shield users form unnecessary detail and complexity as dictated by
their role in systems development.

14. SUBJECT TERMS Intormation management 15. NUMBER OF PAGES I
Constraint languages Information representation 11 8
Engineering management Information systems 16. PRICE CODE

information systems Programming languages
17. SECURITY CLASSIFICATION 18 SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT

OF REPORTI OF THIS PAGEj OF ABSTRACT
Unclassified Unclassified Unclassified SAR

""N : ,'£0* .' 1 ") Stardard rorm 298 ýRey 2-89)
-q , t .."

Table of Contents

PAGE

List of Figures ... ix

List of Tables .. x

Preface .. xi

Summary ... xji

Part One: Introduction and Overview

1. Introduction .. I

G oals ... 3

Expressive Clarity ... 3

Enterprise A nalysis ... 4

M ethod Integration ... 6

Currently Identified ISyCL Layers ... 8

ISyC L C haracteristics ... 9

R eadable ... 9

O bject-Centered ... 10

Extensible ... 11- o

Intensions Versus Extensions ... I I
2. Rationale, Constructs, and Characteristics.. 13; j t o o

Key Design Rationale ... 13

Infix Notation .. 13 Dts•-!bwtimr/

Strong Type Checking .. 13 7 Aw•llaud•ID• I Special

iii

PAGE

C ase Sensitivity .. 14

Analyst Layer Constructs .. 14

M odels .. 14

Q uantifi ers .. 16

If and Logical If ... 17

Set B uilder .. 17

O perato rs .. 18

Systems Layer Constructs ... 18

A ttrib u te s 18

Sequences, Sets, and Bags ... 19

Sequences ... 19

Sets 20

B ags ... 2 1

Functions ... 2 1

Constraints (Functions with Triggers) 22

3. The IDEFI Slice .. 24

E ntity C lasses ... 24

Owned Attribute Classes ... 25

L ink C lasses .. 2,;

Inherited Attribute Classes ... 27

K ey C lasses ... 28

U sage 28

4. IDEFI Model with ISyCL Constraints 30

Model Element Representation ... 30

iv

PAGE

C onstraints .. 32

Area Expert and Analyst Layers .. 33

Systems Layer .. 33

5. General Conclusions .. 36

A pplicability ... 36

Effectiveness ... 36

R eliability .. 37

V erifiability ... 37

Future Directions 37

Part Two: Language Reference

6. Types .. 38

Type Declarations .. 39

ISyCL Types ... 40

A rray .. 40

B ag .. 40

B oolean ... 4 1

C haracter 4 1

N um ber ... 4 1

F ix e d 42

Float ... 42

Integer .. 43

Seq uence .. 43

L ist .. 4 3

Ordered Set ... 44

V

PAGE

String .. 45

Set .. 46

Symbol ... 46

Subtype and Subrange Definitions ... 47

Subtypes ... 47

S ubranges .. 47

7. Expressions ... 48

T ype C onversion ... 49

O perators .. 49

Arithmetic Operators .. 49

Assignment Operator .. 50

Boolean Operators ... 50

L o g ical If .. 50

Equivalence Operators .. 50

Function Composition .. 51

M em bership .. 5 1

Relational Operators .. 51

Vectorization Operator ... 52

Linkage Operator .. 52

Precedence and Associativity .. 52

Q uantifi ers ... 52

Select 54

8. Statements ... 56

Common Stnrctures .. 56

vi

PAGE

Conditional Branches ... 57

The If Statement ... 57

The Case Statement .. 57

The Choose Statement ... 58

Unconditional Branches ... 59

Iteration with Loop .. 61

9. Functions ... 64

Param eter Lists ... 66

Function Attributes .. 67

M acros .. 69

10. Classes .. 72

O bjects .. 72

Entities .. 73

Behavior .. 75

11. Constraints ... 76

T riggers .. 76

C onstraints .. 77

12. Metaclasses .. 79

O bject C lasses ... 79

Function C lasses ... 81

Appendix A. ISyCL Grammar 86

T okens .. 86

P ro d uctio n s .. 86

vii

PAGE

Lists of Tokens ... 87

D efi nitions .. 87

Types and Classes ... 87

Relational Operators .. 88

Boolean Expressions .. 88

E xpressions ... 90

D eclarations .. 90

S tatem ents .. 90

U n its 9 3

M eta U nits .. 9 5

Appendix B. Revision Notes 96

Appendix C. References .. 100

viii

List of Figures

PAGE

Figure 1.1 IDSE Concept ... 2

Figure 1.2 IISEE Terminology Relationships 5

Figure 1.3 IISEE Terminology Relationships 6

Figure 2.1 IISEE Terminology Relationships 19

Figure 2.2 IISEE Terminology Relationships 23

Figure 3.1 IISEE Terminology Relationships 26

Figure 4.1 IISEE Terminology Relationships 30

Figure 6.1 IISEE Terminology Relationships 38

Figure 11.1 IISEE Terminology Relationships 78

ix

List of Tables
PAGE

Table 7.1 ISyCL Operators .. 49

Table 7.2 Operator Precedence and Associativity 53

I I I I I I i ix

Preface

This report describes the research accomplished at the Knowledge Based

Systems Laboratory of the Department of Industrial Engineering at Texas A&M

University. Funding for the Laboratory's research in Integrated Information

System Development Methods and Tools has been provided by the Logistics

Research Division of the Armstrong Laboratory (AL/HRG), Wright-Patterson Air

Force Base, Ohio 45433, under the technical direction of USAF Captain Michael

K. Painter, under subcontract through che NASA Research Institute for Computing

and Information Systems (RICIS) Program at the University of Houston. The

authors and the design team wish to acknowledge the technical insihts and ideas

provided by Captain Painter in the performance of this research as well as his

assistance in the preparation of this report. Special thanks go to the ISyCL design

team whose names are listed below:

Lols P. Decker

Keith A. Ackley

Richard J. Mayer, PhD

Christopher Menzel, PhD

Douglas D. Edwards, PhD

Joe! A. Toland

Thomas M. Blinn

Charles A. Bodenmiller

xi

Summary

"Fhis paper describes a constraint language designed to serve as a Neutral

Information Represen tationi Scheme (NIRS) tying together model languages,

procedural programming languages, database languages, transaction and process

languages, as well as knowledge representation and reasoning control languages for

information system specification. In one of its primary roles, the Information

System Constraint Language (ISyCL) serves to augment the expressive power of

existing systems engineering methods with graphical languages. ISyCL is

designed to be both powerful as a constraint language for complete information

systems specification and easy to use by the various classes of users involved in

information systems development. Expressive power is imparted to the language

through the use of firs: order predicate logic and set theo;:etic constructs which

provide the theoretical foundations of the language. Ease of use is promoted by

providing layers within the language, ranging from natural language expressions to

precise programming constructs, which shield users from unnecessary detail and

complexity as dictated by their role in systems development.

xi i

Part I
Introduction and Overview

1

Introduction

Since the earliest emergence of operating systems, database managers, and network-
ing systems, it has been recognized that to build systems which are:

"* flexible (can be economically modified),
"* personal (can be tailored to individual needs),
"* controllable,
"* integrated (support reusable programs and shared data), and
"* evolvable (less dependent on the underlying hardware),

one must incorporate into the system itself a form of the definition of the system
which describes:

"* its resources (data, hardware, programs),
"* its interface to other systems (particularly the human systems it must sup-

port), and
"* its users (their privileges, etc.),

among other attributes.

The community's understanding of the complexity of representing such a system
definition has evolved from simple tables to logical schemas [ANSI 75], to "con-
ceptual schemas" [ISO 82], to the realization that what is being represented is a
complex knowledge base [PDES 88]. Within the Air Force Integrated Information
Systems Evolution Environment (IISEE) program this problem has been studied
from three different perspectives. The USEE program is focused on the development
of technology (theories, formalizations, frameworks, methods, automated tools and
environments) for enabling (or improving the process of) the planning definition
development and maintenance of evolutionary integrated information systems.
Consequently, this program has studied the representational needs of this knowledge
base from the point of view of the needs of engineering, manufacturing, and logistics
Evolutionary Information Systems (EIS).

On the other hand, the definition of the concepts for a suite of automated tools and
environments to support the pursuit of such engineering, manufacturing, and logis-

ISyCL Technical Report

Final Report Introduction

tics EISs has also required examination of languages and representation schemes for
the knowledge base of these integrated systems (Figure 1.1).

Finally, one of the primary tasks of the IISEE program has been the definition of
methods and mechanisms for integration of suites of systems engineering methods.
As discussed in Mayer et al. [89], Wells and Mayer [88), this involves not only

IISEE Definition Schemas

~ Model
Databases

•Mechanism

Tools Life-cycle
Crib Artifact

Database

SMdlEvolving
STools System

Description
Tools "

IDSE to EIS"N

Release Facts known to be true
Mechanism about the present system

Updates to Enterprise
EntFrprisr S1stem DefinitionDcfinitiOll
Scheinas

FiguJre 1. 1 IDS E Concept

I~v('I ;',' m, , d A',',,,,rt2

Final Report Introduction

support for intermodel referencing, model data control, and intermodel data reuse
but also interpretation of the meaning of one model's data and projection of that
understanding into the perspective (as well as syntax) of another modeling language
Wells and Mayer [881. This form of integration requires a knowledge representation
scheme on par with those used in natural language understanding, design synthesis,
and automated program generation.

To accomplish its purpose, the language must be very rich. Such a system's definition
language must be able to conveniently represent a complex range of information.
For instance, the range of information may span from the existence of a data set on
a particular disk drive, to the intent of a data flow modeler, to the business rules
which govern the operation of a manufacturing enterprise and all its marketing,
engineering, production, and logistics concerns. Thus, the language must support
the following:

"* Object Orientation,
"* Relational Orientation,
"* Persistent Storage,
"* Process Transaction Specification, and
"* First-Order Logic.

The task of designing a unified language which supports these paradigms (with both
procedural and declarative styles of declaration) is certainly a challenge.

This document describes the Information Systems Constraint Language (ISyCL),
which has been designed to meet the definitional and knowledge representation
needs of the three perspectives described above. ISyCL, pronounced "icicle," is
designed to support users from the area expert to the database designer. ISyCL is
one language, but it has many layers which define subsets of ISyCL which are
applicable to particular domains.

1.1 Goals

The following describes the primary goals of ISyCL.

1.1.1 Expressive Clarity

An important point not lost on the developers of ISyCL is that constraints are
primarily for human consumption. What is a constraint worth if it cannot be verified
by the experts in the field? Often it is easy to fall into the trap of writing statements
so elegantly that no one can read them. When dealing with issues which weigh
heavily not only economically, but also in human safety, constraints must be kept
simple and concise.

lS vCLU ecchnical Report 3

Final Report Introduction

The most readable and simplest form of constraint is the English sentence. Unfortu-
nately, English statements can be misinterpreted if guidelines are not provided which
reduce ambiguity and oversights. First-order logic restricts expression to a syntax
which is thoroughly understood. Very few languages are understood as well as
first-order logic. On the dark side, first-order logic is often difficult to read because
of symbols used to make expressions concise.

ISyCL seeks to provide the clarity of first-order logic without forcing the user to
accept the alien syntax. ISyCL "Englishizes" many of the logical constructs. For
example, the existential quantifier (3) is replaced byforsome. This may seem trivial,
but when perusing a page of constraints, the difference in readability can be
enormous.

All in all, as a language, ISyCL must be able to answer the following positively:

"* Is ISyCL applicable to the needs of the users?
"* Is ISyCL effective in satisfying the needs of today's industry?
"* Does the use of ISyCL produce reliable results?
"* Are ISyCL constraints verifiable by the people capable of verification?

As this chapter progresses, each of these questions will be addressed in more detail.
Also, please keep in mind that ISyCL is still in its infancy. It is a long road from
inception to use in large-scale projects. Many forces will play a part in molding
ISyCL into a mature language.

1.1.2 Enterprise Analysis

Where does one start in trying to model an enterprise? Figure 1.2 shows the key
terminology relationships which are involved in the IISEE, of which ISyCL is a part.
The right branch of the tree describes the computing environment which would
support IISEE use. There are potentially many different development environments
and under each environment there would be tools for the different methods and
computer languages used to develop systems in that environment.

The left branch of the tree describes the modeling activity. There would be at least
one framework (and possibly many) for relating the methodologies to the needs of
the enterprise. Each enterprise would have a development procedure which provides
the guidelines that describe how modeling is to be done. For instance, when planning
a modeling project, the cost of the modeling must be weighed against the reduction
in risk that results to find an affordable balance point. An enterprise would have
guidelines for acceptable levels of risk and so forth.

Many methodologies are used in modeling an enterprise. It is not reasonable to expect
one methodology to be able to model all aspects of an enterprise. There are
information, data, activity, process description, and many other methodologies. Each

ISyCL Technical Report 4

Final Report Introduction

includes includes

structured-h (many) calls-for-use-of
(many)

FRAMEWORK ENVIRONMENT

(one) (many) (many) (many)

DEVELOIPMENT METHODOLOGY COMPUTER] TOOLS

PROCEDURE [LANGUAGE

part-Of(many) - part-of

F - METHOD - _ _ -

(one) (one) (many)

-- jDEFR41TION D-ISCIPLINE ____GE

includes includes
Fhas has includes

(many) (one) (many) (one) (one)

CONCEPT THEORY GRAPHICAL ISyCLSLICE]R L>POCEDUREM

Figure 1.2 ISEE Terminology Relationships

methodology has many methods. For example, IDEFO is a method for activity
rhodeling.

Each method has a definition, discipline, and many uses. The definition contains the
concepts involved and the theory behind the method. The discipline includes the
syntax of the method and the procedure by which the method is applied. Many
methods have multiple syntaxes which have either evolved over time, or are used
for different aspects of the modeling.

A method's procedure is very important to the successful application of the method.
The reader is directed to the procedures of IDEF0 [SofTech 81], IDEF 1 [Mayer 871,
and IDEFIx [DACOM 85], since there is no need to repeat here the information in
those excellent texts.

ISyCL Technical Report 5

Final Report Introduction

1.1.3 Method Integration

ISyCL is more ,,sefa! if dJaa arc collected properly. The resulting model(s) will be
more reliable, and the integration of models from different methods becomes more
reasonable. Since ISy('l. is meant to act as the neutral representation format for
allowing inte,ration (,I mnodels, ISvCL.,'s syntax seeks to enforce consistent naming
and meaning.

Figure 1.3 shows the process which would occur when a model is entered using one
method and then trans.lated to a different method. Starting at the left, the modeler
enters the modcl (Lusing an automated to1)l and the constraints which cannot be
expressed in that methok. I,-e or sthe uses the method's syntax (usually graphical) to
enter the model. lSy('. constraints would be expressed using the slice of ISyCL (the
subset of ISy(CI . spciLtic to a mcthCod) for that particular method. For instance, the
structures used to dc.sciihc ,owntraints on an IDEF3 process description would he
different than tthose used to add con-sLraints to an IDEFIx data model.

The translation of the graphical model to an ISyCL representation is accomplished
by the modelin, tool us:,r, m, ecta laver definitions which had been defined earlier.
Very few people will ever sec these definitions, much less write them. There should
be a standard set for each methoyd. The ISyCL representation of the model, plus any
constraints is cons idered to be the neutral representation of the model.

h I Method 2

Seh ' \Mrta Ie'el Method
frt,,.• 1 Delinitiwn Syntax

4,--

MMde I 'It r1' ISY! oe __ o

I • I t

SSubset |br Seil, .1

U iure 1.3 Ni cI iranslatioa

ISxCl TJechnical Rep, ,t t

Final Report Introduction

Being able to project information presented in the syntax of one method into the
syntax of another is not only desirable, but will prove indispensable for highly
complex systems requiring multiple discipline involvement. To accomplish this, an
expert system would be required which uses the translation techniques discussed in
Mayer et al. [891. The translation would map between the meta layer definitions of
the two methods, probably using tags and other user-supplied aids. For example, an
IDEFI entity class might map to an IDEFIx entity, but the modeler would have to
designate the primary key of the IDEFIx entity, since IDEF1 does not differentiate
between key classes.

Each method would have translation rules which are used to generate a textual
representation of the information in a model. Once the information is in a textual
format it can be used: (1) to evolve the model of the enterprise (the Evolving System
Description, or ESD), (2) by model translation facilities for generating views using
other methods, or (3) as input to other modeling tools. In order to generate this textual
representation, a language is needed which can express the information contained in
models from any given method. ISyCL is the first implementation of such a language.

One of the most difficult aspects of information system design is identifying what
information is really being tracked. Different methods present different views of the
information (e.g., data, activities, etc.). On the other hand, there is overlapping
information between models in different methods. There needs to be a way of
understanding what information is being maintained in order to reduce inconsisten-
cies and missing information between models. Since most methods have been
developed independently of one another, the underlying foundations of the methods
do not readily facilitate integration of models in different methods. This is not to put
the blame on the developers of the methods. It is a very difficult task to create a set
of useful methods which span the development life cycle. In fact, it has yet to be
done. The current methods provide the means to tackle large projects by concentrat-
ing on specific areas. When producing a model, other types of models can be used
as reference as long as the modeler understands the intentions of the other modelers.
There is no "plug & play" integration between models in different methods. Each
link between the models must be added by the modeler after careful consideration.

Given that a modeler can identify the links between models, how can those links be
maintained? This is where the Integrated Design Support Environment (IDSE) can
be of assistance. The IDSE allows tools to be used which are not customized for the
environment. Thus, one tool will not necessarily know of the existence of other tools.
Consequently, the links cannot be maintained at the tool level. The IDSE will have
to maintain these links given the ISyCL descriptions of the models. These links can
just be looked at as special constraints which span models. When a modification is
made to a model containing links to other models, these linkage constraints must be
checked to determine if other models need to be modified. Thus, linkage constraints
are not necessarily information constraints as much as integration constraints. They
constrain the IDSE, whereas the information constraints constrain the actual infor-

ISv CL Technical Report 7

Final Report Introduction

marion objects in the enterprise's information systems. An example integration
constraint could look like:

InfoModel::Entity-Class:Engineer <==> ActModel::Concept:Engineer

where, InfoModel is an IDEFI information model and ActModel is an IDEFO
activity model. The constraint states that the entity class, Engineer, is linked to the
concept, Engineer. If either is deleted from its respective model, the other would be
marked questionable. If an arrow head appears on only one side of the linkage
operator, the arrow points from independent to dependent. If a dependent is deleted,
it does not affect the independent. On the other hand, if the independent is deleted,
then the dependent is marked questionable.

