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ABSTRACT

The use of artificial neural networks to provide a method

of detecting and isolating impending failures in an autonomous

underwater vehicle propulsion system has been studied. Two

types of fault diagnostic systems, each capable of detecting

different types of faults, were designed. The first system

addresses the fault identification process by looking at the

raw data available from system sensors. The second design

processes sensor data with a Kalman filter before it is input

to a neural network. The Kalman filter was designed to

identify system parameters that characterize its dynamic

response. These parameters serve as input to the network. This

system is capable of fault detection, isolation, and severity

level determination. pcce-son For
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I. INTRODUCTION

Interest in the development of platforms capable of

performing predetermined missions without the requirement of

an onboard crew or a datalink has grow immensely in the last

few years. The United States Navy in particular has a great

interest in the development autonomous underwater vehicles

(AUV's). Missions for such a vehicle include area search and

survey, sensory package placement and sensory data gathering.

Applications of such a vehicle are not limited to the

military. An autonomous underwater vehicle would serve the

ocean research and exploration community in many ways

(Bellingham, 1992).

The Naval Postgraduate School (NPS) has been involved in

the research and development of this class of vehicle since

1987. Currently a second generation underwater vehicle denoted

NPS AUV II serves as a controls testbed research vehicle for

studies in intelligent control, mission planning, and data

visualization (Healey and Good, 1992). A point of further study

had been the design of an onboard online automatic fault

diagnostic system. This thesis addresses the development of

one part of such a system for assessing the health of the

vehicle's propulsion system. Artificial neural networks and

Kalman parameter estimation filters form the basis of this
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system, which is designed to recognize impending faults and

signal the mission replanner to take corrective action.

Chapter II provides some background information concerning

earlier work in the study of automatic fault diagnostic

systems and also some insight into the reasoning behind

choosing the artificial neural network approach.

Chapter III focuses on the development of the NPS AUV II

propulsion model necessary for the generation of simulated

sensor data, corresponding to simulated fault conditions, to

be used in network training and evaluation.

Chapter IV presents the development of the Kalman

parameter estimation filter and the results of tests

associated with the propulsion model.

The design considerations for two fault diagnostic systems

are contained in Chapter V. The first design uses system

sensor data as the network's input. The second design takes

the sensor data and processes it through a Kalman parameter

estimation filter prior to network processing. It is concluded

that for signals that are primarily static or slowly varying

the first approach may be appropriate where for signals that

are dynamic in nature, the second approach is to be preferred.
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11. BACKGROUND

In this chapter we will introduce the subject of fault

diagnostics based on assessment of system sensory outputs. We

will first review some of the recent previous work in the

subject of system fault diagnostics and will later give some

background on the field of Artificial Neural Networks as it

relates to this thesis.

A. FAULT DIAGNOSTICS

In the context of this work, a fault is viewed as

deviation of a signal from a set of values that correspond to

normal operations of a plant or process. We are not concerned

with the monitoring of rotating machinery, bearings, and other

mechanical equipment that often are monitored in terms of

spectral analysis to detect wear. Here, systems that are under

closed loop control, or more specifically, a maneuvering

underwater vehicle underway, are the subject of study. Faults

such as a bias shift in a sensor, fouling of the vehicle's

speed sensor, increases in the friction loading on a

propulsion shaft, motor overheating, propeller damage, control

fin damage, sonar sensors loss of lock on target, and

calibration factor shifts in gyros are examples of fault

conditions that could lead to problems in mission reliability.

Small signal deviations are not troublesome and can be

tolerated. Other deviations may be indicative of some change

3



in the vehicle's operating condition. These changes may be

slight and may not necessarily require a system shutdown to

occur. It is these later conditions that are interesting

because they admit a reconfiguration of the system control and

continuation of the mission in some degraded way without total

shutdown. In this way AUV reliability can be improved.

Work in the area of system fault detection has been

undertaken by several investigators in the past including

Himmelblau, (1978) and Pau, (1981). These works are primarily

concerned with static signals and proposed the use of

artificial intelligence with redundancy to detect failures in

terms of signals that deviate from 'norms'. In this sense,

signals that deviate from a preset band of values about a

nominal 'normal level' will cause an alarm condition to be

established. Levels beyond these preset limits can be used to

indicate levels of severity of such alarms.

