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Abstract

Using a binocular, maneuverable visual system, a robot that holds its gaze on a
visual target can enjoy improved visual perception and performance in interacting with
the world. This dissertation examines the problem of holding gaze on a moving object
from a moving platform, without requiring the ability to recognize the target. A novel
aspect of the approach taken is the use of controlled camera movements to simplify the
visual processing necessary to keep the cameras locked on the target. A gaze holding
system on the Rochester robot's binocular head demonstrates this approach. Even while
the robot is moving, the cameras are able to track an object that rotates and moves in
three dimensions.

The key observation is that visual fixation can help separate an object of ii terest
from distracting surroundings. Camera vergence produces a horopter (surface of zero
stereo disparity) in the scene. Binocular features with no disparity can be extracted
with a simple filter, showing the object's location in the image. Similarly, an object that
is being tracked will be imaged near the center of the field of view, so spatially-localized
processing helps concentrate on the target. Rochester's binocular robot exploits these
observations. The vergence and smooth tracking systems cooperate to hold the cameras
on an object moving in three dimensions. The vergence system changes the vergence
angle of the cameras to drive the disparity of the target to zero, relying on the tracking
system to keep the target in the central field of view. The tracking system centers the
cameras on the zero-disparity signals, relying on the vergence system to hold vergence
on the target. Instead of requiring a way to recognize the target, the system relies on
active control of camera movements and binocular fixation segmentation.

KEYWORDS: visual following, tracking, pursuit, vergence, active vision, animate
vision, precategorical vision, sensory-motor systems, gaze stabilization, egomotion com-
pensation, visual fixation, binocular vision, mobile robots.
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I 1 Introduction

I
The importance of eye movements to biological visual systems is obvious from their
ubiquity. Even insects exhibit eye movements, although they are accomplished by head
movements [Land, 1975]. In contrast, controlled camera movements have played a small
role in computer vision research. However, there is growing interest in the role of camera
movements in robotic visual perception, and some lessons for computer vision systems
may be learned from btidying biological vision systems. Both have limits on resolution
and field of view, and they must therefore direct their visual sensors toward areas of the
environment that are of interest. Also, both animal and robot visual systems exist to
provide visual perception of the dynamic environments in which their owners operate.

There is a growing trend in computer vision to consider the visual system in the
context of the behavior of a robot interacting with a dynamic environment. The active
vision approach [Krotkov. 1989; Aloimonos et al., 1988; Bajcsy, 1988] observes that
constraints derived from known camera motion can replace other assumptions (e.g.,
smoothness) that had previously been employed to solve mathematically ill-posed prob-

lems. Animate vision [Ballard, 1991] considers that visual perception is one of several
behaviors employed by a creature in order to achieve its goals in a dynamic environment.
Interest in animate vision has been sparked at least partly by the recent availability of
,eal-time image processing equipment, which has enabled researchers to consider visual
perception as a viable sensory input to a robot interacting with a dynamic world. Thus
vision has begun to be considered as a means for gathering information that is relevant

to the task in which the robot is engaged.

One of the principal tenets of animate vision is that sensing and motor behavior
interact closely with one another. In this highly synergistic relationship, sensors provide
perception to inform the creature's behavior, and motor actions make the creature an
animate observer, using its sensors to maximum advantage. A corollary of this idea is
that the sensor and the motors that move it must be considered together to arrive at
the description of the perception system. One way of viewing this is to consider each
creature as a sensory-motor system. consisting of perception. control, and effectors.

This dissertation considers the application of this idea to the problem of holding

gaze on a moving object from a moving platform. We move through a world of still

1
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and moving objects, and we need to look at them, recognize them and keep our eyes
on them. This dissertation demonstrates that deliberate control of the cameras can I
simplify the sensory processing that is required. I
1.1 Precategorical Gaze Holding

Holding gaze is a fundamental capability of biological visual systems. There are several I
visual perception and behavioral motivations for holding gaze in robotic as well as
biological systems, including foveal vision, and motion blur.

Foveal Vision: Foveal visual systems have small areas of high resolution. To get a high
resolution image of an object, the fovea must be directed at the target. Obviously, I
high resolution stereoscopic vision can only be achieved with both foveas directed
at the point of interest simultaneously.

An argument can be made for the ultimate necessity of non-uniform resolution, in

order to provide both high resolution and a wide field of view [Tsotsos, 1988]. Thus
future robot systems may be equipped with foveas. If so they will require vergence
systems for the same reasons that humans require them. Work on spatially-variant
visual sensors has begun [Van der Spiegel ct al., 1989; Rojer and Schwartz, 1990],

so we can expect to use camera systems with foveas in the near future.

Motion Blur: Motion blur degrades the resolution of moving images. An image that
moves over the retinal will be degraded by motion blur, according to the integra- 3
tion time of the receptors (which have limited spatiotemporal resolution). It is
easy to demonstrate this to yourself by moviing your finger in front of some text
and following your finger with your eyes. The background blurs as a result. If you I
fixate on the background, your moving finger will appear blurry. You can clearly
read the text behind your finger. 3

Facilitating Stereo Fusion: In addition, active vergence control can facilitate stereo
fusion. By definition, the fixation point has a stereoscopic disparity of zero, and

points nearby tend to have small disparities. This makes it possible to use stereo
algorithms that accept only a limited range of disparities. Such systems can be
very fast and are amenable to hardware implementation [Nishlihara, 1984; Olson, 3
19911.

Indexical Behavior: A consequence of actively following tile target with the sensor
is that simple visual sensing techniques that are uniquely available in this situa- I
tion can be used to segment the target. This opens the possibility of developing

'The retina is the name of the inner surface of the back of the eye that contains the photoreceptors. 1
We will also use the term "retina' to refer to the receptor array of a camera.2!

9 I
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a suite of indexical behaviors [Agre and Chapman, 1987; Whitehead and Bal-
lard, 19901 that the robot uses to interact with "the object of regard", such as
go-to-the-f ixated-obj ect, and pick-up-the-f ixated-obj ect.

For gaze holding to be as general as possible, it should not require object recognition.
It is time-consuming to recognize or locate an object. Doing so can provide robust
information, but only at the expense of long latencies. Further, it is important to able
to follow a moving object whose identity is not known. In summary, what is needed
is the ability to follow an object with the cameras, without a model of the object. Of
course, if the object can be located using a model, this reliable information should be
used when it is available. 2 Nevertheless, there must be a faster system that relies only on
precategorical cues (i.e., cues available prior to object recognition) to keep the cameras
on the target in the meantime.

The goal of this work has been to build a robot gaze holding system whose only
knowledge of the target is essentially that the cameras are initially pointed at it. The
situation is depicted in Figure 1.1. The gaze holding problem is to maintain fixation on
a moving visual target from a moving platform. In order to do this, the errors in camera
orientation must be determined, so the location of the target's image on the retina must
be found. How can this be done without recognizing the target? The approach taken

in this work exploits binocular cues and the fact that the cameras are actively following
the target.I
1.2 Control of Sensors and Simplified Sensing

As a consequence of gaze holding. the visual target is easier to pick out. Thus, it is
easier to follow an object with moving cameras than to track its images in stereo images
with static vergence and no control of camera movement [Coombs et al., 1990]. For
instance, during active following, motion blur de-emphasizes the background. Further,
simple visual sensing techniques that are uniquely available during gaze holding can be

used to segment the object being fixated, as illustrated in Figure 1.2. Foveal vision
emphasizes the fixated object simply by spatially localized processing or enhanced reso-
lution. Disparity filtering picks out features near the robot's horopter (the set of points
in the scene whose stereo disparity is zero in the robot's cameras). 3 The demonstra-
tion system locates the target by foveally filtering the output of the zero-disparity filter
(ZDF). essentially producing the intersection of the fovea and the robot horopter. The

2 1t should be noted that most of the time. the visual system of an animal (especially a higher

mammal) will be pursuing an object that it is able to recognize, so the visual system likely has access

to such reliable i~formation about the target. albeit with some latency.
-The robot's horopter is here intended to be roughly analogous to the human empirical horopter.

The relation betweein these horopters and zero-disparity filtering is explored in Section 5.1.

3
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Figure 1.1: Top view of binocular gaze geometry. The goal of gaze holding is to keep
the eyes or cameras fixed on a common world point or visual target. The gaze vector,
W, consists of the gaze pan and tilt angles and vergence angle. In order to keep the
world point fixated, the gaze holding system must generate gaze and vergence angles
that keep the cameras directed toward the target. The result of fixating a target is that
the object lies near the robot's horopter, which is the set of world points whose disparity
is zero. The stereo images of an object that lies near the horopter have a narrow range
of disparities.
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target's retinotopic location provides the error signals the gaze control system needs to
control the gaze and vergence angles.

1.3 Overview

The remainder of the dissertation first motivates and outlines the problem of holding
gaze in robots using visual cues alone. General issues facing a visual tracking system are
considered in Chapter 2. These include the extraction of error signals from the visual
signal and the interaction between the observation of visually encoded signals and the
control of visuomotor systems that use them.

The gaze holding problem is comprised of pursuing the visual target with the cam-
eras, and for binocular systems, verging the cameras on the object. We will call the
direction of the cameras the gaze angle or direction. The pursuit system rotates the
cameras in tandem to keep gaze directed toward the target. The vergence angle is the
angle between the visual axes of the cameras. Vergence system control consists of rotat-
ing the cameras in opposite directions so the visual axes of the cameras intersect at the

distance of the object of interest. The vergence and pursuit problems are discussed and
demonstration systems are described in Chapters 3 and 4. The pursuit demonstration
system is predated by and built upon the vergence system, so the vergence system is
presented first.

The demonstration system exploits binocular cues and deliberate control of the
cameras that enable precategorical segmentation of the fixation target. These ideas are
embodied partly in the zero-disparity filter (ZDF), which reveals only objects that lie
at the fixation distance. The set of points that stimulate the ZDF defines the robot's
horopter; in this way it is somewhat analogous to the human empirical horopter. This
relationship is explored briefly in Chapter 5. which relates our experiences with zero-
disparity filtering.

One of the problems faced by sensory-motor systems is the difficulty of controlling
systems that contain delays. Delays are unavoidable since processing the signals takes
time. Methods for coping with delays are described in Chapter 6. Finally, Chapter 7
summarizes the results and describes some directions future investigations might take.

It should be made clear that the scope and goals of this work extend only to holding
gaze on a visual target that is already fixated by the robot's cameras. Further, it is the
express intention to use only precategorical cues (i.e., prior to object recognition). This
leaves open the questions of how to select a visual target and how to initially acquire
fixation of it. Both of these capabilities are clearly essential for a fully functional gaze
control system. While the approach taken is inspired somewhat by biological models
and the questions they raise (e.g., how to visually extract the target signals), the design
of the demonstration system bears little resemblance to biological models of smooth
pursuit. In particular, it is not widely believed that binocular cues play a significant
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Figure 1.2: In this top view of binocular fixation, the lightly shaded areas are the regions 3
of space that are attended to by foveal and zero-disparity filtering. The intersection of
these areas is shaded darker, and it corresponds to the area around the fixation point
in which objects can be segmented. (The robot's horopter is here defined by the results
of zero-disparity filtering, and the "thickness" of this horopter arises from the tolerance
of the ZDF to small disparities.)
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j role in pursuit and visual following, though they may influence stabilization of gaze

on stationary scenes. Nevertheless, the central thesis, that localizing attention in 3D
space makes simple precategorical visual processing sufficient to hold gaze, remains

relevant. Although binocular cues cannot distinguish a visual target in all situations,
an appropriate conjunction of precategorical cues offers promise for holding gaze in

I dynamic environments.
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1 2 Gaze Holding and Background
3

I

The larger problem of gaze control can be broken down functionally into the subproblems
of holding gaze on a visual target and shifting gaze between objects. Gaze shifts, called
saccades, transfer fixation rapidly from one visual target to another. Holding gaze
involves maintaining fixation on a moving object from a moving gaze platform. The
general gaze holding problem is to maintain fixation on a moving visual target from
a moving platform. In the case of binocular visual systems, this involves keeping the
"visual axes of the eyes directed at the target (as illustrated in Figure 1.1), and can beI decomposed into version, when both eyes pan and tilt together, and vergence, when the
eyes pan in opposite directions to fixate nearer or farther targets.

Gaze holding has several aspects that are accomplished ir animals by a set of spe-
cialized controls that are mentioned here and sometimes referred to by analogy later.
The smooth pursuit system tracks continuous target motion. The vestibulo-ocular reflex
(I!OR) and otolith-ocular reflex systems rotate the eyes to compensate for head motion
that is detected by the vestibular and otolith organs in the inner ear. The opto-kinetic
reflex (OKR) and other visual following mechanisms stabilize the eyes on stationary
scenes. The vergence system rotates the eyes in opposite directions, controlling the
distance of the fixation point (at which the optic axes intersect). The saccadic system
provides fast gaze shifts. In animals these systems cooperate in complex ways [Carpen-
ter, 1988].

Vision alone provides the measure of how well gaze is being held steady on an object.
Non-visual cues (e.g., head motion) can be used to stabilize gaze on a fixed point in the

world. Sometimes such cues are available with low latency and minimal sensing and
processing. leading to higlwr performance from stabilization systems that use them.
However. only vision can provide cues to the motion of a moving object. Therefore, this
work focuses on the problem of using visual cues alone to hold gaze on a moving object
from a movinig platform.
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1 D Tracking Scenario Error Feedback Tracking System

sensory Processing Delay

Error EstinulorI

e e

t ~Effector

Error is encoded in the visual signal!

(a) (b)

Figure 2.1: Simple 1D tracking example: In the one-dimensional setup of (a), the camera
should be pointed at the object. The visual system is modeled in the diagram (b) by
the delay (z- 1) and the error estimator, E. The controller, C, converts that error to
a set of control signals that direct the camera motor (i.e., the plant, G) to produce
appropriate changes in 0.

I
2.1 Tracking Systems

Before discussing the vergence and pursuit systems, consider a simple one-dimensional
visual tracking task (a) and the tracking system modeled by the block diagram (b) of

Figure 2.1. The objective of the system is to follow the desired angle, 0 desired, which
represents the gaze angle the camera must achieve to fixate the target object. The
system's response, the actual gaze angle, is denoted by 0. The difference between the

desired and actual response is the error in tracking performance, O'rr. At the most
abstract level, any error feedback solution to a visual following problem will have three

major components: a sensory system that determines how the current response differs I
from the ideal, a controller that generates a response to the errors, and a motor system

that executes the controller's commands. The visual system is modeled in the diagram

by the delay (z- 1 ) and the error estimator, E. The controller, C, converts that error
to a set of control signals that direct the camera motors (i.e.. the plant, G) to produce

appropriate changes in 0. 3
10
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It is important to note that in a visual tracking system, the error is encoded in the

visual signal. i.e., although 9 and 9 desired are scalar, 0erro" represents image data! Thus,

the error estimation consists of visual processing to determine the error in the system's

response.

In a visually-driven oculomotor servo system, the sensor that provides the driving

signal is being moved, and therefore the observation of the error signal is directly affected

by the oculomotor behavior. I.e., the observation of the error signal and the control

of the system are not separable since they interact. This is very important, since the

error estimator and the control algorithm must be designed with this interaction in

mind. Consider that the error in gaze direction is encoded by the retinal location of the

target. Moving the camera to correct any positional error will cause the target image to

slip across the retina. This may consequently blur the image of the target, potentially

causing difficulty for subsequent visual processing. Conversely, the control system faces

the dilemma of trying to correct both positional and velocity errors simultaneously. One

solution is simply to sacrifice one to some extent and only try to control the other. For

instance, a control system that attempts to position the target's image on the fovea

with smooth movements will sacrifice image stability to achieve the desired position.

Similarly, a velocity-matching system will not correct sustained positional errors. It

is commonly assumed that the primate oculomotor system's solution to this dilemma

is that the pursuit system matches the target's velocity with smooth movements of

the eyes, and it uses catch-up saccades to correct positional errors. However, it is also

possible to elicit "compromise" behavior from monkeys in which smooth eye movements

alone attempt to minimize both velocity and position errors [Lisberger, 1990].

This tight coupling between observation and control is especially crucial if there are3 delays in the system, and since computer programs and neural computation (especially

visual processing) do not execute instantaneously, delays are unavoidable. Suppose the

tracking system needs to follow a target that jumps to a new position, and that there

is a delay in estimating the error. The error is not apparent to the control system

immediately, but once it is observed the system responds. The system's response is not

immediately noticed due to the processing delay, so the response to the old observed

error is sustaine]. Consequently, the system over-reacts to the input signal. If the delay

is longer, the system will react to older sensory data, and the resulting overshoot will be

greater. If the delay is too long with respect to the system's response time, the system

as a whole will be unstable. This behavior is evident in the performance of the control

systems of the demonstration implementation, exemplified by the vergence system in

1 Chapter 3.

A simple way to prevent the system from over-reacting is to reduce its responsive-

ness. A better approach incorporates knowledge of the delay in the system to avoid

over-responding, but the response is still late. The only way to avoid being late is to
predict the target signal's behavior in advance. This is possible for predictable (i.e.,

11
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modelable) signals, or for signals that can be approximated by linear predictive filters

(e.g., a Kalman filter [Bar-Shalom and Fortmann, 1988]). It is important to make the I
predictions in a coordinate system that is not perturbed by the control system so the

target signal will be stable in that space. For instance, the target trajectory may be

relatively smooth in head-centered coordinates, and yet the target's image may not I
move smoothly across the retina since the retinal slip of the image depends also on the

camera movements. These issues are touched on briefly in Chapter 4 and considered in 3
more depth in Chapter 6.

2.2 Gaze Holding Overview I

A critical parameter in the design of a gaze holding control system is the nature of I

the input signal-how the desired gaze angles (pan, tilt, and vergence, as described in

Figure 1.1) change with time. This will depend on both the motion of the target and the

movement of the observer and its cameras. It seems reasonable to base initial discussions

on the known characteristics of primate eye movements [Carpenter, 1988]. That is,

camera movements will generally consist of intervals of smooth pursuit or fixation of

an object punctuated by discontinuous jumps (saccades) to new visual targets, and I
continuous-mode gaze controls should be designed with this in mind.

The two types of expected changes in desired gaze angles differ in fundamental ways. 3
During pursuit and fixation, changes in desired angles are determined by the dynamics

of observer and object motion. The laws of physics restrict what can happen; for

example, accelerations and velocities must be finite. A target may cross the visual field I
with high velocity, requiring high speed panning of the cameras to pursue it. However,

rapid changes in desired vergence angle will be rare: they arise from very rapid target

movements in depth (especially near the observer). so the target will soon pass through I
the image plane (if it is approaching) or recede to a depth at which desired vergence angle

changes more slowly. In short, the input to the vergence control loop during pursuit 3
and fixation will be smooth, with finite second derivatives and small first derivatives.

The situation for the pursuit input is similar to the vergence system. However, the

target's retinal position can be expected to change faster than its disparity. Therefore I
the piirsuit system will be expected to encounter faster changes in the desired pan and

tilt angles than will the vergence system. Note that even with a smoothly moving

target object, noise in the estimation of error signals canl introduce discontinuities in I
otherwise smooth signals. The pursuit and vergence controls should be robust to such

disturbances.

During a saccade the input signals will behave quite differently than during smooth

gaze holding. If the pursuit and vergence control systems are to operate continuously,

they must be robust to the discontinuities in the input signals that are introduced by I
saccades. At the verY least, the knowledge that a saccade is occurring can be used as a
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warning that discontinuities in the input signals are to be expected. Continuous systems

could then reset their ongoing processes to prevent the use of expectations based on the
behavior of the previous target object. However, since the focus of this dissertation is
limited to following smoothly moving objects, there will be no detailed consideration of
interaction between smooth and saccadic camera movements.

This dissertation presents a system implemented on the Rochester robot that demon-
strates that gaze holding can be achieved using only precategorical visual processing (i.e.,

prior to the level of object recognition). The gaze holding system is initially engaged
with the cameras fixating the target and moving at the correct speed to keep the target
fixated. (In all experiments described here, the target is initially still.) In addition, the
target's approximate size is also supplied to the system. The system "identifies" the

target only by the fact that the target is initially fixated (i.e., its approximate location is
known) and its approximate size is known. Despite the discussion above of the relations
between saccades and smooth camera movements in holding gaze, the demonstration

system uses only smooth camera movements and makes no provision for interacting
with saccades or any other gaze control mechanism.

2.3 The Rochester Robot

The demonstration system is implemented on the Rochester robot head, which has three
degrees of freedom (DOF), as shown in the photo of Figure 2.2. The head is mounted

on the end of an industrial PUMA six DOF robot arm with a six-foot radius reach.
The cameras can move at speeds exceeding 400 deg/s so they can approximate human

i saccade speeds. The cameras tilt up and down together on a common platform, and pan
independently from side to side, driven by three motors, one for the tilt platform and
twin pan motors, as sketched in Figure 2.3(a). A mechanical advantage of the Rochester

head design is its simplicity: the compact mechanism and fairly direct linkages facilitate
rapid saccades.

The Rochester head design differs from another common head design (e.g., [Clark
and Ferrier, 1988: Krotkov, 1989].) which is shown in Figure 2.3(b). This design has
a motor that controls vergence directly, and the pair of cameras pan and tilt together

as the entire mechanism is rotated. The vergence angle is controlled by a single motor
that converges both cameras symmetrically via a mechanical linkage, such as a rack
and pinion driving a pair of levers that rotate the cameras about vertical axes. The

advantage of this design is that gaze angles and the vergence angle are controlled by
separate motors and are orthogonal--gaze direction and vergence can be altered without
(distlirbing one another. 'hus. this design is well suited to employ traditional models of

gaze control, in which vergence is considered to be largely independent of other types of
camera movements. However. saccades may be more brisk with the Rochester design.

13
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since only the cameras and tilt platform must be moved, whereas the shared vergence

design requires that essentially the entire head must be rotated to shift the gaze.

The quality of the motor system, or plant. is determined by how quickly and faith-

fully it translates control signals into changes in camera angles. Current generation CCD

cameras and motor controllers make it relatively easy to move the cameras quickly. Care

is required, however, to insure that the camera mounting is able to tolerate the stresses

generated by rapid camera movements. The large accelerations required for saccadic

movements can cause "ringing", i.e., vibrations that persist after the motors have come

to a stop. Avoiding these problems involves mechanical engineering conviderations that

are beyond the scope of this dissertation, so they will not be discussed further.

Another important aspect of the mechanical design is the location of the axes of

rotation with respect to the nodal points of the cameras. The nodal point of an optical

system is the point about which a rotation of the system results in a change in the

projected image that depends only on the rotation and not on the distance of the

imaged point. The nodal point of the system corresponds to the pinhole of a pinhole

camera or to the front nodal point of an ideal thick lens system [Horn, 1986]. For

the purposes of gaze control it is desirable to mount the cameras so that their axes of

rotation pass through the nodal points, since doing so makpc ;t possible to predict the

effects of a rotation without knowing the depths of obh-cts ;it tihe scene.

