
AD-A2 5 6 222

Transactional
Distributed Shared Memory

Andrew B. Hastings
July 1992

CMU-CS-92-167

E LIE... " School of Computer Science
uGT 0 7 1Carnegie Mellon University

EA Pittsburgh, Pennsylvania

Submitted to Carnegie Mellon University in partialfulfillment of the

requirements for the degree of Doctor of Philosophy in Computer Science.

e
1
i ',6.;:"i ;:I- Fr :•2

Copyright © 1992 Andrew B. Hastings

This work was supported by IBM and by the Defense Advanced Research Projects Agency, Information
Science and Technology Office, under the tide Research on Paralel Computing issued by DARPA/CMO
under Contract MDA972-90-C-0035, ARPA Order No. 7330.

The views and conclusions contained in this document are those of the author and should not be interpreted
as representing the official policies, either expressed or implied, of any of the sponsoring agencies or the
U. S. government

92-26624
" ~~ ~ ~ ~ ~ ~ ~~~L qllllll~lllllllllllll

• ege School of Computer Science
on

DOCTORAL THESIS
in the field of

Computer Science

Transactional Distributed Shared Memory

ANDREW HASTINGS

Submitted in Partial Fulfillment of the Requirements
for the Degree of Doctor of Philosophy

ACCEPTED:

ILI `' "-MAJOR PROFESSOR DATE

DEAN 8f/z.DATE

APPROVED:

PROVOST DATE

Abstract

Atomic transactions have proven to be an important technique for constructing reliable
applications. Traditionally, transactions have been extended to distributed environments through

the use of function shipping, a technique in which message passing or remote procedure calls are
used to invoke computational requests on remote nodes. Recently, the data sharing approach to

constructing distributed applications has received attention in the form of distributed file systems

and distributed shared virtual memory. Applying the data sharing approach to transactions

produces transactional distributed shared memory (TDSM) which yields benefits for a certain

class of distributed application.

The union of transactions and distributed shared memory offers synergies in transaction

recovery, concurrency control, and coherency control, but introduces challenges in transaction

recovery. In this dissertation, I describe the design of a system that provides TDSM in the form

of distributed recoverable virtual memory. Using the external pager interface of the Mach

operating system, I implemented a prototype based on the Camelot distributed transaction facility.

I analyze the prototype and its performance, offer techniques for improving the design of future

TDSM systems, and characterize the applications for which TDSM is useful.

Acced'c, f

NTIS (;• ,.

D1U.';•... '

F

Acknowledgments

My advisor, Alfred Spector, deserves my deepest thanks. Despite his many commitments at
CMU and later at Transarc Corporation, he always found time for me. As a researcher, teacher,

editor, manager, entrepeneur, psychologist, and friend, he has no equal in my experience.

I am grateful to Rick Rashid, Eric Cooper, and Marvin Theimer for returning to CMU to

serve on my thesis committee. Rick is my second advisor, his advice on writing style improved
the presentation tremendously, and made the dissertation much easier to write. Marvin deserves
special thanks: he read the first draft of every chapter, and his detailed comments were

invaluable.

The members of the Camelot project are to be congratulated for developing the transaction
system that was the platform for my work. The Camelot project consisted of Joshua Bloch, Dean
Daniels, Richard Draves, Dan Duchamp, Jeffrey Eppinger, Elliot Jaffe, Toshihiko Kato, George

Michaels, Lily Mummert, Randy Pausch, Peter Stout, and Dean Thompson. I would especially
like to thank Peter Stout for technical discussions, and Josh Bloch for proving that it was possible

to finish after Alfred left CNIU. I also wish to acknowledge Jeff Eppinger for permitting me to
use in Chapter 2 some of the background prose from his Ph.D. dissertation.

I am indebted to Joe Barrera for implementing the External Memory Manager library, saving
me many months of effort. Joe, Daniel Julin, and Mike Young were very willing to explain

Mach-related topics and to fix bugs when necessary. I thank the numerous others who made

CMU Computer Science an interesting and productive place to work.

My officemates provided a stable, supportive environment during my five years at CMU. I

thank Alan Christiansen, Puneet Kumar, Alicia Perez, and Manuela Veloso for being so

understanding. I also wish to thank my roommates over the years for their companionship:
Gilles Dowek, Alison Ford, Daniella Gerstein, Spiro Michaylov, and Tom Ruschak. Spiro and
Tom have been very good friends, and I remember fondly the time I spent with each of them.

I'd like to thank all of my friends who helped to put life and graduate school in perspective.

My friends from Cray Research, including Clark Piepho, Jim Harrell, and Peter Hill, reminded
me what a Real Job is like. I especially. appreciate the opportunity Jim gave me to escape from

CMU when I wanted some time away. I'm thankful for the fellowship I found at several

Presbyterian churches in Pittsburgh. And I am very grateful for the friendship of Lissie Crock,
Lesley Kromer, and Margie Martini.

wi

iv ACKNOWLEDGMENs

Above all, I thank my family, including my brother and sister. I could not have finished this

dissertation without the support and encouragement of my parents. For their unfailing love and

devotion, I dedicate this dissertation to my mother and father.

Table of Contents

1. Introduction 1
1.1. Problem Description 1
1.2. Programming models 2

1.2.1. Client/server Model 3
1.2.2. Transactions 3
1.2.3. Replication and Partitioning 4
1.2.4. Caching 4
1.2.5. Distributed Shared Memory $

1.3. Purpose of the Dissertation 6
1.4. Examples 7
1.5. Synergies and Challenges 10
1.6. Outline 11

2I Background 13
2.1. Distributed Computing 13
2.2. Transactions 14

2.2.1. Transaction management 16
2.2.2. Recovery management 17
2.2.3. Buffer management 18
2.2.4. Log management 19
2.2.5. Concurrency management 20
2.2.6. Communication management 21
2.2.7. Configuration management 21

2.3. Data Sharing 21
2.3.1. Directory methods 22
2.32. Snoopy methods 24
2.3.3. Other methods 25

2.4. Distributed Concurrency Control 26
2.5. Integrated Technologies for TDSM 28

2.5.1. Shared disks 28
2.5.2. Hsu and Tam 31

3. Camelot and Mach Environment 35
3.1. Camelot 35

3.1.1. Camelot library 36
3.12. Disk Manager 38

3.1±.1. Data structures 38
3.1.2.2. Algorithms 39

3.1.3. Recovery Manager 40
3.1.4. Communication Manager 41
3.1.5. Transaction Manager 41
3.1.6. Node Server/Node Configuration Application 41

I,

vi TABLE OF CONTENTS

3.2. Mach 42

4. Design 45

4.1. Goals 45
4.2. Architecture 46

4.2.1. Camelot and Mach 47
4.2.2. Log management 49
4.2.3. Transaction management 49
4.2.4. Recovery management 50
4.2.5. Buffer management 52
4.2.6. Concurrency management 53
4.2.7. Communication management 54
4.2.8. Configuration management 54

4.3. Discussion 55
4.4. Example 58
4.5. Summary 63

5. Implementation 65

5.1. Concurrency Management 65
5.1.1. Programmer interface changes 67
5.1.2. Cache control 67
5.13. Failures 68
5.1.4. Lock Manager/library interface 69
5.1.5. Data structures 70

5.2. Buffer Management 70
5.2.1. External Memory Manager 71
5.2.2. Disk Manager 71

5.22.1. Server record 72
5.2.2.2. Segment record 72
5.2.2-3. Grid 73
5.2.2.4. Internal concurrency control 74

5.2.3. Remote Execution Manager 74
S2.4. Algorithms 75

5.24.1. Forward Processing 75
5.2.4.2. Coherency control 76
5.2.4.3. Segment activation 77
S.2.4.4. Paging 77
52.4.3. Hot Pages 78
52.4.6. Preflush 79
52.4.7. Down servers s0
5.2.4.8. Server startup 81
52.4.9. Server termination 82
52.4.10. System shutdown 82

5.3. Recovery Management 82
5.3.1. Old-value/new-value abort 83
5.32. New-value-only abort 84
5-3.3. Segment and server recovery 84

5.4. Configuration Management 85
5.5. Communication Management 87
5.6. Log Management 88
5.7. Transaction Management 88

TABLE OF CONT'ENT vii

5.8. Summary 88

6. Performance 91
6.1. Experimental Environment 91
6.2. Primitives 92
6.3. Operation Costs 94

6.3.1. Experimental parameters 95
6.3.2. Non-paging tests 99

6.3.2.1. Non-paging reads 99
6.3.2.2. Non-paging writes 101

6.3.3. Paging tests 103
6.3.4. Multi-server tests 106

6.3.4.1. Multi-server reads 107
6.3.4.2. Multi-server writes 108

6.3.S. Summary 110
6.4. Throughput 111
6.5. Function Shipping vs. Data Sharing 116
6.6. Summary 118

7. Analysis 119
7.1. Performance Model 119

7.1.1. Parameters of the model 120
7.1.2. Actual parameters 120
7.1.3. Scenario 1 123
7.1.4. Scenario 2 125
7.1.3. Conclusion 126

7.2. Throughput vs. Cache Hit Ratio 127
7.3. Performance Improvements 130

7.3.1. Optimizations 130
7.3.2. Architectural changes 133

7.4. Deficiencies of the System 135
7.4.1. Recovery 135
7.4.2. Configurability 136
7.4.3. Security 136
7.4.4. Availability 137
7.4.S. Incremental Growth 138

7.S. Summary 138

8. Conclusions 139
8.1. Motivation 139
8.2. Contributions 141
8.3. Future work 143
&4. Conclusion 144

Appendix A. Performance Model 145

A.I. Parameters 145
A.2. Operation Model 146
A.3. Modeled results 148

Appendix B. Interfaces 153

B.I. DH Interface 153
B.2. DN Interface 154

viii TABLE OF CONTE

B.3. DR Interface 155
B.4. DS Interface 157
B.S. DX Interface 158
B.6. HS Interface 158
B.7. NA Interface 160
B.A ND Interface 161
B.9. RD Interface 162
B.10. SH Interface 163
B.11. XD Interface 165

References 167

List of Figures

Figure 2-1: Data sharing with shared disks 28
Figure 3-1: Camelot architecture 36
Figure 3-2: The grid 39
Figure 3-3: External Memory Manager 44
Figure 4-1: TDSM architecture 48
Figure 4-2: False sharing 57
Figure 4-3: Flow of log records and paging requests 58
Figure 4-4: Messages for BEGIN-TRANSACTION, LOCK, and 59

MODIFY
Figure 4-5: Messages for END TRANSACTION 60
Figure 4-6: Messages for LOCK and MODIFY 61
Figure 4-7: Messages for abort 62
Figure S-1: Camelot/TDSM architecture 66
Figure 5-2: Segment and server records 73
Figure 5-3: Mapping of offsets 79
Figure 6-1: Test configuration 1 97
Figure 6-2: Test configuration 2 97
Figure 6-3: Test configuration 3 97
Figure 6-4: Test configuration 4 97
Figure 6-5: Test configuration 5 97
Figure 6-6: Test configuration 6 97
Figure 6-7: Test configuration 7 97
Figure 6-8: Test configuration 8 97
Figure 6-9: ETI transaction 112
Figure 6-10: ET1 "local" configuration 113
Figure 6-11: ETI "remote" configuration 113
Figure 6-12: Data sharing configuration 116
Figure 6-13: Function shipping configuration 116
Figure 7-1: Throughput vs. cache hit ratio, actual parameters 127
Figure 7-2: Throughput vs. cache hit ratio, Scenario 1 128
Figure 7-3: Throughput vs. cache hit ratio, Scenario 2 128

ix

List of Tables

Table 5-1: Lines of code 89
Table 6-1: Representative IPC times 93
Table 6-2: Non-paging read times 100
Table 6-3: Non-paging write times 102
Table 6-4: Paging times 104
Table 6-5: Multi-server read times 107
Table 6-6: Multi-server write times 109
Table 6-7: Summary of performance measurements Ill
Table 6-8: Function shipping vs. data sharing 117
Table 7-1: Performance model parameters 121
Table 7-2: Modeled ETI performance (actual parameters) 122
Table 7-3: Modeled ETI performance (Scenario 1) 124
Table 7-4: Modeled ET1 performance (Scenario 2) 126
Table 7-5: Effects of combining concurrency and coherency control 131
Table 7-6: Effects of "log optimization" 132
Table 7-7: Effects of omitting writeback of modified page 132
Table A-i: Performance model parameters 146
Table A-2: Performance model summary 146
Table A-3: Modeled performance (actual parameters) 149
Table A-4: Modeled performance (Scenario 1) 150
Table A-5: Modeled performance (Scenario 2) 151

xi

Chapter 1

Introduction

Transaction processing systems provide failure atomicity, permanence, and serializability

guarantees for distributed systems. These guarantees simplify the application programmer's task

by reducing the attention that must be paid to concurrency and failures.

Distributed shared memory provides a simple model for application programmers by giving
the illusion of a single, global address space for all processes participating in a particular

distributed application. This illusion simplifies the application programmer's task by eliminating

the need for explicit communication operations to obtain data.

My thesis is that the combination of transactions and distributed shared memory is feasible

and useful for a certain class of distributed application, especially those applications which have
concurrent access to data that must not be corrupted, and need caching to provide adequate

performance. In this dissertation, I motivate this idea and discuss the design and implementation

of a prototype system providing transactional distributed shared memory (TDSM). I evaluate the

implementation, reflect on the design, and suggest a direction for future designs.

1.1. Problem Description

Imagine an application developed for a centralized system that must be adapted for use on a

distributed system. The programmer making such an adaptation faces a number of difficulties.

Instead of a few processors running on a single clock, a distributed system has many processors

operating independently. Which processor should operate on the data? How and when does a
processor communicate its results to other processors? To the two-level memory hierarchy of

main memory and disk storage, a distributed system adds a third level of network access to main
memory and disks attached to other nodes. Where should the data be stored? How and when is

data transferred between nodes of the distributed system?

A distributed program may need to meet several requirements [Spector 89a].

* Ease of programming. Programmers are accustomed to centralized system
programming models. A programming model for a distributed system that extends
existing well-known models can simplify the programmer's task.

* Incremental growth. It should be possible to increase the storage or processing
capacity of the system by adding nodes; algorithms used by the distributed program
should not stop working or perform poorly as the number of nodes increases.

2 CHA I•1

*Multiple access to dta. Users may wish to access data from any node in the
distributed system. Updates may occur simultaneously on many nodes.

" Availability. The program should continue to run even if one or more nodes crash.
Applications may require that all, or only a subset, of the data be available after a
crash.

" Data integrity. Data should not be lost when messages are lost, or when nodes or
processes crash. Application consistency constraints should be maintained even if
data is distributed among several nodes that may fail or concurrently update the data.

" Security. An application may need to restrict the operations that particular users may
perform on various subsets of the data.

" Performance. An application may need to meet response time and duoughput
requirements, even though processes exchange many messages to meet data integrity
and availability requirements.

Concurrent updates complicate the task of maintaining data integrity. Distributed systems

exacerbate the problem of concurrent updates by increasing concurrency and increasing the

possible delay between reads and writes. The problem that concurrency poses is that independent

updates can become interleaved and introduce an inconsistent state. (See [Gray 78] for

examples.)

Updates in the presence of failures complicate the task of maintaining data integrity.

Failures arise when messages are lost, re-ordered, or corrupted, or when individual nodes and

processes crash. The problem that failures pose is that an update may be partially performed,

introducing an inconsistent state. (See [Davidson 89] for a discussion.)

The application programmer could be overwhelmed by the complexity of these issues. The

next section describes various programming models that can reduce the complexity of the

programmer's task.

1.2. Programming models

Several programming models aid in meeting application requirements on a distributed
system. The key dichotomy in this section is between function shipping (the client/server model),

and data sharing (e.g., distributed shared memory). Independent of this dichotomy are

transactions, replication and partitioning, and caching. In most current systems, transactions are

associated with function shipping, while caching, replication, and partitioning are part of efficient

implementations of data sharing.

INTRODUCTION 3

1.2.1. Client/server Model

The client/server model offers a straightforward approach to constructing distributed
applications by extending the familiar notion of procedure call. Data may be distributed among
multiple nodes in the distributed system. To access data, a client makes a remote procedure call

by sending a message to a server on the node where the data resides (possibly the same node as
the client). The server examines the message to identify the procedure and its arguments, calls
the appropriate procedure, and sends a message containing the results to the client. Because the
client's message contains a request for the server to perform a particular function, the
client/server model is also known as function shipping. The server can meet security

requirements by refusing to perform some operations for a given client.

The client/server model does not directly address availability or data integrity requirements.
Remote procedure calls are a relatively expensive mechanism for accessing remote data because

the concept does not include any automatic caching. Thus, performance may suffer if remote
procedure calls overwhelm the carrying capacity of the network or the processing capacity of a
given server.

1.2.2. Transactions

Transactions make it easier to meet data integrity requirements in the face of concurrency

and failures. A transaction is a sequence of actions grouped into a unit. If the application's data
is in a consistent state, a transaction must transform the data into a new consistent state. (The
data may be transformed into a inconsistent state temporarily while a transaction is in progress as
long as consistency is restored by the end of the transaction.) If each transaction executes as an
atomic, indivisible unit, then data will never be left in an inconsistent state.

Transaction systems address the concurrency problem by preventing transactions from

observing each other's partial updates. Transactions may execute concurrently, but locking or
timestamp schemes order the accesses to shared data so that each transaction sees only the values

stored by previously completed transactions.

Transaction systems address the failure problem by ensuring that the sequence of actions

within a transaction succeed or fail as a unit. Transaction systems may undo or redo the actions
of partially completed transactions to simulate atomic execution in the presence of failures. A
transaction commits if it runs to completion; if it fails before completion, any changes it makes
are undone, and it aborts.

Formally, a transaction has three properties: failure atomicity, permanence, and

serializability. Failure atomicity ensures that either all of the operations within the transaction

complete successfully, or none of them do (partial updates are undone). Permanence ensures that
the effects of a committed transaction am not lost due to failures. Serializability states that there

4 CHAVTER 1

is a serial sequence of transactions that produces the same results as a given concurrent execution

of a set of transactions. Thus, concurrently executing transactions cannot observe inconsistent

states.

1.2.3. Replication and Partitioning

Replication and partitioning can aid in meeting availability, growth, and performance

requirements. If there is more data than one node can store, if there are more client requests than

one server can process, or if the application requires better availability than one node can provide,
the data must be distributed among several nodes instead of being stored on just one. To increase
storage capacity, the data may be partitioned with no overlaps among the nodes. To improve

availability, the data may be replicated on a set of nodes, so that other nodes may provide the data

if one node goes down. (Partitioning can also improve availability in that part of the data is still

available even if one node crashes.) To increase processing capacity, either replication or
partitioning may be used, although a poor choice of partitions may still overload a node if the data
stored there is accessed too frequently. With replication, a client may contact any server that
contains a replica of the data, but extra communication is necessary to maintain a consistent state

among the replicas.

Optimizing performance using replication and partitioning can be tricky. When the data is

replicated, reading the data is inexpensive since a client may choose the closest or least-lightly-

loaded server. Updates are expensive because updates must eventually be propagated to every

replica. The cost of updates may be reduced by delaying the propagation until the data is read,

but this increases the cost of reads, may reduce availability, and must be managed carefully to

avoid inconsistencies. Thus, replication provides good performance when access to data is

primarily read-only. When the data is partitioned, there is little cost difference between updates

and reads. However, there is a cost difference associated with the location of the data. A data

reference is less expensive when the data is local to the client's node. A data reference is more

expensive when the client must contact a remote node. Thus, partitioning provides good

performance when there is high locality of reference (i.e., most references are local rather than

remote). If the set of data that is frequently referenced changes over time, then good performance

can be maintained only if partitioning changes with it.

1.2.4. Caching

Application performance can be improved through the use of caching. A cache reduces

communication costs by remembering previous requests and corresponding replies. If a client

wishes to make a request that matches a previous request, the cache may be able to replay the

corresponding reply, eliminating the communication and processing necessary to repeat the

request to the appropriate server. Offsetting this savings is extra communication and processing

needed to remove stale data from the cache: the cache should not replay a previous reply if it

INTODUC-iON 5

knows that the server would return a different reply to the repeated request. A cache is coherent

if it does not return stale data to the client.

A general-purpose cache of requests and replies is difficult for the communication system to

provide because it has little knowledge of the internal semantics of requests and replies, and thus

does not know when it is appropriate to delete stale data from the cache. Application

programmers can build application-specific caches with knowledge of request/reply semantics,

but the cache coherency problem is complicated enough to be the subject of current research, and

many applications may need to be changed as new solutions become available.

1.2.5. Distributed Shared Memory

Distributed shared memory can make it easier for the application programmer to obtain good

performance. Shared memory provides processes with a shared address space; processes sharing

an address space may access shared information directly without explicit communication

operations such as messages or remote procedure calls. Distributed shared memory (DSM)

provides a shared address space via software and/or hardware to processes on different nodes that

do not physically share memory. A system with virtual memory hardware can use software to

provide distributed shared virtual memory.

A well-designed distributed shared memory system can improve application performance

through the use of caching. Caching at the memory system level can benefit all applications that

use shared memory, and advances in cache coherency algorithms need be implemented in only

one system rather than multiple applications. A distributed shared memory cache may be simpler

than application-specific caches since it need recognize only four requests: read, write, lock, and

unlock. Since read and write requests are built into the hardware, the distributed shared memory

cache can often make use of hardware assists (such as virtual memory) to improve performance.

Distributed shared memory will not necessarily benefit all applications, however, since it may

transfer more data than is needed by the application, and the cost of keeping the cached data

consistent may be too large relative to the cost of the processing performed on the data.

Distributed shared memory is an example of data shipping, or the data sharing model. In

data sharing data is sent to the node where it is to be processed under the assumption that the data

will be used there again. Data sharing should be contrasted with the client/server model, or

function shipping, in which the function request is sent to the node where the data resides. Data

sharing and function shipping are functionally equivalent since each can be expressed in terms of
the other. Essentially, data sharing is a specialized implementation of a few remote procedure

calls (in the case of distributed shared memory, read, write, lock, and unlock). The messages

underlying function shipping can be implemented via message queues that are data-shared. The

difference between the two approaches is one of emphasis: function shipping focuses on the flow

of control, whereas data sharing focuses on the flow of data.

6 CHAFPER 1

Data sharing offers the performance benefits of both replication and partitioning. When data
is read at a node, it is stored in the cache at that node. Thus, the data sharing model automatically
replicates data that is read-only. When data is updated at a node, it is stored at that node and

becomes stale in the caches of all other nodes. Thus, the data sharing model automatically

partitions data that is frequently updated at one node and not accessed at other nodes. As the

frequently-referenced set of data changes over time, partitioning changes with it.

1.3. Purpose of the Dissertation

This dissertation explores a new model for building distributed applications: transactional

distributed shared memory. There are several reasons for exploring this model.

The client/server model, as provided by systems such as Sun RPC [Sun 88], NCS [Kong et
al 90], and MIG [Jones et al 85], has several limitations. Concurrency and failures are hard to

deal with, and distributing the data to obtain good performance can be difficult.

Data sharing has been used widely in distributed file systems (such as NFS [Sun 861,
AFS [Satyanarayanan et al 851, and DCE [OSF 92]), and is a popular research topic in the form of
distributed shared memory [Forin et al 88, Stumm and Zhou 90, Bisiani et al 89, Black et al

89, Li and Hudak 86, Fleisch 88, Cheriton 86, Ramachandran and Khalidi 881.

Among the many systems that have demonstrated the value of transactions are

CICS [Kageyama 89], Tuxedo [Unix System Laboratories 92], Camelot [Eppinger et al 91], and

Encina [Eppinger and Dietzen 92]. CICS, for most IBM operating systems, is one of the most
popular database/data communications control systems. It provides concurrency control and
recovery of local databases, and communications facilities for accessing remote databases.

Tuxedo, for the UNIX System V environment, has two components. Tuxedo System/T provides

facilities to define and manage distributed transaction processing services, including two-phase

commit. Tuxedo System/D is a local database that provides concurrency control, logging,

backup, and recovery for atomic transactions. Camelot, for the Mach operating system, provides

facilities for implementing transactions that may include operations on recoverable virtual
memory, remote procedure calls, or nested transactions. Encina, for UNIX and other operating

systems, comprises two tiers. The Encina toolkit provides logging, concurrency control, and
two-phase commit of distributed transactions. Other Encina products provide management
functions, queue and record storage, and interoperation with non-Encina systems.

Transactional distributed shared memory is an interesting topic to investigate since it is the
natural research area based on the combination of two interesting topics: transactions and data

sharing. Combining data sharing and transactions offers the benefits of both, and the combined

system provides opportunities for optimizing performance. For example, the failure atomicity

property of transactions may be provided in part by writing a log containing all of the changes
made to a data structure. This log write could also serve to update the contents of the caches in a

UNTRODUCTION 7

distributed shared memory system, eliminating the need for additional messages to keep caches

coherent.

TDSM will not benefit all distributed applications. Transactions may not benefit

applications that can tolerate weaker consistency guarantees but not the extra overhead of
transactions. Distributed shared memory does not improve the performance of applications if the

distributed shared memory system transfers more data than is needed by the application. If the

cost of transferring the data is not amortized over repeated accesses, it may be less expensive to

ship function requests to the original location of the data. Also, application-specific security

restrictions are harder to provide with distributed shared memory. For example, given a set of

salaries, the client/server model can easily restrict a particular user to viewing the sum of the

salaries but not the individual salaries. Since distributed shared memory can only restrict requests

it knows about (read and write), a user must be able to read individual salaries in order to view

the sum that is computed from those salaries.

This dissertation makes several contributions. It demonstrates that TDSM is feasible to

implement and analyzes a prototype implementation. This analysis is used to show how the

combination of transactions and distributed shared memory can be optimized for good

performance. The analysis is also used to identify the characteristics of applications for which

TDSM is suitable.

1.4. Examples

Some examples illustrate the utility of transactional distributed shared memory. In general,

applications that can benefit from TDSM have these characteristics:

"* There is concurrent access to data by multiple clients.

"* The data is important and must not be corrupted.

"* To provide adequate performance, some combination of replication, partitioning, and
caching is needed.

"* Locality of reference may change over time.

A classic application that involves problems of concurrency and failures is an airline

database. Reservations are entered into the database by travel agents and reservations agents, and

may refer to several flights. Reservations are indexed by passenger name, flight number, and

departure date. A flight database records the flight schedule, the cities and aircraft involved, and

the seating capacities. For each flight on each date there is a record of the reservations for that
flighL Reservations ar updated as requested by passengers, as flight schedules are changed, and

as flights are flown. Locality of reference arises as the data for a particular passenger or a

particular flight is referenced. If two agents concurrently attempt to reserve a seat, the database

should not lose either reservation and should not reserve more seats than are available. If a
processor fails while storing a reservation, the database should not allow the indices to become

inconsistent.

8 CHAPTER I

Transactional distributed shared memory supports a solution to the problems of failures and
concurrency in the airline database, and provides good performance. To handle the volume of

reservations, the data is distributed across several processors. Distributed shared memory
automatically partitions the data among nodes to match the locality of reference, and migrates the
data as references move. Transactions prevent failures or concurrency from creating
inconsistencies during updates.

An approach that has been used to construct the airline database is to store the data on a
large, centralized server that can be queried and updated from remote terminals [Gifford and
Spector 841. The disadvantage of this approach is that the centralized server becomes a

performance bottleneck as the number of clients increases. Higher throughput can be obtained by
splitting the database among several systems. Function shipping and caching can keep the data
consistent among systems. But TDSM offers a simpler approach for migrating the airline
database to a distributed environment, since the centralized server can run on a TDSM system
with few or no changes.

Another example is an authentication database for a distributed operating system. The
authentication database typically provides these operations: add user, delete user, authenticate
user, and change password. Because the same data is used to authenticate users on all nodes in
the distributed system, the database should be replicated to improve availability. When a user
password is changed, the new password should supersede the old password on all nodes. Failures
and replication make this task more difficult: one of the replicas could fail to receive the updated
password. Concurrent updates could make the replicas inconsistent, if a system administrator
attempts to change a user password at the same time as the user. Since a given user often uses
just a subset of the nodes in the distributed system, the data for the user should be located near the
subset, although this should not prevent the user from migrating to a different subset of nodes.

Transactional distributed shared memory is useful for constructing this authentication
database. The user data can be stored in a shared memory hash table, with the obvious
implementations of add, delete, lookup, and modify. (For protection, the shared memory hash

table shoulo be accessible only by a privileged server on each node, which accepts remote
procedure calls to perform the requested operations.) Distributed shared memory provides
automatic replication for availability and partitioning for locality. Transactions ensure that the
replicas are consistent by preventing concurrent updates, and backing out partial updates (with

notification to the user) when there is a failure.

Sun Microsystems used an alternate approach to construct the Yellow Pages, a distributed
authentication database [Sun 86). The user database originates as a text file, which a special
program transforms into a sparse file accessible via hashing by the dbm library. The original text
file resides on a node known as the master server, the sparse file resides on the master server and
several slave servers. To add or delete a user, the system administrator edits the original text file
on the master server, and then invokes a procedure which rebuilds the sparse file and copies the

UITRODUCTION 9

entire file to each of the slave servers. To change a user password, the user makes a remote

procedure call to a process running on the master server, which goes through approximately the

same steps of editing the text file and propagating the sparse file. The sparse file is also

propagated hourly to compensate for updates missed by any servers. To authenticate a user, the
login program locates the nearest server via broadcast, and makes a remote procedure call to that

server. The Sun Yellow Pages does not guarantee consistency in the presence of failures and

concurrency. A slave server may use an old version of the database if it misses an update due to

failure. Multiple servers may respond to the login broadcast, so a user may have to supply a

different password depending on which server responds. The Sun Yellow Pages does not take

advantage of locality of reference and may have performance problems with frequent updates,

since all updates must go through a single server and are then propagated to all servers.

An application similar to the authentication database (and another application for which the

Sun Yellow Pages has been used) is a name service for hosts in a network. The name service

must translate a host name to an address, and vice versa. Hosts are frequently introduced and

removed from the networks. Addresses of deleted hosts may be reused, and the address of any
host may change if the host moves from one network to another. In a network the size of the

Internet, the data should be partitioned to reduce storage requirements at individual sites, and to

increase site autonomony. The data should be replicated to improve availability. At a given site,
only a subset of the host names and addresses are translated, but the subset changes as users come

and go at the site. Failures and concurrent updates are common, and can cause temporary
inconsistencies if updates fail to reach replicas or if updates reach replicas in a different order.

Transactional distributed shared memory can be used to construct this name service. Two

shared memory hash tables perform the mapping from name to address and vice versa.

Distributed shared memory automatically replicates and partitions the hash tables to match the

locality of reference. (In the Internet, message latencies can be very large, so caching is

essential.) Transactions eliminate inconsistencies due to failures or concurrency during updates.

The Internet Domain Name service [Mockapetris 83a, Mockapetris 83b, Mockapetris 861
offers a more complicated approach to constructing a host name service by using a hierarchy of

servers. On each node, a local cache manager retains recently obtained translations, and

associates a timeout with each translation. When the timeout expires, the translation is discarded

from the cache. If a requested translation cannot be found in the cache, the local cache manager

consults a root server, which returns the names of several authoritative servers for the given class
of name or address. The local cache manager contacts each authoritative server in turn until it

obtains the requested translation and associated timeout, which it then stores in its cache. An

update can be made at one of the authoritative servers, but does not appear everywhere until

timeouts cause previously cached translations to be discarded. Users of the Internet Domain

Service are apparently willing to tolerate the temporary inconsistencies that timeouts allow due to

failures and concurrency. Users also tolerate temporary service interruptions when cached

translations have expired, and all authoritative servers are down or unreachable.

10 CHAPTER I

1.5. Synergies and Challenges

The combination of transactions with distributed shared memory offers some synergies; that
is, the implementation of the two together may offer better performance than the implementation

of the two separately.

For example, a common technique used to ensure serializability in transaction systems is
locking. Before writing, a process must obtain a write lock, and all other processes must release
their locks. A similar protocol is often used to ensure cache coherency: before writing an object,

a cache must invalidate all other copies of the object Since a correct transaction must always

lock an object before writing it, a TDSM system could transfer locks and cacheable objects

together, instead of using separate protocols for each.

Another possible synergy is to combine transaction logging with the cache coherency

algorithm. To ensure failure atomicity and permanence, a common technique used in transaction

systems is to write all changes made by a transaction in a log. This log write could also serve to
update the caches in a distributed shared memory system, eliminating the need for separate

messages to keep caches coherent

The major challenge in designing a TDSM system is transaction recovery. To simulate

atomic execution, a transaction system may need to undo the modifications a partially completed
transaction has made to an object in distributed shared memory. However, the DSM object may

have migrated from the node where the modification was originally made, so the transaction

system must somehow locate both the object and a description of the modification in order to

abort the transaction.

To guarantee permanence, a transaction system may need to redo the modifications made by

a committed transaction if the modified object is cached on a node that fails. The transaction

system must either locate the modified object on another node, or locate an older version of the

object, and redo the modifications made by the committed transaction. In a complicated

distributed system with many transactions concurrently modifying many objects in distributed

shared memory, the task of reliably locating the appropriate version of an object, and/or locating

a description of the modifications made by a particular transaction can be very difficult.

The key issue in designing a recov.ry algorithm for TDSM is the tradeoff between

availability and performance. For good performance, objects in DSM must remain cached at the
site of use, and modifications to those objects should be recorded in as few places as possible.
For high availability, objects in DSM, as well as records of modifications to those objects, should

be stored in as many places as possible.

INTRODUCTION 11

1.6. Outline

Chapter 2 provides a overview of distributed transactions and data sharing. Chapter 3

discusses the Camelot and Mach environment in which a prototype transactional distributed
shared memory (TDSM) system was implemented. Chapter 4 describes the design and Chapter 5
describes the implementation of this TDSM system. Chapter 6 reports the performance of the
implementation. Chapter 7 analyzes the system and its performance, and offers directions for the

design of future TDSM systems. Chapter 8 concludes by summarizing the contributions of this
work.

Chapter 2

Background

Chapter 1 introduced transactions and distributed shared memory as programming models
that assist in meeting application requirements on a distributed system. This chapter continues
that introduction by addressing the issues involved in implementing transactions and distributed

shared memory.

Section 2.1 sets the stage with an overview of distributed computing. Section 2.2 discusses
support for transactions, and Section 2.3 describes solutions to the cache coherency problem of

data sharing that is central to distributed shared memory. Section 2.4 outlines techniques for
distributed concurrency control in conjunction with data sharing. Section 2.5 shows how the
technologies can be integrated to produce transactional distributed shared memory (TDSM).

2.1. Distributed Computing

In a distributed computing environment, processes need to communicate with each other. In

this dissertation it is assumed that processes communicate via messages: variable-sized

collections of data. Messages are sufficiently general that they may be implemented on top of
other inter-process communication abstractions such as datagrams, streams, or sockets. A
process may send a message to another process on any node as long as it has a handle (a port,

process id, channel, or some other form of name) for the other process. Messages should be

delivered, uncorrupted and in order for each (sender, receiver) pair.

Remote procedure call (RPC) simplifies the task of constructing, sending, receiving, and
interpreting messages through use of the familiar procedure call paradigm. The sender makes a

local procedure call to a stub routine, which packages the parameters into a message and
transmits the message to the recipient. The recipient's service routine unpackages the parameters,
calls the appropriate procedure, and awaits the results. The results are similarly packaged and

returned to the sender's stub in a reply message.

RPC leads naturally to the client/server model Data is distributed among nodes in the

distributed system; access to a each data set is encapsulated in a server. To access data, a client
makes a remote procedure call to the appropriate server, which performs the requested function

and returns the results.

13

14 CHAPTER 2

A server is typically structured in a loop. At the top of the loop, the server awaits a request

message. Once the server receives a message, it examines the message to determine the type of
request, and calls the appropriate processing routine. When the routine returns, the server sends a
reply message and returns to the top of the loop. If the processing routine must delay for some
reason, it must save enough state to allow the request to be continued, return to the top of the

server loop, and wait for the state to be restored at a later point in time. Because saving and

restoring state is cumbersome and error-prone, and to better support multiprocessors, many

systems support multiple threads of control within an address space.

A distributed application usually pays more attention to failures than a non-distributed
program. Because it has more pieces, a distributed environment offers more opportunities for

failure, but it also offers more work-arounds for failure since redundant resources ame often
available. Also, many failures may be temporary due to congestion or resources being

temporarily overloaded. For this reason a distributed application may include algorithms for
retrying operations that fail, perhaps slightly altering the parameters each try.

Security is harder to obtain on a distributed system, because the kernel on remote systems

cannot be trusted, even if the kernel on the local system is trusted. Trusted servers must run on

physically secure machines. Because most networks allow eavesdropping, authentication and

secure messages must be encrypted.

2.2. Transactions

Transactions make it easier to meet data integrity requirements in the face of concurrency

and failures. A transaction is a sequence of actions grouped into a unit. Transactions provide

three properties:
* Failure atomicity ensures that if a transaction is interrupted by a failure, any

partially completed work is undone.

* Permanence ensures that the effects of a committed transaction are not lost due to
failures.

* Serializability ensures that concurrently executing transactions cannot observe
inconsistent states.

If the application's data is in a consistent state, a transaction must transform the data into a
new consistent state. (The data may be transformed into a inconsistent state temporarily while a

transaction is in progress as long as consistency is restored by the end of the transaction.) If each

transaction executes as an atomic, indivisible unit, then data will never be left in an inconsistent

state. The ACID properties refer to the combination of this consistency property with atomicity,

isolation (serializability), and durability (permanence).

A transaction commits if it runs to completion; otherwise, it aborts, and any partial

computations are undone. A transaction that performs operations on objects on different nodes in

BACKGROUND 15

a distributed system is said to be a distributed transaction. Tansaction systems must take extra
care to ensure that all nodes involved in a distributed transaction agree on the transaction's

outcome.

Transactions may be nested to better support parallelism and limit the effects of
failures [Moss 81, Reed 78]. An outermost or top-level transaction can initiate multiple, nested
transactions which may execute in parallel with each other, the parent is suspended until the
subtransactions commit or abort. (A top-level transaction with all of its descendants is called a
transaction family.) A nested transaction may obtain locks that are held by an ancestor, but not a
sibling. When a subtransaction terminates, all of its locks are returned to and held by its parent.
The effects of a nested transaction are made permanent only when its top-level transaction
commits. If a nested transaction aborts, all of its work and the work of its children is undone, and
its parent is notified. The parent may then continue processing or abort itself.

Transaction support may be provided by the operating system, by libraries that execute in
each process, by a layer in between the operating system and other processes, or by a combination
of these techniques. Regardless of where transactional support is provided, this section discusses
the implementation of transactions as a single logical layer.

The transaction support layer assists its clients in dealing with failures. Certain failures are
assumed to be masked by the underlying hardware and operating system. Most communication
failures (corruption, duplication, out-of-order delivery, message loss) are handled by the
underlying system through use of checksums, sequence numbers, retransmission, etc.; only
network partitions are not masked. Processor failures are recoverable, but they must be detected
and the processor must raise an exception or halt.

Storage failures are usually not masked, and failures are detected by checksums. Storage is
divided into three classes:

"* Volatile storage is the main memory of the machine, where objects are buffered as
they are accessd. The contents of volatile storage are lost if the system crashes.

"* Non-volatile storage is where objects reside when they have not been accessed
recently. Magnetic disks are usually used for non-volatile storage. The contents of
non-volatile storage are lost much less frequently, and always in a detectable way.

"* Stable storage maintains information despite system crashes and power failures.
Stable storage is typically provided in the form of mirrored disks.

The transaction support layer must manage these three classes of storage carefully in order to
maintain the failure atomicity, serializability, and permanence properties of transactions. Stable
storage is the key abstraction enabling the permanence property.

The transaction support layer helps its clients cope with the failures that are not masked by
the hardware or operating system. There are seven major functions that the transaction support
layer must provide [Spector 89b]:

* Transaction management to coordinate the completion of transactions that span
multiple processes.

16 CHAPTER 2

* Recovery management which must restore the proper state after a failure; i.e.,
backing out partial updates (to ensure failure atomicity) or repeating updates (to
ensure permanence).

"* Communication management tracks the spread of transactions from node to node.

"* Configuration management stores the configuration of the transaction facility.

"* Concurrency management coordinates the execution of concurrent transactions to
ensure serializability.

"* Buffer management controls the transfer of recoverable objects between volatile
and non-volatile storage.

"* Log management responsible for recording data in stable storage as directed by the
other components.

The components do not perform their work in isolation, but interact with each other as described
in subsequent subsections.

2.2.1. Transaction management

The transaction management function determines whether a given transaction has committed
or aborted and notifies participants of the transaction's outcome. Any participant in a transaction

should be able to abort the transaction at any time. Because of _.iowledge of transaction

outcomes, the transaction management function may be ,;onsulted by the concurrency
management function to determine whether a lock held by a subtransaction may be inherited by

another transaction in the same family.

Because many processes may participate in a transaction, a protocol is needed to achieve

consensus on the transaction's outcome. A few of the most common protocols are described

below. In these protocols, one participant is selected as the coordinator, and the other
participants become subordinates. To ensure permanence, each participant writes records in a

stable storage log.
* Two-phase commit. In the first phase, the coordinator asks each of the subordinates

to prepare to commit the transaction, and requests a vote from each subordinate. If a
subordinate votes to commit, it gives up its right to abort the transaction, and must
await word of the transaction's outcome from the coordinator in the second phase.
Each subordinate that votes to commit the transaction writes a record of its vote to its
log, and forces the log to stable storage. If any subordinate votes no, or if the
coordinator does not receive all the votes, the transaction aborts, and the coordinator
notifies each subordinate.

Otherwise, the coordinator writes a commit record to the log, and forces the log to
stable storage. It then notifies all subordinates that the transaction committed. If the
coordinator is unable to contact a subordinate, the subordinate will remain in the
prepared state, retaining control over any objects it has modified. No other
transaction will be able to access the objects until the coordinator successfully
contacts the subordinate.

The two-phase commit protocol can be used when the participants are separate
nodes, or individual processes within a given node. If the processes within a given

BACKGROUND 17

node share a common log, the protocol can be optimized by forcing the log to stable
storage only once per node.

" Non-blocking commit. The non-blocking commit protocol [LeLann 81, Duchamp
89] is a modification of two-phase commit to guarantee that at least one site will not
block in the event of a single failure. The prepare message is changed to include a
list of the nodes involved in the transaction. While awaiting commit/abort
notification, a subordinate may time out the coordinator, become become coordinator
itself and finish the transaction. An additional phase is inserted into the middle of the
protocol during which subordinates learn how other subordinates voted.

" One-phase commit. A transaction that involves only one process can be committed
unilaterally by that process with a single log force. As an optimization, the log force
can be omitted for a lazy commit [Mummert et al 91]. In this case, permanence of
effects is not guaranteed until another transaction has later committed using another
protocol.

2.2.2. Recovery management

The recovery component restores data to a consistent state after a failure, as directed by the

transaction management component or by the configuration management component. Recovery

is supported for four types of failures:

"* Transaction failure is when one of the [processes] participating in a transaction decides to abort
the transaction. All of the transaction's effects at all of the participating [processes] must be
undone. In case of a communications failure, the system can abort transactions whose messages
cannot get through.

"* Server failure is when a [process] crashes due to an unanticipated condition, such as a shortage
of resources or a transient software error. All of the active transactions in which the [process] is
participating are aborted. When the [process] restarts, the effects of all aborted transactions will
be undone, and the effects of all committed transactions will be preserved.

"* Node failure is when a processor crashes due to a hardware error or a software failure such as the
kernel running out of resources. All of the active transactions in which the node is participating
are aborted. When the node restarts, the effects of all aborted transactions will be undone, and
the effects of all committed transactions will be preserved. This is logically the same as all of the
[processes] on a node crashing, except that the node's transaction facility also crashes.

"* Media failure is when some of the node's non-volatile storage is damaged. The contents of this
storage must be restored.
[Eppinger 89, p. 161

Haerder and Reuter present a taxonomy based on four criteria for classifying recovery

techniques [Haerder and Reuter 83].
"* Propagation. A transaction may modify data in several locations. Is each

modification propagated immediately to nonvolatile storage, or are the modifications
delayed and propagated atomically as a unit? The first choice may require some
modifications to be undone if the transaction aborts. The second choice may require
additional space to store both old and new versions of the data.

"* Buffer handling. Data is usually buffered in main memory before being written to
nonvolatile storage. When buffer space becomes full, the system may need to write
modified data to disk before the completion of the transaction wlich made the
modification. This data may be written to the home location of the data, or to a

18 CHAPTR 2

temporary location. The first choice complicates recovery of the data after a crash;
the second choice requires additional nonvolatile storage.

" End-of-transaction processing. Is the buffered data forced to nonvolatile storage at
the end of the transaction? If the data is not forced, some additional information
must be logged to allow the transaction to be redone after a crash.

" Checkpointing. A checkpoint is used to limit the amount of work that the recovery
component must do to recover from a failure. To ensure consistency, the system may
temporarily halt initiation of new transactions, and await the completion of active
transactions before creating a checkpoint. Systems that cannot afford to halt forward
processing instead create fuzzy checkpoints that are more complicated for the
recovery algorithm to handle.

