256 222 - L
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ i

Transactional
Distributed Shared Memory

Andrew B. Hastings
July 1992
CMU-CS-92-167

School of Computer Science
Camegie Mellon University
Pittsburgh, Pennsylvania

Submitted to Carnegie Mellon University in partial fulfillment of the
requirements for the degree of Doctor of Philosophy in Computer Science.

Copyright © 1992 Andrew B. Hastings

This work was supported by IBM and by the Defense Advanced Research Projects Agency, Information
Science and Technology Office, under the title Research on Parallel Computing issued by DARPA/CMO
under Contract MDA972-90-C-0035, ARPA Order No. 7330.

The views and conclusions contained in this document are those of the author and should not be interpreted
as representing the official policies, either expressed or implied, of any of the sponsoring agencies or the
U. S. government.

8 92-26624

T SO T \‘m P

School of Computer Science

DOCTORAL THESIS
in the field of
Computer Science

Transactional Distributed Shared Memory

ANDREW HASTINGS

Submitted in Partial Fulfillment of the Requirements
for the Degree of Doctor of Philosophy

7/01/92.

DATE

8[2:/?2.

DATE

APPROVED:

f“-——’f Ué\f\/dfh’—ﬂ 26 W /992

l PROVOST DATE

Abstract

Atomic transactions have proven to be an important technique for constructing reliable
applications. Traditionally, transactions have been extended to distributed environments through
the use of function shipping, a technique in which message passing or remote procedure calls are
used to invoke computational requests on remote nodes. Recently, the data sharing approach to
constructing distributed applications has received attention in the form of distributed file systems
and distributed shared virtual memory. Applying the data sharing approach to transactions
produces transactional distributed shared memory (TDSM) which yields benefits for a certain
class of distributed application.

The union of transactions and distributed shared memory offers synergies in transaction
recovery, concurrency control, and coherency control, but introduces challenges in transaction
recovery. In this dissertation, I describe the design of a system that provides TDSM in the form
of distributed recoverable virtual memory. Using the extemal pager interface of the Mach
operating system, I implemented a prototype based on the Camelot distributed transaction facility.
I analyze the prototype and its performance, offer techniques for improving the design of future
TDSM systems, and characterize the applications for which TDSM is useful.

Accesicr Fur } ‘
NTIS CRaty . :

DI A8
Ut ool

Vg m i
JSul SONRD

!

Ve

> e
AT T

Sy
| ol
' -

Acknowledgments

My advisor, Alfred Spector, deserves my deepest thanks. Despite his many commitments at
CMU and later at Transarc Corporation, he always found time for me. As a researcher, teacher,
editor, manager, entrepeneur, psychologist, and friend, he has no equal in my experience.

I am grateful to Rick Rashid, Eric Cooper, and Marvin Theimer for returning to CMU to
serve on my thesis committee. Rick is my second advisor; his advice on writing style improved
the presentation tremendously, and made the dissertation much easier to write. Marvin deserves
special thanks: he read the first draft of every chapter, and his detailed comments were
invaluable.

The members of the Camelot project are to be congratulated for developing the transaction
system that was the platform for my work. The Camelot project consisted of Joshua Bloch, Dean
Daniels, Richard Draves, Dan Duchamp, Jeffrey Eppinger, Elliot Jaffe, Toshihiko Kato, Gedrge
Michaels, Lily Mummert, Randy Pausch, Peter Stout, and Dean Thompson. 1 would especially
like to thank Peter Stout for technical discussions, and Josh Bloch for proving that it was possible
to finish after Alfred left CMU. I also wish to acknowledge Jeff Eppinger for permitting me to
use in Chapter 2 some of the background prose from his Ph.D. dissertation.

1 am indebted to Joe Barrera for implementing the External Memory Manager library, saving
me many months of effort. Joe, Daniel Julin, and Mike Young were very willing to explain
Mach-related topics and to fix bugs when necessary. I thank the numerous others who made
CMU Computer Science an interesting and productive place to work.

My officemates provided a stable, supportive environment during my five years at CMU. 1
thank Alan Christiansen, Puneet Kumar, Alicia Perez, and Manuela Veloso for being so
understanding. I also wish to thank my roommates over the years for their companionship:
Gilles Dowek, Alison Ford, Daniella Gerstein, Spiro Michaylov, and Tom Ruschak. Spiro and
Tom have been very good friends, and I remember fondly the time I spent with each of them.

I"d like to thank all of my friends who helped to put life and graduate school in perspective.
My friends from Cray Research, including Clark Piepho, Jim Harrell, and Peter Hill, reminded
me what a Real Job is like. I especially. appreciate the opportunity Jim gave me to escape from
CMU when I wanted some time away. I'm thankful for the fellowship I found at several
Presbyterian churches in Pittsburgh. And I am very grateful for the friendship of Lissie Crock,
Lesley Kromer, and Margie Martini.

iv ACKNOWLEDGMENTS

Above all, I thank my family, including my brother and sister. I could not have finished this
dissertation without the support and encouragement of my parents. For their unfailing love and
devotion, I dedicate this dissertation to my mother and father.

Table of Contents

1. Introduction

1.1. Problem Description
1.2. Programming models
1.2.1. Client/server Model
1.2.2. Transactions
1.2.3. Replication and Partitioning
1.2.4. Caching
1.2.5. Distributed Shared Memory
1.3. Purpose of the Dissertation
1.4. Examples
1.5. Synergies and Challenges
L.6. Outline

2. Background .

2.1. Distributed Computing
2.2. Transactions
2.2.1. Transaction management
2.2.2. Recovery management
2.2.3. Buffer management
2.2.4. Log management
2.2.5. Concurrency management
2.2.6. Communication management
2.2.7. Configuration management
2.3. Data Sharing
2.3.1. Directory methods
2.32. Snoopy methods
2.3.3. Other methods
2.4. Distributed Concurrency Control
2.5. Integrated Technologies for TDSM
2.5.1. Shared disks
2.52. Hsu and Tam

3. Camelot and Mach Environment

3.1. Camelot

3.1.1. Camelot library

3.1.2. Disk Manager
3.1.2.1. Data structures
3.1.2.2. Algorithms

3.1.3. Recovery Manager

3.1.4. Communication Manager

3.1.5. Transaction Manager

3.1.6. Node Server/Node Configuration Application

NAME LA WWN = -

vi TABLE OF CONTENTS

3.2. Mach
4. Design

4.1. Goals
4.2, Architecture
4.2.1. Camelot and Mach
4.2.2. Log management
4.23. Transaction management
4.2.4. Recovery management
4.2.S5. Buffer management
4.2.6. Concurrency management
4.2.7. Communication management
4.2.8. Configuration management
4.3. Discussion
4.4. Example
4.5. Summary

5. Implementation

5.1. Concurrency Management
5.1.1. Programmer interface changes
5.1.2. Cache control
5.13. Failures
5.1.4. Lock Manager/library interface
5.1.5. Data structures

5.2. Buffer Management
5.2.1. External Memory Manager
§.2.2. Disk Manager

§2.2.1. Server record

§2.22. Segment record

§2.23. Grid

§.2.2.4. Internal concurrency control
5.2.3. Remote Execution Manager
5.2.4. Algorithms

5§.2.4.1. Forward Processing

§2.4.2. Coherency control

5.2.4.3. Segment activation

5.2.4.4. Paging

§.2.4.5. Hot Pages

5.2.4.6. Preflush

5.2.4.7. Down servers

5.2.4.8. Server startup

5.2.4.9. Server termination

5.2.4.10. System shutdown

5.3. Recovery Management
5.3.1. Old-value/new-value abort
5.3.2. New-value-only abort
5.3.3. Segment and server recovery

5.4. Configuration Management

5.5. Communication Management

5.6. Log Management

5.7. Transaction Management

CR-R 3§ A+

TABLE OF CONTENTS

5.8. Summary
6. Performance

6.1. Experimental Environment
6.2. Primitives
6.3. Operation Costs
6.3.1. Experimental parameters
6.3.2. Non-paging tests
6.3.2.1. Non-paging reads
6.3.2.2. Non-paging writes
6.3.3. Paging tests
6.3.4. Multi-server tests
6.3.4.1. Muliti-server reads
6.3.4.2. Multi-server writes
6.3.5. Summary
6.4. Throughput
6.5. Function Shipping vs. Data Sharing
6.6. Summary
7. Analysis
7.1. Performance Model
7.1.1. Parameters of the model
7.1.2. Actual parameters
7.13. Scenario 1
7.1.4. Scenario 2
7.1.5. Conclusion
7.2. Throughput vs. Cache Hit Ratlo
7.3. Performance Improvements
7.3.1. Optimizations
7.3.2. Architectural changes
7.4. Deficiencies of the System
7.4.1. Recovery
7.42. Configurability
7.4.3. Security
7.4.4. Availability
7.4.5. Incremental Growth
7.5. Summary

8. Conclusions

8.1. Motivation
8.2. Contributions
8.3. Future work
8.4. Conclusion

Appendix A. Performance Model
A.l. Parameters
A.2. Operation Model
A.3. Modeled results -
Appendix B. Interfaces

B.1. DH Interface
B.2. DN Interface

B.3. DR Interface
B.4. DS Interface
B.S. DX Interface
B.6. HS Interface
B.7. NA Interface
B.8. ND Interface
B.9. RD Interface
B.10. SH Interface
B.11. XD Interface

References

TABLE OF CONTENTS

155

158

161
162

165
167

Figure 2-1:
Figure 3-1:
Figure 3-2:
Figure 3-3:
Figure 4-1:
Figure 4-2:
Figure 4-3:
Figure 4-4:

Figure 4-5:
Figure 4-6:
Figure 4-7:
Figure 5-1:
Figure 5-2:
Figure 5-3:
Figure 6-1:
Figure 6-2:
Figure 6-3:
Figure 6-4:
Figure 6-5:
Figure 6-6:
Figure 6-7:
Figure 6-8:
Figure 6-9:

Figure 6-10:
Figure 6-11:
Figure 6-12:
Figure 6-13:

Figure 7-1:
Figure 7-2:
Figure 7-3:

List of Figures

Data sharing with shared disks
Camelot architecture

The grid

External Memory Manager

TDSM architecture

False sharing

Flow of log records and paging requests
Messages for BEGIN_TRANSACTION, LOCK, and
MODIFY

Messages for END_TRANSACTION
Messages for LOCK and MODIFY
Messages for abort

Camelot/TDSM architecture

Segment and server records

Mapping of offsets

Test configuration 1

"Test configuration 2

Test configuration 3
Test configuration 4
Test configuration §
Test configuration 6
Test configuration 7
Test configuration 8
ET1 transaction
ET1 ““local’’ configuration
ET1 “re ** configuration
Data sharing configuration
Function shipping configuration
Throughput vs. cache hit ratio, actual parameters
Throughput vs. cache hit ratio, Scenario 1
Throughput vs. cache hit ratio, Scenario 2

Table 5-1:
Table 6-1:
Table 6-2:
Table 6-3:
Table 6-4:
Table 6-5:
Table 6-6:
Table 6-7:
Table 6-8:
Table 7-1:
Table 7-2:
Table 7-3:
Table 7-4:
Table 7-5:
Table 7-6:
Table 7-7:
Table A-1:
Table A-2:
Table A-3:
Table A-4:
Table A-5:

List of Tables

Lines of code

Representative IPC times

Non-paging read times

Non-paging write times

Paging times

Multi-server read times

Multi-server write times

Summary of performance measurements
Function shipping vs. data sharing
Performance model parameters

Modeled ET1 performance (actual parameters)
Modeled ET1 performance (Scenario 1)
Modeled ET1 performance (Scenario 2)
Effects of combining concurrency and coherency control
Effects of ‘‘log optimization”’

Effects of omitting writeback of modified page
Performance model parameters

Performance model summary

Modeled performance (actual parameters)
Modeled performance (Scenario 1)

Modeled performance (Scenario 2)

xi

Chapter 1

Introdiction

Transaction processing systems provide failure atomicity, permanence, and serializability
guarantees for distributed systems. These guarantees simplify the application programmer’s task
by reducing the attention that must be paid to concurrency and failures.

Distributed shared memory provides a simple model for application programmers by giving
the illusion of a single, global address space for all processes participating in a particular
distributed application. This illusion simplifies the applicatici programmer’s task by eliminating
the need for explicit communication operations to obtain data.

My thesis is that the combination of transactions and distributed shared memory is feasible
and useful for a certain class of distributed application, especially those applications which have
concurrent access to data that must not be corrupted, and need caching to provide adequate
performance. In this dissertation, I motivate this idea and discuss the design and implementation
of a prototype system providing transactional distributed shared memory (TDSM). I evaluate the
implementation, reflect on the design, and suggest a direction for future designs.

1.1. Problem Description

Imagine an application developed for a centralized system that must be adapted for use on a
distributed system. The programmer making such an adaptation faces a number of difficulties.
Instead of a few processors running on a single clock, a distributed system has many processors
operating independently. Which processor should operate on the data? How and when does a
processor communicate its results to other processors? To the two-level memory hierarchy of
main memory and disk storage, a distributed system adds a third level of network access to main
memory and disks attached to other nodes. Where should the data be stored? How and when is
data transferred between nodes of the distributed systera?

A distributed program may need to meet several requirements [Spector 89a].

e Ease of programming. Programmers are accustomed to centralized system
programming models. A programming model for a distributed system that extends
existing well-known models can simplify the programmer’s task.

¢ Incremental growth. It should be possible to increase the storage or processing
capacity of the system by adding nodes; algorithms used by the distributed program
should not stop working or perform poorly as the number of nodes increases.

2 CHAPTER 1

e Multiple access to data. Users may wish to access data from any node in the
distributed system. Updates may occur simultaneously on many nodes.

e Availability. The program should continue to run even if one or more nodes crash.
Applications may require that all, or only a subset, of the data be available after a
crash.

e Data integrity. Data should not be lost when messages are lost, or when nodes or
processes crash. Application consistency constraints should be maintained even if
data is distributed among several nodes that may fail or concurrently update the data.

e Security. An application may need to restrict the operations that particular users may
perform on various subsets of the data.

¢ Performance. An application may need to meet response time and droughput
requirements, even though processes exchange many messages to meet data integrity
and availability requirements.

Concurrent updates complicate the task of maintaining data integrity. Distributed systems
exacerbate the problem of concurrent updates by increasing concurrency and increasing ihe
possible delay between reads and writes. The problem that concurrency poses is that independent
updates can become interleaved and introduce an inconsistent state. (See [Gray 78] for
examples.)

Updates in the presence of failures complicate the task of maintaining data integrity.
Failures arise when messages are lost, re-ordered, or corrupted, or when individual nodes and
processes crash. The problem that failures pose is that an update may be partially performed,
introducing an inconsistent state. (See [Davidson 89] for a discussion.)

The application programmer could be overwhelmed by the complexity of these issues. The
next section describes various programming models that can reduce the complexity of the
programmer’s task.

1.2. Programming models

Several programming models aid in meeting application requirements on a distributed
system. The key dichotomy in this section is between function shipping (the client/server model),
and data sharing (e.g., distributed shared memory). Independent of this dichotomy are
transactions, replication and partitioning, and caching. In most current systems, transactions are
associated with function shipping, while caching, replication, and partitioning are part of efficient
implementations of data sharing.

INTRODUCTION 3

1.2.1. Client/server Model

The client/server model offers a straightforward approach to constructing distributed
applications by extending the familiar notion of procedure call. Data may be distributed among
multiple nodes in the distributed system. To access data, a client makes a remote procedure call
by sending a message to a server on the node where the data resides (possibly the same node as
the client). The server examines the message to identify the procedure and its arguments, calls
the appropriate procedure, and sends a message containing the results to the client. Because the
client’s message contains a request for the server to perform a particular function, the
client/server model is also known as function shipping. The server can meet security
requirements by refusing to perform some operations for a given client.

The client/server model does not directly address availability or data integrity requirements.
Remote procedure calls are a relatively expensive mechanism for accessing remote data because
the concept does not include any automatic caching. Thus, performance may suffer if remote
procedure calls overwhelm the carrying capacity of the network or the processing capacity of a
given server.

1.2.2. Transactions

Transactions make it easier to meet data integrity requirements in the face of concurrency
and failures. A transaction is a sequence of actions grouped into a unit. If the application’s data
is in a consistent state, a transaction must transform the data into a new consistent state. (The
data may be transformed into a inconsistent state temporarily while a transaction is in progress as
long as consistency is restored by the end of the transaction.) If each transaction executes as an
atomic, indivisible unit, then data will never be left in an inconsistent state.

Transaction systems address the concurrency problem by preventing transactions from
observing each other’s partial updates. Transactions may execute concurrently, but locking or
timestamp schemes order the accesses to shared data so that each transaction sees only the values
stored by previously completed transactions.

Transaction systems address the failure problem by ensuring that the sequence of actions
within a transaction succeed or fail as a unit. Transaction systems may undo or redo the actions
of partially completed transactions to simulate atomic execution in the presence of failures. A
transaction commits if it runs to completion; if it fails before completion, any changes it makes
are undone, and it aborts.

Formally, a transaction has three properties: failure atomicity, permanence, and
serializability. Failure atomicity ensures that either all of the operations within the transaction
complete successfully, or none of them do (partial updates are undone). Permanence ensures that
the effects of a committed transaction are not lost due to failures. Serializability states that there

is a serial sequence of transactions that produces the same results as a given concurrent execution
of a set of transactions. Thus, concurrently executing transactions cannot observe inconsistent
states.

1.2.3. Replication and Partitioning

Replication and partitioning can aid in meeting availability, growth, and performance
requirements. If there is more data than one node can store, if there are more client requests than
one server can process, or if the application requires better availability than one node can provide,
the data must be distributed among several nodes instead of being stored on just one. To increase
storage capacity, the data may be partitioned with no overlaps among the nodes. To improve
availability, the data may be replicated on a set of nodes, so that other nodes may provide the data
if one node goes down. (Partitioning can also improve availability in that part of the data is still
available even if one node crashes.) To increase processing capacity, either replication or
partitioning may be used, although a poor choice of partitions may still overload a node if the data
stored there is accessed too frequently. With replication, a client may contact any server that
contains a replica of the data, but extra communication is necessary to maintain a consistent state
among the replicas.

Optimizing performance using replication and partitioning can be tricky. When the data is
replicated, reading the data is inexpensive since a client may choose the closest or least-lightly-
loaded server. Updates are expensive because updates must eventually be propagated to every
replica. The cost of updates may be reduced by delaying the propagation until the data is read,
but this increases the cost of reads, may reduce availability, and must be managed carefully to
avoid inconsistencies. Thus, replication provides good performance when access to data is
primarily read-only. When the data is partitioned, there is little cost difference between updates
and reads. However, there is a cost difference associated with the location of the data. A data
reference is less expensive when the data is local to the client’s node. A data reference is more
expensive when the client must contact a remote node. Thus, partitioning provides good
performance when there is high locality of reference (i.e., most references are local rather than
remote). If the set of data that is frequently referenced changes over time, then good performance
can be maintained only if partitioning changes with it.

1.2.4. Caching

Application performance can be improved through the use of caching. A cache reduces
communication costs by remembering previous requests and corresponding replies. If a client
wishes to make a request that matches a previous request, the cache may be able to replay the
corresponding reply, eliminating the communication and processing necessary to repeat the
request to the appropriate server. Offsetting this savings is extra communication and processing
needed to remove stale data from the cache: the cache should not replay a previous reply if it

INTRODUCTION h]

knows that the server would retum a different reply to the repeated request. A cache is coherent
if it does not return stale data to the client.

A general-purpose cache of requests and replies is difficult for the communication system to
provide because it has little knowledge of the intemnal semantics of requests and replies, and thus
does not know when it is appropriate to delete stale data from the cache. Application
programmers can build application-specific caches with knowledge of request/reply semantics,
but the cache coherency problem is complicated enough to be the subject of current research, and
many applications may need to be changed as new solutions become available.

1.2.5. Distributed Shared Memory

Distributed shared memory can make it easier for the application programmer to obtain good
performance. Shared memory provides processes with a shared address space; processes sharing
an address space may access shared information directly without explicit communication
operations such as messages or remote procedure calls. Distributed shared memory (DSM)
provides a shared address space via software and/or hardware to processes on different nodes that
do not physically share memory. A system with virtual memory hardware can use software to
provide distributed shared virtual memory.

A well-designed distributed shared memory system can improve application performance
through the use of caching. Caching at the memory system level can benefit all applications that
use shared memory, and advances in cache coherency algorithms need be implemented in only
one system rather than multiple applications. A distributed shared memory cache may be simpler
than application-specific caches since it need recognize only four requests: read, write, lock, and
unlock. Since read and write requests are built into the hardware, the distributed shared memory
cache can often make use of hardware assists (such as virtual memory) to improve performance.
Distributed shared memory will not necessarily benefit all applications, however, since it may
transfer more data than is needed by the application, and the cost of keeping the cached data
consistent may be too large relative to the cost of the processing performed on the data.

Distributed shared memory is an example of data shipping, or the data sharing model. In
data sharing data is sent to the node where it is to be processed under the assumption that the data
will be used there again. Data sharing should be contrasted with the client/server model, or
function shipping, in which the function request is sent to the node where the data resides. Data
sharing and function shipping are functionally equivalent since each can be expressed in terms of
the other. Essentially, data sharing is a specialized implementation of a few remote procedure
calls (in the case of distributed shared memory, read, write, lock, and unlock). The messages
underlying function shipping can be implemented via message queues that are data-shared. The
difference between the two approaches is one of emphasis: function shipping focuses on the flow
of control, whereas data sharing focuses on the flow of data.

