
AD-A256 254

KL- 11"-92-163
Final Technical Report
June 1992

AN ASSESSMENT OF KBSA
AND A LOOK TOWARDS THE
FUTURE

The MITRE Corporation

Melissa Chase and Howard Reubenstein DTIC
•!•LtECTE I

S EP3 0 1992 jj

APPROVD FOR PUB/C RE.ASE,," 0/SrT/B&IUTIw NII IMITEoD.

• 92-26108

Rome Laboratory
Air Force Systems Command

Griffiss Air Force Base, NY 13441-5700

•.• ,) • J% 4~;j

This report has been reviewed by the Rome Laboratory Public Affairs
Office (PA) and is releasable to the National Technical Information Service
(NTIS). At NTIS it will be releasable to the general public, including
foreign nations.

RL-TR-92-163 has been reviewed and is approved for publication.

APPROVED:

DOUGLAS A. WHITE
Project Engineer

FOR THE COMMANDER:

JOHN A. GRANIERO
Chief Scientist
Command, Control & Communications Directorate

If your address has changed or if you wish to be removed from the Rome
Laboratory mailing list, or if the addressee is no longer employed by
your organization, please notify RL (C3CA) Griffiss AFB NY 13441-5700.
This will assist us in maintaining a current mailing list.

Do not return copies of this report unless contractual obligations or
notices on a specific document require that it be returned.

Form AproveREPORT DOCUMENTATION PAGE o .070401
Pot Igpak &I~ -_ eie Vakaneie cviciaby, aindkvmd wwV" di1w Sa, r comt~v we qpw ria.earies. ,.wew " 0wir ca spectefrs

c~,,~c1U i etOTTk, M M ubd~t W*a ek~mwSn~Duaguf it Operttrt ait -Reports, 121 5 JCetf.son
Doms Hiawat~. Sk" 1 204. AAbQan VA "21-4= i Uto Ito Was~ d MitagurpVt ard BLO Papewoc PR~x Pe~m(0704-O.0 ,wsaVmo-r DC 20503

1 AGENCY USE ONLY (Leave Blank) 2- REPORT DATE a. REPORT TYPE AND DATES COVERED

4. TITLE AND SUBTITLE 5. FUNDING NUMBERS
AN ASSESSMENT OF KBSA AND) A LO00K TOW,ýRDS THE FU!TURE C - F19628-90-C-O0Ol

PE - 62702F

a AUTOR(S)PR - 5581
6. ATHO(S)TA - 27

Melissa Chase and Howard Reubenstein WU- 53

7. PERFORMING ORGANIZATIION NAME(S AND ADDRESS(E) 8. PERFORMING ORG'ANIZATION
The MITRE Corporation REPORT NUMBER
202 Burlington Road KES U.91.7
Bedford MA 01730

9. $PONSORINGIMONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING

Rome Laboratory (C3CA) AGENCY REPORT NUMBER

(;riffiss AFB NY 13441-5700 RL-TR-92163

11I. SUPPLEMENTARY NOTES

Rome Laboratory Project Engineer: Douglas A. White/C3CA (315) 330-3564

1 2a. DISTRIBU11ON/AVAJLABUIIJY STATEMENT 12b. DISTRIB~llON CODE

Approved for public release; distribution unlimited.

13. ABSTRACT Cmun.,7 203wa)

The Knowledge-Based Software Assistant (KZSA) project has concluded its first research
phase and is moving on to the second phase. This report describe, a review conducted

of: the short-term goals (as set out in the initial 1983 KBSA report) and how well they

have been met, whether the mid-term goals should be reevaluated and how to proceed

towards these mid-term goals. To facilitate integration of the various KBS facets,

and to make effective use of available funding, reusable capabilities and supporting

technologies within the KBS project need to be identified and pursued. This report

proposes that this identification can be made from a knowledgable position now that

pr.Jgress has been made on most of the required facets.

14.SUBJECTTERMS Knowledge-Based Software Engineering, Soitware is NUMBER OFPAGES

Engineering, Automatic Programming, Formal Specifications, 44

Artificial Intelligence, Project Management I &PRICE CODE

17. SECURITrY CLASSIFICATION 1 a SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT

UCASIIDLNCLASSIFIED U;NCLASSIFIED I u/L

NSN 75401-28114MSim ama ram ?CA (Ppv Ž 89)
Pretworilo by ANSI Sid Z39 18

TABLE OF CONTENTS

SECTION PAGE

1 Introduction I

2 Phase I Goals: Have they been met? 3

2.1 Framework 3
2.1.1 KBSA Framework 3
2.1.2 Activities Coordinator 1

2.2 Project Management 5
2.3 Requirements (i

2.4 Specification ,
2.5 Development / Performance 9

2.5.1 Development 9

2.5.2 Performance 10
2.6 Phase 1 Summary 10

3 Phase 2 Goals: Are they still appropriate? 11

3.1 Concept Demonstration 13
3.2 ARIES 15

3.2.1 Requirements 15
3.2.2 Specification 16
3.2.3 Directions for ARIES 16

"3 Development / Performance 17
3.4 Project Management 19
3.5 Phase 2 Summary 20

4 The Final Phase 21

5 1 AK 23

6 Reusable Capabilities and Products 25

7 Missing Technologies 27

8 Future Plans 29

lit~

SECTION PAGE

List of References 31

A6ooosiou lor

NTIS GRA&I
DTIC TAB
Unannounced
Justifticatlon

By
Distribution/

Availability Code@
Avail and/or

Meut Special

TrIC QUALITY m8WBC1D 3

iv

SECTION 1

INTRODUCTION

In the initial Knowledge-Based Software Assistant (KBSA) report [1], a three-stage de-
velopment plan for constructing a KBSA is set out. In the first phase, individual facets
(each corresponding to a lifecycle activity) are to be developed and an overall framework
is to be defined. In the second phase, systems integrating several facets are to be demon-
strated and more advanced versions of individual facets are to be developed. In the final
phase, a full KBSA, integrating all facets, is to be constructed.

In addition to this overall develpment plan, the report envisions five stages of develop-
ment for each facet:

* database stage - the contents and properties of the various artifacts involved
in a software development are represented in a central repository to facilitate
computer-based access and querying of the information. The initial phase of the
KBSA was to be bootstrapped into the software development process by serving
primarily as a documentation tool.

* inferer~ce stage - inference rules are represented and used to automatically fill-out
the database and answe, queries.

* action stage - development activities can be represented, recorded, manually
applied and replayed.

* planning stage - the KBSA automatically invokes certain activities to achieve
development goals.

* knowledge acquisition stage - tools are created to facilitate the acquisition of
domain models required for intelligent KBSA processing.

The actual history of the KBSA program is close to the overall three-phase develop-
ment plan, while the construction of individual facets has diverged from the five-stage
development vision.