In principle, the detection of faults is first made by

seeking changes in process measurements where signals are

checked for excursions outside preset limits, or for trends,

Trends are recognized as slow drifts of the measurement toward

a limit. Limit exceedance could be gradual having different

levels of severity from mere warnings to alarms to total plant

shutdowns. Where the plants signals are primarily steady,

limit and trending analysis have been sufficient to detect

faults, and, through an appropriate set of rules, to set
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respective alarm levels. It is in the area of dynamic signals

that difficulty arises. These signals, by the nature of the

system dynamics, vary with time over a considerable range. As

an instance, consider the transient startup of an

electromechanical machine. Signals such as voltage and

current, speed and torque will normally vary with time outside

static limits. Trends cannot be assessed. It follows that some

form of dynamic signal analysis must be used to determine if

the operation is normal or not.

Model based dynamic process response has been viewed as

providing information that could be used to gain advanced

warning of impending failures which could be recovered by

reconfiguring the process controller. Such systems have been

proposed and have been the subject of surveys by Willsky

(1976), Isermann (1984), and Gertler (1986). These surveys

indicated the state of the art to include diagnostic testing

for aerospace, industrial plant as well as nuclear plant

applications. Additionally, automotive sensor diagnostics have

been described by de Benito (1990), where the issues of sensor

failures and their isolation for active suspension systems was

the objective. "Faults" such as sensor sticking, sensor

disconnection, measurement, bias, and increased sensor noise

were stated as possib-ilities. Faults such as these are

modeled as a change to the system parameters. It follows that

a system dynamic model in the linear state space form has

parameter matrix coefficients that depend on a particular
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failure hypothesis. For each failure hypothesis, a model,

is constructed with an appropriate set of coefficients. A

Kalman state filter for each model then provides an innovation

(error between measurement and model prediction of that

measurement subject to the particular model used), statistics

of which are properties of the model. Using a statistical

measure based on the innovations for each filter, failure

hypothesis with maximum likelihood is selected at any

particular time. Maximum likelihood methods are well

established and have the advantage that a finite set of state

filters are used (de Benito, 1990).

An alternative method using model based parameter

identification with an expert system rule based decision

process has been outlined in Isermann and Freyermuth, (1991).

This concept was applied to the detection of DC armature motor

winding failures and centrifugal pump performance losses

including cavitational factors. Dietz (1989) and Aylward

(1991), on the other hand, have studied the application of

artificial neural networks directly to the sensor outputs;the

latter, for the purpose of fault detection and classification

during particular maneuvers of an F-15 airplane. rhe

advantages of an artificial neural network based system were

stated to be "...lower development cost, ... the ability to

accommodate noisy input signals .... and real time

processing." Lower cost arose because the experts needed to

write rule based descriptions were not needed.

6



B. NEURAL NZTWORKS

Artificial neural networks are a mathematical model aimed

at representing the organizational structure present in a

biological nervous system. Most would agree that when it comes

to recognizing patterns and quickly attaining solutions to

complex problems, biological systems perform much better than

man made systems. The harnessing of the computational power of

biological systems is one of the driving motivations behind

the study of artificial neural networks.

Following Hebb's 1946 theory of learning, adaptive

systems, adaptive control, adaptive signal processing and,

more recently, artificial neural networks, have emerged.

Neural networks have provided a method of establishing a link

to connect an input with a desired output when a formula or

set of rules does not exist. When a rule based technique is

possible it is often easier and faster both in the development

and implementation to utilize artificial neural networks. A

neural network is not programmed or based on a set of rules,

it is "taught". Simply by presenting a network with

illustrative training examples it can be taught, using an

adaptive algorithm for the adjustment of the synaptic weights,

to discriminate patterns, complete a pattern, or perform some

other task. Many papers have been written on neural networks

and particularly their use for pattern recognition, but few

have been related to the problems of fault diagnostics.

In particular, this thesis views system fault diagnostics

as a pattern recognition problem either in terms of steady

7



state relations between sensor output signal values, or in

terms of values of system dynamics parameters that have been

identified by some preprocessing algorithm. (Least squares

fits or use of Kalman filters are often suggested for this

purpose). These preprocessed filtered data are then the input

to a backpropagation network that is trained to recognize

combinations of values that correspond to specified fault

conditions. Not only can faults be detected, but isolation and

level of severity may also be assessed.