Because the algorithms for recovery ("backward processing") are closely intertwined with
algorithms for forward processing, the next subsection presents examples of specific recovery
techniques with buffer management techniques.

2.2.3. Buffer management 1

The buffer management component is responsible for coordinating the transfer of data
between volatile and non-volatile storage. It must cooperate with the recovery component to
ensure that the failure atomicity and permanence properties of transactions are guaranteed.

An intentions list [Lampson 81] can be used to guarantee failure atomicity and permanence:
1. All the changes that a transaction wants to make to data objects are stored in a list.

2. The list is written to non-volatile storage.

3. The transaction management component determines whether the transaction has
committed or aborted.

4. If the transaction did commit, change the objects in non-volatile storage.

5. Finally, delete the list.

The list must be carefully written to non-volatile storage so it can be recognized that the list is
complete. By deferring updates to objects until the transaction is committed, the transaction is
aborted simply by deleting the list. In case of node or server failure, the system restarts and the

list is consulted. If the list does not exist or is incomplete, the transaction aborts and the list is
deleted. Otherwise, the list is complete, and the system finishes making the updates described in

the list and then deletes the list.

Shadow paging [Gray et al. 811 is another way to provide failure atomicity and permanence.
Non-volatile storage is organized as a tree (e.g., by logical address or as a hierarchical file
system). The transaction makes changes to vertices of the tree by writing new vertices in unused

locations in non-volatile storage. Changes are incorporated into the tree by writing new versions

IThe text of this subsection and Subsection 2.2.4 is adapted from [Eppinger 891.

BACKGROUND 19

of parent vertices in unused locations. Changes to ancestor vertices continue until the least
common ancestor vertex of all the changed vertices is changed. This vertex is then updated in
place after consulting the transaction management component. This last update is called an
atomic pointer swap. In the event of node or server failure, the system restarts. A transaction
that has not yet done the atomic pointer swap is aborted. A transaction that has done the atomic
pointer swap committed.

A write-ahead log [Peterson and Strickland 83, Schwarz 84] is similar to an intentions list

with many optimizations. Write-ahead logging uses an append-only log, structured as a sequence

of variable-length records. Updates to a data object are made by modifying a copy of the object
cached in volatile storage and by spooling one or more records to the log. These records contain

an undo component that permits the effects of aborted transactions to be undone, and a redo
component that permits the effects of committed transactions to be redone. Write-ahead logging

permits an update-in-place strategy: when a cached block is copied back to non-volatile storage,

it is copied back to the location from which it was previously read. Special care must be taken
when copying blocks of a modified object back to non-volatile storage; the blocks cannot be

copied back to non-volatile storage until all spooled log records pertaining to those blocks have

been written to the log.

In addition to records describing changes to non-volatile storage, records indicating that

transactions commit and abort are written to the log. When the system restarts after a crash, the
log is consulted. Modifications made by transactions for which no commit record exists are

undone. Modifications made by committed transactions are redone. Although write-ahead
logging is more complex, it offers several performance advantages over the other techniques. It

does not scatter data all over non-volatile storage; it allows multiple transactions to execute

simultaneously using a common log; and system restart using a write-ahead log can be done with

as little as one scan of the log.

Write-ahead logging also allows changes to non-volatile storage to be buffered. This allows

expensive updates to non-volatile storage to be grouped together and amortized. All accesses to
non-volatile storage are done via volatile primary memory. By caching blocks of non-volatile
storage in volatile storage, the number of non-volatile reads and writes can be reduced. The
blocks used in the volatile cache are called the buffer pool, which is managed by the buffer

manager. The buffer manager must coordinate the transfer of blocks between volatile and non-
volatile storage with log writes to enforce the write-ahead log invariant.

2.2.4. Log management

Generally, there are two ways of describing updates in log records: logically or physically.

Logical or operation logging places a description of the logical operation being performed into
the log record. The description may describe how to redo the change, or how to redo and undo

the change. When physical logging is used, one or two bit patterns are stored in the log record.

20 CHAPTER 2

Old-value/new-value logging includes two bit patterns: a before image and an after image.

New-value logging includes only one bit pattern, an after image. Hybrid approaches are also

possible: for example, operation logging for undo, and new-value logging for redo. The choice

of which values to write in the log can affect the buffer management strategy. New-value-only

logging requires that modified blocks not be written back to non-volatile storage until after the

transaction commits.

A separate log can be maintained for each process on a node, but if the appropriate interface

is provided, a common log can be used by all processes on the same node. All the log records

spooled by processes on the node can be written to the log together, reducing the number of

expensive log writes. As mentioned previously, the commit protocol can also be optimized if

there is a common log.

2.2.5. Concurrency management

There are four major techniques used for concurrency control in transaction

systems [Bernstein and Goodman 821:
"* Two-phase locking. A transaction must obtain a lock in the appropriate mode on

each object it wishes to access. If another transaction already holds the lock in a
conflicting mode, the requesting transaction must wait. After a transaction releases a
lock, it may not obtain any more locks. (Thus, there is a growing phase as locks are
obtained by the transaction, and a shrinking phase as locks are released.) Timeouts,
deadlock avoidance, or deadlock detection are used to prevent transactions from
waiting forever.

With read/write locking, a transaction must obtain a read (shared mode) lock before
reading an object, and a write (exclusive mode) lock before writing an object. This
allows multiple transactions to read an object concurrently, but only one transaction
to write the oFh'ct.

Type-specific locking [Korth 83, Schwarz mid Spector 84] offers the possibility of
increased concurrency on abstract data types when operation logging is used. For
example, a counter might support an increment mode lock which conflicts with read
or write locks, but is compatible with another increment lock. Clearly, the order in
which two increments occur does not affect the final result.

"* Timestamp ordering. Each transaction is assigned a timestamp as it is created.
Each access by a transaction to an object is marked by the transaction's timestamp.
But the transaction is not allowed to access an object (i.e., the transaction is aborted)
if the object has been accessed by a transaction with a later timestamp.2 Thus, all
accesses to objects occur in timestamp order.

"• Serialization graphs. The system builds a graph of dependencies between
transactions (a serialization graph) as the transactions execute. (Transaction A
depends on transaction B if A reads an object that was written by B.) The system
aborts a transaction before allowing it to access an object if the access would cause a
cycle in the serialization graph.

2 T"o avoid aborts, the system may attempt to delay transactions with ier timestamps.

BACKGROUND 21

Certifiers. No checking for conflicts between transactions is done until the
transaction enters the prepared state. When a transaction enters the prepared state,
the system uses one of the above techniques (usually locking) to determine whether
any of the transaction's accesses conflicted with another transaction. If a conflict is
found, the transaction is aborted. This technique is usually called optimistic
concurrency control.

2.2.6. Communication management

The task of the communication management component varies, depending on what services

are provided by the underlying system. It may provide a name service that creates

communication channels to named processes. It may provide logical clock services. It may

forward messages between nodes, handling retransmission as necessary.

In a system based on the client/server model, the communication management component

extends the remote procedure call concept to the context of transactions. A transactional RPC is

an RPC made within the scope of a transaction. The communication manager may spy on

transactional RPCs to learn which processes are involved in a particular transaction. During

commit or abort processing, it presents a list of processes to the transaction management

component.

2.2.7. Configuration management

The configuration management component provides the memory of the transaction system

about itself. The configuration management component stores information about recoverable

objects and the processes that may access them. A user interface allows authorized users to

create, delete, start, restart, or shutdown objects or processes. The configuration management

component controls orderly shutdown of the system, and restarts the system after a crash.

2.3. Data Sharing

In data sharing, data is sent to the node where it is to be processed under the assumption that

tie data will be used there again. Data sharing should be contrasted with the client/server model,

or function shipping, in which the function request is sent to the node where the data resides.

Data sharing offers two performance advantages over function shipping through the use of

caching:

* Data that is read-only is automatically replicated at each node where it is read.

* Data that is frequently updated at a single node is automatically partitioned at that
node.

Unfortunately, the caching of data sharing leads to a difficult problem: how to keep data cached

at multiple nodes consistent, or the cache coherence problem.

22 CHAPTER 2

Solutions to the cache coherence problem have appeared in several domains. A limited form

of the coherence problem appears in any (single processor) system that places a cache between

the processor and memory, since the cache must be kept coherent with memory. The more

general problem occurs in multiprocessors where each processor has its own cache. Another

domain is that of non-uniform memory access time (NUMA) multiprocessors, in which shared

data may be replicated in several local memories, or migrated from one local memory to another

to improve performance. Closely related to this domain is the area of distributed shared memory,

where a non-uniform memory access machine is simulated by a set of hosts connected by a

network.

Two basic approaches have been used to address the coherence problem. In directory

techniques, information about where data is replicated is kept by a centralized manager, which
must be involved each time the data is replicated or migrated. In snoopy techniques, information

is broadcast to all processors when data is replicated or migrated. In the multiprocessor cache

domain, both approaches have been used. Because of the poor scalability of broadcast methods,

distributed shared memory systems rely almost exclusively on directory techniques.

Basic to any approach is the consistency model that it assumes. Most work in the area has

been based on the uniprocessor memory model, in which a load from a given location always

returns the most recent value stored there. Recently, consistency models that relax this constraint

have been receiving attention due to their promise of improved concurrency. These models are

addressed briefly in Subsection 2.3.3.

2.3.1. Directory methods

Directory methods ar so named because they maintain a central or distributed directory

indicating which processors have a copy of each datum. In general, a number of processors may

have a read-only copy of a given datum, but only one precessor is allowed to have a writable

copy of the datum.

To obtain exclusive access to a block of data to service a write request, a processor must

contact the manager for the block. If the block was shared (read-only) by several processors, the

manager contacts each one to discard (invalidate) the block. The manager then returns a copy of

the block to the requesting processor. If the block was held exclusively by a single processor, the

manager contacts that processor, which either returns the block to the manager for forwarding to

the requester, or sends the block to the requester directly.

Li and Hudak [Li and Hudak 861 propose a taxonomy of directory methods for the

distributed shared memory domain based on the location of the directory manager. The manager

may be centralized (e.g., main memory as is done in most multiprocessor caches), or distributed

(i.e., each processor manages a subset of the data). A distributed manager may be assigned a

fixed subset of the data, or the assignment may vary dynanicaIly. (In a dynamic scheme, the

BACKGROUND 23

processor which last wrote the data is usually the manager.) To locate the current manager in a

dynamic distributed directory management scheme, a processor may resort to broadcasts, or it
may have to follow a chain of forwarding pointers from the last known manager.

Agarwal et al [Agarwal et al 88] propose a taxonomy of directory methods for
multiprocessor caches based on two criteria: the number of indices i used to indicate which
caches contain a copy of the data, and whether broadcast is ever used to invalidate cached data. If
broadcast is not allowed, then no more than i caches may contain the data; otherwise, broadcast is
used only when more than i caches contain the data. Clearly, broadcast must be allowed when i is
zero.

Many distributed shared memory systems use a fixed distributed manager. Examples of
these systems include Li and Schaefer's hypercube implementation [Li and Schaefer 89] and

Mach's netmemoryserver [Forin et al 881. Mirage [Fleisch and Popek 89a] uses a fixed
distributed manager, but introduces a time window A to reduce thrashing when several processors
are contending for a page. If an invalidation request is received before the page's A has expired,
the request is rejected, and must be retried later.

Clouds [Ramachandran and Khalidi 88] provides a distributed shared memory using a
variation of the fixed distributed manager technique. A Clouds process explicitly locks a segment
before accessing it, and unlocks the segment when it is through. Clouds uses this concurrency
control information to implement coherence: when a process unlocks a segment, the segment is
discarded and the manager is notified, eliminating the need for subsequent invalidation messages
from the manager when another process wishes exclusive access. In addition to coherent read
and write access described above, Clouds allows "weak read" access (which returns a copy of

the segment without waiting for any writers to return the most up-to-date copy of the segment),

and a form of exclusive access which requires invalidation and cannot be used in conjunction
with any of the other forms of access.

Gray and Cheriton [Gray and Cheriton 89] propose a timer-based mechanism called leases
for maintaining coherency of cached files in the V system. Each cached datum has an associated
lease term. During the lease term, a processor may read the cached datum with impunity, and the
manager will not allow any processor to write the datum. After the le&, expires, a processor
must contact the manager to extend the lease before reading the datum again. To write a datum, a
processor must forward the write request to the manager, which will either contact all the
leaseholders to terminate their leases prematurely, or wait for the leases to expire, and then

perform the write.

In a NUMA architecture, the time to access a given location depends on whether the location
resides in memory local to the processor, or in a remote memory. Since remote memory access
times are significantly larger than local memory access times, it is often desirable to replicate
read-only data, or migrate read-write data to the processor doing the writing. Replication is

24 CHAFTER 2

desirable when the data is seldom written. Migration is desirable when there is considerable

locality of reference. Two recent NUMA systems apparently use a centralized directory,

accessible by any processor, to maintain coherency of replicated pages.

" Bolosky et al [Bolosky et al 89] use the standard invalidation technique when a
processor wishes exclusive access to a page. After a page has been migrated more
than a certain number of times, however, the page is frozen at its present location,
and becomes ineligible for subsequent replication or migration. All subsequent
accesses must be performed via the hardware remote memory access mechanism.

" In PLATINUM [Cox and Fowler 89], a timer is used to determine when to freeze a
page. The timer is started when the page is invalidated. If the page is invalidated a
second time before the timer expires, the page is frozen. A second timer with a much
larger interval unfreezes the page, to allow for varying access patterns.

Dias et al [Dias et al 87, Dias et al 89] describe a centralized manager using a slightly

different algorithm. Each time a cached block is accessed, a processor must contact the manager

to see if the cached block is still valid. The manager returns a yes/no reply, and makes a note that

the processor is using the block. When a processor wishes exclusive access to a block, it first

obtains an exclusive lock for the block (thus insuring that no other processor is actively using the

block). The processor writes the block back to secondary storage and releases the lock when it
has finished, and notifies the manager. The manager updates its internal data structures to

indicate that no other processor has a valid copy of the block.

2.3.2. Snoopy methods

Several snoopy methods have been implemented in multiprocessor caches where each cache
monitors traffic on the system bus to update the state of the blocks it has cached. No single cache

or memory has complete information about where a block is cached. Since main memory holds a

copy of all blocks, it must participate in the coherence protocol, but most protocols treat memory
as a special case. In write-through techniques, a cache write is immediately propagated to main

memory. To reduce bus traffic, write-back techniques delay the update of main memory until the

modified block is flushed from the cache.

Write-through with invalidate is used in several commercial multiprocessors [Agarwal et al

88]. Each time a block is written to a cache, the store is sent to main memory, and all of the other

caches invalidate their copy of the block. If a different processor accesses the block, a cache miss

occurs, and the block is loaded from main memory.

Archioald and Baer [Archibald and Baer 861 describe several snoopy techniques that use

write-back. Briefly, these are:

* Write-once. The first time a block is written, it is copied back to main memory, and
all other caches invalidate their copies of the block. Subsequent writes by the same
processor modify only its associated cache; the block is written back to memory
when it is flushed from the cache. A cache miss may be satisfied by memory or by
another cache.

BACKGROUND 25

"* Synapse. When a processor writes a block, its cache broadcasts an invalidation
message to all other caches. Subsequent writes by the processor occur only in cache.
A cache miss is always satisfied by memory, but the reply from the memory may be
delayed while the cache holding a modified copy of the block writes it back to
memory.

"* Berkeley. Writes are treated as in the Synapse method. A cache miss, however,
may be satisfied by the cache holding a modified version of the block, and no
writeback to memory occurs in this case.

"• Ilinois. This mel-od modifies the Berkeley method by including a simultaneous
writeback to mei-.ory when a cache miss is satisfied by another cache holding a dirty
copy of the block.

"* Firefly. Unlike the previous methods, the Firefly technique allows several caches to
have a modified copy of a given block (although all copies are guaranteed to be
identical). Cache misses may be satisfied by another cache or memory; a special bus
line indicates whether the block is present in more than one cache. When a processor
writes a block, its associated cache will broadcast the modification to all other caches
and memory if the block is present in any other cache. If the processor has an
exclusive copy of the block, no broadcast takes place.

"* Dragon. Like the Firefly technique, Dragon allows multiple writers of a given
block. However, writes when a block is shared are brodcast only to the other caches
and not to memory. A writeback occurs later when the block is flushed from the
cache.

2.3.3. Other methods

Bus-based multiprocessor architectures are usually limited to a small number of processors.
Several researchers have proposed a hierarchy of caches to remove this limitation. Cheriton et

al [Cheriton et al 891 describe a hierarchy using a centralized directory on each level.
Ramachandran and Mohindra [Ramachandran and Mohindra 88] propose a suite of hierarchical

protocols based on several snoopy methods: write-once, Berkeley, Illinois, Firefly, and Dragon.

Hsu and Tam [Hsu and Tam 881 propose a method for coherency control of distributed

recoverable virtual memory that is similar to the Berkeley cache coherency protocol. A fixed
number of shares are issued for each block. To obtain shared (read) access to a block, a
processor broadcasts a request for the block, and receives a certain number of shares. To obtain

exclusive (write) access to a block, a processor broadcasts a request, and waits until it receives all

of the shares in reply. The protocol includes a facility for regenerating shares when a processor
crashes or is otherwise inaccessible.

Bisiani et al [Bisiani et al 89] simulate the use of timestamps to provide coherence in a

distributed memory machine. Each write operation is marked with a timestamp provided by a

central clock, and is propagated to all other copies of the datum, where the operation may be

buffered or processed immediately based on its timestamp. Reads that do not require coherency

take place with no delay. The system may delay a coherent read until the (dynamically
estimated) propagation delay has expired.

26 CHAPTER 2

All of the previously mentioned techniques, except Bisiani et al, rely on a consistency model
known as sequential consistency, after Lamport's definition [Lamport 791:

[A system is sequentially consistent if] the result of any execution is the same as if the
operations of all the processors were executed in some sequential order, and the operations of
each individual processor appear in this sequence in the order specified by its program.

Sequential consistency requires that the loads and stores performed by a parallel program return

the same results as some interleaving of the execution of the parallel processes on a sequential

machine.

Other consistency models that have been proposed, in order of decreasing constraints,

include:
"* Processor consistency [Goodman 89] requires that stores issued from a processor

must be observed in the same order than they are issued. However, the order in
which stores from two processors occur, as observed by themselves or a third
processor, may differ.

" Weak consistency [Dubois et al 861 guarantees that memory is consistent only at
specific synchronization points. All previous accesses must be completed at the
beginning and end of each critical se'ction. Within a critical section, the ordering of
loads and stores by different r,'o, tssors may occur in any order.

" Release consistency [0thqr_..aorloo et al 901 extends weak consistency by
classifying synchronizack, ,points into acquire (lock) and release (unlock) accesses.
Release consistenc" ensures that all previous shared data updates are performed
before a release of a synchronization variable is observed by any processor.
However, accesses following a release need not be delayed for the release to
complete.

" Entry consistency [Bershad and Zekauskas 91] extends release consistency by tying
access to data within a critical section to the guard variable that must be acquired to
entex the critical section, and noting whether the guard variable is acquired in
exclusive or non-exclusive mode.

2.4. Distributed Concurrency Control

Local filesystems often provide locking primitives for concurrency control. Several
distributed filesystems have extended these primitives for distributed operation.

"* Sprite [Welch 901 implements UNIX flock() advisory locks, with all lock requests
forwarded from the client to the fileserver. In the case of a conflict, the fileserver
saves the client's process id, and replies immediately with an error indication. When
the conflict is resolved, the server notifies the client, which then retries the request.

"* The DCE DFS [Bottos 921 also implements UNIX locks via a token scheme. Read
and write lock tokens covering a byte range of the file can be cached at each node.
As long as a node holds the appropriate tokens, it can grant lock requests without
contacting the fileserver, The fileserver asks for the release of a token when another
node requests a token that conflicts with the outstanding token.

"* The V system [Cheriton 87, Cheriton 881 provides both block- and file-level locks at
the fileserver. File locking may be specified on open requests. Block locking may
be done explicitly via lock and unlock calls, or implicitly on each read and write
request. Blocks are locked automatically when caching is used.

BACKGROUND 27

Digital's VAXcluster system under VMS includes a shared filesystem and locking
primitives that operate on a hierarchical lock name space [Snaman and Thiel 87].
Lock management is separate from the filesystem, and may be used to synchronize
access to any shared resource in the VAXcluster. Management of the lock name
space is partitioned between nodes via a directory scheme; a separate connection
manager notifies all lock managers when a node enters or leaves the cluster so that
the lock name space may be repartitioned. When a process first requests a lock on a
resource, the name of the resource is hashed to determine which lock manager
contains the directory for the resource. This lock manager then forwards the request
to the manager for the resource. (The first node to request the resource becomes its
manager. When all locks on the resource are released, no node is manager.) The
lock interface includes an asynchronous notification mechanism that allows a VMS
process to be notified when a second process requests a lock held by the first

Hastings [Hastings 90] implemented a distributed lock manager for the Camelot distributed

transaction facility. Each node has its own lock manager which manages the portion of the lock

name space that is (statically) assigned to the node. Locks are requested by transactions, but

cached by servers so that a subsequent request by another transaction in the same server may be

processed by the server without contacting the lock manager. A call-back to the server is used by

the lock manager when a cached lock is requested by a different server.

Concurrency control and coherency control are seldom discussed in isolation. Early work in

the distributed shared memory domain did not provide special techniques for synchronization, but

relied on standard multiprocessor synchronization techniques such as test-and-set instructions and
spin locks [Li 89, Forin et al 88, Fleisch and Popek 89b). More recent work uses separate

messages or RPCs to provide semaphores for synchronization [Li and Schaefer 89, Cheriton 881.

The proposed multiprocessor VMP-MC [Cheriton et al 891 includes separate lock and unlock bus
operations with a queue of waiters to eliminate spin-waiting.

As noted previously, Clouds utilizcs locking to implement its coherency control

algorithm [Ramachandran et al 89]. When a process locks a segment locally in preparation for

accessing it, the kernel will request the segment from the manager. When the process unlocks the

segment, the kernel discards it. Clouds also provides separate P and V semaphore operations.

These operations are forwarded to the manager of the appropriate segment. The manager

performs the operation without transferring the segment containing the semaphore to the

requester.

Dias et al [Dias et al 87, Dias et al 89] also rely on locking to implement their coherency

control algorithm, but use a centralized lock manager. Lock requests may be combined with

coherency control requests, since the lock manager processes both types of requests.

28 CHAYrER 2

2.5. Integrated Technologies for TDSM

The previous sections have discussed how to implement transactions, and how to implement

distributed shared memory. The question remains, how can transactional distributed shared

memory be implemented?

communications network

node 1 node 2 node N

Figure 2-1: Data sharing with shared disks

Related work on this question falls into two categories. Several researchers have

investigated the question in the context of a closely-coupled distributed system in which all nodes
are directly connected to each disk. (See Figure 2-1.) The interconnection network is used to
coordinate access to the disks, and may be used to transfer blocks between nodes.

The second category of related work is in the context of general purpose distributed systems,

as used for the system described in this dissertation. However, unlike the system described in this

dissertation, the related work in this category was not implemented, and the design was validaled
solely via modeling and simulation.

2.5.1. Shared disks

Most large mainframe transaction processing systems are multiprocessor-based. One way of

coupling multiple processors is via main memory; another is via a network as described in this
dissertation. A third approach, taken in IMS and other commercial systems, is via shared disks.

Dias et al [Dias et al 87] cite the following advantages of this data sharing approach over function

shipping:

"* Since every node can access the data, availability of the system as a whole can be
improved.

"* Commit protocols are simpler.

BACKGROUND 29

"* Load balancing is easier.

"* Migration from a single system is much simpler, since the database does not need to
be partitioned.

Yu et al [Yu et al 85] describe a system based on IMS data sharing with distributed lock
management. Concurrency control is at the record level for read access, and at the block level for

update access. Coherency control is based on broadcast invalidation. Invalidation requests are

queued and transferred with lock requests at regular intervals. When a transaction completes, its
update locks are held until the associated invalidation requests have been acknowledged.

In [Yu et al 87], several possible performance problems and design issues associated with
data sharing systems am noted:

* Data contention. A data sharing system supports more concurrent transactions than
a single system, so contention for the same data may be a problem.

* Concurrency control overhead. When data is shared, locks must be shared, which
may lead to a greater overhead to obtain a lock.

* Lock granularity. A coarser lock granularity means fewer lock requests (and less
locking overhead) at the possible cost of higher contention.

* Data obsolescence. Transaction systems buffer data to reduce I/O rates. When a
node updates shared data, all other buffered copies of the data must be invalidated,
leading to higher I/O rates.

* Coherency control overhead. The system incurs additional overhead to generate
and process buffer invalidation requests.

In [Yu et al 861, some of these problems are addressed through the use of transaction routing: by
directing an incoming transaction to the node where the data it needs is already buffered, the
number of buffer invalidations (and associated lock overhead) can be reduced.

The primary focus of the work of Yu and Dias et al in shared disk data sharing systems is in

coherency and concurrency control, comparing performance to function shipping systems, and

evaluating the effects of different locking schemes. They do not address the transaction
management, recovery management, or log management issues raised in this chapter.

Rahm [Rahm 89] concentrates on recovery (and associated transaction management, log

management, and buffer management issues) in the shared disk environment. He assumes

locking for concurrency control, physical logging, and update-in-place for buffer management.

Among the issues to consider when designing node recovery are:
* Lock tables describing which node is holding each lock may be lost in a crash.

• Coherency control tables describing which node is currently holding a block may
similarly be lost.

* Blocks may be in use on nodes that are still running.

* Blocks may be transferred between nodes via the shared disk, or more quickly via the
network.

30 CHAPrER 2

According to Rahm, most existing shared disk data sharing systems force modified blocks to
disk at the end of each transaction. This strategy simplifies node recovery, since no modifications

ever need to be redone, and also simplifies coherence control, because the disk always contains a

transaction-consistent copy of each block. However, Rahin advocates the alternative strategy of

not forcing modified blocks at the end of transaction; instead, only log records are forced to disk.
This strategy offers higher performance by reducing I/O rates and I/O waiting time.

The granularity of logging is another issue. If entire blocks are logged, recovery is
simplified, since the correct block is immediately available. However, because block-level

logging generates enormous amounts of log data, most systems use record-level logging. This

complicates node recovery, since a block may migrate through several nodes, each of them
modifying a different record, without the block being forced to disk. If the node holding the
block crashes, modifications performed by preceding nodes may have to be redone. Or, if a
preceding node writes a modification to disk, the transaction which made the modification aborts,

and the final node holding the block crashes, the aborted modification may have to be undone. In

general, redoing and undoing these intermediate modifications requires access to the appropriate
log records in chronological order (e.g., via a global log).

To reduce the number of messages, coherency control may be tied to concurrency control: a
record is transferred when its corresponding lock is obtained. Unfortunately, this optimization

causes the granularity of locks to become an issue. If several records are stored in the same

block, then multiple nodes could be modifying (different records in) the same block

simultaneously. This means that several partially updated blocks must be merged before writing
a block to disk. To avoid this problem, most existing shared disk data sharing systems support
only block-level locking.

Given these issues, Rahm proposes the following architecture for TDSM in a shared disk

environment:
"Concurrency management uses a distributed lock manager, with each node
responsible for a fixed subset of the locks. (Essentially, responsibility for the
database is pairtitioned among the nodes, although the entire dabase is accessible
from each node) The lock manager may allow multiple nodes to retain read
authorization; this authorization is revoked when a transaction requests the lock in
write mode.

" Buffer management relies on the lock manager to maintain cache coherency. When
a node requests a lock, the lock manager's reply includes a copy of the corresponding
block (if the node's cached copy is invalid or non-existent). When a node releases a
lock, it sends any modified block directly to the lock manager's node. If the lock
manager's node runs out of buffer space, it writes the modified block to disk, and
will tell subsequent requesters to read the updated block from disk,

"* Log management uses new-value logging. Since the lock manager's node receives
all modified blocks, log records are also recorded at the lock manager's node. Thus,
the global log is partitioned among the nodes in exactly the same manner as locks are
partitioned.

BACKGROUND 31

*Transaction management uses a special two-phase commit protocol. In the first
phase, log data is forced to the local log, and locally controlled locks are released. In
the second phase, remote data is processed: (1) Retain redo log records in a separate
buffer. (2) Send modified blocks and log records with unlock request to lock
manager node. (3) When lock manager acknowledges request, clear separate redo
buffer. The lock manager node writes out the log records it has received before
acknowledging the request.

*Recovery management. Transaction and server failure are handled locally, since
log records are retained on the node where the transaction runs. When a node fails,
the surviving nodes must handle recovery for the partition assigned to the failed
node. The shared disk environment simplifies this task, since the log for the failed
node still can be read by any surviving node.

One node is chosen to run the recovery algorithm for the failed partition. It
broadcasts a message that halts all activity in the failed partition, and causes all nodes
to forward lock information and buffered log records for the failed partition to the
recovery node, which appends the log records to the failed node's log. Each node
discards cached blocks for the failed partition, unless the node holds a valid read
authorization. The recovery node scans the failed node's log to determine which
transactions failed to commit, and which blocks are missing committed
modifications. It processes redo records on the appropriate blocks for committed
transactions, and writes out the corrected blocks. The recovery node also examines
the failed node's log to discover if any remote modifications that were committed
must be retransmitted to other nodes.

Finally, the failed node's partition is reassigned to another node(s), and processing in
the partition may continue. When the failed node restarts, processing must again halt
while the responsibility for the partition is reassigned.

Rahm's design is quite similar to the architecture described in this dissertation, although it
was developed independently and in a different environment. Rahm's architecture benefits from
tJle shared disk environment in that (1) the lock manager node may tell a requesting node to read
a block directly from disk, and (2) the log from a failed node is still accessible on disk by the
surviving nodes. Rahm does not appear to have implemented his design, nor does he include a
performance evaluation. Rahm does not directly address communication management or
configuration management.

2.5.2. Hsu and Tam

Hsu and Tam have proposed several designs for TDSM in the distributed system
environment.

In [Hsu and Tam 881, they propose a design that requires a reliable broadcast mechanism
which supports failure atomicity, message synchronization, a system-wide logical clock, and
detection of node failure. The design does not handle the problem of network partition.

* Buffer management. Coherency is maintained via a share mechanism. A fixed
number of shares is associated with each page. To read a page, a node broadcasts a
request to become a shared owner. Exactly one existing owner will reply, conveying

32 CHAVMEn 2

a number of shares in the page to the requester. To write a page. a node broadcasts a
request to become an exclusive owner. All of the existing owners must reply and
convey all of the shares to the requester. If the requester does not have a current
copy of the page, an update (containing either the entire contents of the page, or a
series of incremental updates) is transmitted along with the shares. No two nodes
can attempt to become exclusive owner simultaneously because of the timestamps
provided by the reliable broadcast mechanism. If a node is unable to collect all of
the shares within a given time limit, it enters a reformation phase in which it asks all
operational nodes to give it the authority to regenerate missing shares.

"Concurrency management uses hardware assists to provide locking via faults.
Each read or write access causes hardware lock bits and transaction id registers to be
compared. If this check fails, a fault into the lock manager is generated. The lock
manager checks the ownership of the page, and invokes the coherency control
mechanism if necessary. The coherency control algorithm will not grant shares to a
node requesting shared ownership if the page is write-locked. It will not grant shares
to a node requesting exclusive ownership if the page is read- or write-locked.

" Log management is apparently based on physical logging of entire pages. Sites are
grouped into predefined backup groups. Each node in a backup group monitors
broadcasts by other group members, so that updates are replicated on each node in
the group.

" Transaction management depends on reliable broadcast To commit a transaction,
a node must first broadcast the changes made by the transaction to all members of its
backup group. Then it performs local commit processing: writing dirty pages and a
commit record to nonvolatile storage, and finally dropping locks held by the
transaction. The commitment point is the atomic broadcast to the backup group.

* Recovery management. Transaction and server recovery are apparently handled
locally, relying on write-ahead logging. Also, before granting a write lock on a page,
a before image of the page must be logged; apparently, this allows an update to be
undone if the transaction aborts.

Node failure is handled via the backup group mechanism. Sites are ranked within
each backup group. Each node in a backup group monitors broadcasts to know when
a group member becomes an exclusive owner. If an exclusive owner fails (as
detected by the reliable broadcast mechanism), the highest-ranked backup node takes
over as owner. Because a node broadcasts updates as part of its transaction commit
protocol, each kole in the backup group is guaranteed to have transaction-consistent
data, and no further recovery action is necessary.

*Communication management must provide reliable broadcast (with failure
atomicity, synchronization, detection of node failure, and total ordering via a system-
wide logical clock) if not supported by the underlying system. All message traffic
must be monitored to see if the message refers to a member of the node's backup
group.

Configuration management must allow backup groups to be defined and ordered,
in addition to the tasks listed previously.

Hsu and Tam note several research issues with their design.

* Garbage collection. When should a node throw away pages it is not actively using?
This seems to be part of the larger question (not answered by Hsu and Tam) of share
management: how does a node decide how many shares to give to a requester?
What does it do if it has only one share left, and it wishes to retain access to the
block?

BACKGROUND 33

"* Granularity of locks and log records. Logging is done on blocks of 128 bytes;
locking uses hardware assists which restricts the granularity of locks to the hardware
page size. In general, neither of these sizes may be optimal.

"* Locality management. How can programmers structure their applications to
provide the locality assumed to exist by the underlying system?

The decentralized nature of Hsu and Tam's design makes it appear very attractive.

However, Hsu and Tam emphasize that the design is a straw man, and they do not evaluate its
performance. This is the key difficulty: reliable broadcast does not scale. Although Hsu and
Tam claim to eliminate distributed commit, essentially distributed commit has been forced down
into the reliable broadcast protocol, which is invoked on every message. Another potential
difficulty with the design is the backup group mechanism. It appears that only the owner node
actually writes updates to the log. If the owner fails, the highest-ranked backup node takes over

as owner, but it does not have access to the log.

In a later design, summarized in Tam's dissertation [Tam 911, Hsu and Tam dismiss the
broadcast technique, and concentrate on reducing the time needed to perform node recovery.

e Concurrency management. Two algorithms for concurrency management are
discussed. The 2PL-MC algorithm (very similar to the algorithm described in this
dissertation) uses a distributed lock manager, with each node responsible for a fixed
subset of the locks. A node may cache locks, so that it may grant a cached lock to a
transaction without contacting the lock manager again.

The 2PL* algorithm relies on the coherency control mechanism to ensure that a page
being written is stored on only one node, while a page being read may be stored on
many nodes. As long as a node has read or write permission for a page, it may grant
locks in the corresponding mode for records stored on that page.

e Buffer management uses a fixed distributed manager to maintain coherency. The
data is partitioned in the same manner as the locks. Each block has an owner node
which may vary over time, and which is the only node allowed to write block. A
locator node, which is fixed for each block, always knows which node is the current
owner. To read a block, a node sends a message to the locator node, which forwards
the request to the owner. If the owner is not writing, it returns a copy of the block to
the requester. To write a block, a node sends a message to the locator. The locator
notifies the owner, and records the new ownership of the block. The owner
invalidates any existing readers, and sends the block to the new owner. Each time a
block is transferred or invalidated, the action is logged by both the sender and the
receiver. Each node also periodically checkpoints the information it has about block
owners and readers.

The database is assumed to fit in main memory, so blocks are never written to non-
volatile storage except as part of logging.

& Log management uses new-value logging of entire blocks, to avoid the problem of
merging partial updates from different nodes during recovery.

* Recovery management. Transaction and server recovery are apparently handled
locally, relying on write-ahead logging.

Node recovery depends on the logging and checkpointing of coherency actions.
Apparently, while a failed node is down, no other node may obtain a block for which

34 CHAFFER 2

the failed node is owner or locator. Once the failed node restarts, it reads its latest
checkpoint, and replays the log to restore its directory of block owners and readers.

Tam's dissertation does not address the transaction management, configuration management,

or communication management issues raised in this chapter. It does not give transaction or server

recovery algorithms, nor does it describe how a failed node restores its data to a transaction-
consistent state after it restores its directory of block owners and readers. The architecture does
not appear to have been implemented, although the performance of several algorithms is

evaluated via modeling and simulation. The buffer management algorithm has been designed to

allow fast node recovery, at some additional expense during forward processing.

Tam's dissertation also mentions a method for TDSM using optimistic concurrency control
that is further described in [Bellew et al 90]. One node serves as the validator which must be

contacted at the end of each transaction to obtain a transaction id and commit the transaction.

Each of the other nodes acts as a home node, storing part of the database.

" Concurrency management uses optimistic concurrency control. Each page has a
timestamp which is the id of the last transaction to update the page. A transaction is
allowed to compute with whatever data is cached at the node where it is running. At
the end of transaction, the node presents a list of timestamps for pages it has read,
along with all the pages it has modified, to the validator. The validator compares the
submitted timestamps with the most recent timestamps; if any of the submitted
timestamps are out-of-date, the transaction must abort.

"* Transaction management uses the validator to assign transaction ids. If the
submitted timestamps are valid, the validator allocates a new transaction id, and
stores it with each updated page.

"* Buffer management relies on the validator to periodically broadcast updated pages.
When a page is received by any node that has the page cached in main memory, the
node updates the cached copy; otherwise, the page is discarded. When a node wishes
to free a cached page that is not in use, it writes the page to disk if it is the home node
for the page, otherwise it merely throws away the page.

There are two cases to consider when a node wishes to access a page that it does not
have cached in main memory. If the node is the home node for the page, it simply
reads the page from its local disk. Otherwise, the node requests the page from the
home node, which will locate the page in main memory or on disk, ,nd ,tumm it
along with the associated timestamp.

Log management, recovery management, communication management, and configuration

management issues raised in this chapter are not addressed by this architecture; also note that in

general, techniques using broadcast do not scale well. The integrity of updated pages is certainly

a issue, since they may be lost when the validator or home node fails. Failure of a home node
makes many pages unavailable, and failure of the validator may make the updated pages it holds

unavailable. As with (Tam 91], the architecture was simulated and appears not to have been

implemented. The simulation compares optimistic concurrency control to 2PL*. When locality

of reference is high, the optimistic method offers lower throughput than 2PL* due to the cost of
validating and broadcasting updates. When locality of reference is low, 2PL* offers lower

throughput than the optimistic method due to the cost of obtain remote locks.

Chapter 3

Camelot and Mach Environment

This chapter, as a follow-up to the material presented in Chapter 2, introduces the Camelot

distributed transaction facility and the Mach operating system on which Camelot runs. Camelot

demonstrated that transactions could be efficiently layered on an operating system kernel as a

general-purpose facility. Camelot is well-documented, and the source code is readily available

for research use; thus, Camelot is a reasonable place from which to start work on transactional

distributed shared memory. Camelot is described in detail in Camelot and Avalon: a Distributed

Transaction Facility [Eppinger et al 91]; this chapter provides an overview of Camelot, with

references to the appropriate chapters in [Eppinger et al 91].

3.1. Camelot

Camelot provides a framework for constructing programs that use distributed, atomic

transactions in the client/server model. In Camelot, programs are divided into two classes. An
application interacts with users, and may initiate and conclude transactions. Within a transaction,

an application makes server calls (transactional RPCs) to Camelot servers in order to access

persistent storage. A data server is started under the control of Camelot, and encapsulates all

access to a unit of persistent storage (unique to each server) known as a recoverable virtual

memory (RVM) segment. A server maps its recoverable virtual memory segments into its virtual

address space, and may read and write RVM segments transactionally. If the enclosing

transaction aborts, Camelot will undo any changes made by the transaction to the RVM segments.

Once a transaction commits, Camelot guarantees the permanence of the transaction's changes.

Within a transaction, both applications and servers may make many server calls to local or remote

servers. Camelot ensures that all servers involved in a distributed transaction agree on the

transaction's outcome.

Camelot is implemented on the UNIX-compatible Mach operating system, and is divided

into several processes that communicate via Mach messages. The Camelot library provides a C

language interface to Camelot services. Figure 3-1 shows the processes that run on each Camelot

node. The Master Control Program and the Camelot startup process are uninteresting, but the

other components are described in subsequent subsections.

35

36 CHAFPE 3

LApplication

DataSerer Dat S ~ erver
FirajJ- ~irry Recoverable

N eover e jProcesses

S Recovery Transct io n
Manager CManager

Disk Master Camelot
System

S Camelot I Components

Mach Kernel I

Data servers and applications are written by Camelot users Data servers maintain persistent data
in recoverable virtual memory. Applications begin and end transactions that invoke operations
on data servers via remote procedure calls. The Node Server is a distinguished data server used
to store configuration information; the Node Configuration Application (NCA) provides a user
interface. The Transaction Manager coordinates distributed agreement (ensuring that all
participating nodes agree on the outcome of a transaction), and includes the Communication
Manager, which tracks the spread of transactions from node to node. The Recovery Manager
restores recoverable virtual memory to a transaction-consistent state after a failure, and includes
routines to read the log. The Disk Manager is responsible for buffer management and writing the
common log. The Camelot process initializes the system, and the Master Control Program
coordinates the operation of the other components.

Figure 3-1: Camelot architecture

3.1.1. Camelot library

The Camelot library provides a high-level, C language imerface to Camelot services [Bloch

91 al. The Camelot library is also primarily responsible for concurrency controL

An application written using the Camelot library might use code like this:

CAMELOT AND MACH ENVIRONMENT 37

BEGINTRANSACTION

SERVERCALL("arrayserver",
arrayupdate(ARGS index, value));

END TRANSACTION (status)

The BEGINTRANSACTION and END TRANSACTION statements bracket a series of actions

into a transaction. (The status variable indicates that the transaction committed or gives a

coded reason for transaction abort.) The SERVER CALL is a transactional RPC to the

array-server; any actions performed by the arrayserver to process the RPC will take

place in the context of the transaction begun by this application. The server is requested to
perform an arrayupdate operation with the given parameters.

The arrayupdate operation in the arrayserver might use code like this:
BEGIN RECOVERABLE DECLARATIONS

unsigned int array[SIZE];
ENDRECOVERABLE DECLARATIONS

LOCK (&REC (array index],
LOCKSPACEPRIMARY,
LOCKMODEWRITE);

MODIFY (REC(array [index]), value);

The server must first declare the layout of its recoverable virtual memory via BEGIN_ and
ENDRECOVERABLEDECLARATIONS. On receipt of the arrayupdate RPC, the server

may modify its RVM within the scope of the transaction initiated by the application.

The Camelot library requires the server programmer to use explicit LOCK operations.

(Explicit locking allows use of logical locks, and gives the programmer added flexibility in

choosing lock granularity.) Camelot supports multiple lock spaces, so that a package supporting

a particular abstract data type may use a name space for locks that will not conflict with any other

package. In the example above, the arrayserver obtains a write lock on the appropriate

element of the array in the standard lock name space; the name of the lock is just the address of

the element in the array.

After obtaining the write lock, the array-server is free to modify the corresponding

item in recoverable storage. The MODIFY operation stores a new value in the array, and

simultaneously generates log records that the Camelot system can use to undo the MODIFY

should the enclosing transaction abort.

At the end of a transaction, the Camelot library automatically releases any locks held by the

transaction. Thus, the library supports two-phase locking for serializability. Careful

programmers may explicitly unlock locks before the end of transaction; however, Camelot does

not guarantee serializability in this case.

To process a lock request, the Camelot library checks for conflicts with other

transactions [Bloch 91b]. In most cases, the library has enough information to identify conflicts.

38 CHAIFrE 3

When transactions are deeply nested, however, the library may not be able to determine if two

transactions with a common ancestor (in the same transaction fanily) are conflicting in their use
of the lock, and the library asks the Transaction Manager to decide if there is a conflict.

3.1.2. Disk Manager

The Disk Manager reads and writes pages to/from the disk when Mach needs to service page

faults on RVM or to clean primary memory. Camelot uses a common log for transaction
management and recovery functions; the Disk Manager accepts and writes log records
locally [Thompson and Jaffe 911, and coordinates log writes with paging writes to enforce the

write-ahead log invariant. The Disk Manager allocates backing store for RVM segments,

performs checkpoints to limit the amount of work during recovery, and works closely with the
Recovery Manager when failures are being processed. The Disk Manager is multi-threaded to
permit multiple I/O operations in parallel. The data server interface to recoverable storage is

described in [Eppinger and Nichols 91], and the design of the Disk Manager is given in [Eppinger

911.

3.1.2.1. Data structures

The server record s recordt contains data about an active server, including the server's

state, information about the server's RVM segment, and Mach ports for contacting the server and
the Mach kernel. Several hash tables allow the Disk Manager to locate a server record given a
UNIX process id, a server id, a RVM segment id, or a Mach port.

As a server updates its recoverable storage, it spools log records describing the regions being

updated and the values stored there. These log records are funneled through the Disk Manager to

the common log. To spool log records efficiently, each server has its own private shared memory

queue with the Disk Manager. The Camelot library sends asynchronous messages to the Disk
Manager by storing them in this queue. When the queue becomes full, the library makes a

synchronous RPC to the Disk Manager to process the queue. The Disk Manager may also
process the queue at earlier times to enforce the write-ahead log invariant.