Let's look at the scenario by which a linkage constraint would be added to a system.
First, the two models would be developed using the appropriate tools. During the
creation of the models, the modeler would identify the linkage constraint. Unless
more automated support was available, the modeler would enter the constraint like
other ISyCL constraints using a text editor. Upon completion and release of the
models to the ESD, the IDSE would parse those linkage constraints and identify the
links. If one or the other of the models is modified in the future, those links will be
checked.

This integration mechanism is simplistic, yet useful. It prompts the user for mainte-
nance instead of trying to automatically determine what actions need to be taken. In
other words, integration is facilitated but not automatic.

The expert translation system would also need to decide what portion of the neutral
representation can be described in the method and what will remain as ISyCL
constraints. Naturally, as much should be expressed in the method's syntax as
possible. Next, a tool would take the ISyCL representation of the model and display
it using the method's syntax.

1.2 Currently Identified ISyCL Layers

There are currently four defined ISyCL layers:

"* Area Expert Layer,
"* Analyst Layer,
"* Information Systems Design (Systems) Layer,
"* Method Formalization (Meta) Layer.

The layers represent the view of the information system taken by different people in
an enterprise. The area expert looks only far enough to make sure that the information
being kept is consistent with his or her expectations. The analyst looks deeper to see
how information from different experts is related. Finally, the information system

ISyCL Technical Report 8

Final Report Introduction

designer takes the information obtained by the analyst and implements the actual
information system.

Methods with graphical languages are used to describe or model information about
(or contained in) a particular domain of interest. For instance, IDEFO could be used
to describe the activities involved in producing an automobile. Automobile manu-
facturing would be the domain and IDEFO would be a suitable method. The analyst
layer of ISyCL is used to describe constraints on models which have been created
using the various methods.

Another goal of ISyCL is to facilitate the transition of models into information
system implementations. Naturally, when implementing an information system,
more attention must be paid to programming issues. Thus, in this layer ISyCL
provides a more "programming language" type of syntax. This layer is called the
information systems design (systems) layer.

Besides specifying constraints on model elements in a method diagram, ISyCL must
also be able to describe the model elements themselves. This requires defining an
information model of the methodology (or metamodel), and then using the method
formalization (meta) layer of ISyCL to define those model elements. The meta layer
definitions are then used at other layers to describe constraints and design informa-
tion systems.

The method formalization layer is different from other layers in that it is used to
define "slices" of ISyCL which are used in conjunction with different methods. For
instance, support for a process description method like IDEF3 requires different
constructs than support for an information modeling method like IDEFI.

1.3 ISyCL Characteristics

Care has been taken to keep ISyCL's syntax as clear and familiar as possible. For
instance, much of the Structured Query Language (SQL) standard has been incor-
porated into ISyCL's syntax. On the other hand, ISyCL provides structures like the
set-builder notation (e.g., {x : integer I x < 1001) from logic for those who prefer a
less procedural syntax.

1.3.1 Readable

Since one use of ISyCL is to specify textual constraints on models developed using
systems engineering methods with graphical languages, ISyCL's syntax must en-
force readability. ISyCL statements may be as simple as:

for-all e of Employee
(USciuzen?(e))

ISyCL Technical Report 9

Final Report Introduction

which reads, "For all members of class Employee, check the member's citizenship."
If all employees are U.S. citizens, then this statement is true, else it is false.
Statements may also be as complex as:

after init of entityclass:Employee e 0
[unless (US citizcn?(e))

raise(not US citizen, c);]

which reads, "After initialization of an entity of entity class, Employee, called e,
unless e refers to a U.S. citizen, raise the exception, notUScitizen (passing e)."
The exception handler would take appropriate actions if the employee was not a U.S.
citizen.

The first example isjust a statement that all employees must be U.S. citizens, whereas
the second example declares when to check instances and what to do if one refers to
a non-U.S. citizen. By necessity, the second example is more complex. An analyst
might write the first statement, while a systems designer might write the second.
Even still, it is important that statements remain as readable as possible no matter
what level of detail is being expressed.

1.3.2 Object-Centered

ISyCL provides an object-centered approach to model elements and provides
facilities for attaching constraints to the model elements. Model elements are either
object classes or function classes. For example, IDEF1 entity classes are object
classes and IDEF1 link classes are function classes.

Instances are elements which conform to the requirements of a class. In other words,
instances are members of the class. Some instances are persistent (stored in a
database), others are dynamic (not persistent across sessions), while others are
instances of functions (executable code).

ISyCL provides facilities for defining new classes. Classes have attributes which
describe the instances of that class. Thus, a "car" class would have attributes like
"color."

ISyCL objects are dynamic data structures used to facilitate programming through
the object-oriented paradigm. ISyCL and the object-oriented design method, IDEE4,
have a special relationship in that ISyCL can be used to add constraints to IDEF4
models and IDEF4 can be used to model designs to be implemented in ISyCL.

ISyCL entities are "information system objects," which represent information about
real or abstract objects. Entities are persistent until deleted from the information
system. For example, information about an employee resides in the information
system ,ntil that employee departs and can be forgotten.

ISvCJ. Technical Report 10

Final Report Introduction

One of the most often used constructs in ISyCL is the trigger. Triggers can be applied
before, during, or after functions. All user-defined objects and entities have standard
functions for instantiation, modification, and deletion, called init, mod, and del,
respectively. These are the most often constrained functions.

1.3.3 Extensible

ISyCL must be able to not only allow constraints to be added to models developed
using any graphical method, but also to represent the information contained in the
models. In order to support methods which have not even been developed yet, ISyCL
must be extensible. ISyCL is extensible through the method definition (meta) layer
and what are called "slices." Each method would have a slice of ISyCL which
describes the model element types for that method. These slices are defined using
ISyCL's meta layer. Slices would be defined by appointed experts in a given method.

1.4 Intensions Versus Extensions

We need to take a moment to discuss intensions and extensions (yes, our intention
was to spell "intensions" with an "s"). An intension describes "all possible" members
of a class, while an extension is the set of currently known members of a class.

It is very important to be wary of intensions and extensions. For example, say a
person were new to earth and he or she had met only people with brown hair. By
extension, the person would define that people have brown hair. If he or she could
see the master plan of the human being, the codomain (the possible values) of hair
color could be identified. The master plan for human beings is intensional in that it
describes all possible human beings. ISyCL supports both intensional and exten-
sional definitions.

Another example is the specification of a constraint upon employees of a company.
The company does not allow two employees to have the vault key at the same time.
This constraint could be written: "Given any two distinct employees, both cannot
have the vault key." That constraint upon an IDEFI entity class Employee, could be
written in ISyCL as:

for-all x,y of cnizty-class:Employec where (x <> y)
(not (key?(x) and key?(y)))

This statement is intensional because it states that for all possible employees no two
can have the vault key.

On the other hand, we could say that no two employees from a set can have the vault
key. This could be written:

forall xy in (e, f, g) where (x <> y)
(not (key?(x) and key?(y)))

iSv",,!, Technical Report 11

Final Report Introductionl

where, in specifics that we mean tie employees (referred to by e,f and g) in the
given set. In this case the constraint covers the given extension of Employee.

It is important to note what types of constraints are usually intensional versus which
are extensional. Most model elements in a systems engineering method are inten-
sionally defined, whereas metrics arc usually extensionally defined. Business rules
are usually extensionally defined and logical constraints are usually intensionallv
defined, hence the design problem of making the translation between the two.

Intensional constraints are very powerful, but they may lead the designer into
possible misassumptions. It is easy to make broad, sweeping generalizations which
overlook a subset of the members. Also,)ne might not take into account future
evolution of the enterprise.

As the language is defined, the usage of intensionality and extensionality will be
described in more detail. For a formal description of intensional structures in [DEFI,
see Menzel and Mayer [891.

ISvCL Technical Report 12

2

Rationale, Constructs, and Characteristics

ISyCL was initially conceived only as an IDEFI extension to assist with metamodel
specification. During its development, it was determined that it needed most of the
constructs necessary for the Neutral Information Representation Scheme (NIRS),
the language which would serve as the glue between the cells in the Zachman
Framework [Zachman 861. Such glue must tie together model languages, procedural
programming languages, database languages and, transaction and process languages
as well as knowledge representation and reasoning control languages. Thus, though
analysts may never need many of the programming constructs which are part of
ISyCL, the constructs are nevertheless there. The layers shield users from the
constructs which are not necessary for them to complete their tasks.

2.1 Key Design Rationale

Even at the systems layer, ISyCL's syntax enforces readability. Thus, even though
attention to implementation is important in an information system design, computer
system details such as memory locations and the like are purposefully hidden by
ISyCL. It is up to an implementation of ISyCL to translate ISyCL descriptions to
machine-level code.

2.1.1 Infix Notation

Infix notation was also chosen for iSyCL to provide readability. It may seem to some
that there could have been no other choice, but such was not the case. The design
group actually switched to parenthesized prefix notation at one point due to the
elegance of such notation, but it was decided to place readability by laymen before
elegance.

2.1.2 Strong Type Checking

ISyCL's syntax forces declaration of types to check intention as well as to ease
compiler implementation. As will become evident, ISyCL tries to maintain the clarity
of first-order logic while still providing programming constructs which permit
efficient applications.

ISYCL Technical Report 13

Final Report Rationale, Con.itructs. and Characteristics

2.1.3 Case Sensitivity

Another critical choice in the design of ISyCL concerned case sensitivity. In many
situations, case sensitivity can lead to errors which are difficult to find. It also forces
the user to remember (or look up) the proper case of symbols. On the other hand,
case sensitivity allows greater flexibility and semantic content of symbols. Most
important, case sensitivity allows functions written in other case-sensitive languages
to be called without name mapping. Since ISyCL is a special purpose language, it
would be desirable to interface easily with other languages.

A compromise has been made which allows case sensitivity when necessary. ISyCL
symbols are not case sensitive unless a "%"is placed in front of them. In other words,
the processor converts all symbols to uppercase unless there is a "%" in front of
them.

Even though ISyCL is not case sensitive, for readability it is suggested that names
of persistent object classes be capitalized so that it is obvious to the reader that these
are special classes. It is also suggested that names of variables whose values have
units be in upper case.

2.2 Analyst Layer Constructs

In this section we will describe the primary construcis that would appear in the
analyst layer subset for most analysis, requirements, and design methods. Many of
these constructs find their origins in first-order logic. Other constructs, not described
here, are specific to certain methods. For instance, temporal relationships lie within
the domain of process flow modeling, but have no place in information modeling.
Discussion of constructs which are specific to certain methods will be deferred to
later sections.

2.2.1 Models

Since ISyCL will be used to add constraints to models in graphical languages and
to translate beiween methods, it must be able to differentiate between a class based
on one method's meta layer constructs and another class with the same name which
is based on a different method's meta layer definitions. For example, there may be
an IDEF 1 entity class named Employee and an Entity Relation (ER) entity set named
Employee.

To accomplish this, ISyCL uses a construct which is similar to "packages" in
Common Lisp. At the top of each file of ISyCL definitions, an attribute line will
describe (among other information) which model is the default model for that file's
definitions. For instance,

-- Model: KBSL

ISvCL Technical Report 14

Final Report Rationale, Constructs, and Characteristics

would appear at the top of a file of constraints for the "KBSL" model.

Models can only be defined using one method.1 The "KBSL" model would have a

definition similar to:

model KBSL (IDEF 1);

All classes used in such a model would either be based on built-in metaclasses or

metaclasses defined for IDEF 1.

Of course, it may also be desirable to have two classes with the same name within

the same model which are based on different metaclasses. In an ENALIM model it

might be desirable to have an Employee NOLOT (Non-Lexical Object Type) and an

Employee LOT (Lexical Object Type). Thus, given the statement,

forall e of Employce
(salary(e) > 0)

it would not be possible to tell which Employee class was being referenced. To

differentiate between metaclasses, ISyCL allows a prefix to be placed before the

class. The prefix is the name of the metaclass or a defined abbreviation for the

metaclass name. We might have written the previous constraint like:

for_all e of LOT:Employee
(salary(c) > 0)

which designates that we mean the Employee LOT.

It may also be possible that different methods will have metaclasses of the same

name. Thus, if in the middle of a file of constraints on an ENALIM model, it was

necessary to reference an IDEF1 Employee entity class from the "KBSL" model,

one would reference it by:

forall e of KBSL::entity_class:Employcc
(salary(e) > 0)

It should be clear that constraints should be kept together in a file which has a default

of the model being constrained. Otherwise, naming can get messy.

Note that "method" always refers to "modeling method" since ISyCL does not use the term

"method" to refer to functions associated with a class.

ISvCL Technical Report 15

Final Report Rationale, Constructs, and Characteristics

2.2.2 Quantifiers

Nearly every constraint starts with a quantifier. There are two types of quantifiers,
universal and existential. Quantifiers test a relation across the members of a class or
set. Quantifiers act as predicates, which means they are expressions which return
either true or false. Universal quantifiers test members until one is found which fails
the condition. If a member fails, the universal quantifier returns false. If none fail,
the universal quantifier returns true. An example of a universally quantified expres-
sion is:

forall e of entity class:Employee
(age(e) >= 16)

which checks to see whether all employees are at least sixteen. The symbol following
the for all represents a member of the set or class being checked. It is possible to
check all possible pairs of members using:

for all x,y of entity-class:Employee
(married?(x,y))

which checks for possible nepotism.

If a set is to be checked, then of would be replaced by in. Since marriage is a reflexive
relationship, there is no need to check if "John" is married to "Sue" if we already
know that "Sue" is not married to "John." Thus, it would be more efficient to check
only the unique pairings. This is done like:

for all (x,y) in pairs(entity-class:Employee)
(married?(x,y))

Pairs generates the set of pairs in which members are only paired with one anothlir
once. The special (x,y) notation causes the first member of each pair to be bound to
x and the second to y.

In the examples above, the IDEFI entity class metaclass is used to describe the class
of the class Employee.

After the type specification comes the condition to be checked. Conditions are always
placed within parentheses. Quantifiers can be nested as in:

for-all d of entity-class:Department
(for some e of entity class:EEmployee

(dcpt(c) = d))

which determines if all departments have at least one employee. Note the existential
quantifier for some. For-some is likefor all other than that it returns true if at least
one member satisfies the condition.

1I 41. Technical Report I

Final Report Rationtzie, Constructs, and Characteristics

We did skip over oric option- Say we wanted to check all employees of the
"Engineering" departn•lat ILO make sure they are all classified as engineers. We
would use:

for-all e of entty Alass:r~rpio~c- i n@dcpt(e) = "Engineering")
(engineer?(e))

which checks all tmployees in the engineering department to see if they are all

engineers. The '"" is read as `such that" or "where." If the bar seems too concise,
where can be used instead. Nlome(4)dept(e) is the same as name(dept(e)). The "@"
is the function compiosition opeirator.

2.2.3 If and Logical If

There are other ways we could have ' iecked the Engineering department employees
instead of using whwre. If and bogical ,/could also have been used. If is the standard
programming if, where if the condition fails,false is returned. Conversely, logical if
returns true if the cor dition is faZse.

For instance,

for-all e of entity-class:Employee
(if (name@dept(c) = "Engincering")engin`er':(c);

else true;)

is a somewhat contrived form I' an cmployee is a member of Engineering, the
employee is checked, el3e tnre is returned which keeps the iteration going. This form
is difficult, because if retkirnsjw,'se if its condition fails and there is no else form.

Since this type of structurC is c:rnriiori in logic, ISyCL has the logical if which returns
true +its condition is false, like:

for all e of entity._cladss:EjnpoYyoe.
(nainc@dept(c) = "E-nginecring"-> cnginecr?(c))

This form accomplishes the ';ame feat as the others. In fact, people with logic
backgrounds would proh;bly %k rite this instead of using where (1). However, it is a
little more confusing for luymicn, especially programmers.

2.2.4 Set Builder

Sets play an importn•it roc, in nilan,, ,onstraints, and ISyCL provides a powerful
construct for genciating sets. The set builder form collects a set of entities which
satisfy a condition. For ifl,Utilýe,

(e of entity class:vFmploycc I namciimanagcrof(c) = "Bob"]

ISyCL Technical Report 17

Final Report Rationale, Constructs, and Characteristics

collects the set of employees whose manager is named "Bob." The syntax is very
similar to the quantifiers we discussed earlier. There is almost always a where clause
in a set builder form.

2.2.5 Operators

ISyCL includes all the common boolean operators (and, or, not) plus xor and iff. 1ff
is the same as boolean equivalence, and is used often in logic. ISyCL also includes
the standard mathematical operators "+," -," "," "/," and "A," where "A" is the
exponent operator. Note that ISyCL does not have a modulus operator. There are
two reasons for this. First, ISyCL is not a general-purpose language and finding a
modulus is not commonly needed when writing constraints on information systems.
Second, there would be a name conflict with the rod function which is called to
modify the value of attributes (see page 11).

Since sets are important, ISyCL also provides set operators. Union creates the set
containing all members of two sets. Inter returns the intersection, or common
members, of two sets.

2.3 Systems Layer Constructs

The following constructs, though some are available in the analyst layer, are
described from the perspective of the systems layer of ISyCL. When used by an
analyst, the implementation details described below would not be of importance.

2.3.1 Attributes

Though attributes are commonly referenced at the analyst layer, attribute values have
no real use until the information system is implemented.

ISyCL models attributes as functions which map objects or entities to attribute
values either stored or derived. This is a major difference between ISyCL and
languages like the Structured Query Language (SQL) and C++. In SQL. attribute
values are referenced by treating the attribute like a slot in a C structure (e.g..
person.hair-color). This method ensures that the reader differentiates between
stored values and derived values. Actually, the reader need not care whether the value
is stored or derived; it is just an attribute value.

Consequently, in ISyCL attribute values are referenced by applying the attribute to
the instance (e.g., hair color(person)). To reduce confusion, the use of periods for
function application (e.g., haircolor.person) is not allowed (even though it may
have been desirable in some cases).

ISvCl. Technical Report I8

Final Report Rationale, Constructs, and Characteristics

2.3.2 Sequences, Sets, and Bags

ISyCL provides many high level data structures which are useful when describing
constraints on information systems. By providing these data structures as standard
types, analysts and information system designers can rely upon their existence. Many
languages force programmers to "roll their own" high level data structures. Since
many users of ISyCL will not be programmers, it is preferable to build these data
structures into the language.

