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Chapter 1

I
1.1 Introduction

I An efficient closed form asymptotic representation for a grounded double-layered anisotropic
uniaxial geometry is developed. The large parameter of this asymptotic development is di-
rectly proportional to the lateral separation between the source and observation point.
However the asymptotic solution remains accurate even for very small (a few tenths of
a wavelength) lateral separation of the source and field points. The asymptotic closed
form dyadic Green's function has been cast in such a form that the physical behavior of
the electromagnetic fields due to anisotropy of the medium reveals itself through a simple
mathematical parameters. Thus, the physical understanding of the interaction of the spa-
tially confined source with an anisotropic (uniaxial) double-layered grounded slab is greatly

enhanced through the newly developed asymptotic dosed form representation of the dyadic
Green's function.

SAlso, this efficient representation is very useful in the moment method (MM) solution
of the current excited on the microstrip antennas and arrays in a grounded double-layered
uniaxial geometry, as well as the volumetric current excited within a dielectric scatterer
buried in a grounded double layered anisotropic uniaxial slab. The MM analysis, especially
for microstrip arrays and guided wave structures, requires a very large number of compu-
tations where the lateral distance between the source and the field points in the dyadic
Green's function can range from extremely small to very large values [1, 2]. The newly de-
veloped asymptotic Green's function can drastically improve the computational speed and
the efficiency of the MM solution, as compared to the use of the conventional Sommerfeld
form of the Green's function. For small lateral separation (less than a few tenths of the

wavelength) between the source and observation points, one can switch to either modified
Sommerfeld, or to the radially propagating integral representation of the dyadic Green's
function which also developed during the project. For very small lateral separations, less

than a quarter to half a free space wavelength, the modified Sommerfeld representation is
more efficient; for the relhtively small to moderately large the radially propagating integral
representation of the dyadic Green's is should be used.

Hence, a systematic numerical algorithm is developed which can efficiently be used to
compute the dyadic Green's function for a grounded anisotropic uniaxial double-layered
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slab for the entire range of the separation of source and observation points.

The format of the report is as follows: Chapter 2 deals with the formulation of the
electromagnetic dyadic Green's function in anisotropic uniaxial multi-layered media. A
general formulation of the dyadic Green's function, and the theory of z-propagating modes
in anisotropic uniaxial media is discussed in this chapter. The dyadic Green's function
consists of the integral over the plane-wave spectrum of a continuum of vector-wave function,
in which the vector-waves are guided (propagated) in the preferred i-coordinate direction.
Furthermore a related solution such as, the electromagnetic dyadic Green's function for
an anisotropic uniaxial multi-layered medium due to periodic electric as well as magnetic
point currents has also been developed. This solution is important in many applications
involving anisotropic uniaxial stratified media, such as the design of high performance large
phased array in mulit-layered envireoment, the analysis of the frequency selective surfaces
(FSS), multi-layered guided structures, and grating. In Chapter 3 a general formulation
presented in Chapter 2 will be specialized to a canonical geometry of a grounded anisotropic
uniaxial double-layered slab where the electric point current located within the slab. A
Sommerfeld and subsequently a radial propagation integral representation of the dyadic
Green's function of this geometry will then be presented. Also in this chapter, two distinct
efficient methods of the numerical integrations will be presented. The first method is based
on removal of the singularity of the integrand of the Sommerfeld (z-propagating) integral
representation of the dyadic Green's function. The second method results from the radially
propagating integral representation of the Green's dyadic. The uniform asymptotic closed
form approximation of the dyadic Green's function for anisotropic uniaxial double-layered
grounded slab is the topic of Chapter 4. This asymptotic Green's function is developed
employing the formal radial propagation integral representation of the Green's function
presented in Chapter 3. Chapter 5 is devoted to numerical results based on the accuracy
and efficiency of our newly developed asymptotic dyadic Green's function. The effect of
the anisotropy of the material on the electromagnetic field and the physical interpretation
of our result will also be presented in this chapter. The conclusion and the direction of
our future research will be presented in Chapter 6. The analytical expressions for the
vector-wave modes, for a general anisotropic uniaxial medium, is derived in Appendix A.
In Appendix B the reciprocity and orthogonality relations for the vector-wave modes are
presented. Some essential functions as well as residues of the surface waves which are being
used to construct the radial propagation integral representation as well as the uniform
asymptotic closed form dyadic Green's function are presented in Appendix C. Appendix D
devoted to the asymptotic behavior of the integrands of the Green's functions which are
employed in singularity removal technique.
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Chapter 2

Formulation

2.1 Introduction

In this chapter a complete, plane-wave spectral, vector-wave function expansion of the elec-
tromagnetic, electric, and magnetic, dyadic Green's function for electric, as well as magnetic,
point currents for a planar, anisotropic uniaxial multi-layered medium is presented. It is
given in terms of z-propagating, solenoidal vector-wave functions, where i is normal to the
interfaces, and it is developed via a utilization of the Lorentz reciprocity theorem. For the
completeness the electromagnetic dyadic Green's function for periodic electric as well as
magnetic point current sources are also presented.

The geometry of the problem is shown in Figure 2.1, where the electrical parame-
ters, (J•,,n), in the nth layer are assumed to be homogeneous and uniaxial (e = EtIt +
cziz ; = = ptlt + ji•i). It is shown that the electromagnetic field at a given point within
the multi-layered region consists of four distinct waves (two for each vector-wave type)
caused by the presence of the multi-layered medium. Moreover, the presence of bound-
aries in anisotropic media cause mode-coupling at the planar interfaces; these modes are,
in general, continuously coupled within the stratified region. However, due to the reflection
symmetry of the anisotropic uniaxial structure considered here the modes are decoupled,
and hence; the Green's dyadic within each of the layers can be expressed in terms of four
uncoupled distinct waves (two for each mode), which resembles the dyadic Green's function
for multi-layered isotropic medium.

A systematic formulation, presented here, is useful in many problems dealing with new
types of anisotropic materials, such as advanced composites, ceramics, and honeycomb
structures, which are finding increasingly important applications in high-frequency elec-
tromagnetics and optics. These applications range from microwave and millimeter-wave
integrated circuits and optical devices, to antenna radomes and radar absorber materi-
als. The importance of this analysis, besides the physical significance of understanding the
interaction of electromagnetic sources with complex media, is due to a serious need for
efficient design procedures for high performance monolithic integrated circuits that operate
in the high frequency regime (millimeter to optical wavelength), as well as to a crucial
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need for an analytical model for the non-destructive evaluation (NDE) of a variety of the
increasingly-used advanced composite materials.

Due to the widespread application of complex materials, there has been considerable
research on the interaction of electromagnetic waves with multi-layered anisotropic media.
We restrict ourselves to those work which directly related to anisotropic uniaxial media.
Wait [3] and Kong [4, 5] investigated the radiation of a dipole source over a uniaxial strat-
ified media. Interaction of the electromagnetic source with anisotropic uniaxial media has
also been extensively studied by Felsen and Marcuvitz [6]. All and Mahmoud [7] derived
a Green's dyadic for a uniaxial stratified medium, using dyadic Green's function theory
in conjunction with the primary and secondary dyadic Green's function. Tang [8], and
Kwon and Wang [9] have investigated the problem of various types of the point sources in
uniaxial stratified media. They derived the expressions for the electric and magnetic field
components by satisfying the boundary conditions at each interface and a proper condition
at the source point. Krowne [10] has given Green's function solutions for uniaxial and bi-
axial, layered, planar structures excited by a surface electric current. His results are given
in terms of three different longitudinal-to-an-axis formulations of the differential coupled
field component sets. The radiation of an electric dipole in the presence of the anisotropic
uniaxial grounded layered media has been investigated by Tsalamengas and Uzunoglu [11].
An excellent review of wave propagation in general anisotropic media has recently been
given by Chew [12].

In the present work the complete, spectral, vector-wave expansion for the electromag-
netic (electric and magnetic) dyadic Green's function for electric, as well as magnetic, point
current dipole sources for planar, anisotropic uniaxial multi-layered media, using solenoidal
vector-wave functions [14] is derived. The orthogonality of the modes over a plane surface
[6] transverse to the direction of the propagation, i, together with a reciprocity relation are
employed to construct the Green's dyadics. Moreover, the method that is employed here
utilizes only solenoidal vector-wave functions [13]; hence, the dyadic delta function term at
the source point is included explicitly as a correction to the general solenoidal vector-wave
expansion, which is valid outside the source point [13, 15].

The format of the chapter is as follows: Section 2.2 deals with the formulation of the
electromagnetic dyadic Green's function. A general formulation of the dyadic Green's func-
tion in anisotropic media, and the theory of z-propagating modes in anisotropic media
will be discussed in parts 2.2-A and 2.2-B respectively. In Section 2.3 the electromag-
netic dyadic Green's function, X(r, r'), for electric and magnetic point current sources in
unbounded anisotropic uniaxial media is presented. The Green's function consists of an
integral over the plane-wave spectrum of a continuum of eigenvectors, in which the eigen-
vectors are guided (propagated) in the preferred i-coordinate direction. This development
uses the Lorentz reciprocity relation. The dyadic Green's function for anisotropic uniaxial
multi-layered media, E.m,n(r, r'), will be derived in section 2.4, using again the reciprocity
relation in the multi-layered media. In Section 2.5 the Green's dyadic developed in the
previous section will be used to derived the dyadic Green's function for the periodic electric
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as well as magnetic point currents in anisotropic uniaxial multi-layered media.

2.2-A General dyadic Green's function formulation for anisotropic meiia

Maxwell's equations in a source-excited, unbounded, anisotropic, medium with (e"t) un-
derstood and suppressed, can be written in the operator form

C,(r,r') = -J , (2.1)

where the dyadic operators are defined as

S- V x I jWP0/A;A H ;"-- JM '

and e, js are respectively the relative permittivity and permeability tensors (with respect
to free space) of the medium, I is a unit dyad, and 5 represents the impressed electric
as well as magnetic current sources. The electromagnetic field column-vector X can be
represented, using the electromagnetic dyadic Green's function theory, as

p

Z(r) =] dr' 3(r, r') .-. (r') , (2.3)

where the electromagnetic dyadic Green's function, H(r, r'), is 2 x 2 vector matrix of electric
and magnetic dyadic Green's functions, and v contains the source region. In this general
formulation the electric as well as magnetic dyadic Green's functions due to the impressed
electric, e, and magnetic, m, current dipole sources are both considered. If J7 is an arbi-
trarily oriented point column current dipole source,

116•(r -r') ; "P= a pe't + p"'.)mtP~ (2.4)

(PM,t + Pm,z

where t, z stand for transverse and longitudinal directions respectively, then the electro-
magnetic field may be viewed as a distribution; namely,

E(r) = Z(r, r') . , (2.5)

where in vector-matrix notation, the above equation can be identified as,

e (r,r') 0Cm m (r,r') Pm
E~) (Qe(r, r') )ern- r ()PM (2.6)

The first and second superscripts denote the nature of the Green's dyadics, (i.e., electric or
magnetic), and the type of the current sources, respectively.
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Having established the relation between the electromagnetic field and its associated
Green's dyadic, one may construct such a dyadic Green's function to find the electro-
magnetic field due to arbitrary electric and magnetic current distributions in unbounded
anisotropic medium. One can utilize the guided wave mode theory [6] to construct such
a dyadic Green's function from the spectrum of the guidcd (propagated) wave in an arbi-
trary z-direction. In the follcwing the property of the guided wave modes for anisotropic
media will be explain"ed, and then the theory will be applied to find the Green's dyadic for
unbounded, as well as multi-layered, uniaxial anisotropic media.

2.2-B The z-propagating mode description in anisotropic media

In order to effect the z-propagation representation of the eigenmodes, one can decompose
the field operator into transversc, Vt, and longitudinal, '9, components, (V = Vt + 8-),
which yields,

S=j(K - jWT-) , (2.7)

where

K~w o Wvx ) -( ~ ~~ (2.8)

Also the dyadic fi, and J=A, may be represented for a general anisotropic material as

,E = Ett + Zizt + ItzZ" + if- ; JA = Att + Z/-Azt + Aftzi + - ,p (2.9)

where for (/3 = c or t):

At ); tZ = i3zz + Oz ; Iazt = *,3zr + S'/,y , (2.10)

After decomposing the field components into transverse and longitudinal (i.e., E = Et +
z E, ; H = +t + i H,), and taking a dot product of (2.1) with ., in view of (2.4), (2.7) and
(2.9), one will have

E, 1 1 p•,
E. -= .t" Et + Vt • (i x Ht) ez(r- r')

C, -jwfoez jWfo-o

(2.11)
H, = -1lt -Ht+ - 1 pt(Et × ) PZ b(r-r')

WO -jwAoZ JWIPOtZ

Also, upon eliminating the longitudinal fields from (2.1), one can find the equation for the
transverse field vectors [6]

10



W-O ett - + iAVtl/ .Vtx .Et

--j [• x Vt -. ix V Ht + 4 49ix Ht
Ci [[z1v~i Z] O

_p~tb(r - r') 1
r + pez(r - r') - 2 x Vt pmz,(r - r')

jeo WJIOAZ
(2.12)

I.• tz.L1t + 1 xV 1-.vt Ht
liz 42 eOpOe z

+i x J -[z x V ' x EtYZ pbr -r'1OT

SPmt+(r - r') -t- p.Pmz(r - r') + -1 i x Vt pezb(r - r').