6 CHAPTER 1

Data sharing offers the performance benefits of both replication and partitioning. When data
is read at a node, it is stored in the cache at that node. Thus, the data sharing model automatically
replicates data that is read-only. When data is updated at a node, it is stored at that node and
becomes stale in the caches of all other nodes. Thus, the data sharing model automatically
partitions data that is frequently updated at one node and not accessed at other nodes. As the
frequently-referenced set of data changes over time, partitioning changes with it.

1.3. Purpose of the Dissertation

This dissertation explores a new model for building distributed applications: transactional
distributed shared memory. There are several reasons for exploring this model.

The client/server model, as provided by systems such as Sun RPC [Sun 88], NCS [Kong et
al 90], and MIG [Jones et al 85], has several limitations. Concurrency and failures are hard to
deal with, and distributing the data to obtain good performance can be difficult.

Data sharing has been used widely in distributed file systems (such as NFS [Sun 86],
AFS [Satyanarayanan et al 85], and DCE [OSF 92)), and is a popular research topic in the form of
distributed shared memory [Forin et al 88, Stumm and Zhou 90, Bisiani et al 89, Black et al
89, Li and Hudak 86, Fleisch 88, Cheriton 86, Ramachandran and Khalidi 88].

Among the many systems that have demonstrated the value of transactions are
CICS [Kageyama 89], Tuxedo [Unix System Laboratories 92], Camelot [Eppinger et al 91), and
Encina [Eppinger and Dietzen 92]. CICS, for most IBM operating systems, is one of the most
popular database/data communications control systems. It provides concurrency control and
recovery of local databases, and communications facilities for accessing remote databases.
Tuxedo, for the UNIX System V environment, has two components. Tuxedo System/T provides
facilities to define and manage distributed transaction processing services, including two-phase
commit. Tuxedo System/D is a local database that provides concurrency control, logging,
backup, and recovery for atomic transactions. Camelot, for the Mach operating system, provides
facilities for implementing transactions that may include operations on recoverable virtual
memory, remote procedure calls, or nested transactions. Encina, for UNIX and other operating
systems, comprises two tiers. The Encina toolkit provides logging, concurrency control, and
two-phase commit of distributed transactions. Other Encina products provide management
functions, queue and record storage, and interoperation with non-Encina systems.

Transactional distributed shared memory is an interesting topic to investigate since it is the
natural research area based on the combination of two interesting topics: transactions and data
sharing. Combining data sharing and transactions offers the benefits of both, and the combined
system provides opportunities for optimizing performance. For example, the failure atomicity
property of transactions may be provided in part by writing a log containing all of the changes
made to a data structure. This log write could also serve to update the contents of the caches in a

INTRODUCTION 7

distributed shared memory system, eliminating the need for additional messages to keep caches
coherent.

TDSM will not benefit all distributed applications. Transactions may not benefit
applications that can tolerate weaker consistency guarantees but not the extra overhead of
transactions. Distributed shared memory does not improve the performance of applications if the
distributed shared memory system transfers more data than is needed by the application. If the
cost of transferring the data is not amortized over repeated accesses, it may be less expensive to
ship function requests to the original location of the data. Also, application-specific security
restrictions are harder to provide with distributed shared memory. For example, given a set of
salaries, the client/server model can easily restrict a particular user to viewing the sum of the
salaries but not the individual salaries. Since distributed shared memory can only restrict requests
it knows about (read and write), a user must be able to read individual salaries in order to view
the sum that is computed from those salaries.

This dissertation makes several contributions. It demonstrates that TDSM is feasible to
implement and analyzes a prototype implementation. This ahalysis is used to show how the
combination of transactions and distributed shared memory can be optimized for good
performance. The analysis is also used to identify the characteristics of applications for which
TDSM is suitable.

1.4. Examples

Some examples illustrate the utility of transactional distributed shared memory. In general,
applications that can benefit from TDSM have these characteristics:
¢ There is concurrent access to data by multiple clients.
» The data is important and must not be corrupted.
¢ To provide adequate performance, some combination of replication, partitioning, and
caching is needed.
e Locality of reference may change over time.

A classic application that involves problems of concurrency and failures is an airline
database. Reservations are entered into the database by travel agents and reservations agents, and
may refer to several flights. Reservations are indexed by passenger name, flight number, and
departure date. A flight database records the flight schedule, the cities and aircraft involved, and
the seating capacities. For each flight on each date there is a record of the reservations for that
flight. Reservations are updated as requested by passengers, as flight schedules are changed, and
as flights are flown. Locality of reference arises as the data for a particular passenger or a
particular flight is referenced. If two agents concurrently attempt t0 reserve a seat, the database
should not lose either reservation and should not reserve more seats than are available. If a
processor fails while storing a reservation, the database should not allow the indices to become
inconsistent.

Transactional distributed shared memory supports a solution to the problems of failures and
concurrency in the airline database, and provides good performance. To handle the volume of
reservations, the data is distributed across several processors. Distributed shared memory
automatically partitions the data among nodes 10 match the locality of reference, and migrates the
data as references move. Transactions prevent failures or concumrency from creating
inconsistencies during updates.

An approach that has been used to construct the airline database is to store the data on a
large, centralized server that can be queried and updated from remote terminals [Gifford and
Spector 84]. The disadvantage of this approach is that the centralized server becomes a
performance bottieneck as the number of clients increases. Higher throughput can be obtained by
splitting the database among several systems. Function shipping and caching can keep the data
consistent among systems. But TDSM offers a simpler approach for migrating the airline
database to a distributed environment, since the centralized server can run on a TDSM system
with few or no changes.

Another example is an authentication database for a distributed operating system. The
authentication database typically provides these operations: add user, delete user, authenticate
user, and change password. Because the same data is used to authenticate users on all nodes in
the distributed system, the database should be replicated to improve availability. When a user
password is changed, the new password should supersede the old password on all nodes. Failures
and replication make this task more difficult: one of the replicas could fail to receive the updated
password. Concurrent updates could make the replicas inconsistent, if a system administrator
attempts to change a user password at the same time as the user. Since a given user often uses
just a subset of the nodes in the distributed system, the data for the user should be located near the
subset, although this should not prevent the user from migrating to a different subset of nodes.

Transactional distributed shared memory is useful for constructing this authentication
database. The user data can be stored in a shared memory hash table, with the obvious
implementations of add, delete, lookup, and modify. (For protection, the shared memory hash
table shoula be accessible only by a privileged server on each node, which accepts remote
procedure calls to perform the requested operations.) Distributed shared memory provides
automatic replication for availability and partitioning for locality. Transactions ensure that the
replicas are consistent by preventing concurrent updates, and backing out partial updates (with
notification to the user) when there is a failure.

Sun Microsystems used an alternate approach to construct the Yellow Pages, a distributed
authentication database {Sun 86]. The user database originates as a text file, which a special
program transforms into a sparse file accessible via hashing by the dbm library. The original text
file resides on a node known as the master server, the sparse file resides on the master server and
several slave servers. To add or delete a user, the system administrator edits the original text file
on the master server, and then invokes a procedure which rebuilds the sparse file and copies the

INTRODUCTION 9

entire file to each of the slave servers. To change a user password, the user makes a remote
procedure call to a process running on the master server, which goes through approximately the
same steps of editing the text file and propagating the sparse file. The sparse file is also
propagated hourly to compensate for updates missed by any servers. To authenticate a user, the
login program locates the nearest server via broadcast, and makes a remote procedure call to that
server. The Sun Yellow Pages does not guarantee consistency in the presence of failures and
concurrency. A slave server may use an old version of the database if it misses an update due to
failure. Muitiple servers may respond to the login broadcast, so a user may have to supply a
different password depending on which server responds. The Sun Yellow Pages does not take
advantage of locality of reference and may have performance problems with frequent updates,
since all updates must go through a single server and are then propagated to all servers.

An application similar to the authentication database (and another application for which the
Sun Yellow Pages has been used) is a name service for hosts in a network. The name service
must translate a host name to an address, and vice versa. Hosts are frequently introduced and
removed from the networks. Addresses of deleted hosts may be reused, and the address of any
host may change if the host moves from one network to another. In a network the size of the
Intemnet, the data should be partitioned to reduce storage requirements at individual sites, and to
increase site autonomony. The data should be replicated to improve availability. At a given site,
only a subset of the host names and addresses are translated, but the subset changes as users come
and go at the site. Failures and concurrent updates are common, and can cause temporary
inconsistencies if updates fail to reach replicas or if updates reach replicas in a different order.

Transactional distributed shared memory can be used to construct this name service. Two
shared memory hash tables perform the mapping from name to address and vice versa.
Distributed shared memory automatically replicates and partitions the hash tables to match the
locality of reference. (In the Intemet, message latencies can be very large, so caching is
essential.) Transactions eliminate inconsistencies due to failures or concurrency during updates.

The Internet Domain Name service [Mockapetris 83a, Mockapetris 83b, Mockapetris 86]
offers a more complicated approach to constructing a host name service by using a hierarchy of
servers. On each node, a local cache manager retains recently obtained translations, and
associates a timeout with each translation. When the timeout expires, the translation is discarded
from the cache. If a requested translation cannot be found in the cache, the local cache manager
consults a root server, which retumns the names of several authoritative servers for the given class
of name or address. The local cache manager contacts each authoritative server in tum until it
obtains the requested translation and associated timeout, which it then stores in its cache. An
update can be made at one of the authoritative servers, but does not appear everywhere until
timeouts cause previously cached translations to be discarded. Users of the Intemet Domain
Service are apparently willing to tolerate the temporary inconsistencies that timeouts allow due to
failures and concurrency. Users also tolerate temporary service interruptions when cached
translations have expired, and all authoritative servers are down or unreachable.

10 CHAPTER 1

1.5. Synergies and Challenges

The combination of transactions with distributed shared memory offers some synergies; that
is, the implementation of the two together may offer better performance than the implementation

of the two separately.

For example, a common technique used to ensure serializability in transaction systems is
locking. Before writing, a process must obtain a write lock, and all other processes must release
their locks. A similar protocol is often used to ensure cache coherency: before writing an object,
a cache must invalidate all other copies of the object. Since a correct transaction must always
lock an object before writing it, a TDSM system could transfer locks and cacheable objects
together, instead of using separate protocols for each.

Another possibie synergy is to combine transaction logging with the cache coherency
algorithm. To ensure failure atomicity and permanence, a common technique used in transaction
systems is to write all changes made by a transaction in a log. This log write could also serve to
update the caches in a distributed shared memory system, eliminating the need for separate
messages to keep caches coherent.

The major challenge in designing a TDSM system is transaction recovery. To simulate
atomic execution, a transaction system may need to undo the modifications a partially completed
transaction has made to an object in distributed shared memory. However, the DSM object may
have migrated from the node where the modification was originally made, so the transaction
system must somehow locate both the object and a description of the modification in order to
abort the transaction.

To guarantee permanence, a transaction system may need to redo the modifications made by
a committed transaction if the modified object is cached on a node that fails. The transaction
system must either locate the modified object on another node, or locate an older version of the
object, and redo the modifications made by the committed transaction. In a complicated
distributed system with many transactions concurrently modifying many objects in distributed
shared memory, the task of reliably locating the appropriate version of an object, and/or locating
a description of the modifications made by a particular transaction can be very difficult.

The key issue in designing a recovery alsorithm for TDSM is the tradeoff between
availability and performance. For good performance, objects in DSM must remain cached at the
site of use, and modifications to those objects should be recorded in as few places as possible.
For high availability, objects in DSM, as well as records of modifications to those objects, should
be stored in as many places as possible.

INTRODUCTION 11

1.6. Outline

Chapter 2 provides a overview of distributed transactions and data sharing. Chapter 3
discusses the Camelot and Mach environment in which a prototype transactional distributed
shared memory (TDSM) system was implemented. Chapter 4 describes the design and Chapter §
describes the implementation of this TDSM system. Chapter 6 reports the performance of the
implementation. Chapter 7 analyzes the system and its performance, and offers directions for the
design of future TDSM systems. Chapter 8 concludes by summarizing the contributions of this
work.

Chapter 2
Background

Chapter 1 introduced transactions and distributed shared memory as programming models
that assist in meeting application requirements on a distributed system. This chapter continues
that introduction by addressing the issues involved in implementing transactions and distributed
shared memory.

Section 2.1 sets the stage with an overview of distributed computing. Section 2.2 discusses
support for transactions, and Section 2.3 describes solutions to the cache coherency problem of
data sharing that is central to distributed shared memory. Section 2.4 outlines techniques for
distributed concurrency control in conjunction with data sharing. Section 2.5 shows how the
technologies can be integrated to produce transactional distributed shared memory (TDSM).

2.1. Distributed Computing

In a distributed computing environment, processes need to communicate with each other. In
this dissertation it is assumed that processes communicate via messages: variable-sized
collections of data. Messages are sufficiently general that they may be implemented on top of
other inter-process communication abstractions such as datagrams, streams, or sockets. A
process may send a message to another process on any node as long as it has a handle (a port,
process id, channel, or some other form of name) for the other process. Messages should be
delivered, uncorrupted and in order for each (sender, receiver) pair.

Remote procedure call (RPC) simplifies the task of constructing, sending, receiving, and
interpreting messages through use of the familiar procedure call paradigm. The sender makes a
local procedure call to a swmb routine, which packages the parameters into a message and
transmits the message to the recipient. The recipient’s service routine unpackages the parameters,
calls the appropriate procedure, and awaits the results. The results are similarly packaged and
returned to the sender’s stub in a reply message.

RPC leads naturally to the client/server model. Data is distributed among nodes in the
distributed system; access to a each data set is encapsulated in a server. To access data, a client
makes a remote procedure call to the appropriate server, which performs the requested function
and retumns the results.

13

14 CHAPTER 2

A server is typically structured in a loop. At the top of the loop, the server awaits a request
message. Once the server receives a message, it examines the message to determine the type of
request, and calls the appropriate processing routine. When the routine retums, the server sends a
reply message and retums to the top of the loop. If the processing routine must delay for some
reason, it must save enough state to allow the request to be continued, retum to the top of the
server loop, and wait for the state to be restored at a later point in time. Because saving and
restoring state is cumbersome and error-prone, and to better support multiprocessors, many
systems support multiple threads of control within an address space.

A distributed application usually pays more attention to failures than a non-distributed
program. Because it has more pieces, a distributed environment offers more opportunities for
failure, but it also offers more work-arounds for failure since redundant resources are often
available. Also, many failures may be temporary due to congestion or resources being
temporarily overloaded. For this reason a distributed application may include algorithms for
retrying operations that fail, perhaps slightly altering the parameters each try.

Security is harder to obtain on a distributed system, because the kernmel on remote systems
cannot be trusted, even if the kemel on the local system is trusted. Trusted servers must run on
physically secure machines. Because most networks allow eavesdropping, authentication and
secure messages must be encrypted.

2.2. Transactions

Transactions make it easier to meet data integrity requirements in the face of concurrency
and failures. A transaction is a sequence of actions grouped into a unit. Transactions provide
three properties:

o Failure atomicity ensures that if a transaction is interrupted by a failure, any

partially completed work is undone.

o Permanence ensures that the effects of a committed transaction are not lost due to
failures.

¢ Serializability ensures that concurrently executing transactions cannot observe
inconsistent states.

If the application’s data is in a consistent state, a transaction must transform the data into a
new consistent state. (The data may be transformed into a inconsistent state temporarily while a
transaction 1s 1n progress as long as consistency is restored by the end of the transaction.) If each
transaction executes as an atomic, indivisible unit, then data will never be left in an inconsistent
state. The ACID properties refer to the combination of this consistency property with atomicity,
isolation (senializability), and durability (permanence).

A transaction commits if it runs to completion; otherwise, it aborts, and any partial
computations are undone. A transaction that performs operations on objects on different nodes in

BACKGROUND 15

a distributed system is said to be a distributed transuction. Transaction systems must take extra
care to ensure that all nodes involved in a distributed transaction agree on the transaction’s
outcome.

Transactions may be nested to better support parallelism and limit the effects of
failures [Moss 81, Reed 78]. An outermost or top-level transaction can initiate multiple, nested
transactions which may execute in parallel with each other; the parent is suspended until the
subtransactions commit or abort. (A top-level transaction with all of its descendants is called a
transaction family.) A nested transaction may obtain locks that are held by an ancestor, but not a
sibling. When a subtransaction terminates, all of its locks are returned to and held by its parent.
The effects of a nested transaction are made permanent only when its top-level transaction
commits. If a nested transaction aborts, all of its work and the work of its children is undone, and
its parent is notified. The parent may then continue processing or abort itself.

Transaction support may be provided by the operating system, by libraries that execute in
each process, by a layer in between the operating system and other processes, or by a combination
of these techniques. Regardless of where transactional support is provided, this section discusses
the implementation of transactions as a single logical layer.

The transaction support layer assists its clients in dealing with failures. Certain failures are
assumed to be masked by the underlying hardware and operating system. Most communication
failures (corruption, duplication, out-of-order delivery, message loss) are handled by the
underlying system through use of checksums, sequence numbers, retransmission, etc.; only
network partitions are not masked. Processor failures are recoverable, but they must be detected
and the processor must raise an exception or halt.

Storage failures are usually not masked, and failures are detected by checksums. Storage is
divided into three classes:
¢ Volatile storage is the main memory of the machine, where objects are buffered as
they are accessed. The contents of volatile storage are lost if the system crashes.

* Non-volatile storage is where objects reside when they have not been accessed
recently. Magnetic disks are usually used for non-volatile storage. The contents of
non-volatile storage are lost much less frequently, and always in a detectable way.

o Stable storage maintains information despite system crashes and power failures.
Stable storage is typically provided in the form of mirrored disks.
The transaction support layer must manage these three classes of storage carefully in order to
maintain the failure atomicity, serializability, and perinanence properties of transactions. Stable
storage is the key abstraction enabling the permanence property.

The transaction support layer helps its clients cope with the failures that are not masked by
the hardware or operating system. There are seven major functions that the transaction support
layer must provide [Spector 89b}:

¢ Transaction management to coordinate the completion of transactions that span
multiple processes.

16 CHAPTER 2

¢ Recovery management which must restore the proper state after a failure; i.e.,
backing out partial updates (to ensure failure atomicity) or repeating updates (to
ensure permanence).

e Communication management tracks the spread of transactions from node to node.

¢ Configuration management stores the configuration of the transaction facility.

¢ Concurrency management coordinates the execution of concurrent transactions to
ensure serializability.

e Buffer management controls the transfer of recoverable objects between volatile
and non-volatile storage.

* Log management responsible for recording data in stable storage as directed by the
other components.

The components do not perform their work in isolation, but interact with each other as described

in subsequent subsections.

2.2.1. Transaction management

The transaction management function determines whether a given transaction has committed
or aborted and notifies participants of the transaction’s outcome. Any participant in a transaction
should be able to abort the transaction at any time. Because of . .. :owledge of transaction
outcomes, the transaction management function may bhe consuited by the concurrency
management function to determine whether a lock ield by a subtransaction may be inherited by
another transaction in the same family.

Because many processes may participate in a transaction, a protocol is needed to achieve
consensus on the transaction’s outcome. A few of the most common protocols are described
below. In these protocols, one participant is selected as the coordinator, and the other
participants become subordinates. To ensure permanence, each participant writes records in a
stable storage log.

o Two-phase commit. In the first phase, the coordinator asks each of the subordinates
to prepare to commit the transaction, and requests a vote from each subordinate. If a
subordinate votes to commit, it gives up its right to abort the transaction, and must
await word of the transaction’s outcome from the coordinator in the second phase.
Each subordinate that votes to commit the transaction writes a record of its vote to its
log, and forces the log to stable storage. If any subordinate votes no, or if the
coordinator does not receive all the votes, the transaction aborts, and the coordinator
notifies each subordinate.

Otherwise, the coordinator writes a commit record to the log, and forces the log to
stable storage. It then notifies all subordinates that the transaction committed. If the
coordinator is unable to contact a subordinate, the subordinate will remain in the
prepared state, retaining control over any objects it has modified. No other
transaction will be able to access the objects until the coordinator successfully
contacts the subordinate.

The two-phase commit protocol can be used when the participants are separate
nodes, or individual processes within a given node. If the processes within a given

BACKGROUND 17

node share a common log, the protocol can be optimized by forcing the log to stable
storage only once per node.

e Non-blocking commit. The non-blocking commit protocol [LeLann 81, Duchamp
89] is a modification of two-phase commit to guarantee that at least one site will not
block in the event of a single failure. The prepare message is changed to include a
list of the nodes involved in the transaction. While awaiting commit/abort
notification, a subordinate may time out the coordinator, become become coordinator
itself and finish the transaction. An additional phase is inserted into the middle of the
protocol during which subordinates learn how other subordinates voted.

¢ One-phase commit. A transaction that involves only one process can be committed
unilaterally by that process with a single log force. As an optimization, the log force
can be omitted for a lazy commit [Mummert et al 91]. In this case, permanence of
effects is not guaranteed until another transaction has later committed using another
protocol.