If the axes of rotation do not pass throiqiu the nodal point of the camera system, each

camera rotation necessarily includes a small translational component. This causes the

displacement of the target in the image to vary •. h targmt depth as well as the amount

of rotation. The depth dependence may of course be useful, e.g., to constrain stereo

correspondences [Geiger and Yuille. 1987], but it complicates the control problem by

making the relationship between camera position and vergence error more complicated.

However, it is difficult to design a system that rotates the cameras about their nodal

points. The nodal points are often far from the centers of gravity of the cameras,

and they may move when the lenses are changed or moved to adjust focus or zoom.

Fortunately. the depth dependencies introduced by minor deviations from the ideal are

negligible for feedback servo control purposes unless the targets are very close to the

camera system. In the experiments we conducted, the effect is sometimes noticeable,
but it was always relatively small.

The mechanical design of the Rochester Robot head is such that the nodal points

of the cameras do not lie on the axes of rotation. This means that camera movements

necessarily include a small translational component as well as the desired rotation.

so that (for example) increasing the vergence angle slightly reduces the baseline of the

camera system. For most purposes the translational movement can be ignored, although

its effects were noticeable in the experinments described below.

More sophisticated binocular systems may have several other control parameters to

consid,,r. On1, i• focus dptlh. and interactions between focus depth and vergence angle
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have been explored recently in robotic vision experiments [Abbott and Ahuja, 1988;

Krotkov, 1989]. Another possible degree of freedom is torsion or roll, i.e., rotation I
about the optic axis. Torsional movements can be used to reduce retinal slip due to
head rotations about an axis parallel to the gaze direction. Torsional stabilization in

humans can be readily observed by watching one's eyes in a mirror while rocking one's I
head from side to side. For computer vision, torsion controls could be used to align
camera scan-lines with the epipolar line. This alignment is often assumed by stereopsis

algorithms.

Reduction gearing gives the cameras theoretical angular resolutions of 1 degree in

yaw and 1 degree in pitch. Inaccuracy introduced by gear lash reduces the usefulness I
of this resolution to an unknown degree, but camera positioning is still accurate to
substantially better than the angle subtended by one pixel with the 16mm lenses that

are commonly used, which yield a field of view of about 20 degrees.

Figure 2.4 describes the configuration of laboratory hardware on which the demon-
stration systems are implemented. The MaxVideoTM captures images from the cameras 3
and performs the bulk of the image processing. It is coordinated by the SUN host, which
interprets the visual signals to produce the appropriate motor commands for the motor

controllers. I
The robot host computer sends commands to the motors via intelligent stepping

motor controllers that allow the control program to issue commands in terms of absolute

position, relative position, velocity or velocity profile. The ability to issue buffered
velocity commands enables the control program to generate smooth movements without
paying constant attention to the motors. 3

The mechanical design of the motor and camera system was dictated by a desire
to perform saccadic movements at speeds comparable to those of humans. It seemed

probable that a camera platform powerful and rigid enough to perform saccades quickly U
and without noticeable ringing would be able to handle the gentler movements required
for vergence with relative ease. To date this has proven to be the case, and the perfor- 3
mance of the pursuit and vergence systems has been limited by the speed of the error
estimators (and therefore the achievable servo control rates) rather than the physical
capabilities of the motor system. 3

I
I
1
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Laboratory Hardware

I

MaxVideo Image
Processing System

including
EUCLID DSP
microcomputer

VME '... hs
bus

Figure 2.4:
Hardware configuration used for pursuit and vergence control experiments on the
Rochester Robot.

17



I
I
I
U
£
3
I
I
I
I
I
U
1
U
U
3
3

18 U
I



I
!
I
I

3 Vergence

I
Natural systems are generally multi-ocular. Multi-ocularity confers the basic advantages

of redundancy and increased visual field, and allows algorithms for stereo fusion (which
is aided by vergence), static stereo and gloss detection (which rely on stereo fusion but

not directly on vergence), and segmentation of an object from the rest of the scene

(which relies on vergence but not fusion).

Vergence may be the result of a mechanism that foveates a target in both cameras

(see Figure 1.1). Alternatively, vergence may arise from independent foveation mecha-

nisms acting in each camera. For instance, with moving targets, vergence might emerge
from independent smooth pursuit systems attempting to stabilize the target's images

on each retina. Vergence methods that depend on identical independent behaviors in
two different cameras depend on the behaviors being coordinated. For instance, the
independent tracking scheme will not verge if left and right cameras lock on to different

targets. Thus in this work it is assumed that vergence is a system that should be driven
by robust two- aind three-dimensional cues, including a representation of the three-

dimensional fixation point, visual disparity (computed over an appropriate area of the

visual field), and focusing information (which should in turn be affected by vergence).

This chapter describes work reported in [Olson and Coombs, 1991]. It describes

the design, implementation and performance of a gaze control module responsible for
controlling the vergence angle of the cameras. The next section discusses vergence in
the abstract, presenting reasons for veiging and issues that any vergence control system

must address. This discussion leads to a general strategy for vergence control, describees
in Section 3.3. Sections 3.4, 3.5 and 3.6 describe the application of this vergence control
strategy to the problem of controlling vergence on the Rochester Robot, and present

empirical results on the performance of the error estimator and the overall vergence! system.

3.1 The Vergence Problem

I The vergence angle of a binocular system is the angle between the optic axes of its

cameras. The vergence angle, baseline (or interocu!ar distance) and gaze direction of a
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binocular system determine a particular fixation point, as shown in Figure 1.1. Narrowly

speaking, the function of the vergence system is to control the distance from the cameras I
to the fixation point along some specified gaze direction. In most cases the motivation

for vergence is to keep the fixation point near sonic target object. Thus, the vergence

problem can be defined as that of controlling the vergence angle to keep the fixation I
distance appropriate for the current gaze target. Since the desired vergence angle is

directly related to target distance, any sensory cue to depth or depth changes may be

useful to the vergence system. The most commonly used cues are binocular disparity
and focus error, but other depth cues (such as motion, texture, and shading) can also be

used, as can information about depth changes (e.g., measured or predicted self motions, 3
dilations or contractions of the visual field).

Vergence is one aspect of the larger problem of gaze control, which involves control
of the gaze direction and focal distance as well. Vergence control must meet different I
demands during gaze shifting and gaze holding. During gaze holding, a change in
the target position relative to the observer produces a smooth change in the desired 3
vergence angle. A saccade transfers the fixation point almost instantaneously from one

visual target to another, producing a step change in the desired vergence angle.

The treatment of vergence presented here reflects current models of vergence in

primates. Primate visual systems exhibit sophisticated vergence responses that meet the
varied demands of the vergence task. Recent experiments have challenged traditionally 3
held views of ocular vergence and its contrul (E.g., those of Yarbus [1967]). It has
been thought that vergence changes are always smooth and much slower than smooth

pursuit (tracking) movements, and that vergence changes required to shift gaze to a I
target are achieved by smooth vergence movements superimposed on conjugate (equal

and symmetric) saccades in the two eyes. Under natural viewing conditions, however,

Erkelens et al. [1989a; 1989b] observed in humans not only smooth vergence movements I
rivalling the speeds of other smooth eve movements, but also vergence changes mediated

almost entirely by saccades that incorporated a vergence change explicitly rather than

merely superimposing symmetric saccades on smooth vergence movements. Similar
behavior has also been observed in monkeys [Maxwell and King, 1990].

These results acknowledge that the vergence problem can be considered to consist of I
acquiring t'ergence and holding erericnc( on an object or scene. The traditional model of
the vergence system is a compromise, describing a single system that aims to accomplish

both these goals. achieving robustness and generality and sacrificing optimality. The
recent data of Erkelens at al. suggest that the control of vergence is accomplished

in humans by a combination of control systems, including a substantial component

of vergence control by the saccadic control systems as well as the traditional smooth
vergence control. The demonstration system implements only the smooth vergence

control component, as no saccadic control is implemented. The system must expect I
to encounter small steps in) the desired vergence angle. and the smooth controller is
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designed to be robust to them.

* 3.2 Related Work

There is relatively little work on binocular gaze control. Some of the work is modeled3 after the traditional model of gaze control, and other work is focused more on manipu-
lating the parameters of binocular systems for building a model of a static scene.

Clark and Ferrier [1988] built a gaze control system based on the model described
in [Robinson, 1987]. The system acquires and tracks white and black blobs using the
first few moments and intensity value of each object. The vergence control follows the
traditional model. However, the "disparity" estimate is not estimated directly from the
visual signal, but rather it is inferred from the location of the target's image in each of
the cameras. It is assumed that the target is sufficiently unique that it can be identified
and located in each of the stereo images unambiguously. The disparity is the difference
between the locations of the target in the two images. I.e., the correspondence problem
is assumed to insignificant enough to be easily solved by precategorical processing, and
even without resorting to explicit object recognition.

Vergence has recently been used cooperatively with focus and stereopsis for sur-
face reconstruction [Abbott and Ahuja, 1988] and active exploration of the environ-
ment [Krotkov, 19891. Deliberate control of vergence has demonstrated advantages in
both robustness of results and increased speed in stereoscopic processing. Krotkov and
Abbott and Ahuja applied vergence in active vision systems in a stricter sense, and their
goals are similar although their approaches differ. They combine stereo, vergence and
focus to build precise range maps: vergence enables the systems to "foveate" areas of
interest to obtain higher precision and confidence in their range estimates. The main
difference in approaches is that Krotkov improves a rough full-field map (obtained ini-
tially by stereo) by active control of camera vergence and focus accommodation, while

Abbot and Ahuja incrementally extend the partial map with each new fixation.

3.2.1 Why Verge?

Part of the motivation for studying vergence comes from an interest in human vision:
human eyes verge, and we would like to know more about how they do it. The human
visual system's need for a vergence control system is obvious, and follows from the ex-
tremely non-uniform spatial resolution of the photoreceptor array. Vergence movements
allow humans to register an object of interest on the fovea (central, high-resolution re-
gion of the retina) of each eye. so that the greatest possible amount of information about
the object can be extracted.

Currently most robot vision systems do not have foveas, and so the most obvious
motivation for vrgence control in humans does not apply to them. However, vergence
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has many advantages even for systems without foveas. I
Mathematical Simplification: Fixating an object of interest puts points on the ob-

ject near the optic axis in both cameras. In some cases this permits the use of

simplifying assumptions (e.g., replacing perspective projection with orthography)
that make analysis significantly easier. For example, Ballard and Ozcandarli [1988]
used this fact to develop a simple and efficient kinetic depth estimator for systems 3
that fixate.

Facilitating Stereo Fusion: By definition, the fixation point has a stereoscopic dis-
parity of zero, and points nearby tend to have small disparities. This makes it pos-
sible to use stereo algorithms that. accept only a limited range of disparities. Such
systems can be very fast and are amenable to hardware implementation [Nishihara, I
1984; Olson, 1991].

Useful Coordinate Systems: As Ballard [1989] argues, having a unique fixation point 3
at the intersection of the visual axes defines a coordinate system that is related
as much to the object being observed as it is to the observer. It is thus a step in
the direction of an object-centered coordinate system.

3.3 Strategies for Vergence Control 1

At the most abstract level, any error feedback solution to the vergence problem will have
three major components: a sensory system that determines how the current vergence
angle differs from the desired vergence angle, a controller that generates a response to
the error, and a motor system that executes the controller's commands. These three

components can be mapped onto the traditional block diagram modei of a feedback
system, shown in Figure 3.1. The desired vergence angle, Odesied models the vergence

angle needed to verge on the target object. The binocular visual signal, modeled by 1
v encodes the difference, e -ved - I between the desired and current veigence

angles. The visual system is modeled in the diagram by the delay (z-') and the vergence

error estimator, E. The controller, C, converts that error to a set of control signals I
that direct the camera motors (i.e.. the plant. G) to produce appropriate changes in

tverge. This section discusses general considerations in the design and use of these three
components. 1

3.3.1 Controller 3
One of the most important factors influencing the design of a vergence control system is
the nature of the input signal-how the desired vergence angle changes with time. This I
will depend to some degree on details of the system design, particularly the nature of the
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Figure 3.1: Vergence System Model. 0oedi,,d represents the desired vergence angle,
and 0•9• is the actual vergence angle. The error in vergence angle, 0ver, is encodedI by visual signals, and the delay (z- 1) represents the delay due to visual processing.
Process E represents the vergence error estimator, C the vergence control law, and G
the oculomotor plant. The control law, C, is designed to drive the estimated error to
zero.

I processes responsible for other aspects of gaze control and movement (e.g., pursuit and
saccades). our expectations are based on the general view of gaze control described in
Section 2.2. That is, in general camera movements are expected to consist of intervals
of smooth pursuit or fixaition punctuated by discontinuous jumps (saccades). Thus
vergence behavior will consist of periods of maintaining vergence on an object or scene
separated by vergence changes to acquire the vergence angle of a new visual target. The
saccade is expected to account for most of the vergence change in shifting gaze between
objects, but small steps in desired vergence angle must be expected, and the vergence
system's behavior should be robust to these disturbances.

The two types of expected changes in target angle differ in fundamental ways. Dur-
ing pursuit and fixation, changes in target angle are determined by the dynamics of
observer and object motion. The laws of physics restrict what can happen; for example,
accelerations and velocities must be finite. Furthermore, although a target may cross

the visual field with high velocity, rapid changes in target vergence angle will be rare.
Rapid change in desired vergence angle corresponds to very rapid object movement in
depth (especially near the observer), so the target will soon pass through the image

plane (if it is approaching) or recede to a depth at which target angle changes more
slowly. As a result, the input to the control loop during pursuit and fixation will be
smooth, with finite second derivatives and small first derivatives.

During a saccade the input signal will behave quite differently. A saccade can
produce a step change in the desired vergence angle, as well as a discontinuity in its
temporal derivative. The magnitude of these changes may be predictable if the saccade
is to a previously visited target, or if target depth and relative motion are approximately
known from other depth cues. At the very least, the fact that a saccade is occurring

can serve as a warning that discontinuities in the input signal are to be expected.
The fact that there are two distinct types of changes in desired vergence angle sug-
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gests the use of two modes of control. The normal operating mode should be optimized

for the smooth, continuous changes expected during pursuit and fixation. Saccadic

movements should replace the smooth movements of the normal control loop with brief

intervals of "bang-bang" control. That is, the estimated error should be corrected by

an open-loop move to the new desi. i vergence angle at the maximum rate of which the

motor system is capable. The open-loop vergence correction can be performed during

the saccade, if the distance to the saccade target is known; if not there will be some

delay while the error estimator determines a new target angle. The error estimator may

need to be suppressed during a saccade, because of the possibility that motion blur and

shearing deformations caused by camera movements may corrupt the results. Before

the normal control loop is restarted, it should be reinitialized to prevent any tendency

to smooth target angle velocity across the saccade. The details of how this is done will

of course depend on the natures of the smooth control loop, the underlying hardware I
and the saccade generating process.

An alternative design reflects the traditional model of primate vergence control.

This model uses a single control strategy that is able to respond to both kinds of ex- I
pected changes in desired vergence angle. This simple design can stand alone, decoupled

from other gaze control mechanisms, achieving robustness at the expense of optimality.

Notwithstanding the discussion of possible organizations for a vergence system in the

larger context of the gaze control systems, for our purposes of building a simple demon-

stration system consisting strictly of smooth camera movements and with no provisions 3
for saccades or any other gaze controls besides pursuit, we have chosen to use this simple

design. I

3.3.2 Error Estimator

In order to keep the cameras verged on a target, the vergence system must measure I
the current vergence error (and perhaps its derivatives). The most important source of

this information is the visual system, but other sources may also be useful. We have

alreavly noted the possibility of predicting the error that will result from a saccade to

a target of known depth. Vergence changes due to self motion can also be taken into

account, either by making predictions based on planned, voluntary head movements, or

by sensing head motions via the vestibular system (as in the human vestibulo-ocular

reflex) or reading back the positions of a robot. However, note again that vision is

the only source of information for target motion, and visual signals ultimately define I
vergence performance.

A number of different types of visual information are available for estimating ver-

gence error. One feature that is correlated with desired vergence angle under ordinary

conditions is blur, which has been used cooperatively with vergence and stereo to con-

struct depth maps [Abbott and Ahuja, 1988; Krotkov, 1989]. Any depth cue can be 3
used if the absolute vergence angle of the system is known, because desired vergence
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angle is a function of target distance. Humans apparently make use of cues that may
indicate change in depth, since changes in the size of a visual target induce transient

vergence responses [Erkelens and Regan, 1984].

I The most useful visual cue to vergence error, however, is binocular disparity. The

mapping from disparity to vergence error is particularly simple, and (unlike monocular

depth cues) does not require knowledge of the absolute vergence angle of the system.

I Reliable disparity estimates can be computed more easily and quickly than depth es-

timates, permitting shorter processing delays and simpler control strategies. These
advantages may be reflected in the structure of the human vergence control system;I although vergence in humans can be driven by a variety of cues, responses are much
slower under monocular viewing conditions than they are when disparity information is

available [Erkelens et al., 1989b].

Disparity measurement has been studied extensively in the context of stereo depth

reconstruction (Barnard and Fischler, 1982]. Unfortunately most of the disparity es-

timators used for stereopsis arr_ poorly suited to the real-time vergence application.

They are optimized for pocit: mal accuracy and density rather than for robustness, and

depend on optimizatinm r- global criteria to yield a more robust aisparity field. They

cannot provide sing>. ',.parity estimates without essentially solving the stereo problem,
which entails cot Aderable computational expense.

For real-lime vergence what is needed is a simple algorithm that estimates a single
disparity in a fixed amount of time. This narrows the field to image processing methods

such as cross-correlation. Past attempts to use such methods for stereo depth recovery

have uncovered many problems (see [Horn, 1986] for a review). However, a class of
operators that are closely related to correlation appears to work quite well for vergence.
These operators are described in Section 3.5 and Appendix A. If corrclation methods

prove too slow, related methods such as phase comparison [Jepson and Jenkin. 1989]
may be suitable, provided that care is taken to detect and compensate for various

predictable errors [Fleet et al., 1989].

Handling Multiple Disparities

An important issue in correlation-based disparity estimation for vergence concerns han-
dling scenes that have multiple disparities. It is tightly linked to the selection of sample
window size. The sample windows must be large enough to handle the expected range

of disparities, but this almost guarantees that multiple disparities will be present at

least some of the time. Therefore. some additional processing will almost certainly be

required to insure that the desired correlation peak dominates the output.

An obvious way to improve the performance of the error estimator is to filter the
input images so that the target object is more prominent. If detailed information about
the target location is available. the image can be multiplied by a mask that. emphasizes
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details near that location. A simpler approach is to let the target be designated im-

plicitly by one of the cameras. That is, consider one of the cameras to be dominant,
and define the region near its optic axis to be the target. This strategy requires only
that the dominant camera's image be multiplied by a centrally weighted mask before
correlating.

Multiple disparities must be handled in different ways depending whether vergence

is to be acquired on a new target or vergence is merely being maintained on a target over U
time. In maintaining vergence, expectations of the target's disparity can be based on
recent experience. However, there is no such experience on which to rely for acquiring

a new target.

Even with the signal of the target being emphasized in the input to the disparity

estimator, it is likely that multiple disparities will be present. The disparity estimator3
will be forced to choose the target disparity from among those present. Once the target

disparity is identified and the goal is to maintain vergence on a visual target, hysteresis
in the disparity estimate is desirable. The system should be able to use a prediction 3
of the target disparity (e.g., with a Kalman filter [Bar-Shalom and Fortmann, 1988])
to select it from among the detected disparities. Care must be taken to adjust the

prediction for vergence changes and delays in the system. It is essential with linear and I
quadratic predictors (or estimators) that the target signal be predicted in a coordinate
system in which it will be fairly stable. Otherwise the performance of the low order

polynomial predictions will be poor.

Acquiring vergence after a gaze shift requires picking out the right disparity. A
reasonable strategy in the absence of input from higher-level processes is to choose the

strongest disparity signal, effectively treating vergence error estimation as an image

registration problem. This approach simply chooses the stro.gest disparity signal. This
disparity will be the one that best describes the shift between the images. In correlation- U
based methods, the signal strength is related to peak height, so this reduces to selecting

the disparity that produces the largest peak. 3
3.4 Vergence on the Rochester Robot

The general considerations discussed in the preceding sections formed the basis for the
demonstration system on the Rochester Robot. This section and the two that follow
describe the sensory and control components of the system, and discuss its performance I
as measured in the laboratory.

A demonstration vergence systcm. diagrammed in Figure 3.2. is implemented on the 3
Rochester robot head. Visual processing begins with foveally-processed visual signals.
The vergence system keeps the cameras convergedl on the target, using an estimate of the

biioctlar disparity between the foveal images to measure the vergence error. It should I
be noted that the target must remain prominently in both left and right foveal images.
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The disparity estimator only provides information on what disparities are present in
the images and not where in the images those disparities arise; therefore, the vergence
system has no way of ensuring that the target remains within the foveae. The system

generates camera vergence velocity commands, but the motors are not configured with
those degrees of freedom mechanically. However, they are linearly related and the motor
controller performs the conversion from camera coordinates to motor coordinates.I In the demonstration system, the cameras smoothly verge on the target by using a
position servo to minimize the retinal disparity of the camera foveae. Early experiments
used a PD control law, and later experiments (in conjunction with pursuit) have usedI a PI controller. Prediction has not been attempted to mitigate the effects of delay.
For the system to predict disparities, the target should be predicted in a stable space;
therefore target depth and not retinal disparity should be used, since control responses
affect the latter but not the former coordinate system. This requires an estimate of the
range to the target, which in turn requires the vergence angles to be calibrated.

3.5 Vergence Error Estimation

The vergence error estimator is based on disparity, since (as argued in Section 3.3)
disparity is the most direct and reliable measure of vergence error. One approach to

disparity estimation would have been to use the MaxVideoTNI convolution hardware to
compare central patches of one image with the other image by correlation. However,

previous attempts in our lab to use that approach for tracking had encountered many

difficulties [Brown et al., 1988]. Instead the disparity estimator is based on the cepstral
filter [Yeshurun and Schwartz, 1989]. The cepstral disparity estimator performed well
from the beginning, but the reasons for its success were initially unclear. Our efforts to

achieve a better understanding of the algorithm led us to an interpretation of the cepstral
disparity estimator as one of a family of operators of which phase correlation [Kuglin
and Hines. 1975] is a logical end point. This section describes the basic operation and
performance of the cepstral disparity estimator. The reasons for its success and its
relationship to phase correlation are explored in Appendix A.

3.5.1 Measuring Disparity with the Cepstral Filter

The cep.trurn of a signal is the Fourier transform of the log of its power spectrum. 1 It
was introduced in [Logert ~t a!., 196:3] as a tool for analyzing signals containing echoes.
Such signals can be modeled as an original signal S(I) convolved with a train of impulses,
Z.C?..