If the anisotropy of the medium is transverse to i; ýtz, Ezt, [Atz, and Ajt identically vanish

and (2.11) and (2.12) will be simplified to:

Ez - 1 V.(ixHt)- PL -)SjWEOfz jWEO•"z
(2.13)

H = Vt.(Etx )- Pm,z 6(r-r')

W6 •o•O [ X'Ett + W2 O V~zt (_i.tx)Et -j!_Ht=

Sx p1tX E(r - r') + 1 V tp ez6(r -r') ,

Sj WPO/iz

S (2.14)

P xVt(-. Vtx H,-j .-Et
Xlo * + L02 C-OoIix p1

w x Pp ..(r - r') 1

_ _ _ _ _ _ _ _ - IO C - V t p m z 6b (r - r ')

To obtain the mode function characteristics of the guided waves propagating along z

for the (transversely) unbounded medium, one will seek the source-free solutions, (P1 = 0),

I of (2.1) with the generic form of

JIc,(r,k,) = II,(p)e-'° ; m,,(p) - ioe-ktP , (2.15)1~2ir



where tP,(p) and K,, are the solenoidal eigenvectors and eigenvalues of the operator (2.7),
respectively, and kt is the transverse vector wavenumber (i.e. kt = VF77FtT).

For the medium with a reflection-symmetric property (with respect to a plane transverse
to i) [6], (i.e., the anisotropy confined in the transverse plane), if IPr>,(p) is the eigenvector
corresponding to i,, then IP,<(p) = -•R.! >(p) is the eigenvector for -Ke, where the

I reflection operator R is defined as,

"R =(- 0 -i ) (2.16)

where It is the transverse unit dyad. This can be seen from (2.7) and (2.16) (in view of

(2.13) and (2.14)), where R" = KIC" and -XW = -WIr. Hence, the eigenvectors ý',<(p)
corresponding to ±r, can be expressed as,

Tr_<(p) = -P,<ejkt.p . ( < ZOe. ± e,=, (2.17)
2r . ;Ht,,• + Hz,a ±ha + hz., ) (

where e,,, h,, and e.,, ,h,,, are normalized mode-vectors transverse and parallel to z, re-
spectively, for the eigeuvalues of ±r.., and ZQ is the mode impedance [6, 14]. Thus, the
eigenvectors V2>(p) and iP1a<(p) for (a = 1, 2) can be written in terms of identical mode-
vectors which do not distinguish between the wavenumbers K" and -n,.

The analytical expression for the wavenumber K,,,, and the eigenvector '1,(p) for (a =

1, 2), for a given transverse vector wavenumber kt and the angular frequency of w, are
directly related to the relative permittivity and permeability tensors (i, j). Explicit ex-
pressions for r,,, e., h., eZ,,, h ,,, and Z,, for a general uniaxial anisotropic medium, whereI( = EtIt + E- U ; = ptIt + ptzz) are given by, (see also Appendix A for the derivations)

= k., x + kveI ---- kt

Sh i = • x e l = ,ý : - k

(2.18)
S~kt h,=0

=z~ WEO•Oz h, 1__

Kl = ko2ptet E-tk2 ; Z1 - K , (2.19)SC' t WC- •0ft

e2 = - kt x

12



h2 = i x e 2 = kt

(2.20)

I e,2 = 0 ; hx,2  ,t

K2  = 1 _ K2  (2.21)

where k0 = W2 eOpo, and kt = k + k.2. Note that a = 1 and 2 are respectively correspond

to transverse magnetic TM (or E-mode), and transverse electric TE (or H-mode) respec-
tively. In the following section, the dyadic electromagnetic Green's function for a general
uni-axial anisotropic unbounded medium will be formulated, and subsequently the dyadic
Green's function for a uniaxial anisotropic multi-layered medium will be derived.

2.3 Dyadic Green's function for unbounded, uniaxial anisotropic media

In this section, the theory of the z-propagating (guided) eigenmode for a general uniaxial
anisotropic medium, which has been established in the previous section, will be applied
to obtain an explicit expression for the electromagnetic dyadic Green function, X(r, r'),
which is associated with the electric and magnetic point sources, TP6(r - r'), in unbounded
uniaxial anisotropic media. In the the next section the procedure developed here will be
extended to obtain the dyadic Green's function for the uniaxial anisotropic multilayered
medium.

The geometry of the problem dealing with full space uniaxial anisotropic medium with
the relative constitutive parameters of (Z = etIt + ezf ; p = PtIt + p,,H) excited by
'Pb(r - r') is shown in Figure 2.2. In the following formulation, the notation < means that
the entire space consists of two region, z > z' and z < z'; and as shown in Figure 2.2, z = z'
is the plane S (normal to the i-axis) containing source, "P6(r - r'). The z-propagating
representation of the dyadic electromagnetic Green's function for the full space anisotropic
medium in terms of the solenoidal vector-wave functions can be expressed as [6, 14],

I > 10

.& 0
S(r, r') A dt <(kt, r, r') + i2i ; . = -.JwfOcz b (r - r) (2.22)

0

where the electromagnetic dyadic vector-wave function . (kt, r, r') is defined as

(kt, r, <(kt, r) (kt, r') , (2.23)
C1=1
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and once again, the source-free solenoidal vector-wave function H"' (kt, r) can be expressed
as

> > >1
H`<(kt, r) = e- (2.24)

Outside the source region, z<z', the Green's dyadic can be represented in terms of the

spectral integral of the source-free solenoidal vector-wave functions, eigenvectors, H< as of
(2.23). In order to make the representation complete in the source region at r = r', the
correction term, 0.., can simply be added to the spectral integral rf the solenoidal vector-
wave representation of the electromagnetic dyadic Green's function, which is, of course,
valid outside the source region, [13]. The variable kt (i.e.,(ik. + SkV); dkt = dk= dk•)
are the continuous transverse eigenvalues which span the entire spectral domain (-oo <
k, < oo; -oo < k, < 0o), and the summation is over the discrete eigenmodes (a = 1 and

2) propagating in the z direction. The unknown vector spectral amplitude Aý (kt, r') is
defined as a row vector,

= a rn am (2.25)

where the superscript e and m stand for electric and magnetic sources, respectively, and will
be found from the procedure using the reciprocity relation in uniaxial anisotropic media,

(see Appendix B), to the fields, ±< = Z,< • T, of (2.23) and the source free solenoidal

vector-wave function of H>7(-kt, r) in the region V, bounded by planar surface S> and S<,
which are slightly above and below the surface S of the Figure 2.2.1 respectively, [22, 13,
pages 200-206I1. Hence,

,,t ds W - d>( H (-ktr), Wz<

J( ,(H. rkt r))) (2.26)

- - ( U, /-(>(-kt,r')

where U (Ho) is a diagonal vector matrix comprised of the elements of the vector-wave

mode, H,, (see (2.15) and (2.17); U(HG,) and W are defined as,

H) = ( E =~ = ( - 0x - xi)H, , (2.27)

'The reciprocity theorem is applied to the volume V here with the radiation condition implied as p - oo.
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and the operator notation of (H, , W HO) denotes the usual scalar product of the two
column vectors:

Incorporating (2.23) into (2.26) and using the orthogonality relations developed in Appendix
B, (see (B.8) and (B.9)) yields,

(e . p. a'? pm = 1 . (2.29),<,,(kt, r'). -P = a•P a•P 2r -2 Za

Therefore, from (2.29), (2.23), (2.17) and (2.22), the z-propagating plane-wave spectrum
(PWS) integral representation for the full-space anisotropic uniaxial dyadic electromagnetic
Green's function can be identified as,

2 d ka +>< ,, ( 3 0
= r') =-z e-jkt-(P-P') e-jK(z-z( ) + iiO , (2.30)

where, the vector-wave of if< is identified as,

> ]EtT :F ]Ee 0 T T~,
-< E<•:FE, Zcreo :F ez,cr

,Pa = ( , H= ) > (b 0 + hz,0  (2.31)' :F H t, cf + H z, ct :)h = h , I

and 1 is a dyadic unit column vector-wave, (i.e., 1 • E = E), and T stands for transpose.
The PWS representation of the Green 's dyadic for uniaxial anisotropic media resembles
in many ways its counterpart of the dyadic Green's function for isotropic media [13]. The
Green's dyadic X.(r, r') can be decomposed into E- and H- type modes with the different
propagation constants (eigenvalues) of r,(a = 1, 2); moreover, the eigenmodes satisfy the
reflection symmetry with respect to a plane transverse to the z-direction.

The (PWS) of the dyadic Green's function Z(r, r') given above provides information
on the general form of the (PWS) solution for the electromagnetic fields for multi-layered
uniaxial anisotropic media. In the following the dyadic Green's function for the uniaxial
anisotropic slab will be derived, which then will be generalized to multi-layered uniaxial
anisotropic media.

2.4 Electromagnetic dyadic Green's functions for uniaxial anisotropic
multi-layered media

The presence of a planar boundary in anisotropic media generally introduces coupling be-
tween the wave-vector modes which are traveling from and toward the source, and hence
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makes any one amplitude dependent on the amplitudes of the others, [14]. Nevertheless,
for uniaxial anisotropic mult,.-layered media the mode couplings do not occur.

The electromagnetic dyadic Green's function for uni-axial anisotropic multi-layered me-
dia can be expressed as sum of X(r, r') in (2.30) and another contribution to account for the
field scattered by the layered media. The scattered field contribution can be expressed in
terms of a PWS integral resembling that for S(r, r'). Consider an arbitrarily oriented point
column current dipole source as of (2.4) located in region (n) with constitutive parameters
(4,E = ft,nIt + E,,nzH ; tn = Pt,nIt + j,,ii). Let us represent the Green's dyadic for region
mn as

Zn(r, r') =] dk ..(ktr, r') + iA , (2.32)

where the spectral Green's dyadic within the region m can be identified as

> 2 <
M,< (kt,r,r') = r.> (kt, r) t (kt,r) , (2.33)

with 7Y is defined as

_ - (m jKI'Z
< >FO~ + R < > < - )

17j'<(kt, r) = Om<(kt, z)eJkP e m <(kt,z) - +)•

(2.34)

where subscripts (in, n) denote the field and source regions, respectively; R m <(z) is the
effective modal reflection coefficient at the interfaces (m, m + 1) and (m,m- 1) for (>)
and (<), respectively evaluated at z, and the superscripts < denote that the incident field

> Itravels in ±z-directions; hence, (i.e., Ram <(zi) = R~m <(zk)e)2 `0(zi-k)). The unknown>

<is the vector-wave dyadic amplitude, for region m, and is defined as a row vector,

2< = de dm )M , (2.35)

I where subscripts e, and m denote the electric and magnetic type sources respectively, and

will be determined from the Lorentz reciprocity relation shortly. The subscript < here

denotes the region of z<z'. The effective reflection coefficient R' <(z) for region m, is a

function of all successive layers, (i.e., n ± 1, m 2, "2+for> of theuni-axial
-for <

anisotropic multi-layered media, and is given by the following recursive relation [13]
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> rm < +e-•'- <(Zm )e '•'*tdm*l(.
Rm <(zm) (2.36)I-1+ r m1r 1 <(Zm--) e-3j2 ldm±l

where the reflection coefficient r m < is given by

rm< -T - (2.37)= g•+ zg"

and the mode-impedances Z, are defined (see also (2.18), (2.20), and Appendix A) as

-Wo ; Z2 Pt,n (2.38)

S~>Also the modal dyadic coefficients V) of region m, and •a < of region nt on either side

of the source are related via the effective transmission coefficient, T< and is given byS~[13]2