The standard functions for manipulating these higher level data structures are yet to
be defined. Figure 2.1 shows the relationship between lists, bags, sets, and ordered
sets.

2.3.2.1 Sequences

Sequences are structures used to hold groups of ordered elements. There are four
different types of sequences:

"* Vectors,
"* Lists,
"* Ordered Sets,
"* Strings.

There are many standard functions for manipulating sequences. These functions will
accept any subtype of sequence. The types of sequences are differentiated by their
storage requirements, element types, and allowance of duplicate members.

Vectors are one-dimensional arrays. Elements of a vector are referenced by specify-
ing the number of the element in square brackets after the name of the variable which

No Order Order

No Sets Ordered Sets
Duplicates

Duplicates Bags Lists

Figure 2.1 Scqucnccs, Sets, and Bags

ISyCL Technical Report 19

Final Report Rationale, Constructs, and Characteristics

refers to the vector. For instance, v[8] would refer to the eighth element of the vector
which is the value of v.

Strings are similar to vectors, but strings have only character elements. Also, to
reduce the complexity of using strings, the quantity of storage necessary to hold the
string is automatically adjusted by the ISyCL processor. Thus, it is not necessary to
declare the maximum length of a string variable.

Lists are ordered sets of elements. Lists allow duplicate elements and can be
arbitrarily long. Lists are commonly used data structures in programming, but less
frequently used in logic. Ordered sets are like lists, only they do not allow duplicate
elements.

The following are example declaration statements for sequences:

v vector(5, character), initvalue make vector(5, character,
(init elements ('H, 'a, 'r, 'r, 'y)));

s : string(1 1), init value "Harry";

1: listof(character), initvalue list('H, 'a, 'r, 'r, 'y);

0: ordered-set-of(character), init value ordered_set('H, 'a, 'r, 'r, 'y)- ERROR!

Each of these examples seeks to group the five characters in "Harry." The vector has
the advantage of being able to efficiently access random characters in the name, but
it is not flexible. For instance, v could not be assigned the characters in "Harry Jones"
because it can only contain five elements.

The string declaration is the most appropriate. The optional parameter declares that
enough room should be reserved for eleven characters. If this value had not been
provided, s could still have been assigned "Harry Jones," but the assignment would
be less efficient since the system might have to allocate more space on the fly.

The list declaration is flexible in that as many characters can be added as necessary,
but it is unlikely that one would want to store a name in a list structure. The ordered
set declaration is illegal because ordered sets cannot contain duplicate elements.

2.3.2.2 Sets

Sets are one of the most widely used structures in ISyCL. Sets behave like sets in
logic (i.e., no order, no duplicate occurrences, etc.). Many operations can be
performed on sets of entities or objects. For instance, the forall construct shov 1n
earlier will check all members of a set to see if they satisfy a condition.

Sets of entities form the extensions of intensionally defined classes. For example, a
company may keep track of how long its managers have been with the company.

I/S (1T Tlchnial Rleport 2)0

Final Report Rationale, Constructs, and Characteristics

Thus, the entity class, Manager, would have the attribute, tine_withcompany. A
specific manager is an entity, and the amount of time that manager has been with the
company is an attribute value. The extension of the entity class, Manager, is the set
of all current managers.

One could construct the set of managers who have been with the company greater

than twenty years by writing either:

Im of entitysclass:Manager I timewithcompany(m) >= 20)

or,

select * from entity-class: Manager
where (time with company >= 20)
no duplicates;

These two forms return the same result. It is up to the user to determine which feels
more comfortable. The select expression is a powerful construct in ISyCL and can
be used to generate sets, ordered sets, lists, and bags. The syntax of the select
expression is kept as close to the SQL statement as possible.

2.3.2.3 Bags

Bags are unordered collections of elements. Bags can contain duplicate elements.
The bag of managers with better than twenty years seniority would be selected by:

select * from entity-class: Manager
where (time with-company >= 20);

2.3.3 Functions

ISyCL functions return values of a specified type or no values at all. Functions are
similar in purpose to functions in other languages. The value of the last statement
executed in a function is the returned value unless a return statement is used
explicitly. An ISyCL function which returns the set of employees whose age is
greater than any member of department V2! is:

function OldTimers 0 : setof(Employee)
"Find all employees whose age is greater than any member of department E2 L"
[select * from Employee

where (age >= (select max(age) from Employee
where dept = "E21";))

no duplicates;I

The first line declares OldTimers to be a function of zero arguments which returns
a set of Enployees. The parameter list is required, but if there is no codomain
specified, it is assumed that the function does not return any values. The documen-
tation string (docestring) which follows is supposed to describe the purpose of the

ISyCL Technical Report 21

Final Report Rationale, Constructs, atun Characteristics

function and explain any important points about the implementation from a user's
perspective.

The body of the function is composed of a select statement which in turn uses a
nested select in its where clause. The nested select returns the maximum age of any
employee in department "E2 1." The outer select returns all employees who are older
than the oldest member of "E2 L."

ISyCL provides f -ilities for defining functions which are state-dependent. A
state-dependent t, iction will not necessarily return the same value each time it is
applied to the same member of a domain. State functions can be used to implement
generators, which generate one member of a set at a time until exhausted. Generators
are important in for-all and for-some statements where it is unreasonable to
construct the whole set of values.

Since state functions are nonreentrant (state-dependent), it is critical that mistakes
are not made by calling one in the wrong state. Thus, ISyCL only allows state
functions to be called within one of the "for" constructs, and an instance of the code
is created upon entering the form and destroyed upon exit. It is also important for
the author of a state function to keep it as short as possible and to avoid recursion.

2.3.4 Constraints (Functions with Triggers)

In the analyst layer, constraint refers to conditions which must be satisfied by the
information system. These constraints are not functions, just descriptions.

In the systems layer, constraints are combinations of exception handlers and tri•gg-erS
which "enforce" constraints described in the analyst layer. By "enforce," we inear
that an implementation of an ISyCL processor would actually call the triggers;
appropriately and then raise the exceptions. Exception handlers are functions which
are called to take appropriate actions when an exception occurs.

Let's look at an analyst layer constraint on the model in Figure 2.2. The constrain:
is that an employee cannot be his or her own manager.

forall e of entity-class:Employee
(E#(c) <> Manager(c))

The constraint states that the value of the employee number (ED) of an emplvec
should never be the same as the value of the Manager attribute. This is true sinc(
Manager is an inherited attribute which originates at E#. Thus, if the same employec
number is found by both paths, then the employee is managing himself.

In the systems layer, it must also be decided when to check the constraint (trig•cr'
and what to do if it fails (exception handler). In this case, the constraint should bc
checked upon addition of a new employee or upon assignment of an employee to a

'S (I Ft'chnical Report

Final Report Rationale, Constructs, and Characteristics

(ME#,L)#)
rrumnages/managerof

Manager 1

(E#)

El#, Manager
1o assigned-as/is-also

Figure 2.2 Employee - Manager Relationship

manager (modifying the Manager attribute of an Employee). If the constraint fails,
a warning should be sent to the user. The exception handler would look like:

exception employee-managingself (Employee e) continue
"An employee cannot manage him- or herself."
[print(stdout, "Employee named \s is managing him or herself." name(e));]

The "continue" at the end of the first line signifies that execution continues after the
point where the exception was raised. In other words, this is not serious enough to
halt execution of the function. The triggers for this example are:

after init of Employee e 0
[if (E#(e) = Manager(e))

raise(employee-managing-serf(e));]

before mod of attributeclass:Manager (Employee e, employee-number newmanager)
[if (E#(e) = newmanager)

raise(employee-managingself(e);]

The first trigger checks new employees and the second checks when an employee is
assigned to a different manager.

ISvCL Technical Report 23

3

The IDEF1 Slice

Each method has a set of meta layer ISyCL definitions used to describe models in
that method. These meta layer definitions play an important part in the use of ISyCL,
and careful attention should be paid when creating these definitions. It is likely that
a standards committee would be formed to ensure that each method has a proper set
of meta layer definitions which everyone would use.

The following is a discussion of the application of the IDEFI metaclasses. At this
point, we are not interested in how to define the metaclasses, only how to use them.
Please refer to the "Analysis of Methods" report for a concise description of IDEF1
and the metamodel from which the following definitions were derived Mayer et
al. [89].

3.1 Entity Classes

Entity classes are more or less buckets of attribute classes. The attribute class names
describe the information kept about entities of the entity class. Entity classes also
have key classe which are groups of attribute classes whose collective values
uniquely identify a member entity of the entity class. Entity classes are the only "data
objects" in IDEFi. All other structures like attribute classes and link classes are
functions.

The Employee entity class might appear as follows.

(Emp#)
Name. Manager
Department

Employee

An Employee's Emp# uniquely identifies that information set. Name, Manager, and
Departmunt are descriptive attribute classes. The employee's social security number,
if kept, could also be used to uniquely identify the employee, thus adding a second
key class.

I. v 'chnical Report 24

Final Report The IDEFI Slice

The ISyCL representation of the Employee entity class might look like:

entity_class Employee
[Emp# : employee-number, unique;
Name: suing;
Manager: employee number;
Department: department-number;]

Note that IDEF1 does not allow "entity-valued" or "set-valued" attribute classes.
Thus, the Manager attribute class's value is an employee number, not a pointer to
the Employee entity. Employeenumber and departmentnumber are abstract data
types which are probably subranges of integer.

The general syntax is:

entityclass <entity-class-name>
l<owned-attrib-name>• <attrib-value-type> [, unique];

3.2 Owned Attribute Classes

There is one major problem with the Employee entity class above. The Manager and
Department attribute classes would probably not be owned by Employee. These
attribute classes would be inherited attribute classes.

Owned attribute classes originate at that entity class, whereas inherited attributes
map back to an owned attribute class. It is important to note that attribute values are
not inherited. Owned attribute classes are accessors which access a stored value,
whereas inherited attribute classes map back to owned attribute classes through link
classes.

Figure 3.1 is a very important figure. At the top is the IDEFI diagram of the
Employee - Manager relation. Below that is the functional mapping associated with
the diagram. On the left side of the mapping are the entity classes named Employee
and Manager, along with the mappings associated with the link classes manager of
and is also. The attribute value class employeenuwnber on the right side names the
codomain of the attribute class Emp#.

Many employees map to a single manager (one-to-many link), each manager maps
to an employee (one-to-one link class), and each employee has a unique Emp#.

The Employee entity class should have been defined:

entity-class Employee
[tEmp#: employee-number, unique;
Name: string;]

ISyCL Technical Report 25

Final Report The IDEFI Slice

The Emp# and Name attribute classes map specific entities to at' bute values. Note
that IDEF1 cannot refer to individual entities, whereas IS;,,CL can. To find the
employee number of the Employee e, one would use:

Fmnp4(e)

Before discussing more about inherited attribute classes, we need zo discuss link
classes.

3.3 Link Classes

Link classes describe the relationships between entity classes. Link classes are
generally read from the independent to dependent entity classes. For example, "A
manager manages many employees." In such a relationship, Mana.er would K the
independent entity clas& and Employee would b- the dependent entity class.

I acts as/is also (ME# = Emp#)
(Emp#) I - (ME#)

Name. Manager,

Department mar-ges;/manager of

Employee 41n Manager 2
(Managei = ME#)

Employee EmployeeNumber

I \\mana,"'r of F

/ ~Empk'
-• /i s i also

' - (,Note:

"ME# is-also

Maniger 4 * ,_'

L EnityClaýsAttibue V lu~ se s

Figure 3.1 IDEFI Attributc Class Mappirg

ISv('1 Technical Report 26

Final Report The IDEFI Slice

Link classes have labels which describe the relationship. Conventional IDEF1 has
one label which reads from independent to dependent. That label is the name of a
function which takes two arguments, the independent entity and the dependent entity
class, and returns the set of dependent entities. Such as:

manages(m, Employee) f{e, f, gI

which returns the set of employees which are managed by m. Note that m is an entity
of the entity class Manager, whereas Employee is an entity class.

To enhance its use with ISyCL, a second label is added to the link class which
describes the relationship from dependent to independent in a functional manner.
For instance, nanagerof would return the manager an employee works for, like:

manager of(e) =: #<Manager "Bob"> (the "meatball" representing the manager entity)

Note that independent to dependent names do not need to be unique within a model,
but dependent to independent need to be unique for an entity class. In other words,
an entity class cannot participate as the dependent entity class in multiple link classes
which have the same dependent to independent naming.

The cardinality of the link class determines the possible number of members of the
set returned from the independent to dependent application of the link class. There
are three different cardinalities: one-to_onelinkclass, weak_manyjlinkclass, and
strongmanylink class.

Link classes are defined like:

define strongmanylink-class (manager-of, Employee, Manager, (inverse manages))

which defines the link classes we have been discussing. Manager of maps an
employee to his or her manager, and manages maps a manager to his or her
employees. The general syntax is:

define <link-class-type>
(<link-class-name>, <dcp-entity-class>, <indep-entity-class>

[, (inverse <indep-to-dep-name>)])

3.4 Inherited Attribute Classes

As was discussed earlier, inherited attribute classes map back through owned
attribute classes to attribute values. The mapping is done through link classes.
Inherited attribute classes are "inherited" through link classes, which means a
mapping is formed from entities of the dependent entity class to entities of the
independent entity class.

ISyCL Technical Report 27

Final Report The IDEFI Slice

Pay particular attention to the note in Figure 3.1. If the entity class Manager has an
attribute class ME# which it inherited from the entity class Employee (Emp# changed
to ME# across the link), then ME# applied to a manager is the same as applying the
link it was inherited across (isalso) to the manager and then applying Emp# to the
result of the first application (which is an instance of Employee).

Inherited attribute classes are inherited from the key classes of independent 7ntity
classes to dependent entity classes. Depending on the cardinality of the link class,
the inherited attributes may or may not participate in a key class of the dependcnt
entity class. In one-to-one link classes, entire key classes are inherited across the link
class, since the key class of the independent entity class must be capable of uniquely
identifying members of the dependent entity class.

Inherited attribute classes are defined like:

define inheritedattributeclass (Manager, Employee, E#, isalso@manager of)

which defines an inherited attribute class, Manager, of the entity class, Employee,
which originates at the owned attribute class, E#, and is inherited through the link
classes isalso and manager of.

The general syntax is:

define inherited attribute class
(<inherited-attrib-name>, <of-entity-class>, <owned-attrib>, <link-class-path>)

3.5 Key Classes

Key classes are ordered sets of attribute classes whose values uniquely identify
entities of an entity class. Key classes can contain owned and inherited attribute
classes. Key classes are actually just td e list of attribute classes, but the usage of key
classes is to find unique entities. Thus, key class accessors are defined which return
unique entities of an entity class. Key class accessors are defined like:

define key-class-accessor (get employee, (E#), Employee)

which defines get employee which takes an employee number and returns an
employee. The general syntax is:

define keyclass_accessor (<accessor-name>, <key-class>, <entity-class>)

3.6 Usage

In most cases, the definitions discussed above will be generated from an automated
IDEFI tool. The reason to understand these definitions is for use in constraints. For

ISv CL Technical Report 28

Final Report The IDEFI Slice

example, when a link class is added to a model, the functions which map between
the entity classes will be available for use in constraints.

Given the definitions above we could write the constraint:

for_all e of entity-class:Employee
(Emp#(e) <> Manager(e))

The fact that Manager is an inherited attribute class and Emp# is owned is not
important other than to realize that the constraint is meaningful because of the
mapping. Each automated tool should clearly define the assumptions made when
generating the ISyCL definitions.

ISyCL Technical Report 29

4

IDEF1 Model with ISyCL Constraints

Now that the characteristics and language constructs of the ISyCL have been
presented, an example of an ISyCL application is in order. In our example we will
stay with the theme of employees. The IDEF1 model in Figure 4.1 shows the
relationships between tasks, employees, and backup employees.

4.1 Model Element Representation

Let's look at the ISyCL definitions of the model elements in Figure 4.1 involving
the Employee entity class. If this description proceeds too quickly, refer back to
Chapter 3 for a description of the IDEF 1 "slice." Also, remember that use with IDEF 1
is only an example of the use of ISyCL, and that ER, IDEF3, or other methods could
as easily have been chosen.

(E#)

(P#)

Employee P -o.ecti-

assigncd_to/

employee-of (EAE# E#)

__entails/

(EAE#,EAT#.EAP#) project_ofI (TPO P#)
Emp-As'sign I_

u.es/task assigned

(EAT# T#

EAP# = TP#)

(T#;rP#).
backsup/backup-of i Backup

(Backup = # Ts

Figure 4.1 IDEF1 Example Model

JSYCL Technical Report 30

Final Report IDEFI Model with ISyCL Constraints

First, the definitions of Employee and its dependents:

entity-class Employee

[E#: employee~number, unique;]

entityclass EmpAssign;

entity__class Task
[T#: task number, unique;]

Employee has one owned attribute class, E#, which must have unique values for all
employees. Entity class EmpAssign has no owned attribute classes, and Task has
T# which serves the same purpose as E#.

Next, we define the link classes. Employee participates as the independent entity
class in two link classes, employee of and backupof. Both are weak one-to-many
link classes, meaning that it is possible that zero dependent entities participate in the
relationship.

define weak-many-linksclass (employee-of, EmpAssign, Employee);

define weak-many_linksclass (backup-of, Task, Employee);
The definition of employeeof states that employee of is a weak one-to-many link

class whose dependent entity class is EmpAssign and whose independent entity
class is Employee. Backupof is similar.

Inherited attribute classes are the most complex definitions. Employee has no
inherited attribute classes, but let's look at the inheritance of E# across the link classes
just discussed.

define inherited_attribute_class (EAE#, EmpAssign, E#, employee-of);

define inheritedattribute class (Backup, Task, E#, backup-of);

In the first case, E# is inherited by EmpAssign as EAE#. The parameters are, from
left to right:

(1) the name of the inherited attribute class (EAE#),
(2) the entity class in which the inherited attribute class appears (Emp Assign),
(3) the owned attribute class from which the inherited attribute class originates

(E#), and
(4) the path through which it is inherited (employee of.

In this case EAE# is inherited directly from Employee, but it might have been
inherited across a composition of link classes.

