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ABSTRACT

The replenishment of a dispersed battle group requires logistic ships to travel long distances

between ships in the battle group. When operational requirements limit the amount of time that can

be spent conducting replenishment, decision makers must select which ships to replenish based on the

amount of time needed to transit between ships, and the combat value added to the battle group by

replenishment. With proper assumptions, this problem is analagous to the Generalized Orienteering

Problem. A dynamic programming algorithm is developed using this approach and tested against a

set of test problems. The algorithm is capable of scheduling replenishment using both Delivery Boy,

or Circuit Rider tactics. The results indicate that the algorithm runs quickly enough to be useful for

scheduling underway replenishment in operational situations.
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I. INTRODUCTION

A. BATTLE GROUP OPERATIONS

The ability of the United States Navy to project power

away from her shores relies heavily on the Carrier Battle

Group (CVBG). A CVBG consists of an aircraft carrier, her

air-wing and six to nine combatant ships that are tasked with

screening the carrier. The carrier and her escorts are

required to stay at sea for long periods of time. With the

exception of major equipment failure or battle damage, the

only limitation to the CVBG's ability to stay at sea is the

need for resupply. This need is met through the use of ships

assigned to the Combat Logistics Force (CLF). These ships are

specifically designed to deliver food, fuel, ordnance, and

spare parts to the CVBG from shore support bases.

When the logistic ship arrives in the vicinity of the

CVBG, it finds a formation of ships that are assigned to

specific sectors for the mutual defense of the battle group.

When the logistic ship is ready to resupply the screening

ships, she has three primary tactics from which to choose.

1. Gas Station

This method of resupply has the logistic ship stay in

a position, normally near the middle of the battle group, and

requires the screening ships to leave their assigned sectors



and rendezvous at the position of the logistic ship. When the

screening ship has been resupplied, it returns to its assigned

sector.

2. Delivery Boy

This tactic requires the logistic ship travel to the

screening ships and perform replenishment. There is no

requirement for the screening ships to leave their assigned

sectors during the replenishment process.

3. Circuit Rider

This tactic can be viewed as a combination of the

Delivery Boy and Gas Station tactics. Each screening ship is

given a sector where replenishment can take place. If each

ship's sector only contains the position of the logistic ship,

this tactic reduces to the Gas Station tactic. If each

screening ship's replenishment sector only includes it's own

on-station position, this tactic reduces to the Delivery Boy

tactic. Under normal conditions, both the logistic ship and

the screening ship move from their on-station positions and

meet for replenishment at a mutually convenient rendezvous

location.

B. DISCUSSION

Figure 1 illustrates the three tactic for a four ship

formation. Depending on the operational situation, the Gas

Station and Delivery Boy tactic have some potential drawbacks.

In the Gas Station method, a ship that is assigned to a sector

2
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Figure 1 Graphic illustration of underway replenishment
tactics

for defensive purposes is taken off station for replenishment.

By vacating its sector, the screening ship is removing its

defensive ability from the CVBG. In a hostile environment

this would be undesirable, particularly if an alternative

tactic is available. The Delivery Boy method is likewise

deficient in that it may require the relatively defenseless

logistic ship to travel alone outside the protected area of

the battle group to rendezvous with a single ship, exposing

the logistic ship to unnecessary and perhaps unacceptable

risks. The Circuit Rider tactic combines these two tactics

3



and can therefore potentially eliminate some of the drawbacks

mentioned above.

C. RELATED UNDERWAY REPLENISHMENT STUDIES

Hardgrave (1989) studied the feasibility of replenishing

a CVBG using the tactics discussed above, simplifying the

problem by using point locations for each of the screening

ships. Zabarouskas (1992) extended the work of Hardgrave by

creating a distinct group of locations that represent the

sector that a screening ship is assigned, and developed an

optimal branch and bound algorithm to determine the minimum

time to replenish all ships. Both of these studies

formulated the replenishment scheduling problem as a Traveling

Salesman Problem (TSP), (see Wu (1992) for a comprehensive

review of modelling underway replenishment using the TSP.)

