AD-A256 199 |
IO

Trace Algebra for Automatic Verification
of Real-Time Concurrent Systems
Jerry R. Burch

August 1992
CMU-CS-92-179

DT E &;9\ _ School of Computer Science

ELECTE }3
00107 1992 %

A

Carnegie Mellon University
Pittsburgh, PA 15213

Thi: "document has bean approved
for public relense and sale; is
distibution is uniimited,

S pazsss
2 IHE llllllll{l Aol

© Jerry R. Burch, 1992

Thi: research was sponsored in part by the Avionics Laboratory, Wright Research and Development
Center ¢ cronautical Systems Division (AFSC), U.S. Air Force, Wright-Patterson AFB, Ohio 45433-6543
under tract F33615-90-C-1465, ARPA Order No. 7597 and in part by the National Science Foundation
under Contract No. CCR-{1005992.

The views and conclusions contained in this document are those of the author and should not be interpreted
as representing the official policies, either expressed or implied, of the U.S. government.

92 10 6 028

Keywords: Trace Algebra, Trace Structure Algebra, Conservative Approximation, For-

mal Verification, Abstraction, Real-Time, Continuous Time, Discrete Time, Speed-Dependent

Asynchronous Circuits

BEST
AVAILABLE COPY

School of Computer Science

DOCTORAL THESTS
in the field of
Computer Science

Accesion For

Trace Algebra for Automatic Verification of |~

ACCEPTED:

NTIS CRA&I

Real-Time Concurrent Systems .
DIC TAB
Uaannounced
JERRY R. BURCH Ju-tificatien
Distribiuiionf
Submitted in Partial Fulfillment of the Requirements el i

for the Degree of Doctor of Philosophy —

Dzt

Chod M. (Lo |,

Twugn‘ PROFESSOR d DATE
/IZ -E_M 321 /q2
| 'ﬁ]— DEAN T I DATE
APPROVED:
R A . 25 Jreaent 1992
[PROVOST “ DATE

Abstract

Verification methodologies for real-time systems can be classified according to whether they are
based on a continuous time model or a discrete time model. Continuous time often provides a
more accurate model of physical reality, while discrete time can be more efficient to implement
in an automatic verifier based on state exploration techniques. Choosing a model appears to
require a compromise between efficiency and accuracy. |

We avoid this compromise by constructing discrete time models that are conservative ap-
prozimations of appropriate continuous time models. Thus, if a system is verified to be correct
in discrete time, then it is guaranteed to also be-correct in continuous time. We also show
that models with explicit simultaneity can be conservatively approximated by models with
interleaving semantics.

Proving these results requires constructing several different domains of agent models. We
have devised a new method for simplifying this task, based on abstract algebras we call trace
algebra and trace structure algebra. A trace algebra has a set of traces as its carrier, along with
operations of projection and renaming on traces. A trace can be any mathematical object that
satisfies certain simple axioms, so the theory is quite general. A trace structure consists, in part,
of a subset of the set of traces from some trace algebra. In a trace structure algebra, operations
of parallel composition, projection and renaming are defined on trace structures, in terms of
the operations on traces. General methods for constructing conservative approximations are
described and are applied to several specific real-time models. We believe that trace algebra is
a powerful tool for unifying many models of concurrency and abstraction beyond the particular
ones described in this thesis. '

We also describe an automatic verifier based on the theory, and give examples of using it to
verify speed-dependent asynchronous circuits. We analyze how several different delay models,
including a new model called chaos delay, affect the verification results. The circuits and their
specifications are represented in aiscrete time, but because of our conservative approximations,

circuits that are verified correct are also correct in continuous time.

A cknowledgements

Ed Clarke has been my advisor during the last several years of my graduate student career.
His guidance and support (and patience!) were essential to the completion of this thesis and
the other research projects I have been involved in at CMU. Ed has taught me a great deal
about formal verification and about how to do quality research.

The other members of my committee, Randy Bryant, Jeannette Wing, Al Mok and David
Dill, provided many helpful ideas for improving my research and my writing. When my thesis
research was not properly focused, Ed and the rest of the committee provided the support and
the firm pressure that was necessary to get me back on track.

O'” ~rs who have contributed to my development as a student and a researcher include Jon
Doyle, A.ain Martin and Fred Thompson.

Much of my research at CMU was in collaboration with David Long and Ken McMillan. I
am very fortunate to have had a chance to work with them.

The School of Computer Science at CMU is a great place to be a graduate student. in no
small part because of the people responsible for administration and facilities. My officemates,
past and present, also helped create an intellectually stimulating environment.

I thank my parents, and the rest of my family, for never letting me doubt their love and

support.

Contents

Abstract

Acknowledgements

Contents

1 Introduction

1.1 Major Results
1.2 . Motivating Example
1.3 Related Work G- -@E-:.358-E
1.3.1 Agentsemantics.
1.3.2 Describing Agents. L
1.3.3 Specification and Verification
184 Abstraclionlc0.008 -Ee@E Se LB . b . & . -k
2 Trace Algebra, Part I
2.1 Concurrency Algebra
22 TraceAlgebra L,
221 Examples
222 Proofs i e e e e e e e e
2.3 Trace Structure Algebra L
28-1, Bremples o . . .o .8 .. - -E5 .0.%06-5 08 2% . B &
23.2 Proofs
2.3.3 Constructing Trace Structure Algebras
2.4 Conservative Approximations\,
2.4.1 Homomorphisms on Trace Algebras
. 2.4.2 Approximations Induced by Homomorphisms
2.5 Summary e e
3 Approximating Continuous Time
3.1 Timing Models
3.2 Modeling Continuons Time it ..
3.3 Modeling Synchronous Time
3.3.1 Approximating Continuous Time

12
13
15
15
17
18
20

8
3.3.2 False Positive Example Revisited
3.4 Modeling Quantized Time with Simultaneity
3.4.1 Approximating Continuous Time
3.4.2 False Positive Example Revisited
3.5 Application to Automatic Verification

4 Trace Algebra, Part II
4.1 Power Set Algebras over Trace Algebras

4.2 Quantized Time with Interleaving Semantics
4.2.1 Approximating Continuous Time

43 Partial Traces
4.3.1 Trace Algebra with Partial Traces
4.3.2 Restricting to Safety Properties
4.3.3 Trace Structure Algebra with Partial Traces

5 Delay Models

5.1 Hazard-Failure Delay Model
5.2 Approximating Continuous Time BB,=,
5.3 Seitz Queue Element
5.4 Binary Inertial Delay

5.5 Binary Chaos Delay
5.6 FIFO Controller. _

5.7 A Less Conservative Model
5.8 Single Trajectory Delay Models
59 Discussion

6 Future Research

A Summary of Notation
Bibliography

Index of Theorems, etc.

Index

CONTENTS

129
131
139
149

153

Chapter 1
Introduction

Modeling and verifying concurrent systems has grown into an important field of computer
science. Several different categories of concurrent systems have been studied, including parallel
programs, communication protocols-and circuits. Over the last several years there has been
increasing interest in modeling and verifying real-time systems. For our purposes, a real-
time system is any system that, to be formally verified to satisfy its specification, must be
modeled with explicit reference to quantitative time. Thus, if a systemr . specification is
timed (constrains the time between events rather than just their order), then it is a real-time
system. Another case is if the specification is untimed, but the correct operation of the system
depends on timing assumptions about its components (such as an asynchronous circuit that
1s not speed-independent).

There are a large number of different real-time models in the literature. They can be
classified according to whether they are continuous time models or discrete time models. Con-
tinuous time often provides a more accurate model of physical reality, while discrete time can
be more efficient to implement in an a1tomatic verifier based on state exploration techniques.
Choosing a model appears to require a compromise between efficiency and accuracy.

We show how to avoid this compromise by taking advantage of the relationships between
several different real-time models. All of the models we use are based on trace structures,
which consist of sets of input and output events, and a set of traces. Each trace represents a
possible behavior of the agent modeled by the trace structure.

There are many different kinds of traces, each is a different abstraction of physical be-
haviors. For example, with speed-independent interleaving semantics, traces are strings (from
some formal language) that abstract time to be just a total order on events. Partial order based

methods provide a different abstraction for behaviors by replacing total orders on events with

10 CHAPTER 1. INTRODUCTION

partial orders. In real-time models, traces include quantitative information about the time at
which events occur.

We want to be able to use all of the above kinds of traces, as well as many other kinds,
when modeling agents. Thus, the kind of trace that is used is a parameter in our method.
Any mathematical object that satisfies certain minimum requirements can be used as a trace.
These requirements are formalized as the axioms of trace algebra. A trace algebra has a set of
traces as its domain, and defines the operations of projection and renaming (and sometimes
concatenation) on traces.

We define several operations on trace structures, including parallel composition, projection
and renaming. Consider the operation of parallel composition. For all of the different models
we consider, this operation on trace structures has exactly the same definition, which is given
in terms of the projection operation on traces. The operations of projection and renaming
on trace structures are also defined the same way for all of our models. These operations
on trace structures form a-trace structure algebra. Thus, to construct a new trace structure
algebra (which provides a domain of agent models), we need only define a new trace algebra
(which is a domain of models for individual behaviors). Many of the basic properties of the
operations on trace structures follow from the axioms of trace algebra, so they hold for any
trace structure algebra.

Trace structures represent both implementations and specifications. An implementation
(represented by a trace structure T) satisfies a specification (represented by T') if and only if
the set of possible traces of T is contained in the set of possible traces of T". Intuitively, the
specification gives a set of legal behaviors; if all of the behaviors of the implementation are
legal, then the implementation satisfies the specification. This particular criteria for satisfying
a specification is called trace set containment. Since traces can be strings in a formal language,
trace set containment is a generalization of the standard notion of language containment.