JSyCL Technical Report 31

Final Report IDEFI Model with 1SyCL Constraints

Finally, we define the key classes by defining key class accessors. Key class
accessors are used to access an entity from the entity class. The key class accessor
for Employee is:

define key_classaccessor (get-employee, (E#), Employee);

This declares that get employee is a key class accessor of Employee, and that the
key class consists of the attribute class E#.

Usually an automated tool would generate these definitions from a diagram. Most
of IDEFI 's structures are functions. The functions are defined using conventional
formatting for function class instantiation which is discussed in Chapter 12.

The form:

define keyclassaccessor (getemployee, (E#), Employee);

actually generates the function:

key-classaccessor get employee (list of(integer) val-list) : Employee
"Find the entity identified by the key class attribute values."
[loop for c of entity_class:Employee

if (attribute-values equal-values?((E#), vallist))
return(c);

end_loop]

saving the analyst and systems programmer a great deal of effort and confusion.
There is no reason that a systems programmer need understand more than that the
declaration:

define key-class-accessor (get-employee, k,.,), Employee);

allows him or her to access tasks by:

get-employee(l 2);

which returns the entity of Employee with E# = 12. The meta layer definitions can
be included in a header file, just like standard input/output capabilities are handled
in C. Normally, meta layer definitions are associated with methods. The model
definition specifies which method to use and consequently which meta layer defini-
tions to load.

4.2 Constraints

It is necessary to ensure that an employee is not his or her own backup on a project.
IDEFI does not provide the ability to place constraints on entities within an entity
class, but ISyCL does.

ISyC! Technical Report 32

Final Report IDEFI Model with ISyCL Constraints

4.2.1 Area Expert and Analyst Layers

It is unreasonable to expect the area expert to understand all the different methods,
much less ISyCL. Likely, the area expert would write the constraint like: "An
employee cannot act as backup on his or her assigned task." Though this is certainly
readable, it is not very precise. More formally, the area expert could write:

For all employees e, backup of task assigned to e o e.

This provides the analyst with a clearer understanding of the constraint.

Once the area expert(s) have been interviewed and enough information collected to
create the model (in this case the IDEF1 model in Figure 4.1), the analyst would then
add the constraint:

for_all a of entty-class:EmpAssign
(employee-of(a) <> backup-of@task-assigned(a))

At this point the analyst would take the model and constraint(s) back to the area
experts for validation. Though the constraint above is not as easy to read as the
English sentence, it can be explained relatively easily. The "@" is the function
composition operator. In this case, backupof is composed with task assigned.

For many applications, this is as far as ISyCL will be used. The modeler has a
language extension which allows clear and precise expression of constraints that
cannot be expressed in the graphical language of the method.

4.2.2 Systems Layer

On the other hand, many will seek to forge ahead and implement information systems
based on the models which have been constructed. This is where we enter the systems
layer of ISyCL. A database designer would now use the model and constraints to
implement the information system. The modeling tool would be able to generate the
ISyCL representation of the model (as discussed on page 31). There is yet more work
to be done on the constraint that employees cannot be their own backups.

First, it must be decided which entity class(es) to constrain and what type of triggers
are needed. As will be seen, these choices are very important. A trigger would need
to be applied after an employee is assigned to a task whether as backup or not. Before
an employee is assigned to a task, the backup of the task needs to be checked against
the employee to make sure they are not the same person. Also, before a backup is
assigned, the backup must be checked against the currently assigned employees.
Thus, triggers would be checked after the instantiation of an Emp Assign and before
modification of both the E# attribute class of an EmpAssign and the Backup attribute
class of a Task.

ISYCL Technical Report 33

Final Report IDEFI Model with ISyCL Constraints

There is no actual constraint statement. Constraints are a combination of triggers and
exception handlers. The exception handler for the constraint that employees cannot
be assigned to a task and backup of the same task might be written like:

exception emp-assign-alsobackup (EmpAssign a) continue
"An employee cannot act as backup on his or her assigned task."
[print(stdout, "-S is both assigned to task -S and backup of the task."

name(a), name(taskassigned(a));]

This statement declares that if this exception is raised, it must be passed the
EmpAssign which failed to meet the condition. Also, the continue means that
execution continues after taking the action in the block. The action in this case is to
print a warning to the user that an employee is assigned to a task and also assigned
as the backup of the task.

The triggers are:

after init of entity-class:EEmp_Assign a 0
[when {employee of(a) = backupof@task_assigned(a))

rase(empassign-also-backup, a);]

before mod of attrib backup of entity-class:Task t (EmployeeNumber backup#)
[loop for a of entity-class:EmpAssign where (taskassigned(a) = t)

when (E#@employee-of(a) = backup#)
raise(emp-assign-also backup, a);

endloop]

before mod of attrib EAE# of entity-class:EmpAssign a (Employee-Number emp-assign#)
[when (emp assign# = backup@task-assigned(a))

raise(emp assignalsobackup, a);I

The first trigger checks after instantiation of an employee assignment to see whether
the employee assigned is also the backup. Of course, the closer one gets to imple-
mentation the more program-like the syntax becomes. These triggers are meant to
be readable to a database designer, not the area expert.

As with any functions, triggers must declare the parameters they require. Triggers
typically do not return values since they are not called by other functions. The first
trigger takes no parameters, and none of the triggers return values.

The second trigger checks to see whether an employee who is to be assigned as
backup on a task is already assigned to that task. This trigger requires the employee
number of the proposed backup. (Before triggers always take the same parameters
as the functions they constrain.) In this case, the system must loop through all
employees assigned to the task to see whether any are the proposed backup.

Finally, the third trigger checks the employee number of a new employee assignment
against the backup of the task. No iteration is required since there is only one backup
on a task.

ISvCL Technical Report 34

Final Report IDEF1 Model with ISyCL Constraints

These triggers can now be used along with the definitions in the model to implement

the information system. The model can actually be used for more than just analysis.

ISyCL Technical Report 35

5

General Conclusions

Before moving on to the language reference, it is time to look back on our goals to
determine how successful ISyCL is at satisfying them and to look forward to see
what lies ahead for ISyCL.

5.1 Applicability

There probably is not much doubt that a need exists for a language which can express
constraints on graphical methods and provide a neutral representation format for
integration of methods.

Through the use of first-order logic, ISyCL provides the expressive power needed
to express constraints on models. Though at times difficult, first-order logic is
capable of expressing any conceivable constraint.

ISyCL's meta layer definition facilities allow for the definition of method slices
which allow the modeler to easily express constraints on diverse methods. Since all
models translate into ISyCL, an expert system can use the ISyCL representation as
a neutral representation format for translating between methods.

5.2 Effectiveness

It may be a while until a conclusion can be drawn as to the effectiveness of ISyCL.
This report and the instruction and usage by members of the modeling community
are essential to the effective application of ISyCL. The syntax has been broken into
layers to reduce the burden on new users, while still providing the powerful
constructs needed at the systems layer and meta layer.

It is hoped that the community will provide constructive criticism which can be used
to improve the language for everyone's benefit. ISyCL is not a proprietary language.
It is meant to grow and change as the needs of the community change.

ISYCL Technical Report 36

Final Report General Conclusions

5.3 Reliability

ISyCL bases its reliability on simplicity of use. Much work must go into the
meta-layer definitions so that the user need not be concerned over arduous details
and devastating misrepresentations. If the meta-layer definitions are done properly,
then the reliability is maintained through the simple interface with the user.

ISyCL also enhances the reliability of models due to the addition of constraints.
Often constraints are glossed over because a method does not have the capability of
expressing the constraint. At best, constraints have been provided in textual form
which may be misinterpreted.

When ISyCL is taken out to the systems layer, reliability is improved through the
direct application of constraints on the information system without the intervening
interpretation of a database programmer. The information system can be designed
and maintained within the same layer.

5.4 Verifiability

ISyCL's analyst layer syntax is meant to be as readable as possible so that the experts
in the field being modeled will be able to verify constraints with minimal explanation
from the modeler. By allowing the experts to verify the constraints, the chances of
misinterpretation are further reduced.

5.5 Future Directions

This report will continue to evolve as ISyCL evolves. Concurrently, an ISyCL
processor needs to be developed to demonstrate the usefulness of ISyCL for method
integration and information system implementation. The development of an ISyCL
processor will provide a testing ground for ISyCL's systems layer. It is hoped that
the community will provide constructive comments which can be used to evolve
ISyCL into a mature language.

ISyCL Technical Report 37

Part II

Language Reference

6

Types

Types define data representations which are understood by the ISyCL processor.

ISyCL provides a rich variety of built-in types. It is hoped that having a rich set of
predefined types will relieve some of the programming burden from users of ISyCL.
Figure 6.1 shows ISyCL's built-in type hierarchy. At the root of the tree is the type
type. Type is the supertype of all other types. Types in italic only act as supertypes
of other types (typically called "mixins"). They are not sufficiently descriptive for
variables to be declared to be of those types.

From our discussion in Section 1.4, it should be evident that types can be defined
intensionally or extensionally. One could define the type, myintegers, to be the
members of the set { 1, 3, 2). Thus, myintegers is defined extensionally. One could
also define the type, natural number, which describes all natural numbers.

The polymorphism of ISyCL functions allows functions to act differently given
different types of parameters. Chapter 10 will introduce classes. Each type has a class
of the same name associated with it. Thus, the number "1" is both of type and
ofclass integer. Classes describe higher level types. Built-in types cannot be

type

bag boolean character number array sequence set symbol

integer float fixed vector list string ordered-set

Figure 6.1 ISyCL Type Hierarchy

ISyCL Technical Report 38

Final Report Types

inheritea by classes. In other words, it is not possible to define a new type of integer,
array, etc. On the other hand, it is possible to define subranges of types.

Actually, only three "leaf' types are shown in the tree. Boolean, character, and
symbol have no subtypes. The other types have system-defined functions associated
with them which identify subtypes of the type. For instance, list_of(integer) identifies
a •,dbtype of list (namely, singleton lists of integers).

6.1 Type Declarations

The syntax of ISyCL requires type declarations so that the ISyCL processor can
enforce strict type checking. All variables must be declared to be a defined type.
Types are declared within a with form. Each function has an implicit with around its
body. Thus, type declarations usually appear before the body of functions. The
syntax for type declarations is:

<type-decl> <symbol-list>: <type-form> [, initvalue <expression>];

<type-f(,'rn> ::= <type> I <subrange> I <function-call>

For example,

i : integer, init value 3;

declares i to be of type integer with an initial value of 3.

In type declarations, ISyCL allows either a type, a subrange, or a function which
returns a type or subrange. Given the function:

function int_floatlist 0 : type

[list-of(integer, float);]

the declaration,

x : int_float listO;

assigns x to be a list of an integer and a float. This ability allows for a flexible
approach to abstract data types. As was mentioned above, many types have functions
(most with the same name) associated with them which generate subtypes of the
type.

ISvCL Technical Report 39

Final Report Types

6.2 ISyCL Types

6.2.1 Array

Arrays are used to store values which need to be accessed quickly no matter where
they are located. All elements of an array must be of the same type, and the size of
an array is fixed. Due to these restrictions, arrays can be implemented very effi-
ciently. Arrays are also easy to use.

Arrays can be created using make_array, like:

make array(list(5, 10), integer);

The first parameter must be a list of integers which are the dimensions of the array,
and the second parameter is the element type. Declaration of array variables is done
with:

a: array('(5,10), integer);

which defines a five by ten array of integers called a. See Section 6.2.6.1 for an
explanation of list and the use of the quote. To reference elements of an array, use:

d := a[2,8];

This form assigns the value of d to be the value of the eighth element of the second
row of a. To assign values, use:

a[2,8] := 5;

which assigns the value of the eighth element of the second row to 5.

One-dimensional arrays are also of type vector. Vectors are sequences, and can be
operated on similar to the other sequence types.

6.2.2 Bag

Bags are unordered groups of elements of the same type which may contain
duplicates. There are two ways to generate bags in ISyCL. First, explicit bags can
be generated using the bag function, like:

bag(l, 3, 5, 3)

ISyCL fechnical Report 40

Final Report Types

In the second example, members are only evaluated if there is a tilde (-) in front of
them. Bags can also be generated using the select statement. The bag of employee
entities older than twenty-one would be generated with:

select * from entityclass:Employee
where (age > 21);

Bags are similar to sets (see Section 6.2.7) other than that they can contain duplicate
elements. Suotypes of bags are generated with bag-of (see set-of).

6.2.3 Boolean

ISyCL defines true to be the symbol true and false to be the symbol false.

6.2.4 Character

A character is a single character which can be described by an 8-bit ASCII character
code. Since only the first seven bits are defined by ASCII, there is some implemen-
tation flexibility available for the upper 128 characters. Characters can be referenced
either by preceding a single displayable character by #\ or by following the #\ with
the two hexadecimal digits that correspond to the ASCII character code of that
character. The character "a" could be represented as #\a or #\6 1.

6.2.5 Number

Integers, fixed-point numbers, and floating-point numbers are all based on number.
Number is not an instantiable data type; it only acts as the supertype of the other
number types. All numbers have ranges and units.

The purpose of ranges is not to check whether a value is within the range. Ranges
are given so that the compiler can efficiently allocate memory and disk space. Many
languages define numerous number types which correspond to the machine-level
representations. ISyCL is not a systems programming language, consequently, there
is no need to force the user to identify how to represent a number in binary.

The user can increase efficiency by providing the range of possible values. The
compiler will then use the best possible representation available. Caution should be
taken when assigning ranges. The range should never be too small. If a value is
assigned which cannot be represented, an exception will be raised, and the program
will most likely halt.

In modeling and simulation work, real-world entities are being modeled. Numbers
by themselves are often not very meaningful. A velocity of 2 could represent many
different actual velocities, or it could be a dimensionless velocity. Algorithms are
generally based on dimensionless quantities, but values in a database are likely
dimensional.

!SyCL Technical Report 41

Final Report Types

To reduce errors made by misinterpretation of units, ISyCL allows numbers to have
units. Thus, values in the database will have units associated with them, and an
exception can be raised if values with mismatched units are applied to one another.
ISyCL will also convert between units in different systems automatically.

To keep straight which attributes or variables have units, the convention is to use
capital letters in the name. For example, a velocity could be declared as:

V : float(O, 1E3, 10, cm/sec);

which declares that V ranges from zero to one thousand, keeping ten digits of
precision, with units of centimeters per second. It might be more convenient to
declare the subtype:

subtype CGS velocity := float(0, 3El0, 10, cm/sec);

and then declare V to be of type CGS velocity. By declaring types like CGS velocity
in a standard include file, a group of engineers can count on common range,
precision, and units for its data.

6.2.5.1 Fixed

Some machines have specialized hardware for fixed-point number manipulation.
ISyCL provides fixed as a type which can be implemented by the ISyCL processor
as fixed-point if the hardware supports it or as floating-point if it does not. Fixed-
point variables are declared using the function:

Rfxed(<lower-bound>, <upper-bound>, <delta> [, <units>])

like,

f fixed(l, 10, .001);

which declaresf to be of typefixed with a range of I to 10 and a delta of 0.001.

6.2.5.2 Float

Floating-point variables are declared using:

float(<lower-bound>, <upper-bound>, <digits> [, <units>])

like,

DISTANCE: float(-IE6, IE6, 10, cm);

which defines a range from -1,000,000 to +1,000,000 with ten digits of precision
and units of centimeters. Note the upper case naming which signifies (but does not
dictate) that DISTANCE has dimensions.

ISvCL Technical Report 42

Final Report Types

6.2.5.3 Integer

Integer variables are declared using:

integer(<lower-bound>, <upper-bound> [, <units>])

like,

i : integer(O, 1023);

which declares i to be an integer from 0 to 1023.

6.2.6 Sequence

Each of the following types and one-dimensional arrays (vectors) are sequences. As
sequences, there are many functions which may be applied to members of these
types.

6.2.6.1 List

ISyCL provides linked lists as a standard type. Though list is the underlying type of
all list structures, the types of the elements of the list must be declared using the
list of function described in this section. The empty list is represented by "0."

There are two ways of defining explicit lists. The function list returns a list of the
values of its parameters. If parameters are not to be evaluated, then a quote needs to
be placed before them. A quote (') before a list returns a list without evaluating
elements unless there is a tilde in front of them. For instance,

'(a, b, -c)

returns a list of the symbols a and b, and the value of c; whereas,

list(a, b, 'c)

would return a list of the values of a and b, and the symbol c.

Lists can also be generated using select. For instance,

select * from entityclass:Employee
where (age > 21)
ordered asc;

would return the list of employees older than twenty-one in ascending order.

The implementation of list must keep track of the type of each member of a list.
When a list is passed as an argument to a function, the type of list is determined, and
the basic function which operates on that domain is applied.

ISyCL Technical Report 43

Final Report Types

There are many ways to define the types of the lis, elements. It is important to keep
in mind that listof and the other type generators return a type. Using combinations
of these type generators, there are an infinite number of different types of lists.

If only a certain number of elements of the same type are to be supplied, list of can
be used as follows:

list of(3, float)

which represents a list like:

(2.0, 5.5,128.2)

If the list has a fixed number of elements of different types, use:

listof(float, integer, listcof(integer))

which represents lists like:

(2.5,2, (1,2,4))

If the list contains many elements of repeating types, the types of the elements can
be defined using:

list-of(many, '(integer, Employee))

which represents a list like:

(1,e, 2, f, 10, g)

where, e,f, and g are employee variables. Combinations of the list constructor can
be used to form very complex lists. For instance,

list-of@ list-of(list.of(many, integer), list-of(float))

represents lists like:

(((2, 3, 4), (5.1)), ((1, 2), (10.3)))

As will be discussed in later chapters, there are many standard functions for
manipulating lists.

6.2.6.2 Ordered Set

Ordered sets are similar to lists, but ordered sets cannot contain duplicates. Ordered
sets are declared using ordered set of which takes the same parameters as list of.

See Section 6.2.6.1 for more information about list of.

ISvCL Technical Report 44

Final Report Types

Explicit ordered sets can be generated using orderedset (like list). For example,

ordered-set(a, b, 'c)

would return an ordered set of the values of a and b, and the symbol c. Ordered sets
can also be generated using select. For instance,

select * from enfity_class:Employee
where (age > 21)
ordered asc
noduplicates;

would return the ordered set of employees older than twenty-one in ascending order.