> ±i~l ">d

T<•,n;a = e Q(zn-#CZ,,) T.' <(zj) e-'i"Q td'*t for n<m , (2.39)

i n

>>
where the transmission coefficient T"' < at the interface (in, m :t 1) is given by

Ti(m)> = 1 + rg (2.40)T <.Z-). > >
1 + rgm < RT±l < e-j2',)*±dmd±

Hence, one only needs to find the modal coefficients t< in region n, in order to com-
pletely specify the fields in all regions. Specifying (2.33) for region n (i.e., m = n) and

invoking the Lorentz reciprocity theorem to the fields, ±<n = .!< •", of (2.33) and the
<

source free solenoidal vector-wave function of HW' >(-kt, r), of (2.34), in region n of volume
V, bounded by planar surface S> and S<, which are slightly above and below the surface
S of the Figure 2.1.2 respectively, yields

2 Note that T< is the ratio of the modal incident wave-amplitudes of regions m and n; namely,

D•< -P=T I< - .
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L ds Q >(-k,.r). W <. -L ds >(-k,,r), . =

- I dv (?6(r - r'), U (1 (kt, r))) (2.41)

-~ ~ (?~i'(- ktr'))

Incorporating (2.33) into (2.41) and using the orthogonality relations developed in Appendix
B, (see (B.8) and (B.9)) yields,

>( )n< ~> U >T"O("(-kt'z'))e+jk,'p' 2.2
o•<(t~r)T = " Cd "ro 2r -2 An

where A• z" (1 "< "-2j,, d._)
= Z (1- R:<(z.)Rn>(zn+i)e (2.43)

Therefore, from (2.42), (2.33), (2.17), and (2.31) the z-propagating plane-wave spectrum
(PWS) integral representation for the electromagnetic dyadic Green's function of (2.32) can
be identified as,

' dk 2 > - <(kt, z) •' > (kt, z')EZn..(r, r')= ýK I: T< _0 -•.•0-z.P)
j47r

2  -,;a -2 A+

(2.44)

where once more the wave-vectors 0 and P are given by

•< = •o~e+•o" + R(0)•,P,, *o

(2.45)
> > > <"<= G'•~*' •O¢•is< i<e-- ,+R< -0'> eljK,

The resemblance of the electromagnetic Green's dyadic for the uni-axial anisotropic multi-
layered media of (2.44) to its associated counterpart for the full-space uni-axial anisotropic
merdim should be noted. Both dyadic Green's functions are comprised of the vector-wave
mode functions, which are the solutions of the source-free fields in the uni-axial anisotropic
medium. In the full-space case, the excited modes are those which travel away from the
source, whereas in the multi-layered case the modes which travel toward, as well as away
from, the source will be excited.
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In the following explicit expressions for the electric-electric 9e", magnetic-electric 9'",
electric-magnetic G ", and magnetic-magnetic ;m` dyadic Green's functions will be presented3 .
In view of (2.17) and (2.31) vector-wave functions 45 and i5 of (2.45) can be written in terms
of the electric and magnetic mode functions as

#•, = €'<>1 = (Ze, -±ez,,,) e4:j:c'z + R<(O) (Zae, T- e.,.) e+)I, .z
a4e5< (2.46)

0<,m (±h,, + hz,a)e•:FJi z + R<(O)(Tzh, + h,,Q)e±joc.z

and

-j".-(Z oe T -eZ,)e:JKQ + R<(O) (Z~e0  +e±,•) e(247

> >, (2.47)

45<m (T-h. + h.,.) e:Fjo + R<(O) (±h+ + hz,a) e+±IcQ

therefore the electromagnetic dyadic Green's function can be identified as

Scc (r',r') r ) em (r, r')) (2.48)--,(,r)= Ome(r, r') 9 MM(r, r1) ,
.rP< 2- <>n >

I f1- -k.--.>

Pmn;aI -P (ktz) (k,)z')

I+ ( -.idoc,, 3W11z )t(r -r)

Ik C,(r, r') d

- =1 -2A(

i ((Zc, e + ez,o,)m e•'IC" + Rm'<(0) (Z0 e: 0  ezx,)m e)•

((Zoe. + e., 0 ),, e+3K•' + R•>(O) (Z•,e 0 T e2 ,0 ),,e: '

+ • •6(r- r').

+ -jwJWEOzzn

3Note that the expression in (2.44) is a compact representation of the electric as well as magnetic dyadic

Green's function due to the electric and magnetic point sources in a uni-axial anisotropic multi-layered
media.
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I
I

Sdk ek,(p~,)2 T<>
In,(rrk) = e ( ) T,.;0  (2.50)m~n~rr 4r2 -2 An

I (±h. + hz,.)m e.:I*'z + Rm<(O) (T-h0 + hz,)me•

(Z•e•e + e.,,), e+3K:' + R">(O) (Z~ea :F e.,.). e

em (r,r') -=t e-d k t m,2*,c; (2.51)
4714 2 -2An

((Ze. ± ez,.)m eJj'* + Rm<(0) (Zaea :F ez,o)m e a )

(+ha + h.,a)ne± ' + RV>(O)(Th 0 + ha)neF2K•')

gmyn 1)±/t-•2jk,(p-p') TM<,a
rn,'(r,r') 42 edkt" - 2 A (2.52)

=1 -2A

((±hc, + hz,a)m e~jM:z + R< <(0) (:F ha + hz,a)m e rn m, j( <n )F~.
((±ha + h..,),, e~jI:Z + Ra>(O) (-Tha + h., 0 ),, e•-'in '

I 1 5(r- r')+ ii - 1~o..

2.5 Electromagnetic dyadic Green's functions for uniaxial anisotropic
multi-layered media dur to periodic electric and magnetic point cur-
rents

In the following the dyadic Green's ftiaction for an infinite periodic array of an arbitrarily
oriented current point source in a uni-axial anisotropic multi-layered media will be derived.
The geometry of the problem is shown in Figure 2.3.

The starting point for this analysis is based on the following theorem. Consider a
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periodic impulse train, f with an spatial phase variation wo and period X:

00

f W)= E Ox.-nX)e-j0z (2.53)

the Fourier transform of this function,denoted by F is given by

F(w) Jdx eJwx f(x)
00

E I dxeJ(-w°w)xb(x- nX) (2.54)

1100
1: ej(,-,-o)nx, (2.55)

but from the distribution theory [16]

00= - -2-r n (2.56)

l1=-oo n=-oo

so, it follows that,
| F(w) = 27r "0 2irn

-l - 06((w - wo) --- ) X (2.57)

which simply state that a periodic impulse train has a Fourier transform which is also a

periodic impulse train.

Let us assume that the current elements are spatially periodic with the period of X'
and Y' in k' and JJV directions respectively, where (x', y') coordinate are skwed a, and 3
degrees with respect to (x, y) global coordinate respectively, as shown in Figure 2.3. Thus

the location of (i, q)th element U-P can be represented as

O'P = iX'i*'+qYIY'

= iX'(*cosa - ksina) + qY'(*sinf + k cos3) (2.58)

= (iX'cosa +qY'sin/3)*+(-iX'sina+qY'cos/3),

I Let also assume that the current elements are phased at an angle (0, 4); thus, the discrete

periodic current distribution can be denoted by

i'=00 S,=

b I(x - (i X'cosa + q Y'sinf3)) 6 (y- (-i X'sina + q Y'cos/3)) , (2.59)
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I where

w, = ko sin 0 cos ; wu = ko sin sin . (2.60)

The Fourier transform t. of -T is given by

I 4,12 00

J'(kt) = 47r 26(z-z') 6(kxcosa-kysina-CI(i))6(kzsin/3+kkos/3-C 2(q))

S, -(2.61)
where the parameters CI(i) and C2(q) are defined as

CI(i) = w.cosa - wvsina +
x/

(2.62)
2rq

C2(q) = w.sin/3+wcos/3+ --

If 5;T and U axe related through a following dyadic operator

14(r) = J dkt [..f(k,)] , (2.63)

then, in view of (2.57) and the following definition of the delta function:

I F(x) dý F(l)b( - x) , (2.64)

U4(r) can be identified as, [171

00

U~r IC[57(k i,qk' q)] (2.65)
i,q=-oo

where the discrete spectral eigen-values k' q and k•'q are given by

kx'q - C(i) cosO + C2(q) sin a

cos(a - 3 )
(2.66)

k' .q -- CI(i)sin/O+C 2 (q)cosa

cos(a -- )

In the special case of the i' = x and y' = (a = 0 = /3), spectral values of kx'q and k;'q

will be simplified to

q= k' q = wY + (2.67)
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In the light of the above discussion, the electromagnetic dyadic Green's function for the
periodic current point source can be expressed as,

I 0(eer(r, r') (em) e(rr') ) (2.68)
m.(,n r')( = "r, r'1) 0 (r, r'1) ) M,n

1 00X/Y/. Y•E -k'(PP)
I,q=--oo

< M < q > q >n .iq
w s p ,n;aokt t p ric e Grek' s fnto, an• d . iet tneM= ,- n I iq) > < > . < . +

""IA , qt M< )q + n>(2.6q

whr =ad ar eie n (2.66) Lkewis , aexplict ,expr•aession frt the periodc

0, 0)
I -bE•, (z- z'). - (X-(iX'cosa+qY'sin,3)) b(y (-iX'sina+qY'cosOt))

0 -jWP-O/z.,n )i,q=-oo

where subscript p denotes the periodic type Green's function, and k't'q is discrete trantsverse
eigen-value, and is given by defines as

kl'q =/k' q fC +/¢k' q,ý, (2.69)

wher k'q an"-u are defined in (2.66). Likewise explicit expressions for the periodic

electric-electric O P:", magnetic-electric 0 p: me, electric-magnetic 9 P: e and magnetic-
magnetic 9 p: mm dyadic Green's functions can be expressed as

p:(r r') - 00 2 -r< /1),q) (2.70)j,,=_o 0=1 -2-5 t

((Z~e, + ez,,)m eJ'a "X + R~m<(0) (Z~e. :F e.,a)m e+±jI'gz

(Ze 4- e.,,.). e + R">(O) (Zce. :F e.,,c) e =•
00

_I ,1(z - z'). b 6 (x - (iX'cosa + qY'sin/3)) 6 (y - (-iX'sina + qY'cos,3))
-jwefOe,,n 

i,q=-00

>
9P: me ,0 1k,.(~ 2 T<,. i,q)

Tr Y_ E e + h ) (2.71)
I'q=--0o -2=1 ("•k t't

(±h,, + hxcr), e•:Fj'' + Rm<(O) (T-h. + h.,.)m e

23
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I((Zoec. ±e-,.~). e~jpcz' + Ra (0) (Z~e. T-e.,)e

I: Pemr 0') 1l r< ('q
/XY . Eiqq

(( ±hG +..) AZGý le + Rm>< (O) (ZTh +Fe ,)

Q~' m ( r, r ) - -jk',.(p-pl) miva(kt.

1,= o -2 nktq

((h. + h.,a)mef3Dr'z + Rm>< (0)(:Fh,,+ hz,a)meiI'z

I (hc, + h- ejM)n + Rn> (0) (:Fh,, + hz,G,)nleiz)" +

-jwoil~n(z - Z'). - 6 (x - (i X'cos a + q Y'sini) 6 (y - (i X'sin a + qY' cos 13))

I JW/OI~24
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Figure 2.1: Electric and magnetic point current dipole sources in
anisotropic unia.xal multi-layered media, ('e = etIt + ezii ; . =
ptIt + p1Ai). Also the planar surface S> and S< slightly above and
below the gource are shown.
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Figure 2.3: Infinite periodic array of arbitrarily oriented current point
sources in a uni-a-xial anisotropic multi-layered media. The current
elements are spatially periodic with the period of X' and Y' in :k' and
J,• directions respectively, where (x', y•) coordinate are skwed at, and#
degrees with respect to (x, y) global coordinate respectively. OP is the
spatial position of (i, q)th element. Also current elements are phased
at an angle (0,,0) (not shown).
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Chapter 3

Electric dyadic green's function for a grounded uniaxial anisotropic
double layered slab due to an electric point source

3.1 Formulation of the Sommerfeld representation for the dyadic Green's
function

The planewave spectrum (PWS) integral representation of the electromagnetic dyadic Green's
function for a general uniaxial anisotropic multi-layered medium, which has been derived
in the previous chapter will be specialized to a grounded double layered unaxial anisotropic
slab as shown in Figure 3.1, where an electric point source, (pet(r - r'), p, = Pte + Pze),
is located in region (2). Then the Sommerfeld z-propagation integral representation, and
subsequently, the radially propagating integral representations of the electric dyadic Green's
function will be derived. The Sommerfeld integral representation leads to the singularity
removal technique which is very efficient when the observation point is very close to source
point. Nevertheless, as the lateral separation between the source and observation points
increases, the Sommerfeld integrand starts to oscillate rapidly, and eventually the method
loses its efficiency. These oscillations are due to the rapid growth of the argument of the
Bessel function in the integrand which causes the singularity extraction method to eventu-
ally lose its efficiency. The radial propagation representation of the dyadic Green's function
is very efficient when the source and observation points are laterally separated. This ef-
ficiency is due to the imaginary argument of the Hankel function which is present in the
radial propagation of the dyadic Green's function.