Phase one research has made the most progress on developing inference stage capabilities
(e.g., KBRA constraint management, limited classification, contradiction detection) and
action stage capabilities (e.g., KBSpecA high-level editing commands) while providing
basic required database stage support. In retrospect, leap-frogging the robust database
repository stage was a natural occurrence since blindly representing software artifacts
would have been less effective without a clear understanding of the kind of processing

the database needed to support. Thus, the research has first explored techniques for
intelligent process assistance.

To support programming-in-the-large and achieve more relevance to current practice,
the database stage needs to be made more robust. This will facilitate KBSA integration
by forcing the development of shared database meta-models. By becoming a repository
for a realistic amount of software development information, the KBSA will be able to
be integrated into current development climates and cause renewed attention on the
assistant aspect of KBSA. This will also provide a forcing function to address multi-user,
cooperative work issues.

2

SECTION 2

PHASE 1 GOALS: HAVE THEY BEEN MET?

The general goals for the first phase of the KBSA were to develop and demonstrate
individual facets. Prototypes of most facets, excepting testing and documentation, have
been created and demonstrated. Concurrently, a KBSA framework was to be developed.
Framework design, accompanied by some prototyping, was also carried out during the
first phase.

It was also expected that guidelines and standards to facilitate facet integration would
be developed. Facet development has been on an individual basis and only in the second
phase are these issues being considered.

We now consider the short-term goals for the framework and the individual facets.

2.1 FRAMEWORK

In the KBSA report, the framework is envisioned as the basis for the development and in-
tegration of the facets. It consists of an activities coordinator, a knowledge-base manager,
a wide-spectrum language, and a set of utilities (e.g., user interface, inference engine).
One of the early KBSA contracts was the KBSA Framework effort, which attempted
to look at the entire framework envisioned in the report. A later contract focused on
developing a formalism for activities coordination.

2.1.1 KBSA Framework

The initial thrust of the KBSA Framework was the design of a framework architecture [2]
and a prototype to demonstrate these architectural ideas [3]. The proposed framework
provided a loose integration of facets within a distributed object management system.
The framework consisted of a central knowledge-base and activities coordinator, a client
handler for each facet (to handle communication between the facet and the knowledge-
base), a user interface, an inference engine (to help handle the data objects), and a
wide-spectrum language. Each facet has its own framework and wide-spectrum language.

In the KBSA Framework prototype the knowledge-base and some activities coordination
was handled by a "home-brew" distributed object management system developed in
CLOS. The inference engine was provided by LogLisp, the wide-spectrum language by

3

ObLog (essentially a loose combination of CLOS and LogLisp), and the user interface by
Emacs modes.

After the initial definition and prototyping, work continued on developing a grar hical user
interface and defining requirements for the configuration management needs of KBSA.
As part of the interface work, KUIE (KBSA Use Interface Environment), an X Windows
toolkit, was built on top of the CLUE and CLIO toolkits.

The initial framework design did not have a significant impact on the rest of the KBSA
program, although the lessons learned during the project were important. The Frame-
work contract helped force agreement on low levels of integration (i.e., adoption of Com-
mon LISP and X Windows), suggested areas of future effort (e.g., configuration manage-
ment), helped prod the two major developers to think about integration at the level of
specification languages, and suggested that loose coupling of facets would not be adequate
for building an integrated KBSA.

In retrospect, it appears that it was premature to expect significant framework develop-
ment so early in the KBSA program. First, underlying technology, such as commercial
object-oriented database management systems and high-level LISP-based X toolkits, was
not available. Second, the requirements of individual facets were poorly understood, mak-
ing it difficult to develop an information model to facilitate integration. Finally, the new
software development process itself was poorly understood; only towards the end of the
first phase was research in formalizing activities coordination (which can provide the
basis for specifying this process) carried out.

Surprisingly, much of the fundamental research in defining a KBSA framework took place
outside the KBSA Framework contract. The major facet developers defined their own
wide-spectrum languages and considered issues of compatibility and integration (spurred
on by the needs of the Concept Demonstration). They also developed their own inference
engines and knowledge-based repositories.

2.1.2 Activities Coordinator

The KBSA report singled out the Activities Coordinator as the novel component of
the KBSA framework and support system. The report recognized that in a large soft-
ware development effort, coordinating the activities of agents (both human and software)
would be central. It called for a formalization of such coordination through developing
a language to describe types of coordination and an interpreter of that language, which
could then monitor project development in compliance with the policies described in that
language.

4

The line between the Activities Coordinator and the Project Management facet was
not clearly drawn in the KBSA report. As described below, this led to the Project
Management facet developing its own coordination and communication protocols.

Late in the first phase a contract was awarded to develop a genuine formalism for activ-
ities coordination. The formalism developed under this contract is called "transaction
graphs." Transaction graphs provide a notion for describing activities. A transaction
graph is an undirected graph with largely independent computations at the nodes (activ-
ity descriptions) and transactions along the arcs (corresponding to the interactions of the
activities). The visible state of computations can be controlled (which provides the basis
for presenting information to the user) and there are various operations to compose, con-
dense, and expand graphs. These graphs are executable specifications. A demonstration
was developed: an election was defined using transaction graphs and this specification
was executed. Although the current mechanism for defining transaction graphs is crude
(there is no graphical facility), the formalism itself looks promising as the basis for KBSA
coordination.

2.2 PROJECT MANAGEMENT

The short-term goals for the Project Management facet were to develop a formalism for
project management knowledge, use this formalism to build a knowledge base of project
tasks, develop a message handling capability for communicating about task assignments
and progress, and extend the formalism to include project management procedures and
inference capabilities (for task tracking).

The initial Project Management Assistant (PMA) project was one of the early KBSA
contracts and ended prematurely owing to budget cuts [4]. The work was later picked
up under the KBSA PMA for Ada Systems contract [5].

The PMA made significant strides in formalizing project management knowledge: an on-
tology of project management concepts was created (i.e., structural models for products
and tasks), a formalism for temporal reasoning was developed, and steps were taken to-
wards formalizing the construction of structural models. In the second PMA prototype,
the knowledge-base of project tasks was made persistent both by a facility for saving
and loading project models and through use of the Software Lifecycle Support Environ-
ment (SLCSE) relational database. A message handling capability was demonstrated
in the context of problem reporting. Finally various decision support procedures were
implemented: cost estimation, scheduling, resource allocation, and progress monitoring.
Two of the most novel features are the PMA's ability to evolve consistent task and prod-

uct structures, and the ability for managers to define policies which are then monitored
automatically by the PMA.

As with the Framework, the PMA suffered from the lack of the Activities Coordinator.
According to the KBSA report, the PMA is supposed to use "the coordination and
message handling capabilities of the activities coordinator to carry out its work." Since
the PMA effort preceded the Activities Coordinator research, the PMA had to develop
some of these low-level capabilities instead of focusing solely on the higher-level policy
management issues.