2.2.2. Recovery management

The recovery component restores data to a consistent state after a failure, as directed by the
transaction management component or by the configuration management component. Recovery
is supported for four types of failures:

o Transaction failure is when one of the [processes] participating in a transaction decides to abort
the transaction. All of the transaction’s effects at all of the participating [processes] must be
undone. In case of a communications failure, the system can abort transactions whose messages
cannot get through.

o Server failure is when a [process] crashes due to an unanticipated condition, such as a shortage
of resources or a transient software error. All of the active transactions in which the [process] is
participating are aborted. When the {process] restarts, the effects of all aborted transactions will
be undone, and the effects of all committed transactions will be preserved.

o Node failure is when a processor crashes due to a hardware error or a software failure such as the
kemel running out of resources. All of the active transactions in which the node is participating
are aborted. When the node restarts, the effects of all aborted transactions will be undone, and
the effects of all committed transactions will be preserved. This is logically the same as all of the
[processes] on a node crashing, except that the node’s transaction facility also crashes.

* Media failure is when some of the node’s non-volatile storage is damaged. The contents of this
storage must be restored.

[Eppinger 89, p. 16]

Haerder and Reuter present a taxonomy based on four criteria for classifying recovery
techniques {Haerder and Reuter 83).

¢ Propagation. A transaction may modify data in several locations. Is each
modification propagated immediately to nonvolatile storage, or are the modifications
delayed and propagated atomically as a unit? The first choice may require some
modifications to be undone if the transaction aborts. The second choice may require
additional space to store both old and new versions of the data.

¢ Buffer handling. Data is usually buffered in main memory before being written to
nonvolatile storage. When buffer space becomes full, the system may need to write
modified data to disk before the completion of the transaction wlich made the
modification. This data may be written to the home location of the data, or to a

18 CHAPTER 2

temporary location. The first choice complicates recovery of the data after a crash;
the second choice requires additional nonvolatile storage.

¢ End-of-transaction processing. Is the buffered data forced to nonvolatile storage at
the end of the transaction? If the data is not forced, some additional information
must be logged to allow the transaction to be redone after a crash.

e Checkpointing. A checkpoint is used to limit the amount of work that the recovery
component must do to recover from a failure. To ensure consistency, the system may
temporarily halt initiation of new transactions, and await the completion of active
transactions before creating a checkpoint. Systems that cannot afford to halt forward
processing instead create fuzzy checkpoints that are more complicated for the
recovery algorithm to handle.

Because the algorithms for recovery (‘‘backward processing’’) are closely intertwined with
algorithms for forward processing, the next subsection presents examples of specific recovery
techniques with buffer management techniques.

2.2.3. Buffer management!

The buffer management component is responsible for coordinating the transfer of data
between volatile and non-volatile storage. It must cooperate with the recovery component to
ensure that the failure atomicity and permanence properties of transactions are guaranteed.

An intentions list [Lampson 81] can be used to guarantee failure atomicity and permanence:
1. All the changes that a transaction wants to make to data objects are stored in a list.

2. The list is written to non-volatile storage.

3. The transaction management component determines whether the transaction has
committed or aborted.

4. If the transaction did commit, change the objects in non-volatile storage.

5. Finally, delete the list.
The list must be carefully written to non-volatile storage so it can be recognized that the list is
complete. By deferring updates to objects until the transaction is committed, the transaction is
aborted simply by deleting the list. In case of node or server failure, the system restarts and the
list is consulted. If the list does not exist or is incomplete, the transaction aborts and the list is
deleted. Otherwise, the list is complete, and the system finishes making the updates described in
the list and then deletes the list.

Shadow paging [Gray et al. 81] is another way to provide failure atomicity and permanence.
Non-volatile storage is organized as a tree (e.g., by logical address or as a hierarchical file
system). The transaction makes changes to vertices of the tree by writing new vertices in unused
locations in non-volatile storage. Changes are incorporated into the tree by writing new versions

1The text of this subsection and Subsection 2.2.4 is adapted from [Eppinger 89).

BACKGROUND 19

of parent vertices in unused locations. Changes to ancestor vertices continue until the least
common ancestor vertex of all the changed vertices is changed. This vertex is then updated in
place after consulting the transaction management component. This last update is called an
atomic pointer swap. In the event of node or server failure, the system restarts. A transaction
that has not yet done the atomic pointer swap is aborted. A transaction that has done the atomic
pointer swap committed.

A write-ahead log [Peterson and Strickland 83, Schwarz 84] is similar to an intentions list
with many optimizations. Write-ahead logging uses an append-only log, structured as a sequence
of variable-length records. Updates to a data object are made by modifying a copy of the object
cached in volatile storage and by spooling one or more records to the log. These records contain
an undo component that permits the effects of aborted transactions to be undone, and a redo
component that permits the effects of committed transactions to be redone. Write-ahead logging
permits an update-in-place strategy: when a cached block is copied back to non-volatile storage,
it is copied back to the location from which it was previously read. Special care must be taken
when copying blocks of a modified object back to non-volatile storage; the blocks cannot be
copied back to non-volatile storage until all spooled log records pertaining to those blocks have
been written to the log.

In addition to records describing changes to non-volatile storage, records indicating that
transactions commit and abort are written to the log. When the system restarts after a crash, the
log is consulted. Modifications made by transactions for which no commit record exists are
undone. Modifications made by committed transactions are redone. Although write-ahead
logging is more complex, it offers several performance advantages over the other techniques. It
does not scatter data all over non-volatile storage; it allows multiple transactions to execute
simultaneously using a common log; and system restart using a write-ahead log can be done with
as little as one scan of the log.

Write-ahead logging also allows changes to non-volatile storage to be buffered. This allows
expensive updates to non-volatile storage to be grouped together and amortized. All accesses 1o
non-volatile storage are done via volatile primary memory. By caching blocks of non-volatile
storage in volatile storage, the number of non-volatile reads and writes can be reduced. The
blocks used in the volatile cache are called the buffer pool, which is managed by the buffer
manager. The buffer manager must coordinate the transfer of blocks between volatile and non-
volatile storage with log writes to enforce the write-ahead log invariant.

2.2.4. Log management

Generally, there are two ways of describing updates in log records: logically or physically.
Logical or operation logging places a description of the logical operation being performed into
the log record. The description may describe how to redo the change, or how to redo and undo
the change. When physical logging is used, one or two bit patterns are stored in the log record.

20 CHAPTER 2

Old-value/new-value logging includes two bit pattemns: a before image and an after image.
New-value logging includes only one bit pattern, an after image. Hybrid approaches are also
possible: for example, operation logging for undo, and new-value logging for redo. The choice
of which values to write in the log can affect the buffer management strategy. New-value-only
logging requires that modified blocks not be written back to non-volatile storage until after the
transaction commits.

A separate log can be maintained for each process on a node, but if the appropriate interface
is provided, a common log can be used by all processes on the same node. All the log records
spooled by processes on the node can be written to the log together, reducing the number of
expensive log writes. As mentioned previously, the commit protocol can also be optimized if
there is a common log.

2.2.5. Concurrency management

There are four major techniques used for concurrency control in transaction
systems [Bemstein and Goodman 82]:

o Two-phase locking. A transaction must obtain a lock in the appropriate mode.on
each object it wishes to access. If another transaction already holds the lock in a
conflicting mode, the requesting transaction must wait. After a transaction releases a
lock, it may not obtain any more locks. (Thus, there is a growing phase as locks are
obtained by the transaction, and a shrinking phase as locks are released.) Timeouts,
deadlock avoidance, or deadlock detection are used to prevent transactions from
waiting forever.

With read/write locking, a transaction must obtain a read (shared mode) lock before
reading an object, and a write (exclusive mode) lock before writing an object. This
allows multiple transactions to read an object concurrently, but only one transaction
to write the ofiact.

Type-specific locking [Korth 83, Schwarz and Spector 84] offers the possibility of
increased concurrency on abstract data types when operation logging is used. For
example, a counter might support an increment mode lock which conflicts with read
or write locks, but is compatible with another increment lock. Clearly, the order in
which two increments occur does not affect the final result.

e Timestamp ordering. Each transaction is assigned a timestamp as it is created.
Each access by a transaction to an obiect is marked by the transaction’s timestamp.
But the transaction is not allowed to access an object (i.e., the transaction is aborted)
if the object has been accessed by a transaction with a later timestamp.2 Thus, all
accesses to objects occur in timestamp order.

o Serialization graphs. The system builds a graph of dependencies between
transactions (a serialization graph) as the transactions execute. (Transaction A
depends on transaction B if A reads an object that was written by B.) The system
aborts a transaction before allowing it t0 access an object if the access would cause a
cycle in the serialization graph.

T4 avoid aborts, the system may attempt to delay transactions with later timestamps.

BACKGROUND 21

o Certifiers. No checking for conflicts between transactions is done until the
transaction enters the prepared state. When a transaction enters the prepared state,
the system uses one of the above techniques (usually locking) to determine whether
any of the transaction’s accesses conflicted with another transaction. If a conflict is
found, the transaction is aborted. This technique is usually called optimistic
concurrency control.

2.2.6. Communication management

The task of the communication management component varies, depending on what services
are provided by the underlying system. It may provide a name service that creates
communication channels to named processes. It may provide logical clock services. It may
forward messages between nodes, handling retransmission as necessary.

In a system based on the client/server model, the communication management component
extends the remote procedure call concept to the context of transactions. A transactional RPC is
an RPC made within the scope of a transaction. The communication manager may spy on
transactional RPCs to leam which processes are involved in a particular transaction. During
commit or abort processing, it presents a list of processes to the transaction management
component.

2.2.7. Configuration management

The configuration management component provides the memory of the transaction system
about itself. The configuration management component stores information about recoverable
objects and the processes that may access them. A user interface allows authorized users to
create, delete, start, restart, or shutdown objects or processes. The configuration management
component controls orderly shutdown of the system, and restarts the system after a crash.

2.3. Data Sharing

In data sharing, data is sent to the node where it is to be processed under the assumption that
tiie data will be used there again. Data sharing should be contrasted with the client/server model,
or function shipping, in which the function request is sent to the node where the data resides.
Data sharing offers two performance advantages over function shipping through the use of
caching:

e Data that is read-only is automatically replicated at each node where it is read.

¢ Data that is frequently updated at a single node is automatically partitioned at that

node.
Unfortunately, the caching of data sharing leads to a difficuit problem: how to keep data cached
at multiple nodes consistent, or the cache coherence problem.

22 CHAPTER 2

Solutions to the cache coherence problem have appeared in several domains. A limited form
of the coherence problem appears in any (single processor) system that places a cache between
the processor and memory, since the cache must be kept coherent with memory. The more
general problem occurs in multiprocessors where each processor has its own cache. Another
domain is that of non-uniform memory access time (NUMA) multiprocessors, in which shared
data may be replicated in several local memories, or migrated from one local memory to another
to improve performance. Closely related to this domain is the area of distributed shared memory,
where a non-uniform memory access machine is simulated by a set of hosts connected by a
network.

Two basic approaches have been used to address the coherence problem. In directory
techniques, information about where data is replicated is kept by a centralized manager, which
must be involved each time the data is replicated or migrated. In snoopy techniques, information
is broadcast to all processors when data is replicated or migrated. In the multiprocessor cache
domain, both approaches have been used. Because of the poor scalability of broadcast methods,
distributed shared memory systems rely almost exclusively on directory techniques.

Basic to any approach is the consistency model that it assumes. Most work in the area has
been based on the uniprocessor memory model, in which a load from a given location always
returns the most recent value stored there. Recently, consistency models that relax this constraint
have been receiving attention due to their promise of improved concurrency. These models are
addressed briefly in Subsection 2.3.3.

2.3.1. Directory methods

Directory methods are so named because they maintain a central or distributed directory
indicating which processors have a copy of each datum. In general, a number of processors may
have a read-only copy of a given datum, but only one prccessor is allowed to have a writable
copy of the datum.

To obtain exclusive access to a block of data to service a write request, a processor must
contact the manager for the block. If the block was shared (read-only) by several processors, the
manager contacts each one to discard (invalidate) the block. The manager then retums a copy of
the block to the requesting processor. If the block was held exclusively by a single processor, the
manager contacts that processor, which either returns the block to the manager for forwarding to
the requester, or sends the block to the requester directly.

Li and Hudak [Li and Hudak 86] propose a taxonomy of directory methods for the
distributed shared memory domain based on the location of the directory manager. The manager
may be centralized (e.g., main memory as is done in most multiprocessor caches), or distributed
(i.e., each processor manages a subset of the data). A distributed manager may be assigned a
fixed subset of the data, or the assignment may vary dynamically. (In a dynamic scheme, the

BACKGROUND 23

processor which last wrote the data is usually the manager.) To locate the current manager in a
dynamic distributed directory management scheme, a processor may resort to broadcasts, or it
may have to follow a chain of forwarding pointers from the last known manager.

Agarwal et al [Agarwal et al 88] propose a taxonomy of directory methods for
multiprocessor caches based on two criteria: the number of indices i used to indicate which
caches contain a copy of the data, and whether broadcast is ever used to invalidate cached data. If
broadcast is not allowed, then no more than i caches may contain the data; otherwise, broadcast is
used only when more than i caches contain the data. Clearly, broadcast must be allowed when i is
zero.

Many distributed shared memory systems use a fixed distributed manager. Examples of
these systems include Li and Schaefer’s hypercube implementation [Li and Schaefer 89] and
Mach’s netmemoryserver (Forin et al 88]. Mirage (Fleisch and Popek 89a] uses a fixed
distributed manager, but introduces a time window A to reduce thrashing when several processors
are contending for a page. If an invalidation request is received before the page’s A has expired,
the request is rejected, and must be retried later.

Clouds [Ramachandran and Khalidi 88] provides a distributed shared memory using a
variation of the fixed distributed manager technique. A Clouds process explicitly locks a segment
before accessing it, and unlocks the segment when it is through. Clouds uses this concurrency
control information to implement coherence: when a process unlocks a segment, the segment is
discarded and the manager is notified, eliminating the need for subsequent invalidation messages
from the manager when another process wishes exclusive access. In addition to coherent read
and write access described above, Clouds allows ‘‘weak read’' access (which returns a copy of
the segment without waiting for any writers to return the most up-to-date copy of the segment),
and a form of exclusive access which requires invalidation and cannot be used in conjunction
with any of the other forms of access.

Gray and Cheriton {Gray and Cheriton 89] propose a timer-based mechanism called leases
for maintaining coherency of cached files in the V system. Each cached datum has an associated
lease term. During the lease term, a processor may read the cached datum with impunity, and the
manager will not allow any processor 10 write the datum. After the lea 2 expires, a processor
must contact the manager to extend the lease before reading the datum again. To write a datum, a
processor must forward the write request to the manager, which will either contact all the
leaseholders to terminate their leases prematurely, or wait for the leases to expire, and then
perform the write.

In a NUMA architecture, the time to access a given location depends on whether the location
resides in memory local to the processor, or in a remote memory. Since remote memory access
times are significantly larger than local memory access times, it is often desirable to replicate
read-only data, or migrate read-write data to the processor doing the writing. Replication is

desirable when the data is seldom written. Migration is desirable when there is considerable
locality of reference. Two recent NUMA systems apparently use a centralized directory,
accessible by any processor, to maintain coherency of replicated pages.

¢ Bolosky et al [Bolosky et al 89] use the standard invalidation technique when a
processor wishes exclusive access to a page. After a page has been migrated more
than a certain number of times, however, the page is frozen at its present location,
and becomes ineligible for subsequent replication or migration. All subsequent
accesses must be performed via the hardware remote memory access mechanism.

e In PLATINUM [Cox and Fowler 89], a timer is used to determine when to freeze a
page. The timer is started when the page is invalidated. If the page is invalidated a
second time before the timer expires, the page is frozen. A second timer with a much
larger interval unfreezes the page, to allow for varying access pattems.

Dias et al [Dias et al 87, Dias et al 89] describe a centralized manager using a slightly
different algorithm. Each time a cached block is accessed, a processor must contact the manager
to see if the cached block is still valid. The manager retumns a yes/no reply, and makes a note that
the processor is using the block. When a processor wishes exclusive access to a block, it first
obtains an exclusive lock for the block (thus insuring that no other processor is actively using the
block). The processor writes the block back to secondary storage and releases the lock when it
has finished, and notifies the manager. The manager updates its intemal data structures to
indicate that no other processor has a valid copy of the block.

2.3.2. Snoopy methods

Several snocopy methods have been implemented in multiprocessor caches where each cache
monitors traffic on the system bus to update the state of the blocks it has cached. No single cache
or memory has complete information about where a block is cached. Since main memory holds a
copy of all blocks, it must participate in the coherence protocol, but most protocols treat memory
as a special case. In write-through techniques, a cache write is immediately propagated to main
memory. To reduce bus traffic, write-back techniques delay the update of main memory until the
modified block is flushed from the cache.

Write-through with invalidate is used in several commercial multiprocessors [Agarwal et al
88). Each time a block is written to a cache, the store is sent to main memory, and all of the other
caches invalidate their copy of the block. If a different processor accesses the block, a cache miss
occurs, and the block is loaded from main memory.

Archipald and Baer [Archibald and Baer 86] describe several snoopy techniques that use
write-back. Briefly, these are:
o Write-once. The first time a block is written, it is copied back to main memory, and
all other caches invalidate their copies of the block. Subsequent writes by the same
processor modify only its associated cache; the block is written back to memory
when it is flushed from the cache. A cache miss may be satisfied by memory or by
another cache.

BACKGROUND 25

e Synapse. When a processor writes a block, its cache broadcasts an invalidation
message to all other caches. Subsequent writes by the processor occur only in cache.
A cache miss is always satisfied by memory, but the reply from the memory may be
delayed while the cache holding a modified copy of the block writes it back to
memory.

o Berkeley. Writes are treated as in the Synapse method. A cache miss, however,
may be satisfied by the cache holding a modified version of the block, and no
writeback to memory occurs in this case.

¢ Illinois. This me*~od modifies the Berkeley method by including a simultaneous
writeback to mei_ory when a cache miss is satisfied by another cache holding a dirty
copy of the block.

o Firefly. Unlike the previous methods, the Firefly technique allows several caches to
have a modified copy of a given block (although all copies are guaranteed to be ;
identical). Cache misses may be satisfied by another cache or memory; a special bus |
line indicates whether the block is present in more than one cache. When a processor
writes a block, its associated cache will broadcast the modification to all other caches
and memory if the block is present in any other cache. If the processor has an
exclusive copy of the block, no broadcast takes place.

e Dragon. Like the Firefly technique, Dragon allows multiple writers of a given
block. However, writes when a block is shared are broadcast only to the other caches
and not to memory. A writeback occurs later when the block is flushed from the
cache.

2.3.3. Other methods

Bus-based multiprocessor architectures are usually limited to a small number of processors.
Several researchers have proposed a hierarchy of caches to remove this limitation. Cheriton et
al [Cheriton et al 89] describe a hierarchy using a centralized directory on each level.
Ramachandran and Mohindra [Ramachandran and Mohindra 88] propose a suite of hierarchical
protocols based on several snoopy methods: write-once, Berkeley, Illinois, Firefly, and Dragon.

Hsu and Tam [Hsu and Tam 88] propose a method for coherency control of distributed
recoverable virtual memory that is similar to the Berkeley cache coherency protocol. A fixed
number of shares are issued for each block. To obtain shared (read) access to a block, a
processor broadcasts a request for the block, and receives a certain number of shares. To obtain
exclusive (write) access to a block, a processor broadcasts a request, and waits until it receives all
of the shares in reply. The protocol includes a facility for regenerating shares when a processor
crashes or is otherwise inaccessible.

Bisiani et al [Bisiani et al 89] simulate the use of timestamps to provide coherence in a
distributed memory machine. Each write operation is marked with a timestamp provided by a
central clock, and is propagated to all other copies of the datum, where the operation may be
buffered or processed immediately based on its timestamp. Reads that do not require coherency
take place with no delay. The system may delay a coherent read until the (dynamically
estimated) propagation delay has expired.

]

All of the previously mentioned techniques, except Bisiani et al, rely on a consistency model
known as sequential consistency, after Lamport's definition [Lamport 79]:

[A system is sequentially consistent if] the result of any execution is the same as if the
operations of all the processors were executed in some sequential order, and the operations of
each individual processor appear in this sequence in the order specified by its program.

Sequential consistency requires that the loads and stores performed by a parallel program return
the same results as some interleaving of the execution of the parallel processes on a sequential

machine.

Other consistency models that have been proposed, in order of decreasing constraints,

include:

¢ Processor consistency [Goodman 89] requires that stores issued from a processor
must be observed in the same order than they are issued. However, the order in
which stores from two processors occur, as observed by themselves or a third

processor, may differ.

o Weak consistency [Dubois et al 86] guarantees that memory is consistent only at
specific synchronization points. All previous accesses must be completed at the
beginning and end of each critical section. Within a critical section, the ordering of
loads and stores by different rro- :ssors may occur in any order.

» Release consistency [Char..norloo et al 90) extends weak consistency by
classifying synchronizai .. points into acquire (lock) and release (unlock) accesses.
Release consistenc' ensures that all previous shared data updates are performed
before a release of a synchronization variable is observed by any processor.
However, acccsses following a release need not be delayed for the release to
complete.

¢ Entry consistency {Bershad and Zekauskas 91] extends release consistency by tying
access to data within a critical section to the guard variable that must be acquired to
enter the critical section, and noting whether the guard variable is acquired in
exclusive or non-exclusive mode.

