
■»

AD-A256 199

Trace Algebra for Automatic Verification

of Real-Time Concurrent Systems

Jerry R. Burch

August 1992

CMÜ-CS-92-179

, **y

ELECTE ^
OCT 0 7 1992 I

A

School of Computer Science

Carnegie Mellon University

Pittsburgh, PA 15213

Thii documont has bßon opptoved
for publio release aad SCüü; its
disttibutioB is unlimited,

© Jerry R. Burch, 1992

^
^

^

92-26535
PI M

Thi-: research was sponsored in part by the Avionics Laboratory, Wright Research and Development
Center ' sronautical Systems Division (AFSC), U.S. Air Force, Wright-Patterson AFB, Ohio 45433-6543
under tract F33615-90-C-1465, ARPA Order No. 7597 and in part by the National Science Foundation
under Contract No. CCR-{'005992.

The views and contusions contained in this document are those of the author and should not be interpreted
as representing the official policies, either expressed or implied, of the U.S. government.

92 10 6 026

Keywords: Trace Algebra, Trace Structure Algebra, Conservative Approximation, For-

mal Verification, Abstraction, Real-Time, Continuous Time, Discrete Time, Speed-Dependent

Asynchronous Circuits

BEST
AVAILABLE COPY

larnegie
I lellon

School of Computer Science

DOCTORAL THESIS
in the field of

Computer Science

Trace Algebra for Automatic Verification of
Real-Time Concurrent Systems

JERRY R. BURCH

Submitted in Partial Fulfillment of the Requirements
for the Degree of Doctor of Philosophy

ACCEPTED:

DEAN
g/aiH^

Accesion For

(■"■

NTIS CRA&I
UTIC TAB
Uidniiounced
Justification _

By
Distribution/

Ava:':!;!,:;:: v

Di-,t '"V

/Hi
~^--

(11

MAJOR PROFESSOR (J ~ DATE

DATE

APPROVED:

PROVOST
2* AI^CA^- IWI

DATE

Abstract

Verification methodologies for real-time systems can be classified according to whether they are

based on a continuous time model or a discrete time model. Continuous time often provides a

more accurate model of physical reality, while discrete time can be more efficient to implement

in an automatic verifier based on state exploration techniques. Choosing a model appears to

require a compromise between efficiency and accuracy.

We avoid this compromise by constructing discrete time models that are conservative ap-

proximations of appropriate continuous time models. Thus, if a system is verified to be correct

in discrete time, then it is guaranteed to also be correct in continuous time. We also show

that models with explicit simultaneity can be conservatively approximated by models with

interleaving semantics.

Proving these results requires constructing several different domains of agent models. We

have devised a new method for simplifying this task, based on abstract algebras we call trace

algebra and trace structure algebra. A trace algebra has a set of traces as its carrier, along with

operations o{ projection and renaming on traces. A trace can be any mathematical object that

satisfies certain simple axioms, so the theory is quite general. A trace structure consists, in part,

of a subset of the set of traces from some trace algebra. In a trace structure algebra, operations

of parallel composition, projection and renaming are defined on trace structures, in terms of

the operations on traces. General methods for constructing conservative approximations

described and are applied to several specific real-time models. We believe that trace algebra i

a powerful tool for unifying many models of concurrency and abstraction beyond the particular

ones described in this thesis.

We also describe an automatic verifier based on the theory, and give examples of using it to

verify speed-dependent asynchronous circuits. We analyze how several different delay models,

including a new model called chaos delay, affect the verification results. The circuits and their

specifications are represented in discrete time, but because of our conservative approximations,

circuits that are verified correct are also correct in continuous time.

are

is

Acknowledgements

Ed Clarke has been my advisor during the last several years of my graduate student career.

His guidance and support (and patience!) were essential to the completion of this thesis and

the other research projects I have been involved in at CMU. Ed has taught me a great deal

about formal verification and about how to do quality research.

The other members of my committee, Randy Bryant, Jeannette Wing, Al Mok and David

Dill, provided many helpful ideas for improving my research and my writing. When my thesis

research was not properly focused, Ed and the rest of the committee provided the support and

the firm pressure that was necessary to get me back on track.

O'' ^rs who have contributed to my development as a student and a researcher include Jon

Doyle, Alain Martin and Fred Thompson.

Much of my research at CMU was in collaboration with David Long and Ken McMillan. I

am very fortunate to have had a chance to work with them.

The School of Computer Science at CMU is a great place to be a graduate student, in no

small part because of the people responsible for administration and facilities. My officemates,

past and present, also helped create an intellectually stimulating environment.

I thank my parents, and the rest of my family, for never letting me doubt their love and

support.

Contents

Abstract 3

Acknowledgements 5

Contents 7

1 Introduction 9
1.1 Major Results 12
1.2 Motivating Example 13
1.3 Related Work ' .' 15

1.3.1 Agent semantics 15
1.3.2 Describing Agents 17
1.3.3 Specification and Verification 18
1.3.4 Abstraction 20

2 Trace Algebra, Part I 21
2.1 Concurrency Algebra 22
2.2 Trace Algebra 24

2.2.1 Examples 27
2.2.2 Proofs 30

2.3 Trace Structure Algebra 32
2.3.1 Examples 34
2.3.2 Proofs 35

2.3.3 Constructing Trace Structure Algebras 39
2.4 Conservative Approximations 41

2.4.1 Homomorphisms on Trace Algebras 45
2.4.2 Approximations Induced by Homomorphisms 46

2.5 Summary 51

3 Approximating Continuous Time 55
3.1 Timing Models 55
3.2 Modeling Continuous Time 58
3.3 Modeling Synchronous Time 60

3.3.1 Approximating Continuous Time 61

CONTENTS

3.3.2 False Positive Example Revisited g3
3.4 Modeling Quantized Time with Simultaneity 65

3.4.1 Approximating Continuous Time gg
3.4.2 False Positive Example Revisited 72

3.5 Application to Automatic Verification 72

4 Trace Algebra, Part 11 75

4.1 Power Set Algebras over Trace Algebras 75

4.2 Quantized Time with Interleaving Semantics g^
4.2.1 Approximating Continuous Time g4

4.3 Partial Traces 8-

4.3.1 Trace Algebra with Partial Traces gg
4.3.2 Restricting to Safety Properties gg

4.3.3 Trace Structure Algebra with Partial Traces 100

4.3.4 Constructing Trace Structure Algebras with Partial Traces 103
4.4 Inverses of Conservative Approximations 105

5 Delay Models

5.1 Hazard-Failure Delay Model -.in
5.2 Approximating Continuous Time ' 222
5.3 Seitz Queue Element 114

5.4 Binary Inertial Delay 11-
5.5 Binary Chaos Delay 118

5.6 FIFO ControUer 119
5.7 A Less Conservative Model 151
5.8 Single Trajectory Delay Models 123
5.9 Discussion 19r

6 Future Research
X A t7

A Summary of Notation 131

Bibliography 13g

Index of Theorems, etc.
149

Index
153

Chapter 1

Introduction

Modeling and verifying concurrent systems has grown into an important field of computer

science. Several different categories of concurrent systems have been studied, including parallel

programs, communication protocols and circuits. Over the last several years there has been

increasing interest in modeling and verifying real-time systems. For our purposes, a real-

time system is any system that, to be formally verified to satisfy its specification, must be

modeled with explicit reference to quantitative time. Thus, if a systerr . specification is

timed (constrains the time between events rather than just their order), then it is a real-time

system. Another case is if the specification is untimed, but the correct operation of the system

depends on timing assumptions about its components (such as an asynchronous circuit that

is not speed-independent).

There are a large number of different real-time models in the literature. They can be

classified according to whether they are continuous time models or discrete time models. Con-

tinuous time often provides a more accurate model of physical reality, while discrete time can

be more efficient to implement in an automatic verifier based on state exploration techniques.

Choosing a model appears to require a compromise between efficiency and accuracy.

We show how to avoid this compromise by taking advantage of the relationships between

several different real-time models. All of the models we use are based on trace structures,

which consist of sets of input and output events, and a set of traces. Each trace represents a

possible behavior of the agent modeled by the trace structure.

There are many different kinds of traces, each is a different abstraction of physical be-

haviors. For example, with speed-independent interleaving semantics, traces are strings (from

some formal language) that abstract time to be just a total order on events. Partial order based

methods provide a different abstraction for behaviors by replacing total orders on events with

10 CHAPTER 1. INTRODUCTION

partial orders. In real-time models, traces include quantitative information about the time at

which events occur.

We want to be able to use all of the above kinds of traces, as well as many other kinds,

when modeling agents. Thus, the kind of trace that is used is a parameter in our method.

Any mathematical object that satisfies certain minimum requirements can be used as a trace.

These requirements are formalized as the axioms of trace algebra. A trace algebra has a set of

traces as its domain, and defines the operations of projection and renaming (and sometimes

concatenation) on traces.

We define several operations on trace structures, including parallel composition, projection

and renaming. Consider the operation of parallel composition. For all of the different models

we consider, this operation on trace structures has exactly the same definition, which is given

in terms of the projection operation on traces. The operations of projection and renaming

on trace structures are also defined the same way for all of our models. These operations

on trace structures form z trace structure algebra. Thus, to construct a new trace structure

algebra (which provides a domain of agent models), we need only define a new trace algebra

(which is a domain of models for individual behaviors). Many of the basic properties of the

operations on trace structures Mow from the axioms of trace algebra, so they hold for any

trace structure aigebra.

Trace structures represent both implementations and specifications. An implementation

(represented by a trace structure T) satisfies a specification (represented by 7") if and only if

the set of possible traces of T is contained in the set of possible traces of T\ Intuitively, the

specification gives a set of legal behaviors; if all of the behaviors of the implementation are

legal, then the implementation satisfies the specification. This particular criteria for satisfying

a specification is caUed trace set containment. Since traces can be strings in a formal language,

trace set containment is a generalization of the standard notion of language containment.

The verification methods we propose involve using two different models. For example, we

might use a continuous time model and a discrete time model. As noted above, to construct

these models (and the corresponding trace structure algebras) it is only necessary to construct

two trace algebras. The continuous time model is the more physically accurate model; if a

design satisfies its specification in continuous time, then we can be confident that the design

will work properly when implemented. Thus, a continuous time model is used when providing

a specification and an implementation to be verified. The specification is given as a continuous

time trace structure and the implementation is given as the parallel composition of one or more

continuous time trace structures (perhaps with some internal signals hidden). Each of these

11

continuous time trace structures is abstracted to form a discrete time trace structure. The

resulting discrete time specification and implementation are input to an automatic verifier that

is based on a discrete time model. The output of the verifier {i.e., whether the implementation

satisfies the specification in discrete time) indicates whether the implementation satisfies the

specification in continuous time.

There are four cases to consider depending on whether or not the implementation satisfies

its specification in discrete time or in continuous time. If the implementation is correct in both

cases, or is not correct in both cases, then the discrete time verification accurately indicates

whether the implementation is correct in continuous time. A false positive is the case where

the implementation is correct in discrete time but not in continuous time; the automatic

verifier inaccurately indicates that the implementation is correct. The method used to abstract

continuous time trace structures into discrete time trace structures must insure that false

positives never occur; this is the primary constraint to consider when abstracting continuous

time trace structures. A false negative is the case where the implementation is correct in

continuous time but not in discrete time; the automatic verifier inaccurately indicates that

the implementation is incorrect. False negatives are undesirable, but not nearly as dangerous

as false positives. The possibihty of a false negative is the price one must pay for using a

powerful abstraction technique.

It is not possible, in general, to use a discrete time trace structure to exactly represent

the set of behaviors modeled by a continuous time trace structure; behaviors must be either

added or removed, or both. If behaviors are added when abstracting a specification, then a

false positive might result. To see this, considei the case where one of the added behaviors is

a possible behavior of the implementation; then the implementation satisfies the specification

in discrete time but not in continuous time. Thus, we want the discrete time abstraction of a

continuous time specification to be a lower bound (under the set containment ordering) of the

set of behaviors of the specification. False positives are avoided regardless of the tightness or

looseness of the lower bound; however, a looser bound makes false negatives more likely.

The situation is different when abstracting components of an implementation. Here a false

positive might result if behaviors are removed when abstracting. To see this, consider the case

where one of the removed behaviors is not a possible behavior of the specification; then the

implementation satisfies the specification in discrete time but not in continuous time. Thus,

we want the abstraction of a component of an implementation to be a upper bound of the set

of behaviors of the component. Again, a looser bound makes false negatives more likely.

We formalize these ideas with conservative approximations. When abstracting continuous

12 CHAPTER 1. 1NTE0DUCTI0N

time with discrete time, an appropriate conservative approximation * consists of a pair of

mappings from continuous time trace structures to discrete time trace structures: a lower

bound mapping $,, and an upper bound mpping %. Suppose the implementation satisfies

its specification when verified using the discrete time trace structures that result from applying

*/ to the specification and % to the components of the implementation. By the definition of

a conservative approximation, the implementation also satisfies its specification in continuous

time. This insures that no false j, itives are possible.

A conservative approximation atween tv o i ^.ce structure algebras can often be induced

by certain relationships between the underlying trace algebras. For example, if there is a

homomorphism between two trace algebras (in the universal algebra sense of homomorphism),

then this induces a conservative approximation between trace structure algebras constructed

from the trace algebras. Also, if a trace in one trace algebra is a set of traces from another trace

algebra, then this induces a conservative approximation from trace structures over the first

trace algebra to trace structures over the second. Conservative approximations from models

with explicit simultaneity to models with interleaving semantics can be constructed in this

manner; a trace with explicit simultaneity is represented by its set of interleavings, which is a

set of interleaved traces.

The theoretical work described above was motivated by more practical issues concerning

the verification of speed-dependent asynchronous circuits. We have developed a verifier for

verifying such circuits that uses a discrete time model; it is a significant extension of the trace

theory verifier developed by DiU [38, 39]. In chapter 5, we describe how to use the verifier to

analyze two circuits. We also study the effects of using several different delay models in the

verification, including inertial delay and a new model caUed chaos delay. We show that using

inertial delay can lead to false positive verification results, and that chaos delay can avoid this

problem without being overly conservative.

1.1 Major Results

The major results of this thesis are listed below.

• Trace algebra and trace structure algebra, which are powerful tools for constructing do-

mains of agents models.

• Formahzing the concept of a conservative approximation from one trace structure algebra

to another, and proving general theorems for constructing conservative approximations

1.2. MOTIVATING EXAMPLE 13

based on relationships between trace algebras.

• Particular conservative approximations from continuous time models to discrete time

models and from explicit simultanei. semantics to interleaving semantics.

• Formalizing the cor -ept of the inverse of a conservative approximation, and character-

izing the inverse of a broad class of conservative approximations.

• An automatic verifier that, using conservative approximations, combines the efficiency

of discrete time models and the accuracy of continuous time models.

• Using the verifier on speed-dependent asynchronous circuits with several new delay mod-

els.

1.2 Motivating Example

In this section we give a concrete example of how using a discrete time model can lead to a false

positive verification result. We do this by informally analyzing a circuit due to Brzozowski and

Seger [13, 14]. A more formal analysis will be given in chapter 3. For this circuit, gates are

modeled according to the inertial delay model. To illustrate the inertial delay model, consider

a gate with a minimum and maximum delay of one. If the gate becomes firable at time t, and

remains firable for one time unit, then it will fire at time t + 1. If the gate is only firable for

periods of time less than one unit long, then it will not fire.

The example circuit is given in Figure 1.1. The buffers have arbitrary delay {i.e., minimum

delay of zero and unbounded maximum delay); the remaining gates have both their minimum

and maximum delays equal to one. Initially all wires are low. Assume there is single transition

on input w that occurs at time 0. Can this lead to a transition on output z?

First, consider a synchronous time model. In chapter 3, we give a taxonomy of real-

time models, including synchronous time models (which are a particular kind of discrete time

model); for now it is adequate to characterize synchronous time models by assuming that

events can only occur at times 0, 1, 2, etc. We can argue that z cannot transition in a

synchronous time model. Assume z transitions at time t. This implies that at time t - I we

must have yl = 0, j/2 = 1, 7/3 ~ 0. These constraints on yl and yZ imply that xl - x2 and

x2 = x3 at time t - 2. But having zl = a;3 at time t - 2 contradicts the fact that y2 = 1 at

time t — I. Thus, there can be no z transition.

14 CHAPTER 1. INTRODUCTION

[1,1]

w >

Figure 1.1: Circuit for demonstrating that discrete time models can lead to false positive
verification results.

A z transition can occur in the continuous time model, however. Consider the behavior

given by

(KO), (x3,1.3), (^2,1.9), (i/2,2.3), («1,2.5), (2,3.3)}.

The behavior is represented by a set of events; each event is an ordered pair designating an

action and the time at which the action occurred. The order in which events occurred can be

derived from the time stamps. Notice that the times between the il and x2 transitions and

between the x2 and xZ transitions are less than one (so yl and yZ do not transition), and the

time between the xl and x3 transitions is greater than one (leading to transitions of y2 and

z). This is not possible in the synchronous time model we described above. As a result, the

circuit can reach a state (where 2 = 1) in the continuous time model that is not reachable in

the synchronous time model. This can lead to false positive verification results.

The example does not show that it is impossible to reliably avoid false positives when

using a synchronous model for verification; it merely shows that false positives are possible

if one is not careful about how gates are modeled in synchronous time. In fact, in chapter 3

we construct a conservative approximation from continuous time models to synchronous time

models. When this conservative approximation is used to construct synchronous time models

of gates (like the gates used in figure 1.1) from the corresponding continuous time models, then

false positives (relative to the continuous time models, see below) are provably impossible. This

results from the conservative approximation including extra behaviors in the synchronous time

gate models, behaviors that were not included in the informal synchronous time model we used

1.3. RELATED WORK 15

to (incorrectly) argue that a z transition is not possible in figure 1.1.

Even when conservative approximations are used, there is another source of false positives

that must be considered. Recall that using a conservative approximation from continuous time

to discrete time (for exampl-) guarantees that if an implementation satisfies its specification

in synchronous time, then it also satisfies its specification in contiguous time. In this case,

because of the conservative approximation, we say that false positives are impossible relative

to the continuous time model. However, it may still be possible to have a false positive relative

to the physical implementation; that is, the implementation may satisfy its specification in the

continuous time model, but still not work correctly when actually built. This may be caused

either by errors in the formal specification or by errors in the continuous time models of the

components of the implementation.

The possibility of errors in formal specifications is a very important problem that has

received a lot of attention. In this thesis, however, we consider the simpler (but still surprisingly

subtle) problem of avoiding errors in models of components. In chapter 5, we show that using

inertial delay gates (like the ones we used to analyze figure 1.1) can lead to a false positive

relative to a physical implementation. Other gate models, such as chaos delay (section 5.5),

avoid these false positives, while reducing the chances of a false negative.

1.3 Related Work

Methodologies for formal verification provide formal semantics for agents and specifications,

and means for describing agents and specifications in a convenient language and/or with

data structures. They also provide ways of determining whether an implementation satisfies a

specification, and to make this task easier, they often provide abstraction techniques. Isolating

each of these properties of a verification methodology provides a natural way of organizing our

description of related work.

1.3.1 Agent semantics

One of the most important distinguishing features of a verification methodology is the se-

mantics used for agents. The most common semantics for untimed agents are state-transition

systems (with either labeled states or labeled transitions), sets of sequences of states, and sets

of sequences of events (or sets of events).

An early use of the term trace in a formal model of concurrency was in Hoare's trace

16 CHAPTER 1. INTRODUCTION

semantics for CSP [48, 49]. Here a possible behavior of an agent (a process, in this case)

is represented by a trace, which is a finite sequence of communication actions. An agent is

then modeled by a prefix-closed set of traces. To better model deadlock and divergence, this

model was extended to include failures and divergences [7, 8, 881. Reed et al. have developed

a hierarchy of real-time extensions to these models [84. 86]. A timed trace is a sequence of

timed communications (t.a), where a is a communication action and t is a real valued time

stamp. Failures are also extended with timing information. Timed stability values have a role

similar to divergences in untimed CSP.

Rem et al. have used traces to denote sequences of voltage transitions in asynchronous

circuits, rather than sequences of communication actions [87]. Dill extended this model to

implement an automatic verifier for speed-independent asynchronous circuits [38. 391 Circiits

were described by two sets of traces, a success set and a failure set (this notion of failure is

not related to failures in CSP semantics), which represent requirements on the environment as

well as on the circuit itself. Dill also formalized the notion that a model of a circuit is receptive

iff it can never blodc any of its inputs. Although it was never implemented, Dill extended his

model to include infinite traces for representing liveness properties [6, 38, 40].

Modeling behaviors with sequences of actions, as above, is known as interleaving seman-

tics. The possibility of two actions occurring simultaneously is not explicitly represented in

interleaving semantics. Thus, interleaving semantics is potentially less accurate then semantics

with explicit simultaneity. Note that there is another notion of interleaving that is sometimes

used in real-time software analysis: only one process is allowed to be running at a time. This

contrasts with maximal parallelism models, where it is assumed that each process has its own

processor. All of the models we use in this thesis are analogous to maximal parallelism, even

though we sometimes use interleaving semantics.

Concurrency can be represented more explicitly by using sequences of sets of actions: a

non-singleton set represents two or more events occurring simultaneously. This is a convenient

semantics for synchronous systems. It is also a simple discrete time model that can be used

for analyzing real-time systems [5]. Untimed asynchronous agents can be modeled by using

sequences of non-empty sets of actions. Sequences of states can also be used to provide a

similarly expressive model of concurrency. Here untimed systems are modeled using stutter

free sequences or stuttering closed sets of sequences. Other models of concurrency include

Mazurkiewicz traces [74] and partially-ordered multisets [83].

Models based on sequences of actions and sequences of states can be extended to real-time

models in many different ways. Alur and Henzinger provide a good survey of these extensions,

1.3. RELATED WORK 17

as weil as other real-time modeling issues [4].

There is a common feature of the models we have described so far in this section: agents

are modeled by sets of elements, and each element represents a possible behavior of the agent.

Any model with this feature can be handled using our notions of trace algebra and trace

structure algebra, as long as the axioms of trace algebra (which are quite weak) are satisfied.

The elements that represent behaviors, which we call traces (using the term quite broadly),

become the carrier of an appropriate trace algebra. A trace structure, which represents an

agent, contains a set of such traces. These trace structures form the carrier of a trace struc-

ture algebra, which has operations of parallel composition, projection and renaming on trace

structu

A long term goal of our research with trace algebra is to encode a large number of the

existing models of concurrency as trace algebras and trace structure algebras. We believe that

trace algebra can provide a kind of unifying theory, highlighting the important differences and

similarities between these models. This thesis takes a first step in this direction by constructing

conservative approximations between several real-time models.

Even though trace algebra is quite general, it cannot be used to adequately model branching

time properties. In this situation, an agent is typically modeled with some sort of labeled

transition system. If the states of the transition system are labeled, then it is called a Kripke

structure [35]; if the edges (transitions) are labeled, it is called a synchronization tree [76].

Determining what features of trace structure algebras and conservative approximations can

be extended to branching time semantics is an interesting research question, but it is beyond

the scope of this thesis.

1.3.2 Describing Agents

After the semantics of agents are determined, it is still necessary to represent agents in hu-

man readable form (with a description langui ;e) and/or in machine readable form (with an

appropriate data structure). As a simple example, assume an agent is modeled by a set of

sequences of some sort. The set of sequences can be viewed as a formal language. If agents

are finite state, ther. data structures based on finite automata or w-automata can be used to

represent agents. The verifier [16, 17] we use in chapter 5 uses automata to represent trace

structures that consist of prefix-closed sets of finite sequences.

Input-output automata are a slight extension of conventional automata for representing

finite and infinite sequences of actions [69]. They have been further extended to represent

18 CHAPTER 1. INTRODUCTION

timed behaviors using a continuous time model [68, 94]. Input-output automata are used in

verification methods based on refinement mappings (see section 1.3.3). Verification based on

language containment algorithms can be done with the timed automata of Alur and Dill [2, 41]

and Lewis [64]. All of these techniques use the same underlying model of continuous time

behaviors as is provided by the trace algebra C£TU (see section 3.2); they just provide different

ways of expressing agents. The verification methods we propose (see section 5.2) do not require

directly representing continuous time agents; instead, we construct discrete time agents that

are conservative approximations of the intended continuous t;me semantics.

A transition system can be used as branching time semantics (as above), or as a represen-

tation of linear time semantics if only its set of execution sequences are considered. Real-time

extensions of transition systems include both continuous time [46] and discrete time [45, 81, 82],

Process algebras have also been used as the basis for real-time specification languages. Lee

and Davidson [62] and Lee and Zwarico [63] have extended CSP with methods for specifying

timeouts and delays associated with executing actions. Schneider has shown how extending

CSP with a single wait operator makes it possible derive a large number of other standard

timing operators [89]. Nicollin et al. [79, 80] have extended ACP with a unit delay operator.

This operator can be used to express delays and timeouts of arbitrary duration. CCS has also

been extended with operators for describing real-time processes [95, 96].

1.3.3 Specification and Verification

In its most general form, a specification is a set of agents; verification is the process of deter-

mining whether a given implementation is in the set of agents of the specification.

If there is some equivalence relation defined on the set of agent models, and the specification

is an equivalence class, then the specification can be represented by one of the agents in the

class. Several examples of this style of specification are based on various kinds of observational

equivalences [76]. Hierarchical verification is simplified since both the implementation and the

specification are given by a single agent.

A generalization of this is to use a preorder on her than a equivalence relation.

An agent then represents the set of all agents that a, Less than or equal to it according to

this order. The preorder is often based on formal language containment [571. The idea is that

if behaviors are removed from an agent that satisfies some s-pecification, then the resulting

agent also satisfies the specification. Verification can either be done by hand (possibly with

assistance from an automated theorem prover) using refinement mappings [68] or by language

1.3. RELATED WORK 19

containment algorithms on automata [32, 38, 57].

Most work in the literature on the automatic verification of real-time systems uses some sort

of temporal logic as a specification language. These logics are usually extensions of existing

qualitative temporal logics such as CTL [34] or PTL [66], which all suffer from well known

limits in the expressiveness of prepositional temporal logics [97]. A formula in a temporal logic

serves as a specification. The set of agents represented by the specification is the set of agents

that satisfies the formula.

An implementation can be represented by a formula in temporal logic (like the specification)

or it can be represented by a transition system. If the implementation is represented by

a formula / and the specification is represented by a formula g, then the implementation

is correct if ar i only if the formula / A -^ is not satisfiable; this can be checked using a

tableau construction [33, 70]. Model checking is used to check whether a transition system

satisfies a given temporal logic formula [26, 34. 35]. Hierarchical verification is difficult with

model checking since the specification language is different from the languages used to describe

implementations.

Ostroff [81, 82] extends linear temporal logic to include a global clock variable that can

be used in forming propositions. The semantics is defined on a discrete time model, and

algorithms are given for automatic model checking of formulas in the logic. The semantics

and the algorithms are quite complicated however, and only small verification examples have

been published. There are other examples of extending temporal logics with a discrete time

model [3, 47, 54], but none of these methods have been implemented and tested on examples.

Methods for model checking a continuous real-time extension of CTL have been developed

by Alur, Courcoubetis and Dill [1], and also independently by Lewis [65]. It appears likely that

the exact modeling of continuous time reduces the efficiency of the model checking algorithms.

Alur and Henzinger [4] give a survey of these and other real-time temporal logics.

Rather than using a temporal logic, Jahanian, Mok and Stuart use RTL (an extension

of first order logic) to describe real-time systems and their specifications [51, 52]. If the

specification is a theorem derivable from the formula representing the system, then the system

is correct. The proof can be automated using either a first order theorem prover or a decision

procedure for Presburger Arithmetic. System descriptions can also be written using the event-

action model and then mechanically translated into RTL formulas.

20 CHAPTER 1. INTRODUCTION

1.3.4 Abstraction

Abstraction techniques are important for reducing the complexity of verification. We describe

here some of the abstraction techniques that are closely related to the conservative approxi-

mations from continuous time to discrete time that we define later in the thesis.

Henzinger, Manna, and Pnueli explore the relationship between verification results obtained

with discrete time and continuous time models [47]. They show that for implementations given

by time transition systems, and for specifications written in a large subset of metric temporal

logic, properties hold in discrete time if and only if they hold in continuous time. This exactness

result does not give the same amount of flexibility as conservative approximations do for

devising abstractions. Also, their results appear to depend rather heavily on the particular

behavior model that they used.

Kurshan et al. have verified several commercial communication rystems and protocols [44]

using powerful abstractions techniques based on homomorphisms on automata [57, 58'. The

abstractions are closely related to our notion of i-, conservative approximation induced by a

homomorphism. Our techniques for constructing domains of agent models and conservative

approximations are significantly more general, but Kurshan et al. have gained considerable

practical experience with their techniques.

Kurshan and McMillan [59] generalized homomorphisms on automata to develop a semi-

algorithmic method for extracting finite-state models from an analog, circuit level model.

This requires modeling continuous time, as well as continuous voltage and other physical

parameters. The method can be applied directly to only small circuit components. However,

hierarchical verification methods can be applied in order to verify larger circuits. Although the

method can relate particular continuous and discrete models, it does not provide a relationship

between entire domains of agent models like conservative approximations.

Reed. Roscoe and Schneider have defined an extensive hierarchy of timed models for

CSP [84. 85, 861. They show how abstractions within the hierarchy can be used to simplify

correctness proofs [86, 89). However, they do not provide mathematical tools, such as trace

algebra and trace structure algebra, for simplifying extensions to the hierarchy. Also, in their

models behaviors are either untimed or have real-valued time stamps; there are no intermedi-

ate discrete time models. The levels in the hierarchy are formed from various combinations of

timed and untimed CSP traces, failures and stability values.

Chapter 2

Trace Algebra, Part I

This chapter describes some very general methods for constructing different models of con-

current systems, and for proving relationships between these models. The most important

of these relationships is the concept of a conservative approximation. Informally, a model is

a conservative approximation of a stcond model when the following condition is satisfied: if

an implementation satisfies a specification in the first model, then the implementation also

satisfies the specification in the second model. Conservative approximations are useful when

the second model is accurate but difficult to use in proofs or with automatic verification tools,

and the first model is an abstraction that simplifies verification.

The formal methods we describe are based on three kinds of inter-related algebras: con-

currency algebra, trace algebra and trace structure algebra. Concurrency algebra is based on

Dill's circuit algebra [38] and is a simple abstract algebra with three operations: parallel com-

position, projection, and renaming. The three operations must satisfy the axioms Cl through

C9 (p. 24). The domain (or carrier) of a concurrency algebra is intended to represent a set of

processes, or agents. Any set can be the domain of a concurrency algebra if interpretations

for parallel composition, projection and renaming that satisfy Cl through C9 can be defined

over the set. In this thesis, whenever we define an interpretation for these three operations, we

always show that the interpretation forms a concurrency algebra, which gives evidence that

the interpretation makes intuitive sense.