The electric field is related to the electric dyadic Green's function as

Era(r) = V dv'g', 2(r, r')" Je(r') ; m = 1 or 2 (3.1)

where J, is the impressed electric current within the slab, and V contains the source region.
If the J(r') is an arbitrarily-oriented point current source of peb(r - r'), the electric field
may be viewed as the distribution3 Em(r) = 'M,2 (r, r) p , (3.2)

The electric dyadic Green's function due to the electric source can be expressed, using
(2.49), as
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I>

dkt -.,k,.-(p - P')-<1
,2(r, r) 4 e , , z, z') + (r - r') (3.3)

where
kt -.(pa- p') = k..(x - x') + ky(y - y') ; d kt = d kxd kt , (3.4)

>

and Qm,2 (kt, z, z') can be represented in the matrix form

>ý D <(k,, z, z') D< (k,, z, z')( .)
<M, 2(kt, z, z') = > > (35

D< 
~C (t(kk,,z,)z') =z (k,,z,z') )m,2

the first and second subscripts denote the electric field and electric point current directions,
respectively. Using analytical expressions for the modal fields, e. , eZ., hQ, hZ. and themodal impedance Z,, given in Appendix A, the Green's dyadics inside the bracket for
m = 2 (i.e., field points located in region 2) are explicitly defined as,

<U(k,,z.z) = 1 ý0 t'><(k,, z')t>' + kztj , (3.6)
Qtkgzt ' -2weo t + k2t 0 <F, tt t/

".(kt z,z') = -. '< -z (3.8)

D< 2t,,z,z') = T( (z ,zz)i , (3.9)

Dwhere

w h r ek , + t k + k y ; k " = , X k,- kx ,I k,-• t 1t'k= kt (3.10)

and the functions §'(kt, z, z') and 4"(kt, z, z') are defined in Appendix C. The prime (Q) and
double prime (11) here axe respectively correspond to a = 1, and a = 2.

The Green's dyadic can be written in terms of scalar functions if one notes

k; k; V,, ,, (i x Vt)( (x3V1)

" k2 (3.11)

and uses the identity of
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V Vt0 (0 0 0

02 02 02
-•'•-T2 + k' + (k S" + , $~oxo(3.12)

and

(i Vt)(i x Vj) 902 02 02 (3.13)

xx5-y2 + kYk-j"2 - (xCk + krx) x -y

02 2 92t(v, 7- t• •v -•) - (kk + yi•)
- ~ X *kV--)SrrV 2 0 Oxay

Thus, the planewave spectral dyadic Green's function (3.3) (in view (3.5)-(3.9)) can beI expressed as

> 1 I' 2 02 >>(r, r') 2 j -ko U<(r, r') + W<(r, r')

+ (-ko2U< (r, r') + -2 V> (r, r'))

02 >
+ (** + YC) ax-ey W< (r, r') ,(3.14)

> [>_

Q<,(r, r') - J V_____ (317
2weoe2,= ge (,rZ (.5

g<(r~r') = k _ ...jg(..P)k, z,(r ') , (3.18)

> >< (r, r') i t 1< (r, r') ,(3.16)

C0E2,zf2,.

where

> A dt _k.(_p)>
g<(r,r') = r ;- e< (ki, z, z') ,(3.18)

> / k _k.pp) >

U/<(r,r') = J <kt( z, z'), (3.19)
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>dkt _-k~.-(p - (3.20
W<>(r, r) = 42 e _ (3.2)

[K1 > 1'2t'<kK2 2J< 92,,y

•,•2(tt , z, z') - k,2 (ki, z, z')
2,t 22•2- K

> A tdk -k t . - p ) k t2  
-><

V< (r,r') = r -.24 d t . P') t * (3.21)

The Equation (3.18) has a Fourier-Bessel representation given by!
2r 00 1Ig> (r, r') =k2. e-00 (-,) .<(,z 'J~k~)J~op) ,•(.2

which can be obtained from (3.18) by employing the following transformations

kt = k o ; k, = koC cosa ; ky = koC sina (3.23)

I (x - x') = p cos 0-p' cos O' ; y - y' = p sin 4 - p' sin' . (3.24)

If the coordinate system is chosen so that p' = 0, then the expression (3.22) reduces (in
view of Jo(O) = 1, and J,,(0) = 0 for m $ 0) to

ko2 00I g(r,r') = L ] (ý,z,z')Jo(ýkop)Cdý • (3.25)

The Fourier-Bessel representation of the U, W, and V are obtained using the same procedure

as of g and are given by:

> ko 1 00° ýý ,t §-,>i
U<(r,r') = 2t_ ] - ,z,z')Jo(kop)Cd , (3.26)

IW<(r,r') = k0 (0,0 y tz, z') - --'2 g ,zz')] Jo(• kop02 L K2,tK

> k3100 > 
(3.27)

V<(r,r') = .. ( , z, z') Jo(ý ko p) ý d . (3.28)IEprssinsin2~r 0 K2

Expressions in (3.25)-(3.28) are the Sommerfeld type integral representations of g, U, W,

and V given in terms of planewave spectral (PWS) integral representation given in (3.20)-
(3.25). It should be noted that the wavenumbers Ký and Ký1 in (3.25)-(3.28) are normalized

with respect to ko, namely by

Ki= n, -n ; Kit= fn--n'n 2  (3.29)
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where ni = ei,tii,t, ni and 0I ,

Each term in the integrand of (3.27) exhibits a spurious pole at • = 0. This leads
to an integral with a logarithmic singularity and it is a consequence of interchanging the
derivative and integration operations. Strictly speaking, this interchange is not allowed
(because of the convergence of difficulty as -- 0). However the expressions in (3.27) as a
whole converge, which means that the integrand of

t(z, z') - -, z)]J(, ko p), (3.30)
S2,t K2

is regular at = 0. This can be shown by explicit substitution of g" and g" and taking
the limit of the integrand of the above expression as -* 0. So in a distributional sense an
interchange of the operators is justified.

The convergence behavior of these functions in (3.25)-(3.28) depends strongly upon the
value of Iz - z'I (vertical separation between the source and observation points). For the
cases of planar structures, such as microstrip arrays, the factor which exhibits an exponential
decay, e-kz-z'Il, goes to unity. Thus, as .- oo, the Sommerfeld type integrands decay
algebraically as rather than exponentially; the algebraic decay results from the
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asymptotic behavior of Jo(ý ko p) for large ý ko p.

It is a well known fact that the numerical integration of oscillatory functions are very
time consuming, particularly when they have an end point at infinity. To overcome this
difficulty, which is inherent in any open structure involving multilayered media one may
use the singularity removal technique. This technique is very efficient when the lateral

separation (kop) is small (i.e., if kop < 1). It deals with asymptotic behavior of the inte-
grands, which in turn is dictated by the behavior of Jo(ýkop). These asymptotic values can
be integrated in closed form; therefore, if one subtracts these asymptotic values from the

integrands, then the resulting integrands are relatively smooth and fast decaying so that
they can be integrated efficiently.

The singularity removal technique [19] which improves the convergence of the conven-
tional Sommerfeld integral representation is described as follows.

I Let I be a typical value of g, U, W, or V of (3.25)-(3.28) which in general has the form

I I= I' EF( ,z,z') Jo( kop)dE , (3.31)

where ým F(ý, z, z') is recognizable from (3.25) through (3.28). As --. o, the value
of F(l , z, z') asymptotically approaches some complex value, say E,, C, e-4 6'; (where the
explicit expressions associated with g, U, W, and V can be found from (3.25)-(3.28), and
the limiting values of gj (,z, z') and <"•(ý, z, z') as o - oc which are given in Appendix

D. But
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fo,°d m  jL(• op
Jo(Ekop) e-ko • d = (-1)m d(k)m Jo(kop) e-k 6 dý

- ( ) d ~m ( 1~ 
(3.32)

Therefore

I ' = (F(ý)- -ZC. e- ko6)ým Jo( kop) d +Z1:C. d (-)d(km/( + )

nn f( (3.33)

Mathematically, Equations (3.31) and (3.33) are equivalent; numerically however, the in-
tegral of (3.33) possessed a much smoother function; therefore an eight or sixteen point
Gaussian integration routine is sufficient to achieve a reasonable accuracy in evaluating
such an integral. More discussion about the behavior of integrands in (3.31) and (3.33) will
be presented in Chapter 5 which is devoted to numerical results.

It should be pointed out however that the smoothness of the integrand in (3.33) dete-
riorates as the lateral separation of the source and observation popints increases (i.e., as
kop becomes large). The second method involves the use of a radially propagating inte-
gral representation wh'ch overcomes the difficulty associated with the first method, and
converges very fast if the source and observation points are separated laterally rather than
vertically. This technique also leads to the uniform asymptotic closed form solution which
will be discussed in the following chapter.

3.2 Alternative radial p-propagation representation for the dyadic Green's
function

The starting point in the derivation of the radial propagation microstrip Green's function
is Equation (3.25) which constitute the Sommerfeld representation of g(r, r') as

K~~~ grr). 00
Owr, r') = L § (ý, z, z') Jo (ýkop) ý d • (3.34)

The above integral in (3.34) can be written in terms of the Hankel function where the
integral has the lower limit as oce-j•, and the upper limit at co, provided that ý is an even
function of ý. Thus, (3.34) becomes

g(r, r') = L0 "0 z, z') Ho(( ko p) ý d • , (3.35)
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in which the contour of integration is such that the branch point at • = 0 introduced by
the transformation is avoided as shown in Figure 3.2.

An alternative p-propagation representation of g can be derived by deforming the inte-
gration contour of (3.35) so that it encloses all the singularities of the z-dependent function
4(ý, z,' ) in the integrand. General techniques for arriving at alternative representations for
Green's functions have been discussed in [6, 18].

In order to enclose arl he singularities of §(ý, z, z') in the ý plane, the analytic property

of 4(ý, z, z') needs to be studied. As mentioned earlier, explicit expressions for 4"< and 4'<I>
are given in Appendix C (in particular see (C.1) - (C.11) and (C.32) - (C.39)). The 4"< and

41< are functions of the propagation constants K', K1, m = 0, 1 and 2, and in the complex
Splane they have a pair of branch points at ý = ±1 and a pair of branch cuts from • = ±1
to infinity. These branch cuts must be defined in such a way that Im ( -V1W ) < 0 on the
entire top sheet. This is the only pair of branch cuts that allow the analytic continuation

of 41< and 4< into the entire top sheet of ý such that they satisfy the radiation condition.
Therefore, the deformation of the real axis path of integration into the complex plane is
possible as long as it stays on the top Riemann sheet as 1ý1 --- c; of course, one must

> >
account for residues associated with any poles in the integrals (4"< and 41<) which are
enclosed in this contour deformation. As mentioned previously, Figure 3.2 shows a typicalI>
complex ý plane containing branch cuts due to the Hankel function and 41< in the integrand
of (3.35) as well as the path of integration from ooe-j" to cc. In general there also exist
a finite number of pole singularities (i.e. N number of poles) on the top Riemann sheet;
these poles are called proper surface wave poles (whose residues are modal waves because
they satisfy the radiation condition at infinity). There can also exist an infinite number
of pole singularities on the bottom Riemann sheet; the latter poles are called leaky wave
poles (giving rise to non-modal waves since they do not satisfy the radiation condition at
infinity). A finite number of surface wave poles have also been depicted in Figure 3.2.