2.4. Distributed Concurrency Control

Local filesystems often provide locking primitives for concurrency control. Several
distributed filesystems have extended these primitives for distributed operation.

o Sprite [Welch 90] implements UNIX flock() advisory locks, with all lock requests
forwarded from the client to the fileserver. In the case of a conflict, the fileserver
saves the client’s process id, and replies immediately with an error indication. When
the conflict is resolved, the server notifies the client, which then retries the request.

¢ The DCE DFS [Bottos 92] also implements UNIX locks via a token scheme. Read
and write lock tokens covering a byte range of the file can be cached at each node.
As long as a node holds the appropriate tokens, it can grant lock requests without
contacting the fileserver. The fileserver asks for the release of a token when another
node requests a token that conflicts with the outstanding token.

¢ The V system [Cheriton 87, Cheriton 88] provides both block- and file-level locks at
the fileserver. File locking may be specified on open requests. Block locking may
be done explicitly via lock and unlock calls, or implicitly on each read and write
request. Blocks are locked automatically when caching is used.

BACKGROUND 27

e Digital's VAXcluster system under VMS includes a shared filesystem and locking
primitives that operate on a hierarchical lock name space [Snaman and Thiel 87].
Lock management is separate from the filesystem, and may be used to synchronize
access to any shared resource in the VAXcluster. Management of the lock name
space is partitioned between nodes via a directory scheme; a separate connection
manager notifies all lock managers when a node enters or leaves the cluster so that
the lock name space may be repartitioned. When a process first requests a lock on a
resource, the name of the resource is hashed to determine which lock manager
contains the directory for the resource. This lock manager then forwards the request
to the manager for the resource. (The first node to request the resource becomes its
manager. When all locks on the resource are released, no node is manager.) The
lock interface includes an asynchronous notification mechanism that allows a VMS
process to be notified when a second process requests a lock held by the first.

Hastings [Hastings 90] implemented a distributed lock manager for the Camelot distributed
transaction facility. Each node has its own lock manager which manages the portion of the lock
name space that is (statically) assigned to the node. Locks are requested by transactions, but
cached by servers so that a subsequent request by another transaction in the same server may be
processed by the server without contacting the lock manager. A call-back to the server is used by
the lock manager when a cached lock is requested by a different server.

Concurrency control and coherency control are seldom discussed in isolation. Early work in
the distributed shared memory domain did not provide special techniques for synchronization, but
relied on standard multiprocessor synchronization techniques such as test-and-set instructions and
spin locks [Li 89, Forin et al 88, Fleisch and Popek 89b]. More recent work uses separate
messages or RPCs to provide semaphores for synchronization [Li and Schaefer 89, Cheriton 88].
The proposed multiprocessor VMP-MC [Cheriton et al 89] includes separate lock and unlock bus
operations with a queue of waiters to eliminate spin-waiting.

As noted previously, Clouds utilizes locking to implement its coherency control
algorithm {Ramachandran et al 89]. When a process locks a segment locally in preparation for
accessing it, the kemnel will request the segment from the manager. When the process unlocks the
segment, the kemel discards it. Clouds also provides separate P and V semaphore operations.
These operations are forwarded to the manager of the appropriate segment. The manager
performs the operation without transferring the segment containing the semaphore to the
requester.

Dias et al [Dias et al 87, Dias et al 89] also rely on locking to implement their coherency
control algorithm, but use a centralized lock manager. Lock requests may be combined with
coherency control requests, since the lock manager processes both types of requests.

2.5. Integrated Technologies for TDSM

The previous sections have discussed how to implement transactions, and how to implement
distributed shared memory. The question remains, how can transactional distributed shared
memory be implemented?

communications network

‘ : :

node 1 node 2 node N
I buffers buffers buffers
disk disk I disk

Figure 2-1: Data sharing with shared disks

Related work on this question falls into two categories. Several researchers have
investigated the question in the context of a closely-coupled distributed system in which all nodes
are directly connected to each disk. (See Figure 2-1.) The interconnection network is used to
coordinate access to the disks, and may be used to transfer blocks between nodes.

The second category of related work is in the context of general purpose distributed systems,
as used for the system described in this dissertation. However, unlike the system described in this
dissertation, the related work in this category was not implemented, and the design was validaied
solely via modeling and simulation.

2.5.1. Shared disks

Most large mainframe transaction processing systems are multiprocessor-based. One way of
coupling multiple processors is via main memory; another is via a network as described in this
dissertation. A third approach, taken in IMS and other commercial systems, is via shared disks.
Dias et al [Dias et al 87] cite the following advantages of this data sharing approach over function
shipping:

* Since every node can access the data, availability of the system as a whole can be

improved.

e Commit protocols are simpler.

BACKGROUND 29

¢ Load balancing is easier.
¢ Migration from a single system is much simpler, since the database does not nced to
be partitioned.
Yu et al [Yu et al 85] describe a system based on IMS data sharing with distributed lock
management. Concurrency control is at the record level for read access, and at the block level for
update access. Coherency control is based on broadcast invalidation. Invalidation requests are

queued and transferred with lock requests at regular intervals. When a transaction completes, its
update locks are held until the associated invalidation requests have been acknowledged.

In [Yu et al 87], several possible performance problems and design issues associated with

data sharing systems are noted:
o Data contention. A data sharing system supports more concurrent transactions than
a single system, so contention for the same data may be a problem.

¢ Concurrency control overhead. When data is shared, locks must be shared, which
may lead to a greater overhead to obtain a lock.

e Lock granularity. A coarser lock granularity means fewer lock requests (and less
locking overhead) at the possible cost of higher contention.

¢ Data obsolescence. Transaction systems buffer data to reduce I/O rates. When a
node updates shared data, all other buffered copies of the data must be invalidated,
leading to higher 1/O rates.

e Coherency control overhead. The system incurs additional overhead to generate
and process buffer invalidation requests.

In [Yu et al 86], some of these problems are addressed through the use of transaction routing: by
directing an incoming transaction to the niode where the data it needs is already buffered, the
number of buffer invalidations (and associated lock overhead) can be reduced.

The primary focus of the work of Yu and Dias et al in shared disk data sharing systems is in
coherency and concurrency control, comparing performance to function shipping systems, and
evaluating the effects of different locking schemes. They do not address the transaction
management, recovery management, or log management issues raised in this chapter.

Rahm [Rahm 89] concentrates on recovery (and associated transaction management, log
management, and buffer management issues) in the shared disk environment. He assumes
locking for concurrency control, physical logging, and update-in-place for buffer management.

Among the issues to consider when designing node recovery are:
¢ Lock tables describing which node is holding each lock may be lost in a crash.

e Coherency control tables describing which node is currently holding a block may
similarly be lost.

¢ Blocks may be in use on nodes that are still running.

¢ Blocks may be transferred between nodes via the shared disk, or more quickly via the
network.

30 CHAPTER 2

According to Rahm, most existing shared disk data sharing systems force modified blocks to
disk at the end of each transaction. This strategy simplifies node recovery, since no modifications
ever need to be redone, and also simplifies coherence control, because the disk always contains a
transaction-consistent copy of each block. However, Rahm advocates the alternative strategy of
not forcing modified blocks at the end of transaction; instead, only log records are forced to disk.
This strategy offers higher performance by reducing 1/O rates and I/O waiting time.

The granularity of logging is another issue. If entire blocks are logged, recovery is
simplified, since the comrect block is immediately available. However, because block-level
logging generates enormous amounts of log data, most systems use record-level logging. This
complicates node recovery, since a block may migrate through several nodes, each of them
modifying a different record, without the block being forced to disk. If the node holding the
block crashes, modifications performed by preceding nodes may have to be redone. Or, if a
preceding node writes a modification to disk, the transaction which made the modification aborts,
and the final node holding the block crashes, the aborted modification may have to be undone. In
general, redoing and undoing these intermediate modifications requires access to the appropriate
log records in chronological order (e.g., via a global log).

To reduce the number of messages, coherency control may be tied to concurrency control: a
record is transferred when its corresponding lock is obtained. Unfortunately, this optimization
causes the granularity of locks to become an issue. If several records are stored in the same
block, then multiple nodes could be modifying (different records in) the same block
simultaneously. This means that several partially updated blocks must be merged before writing
a block to disk. To avoid this problem, most existing shared disk data sharing systems support
only block-level locking.

Given these issues, Rahm proposes the following architecture for TDSM in a shared disk
environment:

e Concurrency management uses a distributed lock manager, with each node
responsible for a fixed subset of the locks. (Essentially, responsibility for the
database is partitioned among the nodes, although the entire daiavase is accessible
from each node) The lock manager may allow multiple nodes to retain read
authorization; this authorization is revoked when a transaction requests the lock in
write mode.

o Buffer management relies on the lock manager to maintain cache coherency. When
a node requests a lock, the lock manager’s reply includes a copy of the corresponding
block (if the node’s cached copy is invalid or non-existent). When a node releases a
lock, it sends any modified block directly to the lock manager’s node. If the lock
manager’s node runs out of buffer space, it writes the modified block to disk, and
will tell subsequent requesters to read the updated block from disk.

» Log management uses new-value logging. Since the lock manager’s node receives
all modified blocks, log records are also recorded at the lock manager's node. Thus,
the global log is partitioned among the nodes in exactly the same manner as locks are
partitioned.

BACKGROUND 31

¢ Transaction management uses a special two-phase commit protocol. In the first
phase, log data is forced to the local log, and locally controlled locks are released. In
the second phase, remote data is processed: (1) Retain redo log records in a separate
buffer. (2) Send modified blocks and log records with unlock request to lock
manager node. (3) When lock manager acknowledges request, clear separate redo
buffer. The lock manager node writes out the log records it has received before
acknowledging the request.

¢ Recovery management. Transaction and server failure are handled locally, since
log records are retained on the node where the transaction runs. When a node fails,
the surviving nodes must handle recovery for the partition assigned to the failed
node. The shared disk environment simplifies this task, since the log for the failed
node still can be read by any surviving node.

One node is chosen to run the recovery algorithm for the failed partition. It
broadcasts a message that halts all activity in the failed partition, and causes all nodes
to forward lock information and buffered log records for the failed partition to the
recovery node, which appends the log records to the failed node’s log. Each node
discards cached blocks for the failed partition, unless the node holds a valid read
authorization. The recovery node scans the failed node’s log to determine which
transactions failed to commit, and which blocks are missing committed
modifications. It processes redo records on the appropriate blocks for committed
transactions, and writes out the corrected blocks. The recovery node also examines
the failed node’s log to discover if any remote modifications that were committed
must be retransmitted to other nodes.

Finally, the failed node’s partition is reassigned to another node(s), and processing in
the partition may continue. When the failed node restarts, processing must again halt
while the responsibility for the partition is reassigned.

Rahm'’s design is quite similar to the architecture described in this dissertation, although it
was developed independently and in a different environment. Rahm’s architecture benefits from
the shared disk environment in that (1) the lock manager node may tell a requesting node to read
a block directly from disk, and (2) the log from a failed node is still accessible on disk by the
surviving nodes. Rahm does not appear to have implemented his design, nor does he include a
performance evaluation. Rahm does not directly address communication management or
configuration management.

2.5.2. Hsu and Tam

Hsu and Tam have proposed several designs for TDSM in the distributed system
environment.

In [Hsu and Tam 88], they propose a design that requires a reliable broadcast mechanism
which supports failure atomicity, message synchronization, a system-wide logical clock, and
detection of node failure. The design does not handle the problem of network partition.

¢ Buffer management. Coherency is maintained via a share mechanism. A fixed
number of shares is associated with each page. To read a page, a node broadcasts a
request to become a shared owner. Exactly one existing owner will reply, conveying

32

CHAPTER 2

a number of shares in the page to the requester. To write a page, a node broadcasts a
request to become an exclusive owner. All of the existing owners must reply and
convey all of the shares to the requester. If the requester does not have a current
copy of the page, an update (containing either the entire contents of the page, or a
series of incremental updates) is transmitted along with the shares. No two nodes
can attempt to become exclusive owner simultaneously because of the timestamps
provided by the reliable broadcast mechanism. If a node is unable to collect all of
the shares within a given time limit, it enters a reformation phase in which it asks all
operational nodes to give it the authority to regenerate missing shares.

¢ Concurrency management uses hardware assists to provide locking via faults.
Each read or write access causes hardware lock bits and transaction id registers to be
compared. If this check fails, a fault into the lock manager is generated. The lock
manager checks the ownership of the page, and invokes the coherency control
mechanism if necessary. The coherency control algorithm will not grant shares to a
node requesting shared ownership if the page is write-locked. It will not grant shares
to a node requesting exclusive ownership if the page is read- or write-locked.

e Log management is apparently based on physical logging of entire pages. Sites are
grouped into predefined backup groups. Each node in a backup group monitors
broadcasts by other group members, so that updates are replicated on each node in
the group.

¢ Transaction management depends on reliable broadcast. To commit a transaction,
a node must first broadcast the changes made by the transaction to all members of its
backup group. Then it performs local commit processing: writing dirty pages and a
commit record to nonvolatile storage, and finally dropping locks held by the
transaction. The commitment point is the atomic broadcast to the backup group.

¢ Recovery management. Transaction and server recovery are apparently handled
locally, relying on write-ahead logging. Also, before granting a write lock on a page,
a before image of the page must be logged; apparently, this allows an update to be
undone if the transaction aborts.

Node failure is handled via the backup group mechanism. Sites are ranked within
each backup group. Each node in a backup group monitors broadcasts to know when
a group member becomes an exclusive owner. If an exclusive owner fails (as
detected by the reliable broadcast mechanism), the highest-ranked backup node takes
over as owner. Because a node broadcasts updates as part of its transaction commit
protocol, each node in the backup group is guaranteed to have transaction-consistent
data, and no furiher recovery action is necessary.

o Communication management must provide reliable broadcast (with failure
atomicity, synchronization, detection of node failure, and total ordering via a system-
wide logical clock) if not supported by the underilying system. All message traffic
must be monitored to see if thc message refers to a member of the node’s backup
group.

¢ Configuration management must allow backup groups to be defined and ordered,
in addition to the tasks listed previously.

Hsu and Tam note several research issues with their design.

e Garbage collection. When should a node throw away pages it is not actively using?
This seems to be part of the larger question (not answered by Hsu and Tam) of share
management: how does a node decide how many shares to give to a requester?
What does it do if it has only one share left, and it wishes to retain access to the
block?

BACKGROUND 33

e Granularity of locks and log records. Logging is done on blocks of 128 bytes;
locking uses hardware assists which restricts the granularity of locks to the hardware
page size. In general, neither of these sizes may be optimal.

e Locaiity management. How can programmers structure their applications to
provide the locality assumed to exist by the underlying system?

The decentralized nature of Hsu and Tam’s design makes it appear very attractive.
However, Hsu and Tam emphasize that the design is a straw man, and they do not evaluate its
performance. This is the key difficulty: reliable broadcast does not scale. Although Hsu and
Tam claim to eliminate distributed commit, essentially distributed commit has been forced down
into the reliable broadcast protocol, which is invoked on every message. Another potential
difficulty with the design is the backup group mechanism. It appears that only the owner node
actually writes updates to the log. If the owner fails, the highest-ranked backup node takes over
as owner, but it does not have access to the log.

In a later design, summarized in Tam’s dissertation {Tam 91], Hsu and Tam dismiss the
broadcast technique, and concentrate on reducing the time needed to perform node recovery.

e Concurrency management. Two algorithms for concurrency management are
discussed. The 2PL-MC algorithm (very similar to the algorithm described in this
dissertation) uses a distributed lock manager, with each node responsible for a fixed
subset of the locks. A node may cache locks, so that it may grant a cached lock to a
transaction without contacting the lock manager again.

The 2PL* algorithm relies on the coherency control mechanism to ensure that a page
being written is stored on only one node, while a page being read may be stored on
many nodes. As long as a node has read or write permission for a page, it may grant
locks in the corresponding mode for records stored on that page.

¢ Buffer management uses a fixed distributed manager to maintain coherency. The
data is partitioned in the same manner as the locks. Each block has an owner node
which may vary over time, and which is the only node allowed to write block. A
locator node, which is fixed for each block, always knows which node is the current
owner. To read a block, a node sends a message to the locator node, which forwards
the request to the owner. If the owner is not writing, it retums a copy of the block to
the requester. To write a block, a node sends a message to the locator. The locator
notifies the owner, and records the new ownership of the block. The owner
invalidates any existing readers, and sends the block to the new owner. Each time a
block is transferred or invalidated, the action is logged by both the sender and the
receiver. Each node also periodically checkpoints the information it has about block
owners and readers.

The database is assumed to fit in main memory, so blocks are never written to non-
volatile storage except as part of logging.

e Log management uses new-value logging of entire blocks, to avoid the problem of
merging partial updates from different nodes during recovery.

¢ Recovery management. Transaction and server recovery are apparently handled
locally, relying on write-ahead logging.

Node recovery depends on the logging and checkpointing of coherency actions.
Apparently, while a failed node is down, no other node may obtain a block for which

34 CHAPTER 2

the failed node is owner or locator. Once the failed node restarts, it reads its latest
checkpoint, and replays the log to restore its directory of block owners and readers.

Tam'’s dissertation does not address the transaction management, configuration management,
or communication management issues raised in this chapter. It does not give transaction or server
recovery algorithms, nor does it describe how a failed node restores its data to a transaction-
consistent state after it restores its directory of block owners and readers. The architecture does
not appear to have been implemented, although the performance of several algorithms is
evaluated via modeling and simulation. The buffer management algorithm has been designed to
allow fast node recovery, at some additional expense during forward processing.

Tam'’s dissertation also mentions a method for TDSM using optimistic concurrency control
that is further described in [Bellew et al 90]. One node serves as the validator which must be
contacted at the end of each transaction to obtain a transaction id and commit the transaction.
Each of the other nodes acts as a home node, storing part of the database.

o Concurrency management uses optimistic concurrency control. Each page has a
timestamp which is the id of the last transaction to update the page. A transaction is
allowed to compute with whatever data is cached at the node where it is running. At
the end of transaction, the node presents a list of timestamps for pages it has read,
along with all the pages it has modified, to the validator. The validator compares the
submitted timestamps with the most recent timestamps; if any of the submitted
timestamps are out-of-date, the transaction must abort.

e Transaction management uses the validator to assign transaction ids. If the
submitted timestamps are valid, the validator allocates a new transaction id, and
stores it with each updated page.

¢ Buffer management relies on the validator to periodically broadcast updated pages.
When a page is received by any node that has the page cached in main memory, the
node updates the cached copy; otherwise, the page is discarded. When a node wishes
to free a cached page that is not in use, it writes the page to disk if it is the home node
for the page, otherwise it merely throws away the page.

There are two cases to consider when a node wishes to access a page that it does not
have cached in main memory. If the node is the home node for the page, it simply
reads the page from its local disk. Otherwise, the node requests the page from the
home node, which will locate the page in main memory or on disk, and ictum it
along with the associated timestamp.

Log management, recovery management, communication management, and configuration
management issues raised in this chapter are not addressed by this architecture; also note that in
general, techniques using broadcast do not scale well. The integrity of updated pages is certainly
a issue, since they may be lost when the validator or home node fails. Failure of a home node
makes many pages unavailable, and failure of the validator may make the updated pages it holds
unavailable. As with [Tam 91], the architecture was simulated and appears not to have been
implemented. The simulation compares optimistic concurrency control to 2PL*. When locality
of reference is high, the optimistic method offers lower throughput than 2PL* due to the cost of
validating and broadcasting updates. When locality of reference is low, 2PL* offers lower
throughput than the optimistic method due to the cost of obtain remote locks.

Chapter 3
Camelot and Mach Environment

This chapter, as a follow-up to the material presented in Chapter 2, introduces the Camelot
distributed transaction facility and the Mach operating system on which Camelot runs. Camelot
demonstrated that transactions could be efficiently layered on an operating system kernel as a
general-purpose facility. Camelot is well-documented, and the source code is readily available
for research use; thus, Camelot is a reasonable place from which to start work on transactional
distributed shared memory. Camelot is described in detail in Camelot and Avalon: a Distributed
Transaction Facility [Eppinger et al 91]; this chapter provides an overview of Camelot, with
references to the appropriate chapters in [Eppinger et al 91].

3.1. Camelot

Camelot provides a framework for constructing programs that use distributed, atomic
transactions in the client/server model. In Camelot, programs are divided into two classes. An
application interacts with users, and may initiate and conclude transactions. Within a transaction,
an application makes server calls (transactional RPCs) to Camelot servers in order to access
persistent storage. A data server is started under the control of Camelot, and encapsulates all
access to a unit of persistent storage (unique to each server) known as a recoverable virtual
memory (RVM) segment. A server maps its recoverable virtual memory segments into its virtual
address space, and may read and write RVM segments transactionally. If the enclosing
transaction aborts, Camelot will undo any changes made by the transaction to the RVM segments.
Once a transaction commits, Camelot guarantees the permanence of the transaction’s changes.
Within a transaction, both applications and servers may make many server calls to local or remote
servers. Camelot ensures that all servers involved in a distributed transaction agree on the
transaction’s outcome.