In Wu (1992), models were developed to address scenarios

where there is insufficient time to service all the ships

needing replenishment. In these scenarios a combat value is

assigned to each ship requiring replenishment. The optimal

solution results in a schedule that restores the largest

combat value to the battle group without exceeding the maximum

time allowed for replenishment. The computational study of Wu

(1992) demonstrates that solving these problems can require

excessive CPU times using commercial integer programming

software.

4



D. THE GENERALIZED ORIENTEERING PROBLEM

Orienteering (Golden, Wang, Liu, 1988) is a sport that

requires participants to find their way through a course to a

series of 'control points' where they collect a score when

they arrive. Participants leave from a designated starting

point and must finish at the end point, but are free to make

their own paths between the control points. The objective is

to collect the highest score while reaching the end point

within the prescribed time.

In military situations, time constraints are almost always

present and need to be considered. The Orienteering Problem,

therefore, more closely resembles the scenario facing the

decision maker scheduling underway replenishment.

The problem being addressed in this thesis is the

Generalized Orienteering Problem (see Wu (1992)) because each

'control point' or ship sector is represented by a discrete

group of points. All points in each sector are assumed to

have the same reward, and that reward can only be obtained

once.

E. DYNAMIC PROGRAMMING

Dynamic programming, first introduced by Bellman (1957),

is an optimization technique in which decisions are made in

stages. The technique implicitly enumerates all possible

solutions. If the problem can be formulated such that several

partial solutions can oe grouped in a single state, then those

5



partial solutions that are inferior can be eliminated from

future consideration. The process progresses from stage to

stage eliminating dominated partial solutions until only the

optimal solution to the problem remains.

F. OUTLINE

This thesis describes a dynamic programming procedure that

under specific conditions meets the need reported by Wu (1992)

for a specialized algorithm to solve the Generalized

Orienteering Problem as applied to underway replenishment

scheduling.

Chapter II describes the problem including the necessary

assumptions, network structure, and dynamic programming

formulation. Chapter III details the solution procedure with

reference to data structures, traversaJ techniques and memory

requirements. In Chapter IV, the procedure is used to solve

a set of test problems. A description of these problems and

the performance of the algorithm are reported. Chapter V

concludes with a summary of results and topics for future

research.

6



II. PROBLEM FORMULATION

A. ASSUMPTIONS

With the following assumptions the underway replenishment

scheduling problem can be modelled as a Generalized

Orienteering Problem.

"* The time needed to replenish each ship is constant
regardless of the order the ships are serviced. While
this is not strictly true, the differential time spent
replenishing is insignificant compared to the transit
times.

"* Ships move direccly from their location to the rendezvous
point. In practice there is the need to avoid the other
ships in formation.

"* The logistics ship starts and ends its path at a point
near the center of the formation.

"* The battle group maintains its base course and speed
throughout the time allotted for replenishment.

"* Ships engaged in replenishment maintain their relative
position with the battle group by matching its course and
speed.

"* The optimal path is that path which adds the most combat
value to the battle group while allowing time for the
logistic ship to return t-o its position near the center of
the formation.

B. NETWORK STRUCTURE

The dynamic programming formulation of the Orienteering

Problem as applied to scheduling underway replenishment can be

viewed as a directed graph D = { N, A ). Figure 2 illustrates

this graph for a scheduling problem where n, the number of

7
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ships, is three and each ship is assigned a single rendezvous

location. The set of nodes N, contains the possible states of

the system. A state is a pair of elements where the first

element contains the set of locations that were previously

visited, and the second element contains the current location

of the logistics ship. For example, the node (1,2-3) in

Figure 2 indicates a state that has visited locations 1 and 2

and is currently at location 3.

The set of arcs, A, represent permissible moves from one

state to the next, and have associated with them the

applicable time of the move. Note that the graph contains no

cycles, that is to say there are some locations that cannot be

visited from certain states. By excluding arcs that would

create cycles, it is guaranteed that a traversal of this graph

from b to any leaf state yields a feasible solution to the

Orienteering Problem, and that the shortest path traversal

from b to any state produces the optimal path to that state.