Equation (3.34) and (3.35) constitute a Sommerfeld or z-propagation integral repre-
sentation; on the other hand, the p-propagation representation for g can be derived by
enclosing all the singularities of § in the plane via a contour deformation. The original
contour is thus deformed as shown in Figure 3.2 to arrive at

g(r,r') = k2 I (,z, z') HO() ko p) d -27rj E Res (§(ýp, z, z')) •, HO2)(VpO),
Lie p=1

(3.36)

where the finite sum refers to the discrete spectral or pole wave contribution to g and the
integral of CB is the continuous spectral contribution to g; also, the Res is defined as the
residue of 4 at the poles p = ,; i.e., (see also (C.16) and (C.38))
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Res(4(Ep, z, z')) = lrn(• - 4p) 4(ý, z, z') (3.37)

The integral contour CB can be transformed to the real axis by introducing the change of
variable

I =v~ = (3.38)

It is noted that as ý varies along the contour CB of the Figure 3.2, the new variable of
integration C will vary from +00 to -cc along the real ( axis as shown in Figure 3.3. Note
that the circular contour which encircles the branch point does not contribute. Finally, one
obtains

g(r, r') [= L 0 z, z') B 0 k2 pj ( / 2) C d C (3.39)

I-2irj (ZRes (4(ýpz, z) 4, H (2) (4,ko p))

The above result in (3.39) represents the alternative p-propagation representation of g which
is obtained from its Sommerfeld representation in (3.34).

The radial propagation of a grounded uniaxial anisotropic double layered dyadic Green's

function can be constructed after incorporating g of (3.39), U, W, and V given in the
following into (3.14) - (3.17)

> ~ ~ko [(00 .. ,<,
>i [i 00  A2 ,t( ,(o' (C Iz Iz ') H 0 1) ( 2ovI F ) (d ( (3.40)U<(r'r') = 479t

I k f0

-2irj " Res ( Z(4 , ,z~z/) H(o2)(kopg,)) (3.41)I (, K2 I

I2r E K'2 '4 ReI O2 kopp 34

P1 2,t~pl §tt("Z '
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I ~> •k°3 2/5o 1•->_

V<(r,r') = --[g 1 • ,z,z')H"2)(kopl_ •27)(d/ (3.42)

pK 2

The prime (t) and double prime (11) in (3.40) - (3.42) refer to TM (or E-mode; a = 1)
and TE (or H-mode; a = 2) respectively; see also Appendix C. One can now see that the
radial propagation representation of the dyadic Green's function exhibits fast convergence
for laterally separated source and field points. This is due to the fact that for the C > 1,
the Hankel functions associated with the integrand in (3.39) - (3.42) decay exponentially.
Therefore it is more efficient to utilize this representation for the planar geometries when
dealing with a solution for currents within a planar uniaxial anisotropic materials. The
logarithmic singularity of the Hankel function at ± = +1 can be removed via the following

* transformations

( = V-1_ -V , I(1 < 1 0 -T=V/i+• , I(1 > 1 .(3.43)

I Hence, the final form of g, U, W, and V after transforming the integrtal (0,-1) to (0,1), and
(-oo,-1) and (1, oo) to (0, oo), which will be used in the numerical integraxion are given

1 by:

g(r, r') = [L((, z, z') - (-C, z, z')]•,= J42 (ko p) ý d

+ jo [•i(C,z,z') - (-¢C,z,z')]i HC (jkop•) • d •

10 +W j I() Z, Z') -X~<-C, Z, Z i)] H 2) (-j ko pý ) dI P 0
<2, t "'I<(E-,,, z') Ho(2)((345)

+ • g (c, Z, Z') - z, Z (=opr•

+ 100 1 2,t >e ""<2)

SK2 /-2•rjE.12-g-t(esz, z') H(o2)(ko p~p,,) , (3.45)
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-- (r, r') ,z '
< rf= 2-, ( (c¢Z Z') - § z'h

A2,t / 2)
() tt (c, Z, z) - <-•T, , z') Ho)(ko pý)

K121K(() r 
=V'7

-(crZ Z' -t< Z'I JO\ 2,tI

" <~, [(c, Z, z') - ý11(-(, z, HEW-jko pýs) -

"2 1 p Res (gt p,,') Hr2'(kop~p,)) (3.46)

P 2.L41 e Wg (GI z, z ") 6~ ~k ~~~I'

11 Re §<(P,,, HZ o) kop

-- g 1 ( 2,z if') I ) Id

> 0 1ý > H] 2
< (+ j< ,((, z, z') - § = Z(-c,, z ') Ho2 )(-jko pý)- d-t

Y=vi-•-

to (3.47) will be discussed in Chapter 5 of numerical results.

As mentioned earlier, the formal representation of the radially propagating integral rep-I resentation of the dyadic Green's function developed in this chapter leads to a very efficient
closed form asymptotic approximation of the Green's dyadic which remain acc':rate even
for very small lateral separation of the source and observation points. The developementI of this asymptotic representation will be discussed in the next chapter.
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sum of the enclosed residues plus the integral around the branch cut
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Chapter 4

Uniform asymptotic closed-form representation for the dyadic Green's
function

This chapter deals with the development of an asymptotic representation for the dyadic
Green's function for the uniaxial anisotropic double layered geometry in which the large
parameter directly depends on the lateral separation between the source and observation
points; however, this asymptotic result is found to remain accurate even for source and field
points separated by only a few tenths of a free space wavelength. As mentioned earlier,
the radially propagating integral representation given in the previous chapter can be used
as a starting point to find an approximate dosed form asymptotic solution of the dyadic
Green's function which remains valid in the entire range of kop except for very small kop.
The details of this asymptotic development are shown in the following.

Consider the integral I of the form

I 1= ~F((, z,z)H(2) (k0pV1 d( (4.1)

in which (kop) is assumed to be a large parameter. This integral is similar to the the radially
propagating part of g, U, W, and V; F((, z, z') has the following functional form

I F((, z, z') -- K()e-jko ; 6 -- ±(z ± z') (4.2)

If one performs the angular spectrum mapping

I (=cosy; d(=-sin y d, and V1-(2=sin-y, (4.3)

then,

IB K( r) '•korsin e 4 8kor sin-y) e-Jk rcos(O-) cosi- sin-y d-y (4.4)

where,
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S=rcos8 ; p=rsin0, and tanO=• , (4.5)

and use has been made of the large argument approximation of the Hankel function

HO)x , + ; X >> 1 (4.6)

The integrand exhibits a saddle point at 7, = 0. Let

q() = -J cos( - 7). (4.7)

Then,

q'(7) = jsin(O- y) ; 7 , = 0 (saddle point) ; q(-4) =-j . (4.8)

Figures 4.1 and 4.2 show the double sheeted C and complex -/ planes respectively, with
the original path r and steepest descent path rSDP depicted in the complex 7 plane. Note

that the steepest descent path is the path on which the following condition holds,

3 Iam(q(7)) = Im(q(4)), or Re(cos( - 'y)) = 1, (4.9)

so,

U2
I ~K(-y) kr sin 4 8 + j e-k`"r-sion-7sn-yU SDP Vrkosiny e ( korsin -n

+ 2rj-Res(I(7 8 )) - 27rj E Res(I(71)) , (4.10)
a 1

where rSDP is the SDP contour, and the summation terms of s and 1, stand for the residue
contributions arising from the presence of the surface wave and leaky wave poles respectively
which may be intercepted during the path deformation. It is noted that unless 0 • E (kop >
1; k0 6 < 1), there exists the possibility of crossing one or more of those surface wave poles
which are closest to the Real 7 axis (see Figure 4.2) which have been captured during
the derivation of p-propagation representation (see (3.39) - (3.42)). This results in the

cancellation of some fo the surface wave residue contributions in the sum on the right hand
sides of (3.39) - (3.42). It is also noted that the same SDP will result if one starts from the
Sommerfeld representation (rather than the p-propagation representation) since only one

SDP exists in each strip of 27r radians in the 7 plane, but in this case, the surface wave
poles must be found in 7 plane. In the following we will map the SDP onto a contour along
the real axis in the new complex plane s defined by
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q(y) - q(-°) = s2 ; cos(0 - 7) = 1 - js 2 , (4.11)

* or

= 2 (branch points at v/• + 2j = 0). (4.12)

This transformation maps the steepest descent path rSDP, on the real axis of the complex
s plane as indicated above. The saddle point at -1 = 0 is now mapped to s = 0 (see

Figure 4.3). For the 0 ; M the source and the observation points laterally separated (i.e.
(kop > 1; ko <« 1), one will have

sin7 = 1- js 2 , cos I = IsIViT' 2j (4.13)

It is useful to note that

( = s 2 + 2j d( 2j(s 2 -1)

therefore the SDP representation of I in the s-plane can be expressed as

I ,eT' e-Lk°P G(s)e-' ' 2 ds - 2rjZ Res(I(-1)) , (4.15)

where, in view of (4.1), G(s) are given by

G(s)= (1+ 8 kop(1- js2)) 2jsv/(1- js2) F((, z, z')l,=, . (4.16)

It should be noted that for the particular case of 0 z Z no surface wave pole will be
intercepted during the path deformation.

The uniform asymptotic approximation of I can be represented as, [L9]

'2je-k { G"(0)
kop 4kop

+ Res(G(s,)) 1 - .(jkops,) + 2kOpS }
-27rj y•Res(I(st)) ,(4.17)
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where so's are the poles (surface wave as well as leaky wave poles) that are considered
to be close to the saddle point at s = 0; and Res(G(so)) is related to Res(F((o)) (of
p-representation) and Res(F(,,)) (of the Sommerfeld representation) by

Res(G(sa)) = 1+ 8k/VTT- ' Res(F((,))

(4.18)

(l+8kopý,) v Res(F(,))

and so = ; ¢o = +/TW-, also s, = ± ,TW/, i. The value of
G"(s),,=o is related to the first derivative of F(s) by

j d
G"(S)h=0 = 4j(1 + Io) C- F(s).,

(4.19)

= -4j(1 + I )2-j-) Urn W~,'' d (4.19
8ko p C-1 L

I where use has been made of d = Id , and 1 = 1-js 2 ; = -2js. The transition
function F(a) is defined [19, 201

F(a) = 2jva-ej* J e-, 2 dr , (4.20)

the analytical property of the transition function is also discussed in [19].

The function F(ý) can in general be represented as

F(N,z,z') N(Z 7 , (4.21)

where

3 ~ ~lim[Y f()= V d [/T F f(ý)] =0. (4.22)

thus

d (ý z,7 [f)'(m) N(~ z, z') + f(~ N'(.ý, z, z')_
•m[ 1 F rD(ý)

f (ý) N( z, z') D-T•

(4.23)

_ f( 1)N(1, z, z')
Urn 1i Urn 1- E2 D'(f)ie=

D(1) D(1) 4-1
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Hence the uniform asymptotic representation of a grounded uniaxial anisotropic double
layered dyadic Green's function can be constructed after incorporating (4.17) (in view of
(4.18), (4.19), (3.39)- (3.42)) into (3.14)- (3.17), where Fg,(ý), Fl(ý), FW(), and FV(O)
used in (4.18) and (4.19) are given in the following:

Ng, z, z , (4.24)

>

Fu(,z,'z') = k2.t D zE, Z') (4.25)

2KIt DE(ý)

ko •23 N , ), N , I Z')
FW(,zz') - 2 NI'2,t E(ý,) _' D,()) , (4.26)

FV(ý,z,z') = k-2 DNE(W, z, z') (4.27)

and expressions for N<(1), lime., d/T'' •N (C)], DE(1), lim&-.d _DE(•),

and the residues of (z, z') and g(z, z') are all given in Appendix C.

The uniform asymptotic closed form approxiamtion of the dyadic Green's function de-
veloped here has been cast in such a form that the physical behavior of the electromagnetic
fields due to anisotropy of the medium reveals itself through a simple mathematical pa-
rameters (see also Appendic C). Moreover, the asymptotic solution of each of the g(r, r'),
U(r, r'), W(r, r'), and V(r, r') consists of the contribution of the space wave (the saddle
ponit contribution), surface waves, leaky waves (if any), and the transitoin effects of the
surface and leaky wave poles which are close to the saddle point. Thus, the physical under-
standing of the interaction of the spatially confined source with an anisotropic (uniaxial)
double-layered grounded slab is greatly enhanced through the newly developed asymptotic

closed form representation of the dyadic Green's function.

Becuase there are infinite number of leaky wave poles in the bottom sheet of the Som-
merfeld plane; the question may arise which poles should be cosiderd close to the saddle
point. For the loss-less case, there are two sets of leaky wave poles on the bottom sheet
of the Sommerfeld plane; the complex poles and the real poles. During the investigation it
is found that the inclusion of the real poles', which may be called improper surface wave

poles [20, 23, 24], (because they are the same species as of surface wave poles lying on the

'They are lying on the positive imaginary axis of C plane, the radially propagating plane.
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bottom sheet of the Sommerfeld plane), would be sufficient for achieving a good accuracy
for the asymptotic representatirn.