The fol)wing chapters present the development and results

of a neural network based fault diagnostic system for the

propulsion system of the NPS AUV II.

8



III. PROPULSION SYSTEM

A. INTRODUCTION

The focus of this chapter is to develop an analytical

model of the propulsion system of the NPS AUV II. Having a

realistic model of the propulsion system allows for an

investigation of the effects of key failures which can be

simulated by the model. The fault diagnostic system may then

be tested on data generated by the model as a preliminary to

installation in a real vehicle.

B. OUTLINE OF THE PROPULSION SYSTEM

The propulsion system of the NPS AUV II consists of two 4

inch propellers each driven by a separate 24 volt electric

motor as shown in Figure 3.1. The motors drive the two

independent counter rotating propeller shafts. Additional

propulsion system hardware consists of a shaft speed sensor on

each propeller shaft (rpm), a motor controller which regulates

the voltage supplied to each motor, a paddle wheel sensor to

measure vehicle speed (ft/sec), and a speed controller. The

controller accepts inputs from the paddle wheel speed sensor,

the rudder and plane commands, and the commanded vehicle speed

from the mission planner, to send the commanded rpm signal to

the motor controllers.
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Figure 3.1 AUV propulsion system diagram
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The speed of the propellers is controlled by the motor

controllers operating on the error between the measured shaft

rpm from the shaft speed sensor and the commanded shaft rpm

received from the speed controller regulating the voltage

supplied to the propulsion motors between 0 and 24 volts.

The propulsion system is governed by the Surge Equation of

Motion. Using standard notation for vehicle maneuvering(Lewis,

1988) and simplifying the surge equation with the following

assumptions, provides a basic starting point.

1. The vehicle is in straight line motion J, r and v = 0.

2. The vehicle is in level flight 0, 0, p, q and w = 0

The resulting simplified equation is as follows:

(m-X,) zi = XresU UI + Xprop,,n + u n U 1 + rb + rs)

The NPS AUI II is presently operated with the deflection

of the bow rudder equal in magnitude but opposite in direction

to the stern rudder and likewise for the dive planes.

Therefore:

arb = - s

and

ab = - 8.

The rudder control surfaces are identical in size and

shape to the dive plane control surfaces therefore:

11



xarbax8  = x8as b = X686,

Dividing through by the inertia term and using the above

rudder and plane relations yields:

_ Xres ulul + XPr nini + 2 Xb uiu(82 + 81)
(m-Xa) (m-xu) (m - Xd)

A simplified nonlinear equation of motion used for the

propulsion system follows:

a = aUlUI + PnjnI + yuJu16 2

This form of the equation is linear in parameters a, # and 7

while the state of the system and the inputs are quadratic.

Where:

u is the state of the system (surge (ft/sec))

n is an input to the system (rpm)

82- (8.2+ arT) is an input to the system (radians of
plane or rudder deflection)

a is the longitudinal body drag coefficient

P is the longitudinal propulsion thrust coefficient

- is the longitudinal rudder and plane drag coefficient

The values of a, ( and y were first determined

analytically by Warner, (1991), based on geometric scaling of

the SDV to the AUV II. The values were further refined using

Kalman filters designed for parameter estimation by Bahrke,

(1992). It was shown that no single unique set of a, fl and 7
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can characterize normal operation of an AUV although under

normal maneuvering conditions they should be within a band. It

is the deviation from that band that is suggested as a fault

diagnostic feature.

C. PROPULSION MOTOR MODEL

In addition to a model for the surge motion of the

vehicle, a model of the propulsion system and its controller

was developed. This simulator had the purpcse of generating a

set of data that could be used to simulate system failures of

various kinds prior to design of the detection system.

1. General

The equations of motion were derived by considering a

simplified electromechanical system shown in Figure 3.2. The

load torques applied to the motor included the inertias of the

motor and propeller, the viscous friction of the

motor/propeller shaft and the hydrodynamic loading of the

propeller. In this model electrical properties are assumed to

be linear.

2. Derivation of the Model Equations

The two basic laws required in this development to

convert electrical power to mechanical and the reverse are the

motor and generator laws (Coulomb, Faraday, and Lenz):

motor law TM KTi

generator law e = KbcAM

13
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Figure 3.2 Simplified electromechanical system
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Referring to Figure 3.2, the state equation for the

electrical circuit is determined by using Kirchoff's voltage

law around the loop. The equation is first order in the motor

angular velocity w.