The verification methods we propose involve using two different models. For example, we
might use a continuous time model and a discrete time model. As noted above, to construct
these models (and the corresponding trace structure algehras) it is only necessary to construct
two trace algebras. The continuous time model is the 1ore physically accurate model; if a
design satisfies its specification in continuous time, then we can be confident that the design
will work properly when implemented. Thus, a continuous time model is used when providing
a specification and an implementation to be verified. The specification is given as a continuous
time trace structure and the implementation is given as the parallel composition of one or more

continuous time trace structures (perhaps with some internal signals hidden). Each of these

11

continuous time trace structures is abstracted to form a discrete time trace structure. The
resulting discrete time specification and implementation are input to an automatic verifier that
is based on a discrete time model. The output of the verifier (i.e., whether the implementation
satisfies the specification in discrete time) indicates whether the implementation satisfies the
specification in continuous time.

There are four cases to consider depending on whether or not the implementation satisfies
its specification in discrete time or in continuous time. If the implementation is correct in both
cases, or 1s not correct in both cases, then the discrete time verification accurately indicates
whether the implementation is correct in continuous time. A false positive is the case where
the implementation is correct in discrete time but not in continuous time; the automatic
verifier inaccurately indicates that the implementation is correct. The method used to abstract
continuous time trace structures into discrete time trace structures must insure that false
positives never occur; this is the primary constraint to consider when abstracting continuous
time trace structures. A false negative is the case where the implementation is correct in
continuous time but not in discrete time; the automatic verifier inaccurately indicates that
the implementation is incorrect. False negatives are undesirable, but not nearly as dangerous
as false positives. The possibility of a false negative is the price one must pay for using a
powerful abstraction technique.

It is not possible, in general, to use a discrete time trace structure to exactly represent
the set of behaviors modeled by a continuous time trace structure; behaviors must be either
added or removed, or both. If behaviors are added when abstracting a specification, then a
false positive might result. To see this, conside: the case where one of the added behaviors is
a possible behavior of the implementation; then the implementation satisfies the specification
in discrete time but not in continuous time. Thus, we want the discrete time abstraction of a
continuous time specification to be a lower bound (under the set containment ordering) of the
set of behaviors of the specification. False positives are avoided regardless of the tightness or
looseness of the lower bound; however, a looser bound makes false negatives more likely.

The situation is different when abstracting components of an implementation. Here a false
positive might result if behaviors are removed when abstracting. To see this, consider the case
where one of the removed behaviors is not a possible behavior of the specification; then the
implementation satisfies the specification in discrete time but not in continuous time. Thus,
we want the abstraction of a component of an implementation to be a upper bound of the set
of behaviors of the component. Again, a looser bound makes false negatives more likely.

We formalize these ideas with conservative approzimations. When abstracting continuous

12 CHAPTER 1. INTPODUCTION

time with discrete time, an appropriate conservative approximation ¥ consists of a pair of
mappings from continuous time trace structures to discrete time trace structures: a lower
bound mapping ¥;, and an upper bound mapping ¥,. Suppose the implementation satisfies
its specification when verified using the discrete time trace structures that result from applying
¥, to the specification and ¥, to the components of the implementation. By the definition of
a cunservative approximation, the implementation also satisfies its specification in continuous
time. This insures that no false ¢ itives are possible.

A conservative approximation stween tv'o i ~ce structure algebras can cften be induced
by certain relationships between the underlying trace algebras. For example, if there is a
homomorphism between two trace algebras (in the universal algebra sense of homomorphism),
then this induces a conservative approximation between trace structure algebras constructed
from the trace algebras. Also, if a trace in one trace algebra is a set of traces from another trace
algebra, then this induces a conservative approximation from trace structures over the first
trace algebra to trace structures over the second. Conservative approximations from models
with explicit simultaneity to models with interleavirg semantics can be constructed in this
manner; a trace with explicit simultaneity is represented by its set of interleavings, which is a
set of interleaved traces.

The theoretical work described above was motivated by more practical issues concerning
the verification of speed-dependent asynchronous circuits. We have developed a verifier for
verifying such circuits that uses a discrete time model; it is a significant extension of the trace
theory verifier developed by Dill [38, 39]. In chapter 5, we describe how to use the verifier to
analyze two circuits. We also study the effects of using several different delay models in the
verification, including inertial delay and a new model called chaos delay. We show that using
inertial delay can lead to false positive verification r¢sults, and that chaos delay can avoid this

problem without being overly conservative.

1.1 Major Results

The major results of this thesis are listed below.

¢ Trace algebra and trace structure algebra, which are powerful tools for constructing do-

mains of agents models.

¢ Formalizing the concept of a conservative approximation from one trace structure algebra

to another, and proving general theorems for constructing conservative approximations

1.2. MOTIVATING EXAMPLE 13
based on relationships between trace algebras.

e Particular conservative approximations from continuous time models to discrete time

models and from explicit simultanei, semantics to interleaving semantics.

¢ Formalizing the con "ept of the inverse of a conservative approximation, and character-

izing the inverse of a broad class of conservative approximations.

* An automatic verifier that, using conservative approximations. combines the efficiency

of discrete time models and the accuracy of continuous time models.

¢ Using the verifier on speed-dependent asynchronous circuits with several new delay mod-

els.

1.2 Motivating Example

In this section we give a concrete example of how using a discrete time model can lead to a false
positive verification result. We do this by informally analyzing a circuit due to Brzozowski and
Seger [13, 14]. A more formal analysis will be given in chapter 3. For this circuit, gates are
modeled according to the inertial delay model. To illustrate the inertial delay model, consider
a gate with a minimum and maximum delay of one. If the gate becomes firable at time ¢, and
remains firable for one time unit, then it will fire at time ¢ + 1. If the gate is only firable for
periods of time less than one unit long, then it will not fire.

The example circuit is given in Figure 1.1. The buffers have arbitrary delay (¢.€., minimum
delay of zero and unbounded maximum delay); the remaining gates have both their minimum
and maximum delays equal to one. Initially all wires are low. Assume there is single transition
on input w that occurs at time 0. Can this lead to a transition on output z?

First, consider a synchronous time model. In chapter 3, we give a taxonomy of real-
time models, including synchronous time models (which are a particular kind of discrete time
model); for now it is adequate to characterize synchronous time models by assuming that
events can only occur at times 0, 1, 2, etc. We can argue that z cannot transition in a
synchronous time model. Assume z transitions at time t. This implies that at time ¢t — 1 we
must have yl =0, y2 = 1, y3 = 0. These constrairits on y1 and y3 imply that z1 = 22 and
¢2 = 23 at time ¢t — 2. But having z1 = 23 at time ¢ — 2 contradicts the fact that y2 = 1 at

time ¢t — 1. Thus, there can be no z transition.

14 CHAPTER 1. INTRODUCTION

s g B

Figure 1.1: Circuit for demonstrating that discrete time models can lead to false positive
verification results.

A : transition can occur in the continuous time model, however. Consider the hehavior

given by
{(w,0), (23,1.3), («2,1.9), (32,2.3), (z1,2.5), (2,3.3)}.

The behavior is represented by a set of events; each event is an ordered pair designating an
action and the time at which the action occurred. The order in which evenis occurred can be
derived from the time stamps. Notice that the times between the z1 and z2 transitions and
between the z2 and z3 transitions are less than one (so y1 and 3 do not transition), and the
time between the <1 and z3 transitions is greater than one (leading to transitions of ¥2 and
z). This is not possible in the synchronous time model we described above. As a result, the
circuit can reach a state (where z = 1) in the continuous time model that is not reachable in
the synchronous time model. This can lead to false positive verification results.

The example does not show that it is impossible to reliably avoid false positives when
using a synchronous model for verification; it merely shows that false positives are possible
if one is not careful about how gates are modeled in synchronous time. In fact, in chapter 3
we construct a conservative approximation from continuous time models to synchronous time
models. When this conservative approximation is used to construct synchronous time models
of gates (like the gates used in figure 1.1) from the corresponding continuous time models, then
false positives (relative to the continuous time models, see below) are provably impossible. This
results from the conservative approximation including extra behaviors in the synchronous time

gate models, behaviors that were not included in the informal synchronous time model we used

1.3. RELATED WORK 15

to (incorrectly) argue that a z transition is not possible in figure 1.1.

Even when conservative approximations are used, there is another source of false positives
that must be considered. Recall that using a conservative approximation from continuous time
to discrete time (for exampl) guarantees that if an implementation satisfies its specification
in synchronous time, then it also satisfies its specification in contiruous time. In this case,
because of the conservative approximation, we say that false positives are impossible relative
to the continuous time model. However, it may still be possible to have a false positive relative
to the physical implementation; that is, the implementation may satisfy its specification in the
continuous time model, but still not work correctly when actually built. This may be caused
either by errors in the formal specification or by errors in the continuous time models of the
components of the implementation.

The possibility of errors in formal specifications is a very important problem that has
received a lot of attention. In this thesis, however, we consider the simpler (but still surprisingly
subtle) problem of avoiding errors in models of components. In chapter 5, we show that using
inertial delay gates (like the ones we used to analyze figure 1.1) can lead to a false positive
relative to a physical implementation. Other gate models, such as chaos delay (section 5.5),

avoid these false positives, while reducing the chances of a false negative.

1.3 Related Work

Methodologies for formal verification provide formal semantics for agents and specifications,
and means for describing agents and specifications in a convenient language and/or with
data structures. They also provide ways of determining whether an implementation satisfies a
specification, and to make this task easier, they often provide ab-traction techniques. Isolating
each of these properties of a verification methodology provides a natural way of organizing our

description of related work.

