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The purpose of this note is to give a complete self-contained proof of
Statman's finite completeness theorem and of a corollary of this theorem
stating that the A-definability conjecture implies the higher-order matching
conjecture. Both results are proved in [8] (theorem 2 and 5). Although, since
[8] assumes some familiarity with typed A-calculus model theory and presents
several results in short space, it may be not very accessible to readers not
familiar with this subject.

Section 1 gives the basic notations used in the paper. The reader not
familiar with simply typed A-calculus should consult Hindley and Seldin [3].
Section 2 presents standard models for simply typed A-calculus, it is based
on Henkin [2]. Section 3 presents the Completeness theorem, it is based
on Friedman [1], Plotkin [5] [6] and Statman [9]. Section 4 presents the
construction of a model for some equational theories. Section 5 presents
Statman's finite completeness theorem. Both section 4 and 5 are based on [8].
Section 6 presents the A-definability conjecture. The notion of A-definability
is taken from Plotkin [5] [6]. This conjecture has been studied by Plotkin and
Statman. At last section 7 presents the higher order matching conjecture and
the proof that the A-definability conjecture implies the higher order matching
conjecture. The decidability of higher order matching is conjectured in Huet
[4]. the equivalence of the higher order matching problem and the higher
order matching problem with closed terms if proved in [7] and the proof that
the A-definability conjecture implies the higher order matching conjecture is
from [8], this proof is also discussed in Wolfram [10].

1 Typed A-calculus

1.1 Types

The set of types is defined by

T = t I (T -- T)

The notation a --* 3 -* y is an abbreviation for (a -- (/3 -- 7)).
01),vioiisly a tYpe can be written in a unique way a 31 ... 3 - sson For

I' o is a type, the order of a (o(o)) is inductively defined by 1tI3 GRA&I
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and
o(a -/3) = max{1 + o(a),o(/3)}

1.2 Terms

A context is a set of pairs r = xi,, a >} where xi is a variable and ai is
a type, such that if < x, a >E r and < x,/3 >E r then a =/3.

The set of terms is defined by

t = x (t t) I x :T.t

The notation (t u v) is an abbreviation for ((t u) v).
The judgement the term t has type a in the context r (IF - t : a) is inductively
defined by

"* if < x,a >E F then F x a,

"* if r I- t :a -1/3 and r- u a then F - (t u) /3,

"* if F U {x :a}l - t :/3 then F - Ax :a.t: a --+ .

Obviously if a term t has type a and /3 in a context F then a =/3.
We write A' for the set of terms t such that F H- t a.

1.3 Normalization

If t and u are terms, we write t[x *-- u] for the term obtained by substituting
the free occurrences of x by u. We write t i>u when t, /3q-reduces in some steps
to u. A term is said to be h3t-normal if it does not contain any redexes. We
write t =3, u when t and u are /3i-equivalent. As proved in [3] the reduction
relation is strongly normalizable and confluent on well-typed terms, thus a
well-typed term has a unique /3r-normal form.
Obviously a normal term can be written in a unique way

t =,Ax,:a, .... Ax,: a•.(x cl ... cp)

where x is a variable.
Let

t = Ax :a, .... Axr, a,.(x cl ... cp)



a normal term of type a, a, --+ t. The normal r7-long form of t is
inductively defined as

t' = Ax, : a, .... Ax, : a,.Ax,+l : an+, .... Axm a,,,.(X C'1 ... % X,,+l ... X'

where ci is the normal it-long form of ci and xý is the normal it-long form of
X1.

2 Standard Models

In typed A-calculus model theory, we do not look at A-terms as at functions
but rather as at notations for set-theoretical functions.

Definition: Standard Model
A standard model is a family of sets indexed by types (M•)Q such that

A'IM-3 = Alfa

Definition: Assignment
Let F be a context (M,,). be a standard model, an assignment from F

onto (MI) is a function v. which maps every variable x of type a of F to an
element of Mic•.