L di + Ri = V- Kbc,)
dt

Since the electrical time constant is much smaller than the

mechanical time constant a simplifying assumption is made and

armature current is as follows:

(V-Kbwm)

R

The motor and propeller equations are as follows:

Motor JTM;M + bMwM + TL = TM

Rrpe e TL = Jpcp + bp(p +Td

Now combining the motor and propeller equations, the result

is:

Tr = (JM +JR) 6 + (bm + bp)(m + Td

Combining this equation with the motor law and the equation

for armature current:

KT(V -KB8) IR = Jri + bN +Td

Here J is the polar moment of inertia of the entire rotating

assembly and b is the total linear damping coefficient due to

the motor bearings and the propeller shaft seal friction.

15



Solving for i:

1/j KT (~~~ =iJ[K V KbW) - Td - bw]
R

The propulsion drive motors are Pittman model 14202

D.C. servomotors. The manufacturer's data used in developing

the propulsion model is shown in Appendix A. The armature

inertia load of the motor was taken directly from this data.

The polar mass moment of inertia of the propellers was

calculated by dividing each blade into nine rectangular

elements. The inertia from each was calculated and summed to

get the total inertia of all four blades.

3. Propeller Hydrodynamic Model

The load torque due to the propeller (Td) is a

function of the water density, propeller rpm (n), vehicle

surge velocity (u), propeller diameter (D) and the torque

coefficient (Kq). The equation is as follows:

Td = pIlnnDD5 Kq

The torque coefficient, under steady flow conditions

is usually assumed to be a function of propeller rpm,

propeller diameter, vehicle surge velocity and the wake

fraction (w).

Kq 1C2u(1 -w)Kq = C1 - C2 W
nD

CI and C2 are constants which are usually obtained from

16



experimental data. Typical values for C1 are 0.053(Lewis,1988)

and 0.04(Dand and Every,1983). Values for C2 range from

0.032 (Lewis, 1988) to 0.025(Dand and Every,1983). Average

values were used in this case with a C1 equal to 0.0465 and C2

equal to 0.0285.

Normally the wake fraction is a function of the ratio

of vehicle speed to wake velocity. In order to simplify the

model the wake fraction was taken as a constant value of 0.1.

4. Putting the Model Together

The speed controller and the rpm controller used in

the model are exactly as is used onboard the NPS AUV II. This

"C" language code was translated to MATLAB and used together

with the previously developed motor, propeller and vehicle

dynamics. This provides a computer simulation of the

longitudinal motion of the NPS AUV II through which data has

been generated for use in the fault diagnostics systems

17



IV. KALMAN FILTER FOR FAULT DIAGNOSING

A. INTRODUCTION

One method of detecting faults in a system is to detect

changes of the system's parameters. In order to detect changes

of a system's parameters we must first be able to identify

them. Kalman filters have been successfully used in many

applications (Gelb,1988) and in the identification of the NPS

AUV II's parameters,Bahrke (1992).

B. PARAMETER IDENTIFICATION THROUGH KALMAN FILTERING

The discrete time Kalman filter equations from Gelb (1988)

are stated below:

The Filter State Equations

R(k+1Ik) = & (kIk) + r, u(k)

9(k+llk) = C2(k+l1k)

2(k+llk+l) = k(k+llk) + G(k+l) [y(k+l) - 9(k+llk)]

The Gain Equations

P(k+l k) = 0DP(klk)OT + F2 wrT

G(k+l) = P(k+l1k) CT[CP(k+I k) CT + V]-1

P(k+l1k+l) = [I - G(k+l)C] P(k+l1k)

18



To implement these equations the following is required:

1. State space model ($, the dynamics matrix, r1 input
gain matrix)

2. Plant noise covariance (r2)
3. Measurement noise covariance (V)
4. Initial state estimate (*(0))
5. Initial estimation error covariance (P(O))
6. Weighing matrix (W)

1. State Filter

The form of these filter equations may be modified and

have been arranged for state estimation first, followed by

rearrangement for parameter estimation. The continuous time

state space model is of the form:

k=Ax + Blu + B2 w
y= Cx + Diu + D2 v

where:

x is the state vector
y is the measurement vector
w is the system random noise
v is the measurement random noise
A is the system dynamics matrix
B1,2 is the system input matrix
C is the system measurement matrix
D1,2 is the measurement input matrix

The continuous system is discretized to the following:

x(k+1) = C0x(k) + F1 u(k) + r 2 w(k)
y(k) = Cx(k) + Diu(k) + D2 v(k)

19



where r2 and V (the covariances of w(k) and v(}Y) ) are assumed

white. Using this form of the state equation the Kalman filter

is an optimal state estimator.