1.3.1 Agent semantics

One of the most important distinguishing features of a verification methodology is the se-
mantics used for agents. The most common semantics for untimed agents are state-transition
systems (with either labeled states or labeled transitions), sets of sequences of states, and sets~
of sequences of events (or sets of events).

An early use of the term trace in a formal model of concurrency was in Hoare’s trace

16 CHAPTER 1. INTRODUCTION

semantics for CSP [48, 49]. Here a possible behavior of an agent (a process, in this case)
is represented by a trace, which is a finite sequence of communication actions. An agent is
then modeled by a prefix-closed set of traces. To better model deadlock and divergence, this
model was extended to include failures and divergences [7, 8,88]. Reed et al. have developed
a hierarchy of real-time extensions to these models [84, 86]. A timed trace is a sequence of
timed communications (t.a), where a is a communication action and ¢ is a real valued time
stamp. Failures are also extended with timing information. Timed stabilily values have a role
similar to divergences in untimed CSP.

Rem et al. have used traces to denote sequences of voltage transitions in asvnchronous
circuits, rather than sequences of communication actions '87). Dill extended this model to
implement an automatic verifier for speed-independent asynchronous circuits [38. 39]. Circ iits
were described by two sets of traces. a success set and a failure set (this notion of failure is
not related to failures in CSP semantics), which represent requirements on the environment as
well as on the circuit itself. Dill also formalized the notion that a model of a circuit is receptive
iff it can never block any of its inputs. Although it was never implemented, Dill extended his
model to include infinite traces for representing liveness properties 6, 38, 40].

Modeling behaviors with sequences of actions, as above, is known as interleaving seman-
tics. The possibility of two actions occurring simultaneously is not explicitly represented in
interleaving semantics. Thus, interleaving semantics is potentially less accurate then semantics
with explicit simultaneity. Note that there is another notion of interleaving that is sometimes
used in real-time software analysis: only one process is allowed to be running at a time. This
contrasts with mazimal parallelism models, where it is assumed that each process has its own
processor. All of the models we use in this thesis are analogous to maximal parallelism, even
though we sometimes use interleaving semantics.

Concurrency can be represented more explicitly by using sequences of sets of actions: a
non-singleton set represents two or more events occurring simultaneously. This is a convenient
semantics for synchronous systems. It is also a simple discrete time model that can be used
for analyzing real-time systems [5]. Untimed asynchronous agents can be modeled by using
sequences of non-empty sets of actions. Sequences of states can also be used to provide a
similarly expressive model of concurrency. Here untimed systems are modeled using stutter
free sequences or stuttering closed sets of sequences. Other models of concurrency include
Mazurkiewicz traces [74] and partially-ordered multisets 83].

Models based on sequences of actions and sequences of states can be extended to real-time

models in many different ways. Alur and Henzinger provide a good survey of these extensions,

1.3. RELATED WORK 17

as wed as other real-time modeling issues [4].

There is a common feature of the models we have described so far in this section: agents
are modeled by sets of elements, and each element represents a possible behavior of the agent.
Any model with this feature can be handled using our notions of trace algebra and trace
structure algebra, as long as the axioms of trace algebra (which are quite weak) are satisfied.
The elements that represent behaviors, which we call traces (using the term quite broadly),
become the carrier of an appropriate trace algebra. A trace structure, which represents an
agent, contains a set of such traces. These trace structures form the carrier of a trace struc-
ture algebra, which has operations of parallel composition, projection and renaming on trace
structu

A long term goal of our research with trace algebra is to encode a large number of the
existing models of concurrency as trace algebras and trace structure algebras. We believe that
trace algebra can provide a kind of unifying theory, highlighting the important differences and
similarities between these models. This thesis takes a first step in this direction by constructing
conservative approximations between several real-time models.

Even though trace algebra is quite general, it cannot be used to adequately model branching
time properties. In this situation, an agent is typically modeled with some sort of labeled
transition system. If the states of the transition system are labeled, then it is called a Kripke
structure [35]; if the edges (transitions) are labeled, it is called a synchronization tree [76].
Determining what features of trace structure algebras and conservative approximations can
be extended to branching time semantics is an interesting research question, but it is beyond

the scope of this thesis.

1.3.2 Describing Agents

After the semantics of agents are determined. it is still necessary to represent agents in hu-
man readable form (with a description langui ze) and/or in machine readable form (with an
approgriate data structure). As a simple example, assume an agent is modeled by a set of
sequences of some sort. The set of sequences can be viewed as a formal language. If agents
are finite state, ther. data structures based on finite automata or w-automata can be used to
represent agents. The verifier [16, 17] we use in chapter 5 uses automata to represent trace
structures that consist of prefix-closed sets of finite sequences.

Input-output automata are a slight extension of conventional automata for representing

finite and infinite sequences of actions [69]. They have been further extended to represent

18 CHAPTER 1. INTRODUCTION

timed behaviors using a continuous time model [68, 94]. Input-output automata are used in
verification methods based on refinement mappings (see section 1.3.3). Verification based on
language containment algorithms can be done with the timed automata of Alur and Dill 12, 41]
and Lewis [64]. All of these techniques use the same underlying model of continuous time
behaviors as is provided by the trace algebra CS7V (see section 3.2); they just provide different
ways of expressing agents. The verification methods we propose (see section 5.2) do not require
directly representing continuous time agents; instead, we construct discrete time agents that
are conservative approximations of the intended continuous time semantics.

A transition system can be used as branching time semantics (as above), or as a represen-
tation of linear time semantics if only its set of execution sequences are considered. Real-time
extensions of transition systems include both continuous time [46] and discrete time 45.81,82).

Process algebras have also been used as the basis for real-time specification languages. Lee
and Davidson [62] and Lee and Zwarico [63] have extended CSP with methods for specifying
timeouts and delays associated with executing actions. Schneider has shown how extending
CSP with a single wait operator makes it possible derive a large number of other standard
timing operators [89]. Nicollin et al. [79, 80] have extended ACP with a unit delay operator.
This operator can be used to express delays and timeouts of arbitrary duration. CCS has also

been extended with operatcrs for describing real-time processes 95, 96].

1.3.3 Specification and Verification

In its most general form, a specification is a set of agents; verification is the process of deter-
mining whether a given implementation is in the set of agents of the specification.

If there is some equivalence relation defined on the set of agent models, and the specification
is an equivalence class, then the specification can be represented by one of the agents in the
class. Several examples of this style of specification are based on various kinds of observational
equivalences [76]. Hierarchical verification is simplified since both the implementation and the
specification are given by a single agent.

A generalization of this is to use a preorder on her than a equivalence relation.
An agent then represents the set of all agents that a:. less than or equal to it according to
this order. The preorder is often based on formal language containment [57]. The idea is that
if behaviors are removed from an agent that satisfies some specification, then the resulting
agent also satisfies the specification. Verification can either be done by hand (possibly with

assistance from an automated theorem prover) using refinement mappings [68] or by language

1.3. RELATED WORK 19

containment algorithms on automata [32, 38, 57.

Most work in the literature on the automatic verification of real-time systems uses some sort
of temporal logic as a specification language. These logics are usually extensions of existing
qualitative temporal logics such as CTL [34] or PTL [66], which all suffer from well known
limits in the expressiveness of propositional temporal logics [97]. A formula in a temporal logic
serves as a specification. The set of agents represented by the specification is the set of agents
that satisfies the formula.

An implementation can be represented by a formula in temporal logic (like the specification)
or it can be represented by a transition system. If the implementation is represented by
a formula f and the specification is represented by a formula g, then the implementation
1s correct if ar 1 only if the formula f A —g is not satisfiable; this can be checked using a
tableau construction [33, 70]. Model checking is used to check whether a transition system
satisfies a given temporal logic formula [26, 34, 35]. Hierarchical verification is difficult with
model checking since the specification language is different from the languages used to describe
implementations.

Ostroff [81, 82] extends linear temporal logic to include a global clock variable that can
be used in forming propositions. The semantics is defined on a discrete time model, and
algorithms are given for automatic model checking of formulas in the logic. The semantics
and the algorithms are quite complicated however, and only small verification examples have
been published. There are other examples of extending temporal logics with a discrete t. ne
model [3, 47, 54], but none of these methods have been implemented and tested on examples.

Methods for model checking a continuous real-time extension of CTL have been developed
by Alur, Courcoubetis and Dill [1], and also independently by Lewis [65]. It appears likely that
the exact modeling of continuous time reduces the efficiency of the model checking algorithms.
Alur and Henzinger (4] give a survey of these and other real-time temporal logics.

Rather than using a temporal logic, Jahanian, Mok and Stuart use RTL (an extension
of first order logic) to describe real-time s&stems and their specifications [51, 52]. If the
specification is a theorem derivable from the formula representing the system, then the system
is correct. The proof can be automated using either a first order theorem prover or a decision
procedure for Presburger Arithmetic. System descriptions can also be written using the event-

action model and then mechanically translated into RTL formulas.

20 CHAPTER 1. INTRODUCTION

1.3.4 Abstraction

Abstraction techniques are important for reducing the complexity of verification. We describe
here some of the abstraction techniques that are closely related to the conservative approxi-
mations from continuous time to discrete time that we define later in the thesis.

Henzinger, Manna and Pnueli explore the rclationship between verification results obtained
with discrete time and continuous time models [47]. They show that for implementations given
by time transition systems. and for specifications written in a large subset of metric temporal
logic, properties hold in discrete time if and only if they hold in continuous time. This ezactness
result does not give the same amount of flexibility as conservative approximations do for
devising abstractions. Also. their results appear to depend rather heavily on the particular
behavior model that they used.