Also note that any state at stage k>2 can be arrived at

through several states in stage k-i. It is this feature of

the graph that eliminates the need to explicitly enumerate

every permutation of locations to arrive at an optimal

solution. At any state it is only necessary to further

develop the best path that ended in that state since all

others are inferior and cannot be part of an optimal solution.

The graph represented in Figure 2 has one stage for each

ship in the formation, plus one additional stage. Stage one

9



represents the possible partial paths with one ship, stage two

the partial paths with two ships and the complete one ship

paths, and so on. For example, stage 3 contains the partial

3 ship paths (1,2-3), (1,3-2), (2,3-1), and the completed 2

ship paths (l,2-e), (l,3-e), (2,3-e).

It is possible to group several paths into a single state,

note that paths 1 - 2 - 3 and 2 - 1 - 3 are grouped together

in the state labeled 1,2 - 3. This is done because for these

two paths only the shorter of the two can be part of an

optimal tour.

The number of states, Nk, in any stage two through n can

be calculated using equation 1.

Nk= (k nl)(n-k+2)()

The total number of states in the graph can be calculated

using equation 2.

Ntoal= (n+2)2n-1 (2)

The total number of states represents the minimum amount of

information needed to guarantee an optimal solution to the

problem.

10



C. DISCUSSION OF THE GENERALIZED ORIENTEERING PROBLEM

The network structure presented above can be easily

modified for the Generalized Orienteering Problem where each

ship is allowed to have several potential rendezvous

locations. In the case of the single location Orienteering

Problem, a cycle was defined to be a path that returned to the

same location a second time. In the generalized case that

principle is extended to prevent the path from returning to

the same ship a second time, regardless of the ship's

location. The number of states in stages, two through n of

the generalized problem is calculated with equation 3.

Nk = L (( nl) (n-k+l)} + n (3)k-1 (k-1)

Where L represents the number of locations for each ship.

This equation is further generalized for the case where not

all ships have the same number of multiple locations in

Chapter IV. Finally, the total number of states in the graph

for the generalized problem is computed with equation 4.

Ntocal = (nL + 2)} 2"-i (4)

D. RECURSIVE RELATIONSHIP BETWEEN STAGES

The fact that solutions to problems formulated as dynamic

programs are made in stages leads to a search for a

relationship between stages. These relationships are referred

11



to as recursive equations. The existence of a recursive

equation highlights the fact that decisions are made in stages

and the direction to move in getting from one stage to the

next has nothing to do with how the system arrived at the

initial stage. This fact can be stated succinctly as

Bellman's Principle of Optimality:

An optimal policy has the property that whatever the
initial state and initial decisions are, the remaining
decisions must constitute an optimal policy with regard to
the state resulting from the first decision. (Bellman
1957)

E. DYNAMIC PROGRAMOING FORMULATION

A mixed integer programming formulation for the

Generalized Orienteering Problem is presented in Wu (1992).

In what follows, the Orienteering Problem is formulated as a

dynamic program. The problem is viewed as having two

objective functions. The primary objective ensures that the

optimal tour collects the largest score possible. The second

objective breaks ties based on the amount of time required to

collect the score. For example, given sufficient time

numerous tours will collect the total score available; the

optimal tour will be that tour which collects the score in the

minimum amount of time. This ensures that the solution will

reduce to the TSP solution when a large amount of time is

provided.

b, e Beginning and ending nodes.

i, j Node indices.

12



k Stage index.

S An unordered set of nodes, that always contains
the beginning node b.

(Si) A set of nodes that corresponds to a path ending

in node i, where i f S.

TMAX Total time allowed to complete a tour.