2. Parameter Filter

To use the filter for parameter identification, the

form of the equations must be rearranged. It is assumed that

from experimental data the inputs u(k) are known and the

states of the system x(k) measured. We can rearrange the state

space equation by first expanding the right hand side of the

system equation, for example a two state system is as follows:

{ _k, = al a1x2b, u + w1
k2 1 a21 x1  a 22 x2 b 2 u W2

Each row of the expanded system is now in the fcorm of a

measurement equation for a Kalman Parameter Filter. By taking

each row as an independent measurement equation, the row can

be written with the parameter as the state as follows:

all

= [X2 x 2 u] e 12 } + W,

1

The parameters of a,,, a,2 and b, are treated as states of a

normal Kalman State Filter where the inputs and the measured

states are known and the filter is now an optimal parameter

estimator. This is the basis of the measurement equation for

the Kalman Parameter Filter where each row of the normal

system is now a measurement equation for the filter.

20



The system equation for the parameters is created with

the assumption that the parameters being identified are not

time varying. This causes the parameter dynamics matrix to be

a square matrix of zeros and the input matrix to the parameter

dynamics to be the weighing matrix for the parameter noise Q

estimated on each parameter as follows:

J= AO + BQ

or

S=BQ

e is the vector of parameters being identified, Q is the

parameter noise and B is the parameter noise input matrix

which can be weighed to place more or less noise on any

individual parameter. This is the system equation used for the

Kalman Parameter filter.

C. RESULTS OF PARAMETER IDENTIFICATION

Tests of the Kalman filter identification system proved

very successful. The system was evaluated by simulating a

change of the vehicle's alpha and beta parameters by using the

AUV propulsion model. The model was run with normal parameters

for the first ten seconds of the run. A change to either

parameter was then imposed. The commanded speed of the model

was then changed at ten seconds, twenty seconds, thirty

seconds and forty seconds into the run. Two speed changes were

sufficient to estimate the new parameter value to within two

percent of the new value. Figure 4.1 shows the Kalman filter

21
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results due to a 35 percent change in the alpha parameter. The

alpha parameter was increased to -0.0333 . The Kalman filter

identification provided a value of -0.0332, about a 0.3

percent error.

The beta parameter was also modified during a

simulation. Figure 4.2 shows the results of this test. Beta

was decreased by 35 percent to a value 2.1906e-07. The Kalman

filter identification provided a value of 2.1945e-07, less

than 0.2 percent error.

23



1

Sestimated beta
0.8-

0.6 beta04 ........... f......... ...... .......... ...... . ........ •.... ...... ... ...

0 .2 -
. ... ..

0.2 ... ............ .. .. .......

-02 .. .................. ........... .............. .... ........................ ..... ....... ........... . ....

-0.4 ... .... .. ............... ...... .......
estimated alpha .

-0.60 10 20 30 4'0 50 60

time (seconds)

Figure 4.2 Kalman parameter filter response to 35%
decrease of the beta parameter

24



V. NEURAL NETWORK DESIGN AND IMPLEMENTATION

A. INTRODUCTION

This thesis explores two methods of using neural networks

to detect faults imposed on the AUV propulsion model

previously discussed. Here we will address the design and

training of each. The network used in each case is the

feedforward single hidden layer type also referred to as a

back-propagation network. Each network was designed and

trained using NeuralWare Professional II software. The network

was then encoded as a MATLAB routine and tested on data

created by the auv propulsion simulator.

B. PARAMETER RANGES FOR NORMAL OPERATION

As in most diagnostic systems the problem of failure

detection is concerned with the detection of changes in a

system. In order to detect variations from the normal

operating condition the no-fault operating conditions must be

clearly defined. This thesis explores two options in

implementing a fault diagnostic system. The first of which

uses raw data (ie; motor voltages, current, rpm and speed of

the vehicle) as monitored directly from the vehicle. The

second option is the use of processed data (ie; Kalman filter

parameter identification).