6.2.6.3 String

Unlike many other languages, ISyCL provides strings as a separate data type. ISyCL
does not specify the implementation of the data type. Strings are typically imple-
mented as one-dimensional arrays of characters.

Strings are declared via:

a: string(10), initvalue "Neptune";

or,

a: string, init-value "Neptune";

both of which initialize a to "Neptune." The first reserves room for ten characters,
while the second reserves at least enough room for "Neptune." Similar to hash tables
in Common LISP, strings in ISyCL must be able to resize automatically. Thus, the
reservation of space only describes the initial number of characters which can be
held without resizing.

The user should only face significant performance penalties when too little room is
reserved. For instance, in the second case above, the user seems not to be concerned
with future modifications. The default quantity of space reserved and the amount
added when resizing are implementation dependent.
The number of characters reserved and the actual length of a string can be accessed

by:

size(a) • 10 (# of characters reserved for a)

length(a) =ý 7 (# of actual characters)

and reference to a substring is accomplished by:

ISyCL Technical Report 45

Final Report Types

subseq(a, 2, 4) * "ept"

where "subseq" is short for subsequence. The functionality of strings in ISyCL will
render implementations somewhat less efficient than implementations of strings in
other languages, but the application of strings is much simpler in ISyCL.

6.2.7 Set

Sets are used extensively in constraints. Sets cannot contain duplicate elements, and
order is not maintained.
Similar to lists, sets must have elements of declared type. The set of type generator

is different from listof in that

set of(integer)

would define a set of many integers. Since sets do not maintain order, every element
of a set must be of the same type. Consequently, setof is not polymorphic like listof.

ISyCL provides a set-builder notation for defining explicit sets. For instance,

(e of entity-class:Employee I age(e) > 251

would return the set of employees whose ages are greater than 25. Explicit sets may
also be defined from:

'11,3,2)

where members are only evaluated if a tilde is placed before them, from:

set(l, 3, 2)

and from select.

6.2.8 Symbol

Symbols in ISyCL must begin with a letter and may contain characters from the set
(a..z, A..Z, O..9, #, $, ?, _}. ISyCL processors convert all symbols to upper case
unless a "%" is placed in front of the symbol.

ISvCL Technical Report 46

Final Report Types

6.3 Subtype and Subrange Definitions

6.3.1 Subtypes

To raise the level of abstraction, and to maintain consistent typing, ISyCL provides
the ability to define new subtypes. As was described earlier, it may be beneficial to
define subtypes like "CGSvelocity," Subtypes are defined like:

subtype CGS velocity := float(O, 3E10, 10, cm/sec);

Consequently, all velocities would have the same precision (10 digits) and units
(cm/sec).

If a subset of a type is needed, then a subrange should be defined. Subtypes do not
perform bounds checking (see Section 6.2.5), whereas subranges do. In Chapter 10,
definition of special classes based on entity and object will be described.

6.3.2 Subranges

It is often convenient to restrict a domain to a subrange of a type. Given the definition:

subrange naturalnumber (integer i)
(i > 0);

natural number can be specified as the domain of a function. For example, say we
need a function which finds employees older than a given age. We do not want the
user to supply an age which is negative or zero, so we define:

function find-emps-older._than (natural_number n) : list-of(many, '(Employee))
[loop for e ot entity-class:Employee

if (e > n) collect e;
end-loop]

Note that this checking is done at run time. Each function has a dispatcher associated
with it which determines the proper basic function to apply to the, given argument.
The more elaborate each domain, the longer it will take to dispatch the function.
Consequently, the level of performance which is needed must be considered before
using subranges.

ISyCL Technical Report 47

7

Expressions

This chapter describes ISyCL expressions and operators. Many of the operators used
in ISyCL expressions are found in modem general-purpose languages. It is hoped
that there will not be too many surprises in this chapter.

Three standard expression notations could have been chosen for ISyCL: infix,
prefix, and postfix. Infix places the operator between the operands, prefix places the
operator before the operands, and postfix places the operator after the operands.

Infix's strength is its readability, whereas its weakness is its clumsy extension beyond
binary operations. Take, for example, the addition operator "+." The addition of two
numbers, say I + 2, is very readable, but while 1 + 2 + 3 + 4 + 5 is still readable,
it is rather clumsy.

Infix also requires the use of parentheses for grouping. Operators are assigned
various levels of precedence, like multiplication has higher precedence than addition.
Thus, given I + 2 * 3, the multiplication will occur first followed by the addition
(giving 7). To force the addition first, parentheses would be added: (I + 2) * 3 * 9.

Prefix is just the opposite. Adding two numbers by + 1 2, is not natural, but addition
is extendable to many numbers very cleanly (e.g., + 1 2 3 4 5). Prefix requires a way
of separating operands. For example, * + 12 3 4 is ambiguous since there are multiple
ways to distribute the operands across the operators. Precedence is not an issue.

Postfix sacrifices even more readability (e.g., 1 2 3 4 5 +), but retains extensibility
and is simple to compile due to stacks. Postfix does not require any parentheses. For
example, 1 2 + 3 4 * = 36 is unambiguous, and again precedence is not an issue.
Anyone who has used a reverse Polish notation (RPN) calculator should recognize
the convenience of postfix notation.

One of ISyCL's primary goals is readability; therefore infix notation has been chosen
for ISyCL expressions. Consequently, precedence rules must be given, and the user
needs to use facilities like indention to aid in maintaining readability.

ISyCL Technical Report 48

Final Report Expressions

7.1 Type Conversion

Often, expressions are composed of variables of different types. It would be
inconvenient to force addition, per se, to operands of the same type. Addition of an
integer and a float would require explicit conversion of one of the operands. ISyCL
processors will perform such conversions automatically.

The rules for converting operands of expressions are adapted from those of Ada,
along with additional rules for unit conversion. Detailed descriptions of type and
unit conversion have not yet been published.

Note that the "=" operator will perform conversion and then check for equivalence,
whereas the "==" operator will always return false if given different types of
operands.

7.2 Operators

The ten different categories of operators are shown in Table 7.1.

7.2.1 Arithmetic Operators

ISyCL provides the basic arithmetic operators: +, , and "" along with
which is the exponent operator (e.g., 2 A3 =ý 8). When mixed types are used across
arithmetic operators, the resulting type will be as described in Section 7.1.

Table 7.1 ISyCL Operators

Operator Type Operators Operator Type Operators

Arithmetic Operators +, -, *,/, /' Function Composition @

Assignment Operator Membership in, of, of type

Boolean Operators and, or, not, xor, iff Relational Operators <,>,<=, >=, <>

Logical If -> Vectorization Operator

Equivalence Operators Linkage Operator <==

ISyCL Technical Report 49

Final Report Expressions

Note: Spacing is not critical around operators in expressions; 2A3 will give the same
result as 2 A3.

Arithmetic operations, except for mood and "A," can also be performed on arrays of
numbers. Naturally, the arrays must have the proper dimensions. The "f' operator is
used to represent inverse matrices. For instance, I/a would be the inverse of a, and
b/a would be b times the inverse of a.

7.2.2 Assignment Operator

The assignment operator (:=) assigns the value of the expression on the right to the
variable on the left. ISyCL supports multivalued returns. As such, one can assign
values to multiple variables at once like:

a,b := fix);

where,f(x) returns two values. The first value is assigned to a, and the second value
is assigned to b.

7.2.3 Boolean Operators

ISyCL supports and, or, not, xor, and iff. 1ff is "if and only if' which is the same as
boolean equivalence (true = true and false =false).

7.2.4 Logical If

Logical if ("->") is an if-then construct, but it has slightly different semantics than
the traditional programming language "if." It is different in that if the condition is
false, then the result of the form is true. Given,

if(x > 2 -> y < x)
y := x;

else
y := 0;

if x is greater than two, y is checked against x. If y is less than x, y is set equal to the
value of x, else y is set to zero. If x is less than or equal to two, y is set equal to the
value of x. This construct is meant to be used in conjunction with quantifiers where
its use is more intuitive.

7.2.5 Equivalence Operators

The "=" operator returns true if the operands are of equal value. The "==" operator
returns true if the operands are exactly the same. Thus, for "==" equivalence, the
operands must be of the same type, equivalent value, and in the case of entities, the
same object in the database.

ISvCL Technical Report 50

Final Report Expressions

7.2.6 Function Composition

Fuctions can be composed using "@." The resulting function has the domain of the

last function in the chain and the codomain of the first function in the chain. Thus,

function sum-ages := sum@collectages;

defines function sumages, which takes the same arguments as collect-ages, and
returns the same type of value as sum.

It is also possible to compose functions without defining a new function. For
instance,

loop for d of entiyclass:Department
collect sum@collect-ages@employees(d);

end-loop

collects a list of the sums of employee ages in all departments.

7.2.7 Membership

There are three kinds of membership:

"* member of a class (of),

"* member of a sequence or set (in), and
"* member of a type (oftype).

Since all built-in types have classes of the same name associated with them, members
of those types can be identified with both of type and of.

7.2.8 Relational Operators

The full set of relational operators is defined for numbers, strings, lists, and
characters. Strings, lists, and sets are assigned values based on their length. If two
strings are of equal length, then their characters are compared. Characters -are

assigned their ASCII value.

There is a special form available in ISyCL for doing range comparisons. The
expression:

10 < x < 100

returns true if the value of x is between ten and one hundred. In many languages
(like C), this form would produce meaningless results because x would be compared
with ten and the result of that would be compared with one hundred. It just happens
that in C zero represents false and one represents true, so no error occurs.

ISyCL Technical Report 51

Final Report Expressions

7.2.9 Vectorization Operator

Vectorization is also available. Vectorization allows every element of an array to be
operated on (pseudo-)simultaneously. To use vectorization, precede the operator
with a "bang" (e.g., "!*").

7.2.10 Linkage Operator

The linkage operator allows model elements in different models to be "linked"
together. In other words, through a constraint which uses the linkage operator, an
expert system could track elements in different models. To show linkage beteen two
model elements. See Section 1.1.3, Method Integration, of the introduction for more
information.

7.3 Precedence and Associativity

As discussed earlier, operators must be assigned precedence and associ:,tivity to
disambiguate infix expressions. Table 7.2 gives the precedence and associativity for
ISyCL operators. Vectorized operations have the same precedence and associativity
as their nonvectorized equivalents.

7.4 Quantifiers

ISyCL provides constructs for universal and existential quantification. These quan-
tifiers act as predicates which determine whether all or at least one of the members
of a type or set (or list) meets a condition. No order is imposed on checking the
members.

The universal quantifier is forall and the existential quantifier is forsome. The
form of these constructs is like:

forall e of entity-class:Employee I married?(e)
(age(e) > 30)

which would determine whether all married employees are over thirty years old. If
they are, it returns true, else false. The construct,

forsome x in e, f, g)

(age(x) < 30)

would determine whether any employee in the set is less than thirty.

Quantifiers can be nested, and pairs of set members can be tested like:

ISvCL Technical Report 52

Final Report ExpresA ions

forsome x,y of entity class:Employee
(age(x) > age(y) and salary(x) < salary(y))

which checks all combinations of employees to see if anyone is older and makes less
than anyone else. Since it is often helpful to know what entity caused a test to fail,
the quantifiers allow an onlailure clause. The value of the on failure clause is
returned as the second value of the quantifier. Given,

for_aU e of entityclass:Employee I yearswithcompany(e) <= 5 on failure e
(age(e) < 30)

if an employee who has been with the company no more than five years is thirty or
older, then the for all returnsfalse and the employee entity in question.

Table 7.2 Operator Precedence and Associativity

Operators Associativity

@ left to right

0 left to iight

A, in, of, of-type left to ,ight

left to right

, /left to right

left to right

<>, <==> left to fight

not left to night

and left to right

or, xor left to fight

iff left to right

-> left to right

right to left

,'SvC[. Technical Report 53

Final Report Expressions

7.5 Select

Select is used to collect elements. Select originates from SQL. To collect the bag of
employees in department "E21," one could use:

select * from Employee
where dept = "E21",

The asterisk designates that entities are to be collected. If an attribute name were
placed there, then the values of that attribute for each of the entities would be
collected. There are also functions which can be used to return a particular attribute
value. For instance,

select max(age) from Employee
where dept = "E21";

would return the highest age of employees in department "E2 1." On the other hand,
if the oldest employees in the department were desired, then the form,

select * from Employee
where dept = "E21"
having max(age);

would be required. The having clause allows the specification of an expression which
eliminates elements from the set reduced by the where clause. The form:

select * from Employee
where (dept = "E21" and max(age));

would find the employees in the department which are the oldest of all employees.

If order is important, the ordered by clause can be added. Elements can be ordered
by the values of an attribute of the elements. For instance, we might want to collect
the ordered set of employees starting with the newest, like:

select * from Employee
where dept = "E21"
ordered by timewithcompany asc;

The functionality of select can be duplicated by loop (see Section 8.4), but select is
much easier to use. Loop cannot be used as an expression; it is a top-level iteration
construct. As such, if the return value from a loop is desired, then a function should
be written in which the loop is the last form executed. For instance,

function get-employees 0 : listof(many, Employee)
[loop for e of entity-class:Employee

collect e;
endloop]

ISyCL Technical Report 54

Final Report Expressions

would return the list of Employee entities.

There are two primary reasons why loop cannot be used as an expression. First, it
would be very difficult (if not impossible) for an ISyCL processor to determine at
compile time the type of object returned from the loop. Second, using loops within
expressions makes code difficult to follow. This will be discussed in much more
detail in Section 8.4.

ISyCL Technical Report 55

8

Statements

So far we have discussed types and expressions. Now we need to describe ISyCL
statements which form the body of the language. Statements range from the relatively
simple if statement to the elaborate loop facility.

8.1 Common Structures

There are many common structures used in the various statements presented below.
The first structure is <expression>. Expressions were introduced in Chapter 7.
Expressions can range from a single constant, variable, or function call up to complex
expressions which perform many operations. For example,

(a + b) * c / f(i)

is a complex expression. Expressions can result in virtually any type of value.
Boolean expressions are expressions which result in a boolean value, like:

a <= b and b <= c

In some cases, ISyCL requires parentheses around a boolean expression. This form
is called a <condition>. The boolean expression above would be written as,

(a <= b and b <= c)

if it was to be used as a condition.

The next type of structure is the <action>. Actions are branches of code taken due
to a condition. Actions are composed of either a single statement, or a series of
statements called a <block>. Statements in ISyCL must end in a semicolon, and
blocks of statements are enclosed in square brackets (e.g., []).

ISyxCL Technical Report 56

Final Report Statemenis

8.2 Conditional Branches

The primary conditional branch is the if statement. If provides a general purpose
facility for controlling actions based on conditions. ISyCL also provides the more
specific case and choose statements for elegantly expressing more complex
branches. Case and choose can be implemented using if, but the powerful expressive
natures of case and choose, when appropriate, can greatly simplify complex situ-
ations.

8.2.1 The If Statement

The syntax for if is:

if <condition>
<action>

else
<action>

where the else and its action are optional. If no else is supplied and the condition is
false, the if returns false. Note the difference with the logical if discussed earlier. Ifs
can be chained together using else, forming the so-called else-if form. For example:

if <condition>
<actionl>

else if <condition>
<action2>

else...

It is in this manner that other complex statements can be implemented. If an action
consists of multiple statements, the statements must be enclosed in brackets:

if <cond>
[<statement>;
<statement>;

<statement>;]

8.2.2 The Case Statement

Case is used to choose the proper action based on the value of an expression. Its
syntax is:

case <expression> [testing with <operator>]
(<expression> : <action>)+
[otherwise <action>]

end-case

The result of the <expression> is compared with the results from each of the
individual expressions using "=" or the operator specified. If the results satisfy the

ISyCL Technical Report 57

Final Report Statements

condition, then the <action> is taken. After the <action>, the statement following
endcase is executed. The superscript "+" means that there are at least one and
possibly many "expression : action" pairs.

Say there were going to be ten and twenty-five year anniversary parties for employ-
ees, and we needed to collect the employee entities. This could be done like:

function get-anniv-employees 0 : list of(many, list of(many, Employee))
"Find 10 and 25 year employees."
ten-years, twenty-fiveyears : list-of(many, Employee);
[loop for e of entityclass:Employee

case time with company(e)
10: collect e into ten-years;
25 : collect e into twentyfive_years;

endcase
finally return(tenyears, twentyjfive-years);

endloop]

This function returns a list of two lists which contain the ten year and twenty-five
year employee entities. The case statement in the middle of the function directs ten
year employees into one list and twenty-five year employees into another list.

8.2.3 The Choose Statement

The choose statement is used when there are multiple conditions which may apply.
The syntax is represented by:

choose [first <boolean-constant>
I until <boolean-constant>
I all <boolean-constant>]

(<condition>: <action>)"+
end-choose

By default, choose finds the first condition which is true and takes that action. It then
skips the rest of the conditions and continues with the first statement following the
end choose. If no condition is satisfied, choose returns false, else choose returns the
value of the last statement executed.

choose
(weather = "snow"): print(stdout, "No Game");
(number of teams = 1) : print(stdout, "Game Forfeited");
(weather = "rain'" : print(stdout, "Game Delayed");

endchoose

There are actually six possible cases of choose. The one described above refers to
the "first true" case, in other words, the case where conditions are checked until one
is true and that action is taken. There is also a 'first false" case which would check
until a condition fails and take that action.

ISYCL Technical Report 58

Final Report Statements

The "until <boolean-constant>" case checks until a condition is the same as the one
supplied, taking all actions up to that point. Finally, the "all <boolean-constant>"
case is where all conditions are checked, and actions for conditions which return the
same as the boolean supplied are taken. For example,

choose all true
(age(e) >= 65): print(stdout, 'NnSenior Citizen");
(married?(e)): print(stdout, '"nMarried");
(yearswith_company(e) >= 25) : print(stdout, "\.At least 25 years of service");

endchoose

would print messages for all of the conditions which are true.

8.3 Unconditional Branches

The nature of applications written in ISyCL should preclude the use of unconditional
branches. The primary use of unconditional branches is error handling. If an error
occurs, it is often difficult to gracefully exit to the error handler. Therefore, a goto
is often used to directly jump to the error handler. ISyCL does not support goto.