We often use a set of trace structures as the domain of a concurrency algebra. This special

case of a concurrency algebra is a called a trace structure algebra. Each trace structure contains

a set of traces, where each trace represents a behavior of the agent modeled by the trace

structure. The kind of trace that is used is a parameter in our method. Any mathematical

object that satisfies certain minimum requirements can be used as a trace. These requirements

21

22 CHAPTER 2. TRACE ALGEBRA, PART I

are formalized as the axioms of trace algebra. A trace algebra has a set of traces as its domain,

and defines the operations of projection and renaming (and possibly concatenation) on traces.

In summary, a trace algebra has a set of traces as its domain, and each trace is interpreted

as an abstraction of a physical behavior. A sequence of actions is a standard example of a trace,

but in trace algebra any mathematical object can used as a trace as long as certain axioms

are satisfied. An agent is modeled by a trace structure, which contains a set of traces from

some trace algebra, representing the set of possible behaviors of the agent. The operations of

parallel composition, projection and renaming are defined over a domain of trace structures.

forming a trace structure algebra. These operations satisfy the axioms of concurrency algebra.

so a trace structure algebra is a special case of a concurrency algebra.

2.1 Concurrency Algebra

Concurrency algebras (which are based on Dill's circuit algebra [38]) have the following opera-

tions on agents: parallel composition, projection and renaming. These operations satisfy a set

of axioms, which are intended to be consistent with the intuitive meaning of the operations.

Agents communicate through either shared actions or shared state variables. We use the

term signal to refer to either an action or a state variable. We associate with each agent an

agent signature (or just signature), which describes sets of input signals and output signals.

Definition 2.1. We use W to denote a set of signals. The set of agent signatures T over W

is the set of ordered pairs {1,0) such that I and 0 are disjoint subsets of W. We use 7

to denote agent signatures (often called just signatures).

In a signature (/, 0) over W, the set W is usually infinite and the sets / and 0 are usually

nnite, but this is not required.

Definition 2.2. If 7 = {1,0) is a signature over W, then A = I U 0 is the alphabet 0/7. If

A is the alphabet of some signature, then we call A an alphabet. Thus, an alphabet over

W is any subset of W.

Note 2.3. When we mention a signature 7, we also implicitly define / and 0 so that 7 =

(/, 0). We also implicitly define A to be the alphabet of 7. If the name of the signature

is decorated with primes and/or subscripts, those decorations carry over to the implicitly

defined quantities. For example, mentioning a liignature 71 implicitly defines /{, 0'1 and

A[.

2.1. CONCURRENCY ALGEBRA 23

Note 2.4. If an object E has an agent signature associated with it, we implicitly dehne 7 to

be that signature. If the name of the object is decorated with primes and/or subscripts,

those decorations carry over to the implicitly defined signature. For example, associating

a signature with an object E[implicitly defines a signature f[. This, as described in

note 2.3, also implicitly defines ![, 0\ and A'v

The renaming operation uses a renaming function, which is a bijection from one alphabet

to another.

Definition 2.5. A function r with cfom(r) = A and codom(r) = B, where A and B are

alphabets over W, is a renaming function over W if r is a bijection.

The parallel composition of two agents E and E' (written E \\ E') corresponds to, for exam-

ple, joining two circuits or running two processes concurrently. In the resulting composition.

E and E' communicate through shared signals. We require that no signal be an output of

both E and E'. The agent Tename{r){E) is formed from E by renaming the signals of E

according to r. If 5 is a subset of the alphabet of £, then proj{B){E) has B as its alphabet;

the remaining signals of E are not externally visible. We allow only outputs of E to be hidden,

so B must contain all of the inputs of E. The three operations of concurrency algebra satisfy

several identities. All of this is formalized in the following definition.

Definition 2.6. A concurrency algebra over W has a domain V of agents, and the operations

o{ parallel composition, projection and renaming, denoted by ||, proj{B) and renamefr).

Associated with each element of V is an agent signature from the set Y of agent signatures

ovsr W. Let E and E' be elements of V (recaU that this implicitly defines /. /'. etc..

see note 2.4). The signatures of E || £", proj{B){E) and rename(r')(£') are given by the

following rules.

• If 0 fl 0' = 0, then E [j £" is defined and its signature is

((/u/')-(OuO'), OuO').

• U I C B C A, then proj{B){E) is defined and its signature is (/, 0 D B).

• If r is a renaming function with domain A, then Tena.me{r){E) is defined and its

signature is (r(/),r(0)), where r is naturally extended to sets.

24 CHAPTER 2. TRACE ALGEBRA, PART I

The operations must satisfy the identities given below. In all of the identities, there is

an implicit assumption that the left hand side of the equation is defined; in each case, if

the left hand side is defined, then so is the right hand side.

Cl. {E\\E')\\E" = E\\{E'\\E").

C2. E\\ E' = E'\\ E.

C3. rename(r)(rename(r')(£')) = rename(r o r'){E).

C4. rename{r){E \\ E') = rename(r \A^r{A)){E) \\ rename(r \AI_T(AI)){E').

C5. Tename{idA){E) — E.

C6. proj(JB)(Droj(JB')(^)) = proj{B){E).

C7. proj{A){E) = E.

C8. proj{B)iE || £") = proj{B f] A){E) \\ proj{B fl A'){E'). if (.4 n .4') C B.

C9. proj(r(5))(rename(r)(i;)) = renanie(r \B^r{B)){proj{B){E)).

2.2 Trace Algebra

Several methods for verifying concurrent systems are based on checking for language contain-

ment or related properties [38, 43. 49. 57, 68]. In the simplest form of language containment-

based verification, each agent is modeled by a formal language of finite (or possibly infinite)

sequences. If agent T is a specification and T is an implementation, then T is said to satisfy

T if the language of T is a subset the language of T. The idea is that each sequence, some-

times called a trace, represents a behavior; an implementation satisfies a specification iff all

the possible behaviors of the implementation are also possible behaviors of the specification.

The method we use in this thesis for verifying real-time properties is a generalization of

the language containment method. Traces are not restricted to be sequences, but can be any

mathematical object that has certain properties. In this section, these properties are formalized

in the axioms of trace algebra, which is a kind of abstract algebra that has a set of traces as its

domain. The next section describes trace structure algebra, which has as its domain a set of

2.2. TRACE ALGEBRA 25

trace structures, each containing a subset of the traces from a given trace algebra. The notion

of one trace structure satisfying another is based on trace set containment.

Before giving the formal definitions of these concepts, let us describe a simple example of

a trace algebra and a trace structure algebra. Let the set of traces over an alphabet A be .4°°,

which is the set of finite and infinite sequences over A. A pair (7, P) is a trace structure if 7

is a signature and P C .4°°, where A is the alphabet of 7.

\^e define the operations of parallel composition, projection and renaming on trace struc-

tures by first defining projection and renaming on individual traces. U x e A00 and B C A,

then proj{B){x) is the string formed from x by removing all symbols not in B. If r is a

renaming function over .4, then rename(r)(a;) is the string formed from x by replacing every

symbol a with r(a).

Projection and renaming on trace structures are just the natural extensions of the corre-

sponding operations on traces. In particular, if T = ((/, 0). P) is a trace structure, I C B C A

and 7- is a renaming function over A, then

proj{B){T) = {{I,OnB),proj{B)iP)),

Tename{r){T) = ((r(7),r((9)),rename(r)(P)),

where the operations of projection and renaming on traces are naturally extended to sets of

traces. If T = (7,^) is equal to the parallel composition of T' and T", then

P = {x£A°°: proj{A'){x) e P'A proj{A"){x) € P"}.

Given our definition of projection on strings, this is a natural definition of parallel composition.

Rem, van de Snepsheut and Udding's [87] definition of the set of traces resulting from parallel

composition is almost identical to ours, except that it is restricted to finite length strings.

Looking at the above definitions more closely, we can see how these concepts can be gen-

eralized to unify many different kinds of models. Rather than always using strings in a formal

language as the domain of traces, we can use any domain that has projection and renam-

ing operations defined on it and that satisfies certain requirements. These requirements are

formalized in the axioms of trace algebra. In each case, the operations on trace structures

are defined exactly as above, in terms of the operations on individual traces. The resulting

trace structure algebra satisfies the axioms of concurrency algebra because the underlying

traces satisfy the axioms of trace algebra. The remainder of this chapter formalizes and proves

these claims, and defines what it means for one trace structure algebra to be a conservative

approximation of another.

26 CHAPTER 2. TRACE ALGEBRA, PART I

We make a distinction between two different kinds of behaviors: complete behaviors and

partial behaviors. A complete behavior has no endpoint. Since a complete behavior goes

on forever, it does not make sense to talk about something happening "after" a complete

behavior. A partial behavior has an endpoint; it can be a prefix of a complete behavior or

of another partial behavior. Every complete behavior has partial behaviors that are prefixes

of it; every partial behavior is a prefix of some complete behavior. The distinction between

a complete behavior and a partial behavior has only to do with the length of the behavior

(that is, whether or not it has an endpoint), not with what is happening during the behavior;

whether an agent does anything, or what it does, is irrelevant.

Complete traces and partial traces are used to model complete and partial behaviors,

respectively. A given object can be both a complete trace and a partial trace; what is being

represented in a given case is determined from context. For example, a finite string can

represent a complete behavior with a finite number of actions, or it can represent a partial

behavior. The form of trace algebra we define here has only complete traces; it is intended

to represent only complete behaviors. Trace algebra with partial traces will be defined in

chapter 4. We use the symbol 'C to denote trace algebras. Since we only consider here trace

algebras with complete traces and without partial traces, we use a subscript 'C {e.g., 'Cc') to

denote the trace algebras used in this chapter.

Definition 2.7. A trace algebraCc over W is a triple {Be,proj,rename). For every alphabet

A over W, Bc{A) is a non-empty set, called the set of traces over A Slightly abusing

notation, we also write Be as an abbreviation for

|J {BdA) ■ A is an alphabet over W}.

For every alphabet B over W and every renaming function r over W, proj{B) and

rename(r) are partial functions from Be to Bc. The following axioms Tl through T8

must also be satisfied. For all axioms that are equations, we assume that the left side of

the equation is defined.

Tl. proj{B){x) is defined iff there exists an alphabet A such that x E Be{A) and B C A.

When defined, proj{B){x) is an element of Be{B).

T2. proj{B){proj{B'){x)) = proj{B){x).

T3. If x e Be{A), then proj{A){x) = x.

2.2. TRACE ALGEBRA 27

T4. Let x e Bc{A) and x' 6 Bc{A') be such that proj(A fl A'){x) = proj{A (1 A'){x').

For aU A" where A U A' C A", there exists x" € Bc{A") such that x = proj(A)(x")

and a;' = proj(A')(:c").

T5. rename(r)(x) is defined iff a; G Sc(rfom(r)). When defined, rename(r)(i) is an

element of Bc{codom{r)).

T6. rename(r)(renarne(r')(a;)) = rename(r o r'){x).

T7. If a; € Bc{A), then rename{idA){x) — x.

T8. pToj{r{B)){Tenaine{r){x)) = rename{r \B^T{B)){proj{B){x)).

Tl and T5 state when the operations on traces are defined. T2, T3, T6, T7 and T8 are

natural properties corresponding to C6, C7, C3, C5 and C9, respectively. The remaining

axiom, T4 is a kind of "diamond property", as illustrated in figure 2.1. As an example of

applying T4, consider the case where traces are sequences. Let A = {a,fe}, A' = {b,c},

x = abab and x' = beb. Clearly proj(A n A'){x) and proj(A fl A')(a;') are both equal to bb.

Choosing x" = abacb demonstrates the T4 holds for this pair of sequences. Intuitively, T4

requires that if two traces x and x' are compatible on their shared signals {i.e., An A'), then

there exists a trace x" that corresponds to the synchronous composition of x and x'.

Note 2.8. We naturally extend the renaming and projection operations on traces to opera-

tions on sets of traces. For example, if rename(r)(x) is defined for every x in X, then

rename(r)(A'') is defined such that

ren&me{r)(X) = {rename(r)(2;) : x £ X}.

2.2.1 Examples

As an example trace algebra, we formalize the trace algebra briefly described at the beginning

of section 2.2, which we call C£. We always use the symbol 'C to denote trace algebras, and the

superscript T is a mnemonic for an (untimed) interleaving model; the subscript 'C indicates

that there are only complete traces in the trace algebra (i.e., a trace algebra without partial

traces).

Definition 2.9. For a given set of signals W, the trace algebra C£ = {B^,proj1,rename1)

over W is defined as follows:

28 CHAPTER 2. TRACE ALGEBRA, PART I

x" e B{A")

proj{A)

x € B{A)

proj{Ar] A')

proj{A')

x' € B{A')

pToj{A n .4')

proj{A n A'){x) = proj{A n A'){x')

Figure 2.1: According to T4, if there exists an x and an x' that satisfy the lower half of the
diamond, then there exists an x" that satisfies the upper half, for any alphabet A" such that
AUA'CA".

• For every alphabet A over W, the set B^A) of traces over .4 is A00.

• If a: € B'dA) and B C ,4, then proj/(5)(x) is the sequence formed from x by

removing every symbol a not in B. More formally, if x' = pro/(B)(x), then

ien(x') = |{j 6 V : 0 < j < yen(a;) A x(;) € 5}'

and »'(fc) = x{n) for all fc < ien(x'), where n is the unique integer such that
x{n) t B and

k=-\{jeAf:0<j<nAx{j)e B}\.

• If x € ßc(j4) and T- is a renaming function over W with domain A, then

rename(r)(:c) = An € .A/V[r(a!(n))].

Note 2.10. For the trace algebra C£ (and analogously for other trace algebras defined later)

we often drop the superscript 7' when writing ß£, proj1 and rename7.

2.2. TRACE ALGEBRA 29

Trace algebra can be used to construct a large variety of behavior models. The trace

algebra Cc, for which Bc{A) = A00, is just one example. To provide more intuition about the

range of possible trace algebras, we informally describe several examples.

The simplest possible trace algebra has exactly one trace; call it XQ. For any alphabet .4,

the set of traces over A is Bc{A) = {XQ}. If B is an alphabet and r is a renaming function,

then proj{B){x0) and rename(r)(xo) are defined and are equal x0. This trace algebra does not

distinguish between any behaviors; all behaviors are represented by the same trace. For this

reason it is not a useful trace algebra, but it does satisfy the necessary axioms.

A slightly more complicated trace algebra has Bc{A) = 2A. For any trace x, proj{B){x)

is defined and is equal to x n B. On the other hand, rename(r)(a;) is defined iff x C dom(r);

when defined, it is equal to r{x), where is r is naturally extended to sets. It is easy to show

that this trace algebra satisfies Tl through T8; in particular, if x and x' satisfy the hypothesis

of T4, then x" = x <J x' is sufficient to show that T4 is satisfied. Traces in this trace algebra

do not provide any information about actions occurring in sequence, only information about

what actions occurred a non-zero number of times during a behavior. Alternatively, if a t x,

then this could be interpreted to mean that a occurred an odd number of times during the

behavior represented by x.

Traces in the last two examples provide less information about a behavior than do traces

in Cc. As an example of a trace algebra that provides more information than CQ, let Bc{A) =

(2)w. For any trace x, pToj{B){x) is defined and is formed from x by intersecting each element

of the sequence with B. The function rename(r) is the natural extension of r to sequences of

sets. Unlike traces in CQ, these traces can be interpreted as providing information about the

time at which events occur. If x is such a trace, then x{n) is the set of events that occurred

at time n. The set x{n) must be defined for all integers n; therefore, each trace x must be an

infinite sequence. This trace algebra ran be shown to be isornorphic to the synchronous time

trace algebra C%T (definition 3.6, p. 60).

A trace algebra that provides an intermediate amount of information between the last

example and C^ can be constructed by letting Bc{A) = {2A - {0})°°. The renaming operation

is the same as the last example, except that it is also extend to finite sequences. Projection is

similar to the last example, except that after doing the intersection, any instances of the empty

set that result must be removed from the sequence. Like ££, this trace algebra is untimed;

however, it represent simultaneity explicitly, unlike interleaving semantics.

In chapter 3, we describe the continuous time trace algebra Cg™. There each trace over

an alphabet A is an element of 2>lxR/, where ^ is the set of non-negative real numbers.

30 CHAPTER 2. TRACE ALGEBRA, PART I

Each trace is a set of events; each event is an ordered pair of an action and a time stamp.

An isomorphic trace algebra can be constructed by taking advantage of the natural bijection

between 2A**' and 3^ - 2^. If x is a trace in %' ~ 2A, then x{t) is the set of actions that

occurred at time t.

All of the trace algebras we have described are action based, but trace algebra can also be

used for state based models. For an agent with alphabet .4. we interpret each a 6 .-1 as a state

variable. Let V be the set of values that can be taken by state variables. Then, each state is

an element of .4 — 1'. A trace algebra based on sequences of states would have Bc{A) equal

to (.4 —> r)", which can also be written as A''r —» (.4 — V).

For a continuous time, state based model, let Bei A) = ^ — (.4 — V). If x is such a

trace, then x{t) is the state at time t. If V is the set of real numbers, then this trace algebra

could be used as a circuit model that represents both continuous time and continuous voltage.

In section 2.3 we show how trace algebras can be used to construct trace structure algebras.

We can then discuss how the above trace algebra examples, which provide different models of

individual behaviors, lead to different models of agents.

2.2.2 Proofs

This section proves that (^ is trace algebra. It may be skipped on first reading.

Lemma 2.11. C^ is a trace algebra.

Proof. To show that C£ is a trace algebra, we must show that it satisfies Tl through T8.

Tl, T3, T5, T6 and T7 are easy to show. All that remains is T2, T4 and T8.

Lemma 2.12. C£ satisfies T2.

Proof. Let x 6 Bc{A) and B C B' C A. We must show that

proj{B){proj{B'){x)) = proj{B){x).

The proof can be divided into three cases depending on whether proj{B){x) and

proj{B'){x) are finite or infinite length strings (notice that it is impossible for

proj{B'){x) to be finite when pioj{B){x) is infinite). We only consider the case

where both are infinite, the other cases are analogous. In this case, x is of the form

x = yoboy\bl ■■■ yribTi ■■■,

2.2. TRACE ALGEBRA 31

where j^ £ (.4 - 5)' and k G S. Thus,

proj(5)(x) = Mi ■•• fcn ••••

For all i, the trace yi is of the form

Vi = 2t,0 61,0 -U 6i,l • • • ZiM-l Kn,-! 2.,n.5

where z^ €{A- B')* md 6tJ e B' - B. Let

2/.' = proj{B'){yi)

= KoKi ■■■ &U-i'

which is an element o({B' - B)*. Clearlj',

proj(5)(proj(5')(x)) = proj^Ky^o^i, ... ^6n ••.)

= 60 ^ . • • 6n . • ■

= proj(B)(2).

Lemma 2.13. Q satisfies T4.

Proof. We consider the case where proj(.A fl A'){x) and proj(i4 fl A'){x') are of infinite

length; the finite case is similar. In this case x and x' are of the form

x = XodoXidi ■ ■ ■ xnan ■ ■ ■

x = XQUOX^^ ■■■ xnan---,

where the o^ and a- are elements of A n A', and i, e (.4 - .4')' and ^ 6 {A' - A)'.

If we assume that

pToj{A n .4')(z) = proj{A H A')(x'),

then Oi = a- for every i. An example of an x" that satisfies T4 is

x" = IQ ^o ao «i ^i ai • • • in i^ an ■ ■ •,

since

proj(A)(x") = xotto^iai ••• Xnttn •••

32 CHAPTER 2. TRACE ALGEBRA, PART I

and

PTOJ{A'){X") = 4 oo üJI oa • ■ • < on • • ■

= X .

Lemma 2.14. C£ satisfies T8.

Proof. We consider the case where proj{B){x) is of infinite length; the finite case is

similar. In this case, x is of the form

x = yob0ylbl ■•■ ynbn • • •,

where & £ (A - B)' and k £ B. Thus,

rename^ \B^{B)){pTOJ{B){z)) = rename^ \B^r{B)){b0 b, ■ ■ ■ bn ■ ■ ■)

= KM''(M---r(M----
For all t, let

y'i = rename(r)(j/,).

Clearly,

proj(r(5))(rename(r)(x)) = proj(r(5))(2/;r(6o) ^ r(61) •••y;r(6n) • • •)

= KfcoMM • • • KM • • •
= rename(r |ß_r(B))(proj(B)(x)).

2.3 Trace Structure Algebra

We are now ready to define the concept of a trace structure algebra. Trace structures are

constracted from the traces of a trace algebra, and are used to represent agents. Here we

consider trace structures that contain one set of traces, which represents the set of possible

behaviors of an agent.

2.3. TRACE STRUCTURE ALGEBRA 33

Definition 2.15. Let Cc = {Be,proj,rename) be a trace algebra over W. The set of truce

structures over Cc is the set of ordered pairs {f,P), where

• 7 is a signature over W,

• -4 is the alphabet of 7, and

• P is a subset of Bc{A),

We call 7 the signature and P the set of possible traces of a trace structure T - (7.P).

A trace structure (7, P) represent an agent with signature 7; each trace in P represents a

possible complete behavior of the agent.

Note 2.16. When we mention a trace structure T, we implicitly define 7 to be its signature

and P to be its set of possible traces. If the name of the trace structure is decorated

with primes änd/or subscripts, those decorations carry over to the implicitly defined

quantities. For example, mentioning a trace structure T{ implicitly defines a signature

7i and P[. This, as described in note 2.3, also implicitly defines /{, 0[and A[.

Definition 2.17. If Cc = {Be, proj, rename) is a trace algebra over W and T is a subset of the

trace structures over Cc, then Ac = {Cc,T) is a trace structure algebra iff the domain

T is closed under the following operations on trace structures: parallel composition

(def. 2.18), projection (def. 2.19) and renaming (def. 2.20).

We use the subscript C in Ac to denote a trace structure algebra that is built from a trace

algebra Cc that has only complete traces (no partial traces). In chapter 4, we will define trace

structure algebras that are constructed from trace algebras with both complete and partial

traces.

To complete the definition of trace structure algebra, we need to define the operations on

trace structures mentioned in definition 2.17.

Definition 2.18. If 0 H 0' = 0, then T" = T\\T' is defined and

7" = ((/ U /') - (0 U 0'), 0 U 0')

P" = {x € Bc{A") : pToj{A){x) EPA proj{A'){x) € P'}.

Definition 2.19. UJ C B C A, then

proj{B){T) = {{I,OnB),proj{B){P)).

34 CHAPTER 2. TRACE ALGEBRA, PART I

Definition 2.20. If r is a renaming function with domain A, then

rename(7-)(T) = ((r(7),r(0)),rename(r)(P)),

It can be shown, using the axioms of trace algebra, that the operations of parallel com-

position, projection and renaming on trace structures form a concurrency algebra (see theo-
rem 2.22).

We want to use trace structure algebras as the basis for a verification methodology, which

requires defining what it means for an implementation to satisfy a specification when both are

given by trace structures. Our notion of satisfaction is based on trace set containment: an

implementation satisfies a specification iff it is contained by the specification.

Definition 2.21. We say T C T (read T is contained in T) iff 7 = 7' and P C P'.

The operations of parallel composition, renaming and projection are monotonic with re-

spect to trace structure containment (see theorem 2.26). The monotonicity of parallel com-

position is important for using trace structure algebras as a basis for hierarchical verification
techniques.

2.3,1 Examples

Let us consider how some of the example trace algebras discussed in section 2.2.1 can be used

to construct trace structures, and how the different definitions of projection on traces lead to

different notions of parallel composition of trace structures.

Consider trace structures over the trace algebra C£. The set of possible traces of a trace

structure with alphabet A is a subset of Bc{A), which in this case is A00. Consider the trace
structures

^ = {{{a,b},d),{abab})

T' = {{{b,c}J),{bcb}).

By the definition of parallel composition in a trace structure algebra, the set of possible traces
of T" = T\\T' is

P" = {xE Bc{{a, 6, c}) : proj({a, h)){x) G P A proi({6, c})(x) g P')

= {abacb,abcab}.

2.3. TRACE STRUCTURE ALGEBRA 35

This example illustrates how parallel composition results in nondeterminism in this model.

However, parallel composition does not lead to nondeterminism when the underlying trace

algebra is the one with Bc{A) = {2A)W described in section 2.2.1. Let

T = (({a,6},0), {({a,6},{a}, {6})})

T = (({6,C},0),{({6}, {c},{i})})

Here the set of possible traces of T" = T || T" is the singleton set

P" = {({a,6},{a,C}, {fe})}.

The relevant difference between this model and the interleaving model is that here each trace

provides more information about the time of occurrence of events. As a result, the order of

events is fully determined when "merging" together two local traces to form a global trice

of a composition. Global traces are also fully determined in the cases where traces over in

alphabet A are elements of 2^xK/, {A ^ V)" or ^ ^ [A ^ V).

Another case where parallel composition does lead to nondeterminism is the one described

in section 2.2.1 where BC{A) = {2A - {0})°°. In this case, for T and T defined as above, the

set of possible traces of T" = T || T is

P" = {({a,6},{a},{c}, {6}),

({a,6}, {a,C},{6}),

({a,6},{C}, {a}, {6})}.

2.3.2 Proofs

This section proves that trace structure algebras are concurrency algebras and that the oper-

ations on trace structures are monotonic with respect to trace structure containment.

Theorem 2.22. Trace structure algebras are concurrency algebras.

Proof. By definition, the domain T of trace structures is closed under projection, composi-

tion and renaming. We must show that Cl through C9 are also satisfied.

Lemma 2.23. Trace structure algebras satisfy Cl.

36 CHAPTER 2. TRACE ALGEBRA, PART I

Proof. Let ^ = (T || T) || T" and T2 = T \\ [T \\ T"). Using T2 and definition 2.18. it

is easy to show that both Pj and P2 are equal to

{x € BciAx) : proj(.4)(x) e 5 A pToj{A'){x) G 5' A proj(.4")(a;) € 5"}.

D

C2 is obvious from the definition of parallel composition. C3 follows easily from T6

and the definition of rename on sets of traces and on trace structures.

Lemma 2.24. Trace structure algebras satisfy C4.

Proof. Let T" = rename(r)(T jl T). Then

P" = Tenanie{r){{x € Bc{A U A') : proj{A){x) € P A proj{A'){x) 6 P'})

= {rename(r)(a;) t ßc(r(>l U k')) :

proj{A){x) € P A proj(.4')(^) 6 P'})

by T6 and T7

= {rename(r)(a;) G 5c(r(^ U A')) :

rename(r U_r(>l))(proj(^)(iC)) € rename(r |^r{il))(P)

A rename(r |A^r(A,))(proj(A')(aj)) e rename(r ^.^^.^(P')}

byT8

= {renanie(r)(x) £ ScO'M U .4')) :

proi(r(>l))(rename(r)(x)) £ rename(r ^^^^(P)

Aproj(r(.4'))(rename(r)(a;)) e rename(7- |^,^(il,))(P')}

by T6 and T7

= {2/ € ßc(r(A U A')) : proj(r |^rU)(^))(y) 6 rename(r \A^r{A)){P)

A proi(r ^^^^(^^(y) £ rename(r [^^^^(P')}.

Thus, P" is equal to the set of possible traces of

rename(r i^rU))(T) || rename(r 14,_>rM,))(r).

□

C5 follows from T7, C6 follows from T2, and C7 follows from T3.

2.3. TRACE STRUCTURE ALGEBRA 37

Lemma 2.25. Trace structure algebras satisfy C8.

Proof. Let Tj = proj{B){T \\ T') and T2 = proj{B D A){T) || pioj{B D A'){T'), where

.4 n .4' C B C .4 U .4'. It is easy to check that Tj and T2 have the same signature:

we must show that P1 = P2. Let y £ BC{B), and assume

proj(5 H A){y) € PTOJ{B n A){P).

Then,

pToj{B n .4)(i/) € PTOJ{B n A)(P)

<=> 3z G P[proj(5 n A){y) = pr0j(5 n A)(2)]

byT4

^ d2 G P[3x € Bc{B U A)[J/ = proj{B){x) A 2 = proj(A)(a;)

A proj{B n .4)(y) = proj(£ D A){z)]]

by substitution for y and 2

«* 32 € P[3i G ßc(5 U .4)[i/ = proj{B){x) A 2 = proi(y4)(x)

A proj(B n A){proj{B){x)) = proj{B 0 A){proj{A){x))]]

byT2

^ 32 G P[3x G BciB U .4)[y = proj^Xi) A 2 = proj(.4)(x)]]

^ 3a; G Bc{B U .4)[y = proj{B){x) A proj(>l)(x) G P].

Similarly,

proi(5 n A'){y) G proj{B n A')(P')

«. 3a;' G Bc{B U A')[y = proj{B){x') A proj(A')(x') G P'].

38 CHAPTER 2. TRACE ALGEBRA, PART I

We use these facts to show

P2 = {ye Bc{B) : PTOJ{B n A){y) 6 proj(5 n A){P)

A proj(B n A')(2/) € pToj{B n ^(P')}

as shown above

= {ye Bc{B) : 3x € Sc(5 U .4)[3x' 6 Bc{B U .4')[

y = proj(ß)(x) A proj(-4)(aj) € P

A j/ = proj{B){x') A proJC^OCa;') € P']]}

by T4, since ADA'CBCAüA'

= {ye Bc{B) : 3x e Bc{B U Apx' e Sc(5 U A')[3a!" e ßc(-4 u A')[

2/ = proj{B){x) A proj(,4)(s) 6 P

A y = proj(JB)(x') A proj{A'){x') e P'

Ax = proj{B U A){x") Ax' = proj{B U A')(r^}

by T2 and substitution for x and a;'

= {ye Bc{B) : Bs" e Bc{A U ^[^ = proj{B){x")

A proj(.4)(I") e P A proj(>l')(x") € P']}

= Pi.

C9 follows easily from T8.

Theorem 2.26. Parallel composition, rename and proj are monotonic with respect to trace

structure containment.

Proof. Let T and T be arbitrary trace structures such that T C T. The theorem follows

from following propositions, all of which are easily proved:

• T |! T" C T || T",

.. ptoj{B)[T) C PTOJ{B){T'),

• rena.me{r){T) C rename(r)(r').

a

2.3. TRACE STRUCTURE ALGEBRA 39

2.3.3 Constructing Trace Structure Algebras

The definition of a trace structure algebra Ac = {Cc,T) requires that the set of trace structures

T be closed under the operations on trace structures. This section proves three theorems that

make it easier to prove closure, and shows how to use these theorems.

