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Abstract

We give a complete self-contained proof of Statman’s finite completeness theorem and of a
corollary of this theorem stating that the A-definability conjecture implies the higher-order
matching conjecture.
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The purpose of this note is to give a complete self-contained proof of
Statman’s finite completeness theorem and of a corollary of this theorem
stating that the A-definability conjecture implies the higher-order matching
conjecture. Both results are proved in [8] (theorem 2 and 5). Although, since
(8] assumes some familiarity with typed A-calculus model theory and presents
several results in short space, it may be not very accessible to readers not
familiar with this subject.

Section 1 gives the basic notations used in the paper. The reader not
familiar with simply typed A-calculus should consult Hindley and Seldin [3].
Section 2 presents standard models for simply typed A-calculus, it is based
on Henkin [2]. Section 3 presents the Completeness theorem, it is based
on Friedman [1], Plotkin [5] [6] and Statman [9]. Section 4 presents the
construction of a model for some equational theories. Section 5 presents
Statman’s finite completeness theorem. Both section 4 and 5 are based on [8§].
Section 6 presents the A-definability conjecture. The notion of A-definability
is taken from Plotkin [5] [6]. This conjecture has been studied by Plotkin and
Statman. At last section 7 presents the higher order matching conjecture and
the proof that the A-definability conjecture implies the higher order matching
conjecture. The decidability of higher order matching is conjectured in Huet
[4]. the equivalence of the higher order matching problem and the higher
order matching problem with closed terms if proved in [7] and the proof that
the A-definability conjecture implies the higher order matching conjecture is
from (8], this proof is also discussed in Wolfram [10].

1 Typed A-calculus

1.1 Types
The set of types is defined by

T=:.|(T->T)

|

The notation a — 3 — v is an abbreviation for (a — (3 — v)).

Obviously a type can be written in a unique way a = 3; — ... = 3, —

[f o is a type. the order of a (o(a)) is inductively defined by

olt) =1
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and

o(a — B) = maz{l + o(a), o(F)}

1.2 Terms

A contezt is a set of pairs I' = {< z;,c; >} where z; is a variable and «; is
a type, such that if < z,a >€I' and < 2,8 >€ I then a = 3.
The set of terms is defined by

t=z|(tt)| Az: T4t

The notation (¢ u v) is an abbreviation for ((¢ u) v).
The judgement the term t has type a in the contezt T' (T' ¢ : a) is inductively
defined by

eif<ra>€lthenl'Fz:a,
eif T Ft:a—PBandTTFu:athen'F (¢t u): B,
o ifTU{z:a}Ft:Bthen T+ Az:at:a— g

Obviously if a term ¢t has type a and 3 in a context I' then a = 3.
We write Al for the set of terms ¢ such that T+ ¢ : a.

1.3 Normalization

If ¢ and u are terms, we write t[z «— u] for the term obtained by substituting
the free occurrences of r by u. We write t bu when ¢, 3n-reduces in some steps
to u. A term is said to be 3n-normal if it does not contain any redexes. We
write ¢ =3, u when t and u are 8n-equivalent. As proved in (3] the reduction
relation is strongly normalizable and confluent on well-typed terms, thus a
well-typed term has a unique 8n-normal form.

Obviously a normal term can be written in a unique way

t=Azy 0. A s an (T € . Gp)

where r 1s a variable.
Let

b= Axy @ pe. ALy ane (T €p ... Cp)
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a normal term of type a; — ... = a,, — ¢. The normal 7-long form of ¢ is
inductively defined as

' . . ’ 't ’
t'=Azy a1 AT A ATt P Gnp1e e AT L Qi (T €] e Cp Tnyy -+ Try)

where c; is the normal 7-long form of ¢; and z/ is the normal 7-long form of
IJ‘.

2 Standard Models

In typed A-calculus model theory, we do not look at A-terms as at functions
but rather as at notations for set-theoretical functions.

Definition: Standard Model
A standard model is a family of sets indexed by types (M) such that
Myp = 1‘/[éw°.