For fatal errors, ISyCL provides an error function which prints a message and
terminates gracefully. For nonfatal errors, ISyCL provides for declaration of excep-
tion handlers. The with form is wrapped around the possibly error-prone code, and
exception handlers are declared within the with. Exceptions propagate up the caller
stack until a handler is found, or the system handles the exception. An implicit with
is wrapped around all functions.

The syntaxes of the with and exception forms are:

with <decl>*
<action>

exception symbol <parm-list> (continue I end}
<action>

where <decl> is either an exception or trigger definition or a type declaration. For
instance,

with emp: Employee;
exception birthday (Employee e) continue

print(stdout, "Happy Birthday Ns!" name(e));
[...

creates a local variable emp which refers to an Employee and defines an exception
handler which prints a happy birthday message. The only place this variable and
exception handler can be accessed from is within the action of the with.

!SyCL Technical Report 59

Final Report Statements

The user can raise an exception by:

raise (exception-name [, <arguments>]);

which transfers control to the action associated with that exception. Given the
example above, one could raise:

raise(birthday, e); -- e is an employee

within the action of the with.

There are two options for continuation of the execution after the action; execution
can proceed from where the exception was raised (continue) or execution can resume
after the with block (end).

Exceptions can be used for more than just error handling. For instance:

function common-elements? (integer al,b[]) : boolean
exception common-element 0 end

[print(stdout, -\i is a common element" a[i]);
true;]

[loop for i from 1 to first(dimensions(a))
loop for j from 1 to first(dimensions(b))

if (a[il = b[j])
raise(commonelement);

end-loop
endloop]

determines whether there are any common elements in integer arrays a and b. If there
are, it raises the exception which prints a message and returns true, else the loops
terminate normally and returns false (the value of the last comparison propagated
out of the loops).

For efficiency, it may be desirable to make the assumption that values are going to
be correct, and then handle any exceptions that might occur. Continue allows just
that. The following is an example of the use of continue:

function averageages (set-of(Employee) employees) : integer
"Find average age of a set of employees. Protected against crashing due to employees not hav-

ing been assigned ages."
exception null-not-integer 0 continue

[print(stdout, "Employee, \s, has no age. Replacing with \
zero and continuing.", name(e));

return(O);J
[loop for e in employees

sum age(e) into sum_ofages;
count e into number-of emps;
finally (sumrof-ages / number-of emps);

end_loop]

LSyCL Technical Report 60

Final Report Statements

If an employee has not been assigned an age, his age will be null. When null is
summed with an integer, a nullnotinteger exception will be raised. Standard
exceptions have defined protocols. Null notrinteger requires an integer value be
returned if execution is to continue.

Note that if no exceptions occur, the function runs without a lot of error checking.
Also, contrary to Ada, exceptions are not associated with functions, but blocks. Thus,
it is possible to have different handlers for exceptions occurring at different places
in the function.

8.4 Iteration with Loop

Loop is by no means simple. Loop is derived from the loop macro of Common LISP.
Loop is extremely powerful, and it is designed to allow for readable code. Let's start
simple. The following are just two samples of loops which sum the integers from I
to 100:

loop for i from I to 100
sum i;

end-loop

loop for i in {j• integer Ij >= I and j <= 1001
sum i;

end-loop

The steps taken in each iteration of the first loop can be controlled like:

loop for i from I to 100 by 2
sum i;

end-loop

which would sum the odd numbers from I to 99. If the steps are in the negative
direction, use:

loop for i from 99 down-to I by 2
sum i;

end-loop

Sum is one of several accumulation identifiers. The full list is:

"* collectling]
"* append[ing]
"* count[ing]
"* sum[ming]
"* max[imizel
"• min[imizel

ISvCL Technical Report 61

Final Report Statements

Thus, the oldest employee could be found by:

loop for e of entity_class:Employee
max age(e);

end loop

Iteration can be done in parallel by specifying multiple for-clauses. The list contain-
ing alternating positive and negative values converging from -100 and 100 to zero
could be constructed by:

loop for p from 100 downto 0
for n from -100 to 0
appending list(p, n);

end loop
= (100, -100, 99, -99'.... 1, -1, 0, 0)

Better yet, multiple accumulators can be used:

loop for p from 100 downto 0
for n from -100 to 0
collect p;
collect n;

end-loop

which saves us from creating those intermediate lists. Different accumulators can be
mixed, but only those compatible with on- another. Collect and append can be
mixed, as can count and sum, and max and min.

Averages are simple with:

loop for e of entityclass:Employee
counting e into counter;
summing age(e) into summation;
finally returm(summation / counter);

end-loop

Finally specifies the operation to perform on exit from the loop; the value of which
is not the return value of the loop unless specified. Loops can also continue until a
condition as in:

loop for e in (select ' from entityclass:Employee
order by age asc;)

count e into number of emps;
sum years-withucompany(e) into total_years;
until (total_years > 100);
finally retum(number ofcrmps);

end-loop

which finds the number of youngest employees it takes to accumulate better than
100 total years with the company. Note the use of the SQL select within the loop.
The until clause determines when to halt the loop.

ISyCL Technical Report 62

Final Report Statements

Ifs can also be used within a loop, like:

loop for e of entity_.class:Employee
if (age(e) < 30)

count e into youngsters;
else

count e into veterans;
finally return(youngsters, veterans);

end loop

which returns two values, the numbers of youngsters and veterans.

Instead of using loops as expressions, a new function is written whose return values
are those of the loop. For instance, say we wanted to check the average age of
employees against each employee's age and count those who were older than
average. We might have writen (incorrectly):

loop fore of entityclass:Employee
if (age(e) > (loop for e of entity-class:Employee

counting e into counter;,
summing age(e) into summation;
finally return(summation / counter);

end-loop))
count e;

end-loop

* SYNTAX ERROR! LOOP USED AS EXPRESSION.

Leaving aside efficiency concerns (which are numerous with the above form), this
form could provide the number of employees older than the average. Note how messy
the form is. It is also difficult to determine what the type of return value from the
inner loop will be. A better (and correct) way to accomplished the task would have
been to define the function:

function avgemp-age 0 : float
[loop for e of entity class:Employee

counting e into counter,
summing age(e) into summation;
finally retum(summation / counter);

end-loop]

and then write:

loop for e of entitysclass:Employee
if (age(e) > avgempageo)

count e;
endloop

This form is much clearer.

ISyCL Technical Report 63

9

Functions

For the most part, ISyCL functions are similar to functions in other programming
languages. One important difference between ISyCL and many object-oriented
languages is that ISyCL does not differentiate between functions and methods.

Object-oriented languages often refer to functions which behave differently depend-
ing on the object to which they are applied as "methods." This primarily originates
from the fact that most object-oriented languages evolved from previous languages
and needed to maintain compatibility.

All ISyCL functions can exhibit polymorphism (different behavior across different
domains). Also, ISyCL functions have multivalued domains and codomains. In other
words, a function can accept multiple values and return multiple values.

The syntax for function definitions is:

(function Ifunctionclass) symbol
{ < func-assign> I <func-dcf> I

<func-assign> := <function-comp>;

<func-def> <parm-list> [: {symbol I (<symbol-list>)1
[<doc-string>]
((<attr-assign-list>) I
<decl>*
<block>

where,

"* function class is a symbol which names a class of functions,
"* symbol is the function name,
"* <parm-list> is the formal parameter list (see Section 9.1),
"* <doc-string> is a string which describes the function,
"* <attr-assign-li-t> is attribute value assignments for this function instance,
"* <decl>* is variable, exception, or trigger declarations, and
"* <block> is the body of the function.

iSYCL Technical Report 64

Final Report Functions

A general function to add a list of integers could be written,

function sum (listof(many, integer) num-lis0 : integer
"Adds n integers."
[loop for n in num-list

sum n;
end-loop]

which would be applied like:

sum('(1, 2,3,4)) =ý 10

Functions can return multiple values using lists. For example,

function collect~ages 0: list of(many, integer)
[loop for e of entityclass:Employee

collect age(e);
end-loop]

returns the list of employee ages. ISyCL also allows multivalued returns, such as,

function generate-.gross-and-deductions 0 : (list-of(many, integer), list of(many, integer))
g,d: list-of(many, integer);
[loop for e of entity_.class:Employee

collect gross(e) into g;
collect deductions(e) into d;
finally return(g, d);

end-loop]

which could be used with:

function collect-net incomes (list-of(many, integer) g,d) : list-of(many, integer)
[loop for gross in g

for deduction in d
collect (gross - deduction);

end-loop]

like:

collectnet incomes(generategross and_deductionsO)

This application would return the list of net incomes for all employees. Using the
sum and collectages functions defined earlier, the statement,

sum(collectageso)

would return the sum of the ages of employees.

ISyCL Technical Report 65

Final Report Functions

It is also possible to compose functions for later use. For instance, if we planned to
sum employee ages often, we could declare:

function sumages:= sum@collect-ages;

Now sum_agesO will return the sum of the ages of the current employees. Functions
can be scoped locdly like variables. Thus, if employee ages are changing often
within a function it would be better to define the local function sumageso, whereas
if the ages are static it would be better to use a local variable instead.

9.1 Parameter Lists

In function definitions, the types of the parameters are given by a parameter list
(<parm-list>). Parameter lists identify the type of the variables and the names of the
variables. A function which requires an integer and a float would have the parameter
list:

(integer i; float f)

Since several parameters in a row can have the same type, one can write,

(integer ijk; float 0

which declares that the function requires three integers and then a float. There are
some special forms which allow complex types to be passed. To specify that a
function accepts a list of integers, a set of floats, and a two-dimensional array of
integers, use:

(list-of(many, integer) i-list; set of(float) flist; integer a[l])

If parameters are to be passed by reference instead of by value, then an asterisk should
be placed in front of the variable name, like:

(list-of(many, integer) *iijst)

Complex data structures are often passed by reference, while simpler data structures
tend to be passed by value. Pass by value means that the formal parameter receives
a copy of the value of the argument, while pass by reference means that the formal
parameter is a synonym of the argument. The following is a rather contrived example:

function print ages 0
i : list_of(many, integer), inityvalue (select age from entity-class:Employee;)
[appendsum(i);
print(stdout, "The employee ages are: \1(i). The sum is: -i." i - first(i), first(i)]

ISyCL Technical Report 66

Final Report Functions

function append-sum (list-of(many, integer) *i-list)
j : integer;
[loop for i in i_list

sum i into j;
finally push(i, list(j));

end-loop]

The list of employee ages is collected into i. Appendsum is then applied to i. Instead
of copying the value of i, i list is treated as a synonym of i. The sum of the ages is
determined and then pushed on to the front of the list. Back in print-ages, the list of
ages and the sum are printed.

There are special keywords allowed in parameter lists which control the evaluation
and collection of arguments. The first, "e, is used when the function needs a
parameter which is not to be evaluated. Given,

function sum-ages ("e symbol given-class) : integer
[loop for g of given_cLhss

sum age(g);
end_loop]

the call,

sum-ages(Employee);

would return the sum of all employees' ages. Note that Employee did not have to be
quoted. The keyword "e can be followed by symboi, (), or (}, meaning a symbol,
a list of symbols, or a set of symbols, respectively.

The next keyword is &rest, which collects as many parameters into a list of the type
specified. For instance, given,

function sum (&rest integer ilist) : integer
[loop for i in ijlist

sum i;
end_loop]

the call,

sum(l, 2,3,4);

would return the integer "10."

9.2 Function Attribute

ISyCL is similar to modem object-oriented languages such as C++ and the Common
LISP Object System in its overloading of functions (polymorphism). The behavior
of a function is dependent on *he type of its arguments (domain). Based on the

ISvYC Tc:Jchnic,:I Report 67

Final Report Functions

domains of the arguments, the proper basic function is applied to the arguments and
then returns a member of its codomain.

Function is similar in level to object. Function is a functionclass, and all other
functionclasses inherit from function. The simpler type of functions are called basic
functions. Basic functions cannot be defined directly, but are instead generated from
the instantiation of functions.

Each basic function has the following attributes:

"* domain: List of the types of its parameters.
"* codomain: List of the types of its return values.
"* reentrant?: Reentrant functions are not state dependent.
"* docstring: String describing the purpose of the function.

Note that basic functions do not have names; they are accessed through the routing
list of functions. Functions have the following attributes:

"• print name: The name which represents the function.
"* routinglist: List used to access basic functions.

When a function is applied to an argument, the type of the parameter is checked and
then the basic function with the proper domain is applied to the argument.

The function definition:

function square (integer i) : integer
"Multiply an integer by itself."

[i* i]

reads, "the function square applied to integer i returns an integer." The documenta-

tion and body are optional. It seems that all function definitions would require a
body, but functions can be composed of other functions; thus they do not have their
own bodies. Given these simplifying functions,

function codomain (function f, list-of(many,type) t) : list of(many, type)
(codomain@basicfunction(f, t);]

function doc string (function f, list-of(many, type) t) : string
[docstring@basic_function(f, t)J

the attributes of square can be accessed by:

domains(#'square) =zý (integer)

codomain(#'square, '(integer)) • integer

doc-string(#'square, '(integer)) = "Multiply an integer by itself."

ISyCL Technical Report 68

Final Report Functions

The "#' notation means we want the function associated with the symbol, not the
value of the symbol. As we noted earlier, ISyCL allows overloading of function
names. Thus, one could later define:

function square (float f) : float
"Multiply a float by itself."
If* Q

with the following results:

domains(#'square) =* (integer float)

codomain(#'square, '(float)) = float

doc-string(#'square, '(float)) • "Multiply a float by itself."

Now square has two domains, integer andfloat. Given afloat, square returns afloat.

Functions can also have other attributes. These attributes are declared in the func-
tiontype definition. Values are assigned to these attributes in the <attr-assign-list>
section of the function definition.

For example, say we wanted to assign a function to be nonreentrant. We would write:

function example 0
"This is just an example."
(reentrant? := false;)
[print(stdout, "Actually there is nothing non-reentrant about this function.");]

Now, this function could only be called within a loop, and an instance of the code
would be created upon entrance to the loop and destroyed upon exit.

This chapter has described the foundations for ISyCL functions and the func-
tionclass,function. In Chapter 12,function classes will be discussed in more detail.

9.3 Macros

Macros are special types of functions which are expanded in place at compile time.
This expansion causes there to be less overhead at run time. The primary use for
macros in ISyCL is in the meta-layer, but they may also be used in the ,vstems layer.

Macros look similar to functions. Their syntax is:

macro symbol <symbol-list>
[<doc-string>]
<block>

ISvC'L Technical Report 69

Final Report Functions

The macro to add any number of integers might have been written:

macro sum (numlst)
"Adds n integers"
[loop for n in -numlist

sum n;
endjloop]

Compare this form with the function on page 65. The code in the block is not
evaluated unless it is preceded by a tilde. Thus, in this case, numlist would be
replaced by a form which will produce the list of integers to be summed, but other
than that, the block would be inserted directly into the code. Consequently,

function sum-ages (list-of(many, age) agejlist) integer
[sum(age-list);]

would expand to:

function sumages (list-of(many, age) agehist) integer
[loop for n in age-list

sum n;
end-loop]

Note that the tilde only applies to the symbol immediately following the tilde. If an
expression or function call needs to be evaluated, parentheses must be placed around
the form to be evaluated. For example,

-func(arg)

is different than:

-(func(arg))

The first evaluates finc (to determine what function to eventually apply to arg),
whereas the second applies func to arg. Many examples of macro usage are shown
in Chapter 12.

What is wrong with the sum macro? Remember that loop cannot be used as an
expression. Since macros just expand in place at compile time, if sum were used as
an expression, a compile-time error would result. For example,

function overthousand? 0 : integer
"Is sum of ages greater than 1000?"
[if (sum('(select age from entity-class:Employee order)) > 1000)

print(stdout, "Sum of ages is greater than 1000.");]

ISYCL Technical Report 70

Final Report Functions

would expand to:

function over_thousand? 0 : integer
"Is sum of ages greater than 1000?"
[if (loop for n in (select age from entity-class:Employee order)

sum n;
end loop> 1000)
print(stdout, "Sum of ages is greater than 1000.');] =* ERROR!

Loop is used as an expression; consequently, an error is reported.

ISyCL Technical Report 71

10

Classes

ISyCL provides two special classes called entity and object. Entities represent the
information kept in an information system about real or abstract objects like
employees, managers, etc. Objects represent temporary objects which are of use in
object-oriented programming (e.g., a window on the screen). Both classes have
attributes which describe the traits of entities or objects of that class. For instance, a
car could have the attributes make, model, year, etc. Attribute values of entities are
kept in a database while attribute values of objects are kept in memory. By taking
advantage of the polymorphism allowed by functions in ISyCL, objects and entities
can take on behavioral aspects.

10.1 Objects

Object classes can be assigned user-defined attributes. Built-in classes, such as
integer, have a fixed set of attributes (e.g., range). Instances of built-in classes are
objects, though most are system-defined. In other words, there is no need to create
the integer "1"; it has already been defined by the system.

The definition of objectclass, circle, might look like:

class circle (graphic-object)
[(center: location;
radius: integer(O, 1023);)
fill-color: color, initmvalue 'blue;I

along with:

subtype xdimension := integer(0, 1023);

subtype ydimension := integer(0, 767);

subtype location := cross-product(x dimension, ydimension);

subtype color := symbol in ('red, 'blue, 'green, 'yellow, 'white, 'black);

ISyCL Technical Report 72

Final Report Classes

where graphic object is a class based on object. The following block describes the
attributes of the class. Attributes within the parentheses in the block are designated
as "required." In other words, they must be given values upon instantiation.

Besides specifying the type of each attribute, there are many other options for
attributes. Attributes can be designated as read only and nonnull, and can be given
an init value. Non null means that the attribute must have a value. Init values are
default values assigned to attributes upon initialization.

Objects are instantiated using "make" functions:

make-circle('(100, 100), 200, fill color, 'red);

"Make" functions like makee_circle are generated upon definition of the object class.
Since objects do not have keys, there are no "get" accessors for objects. The "make"
functions return a pointer to the object. If that pointer is lost, then the object is lost.
Types, like integer, do not have "make" functions.

10.2 Entities

Entity classes are different from other classes in that they define "database objects"
called entities. These entities are persistent across sessions, and can be used to
facilitate communications between systems.

The definition of a Car class could be:

class Car (entity)
[(registrationjnumber: integer, read-only;

make: string, inverse cars of make, read_only;
model: string, read-only;
year integer, read-only;)
locked?: boolean, non-nuUl, init value true;]

('(registrationnumber))

This states that Car is a class based on entity. In this case, the required attributes can
only be given values upon instantiation, since they are all read-only.