The first theorem states that if T is equal to the set of all trace structures over Cc, then T

is closed under the operations on trace structures, so Ac is a trace structure algebra. Recall

that the alphabet of a trace structure need not be a finite set. The second theorem shows

that the set of all trace structures with finite alphabets is closed under the operations on trace

structures.

For the third theorem, let {Cc,T) be a trace structure algebra, where T is some subset

of the set of trace structures over Cc- For every alphabet B, let C{B) be a class of sets of

complete traces over B, that is, C{B) C 2Bc<-BK Assume that C is closed under intersection,

renaming, projection and "inverse projection" (this is formalized below). Let T be the set of

trace structures (7,?) G T such that P is in £(.4). Then T is closed under the operations

on trace structures, so {Cc,T') is a trace structure algebra.

Let T1 be the set of all trace structures over CQ. By the first theorem, A^ = (C^.T7) is

a trace structure algebra. Let TIR be the set of all trace structures (7,P) over C? for which

7 has a finite alphabet and P is a mixed regular set of sequences (that is, P is the union of a

regular set and an ^-.regular set). By the second and third theorems, A1^ = (C^,T^) is also

a trace structure algebra.

The remainder of this section formalizes and proves these results.

Theorem 2.27. If Cc is a trace algebra and T is the set of all of the trace structures over

Cc, then T is closed under the operations on trace structures, so Ac = (Cc, T) is a trace

structure algebra.

Proof. The result of any operation on trace structures is always some trace structure T.

Since T is the set of all trace structures, T 6 T. Therefore, by the definition of a trace

structure algebra, Ac = (Cc,T) is a trace structure algebra.

□

Theorem 2.28. Let Ac = (Cc,T) be a trace structure algebra. Let T be the set of trace

structures T £ T such that the alphabet of T is a finite set. Then A'c = (Cc,T') is a

trace structure algebra.

40 CHAPTER 2. TRACE ALGEBRA, PART I

Proof. It is easy to verify that the operations on trace!- structures ptodtice trace structures

with finite alphabets if the arguments to the operations have finite alphabets. This i?

sufficient show that A'c is closed under the operations on trace structures.

Definition 2.29. Let T be a set of trace structure over some trace algebra Cc. The set of

alphabets of T is the set of alphabets A of a signature 7 in the set

{7:3P[(7,JP)er]}.

Theorem 2.30. Let Ac = (Cc,T) be a trace structure algebra. For every alphabet B of T.

let C{B) be a subset of 2Bc^Bl Let T be the set of trace structures T G T such that P

ism C{A). Then A'c = {Cc,T') is a trace structure algebra if the following requirements

are satisfied for every alphabet B oi T.

Ll. C{B) is closed under intersection.

L2. HB' CB and X 6 £(5), then pToj{B'){X) € C[B').

L3. If 5 C 5' and X 6 £(5), then

{x € 5c(5') : proj{B){x) € Ar} € £(5').

L4. If r is a renaming function with domain B and Ar € £(5), then rename(r)(Ar) 6

£(r(5)).

Proof. We must show that A'c is closed under the operations on trace structures. To show

that T is closed under composition, let T,T' G T and let T" = T \\ T'. Then. P" i

in C{A"), since C{A) is closed under intersection (Ll) and "inverse projection" (L3)

Closure under projection and renaming follows easily from L2 and L4, respectively.

is

D

Definition 2.31. We define A*, to be the ordered pair (C^T7), where Tl is the set of all

trace structures over C£. By theorem 2.27, A^ is a trace structure algebra.

2.4. CONSERVATIVE APPROXIMATIONS 41

Definition 2.32. We define TIR to be the set of all trace structures T = (f,P) over C£ for

which 7 has a finite alphabet and P is a mixed regular set of sequences. Also, A™ is

the ordered pair (C£,T/Ä). By theorem 2.33 (below), A™ is a trace structure algebra.

Theorem 2.33. A™ is a trace structure algebra.

Proof. Let T be the set of T £ T1 with a finite alphabet. By theorem 2.28, since A'c =

(C^T1) is a trace structure algebra, so is {CQ,T'). For all finite alphabets B of A1.

let C{B) be the set of mixed regular languages over B. It is easy to verify that C{B)

satisfies Ll through L4. Let

T" = {T € r : P € £(.4)}.

By theorem 2.30, since Ac = [C^T') is a trace structure algebra, so is {Cc,T"). Notice

that T" is equal to TIR. Therefore, A{? = {Cl
c,T

m) is a trace structure algebra.

□

2.4 Conservative Approximations

In the next chapter we show that discrete time trace structures are a conservative approxima-

tion of continuous time trace structures. In preparation for that result, we define here what it

means for one trace structure algebra to be a conservative approximation of another.

A conservative approximation from Ac = (Cc,T) to J\!c = {C'C,T') is an ordered pair

* = (*;,*u), where *(and % are functions from T to T'. For a given trace structure T in

Ac, the trace structure ^/(T) is a kind of lower bound of T, while %{T) is an upper bound

(relative to the 'C' ordering on trace structures). Here we require that ^i{T) and *U(T) have

the same signature as T; it is also possible to allow conservative approximations that can

change the signature of a trace structure, but that is beyond the scope of this thesis.

As an example, consider the verification problem

proj{A)iT, || T2] C T,

where Ti, T2 and T are trace structures in T. This corresponds to checking whether an

implementation consisting of two components Ti and T2 (along with some internal signals

42 CHAPTER 2. TRACE ALGEBRA, PART I

that are removed by the projection operation) satisfies the specification T. By definition, if *

is a conservative approximation, then showing

is sufficient to show that the original implementation satisfies its specification. Thus, the ver-

ification can be done in A'c, where it is presumably more efficient than in Ac- A conservative

approximation guarantees thru doing the verification in this way will not lead to a false positive

result, although false negatives are. possible depending on how the approximation is chosen.

The following definition formalizes the notion of a conservative approximation.

Definition 2.34. Let Ac = (Cc,T) and A'c = {C'C,T) be trace structure algebras, and let $,

and *u be functions from T to T. We say * = (*,, *u) is a conservative approximation

from Ac to A!c iff the following conditions are satisfied.

• For all T e T, the signature of ^i{T) and %{T) is 7.

• Let E be an arbitrary expression potentially involving parallel composition, projec-

tion and renaming of trace structures in T. Let E' be formed from E be replacing

every instance of each trace structure T with ^(T). If Tj is a trace structure in T,

and E'C ^(T:), then E CT,.

Usually a conservative approximation $ = (*,,$u) has the additional property that

^l{T) C %{T) for all T, but this is not required. Also, having *, and % be monotonic

(relative to the containment ordering on trace structures) is common but not required.

The simplest example of a conservative approximation is * = (*;, $u) is

*,(T) = (7,0)

*u(T) = (7,^(A)).

This definition of * clearly satisfies the first condition of definition 2.34. To see that it sat-

isfies the second condition, notice that the set of possible traces of E' and ^^Tx) will be the

universal set and the empty set, respectively; thus, it is never true that E' C ^i^). This par-

ticular conservative approximation is not useful, however, because it always leads to a negative

verification result; it cannot be used to show that an implementation satisfies a specification.

In section 2.4.2, we will show how a conservative approximation can be constructed using a

homomorphism from one trace algebra to another. We give a concrete example of such a

conservative approximation in section 3.3.1.

2.4. CONSERVATIVE APPROXIMATIONS 43

The remainder of this section proves theorems that provide suificient conditions for showing

thac some ^ is a conservative approximation. I he first theorem can be understood by recalling

the example verification problem described above, and by considering the following chain of

imphcations:

proJiA)^^) || tu(T2)) C *,(r)

assuming ^(Tj || T2) C ^(TJ || *U(T2)

=> proj^K^Tx || T2)) C f ,(7)

assuming Vu{proj{A){T')) C proj{A){%{T'))

=> *u(proj(.4)(T1 || r2)) C ^(T)

assuming *U(T') C ^(T) implies T' C T

=* proJCAKTi || r2) C T.

The theorem formahzes the above three assumptions (along with a fourth assumption for

the renaming operation) and proves that they are sufficient to show that f is a conservative

approximation.

In addition, we show that if *' = {%,%) provides looser lower and upper bounds than

a conservative approximation * {i.e., ^[{T) C ^(T) and *U(T) C %{T) for all T), then

f is also a conservative approximation. Also, the functional composition of two conservative

approximations yields another conservative approximation.

Theorem 2.35. Let Ac = (Cc,T) and A'c = {C'C,T') be trace structure algebras, and let *,

and % be functions . -m T to T. Assume that for all T € T, the signature of $;(T)

and tu(r) is 7. If the following propositions Al through A4 are satisfied for all trace

structures T, Tj and T2 in T, then * is a conservative approximation.

Ai. ^(TJIIT^C^TOI!^^).

A2. %{proj{B){T)) C proj{B){%{T)).

A3. *u(rename(r)(r)) C rename(r)(*u(r)).

A4. If ^(Ti) C *,(T2), then Tj C T2.

44 CHAPTER 2. TRACE ALGEBRA, PART I

Proof. Let E be an arbitrary expression potentially involving parallel composition, projec-

tion and renaming of trace structures in T. Let E' be formed from E be replacing every

instance of each trace structure T with *U(T). Let Ti be a trace structure in T, and

assume E' C Vi(Ti}. We must show that E CTi.

Using Al, A2 and A3, it is easy to prove by induction over the structure of E that

%{E) C E'. Therefore. %{E) C V^). By A4, ECTv

Theorem 2.36. Let Ac = {Cc,T) and A'c = {C'C.T') be trace structure algebras, and let

* = {^t,^u) be a conservative approximation from Ac to A'c. If f = ($(. *') is

such that mT) C *;(T) and *U(T) C %{T) for all T t T, then *' is a conservative

approximation.

Proof. Clearly, for all T € T, the signature of %{T) and %{T) is 7. Let E be an arbitrary

expression potentially involving parallel composition, projection u,nd renaming of trace

structures in T. Let E' be formed from E be replacing every instance of each trace

structure T with %{T), and let E" be similarly formed from E by using ^. Let Tj be

a trace structure in T, and assume E" C ^(Ti). We must show that £ C T,.

Recall that by theorem 2.26, parallel composition, projection and renaming are mono-

tonic with respect to trace structure containment. Thus, E' C £"', since %{T) C ^(T)

for every Tj. This impHes E' C ^(Ti), since £" C ^'(Tj) and ^(Ti) C ^liT,). There-

fore, E C Ti, since ^ is a conservative approximation.

Theorem 2.37. Let Ac = {Cc,T), A'c = {C'C,T) and A^ = (C'^T") be trace structure

algebras. Also, let * = (*i,*u) and *' = [■%%) be conservative approximations from

Ac to A'c and from A'c to A£, respectively. Then *" = (#1',*^) is a conservative

approximation from ,4c to ^5 where

r/iT) = *;(^(T))

2.4. CONSERVATIVE APPROXIMATIONS 45

Proof. Clearly, for ail T € T, the signature of t|(r) and %{T) is 7. Let E be an arbitrary

expression potentially involving parallel composition, projection and renaming of trace

structures in T. Let E' be formed from E be replacing every instance of each trace

structure T with %{T), and let E" be similarly formed from E by using f". Let Ti be

a trace structure in T, and assume E" C ^"(Ti). We must show that E CTi.

By the definition of ^f", and since $' is a conservative approximation, we know that

£" C ^J(Ti). Therefore. E C Ti, since ^ is a conservative approximation.

2.4.1 Homomorphisms on Trace Algebras

We can define the notions of homomorphisms and isomorphisms between trace algebras A

homomorphism commutes with rename and proj; also, if a; is a trace with alphabet .4, then a

homomorphism maps a; to a trace with alphabet A. Thus, our definition of a homomorphism

is quite standard. We will show in the next section how homomorphisms can be used to

construct conservative approximations. An isomorphism is a homomorphism that is also a

bijection. It is also possible to allow homomorphisms that can change the alphabet of a trace,

but that is beyond the scope of this thesis.

Definition 2.38. Let Cc and C'c be trace algebras. Let h he a. function from Be to B'c

such that for all alphabets A, if x e Bc{A), then h{x) € B'C{A). The function h is &

homomorphism from Cc to C'c iff

h{rename{r){x)) — rename(r)(/i(a;)),

h{pToj{B){x)) = pToj[B){h{x)).

Chapter 3 has several examples of homomorphisms between trace algebras. Here is a simple

example involving two of the trace algebras described in section 2.2.1. For all alphabets .4, let

h map traces in Ax to traces in 2A such that

h{x) = {a;3n{a-z{n)]}.

It is easy to show that h\s& homomorphism. Applying /J, to a trace abstracts away information

about the order of events; all that remains is the set of actions that occurred one or more times.

Definition 2.39. A homomorphism from Cc to C'c is an isomorphism iff it is a bijection. Cc

are C'c isomorphic iff there exists an isomorphism from Cc to C'c.

46 CHAPTER 2. TRACE ALGEBRA, PART I

Clearly if h is an isomorphism, then so is A-1. Also, an isomorphism on trace algebras

induces an isomorphism on trace structure algebras, as follows.

Corollary 2.40. Let h be an isomorphism from Cc to C'c. Let Ac = {Cc,T) and A'c =

(CciT') be trace structure algebras such that

(7,-P)€T =» (7,/l(P))eT'

{f,P')er => 3(7,P)€T[P' = M^)]-

Then .4c and 4.'c are isomorphic.

2.4.2 Approximations Induced by Homomorphisms

Let fe be a trace algebra homomorphism from Cc to C'c. and let x and x' be traces in Cc

and C^, respectively, such that h{x) = x'. Intuitively, the trace x' is an abstraction of any

trace y such that h{y) = x'. Thus, x' can be thought of as representing the set of all such y.

Similarly, ^ set X' of traces in C'c can be thought of as representing the largest set Y such

that h{Y) = A"', where h is naturally extended to sets of traces. If h{X) = A', then A C Y,

so X' represents a kind of upper bound on the set A. This motivates using the function *u

such that

%{T) = {~f,h{P))

as the upper bound in a conservative approximation from a trace structure algebra over Cc to

a trace structure algebra over C'c. A sufficient condition for a corresponding lower bound is:

if x ^ P, then h{x) is not in the set of possible traces of $,(7). Th- leads to the definition

HT) = il,h{P)-h{Bc{A)-P)).

The conservative approximation * = (*h*u) is an example of a conservative approximation

induced by h, which is formalized in the definition below using a slightly tighter lower bound

for *;. Using this concept, if one proves that fe is a homomorphism between two trace algebras

(which is often quite easy), then one obtains a conservative approximation between trace struc-

tures with no additional effort. A conservative approximation induced by a homomorphism h

is closely related to homomorphisms on w-automata [57].

2.4. CONSERVATIVE APPROXIMATIONS 47

Definition 2.41. Let h he a homomorphism from Cc to C'c, and let Ac - {Cc,T) and

•^c = {C'ciT') be trace structure algebras. We naturally extend h to sets of traces.

Assume % and */ are functions from T to T' such that

%{T) 2 it-hiP))

%{T) C {1,hiP)-h{Y-P)),

where

Y = [j{X C ßc(.4) : (7,,Y) 6 T A ^(X) C Ä(P)}.

By lemma 2.42 (below), $ = (*/,*u) is a conservative approximation from Ac to A'Cy

which we call a conservative approximation induced by h from Ac to A'c. If the two set

inequalities above are replaced by equalities, then ^ is called the tightest conservative

approximation induced by h from Ac to A'c.

Notice that h{P) - h{Bc{A) - F) is a subset of h{P) - h(Y - P), so

*u(r) = (7,ä(P))

9i{T) = {1,h{P)-h{Bc{A)-P))

(as described at the beginning of this section) is an example of a conservative approximation

induced by h. This conservative approximation is independent of T; the tightest conservative

approximation induced by h depends on both h and T.

Definition 2.41 defines both the class of conservative approximations induced by a ho-

momorphism h and a distinguished approximation in that class, which we call the tightest

conservative approximation induced by h. It is obvious that this distinguished approximation

is in fact the tightest approximation within the class we defined. That is, if ^ is the tightest

conservative approximation induced by h and ^' is any conservative approximation in induced

by h, then ^(T) C $,(7) and %{T) C ^(T) for any trace structure T.

However, it is not immediately clear that class of approximations we defined includes all

conservative approximations that might intuitively be "induced" by h. If there is a larger class

of conservative approximations "induced" by h, then it might include an approximation that is

tighter then the tightest one given in definition 2.41. We provide evidence that this is not the

case in section 4.4, where we consider the inverse of a conservative approximation. This result

depends on the particular set Y used in definition 2.41, and would not be true if we replaced

48 CHAPTER 2. TRACE ALGEBRA, PART I

Y by a simpler expression such as Bc{A). With our current understanding, we cannot give

any intuitive motivation for the definition of 1'; it is simply the smallest set (which leads to

the largest ^i(T)) we could find that made the proof of lemma 2.42 go through.

It is straightforward to take the general notion of a conservative approximation induced by a

homomorphism, and apply it to specific models. Simply construct trace algebras C and C. and

a homomorphism h from C to C Recall that these trace algebras act as models of individual

behaviors. Using the results described so far in this chapter (without any additional proofs),

one can construct the trace structure algebras A = (C, T) and A' = [C, T'), and a conservative

approximation ^ induced by h (where T and T' are the sets of all trace structures over C and

C, respectively). Thus, one need only construct two behavior models and a homomorphism

between them to obtain two trace structure models along with a conservative approximation

between the trace structure models.

The remainder of this section proves the claim made in definition 2.41: a conservative

approximation induced by a homomorphism is in fact a conservative approximation.

Lemma 2.42. In definition 2.41, $ is a conservative approximation.

Proof. By definition 2.41, $ = (*/.*u) is such that

*.(T) D {f,h{P))

*/(T) C (7,/>(/>) -h{Y-P)),

where

Y = \J{X C Bd A) ■ (7,Ar) €TAh{X) C h{P)}.

By theorem 2.36, the current lemma is satisfied if $ is a conservative approximation

when the two set inequalities above are replaced by equalities. Thus, we need only

consider the case where

%{T) = h,h{P))

^(T) = {1,h{P)-h{Y-P)).

By theorem 2.35, we can show that $ is a conservative approximation by showing that

it satisfies Al through A4.

2.4. CONSERVATIVE APPROXIMATIONS 49

Lemma 2.43. $ satisfies Al.

Proof. Let T = Tl\\ Tz; then

P = {x € Bc{A) : proJiA^x) £ P1 A proj{A2){x) € P2}.

Let T = «„(TO |i fu(r2); then

P' = {x1 € ^(A) : proi(A1)(a!') 6 MA) A proj(A2)(x') € h{P2)}.

We must show that h{P) C P'.

HP) = {M»)€5j7(A):proj(A1)(i8)€P1Aproj(A3)(x)€P2}

C {h{x) € ^(A) : /l(proj(>l1)(x)) 6 fe^i)

A Ä(proj(A2)(x)) E h{P2)}

since Ä is a homomorphism

= {h{x) 6 B'dA) : proJiA.mx)) e hi^)
/\ PToj{A2){h{x)) e h{p2)}

C {x' 6 tf^A) : proj(J41)(x') € ft(A) A proj{A2)ix') G /i(P2)}

= P'.

Lemma 2.44. $ satisfies A2.

Proof.

h{proj{B){P)) = {A(proj(B)(x)) : x € P}

since h is & homomorphism

= {proj{B){h{x)) : x € P]

= proj(B)({/i(x) : x € P})

= proJiB){h{P)).

Lemma 2.45. * satisfies A3.

50 CHAPTER 2. TRACE ALGEBRA, PART I

Proof.

h{ren&me{r){P)) = {h{rename{r){x)) : x € P}

since /i is a homomorphism

= {iename{r){h{x)): x £ P]

= rename{r)[{h{x) : x G P})

= Tena.me{r){h{P)).

Lemma 2.46. ^ satisfies A4.

Proof. Assume ^(Tx) C *;(T2). Then .4! = A2- let A = Al. We must show that

Pi Q P2.

Let i 6 Pi and

Y = UU" ^ ßc(.4) : (7,X) G T A /i(X) C h{P2)}.

By the definition of $, the assumption tu(Ti) C ^(Tz) imphes ^Pj) C ^(P2) -

h{Y - P2). Thus, by t}.e definition of Y, and since (7,Pi) € T, we know P: C F.

Therefore, a; € F.

We show that Pl C P2 with the following series of implications:

xeP: => h{x)eh{P1)

since/i(Pj)C/i(P2)-/l(F-P2)

=> h{x) E h{P2) - h{Y - P2)

=> %)^A(F-P2)

since x eY - P2 imphes h{x) € h{Y - P2)

=> a; ^ F - P2

since a; £ F

=> x € P2.

D

2.5. SUMMARY 51

2.5 Summary

It is worthwhile to summarize the results of this chapter and to described how they are applied

and extended in the remainder of the thesis. We began by defining concurrency algebra, an

abstract algebra in which each element of the domain represents an agent (def. 2.6, p. 23).

Associated with each agent is a signature, which is a set of input symbols along with a (disjoint)

set of output symbols. Each of these symbols might represe t a wire in a circuit or message that

can be sent between communicating processes, etc. The union of the inputs and the outputs

is the alphabet of a signature. A concurrency algebra has three operations on agents: parallel

composition, projection and renaming. These operations must satisfy axioms Cl through C9,

the axioms of concurrency algebra. These axioms formalize certain minimum requirements

that any agent model should be expected to satisfy.

Concurrency algebra includes no notion of what it means for an agent to satisfy a specifi-

cation. We address this by using trace set containment, which is a generahzation of standard

verification techniques based on language containment. Each agent is represented by a trace

structure, which is an ordered pair of a signature 7 and a set P of possible traces. Each trace

in P represents a possible behavior of the agent. Both implementations and specifications are

represented by trace structures. One trace structure satisfies the specification given by another

trace structure iff the set of possible traces of the first is contained in the set of possible traces

of the second.

The above description of trace structures does not say what kinds of mathematical objects

are used as traces. In normal language containment methods, a trace is a finite or infinite

sequence, so a set of traces is a formal language. We want to be much more general than this,

because we do not want our use of trace structures to limit the kinds of real-time models we

can consider. On the other hand, we do not want to allow completely arbitrary traces because

we want to have general theorems that are true of all trace structures (so the theorems do not

have to be reproven every time a new class of trace structures is constructed).

We satisfy these constraints by using the idea of a trace algebra. A trace algebra (def. 4.20,

p. 86) is an abstract algebra with a set of traces as its domain, where each trace is interpreted

as an abstraction of a physical behavior. Traces are classified according to their alphabet.

There are two operations in a trace algebra: projection and renaming. These operations must

satisfy axioms Tl through T8, the axioms of trace algebra. Other than these axioms, no other

restrictions are placed on what kinds of mathematical objects can be used as traces in a trace

algebra.

52 CHAPTER 2. TRACE ALGEBRA, PART I

Once trace algebra is formalized, it is possible to formalize trace structures. The set of

trace structures (def. 2.15, p. 33) over a trace algebra C is the set of ordered pairs (7, P), where

7 is a signature and P is a subset of the traces of C with the same alphabet as 7. A trace

structure algebra is an ordered pair A = (C,T), where o is a trace algebra and T is a subset

of the set of trace structures over C. The operations of parallel composition, projection and

renaming are defined on trace structures in T using the operations of projection and renaming

on individual traces in C (def. 2.18, def. 2.19 and def. 2.20, p 33). The set of trace structures

T must be closed under these operations. The axioms of trace algebra are quite weak, but

they are strong enough to guarantee that the operations on trace structures satisfy the axioms

of concurrency algebra. Thus, a trace structure algebra is a special case of a concurrency

algebra.

Using these ideas to construct agent models only requires constructing a domain of traces,

along with projection and renaming operations, and proving that they satisfy the axioms

of trace algebra. A trace structure algebra, which is guaranteed to satisfy the axioms of

concurrency algebra, can be constructed from the trace algebra without having to prove any

additional theorems. Thus, our general results greatly simplify the task of constructing new

agent models.

One of the uses of being able to easily build new process models is to study the relation-

ships between models that can be efficiently mechanized and models that accurately represent

physical reality. Ideally, correctness proofs (of trace set containment) in the efficient model

would be logically equivalent to correctness proofs in the accurat" model, but this is rarely the

case. The best we can usuaDy do is to have correctness in the efficient model imply correct-

ness in the accurate model. This is formalized by using a conservative approximation from the

accurate model to the efficient model (def. 2.34, p. 42). Let Ac = (Cc,T) and A'c = {C'C,T')

be trace .structure algebras. A conservative approximation from Ac to A!c is an ordered pair

* = (*/,*«), where *(and *u are functions from 7 to T. For a given trace structure T

in Ac', the trace structure f/(T) is a kind of lower bound of T, while tu(T) is an upper

bound (relative to trace set containment). By definition, if a verification problem in Cc is

converted into a verification problem in C'c by applying a conservative approximation *, then

a correctness proof in the latter problem implies a correctness result in the former problem.

A general method for constructing conservative approximations involves homomorphisms

on trace algebras (def. 2.38, p. 45). A homomorphism from C to C is just a function from the

traces of C to the traces of C that satisfies the standard homomorphism laws for the operations

of trace algebra. A conservative approximation induced by h (def. 2.41, p. 46) is a conservative

2.5. SUMMARY 53

approximation from Ac = {Cc,T) to A'c = {C'C,T'), for appropriate T and T'.

We take advantage of these results in the next chapter, where we show that a continuous

time model can be conservatively approximated by a discrete time model. We need only

construct the appropriate trace algebras and homomorphisms; the trace structure algebras

and the conservative approximations are obtained without any additional effort.

The conservative approximation defined in the chapter 3 maps to a discrete time model that

represents simultaneity explicitly, which can make the model more expensive to automate. We

would like to define a conservative approximation from this liiodel to a discrete time model with

interleaving semantics. Such an approximation cannot be iniuced Lorn a homomorphism, so

a new technique for constructing conservative approximations is needed. In chapter 4 we show

how to use a power set algebra over a trace algebra (def. 4.1, p. 77), which is a trace algebra

C vhere each trace in C is a set of traces in some other trace algebra C The operations

on traces in C are the natural extension to sets of the corresponding operations in C. For

example, C might have interleaved traces while a trace in C might be the set of interleavings

of a trace with explicit simultaneity. Thus, C would be isomorphic to a more conventional

representation of explicit simultaneity. The relationship between C and C can be used to

construct a conservative approximation from A = (C,T) to A' = iC'.T) (def. 4.2, p. 78).

This technique is used to complete the conservative approximation iiom continuous time to

discrete time with interleaving semantics.

54 CHAPTER 2. TRACE ALGEBRA, PART I

Chapter 3

Approximating Continuous Time

Methods for modeling and verifying real-time systems can be classified according to the type of

timing model that is used. Continuous time allows more accurate modeling of physical reality.

Discrete time models give an approximation to reality that can be automated more efficiently.

This chapter develops several different trace structure algebras for modeling real-time systems,

and describes conservative approximations from continuous time to discrete time.

3.1 Timing Models

In this chapter, we consider four different kinds of timing models:

• Continuous time,

• Quantized time with simultaneity,

• Quantized time with interleaving, and

• Synchronous time.

These models are informally described in this section; the formal definitions are given in the

remainder of this chapter and in the next chapter. The classification is similar to that used by

Alur and Dill [2], except that they did not differentiate the two quantized time models; they

called them the fictitious clock model. They also used discrete to refer to what we call the

synchronous model. We say a timing model is discrete if it is either synchronous or quantized.

For each of the four kinds of timing models, we can construct trace algebras with ap-

propriate domains of traces. Using the results of the previous chapter, we can construct

55

56 CHAPTER 3. APPROXIMATING CONTINUOUS TIME

corresponding trace structure algebras and conservative approximations between them. Thus.

we obtain a hierarchy of domains of agent models at different levels of abstraction. In this sec-

tion, we give an informal overview of the trace algebras and the conservative approximations

that we use.

Continuous time is our most accurate and realistic timing model. The time of occurrence

of each event is represented by a real number. As an example, consider the continuous time

trace

x = {(a,0.2), (6.2.3), (c,2.8), (d,2.8), (e.5.3)}.

The behavior is represented by a set of events: each event is an ordered pair designating an

action and the time at which the action occurred. The order in which events occurred can be

derived from the time stamps.

In a continuous time model, it is possible for an infinite number of events to occur in a

finite period of time (Zeno's paradox). Such behaviors are not produced by the agents we wish

to model, so we exclude them from the trace algebras we use.

The synchronous time model is the least accurate of the four types of models. In the

synchronous time model, the time at which events occur is represented by integers, which can

be derived by truncating the real numbered time stamps in the continuous time model. Thus.

we can define a homomorphism h from continuous time traces to synchronous time traces such

that

^) = {(a,0), (6,2), (c,2), (rf,2), (e,5)}.

Notice that in the synchronous time model, information about the order of occurrence of the

b event and the c event is lost, as is information about the simultaneity of c and d. This is

equivalent to assuming that all events that occur sometime during a given unit length period

all occur simultaneously at some time point during that period. Since h is & homomorphism.

there are conservative approximations induced by h from continuous time trace structures to

synchronous time trace structures.

In some cases, we wish to truncate time stamps to integers, but also preserve information

about the order and simultaneity of events. To do this, we begin by modeling continuous time

behaviors with a different, but provably isomorphic, representation. For example, the example

behavior x described above can be represented by the sequence

y = (({a},0.2), ({6},2.3), ({C,d},2.8), ({e},5.3)).

3.1. TIMING MODELS 57

Here a behavior is represented by a sequence of ordered pairs; each pair contains a non-empty

set of actions (non-singleton sets represent simultaneous events) and a time stamp for the

actions. The time stamps are real-valued, and must be (strictly) increasing. Notice that the

order of events, and whether or not events are simultaneous, is represented more explicitly

by the trace y than the trace x, even though they both represent the same behavior at the

same level of abstraction. The isomorphism between these two kinds of continuous time traces

depends on our assumption that only a finite number of events can occur in a finite period of

time.

We can define a function h1 that takes traces like y and truncates the time stamps:

k'{y) = {i{a},Q). {{b},2), {{cj}.2), {{x}.5)).

Information about the relative order of the the b event and the c event is preserved by h'

because this information is represented explicitly in the trace y. The simultaneity of the c

event and the d event is also reflected in h'{y). The trace h'fy) is a trace in a quantized time

with simultaneity model, and h' is a homomorphism from continuous time to quantized time

with simultaneity. In this model, a trace is a sequence of ordered pairs; each pair contains a

non-empty set of actions and a time stamp for the actions. The time stamps are integer-valued,

and must be (non-strictly) increasing. As with synchronous time, the homomorphism h'

induces conservative approximations from continuous time trace structures to trace structures

for quantized time with simultaneity. Quantized time models are of intermediate accuracy

between the synchronous and continuous time models.