R(i) Score received for visiting node i, R(b)=R(e)=O.

t(i,j) Time required after leaving node i to complete
replenishment a node j.

fk(Si) Primary objective function; score received by

visiting the nodes in set S, where, I S I = k

gk(Si) Secondary objective function value; minimum time
required to travel from b to i via all nodes in
set S. Note that gi(S,i) is only defined when

I S I = k and i fS

f" The maximum score obtainable.

g The minimum time to obtain the maximum possible
score.

The recursive equations that link stages together are:

sin {gk- 1 (S\{i},i) + t(i,j)}, V ISI = k-l, jtS

R R(i) if gk(S, j) :ý TMAXfgk(S~j) • 27j4

k(S'i) = RU)0 otherwise

This is clearly the case since the score received for visiting
the same nodes (set S), regardless of order, is constant.

The initial conditions for the system are:

13



fo (e,b) = 0

go(e,b) = 0

The optimal primary objective function value would be

f" = max ( fk (S,e)), over all possible k and S where I S I = k

The optimal secondary objective function value would be

g* = min {g.(S,e)} over all possible k and S where I S I = k and

fk(S,e) =f*

This formulation is easily modified for the Generalized

Orienteering Problem. The only conceptual difference is that

each node now represents both a ship and location of

replenishing the ship. This dynamic programming formulation

serves as the basis for the solution procedure contained in

Chapter I11.

14



III. SOLUTION PROCEDURE

An optimal solution to the Generalized Orienteering

Problem provides the minimum time, within an established

limit, to collect the maximum possible score. This is

equivalent to finding the shortest path to all states in the

decision tree shown in Figure 2, and selecting the best path

based on the total score collected within the established

time. Evaluating the states in the tree requires a systematic

search which can be accomplished either in a breadth-first or

depth-first manner.

A. BREADTH-FIRST SEARCH

Figure 3 illustrates the breadth-first search of the

decision tree. State numbering indicates the order the states

are evaluated. This is the technique typically used for

solving dynamic programming problems. The procedure evaluates

all the states in stage one before moving on to stage two and

so on. The primary advantage of this procedure is that at

every stage the state values are known to be optimal, and sub-

optimal paths are never investigated beyond the point where

their inferiority is discovered.

The price paid for this advantage is the space and work

required to keep track of all the state information at stage

k-1 while computing the node values in stage k. For instance,

15
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Figure 3 Breadth-first traversal of Dynamic Programming
decision tree.
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a problem with ten ships that each have 16 possible rendezvous

locations has over 24,000 states in stage 5 that must be

stored and managed in order to produce the over 17,000 states

in stage 6. This served as the motivation for conducting a

depth-first search.

B. DEPTH-FIRST SEARCH

The depth-first search moves quickly down the graph,

always looking for the shortest feasible arc. If the system

moves into a feasible state, a label is created recording the

required time and collected score. When the system reaches

the end node or an infeasible state, the system moves back up

the decision tree and investigates the arcs from the labeled

state furthest down the tree, breaking ties based on time

required. As the procedure continues, the system can arrive

back at a state that has already been labeled. If the new

value at that state is inferior to the old value, the path can

be discarded since the completion of that path cannot be

optimal. This procedure continues until every feasible state

in the decision tree is labeled.

Figure 4 is included to help demonstrate this process

where the state numbers indicate the order of labelling. The

algorithm determines order based on required time, but in this

example the state to the left is arbitrarily chosen when a

choice is made. Note that states in stages 3 and 4 are

labelled more than once. While this can happen, it should not

17
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Figure 4 Depth-first Traversal of Dynamic Programming
Decision Tree.
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happen often since the first label created at any state will

have the same time label as the nearest-neighbor heuriscic

solution to that state. To the extent that the nearest-

neighbor heuristic provides 'good' paths, the first labe.

created at any state can be expected to be superior to future

labels that are generated.