Definition: Interpretation
Let F be a context, (AL,)c be a standard model and v an assignment from

this context onto this model, we define the function iý which maps every term
of Az to an element of A4, by

*/(X) = V(X),

"* if u is a term of type a -- 3 and v of type a then it(u v) = f(u)(/(v)),

"* if it is a term of type 03 then for all d E MA,, i(Ax : a.u)(d) = v+(,)
where v+(x) = d and v+(y) = v(y) for y # x.

Notation: Let (Mc)o be a standard model and t and u two terms with the
same type a. we write (Mo)• • t = u if for each assignment iv, we have
u(t) = i•(u).

Remark: Given a set W. there exists only one standard todel. (MA)', such
that .11, = .11.
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Moreover if M and M' are two sets with the same cardinal, then we can
construct an obvious isomorphism between the standard models (Ml)• and
(M:)Q based on M and M'. Indeed let us consider a bijection 4 between
M and M' we construct a family of bijections 4 between M,, and M,', by
(, = (D and •<•_•(f) = 0,6 o f o 1.

Obviously if v is an assignment onto (Mc,) 0, then the function v' which
maps every variable x of type a to the element #,(v(x)) is an assignment
onto (M:). and for each every t of type a v'(t) = I•(i(t)). So if t and u are
two terms of the same type then (M,,)<, H t = u if and only if (M H), • t = u.

So given a cardinal ý there exists only one standard model (up to isomor-
phism) such that M, has cardinal ý, we write it Mt.

3 Completeness Theorem

Definition: Friedman-Plotkin Model
Assume F contains an infinite number of variables of each type. Let

., = A,,r/ -,3 and (M,,), the standard model built on this set.

Proposition: There exists an assignment v such that for every t of type t
we have L'(t) = t/ ==;,.

Proof: We construct the assignment v by induction over the order of the
types of the variables of F. If x has type i then v(x) = x =,o,. Then assume
the definition of v(x) given for all the variables x of order strictly lower to k.
Let 3 = -/ -* ... --'* -t,, - t be a type of order lower or equal to k, t a term of
type 3 and d E V1,3. we write t ý d if for all variables x, : 71,...,xn : In which
do not occur free in t we have (t x, ... X,) E d(v(xi))...(V(X,)). Obviously if
t ý d and u ý d thent =n u.

Let x be a variable of type a =ý3- ... /3 --+ t of order k, we define
v(x) by

v x ( ) .. =( n ( x t i ... t n ) l 0 ,

it' there exists ti ... , t,, 4 d, (obviously the element (x tj ... t,,)/ =",,

does not depend of the choice of tl,. ,t,.) and v(x)(di)...(d,) be anything
otherwise.

We prove by induction on the structure of the normal 77-long form of t
that t ý 1'(t). Let t be a term of type 31 -- ... -3* -+ t. Since there is in F
an infinite number of variables of each type there are in F variables x : .31.
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x, 3,, which do not occur free in t. Modulo bound variable renaming
the term t can be written

t = Ax, :,31 .... Ax,, : 0,.(x ul ... up)

By induction hypothesis, for every i, we have

ui i F(ui)

so by definition of v we have

V(x)(P(u,))... P(u(p)) = (x u, ... u,)/=0"

i.e.
(x ul ... U.) E •,(x)(F,(ui))... (F,(up))

i.e.
(X ul ... Un) E [,(x ui ... ,,p)

so ( A x, 0/ 1 .... ,Ax n : O n-(X u l ... U p) X1 ... X n)
E ý(A x, : 01 .... A• n: O n.(X U, ... Up))(V(X,)) ... (V(X n))

i.e.
(t X1 ... Xn) E ý'(t)(,4X)) ...(V,(X=))

so

t ý 11(t)

So if t has type t then t E jý(t), i.e. L(t) = t/=37.

Theorem: (Friedman- Plotkin) Completeness Theorem
"If t and u are terms of type a then (MA,),, ý= t = u if and only if t =3n, u.