In quantized time with interleaving, simultaneity is modeled with nondeterminism. Thus,

the continuous time behavior x is represented by two traces:

x' = ((a,0), (6,2), (c,2), (d,2), (x,5))

x" = ((a,0), (6,2), (<*,2), (C,2), (£,5)). . .

It is possible to construct a conservative approximation from quantized time with simultaneity

to quantized time with interleaving. However, it is not a conservative approximation induced

by a homomorphism. It is an example of a conservative approximation induced by a power

set algebra (def. 4.2, p. 78' and it depends on the way that traces with simultaneity can be

represented by sets of interleaved traces.

The traces x' and x" can be equivalently represented by infinite strings that include a

special symbol tp. Each occurrence of (f represents the passage of one unit of time. Thus, the

58 CHAPTER 3. APPROXIMATING CONTINUOUS TIME

traces x' and x" are equivalent to

y = (upiphcdifipipxtfip • ■ ■

y = atpifbdcifipifxififi • • •.

Each trace has an infinite number of ip to represent the passage of an unbounded amount of

time (the normal interpretation of a complete trace). If we restrict our attention to safety

properties, then only finite prefixes of these traces need be considered. The restriction to

safety properties can be formalized in a general way using partial traces and a conservative

approximation induced by a power set algebra (a complete trace is represented by the set of

all partial traces that are prefixes of it). Thus, by a series of conservative approximations

and isomorphisms between trace structure algebras, we go from a continuous time model to

a quantized time with interleaving model that can be easily implemented using normal finite

automata.

3.2 Modeling Continuous Time

We model continuous time behaviors with two different, but isomorphic, trace algebras: C£TU

("continuous time unordered") and Cß70 ("continuous time ordered"). Having two repre-

sentations simphfies the construction of conservative approximations from continuous time to

discrete time. In particular, C£TÜ is used in the mapping to synchronous time, and C£T0 is

used in the mapping to quantized time with simultaneity.

In this section we describe CgTU, which uses traces consisting of a (possibly infinite) set

of events, where each event is an ordered pair {a,t) in A x ft* that represents the occurrence

of action a at time t. Only a finite number of actions are allowed in any finite period of time.

The order of events is implicit and can be determined from their time stamps. For this reason,

the model is called unordered.

Once Cc is shown to be a trace algebra, it is possible to construct the trace structure

algebra Ag™ = {CSTV,TCTU), where TCTU is the set of all trace structures ever Cg™.

The construction makes use of the results of the previous chapter, and does not involve any

additional proofs. This is an example of how constructing a trace algebra is all that is needed

to construct a trace structure algebra which serves as a domain of agent models.

The remainder of the section formalizes the definition oiCg™, and proves that it is a trace

algebra.

3.2. MODELING CONTINUOUS TIME 59

Note 3.1, The definition of a trace algebra is relative to a set of signals W (for example, see

the definition of CQ, def. 2.P, p. 27). In the sequel, the set of signals W will be implicit

in the definitions of particular trace algebras. The phrase "all alphabets" is used to refer

to all alphabets over W.

Definition 3.2. We define the trace algebra CQ
TU

 = {Be,pro],rename) as follows. For all

alphabets .4, a trace x in Bc(A) is such that x C A x R^ and for any t 6 5R7', there are

only a finite number of {a.t!) 6 x such that t' < t. If x € Bc{A). then

proj{B){x) = {{a,t)-. {a,t) £ x A a £ B}

rena.me{r){x) = {(r(a),£) : (a,f) € z}.

Lemma 3.3. CQ
70

 is a trace algebra.

Proof. To show that CcTC/ is a trace algebra, we must show that it satisfies Tl through T8.

We only consider T4; the proofs for the remaining axioms are straightforward.

Lemma 3.4, C£TU satisfies T4.

Proof. Let x and x' be traces in Bc{A) and Bc{A'), respectively. Assume

proj(.4 n A'){x) = pToj{A n A'){x'),

and let A" be such that A'jA'C A". We must show that there exists x" <E Bc{A")

such that x = proj(-4)(x") and x' = proj{A'){x").

Let x" = (x U x'). Notice that x" is an element of Bc{A"), and

proj{A){x") = {{a,t) : {a,t) £ x" A a £ A}

since x" = x 'J x'

= {{a,t) : {a,t) £ x Aa e A} U {{a,t) : {a,t) £ x'A a E A}

since x € Bc{A) and x' € Bc{A')

= x U {{a,t) : {a,t) £ x' A a e [A n A')}

since proj{A n A'){x) = proj(.4 n A')(x')

= x U {(a, t) : {a,t) E x A a £ {A H A')}

— x.

Similarly, x' = proj(4')(x"). Therefore, x" satisfies T4.

60 CHAPTER 3. APPROXIMATING CONTINUOUS TIME

a

Definition 3.5. We define AgTU to be the ordered pair {CSTU, TCTU), where TCTÜ is the set

of all trace structures over CcTU■ By theorem 2.27, AcTU is a trace structure algebra.

3.3 Modeling Synchronous Time

This section describes a trace algebra for modeling synchronous time, and shows how this

model can be used to conservatively approximate continuous time. The trace algebra of

synchronous time, C^, is similar to CcTU except that real-valued time stamps are replaced

by integers. We define a homomorphism h from CcTÜ to C^7" that truncates the values of the

time stamps for traces in CQ
TU. The homomorphism h allows us to construct a conservative

approximation induced by h from trace structures over CcTU to trace structures over CQ
7■

This approximation is intended primarily as a simple example to illustrate mappings from

continuous time. The conservative approximation used in the verification algorithms later in

the thesis are based on quantized time rather than synchronous time.

One effect of the homomorphism h is that two continuous time events (a, 2.2) and (a. 2.7),

for example, are both represented by a single synchronous time event (a, 2). Thus, in addition

to losing information about the exact time at which events occur, we also loose information

about the number of events that occur in a given unit interval.

Although we do not provide the details here, it can be shown that C^7 is isomorphic to a

trace algebra in which a trace over an alphabet A is an infinite sequence x over 2Ä. In such a

trace, if o € !B(n), then action a occurred at time n. The representation of traces in C^7 that

we have chosen simplifies the homomorphism (described below) from C£TU to C£T.

Definition 3.6. We define the trace algebra CQ
7
 as follows. For all alphabets .4, a trace x in

Bc{A) is such that x C A x Af^. The definition of the operations on traces is identical

to that oiCSTU: if x G Bc{A), then

pioj{B){x) = {{a,t) : {a,t) £ x A a £ ß}

rena.me{r){x) = {{r{a),t) : {a,t) E x}.

Lemma 3.7. Cg is a trace algebra.

3.3. MODELING SYNCHRONOUS TIME 61

Proof. The proof is analogous lemma 3.3, which showed that CQ
TU

 is a trace algebra.

Definition 3.8. We dehne AcT to be the ordered pair {CcT,TST), where TST is the set of

all trace structures over C^7". By theorem 2.27, A^7 is a trace structure algebra.

3.3.1 Approximating Continuous Time

In this section we describe the first of our conservative approximations from continuous time

to discrete time. We construct the conservative approximation by first defining the homomor-

phism h from CcTU to C^T such that

h{x) = {{a,[t\) : (a,i) £ x}

(see lemma 3.9 for a proof that his a homomorphism). By lemma 2.42, h induces a conservative

approximation from trace structures over CcTU to trace structures over CcT. This is an example

of how the results of the previous chapter simplify the task of constructing a conservative

approximation between two domains of ageru models.

The tightest conservative approximation * = (fi,*u) induced by h from A£TÜ to AP

has

tu(r) = it,h{p))

^(T) = i1,h{P)-h{Y-P)),

where

Y = \J{X C B^V{A) : (7,X) € TCTU A h{X-; C h{P)}.

Recall that TCTV is the set of all trace structures over C^TU. As an example of applying *.

let T = (7,P) be the trace structure in AcTU such that

A = {a}

7 = (M)

P = {{{a,t)}eB£TU{A):0.5<t<2.5}.

62 CHAPTER 3. APPROXIMATING CONTINUOUS TIME

This gives

Y = [j{XCBZ™{A):h{X)Ch{P)}

= \J{X C BSTU{A) : h{X) C {{(a,0)}, {(a,!)}, {{a.2)}}}

= [j{X C ^Tcr(^) : X C {{(a,0} € B^TU{A) : 0 < t < 3}}

= {{(a,0}€B^(A):0<i<3}

*u(r) = (7,^^))

= (7, {{(a,0)}, {(a,l)},{(ai2)}}),

*/(r) = {'r,h{P)-h{Y-p))

= (7,/i(P) - M{{(M)} € ^^(-4) : (0 < « < 0.5) V (2.5 < t< 3)}))

= (7,M^)-{{(a,0)},{{a,2)}})

= (7,{{(a,l)}}).

Notice that «/(T) C *U(T), as expected.

Let T be the set of all trace structures over CcTU that have no events before time 0.5; that

is,

T = {(7, P) e Tcrcr : VajVM^i G P A (6,0 € x) ^ i > 0.5]}.

Let .4c = (Cc ,T); it can be shown that A: is a trace structure algebra, although we do

not give the details here. We can use Ac to demonstrate how the definition of a conservative

approximation induced by a homomorphism depends L I the set of trace structures in the trace

structure algebra being approximated. Let h and T be as defined above (clearly T € T). Let

'P' = (f J, %) be the tightest conservative approximation induced by h from Ac to C^7". Then

% = % and

Y = [j{XCBSTU{A)

= [j{XCBZTU{A)

= [j{XQBSTU{A)

(7,X)G T A h{X)Ch{P)}

X Q 2{(a,0:0.5<£} A h{x) Q {{{a^)h ^^ {{a^m}

XC{{{a,t)}eBZTU{A):ö.5<t<3}}

= {{{a,t)}^BSTÜ{A):0.5<t<Z}

*[(r) = {i,h{p)-h{Y-p))

2.3. MODELING SYNCHRONOUS TIME 63

= (7,Ä(P) - h{{{{a,t)} € BSTU{A) : 2.5 < i < 3}))

= (7,/l(P)-{{(a,2)}})

= (7,{{K0)},{(a,l)}}).

Notice that {(a,0)} is a possible trace of t^T) but not a possible trace of $j(T). Thus, *J

gives a tighter bound than */. This is a direct result of T being a proper subset of TCTU.

The remainder of this section proves that /i is a homomorphism.

Lemma 3.9. The function h from CcTV to C^7 given by

h{x) = {{a,[t\):{a.t)ex}

is a homomorphism.

Proof. Clearly h{x) € ßc^M). AU that remains to be shown is that

h{pToj{B){x)) = proj{B){h{x))

/i(rename(r)(x)) = rena.me{r){h{x)).

We consider proj; the rename case is also straightforward.

h{proj{B){x)) = h{{{a,t) 6 x : a e B}]

= {{a it\) : (a, t) e x A a e B}

= pwj(B){{{a,[t\):{a,t)ex})

. = pn,j{B){h{x)).

a

3.3.2 False Positive Example Revisited

In section 1.2, we described an example of how modeling a circuit in synchronous time can lead

to a false positive verification result relative to a continuous time model. In section 3.3.1, we

showed that a synchronous time model can be a conservative approximation of a continuous

time model. To understand the relationship between these two results, it is helpful to analyze

the false positive example more thoroughly.

64 CHAPTERS. APPROXIMATING CONTINUOUS TIME

The circuit behavior we used to demonstrate the false positive result is represented in CcTÜ

by the complete trace

x = {(iM), (^3,1.3), (2:2,1.9), (2/2,2.3), (xl,2.5), (2,3.3)}.

Consider the exclusive-or gate driving the signal yl (see fig. 1.1, p. 14). Notice that A -

{xl,jc2,2/l} is the alphabet of that gate. Let

V - proj{A){x)

= {{x2.1.9),{xl,2.5)}.

The complete trace y represents the local behavior of the gate driving yl during the global

behavior represented by the trace x. Thus, if T is the trace structure over CcTU that represents

the gate, then y e P. Notice that there is no transition of the signal yl in the trace y. This is

because of the continuous time inertial delay model, since the inputs xl and x2 have non-equal

values only during a period that is shorter than the gate's minimum delay of 1.

Let h be the homomorphism from CcTU to C^7 described in section 3.3.1, and let ^ =

($/,#„) be a conservative approximation induced by h from trace structures over C^71' to

trace structures over CQ
7

 . If we were to use the synchronous time model to verify the circuit

relative to some specification, then we would construct the trace structure T = ^„(T), which

is a conservative, synchronous time model of the gate driving yl. By the definition of *u,

we know h(P) C •':", where h is naturally extended to sets of traces (if $ is the tightest

conservative approximation induced by h, then h{P) - P'). Since z/ t P, we have that

y' S P', where

y' = %)

= {(x2,l), (xl,2)}.

However, in the synchronous time model that we informally used in section 1.2, the only

behavior of the gate that could result from that sequence of inputs xl and x2 is

2/" = {(x2,l), (2/1,2), (xl,2), (7/1,3)}.

A conservative, synchronous time model of the gate driving yl must contain both of the traces

2/' and y": The fact that the informal model used in section 1.2 did not contain the trace y' is

the reason for the false positive verification result described there.

Notice that the trace y" allows continuous time behaviors where the first three transitions

(in order) are x2, xl and yl. This is more conservative than necessary; such behaviors are not

3.4. MODELING QUANTIZED TIME WITH SIMULTANEITY 65

possible in the continuous time model of the gate. A tighter approximation can be obtained by

using quantized time instead of synchronous time, since quantized time preserves information

about the order of events.

3.4 Modeling Quantized Time with Simultaneity

In this section, we define a trace algebra C§ for quantized time with simultaneity. A homo-

morphism from continuous time traces to CQ is used to construct a corresponding conser-

vative approximation.

A trace in Cc with alphabet A consists of two (possibly infinite) sequences of the same

length. The first is a sequence over 2A - {0} representing a sequence of sets of simultaneous

events. The second sequence provides an integer-valued time stamp for each set of events: it

is a non-strictly increasing sequence.

Defining the homomorphism from continuous time traces to C® involves defining a second

trace algebra, CcT0, for continuous time traces. A trace in C^70 is similar to a trace in CcTS

except that the sequence of time stamps is a strictly increasing sequence of real numbers.

There is a homomorphism from CcT0 to C,?75; it simply truncates the values of the time

stamps in each trace. This implies that there is a homomorphism from CcTV to C^T5, since

CSTV is isomorphic to C£T0.

The remainder of this section formalizes the definition OICQ
78

 and proves that it is a trace

algebra.

Definition 3.10. We define the trace algebra C^75 as follows. For all alphabets A, a trace

x = (u,r) in Bc{A) is such that

• u is a (possibly infinite) sequence over 2A — {0},

• r is a (possibly infinite) sequence over A'7'1,

• u and r are the same length,

• no < rii implies r(no) < r(ni) (increasing), and

• if r has infinite length, then it is unbounded:

V^€A/^[3n€A/v[^<r(n)]].

Let x — (U,T) be a trace over some alphabet A.

66 CHAPTER 3. APPROXIMATING CONTINUOUS TIME

• ProJ(5)(a;) = {U',T'), where u' is the sequence formed from it by removing every

symbol a not in B. and r' is formed from r by removing the corresponding time

stamps. More formally, ien(u') and ien(-') are both equal to

\{j € A' : 0 < j < len{u) A u{j) DB ^ 0}|.

Also,

u'{k) = u(n)n5

r'{k) = Tin),

where TZ is the unique integer such that u(n) H ß = 0 and

fc = |{; € ^ : 0 < j < n A u{j) ' B ~ 0}|.

• ren^me(r)(x) = (An 6 Av[r(u(n))], r).

Lemma 3.11. C,? is a trace algebra.

Proof. To show that C£TS is a trace algebra, we must show that it satisfies Tl through T8.

We only consider T4: the proofs for the remaining axioms are straightforward.

Lemma 3.12. C%TS satisfies T4.

Proof. Let x = [u.r) and x' = (u',r') be traces in Bc{A) and Bc[A']. respectively.

Assume

PToj{Ar\ A'){x) = ptoJiAn A')^'),

and let .4" be such that .4 L 1' C .4". We must show that there exists x" £ Bc{A")

such that x = pTOJ{A){x") and 2-' = proj(.4')(r").

We defined Cc so that traces are a pair of sequences. However, in this case it

is useful to also think of a trace as a sequence of pairs; the isomorphism is obvious.

Thus, we write x{n) to denote the pair (u(n),r(n)).

We must show how x and x' can be combined to form an appropriate x". Our

strategy is to first split the sequence x into in infinite number of subsequences yn

such that the time stamp of all of the pairs in yn is n. We also form y'n from x' in

analogous fashion. We show how to combine each yn and y'n into y'^ such that

~" " " "
x = 2/o 2/i 2/2 • • •

3.4. MODELING QUANTIZED TIME WITH SIMULTANEITY 67

has the desired property.

For every non-negative integer n, let yn be the sequence over {2A - {0}) x {n}

such that

len{yn) = \{j : r(j) = ra}|

and

VnU) = X{k+j),

where k is the smallest integer such that r(Ä) = n. Since r is unbounded when it is

of infinite length, each yn is of finite length. Thus, yn 6 ((2^ - {0}) x {n})*. Notice

that

x = yoyiy? ■■■ ■

We define y'n analogously to yn.

Each sequence yn is of the form

yn = vo{a0,n) ■ ■ ■ Vj^i {aj-i,n) Vj,

where each Ui 6 ((2(>1-4')-{0}) x {n})'and each a,- € 2't-{0} such that c;n.4'^ 0,

Similarly, each j/^ is of the form

where each v; € ((2^'-'4)-{0}) x {n})4 and each < € 2^'-{0} such that aJnA ^ 0.

The assumption proj{A fl >l')(x) = proj(A fl A'){x') implies that j = ;' and

air]{Ar]A') = a'in{AnA')

for all i < j. Since a, € 2^ - {0} and aj € 2A' - {0}, this implies

oi n ^'^ a; n A.

Let

2/n = '"o ^o (ao U ao, n) • • • VJ-.J u^j (o^.i U a^.j, n) Vj v'j.

Notice that

proj{AM)

= proj{A){vo v'0 {ao U a0, n) ■■■ Vj.i v'^ (a,_i U a^, n) Vj v'j)

since t;;e{(?tA'-4) - {0}) x {n})'

68 CHAPTERS. APPROXIMATING CONTINUOUS TIME

= proj{A){v0 (ao U OQ, n) ■ • • Vj.i (dj-i U a'^, n) Vj)

since a^ fl .4 C aj

= proj{A){vo (ao,n) • • ■ v^ (ßj-i,n) Vj)

since Vi € ((2('4-yl') - {0}) x {n})* and a, € 2^ - {0}

= vn (oo,n) ••• ^_i (aj_i,n) Uj

= Vn-

Similarly. proj{A'){yl[) = y'n.

Let

// n ii n
x = 2/o 2/i J/2 • • • •

Then,

proj{A){x") = proJiA^y'^y';...)

= proj{A){y^proj{AM)Proj{AM)-..

= yoviyi ■••

= X.

Similarly, x' = proj{A')(j "). Therefore, x" satisfies T4.

D

Definition 3.13. We define A%TS to be the ordered pair {C£TS/rQTS), where TQTS is the

set of all trace structures over C*r5. By theorem 2.27, A®75 is a trace structure algebra.

3.4.1 Approximating Continuous Time

In this section we describe our next conservative approximation from continuous to discrete

time. The first step is define another trace algebra, CcT0, for representing continuous time,

and show that it is ::somorphic to Cg™. A trace x in CcT0 is an ordered pair (u,r) like

Cc except r is a strictly increasing sequence of real numbers rather than a sequence of

integers. We define a homomorphism h from CcT0 to Cc™ such that if z = (u,r) is a

trace in C£T0, then h{x) = (u,r'), where r'(n) = I r(n)J. By lemma 2.42, h induces a

conservative approximation from trace structures over Cg70 to trace structures over CcTS.

3.4. MODELING QUANTIZED TIME WITH SIMULTANEITY 69

This conservative approximation is analogous to one described in section 3.3.1. which was

induced by a homomorphism from C£TU to C^7.

The remainder of this section proves these claims. We begin by formally defining C, CTO
c

and showing that it is a trace algebra and is isomorphic to C, CTU

Definition 3.14. We define the trace algebra CcT0 as follows. For all alphabets .4, a trace

x = (u,r) in Bc{A) is such that

• u is a (possibly infinite) sequence over 2A — {0},

• r is a (possibly infinite) sequence over K^,

• u and r are the same length,

• no < n,] implies r(no) < '''("•i) (strictly increasing), and

• if r has infinite length, then it is unbounded:

V<'€5?/[3neA/v[<'<r(n)]].

Let x = (u,r) be a trace over some alphabet .4. The definitions of proj and rename are

identical to those for CcTS■

• proj{B){x) = (u',r'), where u' is the sequence formed from u by removing every

symbol a not in B, and r' is formed from r by removing the corresponding time

stamps. More formally, iexi(u') and ieii(r') are both equal to

|{; G ^ : 0 < j < len{u) A u{j) P.B ^ 0}|.

Also,

u'{k) = u{n)nB

r'(fc) = r(n),

where n is the unique integer such that u{n) fl ß ^ 0 and

k= \{j eJ\f :0 <j < n/\u{j) D B ^ 0}|.

• rename(r)(a;) = (An € ^^(«(n))], r).

To show that C^70 is a trace algebra, it is sufficient to show that there is a isomorphism

h from CST0 to C£TU. Since C%TÜ is a trace algebra, this demonstrates that C£T0 is a trace

algebra, as well as showing that it is isomorphic to CQ
TU.

70 CHAPTERS. APPROXIMATING CONTINUOUS TIME

Lemma 3.15. C£T0 is a trace algebra and is isomorphic to CQ
TU.

Proof. Let x = (u,r) be n trace in B£T0{A). We define h such that

h{x) = {{c.t) : 5n < len{u)\a€ u(n) A < = r(n)]}.

It can be shown that /i is a surjection. since traces in B£TU have only a finite number of

actions during any finite period of time.

Also, it straightforward to show that h is an injection and for ail x' € ß^Tr(.4).

h-l{x') = {U.T).

where u and r are uniquely determined by the following constraints. First, the length of

u and r is

\{t' : 3aeA[{a,t')ex]}\.

Second, if n < len{u) then r(n) is the unique real number such that 3o[(o,r(n)) € z'

and

n= \{t' < r(n) : 3o € ^[(o,«') 6 a;]}|.

Third, if n < ien(u) then

u{n) = {a : (a,r(n)) € x}.

It is also straightforward of show that ft is a homomorphism. For example, the reader

can easily verify that if x = {U,T) is a trace in BgT0{A), then both proj{B){h{x)) and

h{pTOJ{B){x)) are equal to

■ {(M) : 3n < ien(u)ia 6 (u{n) r\B)At = r(n)]}.

D

3.4. MODELING QUANTIZED TIME WITH SIMULTANEITY 71

Lemma 3.16. Let h be the function from C£T0 to C§TS such that if JB = (u,r) is an element

ofB<£
TO(.4), then

h{x) ~ {U,T'),

where

r'(n)=[r(n)J.

Then /i is a homomorphism.

Proof. Clearly h{x) € BcTS{A). All that remains to be shown is that

h{proj{B){x)) = proj{B){h{x))

h{rename{r){x)) = rename{r){h{x)).

The reader can verify that both h{proj{B){x)) and proj{B){h{x)) are equal to (n",r"),

where len{u") and ien(r") are both equal to

\{j erf -.0 <j < len{u) A u{j) n B # 0}|

and

u"{k) = u{n)r\B

T"{k) = Lr(n)J,

and n is the unique integer such that u{n) fl f? ^ 0 and

k - [{; € A' : 0 < j < n A u(j) n ß ^ 0}|.

Also,

/i(rename(r)(x)) = ^((AJI € ^^(«(n))], r))

= (AneA'^K^n))]', AneA/'/[|r(n)J])

= rename(T')((u, An € A'/[[r(n)J]))

= rename(r)(/i(a;)).

72 CHAPTER 3. APPROXIMATING CONTINUOUS TIME

3.4.2 False Positive Example Revisited

In section 3.3.2 we analyzed the false positive example of section 1.2 with a conservative,

synchronous time model. In this section, we do a similar analysis with a quantized time

model.

Recall that the continuous time trace

y = {(£2,1.9), (zl, 2.5)}

represents the local behavior of the gate driving yl in the false positive example. Let z' be

the result of applying our homomorphism h from CQ
TU

 to CQ
75:

z' = h{y)

= (({x2},l), ({zl}^)).

A trace structure over Cg representing the gate should also contain the trace

2"=(({^},l),({yl},2),({xl},2),({yl},3)).

representing a behavior in which the time between the x2 and xl events is greater than or

equal to 1, such as

{(x2,1.9),(yl,2.9),(xl,2.95), (2/1,3.95)}.

Recall that the synchronous time model of the gate needed to include the traces

y' = {(2:2,1), (^1,2)}

y" = {(x2,l), (2/1,2), (zl,2), (j/1,3)}.

As stated earlier, the trace y" allows continuous time behaviors where the first three transitions

(in order) are x2, xl and yl. This is more conservative than necessary because such behaviors

are not possible in the continuous time model of the gate. Since the trace z" does not allow

such continuous time behaviors, it is a tighter approximation than y" is.

3.5 Application to Automatic Verification

Let us consider how conservative approximt tions from continuous time trace structures to

discrete time trace structures can be applied in automatic verification. One method for me-

chanically verifying that a implementation satisfies a continuous time specification is as follows.

3.5. APPLICATION TO AUTOMATIC VERIFICATION 73

First, construct data structures for each of the continuous time trace structures representing

the specification and the components of the implementation. Then, algorithmically convert

each of the continuous time trace structures to discrete time, and then decide the verification

problem in discrete time.

We do not use this method, however, because we want to avoid having to construct a

machine readable representation for any continuous time trace structures. Instead, we rec-

ommend a method involving a specification language with both continuous and discrete time

semantics. The discrete time semantics must be shown to be a conservative approximation of

the continuous time semantics, for any specification written in that language. The user writes

descriptions of the specification and the components in this specification language, keeping the

continuous time semantics in mind. The descriptions are translated into discrete time trace

structures that are used to decide the verification problem. The result is a conservative ap-

proximation of the continuous time verification problem the user had in mind, but continuous

time trace structures are never constructed. Implementing a specification language that can

be used in this way is an area for future research.

Our results so far describe a conservative approximation from continuous time to quantized

time with simultaneity. Using trace structure algebra techniques described in the next chapter

{conservative approximations induced by power set algebras), we can extend this conservative

approximation to quantized time with interleaving. The verification method described above

can be used for the extended conservative approximation, as well.

74 CHAPTER 3. APPROXIMATING CONTINUOUS TIME

Chapter 4

Trace Algebra, Part II

This chapter describes more advanced features of trace algebra such as partial traces and

conservative approximations induced by powerset algebras over trace algebras. We use these

features to extend the conservative approximations described in the previous chapter.

4.1 Power Set Algebras over Trace Algebras

We begin with an example to motivate power set algebras over trace algebras. Let C* be the

trace algebra given by:

• 'jS

ProJ {B){x) = x'-, where x' is the sequence formed by intersecting B with each element

of the sequence x and then removing any instances of the empty set that result. More

formally, ien(x') is equal to

i{; € A": 0 < ; < ieii(aj) A x{j) DB ^ 0}|,

and

x'{k) = x{n)nB,

where n is the unique integer such that x(n) C] B ^ Hi and

k = \{j(EM -.0 <j <nA x{j) n B ^ 1l>}\.

75

76 CHAPTER 4. TRACE ALGEBRA, PART II

• rename5(r)(;c) = An € .A/'y'[r(a){ft))].

This trace algebra was also described in section 2.2.1; it is an untimed behavior model with

explicit simultaneity. The proof that C^ is a trace algebra is left as an exercise to the reader.

It is well known that a trace with explicit simultaneity can be represented by its set of

interleavings. We use this fact to construct a trace algebra C^1 that is isomorphic to C? and

that is a power set algebra over C^. Each trace in CQ is a set of traces from C^; this set of

traces is the set of interleavings of some trace in C^. The operations of C57 are the same as

those in CQ except that they are naturally extended to sets. The main result of this section

is the description of how to use power set algebras to construct conservative approximations

from (for example) trace structures over C^ to trace structures over C^- The approximations

are independent of the details of the trace algebras; they depend only on the fact that C^1 is

isomorphic to Cc and is a power set algebra over C^.

The construction of C^1 involves the function interieave from traces in C^ to sets of traces

in Cc- Let x be a trace in #£. For all n € M'r such that n < ien(x), let

ln{x) = n^\x{k)\.

We define interieave(;c) to be the set of traces x' G BQ such that for all. n,

x{n) = {x'{k) : ln{x) < k < ln+1{x)}.

Intuitively, this is the set of traces that can be formed from x by constructing a permutation

of each of the sets x{n) and then concatenating the permutations together. Notice that for all

alphabets A,iix £ #£(-4), then interieave(aj) C Bc{A).

The function interieave is an injection. To see this, let XQ and xl be distinct traces in #£.

Since x0 and Xi are distinct, there exists a smallest n such that Xo(n) ^ i1(n). Also, there

exists a b such that either

b € Xo{n) - xi{n)

or

b E Xi{n) - xo{n).

Consider the first case; the second case is analogous. Since b t Xo(n), there exists a trace

x' 6 interieave(xo) such that x'{ln{xo)) - b. Since b & Xi{n), there does not exist a trace

4.1. POWER SET ALGEBRAS OVER TRACE ALGEBRAS 77

x' S iiiterJeave(i1) such that x'{ln{xi)) — b. Since n is the index of the first element on which

x0 and xi differ, /n(;co) — ^(^i)- Thus,

interieave(xo) T interieave(a;1).

Therefore, interieave is an injection.

Since interieave is an injection, we can use it to construct a trace algebra CQ
1
 that is

isomorphic to C^ and such that each trace is a set of traces from C^:

B^iA) = {yC B^A) : 3a; € B${A) [y = interieave (a;)]}

proj {B){y) = interieave(proj5(5)(interieave_1(2/)))

rename (i")(y) = interieave (rename (r,)(interieave_1(y))).

The reader can verify the following identities, which relate the operations of C^ to those

interleave{projs{B){x)) = {projI{B){x') : x'^ mterlea.ve{x)}

interieave(rename5(r)(i)) = {rename/(r)(a;') : x'G inferieave(a;)}.