Definition: Assignment

Let ' be a context (M,), be a standard model, an assignment from '
onto (M,), is a function v which maps every variable z of type a of I to an
element of M,.

Definition: Interpretation

Let " be a context, (M, ), be a standard model and v an assignment from
this context onto this model, we define the function 7 which maps every term
of Al to an element of M, by

o v(z)=v(r),

o if uis a term of type a — 3 and v of type a then i(u v) = v(u)(s(v)),

e if u is a term of type 3 then for all d € M,, s(Az : a.u)(d) = v+ (u)
where v*(z) = d and v*(y) = v(y) for y # z.

Notation: Let (M,), be a standard model and t and u two terms with the
same type a. we write (M,), E ¢t = u if for each assignment v, we have
v(t) = v(u).

Remark: Given a set M. there exists only one standard raodel, (M, ), such
that M, = M.




Moreover if M and M’ are two sets with the same cardinal, then we can
construct an obvious isomorphism between the standard models (M, ), and
(M.)s based on M and M’. Indeed let us consider a bijection ® between
M and M' we construct a family of bijections &, between M, and M) by
®, = ® and $,.5(f) = Pso0 fo P,

Obviously if v is an assignment onto (M,), then the function v’ which
maps every variable £ of type a to the element ®,(v(z)) is an assignment
onto (M’). and for each every t of type a v'(t) = ®.(&(t)). So if t and u are
two terms of the same type then (M, ), FFt = uif and only if (M.)s F t = u.

So given a cardinal £ there exists only one standard model (up to isomor-
phism) such that M, has cardinal £, we write it M;.

3 Completeness Theorem

Definition: Friedman-Plotkin Model
Assume I' contains an infinite number of variables of each type. Let
M, = AT/ =4, and (M,), the standard model built on this set.

Proposition: There exists an assignment v such that for every t of type :
we have v(t) =t/ =3,.
Proof: We construct the assignment v by induction over the order of the
types of the variables of I'. If z has type ¢ then v(z) = z/ =g,. Then assume
the definition of v(z) given for all the variables x of order strictly lower to k.
Let 3 =4 — ... = v» — ¢ be a type of order lower or equal to k, ¢t a term of
type 3 and d € My, we write t € d if for all variables z, : 71, ...,z, : 9, which
do not occur free in t we have (t z; ... z,) € d(v(z1))...(v(z.)). Obviously if
t € dand u € d then t =3, u.

Let r be a variable of type a = #; — ... = 8, — ¢ of order k. we define
v(x) by

viz)(di)...(dn) =(z t1 ... t,)/ =g,

i there exists ¢, € dy, ..., tn € dn (obviously the element (z ¢ ... t,)/ =4,
does not depend of the choice of ¢, ....,t,) and v(z)(d,)...(d,) be anything
otherwise.

We prove by induction on the structure of the normal 5-long form of ¢
that t € 5(t). Let ¢ be a term of type 3, — ... = 3, — ¢. Since thereisin I’
an infinite number of variables of each type there are in I' variables r, : .3;.
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.. Zp ¢ 3, which do not occur free in t. Modulo bound variable renaming
the term ¢t can be written

t = Azry: B AT BT Uy o Up)
By induction hypothesis, for every i, we have
u; € i(ui)
so by definition of v we have

v(z)(#(u1))-(4(up)) = (T ur ... un)/ =gy

.. (z Uy ... un) € v(z)(P(1))...(0(up))
- (17 Uy ... un) € ‘7(13 Uy ... u,)

(Azy @ Breee ATy 2 B (T Uy ... Up) Ty ... Th)
€ v(Azy : fr...Azp : Bnu(z Uy ... up))(v(z1)). . (v(zn))

(t xy ... zo) € V() (v(z1))...(V(zr))
50
t € i(t)
So if t has type ¢ then t € (), i.e. D(t) =t/ =3,.