R~)=SMt * (M0 + aoý(t - to) + alb(t - ti) + ...

'This is sometimes referred to as the power cepstrum to distinguish it from the complex cepstrum,
which is the Fourier transform of the complex log of the Fourier transform.
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Figure 3.2: Vergence system: The visual signal is foveally processed before use. The ver-
gence system estimates the disparity of the foveal images and controls the vergence angle
to minimize the disparity. The motor controller translates vergence velocity commands
by simple linear relations into the required left and right pan motor velocities.
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where * denotes convolution. Taking the log of the power spectrum transforms the

received signal into a sum of two terms, one of which depends only on S(t) and the

other of which is a combination of distorted sinusoids with frequencies related to to,
tj, etc. If the cepstrum of S(t) does not overlap the frequencies of the echo terms,

conventional linear filtering techniques can be used to extract the values of the echo

delays.

Recently Yeshurun and Schwartz [1989] developed a way of using the two-dimensional

cepstrum as a disparity estimator. The first step of their method is to extract sample

windows of size h x w from the left and right images. The sample windows are then

spliced together along one edge to produce an image of size h x 2w. Assuming that the

right and left images differ only by a shift, the spliced image may be thought of as an

original image at (0, 0) plus an echo at (u, + dh, d,). where dh and d. are the horizontal
and vertical disparities. The periodic term in the log power spectrum of such a signal

will have fundamental frequencies of w+dh horizontally and d, vertically. These are high

frequencies relative to the window size. The image-dependent term, by contrast, will be

composed of much lower frequencies, barring pathological images. Thus, as Yeshurun

and Schwartz show, the cepstrum of the signal will usually have clear, isolated peaks at

(±(w + dh). ±d,).

3.5.2 Implementation

Early experiments with a workstation-based implementation of the cepstral disparity

estimator showed that it was robust enough for the vergence application, provided that

the sample windows were of adequate resolution. At low sampling densities the estima-

tor failed frequently, finding peaks that did not correspond to any plausible disparity

in the scene. These failures usually resulted in anomalous vertical disparities and were
therefore easily detectable. Hlowever, they introduced unpredictable latencies into the

error estmation process. In order to gain the highest possible speed for real-time per-

formance. we chose the smallest sampling density that gave reliable disparity estimates.
This densit'" was found empirically to be 32 x 32. obtained by subsampling over central

256 x 256 regions of the left and right input images.

Unfortunately. even at this greatly reduced resolution the original implementation
required a few seconds per computation on the Sun that acts as the robot's system con-

troller. In order to obtain a faster sample rate of disparity estimates the algorithm was

re-implernnted on the MaxVideo image prccessing system. The system is diagrammed
in Figure 3.3. The processing begins by digitizing a stereo pair of images from the robot

head's cameras. The cameras are synchronized so the images are taken simultaneously.
The stereo images are convolved with anti-aliasing filters (E.g.. Gaussian. (T = 2.5 pixels

for 8-fold reduction in resoiution) before being stored in frame buffer memory.2 The

'For only slight reductions in resolution, blurring is not necessary and is therefore omitted. Ideally,
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EUCLID digital signal processing microcomputer included in the MaxVideo image pro-

cessing system is used for estimating disparity. The EUCLID computer is based on the 3
ADSP-2100 digital signal processor [Analog Devices, 1987], which is optimized for oper-

ations such as convolution, finite impulse response filtering and Fast Fourier Transforms.

The EUCLID board subsamples the stored images and performs cepstral filtering on I
the windowed, subsampled images. EUCLID locates the peaks in the disparity image

and reports the disparity to the sun host. Thus the vergence error is measured. I

The cepstral estimator incorporates a number of optimizations suggested by our

analysis and described in [Olson and Coombs, 1991]. The final implementation computes

the cepstral disparity estimate for 32 x 32 windows in approximately 51 milliseconds, I
not including digitization time or the 8 ms required to acquire the VME bus and read

the sample arrays from the frame buffer. Figure 3.4 shows a sample input and a plot

of the cepstral output. It should be noted that no hysteresis is incorporated in the I
implementation described here: the tallest peak is always taken as the target disparity.

Thus the disparity estimator reports the single disparity that best accounts for the shift

between the images.

Although the implementation described above is adequate for some purposes, its

accuracy is limited by the coarse quantization of the sample windows. For example, with I
the standard 16mm lenses each pixel in the subsampled cepstral output subtends about

27 arc minutes, or nearly half a degree of visual angle. The current implementation

obtains sub-pixel resolution by first finding the peak pixel value in the cepstral output
region and then interpolating to better localize the disparity peak. Only the scan line

containing tCe peak value is considered. reducing the problem to ID peak finding. The

1 D sample set is modeled as a discrete approximation to - delta function (i.e., a rectangle

of width one pixel and unknown height) sampled by integration over adjacent regions

of width one pixel. Thus the output of a given sample as a function of disparity should 3
be the convolution of its rectangular sampling window with the rectangular disparity

pulse. i.e., a triangular pulse whose base is two pixels wide. The interpolation strategy

suggested by this model is to return the centroid of the peak pixel and the larger of its I
two neighbors.

The assumptions underlying the interpolation strategy were tested by recording 5
values of the output samples as a function of sub-pixel disparities generated by moving

the cameras while viewing a static scene. Figure 3.5 shows the responses of three

adjacent output samples to a simple scene. The responses have the predicted shape I
and slope, showing that the model is an accurate description of what happens with real

scenes. However, the triangular pulses are broadened slightly at the base. In practice

this means that the interpolation strategy described above will produce discontinuities

the amount of blurring is proportional to the resolution reduction. but due to a shortage of convolution

boards, vergence either shares the pursuit blurring or omits blurring entirely when used together with I
the pursuit system.
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Vergence pathway
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estimation I
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Figure 3.3: Vergence Image Processing: First, stereo images are digitized from syn-
chronized cameras, and the images are blurred by convolution with a Gaussian kernel
(or = 2.5pixcls). The vergence pathway begins with "zooming" and subsampling the im-
ages, and continues by using the cepstral filter to estimate the disparity of the "foveal"
images.
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Figure 3.4: Cepstral disparity estimator sample input and outputs. At top (a and b) are j
32 x 32 subsampled images taken by the left and right cameras of the Rochester Robot.
Below (c) is a surface plot of the power spectrum of the cepstral filter. The central peak,
which is due to the autocorrelation of the joint image, has been truncated for display.
The smaller peaks at left front and right rear give the disparity. Note the splitting of
the foreground peak due to the presence of multiple disparities. The dominant disparity
in this case is that corresponding to the textbook at the rear of the scene.
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Figure 3.5: Cepstral output sampling responses. Graph (b) is a. plot of pixel value versus

vergence error in degrees for three adjacent pixels from the scene shown in image (a).

1 in the estimated disparity at the crossing point of the response curves for the left and

right neighbors of the peak. In our implementation these discontinuities are avoided byI incorporating a variable fraction of the smaller neighbor into the centroid. The fraction
is equal to one minus the difference between the two neighbors dlivided by the difference
between the smaller neighbor and the peak, or:

frac larger - smallerI frc =1 peak -smaller

3.5.3 Performance of the cepstral disparity estimator

The implementation of the cepstral estimator described above was tested in the labora-
tory on several scenes. For each test, the robot was directed to face the scene and the
cameras were manually adjusted to approximately the correct vergence angle for the
scene. Taking that angle as the home or zero-disparity position, the test program then
swept the cameras over a range of vergence angles. At each position it recorded the

I
ac theesal e disparity (rprse tied b rsinyoio the resfonsencurbeswfor the comn edfostio and

theomeposition) an varabe dipraityo rftepsalrnihortednto the censrletmtorod T runningonth

EULI peak compaller
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Figure 3.6: Performance of the cepstral disparity estimator on the simple scene shown
in image (a): (b) is a plot of measured versus actual disparity. Data were taken with
16mm lenses, giving a total field of view of 27 degrees. Sample windows used to computeI
the cepstral estimate were 14 degrees wide. The Dotted line shows the ideal response,
and the solid line plots the measured response.

Since the home position was only approximately correct at the start of each run,
most runs showed a systematic error of one or two pixels. In the plots below, these
biases were removed by adding a constant that minimizes the RMS deviation from the
ideal x = y response. Figure 3.6 shows results of a test run on a nearly ideal scene I
consisting of a balloon against a contrasting background. The estimator fails badly at

the extremes of its range, because at disparities exceeding ±7 degrees the target object5

is no longer visible in both sample windows.' Within a ±7 degree range, however,

performance is good. The RMS error is 0.57 pixels, which (with the standard 16mm

lenses) corresponds to 1.86 arc minutes. In other words, the estimate is accurate to a
little more than half the width of an image pixel. This is quite good, particularl y in
view of the fact that the cepstral implementation subsamples by a factor of 8. Thus,

relative to its sample window resolution, the cepstral RMS error is on the order of one
sixteenth of a pixel.

3 Errors of this type can be detected with high probability because they result in anomalous vertical 3
disparities. The control software can use anomalous vertical disparities as a warning to disregard the
measured horizontal disparity, and perhaps trigger a reaquisition process. 3
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Figure 3.7: Performance of the cepstral disparity estimator on a more complex scene:
The Dotted line shows the ideal response, and the solid line plots the measured response.

Figure 3.7 shows results from a more typical laboratory scene. Although the plot
looks similar to that in the previous figure, the RMS error for this test was 1.31 image
pixels (4.44 arc minutes). The loss of accuracy is primarily due to a small error in the
empirically determined constant multiplier used to convert error in pixels to error in
degrees. Because the axes of rotation of the cameras do not pass through their nodal
points, the nodal points undergo some translation when the cameras rotate. This means
that the conversion constant has a small dependence on the depth of the target. or the
vergence angle (and hence the stereo baseline). Compared to a best-fit straight line, this
data set has an RMS error of 0.64 pixels (2.24 arc minutes), roughly comparable to the
results in the ideal case. The systematic error could be removed by taking target depth
(inferred from current camera position and approximate disparity) into account when
converting from pixels to degrees. This has not been necessary to date, because small
errors at large disparities have a negligible effect on the performance of the control loop
because of the effect of feedback. High accuracy is important only at disparities near
zero, where errors or discontinuities can cause the target angle to overshoot or oscillate

around the desired value.
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3.6 Vergence Control

The goal of the vergence system is to generate smooth camera movements that correct
the vergence error. The vergence control loop consists of three stages: digitization,
error estimation, and error correction. Figure 3.8 illustrates the timing of the vergence
loop. Digitization is done under control of the SunTM host using the MaxVideoTM

digitizers, convolvers and frame stores (one each per camera). It takes between one and
two RS-170 frame times (33 to 67 milliseconds), depending on how much time remains

in the current video frame when the command to acquire the next frame is issued. The

Sun is free to do other things during digitization. Once the images are available in the

frame store, the Sun signals EUCLID to extract the images from the frame buffers and
estimate the disparity. This process takes approximately 59 milliseconds, after which

EUCLID places the disparity estimate in a known location in shared memory and issues
an interrupt to signal completion. The Sun converts the pixel disparity to angular

coordinates by multiplying it by an empirically determined constant, and applies the

control law to issue the appropriate velocity command to the camera motors. The U
Sun issues the motor commands after initiating the next digitization in order to allow
digitization to proceed concurrently with motor control. This causes a slight delay in

issuing the motor commands, but permits a substantially higher overall sampling rate.
The loop consistently takes three frame times to complete. Thus, the vergence system

achieves a servo rate of 10 Hz. 4  i

3.6.1 The Controller I

Early experiments with the vergence system used a proportional-derivative (PD) con-

troller (e.g., see [Dorf. 19801) in cascade with the camera motor in a feedback loop,
as shown in figure 3.9. (Although the target and actual vergence angle are continuous

variables, since the entire system under our control is digital or presents digital inter-

faces we model the system discretely.) The summation node represents the effects of the

desired vergence angle and actual vergence angle on the vergence error. The vergence

error is encoded in the disparity of binocular images acquired from the cameras. The

disparity is estimated by visual processing, which is modeled by the delay (z- 1 ) and E.
The PD controller C generates oculomotor responses to reduce the estimated disparity.

The controller gains were chosen empirically to obtain slightly underdamped response, I
resulting in a small overshoot in the step response. The system controls the velocities of

the motors G, which are modeled as integrators, in order to achieve smooth responses

to smoothly varying stimuli.

4 Since disparity estimation takes 59 ms. the maximum theoretical servo rate is 15 Hz. Attempts to
attain this rate have been thwarted by technical difficulties with capturing images and issuing motor
commands concurrently with estimating disparity.
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33 ms (one frame interval)
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Workstation
.. .. ... .. . .. ... .. .! .. ... ... .. .i............. .. ......

......... . ....... M axVideo
....... ............... EUCLID

a--- Set up frame buffers to capture images

--- Issue motor commands

c --- Frame buffers capture images

--- Fork cepstral disparity estimator on EUCLID

e --- EUCLID grabs subsampled images and estimates disparity

I
NB: times are approximate, for illustrative purposes.

Figure 3.8: Vergence Loop Timing Diagram.
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Figure 3.9: Block diagram model of the Rochester Robot vergence system. The error I
estimator E represents the cepstral disparity estimator. The PD controller modeled
by C uses the backward difference to approximate dx/dt. The controller gains were
empirically chosen to achieve slightly underdamped response. The controller generates
velocity control signals for the camera motors G, which are modeled as integrators.
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Since the system directly estimates only the vergence angle error, an estimate of its
derivative, 0 ..g., is approximated by the backward difference. This method obviously

enhances any noise already in the estimate of vergence error. A linear predictor (e.g.,

Kalman or a-fl7-- filter) could be employed to smooth the estimates of 0 ,,Tg,. (The

a-13--y filter is a version of the Kalman filter that makes the simplifying assumption

that the system is time-invariant and the state estimation covariance converges to a

steady-state value. In fact the kinematic models of constant velocity or acceleration fit

the conditions for applicability of these simplified filters ([Bar-Shalom and Fortmann,

1988], page 89). In this case the state estimation covariance is reduced to a small set

of parameters. Often they are chosen to be related in a way that expresses a known or

assumed limit of the signal's behavior, such as its "maneuverability". See Sections 6.5.1

and 6.5.2 for more on a-/--y filters). The o-q3-y filter assumes the target signal has

constant acceleration, so this estimation would have to be done in a coordinate system

in which the signal is relatively stable. The target's range (desired vergence angle) is

more stable than the target's retinal disparity since the disparity is changed by vergence

movements. To estimate the target's range, the target's disparity would be combined

with the vergence angle, and the robot's vergence angle would have to be calibrated.

Thi3 step has not been taken in the demonstration system.

3.6.2 Performance

The demonstration system's responses to step and sinusoidal stimuli were measured in
the lab. Representative camera angle traces of step and sinusoidal responses are shown

in Figures 3.10 and 3.11. Figure 3.12 summarizes the system's response to sinusoidal

stimuli of frequencies up to 2 liz. For ease of measurement, the system was not run in

the normal mode of compensating for half the error with each camera, but rather one

camera alone was moved to correct the entire error and the angle of this camera was

recorded.

The step stimulus was produced by manually misconverging the "verging" camera

prior to starting the system. The same effect could be achieved by misconverging the
camera in the dark and then switching on the lights suddenly at time 0. In the response

(Figure 3.10), observe the single time step (0.1 second) latency in detecting the disparity.

As a consequence of this delay, the estimated disparity is seen to lag behind the camera's

convergence angle. even though this disparity estimate provides the error signal that

drives the vergence system. The small overshoot results from slight underdamping.

The effect of the proportional gain. KP, is to drive the cameras at higher velocities

when the error is larger. The derivative gain, h'd, helps accelerate the response when it

is falling behind and decelerates the response when it is overtaking the stimulus, which

can speed the response. However. a higher derivative gain produces oscillatory response.

If KP is increased, the overshoots become larger. If Kd is increased, oscillations appear
in the steady-state response: if h'd/h%'r is too large the system becomes unstable. The
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Figure 3.10: Response to a step in disparity: Rise time is the earliest time the response
reaches 90% of its final (steady-state) value, and settling time is the earliest time the

response stays within 5% of its final value. Note that the sample interval is 0.1 seconds.

U
time delay in the system contributes further to oscillations if responses are vigorous

enough to overshoot before they can be detected (e.g., due to high controller gains).

Analogous to the step stimulus, the sinusoidal stimuli were generated by rotating 3
the non-verging camera sinusoidally. If the verging camera is held still, this generates a

sinusoidal disparity signal. Thus, the target vergence angle was defined by the angle of

the non-verging (stimulating) camera.

The effect of the time delay on phase shift can be seen by comparing the 0.05 Hz and

0.1 Hz responses in Figure 3.11: the same time delay contributes proportionately more

to the phase lag at higher frequencies, since the time course of each cycle is shorter at

higher frequencies.

The vergence responses to sinusoidal stimuli were measured for frequencies ranging

from 0.05 to 2 Hz. The gain and the phase shift of the system's responses are summarized

in the Bode plot of Figure 3.12. The system's behavior suggests that it may be a second

order system. However. the constant time delay seems to produce a linear phase shift,

as shown in Figure 3.13. since a constant time delay contributes proportionately more I
to phase shift at higher frequencies.
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Figure 3.11: Response to sinusoidal disparity stimuli.
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Figure 3.12: Bode plot. The gaia (dB) and phase shift (degrees) of the vergence

responses are shown for sinusoidal stimuli of frequencies ranging from 0.05 to 2 Hz.
Gain (dBi) = 20 * lo (rstimulse amplitude ) and the phase shift is the difference in the

phase angle of the two signals.
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Figure 3.13: The phase shift (degrees) of the vergence responses is shown plotted against
frequency on a linearly scaled abscissa, in contrast with the logarithmic abscissa of the
Bode plot, to show that the phase shift seems to be linear. This character of the phase
shift arises from a constant time delay. since it contributes proportionately more to

phase shift at higher frequencies.

I
I
I



I
I

3.7 Summary

We have argued that vergence is important for active vision systems, and have discussed
general issues in the design of , 'rgence control systems. We have also described in

detail the application of these ideas to develop a real-time vergence control system for
the Rochester Robot.

The error estimator for the vergence system is a variant of the cepstral disparity
estimator of Yeshurun and Schwartz [1989). The estimator has been shown to be capable
of remarkable accuracy, in the best case achieving an RMS error of a small fraction of

a pixel. It is simple enough that with a small investment in special hardware it can I
be computed at speeds comparable to the video frame rate. The cepstral method of
disparity estimation can be shown to be equivalent to autocorrelation of images that
have been adaptively enhanced to sharpen their autocorrelation functions. It is thus
closely related to phase correlation.

The demonstration system uses a position controller that generates smooth vergence 3
camera movements in response to smooth changes in the desired vergence angle. This
system also responds reasonably (but suboptimally) to step changes in target vergence

angle. Optimal response to step stimuli could be achieved by saccadic vergence move- U
ments.

4
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I
I
I
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4 Pursuit

I

Primate visual systems offer an existence proof for gaze holding capabilities, and models
of these systems can offer hints for the design of robot visual systems. However, most
models for holding gaze do not address the visual processing necessary to implement this
function. For instance, it is generally assumed that full-field optical flow is the visual
signal that is used to stabilize gaze under egomotion, but optical flow is homogeneous
only for rotation of the eye about its optical center. Similarly, "retinal slip of the visual
target" is the visual signal commonly assumed to drive smooth pursuit eye movements
that follow a moving object. In this case, it is being assumed that the target's retinal
slip has been distinguished from the retinal slip of the rest of the scene. However, the
optical flow signal is complex in general, and it is not clear how to parse the optical
flow to determine the retinal slip of the target object. In both cases, what is needed
is a mechanism that distinguishes the retinal slip of the visual target from that of the

rest of the scene. This problem has received little attention in the biological literature.
However, it has been suggested that disparity filtering mechanisms may play a role in the
interpretation of optical flow by gaze stabilization systems [Howard and Simpson, 1989;

Miles et al., 1991]. and disparity filtering of a similar sort is used by the gaze holding
system that is described here.

The goal of smooth pursuit contrasts with computer vision's traditional passive track-
ing task. In passive tracking, the cameras move without regard to the goal of tracking
the target object. For instance, the cameras on a mobile robot may point straight ahead

like automobile headlights. The optical flow observed by the robot will result from the
three dimensional structure of the scene and the robot's motion. Further, the target
will move about in the cameras' images. In contrast, during active visual following, the

cameras rotate to follow the target. Consequently, the target's retinal slip is minimal
compared to the flow of the surrounding rcene. In addition, the target's image is held
near the center of the field of view.

In order to be as general as possible, the pursuit system should be able to follow a
moving object without necessarily recognizing it first. A robot that must recognize an

object to be able to follow it will only be able to use that facility in domains where every
object is known to it and in which it has a means to recognize all objects. Such a robot's
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applicability will clearly be limited. Therefore, the system must use precategorical visual

cues (i.e., prior to object recognition) in order to distinguish the visual target from I
distracting objects and the surrounding scene. Unfortunately, it is not clear how to
extract this information from the visual signal.

Some visuomotor research has recently begun to appear in the computer vision lit-
erature, and various visual tracking and servoing systems have been reported. The

systems perform saccadic tracking, smooth servoing on position or velocity, or combi- I
nations of both smooth pursuit and catch-up saccades. Similarly, approaches to visual

processing include both optical flow processing and object identification and location.

The next three sections discuss the issues and related work in visual processing and mo- I
tor control for robot pursuit systems, and the remaining sections describe the approach

taken on the Rochester robot head.

4.1 The Pursuit Problem

The goal of smooth pursuit behavior is to keep the visual target's image steady and
centered in the camera's image. Thus the system must be able to determine the target's 3
retinotopic position and retinal slip.

First, consider taking a hint from primate pursuit models that might help us build

a robot pursuit system. Krauzlis and Lisberger [1989] present a recent model of the 3
smooth pursuit system. However, like most such models, their model does not address

the extraction of the retinal slip of the the target. Even the treatment of [Lisberger et al.,

19871, which is entitled "Visual Motion Processing and Sensory-Motor Integration for
Smooth Pursuit Eye Movements", goes no farther than arguing that retinal slip and
retinal image acceleration must be signals to which the pursuit responds, based on I
analysis of the behavior of the system. The means by which the retinal slip of the
target is distinguished from other optical flows experienced by the visual system is

so heavily influenced by cognitive factors that no studies of biological visual systems I
have clearly illuminated this question. Therefore we must rely on the computer vision

literature. 3
4.1.1 Parsing Optical Flow

One approach is to try to parse the optical flow to find the target's retinal location or
slip. This is easy for passive tracking if the robot is stationary and the target is the only

object in motion. Simply hold the cameras still and detect the moving object. This
approach will not work for gaze holding, however, since the camera movements make
the entire scene appear to move, and it. will not, work even for passive tracking if there

are several moving objects or the surrounding scene appears to move because the robot I
is moving. It is necessary to distinguish the target or its optical flow from the rest of
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the scene and its flow. Consider that a robot moving in a 3D scene generates optical
flow as a function of the distance of the objects as well as the robot's motion. How will
the visual system isolate the target or its slip from the rest of the scene?