Kurshan et al. have verified several commercial communication cystems and protocols 44/
using powerful abstractions techniques based on homomorphisms on automata 57. 58, The
abstractions are closely related to our notion of « conservative approzimation induced by a
homomorphism. Our techniques for constructing domains of agent models and conservative
approximations are significantly more general, but Kurshan et al. have gained considerable
practical experience with their techniques.

Kurshan and McMillan [59] generalized homomorphisms on automata to develop a semi-
algorithmic method for extracting finite-state models from an analog, circuit level model.
This requires modeling continuous time, as well as continuous voltage and other physical
parameters. The method can be applied directly to only small circuit components. However,
hierarchical verification methods can be applied in order to verify larger circuits. Although the
method can relate particular continuous and discrete models, it does not provide a relationship
between entire domains of agent models like conservative approximations.

Reed, Roscoe and Schneider have defined an extensive hierarchy of timed models for
CSP [84, 85, 86]. They show how abstractions within the hierarchy can be used to simplify
correctness proofs (86, 89]. However, they do not provide mathematical tools, such as trace
algebra and trace structure algebra, for simplifying extensions to the hierarchy. Also, in their
models behaviors are either untimed or have real-valued time stamps; there are no intermedi-
ate discrete time models. The levels in the hierarchy are formed from various combinations of

timed and untimed CSP traces, failures and stability values.

Chapter 2

Trace Algebra, Part I

This chapter describes some very general methods for constructing different models of con-
current systems, and for proving relationships between these models. The most important
of these relationships is the concept of a conservative approzimation. Informally, a model is
a conservative approximation of a second model when the following condition is satisfied: if
an implementation satisfies a specification in the first model, then the implementation also
satisfies the specification in the second model. Conservative approximations are useful when
the second model is accurate but difficult to use in proofs or with automatic verification tools,
and the first model is an abstraction that simplifies verification.

The formal methods we describe are based on three kinds of inter-related algebras: con-
currency algebra, trace algebra and trace structure algebra. Concurrency algebra is based on
Dill’s circuit algebra [38] and is a simple abstract algebra with three operations: parallel com-
position, projection, and renaming. The three operations must satisfy the axioms C1 through
C9 (p. 24). The domain (or carrier) of a concurrency algebra is intended to represent a set of
processes, or agents. Any set can be the domain of a concurrency algebra if interpretations
for parallel composition, projection and renaming that satisfy C1 through C9 can be defined
over the set. In this thesis, whenever we define an interpretation for these three operations, we
always show that the interpretation forms a concurrency algebra, which gives evidence that
the interpretation makes intuitive sense.

We often use a set of trace structures as the domain of a concurrency algebra. This special -
case of a concurrency algebra is a called a trace structure algebra. Each trace structure contains
a set of traces, where each trace represents a behavior of the agent modeled by the trace
structure. The kind of trace that is used is a parameter in our method. Any mathematical

object that satisfies certain minimum requirements can be used as a trace. These requirements

21

22 CHAPTER 2. TRACE ALGEBRA, PART]

are formalized as the axioms of trace algebra. A trace algebra has a set of traces as its dornain,
and defines the operations of projection and renaming (and possibly concatenation) on traces.

In summary, a trace algebra has a set of traces as its domain, and each trace is interpreted
as an abstraction of a physical behavior. A sequence of actions is a standard example of a trace,
but in trace algebra any mathematical object can used as a trace as long as certain axioms
are satisfied. An agent is modeled by a trace structure, which contains a set of traces from
some trace algebra, representing the set of possible behaviors of the agent. The operations of
parallel composition, projection and renaming are defined over a domain of trace structures.
forming a trace structure algebra. These operations satisfy the axioms of concurrency algebra,

s0 a trace structure algebra is a special case of a concurrency algebra.

2.1 Concurrency Algebra

Concurrency algebras (which are based on Dill's circuit algebra 138]) have the following opera-
tions on agents: parallel composition, projection and renaming. These operations sutisfy a set
of axioms, which are intended to be consistent with the intuitive meaning of the operations.
Agents communicate through either shared actions or shared state variables. We use the
term signal to refer to either an action or a state variable. We associate with each agent an

agent signature (or just signature), which describes sets of input signals and output signals.

Definition 2.1. We use W to denote a set of signals. The set of agent signatures I' over W
is the set of ordered pairs (I,0) such that / and O are disjoint subsets of . We use ~

to denote agent signatures (often called just signatures).

In a signature (1, 0) over W, the set W is usually infinite and the sets] and O are usually

fnite, but this is not required.

Definition 2.2. If v = (1,0) is a signature over W, then 4 = J U O is the alphabet of v. If
A is the alphabet of some signature, then we call A an alphabet. Thus, an alphabet over
W is any subset of W.

Note 2.3. When we mention a signature v, we also implicitly define 7 and O so that v =
(1,0). We also implicitly define 4 to be the alphabet of 4. If the name of the signature
is decorated with primes and/or subscripts, those decorations carry over to the implicitly

defined quantities. For example, mentioning a signature v; implicitly defines I}, O} and
Al

2.1. CONCURRENCY ALGEBRA 23

Note 2.4. If an object E has an agent signature associated with it, we implicitly define v to
be that signature. If the name of the object is decorated with primes and/or subscripts,
those decorations carry over to the implicitly defined signature. For example, associating
a signature with an object E{ implicitly defines a signature v|. This, as described in

note 2.3, also implicitly defines I}, O; and A}.

The renaming operation uses a renaming function, which is a bijection from one alphabet

to another.

Definition 2.5. A functia r with dom(r) = A and codom(r) = B, where A and B are

alphabets over W', is a renaming function over W if r is a bijection.

The parallel composition of two agents E and E’ (written E || E') corresponds to, for exam-
ple, joining two circuits or running two processes concurrently. In the resulting composition.
E and E' communicate through shared signals. We require that no signal be an output of
both E and E’. The agent rename(r)(E) is formed from E by renaming the signals of E
according to r. If B is a subset of the alphabet of E, then proj(B)(E) has B as its alphabet;
the remaining signals of E are not externally visible. We allow only outputs of E to be hidden,
so B must contain all of the inputs of E. The three operations of concurrency algebra satisfy

several identities. All of this is formalized in the following definition.

Definition 2.6. A concurrency algebra over W has a domain D of agents, and the operations
of parallel composition, projection and renaming, denoted by ||, proj(B) and rename(r).
Associated with each element of D is an agent signature from the set " of agent signatures
over W. Let E and E’ be elements of D (recall that this implicitly defines I, I’, etc.,
see note 2.4). The signatures of E| E', proj(B)(E) and rename(r)(E) are given by the

following rules.

e f ONO'"=10,then E | E'is defined and its signature is
(Jul'y-(ou0"), ou0).
o If 1 C B C A, then proj(B)(E) is defined and its signature is (I,0 N B).

o If ris a renaming function with domain 4, then rename(r)(E) is defined and its

signature is (r(I),7(0)), where r is naturally extended to sets.

24 CHAPTER 2. TRACE ALGEBRA, PART I

The operations must satisfy the identities given below. In all of the identities, there is
an implicit assumption that the left hand side of the equation is defined; in each case, if

the left hand side is defined, then so is the right hand side.
CL.(EE)|E"=E|(E'| E").

C2. E|E'=E'| E.

C3. rename(r)(rename(')(E)) = rename(r o ')(E).

C4. rename(r)(E || E) = rename(r |, _, ,))(E) | rename(r _. o)(E')
CS. rename(ids)(E) = E.

C8. proj(B)(oroj(B')(E)) = proj(B)(E).

C7. proj(4)(E) = E.

C8. proj(B)(E || E') = proj(B 1 A)(E) | proj(B ~ A E'). if (4 4') C B.

C9. proj(r(B))(rename(r)(E)) = rename(r [B_,T(B))(proj(B)(E)).

2.2 Trace Algebra

Several methods for verifying concurrent systems are based on checking for language contain-
ment or related properties 38, 43, 49. 57, 68]. In the simplest form of language containment-
based verification, each agent is modeled by a formal language of finite (or possibly infinite)
sequences. If agent T is a specification and 7" is an implementation, then 7" is said to satisfy
- T'if the language of T" is a subset the language of T. The idea is that each sequence, some-
times called a trace, represents a behavior; an implementation satisfies a specification iff all
the possible behaviors of the implementation are also possible behaviors of the specification.
The method we use in this thesis for verifying real-time properties is a generalization of
the language containment method. Traces are not restricted to be sequences, but can be any
mathematical object that has certain properties. In this section, these properties are formalized
in the axioms of trace algebra, which is a kind of abstract algebra that has a set of traces as its

domain. The next section describes trace structure algebra, which has as its domain a set of

2.2. TRACE ALGEBRA 25

trace structures, each containing a subset of the traces from a given trace algebra. The notion
of one trace structure satisfying another is based on trace set containment.

Before giving the formal definitions of these concepts, let us describe a simple example of
a trace algebra and a trace structure algebra. Let the set of traces over an alphabet 4 be 4,
which is the set of finite and infinite sequences over A. A pair (7, P) is a trace structure if =
is a signature and P C A%, where 4 is the alphabet of ~.

We define the operations of parallel composition, projection and renaming on trace struc-
tures by first defining projection and renaming on individual traces. If z £ 4% and B C A4,
then proj(B)(z) is the string formed from z by removing all symbols not in B. If r is a
renaming function over A, then rename(r)(z) is the string formed from z by replacing every
symbol a with r(a).

