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ABSTRACT

A technique of producing signals whose energy is concentrated in a given region
of the time-frequency plane is examined. The degree to which a particular signal is
concentrated is measured by integrating the Wigner distribution over the given region.
This procedure was put forward by Flandrin, and has been used for time-varying fil-
tering in the recent work of Hlawatsch, Kozek, and Krattenthaler. In this paper, the
associated operator is studied. Estimates for the eigenvalue decay and the smoothness
and decay of the eigenfunctions are established.
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SECTION 1

INTRODUCTION

It is well known that the time-frequency characteristics of a square integrable signal
cannot be arbitrary. For example, no such signal can be both time and band limited.
The Heisenberg uncertainty principle provides another quantitative restriction on the
joint time-frequency behavior of a square integrable signal. These facts indicate that a
signal cannot have all its energy concentrated in a finite region of the time-frequency
plane.

Nevertheless, in many applications it is important to use signals whose time-
frequency characteristics are highly localized. Among other things, the work of Landau,
Pollack, and Slepian [1,21 produced a rigorous development of band limited signals that
are as concentrated as possible within a prescribed timespan. More recently, there has
been interest in finding signals that are localized in general regions of phase space via
methods that keep time and frequency on an equal footing (see the papers of Daubechies
and Paul [3,4]).

In this paper, we study a localization technique that uses the Wigner distribution
to measure the degree to which a signal is concentrated in a particular region. This
leads to a self-adjoint localization operator that is easy to study in terms of the Weyl
correspondence. Under the Weyl correspondence, a function of two variables-called
the symbol--is associated with an operator on functions of one variable. The symbol
of the localization operator is simply the indicator function of the given region in the
time-frequency space. The eigenfunctions of this operator with large eigenvalues span
a subspace that can be used to determine the component of a general signal that
is concentrated within the given region of the time-frequency plane: one computes
the projection (either orthogonal or weighted by the eigenvalues) of a general signal
into this subspace. This procedure was put forward by Flandrin [5], who derived a
number of useful results, including Lemma 4 below. It has since been developed in
the context of time-varying filtering (see for example the papers of Hlawatsch, Kozek,
and Krattenthaler [6,71). This paper is devoted to the further study of the localization
operator described above. The asymptotic properties of the eigenvalues are studied and
it iq established that they are O(k 3 / 4 ). In addition, the eigenfunctions with nonzero
eigenvalues are shown to have faster than exponential decay in both the time and
frequency domains. This, of course, leads to a statement regarding the smoothness of
these eigenfunctions. In particular, we show that they are analytic. In the last section,
some numerical examples are provided.

I I I I I !1



2



SECTION 2

THE WEYL CORRESPONDENCE

The basic properties of the Weyl correspondence that we will need are collected in

this section; for a thorough treatment, the reader is referred to the book of Folland [8].

Let f,g E L2 (R). A general time-frequency shift of f is

p(T,a)f(t) = Je 2xiat f(t + T).

The cross-ambiguity function of f and g is

A(f,g)(r,o) = (p(7r,a)f,g)

= J irae2 f f(t + r)g(t)dt

= J e2 'iasf(s + r/2)g(s - T/2) ds.

The value of A(f,g) at a particular point is the cross-correlation between a particu-
lar time-frequency shift of f against g. The ambiguity function is therefore a time-
frequency cross-correlation between two functions. The Wigner distribution is the
two-dimensional Fourier transform of the cross ambiguity function, thus giving it the
interpretation of a time-varying spectrum. The Wigner distribution can be written as

W (f, g) ( 1) = J e-21rirf(t + r/2)g(t - r/2) dT.

Several useful properties of the Wigner distribution are catalogued below.

THEOREM 1. Let f,g E L 2(R). Then

(i) W(f,g)(ý,t) E L2(R2) and IIW(f,g)jj 2 = -Ifj12 ugll 2,
(ii) w(f,g) E Co(R2 ) and JiW(f,g)11o. < 11! 11 1gll,

(iii) W(g,f) = W(f,g),

(iv) W(f, )(Ct) = W(f,g)(t,-ý), and
(v) W(p(a, b)f, p(a, b)g)(ý, t) = W(f, g)( -b, t + a).

The Weyl correspondence uses the Wigner distribution to define a correspondence
between functions of two variables and operators on L2(R). It is defined, via duality,
by

(Lsf,g) = /.(Lsf~g) S(ý, t) W(f , g)(ý, t) d~dt

where f, g E L2 (R) and S(ý, t) is a function with appropriate decay properties. S(ý, t)
is the symbol of the operator Ls. The following theorem of Pool [91 is useful.