Normal operating parameters for the first alternative were

developed by operating the AUV propulsion model over several
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different speed ranges and speed changes. This resulted in a

very large training set for the normal mode. The sensor ouput

parameters available for monitoring include: propulsion motor

voltage and current, propeller shaft rotation rate, vehicle

speed sensor voltage.

In the second method the two parameters utilized are the

vehicle drag coefficient (a) and the vehicle propulsive

coefficient (f) as identified through the utilization of the

Kalman filter parameter identification scheme on vehicle speed

and propeller shaft speed data. The nominal values for these

parameters were identified by Bahrke (1992) with the

application of a Kalman Parameter identification system.

The range for normal operation was taken as up to twenty

percent increase or decrease in a. Using a normalized a of 0.5

this yields a normal operating range of 0.4 to 0.6. The fl

parameter was normalized to a value of 0.9. The normal

operating range being 0.65 to 1.0. The low end of the

propulsive coefficient being approximately a 25 percent

decrease. The fault map is shown in Figure 5.1

Several failure modes are indicated by this figure. The

loss of one or more control surfaces would be indicated as a

decreased drag condition. Increased drag would indicate some

sort of entaglement, seaweed etc. Decreased propulsion would

be due to propeller damage or a propeller loss.
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C. UNPROCESSED DATA NETWORK

This network was designed to use data unmodified from the

propulsion model. The four inputs to the network are:

propulsion motor voltage and current, rpm sensor voltage and

speed sensor voltage. The propulsion model was run several

times to generate training data or training sets. Each set

consisting of approximately 60 seconds of a simulated auv test

run.

The NPS AUV II operates on a 10 hertz data rate. The

propulsion model was designed to provide data at the same

rate. Every tenth of a second of a simulated run data is

stored into a file which is referred to as a training set. The

auv program was also designed to pair an output vector with

each time step of data. Numerous training sets were created

simulating no fault operation. Each of these training sets was

for the no fault condition but different transients were

present for each. That is one set might start from rest and

accelerate to 1.5 ft/sec, and another would decelerate or

accelerate between different speeds. This was done to ensure

the network would be presented with a training set which would

encompass a large range of the normal operating mode. With

each input vector a corresponding output vector is presented

to the output side of the network in training as shown in

Table 5.1.
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TABLE 5.1 AUV OPERATING MODES AND ASSOCIATED FAULT VECTORS

FOR RAW DATA NEURAL NETWORK

OPERATING MODE FAULT VECTOR

normal yi=(1,0,0,0)

increased seal friction y2=(0,1,0,0)

increased drag y3=(0,0,1,0)

degraded propeller y4=(0,0,0,1)

1. Network Design

The network designed for this case consisted of four

input nodes to accept data from the four inputs created by the

propulsion model. Four output nodes were used corresponding to

the number of desired output fault vectors. The number of

hidden layers was chosen as one for simplicity and because

with only four input nodes and four output nodes a second

hidden layer would not add to the network's discrimination

capability. Figure 5.2 is a depiction of this network.

The hidden layer was first designed with eight hidden

nodes. After training and recall it was discovered that six

hidden nodes would suffice. Reducing the number of hidden

nodes to six significantly diminished the time required for

training the network. The network was also tested with less

than six hidden nodes. With less than six nodes in the hidden
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layer the network was unable to distinguish the different

fault conditions. Using the minimum required number of nodes

in the network also reduces the number calculations required

to process data.

2. Network Training

Each line of a training file is composed of an input

vector and it's corresponding fault vector. These files were

then combined into one file which contained the complete

training set. The network was then trained using randomly

selected entries from the single training file.

Training consists of applying an input vector to the

input layer and the cirresponding output fault vector to the

output layer. The input vector is processed through the

network and an output is computed. This output is compared

with the jutput fault vector from the training set. The back-

propagation learning rule is then used to redistribute the

output error throughout the previous layers. Thi9 process

continues until either the desired number of training

presentations has been reached or the desired output error has

been achieved. Normally training of the network continues

until the rms output error is minimized. The network was

trained using transient response data, following an

acceleration to normal operating speed, produced via the AUV

propulsion model. This data is shown in Figures 5.3 through

5.6. Each of these figures exhibits the transient data which

was input to the network corresponding to each operating mode.
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The compilation of the data contained in these figures formed

the training set of this network.