Dynamic programming procedures are often ineffective for

solving large combinatorial problems, like the Generalized

Orienteering Problem, because of the enormous amount of state

information that must be simultaneously managed to derive a

solution. The depth-first traversal of the decision tree

greatly reduces the amount of information being managed. For

the ten ship example described above, no more than 880 labels

must be managed at any time. The minimum time required to

each state must still be stored, but this storage requires no

processing. Again there is a trade-off, the convenience of

reducing the amount cf information being processed is paid for

by some amount of repeated work. The fact that the nearest

neighbor heuristic provides 'good' solutions to shortest path

problems indicates that the additional work may justify the

trade-off. The depth-first search also has the advantage that

premature termination of the procedure will produce feasible

solutions.

19



C. ALGORITHM DESCRIPTION

The following Depth-First Algorithm is described for

solving problems where each ship is allowed a single

rendezvous location, though it can be easily generalized to

the multiple location scenario. Let t(i,j) be the time needed

to transit from node i to node j for i = 1, 2, .... n and j =

1, 2, ... , n where n is the total number of nodes. Let t(i,i)

= - for i = l, 2, ... , r.. A tour is a route that begins at

the start node and arrives at the end node through some or all

of the possible nodes. A path is a route that begins at the

start node and ends at a node other than the designated end

node. Let R(i) be the value added when the system arrives at

state i. The Depth-First Algorithm requires the use of a list

of temporary labels to store path data that have not yet been

investigated, and a BEST matrix that records the required time

of the best known path to each state.

The algorithm can be summarized with the following 7

steps.

Step 1

Set the inciumbent objective function value to a large time

and low combat value: OFV = (1010,0)

Step 2

Select the beginning node as the current node.

20



SteD 3

Investigate all nodes adjacent to the current node and

record on the temporary list: the total time to complete the

path, total combat value, all nodes in the path where the last

node and its predecessor are distinguished. This information

is only recorded if extending the partial path does not:

"* create a cycle.

"* exceed the maximum time allowed for the path.

"* create a path known to be inferior.

Step 4

For the states where a temporary label was made, update

the BEST matrix with the time requiredto reach each state.

It is unnecessary to record the value at the state since every

path to a state contains the same nodes and must have the same

value.

Step 5

Search the temporary list for the label that is

lexicographically smallest on the list based on:

"* Most arcs in the partial path.

"* Least time to reach the current state.

"* Highest combat value added.

Record the information from that label and remove the label

from the temporary list. If the list is empty the problem is

solved.

21



Step 6

If the label removed from the temporary list is from a

state that represents a completed path, compare that tour to

the incumbent solution. The new tour is superior if its value

is more than the value of the incumbent. If the value is the

same, the tour that requires less time to complete is

superior.

Step 7

Make the node selected in Step 5 the current node and

return to Step 3.

D. COLLECTING THE OPTIMAL PATH

The depth-first traversal of the decision tree greatly

simplifies the collection of the optimal path. By using an

assignment array, every time a new label is selected the

assignment array is cleared from the new nodes predecessor

forward to the end of the last path. When a tour is found

that is superior to the best tour so far, the assignment array

is stored as the best tour and the process continues. This

can be done using the depth-first traversal since the path

prior to the stage where the decision is made remains

constant. This characteristic is generally not true with the

breadth-first traversal, and would necessitate the use of a

more elaborate path collection scheme.

22



E. STATE REPRESENTATION AND BEST MATRIX

The BEST matrix keeps track of the shortest path to all

possible states. Because the state is defined as a pair, the

first element being the set of all nodes included in the path

so far, and the second element being the last node visited,

the BEST matrix is two dimensional. The set of all nodes in

the path can be represented by a binomial expansion of the set

into a single integer. That is, the set {1, 2, 5, 9} can be

represented as 20+21+24+28 or 275. The time required to

complete the best path that visits nodes 1, 2, 5, and, 9 and

ends at node 2 can be found as element BEST (275,2).

This representation of the state has the additional

advantage of providing a useful method of checking whether

visiting a node will introduce a cycle in the path. A

'hashing function' ( is defined to compare the set of nodes

with the candidate node, and determine if the addition of the

candidate node will introduce a cycle. For example, consider

the addition of a node corresponding to ship 5 to a path

containing ships {1, 2, 5, 9},

{1, 2, 5, 9} => 275 100010011
{5} => 16 and 000010000
275 ( 5 000010000 => 16

A one contained in both number 5 locations indicate a common

element. This function can be accomplished with a single

operation in many computer languages. In FORTRAN 77 the

23



'integer and' operation will compare bit strings of two

integers and return an integer indicating which bits match.