The most complicated data structure used by the Disk Manager is the grid, which is used to
keep track of records in the log. The grid is a natural extension of the two hash tables required to

do write.ahead logging: one hash table for the active pages, one for the active transactions.
Keeping such careful track of log records is required to support new-value-only logging. Each
log record is linked to both the page and transaction to which it refers. (See Figure 3-2.)

CAME10T AND MACH ENVmONMENT 39

gageash
table

loatatvetrnscios;eahlo rcrd saloinkdtth transato to hchiaelns
hash
table

The LSN (log sequence numnber) uniquely identifies a log record. One hash table is used to find
active pages; each log record is linked to the page it describes. Another hash table is used to
locate active transactions; each log record is also linked to the transaction to which it belongs.

Figure 3-2: The grid

3.1.2.2. Algorithms

Each time a server modifies a region in recoverable storage, it must use the pin-update-log

protocol. Before modifying the region, the server pins the region in virtual memory. Pinning
prevents the Disk Manager from writing the page(s) on which the region resides back to paging
store. Next, the server updates the region in virtual memory by storing a new value. Finally, the
server logs the modification, unpinning the region. The pin and log operations are simply entries
the server makes in its shared memory queue.

The Disk Manager acts as an external pager for the RVM segment in each data server. (See
Section 3.2 for a description of the external pager interface.) When the Disk Manager receives a
memory object datawrite message from the kernel, it checks that the server is using the
pin-update-log protocol properly. If the page is not pinned, the Disk Manager forces the
appropriate log records to stable storage, and then writes the page to disk. When the Disk
Manager receives a memory_object_datarequest message from the kernel, the Disk
Manager locates the page on disk, and returns it to the kernel with a
memory_objectdatarovided message.

40 CHAFFER 3

To support recovery, the Disk Manager responds to requests from the Recovery Manager for

a list of all log records corresponding to a particular transaction or a particular page. To limit the

amount of log data that must be processed during recovery, the Disk Manager periodically writes

to the log a checkpoint record containing a list of active servers, active segments, active pages,
and active transactions.

3.1.3. Recovery Manager

The Recovery Manager is responsible for transaction abort, server recovery, node recovery,

and media-failure recovery [Thompson 91]. During normal processing, Camelot components and

servers record in the log all modifications to recoverable storage, movements of pages between
disk and memory, and outcomes of completed transactions. When a system component detects a

failure, it notifies the Recovery Manager, which reads the log and undoes or redoes the effects of

transactions as appropriate. The Recovery Manager also sends information from the log to

servers and to the other Camelot components to allow them to restore their internal data
structures. During recovery, additional records are written to the log describing what was undone

or redone.

Camelot directly supports only value logging. When recoverable storage is updated, the new
value, or after-image, of the modified region is written into a log record called a modify record.
Depending on how the transaction was initiated, the old value, or before-image, of the region may

also be written into the log. The Recovery Manager implements three distinct recovery

algorithns: old-value/new-value abort, new-value-only abort, and server recovery. The abort
algorithms are invoked by the Transaction Manager. The server recovery algorithm is invoked by

the Disk Manager after a server crash or node failure.

To abort a transaction, the Recovery Manager reads the log backwards to extract the

modifications made by the transaction. For a modification made by an old-value/new-value
transaction, the log contains the old value to be restored; for a new-value-only transaction, dhe
Recovery Manager must locate the old value in a log record written by a committed transaction or

read the old value from its home location on disk. The Recovery Manager buffers up a request to

undo the modification by restoring the old value. The requests are sorted by server id, and

forwarded to the appropriate server when the buffer is full or there are no more requests to be

buffered.

To recover a server, the Recovery Manager reads the log backwards to identify changes
made by committed transactions that are not reflected in the disk copy of the page, and buffers up

requests to redo these changes. It also identifies changes made by aborted transactions that were

already written to the disk copy of the page, and buffers up requests to undo these changes. The
buffered requests are sent to the server for processing after it has been restarted, but before it

begins accepting RPCs from its clients.

CAMELOT AND MACH ENVIRONMENT 41

3.1.4. Communication Manager

The Communication Manager provides a name service for Camelot servers and supports
transactional RPCs [Stout 91]. The name service dispenses surrogate local ports for network
ports so that all distributed transactional RPCs pass through the Communication Manager. Thus,
the Communication Manager can keep a list of all the nodes involved in a particular transaction,
and it supplies this list to the Transaction Manager for use during commit and abort processing.

3.1.5. Transaction Manager

The Transaction Manager coordinates the initiation, commit, and abort of local and
distributed transactions [Mummert et al 911. It fully supports nested transacuons. Each
transaction has a unique transaction id assigned by the Transaction Manager.

The primary protocol supported by the Transaction Manager is the two-phase commit
protocol. To commit a local transaction, the Transaction Manager makes an RPC to each server
involved in the transaction, requesting a vote for commit or abort; all servers must vote to commit
in order for a transaction to commit. Once all votes are in, the Transaction Manager commits or
aborts the transaction by forcing a record to the log. In the second phase of the protocol, the
Transaction Manager notifies each server of the transaction's outcome.

To commit a distributed transaction, the Transaction Manager on the coordinator node
(where the transaction was initiated) sends IP datagrams to the Transaction Manager on each
subordinate node involved in the transaction. All Transaction Managers query their local servers.
Each subordinate Transaction Manager forces a prepare record into its local log, and returns a
single vote to the coordinator Transaction Manager. The coordinator Transaction Manager tallies
the votes and forces a commit or abort record to its log. In the second phase of the protocol, the
coordinator notifies each subordinate of the transaction's outcome.

Not described here is the non-blocking commit protocol supported by the Transaction
Manager. The Transaction Manager also aborts transactions, and answers questions from the
Camelot library about lock conflicts.

3.1.6. Node Server/Node Configuration Application

The Node Server is the repository of configuration data necessary for restarting the
node [Thompson and Michaels 91]. To start a server, the Disk Manager needs to know what
command line to execute, how much recoverable storage the server is allowed, and the name of
the server and its recoverable segment. All of this data is maintained in recoverable storage by
the Node Server and is recovered before other servers.

Backing store for recoverable storage is allocated in large fixed-size units called chunks. To

42 CHAPTER 3

allocate backing store, the Disk Manager makes an RPC to the Node Server. The Node Server

runs a transaction to allocate the appropriate chunks, and returns the result to the Disk Manager.

The Node Configuration Application (NCA) permits Camelot's human users to update data

in the node server and to crash and restart servers [Eppinger and Michaels 91].

3.2. Mach

Mach is a multiprocessor operating system that is binary compatible with 4.3 Berkeley

UNIX. Mach provides the basic building blocks for distributed applications, including tasks,

multiple threads of control within tasks, message passing, and shared virtual memory between

tasks [Stout et al 91].

A task is a collection of system resources, including virtual memory and access rights to

Mach ports. It is similar to a UNIX process. A thread is a unit of scheduling (i.e., a lightweight

process) that executes within a task.

Interprocess communication in Mach is based on two abstractions: ports and messages. A

port is a protected kernel object to which messages may be sent and queued until reception. A

task may hold send and receive rights to a port. A message is an ordered collection of typed data,

possibly including port rights or pointers to out-of-line data. The header of a message includes

the port to which the message is sent, and optionally a port to which the receiver may reply.

Most Mach users never need to know how messages and headers are formatted; instead, they

use the Mach Interface Generator (MIG) to automatically implement remote procedure

calls [Pausch et al 91].

A special user-level task called the nernsgserver transparently extends interprocess

communication across the network. The neunsgserver acts as a local representative for tasks on

remote nodes. When a task sends a message to a port on a remote node, the message is actually

delivered to the local netmsgserver. The local netmsgserver translates the destination port to a
network address, converts the message to a format suitable for the network, and transmits the

reformatted message to its counterpart on the destination node. The destination netmsgserver

converts the network message into a Mach message. It re-sends the Mach message to the correct

port on its local node.

The netmsgserver also provides a port registration and lookup service. Using
netname checkin, a task can associate a name with send rights to a port it owns. Using

netnamelook_up, any other task can present the name and receive send rights to the port.

netname lookup also accepts a host name as a parameter, so that a task may look up a port
on a remote host.

CAMELOT AND MACH ENVIRONMErN 43

The Mach virtual memory design allows tasks to allocate/deallocate regions of virtual

memory, specify the inheritance of regions of virtual memory (when a task for'-), set the

protection (read/write/execute) on regions of virtual memory, and specify a user-level task to

handle paging for regions of virtual memory [Baron et al. 901. It is this last feature, the external

pager interface, which Camelot uses to implement recoverable virtual memory.

To use the external pager interface, a client task (e.g., a Camelot server) maps a paging

object into its address space using vmmap. The paging object is represented by a port, obtained

from the external pager task, to which the kernel will send external pager messages. When the

client task takes a page fault on a page of its address space mapped to the paging object, the

kernel sends a memoryobject_datarequest message to the port representing the paging

object (i.e., to the external pager). The external pager receives the request, finds the data, and
returns it to the kernel with the memoryobject__data_provided call. The kernel puts the

page into the client task's address space and resumes the thread. The external pager may ask the

kernel to flush a page from the client's address space with the

memoryobjectlockrequest call. In response to this call, or if the kernel wishes to free

up physical memory, the kernel makes a memoryobject datawrite call to the external

pager.

The external pager interface makes it possible for a user-level task to implement distributed

shared memory. The first implementation of this feature was the netmemoryserver [Forin et al

88]. As part of his research into kernel support for distributed memory multiprocessors, Barrera

reimplemented the distributed shared memory functionality in a user library, the External
Memory Manager, that can be linked with any external pager task [Barrera 92]. The External

Memory Manager library allows an external pager to create a paging object and specify that it is

to be used to provide distributed shared memory. The library interposes itself between the

external pager and multiple client kernels. To the external pager, the External Memory Manager

presents the illusion of a single client kernel. Client tasks on multiple nodes see the illusion of a

single, shared paging object every read of a byte in the shared object returns the most recent

value stored there on any node. (See Figure 3-3.) The External Memory Manager library

achieves this illusion by maintaining a directory for each page of those nodes with read or write

permission for the page. (In Li's terminology, the XMM library is a fixed distributed manager.)

The XMM library can support multiple paging objects, managing the coherency of each set of

pages independently.

When a client kernel asks the XMM library for read access to a page, the XMM library

checks its directory to see if any node has write access to the page. If no node has write access,

the XMM library asks the external pager to supply a readable copy of the page, and returns it to

the client kernel. But if some node has write access to the page, the XMM library first invaliates

that copy, directing the node to return the modified page to the XMM library. The XMM library

forwards the page to the extrnal pager. Then the XMM library continues as above where no

node has write access.

44 CHAPTER 3

clet cintclet cin
~etak ts tas ~task external pager'

XMM library

Mach kernel Mach kernel Mac kerne

The External Memory Manager (XMM) library is an intermediary between an external pager and
several Mach client kernels. It acts as a single client kernel to the external pager, and acts as an
external pager to each of the actual client kernels, managing the migration of pages fornm node to
node to achieve coherent distributed shared memory.

Figure 3-3: External Memory Manager

When a client kernel asks the XMM library for write access to a page, the XMM library
checks its directory for readers and writers. It directs each reader or writer node to invalidate the
page (readers simply discard the page, a writer writes back the modified page). Then the XMM
library asks the external pager for a writable copy of the page, and returns it to the client kernel.

Chapter 4

Design

4.1. Goals

Chapter 2 outlined the numerous alternatives available in designing transaction processing

and distributed shared memory systems. Choosing a particular design by selecting among the
alternatives is best guided by having a set of goals in mind. The thesis of this dissertation is that

transactional distributed shared memory (TDSM) is feasible and useful. To demonstrate the

feasibility of TDSM, the design must be practical for a graduate student to implement in a

reasonable time. To demonstrate the utility of TDSM, the design must provide enough
functionality to allow the characteristics of TDSM to be evaluated.

These high-level goals can be further elaborated by considering their effect on how the

design should meet distributed program requirements. The most important requirements are as

follows.

"* Ease of programming. As much as possible, the design should preserve an existing
easy-to-use programmer interface.

" Data integrity. The design should maintain the failure atomicity, serializability, and
permanence guarantees of transactions, even if an object in TDSM is concurrently
updated on different nodes. The design should maintain these guarantees if messages
are lost, or if processes or nodes crash.

" Multiple access to data. The design should allow concurrent access to multiple
TDSM memory segments on multiple nodes; that is, one process may access a
TDSM memory segment at the same time as some processes are accessing the same
TDSM memory segment, and other processes are accessing other TDSM memory
segments. However, a given process will not necessarily be able to access more than
one TDSM memory segment.

Other distributed program requirements are addressed as follows.

* Performance. The design should utilize algorithms that provide reasonable
performance and allow the performance of TDSM to be evaluated. It is not
necessary to take advantage of all possible optimizations if these optimizations can
be analytically evaluated.

*Security. It is acceptable for the design to provide the same security as an existing
transaction processing facility. Access to a TDSM memory segment should be
restricted to its creator.

* Availability. The design may restrict availability to protect data integrity in the
presence of failures. When a node crashes, the design may make unavailable those
parts of TDSM memory segments that have been modified by prepared transactions
on the failed node.

45

46 CHAPTER 4

Incremental growth. The design should allow incremental increases in processing
capacity by allowing additional nodes to access a TDSM memory segment at any
time that the TDSM memory segment is available. (Of course, if individual objects
in the TDSM segment are being read or written, the new node may have to wait for
access to those objects in order to preserve serializability.)

4.2. Architecture

The architecture provides transactional distributed shared memory by allowing servers on
multiple nodes to share a given TDSM memory segment. Each TDSM segment has a home node
where the non-volatile storage for the segment is located, and which provides certain services for

the segment. Nodes where servers read or write a TDSM segment are using nodes of the

segment. A node may be the home node for many TDSM segments, and many nodes may act as
home nodes for different segments. A node may be a home node or a using node or both for any

number of segments. Each home node must have non-volatile storage for the blocks of TDSM

segments; using nodes are not required to have any non-volatile storage. Nodes communicate via

a network; no disks are shared between nodes.

To implement transactions, the TDSM architecture follows the structure outlined in Chapter

2: log management, recovery management, transaction management, communication
management, configuration management, concurrency management, and buffer management. In
brief, a transaction must log each modification it makes so that the recovery manager may back
out partial updates (to ensure failure atomicity) or repeat updates (to ensure permanence). The

transaction manager coordinates the completion of transactions that span multiple servers. The
communication manager tracks the spread of transactions from node to node. The configuration
manager stores the configuration of the transaction facility. The concurrency manager
coordinates the execution of concurrent transactions to ensure serializability. The buffer manager
controls the transfer of recoverable objects between volatile and non-volatile memory.

Many choices are possible when designing these functions. Generally, these choices are not

specific to TDSM, but common to any transaction processing system. This architecture for

TDSM leverages on the design choices of an existing transaction processing facility. For this

architecture, the transaction processing facility and underlying operating system must provide:

"* A mechanism for sending block-size messages between arbitrary processes. The
message system must reliably deliver the messages in order, and the same
mechanism must be used for local and remote recipients.

" Encapsulation of servers such that transaction services are provided (or can be
provided) through the above message mechanism.

" A transaction commit protocol that does not necessarily support distributed
transactions, but does use (or can be made to use) the aforementioned message
mechanism.

"* A clearly-defined interface for concurrency management that can be extended for
sharing and network access; e.g., locks that can be distributed through
communication with the home node.

DESIGN 47

" A clearly-defined interface for buffer management that can be extended for sharing
and network access. Instead of look'ng for a requested block on the local disk, the
TDSM buffer manager contacts the home node. The home node locates the block on
disk, or requests the return of the block from another buffer manager. The other
buffer manager may have to wait until the requested block is released by a
transaction before satisfying the request from the home node.

" A clearly-defined interface for recovery management that can be extended for
sharing and network access. Intentions lists, shadow pages, or log records must be
forwarded to the home node at the appropriate time to ensure failure atomicity and
permanence. For availability reasons, the home node must be able to undo or redo
actions.

"* The ability to have a common log (intentions list, shadow pages) for all servers using
a given TDSM segment.

4.2.1. Camelot and Mach

Rather than start from scratch, I use the Camelot transaction processing facility and the
Mach External Memory Manager (XMM), described in Chapter 3, as a base for building the
TDSM architecture. Other systems could be used as a base; I chose Camelot and Mach because
they were readily available. In brief, Camelot offers the abstraction of a recoverable virtual
memory segment that a Camelot server may read and update within the scope of a transaction,

and the Camelot library provides an easy-to-use environment for building transactional
applications. The XMM library offers a shared virtual memory coherency service to external

pagers such as the one in Camelot.

The Camelot/TDSM architecture provides TDSM in the form of distributed icoverable
virtual memory by allowing Camelot servers on multiple nodes to share a given recoverable
virtual memory segment. Although parts of Camelot were designed to allow each server to
access multiple RVM segments, the Camelot library (which maps the RVM segment at a fixed
location in the server's virtual address space) and the Camelot Disk Manager (which handles
page-in and page-out requests for the RVM segment) permit a given server to access exactly one
RVM segment. The TDSM architecture does not remove this restriction from Camelot: to do so
would require extensive changes to the programmer interface provided by the Camelot library.
The focus of TDSM is to enable a set of servers to share a given memory segment, not to enable a
given server to access multiple memory segments. Since Camelot allows a RVM segment to be

larger than the virtual address space of a single process, one workaround for the single-segment-
per-server restriction is to combine the multiple segments that a server wishes to access into a
single segment. Another alternative for accessing multiple RVM segments is a hybrid of data
sharing and function shipping: on a given using node, there are several servers, each accessing a
different RVM segment, and communicating among themselves via local RPCs.

To ensure failure atomicity and permanence, Camelot uses write-ahead logging. The write-
ahead log invariant requires that log records describing changes to a block be written to stable

48 CHAPTER 4

storage before that block can be written to non-volatile storage. Although write-ahead logging is
more complicated than other techniques for providing failure atomicity and permanence, it offers
several performance advantages [Spector 89b]. Also, since transaction commit protocols are
frequently implemented by using a log, additional performance advantages are possible if the
Transaction Manager shares a common log with the recovery algorithm. In general, Camelot's

designers attempted to optimize forward processing at the possible expense of longer recovery
times.

node N1 nodesN2 s..

.. . r e m otr e x e c u tio n
...... managerfl-z1

transaction facility

IOCk configuration 1krnel
manager manager

transaction disk manager ns
manager extera,1em.I log,: node N3 ...

recvery conm,,unca0non trans. Iremoteexecuio
manager manager facility manager og

,...
.. . _ __ _

kernel I I kernel

Nodes NI and N3 rn the transaction facility and may act as home nodes for several segments. If
a server on node NI or N3 accesses a segment stored there, then node NI or N3 is also a using
node. Nodes N2 and N3 run the Remote Execution Manager and may be using nodes of
segments on other nodes.

Figure 4-1: TDSM architecture

Figure 4-1 illustrates how the functions that implement transactions are distributed between

the home node and using nodes. On the home node, a set of processes known collectively as the

transaction facility coordinate access to the stable storage common log and the non-volatile

paging store for the segment On using nodes (other than the home node), a process known as the

Remote Execution Manager coordinates access to services on the home node. Subsequent

subsections describe how TDSM functionality for a given RVM segment is provided by the

transaction facility and the Remote Execution Manager.

DESIGN 49

4.2.2. Log management

The home node is responsible for the log. This decision simplifies other components by
reducing the effort needed to locate the log, and ensures that the log records needed to perform
recovery are available as long as the home node is available. It offers opportunities for reducing
the number of separate messages that must be sent to the home node in that log records may be
appended to messages for transaction management or buffer management.

Each using node ensures that the log records it generates for a segment are eventually
forwarded to the home node. The Remote Execution Manager on the using node buffers log
records to reduce latency. Log records must be forwarded when a transaction commits, at which
time the log records must be forced to stable storage to ensure permanence. Log records must be
forwarded when a page is written back to the home node or migrated to another using node; this
allows the home node to recover from the failure of the first using node. Log records are
forwarded when a transaction aborts, so the Recovery Manager has the information it needs to
undo the effects of the transaction. 3 Finally, log records must be forwarded when the log record
buffer becomes full.

All servers using a given TDSM segment must use a common log. (This is already done by
Camelot, since Camelot uses a common log for all servers and Camelot components on a node.)
Camelot uses physical logging. Operation logging could be used for TDSM, although operation
logging for TDSM is complicated by the fact that undo and redo operations may be invoked on a
different node than that which performed the original operation.

4.2.3. Transaction management

The home node provides transaction management services for the RVM segment. All
servers using a given RVM segment write to a common log on the home node where the
Transaction Manager resides. These servers rely on the home node for transaction management.
The Transaction Manager uses the same mechanism to send messages to home node servers as it
does to send messages to using node servers; indeed, the Transaction Manager does not know
whether a server is local or remote. Because of this transparency for transaction management
messages, and because the log for the servers is local to the Transaction Manager, the Transaction
Manager need not worry about the location of the servers. Servers contact the Transaction
Manager to begin server-based transactions and to join existing transactions; the Transaction
Manager remembers which servers are involved in each transaction.

31f the using node crashes before forwarding the log records, the transaction (and all others nnmig on the using
node) still aborts. The Recovery Manager doesn't need the log records of the aborted transaction in this case, because
either (1) the pages modified by the aborted transaction were never writen beck to the home node, and thus die
Recovery Manager can simply use an older version of the pages from disk, or (2) the log records were forwarded
ealier at the time the modified pages were written to the home node.

50 CHAPTER4

When a transaction aborts, the Transaction Manager uses its knowledge to notify the

appropriate servers. The transaction may fail to contact a server if the server is on a different

node. In this case, the server may become an orphan and attempt to continue processing;

however, it will not be able to commit its changes, since to do so it would have to contact the

Transaction Manager which already knows that the transaction has aborted. Other nodes may not

be able to continue processing until the Transaction Manager has successfully contacted all

servers.

When a transaction wishes to commit, the Transaction Manager asks each of the servers

involved in the transaction to enter the prepared state and return a vote. If any server votes no, or

if the Transaction Manager cannot contact a server, the transaction aborts as described above.

Otherwise, the Transaction Manager writes a commit record to the log, and forces the log to

stable storage. It then notifies all servers that the transaction committed. If the Transaction

Manager is unable to contact a server, the server will remain in the prepared state, retaining any

write locks it obtained. No other transaction in any server will be able to obtain these locks until

the Transaction Manager successfully contacts the server. (If the Transaction Manager cannot

contact the server because the using node is down, any pages for which the using node has write

permission will be inaccessible, so inability to obtain locks is only part of the problem.)

With TDSM. the Transaction Manager does not contact any subordinate Transaction

Managers to commit a transaction. The log for the servers is local to the home node, and there is

no need for a subordinate Transaction Manager to record data in a separate log. Thus, the

Transaction Manager does not use a traditional distributed commit algorithm, in which

Transaction Managers on subordinate nodes must force data to the log when a transaction enters

the prepared state. Instead, the home node Transaction Manager uses a single log force to

commit a transaction, even though servers on several using nodes may be involved.

4.2.4. Recovery management

The home node manages recovery for the RVM segment. As with transaction management,

the common log on the home node and the transparency of messages allows the Recovery

Manager to perform its task for all servers without worrying about their location. The Recovery

Manager sends messages to servers to recover from transaction failure. The Recovery Manager is

notified whenever a server starts or terminates, so it may remember which servers are using a

given RVM segment.

When a transaction aborts, the Recovery Manager must undo any changes to RVM that have

been made by the aborted transaction. It does this by scanning the log, extracting records

belonging to the aborted transaction, and sorting them by RVM segment. For each RVM

segment, it selects one server to actually perform operations on the segment that undo the aborted

transaction. (This server may or may not be the same server that made the original

modifications.) If the selected server fails before completing the operations, the Recovery

DESIGN 51

Manager selects another server and continues. Any server using the RVM segment may perform

the abort processing requested by the Recovery Manager, because all servers have access to the

segment, and objects will remain locked until abort processing completes. The advantage of
sending the requests to a single server is that the requests can be batched, reducing

communication costs. The disadvantage of sending the requests to a single server is that if the

Recovery Manager makes a poor choice, many pages will have to migrate to the server's node.

Of course, Camelot assumes that recovery is infrequent, so this is not a major issue.

The Recovery Manager recovers from individual server failure by aborting all of the

transactions that have not committed in the failed server (undoing their effects as above), and

redoing the effects of committed transactions that are not yet reflected in non-volatile storage.
Transactions in other servers using the same RVM segment are not directly affected by the failed

server, although they may have to wait for locks and pages until recovery completes. If there are

no active servers using the RVM segment, a special surrogate server must be started on the home

node to perform undo and redo operations on behalf of the Recovery Manager. As soon as the

Recovery Manager finishes its task, the surrogate server exits.

The actions taken by the Recovery Manager after a node failure are very different,

depending on whether the failed node is the home node. If the home node fails, servers on other

nodes may continue processing for a while in a limited manner, but they will eventually detect the

failure of the home node and exit (implicitly aborting any transactions that have not yet

committed). When the home node restarts, the Recovery Manager restores every RVM segment

to a transaction-consistent state by starting a surrogate server on the home node for each segment,

and sending undo and redo requests to the surrogates.

If the failed node is not the home node, then the Recovery Manager itself continues running.

The Recovery Manager does not explicitly determine that a node has failed; instead, it performs

multiple server recoveries as the TDSM system notices that each server on the failed node has

failed.

When a using node fails, the log records it has buffered in volatile storage are lost.

However, the loss of these buffered log records does not affect the correctness of any data in

RVM, because the lost log records belong to transactions that the Recovery Manager "s about to

abort due to the node failure. (Recall that buffered log records must be forwarded to the home

node before a transaction can commit.) For each page modified by uncommitted transactions on

the failed node, one of the following cases will be true: either the modified page has been

forwarded to the home node (due to migration or other pageout), or it has not. If the modified

page has been forwarded to the home node, then the Recovery Manager will have log records

describing the modifications made by uncommitted transactions, and it may use the log records to

abort the transactions by undoing their modifications. (Recall that buffered log records must be

forwarded to the home node when a pageout occurs.) If the modified page has not been

forwarded to the home node, then the Recovery Manager will not have log records describing the

52 CHAPTER 4

modifications. However, in this case, there is nothing for the Recovery Manager to undo, since

the copy of the page in non-volatile storage does not contain the modifications of the

uncommitted transactions.

4.2.5. Buffer management

Responsibility for buffer management is split between the Disk Manager and External

Memory Manager on the home node, and the operating system kernels on all using nodes. Each

server maps the RVM segment into its virtual address space. Pages of the RVM segment are

buffered in main memory by kernels on different nodes as part of their resident pool of virtual
memory pages. Each kernel contacts the External Memory Manager on the home node to obtain

non-resident pages, to write out modified pages, and to request write permission on resident
pages. The External Memory Manager contacts a kernel to restrict read or write permission to

ensure that pages are coherent. A page may migrate from node to node at any time whether or
not a transaction is actively using the page; thus, an active transaction may be suspended if a page

it needs is stolen for use by another node.

The External Memory Manager follows a single-writer, multiple-reader protocol to enforce

page coherency. When a page is being read, it may be resident on many nodes. When a page is

being written, it is resident only on the node that is writing. For each page, the External Memory

Manager records a list of the nodes that have the page with read or write permission. When a

node requests read permission for a page, the External Memory Manager supplies the permission
immediately if there are no writers. If there is a writer, the External Memory Manager invalidates

the page on the writing node, which is instructed to write back the updated page, and remove
write permission. When a node requests write permission for a page, the External Memory

Manager invalidates the page on any readers (which simply discard the page) or any writers
(which write back updated pages).

The Disk Manager responds to requests from the External Memory Manager to copy pages

to and from non-volatile storage. The Disk Manager must allocate non-volatile storage for RVM
pages and must coordinate writes to non-volatile storage with log writes. The write-ahead log

protocol requires that log records describing changes to a page be written to stable storage before

that page can be written to non-volatile storage. Then, if the transaction that made the changes

aborts, the log records will be available for the Recovery Manager to read, and it can undo the

changes. Even if the home node crashes before writing the page to non-volatile storage, the
Recovery Manager can reconstruct a correct copy of the page by scanning the log and redoing the

effects of committed transactions.

The External Memory Manager maintains the coherency of pages between nodes; it is not

involved when two servers on the same node share a page. Instead, the operating system kernel

allows the servers to physically share the page where permitted by the virtual memory hardware.
The External Memory Manager could maintain coherency between servers: if a server tries to

DESIGN 53

access a page that is currently in use by another server on the same node, it would wait until the

page could be migrated from server to server via the home node. The advantage of server-level
coherency is increased isolation of servers, which is especially useful during debugging. The

overwhelming disadvantage of server-level coherency compared to node-level coherency is

significant communication cost where there was no cost.

The External Memory Manager is not required to use the single-writer, multiple-reader
protocol to maintain coherency. However, this algorithm is straightforward to implement, offers

good performance, and has been used in most distributed shared memory systems.

4.2.6. Concurrency management

As shown in Chapter 2, many forms of concurrency management are possible to ensure the

serializability of transactions. Because it is well understood, straightforward to implement, and
has been shown to provide good performance [Carey and Livny 88], two-phase locking is used by

Camelot to maintain the serializability of transactions. A transaction must obtain a read lock
before inspecting an object, and a write lock before modifying an object. Locks are released at
the end of the transaction. The granularity of locks is chosen by the application programmer, the

name of a lock is the address of the corresponding object. Several objects may reside in the same
virtual memory page, and an object may span several pages. This gives the application
programmer maximum freedom in allocating recoverable storage and in selecting the degree of
concurrent access to objects. With this freedom comes the responsibility of ensuring that locks

do not refer to overlapping objects, since the transaction facility does not know the size of the
object corresponding to a lock.

For TDSM, responsibility for concurrency management is split between the Lock Manager

on the home node, and all servers using the RVM segment. Each server caches the locks that it is

actively using. Each server exchanges messages with the Lock Manager on the home node to
obtain non-cached locks and to release cached locks. While a server has a lock cached, it may
grant the lock to a transaction without further communication with the Lock Manager, as long as

the transaction is requesting a mode that is a subset of the mode in which the lock is cached.
(That is, if the lock is cached in write mode, a transaction may obtain the lock in read or write

mode with no further communication. If the lock is cached in read mode, a transaction cannot

obtain the lock in write mode until the server contacts the Lock Manager.)

The Lock Manager uses an algorithm similar to the External Memory Manager to enforce a
single-writer, multiple-reader protocol for the caching of locks by servers. Each server enforces

the single-writer, multiple-reader protocol for the acquisition of locks by transactions. The Lock
Manager may request return of a previously cached lock when it is requested by another server.

A lock may migrate only when it is not held by an active transaction. There is no deadlock
detection; instead, a timer aborts long-running transactions.

54 CHAPrER 4

A server may limit the number of locks it can cache. When this limit is exceeded, it may

uncache locks that are not held by any active transaction. If all cached locks are held by active

transactions, the server may request the Lock Manager to grant a lock to an individual

transaction, instead of allowing the server to cache the lock. When the transaction commits, the
server notifies the Lock Manager to release the lock.

When a server crashes, any of its locks may be obtained by other servers, except for those

locks held by prepared transactions. If the Lock Manager crashes, servers retain their cached

locks and can continue to grant them to transactions. When the Lock Manager restarts, it contacts

each server to restore its knowledge of cached locks.

Concurrency management via distributed locks requires no changes to the programmer

interface to Camelot. The implementation of the distributed Lock Manager preceded the detailed

design of the TDSM architecture and provided evidence that such an architecture was

feasible [Hastings 901.

4.2.7. Communication management

The home node manages communication for all servers using the RVM segment. In the

function shipping model, the Communication Manager tracks the spread of transactions from

node to node. In the data sharing model, transactions stay put while data spreads from node to

node, so the Communication Manager on each node is reduced to providing a server name

registration and lookup service. A server is registered only with the Communication Manager on

the home node, and contacts the home node with any lookup requests. A Communication

Manager may contact a Communication Manager on another node to satisfy lookup requests.

From the perspective of the name service, servers on using nodes appear to be running on the

home node. The advantage of this decision is that it simplifies configuration management, and

interacts well with the other services provided by the home node.

A process that is not a server contacts the local Communication Manager with lookup

requests. A using node that is not a home node does not have a local Communication Manager,

in this case, a surrogate Communication Manager forwards all requests to a particular home node.

4.2.& Configuration management

The home node manages the configuration of all servers that use the RVM segment. The

Remote Execution Manager on each using node responds to requests from the home node to start

and kill servers. The Remote Execution Manager also buffers log records for forwarding to the

home node, and may act as a surrogate Communication Manager to forward name service
requests to the home node.

DESIGN 55

A privileged user may add, delete, start, or kill servers, and modify the configuration of

servers and RVM segments. When a server is added, the user must identify the RVM segment it

is to use. If a new segment is specified, it is implicitly created under the user's ownership. If an

existing segment is specified, it must be owned by the user. A RVM segment is implicitly

destroyed when the last server configured to use the segment is deleted. The configuration of a

server includes the name of the node on which the server is to run.

Using the home node for configuration management offers several benefits. Security for

RVM segments is easily provided. Consistency of the configuration is easily guaranteed; it is not

possible to configure a server to use a non-existent segment. A using node that is not a home

node requires no non-volatile storage. The disadvantage of using the home node for

configuration management is that it contributes to the reduction of using node autonomy. Also, it
is more difficult to extend the design to allow a given server to use several RVM segments from

different home nodes.

4.3. Discussion

Feasibility of implementation guided the selection of many alternatives within the

architecture. The utility of the selected alternatives may be summarized by indicating the degree

to which the alternatives meet distributed program requirements.

"* Ease of programming. By utilizing the Camelot library, the design provides the same
easy-to-use programmer interface. No syntax changes are necessary to allow a
Camelot server to access shared RVM. The fact that a RVM segment is shared by
several servers is encapsulated in the home node's configuration database.

" Data integrity. The design maintains all of the guarantees of transactions even with
concurrent access on multiple nodes and in spite of message, server, or node failure.
Camelot's algorithms for RVM transactions are easily extended to TDSM via the
mechanism of a common log on the home node.

*Multiple access to data. Servers on many nodes can be configured to use the same
RVM segment. The servers execute concurrently, and may read and write individual
pages concurrently, with the restriction that, at the moment a page is being written, it
is accessible only on the node that is writing.

A more significant restriction is that a given server may access only one RVM
segment. Although this restriction was originally dictated by the Camelot library, it
simplifies the design of many transaction functions by guaranteeing that the log
records for a transaction's activities in a single server may be found at a single node.
If a server could access multiple RVM segments from different nodes, then the log
records for each segment would have to be buffered separately, and forwarded to
different logs. The Camelot library would have to note the node at which a
transaction was initiated, and notify each home node's Transaction Manager as the
transaction accesses an RVM segment from that node.

Performance. The architecture attempts to minimize communication costs by
buffering log records, batching undo and redo operations, caching locks, and keeping
virtual memory pages resident. As will be shown in Chapter 7, it offers opportunities
for further reducing communication costs by prefetching a page with any lock

56 CHAPTER 4

request for an object on that page, and by appending log records to pages being
written back to the home node or to server votes during transaction commit. Using
an existing transaction processing facility as a base allows the performance of TDSM
to be compared to transactional RPC. Some alternative architectures that promise
better performance are discussed in Chapter 2. However, to the best of my
knowledge, none of these architectures has been implemented in a distributed
computing environment.

* Security. Security relies on the authentication performed by the Camelot Node
Server, which stores the configuration of servers and segments. A server must be
configured before it may access a RVM segment. An unauthorized user may not
configure a server to access a RVM segment created by another user.

"* Availability. If a using node crashes, any pages for which it has write permission
will be unavailable on other nodes. Locks obtained by transactions that have entered
the prepared state on the crashed node will also be unavailable. If the home node
crashes, processing on cached data may continue, but all transactions will abort when
the home node restarts.

"* Incremental growth. A server is restricted to one RVM segment, and the non-volatile
storage for a segment is stored on one node, so the architecture does not aid
incremental growth of storage capacity. Extending the programmer interface Jf
Camelot to allow a given server to access multiple RVM segments could assist in
incremental growth of storage capacity. Processing capacity can be increased by
configuring servers on additional nodes up to the point that the home node becomes
overloaded or the communications network becomes saturated.

In the architecture, there is no direct interaction between transaction management and

coherency control: a page may migrate from node to node at any time without regard to
transaction boundaries. This decision is necessitated by the possibility offalse sharing, when two
independent objects reside on the same virtual memory page. Suppose transaction I modifies A
and transaction 2 modifies B independently. If the two transactions are on the same node, or if A
and B are on different pages, neither transaction has to wait for the other. If the transactions ae

on different nodes, and A and B are on the same page, the single-writer, multiple-reader protocol
will force one transaction to wait. If pages could not migrate until transaction commit time,

transactions could deadlock waiting for each other's pages. Thus, the architecture does allow

pages to migrate before transaction commit, and reduces the waiting time at the possible expense
of thrashing if two transactions contend for the same page over a period of time.

To avoid page thrashing, application programmers should take care placing objects in the

RVM segment so that false sharing does not occur. See [Bolosky et al 891 for a brief discussion

of this issue in the context of a shared memory multiprocessor with non-uniform memory access

times (NUMA).

Page migration independent of transaction boundaries is correct. Consider an example as

illustrated in Figure 4-2. A transaction on node Nl locks and modifies object A, spooling log

records describing that modification. Another transaction on node N2 wants to modify object B
on the same page as A. Since A and B are different objects, the transaction on node N2 has no

difficulty obtaining a lock for B. However, when it tries to modify B, it takes a page fault, and the

DESIGN 57

page on node N I page on node N2

A

A transaction on node NI modifies object A during the same period that a tasaction on node N2

modifies object B on the same page.

Figure 4-2: False sharing

kernel on node N2 contacts the home node External Memory Manager. The home node asks
node NI for the page, and node NI supplies the modified page, removing its own access to the

page. Next, the home node asks node NI for log records, and node NI supplies log records
describing the as yet uncommitted modification. Now the home node can forward the page to
node N2's kernel, which returns from the page fault, and allows the transaction to modify B. If
node NI again tries to access the page, it will fault, and the page will migrate back to node NI in
a similar manner (and log records describing the modification to B will be forwarded to the home
node before node NI sees the modified page).

Note that serializability has been maintained, since both nodes obtain the appropriate locks
before accessing shared data. If the transaction which modified A aborts, the home node can
restore the page to the proper state, since it has log records describing the modification. The
home node may even ask node N2 to undo the modification if it is holding the page, since the
lock for A will be held by node NI until the abort is complete.

Figure 4-3 illustrates the flow of log records and paging requests for two nodes. Node NI is
a home node for segments 1 and 2. Both nodes are using nodes for both segments. The
transaction facility on node NI enters log records for both segments into a common log. The
transaction facility receives log records directly from servers A and B. On request, the Remote
Execution Manager on node N2 forwards log records generated by server C, server D, or server E
to node NI. Servers C and D physically share memory; the kernel on node N2 merges paging
requests from these two servers into a single stream that it forwards to the transaction facility on
node NI. The transaction facility on node NI processes thwse requests for segment 2 in
conjunction with requests it receives from server A via the kernel on node NI. The transaction
facility also processes paging requests for segment 1 that it receives from server B (via the kernel
on node NI) and from server E (via the kernel on node N2).

58 CHAPTER 4

node N1 node N2

server A log server C

* F.. . I.

servr B transaction server D
facility

.:g 1 remote
* . execution

manager server E

kernel fkernel f

Log records flow to the transaction facility directly on the home node, or via the Remote
Execution Manager on other nodes. Paging requests enter the transaction facility via the
appropriate kernel. Servers B and E share segment 1. Servers A, C, and D share segment 2.

Figure 4-3: Flow of log records and paging requests

4.4. Example

To illustrate how the architecture works, consider the following example. Stan and Ollie are

two servers on different nodes. They share a RVM segment whose home node is a third node.

Ollie has cached the page of the RVM segment where mydata resides, as well as a lock for

mydata. However, no transaction in Olie is currently accessing mydata. Stan has neither the

lock nor the page cached. Stan executes the following transaction:
BEGIN TRANSACTION

LOCK(&REC(mydata), LOCKSPACE_SHARED, LOCKMODEWRITE);
MODIFY (REC (mydata), value);

ENDTRANSACTION (status)

When the BEGIN TRANSACTION statement is executed, Stan makes an RPC to the home
node Transaction Manager requesting a new transaction identifier (tid). The Transaction
Manager's reply provides several transaction identifiers, so that Stan's next few

BEGINTRANSACTION statements may be executed without the need for another RPC. Next.
Stan must obtain a write lock for the object that is to be modified. Stan makes an RPC to the

home node Lock Manager to obtain the loe;. The lock is currently cached by Ollie, so the Lock

Manager makes an RPC to Ollie requesting its retum. No transactions are holding the lock, so

Ollie uncaches the lock and replies to the Lock Manager. The Lock Manager may then reply to
Stan's request for the lock.

DESIGN 59

Stan's node home node Ollie's node

remote1 4 2 rý em t

execution transaction 1 execution

manager facility - manager

15[kernel] kernel] kernel I

1 Begin transaction 9 Request page
2 Begin transaction reply with tid 10 Flush page

3 Lock mydat a 11 Page write
4 Uncache lock request 12 Log buffer request

5 Uncache lock reply 13 Log buffer reply
6 Lock reply 14 Page provided

7 Pin request 15 Return from page fault

8 Page fault 16 Log request

Figure 4-4: Messages for BEGINTRANSACTION, LOCK, and MODIFY

Next, Stan must follow the pin-update-log protocol to modify RVM. (The pin step lets the
buffer management function know that a modification is about to occur, and prevents the Disk
Manager from writing the page to non-volatile storage. The update step actually changes data in
virtual memory, and the log step generates a log record describing the modification, and unpins
the page.) First, Stan sends a pin request to the Remote Execution Manager by storing the request
in a region of memory that is shared by Stan and the Remote Execution Manager. Then, Stan
attempts to store a new value in RVM. Because the page containing the object is not resident,
Stan will take a page fault. The kernel determines that the page is managed by an external pager,
and sends a request for the page to the External Memory Manager on the home node. The
External Memory Manager knows that Ollie's node has the page in write mode, and asks Ollie's
kernel to flush the page. Ollie's kernel sends the modified page back to the External Memory
Manager, and removes the page from its memory. The External Memory Manager passes the

page to the Disk Manager. The Disk Manager asks Ollie's Remote Execution Manager to
forward any buffered log records. Ollie's Remote Execution Manager replies with an empty

60 CHAPTER 4

buffer, so the Disk Manager writes the page to non-volatile storage with no further ado. The

External Memory Manager copies the page to Stan's kernel, which returns to Stan from the page

fault. After storing the new value, Stan sends a log request to the Remote Execution Manager,

again by buffering the request in a shared memory region. See Figure 4-4.

Stan's node home node Ollie's node

7~
execution transaction tex tion
manager manager

S 5

Irl [Irnel kernel

I End transaction tid request 5 Log buffer reply

2 Vote request 6 End transaction reply

3 Vote reply 7 Commit tid notification

4 Log buffer request

Figure 4-5: Messages for END_TRANSACTION

When the ENDTRANSACTION statement is executed, Stan makes an RPC to the home

node Transaction Manager requesting that the transaction be committed. The Transaction
Manager contacts Stan, the only server involved in the transaction, requesting a vote. If Stan

votes to commit the transaction, the Transaction Manager asks the Disk Manager to force all log

records to stable storage, and write a commit record. The Disk Manager makes an RPC to Stan's

Remote Execution Manager to obtain the buffered pin and log requests, and writes them to the

log, followed by a commit record. The Transaction Manager replies to Stan's request to commit,

and sends a message notifying Stan that the transaction committed. See Figure 4-5.

If Stan's transaction commits, and no other node accesses mydata, then the lock and virtual

memory page for mydata will remain cached on Stan's node. In this case, Stan can execute the

same transaction again at a much lower cost. To begin the transaction, Stan can use a tid

obtained from a previous RPC to the Transaction Manager. Since Stan still has the lock for
mydata cached, the transaction can obtain the lock immediately. Stan again follows the pin-

DESIGN 61

Stan's node home node Ollie's node

Stan Ollie

1 2

remote remoteexecution transaction execution
manager facility manager

kernel [kernel Jkernel

1 Pin request 2 Log request

Figure 4-6: Messages for LOCK and MODIFY

update-log protocol. The pin request is stored into a region memory shared with the Remote
Execution Manager, Stan updates mydata without taking a page fault, and the log request is
stored into the shared memory region. The transaction could update several other objects in the
recoverable segment with no further communication as long as the locks and virtual memory
pages are cached, and the shared memory queue of pin and log requests does not become full.
When the ENDTRANSACTION statement is executed, the transaction will commit at the cost of

three RPCs and one asynchronous message. See Figure 4-6.