In fact the proper surface wave poles are originally improper surface w,..vcs [20, 241:
of course except for the first TM (E-mode) surface wave mode which is always present
independent of material properties and thicknesses of the layers. As the materials become
more dense and/or the substrates become electrically thicker, an improper surface wave

pole moves toward the brach point, and it eventually passes through the branch point and
appears in the upper sheet of the Sommerfeld plane; and hence, it becomes a proper surface

wave pole. It is easy to verify that the condition for any surface wave mode to "turn-on" isI, = 1.0, (note that the variable • has been normalized with respect to ko). From (C.12)

for TM (E-mode), one will have

DE(4,)I.o --- 0 , (4.28)

or

tanL = - tan , (4.29)
cl,tdi f 2,td 2

where V /-i = d T f' •= pi eet, nl `-, and di ko di. By the same token, from

(C.34) for TE (H-mode), one will have

DH((p)j,,=..0 = 0 , (4.30)

or

- tan V cotL 2 , (4.31)piid I 11,td2

where L' = d - n', and ni =

Simillar equations for the isotropic case have already been reported by AlexopoulosI and Jackson [251. Equations (4.29) and (4.31) respectively represent parametric conditions
for any TM and TE surface wave modes to turn-on. The loci of these equations for the
isotropic case have been studied by Marin and Pathak [26). It is evident that by controlling
different parameters invloved in (4.29) and (4.31), one can excite or suppress a certain
number of poles. A complete elimination of the surface wave excitation is also possible if
one lets K'(ýp) = 0 for TM (E-mode), and rc"(ýp) = 0 for TE (H-mode). This is due to

the fact that since there is no variation of the surface wave modes in z-direction with these
conditions, and the tangential electric field must vanish on a perfectly conducting ground
plane; by reciprocity this impies that these modes are not excited [25].
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It is also important to realize that because the proper and improper surface wave poles
are lying on the real axis of the Sommerfeld plane (positive imaginary axis of the radially
propagating plane), they can easily be found2 ; and hence, rendering to the efficeincy of the
newly developed asymptotic solution.

In the following chapter the accuracy and the efficiency of the asymptotic solution as
a function of lateral separation of the soure and observation points with different material
parameters and thicknesses.

'A Newton-Raphson search procedure with a good initial guess can be employed to find the poles in a
few iterations.
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Chapter 5

Numerical Results

Figure 5.1 shows the typical behavior of the integrand of the function W of (3.31) for p/Ao
0.1 versus ý as Iz - z'j -* 0. The integrand is an oscillatory function (typical behavior of the
Bessel function), and decays very slowly. Figure 5.2 shows the numerical behavior of the
integrand of W of (3.33) for p/Ao = 0.1 as Iz - z'I -- 0 when the singularity of the integrand
is removed. The significance of the singularity removal technique is vivid if one compares
the smoothness of the plots in Figures 5.1 and 5.2 for p/Ao = 0.1. It is now evident that (for
the small lateral separation) the method of singularity removal technique can efficiently be
utilized to evaluate the dyadic Green's function. Nevertheless as the lateral separation of the
source and observation points increases (kop becomes large) the integrand starts to oscillate.
Figure 5.3 shows the typical behavior of the integrand of W of (3.33) for p/Ao = 4.7. This
oscillation is due to rapid growth of the argument of the Bessel function which causes the
method to lose its efficiency. This is the main difficulty of the singularity removal technique
which motivates us to construct the alternative radial propagation representation of the
dyadic Green's function. Figures 5.4 and 5.5 show a typical behavior of the integrand
of W of (3.46) as a function of its argument ý for different lateral distances p/Ao =0.5,
and 2.0. It is important to note that as the separation between the source and observation
points increases, the infinite integral decays faster, but the number of oscillations in the
finite integrals increases. This can be seen from Figure 5.5. These oscillation are due to
the behavior of the Hankel function as its argument becomes larger. It is interesting to

note that in the Sommerfeld representation, the total number of oscillation of the integrand
between 0 and 1 of its semi-infinite interval of integration are the same as the number of
oscillations of the integrand of the radial propagation representation which exist only over
the finite limits from 0 to 1.0. Over the rest of the interval of the integration from 1.0
to infinity, however, the Sommerfeld integrand exhibits an infinite number of oscillations;
no such oscillations exist for the radial propagation representation. The advantage of the
radial propagation representation against the Sommerfeld representation is now apparent.

Figures 5.6-5.13 show the numerical integration and the closed form asymptotic repre-I sentation of W given in (4.17) versus p/Ao for various substrate and superstrates thicknesses
with high and low material constants and various degree of anisotropy. The numerical val-
ues of these parameters are given in the captions of the Figures. The accuracy of the new
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representation is quite impressive. This new asymptotic solution remains valid for the field
points very close to the source. The efficiency and hence its usefulness of the new asymp-
totic expansion is now clear. The error bound of the solution is less than one to five percent
for lateral separations between the source and field points as small as 0.5-1.0 of free space
wavelength. Also it is note worthy that as the lateral separation of the source and obser-
vation increases, the computational time for the numerical integration also increases. This
time increase is due to rapid growth of the argument of the Bessel and Hankel functions
which are present in the integrand. Nevertheless, the computational time for the asymp-
totic representation remains constant since no Sommerfeld type integral is involved in this
solution; and moreover, the accuracy of the asymptotic solution improves as the lateral
separation of the source and observation point increases.

As expected, it is found that the accuracy of the new representation, particularly for
small lateral separation of the source and observation points, indeed depends on the mate-
rial thicknesses and parameters. In the case of thin slabs with low material parameters, the
dominant effect is due to space waves arising from the saddle point contribution, whereas
for thick and dense material constants, the dominant effect is due to the surface waves. For
the uniform asymptotic approximation only one TM surface wave pole to be considered
close to ýhe saddle point for thin and low-dense material slabs. For thicker and/or more
dense material slabs, a TE improper surface wave pole also comes close to saddle point,
and as discussed in the previous chapter, when a certain condition met, (see (4.31)), the
TE improper surface pole eventually becomes the first TE proper surface wave. In most
practical applications, the uniform asymptotic dyadic Green's function needs one TM sur-
face wave and one T F proper or improper surface wave pole singularities close to the saddle
point. It is noted 'hat the improper surface poles are located on the positive imaginaryaxis of the C plane kradially propagating plane), which are the same improper surface wave
poles lying on the positive real axis of the bottom sheet of the original Sommerfeld plane.

The accuracy of the uniform asymptotic representations of g(r, r'), U(r, r'), and V(r, r')
have been tested, and they are at least as accurate as of W(r, r'). Those results have not
been reported here.

A comparison between the numerical and asymptotic evaluation of electric fields, Ex, EY,
of an electric point current parallel to the interface (horizontally oriented) over the dielectric
interface for the grounded double-layered anisotropic uniaxial slab versus 0 at p = 0.5A0

are shown in Figures 5.14 - 5.17. It can be seen from the figures that thie acruracy of the
asymptotic representation is quite accurate and remains valid even for the field points very
close to the source.

With the new asymptotic solution the effect of the material anisotropy over the field
components can easily be investigated. The parameters ný = , and ni'= represent
the degree of anisotropy of the material, and can have any value in (omplex plane. It
should be noted that as ný and n"' go to one the m-'erial becomes isotropic. Also if the
thickness of the first layer goes to zero, or its material parameters ap-,roach to the free
space constitutive parameters the solution will give the dyadic Green's function f.-; a single
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layer grounded anisotropic uniaxial slab.

The effect of the anisotropy on the W(r, r') , can be seen if one compares the plots of
Figure 5.6 (for the isotropic case), and Figure 5.7 (for n' = n' = 1.5), and Figure 5.8
(for n' = n' = 0.75). It seems that the strength of the field increases as the value of ný
decreases. Similar conclusion can be drawn from the plots of the surface electric fields ofI shown in Figures 5.14 - 5.16.

More numerical results and the physical interpretations based on the newly developed
closed form asymptotic representation of the dyadic Green's function for a double-layered
anisotropic uniaxial grounded slab will be reported in the second phase of this research.
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di,\o = 0. 0 5, el't = 2 .2 5 , ejt/lej1  = 1 .O,/ it = 1.0, i,ta//ii,= = 1.0
d 2 /Ao = 0.05, C2,t = 3 .2 5 , e2,t/e2., = 1.0, P2,t = 1.0, P2,t/L2, = 1.0
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Figure 5.6: Comparison between the numerical integration and asymp-I totic value of W versus p/Ao in (4.17) for Iz - z'j -. 0.
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d4/Ao = 0.05, e:,t = 2.25, et/ei,, = 1.5,;1,t = 1.0, IAi,t/•,z = 1.0

d2/Ao = 0.05, 62,t = 3.25, C2,4/62,. = 1.5,IL2,t = 1.0, •2,t//J2,z = 1.0

1.00

.800

2

.600

.400

I .200

c .000

-. 200

,"

-. 400 ,q

"I _Re. (Sommerfeld)I -. 600 Re. (Asymptotic)

-. 800 o Im. (Sommerfeld)

-- ------------ Im. (Asymptotic)

-- -1 .00

0.00 .250 .560 .750 1.00 1.25 1.50 1.75 2.00 2.25 2.50

i (P/x)

I
Figure 5.7: Comparison between the numerical integration and asymp-

totic value of W versus P/Ao in (4.17) for Iz - z'I - 0.
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Figure 5.9: Comparison between the numerical integration and asymp-
totic value of W versus p/.o in (4.17) for 1z - z'j - 0.
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Figure 5.10: Comparison between the numerical integration and asymp-
totic value of W versus p/Ao in (4.17) for 1z - zif --+ 0.
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Figure 5.11: Comparison between the numerical integration and asymp-

totic value of W versus p/Ao in (4.17) for Iz - z'I -- 0.
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Figure 5.12: Comparison between the numerical integration and asymp-5 totic value of W versus p/Ao in (4.17) for Iz - z'I -- 0.
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Figure 5.13: Comparison between the numerical integration and asymp-
totic value of W versus p/Ao in (4.17) for Iz - z'l -+ 0.
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di/Ao = 0 .0 5 , el,t = 2 .2 5 , E1,t/ej. = 1.0,/ p,t = 1.0,qI,t//Ii,x = 1.0

d2/Ao = 0.05, e2,t = 3.25, E2.t/C 2,. = 1.0, Y2,t = 1.0, P2,t//12,. = 1.0

I2
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I -21i0

I Figure 5.14: Comparison between the numerical integration and asymp-
totic value of electric fields E. and Ey of a horizontal electric dipole cur-

rent point source over the planar interface of the two anisotropic uniax-

ial slab at observation points (p, 0) versus q5 at (p = 0.5 A0, Iz - z'I = 0)

after incorporating (4.17) into (3.14)-(3.17).
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I,/Ao = 0.05, ei,, = 2.25, eit/e,, = 1.5, Ii,t = 1.0, pItl,/P,,, = 1.0
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I Figure 5.15: Comparison between the numerical integration and asymp-
totic value of electric fields E, and E. of a horizontal electric dipole cur-
rent point source over the planar interface of the two anisotropic uniax-
ial slab at observation points (p, €) versus 0 at (p = 0.5 Ao, Iz - z'I = 0)

after incorporating (4.17) into (3.14)-(3.17).
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Sdl/o = 0.05,el,t = 2.25,ej/ejx = 0.75,lt = .O,p/ = 1.0
d2/Ao = 0.05, E2,t = 3.25, e2,t/E2,z = 0 .7 5 , ju2,t = 1.0, f12,t/P2,, = 1.0
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I Figure 5.16: Comparison between the numerical integration and asymp-
totic value of electric fields E_ and E. of a horizontal electric dipole cur-

rent point source over the planar interface of the two anisotropic uniax-
ial slab at observation points (p, €) versus 0 at (p = 0.5 Ao, Iz - z'I = 0)
after incorporating (4.17) into (3.14)-(3.17).
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d3/Ao = 0.05, el,t = 3.25, ei,t/ej,z = 0.5, pit = 1.0, P1,t//1,z = 1.0

d2/Ao = 0.03, 6 2,t = 9.60, E2,t/E2,z = 0.5, P2,t = 1.0, P2,t//L2,z = 1.0
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Figure 5.1T: Comparison between the numerical integration and asymp-
totic value of electric fields E. and E. of a horizontal electric dipole cur-

rent point source over the planar interface of the two anisotropic uniax-
ial slab at observation points (p, 0) versus 4 at (p = 0.5 Ao, Iz - z'I = 0)
after incorporating (4.17) into (3.14)-(3.17).
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Chapter 6

Conclusions, Discussions and Directions of Future Research

A relatively simple and accurate closed asymptotic form of the electric dyadic Green's func-
tion for a double-layered anisotropic uniaxial grounded slab is developed. The asymptotic
representation provides an accurate solution even for a very small separation of the source
and observation points (a few tenths of a free space wavelength). The asymptotic closed
form dyadic Green's function has been cast in such a form that the physical behavior of
the electromagnetic fields due to anisotropy of the medium reveals itself through a simple
mathematical parameters. Thus, the physical understanding of the interaction of the spa-
tially confined source with an anisotropic (uniaxial) double-layered grounded slab is greatly
enhanced through our asymptotic closed form representation of the dyadic Green's func-
tion. In addition two efficient numerical integration schemes based on singularity removal
technique and radially propagating integral representation of the Green's dyadic are also
presented. In contrast to the representations developed in this study, the Sommerfeld type
integral converges slowly for large and even moderately large separation between the source
and observation points. The representations developed here do not exhibit this difficulty.
Hence a systematic numerical algorithm is developed which can efficiently be used to com-
pute the dyadic Green's function of the anisotropic (uniaxial) double-layered grounded slab
for the entire range of the separation of source and observation points. These solutions are
expected to be useful in the moment method solution to a wide variety of the anisotropic
uniaxial grounded slab problems.