Proof: Obviously, if t =•,, u then (M-)o = t = u. Conversely, if we have

(A.X,), - t = u then let us write the type of t and u a =  -3, - ... ---+ 3, -+ t.

Since there is in r an infinite number of variables of each type, there are in
F variables X1 : 31, ......X. :/3 which do not occur free in t and u. We have

(.V.a), • (t xi ... x0) = (u x, ... X')

so using the previous proposition

(t .X1 ... X,)/ =;3,1= (It Xi ... J )/=3,



i.e.
(t Xl ... Xn.) =0" (U X1 ... Xn)

thus
t =0,7 U

Corollary: Let t and u be two terms of type a, t =0, u if and only if for all
standard models M, M [- t = u.

Corollary: If ý is an infinite cardinal and t and u are terms of of type a
then MA [- t = u if and only if t =a, u.
Proof: Let us consider a context F that contains ý variables in the type t
and a denumerable number of variables in the other types. The model M
constructed above is such that M [ t = u if and only if t =0,, u. This model
is isomorphic to the model Mt so Mt t = u if and only if t =0,7 u.

Remark: If n in a finite cardinal then the completeness theorem fails for
the model M,, because if M, is finite then Mc is finite for every type a and if
(MI). verifies the completeness theorem then M is infinite. Indeed
call

" =Ax : t,kf - i, --- c.(f ... (f x)...)

if p and q are distinct integers then p j0,7 q" and so f(iT) - fl(q) and M(._.,).,
is infinite.

So Mt verifies the completeness theorem if and only if ý is infinite.

4 Equational Theories

Let F be a context such that all the types of the variables in F are of order
at most two. Let E be a set of equations {ai = bi} where ai and bi are
well-typed in F and have type t in F. We consider the smallest equivalence
relation compatible with term structure that contains =3,, and the equations
of E. We write this relation =1,E,

Definition: The relation =O,E

-Fhe relation =,J,E is inductivelly defined by:

* if t =:,J u then t =;,,E 1,

* if , = b z E and c is a tern of type i -* a then (c a) =;3,E (c b),
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"* if t -3-,E U then U =i,3'E

"* if t =,3E u and u =,--lE v then t =,6E V,

Definition: Statman's Model
Let M, = A,/ =•,,E. Let (M•)a be the standard model built on M,.

Proposition: If (MU1, • t = u then t =I,3E u.
Proof: Let the assignment v be defined defined as

* if x has type t, then v(x) = x/1 ,

* if x has type t - ... --- t -- t then v(x)= f where

f(di)... (d.) = (x ul ... U.)/ =0,7E

with ui E dj, ... , u,, E d,, (obviously the class of the term (x ul ... u,)
does not depend on the choice of uj,...,u,,).

By induction over the structure of the normal form of t, we have for every
term t of type t, t(t) = t/ =,3E. Indeed, because t has type t its normal
form can be written t = (x ul ... u,,) since t is well-typed in F the variable
x is of order at most two and the ui have type t. So i(ul) = ul/ =3,E,

,( U,) = UI =J,3E. And by definition of v, v(x) maps ul/ =0,7E, .. , un/ =0nE

to (x U1 ... U,)/ =4,7E- So iý(x u1 ... un) = (x u1 ... un)/ =,YE.

If (MI)o • t = u then i,(t) = i(u) so t/=0,7E= u/ =0,7E i.e. t =01E u.

Remark: The converse is obviously false. If E contains an equation x = y
where x and y are two variables of type t and M is a non trivial model then
there exists an assignment v such that v(x) # v(y).

Remark: The proposition is obviously false if t and u do not have type t.
Indeed consider a variable f of type t -- t and a set E which contains the
equations (f t) = t for all the terms t of type t, we have M H f = Ax : t.x
but f #5viE Ax : t.x.