2.3 REQUIREMENTS

The short-term goals for the Knowledge-Based Requirements Assistant (KBRA) included
developing a formal requirements language. A simple requirements ontology whose basic
concepts include: activity, event, data, transition, and constraint was developed. The
thrust of the KBRA was exploring how computer-based support could be provided for
the process of transforming initial informal requirements descriptions into formal repre-
sentations based on both the above ontology and an underlying reasoning system that
provides semantics to the ontology.

To realize the goal of acquiring informal descriptions and representing them more pre-
cisely, the KBRA put emphasis on supporting multiple presentation input types with a
corresponding underlying multi-paradigm representation. The presentation types sup-
ported by the KBRA include:

A notepad which was meant to serve as an on-line working notebook for the
capture of the most informally formulated requirements. This notebook sup-
ported keyword recognition to help tie these informal statements into the other
presentations.

0 Various diagramming capabilities including: context (interface) diagrams, sys-
tem function diagram, internal interface diagram, functional decomposition di-
agram, and data flow diagrams.

* A spreadsheet used in capturing non-functional requirements, e.g., performance
parameters.

* A state transition diagram.
* Activation tables.
* A requirements document output presentation.

6

"Fihe above multiple views were integrated via a common underlying hybrid representa-
tion system called SOCLE. Among the capabilities SOCLE provides, one key integration
feature is contradiction detection and explanation which is highlighted in the spreadsheet
presentation. When an analyst enters parameters into a spreadsheet that are inconsis-
tent with the underlying constraints, SOCLE detects this and assists in correcting the
problem.

Tile multiple presentations are integrated into the SOCLE system via a recognizer and
presenter architecture. Each presentation translates itself into a set of underlying SOCLE
constructs. Further, each presentation type can extract (recognize) the necessary data
to reconstruct an instance of the presentation from the SOCLE knowledge-base. In this
way, data can be shared across multiple presentations.

The KBRA did not aggressively explore knowledge reuse. Components were generally
available for reuse simply via cut and paste. Certain components were explicitly hooked
into a decision table construct which permitted a form of classification to instantiate
more specific component instances when appropriate (according to the rules of a selection
decision table).

Another short-term goal for the requirements facet was intelligent editing and managing
of requirements. The presentation interface supports this goal by providing for initial data
acquisition. No strong capabilities to support a review process were provided. l)ocument
generation is one tool to assist in running a review process, however, the requirements
document is a generated output presentation and not editable in its own right.

No support was developed for the short-term goal of requirements testing. Testing in
general has not been strongly addressed in Phase 1.

An evaluation of KBRA [6] indicated that this first phase tool had limitations to be
expected in a research prototype. One comment, however, which needs to be addressed by
more than a natural evolution of the KBRA functionality is the observation that KBRA
supports no methodology (or therefore all methodologies). This appears to be even more
the case in K131A because of the support for multi-paradigm representation. In addition
to general methodological guidance, the KBRA will need to incorporate guidance as to
which presentations are most appropriate for particular kinds of information.

7

2.4 SPECIFICATION

Tihe short-term goals for the Knowledge-Based Specification Assistant (KBSpecA) begin
with the creation of an executable specification language. An expressive wide-spectrum
specification language GIST was created. However, GIST is not fully executable and
therefore various sublanguages have been developed with more limited expressive power
but better execution properties. Refine is one such language with reduced expressive
power and complete compilability. Along with Refine and GIST (and SOCLE from the
KBRA) other representational formalisms that have been developed and experimented
¢ith (by USC/ISI the KBSpecA contractor) include AP5 and LOOM. Consensus on a
language inspired by the features of the above languages and representational formalisms
has yet to be achieved. Strategies for integrating these formalisms have begun to be
explored and are discussed in the context of ARIES.

The KBSpecA adopts the notion of transformational development and thus provides a set
of high-level editing commands (HLEC) for transforming GIST specifications. HLECs
embody different semantic actions that can be taken on a specification, e.g., adding a
parameter, bundling relations onto a new type, and unfold invariants. HLECs have been
classified according to their syntactic effects on various semantic representations (e.g., as
splicing a link into a class hierarchy) and thus can be indexed and accessed according to
this generic classification for easier application.

In concert with the development of the KBSpecA, a methodology for specification evolu-
tion by combining parallel elaborations has been developed [7, 8, 9J. This methodology
encourages a separation of concerns while developing a specification allowing issues to
be addressed independently. While work remains to be done on supporting the merging
of these separately developed elaborations, this is a compelling methodology, one that
should support reuse and specification maintenance.

The other KlBSpecA short-term goals include specification wellformedness checking, spec-
ification testing, and a specification paraphraser. A GIST simulation capability is present
and has been tied into a summarizer [10] that aids in understanding simulahion traces.
A static GIST paraphraser [11] has also proved successful. This paraphraser has experi-
mented with the idea of annotations to capture ontological information that is important
for understanding and presumably could be of use in compilation and execution.

8

2.5 DEVELOPMENT / PERFORMANCE

In the KBSA report, the functions of the development and performance facets are not
sharply distinguished: the development facet is "to aid the creation of a production
quality implementation" while the performance facet is to "help to create and maintain
efficient programs that meet their performance requirements." The short-term goals for
the two facets both differentiate between them and underscore the interrelationships. In
terms of development history, both facets were awarded to the same contractor and the
research and development of the facets show a strong synergy.

2.5.1 Development

Several of the short-term goals for the development facet were linguistic: to develop a
wide-spectrum language (capable of representing a system design from formal specifi-
cation to optimized implementation), a transformation language (capable of describing
transformations from the abstract to the concrete constructs), and a property language
(capable of describing the properties of program segments). In addition, the facet was to
be capable of interactive mechanical development, i.e., apply development steps requested
by the user, and be capable of proving properties as needed during development.

The prototype development assistant, KIDS [12], fulfilled these goals for a subset of pro-
gramming concerns, combinatorial algorithms. The wide-spectrum language underlying
KIDS is REFINE. Formal specification typically consists of developing a domain theory
of types, functions, and laws (e.g., distributive laws) and then developing a specifica-
tion in terms of that domain theory. The interactive development consists of applying
algorithm design tactics (selected from menu) to the specification. The design tactics
include simple problem reduction, divide-and-conquer, global search, and local search.
This application essentially specializes an algorithm theory to create one appropriate to
the given problem in the specification. Then optimization techniques can be applied,
along with data structure selection. These are really a part of the performance assistant.

KIDS includes a deductive inference engine, RAINBOW II, which is able to reason about
REFINE expressions. RAINBOW II is able to prove whatever properties are required
during the development process (to support the application of algorithm design tactics
and optimization).