Camelot is implemented on the UNIX-compatible Mach operating system, and is divided
into several processes that communicate via Mach messages. The Camelot library provides a C
language interface to Camelot services. Figure 3-1 shows the processes that run on each Camelot
node. The Master Control Program and the Camelot startup process are uninteresting, but the
other components are described in subsequent subsections. '

35

36 CHAPTER 3

NCA e o o Application
ILibrary ILibnry
Data Server| oo o Data Server
ILibzary ILibrary | Recoverable
Processes
Node Serverj
ILibrary
(" \
Recovery Transaction
Manager fiog] Manager [con
Disk Master
Manager [iog] Control N} Camelot
System
. /
Components
\ Camelot j
Mach Kernel

Data servers and applications are written by Camelot users. Data servers maintain persistent data
in recoverable virtual memory. Applications begin and end transactions that invoke operations
on data servers via remote procedure calls. The Node Server is a distinguished data server used
to store configuration information; the Node Configuration Application (NCA) provides a user
interface. The Transaction Manager coordinates distributed agreement (ensuring that all
participating nodes agree on the outcome of a transaction), and includes the Communication
Manager, which tracks the spread of transactions from node to node. The Recovery Manager
restores recoverable virtual memory to a transaction-consistent state after a failure, and includes
routines (o read the log. The Disk Manager is responsible for buffer management and writing the
common log. The Camelot process initializes the system, and the Master Control Program
coordinates the operation of the other components.

Figure 3-1: Camelot architecture
3.1.1. Camelot library

The Camelot library provides a high-level, C language interface to Camelot services [Bloch
91a]. The Camelot library is also primarily responsible for concurrency control.

An application written using the Camelot library might use code like this:

CAMELOT AND MACH ENVIRONMENT 37

BEGIN_TRANSACTION

éE.:I.ZVER_CALL ("array server",
array_update (ARGS index, value));
END_TRANSACTION (status)
The BEGIN_TRANSACTION and END_TRANSACTION statements bracket a series of actions
into a trarsaction. (The status variable indicates that the transaction committed or gives a
coded reason for transaction abort.) The SERVER_CALL is a transactional RPC to the
array_server, any actions performed by the array server to process the RPC will take
place in the context of the transaction begun by this application. The server is requested to
perform an array_update operation with the given parameters.

The array_update operation in the array_server might use code like this:

BEGIN_ RECOVERABLE_DECLARATIONS
unsigned int array[SIZE];
END RECOVERABLE_DECLARATIONS

LOCK (&REC (array([index],
LOCK_SPACE_PRIMARY,
LOCK_MODE_WRITE) ;

MODIFY (REC{array[index]), value);

The server must first declare the layout of its recoverable virtual memory via BEGIN_ and
END_RECOVERABLE_DECLARATIONS. On receipt of the array_update RPC, the server
may modify its RVM within the scope of the transaction initiated by the application.

The Camelot library requires the server programmer to use explicit LOCK operations.
(Explicit locking allows use of logical locks, and gives the programmer added flexibility in
choosing lock granularity.) Camelot supports multiple lock spaces, so that a package supporting
a particular abstract data type may use a name space for locks that will not conflict with any other
package. In the example above, the array server obtains a write lock on the appropriate
element of the array in the standard lock name space; the name of the lock is just the address of
the element in the array.

After obtaining the write lock, the array_server is free to modify the corresponding
item in recoverable storage. The MODIFY operation stores a new value in the array, and
simultaneously generates log records that the Camelot system can use to undo the MODIFY
should the enclosing transaction abort.

At the end of a transaction, the Camelot library automatically releases any locks held by the
transaction. Thus, the library supports two-phase locking for serializability. Careful
programmers may explicitly unlock locks before the end of transaction; however, Camelot does
not guarantee serializability in this case.

To process a lock request, the Camelot library checks for conflicts with other
transactions [Bloch 91b]. In most cases, the library has enough information to identify conflicts.

38 CHAPTER 3

When transactions are deeply nested, however, the library may not be able to determine if two
transactions with a common ancestor (in the same transaction family) are conflicting in their use
of the lock, and the library asks the Transaction Manager to decide if there is a conflict.

3.1.2. Disk Manager

The Disk Manager reads and writes pages to/from the disk when Mach needs to service page
faults on RVM or to clean primary memory. Camelot uses a common log for transaction
management and recovery functions; the Disk Manager accepts and writes loy records
locally [Thompson and Jaffe 91], and coordinates log writes with paging writes to enforce the
write-ahead log invariant. The Disk Manager allocates backing store for RVM segments,
performs checkpoints to limit the amount of work during recovery, and works closely with the
Recovery Manager when failures are being processed. The Disk Manager is multi-threaded to
permit multiple 1/O operations in parallel. The data server interface to recoverable storage is
described in [Eppinger and Nichols 91}, and the design of the Disk Manager is given in [Eppinger
91).

3.1.2.1. Data structures

The server record s_record_t contains data about an active server, including the server’s
state, information about the server’s RVM segment, and Mach ports for contacting the server and
the Mach kernel. Several hash tables allow the Disk Manager to locate a server record given a
UNIX process id, a server id, a RVM segment id, or a Mach port.

As a server updates its recoverable storage, it spools log records describing the regions being
updated and the values stored there. These log records are funneled through the Disk Manager to
the common log. To spool log records efficiently, each server has its own private shared memory
queue with the Disk Manager. The Camelot library sends asynchronous messages to the Disk
Manager by storing them in this queue. When the queue becomes full, the library makes a
synchronous RPC to the Disk Manager to process the queue. The Disk Manager may also
process the queue at earlier times to enforce the write-ahead log invariant.

The most complicated data structure used by the Disk Manager is the grid, which is used to
keep track of records in the log. The grid is a natural extension of the two hash tables required to
do write-ahead logging: one hash table for the active pages, one for the active transactions.
Keeping such careful track of log records is required to support new-value-only logging. Each
log record is linked to both the page and transaction to which it refers. (See Figure 3-2.)

CAMELOT AND MACH ENVIRONMENT 39

Rash
table

page [" LSN

f
page [SJLSN ["] LSN
1 i
page 1 LSN [™] LSN
tran tran tran
tran
hash
table

The LSN (log sequence number) uniquely identifies a log record. One hash table is used to find
active pages; each log record is linked to the page it describes. Another hash table is used to
locate active transactions; each log record is also linked to the transaction to which it belongs.

Figure 3-2: The grid
3.1.2.2. Algorithms

Each time a server modifies a region in recoverable storage, it must use the pin-update-log
protocol. Before modifying the region, the server pins the region in virtual memory. Pinning
prevents the Disk Manager from writing the page(s) on which the region resides back to paging
store. Next, the server updates the region in virtual memory by storing a new value. Finally, the
server logs the modification, unpinning the region. The pin and log operations are simply entries
the server makes in its shared memory queue.

The Disk Manager acts as an external pager for the RVM segment in each data server. (See
Section 3.2 for a description of the extemal pager interface.) When the Disk Manager receives a
memory_object_data_write message from the kemel, it checks that the server is using the
pin-update-log protocol properly. If the page is not pinned, the Disk Manager forces the
appropriate log records to stable storage, and then writes the page to disk. When the Disk
Manager receives a memory_object_data_request message from the kemel, the Disk
Manager locates the page on disk, and returns it to the kemel with a
memory_ object_data_provided message.

40 CHAPTER 3

To support recovery, the Disk Manager responds to requests from the Recovery Manager for
a list of all log records corresponding to a particular transaction or a particular page. To limit the
amount of log data that must be processed during recovery, the Disk Manager periodically writes
to the log a checkpoint record containing a list of active servers, active segments, active pages,
and active transactions.

3.1.3. Recovery Manager

The Recovery Manager is responsible for transaction abort, server recovery, node recovery,
and media-failure recovery [Thompson 91]. During normal processing, Camelot components and
servers record in the log all modifications to recoverable storage, movements of pages between
disk and memory, and outcomes of completed transactions. When a system component detects a
failure, it notifies the Recovery Manager, which reads the log and undoes or redoes the effects of
transactions as appropriate. The Recovery Manager also sends information from the log to
servers and to the other Camelot components to allow them to restore their internal data
structures. During recovery, additional records are written to the log describing what was undone
or redone.

Camelot directly supports only value logging. When recoverable storage is updated, the new
value, or gfter-image, of the modified region is written into a log record called a modify record.
Depending on how the transaction was initiated, the old value, or before-image, of the region may
also be written into the log. The Recovery Manager implements three distinct recovery
algorithms: old-value/new-value abort, new-value-only abort, and server recovery. The abort
algorithms are invoked by the Transaction Manager. The server recovery algorithm is invoked by
the Disk Manager after a server crash or node failure.

To abort a transaction, the Recovery Manager reads the log backwards to extract the
modifications made by the transaction. For a modification made by an old-value/new-value
transaction, the log contains the old value to be restored; for a new-value-only transaction, ihe
Recovery Manager must locate the old value in a log record written by a committed transaction or
read the old value from its home location on disk. The Recovery Manager buffers up a request to
undo the modification by restoring the old value. The requests are sorted by server id, and
forwarded to the appropriate server when the buffer is full or there are no more requests to be
buffered.

To recover a server, the Recovery Manager reads the log backwards to identify changes
made by committed transactions that are not reflected in the disk copy of the page, and buffers up
requests to redo these changes. It also identifies changes made by aborted transactions that were
already written to the disk copy of the page, and buffers up requests to undo these changes. The
buffered requests are sent to the server for processing after it has been restarted, but before it
begins accepting RPCs from its clients.

CAMELOT AND MACH ENVIRONMENT 41

3.1.4. Communication Manager

The Communication Manager provides a name service for Camelot servers and supports
transactional RPCs [Stout 91]. The name service dispenses surrogate local ports for network
ports so that all distributed transactional RPCs pass through the Communication Manager. Thus,
the Communication Manager can keep a list of all the nodes involved in a particular transaction,
and it supplies this list to the Transaction Manager for use during commit and abort processing.

3.1.5. Transaction Manager

The Transaction Manager coordinates the initiation, commit, and abort of local and
distributed transactions [Mummert et al 91]. It fully supports nested transacuons. Each
transaction has a unique transaction id assigned by the Transaction Manager.

The primary protocol supported by the Transaction Manager is the two-phase commit
protocol. To commit a local transaction, the Transaction Manager makes an RPC to each server
involved in the transaction, requesting a vote for commit or abort; all servers must vote to commit
in order for a transaction to commit. Once all votes are in, the Transaction Manager commits or
aborts the transaction by forcing a record to the log. In the second phase of the protocol, the
Transaction Manager notifies each server of the transaction’s outcome.

To commit a distributed transaction, the Transaction Manager on the coordinator node
(where the transaction was initiated) sends IP datagrams to the Transaction Manager on each
subordinate node involved in the transaction. All Transaction Managers query their local servers.
Each subordinate Transaction Manager forces a prepare record into its local log, and retumns a
single vote to the coordinator Transaction Manager. The coordinator Transaction Manager tallies
the votes and forces a commit or abort record to its log. In the second phase of the protocol, the
coordinator notifies each subordinate of the transaction’s outcome.

Not described here is the non-blocking commit protocol supported by the Transaction
Manager. The Transaction Manager also aborts transactions, and answers questions from the
Camelot library about lock conflicts.

3.1.6. Node Server/Node Configuration Application

The Node Server is the repository of configuration data necessary for restarting the
node [Thompson and Michaels 91]. To start a server, the Disk Manager needs to know what
command line to execute, how much recoverable storage the server is allowed, and the name of
the server and its recoverable segment. All of this data is maintained in recoverable storage by
the Node Server and is recovered before other servers.

Backing store for recoverable storage is allocated in large fixed-size units called chunks. To

42 CHAPTER 3

allocate backing store, the Disk Manager makes an RPC to the Node Server. The Node Server
runs a transaction to allocate the appropriate chunks, and returns the result to the Disk Manager.

The Node Configuration Application (NCA) permits Camelot’s human users to update data
in the node server and to crash and restart servers [Eppinger and Michaels 91].

3.2. Mach

Mach is a multiprocessor operating system that is binary compatible with 4.3 Berkeley
UNIX. Mach provides the basic building blocks for distributed applications, including tasks,
multiple threads of control within tasks, message passing, and shared virtual memory between
tasks [Stout et al 91].

A 1ask is a collection of system resources, including virtual memory and access rights to
Mach ports. It is similar to a UNIX process. A thread is a unit of scheduling (i.e., a lightweight
process) that executes within a task.

Interprocess communication in Mach is based on two abstractions: ports and messages. A
port is a protected kemnel object to which messages may be sent and queued until reception. A
task may hold send and receive rights to a port. A message is an ordered collection of typed data,
possibly including port rights or pointers to out-of-line data. The header of a message includes
the port to which the message is sent, and optionally a port to which the receiver may reply.

Most Mach users never need to know how messages and headers are formatted; instead, they
use the Mach Interface Generator (MIG) to automatically implement remote procedure
calls [Pausch et al 91].

A special user-level task called the netmsgserver transparently extends interprocess
communication across the network. The netmsgserver acts as a local representative for tasks on
remote nodes. When a task sends a message to a port on a remote node, the message is actually
delivered to the local netmsgserver. The local netmsgserver translates the destination port to a
network address, converts the message to a format suitable for the network, and transmits the
reformatted message to its counterpart on the destination node. The destination netmsgserver
converts the network message into a Mach message. It re-sends the Mach message to the correct
port on its local node.

The netmsgserver also provides a port registration and lookup service. Using
netname_check_in, a task can associate a name with send rights to a port it owns. Using
netname_look_up, any other task can present the name and receive send rights to the port.
netname_look_up also accepts a host name as a parameter, so that a task may look up a port
on a remote host.

CAMELOT AND MACH ENVIRONMENT 43

The Mach virtual memory design allows tasks to allocate/deallocate regions of virtual
memory, specify the inheritance of regions of virtual memory (when a task fcr's,,, set the
protection (read/write/execute) on regions of virtual memory, and specify a user-level task to
handle paging for regions of virtual memory [Baron et al. 90]. It is this last feature, the external
pager interface, which Camelot uses to implement recoverable virtual memory.

To use the external pager interface, a client task (e.g., a Camelot server) maps a paging
object into its address space using vm_map. The paging object is represented by a port, obtained
from the external pager task, to which the kemel will send external pager messages. When the
client task takes a page fault on a page of its address space mapped to the paging object, the
kernel sends a memory_object_data_request message to the port representing the paging
object (i.e., to the external pager). The extemal pager receives the request, finds the data, and
retumns it to the kemel with the memory_object data_provided call. The kemel puts the
page into the client task’s address space and resumes the thread. The external pager may ask the
kemel to flush a page from the cliemt’s address space with the
memory object_lock_request call. In response to this call, or if the kerel wishes to free
up physical memory, the kemel makes a memory object_data_write call to the external

pager.

The external pager interface makes it possible for a user-level task to implement distributed
shared memory. The first implementation of this feature was the netmemoryserver [Forin et al
88). As part of his research into kemel support for distributed memcry multiprocessors, Barrera
reimplemented the distributed shared memory functionality in a user library, the External
Memory Manager, that can be linked with any extemnal pager task [Barrera 92]. The Extemal
Memory Manager library allows an extemal pager to create a paging object and specify that it is
to be used to provide distributed shared memory. The library interposes itself between the
external pager and multiple client kemels. To the extemnal pager, the External Memory Manager
presents the illusion of a single client kemel. Client tasks on multiple nodes see the illusion of a
single, shared paging object. every read of a byte in the shared object retums the most recent
value stored there on any node. (See Figure 3-3.) The Extemal Memory Manager library
achieves this illusion by maintaining a directory for each page of those nodes with read or write
permission for the page. (In Li’s terminology, the XMM library is a fixed distributed manager.)
The XMM library can support multiple paging objects, managing the coherency of each set of
pages independently.

When a client kemnel asks the XMM library for read access to a page, the XMM library
checks its directory to see if any node has write access to the page. If no node has write access,
the XMM library asks the external pager o supply a readable copy of the page, and retums it to
the client kemel. But if some node has write access to the page, the XMM library first invalidates
that copy, directing the node to return the modified page to the XMM library. The XMM library
forwards the page to the extcrnal pager. Then the XMM library continues as above where no
node has write access.

44 CHAPTER 3

client client client client g 3

task | | task task_| | task ol peger
XMM library |
= L B

Mach kernel Mach kernel Ma kemé

{ L

The External Memory Manager (XMM) library is an intermediary between an external pager and
several Mach client kernels. It acts as a single client kernel to the external pager, and acts as an
external pager to each of the actual client kernels, managing the migration of pages from node to
node to achieve coherent distributed shared memory.

Figure 3-3: External Memory Manager

When a client kernel asks the XMM library for write access to a page, the XMM library
checks its directory for readers and writers. It directs each reader or writer node to invalidate the
page (readers simply discard the page, a writer writes back the modified page). Then the XMM
library asks the external pager for a writable copy of the page, and retums it to the client kemnel.

Chapter 4
Design

4.1. Goals

Chapter 2 outlined the numerous altematives available in designing transaction processing
and distributed shared memory systems. Choosing a particular design by selecting among the
alternatives is best guided by having a set of goals in mind. The thesis of this dissertation is that
transactional distributed shared memory (TDSM) is feasible and useful. To demonstrate the
feasibility of TDSM, the design must be practical for a graduate student to implement in a
reasonable time. To demonstrate the utility of TDSM, the design must provide enough
functionality to allow the characteristics of TDSM to be evaluated.

These high-level goals can be further elaborated by considering their effect on how the
design should meet distributed program requirements. The most important requirements are as
follows.

¢ Ease of programming. As much as possible, the design should preserve an existing
easy-to-use programmer interface.

e Data integrity. The design should maintain the failure atomicity, serializability, and
permanence guarantees of transactions, even if an object in TDSM is concurrently
updated on different nodes. The design should maintain these guarantees if messages
are lost, or if processes or nodes crash.

o Multiple access to data. The design should allow concurrent access to multiple
TDSM memory segments on multiple nodes; that is, one process may access a
TDSM memory segment at the same time as some processes are accessing the same
TDSM memory segment, and other processes are accessing other TDSM memory
segments. However, a given process will not necessarily be able to access more than
one TDSM memory segment.

Other distributed program requirements are addressed as follows.

e Performance. The design should utilize algorithms that provide reasonable
performance and allow the performance of TDSM to be evaluated. It is not
necessary to take advantage of all possible optimizations if these optimizations can
be analytically evaluated.

e Security. It is acceptable for the design to provide the same security as an existing
transaction processing facility. Access to a TDSM memory segment should be
restricted to its creator.

¢ Availability. The design may restrict availability to protect data integrity in the
presence of failures. When a node crashes, the design may make unavailable those
parts of TDSM memory segments that have been modified by prepared transactions
on the failed node.

45

¢ Incremental growth. The design should allow incremental increases in processing
capacity by allowing additional nodes to access a TDSM memory segment at any
time that the TDSM memory segment is available. (Of course, if individual objects
in the TDSM segment are being read or written, the new node may have to wait for
access to those objects in order to preserve serializability.)

4.2. Architecture

The architecture provides transactional distributed shared memory by allowing servers on
multiple nodes to share a given TDSM memory segment. Each TDSM segment has a home node
where the non-volatile storage for the segment is located, and which provides certain services for
the segment. Nodes where servers read or write a TDSM segment are using nodes of the
segment. A node may be the home node for many TDSM segments, and many nodes may act as
home nodes for different segments. A node may be a home node or a using node or both for any
number of segments. Each home node must have non-volatile storage for the blocks of TDSM
segments; using nodes are not required to have any non-volatile storage. Nodes communicate via
a network; no disks are shared between nodes.

To implement transactions, the TDSM architecture follows the structure outlined in Chapter
2: log management, recovery management, transaction management, communication
management, configuration management, concurrency management, and buffer management. In
brief, a transaction must log each modification it makes so that the recovery manager may back
out partial updates (to ensure failure atomicity) or repeat updates (to ensure permanence). The
transaction manager coordinates the completion of transactions that span multiple servers. The
communication manager tracks the spread of transactions from node to node. The configuration
manager stores the configuration of the transaction facility. The concurrency manager
coordinates the execution of concurrent transactions to ensure serializability. The buffer manager
controls the transfer of recoverable objects between volatile and non-volatile memory.

Many choices are possible when designing these functions. Generally, these choices are not
specific to TDSM, but common to any transaction processing system. This architecture for
TDSM leverages on the design choices of an existing transaction processing facility. For this
architecture, the transaction processing facility and underlying operating system must provide:

¢ A mechanism for sending block-size messages between arbitrary processes. The

message system must reliably deliver the messages in order, and the same
mechanism must be used for local and remote recipients.

¢ Encapsulation of servers such that transaction services are provided (or can be
provided) through the above message mechanism.

e A transaction commit protocol that does not necessarily support distributed
transactions, but does use (or can be made to use) the aforementioned message
mechanism.

¢ A clearly-defined interface for concurrency management that can be extended for
sharing and network access; e.g., locks that can be distributed through
communication with the home node.

DESIGN 47

o A clearly-defined interface for buffer management that can be extended for sharing
and network access. Instead of look ng for a requested block on the local disk, the
TDSM buffer manager contacts the home node. The home node locates the block on
disk, or requests the return of the block from another buffer manager. The other
buffer manager may have to wait until the requested block is released by a
transaction before satisfying the request from the home node.

e A clearly-defined interface for recovery management that can be extended for
sharing and network access. Intentions lists, shadow pages, or log records must be
forwarded to the home node at the appropriate time to ensure failure atomicity and
permanence. For availability reasons, the home node must be able to undo or redo
actions.

¢ The ability to have a common log (intentions list, shadow pages) for all servers using
a given TDSM segment.