Remark: The proposition is obviously false if F contains variables of order
greater thau two. Indeed consider a variable f of type t --+ t and F of
type (i -. t -* and a set E which contains the equations (f t) = t
t'ort all the terms t of type t, we have .i, H (F f) = (F \x : i.x) but
It .f) € .,• l l"..Ax ,.)



5 Finite Models

Definition: A model is said to be finite if the set M, is finite.

We want to sharpen the completeness theorem of section 3 and build a
finite model. As remarked in section 3, the completeness theorem fails for
such a model, so our completeness requirement will be weaker. For each
closed term t, we are going to construct a finite model MA such that for each
closed term u, Mt - t = u if and only if t =,o u. We do not require the
model Mt to be uniform over t.

5.1 A Remark on the Relation =Z,3E

Proposition: Let E = {ai = bi} be a set of equations such that for every i,
a, and bi have type t. Let t and u be two terms such that t =OnE u. Then
either the normal forms of t and u are identical or they both have a subterm
in the set T = {a 1, bi}.
Proof: By induction on the structure of the proof of t =3,,E u.

If t =3, u then the normal forms of t and u are identical.

If t = (c a) and u = (c b) then if x has an occurrence in the normal
form of (c x) then a is a subterm of the normal form of (c a) and b is
a subterm of the normal form of (c b). Otherwise the terms (c a) and
(c b) have the same normal form.

0 if u =,3,E t then by induction hypothesis, either the normal forms of u
and t arc identical of they both have a subterm in T.

* If t =,3,E v and v =0,hE u then call t', v', U' the normal forms of t, v, u.
By induction hypothesis, either

- t' = V and v' = u', in this case t' =u,

- t' and v' have a subterm in T and v' = u', in this case t' and u'
have a subterm in T,

- t' = v' and vW and u' have a subterm in T, in this case t' and u'
have a subterm in T,
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- t' and v' have a subterm in T and v' and u' have a subterm in T,
in this case t' and u' have a subterm in T.

Corollary: Let E = {ai = bi} be a set of equations such that for every i,
a, and bi have type t. Let t and u be two terms such that no subterm of the
normal form of t is an ai or a bi, then t =0,7E u if and only if t =0,7 u.

5.2 Finite Models for Terms of Order Lower than
Three

Before giving the theorem in its full generality, we shall consider the simpler
case in which the order of the type of t is lower than three.

Proposition: Let t be a closed term which type is of order at most three.
There exists a finite model Mt such that MA - t = u if and only if t =0, u,
and the number of elements of M, is computable in function of t.
Proof: Let a = 01 --+ ... -+ 0,, --+ t be the type of t. Let F be the context
F = {xl : /1,...,x. : /,,}. The types of the variables of f are of order at
most two. Let u be a closed term of type a, we have t =0, u if and only if
(t xi ... x,) =a,, (u x, ... x,,). Let E be the set containing all the equations
a = b with a and b in Ar and neither a nor b is a subterm of the normal form
of (t ,ri ... x,). Using the proposition above (t x, ... x,) =,, (u x1 ... x,) if
and( only if (t XrI ... x ,) =;3,E (u xi ... x,).

Let us consider the model A't constructed at the section 4. Obviously
if 1 =:,3 u then M.t t = u. Conversely if we have MIt t = u then

l (t X1 ... xn) = (u xI ... x,). So (t x 1 ... x,) =,3,E (u xI ... x,), therefore
( I .i. . ,= (it xi ... x,) and t =z,3 u.

The number of elements of M, is 1 + k where k is the number of dis-
tinct subterms of the normal form of (t xi ... x,) of type t, it is therefore a
coniputdlle in f'unction of t.

5.3 General Case

Definition: Length of a Term
Let f = Ax, : a, .... Ax, : a.,.(x d, ... d,) be a normal n-long term, we define

the length of t (Ill) by induction on the number of variables occurrences of t
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by
Iti = I + inax~lAxi :a, .... Ax, a,.d:I

Consider a closed term t of type a, we shall prove that we can find terms
U7,.... wP of type a ---+ t which free variables are of order at most two and
such that for each closed term u of type a, t =0,, u if and only if for all i,
(w, t) =3, (wi u). Then we will be able to conclude as above.