The effects of training are illustrated by Figures 5.7

through 5.10. Each figure shows the recall of the training set

and the effects of training through a set number of

iterations. In each of these figures, the first 400 data

points represent the recall of the network on the normal

operating condition. The next 400 data points(400-800) are the

recall of the increased seal friction fault. These two

operating conditions are well distinguished even with only

24,000 data presentations to the network in training.

The last two fault conditions are not as easily

distinguished. The increased drag condition occurs in data

from 800-1200, and the propeller is degraded from 1200-1600.

In all four figures operation in the increased drag mode is

first recognized as a degraded propeller fault. Only after 100

data points is the true operating mode determined.

Another point illustrated by these four figures is

that training to 90,000 or even only 60,000 iterations as

compared to 150,000 yields a better overall response even

though the rms output error is not minimized until 150,000

iterations.

In this first set of tests we were interested in fault

detection and fault isolation. Level of fault severity, the

next step in fault diagnosis, would be very difficult to treat
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with a fault diagnosing system as described above. A training

set would be required for each different fault at each level

of severity. The training time would increase greatly and the

ability of the network to distinguish between different fault

types at low levels of severity would undoubtedly decrease

with decreasing severity levels.

D. KALMAN FILTER PROCESSED FAULT DIAGNOSTIC SYSTEM

This system first uses a Kalman filter parameter

identification step to simplify the network operations. Data

from the auv propulsion model is processed by the Kalman

filter to identify alpha (drag coefficient) and beta

(propulsion coefficient). The inputs to the Kalman filter

generated by the propulsion model are vehicle speed,

acceleration, left shaft rpm, right shaft rpm, rudder

deflection and plane deflection.

1. Network Design

The network was designed for fault detection,

isolation and determination of level of severity based upon

the mapping of alpha and beta. Figure 5.1 shown earlier gave

the failure modes and the fault mapping selected based on

normalized values of alpha and beta.

The network itself was composed of an 4 nput layer with

two input nodes and an output layer with a node for each fault

condition as shown in Figure 5.11. The hidden layer as first

designed contained only four nodes. Attempts at training this
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network were unsuccessful. Four nodes in the hidden layer were

insufficient in allowing the network to provide reliable

output of the level of fault severity. The network was capable

of fault detection and identification however. The

identification of the level of fault severity was achieved by

the addition of four more nodes to the hidden layer.

2. Network Training

Training of this network was rudimentary in comparison

to that of the raw data network. A single training file which

contained the mapping of Figure 5.1 was all that was required.

The operating modes and corresponding fault vectors are shown

in Table 5.2.

TABLE 5.2 AUV OPERATING MODES AND ASSOCIATED FAULT VECTORS

FOR KALMAN FILTER PROCESSED DATA NEURAL NETWORK

OPERATING MODE FAULT VECTOR

normal yl

increased drag y2

decreased drag y3

decreased propulsion y4

severe propulsion failure y5
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The network was trained on the mapping of Figure 5.1.

Figure 5.12 displays the decision surface of the network

capable of fault severity determination. This decision surface

was generated by performing a network recall of the training

file containing the fault severity mapping. The mapping height

is then given as the weighted sum of the elements of the

network output vector. The network was trained to a minimum

rms output error prior to recall.

In order to test the fault diagnostic system (Kalman

parameter filter and neural network) faults were imposed in

the propulsion model and the resulting data was processed by

the Kalman filter. Faults were simulated in the model by

changing the values of the alpha and beta parameters during a

simulated run. Each run started with the vehicle operating

under normal conditions at a speed of 0.5 feet per

second(fps). After ten seconds a step increase in speed, to

1.0 fps, was commanded. Ten seconds later the commanded speed

was reduced to 0.5 fps. This cycle of commanded speed changes

was then repeated. Figure 5.13 illustrates the normal

transient response of the AUV propulsion model to this

commanded speed profile. This series of speed changes provided

the stimulus for the Kalman parameter estimation filter.

During a normal run the parameter values in the

propulsion model were set at the normal operating values for

the entire run. To simulate a fault as it might occur during

actual operation, the alpha and beta parameters are set to
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their respective nominal values for the first ten seconds of

the run. The value of one of the parameters is then changed.