4.2.1. Camelot and Mach

Rather than start from scratch, 1 use the Camelot transaction processing facility and the
Mach External Memory Manager (XMM), described in Chapter 3, as a base for building the
TDSM architecture. Other systems could be used as a base; I chose Camelot and Mach because
they were readily available. In brief, Camelot offers the abstraction of a recoverable virtual
memory segment that a Camelot server may read and update within the scope of a transaction,
and the Camelot library provides an easy-to-use environment for building transactional
applications. The XMM library offers a shared virtual memory coherency service to extemnal
pagers such as the one in Camelot.

The Camelot/TDSM architecture provides TDSM in the form of distributed recoverable
virtual memory by allowing Camelot servers on multiple nodes to share a given recoverable
virtual memory segment. Although parts of Camelot were designed to allow each server to
access multiple RVM segments, the Camelot library (which maps the RVM segment at a fixed
location in the server’s virtual address space) and the Camelot Disk Manager (which handles
page-in and page-out requests for the RVM segment) permit a given server to access exactiy one
RVM segment. The TDSM architecture does not remove this restriction from Camelot: to do so
would require extensive changes to the programmer interface provided by the Camelot library.
The focus of TDSM is to enable a set of servers to share a given memory segment, not to enable a
given server to access multiple memory segments. Since Camelot allows a RVM segment to be
larger than the virtual address space of a single process, one workaround for the single-segment-
per-server restriction is to combine the multiple segments that a server wishes to access into a
single segment. Another alternative for accessing multiple RVM segments is a hybrid of data
sharing and function shipping: on a given using node, there are several servers, each accessing a
different RVM segment, and communicating among themselves via local RPCs.

To ensure failure atomicity and permanence, Camelot uses write-ahead logging. The write-
ahead log invaniant requires that log records describing changes to a block be written to stable

48 CHAPTER 4

storage before that block can be written to non-volatile storage. Although write-ahead logging is
more complicated than other techniques for providing failure atomicity and permanence, it offers
several performance advantages [Spector 89b). Also, since transaction commit protocols are
frequently implemented by using a log, additional performance advantages are possibie if the
Transaction Manager shares a common log with the recovery algorithm. In general, Camelot’s
designers attempted to optimize forward processing at the possible expense of longer recovery
times.

node N1
node N2 server |...| server
server server server :
remote execution
transaction facility manager [Tog
i| lock configuration kernel
| manager manager :
i| transaction disk manager |} ode N
i| manager sxternal mem [153] node N3 server |...| server
| recovery communication ||| i trans. i | remote execution
i| manager manager : facility i | manager [Tog]
[PPy Py ——————— 2 o
kernel kernel

Nodes N1 and N3 run the transaction facility and may act as home nodes for several segments. If
a server on node N1 or N3 accesses a segment stored there, then node N1 ar N3 is also a using
node. Nodes N2 and N3 run the Remote Execution Manager and may be using nodes of
segments on other nodes.

Figure 4-1: TDSM architecture

Figure 4-1 illustrates how the functions that implement transactions are distributed between
the home node and using nodes. On the home node, a set of processes known collectively as the
transaction facility coordinate access to the stable storage common log and the non-volatile
paging store for the segment. On using nodes (other than the home node), a process known as the
Remote Execution Manager coordinates access to services on the home node. Subsequent
subsections describe how TDSM functionality for a given RVM segment is provided by the
transaction facility and the Remote Execution Manager.

DESIGN 49

4.2.2. Log management

The home node is responsible for the log. This decision simplifies other components by
reducing the effort needed to locate the log, and ensures that the log records needed to perform
recovery are available as long as the home node is available. It offers opportunities for reducing
the number of separate messages that must be sent to the home node in that log records may be
appended to messages for transaction management or buffer management.

Each using node ensures that the log records it generates for a segment are eventually
forwarded to the home node. The Remote Execution Manager on the using node buffers log
records to reduce latency. Log records must be forwarded when a transaction commits, at which
time the log records must be forced to stable storage to ensure permanence. Log records must be
forwarded when a page is written back to the home node or migrated to another using node; this
allows the home node to recover from the failure of the first using node. Log records are
forwarded when a transaction aborts, so the Recovery Manager has the information it needs to
undo the effects of the transaction.3 Finally, log records must be forwarded when the log record
buffer becomes full.

All servers using a given TDSM segment must use a common log. (This is already done by
* Camelot, since Camelot uses a common log for all servers and Camelot components on a node.)
Camelot uses physical logging. Operation logging could be used for TDSM, although operation
logging for TDSM is complicated by the fact that undo and redo operations may be invoked on a
different node than that which performed the original operation.

4.2.3. Transaction management

The home node provides transaction management services for the RVM segment. All
servers using a given RVM segment write to a common log on the home node where the
Transaction Manager resides. These servers rely on the home node for transaction management.
The Transaction Manager uses the same mechanism to send messages to home node servers as it
does to send messages to using node servers; indeed, the Transaction Manager does not know
whether a server is local or remote. Because of this transparency for transaction management
messages, and because the log for the servers is local to the Transaction Manager, the Transaction
Manager nced not worry about the location of the servers. Servers contact the Transaction
Manager to begin server-based transactions and to join existing transactions; the Transaction
Manager remembers which servers are involved in each transaction.

JIf the using node crashes before forwarding the log records, the transaction (and all others running on the using
node) still aborts. The Recovery Manager doesn’t need the log records of the aborted transaction in this case, because
either (1) the pages modified by the sborted transaction were never written back to the home node, and thus the
Recovery Manager can simply use an older version of the pages from disk, or (2) the log records were forwarded
earlier at the time the modified pages were written to the home node.

50 CHAPTER 4

When a transaction aborts, the Transaction Manager uses its knowledge to notify the
appropriate servers. The transaction may fail to contact a server if the server is on a different
node. In this case, the server may become an orphan and attempt to continue processing;
however, it will not be able to commit its changes, since to do so it would have to contact the
Transaction Manager which already knows that the transaction has aborted. Other nodes may not
be able to continue processing until the Transaction Manager has successfully contacted all
servers.

When a transaction wishes to commit, the Transaction Manager asks each of the servers
involved in the transaction to enter the prepared state and return a vote. If any server votes no, or
if the Transaction Manager cannot contact a server, the transaction aborts as described above.
Otherwise, the Transaction Manager writes a commit record to the log, and forces the log to
stable storage. It then notifies all servers that the transaction committed. If the Transaction
Manager is unable to contact a server, the server will remain in the prepared state, retaining any
write locks it obtained. No other transaction in any server will be able to obtain these locks until
the Transaction Manager successfully contacts the server. (If the Transaction Manager cannot
contact the server because the using node is down, any pages for which the using node has write
permission will be inaccessibie, so inability to obtain locks is only part of the problem.)

With TDSM, the Transaction Manager does not contact any subordinate Transaction
Managers to commit a transaction. The log for the servers is local to the home node, and there is
no need for a subordinate Transaction Manager t0 record data in a separate log. Thus, the
Transaction Manager does not use a traditional distributed commit algorithm, in which
Transaction Managers on subordinate nodes must force data to the log when a transaction enters
the prepared state. Instead, the home node Transaction Manager uses a single log force 10
commit a transaction, even though servers on several using nodes may be involved.

4.2.4. Recovery management

The home node manages recovery for the RVM segment. As with transaction management,
the common log on the home node and the transparency of messages allows the Recovery
Manager to perform its task for all servers without worrying about their location. The Recovery
Manager sends messages 10 servers to recover from transaction failure. The Recovery Manager is
notified whenever a server starts or terminates, so it may remember which servers are using a
given RVM segment.

When a transaction aborts, the Recovery Manager must undo any changes to RVM that have
been made by the aborted transaction. It does this by scanning the log, extracting records
belonging to the aborted transaction, and sorting them by RVM segment. For each RVM
segment, it selects one server to actually perform operations on the segment that undo the aborted
transaction. (This server may or may not be the same server that made the original
modifications.) If the selected server fails before completing the operations, the Recovery

DESIGN 51

Manager selects another server and continues. Any server using the RVM segment may perform
the abort processing requested by the Recovery Manager, because all servers have access to the
segment, and objects will remain locked until abort processing completes. The advantage of
sending the requests to a single server is that the requests can be batched, reducing
communication costs. The disadvantage of sending the requests to a single server is that if the
Recovery Manager makes a poor choice, many pages will have to migrate to the server’s node.
Of course, Camelct assumes that recovery is infrequent, sc this is not a major issue.

The Recovery Manager recovers from individual server failure by aborting all of the
transactions that have not committed in the failed server (undoing their effects as above), and
redoing the effects of committed transactions that are not yet reflected in non-volatile storage.
Transactions in other servers using the same RVM segment are not directly affected by the failed
server, although they may have to wait for locks and pages until recovery completes. If there are
no active servers using the RVM segment, a special surrogate server must be started on the home
node to perform undo and redo operations on behalf of the Recovery Manager. As soon as the
Recovery Manager finishes its task, the surrogate server exits.

The actions taken by the Recovery Manager after a node failure are very different,
depending on whether the failed node is the home node. If the home node fails, servers on other
nodes may continue processing for a while in a limited manner, but they will eventually detect the
failure of the home node and exit (implicitly aborting any transactions that have not yet
committed). When the home node restarts, the Recovery Manager restores every RVM segment
to a transaction-consistent state by starting a surrogate server on the home node for each segment,
and sending undo and redo requests to the surrogates.

If the failed node is not the home node, then the Recovery Manager itself continues running.
The Recovery Manager does not explicitly determine that a node has failed; instead, it performs
multiple server recoveries as the TDSM system notices that each server on the failed node has
failed.

When a using node fails, the log records it has buffered in volatile storage are lost.
However, the loss of these buffered log records does not affect the correctness of any data in
RVM, because the lost log records belong to transactions that the Recovery Manager °s about to
abort due to the node failure. (Recall that buffered log records must be forwarded to the home
node before a transaction can commit.) For each page modified by uncommitted transactions on
the failed node, one of the following cases will be true: either the modified page has been
forwarded to the home node (due to migration or other pageout), or it has not. If the modified
page has been forwarded to the home node, then the Recovery Manager will have log records
describing the modifications made by uncommitted transactions, and it may use the log records to
abort the transactions by undoing their modifications. (Recall that buffered log records must be
forwarded to the home node when a pageout occurs.) If the modified page has not been
forwarded to the home node, then the Recovery Manager will not have log records describing the

52 CHAPTER 4

modifications. However, in this case, there is nothing for the Recovery Manager to undo, since
the copy of the page in non-volatile storage does not contain the modifications of the
uncommitted transactions.

4.2.5. Buffer management

Responsibility for buffer management is split between the Disk Manager and External
Memory Manager on the home node, and the operating system kernels on all using nodes. Each
server maps the RVM segment into its virtual address space. Pages of the RVM segment are
buffered in main memory by kemels on different nodes as part of their resident pool of virtual
memory pages. Each kemel contacts the External Memory Manager on the home node to obtain
non-resident pages, to write out modified pages, and to request write permission on resident
pages. The External Memory Manager contacts a kernel to restrict read or write permission to
ensure that pages are coherent. A page may migrate from node to node at any time whether or
not a transaction is actively using the page; thus, an active transaction may be suspended if a page
it needs is stolen for use by another node.

The External Memory Manager follows a single-writer, multiple-reader protocol to enforce
page coherency. When a page is being read, it may be resident on many nodes. When a page is
being written, it is resident only on the node that is writing. For each page, the Extemal Memory
Manager records a list of the nodes that have the page with read or write permission. When a
node requests read permission for a page, the Extemal Memory Manager supplies the permission
immediately if there are no writers. If there is a writer, the External Memory Manager invalidates
the page on the writing node, which is instructed to write back the updated page, and remove
write permission. When a node requests write permission for a page, the External Memory
Manager invalidates the page on any readers (which simply discard the page) or any writers
(which write back updated pages).

The Disk Manager responds to requests from the External Memory Manager to copy pages
to and from non-volatile storage. The Disk Manager must allocate non-volatile storage for RVM
pages and must coordinate writes to non-volatile storage with log writes. The write-ahead log
protocol requires that log records describing changes to a page be written to stable storage before
that page can be written to non-volatile storage. Then, if the transaction that made the changes
aborts, the log records will be available for the Recovery Manager to read, and it can undo the
changes. Even if the home node crashes before writing the page to non-volatile storage, the
Recovery Manager can reconstruct a correct copy of the page by scanning the log and redoing the
effects of committed transactions.

The External Memory Manager maintains the coherency of pages between nodes; it is not
involved when two servers on the same node share a page. Instead, the operating system kernel
allows the servers to physically share the page where permitted by the virtual memory hardware.
The Extemal Memory Manager could maintain coherency between servers: if a server tries to

DESIGN 53

access a page that is currently in use by another server on the same node, it would wait until the
page could be migrated from server to server via the home node. The advantage of server-level
coherency is increased isolation of servers, which is especially useful during debugging. The
overwhelming disadvantage of server-level coherency compared to node-level coherency is
significant communication cost where there was no cost.

The External Memory Manager is not required to use the single-writer, multiple-reader
protocol to maintain coherency. However, this algorithm is straightforward to implement, offers
good performance, and has been used in most distributed shared memory systems.

4.2.6. Concurrency management

As shown in Chapter 2, many forms of concurrency management are possible to ensure the
serializability of transactions. Because it is well understood, straightforward to implement, and
has been shown to provide good performance [Carey and Livny 88), two-phase locking is used by
Camelot to maintain the serializability of transactions. A transaction must obtain a read lock
before inspecting an object, and a write lock before modifying an object. Locks are released at
the end of the transaction. The granularity of locks is chosen by the application programmer; the
name of a lock is the address of the corresponding object. Several objects may reside in the same
virtual memory page, and an object may span several pages. This gives the application
programmer maximum freedom in allocating recoverable storage and in selecting the degree of
concurrent access to objects. With this freedom comes the responsibility of ensuring that locks
do not refer to overlapping objects, since the transaction facility does not know the size of the
object corresponding to a lock.

For TDSM, responsibility for concurrency management is split between the Lock Manager
on the home node, and all servers using the RVM segment. Each server caches the locks that it is
actively using. Each server exchanges messages with the Lock Manager on the home node to
obtain non-cached locks and to release cached locks. While a server has a lock cached, it may
grant the lock to a transaction without further communication with the Lock Manager, as long as
the transaction is requesting a mode that is a subset of the mode in which the lock is cached.
(That is, if the lock is cached in write mode, a transaction may obtain the lock in read or write
mode with no further communication. If the lock is cached in read mode, a transaction cannot
obtain the lock in write mode until the server contacts the Lock Manager.)

The Lock Manager uses an algorithm similar to the External Memory Manager to enforce a
single-writer, multiple-reader protocol for the caching of locks by servers. Each server enforces
the single-writer, multiple-reader protocol for the acquisition of locks by transactions. The Lock
Manager may request retumn of a previously cached lock when it is requested by another server.
A lock may migrate only when it is not held by an active transaction. There is no deadlock
detection; instead, a timer aborts long-running transactions.

A server may limit the number of locks it can cache. When this limit is exceeded, it may
uncache locks that are not held by any active transaction. If all cached locks are held by active
transactions, the server may request the Lock Manager to grant a lock to an individual
transaction, instead of allowing the server to cache the lock. When the transaction commits, the
server notifies the Lock Manager to release the lock.

When a server crashes, any of its locks may be obtained by other servers, except for those
locks held by prepared transactions. If the Lock Manager crashes, servers retain their cached
locks and can continue to grant them to transactions. When the Lock Manager restarts, it contacts
each server to restore its knowledge of cached locks.

Concurrency management via distributed locks requires no changes to the programmer
interface to Camelot. The implementation of the distributed Lock Manager preceded the detailed
design of the TDSM architecture and provided evidence that such an architecture was
feasible [Hastings 90].

4.2.7. Communication management

The home node manages communication for all servers using the RVM segment. In the
function shipping model, the Communication Manager tracks the spread of transactions from
node to node. In the data sharing model, transactions stay put while data spreads from node to
node, so the Communication Manager on each node is reduced to providing a server name
registration and lookup service. A server is registered only with the Communication Manager on
the home node, and contacts the home node with any lookup requests. A Communication
Manager may contact a Communication Manager on another node to satisfy lookup requests.
From the perspective of the name service, servers on using nodes appear to0 be running on the
home node. The advantage of this decision is that it simplifies configuration management, and
interacts well with the other services provided by the home node.

A process that is not a server contacts the local Communication Manager with lookup
requests. A using node that is not a home node does not have a local Communication Manager;
in this case, a surrogate Communication Manager forwards all requests to a particular home node.

4.2.8. Configuration management

The home node manages the configuration of ail servers that use the RVM segment. The
Remote Execution Manager on each using node responds to requests from the home node to start
and kill servers. The Remote Execution Manager also buffers log records for forwarding to the
home node, and may act as a surrogate Communication Manager 0 forward name service
requests to the home node.

DESIGN 55

A privileged user may add, delete, start, or kill servers, and modify the configuration of
servers and RVM segments. When a server is added, the user must identify the RVM segment it
is to use. If a new segment is specified, it is implicitly created under the user’s ownership. If an
existing segment is specified, it must be owned by the user. A RVM segment is implicitly
destroyed when the last server configured to use the segment is deleted. The configuration of a
server includes the name of the node on which the server is to run.

Using the home node for configuration management offers several benefits. Security for
RVM segments is easily provided. Consistency of the configuration is easily guaranteed; it is not
possible to configure a server to use a non-existent segment. A using node that is not a home
node requires no non-volatile storage. The disadvantage of using the home node for
configuration management is that it contributes to the reduction of using node autonomy. Also, it
is more difficult to extend the design to allow a given server to use several RVM segments from
different home nodes.

4.3. Discussion

Feasibility of implemcntation guided the selection of many alternatives within the
architecture. The utility of the selected altematives may be summarized by indicating the degree
to which the altemnatives meet distributed program requirements.

¢ Ease of programming. By utilizing the Camelot library, the design provides the same
easy-to-use programmer interface. No syntax changes are necessary to allow a
Camelot server to access shared RVM. The fact that a RVM segment is shared by
several servers is encapsulated in the home node’s configuration database.

¢ Data integrity. The design maintains all of the guarantees of transactions even with
concurrent access on multiple nodes and in spite of message, server, or node failure.
Camelot’s algorithms for RVM transactions are easily extended to TDSM via the
mechanism of a common log on the home node.

e Multiple access to data. Servers on many nodes can be configured to use the same
RVM segment. The servers execute concurrently, and may read and write individual
pages concurrently, with the restriction that, at the moment a page is being written, it
is accessible only on the node that is writing.

A more significant restriction is that a given server may access only one RVM
segment. Although this restriction was originally dictated by the Camelot library, it
simplifies the design of many transaction functions by guaranteeing that the log
records for a transaction’s activities in a single server may be found at a single node.
If a server could access multiple RVM segments from different nodes, then the log
records for each segment would have to be buffered separately, and forwarded to
different logs. The Camelot library would have to note the node at which a
transaction was initiated, and notify each home node’s Transaction Manager as the
transaction accesses an RVM segment from that node.

e Performance. The architecture attempts to minimize communication costs by
buffering log records, batching undo and redo operations, caching locks, and keeping
virtual memory pages resident. As will be shown in Chapter 7, it offers opportunities
for further reducing communication costs by prefetching a page with any lock

56 CHAPTER 4

request for an object on that page, and by appending log records to pages being
written back to the home node or to server votes during transaction commit. Using
an existing transaction processing facility as a base allows the performance of TDSM
to be compared to transactional RPC. Some altemative architectures that promise
better performance are discussed in Chapter 2. However, to the best of my
knowledge, none of these architectures has been implemented in a distributed
computing environment.

e Security. Security relies on the authentication performed by the Camelot Node
Server, which stores the configuration of servers and segments. A server must be
configured before it may access a RVM segment. An unauthorized user may not
configure a server to access a RVM segment created by another user.

e Availability. If a using node crashes, any pages for which it has write permission
will be unavailable on other nodes. Locks obtained by transactions that have entered
the prepared state on the crashed node will also be unavailable. If the home node
crashes, processing on cached data may continue, but all transactions will abort when
the home node restarts.

¢ Incremental growth. A server is restricted to one RVM segment, and the non-volatile
storage for a segment is stored on one node, so the architecture does not aid
incremental growth of storage capacity. Extending the programmer interface .f
Camelot to allow a given server to access multiple RVM segments could assist in
incremental growth of storage capacity. Processing capacity can be increased by
configuring servers on additional nodes up to the point that the home node becomes
overloaded or the communications network becomes saturated.

In the architecture, there is no direct interaction between transaction management and
coherency control: a page may migrate from node to node at any time without regard to
transaction boundaries. This decision is necessitated by the possibility of false sharing, when two
independent objects reside on the same virtual memory page. Suppose transaction 1 modifies A
and transaction 2 modifies B independently. If the two transactions are on the same node, or if A
and B are on different pages, neither transaction has to wait for the other. If the transactions a.e
on different nodes, and A and B are on the same page, the single-writer, multiple-reader protocol
will force one transaction to wait. If pages could not migrate until transaction commit time,
transactions could deadlock waiting for each other’s pages. Thus, the architecture does allow
pages to migrate before transaction commit, and reduces the waiting time at the possible expense
of thrashing if two transactions contend for the same page over a period of time.

To avoid page thrashing, appiication programmers should take care placing objects in the
RVM segment so that false sharing does not occur. See [Bolosky et al 89] for a brief discussion
of this issue in the context of a shared memory multiprocessor with non-uniform memory access

times (NUMA).