9

2.5.2 Performance

The short-term goals of the performance facet were to conduct symbolic evaluation (to
propagate efficiency estimates and perform symbolic analysis), provide data structure
analysis advice, and offer program decomposition advice.

The prototype performance estimation assistant (PEA) achieved most of these goals
[13]. The PEA operated on specifications in the PERFORMO language, essentially an
extended subset of REFINE. PERFORMO is a single assignment functional language
with a general iteration mechanism.

The PEA achieved the first two goals (and carried out others, which will be discussed
later). Using the KIDS inference engine, the PEA propagates assertions about program
segments and conducts a performance analysis that is useful for optimizations and data
structure selection. The PEA is able to perform various optimizations: simplification,
finite differencing, iteration (i.e., selecting an efficient way to realize the general itera-
tion mechanism), and loop fusion. The PEA carries out semi-automatic data structure
selection, that is, the user specifies the implementations of some objects and the PEA
selects the implementations for the rest (based on the specified implementations, algo-
rithm and data structure design knowledge, and the optimizations). The PEA does not
offer modularization advice, but much of the modular structure of the program is created
automatically by KIDS through refining the specification by applying tactics.

2.6 PHASE 1 SUMMARY

Two facets were not contracted out in Phase 1: the testing facet and the documentation
facet. The short-term goals of the testing facet were to develop a test-case maintenance
assistant. The short-term goals of the documentation facet were to get documentation
on-line in a partially formalized representation. As discussed later, development of both
of these facets will be necessary to achieve the goals of Phase 2.

In general, Phase 1 has succeeded in creating a research base of ideas and techniques
that appear to be useful. These ideas need to be both elaborated and scaled-up. Elliot
Soloway is probably on target, however, in saying that a great deal of effort must now go
into inserting KBSA into an actual development cycle. Research on refining these issues
should continue, but system integration, repository and domain model population, and
interface issues are key to success of the next phase.

10

SECTION 3

PHASE 2 GOALS: ARE THEY STILL APPROPRIATE?

The general goals for the second phase of the KBSA are to continue facet development
and produce a more integiated system. As discussed above, KBSA is ready to address
these goals but must beg",i to address technology transfer issues [14].

A hallmark of the KBSA approach [15] to software development is that software main-
tenance is intended to be performed at the specification level. While this is a beautiful
idea in theory, it needs to be closely examined. Maintenance at the specification level
is an idea that seems to be initially predicated on the notion that software development
can be divided up into a front-end and back-end process. The front-end process is semi-
automated with large amounts of human input. The back-end process is a repeatable,
automated process. Maintenance occurs by modifications made in the front-end process
and an automated repetition of the back-end process.

Balzer's extended automatic programming paradigm (shown in [16] and figure 1) cor-
responds to the intended KBSA paradigm. In this paradigm there is a relatively clean
front-end in which a specification is acquired, validated, and maintained. The back-end
includes an interactive formal development of a high-level specification to a low-level spec-
ification, an automatic compilation process and a tuning process. We might also add an
embedded systems integration process to the back-end. Note that this back-end process
is far from automated. This would indicate that the astounding productivity gains that
could be attributed to specification-level maintenance may not be forthcoming, however,
dramatic gains may still be expected.

Productivity gains will be enabled due to a number of factors. Even thought the back-
end process is not fully automated, it can be instrumented to capture the development
steps. Automated redevelopment can be replaced with semi-automated redevelopment
and siructured guidance to a (re)developer. Furthermore, the information captured in a
tool assisted development process will provide invaluable documentation that will help
alleviate the program understanding burden associated with maintenance.

Two areas of attention are indicated to realize these productivity gains. First, a clean
separation of "compiler-like" processing and semi-automated design processing needs to
be maintained. The goal of this is to define the frontier of compiler technology so that
KBSA can work on pushing this frontier closer to processing the results of the front-end
processing. Also, this could motivate looking at the area of non-standard compilation

11

Decision a

Normalidaf

Sp A",

HDmI4pnw

sorcem

Figure ~ borWN .BaersEtneAtoaiPogaummig aadg

12rleo

processes, i.e., compilation processes that use more than the standard input of source
code, e.g., design parameters such as time/space tradeoffs or degree of error checking
required. Second, automated back-end rederivation strategies need to be developed in
order to minimize the burden of the required redevelopment process. The difference
between compilation and assisted rederivation comes in turn around time for maintenance
activities. With compilation, turn around time is the time required for a system build,
e.g., overnight. With assisted rederivation, turn around requires human intervention to
make a potentially large number of decisions, however, the process itself is reliable in
that the assistant is tracking potentially complex impact and interaction relationships.

3.1 CONCEPT DEMONSTRATION

The KBSA Concept Demonstration forces issues of facet integration, underlying knowl-
edge representation integration, and to some extent system platform issues. The issue of
common representation services is critical to the other integration issues. One apl)roach
would be to standardize on a knowledge representation and reasoning system for the
entire KBSA system. This would be premature, however, espe(ially since it is miclear
that a single system could satisfy all reasoning requirements.

Currently, the successful use of meta-models to facilitate interface communication has
been demonstrated [17I. This approach to hybridization of knowledge representation
leads one to think about a facet server architectural model. A prerequisite for successful
integration of capabilities in this fashion is publishing of ontologies and schemata that
define the information captured in various software development artifacts.

Another reason for publishing ontologies and scheniata is that it will permit access to the
rel)ository of informntIion about a specific system development. This access is required
for two important purposes ksee figure 2). First, in keeping with the assistant nott•on.
it is important that all artifacts under development eventually by editahle by sianidardi
technology. This is a necessary requirement to permit human users to perform I)ro(essing
that, is beyond the KI3SA. Second, and perhaps more importantly, is that. op)ening uI)
repository Interface st andards will)(ermit the use of reverse engineering tools to populate
software artifacts. The uise of reverse engineering will be critical in allowing thle lK S.,
to be used on legacy software systems which in turn is critical to successful tetchnolhgy
transfer.

In general, the KBSA program needs to think about capturing an init i' vertical software
development scenario of reasonable size. The data provided I)y this scenario will provide a
test. base for new tools and cornlponents. It ('an also pro\'ide a baseline for extperniental iOll

1 3

Fi91 Ed's.,b

CALS Decuiment Mwr~ugn bw.Egnhru a

Figure 2. An Open KBSA System

14

among alternative facet capabilities.

Another issue which the Concept Demonstration will address relates to Abbott's critique
of KBRA 161. We believe that Abbott may have confused multi-paradigm representation
with multi-methodology support. While the former is a positive (and almost certainly)
necessary attribute, the latter can be confusing, especially as Abbott notes that sup-
port for many methodologies really amounts to support for no methodology. Currently,
KBSA supports multi-paradigm representation and no particular methodology has been
developed. The Concept Demonstration is addressing this lack of methodology problem
[18] and should produce a candidate methodology for KBSA interaction. The candidate
evolution transformation and refinement methodology must be explored, supported, and
documented convincingly to be accepted and used in practice.