Projection and renaming on trace structures are just the natural extensions of the corre-
sponding operations on traces. In particular, if T = ((1,0), P) is a trace structure, I C B C A4

and r is a renaming function over A, then
proj(B)(T) = ((1,0N B),proj(B)(P)),

rename(r)(T) = ((r(1),r(0)), rename(r)(P)),
where the operations of projection and renaming on traces are naturally extended to sets of
traces. If T = (v, P) is 2qual to the parallel composition of T" and T", then

P ={z¢€ A®: proj(A')(z) € P' A proj(A")(z) € P"}.
Given our definition of projection on strings, this is a natural definition of parallel composition.
Rem, van de Snepsheut and Udding’s [87] definition of the set of traces resulting from parallel
composition is almost identical to ours, except that it is restricted to finite length strings.

Looking at the above definitions more closely, we can see how these concepts can be gen-

eralized to unify many different kinds of models. Rather than always using strings in a formal
language as the domain of traces, we can use any domain that has projection and renam-
ing operations defined on it and that satisfies certain requirements. These requirements are
formalized in the axioms of trace algebra. In each case, the operations on trace structures
are defined exactly as above, in terms of the operations on individual traces. The resulting
trace structure algebra satisfies the axioms of concurrency algebra because the underlying
traces satisfy the axioms of trace algebra. The remainder of this chapter formalizes and proves
these claims, and defines what it means for one trace structure algebra to be a conservative

approximation of another.

26 CHAPTER 2. TRACE ALGEBRA, PART I

We make a distinction between two different kinds of behaviors: complete behaviors and
partial behaviors. A complete behavior has no endpoint. Since a complete behavior goes
on forever, it does not make sense to talk about something happening “after” a complete
behavior. A partial behavior has an endpoint; it can be a prefix of a complete behavior or
of another partial behavior. Every complete behavior has partial behaviors that are prefixes
of it; every partial behavior is a prefix of some complete behavior. The distinction between
a complete behavior and a partial behavior has only to do with the length of the behavior
(that is, whether or not it has an endpoint), not with what is happening during the behavior;
whether an agent does anything, or what it does, is irrelevant.

Complete traces and partial traces are used to model complete and partial behaviors,
respectively. A given object can be both a complete trace and a partial trace; what is being
represented in a given case is determined from context. For example, a finite string can
represent a compiete behavior with a finite number of actions, or it can represent a partial
behavior. The form of trace algebra we define here has only complete traces; it is intended
to represent only complete behaviors. Trace algebra with partial traces will be defined in
chapter 4. We use the symbol ‘C’ to denote trace algebras. Since we only consider here trace
algebras with complete traces and without partial traces, we use a subscript ‘C” (e.g., ‘Cc’) to

denote the trace algebras used in this chapter.

Definition 2.7. A trace algebra (s over W is a triple (B¢, proj, rename). For -every alphabet
A over W, Bo(A) is a non-empty set, called the set of traces over A Slightly abusing

notation, we also write B¢ as an abbreviation for
U {Bc(A): A is an alphabet over wi.

For every alphabet B over W and every renaming function r over W, proj(B) and
rename(r) are partial functions from Be to Be. The following axioms T1 through T8
must also be satisfied. For all axioms that are equations, we assume that the left side of

the equation is defined.

T1. proj(B)(z) is defined iff there exists an alphabet A such that z € Bo(A)and B C A.
When defined, proj(B)(z) is an element of Be¢(B).

T2. proj(B)(proj(B')(z)) = proj(B)(z).

T3. If 2 € Bo(A4), then proj(A4)(z) = z.

2.2. TRACE ALGEBRA 27

T4. Let z € Bo(4) and z' € Be(A') be such that proj(4 N A')(z) = proj(A N 4')(z").
For all A” where AU A’ C A", there exists 2" € Bc(A”) such that z = proj(A)(z")
and z' = proj(A4')(z").

T5. rename(r)(z) is defined iff 2 € Bo(dom(r)). When defined, rename(r)(z) is an

element of Bg(codom(r)).
T6. rename(r)(rename(r')(z)) = rename(r o ')(z).
T7. If 2 € Bo(A), then rename(id,)(z) = .
T8. proj(r(B))(rename(r)(z)) = rename(r |5_, 5,)(proj(B)(z))

T1 and TS state when the operations on traces are defined. T2, T3, T6, T7 and T8 are
natural properties corresponding to C6, C7, C3, C5 and C9, respectively. The remaining
axiom, T4 is a kind of “diamond property”, as illustrated in figure 2.1. As an example of
applying T4, consider the case where traces are sequences. Let A = {a,b}, A" = {b,c},
z = abab and z' = bch. Clearly proj(A N A')(z) and proj(A N A')(z') are both equal to bb.
Choosing z" = abach demonstrates the T4 holds for this pair of sequences. Intuitively, T4
requires that if two traces x and 2’ are compatible on their shared signals (i.e., AN A'), then

there exists a trace " that corresponds to the synchronous composition of z and z'.

Note 2.8. We naturally extend the renaming and projection operations on traces to opera-
tions on sets of traces. For example, if rename(r)(z) is defined for every z in .\, then

rename(r)(X') is defined such that

rename(r)(X) = {rename(r)(z):z € X}.

2.2.1 Examples

As an example trace algebra, we formalize the trace algebra briefly described at the beginning
of section 2.2, which we call C{. We always use the symbol ‘C’ to denote trace algebras, and the
superscript ‘I’ is @ mnemonic for an (untimed) interleaving model; the subscript ‘C’ indicates
that there are only complete traces in the trace algebra (i.e., a trace algebra without partial

traces).

Definition 2.9. For a given set of signals W, the trace algebra C% = (B, proj’, rename’)

over W is defined as follows:

28 CHAPTER 2. TRACE ALGEBRA, PART I

mll E B(‘4II)

proj(A) \proj(A')

\\

z' € B(4)
proj(AN A" proj(An 4"

proj(AN A')(z) = proj(A N A')(z')

Figure 2.1: According to T4, if there exists an ¢ and an z' that satisfy the lower half of the
diamond, then there exists an z” that satisfies the upper half, for any alphabet A” such that

AUA ' C A"
e For every alphabet A over W, the set BL(A) of traces over 4 is A%,

o If 2 € B{(A) and B C A, then proj!(B)(z) is the sequence formed from z by

removing every symbol a not in B. More formally, if z' = proj’(B)(z), then
len(z') = [{j e N : 0 < j < len(z) A (j) € B}

and z'(k) = z(n) for all k < len(z'), where n is the unique integer such that
z(n) € B and

k=|{jeEN:0<j<nAz(j) e B}
oIf 2 € B{(A) and 7 is a renaming function over W with domain A, then

rename(r)(z) = An € N7 [r(z(n))).

Note 2.10. For the trace algebra CL (and analogously for other trace algebras defined later)

we often drop the superscript ‘I’ when writing B, proj’ and rename!.

2.2. TRACE ALGEBRA 29

Trace algebra can be used to construct a large variety of behavior models. The trace
algebra C, for which Bo(4) = A%, is just one example. To provide more intuition about the
range of possible trace algebras, we informally describe several examples.

The simplest possible trace algebra has exactly one trace; call it zo. For any alphabet 4,
the set of traces over A is Bo(A) = {zo}. If B is an alphabet and 7 is a renaming function,
then proj(B)(zo) and rename(r)(zo) are defined and are equal zo. This trace algebra does not
distinguish between any behaviors; all behaviors are represented by the same trace. For this
reason 1t is not a useful trace algebra, but it does satisfy the necessary axioms.

A slightly more complicated trace algebra has Bc(A) = 24. For any trace z, proj(B)(z)
Is defined and is equal to z 7 B. On the other hand, rename(r)(z) is defined iff z C dom(r);
when defined, it is equal to r(z), where is 7 is naturally extended to sets. It is easy to show
that this trace algebra satisfies T1 through TS8; in particular, if z and z’ satisfy the hypothesis
of T4, then z" = z U ' is sufficient to show that T4 is satisfied. Traces in this trace algebra
do not provide any information about actions occurring in sequ'ence., only information about
what actions occurred a non-zero number of times during a behavior. Alternatively, if a € z,
then this could be interpreted to mean that a occurred an odd number of times during the
behavior represented by z.

Traces in the last two examples provide less information about a behavior than do traces
in C{. As an example of a trace algebra that provides more information than C(, let B¢c(A4) =
(24). For any trace z, proj(B)(z) is defined and is formed from by intersecting each element
of the sequence with B. The function rename(r) is the natural extension of r to sequences of
sets. Unlike traces in Cl, these traces can be interpreted as providing information about the
time at which events occur. If z is such a trace, then z(n) is the set of events that occurred
at time n. The set z(n) must be defined for all integers n; therefore. each trace z must be an
infinite sequence. This trace algebra can be shown to be 1somorphic to the synchronous time
trace algebra CZ7 (definition 3.6, p. 60).

A trace algebra that provides an intermediate amount of information between the last
example and C{ can be constructed by letting Bc(A) = (24 —{0})=. The renaming operation
is the same as the last example, except that it is also extend to finite sequences. Projection is
similar to the last example, except that after doing the intersection, any instances of the empty
set that result must be removed from the sequence. Like C., this trace algebra is untimed;
however, it represent simultaneity explicitly, unlike interleaving semantics.

In chapter 3, we describe the continuous time trace algebra CSTU. There each trace over

an alphabet A is an element of 24*®” where R* 1s the set of non-negative real numbers.