These are used to show that the operations of C^1 are just the natural extension to sets of the

corresponding operations oi C^:

projs {B){y) = interieave(pr(?j5(5)(interieave~1(j/)))

= {proj [B){x') : x' G interieave(interieave_:1(y))}

= {profiB^-.x'ey};

similarly,

rename {r){y) — {rename/(r)(a;') : x € y}.

These properties of Csl make it a power set algebra over CQ, as defined below.

Definition 4.1. Let Cc = {Be,proj,rename) and C = (B'^.,proj',rename') be trace algebras.

We say Cc is a power set algebra over C'c iff

• z € Bc{A) implies x C B'C{A),

• proj{B){x) = {proj'{B){x') : x' £ x},

• rename(r)(a;) = {rename'{r){x') : x' G a;}.

78 CHAPTER 4. TRACE ALGEBRA, PART II

We want to construct a conservative approximation from trace structures over C^.1 to trace

structures over C£ (which, because of the isomorphism between C£ and C^7, allows us to

construct a conservative approximation from trace structures over C£ to trace structures over

C£). To do this, we need to find a way that a set of traces in C^ can be interpreted as

representing or approximating a set of traces in C|.

Let Ar be a subset of B^A) for some alphabet A. Since each trace x in C*7 is a set of

traces in C£, the set P' = UX is well-defined and is a subset of ^(.4). The set P' can be

thought of as representing the largest set P of traces in C^1 such that P' = UP. This is a

standard way of using a set of interleaved traces to (approximately) represent a set of traces

with explicit simultaneity or partial order semantics. Notice that P is the largest set of traces

in Ci1 such that P' = UP if and only if

x € Be (A) AxCP' & x € P.

So the above logical equivalence specifies when P' represents P exactly. For a conservative

approximation, we do not need to represent P exactly, but we do need to construct P^ and P/

(subsets of B^A)) that represent upper and lower bounds on P. The above requirement for

exactness can be split into two parts to form requirements for such upper and lower bounds:

x 6 B^iA) AxCPl <- .r € P

x £ B^{A) AxCP/ => x £ p

The requirement that x 6 B^{A) is redundant in the reverse implication since P C B^iA).

This leads to the followmg definition of a class of conservative approximations from (for ex-

ample) irace structures over C'^7 to trace structures over C£.

Definition 4.2. Let C'c be a trace algebra and let Cc be a power set algebra over C'c. Let

Ac = (CcT) and A'c = {C'C,T') be trace structure algebras. Let % and *, be functions

from T to T such that if 7^ =. %{T) and T/ = *((T), then

7u = 7

7; = 7

xtp^xep, (4 ^

i 6 ßc(^) AxCP/ =0 a; e P. (4.2)

By lemma 4.3 (below), $ = (*,,*„) is a conservative approximation from ^c to ^'c.

We call * a conservative approximation from Ac to A'c induced by the power set algebra

4.1. POWER SET ALGEBRAS OVER TRACE ALGEBRAS 79

C. If

PL = UP,

p; = UP- u{xeBc{A) - P -.xcup}

then the above constraints on P„ and P/ are clearly satisfied. In this case, we call $ the

standard conservative approximation from Ac to A'c induced by C.

In chapter 2, we were able to characterize the tightest conservative approximation induced

by a homomorphism. An obvious question is whether there always exists a tightest conservative

approximation induced by a given power set algebra. The smallest (by inclusion ordering) P^

that satisfies formula (4.1) is clearly P^ = UP. However, in general, there is no largest P/

that satisfies formula (4.2), so there is no tightest conservative approximation. Our definition

of the standard conservative approximation induced by a power set algebra is a compromise

that works well in many cases.

The remainder of this section proves that a conservative approximation induced by a con-

servative approximation is in fact a conservative approximation.

Lemma 4.3. A conservative approximation induced by a power set algebra is a conservative

approximation.

Proof. Adopt the notation used in definition 4.2. By theorem 2.36 (which states that a

conservative approximation remains conservative when "loosened"), the current lemma

is satisfied if $ is a conservative approximation when P^ is the smallest set satisfying

formula (4.1). Thus, we may assume that

*U(T) = (7,UP).

We use theorem 2.35 to show that ^ is a conservative approximation by showing that ^

satisfies Al through A4.

Lemma 4.4. $ satisfies Al.

Proof. Let T = Tj || T2; then

P = {xe Bc{A) : proj(A1)(x) € Pi A proj{A2){x) € P2}.

80 CHAPTER 4. TRACE ALGEBRA, PART II

Also, let Tl = ^(Ta), T2' = $tt(T2) and T = ^ || T2'. We must show that UP C P'.

i' € UP «> 5x (E 5c(-4)[x' € i A proi(.41)(a;) e Pl A proj(,42)(a;) € Pa]

by the definition of $u

=> 3s € ßc(.4)ix' G a; A proj(A1)(a!) C P; A proi(J42)(x) C P^j

by the definition of proj on traces in Cc

=* proJiA^x1) e P[A PTOJ{A2){X') e P2']

<=> x' £ P'.

Lemma 4.5. ^ satisfies A2.

Proof.

Uproj(S)(P) = {x' : 3x € proj{B){P)[x' € a;]}

by the definition of proj(P) on sets of traces in Cc

= {*' : 3y 6 P^' € PToj{B){y)]}

since Vz'3|/'[x' = proj{B){y')], by T4

= {proj{B){y') : By 6 P[proj(P)(y') £ proj(P)(2/)j}

by the definition of proj{B) on traces in Cc

= {proj(P)(2/') : 5j/ € P[y' G j/]}

by the definition of proj{B) on sets of traces in C'c

= proj{B){{y' : 3y G P[y' G y]})

= proi(P)(UP).

Lemma 4.6. * satisfies A3.

Proof.

Urename(r)(P)

= {x' : 3x G rename(7')(P)[a;' G s^}

4.2. QUANTIZED TIME WITH INTERLEAVING SEMANTICS - 81

by the definition of rename(r) on sets of traces in Cc

= {x' : 3y € P[x' € rename{r)(y)]}

since rename(r) is a bijection in any trace algebra

= {renäme{r){y') : 3y 6 P[rename{r){y') G rena.me{r){y)]}

by the definition of rename(r) on traces in Cc

= {rename{r){y') : 3y £ P[y' € y]}

by the definition of rename(r) on sets of traces in C'c

= rename{r){{y' -. 3y e P[y' £ y]})

= renaine(r)(UP).

D

Lemma 4.7. ^ satisfies A4.

Proof. Assume $u(Ti) C *;(r2). Then Aj = .42; let .4 = A.. Also, let ^ = ^(Tx)

and T2 = ^;(r2)- We must show that P1 C P2.

xe Pi

by the definition of tyu

=» 1 c p;

since P/ C P2'

=> zCP2'

by the definition of $;

=> a; € P2.

D

4.2 Quantized Time with Interleaving Semantics

In this section, we describe two different, but isomorphic, trace algebras for quantized time

with interleaving. The first, C£TI, is quite similar to C£TS, except that for a trace x = (u, r) the

•

•

•

•

82 CHAPTER 4. TRACE ALGEBRA, PART II

sequence u is over A rather than 2^ -{0}. It is used to construct a conservative approximation

from quantized time with simultaneity to quantized time with interleaving, which extends the

conservative approximation from continuous time. The second, CcTI'p, has traces that are

sequences over .4 U {<?}, where ^ is a special symbol that indicates the passage of a unit of

time [16, 17, 18]. For example, the trace (pifbip represents a behavior in which a b event has a

time stamp ox 2.

The remainder of this section formahzes these ideas.

Definition 4.8. We define the trace algebra C^71 as follows. For all alphabets A. a trace

x = [U.T] in Bc{A) is such that

• u is a (possibly infinite) sequence over .4,

r is a (possibly infinite) sequence over A'^,

u and T are the same length,

n0 < Hi implies r(n0) < T{ni) (increasing), and

if r has infinite length, then it is unbounded,

VfGAr/[3ne^[i<r(n)]].

Let x = (u,r) be a trace over some alphabet A.

• proj{B){x) = (u',r'), where u' is the sequence formed from u by removing every

symbol a not in ß, and r' is formed from r by removing the corresponding time

stamps. More formally, ien(u') and ien(r') are both equal to

j{i e A^ : 0 < ; < len{u) A u{j) € B}\.

Also,

u'{k) = u{n)

r'(fc) = r{n),

and n is the unique integer such that u{n) € B and

k = \{jeM -.O^j <nA u{j) € B}\

• rename(7-)(x) = (An € Ar/[r(u(n))], r).

Lemma 4.9. Cc is a trace algebra.

4.2. QUANTIZED TIME WITH INTERLEAVING SEMANTICS 83

Proof. The proof is analogous to lemma 3.11, which show that CQ
75

 is a trace algebra.

□

Definition 4.10. We define the trace algebra CQ
711

" as follows:

• The set Bc{A) of traces over an alphabet A is the set of cc G (-4 U {^})u' such that

(p appears infinitely often in x (we assume tp £ W^ see note 3.1, p. 59).

• If x € Bc{A) and B C A. then proj{B){x) is the sequence formed from x by

removing every symbol a not in 5 U {p}. More formally,

projVTI*{B){x) = proj'iB ü {v})ix).

• If 2; € Bc{A) and r is a renaming function with domain A, then rename{r){x) is

the sequence formed from x by replacing every a £ A with r(a).

Lemma 4.11. C^ ^ is a trace algebra.

Proof. The proof is a slight modification of the proof that C^ is a trace algebra (lemma 4.33),

and is left as an exercise for the reader.

D

Definition 4.12. We define A^TI to be the ordered pair {C^TI,T^TI), where TQTI is the set

of all trace structures over C§TI. By theorem 2.27, A®71 is a trace structure algebra.

Ac * is similarly defined.

Lemma 4.13. CcTI'fi is isomorphic to C^77.

Proof. It is sufficient to show that there is a bijection h from C^71* to C^TI that satisfies

the requirements of a homomorphism.

Let a; be a trace in Be ^{A). We define h such that h{x) = (u,r), where

u{k) — x{n)

r(&) = n — k,

and n is the unique integer such that x{n) ^ if and

k = \{jerf -.O^j <nAx{j)^p}\.

It is straightforward, but tedious, to show that h is an bijection and that it satisfies the

requirements lor being a homomorphism. The proof is left as an exercise for the reader.

84 CHAPTER 4. TRACE ALGEBRA, PART II

Corollary 4.14. Ac71* is isomorphic to AcTI.

4.2.1 Approximating Continuous Time

In this section we complete the conservative approximation from AcTU to AcTI. Since we have

already constructed a conservative approximation from AcTU to A£TS. it is only necessary to

go from AcTS to Ac™. There exists a trace algebra CcTSI that is a power set algebra over

Cc and is isomorphic to Ac . This allows us to construct a conservative approximation

from AQ to Ac . We define the set of interleavings of a trace in Q: to be a set of traces

in Cc I. Each trace in Cc™ is the set of interleavings of a trace in C^75.

The remainder of this section proves these claims.

Definition 4.15. Let x = (u,r) be a trace in B%rs{A). For all n S Av such that n < 1

ln = nf^ \u{k)\.
k=o

We define iiiterieave(aj) C B? (A) to be the set of traces x' = (u',r') such that for all

n,

u{n) = {u\k):ln<k<U1}

and

Vk[ln <k< ln+l =» r(n) = r'ik)].

Definition 4.16. We define the trace algebra C£TSI as follows. For all alphabets .4,

B$TSI{A) = {interleaveix) : x € ^r5(.4)}.

The operations on traces of C^T5/ are the natural extension of the operations of C£TI to

the sets of C£TI traces in B^TSI.

Corollary 4.17. C£TSI is a power set algebra over C£TI.

Lemma 4.18. CC
TSI is a trace algebra and it is isomorphic to C^75-

4.3. PARTIAL TRACES . 85

Proof. Since Cc is a trace algebra, it is sufficient to show that there is a bijection h from

Cc to Cc that satisfies the requirements of a homomorphism. This demiinstrates

that Cc is a trace algebra, as well as showing that it is isomorphic to C,?75.

Let x = (U,T) be a trace in Be™{A). The obvious candidate for h is

h{x) — interleave{x).

It is straightforward, but tedious, to show that h is an bijection and that it satisfies the

requirements for being a strong homomorphism. The proof is left as an exercise for the

reader.

Theorem 4.19. There is a conservative approximation (up to isomorphism) from A^75 to

A QTI

Proof. Since CQTST is a power set algebra over CQTI., definition 4.2 can be used to construct

a conservative approximation from trace structures over CQTSI to trace structures over

CQ . This can be used to construct a conservative approximation from AQTS to A^TI

since CQTS is isomorphic to CQTSI.

4.3 Partial Traces

Recall the distinction described in section 2.2 between two different kinds of behaviors: com-

plete behaviors and partial behaviors. A complete behavior has no endpoint; a partial behavior

has an endpoint and can be a prefix of a complete behavior or of another partial behavior.

Complete traces and partial traces are used to model complete and partial behaviors, respec-

tively. So far we have only considered trace algebras and trace structure algebras that contain

complete traces but no partial traces. In the next several sections we extend these algebras to

include partial traces.

86 - CHAPTER 4. TRACE ALGEBRA, PART II

4.3.1 Trace Algebra with Partial Traces

A trace algebra C with partial traces includes, for each alphabet, a set of complete traces and a

set of partial traces. In addition, a concatenation operation "•" is included that takes a partial

trace as its first argument and a partial or complete trace as its second argument. Besides

the axioms Tl through T8 for trace algebra without partial traces, trace algebra with partial

traces must satisfy axioms T9 through T19, which state requirements on the concatenation

operation and on the effects of projection and renaming on partial traces.

Definition 4.20. A trace algebra with partial traces C over W is a 5-tuple

[Bc.Bp,proj, rename, •).

For every alphabet .4 over W, Bc{A) and Bp{A) are non-empty sets, called the set of

complete traces and partial traces over A, respectively. Notice that Bc{A) and Bp(A)

are not necessarily disjoint. Slightly abusing notation, we also write Be and Spas

abbreviations:

Be = [j {Bc{A) : .4 is an alphabet}

Bp = [J {Bp{A) : A is an alphabet}.

We also write B{A) for Bc{A) U Bp{A) and B for Be U Bp. For every alphabet B over

W and every renaming function r over W, proj{B) and rename(r) are partial functions

from B to B. The concatenation operation '•' is a partial function from BpxB to B. The

axioms Tl through T8 (see definition 2.7, p. 26) must be satisfied, with each instance of

Be replaced by B in the statement of these axioms. The following axioms T9 through

T19 must also be satisfied.

T9. For every alphabet A, if i e Bp{A) and y e B{A), then x ■ y is defined and is an

element of B(A). If there is no alphabet A such that x € Bp{A) and y 6 B{A).

then x • y is undefined.

T10. If x -y is defined and is an element of B{A), then

yeBc{A) & x-yeBc{A)

yeBp{A) «. x-yeBp{A).

Til. {x-y)- z = x -{y ■ z).

4.3. PARTIAL TRACES . 87

T12. If a; • i/ = x • I/', then y — y'.

T13. For every alphabet A, there exists a distinguished element eA of Bp{A) such that

a; • e^ = a; for all a; 6 Bp{A) and eA-y = y for all y € B{A). Also, iix-y = eA, then

a; = e^ and y = eA.

T14. U x -y = x' -y', then there exists z, 2' 6 Bp and 2" 6 ß such that x ■ z = x' ■ z' and

T15. If 2,2' g B(.4) and 2 7^ 2', then there exists x and y such that

x -y ~ z A\/y'[x -y' 3= z'] or a; • y = 2'A Vi/'Ja; • j/'^ 2].

T16. If x 6 5(A) and proj{B){x) is defined, then

x e Bc{A) & proj{B){x) G Bc{B)

x £ ßp(.4) => proj(JB)(2) € BP{B).

T17. For all a;, y and 2', x ■ y = proj{B){z') iff there exists x' and y' such that a; =

pToj{B){x'), y = proj{B){y') and x'- y'= z'.

T18. If renaine(r)(a;) is defined, then

x e Bc{dom{r)) «• rename(r)(x) £ ßc(coc/om(r-))

a; € Bp{doin{r)) & rena.me{r){x) e ;ßp(codom(r)).

T19. renaine(r)(a; ■ y) = rename(r)(a;) ■ rename{r){y).

T9 states when concatenation is defined. T10, T16 and T18 state when the results of an

operation are partial or complete traces. Notice that if proj{B){x) is a partial trace, then x

need not be a partial trace. For example, this can happen x is an infinite sequence and 5 = 0.

The trace x ■ y represents the execution of x followed by the execution of y. Given this

interpretation of concatenation, it is clear that concatenation should be associative, as required

by TU. T12 states that if two behaviors differ for some suffix, then they are different behaviors.

For every alphabet A, T13 requires the existence of a trace eA that is analogous to the empty

string for formal languages.

Note 4.21. We often write t instead of €A when A is clear from context or €A is independent

of A.

88 CHAPTER 4. TRAGE ALGEBRA, PART II

T14 says that if x and x' are both prefixes of some trace w, then there exists some partial

trace w' that is a prefix of w such that x and x' are both prefixes of w'. T15 says that for any

two distinct traces z and z', there must exist a trace x such that a; is a prefix of z but not of

2', or a prefix of z' but not of z.

The reverse implication of T17 is equivalent to requiring that projection distribute over

concatenation. The forward implication can be interpreted as follows. Assume the trace

PTOJ{B){z') can be split into the pieces x followed by y, i.e., x ■ y = proj{B){z'). Then the

trace z' can be split into pieces x' and y' such that x = proj{B){x') and y = proj{B){y').

It is natural for renaming to distribute over concatenation, as required by T19.

Note 4.22. We naturally extend the concatenation operation on traces to an operation on

sets of traces.

As an example trace algebra with partial traces, we construct C1, which is an extension

of the trace algebra (without partial traces) C^ formahzed in definition 2.9. As with C£, the

superscript / is a mnemonic for an (untimed) interleaving model. The proof that Cl is a trace

algebra is delayed until lemma 4.33 (p. 91).

Definition 4.23. We define the trace algebra with partial traces C1 as follows:

• The set B^A) of complete traces over an alphabet A is A00 (notice that this

definition of B^{A) is consistent with the definition of #£(-4) Siven ^r C^).

• The set Bp{A) of partial traces over an alphabet A is .4*.

• The projection and renaming operations are the same as in C^.

• The concatenation operation is standard concatenation of sequences.

Similarly, Cc * can be extended to include partial traces. Notice in the definition below

that the set of partial traces over an alphabet A is not (.4 U {p})*; non-empty sequences must

end with 9?, This is related to the fact that partial traces in a discrete time model must

represent a time period that is an integer number of time units long.

Definition 4.24. We define the trace algebra with partial traces CQTIv as follows:

• The set Bc{A) of traces over an alphabet A is the set of a; G (.4 U {v?})" such that

tp appears infinitely often in x.

4.3. PARTIAL TRACES 89

• The set Bp(A) of partial traces over an alphabet A is

e + (.4uMr(M),

that is, the empty sequence and all finite sequences over .4 U {ip} that end with ip.

• If x € B{A) and B C A, then proj{B){x) is the sequence formed from x hy removing

every symbol a not in 5 U {</?}. More formally,

proj«T^(5)(x) = pro/(Bu{^})(x).

• If x G B{A) and r is a renaming function with domain .4, then rename(r)(x) is the

sequence formed from x by replacing every a G 4. with ^(a).

• The concatenation operation is standard concatenation of sequences.

Given a trace algebra with complete traces, there are several related trace algebras that

we can define, as follows.

Definition 4.25. Given a trace algebra C = {Bc,Bp,proj,rename,-), we use the subscripts

C, P and PC to denote the trace algebras

Cc — {Be i proj, rename)

Cp = {B P, Bp, pro j, rename,-)

Cpc — {Bp, pro j, rename).

Lemma 4.37 (p. 92) proves that Cc, Cp and Cpc satisfy the appropriate axioms of trace

algebra.

Typically, Cc is used when only complete traces are of interest. We have already seen an

example of this notation with the trace algebras C1 and C^. The algebras Cp and Cpc are used

when restricting to safety properties; using only traces in Bp is analogous to using only finite

sequences, without infinite sequences, to represent behaviors.

We can use the concatenation operation to define suffixes and prefixes.

Definition 4.26. Let x £ Bp{A) and Z C B{A). The functions suf{x,Z), pref(Z) and

suf{Z) are given by

suf{x,Z) = {yeB{A):x-yeZ}

pref(Z) - {xGßp(A):suf(x,Z)^0}

suf(Z) = (J su/(x,Z).
x6pref(Z)

90 CHAPTER 4. TRACE ALGEBRA, PART II

Definition 4.27. We say X is prefix-closed iff pref(.Y) C X.

Note 4.28. U x e B, we sometimes write pref{x) to denote pre/({a;}). Similarly for suf(a:).

The remainder of this section proves the claims made above, and proves some additional

results about trace algebras with partial traces. It may be skipped on first reading.

We begin with some simply corollaries that follow immediately from the axioms of trace

algebra.

Corollary 4.29.

1. By T17, pTOJ{B){x) ■ proj{B){y) = proj{B){x ■ y).

2. By T13 and T15 (with z' = eA). it z ~ 3{A) is not equal to €A, then there exists x

and y such that x ■ y = z and x ^ eA.

We also prove some simple corollaries related to suffixes and prefixes.

Corollary 4.30.

suf{x,XuY) = suf{x,X)Usuf{x,Y),

pTef{X UY) = pref{X)Lpref{Y),

suf{XuY) = suf{X)Usnf{Y).

Corollary 4.31. If X C F, then

suf{x,X) C 8uf{x,Y),

pref{X) C prefiY),

sufiX) C suf(F).

Corollary 4.32.

1. By T13, if Z # 0, then e € pref{Z).

2. By T13, iZnBp)CprefiZ).

3. By item 1, Z C suf(Z).

4. By Til, suf{x,suf{y,X)) = 8uf{y ■ x,X).

4.3. PARTIAL TRACES . 91

5. By T6, T7 and T19, reiiame(r)(suf(a;,,Y)) = suf(renarne(r)(a;),reiiaine(r)(Ar)).

We must also prove our claim that C1 is a trace algebra.

Lemma 4.33. C1 is a trace algebra with partial traces.

Proof. To show that C1 is a trace algebra with partial traces, we must show that it satisfies

Tl through T19. Axioms Tl through T8 hold since CQ is a trace algebra without partial

traces and B1 = 0£. T9. T10, T16 and T18 are easy to verify. Til and T12 are a basic

properties of concatenation of finite and infinite sequences. The €A of T13 is just the

empty sequence e, for every alphabet A. T19 is also easy to show. All that remains is

T14. T15 and TIT,

Lemma 4.34. C1 satisfies T14.

Proof. Assume x-y == x' -y'; we must show that there exists partial traces z and z' such

that x • z ~ x' ■ z'. There is no loss of generality in assuming that len{x') < len{x).

Let z — e. By our assumptions, the length of y' must be at least ieii(x) — ien(x').

Let z' be the prefix of y' that has length ien(x) -ien(x'). Both z' and z are of finite

length, so they are partial traces. It is easy to check that x' ■ z1 = x ■ z. Let z" = y\

clearly z ■ z" -s. y.

D

Lemma 4.35. Cl satisfies T15.

Proof. Assume z and z' are distinct ekmeats of B{ A). If z and z' have different lengths,

then there is no \ms of generality in astuming that z' is the shorter of the two. In

this case, z' must h^ve finite length, say n, and z must have a length of at least

n -I- 1. T15 is satisfieo by letting '.: üT ifa length n + 1 prefix of z.

If z and z' have the same ■■ s^th n, then there must exist a. k < n such that

z{k) ^ z'ik). T15 is satisfied by letting x be the length fe + 1 prefix of either z or

z'.

□

92 - CHAPTER 4. TRACE ALGEBRA, PART II

Lemma 4.36. C1 satisfies T17.

Proof. The reverse implication of T17 is equivalent to

proj{B){x' ■ y') = proj{B){x') ■ proj{B)iy%

which follows easily from the definition of proj.

To prove the forward implication, let B C A. We consider the case where z' is

a finite length sequence; the generalization to the infinite case is straightforward.

There is no loss of generality in assuming that

z' = Xoböxfa ■ ■ ■ x'^b^x'n,

where k E B and ^ G (.4 - £)*■ U x ■ y = proj{B){z'), then there must exist a k

such that

x = bo---bk_l and y = bk---bn-l.

Therefore, it is sufficient to let x' and y' be such that

x = x'0bo • • • x'^bk-i

y' = x'kbk--'x'n.lbn.lx'n.

Next we prove the claim made in definition 4.25 about the existence of trace algebras Cc-

Cp and Cpc, given a trace algebra with complete traces C.

Lemma 4.37. If C = (ßc; ßp, proj, rename, •) is a trace algebra with partial iracf*, then

Cc = {Be, proj, rename)

Cp = {Bp,Bp, proj, rename,-)

Cpc = {Bp, proj, rename),

are trace algebras.

Proof.

Lemma 4.38. Cc is a trace algebra without partial traces.

4.3. PARTIAL TRACES 93

Proof. Since C satisfies T16 and T18, Cc is closed under projection and renaming. We

must show that Cc satisfies Tl through T8. Except for T4, all of these axioms

obviously remain true when traces are removed from the domain. To prove T4, let

x E Bc{A) and x' € Bc{A') be such that proj(.4 D A'){x) = proj{A D A'){x'), and

let A" be an alphabet such that A U A' C A". Since C satisfies T4, there exists

x" e Bc{A") U Bp{A") such that x = pToj{A){x") and x' - proj{A'){x"). We must

show that x" e Bc{A"), which is true since x € Bc{A), x = proj(.4)(a;") and C

satisfies T16.

Next we must show that Cp is a trace algebra with partial traces. Since C satisfies

T10, T16 and T18, Cp is closed under concatenation, projection and renaming. We must

show that Cp satisfies Tl through T19. The next lemma shows that Cp satisfies T4: the

remaining axioms are handled in a later lemma.

Lemma 4.39. Cp satisfies T4.

Proof. To prove T4, let xo € BP{A) and x'0 6 Bp{A') be such that proj(.4 n A'){xo) =

pToj{An ^^(^o)' aild let A" be an alphabet such that Au A' C A". We must show

that there exists x% € Bp{A") such that xo = proj{A){x'ä) and x'0 = proj{A'){x^).

Since C satisfies T4, there exists w" € B{A") such that XQ = proj{A){w") and

x'0 = proj{A'){w").

Since C satisfies T13, x0 ■ eA = proj{A){w") and x'0-€A = proj{A'){w"). Since C

satisfies T17, there exists xl € Bp{A") and J/J € Bc{A") J Bp{A") such that XQ =

proJiA^Xi), eA = pTOJ{A){yi) and xl-y1 = w". Similarly, there exists x'1 € Bp{A")

and y[e Bc{A") U BP{A") such that x'0 = proj{A'){x[), eA, = pTOJ{A'){y[) and

x\ ■ y[= w".

Notice that xl ■ y1 = x'1 ■ y[. Since C satisfies T14, there exists zuz'1 € Bp{A")

and z" 6 B{A) such that x: ■ z1 = x'1 ■ z\ and 2i • 2" = J/J. Notice,

21 ■ 2" = 2/1 <=> xi ■ (21 • 2") = 11 ■ 2/1

since C satisfies Til

*> (Xl ■ 2!) -2" = Xj -2/1

since Xi • ^1 = x'j • j/^ and X] • 2! = x'j • z\

94 CHAPTER 4. TRACE ALGEBRA, PART II

since C satisfies Til

& Zi •(*! -^j =3V2/1

since C satisfies T12

Also,

2i-< = 2/i =» proj(.4)(c1 ■z;') = proj(.4)(2/1)

since proj(>l)(t/1) = e^

^ Proj(.4)(21 • 2f) = tA

since C satisfies T17

«- Droj(,4)(21)-proj(.4)(2;') = e>1

since C satisfies T13

«• proj(A)(21) = £,4.

Similarly, pToj{A'){z[) = eA,.

Let X'Q = X-I- ZI\ notice that i" 6 ßp(.4").

proj(.4)(i;') = proj(-4)(a;i-21)

since C satisfies T17

= proj(.4)(a;1)-proj(4)(21))

since x0 = proj{A){xl) and eA = proj(.4)(c1)

= ^o • «U

since C satisfies T13

= XQ.

Similarly, proj(>l')(z^) = x'0. Therefore, X'Q has the properties needed to show that

Cp satisfies T4, since x£ € Bp{A"), x0 = proj(A)(x[)') and ^ = proj(.4')(i^).

□

Lemma 4.40. Cp is a trace algebra with partial traces.

4.3. PARTIAL TRACES 95

Proof. As mentioned earlier, Cp is closed under concatenation, projection and renam-

ing. We must show that Cp satisfies Tl through T19. Clearly Tl, T2 and T3 remain

true when traces are removed from the domain. The previous lemma showed that

Cp satisfies T4.

Clearly T5, T6, T7 and T8 remain true when traces are removed from the

domain. To prove T9, we must show that for all x,y in Bp, x ■ y is defined iff

there exists an alphabet such that x € Bp{A) and y t Bp{A). This follows since C

satisfies T9. Since C satisfies T9 and T10, both sides of both iffs in T10 for Cp are

identically true, so T10 holds.

Clearly Til, T12, T13 and T14 remain true. Since C satisfies T10, the x and y

in T15 must be elements of Bp, so T15 remains true.

Since C satisfies Tl and T16, both sides of the iff and the implication in T16

for Cp are identically true, so T16 holds. Since C satisfies T10, the x' and y' in T17

must be an elements oi Bp, so T17 remains true.

Since C satisfies T5 and T18, both sides of both iff's in T18 for Cp are identically

true, so T18 holds. Clearly T19 remains true.

D

Lemma 4.41. Cpc is a trace algebra without partial traces.

Proof. Let C = Cp. By the previous two lemmas, C and C'c are trace algebras. There-

fore, Cpc is a trace algebra, since Cpc = C'c.

G

3

The final result of .this section shows that traces can be characterized by their set of prefixes.

We will use this result when restricting models to represent only safety properties.

Theorem 4.42. For some trace algebra C = {Bc,Bp,proj,rename,-) and some alphabet A,

let z and 2' be elements of B{A). Then

2 = 2' <=> pref(z) = pref(2').

96 CHAPTER 4. TRACE ALGEBRA, PART II

Proof. The forward implication is obvious. To prove the reverse implication, assume that z

and z' are distinct elements of B{A). By T15, there exists x and y such that

x ■ y = z A Vj/ta -y' ^ z'] or x ■ y = z' A \/y'[x • y ± z\.