Theorem: (Friedman-Plotkin) Completeness Theorem

If t and u are terms of type a then (M, ), =t = u if and only if ¢ =4, u.
Proof: Obviously, if t =4, u then (M,), = t = u. Conversely, if we have
(M,)o Bt = u then let us write the typeof t andua =8, - ... = 8, - ..
Since there is in [' an infinite number of variables of each type, there are in
[' variables r, : 34,...,z, : 3. which do not occur free in ¢t and u. We have

(My)a E(t 21 ... 20) =(u 2y ... T4)
so using the previous proposition

(t 2y ... Zn)/ =g5= (u Ty ... 2)] =34

-
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1.e.
(t Z1 ... Tn) =py (¥ 21 ... Ta)
thus
t=g,, u

Corollary: Let t and u be two terms of type a, t =g, u if and only if for all
standard models M, M =t = u.

Corollary: If £ is an infinite cardinal and t and u are terms of of type a
then M¢ =t = u if and only if t =g, u.

Proof: Let us consider a context I' that contains £ variables in the type ¢
and a denumerable number of variables in the other types. The model M
constructed above is such that M |= t = u if and only if t =g, u. This model
is isomorphic to the model M; so M =t = u if and only if t =5, u.

Remark: If n in a finite cardinal then the completeness theorem fails for
the model M,, because if M, is finite then M, is finite for every type a and if
(My)a verifies the completeness theorem then M,_(,_.,)-, is infinite. Indeed
call

P=Az e A f o= ([ (S 2)..0)
if p and q are distinct integers then B #g, § and so #(p) # #(g) and M, (,—,)—,
is infinite.
So M, verifies the completeness theorem if and only if £ is infinite.

4 Equational Theories

Let I' be a context such that all the types of the variables in I" are of order
at most two. Let E be a set of equations {a¢; = b;} where a; and b; are
well-typed in I and have type ¢« in . We consider the smallest equivalence
relation compatible with term structure that contains =g, and the equations
of E. We write this relation =g,.

Definition: The relation =g,g
The relation =,,g is inductivelly defined by:

o if t =5, uthent =;,5 u,

o ifu=he F and cis a term of type ¢« — a then (¢ a) =3, (¢ b),
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o if t =3,p u then u =g,p ¢,

o if t =g,£ u and u =g,g v then t =g, v,

Definition: Statman’s Model
Let M, = AT/ =p,. Let (M,), be the standard model built on M,.

Proposition: If (M,), FE t = u then t =g,& u.
Proof: Let the assignment v be defined defined as

o if r has type ¢, then v(z) = z/ =p,&,
e if  has type ¢ = ... = ¢ = ¢ then v(z) = f where

f(dl)(dn) = (J,‘ Uy ... un)/ =p0nE

with uy € dy, ..., un € d, (obviously the class of the term (z u; ... uy,)
does not depend on the choice of uy,...,u,).

By induction over the structure of the normal form of ¢, we have for every
term t of type ¢, U(t) = t/ =pye. Indeed, because ¢t has type ¢ its normal
form can be written t = (z uy ... u,) since t is well-typed in T the variable
r is of order at most two and the u; have type ¢. So v(u,) = w1/ =48, ..,
V(un) = un/ =sne. And by definition of v, v(x) maps u1/ =gy, ..., Un/ =psE
to (T Uy ... Un)/ =ppE- S0 V(T Uy ... Up) = (T Uy ... Un)/ =pnE-

If (My)o =t =uthen i(t) = 0(u) so t/ =gye= uf =gpg i.e. t =5, u.

Remark: The converse is obviously false. If £ contains an equation z = y
where r and y are two variables of type ¢« and M is a non trivial model then
there exists an assignment v such that v(z) # v(y).