Optical flow parsing techniques in computer vision range from detection of moving
objects to reconstruction of the scene. In a simple scene, Allen [19891 is able to use
spatio-temporal motion energy to servo a camera on an object moving on a blank floor.
In general, however, detecting moving objects against a more complicated background
is computationally expensive [Heeger and Hager, 1988]. Nonetheless, Nelson [19911 has
shown that object motions that result in flows that are inconsistent with the flow that
arises from egomotion can be detected in real time. For instance, if the robot is rotating
to the left, all optical flow due to the robot's egomotion is constrained to move to the
right. Any optical flow inconsistent with this (e.g., up and down) indicates a moving
object. Thus it is possible to detect moving objects under some rather constrained
camera movements, but the optical flow that arises during visual following of a moving

object is quite complex, and it is not yet known how to parse the optical flow signal
efficiently.

The optical flow patterns that arise from camera movement and egomotion in a
three-dimensional scene can be quite complex. For instance, consider the simple case
of a robot translating linearly along a smooth ground plane with the cameras pointed

straight ahead. The optical flow bursts smoothly outward from the horizon in a radial
pattern. Now if the observer simply fixates a point on the ground plane to the right
of the direction of travel, the instantaneous camera rotation adds a uniform flow field

to the optical flow due to the observer's translation. The optical flow that results from
adding these two flow fields expands from the point of fixation on the ground plane and
the flow vectors swirl outward in a counterclockwise pattern. A robot moving through
a scene with less uniform structure would observe distortions of this optical flow due
to the varying depths of objects in the scene. In general, the optical flow signal is

complex, and it is not easy to distinguish the retinal slip of the target from that of the
surrounding scene.

Both Burt et al. [1989] and Ileeger and Simoncelli [1989] describe techniques to
estimate egomotion by iteratively refining the egomotion estimate from image motion.

Given the complexity of the flow signal, it is hardly surprising that these techniques are
I computationally expensive and do not converge quickly. On the other hand, Heeger and

Jepson [1990; 1991] present a parallelizable, non-iterative method for computing three-
dimensional motion and depth from optical flow signals for a rigid static scene. While

this work represents an important step, the method has not yet been shown to extend
robustly to correct interpretation of non-rigid scenes, and it depends on the ability to

extract optical flow reliably.

Without explicitly estimating egomnotion. it is possible to segment images based on
independent coherent motion under roughly the same conditions that allow binocular
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stereo segmentation (i.e., that the change of the view of each rigid component of the

scene can be approximated locally by an image shift). Girod and Kuo [19891 segment I
images on the basis of motion using the cepstral filter and achieve results that are com-
parable to the segmentations obtained by Yeshurun and Schwartz [1989]. For instance,

the cepstral filtering is applied to small local image patches, and each image patch is
classified by the predominant (stereo or motion) disparity in corresponding patches.
Similar results are shown in [Shvaytser, 1988], by a method that might be considered
"generalized difference of images". Interestingly, the operator is not only given with
a frequency domain interpretation, but also it is derived in a probabilistic formula-
tion. These approaches either require many fast local operations or they rely on fast 3
implementations of Fourier transforms on many local image patches.

Woodfill and Zabih [19913 have achieved real-time inotion and stereo segmentation
oi objects on a Connection machine. However, there is currently no real-time image U
capture mechanism available for such machines. Their method relies on the object,
whose initial segmentation is given, not to change appearance much between frames. 3
Image patches that belong to the target are correlated with nearby patches in stereo and
motion disparity spaces to maintain the segmentation of the object. The object is not

required to be rigid, but the appearance of the object must not change too drastically I
between sample frames. Using both stereo and motion provides redundancy and more
robust segmentation, since each modality can sometimes fill in when the other lacks

reliable information. Here again, the required correlation of many image patches is I
computationally expensive. I
4.1.2 Matched Filters

Another approach to locating the target is to use matched filters. Several variants of U
this technique have been employed. Clark and Ferrier [1988] suggest using conjunctions
of features in a saliency image to locate an object of known properties. Thus, it is 3
assumed that choosing an appropriate set of primitive features and weighting function
for describing their relevance (salience) to the task will suffice to make the target "pop

out". However, the phenomenon of pop-out occurs in humans only for a limited number I
of features (such as color, and motion) and only a few conjunctions pop out [Triesman,
1985]. Similarly, computational attempts to dynamically conjoin arbitrary sets of fea-
tures for the identification of relevant objects have met with limited success. In a
somewhat different approach, Corke and Paul [1989] locate binary thresholded objects
whose moments are known a priori. These features might be initialized by taking the 3
conjunction of the features in an image window that is known to contain the target
image. However, computing moments of thresholded gravscale images is likely to be

brittle to changes in lighting, point of view, ctc.. A more traditional approach is taken I
in Papanikolopoulos (1991]. which tracks a set of correlation features on, a rigid object,
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but it is difficult to automatically select features that will provide robust correlation

results [Thorpe, 1983].

Swain [19901 introduces a fast scheme for recognizing and locating multi-colored

objects. However, since the representation is not view-invariant, several "characteristic
views" of each object are used. This provides a relatively fast method for reliably

locating an identified object, but it would not follow a novel object.

A general problem with matched filters is that this approach does not work if the
object rotates. The difficulty is that a matched filter is view-dependent. The problem

can be illustrated by considering a simple form of matched filtering. A simple strategy
is to use the last subimage believed to contain the target image as a correlation tem-

plate to locate the target in the next image. Unfortunately, this technique relies on a

view-dependent model of the target (i.e., its appearance from the last viewpoint of the

observer) so it will fail if the appearance of the target image changes considerably (e.g.,
due to rotation of the target object). This problem can be overcome by updating the

correlation template with the new image of the target. However, without some other
means of locking onto the target, this procedure is prone to drift off the target onto the

background.

4.1.3 Fixation Segmentation

Considering that gaze is to be actively held on the target, it is possible to exploit ex-
pectations of the target's retinal location and disparity. Miles et a[. [19911 suggest that

both peripheral and foveal optical-flows contribute to gaze stabilization in monkeys. The
foveal flow is attributed to gaze target. and the peripheral flows are from other depths.
Howard and Simpson [1989] have found that the gain of optokinetic nystagmus (OKN)

in humans is inversely proportional to binocular disparity. They argue that the activity
of cells responsive to direction of motion and zero disparity selectively augments OKN,

thus enabling humans to stabilize images in the plane of regard without interference
from competing motion signals arising from other distances. These observations sug-
gest mechanisms that take different approaches to extracting useful information from

the heterogeneous flow field present under head translation. The differences in flow ve-
locities are due to motion parallax caused by the presence of objects at multiple depths.

The Howard and Simpson observations suggest a mechanism similar to zero disparity

segmentation [Coombs, 1989] that ignores flow signals from depths other than the plane
of gaze fixation.

4.2 Related Work

A few attempts have been made to pursue moving objects based on optical flow and most
of them have used simple approaches to motion segmentation. E.g., Lee and Wohn [1988]
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use stop-and-look (which they call "static look and move (SLAM)") tracking in which
the target is expected to be the only moving object. Allen 11989] uses spatio-temporal
motion energy to servo a robot arm-mounted camera on a target moving in front of a
blank background. Toelg [1991] simulates the traditional pursuit model [Young, 1971],
with internal positive feedback and catch-up saccades. The motion-based target segmen-
tation assumes the object is moving coherently (and therefore it must appear essentially
flat). Jenkin [1991] uses stereomotion channels to estimate the target's motion. How-
ever, it is not clear how the trajectory detectors distinguish the motion of the target
from the motion of the surrounding scene. I

The other approaches assume the object is preselected and rely on view-dependent
features and therefore suffer from the shortcomings of matched filters. Brown et al. [1988]
describe a position servoing tracker that used intensity image patch correlation for lo-
cating the target. Corke and Paul [1989] smoothly follow the centroid of a blob that
is translating in a fronto-parallel plane, by translating the camera in a fronto-parallel

plane. The moments (which are known a priori) are computed on a binary image ob- 3
tained by thresholding the grayscale input image. This approach is likely to be brittle
to changes in lighting, point of view, etc. Papanikolopoulos [1991] smoothly tracks

pre-selected features (image patches). It ;s not known how to select such features auto- I
matically, although this problem has been and will doubtlessly continue to be a subject
of investigation [Matthies et al., 1989: Thorpe, 1983]. Waxman et al. [1988] saccadi-

cally track a set of features whose spatial relationship is pre-selected, and the object is U
therefore identifiable.

Clark and Ferrier [1988] present a rare binocular tracking system that saccadically 3
tracks the appropriate conjunction of features to locate an object whose properties
are known a priori. Their system has demonstrated saccades and position-servoed
vergence to binocularly fixate a target as it moves in three dimensions. The left and U
right images are processed independently, and the location of maximum "salience" (the

desired combination of features determined to be relevant) in each image is taken to
belong to the target object. However. neither is there a guarantee that the feature
values will be invariant to point of view, nor are the maximum salience values necessarily
unique. Consequently, the correspondence problem may not be trivial enough to yield
to salience images.

4.3 Strategies for Pursuit Control I
There are two natural and obvious measures of target following performance: position
error and velocity mismatch. Restated. a pursuit system could attempt to center the
target image, and at the opposite extreine, the system could try to stabilize the target's

image on the retina (reducing slippage) by matching the target's velocity without regard I
to the retinal position of the target's image.
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Note that the goals of image-centering and slip-minimizing can conflict since smooth
camera movements can only improve one of these measures at the expense of the other.
The target's image is repositioned by slipping it across the sensor array, and as the
target accelerates, the image is stabilized by sacrificing the position slippage that has
already occurred to prevent slip since the target would have to be slipped back to its
desired position.

One approach to this problem is give precedence to one of these goals. Thus one
simple pursuit system could attempt to keep the target image centered without regard
to the image slip required. Another simple system could try to minimize target slip.
Both of these behaviors can be elicited from monkeys [Lisberger, 1990]. However, it is
generally believed that the primate pursuit behavior consists of a combination of both
smooth servo control that matches velocity to minimize slip and catch-up saccades that
recenter the target image when it deviates too far from the fovea. A more realistic
model includes a small position-error response as well as the velocity-matching response
in the smooth component of the system.

This is a clever solution to the dilemma of how to minimize both velocity and
position error simultaneously. As previously noted smooth movements alone cannot
achieve both goals, and certainly saccadic movements cannot reduce motion blur since
they don't match velocity. The catch-up saccades perform the important function of3 correcting accumulated position error while introducing minimal target slip, and target
slip is minimized by the smooth component that matches the target velocity with the
camera velocity.

Unfortunately, implementing saccades in a binocular system requires careful atten-
tion, especially to the vergence angle. Some of the questions that arise are:

I If catch-up saccades are used for pan and tilt position errors, will they include
vergence components?

* If continuous processes are holding gaze. will these processes (both sensing and
control) be disrupted by saccades?

* Will the saccades occur exactly, or only approximately, simultaneously?

* Will vergence changes be accomplished in the course of the saccades?

* Will the saccades be of the same duration in both cameras?

These questions of how to coordinate saccades have led us to employ the simple strategy
of using only sinooth camera movements in the demonstration system.

One of the most challenging problems faced by visuomotor control systems is coping
with the delays in the system. Delays can cause a system to be unstable. For instance,
if a feedback sYstem can respond more quickly than it can measure the error. it may
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respond to old error signals and over-react. Consider driving a car on a slippery road.
The driver turns the wheel, but the car does not immediately change its course, so the
driver turns the wheel further and consequently over-steers the car. Since cameras are
quickly maneuverable and visual processing is slow, visuomotor systems face a similar
control problem due especially to the delays of visual processing. There are a couple of l
obvious ways to prevent overshooting responses. One approach is to model the delays
present in the system and anticipate the response of the system with an internal model

of the the visuomotor system. This method is apparently employed by the primate gaze U
control systems, and both the primate model and engineering solutions of this type
are discussed in Chapter 6. Another, simpler approach prevents overshoots simply by
reducing the responsiveness of the system enough to make it stable. A combination of
these methods is used in the demonstration system.

4.4 Pursuit on the Rochester Robot

A demonstration pursuit system is implemented on the Rochester robot head. The
system is diagrammed in Figure 4.1. The system has two components, vergence and

pursuit, that require different visual processing. However, both components use foveally- I
processed visual signals. The vergence and pursuit systems perform complementary
functions. The pursuit system keeps the foveas centered on the fixated object, and
the vergence system keeps the cameras converged on the target. The vergence system
uses an estimate of the binocular disparity between the foveal images to measure the
vergence error. However, the disparity estimator provides only what disparity is present
in the images; it does not inform the system where in the images the disparity arises.
Conversely the Zero-Disparity Filter (ZDF) does not measure disparity, but rather lo-
cates portions of the images that have zero stereo disparity. In this way the vergence 3
system minimizes disparity, but it cannot ensure that the target is foveated. Similarly,
the pursuit system foveates on the target, but it requires that the cameras be properly
verged on the object in order to locate it. The vergence and pursuit systems generate I
camera vergence and pan and tilt velocity commands, but the motors are not configured
with those degrees of freedom mechanically. However, they are linearly related and the

motor controller performs the conversion from camera coordinates to motor coordinates. I
The use of binocular cues and control of the camera motions enables a simple signal

processing and servo system to achieve gaze holding precategorically. I.e., the system
is able to hold gaze on the fixation target without the ability to recognize the object,
and the target is distinguished simply because it is fixated by the robot's gaze.

As a consequence of gaze holding. the visual target is easier to pick out. Thus, it
is easier to actively follow an object with moving cameras than to track its images in
stereo images with static vergence and no control of camera movement [Coombs et at.,
1990). For instance, during active following, motion blur de-emphasizes the background.
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I Binocular Pursuit and
Vergence System

dis~parity Z .D.F.
estiatorl

Figure 4.1: Binocular Pursuit system: The visual processing consists of vergence and
pursuit branches. The visual signal is foveally processed before use in both subsystems.
The vergence system estimates the disparity of the foveal images and controls the ver-
gence angle to minimize the disparity. The pursuit system locates the retinal image of
the object that. is in both the fovea, and the horopter, and the cameras are panned and
tilted to keep the object located centrally in the fovea. The motor controller combines
the pan, tilt, and vergence velocity commands and determines by simple linear relations
the required left and right panl and tilt motor velocities.
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Further, simple visual sensing techniques that are uniquely available during gaze holding
can be used to segment the object being fixated, as illustrated in Figure 1.2. Foveal
vision emphasizes the fixated object simply by spatially localized processing or increased
resolution, and disparity filtering picks out features near the horopter (the surface in the
scene whose disparity is zero). The demonstration system locates the target by foveally
filtering the features found by the zero-disparity filter (ZDF), effectively producing the
intersection of the fovea and ZDF. The target's retinotopic location provides the error
signals the gaze control system needs to control the gaze and vergence angles.

Taking advantage of the vergence system, the pursuit system locates the target's

retinal azimuth and elevation by the location of features with zero stereo disparity. The I
vergence system controls the vergence angle of the cameras to minimize the disparity of
the foveated object. Thus the vergence system relies on the pursuit system to keep the
target foveated. This symbiotic cooperation of the pursuit and vergence system enables
precategorical visual processing to suffice to support gaze holding.

In the demonstration system, the cameras smoothly pursue the target by servoing 3
on its position to minimize the retinal azimuth and elevation pointing errors of the
cameras.

We have used both PID control and P control with simple target signal prediction
using c-I 3--y filters. Initial experiments employed PID control for simplicity and robust-
ness, and later attempts were made to reduce the phase lag by the use of prediction 3
to overcome the latency of visual processing. Both of these methods produce fairly
smooth following behavior. PID control is a simple controller that offers some flexibility
by responding to the integral and derivative of the error as well as the error signal itself.
However, the a-,3-1 filter is used to apply a simple linear model to the target position
estimate in order to predict its future values (see Sections 6.5.1 and 6.5.2). If the signal

can be successfully predicted, the effects of the latency due to visual processing can be
mitigated by controlling the system with predicted signals and comparing the predicted
error with the error observed once the visual signal is processed. The use of these control

methods in the demonstration system is discussed in Section 4.6.1.

4.5 Visual Processing for Pursuit I
The pursuit system is started up once the cameras have initially acquired fixation on
the target with a saccade and matched its estimated velocity. Thus it is fair for the
pursuit system to assume upon initiation that the target is roughly centered and the
target velocity is approximately known. In addition, the pursuit system can assume
that the target image's size is given, since the visual processing to acquire the target
can be assumed to have coarsely segmented the target (e.g.. by motion).

If the target can be located in the image reliably, its retinal slip can be estimated. 3
The converse is not necessarily true, since knowing tile target's retinal slip does not
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directly lead to the target's retinal location. However, it may be possible to find the

target's location by segmenting the image based on areas of uniform flow if the target's

slip is unique enough. For a target moving fast enough, this may be true since the camera

rotation to follow the target will give rise to opposite optical flow of a stationary scene,

while minimizing the target's flow.

However, the demonstration does not segment the target by its motion. Instead,I- the target is distinguished by its stereo disparity. Although the idea is similar, the
zero-stereo-disparity can be implemented simply and robustly even when image flows
are complex and difficult to parse (assuming, of course, that the vergence system is able

to keep the cameras verged on the target).

I 4.5.1 Disparity Filtering to Locate Objects

Pursuit uses vergence to isolate the target by disparity filtering. Features that have

no stereo disparity can be detected in real-time using a disparity filter. When the
cameras converge on an object, it projects an image onto the "retina" (CCD array) of
each camera. Figure 4.2 depicts a scene of three objects at diffeient depths with the

cameras verged on the intermediate object. Each of the objects projects an image on
each retina. However, only the middle object projects to the same locations on both

retinae. The region of space that contains objects that project onto the retinae with no
stereo disparity is called the horopter, and a simple filter can detect objects that lie in

the horopter.

Disparity filtering is used to isolate the target from the background. A disparity

filter can detect features that have no stereo disparity more easily than interpreting the

stereo disparity of the images. A real-time nonlinear filter implements zero-disparity

filtering to isolate the objects in the horopter. Figure 4.3 shows an example of this sort
of filtering. The pursuit system relies on the vergence system to keep the disparity of
the target within the range of the disparity filter. The vergence system does this by

keeping the horopter on the target object by changing the vergence angle of the cameras
to follow the target. With the target in the horopter, the disparity filter provides the

retinal location of the target [Coombs and Brown, 1991; Coombs et al., 19901. On the
assumption that gaze will normally be directed toward objects of interest, it may be
appropriate for binocular agents to ignore features at large disparities. That is, disparity

may be used to filter objects that are not currently of interest out of the scene. 1

The zero-disparity filter is a nonlinear filter that suppresses features that have non-
zero stereo disparity. The features it uses are vertical edges, since they are identifiable

features that can give useful information about horizontal disparity. (Clearly, horizontal
edges provide no helpful information about horizontal disparity, since long horizontal

1For this purpose. Olson [Olson. 1991] proposes frequency-based disparity filtering to blur features
with large disparity (Figure 4.4).
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Figure 4.2: The horopter is operationally defined to be the region of space that contains
objects that have no stereo disparity. It is a thin shell located at the fixation distance
(the distance at which the cameras are verged). This figure illustrates the principle.
The images of the triangle project to the same location in both retinae, whereas the
images of the square, which lies beyond the horopter, have negative stereo disparity.
Similarly, the circle, which is nearer than the horopter, results in stereo images with
positive disparity. 3

I

.* ... ...

I

(a) (b) (c) 3
Figure 4.3: Disparity Filtering of the scene shown in stereo images (a) and (b). Image (c)
was produced by a real-time zero-disparity filter. The stereo images were first processed
with vertical Sobel edge operators, and the stereo edge images were combined by a pixel-
wise multiplicative 'AND' operator to produce the zero-disparity image. The effect of

the filter is to suppress edges that have non-zero disparity, leaving an edge image that
is dominated by objects in the horopter.
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Figure 4.4: Frequency-based Disparity Filtering of the scene shown in stereo images (a)
and (b) of Figure 4.3. The stereo frames were factored into laplacian pyramids [Burt and
Adelson, 1983]. Then each pixel in the left image pyramid was rescaled by the thresh-
olded normalized correlation between its local 3 x 3 neighborhood and the corresponding
neighborhood in the right pyramid. Thus, the filter suppresses high frequency informa-
tion associated with objects at large disparities. The reassembled image is shown.

edges can match over much of their length even with substantial disparity. Only their

ends can be compared to find horizontal disparity.) The first step is to construct a
vertical edge image of each image in the stereo pair. Then these images are compared

in corresponding locations. If an edge is present in both images, then a feature appears

in the resulting zero-disparity image. Of course the edges must be of like phase (i.e.,

light to dark, or dark to light). Thus the filter detects features that have no stereo

disparity.

The ZDF as it is described here is rather limited. However, Chapter 5 describes

investigations into slightly more sophisticated zero-disparity filtering, which is mainly

improved by richer measures of correlation between image patches.

4.5.2 Datacube Image Processing

The visual processing for the gaze holding system is implemented in real time almost

entirely on our Datacube MaxVideo image processing system (Figure 4.5). The pro-

cessing begins by digitizing a stereo pair of images from the robot head's cameras. The

cameras are synchronized so the images are taken simultaneously.

The binocular gaze holding system includes the vergence system already described

in addition to the pathway added to support pursuit. Like vergence, visual processing

for pursuit begins with tile images blurred by convolution with a Gaussian kernel (a =

2.5 pixels). T]his reduces the amo,:it of aliased matches by removing some of the high
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Figure 4.5: The gaze holding system does nearly all of the visual processing on our
Datacube MaxVideo image processing system. There is a shared pathway in early 3
visual processing, and two later branches for the vergence and pursuit systems. First,
stereo images are digitized from synchronized cameras, and the images are blurred by
convolution with a Gaussian kernel (a = 2.5pixels). The vergence pathway begins with
".zooming" and subsampling the images, and continues by using the cepstral filter to
estimate the disparity of the "foveal" images. The pursuit pathway detects features
(vertical edges) for disparity comparison, locates features with near-zero disparity and 3
computes the centroid of these features that lie inside the "foveal" region.
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frequency features from the images. Edge operators are convolved with the blurred
images to produce a stereo pair of vertical edge images. These images are then disparity-

filtered. The disparity filter is implemented as a nonlinear function in a lookup table

on a multiplexer board. The function compares the edge energy pixel-wise to determine

whether there is a zero-disparity feature, which is indicated by matching edge features

with no stereo disparity. The FeatureMax board records the locations of all the features

in the zero-disparity image. The sun host then computes the centroid of the features

in the central window of the image. This provides the pursuit system with the retinal

location (and therefore the pursuit error) of the target.