Therefore,

2; 6 pref(2:) A a; ^ pref(2') or x € pre/(2') A a; ^ pref (z),

D

4.3.2 Restricting to Safety Properties

It is common to restrict a verification technique to handle only safety properties, since this

can be computationally more efficient than handling full liveness properties. If traces are

sequences, then this is just a matter of restricting to prefix-closed trace structures with only

finite sequences. We generalize this idea to arbitrary traces, as follows.

Definition 4.43. Given a trace algebra C = (ßc-ßp,proj, rename, •), we use the subscript

PC to denote the trace structure algebra,

where 7 is the set of all prefix-closed trace structures over CPC (see def. 4.25. p. 89). 4

trace structure T = (7,P) over Cpc is prefix-closed iff pre/(P) C P. Lemma 4.44 proves

that Ape is a trace structure algebra.

For an arbitrary trace algebra C with partial traces, it is possible to construct a conservative

approximation from trace structures over Cc to Ape- We do this by using an isomorphism

based on identifying a single trace in Cc with its set of prefixes (each prefix is a trace in Cpc).

The result is a power set algebra over Cpc that is isomorphic to Cc, which can be used to

construct a conservative approximation induced by a power set algebra. The approximation

is only useful for verification if the specification does not include any liveness properties;

otherwise a false negative will result (assuming the implementation satisfies its specification).

The remainder of this section proves these claims.

.nma 4.44. If C is a trace algebra with partial traces, then Ape (as in def. 4.43) is a trace

structure algebra.

4.3. PARTIAL TRACES 97

Proof. Let T' be the set of all trace structures over Cpc- By theorem 2.27, {Cpc,T') is a

trace structure algebra.

For all alphabets B, let C{B) be the class of all prefix-closed sets of traces of Bp{B).

Let

T" = {T € T' : P € £(.4)}.

It is easy to check that C{B) satisfies LI through L4. Thus, by theorem 2.30. since

{Cpc,T') is a trace structure algebra, so is {Cpc,T"). Notice that T" is equal to T.

Therefore, Ape = (Cpc,T) is a trace structure algebra.

Definition 4.45. Given a trace algebra C = {Bc,Bp,proj,rename,-), we use the subscript

C/P to denote the trace algebra,

Cc/P = {B c/p, proj, rename),

where

Bc/piA) = {pref{x) :x<EBc{A)},

and proj and rename are naturally extended to sets of traces. Lemma 4.46 (below)

proves that Cc/p is a trace algebra and is isomorphic to Cc-

Notice that Cc/p is a power set algebra (definition 4.1) over Cpc-

Lemma 4.46. If C is a trace algebra with partial traces, then Cc/p (as in def. 4.45) is a trace

algebra. Also, Xx[pre{{{x})] is an isomorphism from Cc to Cc/p-

Proof. By theorem 4.42, the function Xx[pref{{x})] is an alphabet preserving bijection from

Be to Bc/p- All that remains is to show that it satisfies the homomorphism laws for proj

and rename.

pref{{proj{B){z')})

= {x : 3y[x-y = proj{B){z')]} ■

98 CHAPTER 4. TRACE ALGEBRA, PART II

since C satisfies T17

= {x:3y[3x',y'[

x,-y, = z'Ax= proj{B){x') A y = proj{B){y')}]}

since 3y[y = proj{B){y')] for aU y' S Bc{B)

= {x : 3x',y'[x' ■y' = z'Ax = proj{B){x')]}

by definition of the natural extension of proj{B)

= proj{B){{x': By'lx'■ y'= z']})

= proj{B){pref{{z'})).

Also.

pref({rename(/■)(;')})

= {x : 3y'[x ■ y = reiiame(r)(2')]}

since C satisfies T6 and T7

= {x : 3y[rena,me{r~l){x ■ y) = z']}

since C satisfies T19

= {x : 3y{Tenante{r~1){x) ■ rename{r~l){y) = z']}

since C satisfies T6 and T7

= {rename(r)(2;') : 3yl[x' ■ y' = z']}

= rena,me(r)[pref{{z'})).

Now we can construct a conservative approximation from trace structures over Cc to trace

structures over Cpc by using Cc/p, which is isomorphic to Cc and is a power set algebra over

Cpc- The upper bound *U(T) is simply the result of composing the isomorphism with the

upper bound of the standard conservative approximation induced by Cc/p- The lower bound

f ((T) is equal to %{T) when T has no liveness properties; otherwise, it is equal to the empty

trace structure.

Theorem 4.47. Let C be a trace algebra with partial traces, and let Ac = {Cc,Tc) be a

trace structure algebra, where Tc is the set of all trace structures over Cc- Let % and

*/ be functions from trace structures T = (7,P) in Ac to trace structures in Ape such

4.3. PARTIAL TRACES 99

that %[T) = (7,P:) and $({?) = (7,?/), where

PL = Pref(P)
f pref(P), if [a; € ßc(A) A pref({a;}) C pref (P)] ^ x£ P,

I 0 otherwise.

Then $ = ($j,$u) is a conservative approximation from Ac to Ape-

Proof. Let Ac/p = [Cc/Pi Tc/p) be a trace structure algebra, where Tc/p is the set of all trace

structures over Cc/p- By lemma 4.46, Cc/p is isomorphic to Cc, so by corollary 2.40, Ac

is isomorphic to Ac/p- The isomorphism from Ac to Ac/p is the function H such that

#((7.^)) = (7, WK*}) :*€/>}).

We show that VT is a conservative approximation from Ac to Ape by first constructing

a conservative approximation ty' from Ac/p to ^.pc, and then showing that * is equal

to ^ composed with if.

Let ^ and ^J be functions from trace structures T = (7,P) in ^4c/p to trace struc-

tures in APC such that %{T) = (7^) and *((T) = (7,^'), where

PI

PL = UP
J UP, if [x € ßc(.4) A a; C UP] ^ x G P;

I 0 otherwise.

It is easy to check that *' = (^J, ^) is a conservative approximation from Ac/p to Ape

induced by the power set algebra Cc/p- It is also easy to check that

%{T) = KWT))
VtiT) = *;(F(T)),

where H is the isomorphism from Ac to Ac/p described above. Thus, ^ is a conservative

approximation from Ac to Apc-

O

100 CHAPTER 4. TRACE ALGEBRA, PART II

4.3.3 Trace Structure Algebra with Partial Traces

If T is a trace structure and x E pref(P), then x represents a partial behavior that is a prefix

of some complete behavior of T. After T executes x, we might say that T has changed tc

a different state. It is often useful to think of each state of an agent as being a different

agent [76]. With this in mind, we might say that T becomes a different agent after executing

x. We define the function suf on trace structures so that we can write suf{x,T) to denote the

agent that T becomes as a result of executing x.

Definition 4.48. If C = {Be,Bp, proj. rename, ■) is a trace algebra with partial traces and

T is a subset of the trace structures of Cc (recall that Cc = [Be-proj.rename), as

described in definition 4.25). then A = {C,T) is a trace structure algebra with partial

traces iff the domain T is closed under the following operations on trace structures:

parallel compocition (def. 2.18), renaming (def. 2.20), projection (def. 2.19) and suffixing

(def. 4.49).

For trace structure algebras with partial traces, the operations of parallel composition,

renaming and projection on trace structures are defined exactly the same as they were for

trace structure algebras without partial traces. Thus, they form a concurrency algebra.

Definition 4.49. su{{x,T) = (7, suf (a;, P)), where x € pref{P).

The operation of suffixing is clearly monotonic with respect to trace structure containment.

Also, the following propositions involving suffixing are satisfied:

suf(^,r) = T

suf{x.suf{y,T)) = suf{yx.T)

suf{x:T || T') = suf{proj{A)ix),T) \\ suf{proj{A'){x)X)

pToj{B){su{{x,T)) C su{{proj{B){x),proj{B){T))

rename{r){suf{x,T)) = suf(rename(r)(i),rename(r)(r)).

The remainder of this section proves these results.

4.3. PARTIAL TRACES 101

Theorem 4.50. If T and T' are trace structures, then

su{{€A,T) = T

su{{x,su{{y,T) = suf{yx,T)

suf{x,T || T) = suf{proj{A)ix),T) \\ Suf{proJiA'){x),T')

pToj{B){suf{x,T)) C su{{proj{B){x),proj{B){T))

rename(r,)(suf(x,r)) = suf(renaine(r)(a;),rename(r)(r)).

In all of the relationships, there is an implicit assumption that the left hand side of the

equation or inequality is defined.

Proof. The first identity follows easily from T13 and the second follows from corollary 4.32.4.

The remaining propositions are proved in the following lemmas.

Lemma 4.51. If i € pref(P fl P'), then

Su/(x,r || T) = suf{proj{A){x),T) || su{{proJiA'){x),T').

Proof. Let Tj = suf(x,r || T) and let

r2 = suf{proj{A){x),T) || suf{proj{A'){x),T')-

We must show that Pi = iV

P1 = suf{x, {y € BciAl) : proj{A){y) € P A proj{A'){y) € P'})

= {ze Sc(A1) : pTOJ{A){x ■z)eP A proj{A'){x ■ z) G P'}

by corollary 4.29.1

= {ze BciAr) : proj{A){x) ■ proj{A){z) e P

A proj(^')(x) • proj{A'){z) G P >

= {ze Bc{Al) : proj{A){z) e suf{proj{A){x),P)

Aproj{A'){z) E suf{proj{A'){x),P')}

= P2.

D

102 CHAPTERS TRACE ALGEBRA, PAßT J7

Lemma 4.52. If x € pref(P) and B C A, then

proJiB){suf(x,T)) C suf{proJiB){x),proj{B){T)).

Proof. Let Tj = proj(B)(suf(x,T)) and let

T2 = Suf(proj(B)(x),proj(B)(T)).

We must show that Pi C Pj-

Pi = proj{B){suf{x,P))

= proj{B){{y: x ■ y e P})

= {proJiB){y) -.x-yeP}

C {proj(B)(y) : proj{B){x ■ y) £ proj{B){P)}

by corollary 4.29.1

= {proj{B)iy) : proj{B){x) ■ proj{B){y) € proj(B)(P)}

= {proj{B){y) : proj{B){x) ■ proj{B){y) € proj(P)(P)}

C {y' : proj{B){x) ■ y' £ proj(B)(P)}

= suf{proj{B){x),proj{B){P))

= P2.

D

Lemma 4.53. If x G pref(P), then

rename(r)(suf(x,T)) = suf(renanie(r)(x),renaine(r)(T)).

Proof. Let Tj = renanie(r)(suf(x,T)) and let

T? = suf(rena.me(r)(x),rcnaine(r)(T)).

We must show that P1 = P^.

Pi = rename(7,)(suf(x,P))

= {renaine(r)(t/) : x ■ y £ P}

by T6 and T7

= {rename(r)(T/) : rename(7")(x • y) g rename(r)(P)}

4.3. PARTIAL TRACES 103

by T19

= {renanie{r){y) : rename{r){x) • rename{r){y) 6 rename(r)(P)}

by T6 and T7

= {z : re.name(r)(x) • z G reiiame(r)(P)}

= suf(renaine(r,)(a;),rename(r)(P))

= P,.

4.3.4 Constructing Trace Structure Algebras with Partial Traces

The definition of a trace structure algebra with partial traces A = {C,T) requires that the set

of trace structures T be closed under the operations on trace structures, including suffixing.

This section proves three theorems that make it easier to prove closure, and shows how to

use these theorems. The theorems are straightforward extensions of analogous results already

proved for trace structure algebras without partial traces (section 2.3.3, p. 39).

The first theorem states that if T is ^qual to the set of all trace structures over C, then T is

closed under the operations on trace structures, so .4 is a trace structure algebra with partial

traces; which is analogous to theorem 2.27. Recall that the alphabet of a trace structure need

not be a finite set. The second theorem shows that trace structures with finite alphabets are

closed under the operations on trace structures; which is analogous to theorem 2.28.

For the third theorem, let (C,T) be a trace structure algebra with partial traces, where

T is some subset of the set of traces structures over Cc- For every alphabet B, let C{B) be

a class of sets of complete traces over B, that is, C{B) C 2Bc^B\ Assume that C is closed

under intersection, renaming, projection, inverse projection and suffixing by prefixes (this is

formalized below). Let T' be the set of trace structures (7,P) € T such that P is in C{A).

Then T' is closed under the operations on trace structures, so {C,T') is a trace structure

algebra with partial traces. This is analogous to theorem 2.30.

Recall that T1 is the set of all trace structures over CQ. By the first theorem. A1 = (C7, T7)

is a trace structure algebra with partial traces. Recall that TIR is the set of all trace structures

(7, P) over C^ for which 7 has a finite alphabet and P is a mixed regular set of sequences (that

iO4 CHAPTER 4. TRACE ALGEBRA, PART II

is, P is the union of a regular set and an w-regular set). By the second and third theorems,

-4 = {C ,T) is also a trace structure algebra with partial traces.

The remainder of this section formalizes these results.

Theorem 4.54. If C is a trace algebra and T is the set of all of the trace structures over C, then

T is closed under the operations on trace structures (parallel composition, projection,

renaming and suffixing), so .4 = (C, T) is a trace structure algebra with partial traces.

Proof. Simple extension of theorem 2.27 (p. 39).

D

Theorem 4.55. Let A = (C,T) be a trace structure algebra with partial traces. Let T' be

the set of trace structures T e T such that the alphabet of T is a finite set. Then

A' = {C,T') is a trace structure algebra with partial traces.

Proof. Simple extension of theorem 2.28 (p. 39).

D

Theorem 4.56. Let A = (C,T) be a trace structure algebra with partial traces. For every

alphabet B of T, let C{B) be a subset of 2B^Bl Let T be the set of trace structures

T e T such that P is in C{A). Then A' = {C,T') is a trace structure algebra with

partial traces if LI through L5 are satisfied for every alphabet B of T (Ll through L4

are given on p. 40).

L5. UX 6 C{B) and x € pref(X), then suf(:c,X) € C{B).

Proof. Simple extension of theorem 2.30 (p. 40).

D

Definition 4.57. We define A1 to be the ordered pair {C^T1)- recall that T1 is the set of

all trace structures over C^ (definition 2.31). By theorem 4.54, A1 is a trace structuie

algebra.

Definition 4.58. Recall that TIR is the set of all trace structures T = (j,P) over C£ for

which 7 has a finite alphabet and P is a mixed regular set of sequences (definition 2.32).

We define Am to be the ordered pair {C1 ,rm). Showing that AIR is a trace structure

algebra with partial traces is a simple extension of the proof that A^ is a trace structure

algebra without partial traces (theorem 2.33).

4.4. INVERSE: r P CONSERVATIVE APPROXIMATIONS 105

4.4 Invei.: s of Conservative Approximations

Let $ = ($;,$„) be a conservative approximation from Ac = {Cc,T) to A'c = {C'C,T'). Let

T € T and T' e V be such that 7" = *u(r). As we have discussed, T represents a kind

of upper bound on T. It is natural to ask whether there is a trace structure in T that is

represented exactly by I" rather than just being bounded by T. If no trace structure in T

can be represented exactly, then $ is abstracting away too much information to be of much

use. If every trace structure in T can be represented exactly, then $; and ^ are equal and are

isomorphisms from Ac to Ac.. These extreme cases illustrate that the amount of abstraction

in * is related to what trace structures T are represented exactly by ^U(T) and ^i{T).

To formalize what it means to be represented exactly in this context, we define the inverse

of the conservative approximation ^. Normal notions of the inverse of a function are not

adequate for this purpose, since $ is a pair of functions. We handle this by only considering

those T e T for which 9i{T) and %{T) have the same value, call it T'. Intuitively, T

represents T exactly in this case; the key property of the inverse of * (written $,-„,) is that

%nt{T') = T. If ^(r) 7^ ^uiT), then T is not represented exactly in A'c. In this case, T

is not in the image of ^inv. Characterizing when *inr(T') is defined ^and what its value is)

helps to show what trace structures in T can be represented exactly (not just conservatively)

by trace structures in T'. The remainder of this section formalizes the idea of the inverse

of a conservative approximation, and characterizes the inverse of the tightest conservative

approximation induced by a homomorphism h.

Lemma 4.59. Let $ = ($(,$„) be a conservative approximation from Ac = {Cc,T) to

A'c = {C'C,T'). For every T G T, there is at most one T e T such that *,(T) = T and

*u(r) = r.

Proof. The proof is by contradiction. Assume there exists two distinct Ti and T2 in T such

that ^(Ji), ^(Tx), $j(r2) and %{T2) are all equal to T'. This implies ^(TJ C ^(T2)

and \PU(T2) C ^/(Ti). Thus, by the definition of a conservative approximation, Ti C T2

and T2 C Tj. Therefore, Ti = T2, which is a contradiction.

Definition 4.60. Let * = (**,$„) be a conservative approximation from Ac - {Cc,T) to

A'c = {C'cT). Let Ti be the set of T € T such that *,(T) = *u(r). Let T/ be the

106 CHAPTER 4. TRACE ALGEBRA, PART II

image of Tj under ty. The inverse of * is the partial function *<„, with domain T

and codomain T that is defined for all T' € T/ so that ^„„(T') = T, where T is the

unique (by lemma 4.59 and the definition of TJ] trace structure such that *;(T) = T

and *u(r) = T.

Theorem 4.61. Let hhes. trace algebra homomorphism from Cc to C'c, and let ^ = (^f, *u)

be the tightest conservative approximation induced by h from Ac — (Cc,T) to Ac =

{C'c,T'). If T £ T' is such that the set

^ = {Ar C Bc{A') : (7',Ar) 6 T A fe(Ar) C P'},

contains a unique maximal (by inclusion) element P for which P' = h{P), then

%nv{T') = (7',P); otherwise, %nv{T') is undefined.

Proof. Let T E T have the same signature 7 as T", and let

F - |J{A' C ßc(.4) : (7,X) e T A Ä(X) C h{P)}.

Notice that P C F, since T £ T. Consider the following sequence of logical equivalences:

*«.(r') = T

by the definition of the inverse of *

<=> *U(T) = r A *,(T) = r

by the definition of $

<=> Ä(P) = p' A y - p = 0

since P C 7

<=> Ä(P) = P' A P = F

by the definition of F and Z

^ A(P) = P' A P = UZ

since T € T

«* /i(P) = P' A p = uz A p e z,

which is true iff Z contains a unique maximal element P for which P' = h{P). The

reverse implication of this equivalence implies the theorem for the case when 9inv{T') is

4.4. INVERSES OF CONSERVATIVE APPROXIMATIONS 107

defined. By the forward implication, if Z does not contain a unique maximal element

P for which P' = h{P), then there does not exist T G T such that %nv{T') = T, which

implies that ^„„(T') is undefined.

The above theorem completely characterizes the inverse of any tightest conservative ap-

proximation induced by a homomorphism h. The fina). theorem of this section speciahzes this

result to trace structures algebras that are closed under finite and infinite unions, a property

enjoyed by many of the trace structure algebras we consider. This specialization results in

a simpler characterization of when V^,, is defined. In particular, ^inv{T') is defined iff there

exists & T e T such that ^„(T) = T". This is a strong result. Clearly the existence of such

a T is a necessary condition for the inverse of any conservative approximation to be defined

on T"; when T is closed under finite and infinite unions, and $ is the tightest conservative

approximation induced by a homomorphism, it is also a sufficient condition.

Definition 4.62. Let Ac = {Cc,T) be a trace structure algebra. We say Ac is closed under

finite (infinite) unions iff for every signature 7 the set

{PCßc(A):(7,P)€T}

is closed under finite (infinite) unions.

Theorem 4.63. Let hhe a trace algebra homomorphism from Cc to C'c, and let $ = (*/, %)

be the tightest conservative approximation induced by h from Ac = {Cc,T) to A'c =

{C'C,T'). Assume Ac is closed under finite and infinite unions. If T' £ T' is such that

%{T) = r for some T G T, then

-(r') = [j{x c Bc{A'): (7',) er A h{X) c p'y,

otherwise, ^>inv{T') is undefined.

Proof. By theorem 4.61, %nv{T') is defined iff the set

Z = {XC BC{A'): (7', X) € T A h{X) C P'},

iOS CHAPTER 4. TRACE ALGEBRA, PART II

contains a unique maximal element P for which P' = h{P). Since Ac is dosed under

finite and infinite unions, Z contains UZ, so this condition is equivalent to simply re-

quiring that Z contain some element P for which P' = h{P). By the definition of *u,

this is equivalent to there exists T G T such that %(T) = T. Also, when ^„„(T') is

defined, it is clearly equal to UZ.

D

Chapter 5

Delay Models

Trace algebras and trace structure algebras are very general mathematical tools for construct-

ing domains of agents models. Conservative approximations provide a general method for

proving relationships between different domains of process models. However, developing do-

mains of agent models 'r: only part of the task of modeling and specifying real-time systems:

it is also necessary to choose specific agents models to represent specifications and system

components.

Finding a correct formal specification is known to often be quite difficult. However, the

problem of finding good component models has received relatively little attention. For speed-

dependent asynchronous circuits, finding good component models (often called gate models,

in this case) is surprisingly subtle.

In this chapter, we consider several different delay models for verifying speed-dependent

asynchronous circuits. From each delay model we produce a gate model by feeding the output

of an ideal (delay-free) gate into a delay element of the appropriate type. The delay models

are used in the verification two asynchronous FIFO queue circuits: the first was designed by

Seitz [92] and the second was synthesized using the method of Lavagno et al. [61].

The automatic verifier that we use is our extension of Dill's trace theory verifier [38] that

allows for the use of trace structures over the discrete time trace algebra Cpc1* (in the verifier,

trace structures actually consist of two sets of traces, a success set and a failure set, but that

difference does not concern us here).

Together with the conservative approximations described earher, the verifier can be used

to prove correctness relative to the continuous time trace structure algebra AcTV■ Although

this verifier was first described in 1989 [16, 17], it still appears to be the state of the art in

automatic verification of speed-dependent asynchronous circuits.

109

110 CHAPTERS. DELAY MODELS

{y = ß)A{z = -1/3) -iU failure

iy = ß)A{z = -iß) -*-* z:=ß

Figure 5.1: Delay insensitive buffer, the meta-variable ß ranges over {0,1}.

5.1 Hazard-Failure Delay Model

We begin by considering the trace structure modeling a speed-independent buffer with input

y and output z. The buffer is described using a production rule notation (see figure 5.1)

somewhat reminiscent of the notation used by Martin [71, 73]. The firing of a production rule

is an instantaneous (atomic) event. It is possible for more than one production rule to fire

simultaneously; however, we will only consider non-simultaneous firings here. Since the buffer

in figure 5.1 is untimed, we can interpret its production rules as representing a set of traces in

C7; since its input is y and its output is z, the traces are elements of #£({^,2}). Recall that

Bciiy,2}) is equal to {y + z)*.

A trace is in the set of traces represented by a set of production rules if and only if it

corresponds to a run of the production rules. Consider a run of the production rules in

figure 5.1. In the initial state, with y and z both equal to 0, only the first rule is firable.

Since the first production rule is labeled with y (the symbol above the arrow), the trace of

the run begins with y. If the second production rule firing is a y transition, then the trace

of the run begins with yy, and the buffer goes into failure mode. Once in failure mode, any

trace is possible. Thus, for example, the buffer includes all of the traces in yy{y + z)*. We

call this delay model the speed-independent hazard-failure model, because any hazard puts the

buffer into failure mode (for our purposes, a hazard is two consecutive transitions on the input

of a buffer, without an intervening output transition). The term failure is borrowed from

Dill [38]. Dill used two sets of traces in each trace structure, a failure set and a success set;

for simplicity, we just use one set of traces.

If the second production rule firing is a 2 transition, then the trace begins with yz. Contin-

uing in this way, one can build up the trace corresponding to a particular run of the production

rules. The set of traces represented by the production rules is equal to the set of traces that

can be built up in this manner.

We can also interpret the production rules in figure 5.1 over the continuous time trace

5.1. HAZARD-FAILURE DELAY MODEL 111

algebra CCTU. Recall that each trace in B£TU{{y,x}) is a subset of {y,z} x 3^, where 3?/ is

the set of non-negative real numbers. In the initial state, with y and z both equal to 0, only

the first rule is Arable and it can fire at any time t'. Since the first production rule is labeled

with y the trace of the run contains the event {y,t'). Assume the next production rule firing

occurs at time t". If the second production rule firing is a y transition, then the trace of the

run contains the event {y,t"), and the buffer goes into failure mode. Thus, for example, uhe

buffer includes all of the traces of the form

{iy,t'),{y,t")}Ux,

wKere i is a subset of

{y,z} x{te^ :t >t"}.

If the second production rule firing is a 2 transition, then the trace contains the event {z,t").

Continuing in this way, one can build up the trace corresponding to a particular run of the

production rules.

The next step is to generalize the model of the buffer to include a lower bound A mm

and an upper bound Amax on its delay. We do this by including c/ocis in the production

rules to record the passage of time (see figure 5.2). The clock t in figure 5.2 is treated as a

real numbered value when used in the precondition of a production rule. A clock can either

be running or stopped. When stopped, its value is zero; when running, its value increases

automatically and continuously with the passage of time. All clocks are initially stopped.

The operation restart{t) sets the value of t to zero and starts the clock running, regardless

of whether it was already running. Thus, if a clock is running, then its value represents the

amount of time since it was last restarted. The operation reset{t) sets t to zero and stops it.

A production rule with disallow as its right side has a special meaning: the precondition must

never be allowed to be true. This can lead to complicated backtracking in general, but here

disallow is only used to enforce upper bounds on the response time of a delay element.

Consider a run of the production rules in figure 5.2. In the initial state, with y and z both

equal to 0 and t stopped, only the first rule is firable and it can fire at any time t'. Since the

fir:>t production rule is labeled with y the trace of the run contains the evert {y,t'). When the

rule fires, it restarts the clock t. Thus, until t is reset or restarted again, its value reflects the

amount of time since the y transition. Assume the next production rule firing occurs at time

t . If Amax < t" — t', then the precondition of rule 4 becomes true, but this is specifically

disallowed. Thus, we know that t" < «' -f Amax. If the second production rule firing is a y

112 CHAPTERS. DELAY MODELS

{y = ß)A{z = ß) -iL» y ■- -n^; restavii)

{y=ß)A{z = ->ß) -JU /at'/ure

(< > Ami„) A (y = /3) A (2 = -ijÖ) -^-» 2 := /?; reÄe«(<)
(< > Amaz) A (y = /3) A (2 = -/?) . tfisa/Zo«;

Figure 5.2: Binary hazard-failure delay, the met a-variable ß ranges over {0,1}.

transition, then the trace of the run contains the event {y,t"), and the delay element goes

into failure mode. If the second production rule firing is a 2 transition, then t" > t' + Irnm,

and the trace contains the event {z,t"). In this case, the clock t is reset (set to zero and

stopped) because there is no need to keep track of the passage of time when the delay element

is in a quiescent state. Continuing in this way, one can build up the trace corresponding to a

particular run of the production rules.

5.2 Approximating Continuous Time

We can also interpret production rules as representing trace structures over Cp^. Recall that

for a given alphabet A, the set traces B%TIlfi{A) of C?™* over alphabet A is

c + MuMr(M).

Earlier chapters have described a class of conservative approximations from traces structures

over CgTU to prefix-closed trace structures over Cft1* (via C^T0, C$TS, C^TS\ C£TI, CgTI'p

and CC/P
¥,). Let $ be the tightest of these conservative approximations. Let T be the trace

structure over CcTU represented by the production rules in figure 5.2 with Amin = 2 and

Amaz = 3. It can be shown that the trace structure T' = 9U{T) is represented by the

automata in figure 5.3.

The proof of this result is quite tedious and will not be presented here. This tedium can

be avoided by showing the following more general results. Although we feel we have a good

understanding of how to prove these more general results, they remain as future work. First,

define two different formal semantics for the production rule language. The first semantics

would be in terms of trace structures over CcTU (continuous time), the second in terms of

trace structures over CpC
/v (discrete time). Second, prove that for any set of syntactically

well-formed set of production rules, the semantics over Cp™* is a conservative approximation

5.2. APPROXIMATING CONTINUOUS TIME 113

Failure

Figure 5.3: Automata that accepts the set P' C B^71* of a buffer with minimum delay of 2
and maximum delay of 3.

of the semantics over CcTU (this actually requires having three different semantics: T, $i{T)

and %{T), where T is the trace structure giving the continuous time semantics and $ =

(^/j^u) is the appropriate conservative approximation). It follows from these results that

if an implementation of a "production rule compiler" satisfies the discrete time semantics,

then it provides a conservative approximation of the continuous time semantics. In such an

implementation (and the one used for the verification examples in this chapter), finite automata

can be used to represent trace structures over Cp^.

Applying the conservative approximation * described above is not the only potential source

of false negatives when using discrete time models. Let To and TQ be continuous time and

discrete time models of a hazard-failure delay element with input i/o, output 2o, A min = 1 and

A max = 1- We define Ti and T[similarly except that they have input y^ and output z^. In

the agent To || Ti, if a t/o transition precede a yx transition, then the resulting za transition is

guaranteed to precede the resulting Z\ transition. However, the following trace is possible in

T'o II T[:

yoyipzizo.

To see this, notice that

P^j({yo,zo})(yo3/i¥'2i2o) = yofzo

114 CHAPTER 5. DELAY MODELS

proj{{yi,zi}){yoyi<p2izo) = yi^zi

5.3 Seitz Queue Element

In this section we analyze the self-timed queue element in figure 5.4. It is based on a circuit

described by Seitz [92]. Seitz's original circuit does not have the two inverters between the E

and G nodes shown in figure 5.4, and it also includes an initialization signal. Seitz's circuit

is not speed-independent, but was intended to work under the more liberal 3/2 rule, which

states that the total delay through any 3 gates is greater than the delay through any 2 gates.

The control signals use 2-phase handshaking.

Seitz's original circuit was analyzed by Browne and Mishra et al [9, 77]. They were not

able to model the 3/2 rule, so the circuit was analyzed under a unit delay model. The unit

delay model is more liberal (less conservative) than the 3/2 rule, so any bug discovered under

the unit delay model is also a bug under the 3/2 rule. They discovered a bug, and proposed

a modification to the circuit. Their modified circuit differed from the one in figure 5.4 by the

absence of the two inverters between the E and G nodes mentioned above, and the addition of

two more inverters, for a total of five, between the AckOut and E nodes. This circuit satisfied

their specifications, but even in the unit delay model at least one bug remained that was

not caught by their specifications. To see the bug, assume the circuit is in a quiescent state

with the queue full [Fulll is high and FullO is low) and there is a Reqln pending. Assume

an AckOut is received, and that there are no other input changes until the circuit is stable.