Increasing the alpha value to indicate increased drag and

decreasing the beta value to indicate a loss of propulsion.

Figure 5.14 shows the Kalman filter response to a

normal run and Figure 5.15 shows the Kalman filter response to

a 35 percent increase in alpha after ten seconds into the run.

The beta parameter appears to change and then returns to

normal as the Kalman filter determines that alpha is the only

parameter which was altered. This illustrates the motivation

for positioning a twenty percent plus or minus window for the

normal mode of alpha and a similar window for the normal mode

of beta.

In an operational design, the variability of alpha and

beta that would be considered 'normal' variability must be

tied to the parameters of the filter, the particular

characteristics of the test signal used, and the normal

variability in the vehicle operating conditions. It is

recommended that as a result of this effort that the test

signal and filter design parameters be determined and fixed

prior to the design of the failure mapping. Operational test

data will therefore be needed to finalize the specification of

the failure map by understanding the natural variability

expected of the parameter set.

The network's response to the 35 percent increase in

alpha is shown in Figure 5.16. For the first ten seconds the
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network recognizes the normal mode. Between ten and twenty

seconds the transition is made in identifying the fault as an

increase in drag. Figure 5.17 further illustrates the

transition from the normal mode to one of increased drag. At

the beginning of the run, the system is in the normal mode at

the normalized values of beta=0.5 and alpha-0.9. After the

fault is initiated the operating condition traverses to the

increased drag mode.

The fault diagnostic system was also tested under a

propeller loss condition. This was simulated by setting the

beta value of one propeller to zero. The transient response

from the vehicle's sensors is shown in Figure 5.18. The Kalman

parameter identification result is shown in Figure 5.19. The

loss of one propeller resulted in beta dropping by fifty

percent as one would expect. The network's response is shown

in Figure 5.20. The fault mapping was designed to yield a high

fault value for such a decrease in beta.
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VI. CONCLUSION AND RECOMMENDATIONS

A. CONCLUSION

In the NPS AUV II we have determined two types of faults

which we would like to identify. Those associated with the

propulsion motor system and those related to the vehicle's

longitudinal response.

It has been shown that the identification of faults

associated with systems having a very fast response such as

the AUV propulsion motor system can be accomplished with a

network that uses steady state values of sensor output signals

as it's input. A fault can be detected from a change in the

steady state relation between the input values. Specifically

the presence of increased friction in the propulsion motor

drive system is easily detected by a network using steady

state values of motor voltage, motor current, motor rpm and

vehicle speed as inputs.

In order to identify faults related to the vehicle's

longitudinal motion performance it has been shown that the

implementation of a Kalman parameter identification filter is

quite useful. Changes in the vehicle's surge motion parameters

were easily identified by the Kalman parameter filter. Faults

were then characterized by an artificial neural network

trained on a mapping of the system's parameter values. The

level of fault severity was also determined by the same
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network. The use of the Kalman parameter identification filter

to preprocess data available from system sensors greatly

reduced complexity and training of the neural network.

B. RBECODUMIDATIONS

It is recommended that further study in developing a

single fault diagnostic system capable of detecting internal

system faults and dynamic response faults be conducted. The

capability of identifying both types of faults might be

accomplished by the combination of the two methods described

in this thesis. A system with both networks operating in

parallel, one identifying each fault type, would certainly be

capable.

Another approach would be to integrate the two networks in

such a way that a single network would accept input from

system sensors and from a Kalman parameter identification

filter.
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APPENDIX A
PROPULSION MOTOR CHARATERISTICS

PITTMAN MOTOR SERIES 14202

ELECTRICAL TIME CONSTANT 1.47
milliseconds

MECHANICAL TIME CONSTANT 8.5
milliseconds

FRICTION TORQUE 1.79
ounce-inches

ARMATURE INERTIA 2.3 X 10-3
ounce- inches- seconds 2

MOTOR WEIGHT 26.0
ounces

MOTOR CONSTANT 5.81
ounce- inches/watto05

VOLTAGE 24.0
volts

TORQUE CONSTANT 8.67
ounce-inches/amp

TERMINAL RESISTANCE 1.01
ohms

BACK EMF 0.061
volt- seconds/radian

NO LOAD CURRENT 0.210
amps

STALL CURRENT 23.8
amps
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