Page migration independent of transaction boundaries is correct. Consider an example as
illustrated in Figure 4-2. A transaction on node N1 locks and modifies object A, spooling log
records describing that modification. Another transaction on node N2 wants to modify object B
on the same page as A. Since A and B are different objects, the transaction on node N2 has no
difficulty obtaining a lock for B. However, when it tries to modify B, it takes a page fault, and the

DESIGN 57

page on node N1 page on node N2

N

»
!
NN

N

7 e

A transaction on node N1 modifies object A during the same period that a transaction on node N2
modifies object B on the same page.

Figure 4-2: False sharing

kemel on node N2 contacts the home node External Memory Manager. The home node asks
node N1 for the page, and node N1 supplies the modified page, removing its own access to the
page. Next, the home node asks node N1 for log records, and node N1 supplies log records
describing the as yet uncommitted modification. Mow the home node can forward the page to
node N2's kemel, which retums from the page fault, and allows the transaction to modify B. If
niode N1 again tries to access the page, it will fault, and the page will migrate back to node N1 in
a similar manner (and log records describing the modification to B will be forwarded to the home
node before node N1 sees the modified page).

Note that serializability has been maintained, since both nodes obtain the appropriate locks
before accessing shared data. If the transaction which modified A aborts, the home node can
restore the page to the proper state, since it has log records describing the modification. The
home node may even ask node N2 to undo the modification if it is holding the page, since the
lock for A will be held by node N1 until the abort is complete.

Figure 4-3 illustrates the flow of log records and paging requests for two nodes. Node N1 is
a home node for segments 1 and 2. Both nodes are using nodes for both segments. The
transaction facility on node N1 enters log records for both segments into a common log. The
transaction facility receives log records directly from servers A and B. On request, the Remote
Execution Manager on node N2 forwards log records generated by server C, server D, or server E
to node N1. Servers C and D physically share memory; the kemel on node N2 merges paging
requests from these two servers into a single stream that it forwards to the transaction facility on
node N1. The transaction facility on node N1 processes these requests for segment 2 in
conjunction with requests it receives from server A via the kemel on node N1. The transaction
facility also processes paging requests for segment 1 that it receives from server B (via the kemel
on node N1) and from server E (via the kemel on node N2).

58 CHAPTER 4

node N1 node N2
_lserver A " . @ server C
-ﬁ: § :H-‘——— -----cnc----.---n.nq‘——]
I LITL - LITLL 1
server B transaction server D |
facility
H H paging
: HARGE remote
: : execution
: :l-ltl
: i | |eev2
[} []
| L—_ T
;.Illllllllllll lllllll.-lllllll‘ J

kernel kernel S

Log records flow to the transaction facility directly on the home node, or via the Remote
Execution Manager on other nodes. Paging requests enter the transaction facility via the
appropriate kernel. Servers B and E share segment 1. Servers A, C, and D share segment 2.

Figure 4-3: Flow of log records and paging requests

4.4. Example

To illustrate how the architecture works, consider the following example. Stan and Ollie are
two servers on different nodes. They share a RVM segment whose home node is a third node.
Ollie has cached the page of the RVM segment where mydata resides, as well as a lock for
mydata. However, no transaction in Ollie is currently accessing mydata. Stan has neither the
lock nor the page cached. Stan executes the following transaction:

BEGIN_TRANSACTION
LOCK (&REC (mydata), LOCK_SPACE_SHARED, LOCK MODE WRITE) ;
MODIFY (REC (mydata), value); '

END TRANSACTION(status)

When the BEGIN_TRANSACTION statement is executed, Stan makes an RPC to the home
node Transaction Manager requesting a new transaction identifier (tid). The Transaction
Manager’s reply provides several transaction identifiers, so that Stan’s next few
BEGIN_TRANSACTION statements may be executed without the need for another RPC. Next,
Stan must obtain a write lock for the object that is to be modified. Stan makes an RPC to the
home node Lock Manager to obtain the loc’z. The lock is currently cached by Ollie, so the Lock
Manager makes an RPC to Ollie requesting its reurn. No transactions are holding the lock, so
Ollie uncaches the lock and replies to the Lock Manager. The Lock Manager may then reply to
Stan’s request for the lock.

DESIGN 59

Stan’s node home node Ollie’s node
o Stap - Q \ ; Ollie
4
8 71 11 6 \ /
\ N, 2
remote . 12 1.1 remote
execution ransaction 13 execution
manager acility - , manager
N
/ ~ &
/ \1\
15| kernel d kernel ™ kernel
1 Begin transaction 9 Request page
2 Begin transaction reply with tid 10 Flush page
3 Lock mydata 11 Page write
4 Uncache lock request 12 Log buffer request
5 Uncache lock reply 13 Log buffer reply
6 Lock reply 14 Page provided
7 Pin request 15 Retumn from page fauit
8 Page fault 16 Log request

Figure 4-4: Messages for BEGIN_TRANSACTION, LOCK, and MODIFY

Next, Stan must follow the pin-update-log protocol to modify RVM. (The pin step lets the
buffer management function know that a modification is about to occur, and prevents the Disk
Manager from writing the page to non-volatile storage. The update step actually changes data in
virtual memory, and the log step generates a log record describing the modification, and unpins
the page.) First, Stan sends a pin request to the Remote Execution Manager by storing the request
in a region of memory that is shared by Stan and the Remote Execution Manager. Then, Stan
attempts to store a new value in RVM. Because the page containing the object is not resident,
Stan will take a page fault. The kemnel determines that the page is managed by an external pager,
and sends a request for the page to the External Memory Manager on the home node. The
External Memory Manager knows that Ollie’s node has the page in write mode, and asks Ollie’s
kernel to flush the page. Ollie’s kermel sends the modified page back to the External Memory
Manager, and removes the page from its memory. The Extemal Memory Manager passes the
page to the Disk Manager. The Disk Manager asks Ollie’s Remote Execution Manager to
forward any buffered log records. Ollie’s Remote Execution Manager replies with an empty

buffer, so the Disk Manager writes the page 10 non-volatile storage with no further ado. The
Extemal Memory Manager copies the page to Stan’s kemel, which retums to Stan from the page
fault. After storing the new value, Stan sends a log request to the Remote Execution Manager,
again by buffering the request in a shared memory region. See Figure 4-4.

Stan's node home node Ollie’s node
1
Stan \ Ollie
\\ k___
7\\ N
remote N . remote
execution N }rar)lgactlon execution
manager | 4 acility manager
.
5
kernel kernel kernel
1 End transaction t id request 5 Log buffer reply
2 Vote request 6 End transaction reply
3 Vote reply 7 Commit t id notification
4 Log buffer request

Figure 4-5: Messages for END_TRANSACTION

When the END_TRANSACTION statement is executed, Stan makes an RPC to the home
node Transaction Manager requesting that the transaction be committed. The Transaction
Manager contacts Stan, the only server involved in the transaction, requesting a vote. If Stan
votes to commit the transaction, the Transaction Manager asks the Disk Manager to force all log
records to stable storage, and write a commit record. The Disk Manager makes an RPC to Stan’s
Remote Execution Manager to obtain the buffered pin and log requests, and writes them to the
log, followed by a commit record. The Transaction Manager replies to Stan’s request to commit,
and sends a message notifying Stan that the transaction committed. See Figure 4-5.

If Stan’s transaction commits, and no other node accesses mydata, then the lock and virtual
memory page for mydata will remain cached on Stan's node. In this case, Stan can execute the
same transaction again at a much lower cost. To begin the transaction, Stan can use a tid
obtained from a previous RPC to the Transaction Manager. Since Stan still has the lock for
mydata cached, the transaction can obtain the lock immediately. Stan again follows the pin-

DESIGN 61

Stan's node home node Ollie’s node
Stan Oillie
1
re?:ggut?ion }rar_mlgaction re?:ggut?ion
manager acility manager
kernel kernel kernel
1 Pin request 2 Log request

Figure 4-6: Messages for LOCK and MODIFY

update-log protocol. The pin request is stored into a region memory shared with the Remote
Execution Manager, Stan updates mydata without taking a page fault, and the log request is
stored into the shared memory region. The transaction could update several other objects in the
recoverable segment with no further communication as long as the locks and virtual memory
pages are cached, and the shared memory queue of pin and log requests does not become full.
When the END_TRANSACTION statement is executed, the transaction will commit at the cost of
three RPCs and one asynchronous message. See Figure 4-6.

If some event causes Stan’s transaction to abort before the END_TRANSACTION can
complete, the following sequence could occur (if Stan and Ollie are still running). First, the home
node Transaction Manager makes an RPC to Stan instructing Stan to suspend all activity on
behalf of transaction tid. After Stan replies, the Recovery Manager asks the Disk Manager for a
current copy of the log. The Disk Manager makes RPCs to both Remote Execution Managers to
obtain any buffered log records, and returns the up-to-date log to the Recovery Manager. The
Recovery Manager selects a server to reverse the modifications made by the transaction to the
RVM segment. If Ollie is picked, the Recovery Manager makes an RPC to Ollie listing the
modifications to be undone. To make the changes, Ollie does only the pin-update part of the
pin-update-log protocol. Ollie does not need to lock the data being modified because the lock is
still held by the transaction being, aborted. Since Stan’s node has the only copy of the page that
Ollie wants to modify, Stan will page fault. The page fault is handled in the same manner as
before. After Ollie makes the modification, Ollie replies to the Recovery Manager. The
Recovery Manager notifies the Transaction Manager that restoration is completed. The

62 CHAPTER 4

Stan’s node home node Ollie’s node
Stan ﬁ \ / ;l Ollie -
7
\\\ \20 / 15 9
S = / 3
remote - — *T remote
exacution LT e }rar]'_saction T 18 execution
manager [* o fac ity — ™ manager
14 19
L~ o
% x
/ \15\
kernel d kernel i kernel e
1 Suspend tid request 11 Flush page
2 Suspend reply 12 Page write
3 Log buffer request 13 Log buffer request
4 Log buffer reply 14 Log buffer reply
5 Log buffer request 15 Page provided
6 Log buffer reply 16 Return from page fault
7 Restore request 17 Restore reply
8 Pin request 18 Log buffer request
9 Page fault 19 Log buffer reply
10 Request page 20 Abort t id notification

Figure 4-7: Messages for abort

Transaction Manager asks the Disk Manager to write an abort record, and force log records to
stable storage. The Disk Manager makes another RPC to Ollie’s Remote Execution Manager to
get the buffered pin request, and writes them to the log followed by an abort record. The
Transaction Manager sends a message notifying Stan that the transaction aborted. See Figure 4-7.

If Stan crashes after the MODIFY, but before the END_TRANSACTION, then Stan’s
transaction must abort: When another server requests a lock for mydata, the home node Lock
Manager tries to contact Stan and fail. After a timeout, it aborts all transactions in Stan, and then
grants the lock to the requester. When another node tries to access the page where mydata
resides (perhaps by request of the home node Recovery Manager which is aborting Stan's
transactions), the node’s kemel requests the page from the home node External Memory
Manager. The External Memory Manager tries to contact Stan’s kernel and fails; after a timeout,
it invokes the server recovery algorithm of the Recovery Manager. To recover a server in an

DESIGN 63

active segment, the Recovery Manager must undo the effects of any uncommitted transactions in
the server, and redo the effects of any committed transactions that are not reflected in non-volatile
storage. If Stan crashed before forwarding to the home node either the log records describing the
modification or the modified page, then there is no work for the Recovery Manager to do: it can
simply read the old version of the page from non-volatile storage. However, if Stan committed
the transaction once, tried to run it again, and then crashed before committing the transaction a
second time, the Recovery Manager must redo the modification made by the first transaction,
since this modification is not reflected in the non-volatile (and now only existing) copy of the
page. Or, if Stan crashed after forwarding to the home node both the modified page and log
records describing the uncommitted modification, the Recovery Manager must undo the
uncommitted modification that appears on the modified page.

4.5. Summary

One of the trickiest functions to provide when designing a TDSM system is recovery. The
nature of data sharing systems requires some form of concurrency control and buffer
management; thus these functions have appeared in the literature more frequently than recovery.
Traditional approaches to recovery in transaction systems do not apply directly to TDSM because
a single recoverable object may involve many nodes instead of just one:

e one or more nodes updating the object

e one or more nodes performing recovery actions on the object
e one or more nodes holding pieces of different versions of the object
* one or more nodes holding log records describing past updates to the object

The key design decision underlying the architecture is the concept of the home node. This
decision simplifies the architecture by providing a simple, direct method for implementing
transactions:

e Serializability is achieved via distributed locks. As soon as a server is initialized it

knows which node to contact to obtain a distributed lock on behalf of a transaction.

* Permanence is achieved via non-volatile storage of the recoverable segment on the
home node, and stable storage of log records on the home node. A server always
knows where to obtain the most recent copy of a recoverable virtual memory page,
and where to log the changes made by a transaction.

o Failure atomicity is achieved via stable storage of log records on the home node. The
Recovery Manager on the home node has no difficulty finding all of the log records
for the recoverable segment.

The home node concept is not necessarily the best choice for a TDSM architecture, but it meets
the goal of feasibility and utility. Caching increases the autonomy of using nodes by allowing the
bulk of the work within a transaction to proceed with no intervention by the home node until
transaction commit. Caching also reduces the load on the home node; the number of messages
increases linearly with the number of transactions, rather than linearly with the number of
operations.

The primary disadvantage of the home node concept is its negative impact on availability.
Failure of the home node prevents transactions on all using nodes from committing. Chapter 7
discusses other architectures that offer solutions to this problem.

Chapter 5

Implementation

The transactional distributed shared memory (TDSM) architecture outlined in Chapter 4 was
implemented by extending the existing Camelot 1.0 (release 83) distributed transaction facility,
which runs on the Mach operating system. Both Camelot and Mach were introduced in Chapter
3. This chapter parallels Chapter 4 by presenting the TDSM implementation in terms of seven
management functions: log management, transaction management, recovery management, buffer
management, CONCUrrency management, communication management, and configuration
management. Figure 5-1 highlights the additions to the Camelot architecture for TDSM. (The
interfaces that were added or changed in Camelot to support TDSM are listed in Appendix B.)
Some of the material in this chapter is derived from a comparison of the original Camelot source
code to the Camelot/TDSM source code using the UNIX diff utility.

5.1. Concurrency Management

In the original Camelot system, concurrency control is provided by the Camelot library
which is linked with every Camelot server. To obtain a lock via the Camelot library, the server
programmer might use this statement: LOCK (LOCK_NAME (REC (data)), lockSpace,
LOCK_MODE_WRITE). This statement requests a write lock on an item in recoverable storage
named data. (The name of the lock is the address of data in recoverable storage.) Usually,
lockSpace is LOCK_SPACE_PRIMARY. However, a package supporting an abstract data type
may use other lock name spaces to avoid conflicting with other uses of the same lock names.

For Camelot/TDSM, responsibility for concurrency control is divided between the Camelot
library in each server, and the home node Lock Manager. The Lock Manager coordinates the use
of those lock spaces pre-assigned to the home node. On startup, the Lock Manager identifies
itself to the Disk Manager via a DH_Initialize remote procedure call (RPC). Later, servers
may obtain a port for the Lock Manager from the Disk Manager via a DS_GetHPort RPC. In
response to a server’s lock request on behalf of a given transaction, the Lock Manager may
decide to grant the lock to the server for the duration of the requesting transaction. (The server
will contact the Manager when the transaction completes.) Or, to eliminate future requests, the
Lock Manager may allow the server to cache the lock, giving it permission for an unspecified
period of time to process lock requests by subsequent transactions. In this latter case, the Lock
Manager uses a call-back to the server to request the retumn of the cach~d lock when another
server needs it.

65

Recoverable
nguoo
Camelot
System
/
| Mach Kemel]
Using Node
liorary [orry |
Recoverable
Data Server Data Server

The Lock Manager, Remote Execution Manager, and External Memory Manager (XMM) are
additions to Camelot to support TDSM. Compare to Figure 3-1.

Figure 5-1: Camelot/TDSM architecture

The Camelot library in each server is responsible for coordinating the use of locks by
transactions running in the server. In response to a transaction’s lock request, the library must
decide whether it may grant the request by itself (when the lock is in a lock space local to the
server, or when the lock is cached), or if it must contact the Lock Manager. The library must also
respond to a Lock Manager request to retum a cached lock.

IMPLEMENTATION 67

5.1.1. Programmer interface changes

In the original Camelot system, all lock name spaces are managed solely by the Camelot
library. For Camelot/TDSM, some lock name spaces are still managed solely by the library,
while others are managed collectively by the library and the Lock Manager. If lockSpace is
LOCK_SPACE_PRIMARY, or any value less than LOCK_SPACE_SHARED, the lock is local to
the server, and the library will not contact the Lock Manager. If lockSpace is
LOCK_SPACE_SHARED, the library will use a lock space that is shared with exactly those
servers that share the same recoverable segment. If lockSpace is a value greater than
LOCK_SPACE_SHARED, the lock space will be shared with servers that specify the same value
for LockSpace. Shared lock spaces are mediated by the Lock Manager.

The division of lock name spaces into local and shared spaces is unfortunate, because it
forces programmers to change their code if they wish transactions using a shared RVM segment
to be serializable. (Suppose two transactions in different servers wish to update the same object
in a RVM segment that they share. If each transaction uses its own local lock space, both
transactions can simultaneously hold a write lock on the object. For correctness, the transactions
must use a shared lock space, so that only one of them a: a time can hold the write lock.)
However, because a lock in a shared lock space uses more resources than a lock in a local lock
space, the division of lock name spaces allows programmers to avoid the more expensive shared
locks when accessing objects that are not shared. (A shared lock is more expensive because an
RPC is needed to cache the lock initially, and the cached lock uses a small amount of virtual
memory even when it is not held by a transaction.)

5.1.2. Cache control

Several servers may cache a lock in read mode, but only one may cache a lock in write
mode. However, a transaction may involve multiple servers concurrently, making it possible for
a given transaction to hold a write-mode lock in more than one server. (However, at most one
server will be caching the lock in this case.) When a lock is held by multiple servers, the Lock
Manager consults an application-specified lock policy (set via the Set LockPolicy procedure
call to the lock library) to decide which one of the servers (if any) is permitted to cache the lock.

The Lock Manager consults a lock policy to determine which server is permitted to cache a
lock. Since a given transaction may include several servers, only one of which may cache the
lock in write mode, the Lock Manager may transfer caching privileges from one server to another
while the lock is held in both servers. Four policies are provided:

“A lock is granted to a transaction, which may involve multiple threads in one or several servers. Since these threads
are part of the same transaction, they may hold a write-mode lock simultaneously, which may violate serializability
unless each thread runs as a nested subtransaction. The write-mode lock is held by only one of these subtransactions at
atime. But in the Camelot system, when a subtransaction commits, its locks are not released, but assigned to its parent
(“*anti-inheritance’’). Thus, the parent may hold the write-mode lock at the same time as each one of its children.

e never: the lock is never cached by the server. All requests are forwarded to the
Lock Manager.

e release: if a server requests a lock cached by another server, neither server is
allowed to cache the lock. But if a server requests a lock when the lock is not held
by any other server, it is permitted to cache the lock.

o first: if a server requests a lock cached by another server, the other server is
permitted to retain its cached lock. That is, the first server to cache a lock will retain
the cached lock (until it is requested by a different transaction family in another
server, or until another server requests the lock and specifies a policy of last).

e last: if a server requests a lock cached by another server, the new server will cache
the lock, and the server which cached the lock originally will no longer have it
cached. That is, the last server to request a lock will retain the cached lock.

The latter three policies (release, first, and last) are equivalent for read-mode locks, and for
write-mode locks when the requesting transaction is not in the same family as the transaction
holding the lock. (In the latter case, there is a conflict, and the requesting transaction must wait
until the holder releases the lock. When the holding transaction releases the lock, it will be
uncached by the server, and the requesting transaction will be granted the lock.)

Each lock request that the server library makes to the Lock Manager includes a lock policy,
so that each lock may have a different policy, and the policy may vary over time. If two servers
specify conflicting lock policies, the Lock Manager should resolve the conflict in favor of the
server specifying the policy with the highest priority (never has the lowest priority, and last has
the highest priority). Presently, this scheme is not fully implemented.

‘The server programmer may also specify how many locks the library may cache per lock
space. This limit is evaluated lazily; that is, the server library consults the limit only when a
transaction unlocks a lock. If the limit has been exceeded, the library will uncache the lock as it
is unlocked. This scheme is incorrect because it fails to uncache locks that have been unused for
long time periods. However, it was simpler to implement than a full LRU for the lock cache, and
has no adverse effect on the performance results reported in Chapter 6.

§.1.3. Failures

To gain speed, most of the state transitions made by the distributed lock manager are
recorded only in volatile storage. Parts of this storage are lost when a server or Lock Manager
crashes. The Lock Manager can restore its volatile state by contacting each of the data servers
known to have obtained locks. Therefore, when the Lock Manager first encounters a server, it
records the server’s identifier in recoverable storage.

As mentioned previously, the Lock Manager uses a call-back to request a server to retumn a
cached lock. This call will fail when the server or the processor where it resides has crashed, or if
there is a communications failure (perhaps a network partition). In the case of a crash, all
transactions in the crashed server that have not yet reached the prepared state will abort, so it is

IMPLEMENTATION 69

safe for the Lock Manager to grant a cached lock to a different server as long as the lock is not
held by a prepared transaction. If the lock is held by a prepared transaction, the Lock Manager
must wait for the transaction to commit or abort before granting the lock to another server. Thus,
if the Lock Manager crashes, it should scan the log, where prepared transactions record the locks
they hold, to determine which locks are held by prepared transactions. (This log scan is not
presently implemented.)