Remark: The proposition is obviously false if ¢ and u do not have type «.
Indeed consider a variable f of type ¢« — ¢ and a set E which contains the
equations (f t) =t for all the terms t of type ¢, we have M = f = Az : .z
but f #ung Ar @z,

Remark: The proposition is obviously false if I' contains variables of order
greater than two. Indeed consider a variable f of type «+ — ¢ and F of
type (¢ — ¢} — ¢ and a set £ which contains the equations (f t) = t
for all the terms ¢ of type «. we have M & (F f) = (F Ar : w.x) but
(Ff) #F e (F A or).




5 Finite Models

Definition: A model is said to be finite if the set M, is finite.

We want to sharpen the completeness theorem of section 3 and build a
finite model. As remarked in section 3, the completeness theorem fails for
such a model, so our completeness requirement will be weaker. For each
closed term t, we are going to construct a finite model M; such that for each
closed term u, M, =t = u if and only if ¢t =g, u. We do not require the
model M, to be uniform over t.

5.1 A Remark on the Relation =g,z

Proposition: Let £ = {a; = b;} be a set of equations such that for every z,
a; and b; have type «. Let t and u be two terms such that ¢t =g,g u. Then
either the normal forms of t and u are identical or they both have a subterm
in the set T = {a;, b;}.

Proof: By induction on the structure of the proof of t =g, u.

o If t =5, u then the normal forms of ¢ and u are identical.

o Ift = (c a) and u = (c b) then if z has an occurrence in the normal
form of (¢ z) then a is a subterm of the normal form of (¢ a) and b is
a subterm of the normal form of (¢ b). Otherwise the terms (¢ @) and
(c b) have the same normal form.

o if u =3, t then by induction hypothesis, either the normal forms of u
and t arc identical of they both have a subterm in 7.

o If t =5,c v and v =g, u then call ¢/, v/, v’ the normal forms of ¢, v, u.
By induction hypothesis, either
- t' = v' and v = ¢/, in this case t’ = o/,

— t' and v’ have a subterm in T and v’ = /, in this case ' and v’
have a subterm in T,

— t' = v’ and v’ and u’ have a subterm in T, in this case ¢’ and
have a subterm in T,




— t' and v’ have a subterm in T and v’ and u’' have a subterm in T,
in this case t’ and u’ have a subterm in 7.

Corollary: Let E = {a; = b;} be a set of equations such that for every i,
a; and b; have type ¢. Let t and u be two terms such that no subterm of the
normal form of ¢ is an a; or a b;, then t =g,g u if and only if t =4, u.

5.2 Finite Models for Terms of Order Lower than
Three

Before giving the theorem in its full generality, we shall consider the simpler
case in which the order of the type of t is lower than three.

Proposition: Let ¢ be a closed term which type is of order at most three.
There exists a finite model M; such that M; =t = u if and only if t =5, u,
and the number of elements of M, is computable in function of t.

Proof: Let a = #; — ... = B, — ¢ be the type of t. Let ' be the context
I'={z,: B1,..yZn : Bx}. The types of the variables of ' are of order at
most two. Let u be a closed term of type a, we have t =4, u if and only if
(t £y ... Tn) =gg (u 1 ... ,). Let E be the set containing all the equations
a = b with a and bin AT and neither a nor b is a subterm of the normal form
of (t ry ... r,). Using the proposition above (t z; ... z,) =g, (u 71 ... z,) if
and only if (¢ zy ... 2,) =gng (u 2 ... T,).

Let us consider the model M, constructed at the section 4. Obviously
if # =3, u then M; =t = u. Conversely if we have M, = ¢t = u then
Mty ...xn)=(ury..2p). So(tzy ... zq) =pne (u 1, ... 2,). therefore
(t vy .ory) =5, (ury ... r,) and t =g, u.

The number of elements of M, is 1 + k£ where k& is the number of dis-
tinct subterms of the normal form of (¢ z; ... z,,) of type ¢, it is therefore a
computable in function of ¢.