If some event causes Stan's transaction to abort before the ENDTRANSACTION can

complete, the following sequence could occur (if Stan and Ollie are still running). First, the home
node Transaction Manager makes an RPC to Stan instructing Stan to suspend all activity on
behalf of transaction tid. After Stan replies, the Recovery Manager asks the Disk Manager for a

current copy of the log. The Disk Manager makes RPCs to both Remote Execution Managers to
obtain any buffered log records, and returns the up-to-date log to the Recovery Manager. The
Recovery Manager selects a server to reverse the modifications made by the transaction to the

RVM segment. If Ollie is picked, the Recovery Manager makes an RPC to Ollie listing the
modifications to be undone. To make the changes, Ollie does only the pin-update part of the

pin-update-log protocol. OUie does not need to lock the data being modified because the lock is
still held by the transaction beini, aborted. Since Stan's node has the only copy of the page that

Ollie wants to modify, Stan will page fault The page fault is handled in the same manner as

before. After Ollie makes the modification, Ollie replies to the Recovery Manager. The
Recovery Manager notifies the Transaction Manager that restoration is completed. The

62 CHAPTER 4

Stan's node home node Ollie's node

SStan]20"'Ollie

1 upedt eu st 11• Flushemote

remote transacgon
exec3tion bfe3 reusl 1t 18 execqution
manager replyi 14 L bufmanager/14 19

[kernel Jkernel i " kernel [1

1 S uspnd t i d request 11z Flush page
2 Suspend reply 12 Pag write

3 Log buffer reus 13 Log buf-fer request

4 Log buffer reply 14 Log buffer reply

5 Log buffer request 15 Page provided

6 Log buffer reply 16 Return from page fault
"7 Restore request 17 Restore reply
8 Pin request 18 Log buffer request
9 Page fault 19 Log buffer reply

10 Request page 2 0 Abort t id notification

Figure 4-7: Messages for abort

Transaction Manager asks the Disk Manager to write an abort record, and force log records to
stable storage. The Disk Manager makes another RPC to Ollie's Remote Execution Manager to
get the buffered pin request, and writes them to the log followed by an abort record. The
Transaction Manager sends a message notifying Stan that the transaction aborted. See Figure 4-7.

If Stan crashes after the MODIFY, but before the END-TRANSACTION, then Stan's

transaction must abort: When another server requests a lock for mydata, the home node Lock
Manager tries to contact Stan and fail. After a timeout, it aborts all transactions in Stan, and then
grants the lock to the requester. When another node tries to access the page where mydata
esides (perhaps by request of the home node Recovery Manager which is aborting Stan's

transactions), the node's kernel requests the page from the home node External Memory
Manager. The External Memory Manager tries to contact Stan's kernel and fails; after a timeout,
it invokes the server recovery algorithm of the Recovery Manager. To recover a server in an

DESIGN 63

active segment, the Recovery Manager must undo the effects of any uncommitted transactions in
the server, and redo the effects of any committed transactions that are not reflected in non-volatile

storage. If Stan crashed before forwarding to the home node either the log records describing the

modification or the modified page, then there is no work for the Recovery Manager to do: it can

simply read the old version of the page from non-volatile storage. However, if Stan committed

the transaction once, tried to run it again, and then crashed before committing the transaction a
second time, the Recovery Manager must redo the modification made by the first transaction,
since this modification is not reflected in the non-volatile (and now only existing) copy of the

page. Or, if Stan crashed after forwarding to the home node both the modified page and log

records describing the uncommitted modification, the Recovery Manager must undo the
uncommitted modification that appears on the modified page.

4.5. Summary

One of the trickiest functions to provide when designing a TDSM system is recovery. The
nature of data sharing systems requires some form of concurrency control and buffer
management; thus these functions have appeared in the literature more frequently than recovery.

Traditional approaches to recovery in transaction systems do not apply directly to TDSM because
a single recoverable object may involve many nodes instead of just one:

"* one or more nodes updating the object

"* one or more nodes performing recovery actions on the object

"* one or more nodes holding pieces of different versions of the object

"* one or more nodes holding log records describing past updates to the object

The key design decision underlying the architecture is the concept of the home node. This

decision simplifies the architecture by providing a simple, direct method for implementing

transactions:

* Serializability is achieved via distributed locks. As soon as a server is initialized it
knows which node to contact to obtain a distributed lock on behalf of a transaction.

* Permanence is achieved via non-volatile storage of the recoverable segment on the
home node, and stable storage of log records on the home node. A server always
knows where to obtain the most recent copy of a recoverable virtual memory page,
and where to log the changes made by a transaction.

9 Failure atomicity is achieved via stable storage of log records on the home node. The
Recovery Manager on the home node has no difficulty finding all of the log records
for the recoverable segment.

The home node concept is not necessarily the best choice for a TDSM architecture, but it meets

the goal of feasibility and utility. Caching increases the autonomy of using nodes by allowing the

bulk of the work within a transaction to proceed with no intervention by the home node until
transaction commit. Caching also reduces the load on the home node; the number of messages

increases linearly with the number of transactions, rather than linearly with the number of
operations.

64 CHAPTER 4

The primary disadvantage of the home node concept is its negative impact on availability.

Failure of the home node prevents transactions on all using nodes from committing. Chapter 7

discusses other architectures that offer solutions to this problem.

Chapter 5

Implementation

The transactional distributed shared memory (TDSM) architecture outlined in Chapter 4 was

implemented by extending the existing Camelot 1.0 (release 83) distributed transaction facility,

which runs on the Mach operating system. Both Camelot and Mach were introduced in Chapter

3. This chapter parallels Chapter 4 by presenting the TDSM implementation in terms of seven

management functions: log management, transaction management, recovery management, buffer

management, concurrency management, communication management, and configuration
management. Figure 5-1 highlights the additions to the Camelot architecture for TDSM. (The

interfaces that were added or changed in Camelot to support TDSM are listed in Appendix B.)

Some of the material in this chapter is derived from a comparison of the original Camelot source

code to the CamelorfTDSM source code using the UNIX di f f utility.

5.1. Concurrency Management

In the original Camelot system, concurrency control is provided by the Camelot library
which is linked with every Camelot server. To obtain a lock via the Camelot library, the server

programmer might use this statement: LOCK (LOCKNAME (REC (data)), lockSpace,

LOCKMODEWRITE). This statement requests a write lock on an item in recoverable storage

named data. (The name of the lock is the address of data in recoverable storage.) Usually,

lockSpace is LOCKSPACEPRIMARY. However, a package supporting an abstract data type

may use other lock name spaces to avoid conflicting with other uses of the same lock names.

For CamelotTDSM, responsibility for concurrency control is divided between the Camelot

library in each server, and the home node Lock Manager. The Lock Manager coordinates the use

of those lock spaces pre-assigned to the home node. On startup, the Lock Manager identifies

itself to the Disk Manager via a DHInitialize remote procedure call (RPC). Later, servers

may obtain a port for the Lock Manager from the Disk Manager via a DSGetHPort RPC. In

response to a server's lock request on behalf of a given transaction, the Lock Manager may

decide to grant the lock to the server for the duration of the requesting transaction. (The server
will contact the Manager when the transaction completes.) Or, to eliminate future requests, the

Lock Manager may allow the server to cache the lock, giving it permission for an unspecified

period of time to process lock requests by subsequent transactions. In this latter case, the Lock

Manager uses a call-back to the server to request the return of the cacird lock when another

server needs it.

65

66 CHAPTER 5

Home Node

I C.ams

additions to Camelot to sujm TDSM. Compare to Figure 3-1.

FiUr -:Cmel otTS zvietr

The Camelot library in each server is responsible for coordinating the use of locks by

transactions running in the server, In response to a transaction's lock request, the library must

decide whether it may grant the request by itself (when the lock is in a lock space local to the

server, or when the lock is cached), or if it must contact the Lock Manager. The library must also

respond to a Lock Manager request to retur a cached lock.

Il MENTATION 67

5.1.1. Programmer interface changes

In the original Camelot system, all lock name spaces are managed solely by the Camelot
library. For CameloV/TDSM, some lock name spaces are still managed solely by the library,
while others are managed collectively by the library and the Lock Manager. If lockSpace is
LOCKSPACEPRIMARY, or any value less than LOCKSPACESHARED, the lock is local to
the server, and the library will not contact the Lock Manager. If lockSpace is
LOCKSPACESHARED, the library will use a lock space that is shared with exactly those
servers that share the same recoverable segment. If lockSpace is a value greater than
LOCKSPACESHARED, the lock space will be shared with servers that specify the same value
for lockSpace. Shared lock spaces are mediated by the Lock Manager.

The division of lock name spaces into local and shared spaces is unfortunate, because it
forces programmers to change their code if they wish transactions using a shared RVM segment
to be serializable. (Suppose two transactions in different servers wish to update the same object
in a RVM segment that they share. If each transaction uses its own local lock space, both
transactions can simultaneously hold a write lock on the object. For correctness, the transactions
must use a shared lock space, so that only one of them at a time can hold the write lock.)
However, because a lock in a shared lock space uses more resources than a lock in a local lock
space, the division of lock name spaces allows programmers to avoid the more expensive shared
locks when accessing objects that are not shared. (A shared lock is more expensive because an
RPC is needed to cache the lock initially, and the cached lock uses a small amount of virtual
memory even when it is not held by a transaction.)

5.1.2. Cache control

Several servers may cache a lock in read mode, but only one may cache a lock in write
mode. However, a transaction may involve multiple servers concurrently, making it possible for
a given transaction to hold a write-mode lock in more than one server. (However, at most one
server will be caching the lock in this case.)4 When a lock is held by multiple servers, the Lock
Manager consults an application-specified lock pohicy (set via the SetLockPolicy procedure
call to the lock library) to decide which one of the servers (if any) is permitted to cache the lock.

The Lock Manager consults a lock policy to determine which server is permitted to cache a
lock. Since a given transaction may include several servers, only one of which may cache the
lock in write mode, the Lock Manager may transfer caching privileges from one server to another
while the lock is held in both servers. Four policies are provided:

4A lock is granted to a trnsaction, which may involve multiple threads in one or several severs. Since these threads
are part of the same transaction, they may hold a write-mode lock simultaneously, which may violate serializability
unless each thread rims a nested subtransaction. The write-mode lock is held by only one of these subrarnucions at
a time. But in the Camelot system. when a subtsaction commits, its locks are not released. but sasigned to its parent
("anti-inheritance"). Thus, the parent may hold the write-mode lock at the same time as each one of its children.

68 CHAVFT 5

"* never: the lock is never cached by the server. All requests are forwarded to the
Lock Manager.

"* release: if a server requests a lock cached by another server, neither server is
allowed to cache the lock. But if a server requests a lock when the lock is not held
by any other server, it is permitted to cache the lock.

"* first: if a server requests a lock cached by another server, the other server is
permitted to retain its cached lock. That is, the first server to cache a lock will retain
the cached lock (until it is requested by a different transaction family in another
server, or until another server requests the lock and specifies a policy of last).

"* last: if a server requests a lock cached by another server, the new server will cache
the lock, and the server which cached the lock originally will no longer have it
cached. That is, the last server to request a lock will retain the cached lock.

The latter three policies (release, first, and last) are equivalent for read-mode locks, and for
write-mode locks when the requesting transaction is not in the same family as the transaction
holding the lock. (In the latter case, there is a conflict, and the requesting transaction must wait
until the holder releases the lock. When the holding transaction releases the lock, it will be
uncached by the server, and the requesting transaction will be granted the lock.)

Each lock request that the server library makes to the Lock Manager includes a lock policy,
so that each lock may have a different policy, and the policy may vary over time. If two servers

specify conflicting lock policies, the Lock Manager should resolve the conflict in favor of the
server specifying the policy with the highest priority (never has the lowest priority, and last has

the highest priority). Presently, this scheme is not fully implemented.

The server programmer may also specify how many locks the library may cache per lock
space. This limit is evaluated lazily; that is, the server library consults the limit only when a

transaction unlocks a lock. If the limit has been exceeded, the library will uncache the lock as it
is unlocked. This scheme is incorrect because it fails to uncache locks that have been unused for

long time periods. However, it was simpler to implement than a full LRU for the lock cache, and

has no adverse effect on the performance results reported in Chapter 6.

5.1.3. Failures

To gain speed, most of the state transitions made by the distributed lock manager are

recorded only in volatile storage. Parts of this storage ame lost when a server or Lock Manager

crashes. The Lock Manager can restore its volatile state by contacting each of the data servers
known to have obtained locks. Therefore, when the Lock Manager first encounters a server, it

records the server's identifier in recoverable storage.

As mentioned previously, the Lock Manager uses a call-back to request a server to return a

cached lock. This call will fail when the server or the processor where it resides has crashed, or if
there is a communications failure (perhaps a network partition). In the case of a crash, all

transactions in the crashed server that have not yet reached the prepared state will abort, so it is

MPLEMENTATION 69

safe for the Lock Manager to grant a cached lock to a different server as long as the lock is not

held by a prepared transaction. If the lock is held by a prepared transaction, the Lock Manager

must wait for the transaction to commit or abort before granting the lock to another server. Thus,

if the Lock Manager crashes, it should scan the log, where prepared transactions record the locks

they hold, to determine which locks are held by prepared transactions. (This log scan is not

presently implemented.)

In the case of a network partition, it would be unsafe for the Lock Manager to grant a cached

lock to a different server, because two transactions could then be holding the lock in conflicting

modes, and serializability would be violated. In the present implementation, the Lock Manager

treats communication failures as crashes, and thus may allow serializability to be violated if

failure is due to a network partition. This violation of serializability could be prevented by

requiring the Lock Manager to retry failed requests until it succeeds in contacting the server

caching the lock, or by allowing it to abort transactions in the uncommunicative server.

5.1.4. Lock Manager/library interface

Camelot runs with the support of the Mach operating system, and uses Mach messages to

perform RPCs. Most communication between application and server, or between server and

server, uses a Camelot variant of the Mach RPC called a SERVERCALL. The SERVER.CALL

embeds additional history information in the RPC message in order to track the spread of

transactions from node to node, and causes the message recipient to join the sender's transaction

and to participate in the two-phase commit protocol at the end of the transaction. To avoid the

overhead of distributed two-phase commit, and the embedded history information, the distributed

lock manager communicates via the simpler Mach RPC rather than the Camelot

SERVER_CALL.

The communication interface between the Lock Manager and the server library is listed in
Appendix B. For example, the library may attempt to obtain a write-mode lock on behalf of

transaction tid via the call: HSLock(hsPort,lockName,LOCKMODEWRITE,

LOCKCACHEFIRST,tid, sPort, &cached). The name of the lock (including the lock

name space) is contained in variable lockName. The library is selecting a lock policy of first.

The call is directed to the Lock Manager identified by the Mach port hsPort; the library is

providing the server's port for call-backs in the variable sPort. The Lock Manager will return a

value of t rue in cached if the server library is permitted to cache the lock.

70 CHAPTERS

5.1.5. Data structures

The cache status indicates the mode (read, write, or none) in which a server has cached a
lock. When a server has a write-mode lock cached, it does not communicate at all with the Lock
Manager to grant a lock. When a server has a read-mode lock cached, it may grant read requests
on its own, but must forward write requests to the Lock Manager. When a server does not have
the lock cached, it must forward all requests to the Lock Manager. It is possible for a server to

have a lock cached in rad mode, while several transactions running in the server hold the lock in
write mode.

Both the Lock Manager process and the server library use hash tables of lock records,

indexed by lock name, to keep track of active locks. (A lock is active if it is cached by a server or
held by a transaction.) In the server library, each lock record indicates the cache status, and
includes a list of transactions holding the lock, and a list of transactions waiting for the lock. In
the Lock Manager, each lock record includes a list of servers caching the lock (and the cache
status for each server), a list of server/transaction pairs holding the lock, and a list of

server/transaction pairs waiting for the lock.

The Lock Manager also maintains a recoverable storage hash table of server identifiers.

When the server library makes a request to the Lock Manager, it includes a special port known as
the server port, which uniquely identifies the server. When the Lock Manager receives a request

that contains a server port it has not previously seen, the Lock Manager make a

DHPortToServerId RPC to the Disk Manager to translate the port into a unique identifier
known as the server id. The Lock Manager records this server id in recoverable storage. If the
Lock Manager crashes and recovers, it scans the recoverable server id table. It uses a
DHPortToServerId RPC to the Disk Manager to translate each server id into the current

corresponding server port, and contacts each server to obtain the data the Lock Manager needs to

reconstruct the volatile lock hash table.

5.2. Buffer Management

In the original Camelot system, buffer management is provided by the Disk Manager in

cooperation with the Mach kerneL The Disk Manager acts as a Mach external pager, processing
page-in and page-out requests made by the kernel. It coordinates paging /O with log I/O to

enforce the write-ahead log invariant. The Disk Manager also tracks active servers and active

recoverable virtual memory segments.

For CamelotVTDSM, several new components enter the picture. The kernels on several
using nodes may make paging requests to the home node. On the home node, the External
Memory Manager acts as an intermediary between the Disk Manager and these kernels to
maintain the coherency of each RVM segment across nodes. The Remote Execution Manager on
each using node acts on behalf of the home node Disk Manager to startup and terminate servers,
and to forward buffered log records to the home node.

IMPLEMENTATION 71

This section first presents an overview of each component, describing the external interfaces
and internal data structures. Next, the algorithms used to implement buffer management

functions are outlined.

5.2.1. External Memory Manager

Camelot was designed to use the Mach external pager interface to provide recoverable
virtual memory. When a server reads or writes a page of a recoverable segment, the bmach kernel
on the server's node may make page-in or page-out requests to the Disk Manager on the
segment's home node. For Camelot/rDSM, a new component called the External Memory
Manager is interposed between the Disk Manager and the Mach kernel. The task of the External
Memory Manager to take requests from multiple kernels and make them appear to the Disk
Manager as if there were but a single kernel making the requests.

The External Memory Manager, then, has three types of interfaces. To each Mach kernel, it
acts as an external pager. To the external pager built-in to the Disk Manager, it acts as a kernel.
And to allow the Disk Manager to connect the appropriate kernels to the appropriate RVM
segment, it has an interface that allows ,aging objects to be created and hooked together.

The External Memory Manager allows multiple servers to have a read-only copy of a page.
But when a server attempts to write a page, all other copies of the page are invalidated. If a dirty
page is requested by anothcr kernel, the External Memory Manager tells the writer to send back
the dirty page, and turn off write permission. The net effect of this algorithm is to provide the
illusion of several threads sharing an address space, when the threads exist on different machines
that do not physically share memory.

In its first incarnation, the External Memory Manager was a separate task which

communicated with the Disk Manager via Mach messages. For performance reasons, the
External Memory Manager was changed to be a library within the Disk Manager.

52.2. Disk Manager

The Disk Manager has interfaces to practically every other component in the Camelot
system; an understanding of the Disk Manager's operation is tantamount to understanding
Camelot. The interfaces to the Disk Manager are presented as data structures and algorithms are
introduced.

72 CHAPTER5

522.1. Server record

The server record srecordt contains everything the Disk Manager needs to know

about a particular Camelot server. (Interestingly, the server record does not hold the server's

name or executable command line; the Disk Manager makes a ND GetRestartAdvice RPC

to the Node Server to obtain this information when needed.) In the original Camelot system, a

RVM segment could not be shared between servers, so the server record also contains everything

the Disk Manager needs to know about the server's RVM segment. For Camelot/TDSM, a given

RVM segment may be shared by more than one server, so a separate segment record (described in

the next subsubsection) contains information for a RVM segment. Thus, the information in the

server record about the server's RVM segment is replaced with a pointer to the appropriate

segment record, and a link field that is used to chain together all servers using a given RVM

segment (see Figure 5-2).

Camelot uses the UNIX fork operation to start data servers. For a server running on the
home node, the server is a child of the Disk Manager, and the Disk Manager stores the child's

UNIX process id in the server record. When a child exits, the Disk Manager uses a hash table on

UNIX process id to locate the correct server record. With CameloVIDSM, a server may run on a

remote node; in this case, the server is a child of the Remote Execution Manager on that node.

For remote servers, the Disk Manager allocates a Mach port dxPort which is stored in the

server record, and communicated to the Remote Execution Manager. When a server on a remote

node exits, the Remote Execution Manager makes a DX ServerDied RPC to the dxPort to

notity the home node Disk Manager. The Disk Manager uses a hash table on dxPort to locate

the correct server record. Thus, the dxPort plays the same role for remote servers that the

UNIX process id plays for local servers. No in the server record, the Disk Manager stores

nodeId, the Internet address of the remote node, and xPort, the Mach port on which the

Remote Execution Mana-. accepts requests. (The Disk Manager obtains the nodeId from the

Node Server, and presents it to the Mach netinsgserver in order to obtain xPort.)

5.2.22. Segment record

The segment record seg_recordt was added for Camelot/TDSM to track the state of a

RVM segment. It contains several fields (recoveryLock, preparedTrans, dirty,

pagingPort, requestPort, and seqDesc) that were ori6inally in the server record. The

segDesc is a segment descriptor cami segment_desc which contains the size of the segment

and the segment id. (Since a segment may be shared by several servers, the server id that was

originally in the segment descriptor was removed.) The Disk Manager uses a hash table on the

segment id within seqDesc to locate segment records. The pagingPort is the Mach port on

which the Disk Manager receives paging requests from the External Memory Manager, when the

Disk Manager receives a request, it uses a hash table on pagingPort to locate the proper

segment r=cord. The requestPort is the Mach port that the Disk Manager uses to make
paging retiuests to the Exterral Memory Manager. The recoveryLock is used to ensure that

DIMENTATION 73

segment server
hash hash
table table

"s nsegment 3 server 8

Fir 5server 4r d

server 7

The Disk Manager finds segment 3 by using a hash table. A linked list starting from the segment
record shows that servers 8, 4, and 7 are using segment 3. On the other side, the Disk Manager
finds server 4 by using a hash table. A pointsr from the server record shows that server 4 is using
segment 3.

Figure 5-2: Segment and server records

recovery of a seter is complete before another attempt is made to restart it. The Disk Manager
uses the preparedTris anad dirty fields to notify the Node Server of the RVM's state with
respect to recovery.

Tie segment record contains one field that was not present in the original Camelot server
record. The serverPtr field points to a list of servers using the RVM segment (see Figure
5 -2),

51.2.23. Grid

T'he most complicated data structure in the Disk Manager is the grid which keeps track of
log records. The Disk Manager may wish to locate all of the log recofý ,3 for a particular
transaction, or all of the log records which reference a particular page. Grid records form a
two-dimensional data structure, with a hash table on page ids as one axis, and a hash table on
transaction ids as the other axis. In addition to a log sequence number that can be given to the

Log Manager to quickly find a log record, each grid record cwatains a link for each of the two
axes (page and transaction), a pointer to the page record, and a pointer to the transaction record.

Given a page id, the Disk Manager uses the page hash table to find the page record for the

74 CHAPTE5

page. The Disk Manager may then follow the appropriate grid record links to locate all the log
records w.,ch reference the page. Similarly, given a transaction id, the Disk Manager uses the

transaction hash table to find the transaction record, and may follow the appropriate links to

locate log records.

In the original Camelot system, the page record includes a pointer to a server record, since

the original Camelot stores information about a RVM segment in the server record. For

Camelot/TDSM, the page record points instead to the segment record for the RVM segment to

which the page belongs.

5.2.2.4. Internal concurrency control

For reasons of programming ease and performance, the Disk Manager was originally
implemented as a multi-threaded program. To synchronize access to data structures, the Disk

Manager uses latches. The latches are arranged in a hierarchy. If a thread which acquires

multiple latches always acquires the latches in the order defined by the hierarchy, deadlocks will

not occur.

In the original hierarchy, the recoveryLock is the highest priority, with the
serverLatch (guarding access to a server record) immediately below. In Camelot/TDSM,

information about RVM segments (including recoveryLock) which was formerly in the

server record is moved to a separate segment record data structure which is guarded by a new
latch, segLatch. Since a given RVM segment may be used by several servers, the segLatch

has a priority lower than recoveryLock but higher than serverLatch. Thus, any routine
which wishes to access the segment record for the segment in use by a given server must latch the
segment record before latching the server record.

52.3. Remote Execution Manager

The Remote Execution Manager was added for Camelot/TDSM to perform three functions

on each using node at the request of the home node Disk Manager. (The Remote Execution

Manager also has interfaces to the Communication Manager discussed later.) On request, the

Remote Execution Manager wili start a server, kill a server, or pick up the shared memory queue

of a server. On startup, the Remote Execution Manager registers itself with the netmsgserver so
that Disk Managers may use net name_look_up to find the Remote Execution Manager.

The shared memory queue (not to be confused with distributed shared RVM) is a virtual

memory buffer for log records. On a given using node, each server has a distinct shared memory
queue, physically shared with the Remote Execution Manager. To the Remote Execution

Manager, a shared memory queue is an uninterpreted array of bytes, with a head index and a tail
index. As the server produces data describing requests, it stores it L- the queue and advances the

tail index. If the tail index reaches the head index, the queue is full, and the server must make an

D&LEMi b ATION 75

RPC to the home node Disk Manager for subsequent requests. The Remote Execution Manager
consumes the data on behalf of the home node Disk Manager. It copies the data between the
head and tail indices into a message that it sends to the Disk Manager, and updates the head

index.

The only other data structure used by the Remote Execution Manager is its own version of
the server record that it uses to keep track of its children. The server record includes the child's
UNIX process id, the dxPort given by the Disk Manager when it ask for the server to be started,
and a pointer to the server's shared memory queue. The Remote Execution Manager uses a hash
table on dxPort to locate the correct server record when it receives a request from the Disk
Manager. It uses a hash table on UNIX process id to locate the correct server record when a child

exits.

5.2.4. Algorithms

S.2.4.1. Forward Processing

Camelot offers two forms of transaction logging. With old-value/new-value logging,
Camelot records both a before-image and an after-image of the region of RVM being modified.
The before-image is used to restore the old value of the region if the transaction aborts. The
after-image is used to restore the new value of the region if needed during recovery. With
new-value logging, only the after-image is recorded in the log. Camelot must search the log to
find a previous modification to the region in order to restore the old value after an abort.

When a old-value/hew-value transaction wishes to modify a page, the page is first pinned
(by making a request to the Disk Manager), the server makes the change to the page, and the Dis .
Manager unpins the page when it receives the log record. For each page, the Disk Manager
maintains a pin count, and a list of log records describing the modifications made to the page
since it was last written to disk. Before writing a page to disk, the Disk Manager forces the log
records to stable storage (write-ahead logging) and waits for the pin count to become zero.

When a new-value-only transaction wishes to modify a page, the page is pinned and
modified, and the log record is sent to the Disk Manager. Unlike an old-value/new-value
transaction, however, the page remains pinned until the end of the transaction.

For performance, the pin and log requests from the server to the Disk Manager are stored in
a shared memory queue. The Disk Manager checks the shared memory queue at appropriate
times to enforce write-ahead logging. The server uses RPCs to make pin and log requests when
the queue becomes full.

When a server is on the home node, the shared memory queue is in memory physically
shared with the Disk Manager, and the Disk Manager can check the queue directly. Both the

76 cHAPrM 5

original Camelot system and CameloVrIDSM do this. For CamelotiTDSM, when a server is on a

different node, the Disk Manager must make a XDGetShMemQueue RPC to the Remote

Execution Manager on that node to get a copy of the queue. Once the Disk Manager receives the

copy, it uses the same techniques to process the queue as it does for local servers.

Each server has a separate shared memory queue buffer for pin and log requests. For

Camelot/TDSM, when several servers share a given RVM segment, the buffering may cause the

home node Disk Manager to process the pin and log requests from multiple servers in a order

different from that in which they were originally produced. However, the order in which the Disk

Manager processes the requests is still guaranteed to be correct. If two requests refer to rerions

on different pages, the order of processing does not matter. If two requests refer to regions on the

same page, the Disk Manager will pick up the first request from the first server's shared memory

queue before it allows the page to migrate to the second server. Thus, the two requests will be

processed in the proper order.

For CamelotITDSM, when the Disk Manager stores a record in the grid, it remembers only

the RVM segment to which the record belongs, and it forgets which server is responsible for the

record. This means that, if a server malfunctions and does not follow the pin-update-log protocol,

the Disk Manager does not know which server is malfunctioning, and it will kill all of the servers

using the RVM segment. This may seem like an unfair penalty for the "innocent" servers to

pay, but it simplifies server debugging in that the problems caused by a malfunctioning server are

immediately visible, instead of being delayed by the possibility of data corruption.

5.2.4.2. Coherency control

For CamelotVTDSM, the External Memory Manager is able to manage many RVM segments

simultaneously. Each RVM segment has a unique pagingPort that the External Memory

Manager receives paging requests on. When the External Memory Manager receives requests

such as memoryobjectdatawrite, it passes the requests on to the Disk Manager's

external pager routines. When the Disk Manager's external pager wishes to make a

memoryobject request to the kernel, it actually makes the request to the External Memory

Manager, which will forward the request to the appropriate kernels.

To ensure the coherency of a given RVM segment, the External Memory Manager may

migrate a page from one node to another. To do this, the External Memory Manager makes a

memoryobject_lock_request to the first kernel. This kernel responds with a

memoryobject_data write containing the page, which the External Memory Manager

passes on to the Disk Manager's external pager. The External Memory Manager does not keep a

copy of the page it just received, so it makes a memoryobjectdatarequest to the Disk

Manager's external pager.5 The Disk Manager responds with a memoryobject_

5The External Memory Manager is a library linked to the Disk Manager, so this request for the page that the External
Memory Manager just handed to the Disk Manager is not very expenive. The External Memory Manager does not
retain pages because it wishes to avoid the overhead of managing a cache of pages.

IMPLEMENTATION 77

dataprovided containing the page, and the External Memory Manager can then do the same

memoryobjectdataprovided to give the page to the second kernel.

5.2.43. Segment activation

When a RVM segment is first activated, the Disk Manager allocates a Mach port

paqingPort, and creates a thread to await external pager requests on that port.

For CamelotfTDSM, the Disk Manager asks the External Memory Manager to process the

external pager requests, and to call the Disk Manager's external pager routines as needed. As

each server using the RVM segment is started, the Disk Manager adds the server to its list of

servers using the segment, and delivers the pagingPort to the server via DSInitialize.
The server vmmaps its recoverable segment, specifying via the pagingPort that the External

Memory Manager is acting as an external pager.

5.2.4.4. Paging

The External Memory Manager presents the image of a single client kernel to the Disk

Manager's external pager routines; thus, the original Camelot external pager algorithm needed

few alterations for use with CamelotjrDSM.

One set of alterations result from moving the Disk Manager's data for a RVM segment from

the server record data structure to a separate segment record data structure. Because of this
change, the Disk Manager's external pager routines must latch the segment record, rather than the

server record, when it looks at the data. If the external pager detects an error in a request, it no
longer can kill a single offending server, but it must kill all of the servers using the offending

segment. And on receiving certain requests, such as memoryobjectdatawrite and

memory objectdataunlock, where the external pager must check the shared memory

queue in order to enforce the write-ahead log protocol, the external pager must look at the shared

memory queues of all servers using the given RVM segment

Some actions of the External Memory Manager differ from the Mach kernel, and these

differences result in additional alterations to the Camelot external pager. Occasionally, because

multiple threads proceed in the Disk Manager at different rates, the Disk Manager could ask for a

page to be flushed from main memory to the external pager after the corresponding RVM

segment has become inactive (i.e., the pagingPort has been destroyed). The Mach kernel
simply ignores the bogus flush request; however, the External Memory Manager complains. To

avoid this error, some additional checks were added to the Disk Manager to prevent it from

making the bogus flush request.

Another difference between the External Memory Manager and the Mach kernel as a client

of the external pager is the handling of offsets into the RVM segment. Each RVM segment has a

size defined via the Node Server, each page in a segment is identified by its offset within the

78 CHAPTER 5

segment. (The offset does not have to match the virtual memory address of the page. The

Camelot library tries to map the RVM segment at a fixed address for each machine architecture;

thus, RVM objects may contain pointers to other RVM objects.) Suppose max is the maximum

possible segment size, and a particular segment is of size s i z e. Then, internally, Camelot uses

offsets ranging from max - size to max - 1; i.e., segment offsets are decreasing values,

starting from the maximum segment size. When the Camelot library within a server uses

vm_map to identify a region of the server's virtual memory as a Mach paging object backed by

Camelot, it gives the Mach kernel max - size as the initial offset within the paging object.

The kernel then uses the same offsets within the paging object as Camelot uses with the RVM

segment in the messages it sends to and receives from the Camelot external pager. Unfortunately,

the External Memory Manager was not designed to deal with large offsets, and requires paging

object offsets to range from 0 to size - 1. So the Camelot library and the Camelot external

pager were changed to use small paging object offsets for vm map and the External Memory

Manager, mapping these small paging object offsets to large RVM segment offsets for use

internally. (See Figure 5-3.)

The External Memory Manager uses Mach messages to send pages from node to node.

Mach, in turn, directs each message to a remote node to the netmsgserver, which transmits the

message over a TCP connection to its counterpart on the destination node. The destination

netmsgserver extracts the message from the TCP connection, and re-sends it to the correct port on

its local node. The neunsgserver in Mach 2.5 exhibited some problems in handling a large

number of page-size messages, and, until the bug was fixed, occasionally stopped forwarding

messages over the TCP connection.

5.2.4.5. Hot Pages

If the kernel has not issued a memoryobjectdatawrite of a page for a long time,

the Disk Manager determines that the page is hot, and asks the kernel to flush the page.

However, the Disk Manager cannot write the flushed page to disk if the page is pinned. When the

kernel flushes the page, the Disk Manager holds on to the copy, and maintains a separate pin

count for the copy. Subsequent pin and log requests are not processed, but queued up in patch

records by the Disk Manager. When a transaction commits, the Disk Manager goes through the

queue of patch records and applies (to the Disk Manager's copy of the page) those patch records

that belong to the committed transaction. Thus, the copy's pin count will never be incremented

without a corresponding decrement, since pages are always unpinned by the end of transaction.

When the pin count reaches zero, the Disk Manager writes its copy out to disk.

Because the External Memory Manager presents the image of a single client kernel to the

Disk Manager, the hot page algorithm developed for the original Camelot also works under

Camelot/TDSM, with one complication. Suppose the kernel flushes the page and the Disk

Manager holds on to the copy as described al-ove. Now, if the page becomes LRU, the kernel

may do memory_objectdatawrite again. Unfortunately, the Disk Manager cannot

IliMENTATION 79

virtual memory paging object RVM segment

0

7YIT

47778000
0rrr JA •ANA ooOO•

A sm

ARVM segment ofe of sieOx~fff f y fa be fape fnt a8eve'0ades0paeata

Figure 5-3: Mapping of offsets

write the page to disk: since the Disk Manager is treating the page as hot, it must be pinned. So

the Disk Manager keeps this alternate copy of the page, too. Presumably, since the page is hot,

the kernel will soon ask for the page again, and the Disk Manager will simply return the alternate

copy to the kernel. The complication is that the original Disk Manager assumes that the kerniel

discards fth page after fth second memory_object-data--write and panics if the kernel
does anoter memory__object_data-write while the Disk Manager was holding thle

alternate copy. With Camelot/TDSM, the Disk Manager may receive another

memo ry_ob ject-data-wri te while holding the alternate copy if the page migrates from
one kernel to another. In this case, the Disk Manager simply replaces its alternate copy with a

new alternate copy instead of panicking.

5.2.4A6 Preflush

A server may ask the Disk Manager to preflush a page. Unfortunately with Camelot/I'DSM,

the Disk Manager's interface to the External Memory Manager does riot allow a page to be

flushed on a single node; instead, the page will be flushed on all nodes. Fortnately, the preflush
request is seldom used. Immediately following segment recovery, a separate request is used to

80 CHAPTER 5

flush all pages. However, for segment recovery, only one server is running, so the flush request

acts as expected.

5.2.4.7. Down servers

The original Camelot system tracks the "dirty" or "clean" state of servers that are not

presently running. (A server is "dirty" if it goes down with page records in the grid or prepared

transactions.) When the Recovery Manager asks the Disk Manager to perform a checkpoint, it

passes two lists of servers based on the log records it encountered: a list of recovered servers, and

a list of non-recovered servers. When the Node Server asks the Disk Manager for a server's
current state with DNGetServerState, it passes the server id.

With Camelot/TDSM, the "dirty" or "clean" state applies to a segment, not to a server. A

segment is "dirty" if no running server is using the segment, and when the last server using the

segment went down, there were page records in the grid or prepared trasacions for the segment.

The Recovery Manager passes lists of segments, not servers. And the Node Server includes both

server id and segment id in DNGetServerState requests.

One unintended consequence of this change was a deadlock condition between the Node

Server and the Disk Manager. In the original Camelot system, the Node Server passes only the

server id in DNGetServerState; after receiving the reply, it obtains a lock on its internal

serverentry data structure. For Camelot/TDSM, the Node Server must look in its

server-entry data structure to find the segment id; thus, it locks the server-entry before
calling DNGetServerState. In both systems, the Disk Manager obtains a latch on the

appropriate s_record_t to process DNGetServerState. The problem is that the latches

and locks may be obtained in the opposite order as a server exits: the Disk Manager latches the

appropriate srecord t, and then makes a NDGetRestartAdvice RPC to the Node

Server to see what to do next. To process NDGetRestartAdvice, the Node Server locks the

corresponding server_entry. If the Node Server is making a DNGetServerState at the

same time the server exits, a deadlock results. To avoid the deadlock, the Node Server was

changed to acquire and then drop its serverentry lock before calling

DNGetServerState.

If a segment is "dirty" when the last server using the segment goes down, Camelot attempts

to clean the segment by restarting a server using the segment, and running the segment recovery

algorithm. The server is passed a flag that tells it to exit as soon as recovery is complete. In the

original Camelot system, the Disk Manager starts the actual server. For Camelot/TDSM, the

actual server may be configured to run on a remote node which may be down. Instead of running
the actual server, Came~ot/TDSM starts a special surrogate server on the home node which exits

as soon as recovery complete.

PLENETATON 81

5.2.4. Server startup

The Disk Manager starts servers as requested by the Node Server. In the original Camelot

system, the Node Server passes a list of server ids in the DNStartDataServers RPC. The
Disk Manager sorts the list by server id, and activates each server in turn. To activate a server,
the Disk Manager obtains the server's recoveryLock, starts a paging thread for the server's
segment, and calls NDGetRestartAdvice to obtain the server's command line. The Disk

Manager forks and executes the appropriate binary after setting up the shared memory queue

and storing a Mach port dsPort in the environment.

For Camelot/rDSM, the Node Server passes a list of server ids and corresponding segment
ids in the DN StartDataServers RPC. The Disk Manager sorts the (server id, segment id)

pairs by segment id, and activates each segment in order, obtaining the segment's

recoveryLock as the segment is activated. Next, after all segments have been activated, the

Disk Manager starts each server in turn. To start a server, the Disk Manager makes a

NDGetRestartAdvice RPC back to the Node Server to obtain the command line and

Internet address. If the Internet address is non-zero, the Disk Manager uses
netnamelook__up to obtain a Mach port xPort for the Remote Execution Manager, and

makes a XD StartServer RPC to the Remote Execution Manager. Then, either the Remote

Execution Manager (for remote servers) or the Disk Manager (for local servers) will fork and

execute the appropriate server binary after (1) setting up a section of virtual memory as the shared

memory queue and (2) storing a Mach port dsPort in the environment so that the server can

contact the Disk Manager.

Each server makes a DSInitialize RPC back to the Disk Manager to obtain

descriptions of its RVM segment, the shared memory queue, and various ports, including a port
for the Disk Manager's pager (original Camelot) or the External Memory Manager

(Camelot/TDSM). After performing some initialization, the server enters a loop, awaiting a

message from the Recovery Manager.

In the original Camelot system, after all servers have been started, the Disk Manager asks the

Recovery Manager to recover all servers, passing a list of server ids via RDRe cover Servers.

After the Recovery Manager recovers each server, it seids a message to the server that causes it

to begin normal operation.

With Camelot/TDSM, after all servers have been started, the Disk Manager asks the

Recovery Manager to recover all segments, passing a list of (server id, segment id) pairs for the

first server in each segment via RDRecoverSegments. As the Recovery Manager recovers

each segment, it eventually sends a message to the first server in each segment that causes the

server to begin normal operation. After all segments have been startd the Disk Manager asks

the Recovery Manager to recover all remaining servers, passing a list of (server id, segment id)

pairs for all remaining servers in each segment via RDRecoverServers. The Recovery

Manager sends a message to each server that causes the server to begin normal operation.

82 CHAPTER 5

Finally, after all servers have begun normal operation, the Disk Manager in both original

Camelot and CamelotiTDSM releases the recoveryLocks.

5..4.9. Server termination

When the Disk Manager detects an abnormal condition or receives the appropriate request
from another Camelot component, it will terminate a server.

For CamelotiTDSM, the Disk Manager looks at the xPort in the server record to determine

if the server is running locally or on a remote node. If the server is running locally, the Disk

Manager uses the UNIX kill system call to kill the server. If the server is running on a remote

node, the Disk Manager makes a XDKillServer to the Remote Execution Manager

corresponding to the xPort to kill the server. When a server on a remote host exits (because the

Disk Manager killed the server, or for any other reason), the Remote Execution Manager notifies

the Disk Manager via a DXServerDied RPC.

5.2.4.10. System shutdown

A user of the Node Configuration Application (NCA) can make a request to the Node Server

to shut down the system. In the original Camelot system, the Disk Manager acts on a

DNShutdown request from the Node Server by making a MDShutdownCamelot RPC to

the Camelot Master Control Program (MCP). The MCP then kills all the Camelot components it

knows about.

There are two problems with the original algorithm. First, the MCP may act so quickly that

the Node Server may not have time to reply to NCA, and the user will be left hanging. Second,

servers started on remote nodes are not children of the Disk Manager, so when the MCP kills the

Disk Manager, remote servers will be left hanging. To solve these problems, two changes were

made. First, the Disk Manager replies immediately to the NDShutdown request, and waits for

five seconds before calling MDShutdownCamelot. Second, after calling
MDShutdownCamelot, the Disk Manager starts killing each server via the UNIX kill
system call or a XDKillServer RPC to the Remote Execution Manager as appropriate.

5.3. Recovery Management

The Recovery Manager has two major tasks with respect to returning a RVM segment to a

transaction-consistent state. When a transaction aborts, the Recovery Manager scans the log to

undo the effects of the transaction. When a server crashes, the the Recovery Manager scans the

log to redo the effects of committed transactions.

In the original Camelot system, a RVM segment may be used by only one server, and the

Recovery Manager treats recovery of a segment as though it were recovery of a server. For

IMPLEMENTATION 83

CameloVtiDSM, many servers can use a given RVM segment, and the Recovery Manager
distinguishes between server recovery and segment recovery. Many of the internal and external
Recovery Manager interfaces and log record formats which contain a server id in the original
design are changed to use a segment id for CamelotITDSM.

When a server is started, the Recovery Manager receives a Mach port that the Recovery
Manager may use to send messages to the Camelot library in the server. The Recovery Manager
stores this port with its associated server id in a s_port rec. For CamelotVFDSM, all of the
s_port_recs for a particular RVM segment are linked together, and a segmentrec

contains the segment id and a pointer to the list. When the Recovery Manager wishes to perform
some action on a RVM segment, it uses a hash table to find the appropriate segment_rec. If
the Recovery Manager wishes to send a message to a particular server, it searches the list of
s_portrecs to extract the correct port; otherwise, it uses the port in the first s_portrec.
If the message fails (because the server is down, for example), the Recovery Manager can pick
another sport rec and repeat the message.

Transaction abort takes two forms, depending on whether the transaction is initiated using
old-value/new-value logging, or new-value-only logging. To limit recovery times, the Disk
Manager may initiate a special form of new-value abort, called backstopping, which does all the
work needed to determine the proper old value, but does not actually abort the transaction.

5.3.1. Old-value/new-value abort

In the original Camelot system, the Transaction Manager calls RTAbort to tell the
Recovery Manager to abort a transaction. Once the Recovery Manager identifies the transaction
as old-value/new-value, it asks the Disk Manager via DR_GetTranLSNs for a list of all log
records created by the transaction. The Recovery Manager looks in each log record to identify
the server which created the record, and buffers up a request to undo the modification. The
requests are sorted by server id. When all requests have been buffered, or the buffer is full, the
Recovery Manager calls the server via SR_.RestoreBatch to undo the modifications. Next,
the Recovery Manager notifies the Disk Manager with a DRUndoOvnv call so that the Disk
Manager may restore its internal data structures.

For CamelotlrDSM, the algorithm is similar, except that the Recovery Manager extracts
segment ids (not server ids) from log records, sorts requests by segment id, and selects an
arbitrary server in each segment to undo the modifications via SRRestoreBatch. Because
this algorithm may result in one server undoing a modification made by another, the Disk
Manager must look at the shared memory queues of all servers using the RVM segment before
processing the DRUndoOvnv.

84 CHAPTER 5

S.3.2. New-value-only abort

In the original Camelot system, new-value-only abort is initiated in the same manner as
old-value/new-value abort. Once the Recovery Manager identifies the transaction as new-value-
only, it asks the Disk Manager via DR GetTranLSNs for a list of all log records created by the
transaction. The Recovery Manager scans these log records to build a list of pages that were
modified by the transaction. Next, the Recovery Manager asks the Disk Manager via
DRGetObjectLSNs for a list of all log records that have modified any of these pages since
each page was last written to disk. From this new list of log records, the Recovery Manager
determines the values to restore on each page, and buffers up requests to restore the values. The
requests are sorted by server id. When all requests have been buffered, or the buffer is full, the
Recovery Manager calls the server via SRRestoreBatch to restore the values. Again, the
Disk Manager is notified via DRRestore.