Some related solutions such as the dyadic Green's function for electric as well as magnetic
point currents in a general uniaxial multilayered material media have been developed in a
form which provide useful physical interpretations; these solutions are important in many
applications involving uniaxial stratified media, such as in the design of high performance
large phased arrays and frequency selective surfaces (FSS), as well as in the analysis of3 multilayered guided wave structures.

It is believed that the derivations of the Green's function for multi-layered anisotropic
(uniaxial) media, as well as the efficient asymptotic dosed form approximation to the dyadic
Green's function for anisotropic (uniaxial) double-layered grounded slab are novel; and be-
cause it is an efficient solution to a canonical problem, it has applications in a variety of3 disciplines; such as, monolithic microwave and millimeter waves integrated circuits, inte-

71



I
I

grated optics, non-destructive evaluation (NDE), and geophysical prospecting. As men-
tioned earlier, the conventional spectral integral of the Green's dyadic is highly oscillatory
and contains branch points and pole singularities that are on, or close to, the path of in-
tegration. Hence, the numerical evaluation of the spectrum integrals is in general very
time consuming and becomes prohibitively expensive as the separation of the source and
observation points increases in the lateral direction.

The utility of our efficient asymptotic closed form approximation for the Green's dyadic
can hardly be overemphasized.

3 During the Phase II of our research effort we will perform the following

a) During Phase I of our work, we have gained a great deal of physical insight into the elec-
tromagnetic source interaction with anisotropic media. Owing to the closed form expression
for the asymptotic dyadic Green's function for anisotropic double-layered grounded slab,
the effect of anisotropy reveals itself through different mathematical parameters. Because
of the presence of ten parameters (five for each anisotropic layer including the thickness
of the layer) extensive numerical simulation must be performed to completely character-
ize a source excited anisotropic double-layer geometry. We will perform such an extensive
numerical simulation during Phase II.

b) We will extend our dyadic Green's function analysis to include the Greeu's dyadic due to
magnetic point current. This analysis allows us to expand the applicability of our method3 to aperture coupled and co-planar integrated circuit devices.

c) We intend to develop a computer aided engineering (CAE) code to analyze monolithic
microwave and millimeter wave integrated planar elements as shown in Figures 6.1, 6.2, and
6.3. This will include: 1) the analyses of passive microwave and millimeter wave integrated
circuits such as design of arbitrary bends, discontinuities, filters, and couplers, 2) finite
as well as infinite microstrip antenna phased array (including the feeding network), 3)
integrated optical devices such as dielectric waveguide with arbitrary bends, and dielectric
waveguide couplers all in anisotropic uniaxial double-layered grounded slab environment.

d) We will develop a computer code to analyze the integrated optical components which

needs a calculation of the volumetric current distribution. To be more specific, we will ana-
lyze a dielectric waveguide, with arbitrary bends, residing within an anisotropic (uniaxial)
double-layered grounded slab. This configuration is a canonical high frequency transmission

channel of the electromagnetic energy, and its analysis is of great interest to the optical com-
munity. It is noteworthy that because we have an efficient Green's dyadic of the anisotropic
double-layered structure, the only unknown we have is the volumetric current within the

transmission channel, which we will solve for by our efficient conjugate gradient - fast
Fourier transform (GC-FFT) method that we will explain shortly. Nevertheless, because
of the presence of the open boundaries the finite element analysis of this class of problems

is very time consuming; it takes perhaps (10-100) times more computational effort than
our volume-integral formulation which utilizes the newly developed efficient dyadic Green's

ufunction as a kernel.
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e) In the past, we have used the unit pulse function, defined on a regular three-dimensional
grid, to discretize the volume-integral equation. The advantage of this discretization scheme
is that it creates a resulting matrix Toeplitz-Hankel, which greatly facilitates the compu-
tation and storage demands on the computer. Pulse functions however do not provide
continuity of the currents from one cell to another, so it is desirable to consider other func-
tions that do provide this continuity. Recently, we have introduced splines that are derived
from higher-order convolutions of the unit pulse, which, of course, are also defined on the
same regular grid as are the pulse functions. We have also introduced the reciprocal bases
over the same regular grid, which are orthogonal to the spline functions. When we use our
higher-order splines as expansion functions and the associated reciprocal bases as a testing
function to discretize the volume-integral equation, we will retain the desirable feature of
the Toeplitz-Hankel matrix in our system of linear equations as well as the continuity of
the currents.

It is also possible to use higher-order shape functions, that are typically used in the
finite-element method, to discretize the volume-integral equation. The advantage of higher-
order shape functions is that they not only provide the continuity of sources, but also
they can easily conform to the shape of the scatterer, and thereby give a more accurate
discretized version of the continuum. However, due to the irregular three-dimensional grid
producing by this discretization scheme, the resulting matrix may not be in Toeplitz or
Hankel form.

We will utilize both discretization techniques (higher-order splines, and higher order
shape functions) for our volume-integral equation. We will study the advantages of each
method to our problem. We will also look into the use of combination of both discretization
methods to take advantage of both discretization methods. This can be done by using the
finite element shape functions only in the boundary regions and the higher-order splines
in the rest of the body of scatterer. This hybrid method, although it leads to a complex
discretization procedure, is expected to produce more accurate results than the original
higher-order spline technique that makes an staircase approximation of the outer boundary
of the scatterer.

We will also study the degree of the complexity of the discretization procedure and
make a decision in the early stages of Phase II as to which method is more suitable for the
discretization of our volume-integral equation.

f) Conjugate gradient method and its pre-conditional version is a very powerful tool
to solve a system of matrix equations. When it can be combined with the Fast Fourier
Transform (FFT) algorithm, it will create an efficient and powerful computational algorithm
over an affordable computer memory space. We have considerable experience in the use
of the conjugate gradient algorithm and the FFT in both the frequency-and time-domain
in our previous SBIR projects. This efficiency, which does not seem to be present in any
other computational algorithms, is the basis of the use of our new higher-order splines and
reciprocal basis functions which indeed produces a Toeplitz-Hankel matrix.
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We will use the conjugate gradient together with the fast Fourier transform during
Phase II. We will also address the issue of the pre-conditioning conjugate gradient. From our
experience, the pre-conditioning, if used properly, can extensively accelerate the convergence
rate of the conjugate gradient algorithm.

g) One of the interesting features of our newly developed efficient asymptotic closed form
dyadic Green's function is that it is amenable to transient electromagnetic problems for
double-layered anisotropic slab (or half space). This implies that an inverse fast Fourier
transform of the weighted average of our closed form approximation of the Green's dyadic
over a proper frequency band can create a correct response for a prescribed time dependent
electric point current source. It should be pointed out, however, that for the low frequency
components, where the lateral separation of the source and observation points are considered
to be (electrically) small, an efficient numerical algorithm based on singularity removel
technique, should be used to compute the Green's dyadic.

We will set up a transient scattering problem of a perfectly conducting strip within the
anisotropic (uniaxial) slab when a time dependent electric source is located over the slab.

It is noteworthy that our transient analysis will directly be applied for the bandwidth
analysis of the monolithic microwave and millimeter wave integrated circuits and the three
dimensional optical transmission channels.

h) Since the geometry of the proposed model can be very complex, we will explore the
employing of a user-friendly graphical pre- and post-processor interface under X-windows.
This step is a crucial step toward the commercialization of our microwave and millimeter
wave integrated circuit (MIMIC) software product.

i) We have gained a good deal of knowledge about the transputers, and other accelerator
boards that can be installed on the 386/486 workstation. These boards offer large-scale
computing in a workstation environment. We are also investigating the applicability of theIIntel Hypercubes (MIMD), MasPar (SIMD), and WAVETRACER (SIMD) architectures to
the solution of our volume-integral equation. The crucial feature of any architecture that
Is applied to our problem is that it be able to execute the fast Fourier transform (FFT)
very rapidly. We will thoroughly investigate the guidelines that should be followed in order
that our computer aided engineering (CAE) code will be executable on massively parallel
machines, as well as on workstations with the accelerator boards.
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Chapter 7

Appendices

7.1 Appendix A: Eigenvalues and Eigenmodes for General Uniaxial
Media

In this appendix the explicit expression for the eigenmode i, and the eigen vector-wave
Ha(r, kt) for a general uniaxial anisotropic material where (i = etIt + ez.Zi ; i =
It + pZ) will be derived.

As stated earlier in (2.17), the eigenvectors !P2<(p) corresponding to ±+. can be ex-
* pressed as,

1 > >< ( Et,, ± ES'a =(Zae. ± e,,.
+ ±Ht,. + HZ,. = ho, + hz,a )

where ea, h, and eza, h,a are normalized mode-vectors transverse and parallel to z respec-
tively, for the eigenvalues of ±n., and Z. is the mode impedance; and their explicit values
can be found from the source-free solution of (2.7). Thus, after substituting Vt -jkt,
g -jni in (2.14), ett eilt, and Ptt = stIt one will have,

w~oe0 l - k0Po~
WC etIt kk (I x e,,) = tc,, Yc,h,,,

(A.2)

W [O 1- ktkt].(h•xh) = -K,,)Z, weer

where Y, _ -).-.

Because one is ultimately interested in the guided (z-propagating) representation of the
vector-wave, one can introduce a right handed coordinate basis of the form (., k', k") where
the unit vector is defined by the decomposition of k = k'kt + z•;, and l i' =-tx k Let
us now substitute an ansatz (el, hi) for a = 1:

el = I (A.3)
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hi = ix×e,=1'

into (A.2), then one will have

WfOft --- K1 Y1
(A.4)

-W1o (Pt - 2  k') = K1 Z1 ,

which yields

K1 =kotet - Lt k2 ; ZI - -1  (A.5)

where ko = w2e0o1o. Using (2.13), the normalized longitudinal modevector e, h, can be
expressed as,

e =~ hOz ,1 = 0 . (A.6)

As is evident from (A.6) the a = 1 mode is transverse magnetic TM (or E-mode) with
respect to the z-coordinate.

For a = 2, one may substitute

e2 = 14' , (A.7)

Ih2 = z xe2
into (A.2),

" -Wfo (•t 2  k2)=kK) = Y2 ,

I/ W•o/Lt = K2 Z 2 ,(A.8)

which yields

-2 = Vk_2otft - y 2 1 T = 2  (A.9)
P ; Z2  W /ot

Using (2.13), the normalized longitudinal modevector e., h. can be expressed as,
kt

ez,2 0 ; hz,2 = W/1OZ (A.10)

As is evident from (A.10), the a = 2 mode is transverse electric TE (or H-mode) with
respect to the z-coordinate.I The explicit expressions for vector-wave modes of a general uniaxail anisotropic medium
can now be obtained (see (2.17) after incorporating (A.3), (A.5), (A.6), (A.7), (A.9), and
(A.10) into (A.1).
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7.2 Appendix B: Reciprocity and Orthogonality Relations in Anisotropic
Media

In this appendix a set of reciprocity and orthogonality relations for anisotropic media will
be discussed. These relations are useful in the derivation of the dyadic Green's function for
unbounded as well as multi-layered uniaxial anisotropic media.