Besides the standard attribute options, entity attributes can have inverse accessors
which create the set of entities which have a given value of an attribute. In this
example, cars ofmake returns the set of cars with a specific make.

The first attribute of Car, registrationnumber, is the sole attribute of the first key
of Car. Car does not have any other keys. Keys are used to access unique entities.
Entity classes which do not have any keys are not instantiable, but they can be used
as "mix-ins" for instantiable entity classes. Key attributes must be given values at
instantiation time.

ISyCL Technical Report 73

Final Report Classes

A subclass of Car, SportsCar, could then be defined:

class Sports-Car (Car)
[top-speed: integer;]

To make it clear to the reader what objects are stored in memory versus in the
database, instantiations of entities are different from objects. The instantiations of
Car and Sports-Car would look like:

insert into Car
(registrationnumber, make, model, year, locked?)

values '(1200054, "Chevy", "Nova", 1986, false);

insert into Sports-Car
(registration number, make, model, year, top speed)

values '(230005, "Nissan", "280ZX", 1989, 160);

Note the quote in front of the list of values to be assigned to the attributes. ISyCL
allows any sort of list accessor to follow valves. In other words, it could be a function
call which returns a list, a symbol bound to a list, or an explicit list as shown. Multiple
lists can be provided (separated by commas). Each list of values generates an entity.

Since entities are persistent across sessions, there must be a way to access entities in
the database. "Get" accessors are used to retrieve handles for entities in the database.
Handles are analogous to pointers. A handle points to an entity in the database. For
example,

my-car: Car, init value get car(1200054);

declares that mycar is of class Car and has as its initial value the Car with
registration number "1200054." The attribute values of the instance of Car pointed
at by my-car are in the database. In "Get" accessors, values for the key attributes
must be specified in order of definition. Handles have states of open and closed. If
another process has deleted an object pointed to by a handle, an error will occur when
the handle is used.

One can also use cursors to access entities in the database. For instance:

declare lockedcars cursor
for select * from Car
where locked?;

Cursors are different from handles in that they return a set of entities or attribute
values, or a distinct entity or attribute value. Given the above cursor declaration, a
set of cars is referenced by locked-cars.

ISyCL Technical Report 74

Final Report Classes

A way to access the make of the car whose registration number is "1200054" using
a cursor would be:

declare my-car cursor
for select distinct * from Car
where registrationnumber = 1200054;

and then to use make(my car).

10.3 Behavior

Polymorphism can be used to add behavior to entities and objects. It has been found
that people find it easier to program in terms of objects. For instance, cars can be
locked. It is debatable whether the person locks the car or whether the locking
mechanism in the door locks the car upon request from the person. Given the latter
interpretation, that the car locks itself, we could write a function to lock the car:

function lock (Car c) : boolean
"Lock the car, and return the previous value."
[if (not locked?(c))

[locked?(c):= true;
false;]

else
true;]

ISyCL Technical Report 75

11

Constraints

Given the name, Information Systems Constraint Language, it should not be surpris-
ing that constraints are an important part of ISyCL. Constraints are a combination
of special functions called triggers and exception handlers. Triggers are functions
which are called upon the occurrence of an event. Exception handlers were discussed
in Section 8.3. A constraint is the combination of a trigger (or triggers) and an
exception handler which is raised if a condition is violated.

One example of a constraint is the constraint that the value of an employee entity's
salary attribute cannot be negative. Anytime an employee's salary is modified, the
value is checked. If the value is negative, then an exception is raised which keeps
the transaction from occurring. This constraint would be written:

exception negativesalary (Employee e) end
print(stdout, "Employee \a cannot be assigned a negative salary.", name(e));

before mod of attrib salary of Employee e (fixed(0, IE6, .01) new-salary)
[if (new salary < 0)

raise(negative-salary, e);]

The first form defines the exception handler and the second defines the trigger. If an
employee is assigned a negative salary, the exception is raised, a message is
displayed, and the assignment does not take place. If, instead of end, we had written
continue as the type of exception, then the assignment would be made.

11.1 Triggers

Triggers are very flexible. Triggers can be placed on any function, and they can be
triggered before or after the function. It is also possible to define triggers which
enable triggers during the execution of a function. Before going deeper into during
triggers, let's look at a real-world example.

To ensure the safety of lathe operators, they must keep both hands on the lathe control
panel during operation. If the operator's hands leave the buttons, the lathe stops.

ISyCL Technical Repot t 76

Final Report Constraints

In ISyCL terms, there is a during constraint which enables triggers during the
operation of the lathe. The triggers raise an exception if the buttons are released. The
exception handler stops the lathe. Any time other than during operation of the lathe,
the state of the buttons is not watched.

The ISyCL description of the lathe constraint would look like:

during operate of Lathe 10
exception lathebuttonsreleased (Lathe 1) continue

halt(l);
before mod of attribute:buttonstate (Lathe 1; newstate)

[if (new-state = "released")
raise(lathe-buttonsjreleased, 1);I

(print(stdout, "If lathe buttons are released, lathe will halt!');]

This form defines a during trigger on the function operate of Lathe. First, it defines
the exception handler which, when raised, halts the lathe. Next, a before trigger is
placed on the modification of the button state attribute of the specific Lathe upon
which operate was called. If button state is to be set to "released," the trigger raises
the exception which halts the lathe. Finally, before operate is called, the message "If
lathe buttons are released, lathe will halt!" is displayed.

There is nothing wrong with a trigger taking an action instead of raising an exception
as long as execution is to continue. Exceptions are used to gracefully exit a function.

11.2 Constraints

One usage of constraints is to allow information systems to express constraints upon
entities in a database. ISyCL can work in tandem with other graphical languages to
describe the conceptual schema of an information system. Chapter 1 described some
examples of constraints written for IDEF1 models. Graphical languages can be used
to their limits, and then the remaining constraints can be written using ISyCL.
Automated tools for the methods can autogenerate the ISyCL representation of the
information expressed in the diagrams.

Constraints can also be used in general applications. Since constraints can be applied
to any function, they provide a powerful mecharmism for general applications. As
will be shown in Chapter 12, a constraint is used in conjunction with afunctionclass
to implement attributes for classes of a metaclass in which the attributes are not
actually stored, but instead derived. Thus, from an external point of view, the user
need not be aware of whether an attribute is derived or stored.

An example constraint is taken from the Common LISP Object System. Classes can
act as subclasses of a superclass and as the superclass of subclasses. See Figure 11.1
for an IDEF1 model of this relationship. Each time a new Sub SuperPair is created,

ISvCL Technical Report 77

Final Report Constraints

the following constraint is checked to determine if there are any loops in the
hierarchy. The constraint and related function are:

exception Superclass-isSubclass (integer superid) end
"The superclass is the same as the subclass or a subclass of the subclass."
[print(stdout, '`s is a subclass of itself." superid);]

after init of SubSuperPair ss 0
[if (subid(ss) = superid(ss) or

superclass?(subid(ss), superid(ss)))
raise(Superclass isSubclass, superid(ss));j

function superclass? (integer super, integer sub) : boolean
"Is super the cid of the superclass of the class whose cid is sub?"
[forall s of entity-class:SubSuperPair

(superid(s) = super and subid(s) = sub)
or
forall c of entityclass:Class

(superclass?(super, cid(c)) and superclass? (cid(c), sub))]

.M. OSubiSud. P,% d S.id)

Figure 11.1 Subclass-Superclass Relationship

There are two primary conditions in this constraint. First, the subid and superid of
the SubSuperPair must be different. Second, the subclass referenced by subid
cannot be a superclass of the class referenced by superid.

The predicate superclass? takes two class IDs and determines if the class referenced
by the first is the superclass of the class referenced by the second. First, a direct
relationship is checked for, then the hierarchy is checked recursively for indirect
relationships.

ISyCL Technical Report 78

12

Metaclasses

This chapter covers difficult material and is not meant for general consumption. This
chapter describes constructs which can be used to customize ISyCL for particular
methods. It is proposed that the experts in a method get together and define the
metaclasses for "thteir" method. Those definitions would then be distributed to
modelers who are using ISyCL with that method.

Consequently, it is unlikely that most people will need to understand the constructs
in this chapter. However, this chapter will provide interested readers with a better
understanding of ISyCL in general, since many of ISyCL's constructs can be defined
using constructs in this chapter.

Metaclasses define classes of classes. Metaclasses can be hierarchical, and con-
straints can be applied to metaclasses, the classes they describe, or the attributes of
those classes. Currently, there are two classifications of classes, functionclasse.
and object classes. Though these two categories are sufficient now, in the future
there may be a need for other classes of classes.

12.1 Object Classes

An object class defines a class of data type. For example, the entity-class of IDEF 1
is an objectclass, which could be defined like:

objectclass entity-class 0 persistent, nojinheritance, no-key
[owned_attributes : class_attributes (ownedattribute);
inheritedattributes: set of(inheritedattribute);
key_classes: set.of(key-class);]

This definition starts by declaring that entity class is a metaclass based on ob-
jectclass (as opposed to functionclass). Next, the series of key words declares that
entities are persistent .(stored in the database), there is no hierarchy amongst en-
tityclasses, and entityclasses do not have keys (keyclasses are defined later).

The block describes attributes of the metaclass and attributes of the class. The first
line declares the class-attributes of this metaclass are called ownedattributes, and

ISyCL Technical Report 79

Final Report Metaclasses

the attributes are of type owned attribute. Classattributes must come first in the
listing, and each group of class attributes causes an additional block to be added to
the definition of instances of the metaclass. For instance, the entity_class, Employee,
would be defined by:

entityclass Employee

[Emp#: employee-number, unique;]

To retrieve the list of owned attributes of an entityclass, one would use:

owned-attributes(Employee) =* (Emp#)

We still need to define inherited attributes, but to dtfine inherited attributes we first
need to describe functionclasses.

The general syntax for object-class definitions is:

object class symbol (<symbol-list>) [<obJ-class-keywords>]
[<doc-string>]
<attribute-block>

<obj-class-keywords> ::= <obj-class-keyword>

<obj-class-keyword>, <obj-class-keywords>

<obj-class-keyword> ::= persistent I no inheritance I no-key

<attribute-block> ::= [<attr-list>]

<attr-List> := <class-attr-decl>* <attr-decl>*

<class-attr-decl> ::= symbol : classattributes (symbol)

Object classes can also describe types whose members exhibit behavior. Chapters 6
and 10 described this usage in more detail. Still, object-classes are not functions.

A variation of entity-class could be defined by:

objectclass protected-entityclass (entityclass)
"An entity class which keeps information about who has authorization to
access its members."
[authorizationlist : list-of(many, integer);]

which adds the capability of using an integer authorization code to allow access to
members of that class.

ISvCL Technical Report 80

rinal Report Metaclasses

The metaclass definitions of entity and object are:

object~class entity 0 persistent
[attributes classattributes (attribute);]

objectclass object 0
[attributes : classattributes (attribute);]

12.2 Function Classes

Function classes define types of functions, including the domain and codomain for
functions of that class. Function classes are hierarchical. Function subclasses of a
function class must have domains which are subty,, of the superclasses's domain.

To clarify the similarities and differences between object classes and function
classes, let's look at IDEFI metaclass definitions. Starting with object types,
entityclass is an object class, Employee is an entityclass, and the information kept
about "Joe" is an instance of Fmployee. Information about "Joe" is stored in the
database.

Now for function classes. Linkclass is a function class. Employee of from Fig-
ure 1.2 is an instance of linkclass. Employeeof is intensional, but the instances of
employeeof are pairs of entities which are not actually stored by the information
system, but rather derived when needed. Thus, whereas information about "Joe" is
kept in the database, information about instances of employee of is not.

All in all, it is important to keep in mind that functionclasses are m.;taclasses just
like object-classes. They are classes of classes.

To introduce function classes, we will define a functionclass called em-
ployeepredicate whicn takes an Employee entity as it- argument and returns true
or false. We will start by defining a more generalfunctionclass called entitypredi-
cate. We do this to show the inheritance of function classes. The functionclass
definition is:

functionclass entity-prd•licate 0 (instance.of(entityclass)) : boolean;

This declares that entitypredicate does not inherit from other functio?, classes
(exceptfunction) and that entitypredicate takes one argument which has as its type
an instance of the object class, entity_class. In other words, the predicate is passed
an entity of an entity class, not an entityclass. For exarnp.Ae, the information kept
about an employee is an entity, "Employee" is c'i, entity class.

ISyCL Technical Report 81

Final Report Metaclasses

The definition of employee-predicate is:

functionclass employee-predicate (entity-predicate) (Employee) : boolean;

Function classes which inherit from other function classes can restrict the domain of
the parent function class. In this case, employee_predicate restricts the domain of
entity_predicate from an entity of any entity-class down to an Employee entity. We
can now define the predicate:

employee-predicate olderthan_E2 1_people? (Employee e) : boolean
"Is the employee older than any member of department E21 ?"
[age(e) > (select max(age) from Employee

where dept = "E21";)]

The predicate older than E21_people? checks to see if the employee is older than
any member of department "E2 1." At compile time the predicate is checked to make
sure it conforms with the enployeepredicate definition. Also,
older-thanE21_people? can be passed to any function which requires either an
entity__predicate or an employeepredicate.

There are also times when it is desirable that the body of the function be generated
automatically. This is almost always the case with functionclasses for use with
methods. An expert (or experts) defines the functionclass, and then users use the
define form to supply the necessary parameters to generate the function. This is just
a type of macro.

Let's look at an IDEFlfunctionclass which automatically generates instances using
the define form. Link classes in IDEF1 are functions which map an entity in one
entity class to an entity in another entity class. To define a link class, we need to
know the independent and dependent entity classes and the name of the link class.
In ISyCL, the name of the link class reads from dependent to independent since that
direction describes a proper function. Optionally, the independent to dependent name
can be given to define the function which maps one independent entity to possibly
many dependent entities.

The parameter to the linkclass function is an entity of the dependent entity class.
The function type definition for linkclass is:

functionclass linkclass 0 (instance of(entity_class)): instancecof(entityclass)
(symbol name; entity-class DEP; entityclass IND; &optional symbol (inverse ""))

"Maps an instance of an entity class to an instance of another entity class."

1]
[link-class -name (-DEP dep-ent) : -IND

[loop for indent in -IND
if (for-all inh-attr in -(inheritedattributes(DEP))

where (domain@ownedattr(inhattr) = -IND)
(owned attr(inh attr)(ind ent) = apply(inh-attr, dep ent)))

retum(c);
end-loopli

ISyCL Technical Report 82

Final Report Metaclasses

This definition certainly requires some explanation. Starting at the top, link class
does not inherit from any other function classes. It takes an entity of the dependent
entity class and returns an entity from the independent entity class. The parameters
of the define form are given in the next line. Link class requires the name of the link
class, the dependent entity class, the independent entity class, and, optionally, the
name of the function which maps from independent to dependent.

The next line is the documentation string. If linkclass had attributes, they would be
declared in the next block. Finally, there is the macro block which generates the
function. See Section 9.3 for a discussion of macro syntax. Most important, remem-
ber that the tilde ("-") causes the next symbol to be evaluated. If the tilde is followed
by a form in parentheses, the whole form is evaluated.

To find the independent entity which corresponds with the dependent entity, each
of the entities of the independent entity class is checked. The inherited attribute
classes of the dependent entity class which were inherited from the independent
entity class are checked to see if they have the same values in the independent and
dependent entities. If so, there is a mapping from the dependent to independent
entities, and that entity of the independent entity class is returned.

To get a better understanding of how this function works, let's look at an example
from Chapter 4 on page 31. First, we define weak_manylink class:

functionclass weakmany_link-class (link-class) (instancejof(entity_class)):
instance-of(entityclass)

0
[cardinality: string, init value "weak";]

Weak many_linkclass has a cardinality attribute which describes the mapping
between entities. The declaration:

define weakmany-linkclass (employee-of, Emp-Assign, Employee, (inverse assignedto));

generates the function:

weak-many_linkclass employee of (EmpAssign depent) : Employee
[loop for ind ent in Employee

if (for all inh attr in '(EAE#, EAT#, EAP#)
where (domain@owned attr(inh attr) = 'Employee)

(ownedattr(inh-attrXind-ent) = apply(inh-attr, depent)))
return(c);

end_loop]

This function checks all Employee entities to find one whose value of E# is the same
as the given Emp Assign's EAE# value. When it does find a match, it returns the
Employee entity.

ISyCL Technical Report 83

Final Report Metaclasses

The only attribute class of Emp Assign inherited from Employee is EAE#. EAE#
originates from Employee's E# attribute class. Thus, in theforall of the condition
of the if, only EAE# satisfies the where condition since ownedattr(EAE#) is E# and
domain(E#) is Employee. At that point, the value of the EAE# attribute of the
Emp Assign entity is checked against the value of the E# attribute of the Employee
entity. If the values are equal, the Employee entity is returned.

There is still more work to do. The inverse function needs to be defined which maps
from independent entities to dependent entities. To accomplish this task, we start by
placing a before trigger on define of link class. Thus, whenever a link class is
defined, the inverse accessor will be defined if requested. The trigger definition is:

before define (linksclass Ic; symbol name; entity class DEP;
entity-class IND; &optional symbol (inverse "..)

[if (not inverse = "'
gen-inverselink-class(invcrie, IND, DEP,;]

Like all before triggers, this one takes the same arguments as the function it
constrains. If no name is specified for the inverse function, then none is defined. If
a name is supplied, the following macro is expanded:

macro geninverselink class (symbol name; entity_class IND; entityclass DEP) : function
[function -name (-IND indent): listof(many, -DEP)

[loop for depent of -DEP
if (for-all inh_attr in -(inherited atu-ibutes(DEP))

where (domain@ownedattr(inhattr) = -IND)
(ownedattr(inh _attr)(ind ent) = apply(inh attr, dep-ent)))

collect dep-ent;
end-loop]]

The function generated is similar to the linkclass function, other than that this
function returns a list of entities. The inverse function assignedto would look like:

function assignedto (Employee indent) : list of(many, Emp Assign)
[loop for dep ent of EmpAssign

if (for all inh_attr in '(EAE#, EAT#, EAP#)
where (domain@owned attr(inh attr) = 'Employee)

(owned attr(inh attr)(indlent) = apply(inh attr, depent)))
collect dep-ent;

endloop]

Now the one define form generates two functions which map between entities of the
entity classes. Best of all, the user need not be concerned with how to write those
functions.