Without loss of generality, we can assume that t is normal ti-long. We
shall first construct a term w such that (w t) 5,, (w u) for all the n%.rmal
rl-long closed terms u that do not have the same length as !. Then for each
normal q-long closed term u such that u # t and u has the same length as
t we shall construct a term w such that (w t) #fn (w u). Since the number
of normal q-long closed terms which have a given length and a -iven type is
finite, this will give us a finite number of wi.

Proposition: Let t be a normal n-long closed term of type a, there exists
a term w of type a -- t such that for every normal q-long closed term u of
type a, if Iti # Jul then (w t) #90 (w u) and the free variables of w are of
order at most two.
Proof: For each integer p consider a variable zP of type t - ... - t -4 t. We
define by induction over the striicure of a a term c,. Let us write

a O ... - 3p - t

and c•It(t

ý3 p = y .. • ... -- y7P -

Let us define

c( = Ax, : 31 .... Ax, ,,.(z, (Xi c., ...c. ) ... ( . ))

Now consider a term

t = Ay, " 1 .... Ay•, : a•n.(yi d, ... d,)

[Ixt 11 write

310 3

to



and
1 1p

Let us define
e, = Ay, i a .... AY, C:,.di

ep = Ay, : a, .... Ayn an.dp

\Ve have

(t c"I ... C n) =iy, (zP (el Cal ... col c-Y .. c.,•,) ... (ep cc" c cP. ... c. ))

By induction on the length of t, the length of the normal form of the term
(t c,, ... c,,,) is the length of t. So if Itl IJuI then the length of the nor-
mal forms of the terms (t c,, ... c1n) and (u c,, ... Ca,,n) are different and

{tC", ... Ca,.) 03n (U Ccl, ... Can)'
\Ve take w = .\x- c,.(x co, ... cn). If jtJ * Jul then (w t) #0, (w u).

Proposition: Let t and u be two distinct normal q-long closed terms of type

- ... a, -4 t. There are terms cl, ... , c, of type a, ..... an such that
(t c1 ... cn) 53-i, (u c1 ... cn) and the free variables of c1, ...-, C are of order at
most two.
Proof: By induction on the number of variables occurrences of t. Let us
wvrite

t = Ax: a, ....Ax, : a,(xi d, ... dp)

u = Ax,:a, .... Ax, a,.(xi, di ... d',)

First Case: i # i'
Let a, = 3, .. ... --. 3P -+ t and ai, =- 3' "- ..-- 3p', --+ t. W e let z and

z' be two new variables of type t and we takeci Ay:31 .... =yp 3p.z and
"Ay= A\1I I 3•,.z' and c, be any term whenj # iandj #i'. We

halve (ft c1 ... c,,) =,,,, : and (u c, ... c',) =, ' so (t c, ... c,) -A3, (u c, ... c,).

.",f•('fl ( Is. I: = 1,

I /l



So we have p = p'. For all j we let ei = Axl : a, .... Ax, : a,,.dj and
e' = Ax, : a, .... Ax, : a,,.d'. We have

t =a,, Ax, :a, .... Ax,, a,.(xi (e, x, ... x,) ... (ep, , ... x,))

and
u =, Ax, a,1 .... Ax,: cr,.(x, (e•' , ... x)... (e', x,1 ... x,))

Since t 0,3 u there exists an integer k such that ek #0,7 e'. Let us write
a, = 01 O. - p -* t and 3k = --. -" ',in t. The type of the terms
ek and e, is a, -- -- a,, --+ -* - -" t. By induction hypothesis
there exists terms a1, ... , a,, bl,...,bn such that

(ek a1 ... a, b, ... b,.) 54, (e' a, ... a b, ... bin)