For Camelot/TDSM, the algorithm is the same, with the substitution of segment id for server
id. Again, the Recovery Manager selects an arbitrary server in each segment to restore the values
via SRRestoreBatch.

In both original Camelot and Camelot/TDSM, the backstopping algorithm proceeds as new-
value-only abort, except that the Recovery Manager sends the values to the Disk Manager via
DRBackstop instead of calling the server.

5.3.3. Segment and server recovery

The segment recovery algorithm of Camelot/TDSM evolved from the original Camelot
server recovery algorithm, primarily substituting segment ids for server ids. The Disk Manager
sends a list of segments needing recovery via the DRRecoverSegments RPC to the
Recovery Manager. If the Recovery Manager encounters a fatal error while trying to recover a
given segment, it makes a DR KillSegment RPC to the Disk Manager, which will kill all of
the servers using the segment.

Segment recovery is performed when there are no servers using a segment. The Disk
Manager starts one server for each segment it wishes to recover, and sends a request to the
Recovery Manager.6 To recover a segment, the Recovery Manager reads the log in reverse order
and identifies changes made by committed transactions that are not reflected in the disk copy of
the page. The Recovery Manager buffers up requests to redo these changes. The Recovery
Manager also identifies changes made by aborted transactions that were already written to the

6*nly one server may be using a given segment during segment recovery. The reason for this is twofold. First, the
segment will not rewch a tramaction-consistent state until recovery completes; thus. even if mother server were
running, it would have to wait before it could perform useful work. Second, some of the algorithms in the Canelot
library (specifically, the algorithm for recovering the recoverable heap) assume that only one thread is running during
recovery.

IMPLEMENTATION 85

disk copy of the page. The Recovery Manager buffers up requests to undo these changes. When

the buffer is full, or all requests have been buffered, the Recovery Manager sends the buffer to the

first server using the segment via SRRestoreBatch. After all recovery actions has been

performed, the Recovery Manager sends a SRRecoveryComplete message to the first
server in ezch segment it has recovered.

The segment recovery algorithm of CamelotTDSM has a few differences from the original

Camelot server recovery algorithm. The most obvious difference is that CamelotVTDSM keeps

lists of segments for recovery, not lists of servers. Server ids no longer appear in prepare or

checkpoint log records, and a segment id was added to the undonmodify log record. When

processing a backstop record, which includes a list of modifications, the segment recovery

algorithm must check every item in the list to see if it refers to a RVM segment that was deleted;

the original Camelot server recovery algorithm needs only to check the header of the backstop
record to see if the server had been deleted.

Server recovery in Camelot/TDSM is performed when a segment is already active; that is,

there are aii'ady servers using the segment. When the Disk Manager starts a server in an active

segment, it sends a RDRecoverServers request to the Recovery Manager. The server

recovery algorithm is not fully implemented in Camelot TDSM; the Recovery Manager merely

sends a SR_RecoveryComplete message to the server. This algorithm is correct in that
RVM remains in a transaction-consistent state, but there is a problem. If a node crashes, any

pages it had exclusive access to become unavailable until the next segment recovery. The server

recovery algorithm should utilize information in the log and paging store to reconstruct

transaction-consistent pages.

5.4. Configuration Management

The Node Server is a distinguished Camelot server that maintains two databases in its

recoverable virtual memory segment. One database contains configuration information for

Camelot servers. The other database controls the allocation of paging storage to RVM segments.

(The Node Server's RVM segment is a fixed size, set at the time the Disk Manager is compiled.)

The Node Configuration Application (NCA) is an application, included with the Camelot system,

that provides a user interface to the RPC interface of the Node Server. The original Camelot

Node Server and NCA were modified to support remote execution, multiple servers per segment,

and segment deletion for CamelotTDSM.

To support execution of a server on a remote node for Camelot/TDSM, the Node Server
RPCs NAAddServer and NAShowServer, and corresponding NCA commands

addserver and showserver have a host name parameter to specify the node on which a

server is to execute. A new Node Server RPC NASetSite, with corresponding NCA

command setsite, allows a user to change the host name of an existing server. The Node

86 CHAPTER 5

Server stores the host name in a server entry in the Node Server's RVM segmenL (Because

this increases the size of the serverentry, the Disk Manager is compiled with a larger fixed

size for the Node Server's RVM segment.) When the Disk Manager makes a

NDGetRestartAdvice RPC to the Node Server, the Node Server translates the host name
and returns an Internet address to the Disk Manager.

When configuring a server, a user of NCA must select a small integer as the server id, and a

small integer as the segment id. In the original Camelot system, the segment id can be any

unused segment id. For Camelot/TDSM, a user of NCA who is configuring a server may select a

segment id that is already assigned to another server, as long as that server is owned by the same

user. When two servers that share a segment id run concurrently, they share a RVM segment.

In the original Camelot system, the Node Server allows a single server to have an arbitrary

number of segments, although this is not supported by the NCA or the Camelot library. To locate

the segments assigned to a given server, the original Camelot Node Server scans the entire list of

segment descriptors in its RVM segment, and extracts those segment descriptors containing the

desired server id. For Camelot/TDSM, the server id is no longer in the segment descriptor,
because a given segment may be assigned to an arbitrary number of servers. Thus, the

Camelot/TDSM Node Server uses a different algorithm and data structure to locate the segments

assigned to a given server (although multiple segments per server are still not supported by the

rest of CamelotlTDSM). A single server may have up to NODE MAXSEGSPERSERVER

(currently 4) segments assigned. The segment ids for a given server are stored directly in the

server's serverentry, so the Node Server does not need to scan the list of segment

descriptors to locate the descriptors referring to the given server.

The Node Server does not supply an interface for deleting a segment. Instead, a user may

delete individual servers. When no more servers reference a given segment, the segment is

deleted. In the original Camelot system, when a server is deleted, the Node Server asks the Disk

Manager to write a logserverdelete record to the log. When the Recovery Manager

encounters this record during server recovery, it ignores any previous log records referring to the

server. In Camelot/TDSM, the Recovery Manager is responsible for recovering segments, not

servers. Thus, when a server is deleted, no record is written to the log. Instead, when the last

server referencing a segment is deleted, the Node Server asks the Disk Manager to write a

logsegment delete record to the log, so the Recovery Manager will ignore any previous

records referring to the segment.

IMLEMENTATION 87

5.5. Communication Management

The Camelot Communication Manager provides a name registration and lookup service for

Camelot servers, and tracks the spread of transactions from node to node as Camelot applications

and servers make transactional RPCs to other nodes. With TDSM, Camelot servers access data
via a shared RVM segment, and are not expected to make transactional RPCs. Thus, the primary

function of the Communication Manager under CamelotlrDSM is the name service.

When a server is started by the Disk Manager (either as a child of the Disk Manager or, with

Camelot/TDSM, as a child of the Remote Execution Manager), it receives in its environment a

port for contacting the Disk Manager. It uses this port to make a DSInitialize RPC to the
Disk Manager. In the reply to this request, the Disk Manager includes ports that the server may

use to call other Camelot components, such as the Transaction Manager and the Master Control

Program. In the original Camelot system, the DSInitialize reply does not include a port

for the Communication Manager. Instead, the server must use netname_lookup to ask the

Mach nehnsgserver to return a port for the local Communication Manager.

For Camelot/TDSM, a server on a remote node cannot use netnamelook up to obtain a
port for the Communication Manager because there might not be a Communication Manager on

the remote node. Even if a Communication Manager is running on the remote node, it does not

know that the server is using a RVM segment on a different node. Thus, for CamelotVTDSM, the

DS_Initialize reply includes a port for the Communication Manager on the home node. As

a result, a server running on a remote node is registered with the Camelot name service on the
home node, and appears to the rest of the world as if it were running on the home node. This is

not inappropriate, since the paging storage, log, and transaction services for the server all reside

on the home node.

Unlike servers, Camelot applications are not started by the Disk Manager, so an application

must use netname_lookup to locate the Communication Manager. As implied above,

Camelot/TDSM allows a server to run on a using node that does not have a Communication
Manager. To reduce RPC costs, a user may wish to run a Camelot application on the same node

as this server, but without a Communication Manager, the application cannot run. To remedy this
problem, the Remote Execution Manager can act as a surrogate for the Communication Manager
on another node. A command-line option tells the Remote Execution Manager the name of the

node to which it is to forward all Communication Manager requests. To accommodate forwarded

requests, the Communication Manager on the home node checks each incoming request to see if

it includes a port that the Communication Manager sent out in a previous message; if so, the

Communication Manager breaks the forwarding loop, and handles the request itself.

88 CHAERS 5

5.6. Log Management

The Camelot Log Manager is a library that is linked with the Recovery Manager and the

Disk Manager. For Camelot/rDSM, the original Camelot Log Manager is used. Because of the

tight coupling between buffer management and log management, and between recovery and log
management, the functions of the Log Manager are discussed above in Sections 5.2 and 5.3.

The primary difference between logging in the original Camelot system and in

Camelot/TDSM is the fact that log records for a given segment may be generated by several

seivers, and thus buffered in several shared memory queues. In the original Camelot system, the

Disk Manager need inspect the shared memory queue of only a single server for most operations.

For Camelot/TDSM, the Disk Manager must inspect the shared memory queue of all servers

using a given segment when it receives any external pager requests for the segment, or when it

receives DRUndoOvnv, DRRestore, or DRCheckpoint RPCs for the segment from the
Recovery Manager.

5.7. Transaction Management

The Camelot Transaction Manager is a protocol engine that handles distributed agreement.

The original Camelot Transaction Manager needs no modifications for Camelot/TDSM. To the

Transaction Manager, remote servers appear to execute on the home node, since the log, paging

store, and other Camelot services are on the home node.

The only change made to the Transaction Manager for Camelot/TDSM was to fix a

previously existing bug, a typo where a conditional test was inverted. The condition appears

more frequently with Camelot/TDSM because the RPCs that the Transaction Manager makes to a

server take more time when the server is not on the home node.

5.8. Summary

This chapter has described the changes made to the original Camelot system to support

TDSM. The algorithms and data structures used in two new components, the Lock Manager and

the Remote Execution Manager, as well as algorithms and data stuctures used in existing

components were presented.

Table 5-1 illustrates the number of lines of code in the Camelot system. The Camelot library

had the most changes, primarily to support the distributed Lock Manager, and the Disk Manager

also had many changes (as described in Section 5.2). Omitting the External Memory Manager,

which was provided by Joe Barrera, I added 7,626 lines of code to Camelot, and changed 4,144

lines.

IMPLEMENTATION 89

Component Original Added Changed

Disk manager 14,382 1,671 1,271

Recovery manager 14,796 126 736

Transaction manager 29,573 5 21

Communication manager 3,324 14 29

Log manager 48,942 98 142

Node server 3,969 260 254

Node configuration 1,835 49 20
application

Library 36,681 1,809 1,671

Control programs 6,532 10 3

Lock manager 2,490

Remote execution 1,104
manager

External memory manager 1 9,535

Total 153,502 17,161 4,144

This table shows the number of lines of code (including comments) in the original Camelot
system, the number of lines added to support TDSM, and the number of lines of the original
system that were changed to support TDSM. "Control programs" includes the initialization
program Camelot, and the Master Control Program. "Library" includes the Camelot low-level
library -icam and the high-level library -icamlib.

Table 5-1: Lines of code

Chapter 6

Performance

This chapter measures the performance of the transactional distributed shared memory

(TDSM) implementation described in Chapter 5. Since the implementation is a prototype to

prove the feasibility of TDSM, I do not expect to show that this implementation of TDSM

performs better than any alternatives. Rather, the purpose of the measurements is to understand

the system and the relative costs of operations in the system. An analysis of the measurements

shows the implications of choices made in the design of the system, aids in directing the design of

future systems, and allows the performance of these future systems to be predicted. The

predicted good performance of these future systems supports the thesis that TDSM is useful.

Although the numbers reported in this chapter are measured accurately, the analysis of

individual operations is somewhat imprecise due to concurrency between system components.

Nevertheless, the analysis is qualitatively correct, and I believe that the information gleaned from
the analysis is accurate. More precision could be obtained through stochastic modelling.

The performance measurements are done in three sets. In the first set, a set of carefully

chosen transactions is measured under various conditions. These measurements are analyzed to

obtain the cost of the relevant operations. In the second set, the ET1 benchmark is used to
measure the throughput of the system. The measured throughput is then compared to the

throughput that can be predicted based on the analysis of the individual operations. The final set

of performance measurements compares an application using function shipping to an application
using data sharing.

6.1. Experimental Environment

All experiments were performed on one to three IBM RT/PC APC workstations, running

Camelot 1.0 (release 83) on top of Mach 2.5 (versions CS7k through CS7r)7. Each workstation

has 12 megabytes of main memory and is rated at approximately 2.5 VAX MIPS. The
workstations are connected by a 4 megabit/second token ring that also connects several other

unrelated workstations. All workstations were running in multi-user mode with the usual set of

7The kenul vemmioa varied only in bug fixes to authenticauon and disnibuted file system mechanisms that were not
involved in the experiments.

91

92 CHAFER 6

system daemons during the experiments. In addition to the processes required to perform the

experiments, some display processes were running to passively monitor the tests. However,

during the tests, no one was actively using the workstations running the experiments.

The choice of the IBM RT/PC as the basis for the experimental environment may appear

unreasonable. By today's standards, the IBM RT/PC is slow and obsolete. However, at the

inception of this work, the standard set of workstations available at CMU included the Sun 3, the

Microvax II, and the IBM RT/PC. Camelot and Mach were developed on these three

architectures. Shortly after I joined the Camelot project, the principal investigator, all of the

research programmers, and most of the senior graduate students left the project for greener

pastures. As a result, Camelot was never ported to new architectures as they became available,

even though another research project attempted to do so, but failed (in part due to bugs in the
Mach kernel). Nevertheless, Camelot and Mach on the IBM RT/PC proved to be a stable

platform for developing a TDSM system, and the the IBM RT/PC is a reasonable choice for the

purpose of proving feasibility. For the purpose of proving utility, the measurements in this

chapter allow the performance of the system to be characterized in terms of "primitive

operations." In Chapter 7, the cost of these primitive operations is extrapolated to modem

hardware to predict the performance of TDSM.

6.2. Primitives

To provide a basis for understanding the performance of various operations, the

characteristics of the underlying platform are measured:
" Interprocess communication (IPC): including CPU time and network transfer time

for remote messages, and CPU time only for local messages.

"* Disk V/O: rotational latency, seek time, and transfer rate.

"* Page fault handling: operating system overhead of the external pager interface.

These primitive operations are independent of Camelot and TDSM, and are a function of the

workstation, network, and kernel. The cost of these primitives is measured by executing the

primitive 1000 times, recording the elapsed time, and dividing by the number of repetitions. (The

primitive is repeated 1000 times because the clock resolution is larger than the, duration of a

single primitive operation.)

Using this technique, the latency for sequential 4096-byte reads or writes (on a UNIX raw
partition) is determined to be 21.1 milliseconds; sequential 512-byte reads or writes take 17.2

milliseconds. If we assume that the time for a read or write is linear in the size of the block, then

the rotational latency of the disk is 16.6 milliseconds, and data is transferred at a rate of 1.09

microseconds per byte. The average rotational latency for random accesses should be half that of

sequential accesses, or 8.3 milliseconds. A seek followed by a read or write of 4096 bytes takes

35 milliseconds on average. Subtracting the data transfer time (4.5 milliseconds) and the average

rotational latency (8.3 milliseconds) produces an average seek time of 22 milliseconds.

PERFORMANCE 93

Message Loca Remote
times times
(Ms.) (Ms.)

XDGet ShMemQueue (RPC; 80 bytes) 4.09 28.4

XDGet ShMemQueue (RPC 0 bytes) 2.50 17.2

HSLock (RPQ 2.66 17.7

STVote (RPC) 2.35 16.2

STCommit .89 13.4

TSJoin(RPC) 2.29 16.1

TAGetTids (RPC; tid) 2.82 22.3

TAEnd(RPC 2.43 16.1

memoryobject_lockrequest+ 3.96 22.6
memoryobject_1ockcompleted

memoryobjectdatarequest+ 6.07 186.2
memory_object_data_provided
(4096 bytes)

memoryobject_datawrite 3.70 185.6
(4096 bytes)

cpa_read_s (RPC; 32 bytes) 2.30 17.1

cparead1 (RPC; 1024 bytes) 2.88 24.4

The "Local" column reports elapsed times when both processes are on the same workstation.
The "Remote" column reports elapsed times when sender and receiver are on different
workstations. The notation "RPC" indicates that the time includes both the request and reply
messages.

Table 6-1: Representative IPC times

To measure raw IPC times, two processes are used. One process uses the MIG-generated

server code to receive a message, call an empty service routine, and send a message in reply if

one is required. The other process uses MIG-generated stubs to generate and send a message, and

await a reply if the request is a remote procedure call (RPC). This latter process starts a timer,

makes a number of requests in sequence (200 requests if the processes are on different

workstations, 1000 requests if they are on the same workstation), and records the time elapsed on

the timer. This time is then divided by the number of requests to determine the cost of the
primitive; some IPC times that ame used later in the chapter are given in Table 6-1.

The cost of a message round depends on the size, type, and number of parameters in both the

request and reply. Thus, for example, Table 6-1 includes two lines for XDGetShMemQueue

for two different parameter sizes, and the times for HSLock and STVote differ because of
the different parameters each RPC uses. When two processes are on the same workstation, and

94 CHAPTER6

the message includes a pointer to a large region of memory, Mach uses the copy-on-write

optimization to avoid copying the large region. Using the virtual memory hardware, Mach maps

the region read-only into both the sender's and receiver's address space. The region is copied

only if (and when) one of the processes attempts to modify the region. (Thus, the

memoryobject_data_write call is very fast locally since the data need not be copied.) Of

course, when the two processes are on different workstations, Mach cannot avoid copying the

data. (Unfortunately, Mach 2.5 copies the data several times in this case. This accounts for the

huge values for memoryobject_dataprovided and memoryobject_

data_request.)

In the Mach external pager interface, the primitives of interest are page in and page out. An

external pager is not required to access the disk while satisfying requests, so the time measured

should include page fault and IPC times, but exclude any disk activity. To measure these times,

two processes are used. The external pager process responds to each memoryobject_

data_request message with the same memory-resident page. In response to all other

messages, it does nothing. The client process cycles through all pages in its address space,

reading or writing one byte on each page. For write tests, the client is run through enough cycles

to ensure that main memory is filled with dirty pages, so that each time it accesses a new page,

the kernel must send an old page out to the external pager. On a workstation with 12 megabytes

of main memory, the experiment is guaranteed to reach steady state after accessing 3000 pages

(4096 bytes per page). After reaching steady state, the client process records the elapsed time to

read or write 4000 pages. Using this technique, the time for the client to read fault, and the kernel

to request and receive a page from the external pager is determined to be 11.2 milliseconds. The

time for the client to write fault, and the kernel to page out an old page, to request and receive a

new page from the external pager is determined to be 14.1 milliseconds. These activities use the

memory_object messages given in Table 6-1. Thus, processing a page fault takes about 5

milliseconds plus the IPC time.

6.3. Operation Costs

Rather than characterizing the performance of the system by reporting the latency of a

"typical" transaction, I use the primitive analysis methodology of Spector and Daniels [Spector

and Daniels 85]. The goals of this methodology are to predict the performance of a transaction by

identifying the costs of its component operations, to model the cost of these operations in terms of

the underlying primitives, and to predict the system's performance when primitive costs are

altered by changes to the system's configuration and algorithms. The performance of a

transaction can be predicted by summing the costs of its component operations. To construct the

model of operation costs, the following steps are followed:

1. Measure the cost of the underlying primitives (as reported in Section 6.2.

2. Measure the cost of the component operations.

3. Based on an understanding of the system and its algorithms, analyze each

PERFORMANCE 95

component operation to determine the number of each type of primitive used by the
operation. The remaining time not accounted for by the primitives is CPU
processing time. Express the operation time as a linear sum of the primitive times
and CPU time.

When an operation cost cannot be measured directly, the methodology instead measures the

incremental latency added to a transaction when a single operation of the specific type is added to

the work performed by the transaction. To determine the incremental latency of a operation, the

latency of two test transactions is measured: one transaction executes the operation m times,

another transaction executes the operation n times. The incremental latency is then the difference

of the transaction latencies divided by the difference of m and n. Subtracting the latency of the m

or n operations from the total latency of the transaction then gives the transaction overhead,

latency that can be attributed to initiating and committing a transaction of a particular type.

(Transaction overhead varies with the type of transaction and may not be directly measurable.

For example, a read-only transaction can be committed with no log force, while an update

transaction requires a log force. It is not possible to directly measure the overhead of an update

transaction since a transaction that performs zero writes is considered read-only.) This method of

determining incremental latency assumes that the latency of a test transaction is a linear function

of the number of operations. Operations must be chosen carefully to ensure the validity of this

assumption.

The latency of an operation may include several components that can occur concurrently.

For example, a network page fault may include processor time to id-ntify the fault and construct a

request message, network transfer time to send the message to another node, time on another
processor to interpret the received message and determine the page's location on disk, waiting

time to allow a previous disk operation to complete, and seek and transfer time to read the page

from disk. The choice of operations should separate these components whenever possible.

This section reports operation costs in many different configurations so as to be able to
describe the latency of many types of transactions. However, only two of these configurations,

configurations 3 and 5 (Figures 6-3 and 6-5) are significant in the remainder of the dissertation.

The key operations to keep in mind are 32-byte non-paging reads, 32-byte non-paging writes,

paging reads, paging writes, read-only transaction overhead, and update transaction overhead.

6.3.1. Experimental parameters

Many parameters affect the performance of the system and must be considered when

choosing operations. For example, accessing a region of virtual memory is much cheaper when

the region is already present in main memory than when a page fault must be taken. In the

original evaluation of Camelot's virtual memory system, Eppinger varied his experimental

parameters along four dimensions [Eppinger 89]:

9 Region size. Accessing a larger region takes longer than accessing a smaller region.

96 CHAPTER 6

However, the system may impose a smaller cost on accesses to subsequent bytes
after accessing the first byte of a region. Measuring accesses to different region sizes
allows the incremental cost of each additional byte to be determined.

"* Non-paging vs. paging. A non-paging test measures the cost of reading or writing a
region that is currently cached in physical memory. A paging test incurs the
additional cost of reading the page from disk and possibly writing back a dirty page.

"* Reads vs. writes. A write is much more expensive than a read because modifications
must be logged to stable storage by the end of the transaction, and modified pages
must eventually be written back to non-volatile storage.

"* Virtual memory vs. buffer pool. Eppinger compared the virtual memory
implementation to an equivalent buffer pool implementation to demonstrate the
practicality of the virtual memory approach.

Camelot with TDSM does not include a buffer pool implementation of TDSM, so this parameter

is not considered in this dissertation. However, some additional dimensions are of interest:

"• Local servers vs. remote servers. A local server is one that is running on the same
node as Camelot; a remote server runs on a different node. Many latencies are higher
for remote servers because of longer communication times. Comparing the latencies
for local and remote servers identifies the communication component of the
performance model.

" Local locks vs. distributed locks. When two servers share a recoverable segment.
they must share locks via RPCs to the Lock Manager for correct operation. When
only one server uses a recoverable segment, the lock library within the server can
independently grant all locks.

" External Memory Manager vs. no External Memory Manager. If all servers run on
the same node, the Camelot external pager can bypass the External Memory Manager
and communicate directly with the Mach kernel. Varying this dimension allows the
overhead of the External Memory Manager to be measured.

" Camelot with TDSM vs. original Camelot. Camelot with TDSM provides a superset
of the original Camelot functionality. Comparing the performance of the two
implementations identifies the overhead incurred by applications that do not use the
additional functionality.

"* Multiple servers vs. one server. To demonstrate the viability of data sharing, the cost
of multiple servers sharing a TDSM segment must be measured.

The parameters are not completely independent. The original Camelot does not support remote

servers, multiple servers, distributed locking, nor the External Memory Manager. Camelot with

TDSM must use the External Memory Manager to support multiple servers.

The operations of interest in characterizing TDSM are reads and writes (paging and non-

paging), and transaction overlhead (initiate and commit). To measure these operation times using

the primitive analysis methodology, I ran a number of tests written in the Camelot Performance

Analyzer (CPA) language [Eppinger 871. The CPA tests are executed by an interpreter, which

initiates a transaction and then makes RPCs to one or more Camelot servers to perform operations

on recoverable virtual memory. For most tests, the servers perform multiple operations for each

RPC, since the cost of a single operation is small relative to the cost of an RPC. Eight different

configurations are used during the course of the tests:

PERFORMANCE 97

node N1
CCPA

Local saver, original Camelot. Remote server, distributed locks,

Figure 6-1: Test conf iCaImeloVTDSM and External MemoryFigue 6-: Tet cnfigratin 1Manager.

node N I Figure 6-5: Test configuration 5
A

I D ý I

Local server, Camelo/TDSM. __ V_____ I

Figure 6-2: Test configuration 2 Two remote servers, distributed locks,

rode N1 CamelohlTDSM and External Memory

lCPA siwerA Manager.

Figure 6-6: Test configuration 6

node N1

CauOtVTDSM WNIsreA
XMM Cost lock- C°PA -t • I

Local server, distributed locks,
Camelot/TDSM and External Memory

Manager.

Figure 6-3: Test configuration 3 Two local servers, interleaved calls,

oode NI' distributed locks, Camelot/TDSM and

IrmwA w A External Memory Manager.

Figure 6-7: Test configuration 7

lCPA •', s"CPA

Two local servers, distributed locks, ,,oe

CamelotMTDSM and External Memory e•. dW

Manager. _ _I

Figure 6-4: Test configuration 4 Two remote servers, interleaved calls,

distributed locks, CameloVTDSM and
Exteanal Memory Manager.

Figure 6-8: Test configuration 8

98 CHAPTER 6

1. The CPA interpreter makes an RPC to a server which accesses a recoverable
segment using the original Camelot. All of the processes (interpreter, server, and
Camelot) are on the same node. Locks are granted locally by the library in the
server. This confiuration provides a baseline for comparison with the other
configurations. (Figure 6-1.)

2. The CPA interpreter makes an RPC to a server which accesses a recoverable
segment using Camelot with TDSM, but without the External Memory Manager.
All processes are on the same node and locks are granted locally. Except for a
different version of Camelot, this configuration is identical to configuration 1, and a
comparison of the results shows the performance impact of the changes to Camelot.
(Figure 6-2.)

3. The CPA interpreter makes an RPC to a server which accesses a recoverable
segment using Camelot with TDSM and the External Memory Manager. 'll
processes are on the same node. Locks are granted via the Lock Manager. This
configuration adds distributed locks and the External Memory Manager to
configuration 2; comparing results in the two configurations identifies the overhead
imposed by distributed locks and the External Memory Manager. (Figure 6-3.)

Two test variants are used in this configuration. In one variant, the server performs
several operations on each RPC, for comparison with configuration 2. In the other
variant, only one operation is performed on each RPC. This variant provides a
baseline for comparison with configuration 7.

4. Two servers share a recoverable segment using Camelot with TDSM and the
External Memory Manager. Two CPA interpreters, one for each server, make
RPCs to their respective servers concurrently. All processes are on the same node.
The servers physically share memory, and locks are granteJ via the Lock Manager.
This configuration adds a second CPA interpreter and server to configuration 3.
Comparing the results of the two configurations shows the cost of sharing a
segment within a node. (Figure 6-4.)

This configuration is used only for read operations. Because two servers can cache
a read lock simultaneously, the order in which transactions obtain locks does not
matter, and the two servers may execute concurrently with no coordination between
the two. This configuration cannot be used to obtain meaningful results for write
operations, because the servers must ccatend with each other to cache a write lock.
The order in which servers obtain locks does matter, because it is much less
expensive for a transaction to obtain a lock when the lock is already cached by the
server where the transaction is running. Thus, to measure write operations, the two
servers must be coordinated by a single CPA interpreter.

5. A CPA interpreter on node N2 makes an RPC to a server, also on node N2. Via the
Remote Execution Manager, the server accesses a recoverable segment on node NI
using Camelot with TDSM and the External Memory Manager. Locks are granted
by the Lock Manager. This configuration modifies configuration 3 by moving the
CPA interpreter and server to a different node. A comparison of the results shows
the cost of accessing a recoverable segment remotely. (Figure 6-5.) As in
configuration 3, two test variants are used, one. for comparison with configuration 8.

6. A server on node N2 and a server on node N3 share a recoverable segment on node
NI using Camelot with TDSM and the External Memory Manager. A CPA
interpreter on node N2 and a CPA interpreter on node N3 make RPCs to the server
on their respective nodes concurrently. The External Memory Manager maintains
,he coherency of the shared segment, and locks are granted via the Lock Manager.

PERFORMANCE 99

This configuration adds a second CPA interpreter and server on another node to
configuration 5, and modifies configuration 4 by moving the CPA interpreters and
servers to two separate nodes. A comparison of the results of these configurations
shows the cost of sharing a segment between nodes. (Figure 6-6.) As with
configuration 4, this configuration is used only for read operations.

7. Two servers share a recoverable segment using Camelot with TDSM and the
External Memory Manager. A single CPA interpreter interleaves RPCs to each
server, so that an operation on one server is always followed by an operation on the
other server. All processes are on the same node. The servers physically share
memory, and locks are granted via the Lock Manager. This configuration is similar
to configuration 4, but it uses one, instead of two, CPA interpreters, so that write
operations may be measured. Each server performs only one operation per RPC. A
comparison of the results of this configuration with configuration 3 shows the cost
of sharing a segment within a node. (Figure 6-7.)

8. A server on node N2 and a server on node N3 share a recoverable segment on node
NI using Camelot with TDSM and the External Memory Manager. A single CPA
interpreter on node NI interleaves RPCs to each server, so that an operation on one
server is always followed by an operation on the other server. The External
Memory Manager maintains the coherency of the shared segment, and locks are
granted via the Lock Manager. This configuration is similar to configuration 6, but
it uses one, instead of two, CPA interpreters, so that write operations may be
measured. A comparison of the results of this configuration with configurations 3,
5, 6, and 7 shows the cost of sharing a segment between nodes, including inter-node
page invalidations. (Figure 6-8.)

6.3.2. Non-paging tests

These tests measure the incremental cost to a transaction of reading or writing a region of a

virtual memory page that is already present in physical memory. Once a page is cached in

physical memory, there should be little or no difference between various configurations in the

cost of reading a region; however, write operations and the overhead per transaction should be

higher for remote servers than for local servers.

For non-paging operations, the following test is used:

repeat t times
begin transaction

make one RPC to server to do
repeat k times

lock & read or write x bytes on the same page
return from RPC

end transaction

6.3.2.1. Non-paging reads

For these tests, the number of transactions t is either 100 or 500 depending on the

configuration. Within each configuration, 9 sets of parameters are used, independently varying

both the size x of the virtual memory region (32, 128, and 1024 bytes) and the number of times k

each transaction accesses the region (50, 100, and 200 times). For a given configuration and set

100 CHAPTER 6

of parameters x and k, the fillowing methodology is used. Run the test and measure the elapsed

time. Divide the elapsed time by t, the number of transactions, to determine the average cost per

transaction. Repeat the test many times to ensure the system is in a steady state (locks and pages

cached, disk storage allocated). Repeat the test several times to obtain several measurements of

the average time per transaction, and record the median value of these measurements. (The

median measurement is used in a attempt to discard statistical outliers; for example, tests where

the disk was particularly well synchronized with the CPU, or when the network was especially

congested. But note that the median measurement is always close to the minimum measurement

in non-paging tests.)

Configuration trans. 32 byte 128 byte 1024 byte fixed variable
overhead read read read cost per cost per

(Ms.) (Ms.) (Ms.) (Ms.) read byte(Ms.) (Ps.)

1. Local server 9.5 .294 .313 .461 .290 .167
original Camelot
(t=-500)

2. Local server 9.5 .313 .332 .473 .310 .160
CamelotiTDSM
(t=500)

3. Local server 10.0 .307 .326 .480 .303 .173
Camelot/TDSM/XMM
(t=100)

4. Two local servers 10.0 .304 .345 .490 .311 .175
Camelot/TDSM/XMM
(-lo00)

5. Remote server 57.0 .279 .320 .460 .285 .172
CamelotWTDSM/XMM
(t=100)

6. Two remote servers 62.5 .280 .307 .460 .279 .177
Camelot/TDSM/XMM
(t=l00)

The "trans. overhead" column reports the computed time to initiate and terminate a read-only
transaction in each configuration. The "32 byte read," "128 byte read," and "1024 byte read"
columns record the incremental cost to read a region of the given size. The "fixed cost per read"
and "variable cost per byte" columns are computed from a linear regression on the 32, 128, and
1024 byte columns.

Table 6-2: Non-paging read times

Next, for a given configuration and given region size x, the measurements of average
transaction times vs. different values of k (the number of operations per transaction) are entered

into a linear regression computation to determine the overhead per transaction and incremental

cost per x-byte read operation. (In configurations 4 and 6, the linear regression uses 2k instead of

k, since the two servers collectively execute twice as many transactions in a given time period.)

PERFORMANCE 101

These incremental costs and overheads are reported in Table 6-2 in the "trans. overhead," "32

byte read," "128 byte read," and "1024 byte read" columns.

Finally, the incremental times per read operation of 32, 128, and 1024 byte regions are

entered into a linear regression computation to determine the fixed cost per read and variable cost

per byte. These fixed and variable costs are reported in Table 6-2 in the "fixed cost per read"

and "variable cost per byte" columns. The correlation coefficient for all linear regressions is

greater than 0.99. (Results for configurations 7 and 8 are reported in subsection 6.3.4.) The

measured times per transaction include the time to obtain a lock on the object.

Eppinger reported a fixed cost of .016 milliseconds per read with a variable cost of .163

microseconds per byte for non-paging virtual memory reads. The results in Table 6-2 for

configuration 1 using substantially the same version of Camelot are .290 milliseconds per read

and .167 microseconds per byte. The difference between the times per byte is inconsequential;

the difference between the times per read can be attributed to the cost of obtaining a read lock,

which was not included in Eppinger's measurements. The per transaction overhead of 9.5

milliseconds includes the IPC time of TAGetTids amortized over several transactions and the

sum (7.07 milliseconds) of the local IPC times for TSJoin, TAEnd, and STVote, plus

CPU time for commit processing.

The per transaction overhead remains substantially the same in configurations 2, 3, and 4;

IPC times are the dominant cost, and the times are the same in all local configuration. The per

transaction overhead increases to 57.0 milliseconds in configuration 5 because of increased IPC

times: 48.4 milliseconds for TSJoin, TA End, and ST._Vote, plus CPU time for commit

processing and the [PC time of TAGetTids amortized over several transactions. In

configuration 6, the per transaction overhead is still higher (62.5 milliseconds) because messages

of nodes N2 and N3 must contend with each other for the CPU on node NI, increasing TPC times.

The lower fixed cost per read in configurations 5 and 6 relative to configuration I can be

attributed to fewer context switches (since Camelot is on a different node than the servers)

resulting in a higher CPU cache hit ratio. I cannot account for the higher variable cost per byte in
configurations 3 through 6, the higher fixed cost per read in configuration 2, or the lower variable
cost per byte in configuration 2, although the number of transactions per test may be a
contributing factor in some cases.

6.3.2.2. Non-paging writes

The same methodology as used for non-paging read tests is used to determine the overhead
per transaction and incremental cost per x-byte write operation. These incremental costs and

overheads are reported in Table 6-3 in the "trans. overhead," "32 byte write," "128 byte

write," and" 1024 byte write" columns. Similarly, the fixed cost per write and variable cost per

byte are computed via linear regressions, and am reported in the "fixed cost per write" and

102 CHAPTER 6

"variable cost per byte" columns. This table reports write times only for single-server

configurations. Subsection 6.3.4 describes a different test used to order the sequence of

operations to obtain meaningful results for writes in multi-server configurations. The measured

times per transaction include the time to obtain a lock on the object and to write log records to

disk. (The cost of obtaining a cached distributed lock is within 0.1 milliseconds of the cost of

obtaining a local lock.)

Configuration trans. 32 byte 128 byte 1024 byte fixed variable
overhead write write write cost per cost per

(Ms.) (Ms.) (Ms.) (Ms.) write byte
(Ms.) (As.)

1. Local server 17.5 1.43 1.93 5.34 1.37 3.88
original Camelot
(Q-500)

2. Local server 18.0 1.47 1.96 5.35 1.40 3.86
CamelotITDSM
(t=500)

3. Local server 17.5 1.44 2.02 5.57 1.40 4.08
Camelot/TDSM/XMM
(1-100)

5. Remote server 103 2.93 4.79 20.9 2.42 18.0
CamelotiTDSM/XMM
(t=100)

The "trans. overhead" column reports the computed time to initiate and terminate an update
transaction in each configuration. The "32 byte write," "128 byte write," and "1024 byte
write" columns record the incremental cost to write a region of the given size. The "fixed cost
per write" and "variable cost per byte" columns are computed from a linear regression on the
32, 128, and 1024 byte columns.

Table 6-3: Non-paging write times

Eppinger reported a fixed cost of .760 milliseconds per write with a variable cost of .631

microseconds per byte for non-paging virtual memory writes. The results in Table 6-3 for

configuration I using the same version of Camelot are 1.37 milliseconds per write and 3.88
microseconds per byte. The difference between the times per byte can be attributed to the

incremental cost of writing the log record to disk, which Eppinger excluded from his

measurements. (Eppinger measured the log IVO cost separately, and reported a value of .930

microseconds per byte.) The difference between the times per write can be attributed to the cost

of obtaining a write lock (not measured by Eppinger) and the incremental cost of writing the log

record to disk. The per transaction overhead of 17.5 milliseconds includes the sum of the local

IPC times for TSJoin, TAEnd, STVote, and STCommit (7.96 milliseconds), the IPC
time of TAGetTids amortized over several transactions, time to initiate the log write to disk,

plus CPU time to process the shared memory queue (pin and log requests) and for commit

processing. The log write apparently overlaps some of the CPU processing.

PERFORMANCE 103

The per transaction overhead remains substantially unchanged in configurations 2 and 3; IPC
times are the dominant cost, and the times are the same in all local configuration. The per
transaction overhead increases to 103 milliseconds in configuration 5 because of increased IPC
times (a higher amortized cost for TAGetTids, plus 61.8 milliseconds for TSJoin,
TAEnd, STVote, and STCommit) and an additional message to obtain the shared memory
queue (17.2 milliseconds for XDGetShMemQueue). Also, the page being modified must be
flushed every checkpoint interval in order to limit recovery times. This cost of this flush is
amortized over many transactions, but the IPC time for memoryobject datawrite
increases from 3.70 milliseconds in configurations 1, 2, and 3 to 185.6 milliseconds in

configuration 5.

The fixed cost per write and variable cost per byte are approximately the same in
configurations 1, 2, and 3. The higher fixed cost per write in configuration 5 can be attributed to
copying the pin and log requests in the shared memory queue back to the home node. The higher
variable cost per byte in configuration 5 can be attributed to the incremental cost of copying a
byte in a shared memory queue log request back to the home node.

6.3.3. Paging tests

These tests measure the cost to a transaction of reading or writing a region of a virtual

memory page that is not present in physical memory. For read faults, the kernel must discard an

old clean page, and obtain a new page from the Camelot external pager. For write faults, the
kernel must write back an old, dirty page, and obtain a new page from the Camelot external
pager. Thus, read operations, write operations, and the overhead per transaction should all be

higher for remote servers than for local servers.

For paging operations, the following test is used:

repeat t times
begin transaction

make one RPC to server to do
repeat k times

lock & read or write x bytes on a new page
return from RPC

end transaction

The number of transactions t is either 10 or 20 depending on the configuration and whether a

read or write test is being performed. Nine sets of parameters are used within each configuration:
the size x of the virtual memory region varies from 32 to 128 to 1024 bytes, and the number of
pages k accessed by each transaction varies from 25 to 50 to 100 pages. As with non-paging
tests, median measurements are recorded. (The median measurement is usually close to the

average measurement in paging tests, but the range of actual measured values is relatively large,
in most cases varying up to 5% from the mean. Disk reads and writes may occur in parallel with
CPU computations, but because the CPU times are much smaller than disk times, the CPU

104 CHAYrER 6

sometimes must wait for a disk operation to complete. This causes the measured transaction
times to vary.) The same methodology is used to compute the incremental cost per x-byte read or
write operation. These incremental costs are reported in Table 6-4. This table reports paging
operation times only for single-server configurations. Paging operation times for multi-server
configurations are addressed in subsection 6.3.4.

Configuration 32 byte 128 byte 1024 byte 32 byte 128 byte 1024 byte
read read read write write write
(Ms.) (Ms.) (Ms.) (Ms.) (Mis.) (Ms.)

1. Local server 27.4 27.2 27.6 100 105 109
original Camelot
(t=-10)

2. Local server 27.0 26.8 26.4 111 111 106
Camelot/TDSM
(&20 for reads;
t=-10 for writes)

3. Local server 34.0 34.3 34.0 115 119 120
Camelot/TDSM/XMM
(t=20 for reads;
t=10 for writes)

5. Remote server 207 207 210 385 372 382
Camelot/TDSM/XMM
(&=20 for reads;
t=-10 for writes)

The '32 byte read," "128 byte read," and "1024 byte read" columns record the incremental
cost to discard a clean page, page in a new page, and read a region of a given size on the new
page. The "32 byte write," "128 byte write," and "1024 byte write" columns record the
incremental cost to page out a dirty page, page in a new page, and modify a region of a given size
on the new page. The values are valid to within approximately 5%.

Table 6-4: Paging times

The results in Table 6-4 show only the incremental costs of paging reads and writes. The

fixed cost per operation and the variable cost per byte are not shown in the table. The additional

cost added to a paging operation by accesses to additional bytes on a page is extremely small

relative to the cost of servicing the page fault, and cannot be reliably measured. This variable

cost per byte should be the same for paging and non-paging operations. The fixed cost per paging

operation, and the incremental cost of a 128- or 1024-byte operation is, to two significant digits,
identical to the incremental cost of the corresponding 32-byte operation.

The overhead per transaction is not shown in Table 6-4 because it, too, cannot be reliably
measured from the tests. The overhead per transaction should be the same for both paging and

non-paging operations, so the expected overhead per transaction for a paging write test in

configuration I is 17.5 milliseconds. The total time per transaction for 25 32-byte paging write

operations is expected to be 2522 milliseconds. An error of only 1% in the measurement of the
time for this transaction would eliminate or double the per transaction overhead. Since the

PERFORMANCE 105

measured times varied by more than 1%, the overhead per transaction cannot be reliably
measured from these paging tests.

The measured times per transaction include the time to obtain a lock on the object and to
write log records to disk.

Eppinger reported an incremental cost of 5.23 milliseconds for a 32-byte paging read, and
12.1 milliseconds for a 32-byte paging write. The results in Table 6-4 for configuration 1 using

the same version of Camelot are 27.4 milliseconds for a 32-byte paging read, and 100.2
milliseconds for a paging write. The difference between the read times can be attributed to the

cost of reading a page from the disk (21.1 milliseconds with no seek, since the tests access the
pages sequentially and there are no intervening log writes), which Eppinger excluded from his
measurements. (Eppinger measured the paging V/O cost separately, and reported a latency of 21
milliseconds for sequential 4096-byte accesses.) The difference between the write times can be
attributed to the cost of seeking and writing a dirty page to the disk (35 milliseconds), seeking and
reading a clean page from the disk (35 milliseconds), and the amortized cost of seeking and
writing the log at the end of the transaction, which Eppinger again excluded from his

measurements. (Eppinger reported an average rotational latency of 8.3 milliseconds, an average
seek time of 28 milliseconds, a latency of 21 milliseconds for sequential 4096-byte accesses, and

a DMA transfer rate of .930 milliseconds per byte.)

The incremental cost of a 32-byte paging read remains the same in configuration 2. The
incremental cost of a 32-byte paging write appears to increase in configuration 2, but results for
128- and 1024-byte writes indicate that the time is substantially unchanged within the error of the
measurements. The incremental cost of paging reads and paging writes increases by 5 to 10
milliseconds from configuration 2 to configurafion 3. This can be attributed to the additional
processing performed by the External Memory Manager in configuration 3. Some of this extra
time could be eliminated by merging the External Memory Manager into Camelot, eliminating

some duplicated data structures.

The incremental cost of a paging read increases to 207 milliseconds in configuration 5
because of increased IPC times for memoryobjectdata request and
memory_object_data_provided. (The 180 millisecond increase in [PC time is equivalent
within the error of the measurements to the 173 millisecond increase in incremental cost.) The
incremental cost of a paging write increases to 385 milliseconds in configuration 5 because of

increased [PC times for memory object_datawrite, memoryobject_
datarequest, and memoryobjectdata_provided. Also, on each pageout Camelot
requests the shared memory queue log buffer (even though it is empty) from the Remote
Execution Manager, which adds another 17.2 milliseconds to the cost of a paging write. The

Mach kernel attempts to minimize the number of times it must exercise its pageout algorithm, so
writebacks of dirty pages occur in batches that are not synchronized with page faults by the
paging test program. Because of the increased IPC times for remote servers, many writebacks of

106 CHPTR 6

dirty pages are delayed long enough to be outside the scope of the test measurement. Thus, the

increase in measured incremental cost (270 milliseconds) is less than the expected increase in IPC

time (379 milliseconds).