4.6 Gaze Holding Control

The goal of the binocular pursuit system is to generate smooth camera movements

that correct both gaze angle and vergence errors. The binocular pursuit control loop

consists of three stages: digitization, error estimation (both gaze angle and vergence),
and error correction (of both gaze and vergence angles). The vergence control system

is augmented with the steps required to estimate and reduce the gaze pointing error.

As with the vergence system, digitization is done under control of the SunTM host

using the MaxVideoTl' digitizers, convolvers and frame stores (one each per camera).

In addition, the zero-disparity image is thresholded by the Featuremax and the list of

above-threshold features is stored in its memory. It takes between one and two RS-170

frame times (33 to 67 milliseconds), depending on how much time remains in the current

video frame when the command to acquire the next frame is issued. The Sun is free to

do other things during digitization. Once the images are available in the frame store,

the Sun signals EUCLID to extract the images from the frame buffers and estimate the

disparity. This process takes approximately 59 milliseconds, after which EUCLID places

the disparity estimate in a known location in shared memory and issues an interrupt

to signal completion. The Sun converts the pixel disparity to angular coordinates by

multiplying it by an empirically determined constant. While EUCLID is estimating the
disparity, the sun computes the centroid of the zero-disparity features. The length of

time required depends on the number of zero-disparity features. Once the gaze and

vergence errors are estimated, the sun applies the control law to issue the appropriate

velocity commands to the camera motors. The Sun issues the motor commands after

initiating the next digitization in order to allow digitization to proceed concurrently

with motor control. This causes a slight delay in issuing the motor commands, but

permits a higher overall sampling rate. The loop commonly takes 150 ms (four and

one-half frame times) to complete. Thus, the combined vergence and pursuit system
achieves a servo rate of approximately 7.5 to 8 liz.2

2 The lower servo rate (compared to the 10 lIz of the vergence system alone) results because not

all the additional operations in the cycle can be performed in parallel. Notably, the calculation of the
centroid of the zero-disparity signal adds a significant serial component to the cycle.
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d --- Fork cepstral disparity estimator on EUCLID

e --- EUCLID grabs subsampled images and estimates disparity
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NB: times are approximate, for illustrative purposes.

Figure 4.6: Binocular Pursuit Loop Timing Diagram. U
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Figure 4.7: Gaze Holding Control Systems: The vergence and pursuit controls are drivenI by three independent feedback controllers, one each for pan, tilt, and vergence (a). The
vergence system s error is found in the binocular disparity of the foveal images. The
error signals for the pursuit controllers are the horizontal and vertical displacements of

the target from the center of the fovea. Each of the controllers is a P1 controller, and
each degree of freedom of the gaze control system can be modeled approximately by the

system shown in (b).

4.6.1 The Controller

The pursuit system uses a PID controller for each of pan and tilt of the robot's gaze.

These controllers are the same as the controller used by the vergence system. as shown

in Figure 4.7. The vergence system's error is found in the binocular disparity of the

foveal images. The error signals for the pursuit controllers are the horizontal and vertical

displacements of the target from the center of the fovea.

The gaze parameters, W, map fairly directly. though not identically onto the me-

chanical degrees of freedom., :. of the robot head. There is a single tilt motor, so

OttU = Otilt.

The situation for pan and verge angles is sketched in "top-view" in Figure 4.8. The pan
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and verge angles are related to the left and right pan camera angles by

0P.n = 1 (Oright + 4ief t~)

0verge = Oright - Okeft- 3
These equations relate the static angles. However, the motor controller must convert the
pan and verge velocity commands to left and right pan motor velocities. Differentiating

with respect to time, we obtain I

Thus, the motor velocities are

1.

2v
As one might expect, the pan velocity is transmitted to both camera pans, and the
vergence is split evenly between them. 3

Each of these three gaze control systems operates independently, with no explicit
cooperation. This simplifies the control laws. However, the gaze controls must be
integrated to generate motor commands. These gaze controls do not interact deeply I
with one another given the Rochester head's motor configuration, but other controls
could. For instance, a simple vestibular gaze-stabilizing system might interfere with the
pursuit system if the robot were holding gaze on an object that was moving. Consider I
the extreme case of holding gaze on a target that moves in tandem with the robot. In
this situation, the cameras must be held still in the head to hold gaze on the target. 5
However, a simple vestibular gaze-stabilizing system that attempts to hold gaze on a
stationary point in the environment must generate camera movements to do so, and

these movements would take the cameras away from the target. The conflicting goals of I
the gaze-holding and gaze-stabilizing system must be reconciled because they share the
common resources of the camera motors. Interacting gaze controls should be explicitly

coordinated to achieve optimum performance [Brown, 1990c; Coombs and Brown, 19911. I
Consider our simple example: if the vestibular gaze stabilizing system attempts to hold
gaze on a target whose location is specified by a model and the model allows for object 3
motion, then the low-latency vestibular system can assist a visually-driven gaze holding
system.One of the problems faced even by single degree-of-freedom visuomotor control sys- 3
tems is that the error signal is affected by every control response since the sensor is
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Figure 4.8: The relation between gaze angles W and motor angles • is sketched in this
view r" the "gaze plane" defined by the camera and the fixation point.
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being moved. This can result in disruption of the visual signal. Similarly, in a dynamic
scene, object motion may also perturb the signal. For example, as the view of the fix-

ated object changes, the zero-disparity signal shifts and evolves, and sometimes it even
drops out completely for brief periods of time.

A simple remedy for signal dropout is something like visual persistence, and this
can help keep the cameras moving when the signal disappears temporarily. However,
this mechanism is based on a very simple model of target behavior, and it is likely
to introduce sharp changes in the error signal. Another simple and common model of
target behavior is the a-0--7 filter, and this filter smoothes and interpolates the target
position signal (see Sections 6.5.1 and 6.5.2). The a-I3-7 filter assumes the target signal
has constant acceleration, so this estimation must be done in a coordinate system in
which the signal is relatively stable. For gaze-holding target coordinates, this means

the head-centered reference frame is much better for estimating the target position than
any visual coordinate system. The visual coordinate system is based on retinal image
coordinates, and the retina is constantly being moved by the gaze control system. In
order to estimate the head-centric target position. the retinotopic location of the target I
must be combined with the camera's angle within the head.

Using the a-/3 -1 predictor in the loop to predict the delayed signal can lead to more 3
accurate tracking. Figure 4.9(a) shows the camera movement and tracking error as the
camera tracks the image of a dark object in approximate harmonic motion with a period
of (360/70) seconds. The object is rotating in a plane and thus its distance from the I
camera varies and its velocity is not purely sinusoidal. The error is measured as the off-
axis angle the centroid of the object's image. There is approximately a 100 ms delay in

the system. The small phase difference between the sinusoidal waveforms of the target I
and camera motion induces a surprisingly large error. In Figure 4.9(a) an a0-/-Y filter is
used (A = 1) with no predictive advance, so the tracking signal is smoothed somewhat.

In Figure 4.9(b) the filter extrapolates the signal 50 ms into the future. The result is
livelier tracking (in fact more advance destabilizes tracking) and reduced errors.

4.6.2 Gaze Holding Performance

It should be no surprise that the performance of the pursuit system is analogous to 3
vergence performance since they use similar controllers. Note that vergence continues

to function, but performance is sometimes perturbed by the changes in the scene as

the target moves and the surrounding scene changes due to object motion, camera i
movements, and egomotion.

Figure 4.10 shows a stereo robot's-eve view of a typical stimulus setup and the 3
measured camera pan, tilt and convergence angles and visual error signals for a target
object moving through a field of distractors. The bunny was fixed to the end of the
rotating stick and thus inscribed a circle, rotating while moving laterally and in distance.
These measurements were recorded from a run with the stimulus rotating at 0.1 liz. and
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the pan angle trace reveals rotationai camera velocities as high as 13 deg /s, with the
cameras lagging a bit behind the apparent target velocity, as indicated by the non-zero 1
observed retinal error.

4.6.3 Ablation Experiments U
In order to illustrate the function of each component of the gaze holding system, selected
components were removed from the system, and the resulting behaviors are compared -
with the behavior of the complete system. Traces of camera pan angle can be seen in
Figure 4.11. The first trace show the uninjured system's pan angle in the typical bunny- 3
following scenario. The second trace illustrates the effect of loss of foveal processing in
vergence and pursuit. The vergence system verges the cameras on any object that
captures the disparity estimator's attention, resulting in vergence bouncing around the I
scene as the pan angles and bunny position change. Similarly, the pursuit system
attempts to center gaze on all objects that lie in the horopter. The third trace shows

the behavior that results from fixing the vergence angle. Early in this run (not shown), I
the system wandered until it locked onto an object that shared the horopter with the
target's initial location. The fourth trace shows the result of eliminating the ZDF and
using instead the edge energy of one image to drive pursuit. (The large step inputs
that resulted make the system unstable, so foveal reduction was also eliminated for this
experiment. Including extra-foveal edges in the "target" centroid calculation dilutes 1
the effect of features entering and leaving the "foveal" area that caused the instability.)
Clearly the centroid of the edge energy was influenced by the target's motion, but it was
also significantly anchored by the surrounding stationary scene. Obviously, each piece I
of the system contributes to the performance, and it is the combination of the simple
components that allows each part to be simple. 3
4.7 Summary

We have discussed some issues involved in holding gaze precategorically on an object that
moves in three dimension with respect to the observer. In addition, we have presented a

simple demonstration system that holds gaze using only precategorical visual cues. This U
is achieved by exploiting binocular cues to segment the target based only on its status
as the fixation target together with the deliberate control of the camera movements to 3
maintain fixation on the target.

l
I
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Figure 4.10: Gaze holding camera traces. Measured traces of the pan (c), tilt (d) and
vergence changes (e) show the performance of the gaze holding system in following a
target moving in 3-D through a field of distractors. A robot's-eye stereo view of a typical
stimulus setup is shown in (a,b).
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Results of Ablation on Camera Pan Angle
degrees
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Figure 4.11: Ablation Camera Traces: The first trace shows the behavior of the unim-
paired system for comparison. The second trace illustrates the loss of focus on the target

object that results from the removal of foveal processing (or peripheral suppression).
The third trace demonstrates the system's inability to follow the target if the vergence
angle is cemented. The final trace shows how the system is distracted by objects at all

distances when zero-disparity filtering is eliminated.
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* 5 Zero Disparity Filtering

The zero-disparity filter (ZDF) is, ideally, a way to restrict the input from a binocular
vision system to the horopter. The horopter is the surface in three dimensional space
defined by the points that stimulate exactly corresponding points (i.e., that have zero
stereo disparity) in the two cameras (or eyes). Changing camera vergence sweeps the
horopter in or out through space. Implementing the zero-disparity filter in practice
involves finding areas of the images that have no binocular disparity and permitting
these regions of the image to pass through the filter. The former step is basically
like the stereo-matching problem. The early Datacube implementation (mentioned in
Chapter 4) detects vertical edges in the stereo images, and only edges that appear in cor-
responding locations in both cameras are passed through the filter. It was thought that
a patch-matching scheme in which two-dimensional image patches were matched could
provide a more reliable match that would less vulnerable to accidental edge alignment.
Such a matcher has been implemented, along with "feature goodness" operators to in-
dicate the likelihood that a good match score actually represents a reliable indication
of zero disparity. Patch matching clearly performs better in random dot stereograms,
but we found the original edge-based matcher to work surprisingly well on a wide range
of real and test scenes. This chapter is based on work reported in [von Kaenel et al.,
19911.

5.1 ZDF and Horopters

Consider two cameras (or eyes) horizontally displaced and sharing a common tilt angle.
Any setting of their two pan angles induces a point of fixation in 3-D space where the
camera axes intersect in the tilt plane; a horopter surface in 3-D is also defined.

Several definitions for the horopter have been proposed, and we adopt one that is
particularly easy to interpret in this case. Paraphrasing from [Reading, 19-3], page 88,
the horopter is the surface in physical space, any point of which produces images in the
two eyes [or cameras] that stimulate exactly corresponding points.' It is specifically and

'Note that this definition is particularly easy to apply to a robot's cameras since the images are
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uniquely identified with the point of intersection of the two primary lines of sight and is
the boundary between crossed and uncrossed disparity. That is, the binocular disparity
for a point on the horopter is zero. This is illustrated by Figure 4.2.

The 3-D shape of the horopter is at least rather complicated (and at worst may not
be well-defined), since it involves vertical, as well as horizontal, disparities. However,
the horopter's 2-D shape in the tilt plane has received considerable attention (see Fig-
ure 5.1). The geometrical horopter is the circle (also known as the Vieth-Miiller circle)
passing through the two nodal points of the cameras and the fixation point. This is the
shape of the horopter that would result if the corresponding point in each retina repre-
sents an equal angle with respect to the fixation point. The human empirical horopter 3
is measured by various techniques with varying results. The empirical horopter is con-
sistently found to deviate from the geometrical horopter in approximately the way that
is depicted in the figure. The reasons for the difference include the spacing of "corre- I
sponding" points in the retina, and the visual cortex, optical distortions, and distortions
of the shape of the eye when it is rotated to different eccentricities. (See [Reading, 1983]
for a survey.)

We are able to define the robot's empirical horopter directly since we have direct

access to the images that are formed by the robot's cameras. Therefore, an ideal zero- 3
disparity filter would detect points on objects that lie on the horopter. We simply define
the robot's empirical horopter as the set of points that stimulate corresponding points
in the robot's cameras, as detected by the ZDF. In practice the ZDF accepts small U
disparities near the zero-disparity boundary and this results in the thickening of the
robot's horopter. The shape of tile robot's horopter has a curved form similar to the
othc" horopters, but we have not attempted to determine the relationship between the I
shapes. Naturally, the robot's horopter is influenced by the same sorts of distortions
that affect the human empirical horopter. The planar (rather than spherical) retinal 3
projection may introduce some additional distortion when the cameras point in an
eccentric angle; in principle, this call be corrected by modeling the projective geometry
so that "corresponding points" is defined in terms of equal angles from the fixation

point.

Let us consider the application of the robot's horopfer to visual localization. If it

were possible to say for certain that left and right image points at the same (i,j) image I
coordinates really corresponded to tile same point in space, then it would follow that the
point in space lay on the horopte This would be a useful constraint in localizing the 3
spatial point. The idea of the zero-disparity filter is to detect such zero-disparity points
in two images for use by later stages of image analysis such as stereo depth calculations

or segmentation. I
In practice we assume the zero-disparity filter simply has as input two images. Its

job is to produce an image-like array of points that indicate the filter's opinion that the 3
accessible, whereas considerable effort is necessary to interpret it for humans.
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Robot
'• ~Horopter '

Geometrical
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Horopter,'

NB: circles tepresent the optical nodal points of the

imaging devices (e.g., eyes or cameras).

Figure 5.1:
Horopters: The Vieth-Miiller circle, also called the geometrical horopter, is the circle
that passes through the optical nodal points of the cameras and the fixation point. The
human horopter depicts the empirical horopter, which is determined experimentally.
Several factors have been identified that can influence this deviation. In contrast to the
human horopter, the robot's horopter is defined by the points that stimulate the ZDF,
closely following our adopted definition of horopte, This depiction is intended to be
qualitative only. and iL should be emphasized that rigorous efforts have not been made
to determine the shape of the robot's empirical horopter.
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corresponding points in the input images indeed are zero-disparity points. The problem

is that the filter only has access to the two images, and that for sufficiently perverse
images the correct answer may be arbitrarily difficult to determine. For two infinite
perfect "picket fence" images (say, equally spaced white vertical bars against a black
background) the problem is impossible due to the identical aliasing of the signal.

Thus the zero-disparity filter must do the best it can within its resource budget. This

usually implies the restriction of local and low-level matching. Our approach is simply
to use local matching as the criterion for zero-disparity image points. By increasing the
size of the area matched and the sophistication of the match, we can eliminate increasing

amounts of accidental aliasing matches that occur in real images.

5.2 The Initial Solution

The initial zero-disparity filter (ZDF) was designed and implemented to run at frame n
rates on MaxVideoTM [Datacube, 1987] image processing hardware [Coombs, 1989;
Coombs and Brown, 1991]. The ZDF is a simple non-linear image filter that suppresses
features that have non-zero stereo disparity. The features it uses are vertical edges, since
they are easily detected by convolution, and they can give useful information about

ýrizor.tal disparity. (Clearly horizontal edges provide no helpful information about U
horizGltal disparity, since long horizontal edges can match over much of their length
even with substantial disparity. Only their ends can be compared to find horizontal

disparity.) The first step is to construct a vertical edge image of each image in the I
stereo pair. Then the stereo edge images are compared in corresponding locations. If

a similar edge is present in both images, then a feature appears in the resulting zero-

disparitN image. Of course the edges must be of like phase (i.e., light to dark, or dark
to light) and contrast. Thus the filter detects features that have no stereo disparity.

The ZDF applies a 5 x 5 up to a 9 x 9 Sobel vertical edge operator to each stereo I
intensity image (IL and IR) as a feature detector. The edge operator size chosen depends
on what the user wants. Figure 5.2 shows the 7 x 7 Sobel edge operator used by the

ZDF: other sizes can be derived from it. The two (signed) edge images (EL and E1h)
are then compared pixelwise: if an edge of like phase and similar contrast is present in
corresponding locations in each image. then an edge of similar strength will appear in
that location in the resulting zero-disparity image. In Fig. 5.3, the bunny in the center

has zero disparity and the surrounding objects have non-zero disparity. Fig. 5.4 is the

zero-disparitv image that results from applying the ZDF to this scene. You will notice U
that Fig. 5.4 is comprised of twenty images. The edge operator size varies from 5 x 5
in the top row to 9 x 9 in the bottom row, and the reduction in resolution varies from

2-fold (left coliumn) to 16-fold (right column). The figures that show the performance I
of the other implementations of the ZDF are of similar format.
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I The algorithm employs two thresholds to implement the match and suppress noise.

The percentage difference threshold (D) limits of difference in edge intensity (or edge
contrast) for matching edges, and the percentage strength threshold (S) imposes the

minimum strength (contrast) of edges to be considered for matches. For correspond-

ing edge image pixels with coordinates (i,j), EL(i,j) and ER(i,j), the resulting zero-

disparity pixel is _+_ if Ja - bl < D x 2B
Z(ilj) = 2 and la-f-kl > SX x B-1;{ 0 otherwise.

where a = EL(i,j) and b = ER(i,

for B-bit edge images. We have found D = 16% and S = 40% to perform reasonably
well in the lab. The pixels above threshold can be amplified, and in fact the ZDF is
simply binarized in the real time implementation. The list of pixels above threshold
is extracted by the FEATUREMAX board, and this process loses the intensity of each

feature anyway.

This method works well and has been implemented on MaxVideo hardware to run

at field-rates (60 Hz), but it does have some drawbacks. The biggest problem is the
high likelihood of aliasing. If there happen to be two above-threshold edges in the
same place in each image an edge will exist in the filter output, even if they arise from

different objects. Their orientations needn't be the same since the ZDF doesn't use
that information. There is another problem; edges at the particular resolution detected
by the edge operator may not always be the appropriate feature for matching. Also,

the linear nature of the edge-finder step means it is more likely to give high output in
high contrast areas of the image. Finally, having to choose a threshold is a problem.

Thresholding is an inexact way of eliminating noise, and it can affect the final results
in a positive or negative way, depending on the original images.

To some extent, blurring (or reducing the resolution of) the intensity images al-
leviates the aliasing problems. However, blurring may prevent the detection of zero-
disparity in fine-resolution features, and blurring tends to reduce contrast as well. The
following sections describe attempts to improve the ZDF by applying it at various res-

olutions and using richer matching and feature-quality measures in the filter itself.

5.3 Neighborhood Correlation Methods

In this section, we describe three extensions to the simple edge method: a more sophis-

ticate(l matching matrix and the addition of a feature quality matrix. The difference
image is created by seeing how well corresponding l)atches match in the stereo images.
The feature quality image represents how reliable each match is likely to be.

The difference and feature quality calculations over m x m patches use nonlinear
operations for difference matrices andl hoth linear and nonlinear methods for the feature
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quality. Their outputs are combined nonlinearly to make up the filter output. We do

not calculate output unless the patch is entirely within the image, so the size of the

output array is ir, - 1 less than that of the input array.

A reduction factor can be applied to the original images. Reduction of the images

is a simple process that acts as a low pass filter: it is a way of applying matches at

different resolutions. 3
The idea behind the difference image is simple: break the images up into m x m

patches and sum the absolute value of the differences of corresponding pixel values in

the patches. The value calculated from each pair of patches is then used as a pixel value I
in the new difference image. There is a problem with the difference image: objects in

the same location in each image will not show up in the difference image if they have

differing light intensities. To compensate for the possible brightness difference, a slight
addition will be made to the difference algorithm described above. Before subtracting

corresponding pixel values, calculate the mean of each patch and subtract it from from 3
every pixel value in the patch. Once this is done, brightness will be compensated for,

and the sum of the absolute value of the differences can be calculated. The difference

image is a representation of how the two images differ from each other: the lower the 3
value, the better the match. The output resolution is determined by pixel size, not

patch size.

It appears as if the difference image is all that is needed to locate the zero-disparity

object in the images. but what if there are two patches that are all one shade? They will

be considered a good match. This is where the feature quality image comes into play.

The function to calculate feature quality is applied to each of the patches viewed by the

difference function and its job is to determine if the patches are likely to contain features

that can be reliably matched between images. Returning to the example of uniform- I
intensity patches, it is clear that the feature quality function will consider them a poor
feature since there is no variance over the patches, hence they will get a low feature

quality value. As the the feature quality value drops, so does the reliability.

Feature quality plays a major role in the discovery of the zero-disparity object in a
pair of stereo images. For this reason four methods (pairwise, standard deviation, total i
mask, and centhr mask) were implemented to acquire a reliable feature quality image,

with varying degrees of success.