3



THEOREM 2. A symbol S(ý, t) E L2 (R2 ) gives rise to an operator Ls that is Hilbert-
Schmidt on L 2 (R). Moreover, the mapping S • Ls is a unitary operator from L 2(R2 )
to the Hilbert-Schmidt operators on L2 (R).

LEMMA 3. Ls is self-adjoint if S(ý,t) is real valued.

The following result was derived by P. Flandrin in [5], based on results of Janssen
[10]. We will follow the development in [8].

LEMMA 4. The eigenfunctions of the operator Ls corresponding to a radially symmetric
symbol S are:

h ( 21/4 -1 - ) t2d. e -2r12

) (t VT _2,5'c'dt]

PROOF: Theorem 1.105 in [7] shows that

2(- 1 )k' .- (2!/T7rZ)J-LIk)(47rI z12). for j > k

W(hj,hk)( ,t) =

I 
r - 2, 9r zI12  2

(jL-k) ) 
9

2(-1)J. 'IC- V J• (4r, lz-2), for k _>j

where z = t + i2 and L(') is the associated Laguerre polynomial. Set r = I and note
that

(Lshj, hk) = JfS(r)IV(hPhk)d~dt

0, forj k
S(0) d2d

(r S,,, ) rdr, for j=k.
(-1 ~ ~ ~ (47 r(r )~2  (1)

Hence

A, = (-1)J47 S(r) -2CrTL()(4r )rdr.
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SECTION 3

LOCALIZATION VIA A CUT-OFF

The localization operator we are concerned with is Lx,, where X0 is the char-
acteristic function of some bounded domain in the t - ý plane. We will assume that
0 c [-B, B] x [-T, TJ. Note that

(Lx 0 f,g) - JjW(f,g).

Lx11 is self adjoint since X& is real valued. Pool's theorem implies that Lx0 is Hilbert-
Schmidt. Hence there is an orthonormal basis 01,02,... of L 2(R) and real numbers
A1, A2,... such that Lx0q~k = Akbk. The Hilbert-Schmidt norm of Lxn is (Ak 12

101, the measure of Q. We will assume that the eigenvalues are arranged in order
of decreasing absolute value. It is easy to check that the largest positive eigenvalue
corresponds to the maximum energy an L 2 function can have within the domain Q. The
corresponding eigenfunction would then be a time function with energy as concentrated
as possible within Q. Our principal aim in this paper is to study the decay of the
eigenvalues of LX0 and the smoothness properties of the eigenfunctions.

Several properties of the associated kernel will be of importance.

LEMMA 5. The kernel of the operator Lx, is given by the equation

Ss+i,K (s, t) S +f(• t) e2,ri(s9-t)C dý

and has the properties

(i) K(s,t) =_O if Is+tŽ >2T and

(ii) if the cross-sections Ql of Q in the ý direction consist of at most M
intervals, then IK(s,t)( <_ CM

PROOF: The formula for the kernel is well known (see [8]). The kernel can be written
as

s+t.
K(s,t) =F

where

F(r1 , 1) = e

5



Item 1 follows from the observation that jt 0 if ItI > 2T. We now verify item 2.
By assumption, the cross-section is the union of at most AM disjoint intervals: Qt =
UL=[i, [#i] for some integer L < Al. Therefore one can estimate that

Ct Ze7ri(aCk +Ok )n sin(7r( 3k - ak)rl)
< , sin(7r(#k-- ak)7r

z~ 7 77~
2L 2M

77 1 + 1 7,71+_ <T
since sin(Ax)/x < . The estimate only needs to be verified when Is + tI < 2T.
In this case,

Is - t± + 2T > Is - tI + tI _2 21sl.

Using this and the estimate for F(r1 , t) yields

IK(s,t) I < CM
is- ti+ 1

CM
- 21sl + 1 - 2T

for all large s. The estimate in the theorem follows easily by adjusting the constant as
necessary.

For domains Q with piecewise C1 boundary, we can show that Ak is 1 The
proof is a modification of Weyi's classical work on the asymptotics of eigenvalues of
integral equations. The following lemma contains some useful standard facts about the
Weyl correspondence. Again we refer the reader to [8] for the proofs.

LEMMA 6.

(i) The operators corresponding to S(ý, t) and S(ý - ýo, t - to) are unitarily
equivalent.

(ii) Suppose the symbols S1(ý,t) and S2 (ý,t) are related by an orthogo-
nal change of variables. Then the corresponding operators are unitarily
equivalent.