The queue should become momentarily empty, and then become full again before the circuit

stabilizes. But it is possible for the A signal to not remain high long enough to properly set

the flip-flop, so the circuit can stabilize with the queue empty. We refer to this bug as the

"dropped bit" bug.

Our analysis shows that the circuit in figure .rrect (up to safety properties) in a

unit delay model, and is also correct in some tin .els that are more conservative than

the unit delay model. The circuit is not correct, however, in a model as conservative as the

3/2 rule.

Before giving the details of our analysis of the queue circuit, we should describe some of the

limitations of the component model that was used. We started by modeling each gate with an

ideal (delay-free) gate followed by hazard-failure delay element as described in figure 5.2. The

5.3. SEITZ QUEUE ELEMENT 115

Datain

Ackln« TR

Reqln-

-3>

* JJ >,~~~ Fiiir

FullO
>

DataOut

P
-m- • ReqOut

CMv^p-<-<l-<h
• AckOut

Figure 5.4: Queue element.

same values of Amin and Amaz are used for each gate in the circuit. Nodes with indeterminate

voltages are not modeled. So, it cannot be verified that an initialization signal works correctly,

the verification is simply started with all nodes at the proper initial voltages Also, the verifier

cannot model transistors as switches, so the pass transistors in the circuit must be modeled as

latches. The negative resistors are simply modeled as buffers with delay. For correct circuit

operation, it is necessary that the delay be at least 3 gate delays for the negative reF'stor in

the input section, and at least 2 gate delays for the negative resistor in the output section.

These delays could be reduced if assumptions are made about the minimum response time of

the environment. We remove the buffers in the data part since we cannot model their role in

the circuit, which is to convert a dynamic storage node to a static storage node. Only one bit

of the data path was modeled.

If any gate of the circuit goes into failure mode, then the resulting erratic transitions of

the gate's output will eventually propagate to the interface of the circuit, causing it to not

satisfy its specification. The gate driving FulW goes into failure mode, regardless of the values

of Amin and Amax, in the following situation. The queue is full, and a Reqln is pending, so

A, B and FullO are low and Fulll is high. As a result of an AckOut transition, Fulll can go

low. At Amin time units later, A can go high before FullO goes high, causing a hazard. This

hazard puts the gate driving FullO into failure mode. We can use a more liberal model of the

gate by assuming that it would fire between Amin and Amax time units after Fulll goes low,

even in the above scenario. Thus, we modify the trace structure modeling this gate so a trace

116 CHAPTERS. DELAY MODELS

in which the gate is Arable for A mm time units is not a failure, and the gate fires within the

Amai time unit maximum delay, even if there is a hazard. This means that FullO can go high

and then go low 2A7mn - Amax time units later; thus, the buffer driving D is modeled so that

it is not a failure whenever it is Arable for at least 2ATnin - Amax time units, even if there is a

hazard. Thus, the model of the buffer -^riving D is slightly more liberal than the model of the

gate driving FullO. The other gates could also be modeled similarly, but it is not necessary in

order to verify the correctness of the circuit.

We used the verifier to determine for what values of Amin and Amax is the circuit correct.

The circuit was originally claimed to be correct under the 3/2 rule, which states that the total

delay through any 3 gates is greater than the delay through any 2 gates. This is not quite

the same as saying the circuit is correct when Amaa; = 3 and Am,n = 2, since that would

allow the total delay through any 3 gates to be greater than or equal to the delay through

any 2 gates. Nonetheless, we can show that the circuit is incorrect under the 3/2 rule; the

verifier finds a variant of the "dropped bit" bug (described above) in the circuit when assuming

that Amaa: = 6 and Amin = 5, which is a more optimistic assumption than the 3/2 rule. The

verifier'shows this bug by producing an error trace that puts the gate driving FullO into failure

mode.

The circuit is correct as modeled when A max = 7 and Amfn = 6. The automatic verifier

checked this by examining 8753 states in about 5 minutes on a Sun 3/60.

In an earlier description of this circuit [17], we reported that the circuit was correct for

Amaz = 6 and Amin = 5. That analysis was based on a discrete time model that differs

slightly from the discrete time model used here (see figure 5.3). The difference is that the

b transition from state 1 returns to state 0, rather than going in to failure mode. Thus, a

hazard shorter than one clock tick (in discrete time) is ignored, which gives a more optimistic

model. The intention was that this model would compensate for the extra conservativeness in

the discrete time model caused by possible reordering of events between clock ticks (see the

end of section 5.2). Now we understand that this discrete time model does not correspond to

any continuous time model, and should be avoided. It does appear, however, that the circuit

works correctly whenever

A min 5 > -
Amax 6

based on examining the error trace produced when Amax = 6 and Amin = 5. Also, the verifier

shows that the circuit is correct for Amax = 13 and Amin = 11. For this model, the verifier

examined 44,906 states in about 28 minutes.

5.4. BINARY INERTIAL DELAY 117

{y = ß)A [z -~ ß) ~^U y := ->ß- restart{t)

{y = ß) A (2 = n/3) -JL, y ■- ^ß. resetit)

{t > &min) A{y = ß)/\{z = -<ß) -^ z := ß; reset{t)
{t > Amaz) A (^ = /?) A (2 = -i/3) ► disallow

Figure 5.5: Binary inertial delay, the meta-variable ß ranges over {0.1}.

5.4 Binary Inertial Delay

The hazard-failure model can be overly conservative in many situations. A common alternative

is the inertial delay model [12, 91, 90]. Our formal model of a binary inertial delay element

with input y and output z is given in figure 5.5, using production rules. Consider a run of

the production rules in figare 5.5 In the initial state, with y and z both equal to 0 and t

stopped, only the first rule is Arable and it can fire at any time t'. Since the first production

rule is labeled with y (the symbol above the arrow), the trace of the run contains the event

{y,t'). When the rule fires, it restarts the clock t. Thus, until t is reset or restarted again,

its value reflects the amount of time since the y transition. Assume the next production rule

firing occurs at time t". If Amax < t" - t', then the precondition of rule 4 becomes true, but

this is specifically disallowed. Thus, we know that t" < t' + Amax- If the second production

rule firing is a t/ transition, then the trace of the run contains the event {y,t"). If the second

production rule firing is a 2 transition, then t" > t' + Amin, and the trace contains the event

(2,<"). In both cases, the clock t is reset (set to zero and stopped) because there is no need to

keep track of the passage of time when the delay element is in a quiescent state. Continuing

in this way, one can build up the trace corresponding to a particular run of the production

rules. The set of traces represented by the production rules is equal to the set of traces that

can be built up in this manner.

The distinctive feature of the production rule description of inertial delay is rule 2. It

specifies that if two consecutive y transitions occur without a 2 transition in between, then

the state of the delay element is the same as if no transitions occurred. Thus, a hazard is

treated as if nothing happened. As an extreme example, consider a signal that transitions

every t' time units, where t' is slightly less then Amm. If this signal is input to an inertial

delay element, then the output is constant, which is clearly overly optimistic.

118 CHAPTERS. DELAY MODELS

5.5 Binary Chaos Delay

In the binary chaos delay model a delay element goes into a special mode, called chaos mode,

when there is a hazard on its input. When in chaos mode, the output of the delay element

can transition unpredictably, which conservatively models the unpredictability of an actual

gate responding to a hazard. In this sense, chaos mode is like failure mode. The difference is

that chaos delay allows the delay element to leave chaos mode if its input does not transition

for a period of length Amax, in which case the delay element enters a quiescent state with its

output equal to its input.

A circuit can work properly even if one of its gates enters chaos mode, as long as the

random outputs of the gate are not allowed to propagate to the interface of the circuit. If

the hazard-failure delay model were used when verifying such a circuit, a false negative would

result. There are examples of this happening in practice. The synthesis techniques of Lavagno

et al. [61] can produce circuits that are correct under the chaos delay model but incorrect

under the hazard-failure delay model [60].

The term "chaos" is borrowed from Josephs and Udding [53], who used a chaos process to

represent the response of a delay-insensitive process to a hazard. In their model, however, it

is impossible for a component to ever leave chaos mode.

The production rules for the chaos delay model have an extra boolean state variable c

which is equal to 1 if and only if the delay element is in chaos mode (see figure 5.6). Rule 2 is

the major difference between inertia! delay and chaos delay; it requires that the delay element

go into chaos mode in response to a hazard. The clock t is restarted in order to record the

amount time that must pass before the delay element can exit chaos mode. In rule 3, the clock

is restarted again if another input transition occurs.

Rules 4 and 5 control the minimum and maximum response time of the delay element

when there are no hazards (i.e., not in chaos mode). Rule 6 allows the output to transition

unpredictably in chaos mode. In rule 7, chaos mode can be exited if sufficient time has passed

and the values of the input and output are equal. Rule 8 requires that chaos mode must be

exited after sufficient time. This forces the output to become equal to the input before more

than Ajnax time has passed.

5.6. FIFO CONTROLLER 119

{y = ß)A {z = ß) A(c = 0)

{y = ß)A{z = -iß) A (c = 0)

{y = ß)A (c=l)

(< > A^in) A (y = /3) A (2 = -n/3) A (c = 0)
(< > Amaa!) A (v = /?) A (2 = -./?) A (c = 0)

^ = /?) A(c=l)
[t = Amax) A (v = /3) A (2 = /3) A (c = 1)
(«>Amaa;)A (c=l)

y_

y_

y

= ->ß; restart{t)

= -i/3; c := 1; restart{t)

= -i/3; restart{t)

z := /3; r«5ei(<)
disallow

z := ->ß
c := 0; reset{t)
disallow

Figure 5.6; Binary chaos delay. The meta-variable ß ranges over {0,1}.

Figure 5.7: STG specification for a FIFO controller.

5.6 FIFO Controller

We compared the binary inertia! delay and binary chaos delay models by verifying a speed-

dependent FIFO controller circuit. The specification for the FIFO controller, which is due to

Chu [30], is given as a Signal Transition Graph (STG) in figure 5.7. The automatic verifier

that was used is based on an extension of Dill's trace theory that allows for the modeling

of real-time properties [17]. It uses a discrete time model that is a provably conservative

approximation of a continuous time model. As a result, if a circuit is verified correct under

this discrete time model, then it is guaranteed to be correct under the continuous time model.

In figure 5.8, the circuit that was checked is described using a LlSP-like language that

can be read by the automatic verifier. For each gate, the first argument is the input(s), the

second argument is the output, and the third argument gives the minimum and maximum

120 CHAPTERS. DELAY MODELS

Initially Ri=0, Ao=0, D=0, Ro=0, Ai=0,
L=0, Wl=l, W2=l, W3=l, W4=0, »5-1,
W6=l, W7=l, W8=l, W9=l

(compose

(buffer D Ro)

(inverter L Wl (4 7))

(orgate (-W1 -D) W2 (8 12))

(inverter D W3 (4 7))

(orgate (-W3 -Wl) W4 (8 12))

(orgate (-Ai -W4) W5 (8 12))

(orgate (-W2 -W5) Ai (8 12))
(inverter Ao W6 (4 6))

(orgate (-W3 -W6 -Ri) W7 (14 21))

(inverter Ri W8 (4 6))

(orgate (-D -W8 -Ao) W9 (14 21))
(orgate (-W7 -W9) L (8 12)))

Figure 5.8: Implementation of FIFO controller.

delays of the gate. If there is no third argument, then the gate has unbounded delay (i.e., is a

speed-independent gate). Negated inputs are denoted by a minus sign. The circuit is based on

a design synthesized using the method of Lavagno et ai [61]. It was intentionally synthesized

to have an error, in order to test the gate models used with the verifier [60].

We checked the circuit under the inertial delay model and the chaos delay model. In both

cases, gates are modeled as an ideal (delay free) gate whose output feeds a delay element of the

appropriate type. Under the inertial delay model the circuit is correct. The verifier checked

this by examining 6,450 states in less than 190 seconds of CPU time on a Sun 3/60.

Under the chaos delay model the circuit does not satisfy the specification. The counter-

example trace returned by the verifier is

Ri+ tp4 W8- if10 W7- ip* L+ D+ ^4

Wl- W2- W2+ Ai+, ^•1)

which represents a possible behavior of the circuit that is not consistent with the specification.

The symbol tp in this trace gives information about the times at which transitions occur.

Assume the trace begins at time 0, and let T be the basic unit of time. If a transition occurs

between the nth and (n + l)th ip in the trace, then the transition occurs between times nT and

(n + 1)T. Superscripts are used to indicate multiple occurrences of <p. Thus, the transition

5.7. A LESS CONSERVATIVE MODEL 121

of W8 in the trace occurs between times 4T and 5T. The key event in the trace is the final

transition of Wl, which causes a hazard on the gate driving W2. This hazard is ignored in the

inertial delay model, but in the chaos delay model it puts the gate into chaos mode, resulting

in two consecutive transitions of W2. This puts the gate driving Ai into chaos mode, causing

an Ai transition earlier than is allowed by the specification. This is an illustration of how the

inertial delay model can lead to false positive verification results.

5.7 A Less Conservative Model

Although the chaos delay model is not as conservative as failing on all hazards, it may still be

overly conservative. This is illustrated in the counter-example trace (5.1). The length of the

hazard in the trace is 4 time units (the time between the D+ and Wl— transitions), which is

half the minimum delay of the relevant gate. Depending on how the gate is implemented, a

pulse this short might be reliably filtered out. Also, once the hazard occurs, the output of the

gate (W2) immediately becomes unpredictable. In practice, the output would remain stable

until Amin time units after the first transition in the hazard (D-f, in this case).

Both of these issues are addressed in the model described in figure 5.9. An additional

parameter, Ahaz, is used to control the length of the longest hazard that is ignored by the

delay element. If a hazard is shorter than Ahaz, then that hazard is ignored, just as in the

inertial delay model. If a hazard is longer than Ahaz, then the delay element goes into chaos

mode. Thus, this model unifies inertial delay and chaos delay: if Ahaz = 0, then it goes into

chaos mode in response to any hazard; if Ahaz > Amax, then it is identical to the inertial

delay model.

The production rules in figure 5.9 use two clocks, tz and tc. The clock tz records the delay

until the output z transitions. The clock i,. records the time that must pass before the delay

element can exit chaos mode; thus, it only runs in chaos mode. Both of these functions could

be combined into one clock t in our previous chaos delay model (figure 5.6).

The first production rule in figure 5.9 is the same as the first rule of the original chaos

model, except that tt is used instead of t. Rule 2 of the original model is split into rule 2

(which acts like the inertial model for short hazards) and rule 3 (which goes into chaos mode

for long hazards). Anytime rule 3 fires, tz is already running (because of a previous firing of

rule 1) and its value is not affected. The final six rules in figure 5.9 correspond to the final six

rules of the original model. The only changes art that references to t are replaced by references

122 CHAPTERS. DELAY MODELS

{y = ß)A {2 = ß) A(c = 0)

{t, < Ahaz) A{y = ß)A{z = ->ß) A (c = 0)

{tz > Ahaz) A (y = /?) A (* = -/?) A (c = 0)

(2/ = /3)A (c=l)

{U > Amin) A{y = ß)A{z = -/3) A (c = 0)
{tz > &max) A{y = ß) A {z = -<ß) A (c = 0)

{tz > Amm) A (2 = /?) A (c = 1)
(*c = Amax) A{y = ß)A {z = ß) A (c = 1)
(<c>Ama«)A (c=l)

3/ y := -iß] restart{tz)

y := -vfl; resei{tz)

y := -i/(?; c := 1; resiar^f,.)

y := -i/3; r¥sfar<(fc)

2 := ß] reset{'cz)
disallow

z:= 1/3

c := 0; r-ese^^c); nsse<(^)
disallow

Figure 5.9: Extended binary chaos delay with hazard length parameter and delayed chaos
output.

to tc or tc, as appropriate, and rule 7 requires that tz > Amin before the output can transition

in chaos mode.

The model can be furthe'1 generalized to include five parameters, instead of just three.

The parameter Amin could have different values for rules that fire in chaos mode than for

rules that fire when not in chaos mode; similarly for Amax. However, we do not consider this

generalization further here.

We applied the generahzed model in figure 5.9 to the verification problem described earlier.

For each gate, we let Ahaz - L0-75AminJ. The circuit still did not satisfy its specification even

under this more optimistic gate model. The counter-example trace that the verifier produced

is

Ri+ y:4 W8- y:10 W7- v* L+ D+ v*

W3- ^2 Wl- v2 W2- v* Ai+.

Notice that the time between the D+ and the Wl- transitions is six time units (which is Ahaz

for the gate with those inputs) rather than four, as in the other trace. Also, once in chaos

mode, W2 does not transition until 8 time units after D did.

Determining that the circuit was not correct, and finding the counter-example trace, re-

quired examining slightly fewer states than in the inertial delay case; the verification time

was proportionally reduced. This is typical for automatic verification methods based on trace

theory; finding an error is usually faster than verifying correctness. Since the circuit is still not

5.8. SINGLE TRAJECTORY DELAY MODELS 123

correct even under such an optimistic gate model, it is unlikely that the circuit would work

reliably if implemented. We could not be as certain of this conclusion if we had only used the

more conservative model of figure 5.6.

5.8 Single Trajectory Delay Models

The binary inertial delay can be extended to use ternary logic values. This idea has been used

to develop efficient, conservative simulation algorithms based on inertial delay [90].

Binary bounded delay models can be difficult to analyze because of the non-determinism

introduced by having component delays possibly vary. If this non-determinism is represented

using the ternary value A", then it is possible to construct a single trajectory model [11]. The

key property of a single trajectory model is that for a given input stream, only one sequence

of output transitions is possible. Computationally, this can be much more efficient then

representing non-determinism with a large number of different binary transition sequences.

However, single trajectory models can be more conservative and, therefore, lead to more false

negative verification results.

Seger [90, 91] used this idea to develop an efficient algorithm for analyzing races in asyn-

chronous circuits. Unlike the models we describe in this section, Seger's extended inertial delay

model is not a actually single trajectory model. However, only a single trajectory of Seger's

model needs to be considered to accurately analyze circuits; this is the key to the efficiency

of his analysis algorithm. In our work, the property that only a single trajectory needs to be

considered is made explicit in the models themselves.

A single trajectory inertial delay model is described using production rules in figure 5.10.

In the production rules for the binary delay models, we labeled the arrows with the name

of the signal that transitioned. In the non-binary models of this section, the label must also

indicate what value the signal transitions to. Two different clocks, tß and tx, are r quired

in the ternary inertial delay model. The clock tß is used to enforce time bounds on when z

must transition to a binary value; tx enforces time bounds on when z must transition to a

non-binary value. We assume 0 < Amin < Amaz.

In the first rule, the delay element is quiescent with binary values on its input and output.

When the input transitions to A", the clock tx is started to record the delay before z transitions

to A; the clock tß remains stopped. In the second rule, tß is initially running because z is

being driven to a binary value. Once y transitions to A, the clock tß can be stopped; tx,

124 CHAPTER 5. DELAY MODELS

{tx = Amj„) A
(tx > Ami„) A

iy=ß)A{z = ß)

iy=ß)A{z?ß)

{y=ß)A{z = ß)

(y = X) A{z = ß)

{y?ß)Aiz = ß)

iy^ß)A{z = X)

(^ # X)

y := X

y:=X

yt=->ß

V := -/3

y:=ß

V'-ß

z:=X

{tß = &max) A{y = ß) A{z^ß)
(tu > Amax)A iy = ß) A{z^ß)

z:=ß

restart{tx)

reset{tB)

restart{tx); restart{tB)

restart{tB)

reset{tx)] reset{tB)

r€start{tB)

reset{tx)
disallow

reset{tB)
disallow

Figure 5.10: Extended inertial delay. The meta-variable ß ranges over {0,1}.

which can be stopped or running, is unchanged. When y transitions to a binary value not

equal to z, then tß is restarted, as in rules 3, 4 and 6. The fifth rule expresses the key property

of the inertial model: when y transitions to a binary value equal to 2, both clocks are reset

as if no hazard occurred. The remaining rules control the transitions of the output z. Notice

that for any sequence of input transitions, there is only one possible sequence of production

rule firings, even if the time of the firings is considered. This is the key property of a single

trajectory model.

It is also possible to define a single trajectory version of the chaos delay model. However,

since the chaos delay model distinguishes between multiple transitions (a hazard) and a sin-

gle transition that occurs at an unknown time (the normal case), three logic values are not

adequate for this purpose. Two additional values D and U (for a total of five) representing

downward and upward transitions must be added. The remainder of this section gives a brief

description of the model (see figure 5.11).

The operations < and > take a single binary argument and are defined by

<0 = U

<l = D

>0 = D

>1 = U.

5.8. SINGLE TRAJECTORY DELAY MODELS 125

(y = /3) A (z = ß)

{y = ß) A{z = ß)

(y-ß) A (2 = a)

where (a ^ /3) A (a ^ A")

{y = ß) A{z = a)

where (a 7^ /?) A (a 7^ A')

{y = >ß) A (2 # A)

{y + A) A (2 ^ A)

(y#/3) A (2 = A)

(y^ a) A (z = A)
where (a 7^ 0) A (a ^ 1)

(<jr = Amin) A (y = a) A (2 = /3)
where (a = ->/?) V (a = </?)

{ix > Amin) A (y = a) A (2 = /?)

(«5 = Ama^A (y = /3) N[z^ß)
[ts > Amax) A (y = /3) A (2 7^ /3)

y-= <ß

y:=iß

y ■= <ß

z:=X

z:=X

y:=ß

y-=x

z := X

y-=ß

y := a

restart{tx)

restart{tx)', restart^B)

reset{tx); reset{tB)

——> reset{tx); restart{tB)

restart^tB)

reset{tx); reset{tB)

restart{tB)

-> rese t{tB)

z '.= <ß
-* rese Ktx)

z:=ß

disallow

reset{tB)
disallow

Figure 5.11: Extended chaos delay. The meta-variables d and ß range over {0,1,D,U, X} and
{0,1}, respectively.

126 CHAPTERS. DELAY MODELS

As a memory aide, notice that in the equation >0 = D, for example, the triangle points to

the 0, and D is the value of a signal that is transitioning to 0. In the equation <i0 = U, the

triangle points away from the 0, and U is the value of a signal that is transitioning from 0.

The delay element described in figure 5.11 is in chaos mode if and only if its output is A'.

Thus, there is no need for the state variable c that was used in the binary chaos delay model.

Transitions from 0 to >/?, where /? is a binary value, are not allowed in the model, since

they are not physically meaningful. Similarly, >ß can only transition to ß and to X, and A'

can only transition to a binary value. The single trajectory chaos delay element enforces these

restrictions on its output, and assumes that its input satisfies these restrictions.

In the first rule, the delay element is quiescent with the binary value ß on its input and

output. When the input transitions to </?, the clock tx is started to record the delay before

2 transitions to <ß; the clock tß remains stopped. If y transitions from ß directly to ->/?, as

in rule 2, then both clocks need to be restarted. Rules 3 and 4 involve y transitions that put

the delay element in chaos mode. This results in z transitioning to A' simultaneously with the

y transition, which is represented by having two labels (one for each simultaneous transition)

on the arrow of the production rule. Rules 5 through 8 handle the rest of the possible input

transitions. The remaining rules control the transitions of the output z.

It can be shown that for reachable states of the delay element, if y = /?, then z ± <ß. Also.

if y = >/3, then r ^ /3 and 2 ^ <ß. Finally, if j/ = A', then z = X.

5.9 Discussion

We verified two speed-dependent asynchronous circuits, using a variety of delay models. We

demonstrated that the binary inertia! delay model can lead to false positive results on one of

those circuits. Using the binary chaos delay model, the verifier was able to discover an error

in the same circuit.

We described how the binary inertial and binary chaos delay models can be extended to

single trajectory models, using 3-valued and 5-valued logics, respectively. It may be possible to

combine the binary and the extended models to achieve a better balance between efficiency and

accuracy. For example, a subcircuit with reconvergent fanout could be analyzed with binary

chaos delay, with the results then abstracted into the single trajectory model. Then the single

trajectory model could be used to efficiently simulate or verify the full circuit without having

the reconvergent fanout cause an overly conservative result.

5.9. DISCUSSION 127

Any such model could be immediately used by our automatic verifier; all that is necessary

is to compile the models into the appropriate finite automata representations.

128 CHAPTERS. DELAY MODELS

Chapter 6

Future Research

In this thesis, we have described general techniques, based on trace algebra and trace structure

algebra, for constructing domains of agents models. We introduced the idea of conservative

approximations between trace structure algebras, and constructed conservative approximations

from continuous time models to discrete time models and from explicit simultaneity semantics

to interleaving semantics. We implemented an automatic verifier and demonstrated it on

speed-dependent asynchronous circuits with several new delay models.

The work described in this thesis is very much work in progress. The most pressing tasks are

to formalize continuous time and discrete time semantics for the production rule notation used

in section 5.2, and to show that these semantics are appropriately related by a conservative

approximation. The discrete time semantics would be used in the existing automatic verifier.

If a system is verified to be correct under the discrete time semantics, then it is guaranteed to

also be correct under the continuous time semantics. Currently, it is difficult to verify that the

discrete time semantics of a particular agent is a conservative approximation of the desired

continuous time semantics.

It is important to understand how much information is lost when using a conservative

approximation * = (*;, $„) from a continuous time model to a discrete time model. One way

to describe the information loss is to characterize the set T of continuous time trace structures

T for which *,(T) = %{T). This is the same as the image of *iTl, (see section 4.4 for a

description of the inverse of a conservative approximation). If To is a continuous time trace

structure that is used in a verification problem, the chances of a false negative verification

result are reduced if To is a member of T. We have described in previous work [19] how T can

be made to include more realistic models by using abstractions defined only on initially speed-

independent trace structures. A trace structure T = (7,P) is initially speed-independent

129

130 CHAPTERS. FUTURE RESEARCH

if suf{x,P) = P for any partial trace x that represents a behavior where no actions occur

(only time passes); this is a much weaker requirement then speed-independence. All of the

agents that can be expressed using the production rule notation of chapter 5 are initially

speed-independent since all clocks are stopped in the initial state.

An area for future research is to integrate the idea of initially speed-independent trace

structures with our more recent work on conservative approximations of real-time models.

We conjecture that all of the continuous time agents expressible with our production rules

can be represented exactly by trace structures over CQTS (the model of quantized time with

simultaneity). However, an implementation of the production rule language using discrete

time clocks will not always produce this exact representation; a more sophisticated algorithm

is required. We will also explore how these results relate to Henzinger, Manna and PnuelTs

notion of digitizable agents [47].

We would also like to use trace algebra and conservative approximations to study several

untimed models of concurrency, such as Mazurkiewicz traces, and partial orders. We believe

such a study might shed some light on the relationships between these models and interleaving

semantics. The relationship between action based models and state based models is another

area for future research.

We would like to extend some of our techniques. Trace algebra homomorphisms and conser-

vative approximations could be allowed to change alphabets. This would significantly increase

the number of useful abstractions that could be constructed with conservative approxima-

tions. It should also be possible to extend trace structures to include two sets of traces (like

the success sets and failure sets of Dill's trace structures) and to generalize the notion of

receptiveness [38] to arbitrary trace structure algebras.

Appendix A

Summary of Notation

rCTO Continuous Time with Ordered rep.,

isomorphic to CSTU (def. 3.14, p. 69)
nCTV Continuous Time with Unordered rep.