The general syntax for functionclass definitions is:

ISyCL Technical Report 84

Final Report Metaclasses

function-clas symbol (<symbol-list>) (<symbol-list>): <symbol-list>
<parm-list>
[<doc-string>]
[<class-attr-block>
<block>]

ISyCL Technical Report 85

A

ISyCL Grammar

The following is an attempt to list the grammar for ISyCL. This grammar contains
known errors.

A.1 Tokens

letter A..ZI a..z
digit A0..9
hexdigit O ..91 A..F I a..f
char letter l digit I# I $ I ? I
char-spec M #\ [char I hexdigit hexdigit]
whitespace \space I \tab I \newline

identifier [%I letter character
string "[digit I character I whitespace]
int digit+
posint +digit+
negint - digit+
intnum • int I posint I negint
realnum intnum. int [(E / e) intnum]

A.2 Productions

This section is the BNF for ISyCL. Certain conventions are used in presenting the
BNF. Words in italics refer to tokens defined in the section above. Bold symbols
represent those tokens that must appear in the statement for the statement to be valid.
There is a bit of semantics thrown in to the BNF. Type,finction, subrange, class,
objectclass, function-class, and metaclass refer to identifiers which are either
built-in or have been defined using meta-layer constructs.

LSyCL Technical Report 86

Final Report
!SyCL Grammar

A.2.1 Lists of Tokens

<int-list> int

<identifier- list> identifier

I identifier, <identifier-list>

A.2.2 Definitions

<function-call> <accessor> (<expression-list>)

<accessor-list> <accessor>
I <accessor-> ,<accessor-list->

<accessor> [-]identifier
I identifier (I <identifier-list>]

<constant-list> <constant>
I <constant> , <constant-list>

<constant> <char-spec>
I <num-constant>
I <boolean-constant>
I string

<doc-string> - string

<boolean-constant> true
I false

<num-constant> intnum
I realnum

A.2.3 Types and Classes

<class-list> <class>
I <class> , <class-list>

<class> - <type>
I class
I metaclass : class

model:: metaclass :class

<type-list> - <type>
I <type> , <type-list>

<type> <base-type>
I <function-call>

!SYCL Technical Report
87

Final Report ISyCL Grammnar

<base-type> array
Iboolean

I character
I class
I fixed
I float
I function
I integer
I subrange
I symbol
I type

A.2.4 Relational Operators

<relation-op> <rel-op>
I<equiv-op>

I <rnemb>

<equiv-op> <> =

<memb> -- in Iof Iof -type

<rel-op><I>I<=I>

A.2.5 Boolean Expressions

<condition> (<boolean-expr>)

<boolean-expr> <boolean-conj> <bool-expr>

<bool-expr> [!IitT <bool-expr>
E

<boolean-conj> :- <boolean-disj> <bool-conj>

<bool-conj> [f]orlIxor} <bool-conj>

<boolean-disj> - <boolean-inv> <bool-disj>

<bool-disj> [!]and <bool-disj>

<boolean-inv> [!]not <boolean-primary>
I <boolean-primary>

<qualified-expr> := <for-all> I <for-some>

<for-all> for-all <identifier-list> <qualifier>
[<"-here -clause>] [<on-failure>] <condition>

<for-somne> = for-some <identifier- list> <qualifier>
t<where-clause>] [<on-failure>] <condition>

<where-clause> ::z where <condition>

!SyCL Technical Report 88

Final Report ISyCL Grammar

<on-failure> : on-failure <block>

<qualifier> :: <in-clause>
I of <class>

<in-clause> in (<set-access>

I <seq-access>

<set-access> '{ <expression-list> }
I <set-builder>
I <common-access>

<set-builder> { <accessor-list>
<qualifier> I <boolean-expression> }

<seq-access> . <bag-access>
I <list-access>
I <ordered- set-access>
I <string-access>

<bag-access> <common-access>

<list-access> '(<expression-list>)
I <common-access>

<ordered-set-access> <common-access>

<string-access> : string
I <accessor>
I <function-call>

<common-access> <select>
I <accessor>
I <function-call>

<logical-if> <condition> -> <boolean-expr>

<boolean-primary> <predicate>
I [~1(<boolean-expr>)

<predicate> : <boolean-statement>
I <expression> <prd-subexpr>
I <boolean-constant>
I <function-call>
I <accessor>

<pred-subexpr> <relation-op> <expression>
I <rel-op> <expression> <rel-op> <expression>

ISyCL Technical Report 89

Final Report ISyCL Grammar

A.2.6 Expressions

<expression> <term> <expr>

<expr> : [!] (+1 -} <expr>

<term> <factor> <term2>

<term2> [!] {*I mod} <term2>

<factor> <primary> !]A intnum I realnum}
I <primary>

<primary> <constant>
I <accessor>
I <function-call>
I <set-builder>
I <select>
I <explicit-list>
I [-](<expression>)

<expression-list> <expression> , <expression-list>
I <expression>

A.2.7 Declarations

<type-decl> : <accessor-list> : <clacs>
[, initvalue <expression>]

<parm-list> (<parm-decl-list>)
i 0

<parm-decl-list> <parm-decl>
I <parm-decl> ; <parm-decl-list>

<parm-decl> = <class> <accessor-list>
I <parm-keyword>

<parm-keyword> ::= "e (identifier I 0I {} }
<accessor-list>

I &rest class identifier

A.2.8 Statements

<statement> <assignment>
I <if>
I <case>
I <choose>
I <loop>
I <with>

ISyCL Technical Report 90

Final Report ISyCL Grammar

<statement-list> <statement> <statement-list>
I <statement>

<assignment> <lhs> :=<rhs>;

<if> if <condition> <action>
[else <action>]

<case> case <expression> [testing_ with <relation-op>]
<expr-action-list>

end-case
<expr-action> <expression> :<action>
<expr-action-list> <expr-action>

I <expr-action> <expr-action-list>

<choose> choose [first <boolean-constant>
I until <boolean-constant>
I all <boolean-constant>]

<cond-action- list>
end-choose

<cond-action> <condition> : <action>

<cond-action- list> <cond-action>
I <cond-action> <cond-action-list>

<select> select [all I distinctl
<selection>
<table-expr>

end-select

<with> with <deci-list>
<block>

<deci> <type-deci>
I <exception>
I <trigger>

<deci-list> <deci>
I <deci> <deci-list>

<exception> exception identifier <parm-list> continue I end
<action>

<insert> insert into class (<identifier-list>)
values <list-access-list>;

<list-access-list> <list-access>
I <list-access> , <list-access-list>

<Cursor> - declare identifier cursor-for <select>;

<Ihs> <accessor>
I <accessor-list>

IS,.CL Technical Report 91

Final Report ISyCL Grammar

<rhs> <expression>
I <boolean-expression>

<selection> <expression-list> I *

<table-expr> <from-clause> [<where-clause>
<order-by-clause>
<having-clause>]

<from-clause> from <table-ref-list>

<order-by-clause> orderby (asc I desc) [<identifier>]

<having-clause> having <predicate>

<table-ref-list> <table-ref>
I <table-ref> , <table-ref-list>

<table-ref> <table> [<range-variable>]

<loop> : loop (<iteration-list>)
(<control-list>)
(<main-list>)
{ <control-list>)

endloop

<iteration> <for-clause>
I integer times

<iteration-list> <iteration> <iteration-list>
I <iteration>
I E

<control> : <termination>
I <initial-final>

<control-list> <control> <control-list>
I <control>

E

<main> :: <accumulation>
I <statement>
I <loop-finish>

<main-list> <main> <main-list>
I <main>
I rr

<termination> <until>
I <while>

<initial-final> <initially>
I <finally>

ISyCL Technical Report 92

Final Report ISvCL Grammnar

<accumulation> <collect>
I <append>
I <count>
I <sum>
I <maximize>
I <minimize>

<initially> initially <action>

<finally> finally <action>

<collect> - collect (<internal> I <into-var>)

<append> append (<internal> I <into-var>)

<count> count [<internal> I <into-var>)

<SUM> - sum (<internal> I <into-var>)

<maximize> maximize (<Internal> I <into-var>)

<minimize> minimize (<internal> I <into-var>)

<internal> <type-spec> <expr>
I<var>

<into-var> - <expr> into <var>

<for-clause> - for <for-subclause>
[and <for-subclause>]

<for-subclause> <for- arithmetic>
I <for-in-list>
I <for-on-list>
I <for-equals-then>
I <for-across>

<for- arithmetic> <var> [(from I downfrom I upfrom)
<expr>] [(to I downto I u pto I below
I above I <expr>I [by <expr>]

<for-in-list> <var> in <expr> [by srep-ftsnc]

<for-on-list> <var> on <expr> [by step-flaw]

<for-equals-then> <var> :=<expr> [then step -funcd

<for-across> <var> across array

A.2.9 Units

<action> <statemnent>
I <block>

<biock[<statement-list>]

<func-block> <decl-list> <block>

!SyCL Technical Report 93

Final Report ISyCL Grammar

<function> (function I function-class) identifier
{<func-assign> I <func-def>1

<func-assign> <function-comp>;

<func-def> <parm-list> [: <identifier- list>]
[<doc-string>]
[(<attr-assign-list>)]
<func-block>)

<attr-assign-list> <assignment>
I <assignment> <attr-assignment-list>

<macro> macro identifier <identifier-list>
[<doc-string>]
<block>

<define> define identifier (<expression-list>)

<trigger> - <before-after>
I <during>

<before-after> (before Iafter }identifier of [<attrib-of>] class
I identifier <parm-list> [<doc-string>] <action>

<during> during identifier of [<attrib-of>] class identifier
<parmn-list> [<doc-string>]
<decl-list> <block>

<attrib-of> attrib <identifier-list> of

<class-def> (class I object-class) identifier (<identifier- list>)
[<doc-string>il
<CAB-list>
[(<key-list>)

<class- attr-block> [[<required-attr- list>]
<attr-decl-list>]

<CAB-list> <class -attr- block> <CAB-list>
I <class -attr- block>
I E

<required-attr-list> (<req-attr- decl- list>)

<attr-decl> identifier : <type> [, <attr-option- list>]

<attr-decl- list> = <attr-decl> <attr-decl-list>
<attr-decl>

I E

<req-attr-decl-list> = <attr-decl> <attr-decl-list>
<attr-decl>

<attr-option-list> = <attr-option>
I <attr-option> , <attr-option- list>

!SyCL Technical Report 94

Final Report ISyCL Grammrw

<attr-option> inverse identifier
I read -only
I non null
I init-value <expression>

<key-list> <key>
I <key> <key-list>

<key> (<identifier-list>)

<type-def> type ident~fier: <type>

<insert> insert [identifier] into <class-access> (<accessor-list>)
values (<expression-list>)

<delete> delete <select-from> [<where-clause>]

A.2.10 Met., Units

<subrange> subrange <accessor> (<type> <accessorz>)
[<doc-string>)
<condition>

<function-class> function -class identifier (<identifier-list>)
(<iden tifier- list>) <identifier-list>
<parm-list>
C<doc-string>l
[<class- attr-block>
<block>]

<object-class> object-Class identifier (<identifier-list>)
[<obj-class-keywords>] [<doc- string>]
<attrbute-block>

<obj-class-keywords> <obj-class-keyword>
I <obj-class-keyword>, <obj-class-keywords>

<obj-class-keyword> persistent
I no inheritance
I no _key

<attribute-block> [<attr-list>]

<attr-list> <class -attr-decl-list> <attr-decl-list>

<class-attr-deci> identifier : class -attributes (identifier)

<class- attr-decl-list> <class -attr-decl> <class- attr-decl-list>
I<class-attr-decl>

ISyCL Technical Report 9

B

Revision Notes

Beta Draft 1.0 (October 23, 1989)

Initial publicly distributed draft. Beta Draft 1.0 was distributed at the IDEF Users'
Group Meeting on October 24, 1989. Purpose of the distribution was to generate
comments from the community.

Beta Draft 1.1 (November 2, 1989)

IISyCL levels are now called layers. The HSyCL layers are:

"* Area Expert Layer,
"* Analyst Layer,
"* Information Systems Design (Systems) Layer,
"* Method Formalization (Meta) Layer.

The "IISyCL Grammar" and "IDEFI Metatypes" appendices have been removed.
The grammar will return to the document when it is proven to be complete and
correct. The IDEF1 metatypes will resurface as part of a new technical report.

Various wording problems have been corrected.

Beta Draft 1.2 (December 22, 1989)

Many changes and additions have been made, but the changes are minor enough not
to warrant a major version change.

The bag type has been added to round-out the "set" types. See Sections 2.3.2 and
6.2.2.

ISyCL Technical Report 96

Final Report Revision Notes

Explicit lists can now be =reated using the list function instead of just parentheses.
Just parentheses caused confusion between "grouping" and "list construction" (see
Section 6.2.6.1).

The quantifier and loop syntaxes have been extended to facilitate sets of pairs. For
example,

loop for (e,d) in get t...of.emp-dept.pairs0
if (dept(e) = d)

count e into total;
end-loop

determines the number of pairs in the set generated by get emp deptpairs in which
the employee works in the department.

The type type has been removed. Type was originally the type of all types. It is
necessary to distinguish between metatypes. For instance, array is of type ob-
ject-type, whereas Employee might be of type entity class. They are not both of type
type. User-defined metatypes will nearly always be based on object type orfunc-
tion type.

Numerous wording changes and error corrections have been made.

Beta Draft 2.0 (March 6, 1990)

As denoted by the jump in version number to 2.0, many critical changes have been
made to ISyCL and this report. First, the name is now the Information Systems
Constraint Language (ISyCL) instead of Integrated Information Systems Constraint
Language. There is no reason why ISyCL could not be used for any type of
information system.

The most important change to the language is the addition of classes. In the
beginning, ISyCL had both classes and types. Prior to release of the first version of
this report, the distinction between class and type was removed in order to bring
more uniformity to the language. Upon review, it has been decided that the distinc-
tion is necessary, and thus classes are back.

Why is there a need for both classes and types? Types describe data structures which
are understood by the ISyCL processor. Classes describe higher level types which
are defined by the user. Instances of types can be stored as attribute values of entity
classes (database objects), whereas object classes cannot. There are classes of the
same name associated with each type, but new classes cannot inherit from these
built-in classes. This inability to inherit from types is one of the primary reasons for
drawing the distinction between classes and types.

!SyCL Technical Report 97

Final Report Revision Notes

Another reason for the split is the usage of the terms "type" and "class" in other
languages. ISyCL should now be more intuitive to people who know the Common
LISP Object System or C++. Also, IDEF4 (object-oriented design method) and
ISyCL now fit together better.

The type type is back. All built-in types are of type type.

The introduction has been elaborated to more fully describe the purpose for devel-
oping ISyCL.

ISyCL symbols are now only case-sensitive if there is an "%" in front of them. This
allows functions with case-sensitive names from other languages to be called
directly, while relieving the user from the burden of remembering the case of
symbols. All symbols not preceded by a "%" are converted to uppercase by the
ISyCL processor.

A more comprehensive syntax for explicit list and set structures has been added.
Structures which have order (lists and ordered sets) are declared using parentheses,
whereas unordered groupings (sets and bags) are declared using braces. Groupings
which allow duplicates are preceded by a quote ('). Groupings which do not allow
duplicates are preceded by a backquote ('). Also, members of explicit groupings are
not evaluated unless preceeded by a tilde (-). For example:

'(1.a,-0c

would generate a bag containing the integer "1," the symbol a, and the value of c.

List of is now the only built-in function for generating subtypes of list. See
Section 6.2.6.1 for more details.

Membership is now specified by in, of, or of type. In shows membership in a
sequence or set, of shows membership in a class, and of type shows membership in
a type. Remember that all types are also classes.

Minor syntactic changes were made to case and choose to get rid of "=>" which
some people confused with ">=."

Finally, the grammar list has returned. If there are any discrepencies between the
grammer in the text and the grammar in the appendix, the appendix should be
considered correct

Beta Draft 2.1 (June 30, 1990)

This report is now called the "ISyCL Technical Report." Wording and oversight
changes have been made. The grammar list is still incomplete.

ISyCL Technical Report 98

Final Report Revision Notes

Final Report (March 8, 1991)

This is the final report on ISyCL under the Integrated Information Systems Evolution
Environment (USEE) project. This version is very different from the others in both
form and content. A great deal of effort has gone into trying to ensure the contents
of this report accurately reflect the current state of the language.

The first section of the report provides an overview of the language which should
be sufficient for anyone who just wants to know what ISyCL is. The language
reference section provides a more detailed, yet readable, description of ISyCL.

JSyCL Technical Report 99

C

References

ANSI/X3/SPARC, Study Group on Data Base Management Systems, Interim Re-
port, 75-02-08, 1975.

D. Appleton Company, "IISS - Integrated Information Support System", ICAM
Project Priority 6201, Subcontract #013-078846, USAF Prime Contract
#F33615-80-C-5155, December 31, 1985.

ISO, Concepts and Terminology for the Conceptual Schema and Information
Base, edited by J. J. van Griethuysen, March 15, 1982.

Mayer, R. J., "IDEF1 - Information Modeling; Theory and Practice", Department
of Industrial Engineering, Texas A&M University, 1987.

Mayer, R. J. et al., "Analysis of Methods," Knowledge Based Systems Labora-
tory Technical Report (KBSL-89-1001), 1989.

Menzel, C. P. and R. J. Mayer, "Theoretical Foundations for Information Repre-
sentation and Constraint Specification," Knowledge Based Systems Labora-
tory Technical Report (KBSL-89-1005), 1989.

PDES Form Feature Information Model, Version 4 (Draft), August 17, 1988.

Softech, "Integrated Computer-Aided Manufacturing (ICAM) Function Model-
ing Manual (IDEFO)," Technical Report UM 110231100, June 1981.

Wells, M. S. and R. J. Mayer, "IDSE User's Manual - Version 1," Knowledge
Based Systems Laboratory Technical Report, 1988.

Zachman, J. A., "A Framework for Information Systems Architecture," IBM Re-
port No. G320-2785, IBM Los Angeles Scientific Center, 1986.

ISvCL Technical Report 100
•U S (invsrnmenn Prnting Office 1992 648 069 60227