5.3.1 Pairwise correlation 3
The first method. which is the pairu'i.( method, runs the mask (-1, 1l over the corre-

sponding patches in each image (thereby subtractilig neighboring values) adding up all

the differences, and takes the low(,r of the two image's values as a pixel value in the
feature quality imago. The results are. as one might expect, quite poor.
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1 5.3.2 Standard Deviation correlation

The second method, which is the standard deviation method, computes the sum of

the row standard deviations of a patch in each image and the lower of the two is

taken. The horizontal standard deviation is a way of indicating likely vertical features.
Standard deviation could be searched for in all possible directions, but the camera

geometry insures we only have horizontal disparities, so horizontal standard deviation
is the appropriate feature. The standard deviation formula used is as follows:

En IX2 _n-X

F n-i1
Where x is the value of a pixel in the row and 7 is the mean of all the values in the

row. The square root of sample variance is used instead of population variance since

a sample of numbers is to be used [Devore and Peck, 1986). Again, the results of this
method are rather poor (although not at dismal as the pairwise method).I
5.3.3 Total Mask correlation

U The third method, which is the total mask method, combines several edge operators in
the patch. The edge operators used are Sobel vertical edge operators ranging in size
from 2x2 to 5x5 (Figure 5.5). As in the pairwise method, the masks are convolved with

the patches and the absolute value of the output from the independent mask results are
added together and the square root of each sum is taken. The values from corresponding3 patches are compared and the lower of the two is used as a feature quality pixel value.
Although the total mask method is easy to describe this way, a faster and only slightly
different method has been implemented. The idea is to add up all the edge operators and

run them over the entire image before breaking them up into their patch sub-segments.
An example of the output of the total mask method can be seen in Fig. 5.6. Adding
up all the edge operators is the first difference. The sum of the edge operators does

remove the non-linearity of adding the absolute values of the edge operator results, but
this difference has little apparent effect on the final result. The total mask is the result

of summing four Sobel vertical edge kernels (aligned at the upper-left-hand corner) as

shown in Fig. 5.7. The next difference is the over-lapping or under-lapping portions of
the new edge operator that do not fit in the patch. When deciding where to end the
patch on the new matrix created by convolving the new edge operator over the image,

it must be decided whether to run the 5x5 or 2x2 section of the mask to the end of the
patch. If the 5x5 mask is run to the edge, then none of the smaller masks will make

it all the way to the end. On the other hand, if the 2x2 mask is run to the edge, then
each larger patch will overlap into other patches. For the examples and discussion of

the total masks method in this paper. the former method is used.
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Figure 5.5: Sobel Vertical Edge Kernels 1

5.3.4 Center Mask correlation

The center mask method is similar to the total mask method and uses the same edge i
operators. The difference is the masks are placed only in the center of the patch before

the absolute value of the results from all masks are summed. In the cases where a mask

cannot be placed exactly in the center of the patch, an approximation of the center I
is used. The sum of the masks implementation is appropriate here as well, and the

resulting sum of the masks is shown in Figure 5.8. Note: the center mask method does

not convolve the mask with the stereo images, it is multiplied with the values in the
center of the patch only. An example of the output of the center masks method can be

seen in Fig. 5.9. 3
5.3.5 Real-time Implementation Feasibility I
Both linear sum-of-the-masks implementations are appropriate for MaxVideo imple-
mentations, as is the pairwise method. In each case a VFIR mask is convolved with the

image to compute the edge strengths and then a VFIR mask of all l's is convolved to
sum the effects over the patch.

Once the match difference and feature quality images have been produced, they
must be combined. First, they are scaled to the range [0,255]. Since low values in the
difference image mean a good match, and low values in the feature quality image means

poor reliability, one of the two values must be inverted before combining the two. For
the images in this paper. the match image was inverted: i.e. match = 255 - difference.

Finally, w, combine the match and feature quality values by pixelwise multiplication

and rescale the result to [0.255]. Some approximation to these operations (compromising
on scaling) could be (lone in MaxVideo at frame rates. An example of the total mask
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Figure 5.7: Total Mask pattern of summation of Sobel vertical edge kernels (a) and
resulting mask (b)
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Figure 5.8: Center Mask pattern of summation of Sobel vertical edge kernels (a) and
resulting mask (b)
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method result and its component feature quality and difference images are shown in
Figure 5.10. I

The advanced zero-disparity filters canl probably be implemented on the MaxVideo
in real time. The image subtraction and smoothing operations can be done in the I

MaxSP board and \ FIR-Il. resp~ectively. The nonlinear absolute value step can be
done with a lookup table in any of several boards. The most difficult aspect is the

need for dynamically scaling the final image. The standard deviation and total mask I
methods have a built-in way of by passing this problem. Since the standard deviation is
used instead of the variance, the range of values is usually within the gray scale values

[0. 255] (it is possible to have a pixel value leap out of the range [0. 255], but when I
test~ed thifs never happened). The total mask method stays in thle range [0.,255] because
the square root of all mask convolutions is taken. Again, it is possible to exceed thleI

gray scale range but this instance never occurred in practice.

5.4 Orientation-Magnitude Edge Matching 1

Itwas mentioned in Sec. 5.2 that a significaiit (drawback of the simple edge methodI

is having to ulse thresholds. In addition, edges of different orientation may appear to

match where they cross one another. The orientation method was implemented to

address these proble'ms. Similar to thle simple edge methodt, it is assumled that features I
can be adequately mode'led as edges. Ilowever, each feature is modeled by its orientation
a nd magfni t u(le. rat h,,r thIiani situply its response to a vertical edge filter. The orient ationI

met hod( convolve, two muasks of thli same size over b)othI the left andl right stereo images

I

.. .... ... .... ........... .... .... ...
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instead of one mask. The mask sizes range from 5 x 5 to 9 x 9 and include a horizontal
and vertical Sobel edge operator. Instead of thresholding, the horizontal (0 degree) and
vertical (90 degree) edge images are combined to produce a magnitude and orientation

image that are calculated with the following equations.

M (i, j) V (i,(j) + Eo(i,jj)

O(i~j) =arctan Ego(i, j)}

Once magnitude and orientation images have been created for left and right images
(ML, OL, MR, andOR), they must be combined to form a difference and feature quality

image. Thus this method tries not only to use the basic idea behind the simple edge
method, but also to include the difference and feature quality of the more advanced
methods. The difference is created by the following equation that relies on both the
magnitude and orientation of edges.

D(i,j) = V'(lOL(i,j) - OR(i,j)I + 1) x (IAL(i,j) - MR(i,j)I + 1)

I D is defined thus to prevent a good match in either orientation or magnitude from
causing the difference to neglect a poor match in the other dimension. After the differ-
ence, D, has been computed, it is put into the range of integers [0, 255] and inverted:
i.e., D(i,j) = 255 - D(ij). This gives good matches a high value.

For the feature quality, we tried two approaches. Both depend on the idea that

nearly-horizontal edges are of little use since the stereo images are taken with a hor-
izontal baseline. The first equation only uses orientations within a specified range as

I follows.

(IOL(i.j)l A IOR(i.j)I E [45,135]) =ý, F(i,j) = min(ML(i,j),MR(i,j))

(JOL(i,j)l A 1Op(i,j)l _ [45, 135]) = F(i~j) = 0

Where F is the feature quality. This coarse version of the orientation filter performs
poorly, resulting in choppy. noisy images. The second equation de-emphasizes low an-
gle measures instead of completely ignoring them. This is done using the sine of the
orientation.

F(i,j) = rin(sin(IOLI) x ML,sin(IORI) X MR)

Multiplying the magnitude by the sine of the orientation de-emphasizes small angles.
Fig. 5.11 shows the output of the sine version of the orientation method. A more extreme
method of de-emphasizing the small angles by multiplying the square of sine by two was
tried, but the results did not differ much from sine.

When the feature quality has been calculated, it is scaled to the range of integers
[0, 255]. Then the difference and feature quality are combined using pixelwise multipli-
cation.
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Figure 5.13: Pair of Leopard Spot Stereo Images

5.5.2 The Best Method I
The best of the four methods tested is the total mask method. We should now compare

its results to the results of the simple edge method on more difficult stereo images. Fig- I
ure 5.13 is a pair of "leopard spot" stereo images. The center is the zero-disparity area.

Figure 5.14 shows the results of the edge-based methods. Interestingly, the simple edge

method performs notably better than expected, and the orientation method produces

the worst results of these three methods. Figure 5.15 shows the output from the total

mask ZDF and its component feature quality and inverse difference images. There still I
is noise in the final image produced by the total mask ZDF, but notice how the differ-

ence image reduced that amount so that the zero-disparity location is distinguishable

from the rest of the image. The results from total mask may not appear very good on

paper, but this is largely due to the dithering of the printer, which over-emphasizes low

intensities. Figure 5.16(a) indicates with reverse intensity the row of the image whose

intensity is plotted in Figure 5.16(b). The graph contains the pixel values from row 60

in total mask's final result. Clearly the noise values are not as large as they appear in

the dithered image.

The performance of the simple edge method on the leopard spot stereogram is pretty

good, but performance suffers considerably on a computer generated random dot stere-

ogram. Figure 5.17 is a random dot stereogram that is 50% black and 50% white. They

are the same except for a patch in the center that is slightly skewed to one side. This

leaves a patch of non-zero-disparity in the center of the image. Figure 5.18 shows the 3
results of edge-based ZDFs. As noted, the simple edge method performs worse on this

stereogram. Again, the orientation method performs badly. The reason, of course, for

the poor performance of the edge-based methods is that the edge is a poor model of I
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(a) (b)

Figure 5.14: Edge-based ZDFs on Leopard Spots: (a) simple edge method (7 x 7 patch
and 4-fold reduction), and (b) orientation method (8 x 8 patch and 4-fold reduction).

I
I

I(a) (b) (c)

Figure 5.15: Total Mask Results on Leopard Spot Images (8 x 8 patch and 4-fold
reduction): (a) filter output, (b) feature quality, and (c) inverse difference images.
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Figure 5.16: Total mask result on the random dot image: row 60 (indicated by inverse
intensity in (a)) is plotted in (b).
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Figure 5.17: Computer Generated Random Dot Stereo Images

Ithe correlation features in random-dot stereograms. Figure 5.19 shows the output from

the total mask method and itF feature quality an(] inverse difference images. Notice
Ithat the feature quality was uniformly good for neighborhood correlation, and only the

difference image is able to distinguish tihe zero-disparity region.

S~5.6 Summary

I ~The simple edge method works surprishigly well. but it seemus the total mask and center

mask methodls work better. The pairwise method is the worst of all methods tried. and
the result from the standlardl deviation method works as well as or a little better than
the simple edge method. Of the third and fourth methods, the third (total rnask) is the

bette-r of the two.

Results from simrple edge method work well in most cases, but in a pathological but

noise-free case (computer produce(] random dot stereo images) it does not wor'11 very

well. The total mask- metfiod works well even ii the random dot case. The ori, ntation
mnethod has produced miixed results: it appears as if it only real]ly works w, .t oil simple

examples fike the bunny iniages. Therefore. of all methods tried the rues, general is the

total mask inethod.
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(a) (b) i
Figure 5.18: Edge-based ZDFs on Random Dots: (a) simple edge method (7 x 7 patch

and 4-fold reduction), and (b) orientation method (7 x 7 patch and 4-fold reduction).

I
I
I
I

I

(a) (b) (c)

Figure 5.19: Total Mask Results on Computer- Generated Random Dot Image (8 x i
8 patch and 4-fold reduction): (a) filter output, (b) feature quality, and (c) inverse

difference images.
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6 Coping with Delays in Feedback
Systems

Delays are pervasive in real systems. Signals do not travel instantaneously, and com-
puting units like neurons and software and motors take time to respond to their inputs.
Visuomotor systems of primates and robots are no exceptions. Visual processing takes a

substantial amount of time. Executing the control algorithm to generate the appropriate
motor control signals takes time, and there are also delays within the motor system.

Whether a system is best described by a continuous or discrete model, delays in the
system complicate the problem of using feedback to control the system and getting the

system's response to be on time.

Consider the relatively simple case of the Rochester Robot's visuomotor system,
which can be modeled to first order as a discrete system with a delay of one sample

interval in visual processing, as shown in Figure 2.1. Suppose the tracking system needs
to follow a target that jumps to a new position. The error is not apparent to the
control system immediately, but once it is observed the system responds. The system's

response is not immediately noticed due to the processing delay, so the response to
the old observed error is sustained. Consequently, the system over-reacts to the input
signal. If the delay is longer, the system will react to older sensory data, and the

resulting overshoot will be greater.

One way to cope with delays in a feedback system is to reduce responsiveness to
prevent over-reactions. A better approach incorporates knowledge of the delay in the
system to avoid over-responding. For instance, consider the internal positive feedback

controller in an early model of the pursuit system [Young and Stark, 1963]. The system

tries to match the velocity of the target, so consider a target that changes its speed to
a new constant velocity. The controller needs to respond to a step input. An internal
model of the delays in the oculomotor plant and visual processing feeds back the antic-

ipated error signal at the same time as the negative feedback loop (through the world
and vision) delivers the observed error signal. If the internal model is correct, it exactly
balances the negative feedback signal, and no error is observed. Thus the controller

needs only to generate changes in camera velocity to respond to observed retinal slip.

i Thus, if the new camera velocity exactly compensates for retinal slip, the system will
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exhibit only a lag of a single time interval while the visual system passes on the observed
error in camera velocity. Note that the gains can therefore be increased since the system I
will be stable.

Although internal positive feedback can make the system stable despite delays, the
response will remain late. The only way to avoid being late is to predict the target sig-
nal's behavior in advance. This is possible for signals that are predictable (e.g., because
a model of the signal's behavior is available), or for signals that can be approximated
by linear predictors (e.g., a Kalman filter [Bar-Shalom and Fortmann, 1988]). It is
important to make the predictions in a coordinate system that is not perturbed by the 3
control system so the target signal will be stable in that space. For instance, the target
trajectory may be relatively smooth in head-centered coordinates although the target's
motion is confounded with camera movements in retinotopic visual space.

The remainder of this chapter considers these concerns at greater length, and it is
based on work reported in [Brown and Coombs, 1991].

We gather together some introductory and tutorial material on control systems with
delay. Delay is especially pernicious in feedback systems, and some form of modeling and

prediction is essential to overcome its effects. After a short introduction to the issues, I
we present four basic techniques for overcoming delay and compare their performance
through simulation. The four techniques are the following.

"* Predictive techniques to cancel the delay within the loop.

"* Cancel negative feedback to obtain open-loop characteristics. I
"* Smith prediction, which uses a model of the plant. 3
"* System inversion techniques, which use a model of the controller and the plant.

In each of these techniques. predictive filters can be used to overcome latency by pro- a

viding approximate dynamic predictions of waveforms within the system, such as input
and control signals.

6.1 Feedback Control and Delay 3
We are interested in control systems with delay. Feedback control has several familiar

advantages-one important one is the decreased sensitivity of a closed-loop negative
feedback system to variations in its parameters. Since the open- and closed-loop systems
are not directly comparable, instead we repeat the familiar argument (e.g., [Dorf, 1980])

about the decreased sensitivity of feedback systems to parametric variation. Clearly in

an open loop system with plant transfer function G(s) and input and output X(s) and
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Y(s), the change in the transform of the output due to a parameter variation AG(s) is
clearly

AY(s) = AG(s)X(s). (6.1)

For a closed loop system, find Y(s) + AY(s) by substituting G(s) + AG(s) into the
familiar formula Y = XG/(1 + GH), assume GH(s) >> AGH(s), and obtain

AY(s) = AG(s) - X S) . (6.2)
(1 + GH~s))2X~)

Defining the system sensitivity to be the ratio of the percentage change in the system
transfer function to that of the process transfer function, we see that open loop systems
have sensitivity unity, but closed loop feedback systems have sensitivity 1/(1 + GH(s)),
the denominator of which is usually much greater than one.

We bring up this point here only because one of the schemes we shall examine later
chooses to sacrifice closed-loop advantages in order to deal with delay. Given that ideally
we desire feedback, then why is delay a problem in feedback control systems?

We illustrate with the constant-gain feedback system illustrated in Fig. 6.1(a). Here
the transfer function is simply K/(K + 1), and the response to a step function is a scaled
step function. Thus this system tracks the input perfectly. Fig. 6.1(b) shows the same

system with a delay of r seconds added.

The responses of these systems to a unit step are shown in the next few figures.
Not shown is the perfect step function output of height 0.4117 for K = 0.7 that exactly
tracks the input in the continuous controller, zero delay case. Fig. 6.2 shows the response

of the first order discrete feedback loop

3 y(kT) = K[u(kT) - y((k - 1)T)] (6.3)

to a step input. This discrete controller has an implicit sample-and-hold circuit in the
feedback branch, and this characteristic gives the discrete realization of the controller
some of the aspects of delayed control. That is, there is an inherent minimum delay
equal to the sampling interval that must exist somewhere in any closed-loop discrete
system, even if no excess delay is present. These qualitative differences motivate the
use of the Z transform in discrete system analysis. Thus, discrete systems are often
written in the manner of Fig. 6.1(b) with the Laplace transform delay box relabeled as
a Z-transform delay of z- 1 , indicating the inherent delay implied by stepwise operation.
This system is described by

I y(kT) = K'[u((k - 1)T) - y((k - 1)T)],

with delay in the feedforward branch, in contrast to system 6.3, whose delay is located
in the feedback. Fig. 6.3 shows the effect of delay in the continuous version of the
controller for K = 0.7, and Fig. 6.4 shows the unstable response that results when the
gain exceeds unity (AK = 1.1).
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Figure 6.1: Constant gain feedback system: (a) without delay, (b) with delay.

I
The decidedly discontinuous performance of the continuous system in the presence

of delay requires some explanation. The following explanation appears in [Marshall,

19791, but we repeat it here for completeness. We have the following situation, where
the delay is r seconds and we let the time t vary continuously from 0. A step input
occurs at time t =0. 1

0 <
K 7<t<27

y(0) K(1 - K) = K-I 2  27<t<3

K(1 - K(1 - A-)) = K'- K 2 + K 3  3r < t < 4r

Solving for the closed form of the series, we find that

yt = A' + (-K)A'. for nr < t < (n + 1)7. (6.4) I1+K

The steady state gain for the delayed system (if it stabilizes) is the same as for the 3
continuous or discrete delayed system steady-state gain: the exponential term in (6.4)
vanishes if the magnitude of K is less than unity.

One can approach the behavior of the delayed system using Laplace transforms.
Thki, method puts he problems caused by delay in terms of the delay of the output

9.1
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Figure 6.2: Output of constant gain feedback system for step input and discrete control
with K = 0.7. Continuous control yields a perfect step.

95I|



I
I
I

07 -i-- -I-' ' ' 3
"Delay" -

0.6

0.5

0.4

0.3 1
0.2 j
0.1

0 I I I I I I I I I I
-1 0 1 2 3 4 5 6 7 8 9 10

I
Figure 6.3: Output of delayed constant gain feedback system with step input, K = 0.7.

signal and the poles introduced into the system by the delay. (For an introduction to

basic concepts such as "poles", see [Dorf, 19801 or any other introduction to control I
theory.) In the following sections of this report we shall investigate different methods

for eliminating the unpleasant effects of the delay and the poles.

The Laplace transform of the output y(t) given input x(t) with Laplace transform

X(s) is

1 - = s + X (s). (6.5)£(yt) = ~s -1 + KC-sTXs K + CST

In the latter form it can be seen that the characteristic equation is not algebraic,

and that it has an infinite number of closed-loop poles. In fact, the poles are the roots I

of

e` -= K = q = 0, 1,2... (6.6) 1
and so

sr = In K + j(7r ± 27rq),q = 0, 1,2... (6.7)

Taking K = 1 gives poles falling along the imaginary axis, spaced by 27/r, the two I
principal ones (closest the origin) at ±j(r/-r) representing the fundamental oscillatory
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Figure 6.4: Output of delayed constant gain feedback system with step input, K = 1.1.

frequency of period 2r visible in the output. This unstable system then diverges for

K > 1, since poles move over into the right half-plane. The extension of eq. (6.5) to a

system with a controller (transfer function C), a plant (G) and delay (e-s$) is

1 + CGc-S X(s), (6.8)

I which we shall see again.

In an actual situation, delay again manifests its presence with oscillations. In a

straightforward tracking application with the Rochester robot head, one camera on the

head is to track a moving object. With the camera moving, the spatial positional error of

the camera's axis is calculated using information about the camera's position (obtained

from reading back angles from the camera's motors) and the image-coordinate error

calculated as the distance of the target's image from the origin of the image coordinate

system. If the time between reading the two necessary data (camera position and image

position) is an unmodelled delay, the system performs as shown in Fig. 6.5.

Table 6.1 sums up these generalities. Compared with open-loop control, a closed

loop system can be more resistant to variations in behavior induced by plant parameter
variations. Introducing delay into an open fool) system simply delays the output, while
in a closed loop sxstem it can also introduce instability. In the sections that follow
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Figure 6.5: Tracking a sinusoidally moving target. Delay in calculating camera's true
angular position results in an oscillating error that is superimposed on a generally correct

sinusoidal head motion. Here the head position graph is from direct readout from the
motors, and the error is the target's retinal position measured with vision.
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Open Loop Ciosed Loop

No Delay basis for comparison more robust
Delay output delayed[ output delayed, poles affect

performance

Table 6.1: Characteristics of undelayed and delayed systems.

we present five different ways to cope with the effects of delay and try to make some

comparisons between them. We shall investigate the following techniques. In every

case the starting point is a closed loop system with delay, having the output delay and

multiple-pole characteristic equation discussed above.

* Cancel negative feedback-achieve open loop performance, delayed.

e Smith prediction-attain closed loop performance, delayed.

* Signal synthesis adaptive control-attain closed loop performance, undelayed.

* Smith and input prediction-attain closed loop performance, undelayed.

* Predictive techniques to estimate and then predict delayed signals within the
loop-with perfect prediction, attain closed loop performance, undelayed.

6.2 Opening the Loop

In studying primate gaze control, Young [1977] wanted to explain how smooth pursuit
avoided instability if tracking is modeled as a pure negative feedback system. There are

two problems with this model. First, the error, and thus control, signal is zero when
accurate tracking is achieved: this should send eye velocity transiently to zero. Second,
tracking performance is better than it should be given the delays in the control loop

and the time constants of the processes. Ilis proposal is that the system tracks not the
retinal image, but a neural signal that corresponds to target motion (in the world).

Robinson [1987] describes a mechanism that implements Young's idea: as Robinson
says, "if negative feedback bothers you, get rid of it". In the negative feedback system

the eye velocity is fed back and subtracted from the target velocity (with some delay). If

the eye is in the process of tracking. then the target velocity is the sum of the eye velocity
(with respect to the head) and the target's retinal velocity (its velocity with respect to

the eye). But the latter is just the error signal resulting from negative feedback. Thus

an estimated target velocity signal can be constructed by positively feeding back the

commanded eye motion into the control loop, delayed to arrive at the proper time to

combine with the error term produced by negative feedback. This mechanism not only

provides a signal based on the target's true motion, but it cancels the negative feedback
and thus removes the possibility of oscillations.
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Figure 6.6: Feedback cancellation.

I
In all our examples we shall have a controller in the loop with the plant. Thus

the block diagram of the feedback-cancellation idea is shown in Fig. 6.6. Applying n
the positive feedback idea in this context involves constructing a model plant G. If
the designer's model of the plant and delay is correct, the system is changed to open-

loop, losing all the well-known advantages of closed-loop control. Further the open-loop I
response is in fact delayed. Given accurate plant and delay models, the designer can do
better, as we shall see. 3
6.3 Smith Prediction 3
Smith prediction [Smith, 1957; Smith, 1958] is a by-now classical technique, and it is the

basic idea behind most modern methods. The treatment in [Marshall, 1979] is especially i
readable. Smith prediction was one of the main tools for managing cooperating delayed
controls in the simulation studies of the Rochester Robot [Brown, 1990a; Brown, 1990b;
Brown, 1990c]. I

Smith's Principle is that the desired output from a controlled system with delay r
is the same as that desired from the delay-free system, only delayed by r. Let the delay 3
be 7, the delay-free series controller be C(s), the desired delay controller be C(s) and
the plant be G(s). The delay-free system transfer function will be 3

CG

1 +CG'

The delay system with its desired controller has transfer function I
1 + CGe-s"
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3

Figure 6.7: Smith prediction control.