The Maxwell curl equations for a gyroelectric source excited medium can be expressed
as,

I VxE = -jwpo=H-M
V×H = jw0eo.E+J , (B.1)

where (p0/A, eo0) are the constitutive tensors of the medium, and J ,:id M are electric and
magnetic current sources, respectively. One can introduce an associated adjoint medium
with the constitutive parameters of (p/op+, e0e+), where in the adjoint medium the Maxwell
curl equations can be expressed as,

V x E+ = -jwpo0+H+ -M+

VxHH+ - jwco +.E++J+ . (B.2)

The appropriate reciprocity relation can be sought by calculating V • (E x H+) =
H+ • V x E - E . V x H+ and V • (E+ x H), from (B.1) and (B.2) taking their difference:

V'(E xH+-E÷ ` -H) = + Jwco(E+' 'E-E '+ - E- )

-jw0 (H+ H - H -. +-H+) (B.3)

H+.M+E+E.J+H.M+-E.J+

If the transpose of the permiability and permittivity tensors of the medium are the same
as the permiability and permittivity tensors of the adjoint mtiium, ( I = L+ ; C =

where (--) denotes transpose), then one can identify,

E+..E = E.e.E+ . .I
H+I.H = Hp.-H+ = H.+.H+,

and the first four terms of the right hand side will cancel. Upon introducing a closed volume
V bounded by the surface S, une will have

ifsds.(ExH+-E+xH)=IVdv(-H+.M+E+.J+H.M+-E.J+) . (B.4)

Equation (B.4' i the r :iprocity relation in an anisotropic (symmetric gyroelectric) medium
wherein (A = ; e - ), and the adjoint medium will be the same as its associated medium.
A general uniaxial medium is an special case of symmetric gyroelectric medium.
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The orthogonality of the z-guided vector-wave modes
> 1 Zae, ±e,,, ie -JkP:Fj•cz(B5

H<(kt,r) = ( e)h (B.5)
2r( h,+ h,,

can be inferred by substituting for the divergence operation, V. = (vt + , in (B.3)

and applying the surface divergence theorem to a pair of source free fields of H>(ki, r) and

H>-/(-k', r) [22, pages 174-179]; this yields,

i L ds Vt . (±Zoeo(kt) x h�(k') - Ze3(k') x h,(k,))

3dl i -a (±Z+ eo,,(k,) x h,(k') - ZoeO(k') x ho(kt)) e-JP'(k,-k,)-j(_.±-O)(B.6)

- z + s /dsi.. (±ZeO(kt) x ho(k') - Zoeo(k') x h,(kt)) e-jp(k-k)jz(Ka•K)

The contour integral vanishes because of the radiation condition as p --. ool. Thus one willhave

ha(n + e ) js ds2. (±ZeG(kt) x ho(k') - Z,3e,3(k') x h,(kt)) e-jp(kt-k$) = 0 , (B.7)

which yields,

h, h-.(i xe,,) -: a (B.8)

eo.(h,, x ) = 6,,0 (B.9)

I It is noteworthy that the orthogonality relations stated here do not distinguish between
the modes for +r, and -r.,, which is, of course, the direct result of the reflection symmetry

* property of the medium.

I
I

'The surface divergence theorem is applied to the open surface S here with the radiation condition
implied as p - co.
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7.3 Appendix C: Essential expressions related to < z, z') and gij (•, z, z')

In this appendix explicit expressions for <( z, z') and 4j<(•, z, z') along with the theresidues of the surface wave and leaky wave poles, which are related to the roots of DE

and DH are given. Also, expressions for N`(1), lim-N( , DE( )and

lim,[e-, WDE(O)] which are employed in Chapter 4 to construct the uniform

asymptotic representation of the dyadic Green's function are presented in this appendix.

We first start with TM or (E-mode) terms, •i< z, z'), and subsequently the TE or (H-I> > >
mode) terms, z, z'), will be presented. The functions ,•(,z, z'), and 411<(•,z,z'),

can be expressed as

,> ZN j,E(z , Z, .')g (,z, z') = DE) '(C1

DEW~ G1

Z, ' )? NijHI, Z(• Z,') (C.2)
,z = DH(O) '

where functions Nij,E, DE, Ntt,H, and DH will be defined shortly. Between ,>, and 4< the
following relations hold:

<,, (z,z') = '>(z',z) (C.3)

z<Z(Z,Z') - g,,(zz) , (C.4)

I4>(z,z') = -§<'(Z',) (c.5)

4'and g,(z,z') = -4z(z,z) , (C.6)

" g ( )4 z, z) .(C.7)

I The functions Nij,E, and DE (in view of (2.18), (2.36), and (2.49)) are defined as

' i~(z`)(1 - ej#2(Iz)

NttE(z,z') Z + e m-2K•J2" - [U1 (1 + -+ U2 (1 - e

(C.8)
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m NzE, ' (7 e)(1 + e-j2"2 2'I
Nt'-,E(Z, Z') = 1 + e-J2x2'z2 [U(1+ e-2' (z)) + U2 ( e - j22' (7.z))I

m (C.9)

Nt!.E(Z, Z') = e'(1-- eJ) [Ul (1 _e -,c12') + U2 (1 + (777)

(C.11)

N>z DE() = (0 + j tan 32d2 U2(V), (C.12)

UI(V) Z, (Zo + +Z tan n'dl) (C.1)

U2 (0)= Z2 (Z + JZ0 tan R'd 1 )

and parameters z-, - i, r, , are defined asi ; , ¢=ý n,2 ni = ' ti'" , (C.14

zi - zj = ko(zj-zj) ; di = kod, ; - n, -- ; -=i'te,,g n - ,(14)

and the normalized mode impedance Zi is defined as

Zi = Ii-t (C.15)
fi't

Note that the parameters Ki, and Zi axe respectively normalized to ko and weo, and thus

no = n= .

The residue of i (z, z') at p = , which is associated with the TM (or E-mode) surface
wave or leaky wave mode is given by

Res ((Z z - ,
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3 where

+j~(Z+Z Za tan 1  (C.1[7)+

IKO K1  Cos2 Kd

+V12 ta n tcd2 24+)2 L +42-3~ ±~I (ta ,COJ 2~ o2K (Zl + iZo tan r,'dl)}

3 ~~Also, explicit expressions for N~,() i&. [VT~ d E1,adlm.i['7 D(

are given by 
d

n2- n/ ~ -~('z2)(.8INt~,E(1, Z' Z)= -V 2(-' ( j ýn2( Z)(.8

([.n1 tn~ Vn jrn:iŽ] (1 + e +

f2 1 (1- j~ 2 V -7 n2 (T T=-))

1I -j2Vn n'2 fl2

( nj-+,j J' 2 -n'

Ij(l2tan ý 'j](1 + e~ 2- lzz) +

[/n-- fl '2  n '] (1- e 2  - fl2 (zlý7)n)

I-4-j n2 -f(z-z') -j2 flý 2  W- Z2

ZtE(, Z~)= 1 (C.20)3+ -je2 ý n2 ',I2
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Ita Vn n1 -ll (1 - e3 - +l z-)

Iz, ('I Z Z)+ j2 ]n n -12 (C.21)

C2  C

-3 fl 2  - f
2 (:n2'- n/

N Z E(1,zj~ f - n2 --z')- - ( C.- 2 1)

1a +(zI2Vn 2 J

+ -j/ '2 (1+=--) ) 2 + (C.22)z)

I 1~r 1 2±N~E(~z~zI~l - e 3C 2 ta 222 n'j( l -)( e2 f2 -fl(I

' 1 (i+G' 2V~2 - n~ z-) (C2 2

Ii [ý2 - Z, z -j2 J2 -

+[tan Vn ,n, j, (1 - -j ln 2 .(7z:z)))

7n e ~ (z.Z') (+ -2 VrT-n 2 W- t2)_3 ~~ li + V'2

.([m [Vle fl(1e N,<, -, T4z-) +(

-ý 1 - 2 n 7 -122
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+A2 f2 2 ta fl 2 ?

Urn [V/Yr - N< z, z')] = - e 2  (- -

1t ta n -nj2,(1Cn 2 42-

DE(1) (C) a n ' 4+iVIn,1 l tan Vn,-n'2 2 , (C.26)

and

l imn 1- DE(ý)] [ l C2>' tan ý,n 2 11~2 tan , 'J

(C.27)

Also the following relations exists

Nt~t,E(1,z,Z') = Nt~,E(1,z',Z)

U Ur ~,/TUA-NtE~zz')= ~ir~i/T7+N~tE~zz)(C.28)

limFj 2 ý-N tE (Z, Zz') - NiE(1, d' z) t(ZZIt- <C2

dd
EZ,' Z') = zi ,z,E ,z)
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N>t,E(1,z,z') = -N<,E(1,z',z)

(C.31)
lim. 2  N',(zz') = -rm I- -N< ,I "xtE Nd,E(z, z)

As mentioned earlier, the TE or (H-mode) terms, i (C, z, z'), is given by

,,> NiO,(ý, z, Z')
gi Z' (,Z,') = DH(f) '(C.32)

where the functions Nt,±H, and DH (in view of (2.20), (2.36), and (2.49)) are defined asI
Nt> ei 1 z'( - C 2W 2 ~'137t 1- +--_ 21.•C 2 [vI (1 - eI-,,(T:) + V2 (1 +

(C.33)
and3 D-(ý) = V2 (ý) + j tant•K2 VI(ý) , (C.34)

where

w Vi(ý) = Y (Yo+jYj tanO'dl) ,

(C.35)
V 2 (W Y 2 (Y1 + j Y tan r.'d 1 ),

and the parameter ,~' is defined as

, fl = fl" _,,Qse ; n, ='? _ (C.36)

% S -U P,

3 and the normalized mode admittance Y, is given by

Y = ./--L (C.37)
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Note that the parameters xi, and Yi are respectively normalized to k0, and wjio, and thus
no = no• = 1.

The residue of 4',• (z, z') at p = c,, which is associated with the TE (or H-mode) surface
wave or leaky wave mode is given by

Res(4ý'!(z' ZI) d ,E(,I (C.38)

I w h e r e 
l7=Hn " I =

tanK~d Yon' j,I DH(ý) = JY2 [--!+I (t K - I/ 2(nph))

+ n2it (Yl + J Yo tan r.d-l)

+j Y, tan (tan +cosd d (C.39)
2 2 KO + /I11CS2Kd

+.- tan ,,• -r + L co• 2+ J1

Itn .~2 +- c2(Kpi) (Yo +JiYitann'l'di)]

I Also, explicit expressions for Nt>tH(1), lim&.. K/'-•7 Nt~h(4)],DH(1), and limC_ [.d D11 (fl]

are given by

N'en 2 - n"(.- (1 -j2 f 2 -Z 2 )

1 + e - j2 V - n2'dJ2

L t a t n - ] (1- + (C.40)

[ n n' •fni J (1+ e-j 2 7'2 -n(zI-z•)

I .Q dNwH(•,Z,) - (-'T)1_e-~J2/'2 fl(z, z))

(1-'V/' - n-'2'7-Z)) +

h mZ

I



Vn '23H 2P anV 2 j tan -n -j2 (C.41

3 and

lir 1-Q-eDH(O)l/1 tan Vn 1 -n',dil+ tan Fn12
C-1~( .42) P

IAlso the following relations exist 
(.2

Nt~tH(1,z,Z') = NiH(1,z',z)

lim 1 2 -NH(Z, Z') = lim V1- e2 Nt*,H(Z, Z)
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I7.4 Appendix D: Limiting values of 4f5(ý, z, z') and §'f(ý' z,z') as ý-o

U ~ ~~In this appendix the limmiting values related to 4(z, z' n I•(,z)s-+ hc

are being used in (3.33) will be given.

* Note that

lim X,~ lim Vi-nC

3 li < = Jim(D. 1)

Hence (see (C.1) - (C.11) and (C.32) - (C.39))

lim ~(z, z') -- + e-" (7 e 2 e , D.2

e £ 2

Jim (Z z') el f ~ 2 f-,/n(2zizz) D

Vn-oo, + Vn2

Jim 4,'>(z, z') --4ec/-217-, + - +i P2 e-iV/-n(2zii-z+Z')) , (DA4)

Also, as ao the following relationsext

C'(z,Z') = 4'>t(z'Z) ,(D.5)

4>(z,z') = ýt'(Z'Z') ,(D.6)

gzi(z,z') = -4;t<(Z'Z) ,(D.7)

gt.(z,z') = -§4z~(z',z) ,(D.8)
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4(z,z') = 9"ZZ),(D.9)

"(zz)= ý`Z,),(D.10)

and
ý;,t (Z'ZI) §;,t (Z'Z')(D.11)
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