We let z be a new variable of type t -+ t --+ t. We let

ci = Ay, : 31 .... Ayp: Op.(z (Yk b, ... b.) (a, y, ... yp))

and c, = a, for every j # i.
Remark that for each j, cj[z -- Ax : t.Ay : t.yj =o, aj, so

(ek Ca ... c, 5i ... bn) 0,3i, (e' c, ... c,, b, ... bin)

otherwise we would have (ek a, ... a,, b, ... b,,,) =,3 (e' a, ... a,, bi ... b,) by
substituting the variable z by the term Ax : t.Ay : t.y. Now

(tc, ... c,) =3, (z (ek C1  ... c, b, ... bi) (ai (ei c, ... c,,),.. (p ci ... c,)))

ad

(it c i ... c,,) = ,3, (ý (e'k c, ... c,. b, ... b ., ) (a, (e', c, ... c,,) ... (e', c , ... c ,)))

So

(t CI ... C-) 0131 (U CI ... cI)

Proposition: Let t and u be two distinct normal i7-long closed terms of type
o. there exists a term w of type a --. t such that (w t) 0,,7 (w u) and the
free variables of w are of order at most two.
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Proof: Let a = a, -* ... -- a,, -- t, by the previous proposition there are
terms c1 ... , c, such that (t cl ... c,) po (u cl ... ca), and the free variables
of cl, ... ,c,, are of order at most two. We take w = Ax : a.(x cl ... cs).

Proposition: Let t be a closed term t of type a, there exist terms wj, ... ,wP
of type a --* t which free variables are of order at most two and such that
for each term u, t =o,7 u if and only if for all i, (wi t) =0,7 (wi u).
Proof: We construct, using a previous proposition, a term w such that for
each normal q-long closed term u of type a which length is different from
the length of the normal 77-long form of t, (w t) ý,3 (w u). Then for each
normal q-long closed term u of type a which has the same length as the
normal q-long form of t and which is different from the normal form of t, we
construct, using a previous proposition, a term w such that (w t) #fi, (w u).
Since the number of normal qt-long closed terms which have the same length
and the same type as the normal qt-long form of t is finite, this gives us a
finite number of wi.

Obviously, for each closed term u of type a, t =0n u if and only if for each
integer i, (wi t) =a, (wi u).

Theorem: (Statman) Finite Completeness Theorem
Let t be a closed term of type a. There exists a finite model Mt such

that MAt t = u if and only if t =0, u, and the number of elements of M, is
computable in function of t.
Proof: Let w w .... , w, the terms given by the propsition above. Let E be the
set containing all the equations a = b with a and b in Ar and neither a nor b
is a subterm of the normal form of an (wi t) for some i. Using a proposition
ab)oVe (tw, t) =,j (w1i it) if and only if (wi t) =OE (wi u).

Let us consider the model Mt constructed at the section 4. Obviously
if t =j it then we have Mt • t = u. Conversely if Mt • t = u then

1, (11, 0) = (IV, u). So (wi t) =0,E (wi u), therefore (wi t) =o,, (wi u) and
t UJ .

The number of elements of M, is 1 + k where k is the number of distinct
subterms of the normal form of (wi t) of type t, since the terms wi are
computable in function of t, the number of elements of M, is computable in
Sfunction of t.

Corollary: Let t and u two terms of type a, t =,,i u if and only if for all
t hee Unite standard models A!, M! t = it.
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6 The A-definability Conjecture

Because a simple function as the identity over integers is an infinite set (al-
though it has a finite description), set-theoretical functions are not usually
computational objects. In the same way, because completeness theorems con-
cern usually infinite sets, model checking is not usually an effective decision
procedure. Both argument fail when the sets involved are finite. Indeed,
finite set-theoretical functions are computational objects (e.g. association
lists) and finite model checking is an effective decision procedure (e.g. propo-
sitional calculus).