A crucial issue that needs to be addressed in the Concept Demonstration, though prob-
ably after the concept is illucidated for a single analyst/designer/programmer, is that
of computer-supported cooperative work and concurrent access to development artifacts.
Another advantage to opening up the KBSA repository is that this will permit address-
ing issues of concurrent access. Team support issues should be studied, particularly in
the context of current CASE tools, however, the underlying goal of creating a coherent
environment for a single user is difficult enough that it bears full attention.

3.2 ARIES

ARIES is a pair-wise integration of KBRA and KBSpecA. This section will discuss the
mid-term goals for the requirements and specification facets separately, as they were laid
out in the initial report. Then we will discuss implied goals and requirements for ARIES.

3.2.1 Requirenients

The mid-term goals for the requirements facet included support for reuse of domain
knowledge. The representation of such knowledge is being addressed in ARIES through
the concept of folders. The notion of folders includes some ideas about a protocol for
importing and exporting knowledge. The process for actually reusing (manually or au-
tomatically) such knowledge is in a weaker stage of development.

Another goal was support for the process of requirements transformation and refinement.
By importing the notion of evolution transformations (i.e., ETs, an extension of the high-
level editing command notion) from the KBSpecA, ARIES has a powerful representation
formalism for requirements transformations. ETs have probably been the most successful

15

transfer of technology from the specification assistant. Work has progressed to produce
a characterization of ETs in terms of there generic effects on a node/link representation
of different kinds of semantic information. This characterization has proven useful in
searching through and organizing the ET catalog. An impressive accomplishment is the
integration of the presentation framework with ETs. A capability has been developed
which permits a user to make graphical changes to a presentation, have ARIES translate
these changes into a description of tihe generic kind of change made, and then have ARIES
figure out an appropriate ET to apply in order to semantically achieve the graphical
change [19].

Two mid-term goals which went unaddressed are the creation of an automated require-
ments walk-through system and of a requirements tutor. InI general, K1SA needs to
produce b)etter tutorial material. The Concept D)emonstration will partially address
these needs.

3.2.2 Specification

The mid-term goals for the specification assistant were partially satisfied in Phase 1 and
little additional work appears to have been required to further address them. Behavior
explanation was implemented in the GIST behavior explainer [10). Rapid prototyping is
addressed partially by the high-level implementation language REFINE, but there is still
not a good vertical connection from requirements to rapid prototype. The integration of
KIDS into the Concept Demonstration will provide such a scenario. Verifying satisfaction
of requirements, e.g., providing traceability from requirements to specifications, appears
to have been somewhat neglected. For example, ARIES's ET library does not appear
to have been augmented with a significant body of transformations that map (model)
informal requirements constructs down to formal specifications.

3.2.3 Directions for ARIES

In the integration of the requirements and specification facets the process of design,

specifically higher-level design, needs to be accounted for more explicitly. (Design can
be divided into high-level and low-level design. KIDS assists in some of the low-level
design chores.) hligh-level design involves: system and software architectural design, the
incorporation of considerations due to non-functional requirements into the system struc-
ture, allocation of resources, and functional composition (i.e., assigning system functional
components to satisfy functional requirements).

Requirements guide the evolution of specifications through a process in which the speci-
fications become increasingly operational. The process is evolutionary and not a form of

16

direct compilation of requirements into specifications (and specifications into implemen-
tations). This process is also high-level design.

Part of the support for the design process requires providing a library of reusable spec-
ifications as targets for realizing system requirements. One decision of high-level design
is an explicit modeling step where it is decided that a particular formal specification
adequately models certain pieces of the requirement. Precise specifications are hard to
write, but when written well are good candidates for reuse.

Another important piece of functionality to support this process of evolution is rationale
capture. Rationale provides a context that defines why particular ETs were appropriate.
Capturing this context is necessary to facilitate automated replay. One of the other pay
backs for this capture is that it provides an additional source of requirements and domain
knowledge.

ARIES provides some multi-user (not necessarily concurrent) support via the folder mech-
anism which permits capturing multiple viewpoints of the same problem. The higher
level folders have also defined a common viewpoint, the ARIES metamodel, which per-
mits integration of the KBRA and KBSpecA capabilities. Currently, folders are most
like namespaces in that they provide a way to manage potentially conflicting viewpoints.
More work can be done to address parameterization of folders to allow them to cap-
ture cliche/schema knowledge that has been identified by many researchers as critical to
expert design/specification/requirements capabilities.

Support for the capture of requirements test scenarios for purposes of validation is another
tool that might be integrated into ARIES's acquisition component. This capability should
be integrated with the provisions for reuse, e.g., test scenarios associated with certain
folder components can be reused when a folder is incorporated into a system description.
Eventually, folders should propose important testing issues and test scenarios should be
generated automatically to respond to these issues.

3.3 DEVELOPMENT / PERFORMANCE

Second stage contracts for the development and performance facets have not yet begun
(although further work on performance is slated to start soon), but in some respects the
initial contracts had already begun to address some of the mid-term issues.

One of the general mid-term goals is a tighter integrition of facets. KIDS and the
PEA are already integrated. Both are built on top of REFINE, share an inference engine

17

(RAINBOW II), use the same specifications, and share some of the same transformations.

Some of the more specific mid-term goals were also addressed by KIDS and the PEA
during the initial contract. The mid-term goals for the development facet were to carry
out automated development (create a sequence of development steps to achieve a simple
goal) and to adapt previous developments through automated replay. KIDS carries out
impressive semi-interactive developments, and work is proceeding on encapsulating de-
velopment steps in larger strategies, which will allow the user to make a smaller number
of higher-level decisions. KIDS is also able to carry out a limited form of replay (by
carrying out syntactic matching) [20].

The mid-term goals of the performance facet were to augment domain models to cover
performance analysis, analyze control structures and other optimizations, and provide
performance advice for real-time systems. The PEA already uses KIDS's domain models
to help in its performance analysis and performs some control structure optimizations.

Although KIDS and the PEA have made significant advances, they do not fully realize
the KBSA mid-term goals for the development and performance facets in two significant
ways. First, the programming problems that KIDS and the PEA address are relatively
small. It is crucial to begin addressing larger problems in order to understand how these
systems scale up, and to refine future goals if necessary. Second, KIDS and the PEAS
use their own domain models (i.e., their domain theories and knowledge of algorithm
design). The KBSA report appears to assume that there is a single domain model used
by the entire KBSA, but in reality, the different facets have developed their own. Yet,
there may be inferences that can be drawn from the specifications (arid domain models)
produced by ARIES that could yield the kinds of annotations that the PEA exploits
in data structure selection. Merging, or at exploiting, these models is an issue to be
explored.