But Smith's Principle is
CGe--sT CG _

1 + OGe-sr"- + CGe

This quickly leads to the specification for the controller 0 in terms of C, G, and e--":

1 + CG(1 - e-S )" *69

This simple principle has spawned a number of related controllers, often arising from

each other by simple block-diagram manipulation. It is worth noting that Smith did

not take the next step and demand that the output should not be delayed. To take this

step requires either a non-physical or a prescient component in the system, as we shall

see.

Fig. 6.7 shows the Smith predictor as applied to the standard situation we use in

this chapter, i.e. with continuous control.

This diagram can be rewritten to show the relation to the feedback cancellation
I technique (Fig. 6.8).

Assuming exact estimates of G and 7, i.e. that (•=G and 7 , then the positive

feedback coming to summation point S1 and the negative feedback coming to summation
Ipoint S2 in Fig. 6.8 cancel, adremoving them from the diagram yields a simplified

diagram in which Smith's principle clearly holds--the transfer function is

IY CGG -ST CGe-`

I 1+ CGI +CG

i ~simply a delayed version of tihe undelayed closed-loop transfer function (Fig. 6.9).
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Figure 6.8: Smith prediction and feedback cancellation.I
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Figure 6.9: Cancellation yields Smith's principle.
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To sum up, Smith prediction uses the model of the plant in a negative feedback

scheme-the controller controls this model. If the model is good, one gets a delayed
version of the closed-loop control. That is, the transfer function of the delayed system

is changed from

CGe-s' CGe--"I C~e_,• to1CG
1 + CGer +CG

The delayed closed-loop negative feedback is there also, and the hope is that it would
I tune up the infelicities in the performance due to inaccurate temporal or parametric

(plant) modeling. A result of the delay institutionalized in Smith control is non-zero
latency, inducing a steady-state error that can vary depending on the input signal. For

position-error tracking of a constant velocity target, the latency would cause a steady-
state constant positional error with the tracker trailing behind the target.1
6.4 Signal Synthesis Adaptive Control

6.4.1 Background

1 IHumans alone are able to track periodic targets without latency. Primates do not follow
any targets without latency, and humans are not able to anticipate non-periodic targets.

(Target signals described by the summation of even a few sine waves of appropriately
varied frequencies appear "unpredictable" enough to prevent humans from tracking
them without latency.) Bahill and his coworkers [Bahill and Harvey, 1986; McDonald

and Bahill, 1983] propose a scheme called signal synthesis adaptive control to achieve
the advantages of undelayed feedback control with zero latency. As we shall see, this
requires predicting the future, something that control theorists are not fond of doing.

The scheme is called "signal synthesis" control because the controller is predicting the
input signal. It is called "adaptive" because in the published formulation there was a
scheme to switch between predicted signals to keep the prediction in line with reality
(if a trajectory velocity curve changed from square wave to sine wave, for example).

The derivation of this type of control presents us with a powerful technique. In fact,
on paper it is possible to achieve many different sorts of control, including canceling
the latency but leaving the poles, canceling the poles but leaving the latency, canceling
both, and canceling both and substituting the effect of an entirely new controller for the
existing controller C. As described, the technique simply uses an inverse plant. These
are hard to engineer, since for a plant consisting of integrators one obtains an inverse

consisting of differentiators. Still. we shall see that we can rewrite the resulting inverse
plant to be realizable and in fact we shall see it has a close relation to the techniquesI we have seen so far.
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6.4.2 Inverting a Delayed Feedback System 3
As a warm up, let us get some intuition by computing the inverse of our standard
delayed feedback system (Fig. 6.10(a)). The system is 3

S= C(s)(s)e- I(
Y(s) = 1 + C(s)G(s)e- s (6.10)

The inverse of the system, remembering that Laplace transforms compose by mul-
tiplication, is just the reciprocal of this expression: 3

y-1(s) = 1 + C(s)G(s)e-s I(s), (6.11)Y'(s - C~sG~s~ (6.11

which implies that 

I

y-'(s) =1S() es" (612
(s) c(s)G(s)e + 1) = (s)G(s) + 1). (6.12)

Translating the rightmost expression into a block diagram yields Fig. 6.10(b), in
which certain characteristic features appear including a predictive (non-physical, non- I
causal) time-advance component, inverses of the individual components of the system,
and a positive feed-forward of the input signal. 3
6.4.3 The System-inverting Controller

The basic block diagram of the system-inverting controller (SIC) is given in Fig. 6.11. 1
The block labeled SIG, SYNTII. CTRL. does the work. We need to derive what this
block should do (i.e. how to characterize B(s) in terms of the rest of the system and its I
desired function). To see how the method goes, let us start by imposing the requirement
that we want to synthesize a zero-latency version of the undelayed closed loop original
system. This takes us a step beyond Smith prediction since we will now reduce the !
latency to zero. WN"e thus want

Y(s) = I(s).

For this equation to hold, we have (selectively dropping the Laplace transform vari-
able s):

= CGc-8T
1 + CGc-s' (I + B). (6.13)

S i n c e Y IG - " I
Y =I 1 CGc-sr(l+ B).

1+ CGc-*

(CG;-sr 1 + CGe-' I

B =I(1 )( CGe-s)
10I I
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Figure 6.10: A delayed system and its inverse, with inverse characteristics labeled.
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I Figure 6.11: The signal synthesis controller.
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Figure 6.12: The signal synthesis controller for zero latency realization of closed-loop
control.

~I +CGe-11

CCG-S

I
Figure 6.13: Another realization of the signal synthesis controller for zero latency real-

ization of closed-loop control. 3
Finally, I

B = I( I1+CGe -• 1)i6.4
CGe~s" 1.(.4

In eq. (6.14), the first term inside the parentheses is the inverse of the system, that

is of the delayed plant and feedback controller. The second term ( -1) simply cancels I
the input! In this form the SIC block diagram appears as in Fig. 6.12.

The transfer function of the SIC producing B(s) can be rewritten (multiply the first
term in parentheses by ea, divide out, si,-,,Aiy)

carC'- 1
S+ 1.

which we saw in Section 6.4.2. Written like this, the SIC block diagram is as shown in
Fig. 6.13.

A last rewriting of this particular system shows that it can be realized without any

explicit inversions of the components. Thus it can be implemented with the same com-
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Figure 6.14: Block diagram manipulation yields this realization of the system of Fig. 6.12
or 6.13.

ponents that were used to make the Smith controller, as long as the signal is predictable

(Fig. 6.14).

This basic technique of writing down the desired transfer function of the system and
then solving for B is clearly quite general. For instance, to synthesize a new delay-free

system with controller D and plant H, simply invert the existing plant, controller, and

delay and substitute the desired ones as follows.

We want the system response to be

1" DH

i I I+DH

Using the block diagram defining the SIC (Fig. 6.11) we equate what the system
will do to what we want it to do: CGe- ) I DH

(B + I)( I + CGc- 1 + DH )

Solving for B we get

1 + 1+ CGe-sT  Ii B= r[ID$H 1  CGe- 7  -1] . (6.15)

Here again we see the input being Subtracted and the inverse of the unwanted system

composed with the desired system (Fig. 6.15).
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6.5 Enhancing Smith Prediction with Input Prediction

As we have seen, pure Smith prediction removes the delay-induced poles from the con-
troller but leaves the latency. To remove the latency in the Smith controller, it only
remains to predict the input, as in the SIC.

A step in this direction is taken in [Brown, 1989; Brown, 1990a], in which an explicit
kinematic simulation used to predict the system state, and an optimal (i.e. variance-
minimizing) filter is used to smooth the position and velocity estimation of the world
object. Extended Kalman filters, (linear) Kalman filters, and time-invariant filters were
investigated as input estimators. However, in this w3rk the filters were not used in their
predictive capacity (Fig. 6.16).

Our goal in the current work is to predict the signal for the purpose of com-
pensating for delays. The predictor will be placed early in the system, before the
Smith predictor. The pure predictor of the SIC is an "oracle" usually dismissed as
unphysical or noncausal. In this section we introduce the idea of a predictive filter
to supply the necessary es÷ to remove the Smith predictor's latency. It is standard
practice with optimal filtering to use statistical techniques to see if the current dy-
namic model fits the data, and if not to substitute another model [Brown et al., 1989;
Bar-Shalom and Fortmann, 19881. This "variable dimension" approach is the predictive
filtering equivalent of the signal synthesis adaptive control scheme [Bahill and McDon-
ald, 1981].

One example of a system incorporating Smith prediction and signal estimation is
shown in Fig. 6.16.

6.5.1 The a-3 filter

Linear dynamical systems with time-invariant coefficients in their state transition and
measurement equations lead to simpler optimal estimation techniques than are needed

for the time-varying case. The state estimation covariance and filter gain matrices
achieve steady-state values that can often be computed in advance. Two common time-
invariant systems are constant-velocity and constant-acceleration systems.

Let us assume a constant velocity model: starting with some initial value, the object's
velocity in LAB evolves through time by process noise of random accelerations, constant

during each sampling- interval but independent. With no process noise the velocity is
constant; process noise can be use(l to model unknown maneuverings of a non-constant
velocity target. The cumulative result of the accelerations can in fact change the object's
velocity arbitrarily much, so we model a maneuvering object as one with high process
noise. For this work we assumie position measurements only are available, subject to

measurement noise of constant covariance. Clearly the more that is known a priori
about the motion the better the predictions will be. Some sensors or techniques can
provide retinal or world velocity measurements as well.
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Figure 6.16: Smith prediction with kinematic model, signal smoothing and estimation
with o-3 filter. This system exhibits latency. 3
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Assume the object state (its position and velocity) evolves independently in each of

the (X, Y? Z) dimensions. For instance, in the Y dimension, it evolves according to

y(k + 1) = Fyy(k) + v(k), (6.16)

where

3 FY 1 Ait] (6.17)

for sampling interval At, error vector v(k), and y = [y, I;]T. The equations for the

other two spatial dimensions are similar, and in fact have identical F matrices. Thus

for the complete object state x = [X, IX, 1, Y, Z, Z]T, F is a (6 x 6) block-diagonal

matrix whose blocks are identical to Fy. The error vector v(k) can be described with

a simple covariance structure: E(v(k)vT(j)) = Qkj .

The a-,3 filter for state prediction has the form

*(k + Ilk + 1) = *(k + ilk) ± [ [z(k + 1)- i(k + ilk)], (6.18)

where k(k+ llk+ 1) is an updated estimate ofx given z(k+ 1), the measurement at time

k+ 1. Here we assume that z(k+ 1) consists of the three state components (X, Y, Z) (but3 not (Xt, Y,)). The state estimate is a weighted sum of a state *(k + 1Ik) predicted from

the last estimate to be Fi(klk) and the innovation, or difference between a predicted

measurement and the actual measurement. The predicted measurement i(k + Ilk) is

produced by applying (here a trivial) measurement function to the predicted state.

The o-03 filter is a special case of the Kalman filter. For our assumptions, the

optimal values of a and /3 can be derived (see [Bar-Shalom and Fortmann, 1988], for

example) and depend only on the ratio of the process noise standard deviation and the

measurement noise standard deviation. This ratio is called the object's maneuvering

index A, and with the piecewise constant process noise we assume,

A2 + 8A - (A + 4)VA+ (6.19)I o ~= (619

8

and
= 4 + (6.20)

The state estimation covariances can be found in closed form as well, and are simple

functions of o. /3, and the measurement noise standard deviation.

6.5.2 The a-3--y Filter

The o-3-1 filter is like the o-3 filter only based on a uniform acceleration assumption.

Thus it makes a quadratic prediction instead of a linear one. Broadly, it tends to be more
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Figure 6.17: Smith prediction control with input prediction to overcome latency. I
sensitive to noise but better able to predict smoothly varying velocities. Its equation is
the following.

k(k + ilk + 1) = k(k + 11k) + I/At [z(k + 1)- i(k + l1k)], (6.21)
-Y/At,

With the maneuvering index A defined as before, the optimal a and 0 for the case
that the target experiences random small changes in acceleration (random jerks) are the
same as before and the optimal y = 0

2/a.

6.5.3 Input Prediction j
The smoothing effect of the estimation process improved the performance of the system
in noise [Brown, 1989; Brown, 1990a]. The predictive version of the filter was not used 3
to try to remove latency, however. The classical Smith predictor can be enhanced with
some form of input prediction in order to ameliorate the latency built into Smith's

principle. I
The resulting block diagram is shown in Fig. 6.17.

The predictive element e"' may be realized nonphysically by a "prescience filter" or 1
oracle, by actual prior knowledge of the signal, or (approximately) by a predictive filter.
By the same token, the predictive element in the signal synthesis controller shown in

Fig. 6.14 may be realized by any of these mechanisms. In later sections we shall do
some experimental work to assess the relative efficacy of the resulting controllers.
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1 6.6 Experiments

3 6.6.1 Simulator and Example System

To explore the effects of noise and systematic error on the control schemes described
here we wrote a control system simulator. The user specifies the characteristics of
blocks in a system diagram, as well as sample rates, input function, and length of run.
The system can be continuous, discrete, or hybrid. A continuous system (or block)
is specified by its differential equation (a variable step Runge-Kutta method is used
for solutions). Discrete components include integrators (with various options of anti-
windup, integration time, saturating or not, and leak), sample and hold, differentiators,1 gains, inputs (impulse, step, ramp, cosine, and squarewave), additive noise (uniform or
Gaussian), summers, and output blocks. Each block can induce a delay or achieve a
time advance. Continuous blocks in use are an integrator, a leaky integrator, a cascaded

integrator and leaky integrator, and a spring, mass, damper system. There are also
predictors of several varieties. Currently, there are nonphysical "prescient" oracles that
look into the future of their input as well as a-/i and a-,3 --y filters-the predictors have

a provision to produce noisy predictions in which the time to look ahead is noisy. New
blocks are easy to add and the functionality of blocks is easy to change.

Using this tool, the systems illustrated in Figs. 6.6, 6.14, and 6.17 were simulated.
Several examples were tried, to establish for instance that in the ideal case of perfect
modeling both the Smith and SIC controllers achieved the same effect as the unde-
layed controller. For this report we ran experiments in which noisy predictions (rather,
accurate predictions but for noisy values of the future time) and noisy plant models
(simulated simply by adding noise into the system). Since this experimental approach

is really no substitute for an analytical understanding of what is happening, we limited
our experiment to a typical case that has enough complexity to produce interesting be-
havior. We chose a PID discrete controller applied to a continuous spring, mass. damper
system.

The action of this controller acting alone on the system is illustrated, first for a step

input and then for a "sinusoidal" input (actually u(t)(1- cos(tw2ir)), with u(t) the unit
step). Figs. 6.18 and 6.19 show the response of the system and the necessary control
signal to a step input, using a good setting of P,I, and D (0.4, 0.4, and 0.8). Fig. 6.20
shows the step response of the system for a bad setting of P,I, and D (G.9, 0.4, 0.1).
Fig. 6.21 shows the sinusoidal input. Figs. 6.22 and 6.23 show the sinusoidal response
of the system for the good and bad settings, respectively.

6.6.2 The PID-MSD System in Noise

The goal of these experiments is to compare the performance of three approaches over-
coming delay. Each approach depends on a system model, and two approaches use
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Figure 6.18: Output of mass, spring, and dashpot system to step input using (P,I,D) = i
(0.4, 0.4, 0.8): the result is underdamped response. I
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Figure 6.19: Control signal producing the output of Fig. 6.18.

models of the input. In the experiments to be described, we concentrate on stochastic

errors rather than systematic errors. In particular we consider additive error in the out-
put of the controller that we intend to model the effects of parametric mis-estimation

of the system. For temporal sensitivity, we consider stochastic mis-estimation of the

correct delay.

To set - baseline for these experiments, we first consider the performance of the pure
PID controller for the MSD (mass. spring, dashpot) system described in the previous
section. The system diagram is that of Fig. 6.24.

Clearly there are many parameters that can be interestingly manipulated in exper-
iments on control systems, and many measurements that can characterize the effects.

First, to get some idea of the effects of delay in the feedback loop, consider the system

response in the case of a delay of 0.4 compared with no delay (besides the inherent

one-step discrete controller delay) (Fig. 6.25).

For this set of experiments, the sampling rate of the discrete controller is a constant

0.1 second. The noise added to the controller output is normally distributed, with a
mean of 0.0 and a standard deviation of 0.2. The stochastic time perturbation is calcu-

lated as the integral number of ticks that results from rounding a normally distributed

random variable with mean 0.0 and standard deviation of 0.1. The control input is
u(t)(1 - cos(2rht )). The performance of the perturbed systems can be compared to
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Figure 6.20: Output of mass, spring, and dashpot system to step input using (P,I,D) = I
(0.9, 0.4, 0.1 ): the result is a quite underdamped response.
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Figure 6.21: Sinusoidal reference input u(t)(1 - cos(tw2ir)), with u(t) the unit step,
w = 0.5. This input is used throughout rest of work.
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Figure 6.22: Output of mass. spring, and dashpot system to u(t)(1 - cos(27'wt)) input 3
for " = 0.5 using (P,I,D) = (0.4, 0.4. 0.8).
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Figure 6.23: Output of mass, spring, and dashpot system to sinusoidal input using
(P,I,D) = (0.9, 0.4, 0.1).
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Figare 6.24: Perturbations in the PID controller. The controller output has additive
noise and there is mis-estimation of the "4zero" delay, implemented by stochastic non-
zero delay or advance. In fact the delay is one time step, since this is actually a discrete
controller-we have indicated that inherent delay with the z-1 box.
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Figure 6.25: Zero delay case compared to a. constant delay of 0.4 in the feedback loop3
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Figure 6.26: The conditions of Fig. 6.22 shown with the results of noise added to
I controller output and with noisy signal delay and advance.

that of the basic PID controller and to noisy versions of the PID controller by the met-
rics of phase lag and gain (Bode plots) if the frequency of the input sinusoid is varied.I Within a frequency, such metrics as overshoot and the sum of absolute differences of
the relevant system state (position) suggest themselves.

Fig. 6.26 shows the system state (position of the mass) under the noisy conditions
described above compared with the noiseless case.

1 6.6.3 Delay and Simple Prediction

The PID-MISD system is relatively resistant to delay. but its effects are significant. OneSidea is to insertan estimator-predictor in the ioop to cancel the effects of delay. Fig.

6.27 shows the system.

Here the delay is compensated by an o-03 filter that estimates and predicts the
output of the controller. Using an o-fl--y filter has advantages and disadvantages: the
advantages are less overshoot. the disadvantage is a longer initialization time (three
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Figure 6.27: The PID MSD system with delay and predictor. I
I

readings instead of two) that can make a significant difference in performance when
control is active. Fig. 6.28 shows the zero delay case, the case where delay is 0.3 sec.
and no prediction is used, and the case of 0.3s delay and the prediction is for 0.3 sec.
ahead. In this system the prediction eliminates the phase lag of the system induced by
the delay, but the overshoot of the output in the delayed and prediction-compensated
systems is similar.

6.6.4 Open Loop Control U
It is difficult to compare the performance of the open-loop control approach to the
other methods because this approach calls for an entirely new system design: the open
loop controller in general looks nothing like the closed loop controller. What we show
here is simply the degradation of the performance of the controller whose loop has been I
opened by positive feedback under the two noise conditions of this section: the standard
sinusoidal input, additive noise of 0.2 in the positive feedback path, and normally dis-
tributed stochastic variation of the delay from its mean of 0.0 with a standard deviation I
of 0.1. For comparison we simply give the noiseless perf-Irmance, which should be (and
in fact is, in our simulation) the same as the output of the PID controlled MSD system

with negative feedback disabled. This output is not related to the closed-loop PID-MSD
system performance, of course. Fig. 6.29 gives the system configuration and Fig. 6.30
the three responses. U

As mentioned in Section 6.2. the process of opening the control loop by positive
feedback does not remove the delay, or latency, from the output. As with all our

schemes, the solution is simply to cascade an input predictor with the system.

Since the open- and closed-loop systems are not directly comparable, we simply
invoke the argument of Section 6.1 concerning the decreased sensitivity of feedback I
systems to parametric variation. If we can afford to give up the advantages of feedback
systems, then an open-loop controller can of course be used, and then delay will only

cause a latency in output that can be more or less compensated by predictive filtering
somewhere in the system. g
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Figure 6.28: The undelayed response (solid line) is perturbed by a delay of 0.3s in the
control loop (dashed line). Using the estimator to predict the control signal reduces the
phase lag but overshoot remains (dotted line).
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Figure 6.29: The positive feedback loop-opening system, showing where noise and I
stochastic delay were injected.

I
6.6.5 Smith arid Signal Prediction i

The block diagram of thle system used in this section is given in Fig. 6.31. As before. I

the controller is the PID controller of earlier sections and thle system is the same mass,

spring, damper system. I

This system diagram is interesti' g because it brings up the following question. Sup-

pose that mis-modeling the plant actually is modeleJ as additive noise emanating fromI

the plant model. In the case of zero modeled delay, this noise is both added to and

subtracted from tihe error signal, and thus cancels itself completely. This argument 3
extends to any' behavior of the plant model at all, of course: it is all subtracted out in

the zero-delay case.

Consider two cases. t~he zero delay case with noises as we have had previously, and

a case in which the plant delay is 0.2. which is accurately reflected in the model delay

except when that modeled delay' is pert urbed by our standard stochastic perturbations. I
In this case the effect of the noise is doubled, since a shifted version is subtracted from

itself at the input. We( obtain the graphs of Figs. 6..32 and 6.33. 4As expected, the Smith

predictor avoids the dleleterious effects of systematic delay (Fig. 6.25) on the systemI

out put. b)ut retains a delay or latency in its output equal to that of the system delay.

12.!