5.3 General Case

Definition: Length of a Term
Let t = Ary : 01...AZs : an.(z dy ... d,) be a normal n-long term, we define
the length of t (|t]) by induction on the number of variables occurrences of ¢
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by
[t| = 1 + max{|Azy : a1....A7, : aq.dil}

Consider a closed term ¢ of type a, we shall prove that we can find terms
wy, ..., wp of type a — ¢ which free variables are of order at most two and
such that for each closed term u of type a, t =g, u if and only if for all ¢,
(w, t) =g, (w; u). Then we will be able to conclude as above.

Without loss of generality, we can assume that ¢ is normal n-long. We
shall first construct a term w such that (w t) #3, (w u) for all the nurmal
n-long closed terms u that do not have the same length as . Then for each
normal n-long closed term u such that u # t and u has the same length as
¢t we shall construct a term w such that (w t) #g, (w u). Since the number
of normal 7-long closed terms which have a given length and a civen type is
finite, this will give us a finite number of w;.

Proposition: Let t be a normal n-long closed term of type a, there exists
a term w of type a — ¢ such that for every normal n-long closed term u of
type a, if |t| # |u| then (w t) #5, (w u) and the free variables of w are of
order at most two.

Proof: For each integer p consider a variable z, of type ¢t — ... = ¢ — (. We
define by induction over the struciure of a a term c,. Let us write

Qzﬂl—’..._’ﬁp—’l«
and

3 1 1
= = ..o, =t

2 AP P
Jp—‘yl-—»...—»'yqp—-vt

Let us define
Ca = ATy Bi... ATyt Bp(2p (21 c.,ln...c,,;]) o (zp Cyp.nCp )

p

Now consider a term

Lot us write




and
2 _ A1 1
dl—’)’l—-)...-""‘/ql—'*l,

— P P
Bp=9 = . 2 Vg, ¢

Let us define
€1 = AY1 : Q1....AUn : Qn.dy

€p = AY1: 1. AYn t an.dy

We have

(t Cay - Can) =8n (2p (€1 Cay ++ Con €yl +o Oyt ) v (€ Cay o Ca €7 won C42 )

By induction on the length of ¢, the length of the normal form of the term
(t Cay -+ Can) is the length of t. So if |t| # |u| then the length of the nor-
mal forms of the terms (¢ cay ... Ca,) and (¥ Ca; ... Ca,) are different and
(t Cay - Can) Fon (U Cay -ov Cap)-

We take w = AT : 0.(X €4, .- Can ). If |t} # lu] then (w t) #3, (w u).

Proposition: Let ¢ and u be two distinct normal 7-long closed terms of type
a=qaq — ... a, — t. There are terms Ci, ...,cn of type ay, ..., a, such that
(t €y - Cn) #un (U €y ... cy) and the free variables of cy,...,c, are of order at
most two.
Proof: By induction on the number of variables occurrences of t. Let us
write

t = Ay @1 ATy On (20 dy .. dy)

and
U= AT 0. ATy an(Ti d) ... d})

First Case: { £V

Let o, =3 — ... » 3, - tand ay = 8] = ... = 3, = 1. Welet - and
=" be two new variables of type ¢ and we take ¢; = Ayy : 3y...Ayp : 3p.z and
coo = Nyt 3 Ay o 32" and ¢, be any term when j # i and j # /. We
have (f ey . ¢y) =gy 2 and (@ €y ... €) =35 2 50 (£ €y oo Cn) Fay (U €L ool Cp).

Second Case: 1 =1

i1




So we have p = p’. For all j we let e¢; = Azy : ay....Az, : a,.d; and
e’ = Azry: 1.0z, : ay.d;. We have

t =gy AT1 1 1. ATn ! On(Ti (€1 Ty ... Tn) ... (€p T ... T4))

and
U =gy AT1 1 Q1o AT 2 O (T (€] T1 e Tp) .. (€, T1 ... To))

Since t #g3, u there exists an integer k such that ex #g, €. Let us write
a;=03 = ... B, = tand By = — ... = yn — ¢. The type of the terms
ex and e} is a; — ... =& a, = ¥ — ... = ¥, — ¢. By inductica hypothesis
there exists terms ay, ..., an, by, ..., by, such that