6.3.4. Multi-server tests

These tests measure the incremental cost to a transaction of reading or writing a region of a

virtual memory page that is in use by another server. For read operations, both servers cache the

page and corresponding lock, and no invalidations take place. For write operations, the actions

taken by Camelot depend on the location of the servers. When the servers are on different nodes,

the page and corresponding lock migrates from node to node. When the servers are on the same

node, the lock migrates from server to server, but both servers can physically share memory, and

no page faults should occur.s

When two servers on the same node share a recoverable segment, they physically share

memory, and the order in which their accesses are interleaved should not affect the test results.

However, when two servers on different nodes share a recoverable segment, a page must be

shipped from node to node each time a different node modifies the page, so the order of accesses

does matter. To ensure that the accesses alternate, a single CPA interpreter controls both servers

and interleaves calls to each server. Thus, for configurations with two servers, the following test

is used:

repeat t times
begin transaction

repeat k times
make RPC to first server to do

lock & read or write x bytes on same page
return from RPC
make RPC to second server to do

lock & read or write x bytes on same page
return from RPC

end transaction

In the above test, the CPA interpreter makes an RPC for each server operation, and the

results are not comparable to those in subsections 6.3.2 and 6.3.3, where one RPC results in many

server operations. To provide a new baseline for comparison, the following test is used in single-

server configurations:

OUnfornzugely, the IBM RT/PC has inverted page tables. which meuu that a physical memo•y page may not have
two virtual memory addresses. Thus, when a server attempts to access a page that is cmuendy mapped to a virtual
memory address in another server, it takes a page fault. The Mach kernel has a "fast path" for this type of page fault
which immediately remaps the physical page to the alternate virtual memory address.

PERFKJRMANCE 107

repeat t times
begin transaction

repeat k times
make RPC to server to do

lock & read or write x bytes on same page
return from RPC

end transaction

6.3.4.1. Multi-server reads

For multi-server read tests, the number of transactions t is 20 in all configurations. Within

each configuration, 9 sets of parameters are used, varying both the size x of the virtual memory

region (32, 128, and 1024 bytes) and the number of times k each transaction calls the servers. In

the local configurations (3 and 7), k is varied from 50 to 100 to 200. Because of longer test times

in the remote configurations (5 and 8), k is varied from 25 to 50 to 100.

Configuration trans. 32 byte 128 byte 1024 byte fixed variable
overhead read read read cost per cost per

(Ms.) (Ms.) (Ms.) (Ms.) read byte
(Ms.) (Pis.)

3. Local server 7.0 2.25 2.33 2.93 2.24 .679
CamelotITDSM/XMM
(t=20)

5. Remote server 33.5 17.9 18.0 25.5 17.3 7.94
Camelot!TDSM/XMM
(t=20)

7. Two local servers 9.5 2.36 2.45 3.05 2.35 .685
CameloVTDSM/XMM
(t=20)

8. Two remote servers 71.0 17.9 18.2 25.5 17.4 7.86
Camelot/TDSM/XMM
(t=20)

The "trans. overhead" column reports the computed time to initiate and terminate a read-only
transaction in each configuration. The "32 byte read," .128 byte read," and "1024 byte read"
columns record the incremental cost to read a region of the given size. The "fixed cost per read"
and "variable cost per byte" columns are computed from a linear regression on the 32, 128, and
1024 byte columns.

Table 6-5: Multi-server read times

The same methodology as used for non-paging read tests is used to determine the overhead

per transaction and incremental cost per x-byte read operation, although minimum, rather than

median, times are recorded for multi-server read tests. (The minimum time is used to discount

the effects of other traffic on the netwo'k.) Also, in configurations 7 and 8, the linear regression

uses 2k instead of k, since the two servers collectively execute twice as many transactions in a

given time period. These incremental costs and overheads are reported in Table 6-5 in the "trans.

overhead," "32 byte read," "128 byte read," and "1024 byte read" columns. Similarly, the

108 CHAPTER6

fixed cost per read and variable cost per byte are computed via linear regressions, and are

reported in the "fixed cost per read" and "variable cost per byte" columns. The correlation

coefficient for all linear regressions is greater than 0.99. (The results reported are intended to

character multi-server configurations. See subsections 6.3.2 and 6.3.3 for other configurations.)
The measured times per transaction include the time to obtain a lock on the object.

Table 6-2 reports a fixed cost of .303 milliseconds per read with a variable cost of .167

microseconds per byte for non-paging virtual memory reads in configuration 3. The results in

Table 6-5, with an RPC from the CPA interpreter to the server for each read operation, are 2.24

milliseconds per read and .679 microseconds per byte. The higher fixed cost per read is the result

of the extra RPC. The higher variable cost per byte results because the RPC copies the data back
to the CPA interpreter. O(e average cost of a 32-byte read cpa reads local RPC is 2.30
milliseconds, and the cost of a 1024-byte read cparead_1 local RPC is 2.88 milliseconds.

This gives a fixed cost per local read RPC of 2.28 milliseconds, and a variable cost per byte of .58

microseconds.) The transaction overhead appears lower than in Table 6-2 because it is a

minimum, rather than a median, measurement.

In configuration 7, the fixed and variable costs per read are slightly higher than configuration
3 because the CPU cache hit ratio is lower due to contention by the two servers. The overhead

per transaction increases because two more RPCs are performed for the second server, TSJoin

and STVote.

In configuration 5, the fixed and variable costs per read are higher than configuration 3 due

to increased IPC times for the RPC from the CPA interpreter to the server. (This RPC has a fixed

cost of 16.9 milliseconds per call with a variable cost of 7.4 microseconds per byte.) The

transaction overhead increases because of increased [PC times for TS Join and STVote

(32.3 milliseconds in configuration 5 as compared to 4.64 milliseconds in configuration 3). The

transaction overhead for configuration 5 is smaller here than in table 6-2 because the CPA

interpreter is on the same node as Camelot here, and cost of the TAGetTids and TAEnd

RPCs made by the CPA interpreter is lower.

Finally, the fixed and variable costs per read in configuration 8 are the same as configuration
5 as expected. The overhead per transaction increases because two more RPCs are performed to

the second server, TS Join and STVote.

6.3.42. Multi-server writes

The same methodology as used for multi-server read tests is used to determine the overhead

per transaction and incremental cost per x-byte write operation. The number of transactions for
write tests is either 10 or 20 depending on the configuration. These incremental costs and

overheads are reported in Table 6-6 in the "trans. overhead," "32 byte write," "128 byte

write," and "1024 byte write" columns. Similarly, the fixed cost per write and variable cost per

PERFORMANCE 109

byte are computed via linear regressions, and are reported in the "fixed cost per write" and
"variable cost per byte" columns. The results reported am intended to characterize multi-server

configurations. See subsections 6.3.2 and 6.3.3 for other configurations. The measured times per

transaction include the time to obtain a lock on the object and to write log records to disk. (The

cost of obtaining a cached distributed lock is within 0.1 milliseconds of the cost of obtaining a

local lock.)

Configuration trans. 32 byte 128 byte 1024 byte fixed variable
overhead write write write cost per cost per

(Ms.) (Ms.) (Ms.) (Ms.) write byte
(Ms.) (Ps.)

3. Local server 10.0 2.90 3.97 8.07 3.02 4.96
CamelotITDSM/XMM
(t=-20)

5. Remote server 49.0 20.2 23.1 50.1 19.2 30.1
CamelotiTDSM/XMM
(t=20)

7. 2 local servers 15.5 3.56 4.09 8.05 3.46 4.48
Camelot/fDSM/XMM
(t=20)

8. 2 remote servers n.a. 430 503 523 460 65.2
Camelot/rDSM/XMM

The "trans. overhead" column reports the computed time to initiate and terminate an update
transaction in each configuration. The "32 byte write," "128 byte write," and "1024 byte
write" columns record the incremental cost to write a region of the given size. The "fixed cost
per write" and "variable cost per byte" columns are computed from a linear regression on the
32, 128, and 1024 byte columns.

Table 6-6: Multi-server write times

Table 6-3 reports a fixed cost of 1.40 milliseconds per write with a variable cost of 4.08

microseconds per byte for non-paging virtual memory writes in configuration 3. The results in
Table 6-6, with an RPC from the CPA interpreter to the server for each write operation, are 3.02

milliseconds per write and 4.96 microseconds per byte. The higher fixed cost per write is the

result of the extra RPC. The higher variable cost per byte results because the RPC copies the data
from the CPA interpreter to the server. (The fixed and variable costs for write RPCs should be

the same as for read RPCs, 2.28 milliseconds and .58 microseconds, respectively.) The

transaction overhead appears lower than in Table 6-3 because it is a minimum, rather than a

median, measurement.

As with read operations, the fixed and variable costs per write in configuration 7 are roughly

equal to those of configuration 3. The overhead per transaction increases because three more

messages are needed for the second server, TS Join, STVote, and STCommuit.

110 CHAPTER 6

In configuration 5, the fixed cost per write is higher than configuration 3 due to increased

IPC time for the RPC from the CPA interpreter to the server. The variable cost per byte is higher

because of increased IPC times to copy a byte from the CPA interpreter to the server, and to copy

a byte in a shared memory queue log request back to the home node. The transaction overhead

increases because of increased EPC times for TSJoin, STVote, and STCommit (45.7
milliseconds in configuration 5 as compared to 5.43 milliseconds in configuration 3). The

transaction overhead for configuration 5 is smaller here than in table 6-3 because the CPA
interpreter, which makes the TAGetTids and TAEnd RPCs, is on the same node as Camelot

here.

The write test in configuration 8 is the only multi-server test in which pages actually migrate

across the network. The overhead per transaction is not shown for this configuration because it is

smaller than the error of the measurements, and cannot be reliably measured from the tests. The

overhead per transaction is expected to be on the order of 100 milliseconds (with extra
TSJoin, STVote, and STCommit messages for the second server as compared to

configuration 5) which is less than 1% of the total time per transaction. (Each transaction is at
least 23,000 milliseconds.) A write operation by the server on node N2 causes the kernel to send a

memoryobject_data_request to Camelot on node NJ. Camelot does a
memoryobject_lock_request to the kernel on node N3, which results in a
memoryobject_datawrite reply, followed by memory_object_
lock_completed. After flushing log records to stable storage (using XDGetShMemQueue

to pick up the log records from node N3) and writing the updated page to disk, Camelot on node
N) can reply to the request of the kernel on node N2 with a memoryobject_

dataprovided. A write operation by the server on node N3 causes a similar sequence of
events. The IPC time for the XDGetShMemQueue and memoryobject calls on each write

operation is 411.6 milliseconds. The increase in the fixed cost per write in configuration 8 as

compared to configuration 5 can be attributed to this extra IPC time and the cost of flushing the
log to stable storage and writing the page to disk. The variable cost per byte increases because of

the extra log writes performed on each page migration.

6.3.5. Sunmary

Table 6-7 summarizes the latency of key operations in the two configurations

(configurations 3 and 5) that are significant in the remainder of the dissertation. A non-paging

read is slightly less expensive in the remote configuration (configuration 5) because of reduced

context switch overhead. A non-paging write is slightly more expensive in the remote

configuration because log records must be transferred over the network at the end of transaction.
Paging reads and writes are much more expensive because of the high cost of sending a page over

the network. And finally, transaction overheads are higher in the remote configuration because

transaction management messages must be sent over the network.

ORMANCE11

Operation Local Remote

Non-paging .307 .279
32-byte read (ms.)

Non-paging 1.44 2.93

32-byte write (ms.)

Paging read (ms.) 34.0 207

Paging write (ms.) 115 385

Read-only 10.0 57.0
Transaction (ms.)

Update 17.5 103
Transaction (ms.)

The "Local" column reports the latency of the given operations in configuration 3. The
"Remote" column reports the latency of the given operations in configuration 5.

Table 6-7: Summary of performance measurements

6.4. Throughput

The debit-credit, or ETI, benchmark is commonly used to measure the throughput of
transaction processing systems [Anonymous et al 851. The ETI benchmark is studied here both
to measure throughput, and as an example for the performance model reported in the next
chapter.

The throughput of a system is given in TPS, the number of ETI transactions per sccond it
can achieve with at least 95% of the transactions completing in I second or less. The standard
ET1 database for a system capable of 100 TPS holds balances for a bank with 1,000 branches,
10,000 tellers, and 10,000,000 accounts (a total of 1,001,100,000 bytes). The database also
includes a 90-day history file (1 gigabyte). Each ETI transaction updates a branch balance, a
teller balance, and an account balance, and appends a record to the history file.

The ETI standard specifies an environment with block-mode terminals and X.25
connections to a large mainframe. The benchmark was adapted by Pausch for the Camelit
environment, where an "ATM" process communicating with a presentation server replaces
block-mode terminals, TCP/IP replaces X.25, and workstations replace the mainframe [Pausch
881. The presentation server forwards the request from the ATM process to a data server, which
updates the ETI database in recoverable virtual memory. All processes are multi-threaded, so
that several transactions can be in progress simultaneously. An ETI transaction from the
perspective of the ATM process is given in Figure 6-9.

For the ETr tests described in this section. the ATM process, the presentation server, and
data server all run on the same node, and the data for all branches is stored in a single recoverable

112 CHAPR 6

0 pick random. branch number, teller number,
account number

1 begin transaction
2 make RPC to presentation server to do:
3 make RPC to data server to do:
4 lock branch balance
5 update branch balance
6 lock teller balance
7 update teller balance
8 lock account balance
9 update account balance

10 begin lazy server-based transaction
11 lock history pointer
12 increment history pointer
13 end lazy server-based tran3action
14 update history entry
15 return from RPC to data server
16 return from RPC to presentation server
17 end transaction

Figure 6-9: ETI transaction

segment. The system used for the tests can achieve on the order of 10 TPS, so 10/100 of the

standard database is used: 100 branches. 1,000 tellers, and 1,000,000 accounts (a total of

100,110,000 bytes). Because of limited disk space and relatively short test durations, a smaller

history file of only 5 megabytes is used (approximately 4.5 days).

The ETI test is run in two configurations. In the "local" configuration, all processes run on

the same node, and locking is done entirely within the server library (Figure 6-10). The local

configuration is the traditional configuration for running the Camelot ETI benchmark. In the
"remote" configuration, Camelot including the Lock Manager runs on node NI, while the ATM

process, the presentation server, the data server, and the Remote Execution Manager run on node

N2. The data server must make RPCs to the Lock Manager to cache locks (Figure 6-11). The

remote configuration is meant to illustrate the performance of data sharing, since the data server

must obtain pages and transaction services across the network, although the server's RVM

segment is not actually shared with another server. Both configurations use Camelot with TDSM

and the External Memory Manager.

To determine the TPS rating of Camelot, the following methodology is used. Start the

system, and execute 3000 ET1 transactions. The database contains 24,415 pages of account

records, while main memory holds less than 2500 pages. Each ETI transaction accesses an

account record at random, so main memory should be filled with account records after 3000

transactions, and the system will be in steady state. Next, start a global timer, and execute 1000

or 4000 transactions depending on the configuration. For each transaction, record the elapsed

time, noting whether it is less or greater than 1 second. After completing all transactions, record

the elapsed time on the global timer. Divide the total number of transactions by the total elapsed
time to obtain the TPS rating. The TPS rating is valid if 95% or more of the transactions took I

second or less.

PERFORMANCE 113

node N1 node N2

ATM FATM

presentation server presentation server
FZ -

data server data server

Camelot e ote exec.

XMM I

Al processes on the same node, local1
locks. Camelot

Figure 6-10: ETI "local" configuration lock I XMM
node N1

Two nodes, distributed locks.

Figure 6-11: ETI "remote" configuration

Because some processing (disk, network, and CPU) can occur in parallel, increasing the
number of ATM threads that initiate transactions may increase the overall TPS rating, by
allowing several transactions to execute simultaneously. However, if too many transactions
attempt to execute simultaneously, the TPS rating may decrease as the system becomes CPU-,
disk-, or network-bound. Also, as transactions wait for busy resources, the time per transaction
increases, and the TPS rating may become invalid if too many transactions take longer than 1

second. For the local configuration, the highest rating of 8.06 TPS occurs with 2 threads, for an
average transaction latency of 124 milliseconds. (Eppinger reported 11.3 TPS with 3 threads. I

can match this rating using a smaller database of 15 megabytes. It may be that Eppinger used the
smaller database.) For the remote configuration, the highest valid rating of 1.73 TPS occurs with
1 thread, for an average transaction latency of 578 milliseconds. (With 1 thread, the local
configuration achieves a rating of 7.40 TPS, for an average transaction latency of 135
milliseconds.)

To understand an ETI transaction (as shown in Figure 6-9), a line-by-line analysis may be
helpful:

1. To begin a transaction, the ATM process obtains several TIDs with TAGetTids.
This cost is amortized over several transactions.

2. When the presentation server receives the RPC from the ATM process, it makes a
TS Join RPC to CameloL

3. When the data server receives the RPC from the presentation server, it makes a
TSJoin RPC to CameloL

4. In steady state, the branch balance lock is cached by the data server in the remote
configuration, so no RPC to the Lock Manager is needed.

114 CHAPTER 6

5. The branch balance update causes pin and log requests to be appended to the shared
memory queue. The page is cached in memory, so no requests to the External
Memory Manager are needed.

6. In steady state, ft teller balance lock is also cached by the data server in the remote
configuration.

7. The teller balance update causes pin and log requests to be appended to the shared
memory queue. The page is cached in memory, so no requests to the External
Memory Manager are needed.

8. The account balance lock is not cached by the data server in the remote
configuration, so it makes a HSLock RPC to the Lock Manager.

9. The account balance update causes pin and log requests to be appended to the
shared memory queue. The account balance page is not cached in memory, so the
kernel makes a memoryobjectdata write request to send a dirty page to
the External Memory Manager. In the remote configuration, Camelot responds
with a XDGetShMemQueue request to obtain log records. In both
configurations, the kernel requests the account balance page with
memoryobject datarequest, and Camelot replies with
memory_objectdata_provided.

10. A lazy server-based transaction can be initiated without communicating with
Camelot.

11. The history pointer lock is cached by the data server in the remote configuration, so
no RPC to the Lock Manager is needed.

12. The history pointer update causes pin and log requests to be appended to the shared
memory queue. The page is cached in memory, so no requests to the External
Memory Manager are needed.

13. A lazy server-based transaction can be committed without communicating with
Camelot.

14. The history record update causes pin and log requests to be appended to the shared
memory queue. Just under 79 history records fit in a page, so the page is usually
cached in memory. After every 78 or 79 transactions, a page fault occurs, and is
satisfied as described for line 9 above.

15. The RPC reply from the data server to the presentation server is a single message.

16. The RPC reply from the presentation server to the ATM process is a single
message.

17. To commit the transaction, the ATM process makes a TA End RPC to Camelot.
Camelot makes ST Vote RPCs to both the presentation and data servers. Next,
Camelot in the remote configuration obtains the shared memory queue from both
servers via XD GetShMemQueue RPCs; the presentation server's queue is empty.
Finally, Camelot notifies the data server that the transaction committed via a
STCommit message. (Camelot does not notify the presentation server since the
presentation server did not make any updates.)

In the local configuration, the time for an ETI transaction can be broken down as follows.
The paging write in line 9 takes 111 milliseconds. The occasional paging write in line 14 adds
1.4 milliseconds. The non-paging writes in lines 5, 7, 12, and 14 add 5.6 milliseconds. The

PERFORMANCE 115

RPCs in lines 2/15 and 3/16 add 5 milliseconds. The transaction overhead for an update
transaction with two servers, including the RPCs mentioned in lines 1, 2, 3, and 17, is 15.5

milliseconds. This gives a total of 138.5 milliseconds, for an expected rating of only 7.2 TPS.
Because there are multiple transactions running concurrently, some of the log and paging I/O

overlap with CPU processing, allowing the higher throughput.

In the remote configuration, the analysis is as follows. The paging write in line 9 takes 385
milliseconds. The occasional paging write in line 14 adds 4.9 milliseconds. The HS T ock

request in line 8 adds 17.7 midliseconds. The non-paging writes in lines 5, 7, 12, and 14 add 9.6

milliseconds. The RPCs in lines 2/15 and 3/16 add 5 milliseconds. The transaction overhead for

a single server update transaction is 103 milliseconds. The second server requires additional
RPCs TSJoin, STVote, and XDGetShMemQueue which add 49.5 milliseconds to the
transaction overhead. This gives a total of 574.7 milliseconds, for an expected rating of 1.74

TPS. This is extremely close to the measured rating.

In the remote configuration, higher TPS ratings can be achieved by increasing the number of

threads initiating transactions. Unfortunately, the higher TPS ratings are not valid, because fewer
than 95% of the transaction complete in I second or less. For example, with 2 threads, the remote

configuration achieves 1.89 TPS, but only 81.6% of the transactions complete in less than 1
second. The majority of the elapsed time of an ET1 transaction is spent waiting for pages to be

transferred over the network. When two or more transactions execute simultaneously, some of
this waiting time can be spent doing useful work at the home node or the remote node. However,

if a transaction that is already 574 milliseconds long has to wait an additional 385 milliseconds
for the network while another transaction is transferring a page, it comes dangerously close to
exceeding 1 second in total elapsed time. The percentage of transactions completing in less than

1 second drops precipitously as the number of threads increases. Only 4.5% complete in less than

1 second with 5 threads, although this configuration achieves 2.36 TPS.

The ETI benchmark is not an ideal choice of application to demonstrate the benefits of data

sharing. The ETI benchmark was intentionally designed with a hot spot (the history pointer) and

limited locality of reference: every transaction must access a page that is not cached in main

memory. The limited locality of reference implies that the ET1 benchmark is primarily a measure

of paging throughput. As will be shown in Chapter 7, paging throughput need not be
significantly reduced by the data sharing model.

However, the hot spot can cause performance problems for the data sharing model. The ET1

benchmark uses remote access to a recoverable segment, but the segment is not actually shared

between two servers. If the segment were shared between servers on two nodes, ETI
performance would be degraded by the cost of migrating the page containing the history pointer

from node to node. To eliminate this degradation, the history file could be divided into sections,

one for each node, with a separate history pointer for each section. Since the history sections are

all part of a single recoverable segment, the history file is shared by all nodes, but updates occur

116 CHAPTER 6

in independent partitions, and there is no concurrent write sharing. The account database could
be similarly partitioned to eliminate migration of account records from node to node, but the

benefits of such a partitioning are negligible, given that a random account record is much more

likely to be on paging disk than stored in main memory on another node.

6.5. Function Shipping vs. Data Sharing

In this section, the performance of function shipping is compared to the performance of data

sharing through the use of simple tests written in the CPA language. Ideally, a data sharing test

should not require any RPCs; however, the architecture of Camelot does not allow a process that
uses recoverable storage to have any user interface but RPC. Thus, each iteration of the data
sharing test contains an initial RPC to a server with recoverable storage, which then does the

remainder of the work in the test:
repeat 20 times

make one RPC to local server to do
begin transaction

repeat k times
lock & read or write 32 bytes

end transaction
return from RPC

The function shipping test is structured in a similar manner, including the initial RPC. That

is, the CPA interpreter makes an initial RPC to a local server which does the remainder of the
work in the test:

repeat 20 times
make one RPC to local server to do

begin transaction
repeat k times

make one RPC to remote server to do
lock & read or write 32 bytes

return from RPC to remote server
end transaction

return from RPC to local server

node N1 row@P4 nods Ni

CPA CI P

I ambWTS Can,.OgjTSM ICanw~gIDSM

Figure 6-12: Data sharing configuration Figure 6-13: Function shipping configuration

The configurations for these two tests is shown in Figures 6-12 and 6-13. The test

methodology is similar to that in Section 6.3: repeat the test many times to determine the median

value of the average time per transaction. (Note that t, the number of transactions per test, is
fixed at 20, and x, the size of the virtual memory region, is fixed at 32 bytes.) Both paging and
non-paging versions of the test are run, and the number of iterations of the innermost loop k

PERPORMANCE 117

varies from 1 to 2 to 10. (In the paging version of the tests, each iteration of the innermost loop
accesses a 32-byte region on a new page. In the non-paging version, each iteration accesses the
same region repeatedly.) The median measurements for reads and writes are reported in Table
6-8. Although each non-paging test accesses the same region k times, the results may also be
interpreted as if the tests accessed k different regions that are all cached.

Test k-=-I k=2 k=10 k=1 k=-2 k=-10
Operation non-pag. non-pag. non-pag. paging paging paging

(Ms.) (Ms.) (Ms.) (Ms.) (Ms.) (Ms.)

Data sharing reads 75 75 77 186 384 1865

Function shipping reads 51 76 280 76 128 511

Data sharing writes 217 218 218 431 555 3365

Function shipping writes 106 131 346 135 144 771

The "non-pag." (non-paging) columns show the median times for a ransaction that accesses the
same region k times. The "paging" columns show the median times for a transaction that
accesses k regions, each on a different page, that are not cached.

Table 6-8: Function shipping vs. data sharing

Inspection of Table 6-8 shows that, in this experimental environment, data sharing suffers in
comparison to function shipping when only one region is accessed. The reason for the poorer
performance of data sharing is that the overhead to commit the transaction is higher: Camelot on
node NI needs 4 RPCs to the server on node N2 (and must also transfer log data from node N2 to
node NI) when committing a data sharing transaction, while Camelot on node N2 needs only I
RPC to Camelot on node NI to commit a function shipping transaction. A more optimized
implementation of data sharing could eliminate the extra RPCs, bringing the overhead of a data
sharing transaction closer to the overhead of a function shipping transaction.

Data sharing also suffers in comparison to function shipping when paging occurs. This is to
be expected, since data sharing not only shares the cost of disk access incurred by function
shipping, but also pays the additional penalty of transferring pages over the network. If the
applications ran multiple transactions concurrently, and the network transfer time were closer to
disk latencies, the effect on throughput would be less significant, since network transfer could
overlap disk I/O.

Fortunately, Table 6-8 does have some good news for data sharing. When a transaction
reads two or more regions that are cached, data sharing outperforms function shipping, because
the additional RPCs needed by function shipping quickly outweigh the higher transaction
overhead of data sharing. Update transactions have a higher overhead than read-only
transactions, so a data sharing transaction needs to write more than two cached regions before it
outperforms a function shipping transaction that writes the same number of regions, but Table 6-8
shows that the breakeven point is between 2 and 10 different regions in this environment.

118 CHAPTER 6

6.6. Summary

The performance results in this chapter show that the system behaves as expected, given the

poor effective bandwidth provided by Mach 2.5 on this hardware. Mach utilizes only 5% of the

bandwidth of the 4 megabit/second token ring: a memoryobjectdata_write message
which transfers 4096 bytes takes 185.6 milliseconds. This translates to a bandwidth of 22

kilobytes/second, or 176 kilobits/second. Chapter 7 develops a model of the system which allows

its performance to be predicted in an environment with an effective bandwidth that is more

reasonable.

Even without drawing on the performance model in Chapter 7 to understand the effects of

more modem hardware and communication systems, TDSM apparently performs well with

frequently-accessed, read-only data. A non-paging read operation is just as fast in remote

configurations as local configurations, although a read-only transaction using remote access to a

TDSM segment incurs an additional per-transaction overhead compared to local access. The

additional overhead for remote access is directly attributable to network IPC time.

It is less clear from the results in this chapter that TDSM performs well with data that is

updated. A 32-byte non-paging write operation takes more than twice as long in remote

configurations as local configurations. TDSM also appears to suffer significantly when

infrequently-accessed data must be paged over the network, or when frequently-updated data is

paged from node to node. However, this disparity appears only because the effective network

throughput is so small relative to disk and memory speeds. Chapter 7 shows how this disparity
would be less significant if TDSM is used on modem hardware.

Chapter 7

Analysis

This chapter reports on a model for the performance results reported in Chapter 6. This
model is used to project the performance of the system to different environments, and to project
the effects of changes made in the algorithms used by the system.

First, parameters of the performance model are introduced, and results are projected for two
alternative environments. Next. the model is used to demonstrate the effects of the cache hit ratio
on throughput. The next section proposes changes to algorithms to improve performance and
discusses effects of those changes. Finally, the weaknesses of the implemented system are
exposed and discussed.

7.1. Performance Model

Several factors make it difficult to model the performance of the system precisely. CPUs,
disks, and networks operate concurrently. Messages may contain "inline" data, or pointers to
" out-of-line" data, which have different effects on network message transmission. Messages are
split into packets for transmission over the network. Log data is formatted into blocks for disk
writes. Thus, the performance model developed below only approximates the behavior of the

system.

Extrapolating the performance of the system to different hardware and software
environments is also problematic. Disks and networks may offer higher throughput that is
precisely defined, but the latency of disk and network operations depends in part on the hardware
controller, the interface it presents to the remainder of the hardware system, and the operating
system's proficiency in accessing the controller. Similarly, while newer CPUs may promise 4- to
20-fold performance improvements for typical application code, operating systems generally do
not realize the same benefit. System calls, interrupt handling, context switching, data copying,
and many memory-intensive operations do not fully benefit from modem architectural
innovations [Anderson et al 911. However, as a developing system, many parts of Mach 2.5 were
not optimized. The assumption underlying the extrapolated results reported in this chapter is that,
even though operating system operations may not benefit as much as application code from
improvements in system architecture, optimizing the operations can mitigate this effect. In any
case, the results are meant to be interpreted qualitatively, not quantitatively, as a demonstration
that TDSM is a useful technique for structuring applications, and that access to a page on disk

119

120 CHAPER 7

over the network need not be significantly more expensive than access to a page on a local disk.

Indeed, the fact that memory-intensive operations do not fully benefit from modem architectural

innovations is a disadvantage for both forms of page access.

7.1.1. Parameters of the model

The performance model is based on the characteristics of the hardware (CPU, disk, and

network) and operating system on which the system executes. Eight parameters describe the

hardware and operating system:
"* c, the time to execute one CPU instruction.

"*nj, the time for a null RPC (sending a message containing no data and awaiting a
reply that contains no data) between two processes on the same node. This
parameter is a function of the number of instructions that the operating system
executes to transmit a message.

"* 'Ai, the incremental time to include another byte in a message sent between
processes on the same node.

,, the time for a null RPC between two processes on different nodes. The value of
s parameter depends on the operating system overhead (on both sending and

receiving nodes), latency of the network interface (sender and receiver), latency of
the network (the time it takes a bit to propagate from sender to receiver) and the
network bandwidth (even a null RPC must transmit some control information).

* n.,, the incremental time to include another byte in a message sent between
processes on different nodes.

+ the time to initiate a disk operation (including operating system overhead and
average rotational latency).

• d,, the average disk seek time.

.di, the incremental time to read or write one byte from disk.

All times in the model are expressed in terms of these eight parameters. These parameters may

be changed to extrapolate the performance of the system to a different platform (faster hardware,

or a more efficient operating system).

The model is built on the assumption that only one transaction executes concur .nay. Later,

the analysis relaxes this assumption to demonstrate how higher throughput may be obtained.

7.1.2. Actual parameters

The actual performance measurements reported in Chapter 6 are used to determine the

parameter values for the performance model. Table 7-1 summarizes the parameter values for the

experimental environment, and for two hypothetical scenarios that are introduced subsequently.

The 2.5 MIPS speed of the IBM RT/PC CPU defines c = .4 microseconds. Analysis of the

times for the cpa_reads and cpa_read_1 RPCs reveals that nfj is 2.28 milliseconds, and

ANALYSIS 121

Parameter Actual Scen- Scen-
ario I ario 2

time per CPU instruction c .4 Izs. .1 Ais. .04 11s.

null RPC time (local) nfj 2.28 ms. .30 ms. .12 ms.

RPC time per byte (local) nj .58 ps. .05 p. .02I•.

null RPC time (remote) •, 16 ms. 2.0 ms. .24 ms.

RPC time per byte (remote) nx,, 14 ps. 2 tps. .079tS.

average rotational latency df 8.3 ms. 8.3 ms. 5 ms.

average seek time d. 22 ms. 22 ms. 10 ms.

disk transfer time per byte dI Ls. I ps. .2 gs.

Table 7-1: Performance model parameters

nVj is .58 microseconds. Since local RPCs are performed entirely by the CPU, these values can

be expressed as 5700*c and 1.45*c, respectively. Again, analysis of cparead s and

cparead_1 RPCs reveals that nf, is 16 milliseconds, and n,, is 14 microseconds. If these
times were entirely CPU-bound, they could be expressed as 40000*c and 35"c, respectively.

Although experiments show that node-to-node RPCs use large amounts of CPU time, and CPU
time makes the largest contribution to RPC latency in the actual experimental environment, it is
not the sole componern of RPC latency, and the model uses other terms to express these

parameters. The measurements reported in Chapter 6 lead to disk parameters of df = 8.3
milliseconds, d, = 22 milliseconds, and dv = I microsecond.

The operation costs measured in Chapter 6 can be modeled in terms of the eight parameters.

This model is developed in Appendix A. Because the performance model does not explicitly

address concurrency, several operation times in the model are larger than the actual measured

times reported in Chapter 6. The operation times that are expressed in terms of the eight

parameters are:
"* Non-paging reads. The fixed cost per read is Rnpf and the variable cost per byte is

Rnp'V.

"* Non-paging writes. The fixed cost per write is Wv,,-j when the writer is on the home
node, and WITs when the writer is on a different node. The variable cost per byte is
W I when writer is on the home node, and Ww.Vl when the writer is on a
difr enent node.

" Paging reads. The time for a paging read is R. when the page is on the local disk,
and Rp., when the page must be fetched over the network.

"* Paging writes. The time for a paging write is Wp,l when the writer is on the home
node, and Wp,, when the writer is on a different node.

"* Read-only transaction overhead. The overhead for a read-only transaction is Trol for
a server on the home node, and T,o, for a server on a node other than the home node.

122 CHAPTER 7

* Update transaction overhead. The overhead for an update transaction is T.. for a
server on the home node, and T.,, for a server on a different node.

Given the above variables for operation times, the performance of the ETI benchmark can

be modeled in two configurations: in the "local" configuration, all processes run on the same

node (Figure 6-10), and in the "remote" configuration, Camelot runs on a different node than the

data server and its client (Figure 6-11). The remote configuration is meant to illustrate the

performance of data sharing, since the data server must obtain pages and transaction services over

the network, although the RVlv. segment is not actually shared with another server. The local

configuration serves as a baseline for comparison as a degenerate form of function shipping.

The latency of a single ETI transaction is modeled by summing the appropriate operation

times (note that the subscript I or, must be appended as appropriate):

"* Transaction overhead. To the single-server update transaction overhead add 3
messages: T. + 3*n?

"* Paging write operations. One paging write occurs every transaction. Another paging
write occurs every 78 transactions. The sum is 1.02*W,.

"* Non-paging write operations There are 4 non-paging writes each transaction:
4*(W,w,/+ 32*WRP").

Substituting the given parameter values and adding the terms together produces a time of 595
milliseconds for an ETi transaction in the remote configuration, and 149 milliseconds for an ET1
transaction in the local configuration. These times are somewhat higher than the actual measured

times from Chapter 6 of 578 and 135 milliseconds, respectively, for a single ET1 thread. Table

7-2 summarizes the component costs of an ETi transaction using the actual parameters.

Local Remote

configuration configuration

ETI transaction (ms.) 149 595

CPU time (Ms.) 21.0 21.0

Paging disk (ms.) 70.2 70.2

Log disk (ms.) 30.4 30.4

Message transfer (ms.) 5.21 126

Message setup (ms.) 21.8 348

"'ETi transaction" is the latency of a ransaction in the model, assuming no concurrent execution
of transactions. "CPU time" does not include message setup and transfer time that is reported
separately.

Table 7-2: Modeled ETI performance (actual parameters)

Inspection of Table 7-2 reveals that, in the local configuration, paging disk access makes the

largest contribution to ETi transaction latency. If CPU, paging disk, and log disk could all run at

full speed concurrently, the local configuration could achieve at most 14.2 TPS. In practice,

ANALYSIS 123

however, the CPU must synchronize with the disks, so the actual throughput is lower. If two

paging disks were used and two ETI transactions were run concurrently, the paging throughput

would increase by a factor of two. In this case, CPU time (including message setup and transfer

time) would limit ETI transaction throughput in the local configuration, and the maximum

throughput would be 20.8 TPS.

In the remote configuration, message setup is the largest component of ETI transaction

latency. If both CPUs, network, and disks could run at full speed concurrently, and half of the

message setup time is allocated to each CPU, then the remote configuration could achieve at most

5.1 TPS. In practice, the CPUs must synchronize with each other, the network, and the disks, so

the actual throughput is lower. If message setup and transfer operations were 7 times faster, the

latency of an ETI transaction in the remote configuration would become bound by the paging
disk throughput.9 In this case, the maximum throughput would be the same as the local

configuration, 14.2 TPS.

The poor performance of the remote configuration on the EI1 transaction benchmark is

clearly due to the high cost of network RPCs. The operating system used in this environment is

not well-tuned for network RPCs. In the following subsections, we explore the qualitative effects

of tuning the operating system by extrapolating the model and its parameters to different

scenarios.

7.1.3. Scenario I

In Scenario 1, the performance of an ETI transaction is extrapolated to an environment with

modem hardware and faster message passing. The CPU is 4 times faster and the operating

system is streamlined for faster local and network RPCs.

The IBM RT/PC APC could easily be replaced with 10 MIPS CPU; in Scenario 1, c = .1

microseconds. The Mach 2.5 operating system used for the actual performance measurements

apparently takes 5700 instructions to send a null message between two processes on the same

machine, with 5.8 instructions per word (1.45 instructions per byte) to copy the data. Optimizing

the operating system implementation for fast local messages (as has been done with Mach 3.0)

could yield 3000 instructions per message and 2 instructions per word, nfj = 3000*c and nv,, =

.5"c for local messages. For network messages, Mach 2.5 takes 16 milliseconds for a null RPC,
with 14 microseconds for each additional byte transferred. These times correspond to the time for

the IBM RT/PC APC to execute 40,000 instructions and 35 instructions, respectively.

Optimizing the implementation for fast network messages could yield a network null RPC time,

nf,, of 2.0 milliseconds (the time to execute 20000 instructions on a 10 MIPS CPU). Transferring

9With Mach on the IBM RT/PC. network RPCs we effectively CPU-bound. If we assume that network setup and
transfer times scale directly with CPU speed, then the CPU would have to be 7 times faster before network RPCs
would be bound by the network bandwidth of 4 megabizs/second.

124 CHA&M 7

data at the full 4 megabit/second bandwidth of the token ring means the time per byte n/ is 2
microseconds (the time to execute 20 instructions). These parameters are summarized in Table

7-1. Substituting the Scenario I values for nfj, n, n,,, nfr., and c produces a remote ETI
transaction time of 167 milliseconds, and a local ETI transaction time of 109 milliseconds. (See

Table 7-3.)

Local Remote
configuration configuration

ET1 transaction (ms.) 109 167

CPU time (ms.) 5.26 5.26

Paging disk (ms.) 70.2 70.2

Log disk (ms.) 30.4 30.4

Message transfer (ms.) .45 18.0

Message setup (ms.) 2.86 43.5

"ETI transaction" is the latency of a transaction in the model, assuming no concurrent execution
of transactions. "CPU time" does not include message setup and transfer time that is reported
separately.

Table 7-3: Modeled ETI performance (Scenario 1)

Inspecting Table 7-3 shows that, for Scenario 1, paging disk access still makes the largest

contribution to ET1 transaction latency in the local configuration. This means that the maximum
achievable throughput is still 14.2 TPS. If the paging disk throughput were 3 times faster (e.g.,

by using 3 disks and running 3 transactions concurrently), ETI throughput would be bound by log

disk throughput; the maximum achievable throughput would be 32.9 TPS. Log disk throughput
can be increased by using group commit, that is, delaying the commitment of some transactions

so that one log force can commit several transactions simultaneously. Paging disk throughput
would have to be 9 times faster, and log disk throughput would have to be 4 times faster, before

ET1 throughput would be CPU-bound in the local configuration. If ETi throughput were entirely

CPU-bound, the maximum achievable throughput would be 117 TPS.

Paging disk access also is the largest component of El1 transaction latency in the remote

configuration. If the paging disk throughput were 2 times faster, ET1 throughput would be bound
by message setup time; allocating half of this time to each CPU, the maximum achievable
throughput would be 37.0 TPS. If the CPU, disks, and network interfaces were fast enough that

ET1 throughput were bound by network transfer time, the maximum achievable throughput
would be 55.6 TPS.

The disparity between local and remote configurations with respect to the time for a non-

paging write operation decreases in Scenario I relative to the actual measurements reported in
Chapter 6. In Chapter 6, a 32-byte non-paging write takes 2.0 times as long in the remote

configuration as in the local configuration. In Scenario 1, a 32-byte non-paging write takes 1.5

ANALYSIS 125

times as long in the remote configuration as in the local configuration. The decreased disparity

results from the relative improvements to local and remote message times. From Table 7-2 to

Table 7-3, the message setup time nflf for the remote configuration improves by a factor of 8.0

while the message setup time n/j for the local configuration improves by a factor of 7.6.

Scenario I exhibits a much smaller penalty for running an ElI transaction in the remote

configuration instead of the local configuration, and is achievable using readily available

hardware with a finely-tuned operating system.

7.1.4. Scenario 2

In Scenario 2, the performance of the system is extrapolated to an environment with leading-

edge technology. The CPU, disk, and network are all faster.

Replacing the 10 MIPS processor of Scenario 1 with a 25 MIPS processor reduces c to .04

microseconds. With this processor, I assume a network where page-size messages may be sent in
a single packet, and the network RPC setup time is very close to the local RPC setup time. This

is the type of network that might be used internally in a loosely-coupled multiprocessor. The

fixed cost per message nf, is .35 milliseconds. With an available bandwidth of 14

megabytes/second, the variable cost per byte n,, is .07 microseconds. Since pages do not need to

be fragmented when sent in an RPC, the Scenario 2 formula for paging read message time in the

remote configuration, Rp, matches the formula for the local configuration. The Scenario 2

formula for paging write message time in the remote configuration, WP,, includes only one more
RPC message (for obtaining a distributed lock) than in the local configuration. Using aggressive

disk technology, rotational latency is reduced to d 1 l0 milliseconds, seek time is reduced to ds =

10 milliseconds, and the transfer rate is reduced to d,4 = .2 microseconds per byte. These

parameters are summarized in Table 7-1. With these parameters and changes to the model, an

ETI transaction takes 54 milliseconds in the remote configuration, and 51 milliseconds in the

local configuration. (See Table 7-4.)

For Scenario 2, Table 7-4 reveals that ETlI throughput in both local and remote

configurations is bound first by the paging disk throughput (with a maximum achievable

throughput of 31.0 TPS), and then by the log disk throughput. If the paging disk throughput was

3 times faster, then the maximum achievable ETI throughput would be 66.7 TPS. The difference
in message time between the two configurations is only 7% of the total transaction time.

Message time can be further reduced by combining messages sent between nodes. As suggested

previously, paging disk throughput can be increased by using multiple disks, and log disk

throughput can be increased by using group commit. These changes will decrease the

contribution of paging writes WP and update transaction overhead T. (respectively) to total ETI

transaction latency. Paging disk throughput would have to improve by a factor of 3 before log

disk throughput would become the bottleneck. If log disk throughput improved by a factor of 5,
paging disk throughput would have to improve by a factor of 6 before ETI throughput becomes

126 CHAPTER 7

Local Remote
configuration configuration

E I transaction (ins.) 50.7 54.4

CPU time (ms.) 2.10 2.10

Paging disk (ms.) 32.3 32.3

Log disk (ms.) 15.0 15.0

Message transfer (ms.) .18 .53

Message setup (ms.) 1.14 4.40

"ETI transaction" is the latency of a transaction in the model, assuming no concurrent execution
of transactions. "CPU time" does not include message setup and transfer time that is reported
separately.

Table 7-4: Modeled ETI performance (Scenario 2)

bound by RPC time in the remote configuration, and a factor of 10 before ETI throughput

becomes limited by CPU time in the local configuration.

Scenario 2 incurs a small (less than 10 percent) penalty for running an ETI transaction in the

remote configuration over tV local configuration. In this environment, locality of reference

becomes less important in choosing the data sharing approach over function shipping.

7.1.5. Conclusion

The qualitative predictions of the model are significant. The model demonstrates that

TDSM is a reasonable alternative to function shipping on an appropriate hardware/so'iware

platform, even for an application such as ETI which has little or no locality of reference. Indeed,

when message passing becomes reasonably efficient, remote access becomes feasible. However,

the numbers predicted by the performance model should not be taken literally, since the model is

a rough approximation to the behavior of distributed systems.

The remote configuration is an unusual environment in which to run the ET1 benchmark, but

it is useful for making the point above. In a more realistic environment, the data for the

benchmark would be partitioned across several home nodes. A transaction router would make its

best attempt to route incoming transactions to the home node of the datv referenced by the

transaction. Thus, most transactions would run as in the experimental "local configuration,"

with the "remote configuration" reserved for those transactions which the router is unable to

direct to the correct home node.

ANALYSIS 127

7.2. Throughput vs. Cache Hit Ratio

As in any data sharing system, the performance of TDSM improves as the cache hit ratio

increases. This section provides a back-of-the-envelope illustration of this maxim.