30 CHAPTER 2. TRACE ALGEBRA, PART I

Each trace is a set of events; each event is an ordered pair of an action and a time stamp.
An isomorphic trace algebra can be constructed by taking advantage of the natural bijection
between 24*®” and R — 24, If z is a trace in R~ — 24, then z(t) is the set of actions that
occurred at time ¢.

All of the trace algebras we have described are action based. but trace algebra can also be
used for state based models. For an agent with alphabet 4, we interpret each a € A as a state
variable. Let 1" be the set of values that can be taken by state variables. Then, each state is
an element of 4 — 1", A trace algebra based on sequences of states would have Bc(A) equal
to (A — ¥)*, which can also be written as A'7 — (4 — V7).

For a continuous time, state based model, let Be(4) =R = (4 — V). If z is such a
trace. then z(t) is the state at time ¢. If 1" is the set of real numbers. then this trace algebra
could be used as a circuit model that represents both continuous time and continuous voltage.

In section 2.3 we show how trace algebras can be used to construct trace structure algebras.
We can then discuss how the above trace algebra examples, which provide different models of

individual behaviors, lead to different models of agents.

2.2.2 Proofs

This section proves that CZ is trace algebra. It may be skipped on first reading.

Lemma 2.11. C{ is a trace algebra.

Proof. To show that C/ is a trace algebra, we must show that it satisfies T1 through T8.

T1, T3, T5, T6 and T7 are easy to show. All that remains is T2, T4 and T8.

Lemma 2.12. Cl satisfies T2.

Proof. Let 2 £ Bc(4) and B C B’ C A. We must show that

proj(B)(proj(B')(z)) = proj(B)(z).

The proof can be divided into three cases depending on whether proj(B)(z) and
proj(B')(z) are finite or infinite length strings (notice that it is impossible for
proj(B')(z) to be finite when proj(B)(z) is infinite). We only consider the case

where both are infinite, the other cases are analogous. In this case, z is of the form

T=Yoboyrbr - Ynbn oo,

2.2. TRACE ALGEBRA 31
where y; € (A — B)* and b; € B. Thus,
proj(B)(z) = boby <+« by - -
For all 7, the trace y; is of the form
¥i = ziobigzin by o Zimeo1 by Zings
where z;; € (A — B')* and b;; € B' — B. Let
y; = proj(B')(u:)
R

,n;—1?

which is an element of (B’ — B)*. Clearly,
proj(B)(proj(B')(z)) = proj(B)(yoboyi by -+ 9y by)

= Bl aw

= proj(B)(2).

|

Lemma 2.13. CCI; satisfies T4.

Proof. We consider the case where proj(4A N A')(z) and proj(An A')(z') are of infinite

length; the finite case is similar. In this case z and z’ are of the form
Z = ZTpoQyZTiay " Tpdy **-
!

_ tor o
T = ZTpGpZyay T 04, -,

where the a; and] are elements of AN A’, and z; € (4 — 4)* and z} € (4’ — 4)".

If we assume that
proj(AN A')(z) = proj(4 N 4")(z'),
then a; = a; for every 1. An exampic of an z" that satisfies T4 is
n 1A ! !
L =ZToTyloZyTyay --- LnZ,An -,
since

proj(A)(z") = =zoagziay - znan ---

= T

32 CHAPTER 2. TRACE ALGEBRA, PART I

and

!]
To@0Zy a1 - T, Ay -

proj(A’)(z")

g

Lemma 2.14. Cé satisfies T8.

Proof. We consider the case where proj(B)(z) is of infinite length; the finite case is

similar. In this case, z is of the form
T=yoboyr1by -+ Yn by -+,
where y; € (A ~ B)* and b; € B. Thus,
rename(r IB_,,(B))(proj(B)(a:)) = rename(r !B—or(B))(bU by v bn)
= 7(bo)r(b1) -+ r(bn)---
For all ¢, let
y; = rename(r)(y;).

Clearly,
proj(r(B))(rename(r)(z)) = proj(r(B))(yor(bo) ¥} (k1) --- y(by))

2.3 Trace Structure Algebra

We are now ready to define the concept of a trace structure algebra. Trace structures are .
constriucted from the traces of a trace algebra, and are used to represent agents. Here we
consider trace structures that contain one set of traces, which represents the set of possible

behaviors of an agent.

2.3. TRACE STRUCTURE ALGEBRA 33

Definition 2.15. Let Cc = (B¢, proj, rename) be a trace algebra over W. The set of trace

structures over Cc is the set of ordered pairs (v, P), where

® v is a signature over W,
o Ais the alphabet of 4, and
o P is a subset of B¢ (A).

We call v the signature and P the set of possible traces of a trace structure T = (v.P).

A trace structure (v, P) represent an agent with signature v; each trace in P represents a

possible complete behavior of the agent.

Note 2.16. When we mention a trace structure T, we implicitly define 7 to be its signature
and P to be its set of possible traces. If the name of the trace structure is decorated
with primes and/or subscripts, those decorations carry over to the implicitly defined
quantities. For example, mentioning a trace structure T} implicitly defines a signature
7 and Pj. This, as described in note 2.3, also implicitly defines I!, O} and Al.

Definition 2.17. If Cc = (B¢, proj, rename) is a trace algebra over W and T is a subset of the
trace structures over Cc, then Ac = (Cc,T) is a trace structure algebra iff the domain

T is closed under the following operations on trace structures: parallel composition

(def. 2.18), projection (def. 2.19) and renaming (def. 2.20).

We use the subscript C' in A¢ to denote a trace structure algebra that is built from a trace
algebra C¢ that has only complete traces (no partial traces). In chapter 4, we will define trace
structure algebras that are constructed from trace algebras with both complete and partial
traces.

To complete the definition of trace structure algebra, we need to define the operations on

trace structures mentioned in definition 2.17.

Definition 2.18. f 0N O’ = 0, then 7" = T || T" is defined and

' = (IUI'Yy=(0u0), 00"
P" = {z e Bc(A"): proj(A)(z) € P A proj(A')(z) € P'}.

Definition 2.19. If I C B C A, then

- proj(B)(T) = ((1,0 N B), proj(B)(P)).

34 CHAPTER 2. TRACE ALGEBRA, PART |

Definition 2.20. If r is a renaming function with domain A, then
rename(r)(T) = ((r(I),7(0)), rename(r)(P)).

It can be shown, using the axioms of trace algebra, that the operations of parallel com-
position, projection and renaming on trace structures form a concurrency algebra (see theo-
rem 2.22).

We want to use trace structure algebras as the basis for a verification methodology, which
requires defining what it means for an implementation to satisfy a specification when both are
given by trace structures. Qur notion of satisfaction is based on trace set containment: an

implementation satisfies a specification iff it is contained by the specification.
Definition 2.21. We say T C T (read T is contained in T')if y =+ and P C P'.

The operations of parallel composition, renaming and projection are monotonic with re-
spect to trace structure containment (see theorem 2.26). The monotonicity of parallel com-
position is important for using trace structure algebras as a basis for hierarchical verification

techniques.

2.3.1 Examples

Let us consider how some of the example trace algebras discussed in section 2.2.1 can be used
to construct trace structures, and how the different definitions of projection on traces lead to
different notions of parallel composition of trace structures.

Consider trace structures over the trace algebra Cf. The set of possible traces of a trace
structure with alphabet A is a subset of B¢(A), which in this case is A, Consider the trace

structures

T = (({a,b}, 0), {abab})
T" = (({b,c}, 0), {bcb}).

By the definition of parallel composition in a trace structure algebra, the set of possible traces
of T"=T| Tis

P" = {z ¢ Bc({a,b,c}): proj({e,b})(z) € P A proj({b, c})(z) € P'}
= {abacb,abcab}.

2.3. TRACE STRUCTURE ALGEBRA 35

This example illustrates how parallel composition results in nondeterminism in this model.
However, parallel composition does not lead to nondeterminism when the underlying trace

algebra is the one with Be(A4) = (24)“ described in section 2.2.1. Let

T = (({e,8},0), {{{a, b}, {a}, {6})})
T = (({&c}, 0), {({0}, {c}, {61)})

Here the set of possible traces of T = T || T' is the singleton set

P"= {({a.b}, {a,c}, {6})}.

The relevant difference between this model and the interleaving model is that here each trace
provides more information about the time of occurrence of events. As a result. the order of
events is fully determined when “merging” together two local traces to form a global trace
of a composition. Global traces are also fully determined in the cases where traces over .n
alphabet A are elements of 24*®” (4 — V)* or R” — (A V).

Another case where parallel composition does lead to nondeterminism is the one described
in section 2.2.1 where B¢(A) = (24 — {0})®. In this case, for T and T” defined as above, the
set of possible traces of 7" = T || T' is

P" = {({a,b}, {a}, {c}, {b}),
<{aab}a {avc}a {b}>7
({a,b}, {c}, {a}, {B})}.

2.3.2 Proofs

This section proves that trace structure algebras are concurrency algebras and that the oper-

ations on trace structures are monotonic with respect to trace structure containment.

Theorem 2.22. Trace structure algebras are concurrency algebras.

Proof. By definition, the domain 7 of trace structures is closed under projection, composi-
tion and renaming. We must show that C1 through C9 are also satisfied.

Lemma 2.23. Trace structure algebras satisfy C1.

36 CHAPTER 2. TRACE ALGEBRA, PART I

Proof. Let Ty = (T | T") || T" and To = T || (T' || T"). Using T2 and definition 2.18, it
1s easy to show that both P, and P, are equal to

{z € Bo(A1) : proj(4)(z) € S A proj(4')(z) € §' A proj(A™)(z) & S"}.