We will first prove that Ak is O(3-) for domains Q of the following form:

(,) Q = {(•,t) : a(t) 5 ý 5 /(t),t E [-T,TII
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where a(t), 0(t) are C1 functions with vanishing endpoint values. The kernel associated
to the symbol Xn(s, t) is:

K(s,t) = e-i(s-t)[a+I•](• t ) sin(ir[a - #](2-•t )(s - t))
r(s -t)

Moreover, it is easy to check that K is a Lipschitz function whose gradient DK exists
a.e. and satisfies the inequality

IDKI < C a.e. (2)

LEMMA 7. If fS is of the form (*) then there are symmetric finite rank approximations

kN(s,t) ZaQXQ

where Q ranges over squares of the form

{(ý,t) : i/N < ý <_ (i + 1)/N,j/N < t < (j + 1)/N} - N 2 < ij < N 2 -1

with the property that

if IK(s,t) - kN(s,t)12 dsdt is 0(1/N). (3)

PROOF: Set

(Q- I K(s,t) dsdt.
IQ-I J-

The symmetry of the kernel K forces symmetry of kN. Let R = UQ. Then

f IK(s, t) - kN(s,t)12 dsdt = f Ij I(s, t) -kN(s,t)12 dsdt

< ZIQI I IDKI2

using Poincare's inequality [11]. Since K(s, t) is supported within the strip Is+tI < 2T,
equation (2) yields the estimate

R IK(s,t) - kN(s,t)12 dsdt < N (4)

7



The mean square error over the exterior of R can be handled as follows:

, 12 12 <

iI.2R IK - kNI = I,2KR JK dsdt <N (5)

in view of lemma 5. Putting equations (4) and (5) together yields the estimate in
equation (3).

In view of Satz III of Weyl's paper [111, one has

A4 N2+1 +.- _ C/N.

We will apply this inequality to N/2 where N = [A/kTT-1/2]. (Here [ denotes the
greatest integer function.) This yields:

4(N/2)2- +1.. + A2 < 2C/N.

Since the eigenvalues have been arranged in decreasing order, the left-hand side of the
above inequality is greater than or equal to 3N 2A2. This yields an inequality of the

form A• < C/N 3 . Clearly 11N is 0(1/v"k). These remarks imply that Ak is O(k3-•4) for
domains with property (*). We now use a cut and paste argument to derive the result
for general 0 with C1 boundary.

LEMMA 8. If K'(s, t) and K"(s, t) are two symmetric real kernels in L2 (R2 ) with

AkI<_C and I< l_

then the eigenvalues of K(s,t) = K'(s,t) + K"(s,t) must satisfy the same estimate:

tAkI 1 C for some constant C.

PROOF: Satz I of Weyl's paper [11] implies that

IA2k+1 I _< IAk+l I + JA1+ I
for all positive integers k. From this it is straightforward to verify that the eigenvalues
of K(s, t) have the required decay property.

THEOREM 9. If Q is a bounded domain with piecewise C0 boundary, then Ak is 0( -1

PROOF: Clearly, such an Q can be decomposed into a finite union of nonoverlapping
sub-domains fl = Uk 2 k where each 2k can be put into the form (*) after a rigid motion
in the plane. By lemma 6, each L... has eigenvalues with the sought-after decay
property. Lemma 8 then implies that L., also has the same property.

This estimate is in fact sharp, at least for annular regions.

8



PROPOSITION 10. Let 11 = {(•, t) : 6 < (ý2 + t2 )1/2 < R} where 0 < e < R. Then

0 < limsup k 3/4 Ak < 00.
k-0oo

PROOF: According to lemma 4, the k-th eigenvalue is

R

Ak = (-1)k4r I exp(-2rr 2 )Lk(4rr 2 ) rdr.

The following classical asymptotic expansion for Laguerre polynomials, valid for
x E [c', if] with 0 < c' <if, will be essential [12, Theorem 8.22.2]:

7i/ 2 x1 /4 kl/ 4 exp(-x/2) Lk(x) = cos(2(kx)1/2 - ir/4) (1 + a,(x)k-'/2 + O(k-'))

+ sin(2(kx) 2 - 7r/4) (B(x)k-1/2 + (k-')

Applying this formula with x = 4rr 2 yields

lAkI = k-'14 10 (k) + k- 3 / 41l(k) + 0(k-5/4) (6)

where
R

Io(k) = 23/27r1 /4 j r 1/2 cos(4(kr)1/ 2r - ir/4) dr

and
R

II(k) = 23/ 2 irl/4 I r1/2Al(4 7rr2) cos(4(k~r)l/2r - ir/4) dr

+ 23/2r"1/4 I rl/2B1 (41rr2) sin(4(kwr)1/2r - 7r/4) dr.