The performance model discussed previously is used to determine the latency of a test

transaction. (Here, exactly five write operations are grouped to form a test transaction.) The

latency is broken down into components of CPU (including message setup), network transfer,

paging disk, and log disk. When multiple transactions execute concurrently, these components

are allowed to overlap (i.e., assume no scheduling delays). If we also assume that paging disk

and log disk throughput can be arbitrarily increased by running multiple disks in parallel, then test

transaction throughput is limited by either the available CPU time, or the network bandwidth.

The test transactions execute in an environment with N using nodes that share a single
network. When N > 1, each node acts as both a home node and a using node. A transaction on
node i accesses data from node i+l (modulo N); thus, the load is evenly distributed among the
nodes. When N = 1, a second node acts as the home node for the sole using node. Each
transaction writes five 32-byte regions of RVM. Since each using node has a unique home node,
there is no contention between nodes for RVM regions. The results reported here also assume

there is no contention between transactions within a given node for RVM regions.

U)100.00.

S90.00 '--O -oe
a3-E 5 nodes

80.00- X-- -- K 2nodes
...... 1 node

7 O .O O I

50.00 i

i
40.00-

XOO 0

20.00-

10.00

0.00 10.00 20.00 30.00 40.00 50.00 60.00 70.00 80.00 90.00 100.00
cache hit ratio (percent)

Figure 7-1: Throughput vs. cache hit ratio, actual parameters

128
CHAPTE 7

M7OcO

60OLOOe 10*-~ n~odes'-15 nodes
*-K 2 nodes

~...... 1Onods

400.00i

300.00/

0.00 10 W J UV 0. 0 060.00
20.00 3o.0 0.00M O

cache hit ratio (percen)
OR' 4W.00Figure 7-2: Throughput vs. cache hit ratio, Scenario 1

3500.00 0)-- -c --*10 odes,
0---40 5nodes

.2lnodes
.... nd

2500.00,

2000.0a

1500.00

1000.00

500.00
. ---

-

0.00 -............Il.......0.00 10.0 2000 0~0 40. 0 5~ oe U~00 7ao 8000 maou 100.00
Figre -3:Cache hit ratio (pecent)Figre -3:Throughput vs. cache hit ratio. Scenario 2

ANALYSIS 129

Each write access may find a region cached in physical memory, or not cached (in which

case a dirty page is written back to the home node, and the requested page fetched from the home

node). The cache hit ratio is the ratio of the number of accesses that find a region cached to the

total number of accesses. When the cache hit ratio is small and there are multiple nodes,

throughput may be limited by the network bandwidth, since all nodes use a common network.

Otherwise, throughput depends on the total CPU time available.

Modeled throughput figures are reported in Figures 7-1, 7-2, and 7-3 for the actual

parameters and two scenarios. The throughput value is the total number of test transactions that

can be executed by all nodes in one second. Individual data points are marked with large symbols

when throughput is limited by network bandwidth, and with small symbols when throughput is

limited by CPU capacity.

All three figures show that throughput is limited by CPU capacity for one or two nodes,

since one or two nodes do not generate enough traffic to overwhelm the network. The figures

also show that throughput is roughly proportional to the number of nodes when the cache hit ratio

is 100 percent.

For the actual parameters and Scenario 1, Figures 7-1 and 7-2 indicate that, until the cache

hit ratio reaches 100 percent, throughput for 5 nodes is limited by network bandwidth, and adding

additional nodes does not increase throughput. For 10 nodes, throughput is always limited by

network bandwidth: even with a 100 percent cache hit rate and no network paging, the network

messages needed to commit transactions use all the available bandwidth.

Figure 7-3 draws a different picture for Scenario 2. Throughput is limited by network

bandwidth only for 10 nodes with a cache hit ratio less than 90 percent. CPU capacity limits

throughput for 1, 2, or 5 nodes independent of the cache hit ratio, and for 10 nodes with a cache

hit ratio of at least 90 percent.

When the cache hit ratio is low, paging activity of only a few nodes can saturate the network.

A higher cache hit rate and higher network bandwidth is more suitable for TDSM. Even with

lower network bandwidth, TDSM provides reasonable throughput given a high cache hit ratio.

(The overhead of transaction commit for TDSM could be reduced to a single RPC per node in a

more sophisticated implementation.)

130 CHAPTER 7

7.3. Performance Improvements

Two tracks are available for improving the performance of TDSM. This section models
improvements to the performance of TDSM through optimizing the architecture presented in
Chapter 4. Improving the performance by substituting a different architecture is also discussed,

but not modeled.

7.3.1. Optimizations

Since message time is a prominent component of several TDSM operations, an obvious

technique to improve TDSM performance is to reduce the number of messages sent between
nodes.

Tam has suggested combining concurrency control and coherency control messages [Tam

91]. In his 2PL* algorithm, when a node requests a read (write) lock on an object, a read-only
(writable) copy of the object is delivered with the lock. The 2PL* algorithm reduces the cost of

paging operations in the model. It can be implemented in the TDSM system described in this

thesis as follows. Instead of allowing a server on a using node to contact the Lock Manager
directly, install the Remote Execution Manager as a surrogate for the Lock Manager. When the

Remote Execution Manager receives a lock request from a server, it sends a special request to the
External Memory Manager on the home node. The External Memory Manager makes a request
to the real Lock Manager on behalf of the server. When the Lock Manager replies, the External

Memory Manager merges the reply with a copy of the page corresponding to the lock, and sends
the merged message back to the Remote Execution Manager. The Remote Execution Manager

extracts the lock reply (which it forwards to the server) and the page (which it forwards to the
kernel).

In Tam's analysis, the combined coherency/concurrency control algorithm improves

throughput by a factor of two over independent coherency and concurrency control. However,
Tam assumes that the latency of a coherency control message is only twice the latency of a

concurrency control message, and Tam's analysis does not include the cost of accessing the
paging disk. For the scenarios presented in this chapter, the ratio of coherency control message

latency to concurrency control message latency is larger (10.5 for the actual measurements, 11.0
in Scenario 1, and 2.8 in Scenario 2). Ignoring the extra intra-node communication, combining

coherency and concurrency control can be modeled by subtracting the cost of a separate message
to obtain a distributed lock, nf, from the formula for a paging write operation Wp,r in the remote

configuration. The effects of this change on ETI throughput in the remote configuration are
given in Table 7-5.

Another possibility L,, reducing the number of messages is to eliminate explicit fetches of

the shared memory queue log buffer by the home node. In the TDSM system design, when the

home node receives a pageout message for a given recoverable segment, it makes an RPC to

ANALYSIS 131

Actual Scenario 1 Scenario 2

Original 595 167 54.4
ElI transaction
latency (ms.)

2PL* 579 165 54.1
ET1 transaction
latency (ins.)

The "original" row is repeated from Tables 7-2, 7-3, and 7-4 for the remote configuration. The
"2PL*" row reflects reduced latencies from combining concurrency and coherency control
messages.

Table 7-5: Effects of combining concurrency and coherency control

obtain the log buffer to every node using a the segment. (A using node may send a pageout
message because it is trying to free up physical memory, or because it was requested to do so by
the External Memory Manager as part of the coherency control algorithm.) This RPC can be
eliminated by sending the log buffer along with every pageout message. To do this, on each
using node install the Remote Execution Manager in the path between the kernel and the home
node External Memory Manager. When the Remote Execution Manager receives a pageout
message from its local kernel, it appends the log buffer and forwards the message to the home
node External Memory Manager. The External Memory Manager separates the log buffer from
the memory page and forwards both to the Disk Manager.

The home node also requests the shared memory queue log buffer for a given server when

any transaction that has executed in the server attempts to commit. This RPC can be eliminated
by sending the log buffer along with the server's vote. Finally, the home node scans the log
buffer for all servers whenever any transaction aborts. With some extra communication within

Camelot, inter-node RPCs to obtain the log buffer can be restricted to only those servers that were
actually involved in the transaction.

These changes to eliminate explicit shared memory queue fetches can be modeled by
subtracting the cost of an RPC, ,~r, from the remote configuration formula-q for a paging write
operation Wpr and update transaction overhead T,,. The effects of this "log optimization" in
conjunction with the 2PL* speedup are shown in Table 7-6.

With the "log optimization," both the modified page and log records describing
modifications to that page ar sent together in a message to the home node. The size of this
message can be reduced at the cost of some additional processing by eliminating either the
modified page or the log records. If the modified page is eliminated, the home node can
reconstruct it by scanning the log records and applying the modifications described by the log
records to an older version of the page. If the log records are eliminated, the home node can
reconstruct them by comparing the modified page to an older version of the page. The drawback
of either scheme is that the home node must maintain a correct "older version" of the page. To
avoid "double-paging," the home node must keep this older version on its paging disk. Thus,

132 CHAPTER 7

Actual Scenario I Scenario 2

Original 595 167 54.4
ETI transaction
latency (ms.)

2PL* + log opt. 547 161 53.4
ETI transaction
latency (ins.)

The "original" row is repeated from Tables 7-2, 7-3, and 7-4 for the remote configuration. The
"2PL* + log opt." row reflects reduced latencies from eliminating explicit shared memory queue
fetches, and combining concurrency and coherency control messages.

Table 7-6: Effects of "log optimization"

the savings from not transferring the log records or modified page over the network are offset by

the expense of an additional disk read and additional CPU processing at the home node.

If the "log optimization" technique is further optimized by eliminating the network transfer

of the modified page, the home node can reconstruct the modified page by reading an older
version from the paging disk, and applying the modifications in the log records. This can be
modeled in the remote configuration as follows, assuming that only a single 32-byte region is
modified on the page. Subtract the page transfer time, 4096*n,, from the cost of a paging write
operation Wpir. Add the cost of transferring a 32-byte log record, 32"n,,, the CPU time for
repeating a 32-byte modification, W,.pf + 32*Wp,,,, and the time to read an older version of the

page from disk, d. + df + 4096"d4. Table 7-7 shows that this optimization is beneficial when
network messages are expensive (as with the actual parameters), but in Scenarios 1 and 2, the cost

of reading the old page from disk and extra CPU processing outweigh any savings in network

transfer time.

Actual Scenario I Scenario 2

2PL* + log opt. 547 161 53.4
ETI transaction
latency (ms.)

Omit page 525 188 69.4
ETI transaction
latency (ms.)

The "2PL* + log opt." row is repeated from Table 7-6. The "Omit page" row includes the
same optimizations with a further modification to eliminate the network writeback of a modified
page via reconstruction at the home node from log records and an older version of the page.

Table 7-7: Effects of omitting writeback of modified page

In the present implementation, whenever a page migrates from node NI to node N2, log
records from node NI are forced to stable storage, and the page is written to the paging disk. The
write to paging disk is not strictly necessary. It occurs, in part, because only the External

Memory Manager knows that a migration is in progress. To the rest of Camelot, the pageout

ANALYSIS 133

message from node NI looks like a pageout due to housecleaning of inactive pages by the kernel.

If the page is inactive, writing it to disk is a good idea, since the page will not be modified again

soon. But writing the page to disk during a node-to-node migration is not as beneficial (although

it may help limit recovery times) since the page is still active and will be modified again soon.

With a closer coupling of the External Memory Manager to the rest of Camelot. this paging disk

write during migration can be eliminated. (The effects of this change cannot be expressed in the

ETI model because an ETI transaction does not include any node-to-node page migration.)

Another potential opportunity for improving performance within the architecture arises in

the coherency control algorithm. A server written for Camelot is structured so that Camelot

knows the exact boundaries of a region being modified in recoverable virtual memory. With

some changes to the locking interface, Camelot could also know the exact boundaries of regions

being read in recoverable virtual memory. Given this information, Camelot could use a

granularity other than the system page size for coherency control. That is, instead of transferring

whole pages from node to node, and ensuring that whole pages are coherent, Camelot could

transfer objects of a different size, and ensure coherency for objects of a different size.

The performance effects of such a change are heavily dependent on the recoverable virtual

memory reference pattern of each server. If Camelot uses a granularity smaller than a page,

performance may improve because Camelot sends less data over the network when it fetches an

object. Unfortunately, if the server references several objects residing on the same page,

performance may decrease, because Camelot will have to send more messages to obtain the same

amount of data. However, the smaller granularity may improve performance when two servers

on different nodes update two distinct objects on the same page: since Camelot is maintaining the

coherency of smaller objects, neither server will have to wait for the other server to finish

updating the page. If Camelot uses a granularity larger than a page because a server references an

object larger than a page, performance may improve because Camelot may be able to transfer the

object from node to node with fewer messages. However, if Camelot uses a larger granularity,

performance may decrease because Camelot may transfer more data than is needed by the server.

Because the performance effects of using different granularities depends so strongly on the

server characteristics, and the actual algorithm for maintaining coherency with varying

granularities is complicated, these effects are not expressed in the model. Physical locking (as in

the IBM 801 architecture [Chang and Mergen 881) could make smaller granularities more

tractable.

7.3.2. Architectural changes

Instead of attempting to improve the performance of TDSM by optimizing the architecture

of Chapter 4, let us consider the more radical approach of designing a new architecture. The

home node concept causes several common operations to include a network component:

transactions are committed over the network, and pages are written to non-volatile storage over

134 CHAPTER 7

the network. An alternative architecture could eliminate the network component of these

operations if each node uses its local disk as non-volatile storage for data pages, and each node

uses a local log service to commit transactions locally. As long as pages are not migrated from

node to node, all transactions in this hypothetical architecture run as "local" transactions.

There are two difficult problems to solve in this hypothetical architecture. The first is how
to locate a given page. With a home node, there is no question of how to locate a given page,
since the home node always has current information. With no home node, page location
information becomes distributed, and a page location algorithm is necessary.

The second, more difficult, problem is how to perform recovery after a transaction aborts or
after a crash. With a home node, all relevant log records are easily located, and recovery is
straightforward. With no home node, log records become distributed, and an algorithm is needed
to locate them.

To better understand thee problems, consider an example. Suppose transaction TI on node
NI modifies a region on a given page. Before T1 commits, the page migrates to node N2, where
transaction 72 modifies a second, distinct region. Now, if transaction TI aborts, either log
records must migrate from node Ni to node N2, or the page must migrate from node N2 to NI, so
that transaction Ti's modification can be undone. If node NI crashes before the log records

migrate to node N2, node N2 is stuck with a copy of the page that is inconsistent. If node N2

crashes after the page is migrated back to node Ni, node Ni is stuck with a copy of the page that

is inconsistent.

Now suppose both nodes Ni and N2 crash. At same time, a third node N3 must determine

the outcomes of transactions Ti and 72 so that it may locate (or generate) a consistent copy of the

page, yet the information node N3 needs may not be available. (The architecture described in

Chapter 4 does not have this problem exactly: it can survive the crashes of nodes Ni and N2, as

long as neither node is the home node.)

One option for solving the page location and recovery problems is to use broadcast. A page

can be located by broadcasting a request message to all nodes. When a page migrates from node

to node, relevant log records must migrate along with it. When a transaction commits or aborts, a

broadcast message notifies all nodes which may need to force log records to disk, or perform

abort actions as appropriate. To recover after a crash, a node broadcasts a request for all relevant

log records. The problem with this broadcast approach is that it suffers performance problems of

its own. To ensure correctness, many broadcast messages will have to be reliable broadcasts.

Reliable broadcast essentially forces the transaction commit protocol down into the

communications layer, making reliable broadcast relatively expensive.

A second option for solving the page location and recovery problems is to use write-through

techniques. When a node modifies a page, the modification is "written-through" the node's

ANALYSIS 135

non-volatile cache by sending a notification to all interested nodes. Transaction outcomes are
also written-through to all interested nodes. A page is easily located by contacting one of the
interested nodes. Recovery is straightforward, because each of the interested nodes has all of the

information needed. The problem with this write-through approach is the tradeoff between
performance and availability. To improve performance, the frequency of write-throughs and the
number of interested nodes must be restricted. For best availability, the set of interested nodes

should be the entire distributed system, and write-throughs must be unrestricted.

Architectural changes are also discussed in the next section where certain deficiencies of the
system are addressed.

7.4. Deficiencies of the System

Several deficiencies of the TDSM design were brought up in Chapter 4. Some additional

deficiencies are omissions in the implementation. These deficiencies and possible solutions are
addressed below.

7.4.1. Recovery

Server recovery is not fully implemented. If a server on node NI fails but node NI is still
accessible, recovery is performed correctly as each transaction that was executing in the server
aborts. When a transaction aborts, the Recovery Manager directs undo requests to a server on
another using node N2. As the server processes the undo requests, pages from the failed server
will migrate from node N) to node N2. No redo operations are necessary, since modifications
made by committed transactions will be present on the migrated page.

But if a using node fails, the home node does not recover pages that were in use by the failed

node, and these pages are unavailable for further access. The problem is that Camelot can

execute its segment recovery algorithm only as the first server using a given segment is started, or
after the last server using a given segment terminates. The segment recovery algorithm scans the

log backwards. As it encounters modifications made by committed transactions on a given page,
it generates redo requests, until it finds a record of the page being written to paging disk. Then,
as it encounters modifications made by aborted transactions, it generates undo requests until it
reaches the last checkpoint. These undo and redo requests are then applied to the page on paging

disk.

To solve the problem of pages from a failed node being unavailable, a separate server

recovery algorithm is needed. The server recovery algorithm is similar to the segment recovery
algorithm, except that it only processes modifications from servers on the failed node. The server
recovery algorithm must work in conjunction with the Lock Manager to abort any transactions in
progress on the failed server, and release locks cached by the server.

136 CHAPTER 7

Implementing this server recovery algorithm requires some additional interfaces between the

Disk Manager, Lock Manager, and Recovery Manager to identify transactions in failed servers

and abort them, releasing their cached locks. Since the server recovery algorithm can be adapted

from the existing segment recovery algorithm, it could be developed with as little as one man-

month of effort.

This deficiency affects only the recovery algorithm, and rectifying the problem will not

affect the performance measurements reported in Chapter 6, since these measurements include

only forward processing, not recovery.

7.4.2. Configurability

In the CamelotjTDSM architecture, using nodes have relatively little autonomy. The
configuration of a recoverable virtual memory segment is defined on its home node; every server

using the segment is defined on the home node, even if the server runs on a different node. A

server may be started or killed only from the home node. To allow using nodes more autonomy,

the server configuration could be distributed, with the configuration for each server residing on

the node where the server runs. The segment configuration remains on the home node.

The only real difficulty with this approach arises from the way Camelot stores configuration
information. Since Camelot stores configuration information about servers and recoverable

virtual memory in recoverable virtual memory, storing server configuration on each using node

will require a full-fledged Camelot to run on each using node; each using node must have its own

non-volatile and stable storage for Camelot to use. When a using node starts a server configured

to use a remote recoverable virtual memory segment, the using node contacts Camelot on the

home node, and everything continues as in the original CameloVTDSM design.

7.4.3. Security

Closely related to the node autonomy deficiency addressed in the previous subsection is a

security deficiency. The Remote Execution Manager on each using node processes an RPC from

the home node in which the home node may request an arbitrary program to be executed. To

guard against malicious programs, each using node should be able to control the set of programs

that may be executed. If the server configuration is stored on each using node (as described

above) then this control can be achieved by changing the interface between the Remote Execution

Manager and the home node. Instead of providing the name of the program to be executed, the

home node should present a server ordinal to the Remote Execution Manager. The Remote

Execution Manager can consult the server configuration information on its own node to

determine the name of the program to execute.

Another security problem is endemic to the data sharing paradigm. While function shipping

ANALYSIS 137

allows arbitrary operations to be restricted to particular callers, data sharing cannot control

operations other than read and write. The current implementation of Camelot/TDSM does not

provide even this restriction: once a server meets the access controls for a given recoverable

segment, it has read and write access to the entire segment. As a step in the right direction,
Camelot could define access lists for individual pages, so that each server has read, write, or no

access to each page of a recoverable segment.

Other security features that bear consideration include encrypting messages sent over the

network (including data pages), and forcing Camelot and the Remote Execution Manager to

authenticate each other. These features are beyond the scope of the security guarantees

envisioned by the original designers of Camelot.

7.4.4. Availability

The primary drawback to the CamelotfTDSM design is that failure of the home node

effectively causes all servers on using nodes to be unavailable. When the home node fails,
servers cannot commit or abort transactions, or access any pages except those pages already

cached in main memory.

An obvious approach to solving this availability problem is to harden the single point of
failure. The physical components of the home node can be duplexed (CPU, memory, controllers,

disks, even the network) to reduce the probability of failure. Alternatively, the home node could

be replicated over the network, perhaps forwarding all log records, page stores, and other

necessary information to a "hot standby."

A variant of the hardening approach is to harden only the log service. Daniels demonstrated

the viability of distributed, replicated log service [Daniels 88]. Using this log service as a

common log for all nodes enables each using node to commit or abort a transaction without

contacting the home node. Given a checkpoint and the log, any node can reconstruct a consistent

state for paging store, so replication of checkpoints ensures availability after crashes. The trick is

to achieve consistent, replicated checkpoints without halting forward processing.

A second approach is that outlined in Section 7.3.2: replicate pages and log records by

distributing them among using nodes, and rely on the redundancy of using nodes to improve

availability. When a region of shared recoverable virtual memory is modified, a log record

describing the modification is written to the local log, and also forwarded to another node. Razurm

has studied this technique in an environment where disks are shared by all nodes [Rahm 89], but

much of the study is still relevant to a general distributed system. Each node can commit or abort

a transaction on its own, relying on the replication of log records to notify other nodes of

transaction outcomes.

Non-volatile storage for pages is also replicated. Tam has investigated a scheme which

138 CHAPTER 7

allows the ownership of pages to migrate, while still allowing easy location of a page for

recovery [Tam 91]. Thus, this second approach improves availability by providing a backup site

(or sites) for pages and log records, at the cost of additional communication. Replication of log

records can be done after a transaction commits locally, so as to avoid increasing transaction

latency. Replication of pages may add to transaction latency.

7.4.5. Incremental Growth

Closely related to the availability problem of Camelot/DSM is scalability: the home node

is both a single point of failure, and a potential performance bottleneck. The load on the home

node and the required communications bandwidth increases with the number of transactions; the

number of transactions is expected to increase as the number of using nodes increases.

The hardening approach outlined above doesn't address the incremental growth problem,

since the performance of the hardened service still must grow with the number of transactions.

However, if Camelot/TDSM were extended to allow each server access to multiple segments, and

the database can be divided among multiple segments, then incremental growth in both storage

capacity and processing power could be achieved by adding additional home nodes.

The second approach of replicating pages and log records in a distributed manner does offer

a path to incremental growth of processing power and storage capacity. Each node uses its local

disk to store a subset of the database, and the transaction load is distributed among the nodes.

The number of messages needed to replicate a page or log record depends on the number of

replicas, not on the total number of nodes in the system. As long as access to data is evenly

distributed among the nodes, increasing the number of nodes does not increase the load on any

one node.

7.5. Summary

The performance model used in this chapter demonstrates the practicality of TDSM given an

appropriate (and reasonable) hardware and software environment Indeed, the model even

predicts that low locality of reference is not as significant a factor favoring function shipping
when a high-speed network is available. Of course, data sharing achieves higher throughput as

the cache hit ratio increases. The model shows that, while the implementation is lacking some

possible optimizations to the TDSM architecture, these optimizations do not have a significant

effect on the system's performance.

The TDSM architecture described in this dissertation has shortcomings in the areas of

recovery, configurability, and security that could be rectified easily. More serious deficiencies

are poor availability and incremental growth. Alternative architectures that replicate and

distribute the functionality of the home node can correct these deficiencies, but may have a

negative impact on performance.

Chapter 8

Conclusions

8.1. Motivation

Transactional distributed shared memory (TDSM) aids in building distributed programs that

meet many application requirements, including:

* Ease of programming. Distributed shared memory extends the familiar notion of
shared memory to a distributed system. The benefits of transactions can be obtained
by adding a few statements to a well-designed program.

* Incremental growth. A sophisticated TDSM system allows easy expansion of
processing and storage capacity by adding more nodes. (Note that the prototype
implementation described in this dissertation has limits to the growth of these
capacities.)

* Multiple access to data. Distributed shared memory enables shared data to be
accessed in the same manner as local data. Transactions ensure that concurrent
accesses do not result in inconsistent states.

"• Data integrity. Transactions guarantee permanence and prevent inconsistencies
arising from failures or concurrent updates.

"* Performance. Distributed shared memory offers automatic partitioning for high
locality of reference, and automatic replication for read-only performance.

TDSM offers an interesting alternative to the traditional technique of extending transactions

to a distributed system via transactiona RPC. Remote procedure call (RPC) is attractive because

it uses the familiar paradigm of procedure call to hide the details of constructing a message,

sending it, awaiting a reply, and unpacking the reply. Unfortunately, RPC cannot hide the time it

takes to send and receive a message. As a result, programmers who wish to improve the

performance of their applications may try to reduce the number of RPCs they make through the

use of a cache of requests and replies. In a general-purpose RPC system where each operation

may have complicated semantics, it is difficult to keep caches consistent The beauty of TDSM is

that the semantics of "memory" are simple and memory is used by almost every application.

Memory caching is a popular research topic, and should benefit from extensive research in the

field.

The benefits of TDSM over transactional RPC include:

* Ease of use. Data flows automatically to the site of use with no explicit
communication required.

139

140 CHAPTER s

Automatic replication of read-only data. Read-only data is cached at each node
where it is used.

*Automatic adaptation to changing locality. Data that is written at only one node
remains cached at that node.

" Elimination of distributed commit. With function shipping, a transaction may update
data stored at several nodes. Each node in the transaction must agree on the
transaction's success, and must force log data to disk. With TDSM, data is shipped
to the transaction's node, where it is updated locally. Only one node must force log
data to disk.

" Efficient software implementation. Since only a few operations are involved, the
remote procedure calls needed to implement TDSM can be hand-coded and
optimized. Such optimization is difficult for transactional RPC given the wide
variety of options available in a general-purpose RPC system.

" Efficient hardware implementation. Again, since only a few operations are involved,
the remote procedure calls need to implement TDSM could be implemented (at least
partially) in hardware. Virtual memory hardware can improve performance.

The performance advantages claimed for TDSM should not be considered in isolation.

Knowing the semantics of a given application, a programmer could design an application-specific

cache that transfers just the data that is needed, and thus outperforms the more general caching of
TDSM. But TDSM offers performance gains in conjunction with ease of use: an application
benefits from TDSM caching with no additional programming.

TDSM may not be suitable for all applications. TDSM suffers in several areas:

"* Security. With function shipping, each operation is invoked by a separate RPC, and
thus each operation may be individually restricted. With distributed shared memory,
operations are invoked via appropriate read and write operations. The distributed
shared memory system can only restrict reads and writes of particular regions.

" Availability. To ensure data integrity, a transaction system may prevent access to
data that is not known to be consistent. This difficulty may be exaggerated in TDSM
systems unless the system takes special care to ensure that data and the log records
describing modifications to the data are available after a crash.

"* Performance. TDSM may transfer more data than is needed by the application. If
the cost of data transfer is not amortized over repeated accesses, it may be less
expensive to ship function requests to the original location of the data.

The major challenge in designing a TDSM system is transaction recovery, the process of

undoing or redoing the effects of a transaction to ensure failure atomicity or permanence.
Traditional approaches to transaction recovery do not apply to TDSM because recovery of a

TDSM object may involve many nodes instead of just one: nodes that arc updatixig the object,

nodes holding records of previous updates to the obje .t, nodes that are already recovering the

object, and nodes holding pieces of different versions of the object.

CONCLUSIONS 141

8.2. Contributions

This dissertation argues that it is feasible and useful to provide TDSM as a tool for

constructing distributed applications. The specific contributions of the dissertation are
summarized below:

" An architecture for implementing TDSM in a general purpose transaction processing
facility. The key design decision underlying the architecture is the concept of the
home node, which provides a simple, direct method for achieving transaction
guarantees. The challenge of transaction recovery is addressed by storing log records
and data blocks on the home node, and coordinating recovery from the home node.
Caching of data and log records is used to improve performance and reduce the load
on the home node.

"* An overview of the implementation of this architecture in the Camelot distributed
transaction facility. Camelot's concept of a recoverable virtual memory (RVM)
segment is extended in two ways. First, each RVM segment can be shared by
multiple Camelot servers. Second, Camelot services and pages of any RVM segment
can be accessed over the network.

The major additions to Camelot for TDSM are the Lock Manager (to ensure
serializability of accesses to shared data), the Remote Execution Manager (to assist
in remote access to Camelot services and RVM segments), and the External Memory
Manager (to maintain the consistency of RVM pages across nodes). To support
TDSM, data structures in the Camelot Disk Manager, Recovery Manager, and Node
Server are modified to separate RVM segments from the servers that access them.
Forward processing and recovery algorithms are similarly affected.

" A description of the implementation's performance, reporting the latency of
individual operations and ETI throughput figures in various configurations. The
performance results show that reading a RVM page that is cached is no more
expensive for remote access to a RVM segment than for local access. Writing a
cached page and committing a transaction is somewhat more expensive because of
the cost to send log records and transaction commit messages across the network.
Access to a page that is not cached is significantly more expensive for remote access
because the underlying RPC system in the experimental environment performs
poorly on large (page-size) messages.

" A characterization of the applications for which TDSM is suitable. An illustration in
Section 7.2 shows how aggregate throughput for one to ten nodes is limited by CPU
capacity and not network bandwidth once the cache hit ratio reaches 90 percent. The
illustration uses a test transaction that performs five write operations. TDSM read
operations are much cheaper than write operations: a read operation that hits the
cache is entirely CPU-bound, and a cache miss on a read operation is less than half
the cost of a cache miss on a write operation. Thus, an application need not
necessarily have high locality of reference as long as the ratio of communication
costs imposed by network paging is low in comparison to application processing
Costs.

" An analysis of the TDSM system's performance in terms of characteristics of the
underlying hardware and software. Using a model, the performance of the system is
extrapolated to two different platforms. ETI throughput is limited primarily by
paging disk throughput, and thus the ETI benchmark (as used in the performance
measurements) is not really an appropriate application for TDSM. Even so, wL.n the
underlying platform is optimized for TDSM, an ETi transaction that pages over the

142 CHA'rER 8

network can achieve a latency within 10% of the latency of an ETI transaction that
uses a local paging disk. Adapting the ETi benchmark to TDSM to improve locality
would further reduce the latency.

"A performance analysis of possible optimizations to the TDSM implementation. The
failure atomicity property of transactions may be provided in part by writing a log
containing all of the changes made to a data structure. This log write may also serve
to update the conten, of the caches in a distributed shared memory system,
eliminating the need for additional messages to keep caches coherent. Another
possible optimization is to combine locking with cache coherency: locks can be
obtained automatically as an item is cached, and released automatically when an item
leaves the cache. The model shows that these optimizations offer modest
improvements in performance.

" A discussion of the deficiencies of the architecture and its implementation.
Relatively simple changes to a few Camelot components can improve configurability
and security. Limitations to incremental growth are slightly more difficult to
remedy. Incremental growth in processing capacity is limited by the load of paging
requests and transaction commit requests that the home node can process.
Incremental growth in storage capacity is limited by the capacity of the home node,
although it is conceptually simple to allow a given server to use segments from
multiple home nodes.

A more serious deficiency is limited availability. Failure of the home node
effectively causes all data to be unavailable. Some of these deficiencies can be
addressed by hardening the home node through replicating hardware or software
services. A more promising alternative is to eliminate the home node completely,
distributing its functions among all nodes in the environment.

"* A discussion of some of the issues in designing future TDSM systems. During
recovery, log records must be located in order to restore data blocks to a transaction-
consistent state. Pages must be located during both recovery and forward processing.
To improve availability, pages and log records should be replicated, complicating the
algorithms that locate them, and the transaction commit protocols. Allowing a
modified block to migrate before transaction commit can improve throughput, but
complicates recovery.

" Some practical evidence that TDSM is feasible and useful. In the course of the thesis
work, I implemented a system that provides TDSM, thus showing feasibility. As
part of testing and analyzing the system, I took several multi-threaded transactional
data servers that had been implemented on the original Camelot system, and ran
copies of these servers on multiple nodes, with each set of servers of a particular type
sharing a TDSM segment. This demonstrates the utility of TDSM in that, without
recoding the servers, I was able to provide distributed, consistent, cached access to
the data in the TDSM segment.

CONCLUSIONS 143

8.3. Future work

Although the TDSM implementation described in this dissertation is based on recoverable

virtual memory, the conclusions of the thesis ame not restricted to virtual memory. Many

transaction processing systems provide recoverable storage through read and write operations on

a buffer pool. Since the user-level pager interface of Mach is uncommon in other operating
systems, it is instructive to consider how non-virtual memory TDSM could be implemented.

When an application requests a block from a TDSM buffer pool manager, the manager may

locate the block on disk as before, or it may ask the buffer pool manager on another node for the

block. When an application releases a buffer to a TDSM buffer pool manager, the manager may

write the block to disk as before, or it may send the block to another node that is requesting the

block. Just as pages of virtual memory are managed to provide distributed shared virtual

memory, buffers in the buffer pool can be managed to provide a shared memory.

The need for a distributed lock manager could be eliminated in future designs of TDSM.

Suppose the shared memory coherency algorithm enforces a single-writer, multiple-reader

protocol on data blocks. To obtain a lock, ask the coherency algorithm for a copy of the block in

the same mode as the lock. Use a local lock manager to serialize local transactions, and prevent

the coherency algorithm from invalidating a block until all local locks are dropped. This method

should be compared and contrasted to the distributed lock manager. Another alternative that

eliminates locks altogether is optimistic concurrency control.

The current design of TDSM behaves poorly when concurrent write-sharing is frequent.
Future work should address this problem. One alternative is to eliminate false sharing through

compiler techniques (forcing independent objects to separate pages) or modifications to the

granularity of coherency control (applying the coherence algorithm to objects smaller than a

page). An alternative of interest is to relax the single-writer constraint that forces an entire page

to be shipped from writer to writer. Instead, multiple nodes could have write access to a given
page, and could use write-through techniques to keep the copies coherent.

Chapter 7 presents a brief overview of alternative architectures for TDSM. A promising area

for future work is to explore these alternatives in more detail. A difficult problem in architecting
a TDSM system is finding the proper tradeoff between performance and availability when
designing the transaction recovery algorithm. The architecture described in this dissertation
limits availability in favor of performance and ease of implementation. Other architectures may
choose to improve availability at the price of reduced performance and/or a more complicated
implementation.

144 CHAPTER S

8.4. Conclusion

As applications become more sophisticated in their use of RIC, caching of requests and

replies will become more common. This implies that a smart application won't use RPC directly.

The question for system designers is whether to concentrate on providing the tools needed to

build RPC-based systems, or to look instead at providing shared access to data with a common

caching mechanism for all applications. In this dissertation. I investigated the second option in

the context of transactions, presenting evidence that transactional distributed shared memory is a

feasible and useful tool for constructing distributed applications.

Although this dissertation has studied TDSM in the context of a general purpose distributed

system of engineering workstations, the analysis in Chapter 7 shows that the results have broader
application. Given low-cost messages through the use of optimized software and hardware

implementations, TDSM is a natural application for distributed or loosely coupled

multiprocessors. With some additional work, TDSM could also provide a caching mechanism for

database systems that use SQL to communicate between client and server.

Appendix A

Performance Model

This appendix develops the performance model used in Chapter 7, based on the performance

results reported in Chapter 6. This model is used to project the performance of the system to

different environments, and to project the effects of changes to the algorithms used by the system.

A.1. Parameters

Eight parameters characterize the hardware and operating system:

"* c, the time to execute one CPU instruction.

" nfj, the time for a null RPC (sending a message containing no data and awaiting a
reply that contains no data) between two processes on the same node. This
parameter is a function of the number of instructions that the operating system
executes to transmit a message.

* nv., the incremental time to include another byte in a message sent between

processes on the same node.

,,, the time for a null RPC between two processes on different nodes. The value of
s parameter depends on the operating system overhead (on both sending and

receiving nodes), latency of the network interface (sender and receiver), latency of
the network (the time it takes a bit to propagate from sender to receiver) and the
network bandwidth (even a null RPC must transmit some control information).

*nv. the incremental time to include another byte in a message send between
processes on different nodes.

+ the time to initiate a disk operation (including operating system overhead and
average rotational latency).

ad 5. the average disk seek time.

* d,. the incremental time to read or write one byte from disk.

These parameters and their values in the three scenarios described in Chapter 7 are given in
Table A-1. The model is built on the assumption that only one transaction executes concurrently.

All times in the model are expressed in terms of the eight parameters.

145

146 APPENDDC A

Parameter Actual Scen- Scen-
ario I ario 2

time per CPU instruction c .4 Its. .1 Is. .04 S.

null RPC time (local) nfj 2.28 ms. .30 ms. .12 ms.

RPC time per byte (local) nj .58Ls. .0;5 Ls. .02 PS.

null RPC time (remote) n,, 16 ms. 2.0 ms. .24 ms.

RPC time per byte (remote) nv,, 14 is. 2 Is. .07 Ps.

average rotational latency df 8.3 ms. 8.3 ms. 5 ms.

average seek time ds 22 ms. 22 ms. 10 ms.

disk transfer time per byte d, ips. I ;L. .2 PS.

Table A-i: Performance model parameters

A.2. Operation Model

Operation times in the model can be expressed in terms of the eight parameters. Formulas

for the modeled times are summarized in Table A-2.

Local Remote

configuration configuration

Non-paging read 725*c 725*c
fixed cost R ,f
Non-paging read .425*c .425*c
cost/byte R ,V

Non-paging write 3500*c + 73*nt, 3500*c + 73*n,,r
fixed cost Wn/
Non-paging write 7.5*c + n', + d, 7.5"c + n, + d,
cost/byte w ,

Paging read 15000*c + n, *2 + 40 96 *nj + 15000*c + n, *8 + 4096*nr +
operation Rp + .+df+ 406"*4 ds + df+ 406"*d
Paging write 32000(c + 2*(nl + 409 6 *n;j) + 32000"c + 13*nr + 2*4096*"n +
operation Wp 2*(d, + df+ 49"d*) 2*(ds + dr+ 4 dv)

Read-only transaction 7500*c + 3*nf + 200*nvj 7500"c + 3*nfr + 200*nr
overhead

To

Update transaction 5000"c + 3 .5*nfj + 200*nv,t + 5000*c + 4.5*nfr + 200*n;,r +
overhead Tu ds + df d, +,d

Table A-2: Performance model summary

The modeled operation time formulas are derived from the operation costs measured in

Chapter 6:

PERFORMANCE MODEL 147

"* Non-paging reads. A non-paging read operation involves only CPU time. From
Table 6-2, the fixed cost per read is R,,j = 725"c, and the variable cost per byte is
R?,V = .425*c.

", Non-paging writes, The difference in fixed cost per write from Table 6-3 between
local and remote configurations is 1.02 milliseconds, due to increased message costs.
The remaining 1.40 milliseconds is CPU time, so the formula for fixed cost per write
is W,,p = 3500*c + 73*nv3 in the local configuration, and W,,p,(.I = 3500*c +
73*nv•, in the remote configuration. The variable cost includes writing one byte to
the log disk, and the data is copied once in a message, so the formula for variable
cost per byte is W,,,,,, = 7.5"c + nvl + d, in the local configuration, and WP-V'r
7.5*c + nv0r + dv in the remote configuration.

" Paging reads. The page must be read from the paging disk, so RP-d = ds + df +
4096*dv. There are two messages, to transfer a total of one page of data, Rp,,j =

nfj*2 + 4096*nv,4 , for the local configuration. In the remote configuration, the
message must be split into 1500 byte packets, so the empirically determined formula
is R,,,,, = nr*8 + 4096*nvr Eppinger measured 5.2 milliseconds of CPU
time [Eppinger 89], to which is added .7 milliseconds for locking, so the total CPU
time is RPC = 15000"c. The time for a paging read is then the sum RP = Rp11 + Rp• +
Rp,&

"* Paging writes. A dirty page (4096 bytes) is written to the paging disk, and a clean
page is read from the paging disk. Since both operations require a seek, the formula
is W d = 2*(d5 + df + 4096*dv). There are two messages, each transferring one page
of data, W : = 2*(0t + 4096*nv l), for the local configuration. Again, the data
must be split into packets for the remote configuration. Since the remote
configuration uses distributed locks, an extra RPC is needed to obtain a write lock.
Another RPC transfers the (possibly empty) shared memory queue log buffer, so the
formula is W =1 3 *nr + 2*4096*n;,). Eppinger measured 12.1 milliseconds of
CPU time [Eppiger 891, to which is added .7 milliseconds for locking, so the total
CPU time is WP.c = 32000"c. The time for a paging write is then the sum W, = WP'c
+ + PC

"* Read-only transaction overhead. Three messages transfer a total of approximately
200 bytes of data, giving the formula T,,,, = 3*nft + 200*nv,/ in the local
configuration, and Tro,,•, 3* + 200*nv, in the remote configuration.
Subtracting from the values in Table 6-2 and rounding gives a CPU time of Toc
7500*c. The time for a read-only transaction is then the sum T, 0 = T,.o + Tro,.

"* Update transaction overhead. Initiating the write to the log disk takes T, d = ds + df
In the local configuration, there are 3.5 messages to transfer roughly 200 bytes of
data (three messages are round-trip RPCs, one message is a one-way notification),
T",n = 3.5*n/j + 200*n;,. In the remote configuration, there are 4.5 messages
transferring roughly 200 bytes of data, T., = 4.5*nf., + 200*nv,. (The additional
message in the remote configuration transfers the shared memory queue log buffer.
The amount of data transferred depends on the operations performed by the
transaction, and is assigned in the model to the appropriate operation.) This leaves
CPU time of roughly TM, = 5000*c. This time Tc is lower than the CPU time for
read-only transactions Tro• because some of the CPU processing for an update
transaction overlaps the disk I/O. The total time is then Tu = TM + T." + T.&.

Given these formulas for operation times, the latency of a single ETI transaction can be

modeled by summing the appropriate operation times:

148 APPENDIX A

"* Transaction overhead. To the single-server update transaction overhead add 3
messages: T~j + 3*nfj or T,, + 3*nfr

"* Paging write operations. One paging write occurs every transaction. Another paging
write occurs every 78 transactions. The sum is 1.02*W,.

"* Non-paging write operations There are 4 non-paging writes each transaction:
4*(W,Wv, + 32*WIv,,).

A.3. Modeled results

Modeled times for each operation can be computed by substituting each set of parameter

values from Section A. 1 into the formulas from Section A.2. These results are given in Tables

A-3, A-4, and A-5. The results show the total time for operation. The total is also broken down

into CPU time (excluding RPC time), message time (combining setup and transfer time), and disk

time (combining log disk and paging disk time).

PERFORMANCE MODEL 149

Total time I CPU time Message time Disk time
(Ms. ; PS.) (Ms.; Ps.) (Ms.; PS.) (Ms. ; Ps.)

Local configuration

Non-paging read .29; .17 .29 ; .17 0 ; 0 0 ;0
R ,f ; RP,,

Non-paging write 1.44; 4.58 1.40 ; 3 .04;' .58 0 ; 1w,,,l; w,,,.,
Paging read 47.3 6.00 6.94 34.4
operation Rp

Paging write 90.9 12.8 9.31 68.8
operation Wp

Read-only transaction 9.96 3.00 6.96 0
overhead Tro
Update transaction 40.4 2.00 8.10 30.3

overhead TV

ETI transaction 149 21.0 27.0 101

Remote configuration

Non-paging read 29; .17 .29; .17 0 ; 0 0 ;0
Rnpf/; Rmp.v

Non-paging write 2.42 ; 18 1.40; 3 1.02; 14 0 ; 1
W ,•Wl ; W "P ".'

Paging read 226 6.00 185 34.4
operation Rp

Paging write 404 12.8 323 68.8
operation Wp

Read-only transaction 53.8 3.00 50.8 0
overhead Tro

Update transaction 107 2.00 74.8 30.3
overhead T,
ETI transaction 595 21.0 474 101

Parameters reflect the hardware and operating sysiem used in Chapter 6. Disk and message
parameters and non-paging operations have a fixed cost per operation (milliseconds), plus a
variable (incremental) cost per byte (microseconds); other times (milliseconds) are per operation.

Table A-3: Modeled performance (actual parameters)

150 APPENDIX A

Total time CPU time Message time Disk time
__________ I (ms. ;s.) (ms. ;J.s.) ((ms.;; s.) __s._;__s.)

Local configuration

Non-paging read .07 ; .04 .07; .04 0 ; 0 0 ;0
Rw,f; Rm,v

Non-paging write .35; 1.80 .35; .75 .00 ; .05 0 ;1

"wP, ; w,,,v
Paging read 36.7 1.50 .805 34.4
operation RP

Paging write 73.0 3.2 1.01 68.8
operation Wp

Read-only transaction 1.66 .75 .91 0
overhead TIo

Update transaction 31.9 .50 1.06 30.3
overhead 7"

ETI transaction 109 5.26 3.31 101

Remote configuration

Non-paging read .07 ; .04 .07 ; .04 0 ; 0 0 ;0
Rnpf; Rno,v

Non-paging write .50; 3.75 .35 ; .75 .15 ; 2 0 ; l
w *wf; wf,,.,

Paging read 60.1 1.50 24.2 34.4
operation RP

Paging write 114 3.2 42.4 68.8
operation WP

Read-only transaction 7.15 .75 6.4 0
overhead TIo

Update transaction 40.2 .50 9.40 30.3

overhead Wu

ETI transaction 167 5.26 61.5 101

Parameters reflect the hardware and operating system improvements discussed for Scenario 1.
Disk and message parameters and non-paging operations have a fixed cost per operation
(milliseconds), plus a variable (incremental) cost per byte (microseconds); other times
(milliseconds) are per operation.