(def. 3.2, p. 59)

C1 extends C^ with partial traces (def. 4.23,

p. 88)

ch (Untimed) Interleaving Semantics

(def. 2.9, p. 27)

cQ
c
TI Quantized Time with Interleaving

(def. 4.8, p. 82)
CQTIv extends CQ ** with partial traces

(def. 4.24, p. 88)
rQTlv isomorphic to C^77, uses ip to denote

time (def. 4.10, p. 83)
rQTS Quantized Time with Simultaneity

(def. 3.10, p. 65)
rQTSI

isomorphic to Cc , power set algebra

over C£TI (def. 4.16, p. 84)
nST Synchronous Time (def. 3.6, p. 60)

Table A.l: Summary of Trace Algebras

131

132 APPENDIX A. SUMMARY OF NOTATION

ACTU all trace str's over C^™ (def. 3.5, p. 60)

A1 extends A}c with partial traces (def. 4.57, p. 104)

Ah all trace str's over Cl
c (def. 2.31, p. 40)

AIR extends A}* with partial traces (def. 4.58, p. 104)

A? mixed regular trace str's over CQ (def. 2.32, p. 41)

A?TI
all trace str's over C^71 (def. 4.12, p. 83)

Af1* all trace str's over C^ (def. 4.12, p. 83)

A^s all trace str's over C^T5 (def. 3.13, p. 68)

A? all trace str's over C^ (def. 3.8, p. 61)

Table A.2: Summary of Trace Structure Algebras

133

Symbol Decorations Denotes

A* none set of all finite sequences over A

A" none set of all infinite sequences over A

A™ none A'UA"

IA none floor of t

XUY none union of sets A" and Y

ux none union of the sets in the set Ar

2x none set of subsets of an arbitrary set A'

X CY none A" subset of Y

T CT' none trace structure T contained in T" (def. 2.21,

p. 34)

x x r none cartesian product of A' and F

x-y none concatenation of traces in trace algebra

(def. 4.20, p. "86)

0 none empty set

A-*B none set of all partial functions with domain A and

codomain B

A^ B none set of all total functions with domain A and

codomain B

r\A^B none function r restricted to domain A and

codomain B

E\\E' none parallel composition of agents in concurrency

algebra (def. 2.6, p. 23)

T r none parallel composition of trace structures in

trace structure algebra (def. 2.18, p. 33)

B\ none number of elements in set B

134 APPENDIX A. SUMMARY OF NOTATION

Symbol Decorations Denotes

r none set of all agent signatures (def. 2.1, p. 22)

7 primes, integer sub's agent signature (def. 2.1, p. 22), default

agent signature of E (note 2.4, p. 23) and T

(note 2.16, p. 33)

±haz none length of longest ignorable hazard (p. 121)

^max none maximum delay (p. Ill)

■^min none minimum delay (p. Ill)

€ alphabet sub's empty trace (T13, p. 87), empty sequence

X none functional abstraction

<P none passage of a unit of time in traces of CQ
7
^

(def. 4.10, p. 83) and C«T/v (def. 4.24, p. 88)

* primes conservative approxinifttion (def. 2.34, p. 42)
vl/ primes inverse of * (def. 4.60, p. 105)

*/ primes lower bound mapping of $

% primes upper bound mapping of ^

T primes, integer sub's sequence of time stamps (def. 3.14, p. 69)

UJ none infinity

135

Symbol Decorations Denotes

A primes, integer sub's alphabet (def. 2.2, p. 22), default alphabet of

7 (note 2.3, p. 22)

a primes, integer sub's signal (def. 2.1, p. 22)

A primes, mnem. sup's trace structure algebra with partial traces

(def. 4.48, p. 100)

Ac primes, mnem. sup's trace structure algebra without partial traces

(def. 2.17, p. 33)

APC primes, mnem. sup's trace structure algebra of prefix-closed trace

structures (def. 4.43, p. 96)

Al,...,A4 none antecedents for thm. 2.35 (p. 43)

B primes, integer sub's alphabet (def. 2.2, p. 22)

b primes, integer sub's signal (def. 2.1, p. 22)

B primes, mnem. sup's set of all traces in a trace algebra with partial

traces (def. 4.20, p. 86)

B{A) primes, mnem. sup's set of all traces over alphabet .4 in a trace

algebra with partial traces (def. 4.20, p. 86)

Be primes, mnem. sup's set of all complete traces in a trace algebra

(def. 2.7, p. 26; def. 4.20, p. 86)

Bc{A) primes, mnem. sup's set of all complete traces over alphabet A in a

trace algebra (def. 2.7, p. 26; def. 4.20, p. 86)

BP primes, mnem. sup's set of all partial traces in a trace algebra

(def. 4.20, p. 86)

BP{A) primes, mnem. sup's set of all partial traces over alphabet A in a

trace algebra (def. 4.20, p. 86)

136 APPENDIX A. SUMMARY OF NOTATION

Symbol Decorations Denotes

C primes, mnem. sup's trace algebra with partial traces (def. 4.20,

p. 86)

Cc primes, mnem. sup's trace algebra without partial traces (def. 2 7,

p. 26; def. 4.25, p. 89)

Cp, Cpc primes, mnem. sup's trace algebra (def. 4.25, p. 89) 1

Cc/p primes, mnem. sup's trace algebra with traces represented by their

set of prefixes (def. 4.45, p. 97)

C1,...,C9 none axioms of concurrency algebra (def. 2.6, p. 23)

codoin(/) none codomain of an arbitrary function /

V primes, mnem. sup's domain of agents for a concurrency algebra

(def. 2.6, p. 23) |

dom{f) none codomain of an arbitrary function /

E primes, integer sub's agent in a concurrency algebra (def. 2.6, p. 23)

h none homomorphism from one trace algehra to

another (def. 2.38, p. 45)

I primes, integer sub's set of input signals (def. 2.2, p. 22), default

input signal set of 7 (note 2.3, p. 22)

idA{a) none identity function over set A

I j»rimes, integer sub's integer

C{B) none subset of 2%{B) (thm. 2.30, p. 40)

L1,...,L5 none antecedents for thm. 2.30 (p. 40) and

thm. 4.56 (p. 104)

len[u) none length of sequence u

m primes, integer sub's integer

n primes, integer sub's integer

Af none integers

M' none non-negative integers

Af+
none positive integers

0 primes, integer sub's pet of output signals (def. 2.2, p. 22), default

output signal set of 7 (note 2.3, p. 22)

P primes, integer sub's,

mnem. sub's / and u

set of possible traces of a trace structure

137

Symbol Decorations Denotes

T1,...,T8 none axioms of trace algebra without partial traces

(def. 2.7, p. 26)

T9,...,T19 none additional axioms of trace algebra with partial

traces (def. 4.20, p. 86)

pTef{X) none prefixing on traces in a trace algebra

(def. 4.26, p. 89)

proj{B){E) none projection on agents in a concurrency algebra

(def. 2.6, p. 23)

proj{B){T) none projection on trace structures in a trace

structure algebra (def. 2.19, p. 33)

proj{B){x) none projection on traces in a trace algebra

(def. 4.20, p. 86)

r{a) primes, integer sub's renaming function (def. 2.5, p. 23)

3f? none real numbers

3^ none non-negative real numbers

3?+ none positive real numbers

rename{r){E) none renaming on agents in a concurrency algebra

(def. 2.6, p. 23)

rename{r){T) none renaming on trace structures in a trace

structure algebra (def. 2.20, p. 34)

rena,ine{r){x) none renaming on traces in a trace algebra

(def. 4.20, p. 86)

reset{t) none operation on clock t (p. Ill)

restart{t) none operation on clock t (p. HI)

interleave{x) none set of interleavings of a trace x (def. 4.15,

p. 84)

su{{x,T) none suffixing on trace structures in a trace

structure algebra (def. 4.48, p. 100)

su{{x,X) none suffixing on traces in a trace algebra

(def. 4.26, p. 89)

138 APPENDIX A. SUMMARY OF NOTATION

u

W

w

X

Y

Symbol Decorations

primes, integer sub's

primes, integer sub's

Denotes

trace structure of a trace algebra (def. 2.15,

p. 33)

primes, mnem. sup s

primes, integer sub's

none

primes, integer sub's

primes, integer sub's

primes, integer sub's

primes, integer sub's

primes, integer sub's

clock (p. Ill) or time stamp

domain of trace structures of a trace algebra

(def. 4.48, p. 100)

sequence of actions or sets of actions

(def. 3.14, p. 69)

set of all signals (def. 2.1, p. 22)

trace

sei of traces

trace

set of traces

trace

Bibliography

[1] R. Alur, C. Courcoubetis, and D. Dill. Model-checking for real-time systems. In LICS90

[67], pages 414-425.

[2] R. Alur and D. Dill. Automata for modeling real-time systems. In M. S. Paterson, editor,

Automata, Languages, and Programming: 17th International Colloquium, volume 443 of

Lecture Notes in Computer Science, Warwick University, England, '990. Springer-Verlag.

[3] R. Alur and T. A. Henzinger. A really temporal logic. In 30th Annual Symposium on

Foundations of Computer Science, 1989.

[4] R. Alur and T. A. Henzinger. Logics and models of real time: A survey. In J. W.

de Bakker, K. Huizing, W.-P. de Roever, and G. Rozenberg, editors. Real Time: Theory

in Practice, volume 600 of Lecture Notes in Computer Science. Springer-Verlag, 1992.

[5] A. Benveniste and G. Berry. The synchronous approach to reactive and real-time systems.

Proceedings of IEEE, 79(9):1270-1282, Sept. 1991.

[6] D. L. Black. On the existence of fair delay-insensitive arbiters: Trace theory and its

limitations. Distributed Computing, l(4):205-225, 1986.

[7] S. D. Brookes. A Model for Communicating Sequential Processes. PhD thesis, Oxford

University, 1983.

[8] S. D. Brookes and A. W. Roscoe. An improved failures model for communicating pro-

cesses. In NSF-SERC Seminar on Concurrency, volume 197 of Lecture Notes in Computer

Science. Springer-Verlag, 1985.

[9] M. C. Browne, E. M. Clarke, D. L. Dill, and B. Mishra. Automatic verification of sequen-

tial circuits using temporal logic. IEEE Trans. Comput, C-35(12):1035-1044, 1986.

139

140 BIBLIOGRAPHY

[10] R. E. Bryant, editor. Third Caltech Conference on VLSI. Computer Science Press, Inc.,

1983.

[11] R. E. Bryant, D. L. Beatty, and C.-J. H. Seger. Formal hardware verification by symbolic

ternary trajectory evaluation. In DAC91 [36].

[12] J. Brzozowski and C.-J. Seger. A unified framework for race analysis of asynchronous

networks. J. ACM, 36(l):20-45, Jan. 1989.

[13] J. A. Brzozowski and C.-J. H. Seger. Advances in asynchronous circuit theory; part I:

Gate and unbounded inertial delay models. Bulletin of the European Association for

Theoretical Computer Science, 42:198-249, Oct. 1990.

[14] J. A. Brzozowski and C.-J. H. Seger. Advances in asynchronous circuit theory; part II:

Bounded inertial delay models, MOS circuit design techniques. Bulletin of the European

Association for Theoretical Computer Science, 43:199-263, Feb. 1991.

[15] J. R. Burch. A comparison of strict and non-strict semantics for lists. Master's thesis.

Computer Science Department, California Institute of Technology, 1988. Technical Report

CS-TR-88-12.

[16] J. R. Burch. Combining CTL, trace theory and timing models. In Sifakis [93].

[17] J. R. Burch. Modeling timing assumptions with trace theory. In ICCD89 [50].

[18] J. R. Burch. Verifying liveness properties by verifying safety properties. In Kurshan and

Clarke [56]. Also in Springer-Verlag LNCS 531.

[19] J. R. Burch. Approximating continuous time. Presented at the IEEE Workshop on VLSI,

Orlando, Florida, Feb. 1991.

[20] J. R. Burch. Using BDDs to verify multipliers. In DAC91 [36].

[21] J. R. Burch. Delay models for verifying speed-dependent asynchronous circuits. In Work-

shop on Timing Issues in the Specification and Synthesis of Digital Systems, Princeton

University, Mar. 1992.

[22] J. R. Burch. Delay models for verifying speed-dependent asynchronous circuits. In Pro-

ceedings: IEEE International Conference on Computer Design, Oct. 1992. To Appear.

BIBLIOGRAPHY 141

[23] J. R. Burch, E. M. Clarke, and D. E. Long. Representing circuits more efficiently in

symbolic model checking. In DAC91 [36].

[24] J. R. Burch, E. M. Clarke, and D. E. Long. Symbolic model checking with partitioned

transition relations. In A. Halaas and P. B. Denyer, editors. Proceedings of the Interna-

tional Conference on Very Large Scale Integration, Edinburgh, Scotland, Aug. 1991.

[25] J. R. Burch, E. M. Clarke, and D. E. Long. Symbolic model checking with partitioned

transition relations. Technical Report CMU-CS-91-195, School of Computer Science.

Carnegie Mellon University, Oct. 1991.

[26] J. R. Burch, E. M. Clarke, K. L. McMillan, and D. L. Dill. Sequential circuit verification

using symbolic model checking. In 27th ACM/IEEE Design Automation Conference,

1990.

[27] J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill, and J. Hwang. Symbolic model

checking: 1020 states and beyond. In LICS90 [67].

[28] J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill, and L. J. Hwang. Symbolic model

checking: 1020 states and beyond. Information and Computation, 98(2):142-170, June

1992.

[29] J. R. Burch and D. E. Long. Efficient boolean function matching. In IEEE International

Conference on Computer-Aided Design, Nov. 1992. To Appear.

[30] T.-A. Chu. Synthesis of Self-Timed VLSI Circuits from Graph-Theoretic Specifications.

PhD thesis, Massachusetts Institute of Technology, 1987. Technical report MIT/LCS/TR-

393.

[31] E. M. Clarke, J. R. Burch, 0. Grumberg, D. E. Long, and K. L. McMillan. Automatic

verification of sequential circuit designs. Philosophical Transactions of the Royal Society

of London, Series A: Physical Sciences and Engineering, 339(1652):105-120, Apr. 15,

1992.

[32] E. M. Clarke, I. A. Draghicescu, and R. P. Kurshan. A unified approach for showing

language containment and equivalence between various types of u;-automata. In A. Arnold

and N. D. Jones, editors, 15th Colloquium on Trees in Algebra and Programming, volume

431 of Lecture Notes in Computer Science, Copenhagen, Denmark, May 1990. Springer-

Verlag.

142 BIBLIOGRAPHY

[33] E. M. Clarke and E. A. Emerson. Synthesis of synchronization skeletons for branching

time temporal logic. In Kozen [55].

[34] E. M. Clarke, E. A. Emerson, and A. P. Sistla. Automatic verification of finite-state

concurrent systems using temporal logic specifications. ACM Trans. Prog. Lang. Syst.,

8(2):244-263, 1986.

[35] E. M. Clarke and 0. Grumberg. Research on automatic verification of finite-state con-

current systems. Annual Review of Computer Science, 2:269-290, 1987.

[36] 28th ACM/IEEE Design Automation Conference, 1991.

[37] J. W. de Bakker, W.-P. de Roever, and G. Rozenberg, editors. Stepwise Refinement

of Distributed Systems, Models, Formalisms, Correctness, REX Workshop, Mook, The

Netherlands, May/June 1989, Proceedings, volume 430 of Lecture Notes in Computer

Science. Springer-Verlag, 1989.

[38] D. L. Dill. Trace Theory for Automatic Hierarchical Verification of Speed-Independent

Circuits. PhD thesis, Carnegie Mellon University, Pittsburgh, PA, 1988. Also appeared

as [42].

[39] D. L. Dill. Trace theory for automatic hierarchical verification of speed-independent

circuits. In J. Allen and F. T. Leighton, editors, Advanced Research in VLSI: Proceedings

of the Fifth MIT Conference. MIT Press, 1988.

[40] D. L. Dill. Complete trace structures. In M. Leeser and G. Brown, editors. Hardware

Specification, Verification, and Synthesis: Mathematical Aspects volume 408 of Lecture

Notes in Computer Science, Cornell University, July 1989. Springer-Verlag.

[41] D. L. Dill. Timing assumptions and verification of finite-state concurrent systems. In

Sifakis [93], pages 197-212.

[42] D. L. Dill. Trace Theory for Automatic Hierarchical Verification of Speed-Independent

Circuits. ACM Distinguished Dissertations. MIT Press, 1989.

[43] J. C. Ebergen. A technique to design delay-insensitive VLSI circuits. Report CS-R8622,

Centrum voor Wiskunde en Informatica, June 1986.

BIBLIOGRAPHY 143

[44] Z. Har'El and R. P. Kurshan. Software for analytical development of communications

protocols. AT&T Technical journal, 69(l):45-59, Jan.-Feb. 1990.

[45] T. A. Henzinger, Z. Manna, and A. Pnueli. Temporal proof methodologies for real-

time systems. In Eighteenth Annual ACM Symposium on Principles on Programming

Languages, 1991.

[46] T. A. Hunzinger, Z. Manna, and A. Pnueli. Timed transition systems. Technical Report

TR 92-1263, Department of Computer Science, Cornell University, Jan. 1992.

[47] T. A. Henzinger, Z. Manna, and A. Pnueli. What good are digital clocks? In Automata,

Languages, and Programming: 19th International Colloquium, 1992.

[48] C. A. R. Hoare. Communicating sequential processes. Commun. ACM, 21(8), 1978.

[49] C. A. R. Hoare, Communicating Sequential Processes. International Series in Computer

Science. Prentice-Hall, 1985.

[50] Proceedings: IEEE International Conference on Computer Design, Oct. 1989.

[51] F. Jahanian and A. K. Mok. Safety analysis of timing properties in real-time systems.

IEEE Trans. Softw. Eng., SE-12(9):890-904, Sept. 1986. •

[52] F. Jahanian, A. K. Mok, and D. A. Stuart. Formal specification of real-time systems.

Technical Report TR-88-25, Department of Computer Sciences, University of Texas at

Austin, June 1988.

[53] M. B. Josephs and J. T. Udding. An algebra for delay-insensitive circuits. In Kurshan

and Clarke [56]. Also in Springer-Verlag LNCS 531.

[54] R. Koymans. Specifying Message Passing and Time-Critical Systems with Temporal Logic.

PhD thesis, Eindhoven University of Technology, 1989.

[55] D. Kozen, editor. Logic of Programs: Workshop, volume 131 of Lecture Notes in Computer

Science, Yorktown Heights, New York, May 1981. Springer-Verlag.

[56] R. Kurshan and E. M. Clarke, editors. Computer-Aided Verification, Proceedings of the

1990 Workshop, volume 3 of DIM ACS Series in Discrete Mathematics and Theoretical

Computer Science. American Mathematical Society, 1990. Also in Springer-Verlag LNCS

531.

144 BIBLIOGRAPHY

[57] R. P. Kurshan. Analysis of discrete event coordination. In de Bakker et al. [37].

[58] R. P. Kurshan. Automata-theoretic verification of coordinating processes, March 30, 1992.

[59] R. P. Kurshan and K. L. McMillan. Analysis of digital circuits through symbolic reduction.

IEEE Trans. Comput-Aided Design Integrated Circuits, 10(11):1356-1371, Nov. 1991.

[(JO] L. Lavagno, 1991. Personal Communication.

[61] L. Lavagno, K. Keutzer, and A. Sangiovanni-Vincentelli. Algorithms for synthesis of

hazard-free asynchronous circuits. In DAC91 [36].

[62] I. Lee and S. B. Davidson. Generalized I/O with timing constraints. Technical Report

MS-CIS-87-01, Department of Computer and Information Science, University of Penn-

sylvania, Jan. 1987.

[63] I. Lee and A. Zwarico. Timed acceptances: A model of time dependent processes. In

M. Joseph, editor. Formal Techniques in Real-Time and Fault-Tolerant Systems, Proceed-

ings of a Symposium, Warwick, UK, September 1988, volume 331 of Lecture Notes in

Computer Science. Springer-Verlag, 1988.

[64] H. R. Lewis. Finite-state analysis of asynchronous circuits with bounded temporal un-

certainty. Technical Report TR-15-89, Harvard University, Center for Research in Com-

puting Technology, 1989.

[65] H. R. Lewis. A logic of concrete time intervals. In LICS90 [67], pages 380-389.

[66] 0. Lichtenstein and A. Pnueli. Checking that finite state concurrent programs satisfy

their linear specification. In Conference Record of the Twelfth Annual ACM Symposium

on Principles on Programming Languages, 1985.

[67] Proceedings of the Fifth Annual IEEE Symposium on Logic in Computer Science, June

1990.

[68] N. A. Lynch. Multivalued possibilities mappings. In de Bakker et al. [37].

ims. [69] N. A. Lynch and M. R. Tuttle. Hierarchical correctness proofs for distributed algorithi

In Proceedings of the Sixth ACM Symposium on Principles of Distributed Computing. The

Association for Computing Machinery, Inc., Aug 1987. Also, MIT/LICS/TR-387, April

1987.

BIBLIOGRAPHY 145

[70] Z. Manna and P. Wolper. Synthesis of communicating processes from temporal logic

specifications. In Kozen [55].

[71] A. J. Martin. A synthesis method for self-timed VLSI circuits. In Proceedings: IEEE

International Conference on Computer Design, Oct. 1987.

[72] A. J. Martin and J. R. Burch. Fair mutual exclusion with unfair P and V operations. Inf.

Process. Lett, 21:97-100, Aug. 1985.

[73] A. J. Martin, S. M. Burns, T. K. Lee, D. Borkovic, and P. J. Hazewindus. The design

of an asynchronous microprocessor. In C. L. Seitz, editor. Advanced Research in VLSI:

Proceedings of the Decennial Caltech Conference on VLSI, Mar. 1989.

[74] A. Mazurkiewicz. Basic notions of trace theory. In J. W. de Bakker, W.-P. de Roever,

and G. Rozenberg, editors, Linear Time, Branching Time and Partial Order in Logics

and Models for Concurrency, volume 354 of Lecture Notes in Computer Science. Springer-

Verlag, 1989.

[75] C. Mead and L. Conway. Introduction to VLSI Systems. Addison-Wesley, 1980.

[76] R. Milner. A Calculus of Communicating Systems, v-olume 92 of Lecture Notes in Com-

puter Science. Springer-Verlag, 1980.

[77] B. Mishra. Some Graph-Theoretic Issues in VLSI Design. PhD thesis, Carnegie Mellon

University, Pittsburgh, PA, 1985.

[78] I. Moon, G. J. Powers, J. R. Burch, and E. M. Clarke. Automatic verification of sequential

control systems using temporal logic. American Institute of Chemical Engineers Journal,

38(l):67-75, Jan. 1992.

[79] X. Nicolliii, J.-L. Richier, J. Sifakis, and J. Voiron. ATP: an algebra for timed processes.

Technical Report RT-C16, Project SPECTRE, IMAG, Grenoble, France, 1990.

[80] X. Nicollin and J. Sifakis. An overview and synthesis on timed process algebras. In

K. G. Larsen and A. Skou, editors. Computer-Aided Verification, Proceedings of the 1991

Workshop, volume 575 of Lecture Notes in Computer Science, 1992.

[81] J. S. OstrofF. Automated verification of timed transition models. In Sifakis [93], pages

247-256.

146 BIBLIOGRAPHY

[82] J. S. OstrofF. Temporal Logic for Real-Time Systems. Research Studies Press, 1990.

[83] V. R. Pratt. Modelling concurrency with partial orders. International Journal of Parallel

Programming, 15(1):33-71, Feb. 1986.

[84] G. M. Reed. A hierarchy of domains for real-time distributed computing. In M. Main, ed-

itor, Mathematical Foundations of Programming Semantics, volume 442 of Lecture Notes

in Computer Science. Springer-Verlag, 1989.

[85] G. M. Reed and A. W. Roscoe. Analysing tm/-s: a study of nondeterminism in real-time

concurrency. In A. Yonezawa and T. Ito, editors, Concurrency: Theory, Language, and

Architecture, volume 491 of Lecture Notes in Computer Science. Springer-Verlag, 1991.

[86] G. M. Reed, A. W. Roscoe, and S. A. Schneider. CSP and timewise refinement. In J. M.

Morris and R. C. Shaw, editors, Fourth Refinement Workshop, Cambridge, England, 1991.

Springer-Verlag.

[87] M. Rem, J. L. A. van de Snepscheut, and J. T. Udding. Trace theory and the definition

of hierarchical components. In Bryant [10].

[88] A. W. Roscoe. A Mathemitical Theory of Communicating Processes. TLD thesis, Oxford

University, 1982.

[89] S. A. Schneider. Correctness and Communication in Real-Time Systems. PhD thesis,

Oxford University, 1990. Published as technical monograph PRG-88.

[90] C.-J. Seger. A bounded delay race model. In IEEE International Conference on Computer-

Aided Design, 1989.

[91] C.-J. H. Seger. Models and Algorithms for Race Analysis in Asynchronous Circuits. PhD

thesis, Department of Computer Science, University of Waterloo, Waterloo, Ontario,

Canada, 1988. Research Report CS-88-22.

[92] C. L. Seitz. System Timing. Chapter 7 in [75], 1980.

] J. Sifakis, editor. Automatic Verification Methods for Finite State Systems, International

Workshop, Grenoble, France, volume 407 of Lecture Notes in Computer Science. Springer-

Verlag, June 1989.

BIBLIOGRAPHY 147

[94] M. Tuttle, M. Merritt, and F. Modugno. Time constrained automata. Unpublished

manuscript, Aug. 1988.

[95] Y. Wang. Real-time behaviour of asynchronous agents. In J. C. M. Baeten and J. W. Klop,

editors, CONCUR '90 : Theories of Concurrency—Unification and Extension, volume 458

of Lecture Notes in Computer Science. Springer-Verlag, 1990.

[96] Y. Wang. CCS-fTIME = an interleaving model tor real time systems. In J. L. Albert,

B. Monien, and M. R. Artalejo, editors, Automata, Languages, and Programming: 18th

International Colloquium, volume 510 of Lecture Notes in Computer Science, Madrid,

Spain, 1991. Springer-Verlag.

[97] P. Wolper. Temporal logic can be more expressive. In 22nd Annual Symposium on

Foundations of Computer Science, pages 340-348, 1981. Also appeared as [98].

[98] P. Wolper. Temporal logic can be more expressive. Information and Control, 56:72-99,

1983.

148 BIBLIOGRAPHY

Index of Theorems, etc.

Al, 43, 44, 48, 49, 79, 135

A2, 43, 44, 49, 80

A3, 43, 44, 49, 80

A4, 43, 44, 48, 50, 79, 81, 135

Cl, 21, 24, 35, 51, 136

C2, 24, 36

C3, 24, 27, 36

C4, 24, 36

C5, 24, 27, 36

C6, 24, 27, 36

C7, 24, 27, 36

C8, 24, 37

C9, 21, 24, 2i, 35, 38, 51, 136

Ll, 40, 41, 97, 104, 136

L2, 40

L3, 40

L4, 40, 41, 97, 104

L5, 104, 136

Tl, 26, 27, 29, 30, 51, 59, 66, 86, 91, 93, 95,

137

T2, 26, 27, 30, 36-38, 95

T3, 26, 27, 30, 36, 95

T4, 27, 28-31, 37, 38, 59, 66, 68, 80, 93-95

T5, 27, 30, 95

T6, 27, 30, 36, 91, 95, 98, 102, 103

T7, 27, 30, 36, 91, 95, 98, 102, 103

T8, 26, 27, 29, 30, 32, 36, 38, 51, 59, 66, 86,

91, 93, 95, 137

T9; ^,87, ',95, 137

T10, 86, 87, 91, 93, 95

TU, 86, 87, 90, 91, 93-95

T12, 87, 91, 94, 95

T13, 87, 90, 91, 93-95, 101, 134

T14, 87, 88, 91, 93, 95

T15, 87, 88, 90, 91, 95, 96

T16, 87, 91, 93, 95

T17, 87, 88, 90-95, ÖL

T18, 87,91.'^, 95

T19, 86, 87, 88, 91, 93, 95, 98, 103, 137

Definition 2.1. 22, 134, 135, 138

Definition 2.2, 22, 135, 136

Note 2.3, 22, 23, 33, 135, 136

Note 2.4, 23, 134

Definition 2.5, 23, 137

Definition 2.6, 23, 51, 133, 136, 137

Definition 2.7, 26, 86, 135-137

Note 2.8, 27

Definition 2.9, 27, 59, 88, 131

Note 2.10, 28

Lemma 2.11, SO

Lemma 2.12, 50

Lemma 2.13, 31

Lemma 2.14, 32

149

150 INDEX OF THEOREMS, ETC.

Definition 2.15, S3, 52, 138

Note 2.16, 33, 134

Definition 2.17, 33, 135

Definition 2.18, 33, 36, 52, 100, 133

Definition 2.19, 55, 52, 100, 13?

Definition 2.20, 33, 5^, 52, 100, 137

Definition 2.21, 34, 133

Theorem 2.22, 34, 35

Lemma 2.23, 35

Lemma 2.24, 36

Lemma 2.25, 57

Theorem 2.26, 34, 38, 44

Theorem 2.27, 39, 40, 60, 61, 68, 83, 97,

103, 104

Theorem 2.28, 39, 41, 103, 104

Definition 2.29, 40

Theorem 2.30, 40, 41, 97, 103, 104, 136

Definition 2.31, 40, 104, 132

Definition 2.32, 41, 104, 132

Theorem 2.33, 41, 104

Definition 2.34, 42, 52, 134

Theorem 2.35, 43, 48, 79, 135

Theorem 2.36, 44, 48, 79

Theorem 2.37, 44

Definition 2.38, 45, 52, 136

Definition 2.39, 45

CoroUary 2.40, 46, 99

Definition 2.41, 46, 47, 48, 52

Lemma 2.42, 47, 48, 61, 68

Lemma 2.43, 49

Lemma 2.44, 49

Lemma 2.45, 49

Lemma 2.46, 50

Note 3.1, 55, 83

Definition 3.2, 59, 131

Lemma 3.3, 59, 61

Lemma 3.4, 59

Definition 3.5, 60, 132

Definition 3.6, 29, 60, 131

Lemma 3.7, 60

Definition 3.8, 61, 132

Lemma 3.9, 61, 63

Definition 3.10, 65, 131

Lemma 3.11, 66,83

Lemma 3.12, 66

Definition 3.13, ^5, 132

Definition 3.14, 69, 131, 134, 138

Lemma 3.15, 70

Lemma 3.16, 71

Definition 4.1, 53, 77, 97

Definition 4.2, 53, 57, 78, 79, 85

Lemma 4.3, 78, 79

Lemma 4.4, 79

Lemma 4.5, 80

Lemma 4.6, 80

Lemma 4.7, 81

Definition 4.8, 82, 131

Lemma 4.9, S2

Definition 4.10, 83, 131, 134

Lemma 4,11, 83

Definition 4.12, 83, 132

Lemma 4.13, 83

CoroUary 4.14, 84

Definition 4.15, 84, 137

Definition 4.16, 84, 131

CoroUary 4.17, 84

INDEX OF THEOREMS, ETC. 151

Lemma 4.18, 84

Theorem 4.19, 55

Definition 4.20, 51, 86, 133, 135-137

Note 4.21, 87

Note 4.22, 88

Definition 4.23, 88, 131

Definition 4.24, 88, 131, 134

Definition 4.25, 89, 92, 96, 100, 136

Definition 4.26, 89, 137

Definition 4.27, 90

Note 4.28, 90

CoroUary 4.29, 90, 101, 102

Corollary 4.30, 90

Corollary 4.31, 90

Corollary 4.32, 90, 101

Lemma 4.33, 83, 88, 91

Lemma 4.34, 91

Lemma 4.35, 91

Lemma 4.36, 92

Lemma 4.37, 89, 92

Lemma 4.38, 92

Lemma 4.39, 93

Lemma 4.40, 94

Lemma 4.41, 95

Theorem 4.42, 95, 97

Definition 4.43, 96, 135

Lemma 4.44, 96

Definition 4.45, 97, 136

Lemma 4.46, 97, 99

Theorem 4.47, 98

Definition 4.48, 100, 135, 137, 138

Definition 4.49, 100

Theorem 4.50, 100

Lemma 4.51, 101

Lemma 4.52, 102

Lemma 4.53, 102

Theorem 4.54, 104

Theorem 4.55, 104

Theorem 4.56, 104, 136

Definition 4.57, 104, 132

Definition 4.58, 104, 132

Lemma 4.59, 105, 106

Definition 4.60, 105, 134

Theorem 4.61, 106, 107

Definition 4.62, 107

Theorem 4.63, 107

152 INDEX OF THEOREMS, ETC.

Index

agent, 21, 23

agent signature, 22

alphabet, 22

of a signature, 22

of trace structure, 33

of trace structure set, 40

over W, 22

behavior

complete, 26, 85

partial, 26, 85

carrier, 21

chaos mode, 118

circuit algebra, 21

clock. 111

closure under unions, 107

concatenation, 86

concurrency algebra, 23

conservative approximation, 11, 42

induced by

homomorphism, 47

power set algebra, 79

inverse of, 106

containment

language, 24

trace set, 34

failure mode, 110, 111

false negative, 11

false positive, 11, 15

fictitious clock, 55

homomorphism, 45

interleaving, 16

maximal parallelism, 16

parallel composition

in concurrency algebra, 23

in trace structure algebra, 33

possible traces, 33

power set algebra, 77

prefix, 89

prefix-closed, 90

projection

in concurrency algebra, 23

in trace algebra, 26

in trace structure algebra, 33

renaming

in concurrency algebn, 23

in trace algebra, 26

in trace structure algebra, 34

renaming function, 23

signal, 22

signature, 22

of a trace structure, 33

of an agent, 22

153

154 INDEX

suffix, 89

trace

complete, 26, 85

partial, 26, 85

trace algebra, 26

with partial traces, 86

trace structure, 33

operations, 33, 100

trace structure algebra, 33

with partial traces, 100