In the case of a network partition, it would be unsafe for the Lock Manager to grant a cached
lock to a different server, because two transactions could then be holding the lock in conflicting
modes, and serializability would be violated. In the present implementation, the Lock Manager
treats communication failures as crashes, and thus may allow serializability to be violated if
failure is due to0 a network partition. This violation of serializability could be prevented by
requiring the Lock Manager to retry failed requests until it succeeds in contacting the server
caching the lock, or by allowing it to abort transactions in the uncommunicative server.

5.1.4. Lock Manager/library interface

Camelot runs with the support of the Mach operating system, and uses Mach messages to
perform RPCs. Most communication between application and server, or between server and
server, uses a Camelot variant of the Mach RPC called a SERVER_CALL. The SERVER_CALL
embeds additional history information in the RPC message in order to track the spread of
transactions from node to node, and causes the message recipient to join the sender’s transaction
and to participate in the two-phase commit protocol at the end of the transaction. To avoid the
overhead of distributed two-phase commit, and the embedded history information, the distributed
lock manager communicates via the simpler Mach RPC rather than the Camelot
SERVER_CALL.

The communication interface between the Lock Manager and the server library is listed in
Appendix B. For example, the library may attempt to obtain a write-mode lock on behalf of
transaction tid via the call: HS_Lock(hsPort,lockName, LOCK_MODE_WRITE,
LOCK_CACHE_FIRST,tid, sPort, &cached). The name of the lock (including the lock
name space) is contained in variable 1ockName. The library is selecting a lock policy of first.
The call is directed to the Lock Manager identified by the Mach port hsPort; the library is
providing the server’s port for call-backs in the variable sPort. The Lock Manager will return a
value of t rue in cached if the server library is permitted to cache the lock.

70 CHAPTER §

5.1.5. Data structures

The cache status indicates the mode (read, write, or none) in which a server has cached a
lock. When a server has a write-mode lock cached, it does not communicate at all with the Lock
Manager to grant a lock. When a server has a read-mode lock cached, it may grant read requests
on its own, but must forward write requests to the Lock Manager. When a server does not have
the lock cached, it must forward all requests to the Lock Manager. It is possible for a server to
have a lock cached in read mode, while several transactions running in the server hold the lock in
write mode.

Both the Lock Manager process and the server library use hash tables of lock records,
indexed by lock name, to keep track of active locks. (A lock is active if it is cached by a server or
held by a transaction.) In the server library, each lock record indicates the cache status, and
includes a list of transactions holding the lock, and a list of transactions waiting for the lock. In
the Lock Manager, each lock record includes a list of servers caching the lock (and the cache
status for each server), a list of server/Aransaction pairs holding the lock, and a list of
server/transaction pairs waiting for the lock.

The Lock Manager also maintains a recoverable storage hash table of server identifiers.
When the server library makes a request to the Lock Manager, it includes a special port known as
the server port, which uniquely identifies the server. When the Lock Manager receives a request
that contains a server port it has not previously seen, the Lock Manager make a
DH_PortToServerId RPC to the Disk Manager to translate the port into a unique identifier
known as the server id. The Lock Manager records this server id in recoverable storage. If the
Lock Manager crashes and recovers, it scans the recoverable server id table. It uses a
DH_PortToServerId RPC to the Disk Manager to translate each server id into the current
corresponding server port, and contacts each server to obtain the data the Lock Manager needs to
reconstruct the volatile lock hash table.

5.2. Buffer Management

In the original Camelot system, buffer management is provided by the Disk Manager in
cooperation with the Mach kemel. The Disk Manager acts as a Mach extemal pager, processing
page-in and page-out requests made by the kernel. It coondinates paging /O with log I/O to
enforce the write-ahead log invariani. The Disk Manager also tracks active servers and active
recoverable virtual memory segments.

For Camelot/TDSM, several new components enter the picture. The kernels on several
using nodes may make paging requests to the home node. On the home node, the External
Memory Manager acts as an intermediary between the Disk Manager and these kemels to
maintain the coherency of each RVM segment across nodes. The Remote Execution Manager on
each using node acts on behalf of the home node Disk Manager to startup and terminate servers,
and to forward buffered log records to the home node.

IMPLEMENTATION n

This section first presents an overview of each component, describing the external interfaces
and internal data structures. Next, the algorithms used to implement buffer management
functions are outlined.

5.2.1. External Memory Manager

Camelot was designed to use the Mach external pager interface to provide recoverable
virtual memory. When a server reads or writes a page of a recoverable segment, the Mach kemel
on the server’s node may make page-in or page-out requests to the Disk Manager on the
segment’s home node. For Camelot/TDSM, a new component called the Extemnal Memory
Manager is interposed between the Disk Manager and the Mach kemel. The task of the External
Memory Manager to take requests from multiple kemels and make them appear to the Disk
Manager as if there were but a single kemel making the requests.

The External Memory Manager, then, has three types of interfaces. To each Mach kernel, it
acts as an external pager. To the external pager built-in to the Disk Manager, it acts as a kemel.
And to allow the Disk Manager to connect the appropriate kemels to the appropriate RVM
segment, it has an interface that allows naging objects to be created and hooked together.

The External Memory Manager allows muitiple servers to have a read-only copy of a page.
But when a server attempts to write a page, all other copies of the page are invalidated. If a dirty
page is requested by anothicr kemel, the Extenal Memory Manager tells the writer to send back
the dirty page, and turn off write permission. The net effect of this algorithm is to provide the
illusion of several threads sharing an address space, when the threads exist on different machines
that do not physically share memory.

In its first incamation, the Extermal Memory Manager was a separate task which
communicated with the Disk Manager via Mach messages. For performance reasons, the
External Memory Manager was changed to be a library within the Disk Manager.

5.2.2. Disk Manager

The Disk Manager has interfaces to practically every other component in the Camelot
system; an understanding of the Disk Manager’s operation is tantamount to understanding
Camelot. The interfaces to the Disk Manager are presented as data structures and algorithms are
introduced.

72 CHAPTER 5

§.2.2.1. Server record

The server record s_record_t contains everything the Disk Manager needs to know
about a particular Camelot server. (Interestingly, the server record does not hold the server’s
name or executable command line; the Disk Manager makes a ND_GetRestartAdvice RPC
to the Node Server to obtain this information when needed.) In the original Camelot system, a
RVM segment could not be shared between servers, so the server record also contains everything
the Disk Manager needs to know about the server’s RVM segment. For Camelot/TDSM, a given
RVM segment may be shared by more than one server, so a separate segment record (described in
the next subsubsection) contains information for a RVM segment. Thus, the information in the
server record about the server’'s RVM segment is replaced with a pointer to the appropriate
segment record, and a link field that is used to chain together all servers using a given RVM
segment (see Figure 5-2).

Camelot uses the UNIX fork operation to start data servers. For 2 server running on the
home node, the server is a child of the Disk Manager, and the Disk Manager stores the child’s
UNIX process id in the server record. When a child exits, the Disk Manager uses a hash table on
UNIX process id to locate the correct server record. With Camelot/TDSM, a server may run on a
remote node; in this case, the server is a child of the Remote Execution Manager on that node.
For remote servers, the Disk Manager allocates a Mach port dxPort which is stored in the
server record, and communicated to the Remote Execution Manager. When a server on a remote
node exits, the Remote Execution Manager makes a DX_ServerDied RPC to the dxPort to
notity the home node Disk Manager. The Disk Manager uses a hash table on dxPort to locate
the correct server record. Thus, the dxPort plays the same role for remote servers that the
UNIX process id plays for local servers. A'<o in the server record, the Disk Manager stores
nodeld, the Intemet address of the remote node, and xPort, the Mach port on which the
Remote Execution Manag . - accepts requests. (The Disk Manager obtains the nodeId from the
Node Server, and presents it to the Mach netmsgserver in order to obtain xPort.)

5.2.2.2. Segment record

The segment record seg_record_t was added for Camelot/TDSM to track the state of a
RVM segment. It contains several fields (recoveryLock, preparedTrans, dirty,
pagingPort, requestPort, and segDesc) that were originally in the server record. The
segDesc is a segment descriptor cam_segment _desc which contains the size of the segment
and the segment id. (Since a segment may be shared by several servers, the server id that was
originally in the segment descriptor was removed.) The Disk Manager uses a hash table on the
segment id within segDesc to locate segment records. The pagingPort is the Mach port on
which the Disk Manager receives paging requests from the External Memory Manager; when the
Disk Manager receives a request, it uses a hash table on pagingPort to locate the proper
segmeni rxcord. The requestPort is the Mach port that the Disk Manager uses to make
paging requests to the External Memory Manager. The recoveryLock is used to ensure that

IMPLEMENTATION 73

segment server
hash hash
table table
[—Y
segment 3 server8 [*
server 4 nil
server 7 il
]

The Disk Manager finds segment 3 by using a hash table. A linked list starting from the segment
record shows that servers 8, 4, and 7 are using segment 3. On the other side, the Disk Manager
finds server 4 by using a hash table. A pointer from the server record shows that server 4 is using

segment 3. ‘
Figure 5-2: Segment and server records
recovery of a server is complete before another attempt is made to restart it. The Disk Manager
uses the preparedTrans and dirty fields to notify the Node Server of the RVM's state with
respect to recovery.

The segment record contains one field that was not present in the original Camelot server
record. The serverPtr field points to a list of servers using the RVM segment (see Figure
5-2).

52.23. Grid

The most complicated data structure in the Disk Manager is the grid which keeps track of
log records. The Disk Manager may wish to locate all of the log reco::'s for a particular
transaction, or all of the log records which reference a particular page. Grid records form a
two-dimensional data structure, with a hash table on page ids as one axis, and a hash table on
transaction ids as the other axis. In addition to a log sequence number that can be given to the
Log Manager to quickly find a log record, each grid record cuatains a link for each of the two
axes (page and transaction), a pointer to the page record, and a pointer to the transaction record.

Given a page id, the Disk Manager uses the page hash table to find the page record for the

74 CHAPTER §

page. The Disk Manager may then follow the appropriate grid record links to locate all the log
records w..ch reference the page. Similarly, given a transaction id, the Disk Manager uses the
transaction hash table to find the transaction record, and may follow the appropriate links to
locate log records.

In the original Camelot system, the page record includes a pointer to a server record, since
the original Camelot stores information about a RVM segment in the server record. For
Camelot/TDSM, the page record points instead to the segment record for the RVM segment to
which the page belongs.

5.2.2.4. Internal concurrency control

For reasons of programming ease and performance, the Disk Manager was originally
implemented as a multi-threaded program. To synchronize access to data structures, the Disk
Manager uses latches. The latches are arranged in a hierarchy. If a thread which acquires
multiple latches always acquires the latches in the order defined by the hierarchy, deadlocks will
not occur.

In the original hierarchy, the receveryLock is the highest priority, with the
serverLatch (guarding access to a server record) immediately below. In Camelot/TDSM,
information about RVM segments (including recoveryLock) which was formerly in the
server record is moved to a separate segment record data structure which is guarded by a new
latch, segLatch. Since a given RVM segment may be used by several servers, the segLatch
has a priority lower than recoveryLock but higher than serverLatch. Thus, any routine
which wishes to access the segment record for the segment in use by a given server must latch the
segment record before latching the server record.

5.2.3. Remote Execution Manager

The Remote Execution Manager was added for Camelot/TDSM to perform three functions
on each using node at the request of the home node Disk Manager. (The Remote Execution
Manager also has interfaces to the Communication Manager discussed later.) On request, the
Remote Execution Manager will start a server, kill a server, or pick up the shared memory queue
of a server. On srartup, the Remote Execution Manager registers itself with the netmsgserver so
that Disk Managers may use netname_look_up to find the Remote Execution Manager.

The shared memory queue (not to be confused with distributed shared RVM) is a virtual
memory buffer for log records. On a given using node, each server has a distinct shared memory
queue, physically shared with the Remote Execution Manager. To the Remote Execution
Manager, a shared memory queue is an uninterpreted array of bytes, with a head index and a tail
index. As the server produces data describing requests, it stores it in the queue and advances the
tail index. If the tail index reaches the head index, the queue is full, and the server must make an

IMPLEMENTATION 75

RPC to the home node Disk Manager for subsequent requests. The Remote Execution Manager
consumes the data on behalf of the home node Disk Manager. It copies the data between the
head and tail indices into a message that it sends to the Disk Manager, and updates the head
index.

The only other data structure used by the Remote Execution Manager is its own version of
the server record that it uses to keep track of its children. The server record includes the child’s
UNIX process id, the dxPort given by the Disk Manager when it ask for the server to be started,
and a pointer to the server’s shared memory queue. The Remote Execution Manager uses a hash
table on dxPort to locate the correct server record when it receives a request from the Disk
Manager. It uses a hash table on UNIX process id to locate the correct server record when a child
exits.

5.2.4. Algorithms

52.4.1. Forward Processing

Camelot offers two forms of transaction logging. With old-value/new-value logging,
Camelot records both a before-image and an after-image of the region of RVM being modified.
The before-image is used to restore the old value of the region if the transaction aborts. The
after-image is used to restore the new value of the region if needed during recovery. With
new-value logging, only the after-image is recorded in the log. Camelot must search the log to
find a previous modification to the region in order to restore the old value after an abort.

When a old-value/new-value transaction wishes to modify a page, the page is first pinned
(by making a request to the Disk Manager), the server makes the change to the page, and the Dis..
Manager unpins the page when it receives the log record. For each page, the Disk Manager
maintains a pin count, and a list of log records describing the modifications made to the page
since it was last written to disk. Before writing a page to disk, the Disk Manager forces the log
records to stable storage (write-ahead logging) and waits for the pin count to become zero.

When a new-value-only transaction wishes to modify a page, the page is pinned and
modified, and the log record is sent to the Disk Manager. Unlike an old-value/new-value
transaction, however, the page remains pinned until the end of the transaction.

For performance, the pin and log requests from the server to the Disk Manager are stored in
a shared memory queue. The Disk Manager checks the shared memory queue at appropriate
times to enforce write-ahead logging. The server uses RPCs to make pin and log requests when
the queue becomes full.

When a server is on the home node, the shared memory queue is in memory physically
shared with the Disk Manager, and the Disk Manager can check the queue directly. Both the

76 CHAPTER 5§

original Camelot system and Camelot/TDSM do this. For Camelot/TDSM, when a server is on a
different node, the Disk Manager must make a XD_GetShMemQueue RPC to the Remote
Execution Manager on that node to get a copy of the queue. Once the Disk Manager receives the
copy, it uses the same techniques to process the queue as it does for local servers.

Each server has a separate shared memory queue buffer for pin and log requests. For
Camelo/TDSM, when several servers share a given RVM segment, the buffering may cause the
home node Disk Manager to process the pin and log requests from multiple servers in a order
different from that in which they were originally produced. However, the order in which the Disk
Manager processes the requests is still guaranteed to be correct. If two requests refer to regions
on different pages, the order of processing does not matter. If two requests refer to regions on the
same page, the Disk Manager will pick up the first request from the first server’s shared memory
queue before it allows the page to migrate to the second server. Thus, the two requests will be
processed in the proper order.

For Camelot/TDSM, when the Disk Manager stores a record in the grid, it remembers only
the RVM segment to which the record belongs, and it forgets which server is responsible for the
record. This means that, if a server malfunctions and does not follow the pin-update-log protocol,
the Disk Manager does not know which server is malfunctioning, and it will kill all of the servers
using the RVM segment. This may seem like an unfair penalty for the ‘‘innocent’’ servers to
pay, but it simplifies server debugging in that the problems caused by a malfunctioning server are
immediately visible, instead of being delayed by the possibility of data corruption.

5.2.4.2. Coherency control

For Camelot/TDSM, the External Memory Manager is able to manage many RVM segments
simultaneously. Each RVM segment has a unique pagingPort that the External Memory
Manager receives paging requests on. When the External Memory Manager receives requests
such as memory_object_data_write, it passes the requests on to the Disk Manager’s
external pager routines. When the Disk Manager’s extemal pager wishes to make a
memory object request to the kemel, it actually makes the request to the External Memory
Manager, which will forward the request to the appropriate kemels.

To ensure the coherency of a given RVM segment, the External Memory Manager may
migrate a page from one node to another. To do this, the External Memory Manager makes a
memory_object_lock_request to the first kemel. This kemel responds with a
memory object data_write containing the page, which the Extemal Memory Manager
passes on to the Disk Manager's external pager. The Extemal Memory Manager does not keep a
copy of the page it just received, so it makes amemory_object_data_request to the Disk
Manager’s extemnal pager.5 The Disk Manager responds with a memory object_

5The External Memory Manager is a library linked to the Disk Manager, so this request for the page that the External
Memory Manager just handed to the Disk Manager is not very expensive. The External Memory Manager does not
retain pages because it wishes to avoid the overhead of managing a cache of pages.

IMPLEMENTATION 77

data_provided containing the page, and the External Memory Manager can then do the same
memory_object_data_provided to give the page to the second kemel.

5.2.4.3. Segment activation

When a RVM segment is first activated, the Disk Manager allocates a Mach port
pagingPort, and creates a thread to await external pager requests on that port.

For Camelot/TDSM, the Disk Manager asks the Extenal Memory Manager to process the
external pager requests, and to call the Disk Manager’s external pager routines as needed. As
each server using the RVM segment is started, the Disk Manager adds the server to its list of
servers using the segment, and delivers the pagingPort to the server via DS_Initialize.
The server vm_maps its recoverable segment, specifying via the pagingPort that the External
Memory Manager is acting as an external pager.

5.2.4.4. Paging

The External Memory Manager presents the image of a single client kernel to the Disk
Manager’s extemal pager routines; thus, the original Camelot extemal pager algorithm needed
few alterations for use with Camelot/TDSM.

One set of alterations result from moving the Disk Manager’s data for a RVM segment from
the server record data structure to a separate segment record data structure. Because of this
change, the Disk Manager's external pager routines must latch the segment record, rather than the
server record, when it looks at the data. If the extemal pager detects an error in a request, it no
longer can kill a single offending server, but it must kill all of the servers using the offending
segment. And on receiving certain requests, such as memory_object_data_write and
memory_object_data_unlock, where the extemal pager must check the shared memory
queue in order to enforce the write-ahead log protocol, the external pager must look at the shared
memory queues of all servers using the given RVM segment.

Some actions of the External Memory Manager differ from the Mach kemel, and these
differences result in additional alterations to the Camelot external pager. Occasionally, because
multiple threads proceed in the Disk Manager at different rates, the Disk Manager could ask for a
page to be flushed from main memory to the external pager after the corresponding RVM
segment has become inactive (i.e., the pagingPort has been destroyed). The Mach kemel
simply ignores the bogus flush request; however, the External Memory Manager complains. To
avoid this error, some additional checks were added to the Disk Manager to prevent it from
making the bogus flush request.

Another difference between the External Memory Manager and the Mach kernel as a client
of the external pager is the handling of offsets into the RVM segment. Each RVM segment has a
size defined via the Node Server; each page in a segment is identified by its offset within the

78 CHAPTER §

segment. (The offset does not have to maich the virtual memory address of the page. The
Camelot library tries to map the RVM segment at a fixed address for each machine architecture;
thus, RVM objects may contain pointers to other RVM objects.) Suppose max is the maximum
possible segment size, and a particular segment is of size size. Then, intemally, Camelot uses
offsets ranging from max -~ size to max - 1, i.e., segment offsets are decreasing values,
starting from the maximum segment size. When the Camelot library within a server uses
vm_map to identify a region of the server’s virtual memory as a Mach paging object backed by
Camelot, it gives the Mach kemel max - size as the initial offset within the paging object.
The kemel then uses the same offsets within the paging object as Camelot uses with the RVM
segment in the messages it sends to and receives from the Camelot external pager. Unfortunately,
the Extenal Memory Manager was not designed to deal with large offsets, and requires paging
object offsets to range from O to size - 1. So the Camelot library and the Camelot extemal
pager were changed to use small paging object offsets for vm_map and the External Memory
Manager, mapping these small paging object offsets to large RVM segment offsets for use
intemnally. (See Figure 5-3.)

The External Memory Manager uses Mach messages to send pages from node to node.
Mach, in turn, directs each message to a remote node to the netmsgserver, which transmits the
message over a TCP connection to its counterpart on the destination node. The destination
netmsgserver extracts the message from the TCP connection, and re-sends it to the correct port on
its local node. The netmsgserver in Mach 2.5 exhibited some problems in handling a large
number of page-size messages, and, until the bug was fixed, occasionally stopped forwarding
messages over the TCP connection.

5.2.4.5. Hot Pages

If the kemel has not issued a memory_object _data_write of a page for a long time,
the Disk Manager determines that the page is hor, and asks the kemel to flush the page.
However, the Disk Manager cannot write the flushed page to disk if the page is pinned. When the
kemnel flushes the page, the Disk Manager holds on to the copy, and maintains a separate pin
count for the copy. Subsequent pin and log requests are not processed, but queued up in patch
records by the Disk Manager. When a transaction commits, the Disk Manager goes through the
queue of patch records and applies (to the Disk Manager’s copy of the page) those patch records
that belong to the committed transaction. Thus, the copy’s