C2 is obvious from the definition of parallel composition. C3 follows easily from T6

and the definition of rename on sets of traces and on trace structures.

Lemma 2.24. Trace structure algebras satisfy C4.

Proof. Let T" = rename(r)(T || T"). Then
rename(r)({z € Bo(A U A') : proj(4)(z) € P A proj(4')(z) € P'})
{rename(r)(z) € Be(r(A U A")):

proj(A)(z) € P A proj(A')(z) € P'})
by T6 and T7
= {rename(r)(z) € Be(r(4U A')):

PII

rename(r | ,_,,(1))(proj(4)(2)) € rename(r |,_, .)(P)
A rename(r |y _ 4)(Proj(A’)(z)) € rename(r | 4_,. 1)(P')}
by T8
= {rename(r)(z) € Be(r(AU 4")):
proj(r(A))(rename(r)(z)) € renamef(r |,_ ,))(P)
A proj(r(4'))(rename(r)(z)) € rename(r | y_, 4)(P')}
by T6 and T7
= {y € Bo(r(AUA)) : proj(r |4 4(4))(w) € rename(r |,)(P)
A proj(r ’A'_.T(A')(A'))(?/) € rename(r ’A’—»r(A’))(PI)}'

Thus, P" is equal to the set of possible traces of

rename(r |,_,(4))(T) || rename(r | ,,_ o0)(T").

C5 follows from T7, C6 follows from T2, and C7 follows from T3.

2.3. TRACE STRUCTURE ALGEBRA 37

Lemma 2.25. Trace structure algebras satisfy C8.

Proof. Let Ty = proj(B)(T || T') and T, = proj(B N A)(T) || proj(B N A')(T"), where
ANA"CBCAUA" Itis easy to check that Ty and T, have the same signature;
we must show that P, = P,. Let y € B¢(B), and assume

proj(B N A)(y) € proj(Bn A)(P).
Then,
proj(B N A)(y) € proj(B N A)(P)
& 3z € Plproj(B N A)(y) = proj(B N A)(z)]
by T4
& 3z€ P[3z € Bo(BU A)y = proj(B)(z) /A z = proj(A)(z)
A proj(B N A)(y) = proj(B N A)(2)]]
by substitution for y and 2
® 3z¢€ P{3z € Be(BU A)y = proj(B)(z) A z = proj(A)(z)
A proj(B N A)(proj(E)(z)) = proj(B N A)(proj(A)(z))]]
by T2
® 3z¢€ P[3z € Bo(BU A)ly = proj(B)(z) A z = proj(A)(z)]]
& 3z € Bo(BU A)ly = proj(B)(z) A proj(A)(z) € P).

Similarly,
proj(B N A')(y) € proj(B N A')(P')
& 3z’ € Be(B U A')y = proj(B)(z') A proj(A')(z') € P'].

38 CHAPTER 2. TRACE ALGEBRA, PART I

We use these facts to show
P, = {y € Be(B) : proj(B N A)(y) € proj(B N A)(P)

A proj(B N A')(y) € proj(B N A")(P')}

as shown above

= {y €Bo(B):3z € Bc(BU A)[3z’ € Bo(B U A")
y = proj(B)(z) A proj(4)(z) € P
Ay = proj(B)(z') A proj(A')(2') € P']]}

by T4, since AN A" C BC AU A’

= {y€Bc(B):3z € Bo(BU A)[Fz’ € BoyBU A')3z" € Bo(4 U A)]
y = proj(B)(z) A proj(4)(z) € P

Ny = proj(B)(z') A proj(4')(z') € P’

Nz = proj(B U A)(a") A 2’ = proj(B U AN}
by T2 and substitution for z and z’
= {y € Bo(B): 32" € Bc(A U A')[y = proj(B)(z")

A proj(A)(z") € P A proj(A')(z") € P']}
= P.

C9 follows easily from TS8.
a

Theorem 2.26. Parallel composition, rename and proj are monotonic with respect to trace

structure containment.

Proof. Let T and T" be arbitrary trace structures such that T C T'. The theorem follows

from following propositions, all of which are easily proved:
° T “ TII g TI II T",
o proj(B)(T) € proj(B)(T"),

e rename(r)(T) C rename(r)(T").

2.3. TRACE STRUCTURE ALGEBRA 39
2.3.3 Constructing Trace Structure Algebras

The definition of a trace structure algebra Ac = (Cc, T) requires that the set of trace structures
T be closed under the operations on trace structures. This section proves three theorems that
make it easier to prove closure, and shows how to use these theorems.

The first theorem states that if 7 is equal to the set of all trace structures over Cc, then T
1s closed under the operations on trace structures, so Ac is a trace structure algebra. Recall
that the alphabet of a trace structure need not be a finite set. The second theorem shows
that the set of all trace structures with finite alphabets is closed under the opeations on trace
structures.

For the third theorem. let (Cc,7) be a trace structure algebra, where 7 is some subset
of the set of trace structures over Cc. For every alphabet B, let £(B) be a class of sets of
complete traces over B, that is, £(B) C 28¢(B), Assume that £ is closed under intersection,
renaming, projection and “inverse projection” (this is formalized below). Let 7' be the set of
trace structures (7, P) € 7 such that P isin £(4). Then 7' is closed under the operations
on trace structures, so (Cc,7”) is a trace structure algebra.

Let 77 be the set of all trace structures over C%. By the first theorem, AL = (CL,T7)is
a trace structure algebra. Let 7/F be the set of all trace structures (7, P) over CL for which
7 has a finite alphabet and P is a mixed regular set of sequences (that is, P is the union of a
regular set and an w-regular set). By the second and third theorems, A = (CZ, T™) is also
a trace structure algebra.

The remainder of this section formalizes and proves these results.

Theorem 2.27. If C¢ is a trace algebra and 7 is the set of all of the trace structures over
Cc, then T is closed under the operations on trace structures, so Ac = (Cc,T) is a trace

structure algebra.

Proof. The result of any operation on trace structures is always some trace structure 7.
Since 7 is the set of all trace structures, T € 7. Therefore, by the definition of a trace

structure algebra, Ac = (C¢,7) is a trace structure algebra.

a

Theorem 2.28. Let Ac = (Cc,T) be a trace structure algebra. Let 77 be the set of trace
structures T' € 7 such that the alphabet of T is a finite set. Then AL = (C¢,T") is a

trace structure algebra.

40 CHAPTER 2. TRACE ALGEBRA, PART I

Proof. Tt is easy to verify that the operations on trace structures pivduce trace structrres
witii finite alphabets if the arguments to the operations have finite alphabets. This iv

sufficient show that Ay is closed under the operations on trace structures.

-

Definition 2.29. Let T be a set of trace structure over some trace algebra Cc. The set of

alphabets of T is the set of alphabets 4 of a signature v in the set
{v:3P[(+,P) e T]}.

Theorem 2.30. Let A¢c = (Cc,T) be a trace structure algebra. For every alphabet B of T,
let L(B) be a subset of 2°¢(B), Let 7" be the set of trace structures T € T such that F

isin L(A). Then A¢ = (Cc,T’)is a trace structure algebra if the following requirements

are satisfied for every alphabet B of 7.
L1. L(B) is closed under intersection.
L2. If B'C B and X € L(B), then proj(B')(X) € L(B').
L3. I BC B’ and X € L(B), then
{z € Be(B): proj(B)(=) € X} € L(B").

L4. If r is a renaming function with domain B and X ¢ L(B), then rename(r)(X) ¢
L(r(B)).

Proof. We must show that A% is closed under the operations on trace structures. To show
that 7' is closed under composition, let 7,7 € 7' and let 7" = T | T'. Then, P" is
in L(A"), since £(A) is closed under intersection (L1) and “inverse projection” (L3).-

Closure under projection and renaming follows easily from L2 and L4, respectively.

O

Definition 2.31. We define AL to be the ordered pair (C&,T?), where T/ is the set of all

trace structures over C4. By theorem 2.27, AL is a trace structure algebra.

2.4, CONSERVATIVE APPROXIMATIONS 41

Definition 2.32. We define 7' to be the set of all trace structures T = (v, P) over CL for
which v has a finite alphabet and P is a mixed regular set of sequences. Also, AZ is

the ordered pair (C5, 7). By theorem 2.33 (below), A% is a trace structure algebra.

Theorem 2.33. AX is a trace structure algebra.

Proof. Let 7’ be the set of T &€ 7' with a finite alphabet. By theorem 2.28, since AL =
(C&,TT) is a trace structure algebra. so is (CL,7"). For all finite alphabets B of A,
let L(B) be the set of mixed regular languages over B. It is easy to verify that £(B)
satisfies L1 through L4. Let

T"'"={TeT :PcL(A)}.

By theorem 2.30, since AL = (C},T") is a trace structure algebra, so is (CL,7"). Notice

that 7" is equal to TR, Therefore, AR = (C5,77R) is a trace structure algebra.

2.4 Conservative Approximations

In the next chapter we show that discrete time trace structures are a conservative approxima-
tion of continuous time trace structures. In preparation for that result, we define here what it
means for one trace structure algebra to be a conservative approximation of another.

A conservative approximation from A¢ = (Cc,T) to Ay = (Cz,7T') is an ordered pair
¥ = (¥,,9,), where ¥; and ¥, are functions from 7 to 7'. For a given trace structure 7 in
Ac, the trace structure ¥;(T) is a kind of lower bound of T, while ¥,(T) is an upper bound
(relative to the ‘C’ ordering on trace structures). Here we require that ¥;(T) and ¥,(T) have
the same signature as T'; it is also possible to allow conservative appreximations that can
change the signature of a trace structure, but that is beyond the scope of this thesis.