Although KIDS and the PEA operate as a unified system, there is a separation of con-
cern: the PEA is essentially an advanced compiler and KIDS turns specifications into
algorithms. As we have discussed above, we believe this type of separation is appropriate
for KBSA. To carry it out further, some of the human intervention that is needed by
the PEA should be pushed further back into KIDS and its domain theories. That is,
information needed to make inferences about bounds, containment, etc., should be sup-
plied early in the specification process and the knowledge bases should be augmented to
take advantage of this information (so the inferences to support optimization and data
structure selection can be made). In this way, some of the initial data structure selections
that are made by the programmer (and then propagated by the PEA) could be made by
KIDS.

18

Finally, the development facet needs to begin addressing certain less algorithmic pro-
gramming issues, e.g., computations with state, exception handling routines, interrupt
driven programs, concurrency and security issues.

3.4 PROJECT MANAGEMENT

Work on the project management facet has not continued, so this discussion will differ
from that of the other facets. The mid-term goals for this facet were to suggest simple
management decisions (requiring weighing of evidence and detailed models of tasks, but
still a localized decision process), to generate or modify plans and procedures, and to
allow simple knowledge acquisition.

As discussed earlier, the Project Management Assistant suffered from the lack of a gen-
uine Activities Coordinator. This meant that there was no way to develop executable
specifications that could carry out the coordination activities implied by project manage-
ment policies, nor was there a good formal language for specifying software process and
management policies. The work on configuration management, which will use the activi-
ties coordination language described above, will provide a good test for this language. If
it, is successful, this language could provide the basis for specifying management policies
and the automatic generation of appropriate events. For example, when a portion of code
is completed, checking in a "released" version could automatically trigger updates to the
project management knowledge base (that a milestone is completed) and send messages
to the test team that the code is ready for testing. Handling this kind of communication
in an automated way, linking the project management facet with the other KBSA activ-
ities, needs to be achieved before realization of the project management mid-term goals
can be accomplished.

The first two mid-term goals essentially ask that the project management facet provide
more automated decision support, and that is a reasonable goal. The last goal, knowledge
acquisition, is concerned with developing project management policies and plans. When
we have some sense of what is like to develop software under this new KBSA regime,
we may see that there are different project management concerns than those we are
used to. Managers may be concerned with new kinds of tasks, not concerned with
others, have to think about different kinds of resources, and may structure projects very
differently. Making it easier to define these policies, and plans for executing them and
resolving difficulties, may involve developing new management primitives. Perhaps, given
a specification of a software development process and various constraints, it might even
be possible to automatically generate policies and plans.

19

3.5 PHASE 2 SUMMARY

The mid-term goals for the testing assistant involved knowledge-based test generation.
Eventually, it was thought that testing would disappear as a separate activity and be
redistributed into validation and development (correctness by construction). In the near-
term, testing will be required as a form of validation and to verify integration of KBSA-
generated code with existing systems.

The scope of Phase 2 appears to have been diminished due to funding constraints. As
originally intended, Phase 2 would have broadened the capabilities of the original facets
and addressed integration issues. Rather than staying in a predominately basic research
mode, however, it is time to address hard issues of technology transfer. KBSA has
certainly generated a wealth of ideas, the incorporation of which into current software
development processes and tools could have significant impact.

20

SECTION 4

THE FINAL PHASE

In the initial report, the final phase of KBSA development was viewed as involving the
installation of more intelligence and automatic processing into a KBSA that, at the end
of Phase 2, was to be an integrated broad coverage system. Current plans for Phase 2
address concerns of integration. It is likely that most of the facets, by the end of Phase
2, will also already incorporate some sophisticated intelligent processing.

The tasks most likely to be emphasized in the final phase should concern integrating
KBSA into current software development environments and developing at least one re-
alistic system with KBSA and at the same time developing a set of domain models to
support that development. In other words, KBSA is likely to be smart enough at the end
of Phase 2. Technology transfer issues, breadth of knowledge, and multi-tqer interface
will be most important.

21

SECTION 5

1 AK

What are the new problems that will arise in the first year after a KBSA (1 AK) becomes
operational? There will be the obvious needs for continued support and adaptation, but
at this point K13SA should have software product support.

The new problem introduced by the KBSA will be a shift from programming problems
to knowledge acquisition problems. Knowledge acquisition problems are different than
programming problems in that they are bounded by the properties and experience of the
real world. In one sense then, these bounds (unlike those of general software development
which is not governed or limited by any laws of nature) make the acquisition problem one
which people are better equipped to deal with. It is also true that knowledge acquired
regarding particular domains can become asymptotically more reliable as experience in
the world is obtained and recorded. However, people will not be familiar with what is
required, for example, to populate a KIDS domain theory. Training and methodology
will be required to help people state the knowledge required to build systems under a
Kt3SA approach particularly when they are used to thinking primarily about how to state
solutions to the problem as opposed to describing the knowledge they used to ariive at
those solutions.

As has happened before in the history of automatic programming, a successful KBSA
will result in an altered definition of what it means to develop software and new tools
will be required to automate this new process.

2

23

SECTION 6

REUSABLE CAPABILITIES AND PRODUCTS

In this section we discuss some of the products and technologies that have come out of
the KBSA project. In the next sections we will discuss technology gaps and comment
on future plans. We discuss what supporting technologies exist (or are implied by the
current KBSA) that are general enough to be used in multiple facets? What intermediate
products can be produced in developing the KBSA?

The clearest success of the KBSA project is the commercial spin-off from Kestrel Institute,
Reasoning Systems, that produces the Refine and Refii.ery systems. It is interesting to
note that while Refine •vas ,i'ginally developed as a wide-spectrum high-level executable
specification language, Reasoning has found its market niche by integrating Refine with
parser-generator technology and producing a reverse engineering workbench and proto-
type reverse engineering systems for about six widely used languages. This is especially
interesting in light of the fact that reverse engineering capabilities are not present in the
current KBSA prototype systems or Concept Demonstration. A number of KBSA asso-
ciates have undertaken work on their own to develop sophisticated reverse engineering
capabilities. Reasoning has garnered many high-technology clients and it should also be
noted that, as of this writing, it is highly probable that the 1912th CSG/TAC at Langley
AFB will adopt Refinery as their reverse engineering platform for their Tactical Software
Maintenance Environment (TSME).

The PMA has been integrated into the SLCSE environment [5] providing SLCSE with
an appropriate project management schema an, providing the PMA with a persistent
repository.