Table A-4: Modeled performance (Scenario 1)

PERFORMANCE MODEL 151

Total time CPU time Message time Disk time
(M s.;is) (s.; Wks. (Ms. ; Ss.) I (Ms. ; LaS.)

Local configuration

Non-paging read .03 ; .02 .03 ; .02 0 ; 0 0 ;0

Non-paging write .14 ; .52 .14; .30 .00; .02 0 ; .2

Paging read 16.7 .60 .32 15.8
operation RP

Paging write 33.3 1.28 .40 31.6
operation WP

Read-only transaction ..66 .30 .36 0
overhead T",

Update transaction 15.6 .20 .42 15.0
overhead TV

ETI transaction 50.7 2.10 1.32 47.3

Remote configuration

Non-paging read .03 ; .02 .03; .02 0 ; 0 0 ;0
R,,f; Rv

Non-pagingwrite .15; .57 .14; .30 .00;.07 0 ;.2
W,,,f ; Wn,,

Paging read 17.4 .60 .99 15.8
operation RP
Paging write 34.9 1.28 1.97 31.6
operation WP

Read-only transaction 1.36 .30 1.06 0
overhead Tro

Update transaction 16.8 .20 1.59 15.0

overhead TM

ETI transaction 54.4 2.10 5.03 47.3

Parameters reflect the hardware and operating system improvements discussed for Scenario 2.
Disk and message parameters and non-paging operations have a fixed cost per operation
(milliseconds), plus a variable (incremental) cost per byte (microseconds); other times
(milliseconds) are per operation.

Table A-S: Modeled performance (Scenario 2)

Appendix B

Interfaces

This appendix presents the RPC interfaces that Camelot system components use to
communicate with each other and with Camelot servers and applications. Only those RPCs that
were added or changed for Camelot/TDSM are included. (Thus, this appendix may be considered
a supplement to the corresponding appendix in Camelot and Avalon: A Distributed Transaction
Facility [Eppinger et al 91].)

Each interface has a two letter name. The first letter represents the component that receives
the call, and the second represents the component that sends the call. The component letters are

as follows:
"* A - application

"* D - Disk Manager

"* H - Lock Manager

" N - Node Server

"* R - Recovery Manager

"* S - data server

"* X - Remote Execution Manager

B.1. DH Interface

zoutino DBInitialize (
daPozrt : pott;
hPozrt : pot.t;

OUT dhPozt : portt);
DHInitialize is used by the Lock Manager to identify itself to the Disk Manager.

* dsPort - The port on which the Disk Manager receives requests from servers.

* hPort -The port on which the Lock Manager will receive requests from servers.

e dhPort - The port on which the Disk Manager will receive subsequent requests
from the Lock Manager.

153

154 APPENDIX B

routine DE_PoxtToServe rd (
dhPozt : port t;
SPort : pozt t;

OUT serverld : cam server id_t);

DHPortToServerId is used by the Lock Manager to store the identity of its clients in non-

volatile storage.

"* dhPort - The port on which the Disk Manager receives requests from the Lock
Manager

"• sPort - The port used to receive requests from Camelot system components.

"* server Id - The id of the server corresponding to this port

routine DHSer.verdToPort (
dkPort : port_t;
serverld : cam server id t;

OUT sPort porý t) ;

DHServerIdToPort is used by the Lock Manager to store the identity of its client in non-

volatile storage.

"* dhPort - The port on which the Disk Manager receives requests from the Lock
Manager

"* server Id - The id of the server.

"* sPort - The port used by the given server to receive requests from Camelot system
components.

B.2. DN Interface

routine DN GetServerState(
dnPort : pozt_t;
serverld : canserver.idt;
segment~d : Cam segmentid t;

OUT state : can server-state t);

DNGetServerState is used by the Node Server to find out the state of a server. If the Disk

Manager has no record of a server, it will say the server is CAMSSDOWNCLEAN.

"* dnPort - The port on which the Disk Manager receives requests from the Node
Server.

"* server Id - The ID of the server whose state is requested.

"e state - The state of the server.

INERFACES 155

simpleroutine DXInitialize(
dnport : port t;
ndPort : port t;
servercIds :am server id list t;
seguentlds : can segntidj4istt);

The Node Serve.r uses DNInitialize at startup time to give the Disk Manager a port for ND_
calls, and to give the Disk Manager a list of all servers in the Node Server's database. The Disk
Manager does an NDGetRestartAdvice () for each server in the list, showing a transition
from CAM SS UNDEFINED to CAMSSDOWNCLEAN or CAMSSDOWNDIRTY as

appropriate.
"* dnPort - The port on which the Disk Manager receives requests from the Node

Server.

"* ndPort - The port on which the Node Server receives requests from the Disk
Manager.

"* server Ids - The ids of all the servers in the Node Server's database.

"* segment Ids - The segment ids corresponding to the server ids.

routine DU DeletSegnmnt (
dnPort : port_t;
segmentid : cam segment id t;
tid : cam tid t);

DNDeleteSegment is an intermediate step in deleting a servc- The Disk Manager will spool
a segment-deletion record that references the specified tid, so that if that transaction's family
commits the segment will be permanently deleted.

"* dnPort - The port on which the Disk Manager receives requests from the Node
Server.

"• segment Id - The ID of the segment to be deleted.

"* tid - The identifier of the transaction on behX1 of which the segment is being
deleted.

B.3. DR Interface

routine DR Checkpoint (
drPort : port_t;
recovered : cam segmentid_list t;
notRecovered : cam segmentid_listt);

DRCheckpoint is a request from the Recovery Manager to take a checkpoint. This request is
given after each node or segment recovery pass.

"* drPort - The port on which the Disk Manager receives requests from the Recovery
Manager.

"* recovered - A list of ids of the segments that have been recovered.

156 APPENDIX B

6 notRecovered - A list of ids of the segments that have not been recovered.

routine DR UndoOvnv(
drPozt : port t;
tid : can tid t;
regptr : camrzegptxt;
oldValue : pointer t;
lanUndone • cam 18n t);

DRUndoOvnv allows the Disk Manager to re-build its structures when the Recovery Manager

un-does changes on behalf of an aborted or incomplete OVNV transaction. It also writes the

undo record on behalf of the Recovery Manager.

" drPort - The port on which the Disk Manager receives requests from the Recovery
Manager.

"* tid - The id of the transaction that is being undone.

"* regptr - The point to the region being manipulated.

"* oldValue - The old value of the region, sent out of line.

"* isnUndone - The lsn of the log record that is being undone.

routine DRBackstop (
drPort : port t;
tid : cam tid t;
segment :ca segmntidt;
lastOne : boolean t;
backstopDataPtr : pointer.t);

DRBackstop allows the Recovery Manager to write a backstop record.

"* drPort - The port on which the Disk Manager receives requests from the Recovery
Manager.

"* tid - The id of the transaction that is being backstopped.

"* segment - The id of the segment whose records are copied in this backstop record.

"* lastOne - A flag indicating if this is the last backstop record for this transaction.

"* backstopDataPtr -That backstop data, sent out of line.

routine DR KillSegment(
drPort : pozt t;
segmentld : cam segment id_t);

If, while recovering a segment, the Recovery Manager does not receive a response to messages it

sends to servers, the Recovery Manager uses DRKillSegment to kill all servers using the

segment.

• drPort - The port on which the Disk Manager receives requests from the Recovery
Manager.

JNTRFACES 157

* segment Id -The id of the segment.

B.4. DS Interface

routine DS Initialize (
daPort : port_t;

OUT serverld : cam server id t;
OUT recoveryOnly :boolean t;
OUT tsPort : port t;
OUT =Port : portý t;
OUT sPort : port_t

- (VWTYPI PORTALL, 32);
OUT clort port-t;1
OUT sharedMemAddr : add aess_t;
OUT segDescList

cam _segnnt deso list t;
OUT seglortList : port_arrayt) ;

DSInitialize gives the server all the information and capabilities it needs to reference

recoverable regions.
"* dsPort - The port on which the Disk Manager receives requests from this server.

"* serverId - The id of this server. This value is informational. For security
reasons, data servers never provide serverIds in requests to Camelot. The data
server's serverId is derived from the port in which the request is made. It is
conceivable that a data server might use its serverId in the NA interface to ask the
Node Server to give it information about itself, or to change its resource allocations.

"* recoveryOnly - A flag is set to TRUE if the server is expected to just recover and
exit. Otherwise the server will recover and make itself available for use.

" tsPort - The port used in calls to the Transaction Manager for beginning, joining,

and killing transactions.

"* mPort -The port used to send debugging information to the MCP.

"* sPort - The port used to receive requests from Camelot system components. These
requests indicate that transactions have prepared, committed, or aborted. During
transaction abort and recovery, these messages describe changes which must be made
to recoverable storage. Upon receiving the reply to the DS Initialize message,
the data server will get receive and ownership rights on the sPort.

"* cPort -The port used to contact the Camelot Communication Manager.

"• sharedMemAddr - The address of the shared memory queue. This queue is used to
efficiently pin regions and spool log records.

"* segDescList - A list of this server's segment descriptors.

"* segPortList - A list of ports which are used in the vm-map call to map
recoverable storage into a data server's address space.

158 APPENDIX B

routine DS Getllozt(
dsPort : port t;

OUT bPort : port_.t);
DSGet HPort obtains a port for the Lock Manager.

"* dsPort - The port on which the Disk Manager receives requests from this server.

"* hPort - The port on which the Lock Manager receives requests.

B.5. DX Interface

routine DXServerDied(
dxPort port.t);

The Remote Execution Manager uses DXServerDied to notify the Disk Manager that a server
exited.

* dxPort - The port on which the Disk Manager receives requests from Remote
Execution Manager about a particular server.

B.6. HS Interface

routine HS Lock(
halort : port t;
lockNaum : cam lock nae t;
lock~ode :can; lock mode t;
lockPolicy :caW"lockjpoli~cyt;
tid cam id t;
&Port port t;-

OUT cacheablo boolean.t);
HSLock obtains a lock on behalf of a transaction. The call blocks until the lock is available. If

cacheable is true, the server is permitted to cache the lock in the mode it requested.
"* hsPort - The port on which the Lock Manager receives requests from servers.

"* lockName - The name of the lock being requested.

"* lockMode - The mode in which the server is requesting the lock.

"* lockPolicy - The caching policy to use.

"* t id - The transaction on behalf of which the lock is being requested.

"* sPort - The port on which the server receives requests from Camelot system
components. The Lock Manager may use this port to request the return of a cached
lock.

"* cacheable - Indicates whether the server may cache the lock.

INTERFACES 159

routine 3STryLock(
haPort : port t;
lockNam : cam locknam_.t;
lockMode : cam lock mode t;
lockPolicy :cam lock~yolicy_.t;

OUT success : boolean t;
tid : camntid.t;
splort : port t;

OUT cacheable : boolean._t);

HSTryLock is a non-blocking form of HSLock.

* success is TRUE if the lock request succeeded.

routine ES Unlock(
hsPort : port t;
lockNanm : cam lockname t;
sport poortt;
tid : camn td.t);

HSUnlock indicates that the given transaction has released the lock, or, if tid is
CAM_TIDNULL, that the server is uncaching the lock.

"* hsPort - The port on which the Lock Manager receives requests from servers.

"* lockName - The name of the lock being released.

"* sPort - The port on which the server receives requests from Camelot system
components.

"• tid -The transaction that is releasing the lock.

routine HS DemoteLock (
haPort : port t;
lockNa :cam locknamr- t;
sport : port t;
tid : cam tid t);

HSDemoteLock indicates that the given transaction is demoting a write lock to a read lock, or,

if tid is CAMTIDNULL, that the server is changing a cached write lock into a cached read

lock.

"* hsPort - The port on which the Lock Manager receives requests from servers.

"* lockName - The name of the lock being released.

"* sPort - The port on which the server receives requests from Camelot system
components.

"* tid - The transaction that is demoting the lock.

160 APPENDIX B

B.7. NA Interface

camelotroutine MA AddSe*vez (
ey : caintid t;

IMOUT serverlD cam sezver id t;
owMne us erZ ne t;
autoRestast boolean t;
comand~ine a ieot atring_t;
site camelot7strinqgt;

INOUT sgiwnntlD caseg_ mnt id t;
quotaChunks U u nt);

NAAddServer allows the addition of new servers. If the serverID parameter is
nullServerId, the Node Server will pick and return an unused server ID. Ifthe segmentID

parameter is nullSegment Id, the Node Server will pick and return an unused segment ID.
"* key - The key identifies the caller.

"* server ID - This is the server identifier that will be assigned to the new server.

"* owner - This is the name of the user that owns the server.

"* autoRestart - This is tue if the server should be restarted whenever Camelot is
rstarted.

"* commandLine - This is the command line that will be used to start the server.

"* site - This is the site at which the server will run.

"* segmentID - This is the segment identifier for the recoverable segment that the
server will use.

"* quotaChunks - This is the size of the server's recoverable segment in chunks.

canmlotroutine NA ShowServez (
ey catid t;

serverlD cam serzer id_t;
OUT owner : user_name _;

OUT autoRestaxt boolean t;
OUT casandTine : camlot_string_t;
OUT site : ca lot string t;
OUT segDescList

cam_segmsnt_desc list t;
OUT chunksUsedTist : cam_size_list_t;
OUT state : Cam s ezverstatet);

NAShowServer shows information about a server. This includes a list of all segments tied to

that server ID, number of chunks used for each segment, the server's command line, whether or
not it is scheduled to be automatically restarted at node startup, its owner, and its state.

"* key - The key identifies the caller.

"* serverId - This is the identifier of the server that the caller wants information
about

MWnT ACES 161

* owner - The name of the user that owns the server.

* autoRestart - This is true, if the server should automatically be restarted when

Camelot is restarted.

* con•iandLine - This is the command used to start the server.

o site - This is the site at which the server will run.

e segDescList - This is an array of descriptors describing the recoverable segments
associated with the server.

9 chucksUsedList - This array lists the number of chunks used by the server in
each of its recoverable segments.

* state - This is the current state of the server.

canmlotzoutine NA SetSite (
"key : camtid t;
serverlD : can seover-id_t;
site : cazalotstring_t);

NASetSite changes the site at which a server is to nm.

"* key - The key identifies the caller.

"* server ID -The identifier of the server to be changed.

"* sit e - This is the site at which the server will run.

B.8. ND Interface

camelotzoutine ND GetRestaxthdvice (
servexld : cam server id t;
atYouzrequest boolean t;-- -
oldState cam server state t;
newState : cam sevoer-state-t;

OUT shouldRest art booleant;
OUT recoveryOnly : boolean t;
OUT cosmandLine : pointer t;
OUT nodeId : cam node id t;
OUT segDoescList

camsegment_desc list t;
OUT chunk- escList :cam c_ nk-as_dc_listt);

NDGetRestartAdvice is used to ask the Node Server for advice when a server transitions

to a new down state, or when the Node Server has requested that the server be started. The Node

Server is consulted on this because its recoverable database contains all relevant information

about the server and about any variable parameters needed to implement the restart policy.

"* serverId - The id of the server about which we inquire.

"* atYourRequest - A flag that if TRUE means the Node Server has already
requested the server be started and should supply the necessary information. If the
atYourRequest flag is FALSE, it means the server has transitioned to a new

162 APPNDD•B

down state, and the Node Server has the option of restarting it The Disk Manager
describes the transition, and is told whether to restart the server.

"* oldState - The previous state of the data server.

"* newState - The new state of the data server.

"* shouldRestart - A boolean specifying whether the server should be restarted at
alL

"* recoveryOnly - A boolean specifying whether the server should just run recovery
and exit or should actually stay up. Not meaningful if shouldRestart is FALSE.

"* conmandLine - The command line that should be executed to start the server. Not
meaningful if shouldRestart is FALSE.

"* nodeId - The node on which the server should run.

"* segDescList - A list of segment descriptors for the server. Not meaningful if
shouldRestart is FALSE.

"* chunkDescList - A list of disk mappings for the server. Not meaningful if
shouldRestart is FALSE.

B.9. RD Interface

routine RD RecoverServers(
rdPozt pozt_t;
segmentlDs camn sgment_±d_l±st_t;
sezverXDs cam sezver_±d list t;
snports pozrtarzayt) ;

The Disk Manager may request recovery of individual servers with RDRecoverServers.

"* rdPort - The port on which the Recovery Manager receives messages from the
Disk Manager.

"• server Ids - The list of servers to be recovered.

"• segment I ds - The list of segments to be recovered.

"* srPorts - A list of ports that the Recovery Manager uses to send messages to the
servers.

routine RDRecoverSegments (
rdPort : portt;
segmentds : cam se*msntid4list t;
sezwerlds : cam sezver_±d list t;
Osnorts :port-array tý;
highRc•.br u int;
CaChePtz : pointert t
Astray [I of (UKS TYP_ CZAR, 8, dealloc);

OUT nbzrRcordsProcessed :u int;
OUT milliseconds :u int);

Segment recovery is first requested by the Node Server, since that is where the information about

NTERFACES 163

servers and recoverable segments is kept. But the Node Server sends its request to the Disk

Manager, since that is where the list of srPorts is kept. The Disk Manager then uses
RDRecover Segments to tell the Recovery Manager to do the work.

* rdPort - The port on which the Recovery Manager receives messages from the
Disk Manager.

* segmentlds - The list of segments to be recovered.

* server Ids corresponding to the segments to be recovered.

* srPorts - A list of ports that the Recovery Manager uses to send messages to the
servers.

* highRecNbr is the record number assigned (internally by the Disk Manager) to the
last record currently in the log. As the Recovery Manager reads the log, it
decrements this record number so that when it backlinks old records into the grid, it
can indicate to the Disk Manager exactly how far back they are in the log. The Disk
Manager uses this information to control page flush (and potentially other) strategies.

* cachePtr refers to the data that must be transferred from the version of logger
being used by the Disk Manager to the (read-only) version used by the Recovery
Manager to make them consistent.

* nbrRecordsProcessed and milliseconds are given to the Node Server by
the Disk Manager for use in setting parameters that will affect recovery time.

B.10. SH Interface

routine SHLock(
aport : portt;
lockNam : camn lock name t;
lockMod: cam lock• mode t;
tid :cam-tid -

OUT cacheStatus : canmlockstatus t;
OUT readers : cam tid list t;
OUT writers : cam_tid list t);

SHLock is used by the Lock Manager to request a server to release a cached lock on behalf of
the given transaction. The server may elect to grant the lock to the transaction without releasing
the cached lock. Or, it may demote a cached write lock to a cached read lock, or release the
cached lock entirely. The return parameter cacheStatus indicates which selection it made. If
the server is releasing a cached lock while it still has transactions holding the lock, it will return a
list of these transactions in readers and wri ters.

"* sPort - The port on which the server receives requests from Camelot system
components.

"* lockName - The name of the lock being requested.

"* lockMode - The mode in which the lock is requested.

"* tid - The transaction on behalf of which the lock is being requested.

"* cacheStatus -The status of the lock in the server's cache.

164 APPENDIX B

"* readers - A list of transactions still holding the lock in read mode.

"* writers - A list of transactions still holding the lock in write mode.

rout ue SN_TryLock (
sport : port•t;
lockNam : cam lock n am t;
lockNod: cam lock aode t;

OUT success :booleaz at;
tid cam tid-t;

OUT cacheStatus cam -lock- status t;
OUT readers cam tid list t;
OUT writers :cam tid list t);

SHTryLock is a non-blocking form of SHLock.

* success is TRUE if the request succeeded.

routine SH WaitlrorLockTolreak (
sPort : port t;
lockName : cam lock nam t;
lockmode c -m lock mode t;
tid ca• tid t; -

OUT for•inrolders : cam-tid list t);

SHWaitForLockToBreak is used when the Lock Manager wishes to obtain a lock from a
server when that lock is not cached by the server. The return parameter formerHolders is a

list of all the transactions that were holding the lock. (Tis optimization eliminates extra
HSUnlock calls by the server.)

"* sPort - The port on which the server receives requests from Camelot system
components.

"* lockName - The name of the lock being requested.

"* lockMode - The mode in which the lock is being requested.

"* tid - The transaction that is requesting the lock.

"* formerHolders - A list of transactions that were holding the lock.

routine SZGetoocklnfo (
sport : port t;

OUT lockN am=s : camlock n ý list t;
OUT lockNodes :cam lock mkode-list t;
OUT cached :cam boolean-list t;
OUT tids cam tid list t);

SHGetLockInfo is used by the Lock Manager when it recovers after a crash to obtain the

information it needs for its volatile hash tables.

* sPort - The port on which the server receives requests from Camelot system
components.

hITERFACES 165

"* lockNames - A list of names of locks held by the server.

"* lockModes - A list of lock modes, corresponding to lockNames.

* cached - A list of booleans, each one true if the corresponding lock in
lockNames is cached by the server.

•tids - A list of transactions, corresponding to lockNames, holding the lock.

B.11. XD Interface

routine XDStartserver (
3 o€t : port t;
d*Port : portt;
d ort : port t;
coimandZine : pointer t;

OUT pid : int;
OUT nbJ@mQueveAddr : v add ass_t);

XDStartServer is used by the Disk Manager to sta a server on a remote host.

"* xPort - The port on which the Remote Execution Manager receives requests.

"* dsPort - The port on which the Disk Manager receives requests from this server.

"• dxPort - The port that the Disk Manager uses to receive requests from the Remote
Execution Manager about this server.

"* conniandLine -This is the command line that will be used to start the server.

"* pid - The UNIX process id of the server.

"* shMemQueueAddr - The address of the shared memory queue. This queue is used
to efficiently pin regions and spool log records.

routine XD KillSoxver (
Xlort : portt;
dxPort : port_t);

XDKillServer is used by the Disk Manager to kill a inmning server on a remote host.
"* xPort - The port the Remote Execution Manager uses to receive requests.

"* dxPort - The port that the Disk Manager uses to receive requests from the Remote
Execution Manager about this server.

routine XDGetShU&=Queu (
zPort : portt;
dalort : port t;

OUT 8:ueu: pointer t);

XDGetShMemQueue is used by the Disk Manager to pick up the contents of the shared
memory queue.

* xPort - The port the Remote Execution Manager uses to receive requests.

166 APPENDIX B

"* dxPort - The port that the Disk Manager uses to receive requests from the Remote
Execution Manager about this server.

"* shMemQueue - The contents of the shared memory queue. The Remote Execution
Manager returns only the active portion of the queue.

References

[Agarwal et al 88] Anant Agarwal, Richard Simoni, John Hennessy, Mark Horowitz.
An Evaluation of Directory Schemes for Cache Coherency.
In Proc. Fifteenth Annual Int'l Symposium on Computer Architecture, pages

280-289. IEEE, 1988.
Computer Architecture News Volume 16 Number 2.

[Anderson et al 91]
Thomas E. Anderson, Henry M. Levy, Brian N. Bershad, Edward
D. Lazowska.
The Interaction of Architecture and Operating System Design.
In Proc. Fourth In(I Conf. on Architectural Support for Programming

Languages and Operating Systems, pages 108-120. ACM/IEEE, April,
1991.

[Anonymous et al 85]
Anonymous, et al.
A Measure of Transaction Processing Power.
Datamation 31(7), April, 1985.
Also available as Tech. Report TR 85.2, Tandem Corporation, Cupertino,

California, January 1985.

[Archibald and Baer 86]
James Archibald, Jean-Loup Baer.
Cache Coherence Protocols: Evaluation Using a Multiprocessor Simulation

Model.
ACM Trans. Computer Systems 4(4):273-298, November, 1986.

[Baron et al. 90] Robert V. Baron, David L. Black, William Bolosky, Jonathan Chew, David
B. Golub, Richard F. Rashid and Avadis Tevanian Jr., Michael Wayne Young.
Mach Kernel Interface Manual.
August, 1990.
Department of Computer Science, Carnegie Mellon University, Pittsburgh,

Pennsylvania.

[Barrera 92] Joseph S. Barrera.
Kernel Support for Distributed Memory Multiprocessors.
PhD thesis, Carnegie Mellon University, 1992.
Forthcoming.

[Bellew et al 901 Matthew Bellew, Meuchun Hsu, Va-On Tam.
Update Propagation in Distributed Memory Hierarchy.
In Proc. Sixth Int'l Conf. on Data Engineering. IEEE, February, 1990.

167

168 REFERENCES

[Bernstein and Goodman 82]
Philip A. Bernstein. Nathan Goodman.
A Sophisticate's Introduction to Distributed Database Concurrency Control.
In Proc. Eighth Int'l Conf. on Very Large Data Bases, pages 62-76. VLDB,

1982.

[Bershad and Zekauskas 91]
Brian Bershad, Matthew Zekauskas.
Midway: Shared Memory Parallel Programming with Entry Consistency for

Distributed Memory Multiprocessors.
Technical Report CMU-CS-91-170, Carnegie Mellon University, September,

1991.

[Bisiani et al 89] Roberto Bisiani, Andreas Nowatzyk, Mosur Ravishankar.
Coherent Shared Memory on a Distributed Memory Machine.
In Proc. 1989 Int l Conf. on Parallel Processing, pages 133-141. 1989.

[Black et al 89] David L. Black, Anoop Gupta, Wolf-Dietich Weber.
Competitive Management of Distributed Shared Memory.
In Compcon: IEEE Computer Society Int'l Conf., pages 184-190. March,

1989.

[Bloch 91a] Joshua J. Bloch.
The Camelot Library.
In Jeffrey L. Eppinger, Lily B. Mummert, Alfred Z. Spector (editor), Camelot

and Avalon: a Distributed Transaction Facility, pages 21-56. Morgan
Kaufmann, San Mateo, California, 1991.

[Bloch 91b] Joshua J. Bloch.
The Design of the Camelot Library.
In Jeffrey L. Eppinger, Lily B. Mummert, Alfred Z. Spector (editor), Camelot

and Avalon: a Distributed Transaction Facility, pages 163-188. Morgan
Kaufmann, San Mateo, California, 1991.

[Bolosky et al 89] William J. Bolosky, Robert P. Fitzgerald, Michael L. Scott.
Simple But Effective Techniques for NUMA Memory Management.
In Proc. Twelfth Annual Symposium on Operating Systems Principles. ACM,

December, 1989.

[Bottos 92] Beth Bottos.
July, 1992
Personal Communication.

[Carey and Livny 881
Michael J. Carey, Miron Livny.
Distributed Concurrency Control Performance: A Study of Algorithms,

Distribution, and Replication.
In Proc. Fourteenth Int l Conf. on Very Large Data Bases, pages 13-25.

VLDB, 1988.

[Chang and Mergen 88]
Albert Chang, Mark F. Mergen.
801 Storage: Architecture and Programming.
ACM Trans. Computer Systems 6(1):28-50, February, 1988.

REFERENCES 169

-'Cheriton 86] David R. Cheriton.
Problem-oriented Shared Memory: A Decentralized Approach to Distributed

System Design.
In Proc. Sixth Int' l Conf. on Distributed Computing System, pages 190-197.

IEEE, 1986.

[Cheriton 87] David R. Cheriton.
UIO: A Uniform I/0 System Interface for Distributed Systems.
ACM Trans. Computer Systems 5(1):12-46, February, 1987.

[Cheriton 881 David R. Cheriton.
The Unified Management of Memory in the V Distributed System.
Technical Report STAN-CS-88-1192, Stanford University, 1988.

[Cheriton et al 891 David R. Cheriton, Hendrik A. Goosen, Patrick D. Boyle.
Multi-Level Shared Caching Techniques for Scalability in VMP-MC.
In Proc. Sixteenth Annual Int'l Symposium on Computer Architecture, pages

16-24. IEEE, June, 1989.

[Cox and Fowler 89]
Alan L. Cox, Robert J. Fowler.
The Implementation of a Coherent Memory Abstraction on a NUMA

Processor: Experiences with PLATINUM.
In Proc. Twelfth Anmual Symposium on Operating Systems Principles. ACM,

December, 1'X_9.

[Daniels 881 Dean S. Daniels.
Distributed LogginR for Transaction Processing.
PhD Ldsis, Carnegie Mellon University, December, 1988.
Also available as Tech. Report CMU-CS-89-114, Carnegie Mellon University,

AugustL 1988.

[Davidson 89] Susan B. Davidson.
Replicated Data and Partition Failures.
In Sape Mullender (editor), Distributed Systems, pages 265-292. ACM Press,

1989.

[Dias et al 87] Daniel M. Dias, Balakrishna R. Iyer, Jf%'n T. Robinson, Philip S. Yu.
Design and Analysis of Integi ,ted Concurrency-Coherency Controls.
In Proc. Thirteenth Int'l Conf. on Very Large Data Bases, pages 463-471.

VLDB, 1987.

[Dias et al 891 Daniel M. Dias, Balakrishna R. Iyer, John T. Robinson, Philip S. Yu.
Integrated Concurrency-Coherency Controls far Multisystem Data Sharing.
IEEE Transactions on Software Engineering 15(4):437-448, April, 1989.

[Dubois et al 861 M. Dubois, C. Scheurich, F. Briggs.
Memory Access Buffering in Multiprocessors.
In Proc. Thirteenth Annual Int'l Symposium on Computer Architecture, pages

"*-442. IEEE, 1986.
Computer Architecture News Volume 14 Number 2.

[Duchamp 89] Dan Duchamp.
Transaction Management.
PhD thesis, Carnegie Mellor. University, June, 1989.
Also available as Te.h. Report CMU-CS-88-192 Carnegie Mellon University,

June, 1989.

170 REFERENCES

[Eppinger 87] Jeffrey L. Eppinger.
CPA: The Camelot Performance Analyzer.
August, 1987.
Camelot Working Memo 12.

[Eppinger 89] Jeffrey L. Eppinger.
Virtual Memory Management for Transaction Processing Systems.
PhD thesis, Carnegie Mellon University, February, 1989.
Also available as Tech. Report CMU-CS-89-115 Carnegie Mellon University,

February, 1989.

[Eppinger 91 Jeffrey L. Eppinger.
The Design of the Camelot Disk Manager.
In Jeffrey L. Eppinger, Lily B. Mummert, Alfred Z. Spector (editor), Camelot

and Avalon: a Distributed Transaction Facility, pages 197-235. Morgan
Kaufmann, San Mateo, California, 1991.

[Eppinger and Dietzen 92]
Jeffrey L. Eppinger, Scott Dietzen.
Encina: Modular Transaction Processing.
In Compcon: IEEE Computer Society Int'l Conf.. February, 1992.

[Eppinger and Michaels 91]
Jeffrey L. Eppinger, George Michaels.
Camelot Node Configuration.
In Jeffrey L. Eppinger, Lily B. Mummert, Alfred Z. Spector (editor), Camelot

and Avalon: a Distributed Transaction Facility, pages 57-62. Morgan
Kaufmann, San Mateo, California, 1991.

[Epp.nger and Nichols 91]
Jeffrey L. Eppinger, Sherri Menees Nichols.
Recoverable Storage Management in Camelot.
In Jeffrey L. Eppinger, Lily B. Mummert, Alfred Z. Spector (editor), Camelot

and Avalon: a Distributed Transaction Facility, pages 111-120. Morgan
Kaufmann, San Mateo, California, 1991.

[Eppinger et al 911
Jeffrey L. Eppinger, Lily B. Mummert, Alfred Z. Spector.
Camelot and Avalon: a Distributed Transaction Facility.
Morgan Kaufmann, San Mateo, California, 1991.

[Fleisch 88] Brett D, Fleisch.
Distributed Shared Memory in a Loosely Coupled Distributed System.
In Frontiers in Computer Communications Technology: Proc. ACM

SIGCOMM '87 Workshop, pages 317-327. 1988.

[Fleisch and Popek 89a]
Brett D. Fleisch, Gerald J. Popek.
Mirage: A Coherent Distributed Shared Memory Design.
In Proc. Twelfth Annual Symposium on Operating Systems Principles. ACM,

December, 1989.

[Fleisch and Popek 89b]
Brett D. Fleisch, Gerald J. Popek.
Mirage: A Coherent Distributed Shared Memory Design.
Technical Report CSD-890020, UCLA, April, 1989.

REFERENCES 171

[Forin et al 881 Alessandro Forin, Joseph Barrera, Michael Young, Richard Rashid.
Design, Implementation, and Performance Evaluation of a Distributed Shared

Memory Server for Mach.
Technical Report CMU-CS-88-165, Carnegie Mellon University, August,

1988.

[Gharachorloo et al 901
Kourosh Gharachorloo, Dan Lenoski, James Laudon, Phillip Gibbons, Anoop
Gupta, John Hennessy.
Memory Consistency and Event Ordering in Scalable Shared-Memory

Multiprocessor.
In Proc. 17th Annual International Symposium on Computer Architecture,

pages 15-26. IEEE, May, 1990.

[Gifford and Spector 841
David K. Gifford, Alfred Z. Spector.
A Case Study: The TWA Reservation System.
Communications of the ACM 27(7):650-665, July, 1984.

[Goodman 891 James R. Goodman.
Cache Consistency and Sequential Consistency.
Technical Report 61, SCI Committee, March, 1989.

[Gray 78] James N. Gray.
Notes on Database Operating Systems.
In R. Bayer, R. M. Graham, G. Seegmuller (editor), Lecture Notes in

Computer Science. Volume 60: Operating Systems -An Advanced
Course, pages 393-481. Springer-Verlag, 1978.

Also available as Tech. Report RJ2188, IBM Research Laboratory, San Jose,
California, 1978.

[Gray and Cheriton 89]
Cary G. Gray, David R. Cheriton.
Leases: An Efficient Fault-Tolerant Mechanism for Distributed File Cache

Consistency.
In Proc. Twelfth Annual Symposium on Operating Systems Principles. ACM,

December, 1989.

[Gray et al. 811 James N. Gray, et al.
The Recovery Manager of the System R Database Manager.
ACM Computing Surveys 13(2):223-242, June, 1981.

[Haerder and Reuter 831
Theo Haerder, Andreas Reuter.
Principles of Transaction-Oriented Database Recovery.
ACM Computing Surveys 15(4):287-318, December, 1983.

[Hastings 901 Andrew B. Hastings.
Distributed Lock Management in a Transaction Processing Environment.
In Proc. 9th Symposium on Reliable Distributed Systems, pages 22-3 1. IEEE,

October, 1990.

[Hsu and Tam 881 Meichun Hsu, Va-On Tam.
Managing Databases in Distributed Virtual Memory.
Technical Report TR-07-88, Center for Research in Computing Technology,

Harvard University, March, 1988.

172 REFERENCES

[Jones et al 85] Michael B. Jones, Richard F. Rashid, Mary R. Thompson.
Matchmaker An Interface Specification Language for Distributed Processing.
In Proceedings of the Tweyh Annual Symposium on Principles of

Programming Languages, pages 225-235. ACM, January, 1985.

[Kageyama 891 Yukihisa Kageyama.
CICS Handbook.
McGraw-Hill, New York, 1989.

[Kong et al 90] Mike Kong, Terence H. Dineen, Paul J. Leach, Elizabeth A. Martin, Nathaniel
W. Mishkin, Joseph N. Pato, and Geoffrey L. Wyant.
Network Computing System Reference Manual.
Prentice-Hall, Englewood Cliffs, New Jersey, 1990.

[Korth 83] Henry F. Korth.
Locking Primitives in a Database System.
Journal of the ACM 30(1):55-79, January, 1983.

[Lamport 79] Leslie Lamport.
How to Make a Multiprocessor Computer That Correctly Executes

Multiprocess Programs.
IEEE Transactions on Computers C-28(9):241-248, September, 1979.

[Lampson 81 Butler W. Lampson.
Atomic Transactions.
In G. Goos and J. Hartmanis (editor), Lecture Notes in Computer Science.

Volume 105: Distributed Systems - Architecture and Implementation: An
Advanced Course, chapter 11, , pages 246-265. Springer-Verlag, 1981.

[LeLann 81] G. Le Lann.
A Distributed System for Real-Time Transaction Processing.
Computer 14(2):43-48, February, 1981.

[Li 89] Kai Li.
IVY: A Shared Virtual Memory System for Parallel Computing.
In Proc. 1988 Int' l Conf. on Parallel Processing, pages 94-101. 1989.

[Li and Hudak 861 Kai Li, Paul Hudak.
Memory Coherence in Shared Virtual Memory Systems.
In Proc. Fifth Annual ACM Symposium on Principles of Distributed

Computing, pages 229-239. August, 1986.

[Li and Schaefer 89]
Kai Li, Richard Schaefer.
A Hypercube Shared Virtual Memory System.
In Proc. 1989 Int'l Conf. on Parallel Processing, pages 125-132. 1989.

[Mockapetris 83a] P. Mockapetris.
Domain Names - Concepts and Facilities.
Technical Report RFC 882, Network Working Group, November, 1983.

[Mockapetris 83b] P. Mockapetris.
Domain Names - Implementation and Spec'ifcation.
Technical Report RFC 883, Network Working Group, November, 1983.

[Mockapetris 86] Paul Mockapetris.
Domain System Changes and Observations.
Technical Report RFC 973, Network Working Group, January, 1986.

REFERENCES 173

[Moss 81] J. Eliot B. Moss.
Nested Transactions: An Approach to Reliable Distributed Computing.
PhD thesis, MIT, April, 1981.

[Mummert et al 91]
Lily B. Mummert, Dan Duchamp, Peter D. Stout.
The Design of the Camelot Transaction Manager.
In Jeffrey L. Eppinger, Lily B. Mummert, Alfred Z. Spector (editor), Camelot

and Avalon: a Distributed Transaction Facility. Morgan Kaufmann, San
Mateo, California, 1991.

[OSF 92] Open Software Foundation.
Distributed Computing Environment, An Overview.
Open Software Foundation, Cambridge, MA, 1992.

[Pausch 88] Randy Pausch.
Adding Input and Output to the Transactional Model.
PhD thesis, Carnegie Mellon University, August, 1988.
Also available as Tech. Report CMU-CS-88-171, Carnegie Mellon University,

August, 1988.

[Pausch et al 91] Randy Pausch, Dean S. Thompson, Jeffrey L. Eppinger.
An Introduction to Mach for Camelot Users.
In Jeffrey L. Eppinger, Lily B. Mummert, Alfred 7- Spector (editor), Camelot

and Avalon: a Distributed Transaction Facility, pages 13-20. Morgan
Kaufmann, San Mateo, California, 1991.

[Peterson and Strickland 83]
R. J. Peterson, J. P. Strickland.
LOG Write-Ahead Protocols and IMS/VS Logging.
In Proceedings of the Second ACM SIGACT-SIGMOD Symposium on

Principles of Database Systems, pages 216-243. ACM, March, 1983.

[Rahm 89] Eriard Rahm.
Recovery Concepts for Data Sharing Systems.
Technical Report 14/89, University Kaiserslautern, Department of Computer

Science, October, 1989.

[Ramachandran and Khalidi 881
Umakishore Ramachandran, M. Yousef A. Khalidi.
An Implementation of Distributed Shared Memory.
Technical Report GIT-ICS-88/50, Georgia Institute of Technology, December,

1988.

[Ramachandran and Mohindra 88]
Umakishore Ramachandran, Ajay Mohindra.
A Suite of Hierarchical Cache Coherence Protocols.
Technical Report GIT-ICS-88/51, Georgia Institute of Technology, December,

1988.

[Ramachandran et al 89]
Umakishore Ramachandran, Mustaque Ahamad, M. Yousef A. Khalidi.
Coherence of Distributed Shared Memory: Unifying Synchronization and Data

Transfer.
In Proc. 1989 Int' l Conf. on Parallel Processing, pages 160-169. 1989.

174 REFERENCES

[Reed 78] David P. Reed.
Naming and Synchronization in a Decentralized Computer System.
PhD thesis, MIT, September, 1978.

[Satyanarayanan et al 85]
M. Satyanarayanan, John H. Howard, David A. Nichols, Robert
N. Sidebotham, Alfred Z. Spector, Michael J. West.
The ITC Distributed File System: Principles and Design.
In Proc. 10th Symposium on Operating System Principles, pages 35-50. ACM,

December, 1985.

[Schwarz 84] Peter M. Schwarz.
Transactions on Typed Objects.
PhD thesis, Carnegie Mellon University, December, 1984.
Available as Tech. Report CMU-CS-84-166, Carnegie Mellon University.

[Schwarz and Spector 84]
Peter M. Schwarz, Alfred Z. Spector.
Synchronizing Shared Abstract Types.
ACM Trans. Computer Systems 2(3):223-250, August, 1984.
Also available in Stanley Zdonik and David Maier (editors), Readings in

Object-Oriented Databases. Morgan Kaufmann, 1988. Also available as
Tech. Report CMU-CS-83-163, Carnegie Mellon University, November
1983.

[Snaman and Thiel 87]
William E. Snaman Jr., David W. ThieL
The VAX/VMS Distributed Lock Manager.
Digital Technical Journal (5):29-43, September, 1987.

[Spector 89a] Alfred Z. Spector.
Achieving Application Requirements on Distributed Systems Architectures.
In Sape Mullender (editor), Distributed Systems, pages 19-33. ACM Press,

1989.

[Spector 89b] Alfred Z. Spector.
Distributed Transaction Processing Facilities.
In Sape Mullender (editor), Distributed Systems, pages 191-214. ACM Press,

1989.

[Spector and Daniels 85]
Alfred Z. Spector, Dean S. Daniels.
Performance Evaluation of Distributed Transaction Facilities.
September, 1985.
Presented at the Workshop on High Performance Transaction Processing,

Asilomar, September, 1985.

[Stout 91] Peter D. Stout.
The Design of the Camelot Communication Manager.
In Jeffrey L. Eppinger, Lily B. Mummert, Alfred Z Spector (editor), Camelot

and Avalon: a Distributed Transaction Facility, pages 287-291. Morgan
Kaufmann, San Mateo, California, 1991.

REFERENCES 175

[Stout et al 91] Peter D. Stout, Eric C. Cooper, Richard P. Draves, Dean S. Thompson.
Mach for Camelot Implementors.
In Jeffrey L. Eppinger, Lily B. Mummert, Alfred Z. Spector (editor), Camelot

and Avalon: a Distributed Transaction Facility, pages 93-110. Morgan
Kaufmann, San Mateo, California, 1991.

[Stumm and Zhou 901
Michael Stumm, Songnian Zhou.
Algorithms Implementing Distributed Shared Memory.
IEEE Computer 23(5):54-64, May, 1990.

(Sun 86] Sun Microsystems, Inc.
Networking on the SUN Workstation
Mountain View, California, 1986.

[Sun 88] Sun Microsystems.
RPC: Remote Procedure Call Protocol Spec#ication Version 2.
Technical Report RFC 1057, Network Working Group, June, 1988.

(Tam 91] Va-On Tam.
Transaction Management in Data Migration Systems.
PhD) thesis, Harvard University, January, 1991.

[Thompson 911 Dean Thompson.
The Design of the Camelot Recovery Manager.
In Jeffrey L. Eppinger, Lily B. Mummet, Alfred Z. Spector (editor), Camelot

and Avalon: a Distributed Transaction Facility, pages 237-250. Morgan
Kaufmann, San Mateo, California, 1991.

[Thompson and Jaffe 91]
Dean Thompson, Elliot Jaffe.
The Design of the Camelot Local Log Manager.
In Jeffrey L. Eppinger, Lily B. Mummert, Alfred Z. Spector (editor), Camelot

and Avalon: a Distributed Transaction Facility, pages 189-196. Morgan
Kaufnann, San Mateo, California, 1991.

[Thompson and Michaels 91]
Dean Thompson, George Michaels.
Camelot Node Management.
In Jeffrey L. Eppinger, Lily B. Mummert, Alfred Z Spector (editor), Camelot

and Avalon: a Distributed Transaction Facility, pages 139-148. Morgan
Kaufmann, San Mateo, California, 1991.

[Unix System Laboratories 92]
Unix System Laboratories.
Tuxedo System 4.1 Product Overview and Master Index.
Prentice-Hall, Englewood Cliffs, New Jersey, 1992.

(Welch 90] Brent Welch.
February, 1990
Personal Communication.

176 REFERENCES

[Yu et al 85] Philip S. Yu, Daniel M. Dias, John T. Robinson, Balakrishna R. lyer, Douglas
Comell.
Modelling of Centralized Concurrency Control in a Multi-System

Environment.
In Proc. 1985 ACM SIGMETRICS Conf., pages 183-191. ACM, 1985.
Performance Evaluation Review, Volume 13, Number 2.

[Yu et al 86] Philip S. Yu, Douglas W. Comell, Daniel At Dias, Balakrishna R. lyer.
On Affinity Based Routing in Multi-System Data Sharing.
In Proc. Twelfth Intl Conf. on Very Large Data Bases, pages 249-256.

VLDB, August, 1986.

[Yu et al 871 Philip S. Yu, Daniel M. Dias, John T. Robinson, Balakrishna R. Iyer, and
Douglas W. Cornell.
On Coupling Multi-Systems Through Data Sharing.
Proceedings of the IEEE 75(5):573-587, May, 1987.