F. TEE GENERALIZED PROBLEM

The previously described algorithm only needs to be

slightly altered to solve the Generalized Orienteering

Problem. Because many nodes can represent a single ship

additional information is required to determine which ships

have been visited. A state changes to a pair where the first

element is the set of ships that are part of the current path,

and the second element is the node (ship and location) where

the path ends. Figure 5 illustrates two paths, A and B, that

visit the same ships. Ship numbers are represented by Roman

numerals. Node numbers are represented with Arabic numerals.

Note that the paths have only their beginning and end

nodes in common, but the longer path would be dominated by the

shorter path because they visit the same ships, end at the

same node and thus obtain the same score.

Note that the total number of states grows exponentially

by number of sectors and geometrically by number of nodes.

This characteristic is very attractive for Underway

Replenishment Scheduling problems where the number of ships is

likely to be small but better answers are achieved by allowing

numerous locations in each sector.
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Spath A path B

Figure 5 Illustration of dominated path in Generalized
Orienteering Problem.
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IV. TEST AND EVALUATION

The Depth-First Algorithm was programmed in FORTRAN 77

with computational results collected from a SUN/SPARC2

workstation. To evaluate the algorithm performance in

scenarios likely to be faced by decision makers scheduling

underway replenishment, it was tested against a set of 630

randomly generated formations. The 630 formations were

grouped into 21 classes of 30 formations each. The classes

were divided according to the number of ships, the number of

ships with multiple locations, and the number of locations

those ships had.

The cost matrix (time to transit between nodes) is

asymmetric due to the movement of the formation. The data for

each problem was processed to eliminate locations that could

not be part of the solution. Table I shows in more detail

the characteristics of the problem classes. For a complete

description of how the test problems were generated see

Zabarouskas (1992).

These test problems were derived for both the Delivery Boy

and Circuit Rider tactics. For the Delivery Boy tactic,

multiple ship locations represent an on-station sector, and

the time between locations represents the replenishment ships

transit time and the subsequent replenishment of the combatant

ship. To be valid problems for the Circuit Rider tactic, the
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time between locations represents the time needed for both

combatant and replenishment ships to rendezvous and complete

replenishment.

A. THE EFFECT OF NODE SCORES

It was decided to test the algorithm's performance for

varied node scores. Each of the 630 problems were run with

scores randomly generated between one and 100, and then again

with scores randomly generated between 100 and 200. It was

hypothesized that there might be some advantage to solving the

problems with the one to 100 range because of the possibility

of a node being worth many times that of another node (for

instance, a node with a score of 80 would be twenty times more

valuable than a node with a score of four.) This relationship

between node scores would not be possible in the 100 - 200

range since, at best, one node could be worth only twice the

score of another.

The results of the two test sets showed that the same

number of labels were created and thus the same amount of CPU

time was used to solve each set of problems. The paths were

different when the maximum time allowed was insufficient to

visit every node, but the same amount of work was required to

generate the optimal solution. The reason for this is that

the algorithm seeks the best path to each state based only on

the time required to reach that state. This is true because

every path to a state has exactly the same value.
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Table I CHARACTERISTICS OF TEST PROBLEM SETS.