Definition: Let (Ma)c be the standard model with the base set M = M,.
A function f of Ma is said to be A-definable if there exists a closed A-term t
of type a such that i(t) = f (where v is the only assignment over the empty
set ).

Conjecture: A-definability Conjecture
If M is finite then it is decidable whether of not a function f of M," is

A-definable.

Remark: The problem makes sense because M is finite, otherwise the func-
tions of j% would not be computational objects.

7 The A-definability Conjecture Implies the
Higher Order Matching Conjecture

Definition: Higher Order Matching Problem
A higher order matching problem is a pair of terms < a, b > of types

CV ... --- --n 3 and 3. A solution to this problem is a n-uple of terms
< t, > of type ao1 . an such that (a ti ... tn) =o, b.

Conjecture : Higher Order Matching Conjecture
It is decidable whether of not a higher order matching problem has a

solution.

Proposition: The higher order matching problem is decidable if and only
it the higher order matching problem with closed a and b is decidable.
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Proof: Let < a.b > be a problem. Let x1 :l,...,x. : Op be the free variables
occurring in a and b. Let

-,, = l --1 .. -- Op - a,

a' = Ay, : -y .... Ay,: -.. Ax. :,31 .... Ax : I,3.(a (yi xi ... x )... (y, xI ... xp))

Y = Ax, : 31.... Ax , : 3p.b

If we have
(a tj ... tn) =

then
(a' Ax, : i.... Axp,: f3p.t ... Ax, 31 .... Axp: j3p.t,) =

Conversely if we have
(a ' ' . tt) -- b'

then
(a (t' xi ... xp) ... (t', xi ... xp)) =b

So the problem < a, b > has a solution if and only if the problem < a', b' >
has one.

Proposition: The higher order matching problem is decidable if and only
if the higher order matching problem with closed t 1 , ... ,tn is decidable.
Proof: Let < a, b > be a problem. Let

a' = Ay, : t ---+ Cl .... Ayn C ---+ a,,.,A : t.(a (y, x) ... (yn x))

and
b' = ,x .b

(remnark that if a and b are closed then a' and bY also are).
Ass1ume the problem < a, b > has a solution t1 ,. .... tn. Let z be a variable

of tYpe t. For each type 3 = '1 -* ... - yk -+ t we consider the term

= z , \zk : "k.-.

Let x,1 3:•....p :3p be the variables occurring free in the terms t 1 ... t,
f, = t,[xj . .. -- w 3.1 and ui = Az 't.t. We have

(a' uI ... ul ) = b'
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So the problem < a', b' > has closed solution.
Now if the problem < a', b' > has a closed solution ul, ... , un then let z be

a variable of type t and t, = (ui z). We have

(a/ u, ... u.) = b'

so
Ax : t.(a (u, x) ... (un x)) = Ax : t-b

so
(a (u, z) ... (u. z)) =- b

i.e.
(a t, ... tn) = b

So the problem < a, b > has a solution if and only if the problem < a', b' >
has a closed solution.

Theorem: (Statman) If X-definability is decidable then higher order match-
ing is decidable.
Proof: Let us assume the A-definability conjecture. We take two closed
terms a : a, -- ... c• -an 3 and b : 3 and consider the model Mb constructed
in section 5. Let A = ý(a) and B = i(b) (where v is the only assignment
over the empty set). By an enumeration procedure we select all the n-uples
< T1,....Tn > such that A(T 1 ,.. . ,Tn) = B. The problem < a,b > has a
closed solution if and only if there is such a n-uple such that all the T; are
A\-definable.

Indeed if the problem < a, b > has a closed solution < t1 , ... , tn >, then let
T = i,(t,), the T, are A-definable and A(T 1,...,T,) = B. Conversely if there
are A-definable T1, ...Tn such that A(TI, ... , T,) = B. Let t1 , ... , tn be the terms
such that T, = ý(ti). We have Mb • (a t, ... tn) = b. So (a t, ... tn) =,, b.
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