Each facet produces a formalism, an ontology, of the part of the software development
process and the artifacts it is concerned with. The Concept Demonstration has used
meta-models for translation between representations. A meta-language for describing
formalisms could be produced and representation of these meta-models should be en-
couraged. Certain formalisms could be agreed upon in a preliminary form to facilitate
sharing of information between facets.

Production and release of these ontologie5, of process and product (e.g., like that em-
bedded in the SLCSE database schernas) could facilitate the integration of facets and
other tools into the KBSA framew.,,k. Furthermore, if tools trat these meta-models as

25

parameters and are data-driven from them, the resulting tools (e.g., intelligent browsers
and paraphrasers) will be reusable for tasks different than that for which they are ini-
tially developed. These formalisms need to be related, however, to emerging 1)OD stan-
dards, e.g., CALS information exchange standards, the CIM (Corporate Information
Model) technical reference model [211, and the PCTE reference model for framework of
cornputer-assisted software engineering environments [22].

The general presentation-based interface may prove to be a separable and useful tool. The
presentation interface should be abstracted and parameterized so that a new presentation
(with edit, display, and knowledge-base update functionality) can be written in a modular
fashion. Reasoning Systems has done just this in a more limited fashion with D)ialect
and Intervista.

The current KI3SA architecture will require an object-oriented project database (OO)13).
Since the KBSA facets make strong use of knowledge representation and reasoning tech-
nology, this 00)13 will need to feed information into user local reasoning systems. It, is
neither practical or desirable to run these reasoning systems at a global project-wide level.
Rather, users need to be free to work in their own local workspaces with the assistance of
KBSA knowledge-based tools. As users work in their local workspace their product may
be inconsistent with parts of the global state. These problems should not stop the user
from developing their current product but need to be addressed when integrating local
work with the global OODB. The architecture of such a distributed reasoning system
would be an innovative development.

The front-end of the KBSA could stand alone as an intermediate product, a conceptual
analyzer. (For use by people who, e.g., produce RFPs and review proposals.) This would
provide a transferable technology short of requiring a fully integrated, vertical KIBSA
product. One requirement for such a tool is a fully available textual presentation for use
in review. Support for commentary and editing would also be appropriate in order to
hook into an actual review process.

26

SECTION 7

MISSING TECHNOLOGIES

It is appropriate, as integration efforts begin, to consider the requirements of multi-user
KBSA support. Some of these issues begin to be addressed by work on configuration
management [23]. Ilowever, as indicated above, more attention needs to be paid to
defining the KBSA repository. Tools to support larger numbers of users must also ad-
dress the problem that if the tool does not permit the users to do certain tasks then
the users will circumvent the system, rendering the invariants under which the system is
designed invalid. As indicated in figure 2 on page 14, KBSA must evolve an open repos-
itory approach so that users will be able to supplement KBSA capabilities with other
tools and techniques and still be able to incorporate their work into a KBSA controlled
development. This open repository approach will also facilitate facets transferring in-
formation among themselves. For example, as discussed regarding the development and
performance facets, ARIES may have information that could be used to help make data
structure selections decisions.

Multi-user support could very usefully include a comment consolidation and review tool.
Concurrent review would be supported with PMA monitoring on top of an IBIS-like
rationale model [24, 25]. The tools would support on-line negotiation and debate. This
would also facilitate acquisition of decision rationale.

In order to develop realistic tools, realistic data must be available to support experi-
mentation. This requires reverse engineering an existing system to populate the KBSA
repository for an already fielded system. Acquiring this data by bootstrapping a KBSA
system into an actual initial software development is going to be hard. The system must
undergo a vertical integration and provide realistic tools in each facet in order to be
accepted. Further, given the software backlog and maintenance problems, there may be
much more demand for maintenance environments than new development environments.
Work on recognition and systems to allow assisted "parsing" of existing artifacts (e.g.,
SRSs, design documents) will facilitate reverse engineering. KBSA needs to include a
reverse engineering research component.

Documentation and testing facets should be developed, e.g., for assistance in mainte-
nance. llumans will have to write code and integrate it with machine written code. A
documentation facet can help determine where and how to perform this integration. Since
the entire development is no longer correct by construction (and since blind-confidence is

27

not necessarily appropriate), testing of the resulting code will be required. In order to ad-
dress current needs, provisions for managing test suites and analysis tools to develop test
cases (perhaps based on specification information since the specification defines various
input spaces) should be provided.

Knowledge acquisition tools will need to be developed to populate KIDS domain theorie's,
ARIES folders, and other representations. The knowledge required to populate these
representations, above and beyond basic problem domain knowledge, may be implicit
problem solving knowledge that will be hard to elicit from KBSA users. An opportunity
to develop sophisticated acquisition tools exists, however, since this knowledge is being
used in the context of knowledge-based tools which can potentially provide assistance
regarding the kind of knowledge they expect or that would be useful in a particular
problem solving situation. For example, in an application of KIDS I it may be possible to
observe that if KIDS could prove a particular theory then it could finish a derivation.
Explaining this need to a user and allowing them to provide information to help provw
the theory would be a powerful elicitation strategy.

28

SECTION 8

FUTURE PLANS

In the proceedings of the 6th K13SA cont'erence (actually KBSE-6) a number of papers
by various members ot Andersen Consulting's CSTaR lab [26, 27, 28. 29] outline some
visions for the future of KBSA. While many of their comments are well taken, we also
wish to provide a different perspective regarding some suggestions.

One observation that is made about KBSA is the risk of being eclipsed by CASE tech-
nology (due mainly to an all or nothing vision of KBSA). To avoid this, it hat hneen
argued that KIHSA technology should be inserted into CASE environments filling holes
ii these environments. This is called a KBSA "point-solution" approach where K1ISA
technology can access and store data in a CASE repository. An alternative approach is
to have a KBSA repository with ('ASE point-solutions that can access and store data
into the K1lSA repository.

We would argue for the insertion of CASE into an open K BSA framework io that: ('ASI"1
functionality does not have to be duplicated and so K1lSA takes advantage of the fainiial
feel and capability of ('ASE but with the potential to automate and assist. If the KHlSA
framework was open and supported use of current tools to populate representaliol)s,
then we could have incremental adoption of KBSA functionalitv. ('ASV repositories
are Iin ited anll(cannot accommodate the vision of KB1SA program development and
ipecificat ion iliai ntenance, i.e., KBSA requires a broader range of information than (AS F
tool.. KIS, development will be limited if it is designed to fill gaps ii ('ASV technology
Putting ('ASE into KBSA oin the other hand means KBSA caii take advantage of thle
advancing industry-state while continuing to push the state of the art.