# of ships # of total # avg. # of
# of with multiple multiple of locations

class ships locations locations locations removed

1 6 0 na 6 na

2 6 3 4 15 3.07

3 6 5 4 21 3.63

4 6 3 9 30 5.37

5 6 5 9 46 8.40

6 6 3 16 51 8.07

7 6 5 16 81 10.73

8 8 0 na 8 na

9 8 4 4 20 1.57

10 8 7 4 29 2.47

11 8 4 9 40 2.63

12 8 7 9 64 4.17

13 8 4 16 68 2.80

14 8 7 16 113 5.23

15 10 0 na 10 na

16 10 5 4 25 1.00

17 10 9 4 37 1.50

18 10 5 9 40 1.77

19 10 9 9 82 1.30

20 10 5 16 85 2.07

21 10 9 16 145 2.77
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This result was considered positive in that the

performance of the algorithm would not vary depending on the

scoring scale used by the decision maker. On the other hand,

it highlighted the fact that the algorithm does not take

advantage of the information contained in the score when

solving the problem.

B. MEASURING THE EFFECTIVENESS OF THE ALGORITHM

To thoroughly determine the effectiveness of the

algorithm, it was necessary to test it not just with a random

set of formations but also with a variety of time constraints.

With this in mind each of the 630 problems were solved four

times. The first time, the maximum time allowed for a tour

was large enough to ensure that a tour was found that visited

all the ships. This tour is equivalent to the solution of the

TSP problem for that formation. The TSP time served as a

baseline used to generate the other three problems for the

formation. The maximum time for these problems were set at

100%, 75%, and 50% of the time required to complete the TSP

tour. Problems with a maximum time greater than 100 % of the

TSP time were not considered since the algorithm reduces TMAX

whenever a solution that visits every sector is found. This

adjustment results in times that vary insignificantly from the

results reported for 100% of the TSP time.
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Table Il ALGORITHM RUN-TIME IN CPU SECONDS.

100% of TSP 75% of TSP 50% of TSP
time time time

class mean st dev mean st dev mean st dev

1 0.029 0.005 0.018 0.005 0.011 0.004

2 0.079 0.021 0.045 0.015 0.022 0.008

3 0.143 0.042 0.083 0.026 0.034 0.015

4 0.219 0.085 0.132 0.054 0.046 0.020

5 0.531 0.224 0.286 0.120 0.094 0.038

6 0.463 0.192 0.272 0.129 0.106 0.058

7 1.673 0.632 0.964 0.394 0.306 0.130

8 0.230 0.024 0.130 0.018 0.041 0.013

9 0.993 0.247 0.540 0.164 0.169 0.084

10 2.099 0.503 1.081 0.299 0.273 0.127

11 2.731 0.810 1.520 0.483 0.478 0.198

12 8.884 2.851 4.755 1.537 1.203 0.492

13 7.101 1.875 3.714 1.152 1.105 0.533

14 26.262 6.915 13.422 3.847 3.354 1.394

15 1.907 0.214 1.047 0.243 0.283 0.101

16 8.900 1.594 4.555 1.126 1.084 0.472

17 21.983 4.599 11.217 3.324 2.422 1.186

18 30.032 6.240 14.303 3.518 3.142 1.394

19 101.975 21.103 49.882 11.180 10.241 4.021

20 75.013 18.324 36.885 10.060 7.215 3.139

21 280.663 66.892 133.087 35.941 24.935 12.352
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1. CPU Requirements

The CPU time required to solve each of these problems

was recorded. Table II contains the means and standard

deviations computed for each class. Note that in each class

the reduction in CPU time is greater than the percentage

change in TMAX that caused it. The reduction increases as the

number of ships and the number of locations increase.

Additionally, the table shows a relatively stable record of

performance across all classes of problems, as evidenced by

standard deviations that are generally 20 to 30 percent of the

mean CPU time.

2. Performance Based On Labels Generated

The second measure of the algorithm's effectiveness

relates to the amount of work that is actually being done in

order to solve the problem. The algorithm creates a label

every time a path to a state is found for the first time, and

any time a path is found that is superior to the label already

created for that state. By comparing the number of times a

label is made and the number of states in the system, the

performance when the maximum amount of time to complete a tour

varies can be made.

The removal of dominated locations, and the fact that

not all ships have multiple locations, changes the way the

total number of states in the system is calculated. Equation

4 from Chapter II becomes equation 5.