Consider the behavior of Io(k). Using a double-angle formula, one has

1o(k) = 2 3 /2i"tr/4 r1/2 cos(4(kir)l/ 2 r) dr + 23/27r1/4 r1/ 2 sin(4(kwr) 1 /2r) dr.

These are the Fourier cosine and sine integrals of the smooth function ri/2 on the
interval [E, R], evaluated as 4(kr) 1/ 2. As such, both integrals are 0(k-1/ 2). A similar
argument shows that the integrals in lI(k) are 0(k-1/ 2 ) as well.

9



Finally, with a little more care one can show that

lim sup k/ 2 Io(k) > 0.
k-oo

In fact, write the function r 1 / 2 = e(r)+(r'/ 2-_(r)), where t(r) is the linear function that
interpolates between the endpoint values of r 1/ 2 at c and R. The function r1/ 2 -1(r) is a
Lipschitz function on the real line with support in [E, R). Consequently, the Fourier sine
and cosine integrals of this function evaluated at 4(kr)1/2 are O(k- 1). It is therefore
enough to show that the integral

Ao(k) = ? (eir/4 j t(y) exp(4i(kir)1 2 r) dr)

has the property that
lim sup k/ 2Ao(k) > 0.
k-oo

This is easy to show directly.

For general domains, we obtain the weaker result that the sequence of eigenvalues
is not absolutely summable.

PROPOSITION 11. The series E Ak is not absolutely convergent.

PROOF: It is well known that W(Ok, 01) is an orthonormal basis for L 2(R2 ). The
equations fffl W(Ok, 0j) = 6WAk imply that Xn = , AjW(¢k, 0k) in L2 (R2). On the
other hand, if E IAki < oo then E AkW(¢k, 0k) would have to converge uniformly to
an element of Co(R 2) (see theorem 1 part 2). This is clearly a contradiction.

We now examine the smoothness and decay of the eigenfunctions. We assume that
11 is an open set contained in a rectangle [-B, BI x [-T, TI of which all cross-sections
in the ý and t directions consist of at most M intervals. We now examine an equation
of the form L,.0 = A0, where A is a nonzero real number and 4 e L2 (R). Fubini's
theorem implies that

AO(s) = JK(st)¢(t)dt

holds for all s E R\Z, where Z is some set of measure zero. Lemma 5 yields the estimate

IAOs~l:5 C - .+2T 1()I
IA¢(~l-<I + ISl I-f-2T

<_____ C'

ISI 1-- Is0 1

10



for all s E R\Z. This last estimate implies that 0 E Loc(R). Now define

E(S) = sup

Note that E'(s) is even and decreasing in Jsj. The quantity JA]$(s)I can now be estimated
as follows:

C + _-2TIAB(s] _< is +----i -s-2T [6(t)dt

4CT
s +1(KsI - 2T)-Isl+1

for all s E (R\Z) n {s' : )s'j > 2T}. Therefore, given any b > 1, there is an so such that
if Isj _> Iso0 and s C R\Z then

E(IsI + 2T) < •E(Isl).

Iterating this estimate yields

E(IsI + 2nT) < (Is 1).

It is straightforward to check that

I1(s)l < Cb-IsI/(2T) Vs E R\Z. (7)

As a consequence, ý is smooth and has all its derivatives in L2.

Now, by theorem 1 part 4, we have that

JJ W(qk,¢j) = Jf W(Ok,4j) = Akbkt

where fl = {(•,t) : (-t, ) E f0}. Hence Lxj4?k = Akqk, and by the preceding discussion
e is smooth and has all its derivatives in L 2. Now for a given sj,d n 0f

dsn L,=,

Using the estimate analogous to equation (7) for € with b >> 1, one has I4(•)I <
ce-4 "11. Then

I dn? < 2C ode-4 -f(21rý)n dn

n! dsn 183 - n! J
< C F(rn) C

n!2n+l 2n+ln-
Hence the power series of 4 at s = sl converges in some interval around sl. Because of
the symmetry in the role of 4 and 4, the same observations hold for 4?. The preceding
discussion is summarized in the following theorem.

11



THEOREM 12. Suppose Q is an open set contained in the interval [-B, B] x [-T, T]
with the property that all its cross-sections in both the ý and t directions consist of at
most M intervals. Then:

(i) for any b > 0, there is a constant Cb such that

14(s)l < -CbebsJ Vs, and
k i <5Cb-b", w

and
(ii) 0 and ý are analytic and have all their derivatives in L2 .