(ex a1 ... @y by ... by) #p, (€ a1 ... an by ... by)
We let >z be a new variable of type ¢ — ¢+ — . We let
Ci = Ay1: B Ayp t Bz (yk by o b)) (a5 Y1 - Yp))

and ¢; = a;j for every j # 1.
Remark that for each j, ¢cj[z « Az : . Ay : e.y] =5, a;, s0

(ex €1 ... Cn by ... b)) Fpy (€ €1 ... Cn by ... b))

otherwise we would have (ex ay ... an by ... by) =g, (€} a1 ... an by ... by) by
substituting the variable z by the term Az : ¢.Ay : t.y. Now

(ter...cn) =gy (2 (er €1 oo Cn by o b)) (ai (€1 €1 .. €0) oo (€p €1 ... 1))
and
(wep...cn) =gy (s (€ cr.cnby..bn) (a; (€] ¢ ... Ca) .. (€5 €1 ... €n)))

So
(t Ct ... Cn) #571 (u Cy ... Cn)
Proposition: Let t and u be two distinct normal 7-long closed terms of type

a. there exists a term w of type a — ¢ such that (w t) #4, (w u) and the
free variables of w are of order at most two.
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Proof: Let a = a; — ... = a, — ¢, by the previous proposition there are
terms ¢y, ...,¢n such that (¢ ¢ ... ¢n) #sy (u ¢ ... ¢), and the free variables
of ¢1,....¢, are of order at most two. We take w = Az : a.(z ¢; ... ¢4).

Proposition: Let t be a closed term ¢ of type a. there exist terms wy, ..., w,
of type a — ¢ which free variables are of order at most two and such that
for each term u, t =3, u if and only if for all i, (w; t) =g, (w; w).
Proof: We construct, using a previous proposition, a term w such that for
each normal n-long closed term u of type a which length is different from
the length of the normal 7-long form of ¢, (w t) #3, (w u). Then for each
normal 7-long closed term u of type a which has the same length as the
normal n-long form of ¢t and which is different from the normal form of ¢, we
construct, using a previous proposition, a term w such that (w t) #3, (w u).
Since the number of normal 7-long closed terms which have the same length
and the same type as the normal 5-long form of ¢ is finite, this gives us a
finite number of w;.

Obviously, for each closed term u of type a, ¢t =g, u if and only if for each
integer z, (w; t) =gy (Wi u).

Theorem: (Statman) Finite Completeness Theorem

Let ¢ be a closed term of type a. There exists a finite model M, such

that M, =t = u if and only if t =g, u, and the number of elements of M, is
computable in function of ¢.
Proof: Let wy....,w, the terms given by the propsition above. Let E be the
set containing all the equations @ = b with a and b in Al and neither a nor b
is a subterm of the normal form of an (w; ¢) for some ¢. Using a proposition
above (w, t) =3, (w; u) if and only if (w; t) =g,& (w; u).

Let us consider the model M, constructed at the section 4. Obviously
it + =4, u then we have M, =t = u. Conversely if M, =t = u then
M, B (w, t) = (w, u). So (w; t) =gy (w; u), therefore (w; t) =3, (w; u) and
t =3, u.

The number of elements of M, is 1 + k£ where k is the number of distinct
subterms of the normal form of (w; t) of type ¢, since the terms w; are
computable in function of ¢, the number of elements of M, is computable in
function of t.

Corollary: Let t and u two terms of type a, t =4, u if and only if for all
the finite standard models M, M = f = u.

13




6 The \-definability Conjecture

Because a simple function as the identity over integers is an infinite set (al-
though it has a finite description), set-theoretical functions are not usually
computational objects. In the same way, because completeness theorems con-
cern usually infinite sets, model checking is not usually an effective decision
procedure. Both argument fail when the sets involved are finite. Indeed,
finite set-theoretical functions are computational objects (e.g. association
lists) and finite model checking is an effective decision procedure (e.g. propo-
sitional calculus).