I



I2

"cosnOi se" --
"cosdel" --

1.5

I/
Ii

-0.5

Ia
Is

II j

22

-0.5 i i

lopadG00S.)sohsi ea ntepstv fedaclop

0.5 125

I nnl~nlnn~ lU i R n emr i nmm nunlnnmu'



I
I
I

Y

NOISE+ + STOCH

I ~DELAY -

I

Figure 6.31: The Smith predictor with noise added to simulate plant and delay mis-
modeling. The STOCH. DELAY box represents a stochastic variation about the mod- I
eled delay, which itself is ideally the same as the true plant delay. I
6.6.6 Signal-inverting Control 3
Although this controller is inspired by, and in its most general form (Fig. 6.15) demands
the inversion of the following system, here we use the rewriting that merely calls for a

duplication of the controller and a model of the plant (along with a nonphysical signal i
advancer). Fig. 6.34 shows the system used in the simulations. Fig. 6.35 shows the
results with the standard noise parameters of this section. 3
6.7 input Prediction

In thc experiments in Section 6.6, the Smith and SIC controllers needed to be able to
predict the input in order to overcome all the effects of delay. So far we have assumed an

oracle that actually knows the future. This is an impractical general solution (although I
in some cases one can make an argument that very precise expectations are downloaded
into the controller-this is a central idea in the signal synthesis adaptive controller

[Bahill and Harvey, 1986; McDonald and Bahill, 1983]. I
In this section we examine the effectiveness of the a-0 and a-/3-1 filters for input

prediction. Recall that the former makes linear predictions based on past input and its I
inherent beliefs about the reliability of its sensors versus the predictability of the target.
The latter makes quadratic predictions. 3

As an example, Fig. 6.36 shows our standard sinusoidal input u(t)(1 - 2irwcos(t))
and the predicted value for 0.2 seconds into the future yielded by the a-3 and a-fl'-1
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Figure 6.32: The Smith controller with zero modeled delay. Ideal output is shown (solid
line) along with output with G(0.0, 0.2) noise in the feedback loop (long dashes) and
G(O.0, 0.1) stochastic delay in the feedback loop (short dashes). The controller cancels
the noise in this case (see text), so the long dashed line is the same as the solid one.
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Figure 6.33: As in the previous figure, only with 0.2 system delay. Compared with the
last figure, note the similarly-shaped, but delayed, ideal output, which is shown along
with output with G(O.0, 0.2) noise in the feedback loop and G(O.0, 0.1) stochastic delay
in the feedback loop.
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Figure 6.34: The SIC realization, with noise added to simulate plant and delay mis-

modeling. The STOCH. ADV box represents a stochastic variation about the modeled
necessary advance, which itself is ideally the same as the true plant delay.

129



I
I
I
I
I

1.2''''

"newbayok"

"newbaynoise"
"newbaydel" - -

0.8 3
': |

0.6

0.4 I

0.2

0 I I I I

01
-2 0 2 4 6 8 10

Figure 6.35: The SIC controller dealing with a delay of 0.4. The delay is not present I
in the output since the (nonphysical) signal advancer presents the controller with its
future value, thus removing the delay. The ideal output is shown along with output with
G(0.0, 0.2) noise added to the predictive section and G(0.0, 0.1) stochastic advance noise
added to the true value.
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I ~ Figure 6.36: ar-0 and o-37filters predicting sinusoidal input. The quadratic predictor

performs better in noiseless data.

filters with A• = 1 (equal confidence in data and prediction). Neither filter's assumptions
i ~about constant velocity or acceleration is met. The a•-/0-- filter delivers reasonable

predictions with less overshoot. The a-0• filter is rather less satisfactory.

The a-13-7t filter may be substituted for the input predictor in the Smith and SIC
schemes. For the Smith predictor and a delay of 0.3, the results are shown in Fig.
6.37. The output is close to the ideal output, but shows the characteristic overshoot
engendered by the predictive filter.

When the a-0•-7 filter is substituted for the input predictor in the SIC scheme, the
results are not quite as good. Fig. 6.38 shows the ideal and SIC outputs and the
corresponding one from the Smith predictor (identical to the predictive filter output of

Fig. 6.37).

A closer approximation to the desired output is actually possible by setting the
prediction to 0.4 instead of the correct 0.3. Not, only does this change result in less
overshoot but in a much closer following of the desired curve between the peaks. This
sort of tradeofl is also notice(] in the laboratory, where the delay and ,A (maneuvering
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Figure 6.37: The a-/3-y filter predicts the sinusoidal input to the Smith controller (noise- i
less conditions). Shown are the ideal performance, the output of the Smith predictor
(identical to the ideal with a latency equal to the system delay of 0.3), and the output
with the predictive filter. The predicted case quickly moves to approximate the ideal
except for overshoot.

I
I
I

132 i

I ! I



1.2
IJ% ~"pidsingood" -I 1.2 "bayabc3l.

"smn3" --

i\0.8• {/ ,, , |I

0.6 0

p P P

0.4 p
I It P

" Id

, bi,

0.2 L I

0 .......... .............................. ... ....... .. ' ............. -" --------

-0.2 ,1 -2 0 2 4 6 8 10

Figure 6.38: The a---'y filter predicts the sinusoidal input to the SIC controller (noiseless

conditions). Shown are the ideal performance, the output of the SIC controller for the

delay of 0.3, and the comparable output of the Smith predictor shown previously.
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Figure 6.39: Ideal performance and the Smith predictor with its t-y3-f predictive filter
predicting the sinusoidal input. The performance of the filter with noiseless input data I
is much better with A = 10 than with A = 1.

I
index) parameters may be traded off to improve performance.

For noiseless data, the maneuvering index (reflecting our faith in our sensors over
that of our predictions) may be increased. Substantially improved performance results
with A = 10.0 (Fig. 6.39).

6.8 Summary

Our goals here were two: understand classical work on control with delay, and apply the
most promising techniques in our laboratory to cope with the real delays we experience.

A summary of our evaluation of several approaches to control of time-delay systems
is as follows.

1. Ignore the delay or compensate by lowering controller gains: Infeasible in general, I
this solultion might work for some applications because of the relatively short
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delays that arise with some of our equipment.

2. Opening the loop through positive feedback: This solution does not appeal, since

it loses all the advantages of feedback control and seems sensitive to delay.

3. SIC control: Canceling various parts of the downstream system by inversion is a

general and powerful, if practically difficult, idea. This approach requires modeling

of the controller as well as of the controlled plant. For a software controller that

is not infeasible, but complicates matters somewhat. There are useful cases where

its realization does not call for computing the inversion of the controlled plant

(generally a bad idea because it would call for differentiators). We have not seen

this rewriting of the SIC controller presented elsewhere. The SIC seems slightly

more sensitive to noise and delay mismatches than does the next scheme, but

probably not enough to worry about.

4. Smith with input prediction control: This classical scheme is elegant and has some

practical advantages (not modeling the controller, just the plant).

It is worth mentioning that predictive filters have more uses than predicting the sig-

nal: they also estimate the signal. The latter facility is useful when the signal is noisy or

drops out. Our a - /3 and a-/ 3 -7 filters continue predicting and estimating until a certain

amount of time (a filter parameter) elapses during which the filter sees no input data.
We expect the estimation aspect of the filters to be as useful as their predictive aspect

in practical situations, since the delays confronting us with the MaxVideo equipment

and robot head camera controllers is relatively small (on the order of 100 ms or less)

compared say to the delays we see with the Puma robot and its VAL controller (on the

order of 500 ms).

135



I
I
I
I
I
I
I
I
I
I
I
i
I
I
I
I
I

136I

I



I
I

I

I 7 Conclusion

I
Eye movements are pervasive in the animal kingdom, and they have recently begun
to play a prominent role in computer vision as well. Robots, like animals, inhabit
a world of moving and stationary objects, and robots and animals themselves move
about. Consequently, the ability to hold gaze on an object is crucial to seeing it clearly.
Binocular foveal vision requires that the robot hold its foveae simultaneously on the
visual target. In addition, motion blur degrades spatial resolution if the image is not
prevented from slipping across the retina.

This dissertation examines the problem of holding a robot's gaze on an object while
both are moving using only precategorical visual processing (i.e., without requiring the
ability to recognize the target). The approach is based on the premise that the control
of camera movements should be considered an integral part of visual perception. By
exploiting constraints that can be maintained by active control of camera movement,
simplified visual processing is sufficient to hold the robot's gaze.

A system implemented on the Rochester Robot demonstrates the idea, holding the
binocular gaze of a moving robot on an object that moves through a cluttered scene.
The vergence and pursuit components of the system cooperate to simplify the visual
processing required, as illustrated by Figure 1.2. The vergence system controls the
vergence angle between the cameras to minimize the stereo disparity of the foveated
target. A fast correlation-based technique estimates the most prominent disparity in
foveal stereo images. The pursuit system controls the pan and tilt angles of the cameras
to center them on the foveated object that has no stereo disparity. A simple zero-
disparity filter locates features that have no stereo disparity. Thus the vergence system
maintains zero disparity of the target for pursuit, and pursuit keeps the target foveated
for vergence. The system is able to maintain these invariants in the retinal images by
its active control of the camera angles.

The chief contributions of this dissertation are:

* That localizing visual attention in 3D space enables simple precategorical process-
ing to suffice for holding gaze on a visual target. It is demonstrated (in Section 4.5)
that simple binocular cues are able to distinguish a relatively near target in the
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presence of clutter. Other precategorical cues with physical 3D interpretations

should prove useful in situations that do not provide binocular cues.

" A demonstration of harnessing the interaction between sensing and control to sup-

port sensory-motor behavior, which is also exemplified by the ability of binocular I
fixation segmentation to pick out the target during gaze holding.

" A demonstration of the symbiotic cooperation of simple subsystems, e.g., pur- 3
suit and vergence (in Section 4.6). The contribution of selected components is

illustrated by disabling each of them in turn. 3
It important to note that is easier to detect the tracking signals for active visual

following than for tracking an object in passive stereo-motion image sequences. First,

motion blur emphasizes the signal of target over the background. In passive visual I
following, the target's image slips across the retina and may thus be degraded by motion

blur. During active pursuit, however, the eyes move to follow the target and stabilize

the retinal image. Thus the image of the surrounding scene rather than the target moves

across the retina and suffers from motion blur. The result is that image of the target

is emphasized over the image of the background. Second, maintaining vergence isolates 3
the target by disparity filtering. Holding vergence oxi the target enables the object

to be isolated by simple zero-disparity filtering that detects objects at the fixation

distance. Thus maintaining vergence on the target makes it possible to locate the I
target for pursuit control with simple precategorical visual processing. Third, active

visual following also enables localized visual processing. The target's retinal location is

roughly known because the pursuit system is keeping it near the center of view. This I
permits spatially localized visual processing.

Also note that active binocular following has advantages over:

monocular following. Vergence and binocular disparity help pick out the target.

Monocular visual following must find ways to maintain invariants in the monocular

images. This is difficult in images that are view-dependent, and it is also difficult

to parse the complex optical flows that result from visually following ar, object.,

especially while the observer is also moving. Active binocular following, however,

can use binocular cues to exploit physical properties that maintain invariants in
the images. For instance, holding vergence on an object permits the object to be

located in visual space by disparity filtering that is much simpler than stereoscopic I
interpretation. This provides the object's location to the pursuit system so gaze

can be directed at the object. 3
binocular following without vergence. Image interpretation is simplified because

the target has zero disparity (thanks to vergence control) and its retinal iliage is

foveated (due to pursuit). Consequently. it is sufficient simply to ignore portions of I
the stereo images that contain non-zero disparities in order to locate the target. In
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contrast, visual following with a binocular system of fixed vergence angle requires
processing of potentially large disparities as the disparity of the target varies
with its distance. (It is probably sufficient to be able to shift images quickly as an

alternative to verging the camera system. The difference between these approaches
is the difference in the viewpoint of an object that is observed by parallel and
by verged binocular camera systems, and it is probably inconsequential in most
cases.)

The limitations of the system described here should be clear. First, neither is any

attempt is made to identify an interesting target for initiation of tracking, nor is the

system able to acquire fixation of a non-foveated moving target. Both of these activities
are crucially important for the completeness of a gaze control and tracking system.
Second, binocular cues provide reliable information only for near targets (with, say, two
or three "arm's lengths") because there must be sufficient range discontinuities to permit
disparity differences to distinguish the target. Obviously, biological pursuit systems have
capabilities of these kinds that the demonstration system lacks. Further, the normal
mode of pursuit operation for animal systems is not likely to be precategorical; rather,
the creature probably nearly always is able to recognize any object that it is tracking,
and it is not clear how much and what sort of influence this has on the process of
tracking an object. Certainly any advantages in robustness and performance that can
be gained by the use of such knowledge should be sought by robot visual systems as
well.

Nevertheless, the central claim of this thesis is that localizing attention in 3D space
makes simple precategorical visual processing sufficient to hold gaze. The precategorical
nature of the visual sensing means the algorithms are simple and do not require delicate

tuning. Vergence control is not even required since the disparity filter can be designed to
respond to any finite disparity. This basic idea can be used to advantage when holding
gaze in dynamic situations.

7.1 Future Work

Future work could take several directions. Gaze holding itself can be improved by
more sophisticated visual processing, and non-visual cues can be employed to increase
performance. In addition, prediction can improve performance in tracking targets whose
motion is predictable by mitigating the effects of delays in the system. Second, gaze

holding can be incorporated in a larger repertoire of gaze controls, including saccades
and control of head movements. Third. gaze control can be applied in the context of
specific types of behavior. including visual perception, locomotion, and manipulation.

Gaze holding ability can improved considerably by using expectations to help distin-
guish the target's signal from the signals of distracting objects and clutter. Prediction
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can be used to concentrate visual processing in the local area where the target signal is
expected to be found. This applies to both motion and stereo disparity spaces as well
as retinotopic space. Essentially, the system would model the trajectory of the target
in three-dimensional head coordinates and project its expectations onto the retinotopic
and disparity spaces. The expectation could be expressed as i• Gaussian surface, say in
retinotopic space, that emphasizes signals that fall within the expected envelope.

The non-uniform resolution of the primate retina could act as a fixed size and loca- I
tion version of this sort of m -chanism. (In fact, the windowed image processing used by
the demonstration system is just an extreme form of non-uniform resolution in visual
processing.) A foveal-peripheral visual system with a central area of high-resolution
surrounded by increasingly lower resolution emphasizes the central portion of the visual
field. Thus a foveated target would be emphasized over peripheral surrounding objects. 3
Similarly, small disparities would be more difficult to detect detect reliably in the pe-
riphery than the fovea due to the Nyquist limits of sampling frequency, so disparity
estimation for vergence and disparity filtering for pursuit would be influenced less by I
objects that were in the horopter but were not foveated.

Another expectation that may help distinguish the target's signal is enabled by the 3
nature of active visual following. When the cameras are following the target, its signal
(e.g., zero-disparity image) can be expected to be fairly persistent. This enables the
use of age filters to help distinguish the target signal from distracting signals. This is I
a simplified form of coherent motion segmentation that relies on the target's optical
flow being nearly zero. i.e., if the target were being followed perfectly, its image should
not slip across the retina at all, while the images of the surrounding scene should be l
slipping a relatively large amount. Even if the target is not being followed perfectly, its
slip should still be relatively small compared with the background slip, and this could
be used to segment and locate the target. If the robot and camera motions are smooth
enough, it may be possible to anticipate the background flow and detect the target if
it is moving inconsistently with the constraint determined by the robot and camera
motions.

Concentrating on visual cues alone is an interesting constraint, but we have not
lost sight of the fact that in successful systems visual cues probably are combined
into a model of target motion which may be used to control gaze [Brown, 1990a;
Coombs and Brown, 19901. In addition, non-visual cues (such as head motions sensed 3
by accelerometers or rate-gyroscopes) can inform gaze stabilization systems. Using such
non-visual cues calls for models of the observer's physical plant so that the proper com-

pensating movements may be made. Furthermore, the appropriate camera movements i
to compensate for head motion depend ot, ihe gaze location, and so a representation
of the location of objects in three dimensions (or at least depth) is needed. There is

increasing evidence that human and other primate gaze control systems do indeed make U
use of such cues [Paige, 1990; Snyder d al., 1990].
1,10 i

I



The performance of any system that contains delays can be improved by using
prediction to overcome the effects of predictable delays. Chapter 6 discusses some
techniques for coping with delays in feedback systems, but obviously there remains
considerable room for further study.

As well as improving gaze holding performance itself, the repertoire of gaze controls
can also be expanded to include saccades and head movements as well as camera move-

ments. As the number and complexity of gaze control components increase, so does the
need for more sophisticated coordination among the control systems. For instance, if
the head is turning to follow an object, the cameras need to be rotated less with respect
to the head. Interaction of controls can be simple (say by preemption), or more complex
(with controls aware of and cooperating with the actions of other controls [Brown, 1990b;
Brown, 1990a; Brown, 1990c]). The former approach requires either breaking down the
controls into orthogonal, non-interacting primitives or being content to have one con-
trol acting at a time. The latter approach requires more sophisticated modeling of the
effects of interaction.

Another area for future exploration concerns the effect of gaze controls such as gaze
shifts and gaze holding on visual perception. One obvious application is the support
of stereo systems with limited fusional ranges [Nishihara, 1984; Olson, 1991]. More
generally, systems that fixate must choose appropriate targets for the task they are per-
forming. Thus gaze control at the highest level cart be viewed as a resource management
problem, in which limited sensory and computing hardware must be allocated so as to
maximize the usefulness of the recovered information [Rimey and Brown, 1990].

Similarly, camera movement and fixation strategies could have strong implications
for visual perception for locomotion. Some results [Bandopadhay, 1986; Aloimonos et al.,
1988; Raviv and Herman, 1991; Nelson, 1991] already suggest the potential impact of
having a better understanding how specific kinds of eye movements influence the the
observed optical flow (and consequently the visual processing that is necessary to achieve
the desired behavior). For instance, does it help to keep the observer's cameras at a
fixed angle in head space, or is it better to hold gaze on objects? Where is it best to
look while traveling on a curvilinear path?

Gaze control and visual feedback can have considerable impact on robust visually-
guided behavior in the form of indexical behavior. For instance, developing the ca-
pability for a robot to go-to-the-fixated-object could result in robust navigation
based on visual feedback even in the presence of other sources of error (e.g., slippage
errors in dead-reckoning). Thus the need for precise estimates of the target and precise
calibrations and visuomotor transformations is reduced simply by the use of feedback.
An example of robotic behavior that notoriously requires high accuracy in visual per-
ception, transformation and positioning is the task of picking up an object with a robot
hand. However, with only coarse calibration. the hand could be carried most of the way
toward the target in an initial open-loop reaching phase. A second., visually-servoed,
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reaching and grasping phase can use visual perception of the hand and the tool in vi-
sual coordinates to make relative adjustments of hand position and orientation without
requiring transformation to absolute motor coordi~iates. There is evidence suggesting
that this two-stage reaching and grasping describes the way primates reach and grasp
objects. This approach will be robust with less precise calibration than a completely
open-loop system would require.
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A Understanding the Cepstral Filter

Our experience with the cepstral disparity estimator confirms Yeshuiun and Schwartz's
observation that the method is remarkably robust. The standard analysis (summarized
in Section 3.5.1) explains what the algorithm does, but does not yield much insight

into why it works so well. We feel that the algorithm is better understood by e:-ploring

its relation to autocorrelation; this view also suggests an alternative algorithm. The
argument is as follows:

The cepstrum of a signal is computed by forming the power spectrum, taking the
logarithm of each pixel, and Fourier transforming the result. Note that the power spec-
trum is just the Fourier transform of the autocorrelation function of the signal, and (like
the autocorrelation function) is both real-valued and even symmetric. The forward and
inverse Fourier transforms are equivalent for even, real-valued input functions. There-
fore, the second Fourier transform in the cepstrum is equivalent to an inverse transform.
The cepstrum, then, is the inverse transform of the log of the forward transform of the
autocorrelation function. Without the logarithm step, therefore, the algorithm would

simply compute the autocorrelation function.

The effect of taking the logarithm before the inverse Fourier transform can be seen

by rewriting the log power spectrum as

2

lo 1l -lgF
2  log Fl12

logIF = lF1-2 FF* = F

(where F* is the complex conjugate of F). The right-hand side of this equation can be

recognized as the power spectrum (i.e., the Fourier transform of the autocorrelation) of
a filtered version of the original function. In other words, the cepstrum can be thought
of as autocorrelation with an adaptive non-linear prefilter. The prefilter is compressive
in the frequency domain-it tends to make the power spectrum more nearly uniform,
reducing the contribution of narrowband signals while leaving broadband signals rela-
tively unaltered. Narrowband signals include such things as periodic patterns and large

smooth blobs, both of which are poor correlation targets. By suppressing narrowband

signals, therefore, the prefilter makes the input a better, less ambiguous correlation
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the transform of the other, and then rescale so that all entries in the resulting complex
array have the same magnitude. This intuitively derived algorithm can be rigorously
justified as a type of deconvolution, as follows:

The cepstral disparity estimator depends on the assumption that the right and left
images differ only by a shift of dh horizontally and d, vertically. Given this assumption,
however, a ilore direct approach is possible. The stated assumption is equivalent to the

formula
R(x, y) = L(x, y) * bf(x - dh, Y - d,,)

where * represents convolution. Fourier transforming and solving for the disparity term
gives

e-j27r(udh+vd0) - FR(U, v)

FL(u, v)

or

6(x - dh, Y - d,) = F'1F(,vF~,v I FL( U, V) 12 •

By hypothesis, however, FL and FR have identical magnitude spectra-they differ only
in phase, because the left and right images differ only by a shift. Under this assumption,
the division can be approximated by

FR(u, v)Fr(u, v)
IFR(u. v)F;.(u, v)1'

which is the Fourier transform of the cross-correlation of the right and left images,

rescaled so that all entries have magnitude one. That is, it is exactly the procedure
suggested above by intuition. What was described there as a peak-sharpening operation
turns out to undo the convolution of L(x, y) with the disparity delta function.

Like the cepstrum, the deconvolution disparity estimator can be understood as cor-
relation with an adaptive prefilter. In this case the effect of the prefilter is to obliterate
the magnitude spectra of each image, so that the images differ only in phase. Deconvo-
lution is thus equivalent to correlating phase images, and the technique is well known
under the name of phase correlation. Kuglin and Hines [1975] first described the algo-
rithm and showed that the height of the correlation peak and the distribution of the
background values can be used to estimate the extent to which the two images do in
fact differ by a shift. Pearson et al. [1977] describe a cleverly optimized hardware im-
plementation of the algorithm that transforms 128 x 128 sample windows at 30 frames
per second.

In theory, phase correlation should be somewhat faster than the Yeshurun and
Schwartz cepstral disparity estimator for a given sample window size. This is because
the cepstral estimator is based on Fourier transforms of windows of size h x 2w, while
phase correlation replaces those with fewer than twice as many transforms of windows
of size h x w. Since the running time of the Fast Fourier transform (FFT) rises more
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than linearly with increasing sample window size, converting to phase correlation should
reduce the time needed to estimate the disparity. However, this neglects the problem of

wraparound. Like all Fourier-based approaches to discrete correlation, phase correlation
(and the cepstrum) compute wrapped correlations, which can lead to ambiguities in the
sign of th,- disparity. In the case of the cepstrum, the ambiguity can be resolved without
padding by a strategy described in [Olson and Coombs, 19911. For phase correlation,
however, this strategy fails. The padding required to prevent wraparound overwhelms

the apparent speed advantage of the phase correlation estimator. I
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