Another underlying therie of commentary ha.s been towards adapting K1 1SA to a((oi ,
no0datfe more traditional management informat ion system (MIS) needs. KBSA should

be careful [lot to lose its more general systems approach and become a system for sup-
porting MIS development for two reasons. F2i rst, there are already huge market forces
directing atteintion at this pmroblehm. Second, the 11.) goals/needs indicate a need fo~r
help in real-tilme svstem oldevelopment which requires different kinds of assistance (e.g..
foc us on process versus data) and which is being neglected iri lie r arkelplace partliall v
due to the difficultv of the problem.

As we havy, previowdly discuissed, scalability issues to support programming-ir t he- larg,
(!)11.) certainly need to be addressed. 'his implies support for grouip coopierativ'e work.

29

When thinking about PIL, one is also led to consider system versus pure software needs
and K13SA needs to be -xtended to take more general system problems into consideration.
particularly the need to reason about system /software architectures.

Reverse engineering has been an indirect success story of the KBSA project. Building on
KBSA technology, many good results in reverse engineering have been achieved. How-
ever, these results must now be integrated back into the KBSA system. For example,
some amount of code will still have t0 be written by hand and integrated into the (senn)-
automatically generated K1USA code. Therefore, both sets of code must be navigabl'

by reverse engineering/program understanding tools. Furthermore, large budgetary out-
lays are going towards system maintenance activities. KBSA needs to create a gradual
revolution by provi(ling support to installed systems and gradual conversion to a KBSA
paradignh based software system. Ini other words, K1USA should not neglect the problemI
of program maint enance.

Finallv, the ob-ser'vat ion has been made that KBSA is incompatible with current practice
This is true but it should not he an a priori reason for d~spensing with the KBSA
approach. Current practice is not unassailable. K1USA is a revolutionary approach and
so it should not be surprising that it might require a change in the way business is done.
W\•at needs to be balaniced is the risk of the cost anid acceptance criteria (e.g., retrair•iig
Call be hugely expensive) versus the large potential gains.

31(1

LIST OF REFERENCES

1. C. Green et al Report on a knowledge-based software assistant. Technical ieport
RAD('-TR-83-195, Kestrel Institute, 1983.

2. S. Iluseth et al. KN1SA framework (phase 1). Technica' lReport RAD('-II-88-201,
H loneywell Systems and Research Center, 1988.

3. S. Ituset h et al. K13SA framework users manual. Technical Report , hloneywell
Svstems andt Research ('enter, 1988.

.1. It. Jullig et al. KBSA project management assistant. Techni nal ca leport
iRAlI)'-TR-87-78, Kestrel lstitute, 1987.

5. M. D)aum and R..1uttig. K owledge-based project management assistant for AI)..\

svstemis. Tectuhnical Report R A 1)('-TR-90-4 1., Kestrel D)evelopment ('orporat ionl,
1990.

6. 1). Abbott. KBSA's requirements assistant and aerospace industry needs. In
t'roc(Ildings of th 411h AIn nual Knolvlcdgf-Basrd Soft warc As.,istanft C'onfr re li'c,
1989.

7. M. Feather. ('onstructing specifications by combining parallel ejaborations. IHKL
7'ra1sa'tio,., or Softivarr Eninf rinq. 15(2), 1989.

8. M. -eatlher. Specification evolution and program (re)transforination, In
Prorcrdins of th 5th Ann ual Knou'ldgc- lIa.q d Soft u'a r(A ssit.4•t ul Confi' iw,,

1990.

9. M. I"cather. D)etecting interference when merging specification evolutions. In .5/•

In trr7nlLional 17orks.hop on .SofU0'arf .Spfcification and lDfriq. 1989.

10. W. Swartow . T'he ;IST 1)behavior explainer. .rd Nathonal C'oift r(n,' on A iit ji Il
Int~if lbq n, 1983.

11. W. Swartout. (,IST J g slish generator. In 2 ,d National Co0ff r~e nc7 oC A Y1Hijw il
l711(lliq(1nCC. 1982.

:3 l

12. D. Smith. KIDS: A semi-automatic program development system. IEEE
Transactions on Softiare Engineering, September 1990.

13. A. Goldberg et al. KBSA performance estimation assistant: Final report.
Technical report, Kestrel Institute, 1988.

14. D. Elefante. Knowledge-based software assistant technology transfer consortium:
Status report 1. Technical Report RADC-TR-90-414, RADC/COES, 1990.

15. R. Balzer, T. Cheatham, and C. Green. Software technology in the 1990's: Using a
new paradigm. IEEE Computer, November 1983.

16. W. Sasso and M. DeBellis. A software development process model for the KBSA
concept demonstration system. In Proceedings of the 5th Annual Knowledge-Based
Software Assistant Conference, 1990.

17. G. Williams and J. Myers. Exploiting metamodel correspondences to provide
paraphrasing capabilities for the KBSA concept demonstration project.
Proceedings of the 5th Annual Knowledge-Based Software Assistant Conference,
1990.

18. W. Sasso and M. I)eBellis. A software development process model for the KBSA
concept demonst ration system. Proceedings of the 5th Annual Knowledge-Based
Software Assistant Conference, 1990.

19. W. Johnson, M. Feather, and D). Harris. The K13SA requirements/specification
facet: ARIES. Proceedings of tht 6th Annual Knowledge-Based Software
Engineering Conference, 1991.

20. A. Goldberg. R~eusing software developments. In Proceedings of the 4th Annual
Knowledge-Based Software Assistant Conference, 1989.

21. Draft. Technical reference model for corporate information management.
Technical report, (INI, September 1991.

22. ECNMA. A reference model for frameworks of computer-assisted software
engineering environments. EC(MA "I'R/55, ECNIA, December 1990.

32

23. J. Kimball and A. Larson. A change and configuration management model for the
KBSA framework. Proceedings of the 5th Annual Knowledge-Based Software
Assistant Conference, 1990.

24, B. Ramesh and V. I)har. Representation and maintenance of process knowledge
for large scale systems development. Proceedings of the 6th Annual
Knowledge-Based Soft ware Engineering Conference, 1991.

25. M. Lubars. Representing design dependencies in an issue-based style. IEEE
Software, July 1991.

26. M.)eliellis, W. Sasso, and G. Cabral. Directions for future KBSA research.
Proceedings of the 6th Annual Knouwledge-Based Software Engineering Conference,
1991.

27. W. Sasso. Motivating adoption of KBSA: Issues, arguments, and strategies.

Proceedings of the 6th Annual Knowledge-Based Software Engineering Conference,
1991.

28. G. Cabral and M. DeBellis. Domain-specific, representations in the KBSA concept
demo. Proceedings of the 6th Annual Knowledge-Based Software Engineering
Conference, 1991.

29. W. Sasso. Encouraging the adoption of KBSE technology: What needs to happen
first? (panel). Proceedings of the 6th Annual Knowledge-Based Software
Engineering Conference, 1991.

'4) & GO V @ MI M NT P RI NT IN G O PPe lc $ I CE 2 6 O • - t n

33