Definition: Let (M,), be the standard model with the base set M = M,.
A function f of M, is said to be A-definable if there exists a closed A-term ¢
of type a such that 7(t) = f (where v is the only assignment over the empty
set ).

Conjecture: A-definability Conjecture
If M is finite then it is decidable whether of not a function f of M, is
A-definable.

Remark: The problem makes sense because M is finite, otherwise the func-
tions of M, would not be computational objects.

7 The A-definability Conjecture Implies the
Higher Order Matching Conjecture

Definition: Higher Order Matching Problem

A higher order matching problem is a pair of terms < a,b > of types
ay — ... » a, — G and 3. A solution to this problem is a n-uple of terms
< ty.....ty > of type ay.,...,a, such that (a ¢; ... t,) =g, b.

Conjecture : Higher Order Matching Conjecture
It is decidable whether of not a higher order matching problem has a
solution.

Proposition: The higher order matching problem is decidable if and only
if the higher order matching problem with closed a and b is decidable.
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Proof: Let < a.b > be a problem. Let z, : 3,,...,z, : B, be the free variables
occurring in ¢ and b. Let

’71=51—*---—*5p—’0’1

‘Yn =Bl ‘—),,,—)Bp—’an
a' = A1 i Y1 AYn P Y AT Brel Az (@ (Y1 Ty e Zp) o (Yn Th el Tp))
b = Az;: By....hzp 0 Bp.b

If we have
(a t1 tn) =b

then
(a' Azy : D1 Azp : Bty oo Azy 1 By ATy s Bputy) = 8
(C'onversely if we have
(a"t] ...t0) =0
then
(a (8] 1 .o Tp) .. (B, T1 .. Tp)) = b

So the problem < a,b > has a solution if and only if the problem < a’,§' >
has one.

Proposition: The higher order matching problem is decidable if and only
if the higher order matching problem with closed ¢y, ...,¢, is decidable.
Proof: Let < a,b > be a problem. Let

a = Ay 1t > LAY > an AT s e(a (yg T) ..l (ya T))

and

b =Xz :¢ub

{remark that if a and b are closed then a’ and ¥ also are).
Assume the problem < a,b > has a solution ¢;,....¢,. Let z be a variable

of tvpe . For each type 3 = 4, — ... = 9 — ¢ we consider the term
we= Az : ‘,q....,\:k D VS, ’

Let ) : Jy......t, . 3, be the variables occurring free in the terms ¢;. ..., ¢,,
to=t]ry — wy.....xx — wg, ) and u; = Az : w.tl. We have

(a' uy oo ug) =8
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So the problem < a’, 4" > has closed solution.
Now if the problem < a’,4 > has a closed solution u,, ..., u, then let z be
a variable of type ¢ and t; = (u; z). We have

(a' uy ... uy) =¥

Az :e(a (ug z) ... (up z)) = Az : b
(a (ug 2) ... (un 2)) =>4

(a tl tn) = b

So the problem < a,b > has a solution if and only if the problem < a’, ' >
has a closed solution.

Theorem: (Statman) If A-definability is decidable then higher order match-
ing is decidable.
Proof: Let us assume the A-definability conjecture. We take two closed
terms @ : a; — ...a, — B and b: B8 and consider the model M, constructed
in section 5. Let A = v(a) and B = v(b) (where v is the only assignment
over the empty set). By an enumeration procedure we select all the n-uples
< Ty,....T, > such that A(Ty,...,T,) = B. The problem < a,b > has a
closed solution if and only if there is such a n-uple such that all the T; are
A-cdefinable.

Indeed if the problem < a, b > has a closed solution < ty,...,¢, >, then let
T, = v(t;), the T, are A-definable and A(T},...,T,) = B. Conversely if there
are \-definable T}, ...T, such that A(T},...,T,) = B. Let t,, ..., t, be the terms
such that T; = #(¢;). We have M = (a ty ... t,) = b. So (a t; ... t,) =3, b.
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