Note that (1) actually implies (2) in theorem 12 by the Paley-Wiener theorems
[13], although we have chosen to give the elementary argument.

It is instructive to consider the case when S1 is a ball centered at the origin. It is
well known that, in this case, the Ok are Hermite functions (see lemma 4). The Hermite
functions h,(t) in lemma 4 will satisfy estimates of the form h,(t) < Ce-(')t2 for
any c > 0. It is directly evident that they will then satisfy the weaker inequalities in
theorem 12. This theorem states that this weaker decay statement holds for general
regions in the time-frequency plane. We do not know whether these estimates can be
improved.

12



SECTION 4

NUMERICAL EXAMPLES

For illustration purposes, we provide four numerical examples of time-frequency
localization. These examples are obtained by discretizing the kernel in the integral
representation of the operator given in lemma 5. We consider localization on domains
of the form of a "zigzag," a disk, a rectangle, and a parallelogram, as indicated in
figure 1. Note that while the operators here are all Hermitian, so that they have real
eigenvalues, they do not generally have real eigenfunctions unless their kernels are real.
This is true if the symbol S(ý, t) satisfies S(-ý, t) = S(ý, t). For clarity of eigenfunction
representation, projection domains were chosen to allow this symmetry when possible.

Localization on the unusual zigzag domain (figure la) produces the unfamiliar
eigenfunctions in figure 2 (as these are complex, we have plotted their magnitude). Eight
samples per unit length are used, over the time domain [-8,8]. Most of the energy is
concentrated in the desired region [-2,2], although there is some leakage. Note that the
first three eigenfunctions have one, two, and three peaks, respectively. For the case of
the disk (figure lb), a plot of the eigenvalues is shown in figure 3. As noted in lemma 4,
the eigenfunctions in this case are the well-known hermite functions. Next, localization
on the rectangle (figure 1c) allows comparison to the prolate spheroidal wavefunctions.
The first nine solutions for the prolate spheroidal and Weyl operator cases are depicted
in figures 4 and 5. Again, eight samples per unit length are used over the time domain
[-8,81. While there is energy leakage outside the desired domain [-2,2], the amount
differs in the two cases. The prolate spheroidal wavefunctions have 1/x decay while
the Weyl eigenfunctions have exponential decay. This difference is visible when one
compares the last three eigenfunctions in each case. A plot of the eigenvalues is also
included.

Finally, we provide a simple illustration of these ideas in the context of filtering
Gaussian noise from a corrupted linear FM (chirp) signal. Figures 6a and 7a show,
respectively, the Wigner distribution intensity plot and the actual plot of the real part
of a linear FM chirp centered at 0 frequency. (Although chirp signals used in radar are
not centered at 0 frequency, that is irrelevant for our purposes because of the covariance
of the Wigner distribution under time and frequency shifts (theorem 1, part 5).) In
the discretization, 16 samples per unit length are used over the time domain [-2,2].
No windowing is applied to remove the echo effect in these Wigner plots, although we
have found a simple cosine-squared window to be effective. Figures 6b and 7b show
this signal after 0 dB Gaussian white noise has been added. To filter the noise, we note
that theoretically, the Wigner distribution of a chirp signal is a measure concentrated
along a diagonal line corresponding to the slope of the chirp. In particular, a chirp can
be localized in any domain containing its time-frequency support.

13
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Figure 1. Localization Domains: a) Zigzag Domain,
b) Disk of Area 50, c) 4x2 Rectangle, and

d) Parallelogram

As an elementary example of time-frequency localization, the noisy chirp of figure
7b is projected onto the first two eigenfunctions (weighted according to the eigenvalues)
for the domain in figure Id. This results in the signal in figure 7c, with a Wigner
distribution as shown in figure 6c. A plot of the eigenvalues for this localization operator
is provided in figure 7d. In fact, the chirp in figure 7a is orthogonal to the second
eigenfunction, illustrating an interesting fact. Numerically, the chirp appears to be an
exact solution to the problem of localizing onto an infinite diagonal band domain. For
more numerical examples of time-frequency localization, the reader is referred to [6,7].
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Figure 2. Magnitude of Eigenfunctions 1-3 for Localization
onto a Zigzag Domain (in figure la), with a Plot of Eigenvalues

Sorted According to Decreasing Magnitude

It is interesting at this point to remark on the conjecture of Flandrin [5] that
for localization onto convex domains, the top eigenvalue is bounded above by 1. This
seems to hold (at least numerically) in our examples, even for figure la, which is not
convex. However, something like convexity is certainly necessary in general, since we
have nonconvex numerical examples where the top eigenvalue exceeds 4.
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