31



t = (((n+2)+m(L-l))-r) 2"1- (5)

Where m is the number of ships with multiple locations and r

is the number of locations removed by dominance. This formula

is for problems where there is sufficient time to visit every

ship. In scenarios where the maximum time allowed constrains

the solution, the number of feasible states is a function of

the formation and cannot be computed deterministicly. In

these cases the number of feasible states is kept track of in

the program.

Table III shows the average number of states for each

class and the average number of labels that were created

before the shortest path to each state was found. The table

shows a reduction in the number of states similar to the

reduction that occurred in CPU requirements. The table also

shows that an increase in the number of locations increases

the number of times labels are written over. The overwrites

are an estimate of the extra work needed to use the depth-

first traversal of the decision tree. This extra work grows

at a distressing pace for the larger problems, but it is these

problems that would require the breadth-first traversal to

manage a large number of states. Additionally, the CPU

requirements for these problems remains modest despite the

additional work being done.
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Table III WORK REQUIRED TO OBTAIN SOLUTIONS

100% of TSP time 75% of TSP time 50% of TSP time

avg avg # avg avg # avg avg
total # of total # of total # total#
of labels of labels of of

class states /state states /state states labels

1 255.0 1.79 174.3 1.45 90.9 1.25

2 444.9 2.55 313.7 2.00 153.7 1.53

3 617.7 3.34 429.6 2.47 204.1 1.88

4 851.3 3.44 607.9 2.61 284.6 1.61

5 1266.2 5.27 885.9 3.55 427.9 2.26

6 1436.9 3.89 972.4 2.99 483.0 2.13

7 2311.5 7.45 1692.4 5.26 820.9 3.24

8 1279.0 2.28 840.2 1.74 307.2 1.36

9 2614.5 4.27 1769.6 3.06 725.9 2.22

10 3651.3 6.12 2479.3 4.15 919.5 2.67

11 5037.9 5.41 3377.1 4.03 1433.3 2.88

12 7913.7 10.15 5591.7 6.86 2295.6 4.06

13 8600.6 7.28 5945.2 4.93 2570.2 3.27

14 14049.1 13.87 9800.8 8.94 3914.6 5.31

15 6143.0 3.01 4063.5 2.28 1350.0 1.72

16 13311.0 5.73 8729.7 4.10 2889.4 2.82

17 19181.9 9.38 13099.6 6.35 4314.1 4.00

18 25718.5 9.04 16759.9 6.01 5627.8 3.78

19 42341.4 16.78 28395.5 10.98 9774.0 6.28

20 43484.9 11.75 25495.8 7.74 9454.7 4.35

21 73846.4 22.37 49202.4 13.91 15163.2 7.95
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V. CONCLUSIONS

A. ALGORITHM PERFORMANCE

The computational results of the algorithm showed

excellent performance over a wide range of scenarios. These

results, however, are probably more a function of the improved

network structure than the traversal technique chosen. The

depth- first traversal created many more labels in the multi-le

location scenarios than would have been created by a breadth-

first traversal. But despite this, the algorithm provided in

this thesis is an excellent solver for the Delivery Boy, and

Circuit Rider tactics, with or without a time constraint.

B. RECONKENDATION FOR FUTURE RESEARCH

Clearly, there is reason to think an algorithm that

conducts a breadth-first search of the described decisior tree

may improve on these results. Furthermore, any additional

means of removing nodes or arcs prior to the implementation of

the algorithm is likely to improve performance.

Future research should also include the relaxation.of the

assumption requiring the formation to maintain course and

speed during the entire replenishment cycle, and the

assumption that the replenishing ships will be able to match

the course and speed of the battle group.
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C. SUMMARY

This thesis was undertaken to develop a specialized

solution procedure to schedule underway replenishment without

the use of commercial integer programming software. The

reported algorithm selects the optimal set of ships to

replenish, establishes the correct order, and finds the

optimal rendezvous locations to conduct the replenishment.

The algorithm was tested against a set of randomly generated

formations, and was determined to provide optimal solutions

quickly enough to meet the needs of underway replenishment

schedulers.
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