As an example, consider the verification problem
proj(A)(Th | T2) € T,

where T1, T and T are trace structures in 7. This corresponds to checking whether an

implementation consisting of two components T and T, (along with some internal signals

42 CHAPTER 2. TRACE ALGEBRA, PART I

that are removed by the projection operation) satisfies the specification T. By definition, if ¥

1s a conservative approximation, then showing
proj(A)(%u(Th) || %u(T2)) € W(T)

is sufficient to show that the original implementation satisfies its specification. Thus, the ver-
ification can be done in A}, where it is presumably more efficient than in Ac. A conservative
approximation guarantees that doing the verification in this way will not lead to a false positive
result, although false negatives are possible depending on how the approximation is chosen.

The following definition formalizes the notion of a conservative approximation.

Definition 2.34. Let Ac = (Cc,T)and AL = (CL,T') be trace structure algebras, and let ¥,
and ¥, be functions from T to 7'. We say ¥ = (¥, ¥,) is a conservative approzimation
from Ac to A iff the following conditions are satisfied.

o Forall T € T, the signature of ¥,(T) and ¥,(T) is 7.

 Let E be an arbitrary expression potentially involving parallel composition, projec-
tion and renaming of trace structures in 7. Let E’ be formed from E be replacing

every instance of each trace structure T with U,(T). If T, is a trace structure in Ty

and E' C ¥\(T}), then E C Ty.

Usually a conservative approximation ¥ = (¥;,¥,) has the additional property that
¥ (T) C 9,(T) for all T, but this is not required. Also, having ¥, and ¥, be monotonic
(relative to the containment ordering on trace structures) is common but not required.

The simplest example of a conservative approximation is ¥ = (¥,,0,) is

II'l(T) = (73 0)
Uu(T) = (v,Bc(4)).

This definition of ¥ clearly satisfies the first condition of definition 2.34. To see that it sat-
isfies the second condition, notice that the set of possible traces of E' and ¥,(T;) will be the
universal set and the empty set, respectively; thus, it is never true that E' C ¥y(Ty). This par-
ticular conservative approximation is not useful, however, because it always leads to a negative
verification result; it cannot be used to show that an implementation satisfies a specification.
In section 2.4.2, we will show how a conservative approximation can be constructed using a
homomorphism from one trace algebra to another. We give a concrete example of such a

conservative approximation in section 3.3.1.

2.4. CONSERVATIVE APPROXIMATIONS 43

The remainder of this section proves theorems that provide suificient conditions for showing
that some ¥ is a conservative approximation. 7 he first theorem can be understood by recalling
the example verification problem described above, and by considering the following chain of

implications:

proj(A)(Wu(Th) || Wu(T2)) S ¥(T)
assuming ¥y(T || Ty) C Wu(Th) || Yu(T)
= proj(A)(W(T: || T2)) € ¥(T)
assuming ¥, (proj(A)(T")) S proj(A)(¥.(T"))
= W (proj(A)T: | T)) C ¥(T)
assuming ¥,(7') C ¥(T) imples T' C T
= proj(4)(T, || T) C T.

The theorem formalizes the above three assumptions (along with a fourth assumption for
the renaming operation) and proves that they are sufficient to show that ¥ is a conservative
approximation.

In addition, we show that if ¥' = (¥}, ¥!) provides looser lower and upper bounds than
a conservative approximation ¥ (ie., W(T) € ¥,(T) and ¥,(T) C ¥.(T) for all T), then
U’ is also a conservative approximation. Also, the functional composition of two conservative

approximations yields another conservative approximation.

Theorem 2.35. Let Ac = (Cc.7T) and Ay = (Ci, T') be trace structure algebras, and let ¥,
and ¥, be functions . .m 7 to 7'. Assume that for all T € 7T, the signature of ¥,(T)
and ¥,(T) is 7. If the following propositions Al through A4 are satisfied for all trace

structures T, T; and T, in 7, then V¥ is a conservative approximation.
Al. U (Th | To) C O (Th) || Uu(T2).

A2. ¥(proj(B)(T)) € proj(B)(¥u(T)).

A3. VY, (rename(r)(T)) C rename(r)(¥,(T)).

Ad4. If \Ilu(T]) g W[(Tz), then T] g Tg.

44 CHAPTER 2. TRACE ALGEBRA, PART]

Proof. Let E be an asbitrary expression potentially involving parallel composition, projec-
tion and renaming of trace structures in 7. Let E’ be formed from E be replacing every
instance of each trace structure T' with ¥,(T). Let T) be a trace structure in 7, and
assume E' C ¥,(T}). We must show that £ C T}.

Using A1, A2 and A3, it is easy to prove by induction over the structure of E that
V,(E) C E'. Therefore. ¥,(E) C ¥,(Ty). By A4, E CT..

[am]
J

Theorem 2.36. Let Ac = (Cc,T) and A, = (C-.T') be trace structure algebras. and let

¥ = (¥, %) be a conservative approximation from Ac to AL. If ¥/ = (9;.0)) is
such that ¥)(T) C ¥,(7T) and ¥,(T) C ¥/(T) for all T € T, then ¥’ is a conservative
appro.imation.

Proof. Clearly, for all T € T, the signature of ¥/(7') and V. (T)is 7. Let E be an arbitrary
expression potentially involving parallel composition, projection und renaming of trace
structures in 7. Let E' be formed from E be replacing every instance of each trace
structure T with ¥,(T), and let E” be similarly formed from E by using V.. Let T} be
a trace structure in 7, and assume E"” C ¥)(T}). We must show that £ C T).

Recall that by theorem 2.26, parallel composition, projection and renaming are mono-
tonic with respect to trace structure containment. Thus, E' C E”, since v, (T) C v/ (T)
for every Ty. This implies E' C ¥,(T}), since E” C V)(T\) and ¥)(T,) € ¥,(T}). There-

fore, E C T, since ¥ is a conservative approximatior.

0

Theorem 2.37. Let Ac = (C¢,T), Az = (C.,T') and AL = (Cc.T") be trace structure
algebras. Also, let ¥ = (¥,,¥,) and ¥' = (¥], ¥/) be conservative approximations from
Ac to Ay and from A, to A%, respectively. Then ¥" = (¥, ¥") is a conservative

approximation from .4¢ to A%, where

V(T) = WywT))
VAT) = W(%,(T)).

u

2.4. CONSERVATIVE APPROXIMATIONS 45

Proof. Clearly, for all T € 7, the signature of ¥}(T') and ¥/(T) is 7. Let E be an arbitrary
expression potentially involving parallel composition, projection and renaming of trace
structures in 7. Let E' be formed from E be replacing every instance of each trace
structure T' with ¥,(T), and let E” be similarly formed from E by using ¥”. Let T} be
a trace structure in 7, and assume E” C ¥/(T}). We must show that E C Tj.

By the definition of ¥”, and since ¥’ is a conservative approximation, we know that

E' C ¥|(Ty). Therefore, E C Ty, since ¥ is a conservative approximation.

2.4.1 Homomorphisms on Trace Algebras

We can define the notions of homomorphisms and isomorphisms between trace algebras A
homomorphism commutes with rename and proj; also, if is a trace with alphabet 4, then a
homomorphism maps x to a trace with alphabet A. Thus, our definition of a homomorphism
is quite standard. We will show in the next section how homomorphisms can be used to
construct conservative approximations. An isomorphism is a homomorphism that is also a
bijection. It is also possible to allow homomorphisms that can change the alphabet of a trace,

but that is beyond the scope of this thesis.

Definition 2.38. Let Cc and C¢ be trace algebras. Let h be a function from B¢ to B
such that for all alphabets 4, if 2 € Bc(A), then h(z) € Bi(A4). The function h is a

homomorphism from Cc to Ci iff
h(rename(r)(z)) = rename(r)(h(z)),

h(proj(B)(z)) = proj(B)(h(z)).

Chapter 3 has several examples of homomorphisms between trace algebras. Hereis a simple
example involving two of the trace algebras described in section 2.2.1. For all alphabets 4, let

h map traces in A> to traces in 24 such that
h(z) = {a:3nla = z(n)]}.

It is easy to show that 4 is a homomorphism. Applying h to a trace abstracts away information

about the order of events; all that remains is the set of actions that occurred one or more times.

Definition 2.39. A homomorphism from Cc to C. is an isomorphism iff it is a bijection. Cc

are Cc isomorphic iff there exists an isomorphism from Cc to Ck.

46 CHAPTER 2. TRACE ALGEBRA, PART I

Clearly if h is an isomorphism, then so is A~!. Also, an isomorphism on trace algebras

induces an isomorphism on trace structure algebras, as follows.

Corollary 2.40. Let h be an isomorphism from C¢ to C,. Let Ag = (Cc,T) and A, =
(Ce,T') be trace structure algebras such that

(v.P)€T = (7,h(P))eT
(v,PYeT = 3(v,P)e TP = h(P)].

Then Ac¢ and A} are isomorphic.

2.4.2 Approximations Induced by Homomorphisms

Let h be a trace algebra homomorphism from Cr to Ct. and let z and z' be traces in Cc
and Cg, respectively, such that A(z) = z'. Intuitively, the trace z' is an abstraction of any
trace y such that h(y) = z’. Thus, z’ can be thought of as representing the set of all such y.
Similarly, « set X’ of traces in Cc can be thought of as representing the largest set Y such
that A(Y) = X', where & is naturaﬂy extended to sets of traces. If A(X) = X', then X C Y,
so X' represents a kind of upper bound on the set X. This motivates using the function ¥,

such that
Yu(T) = (v, h(P))

as the upper bound in a conservative approximation from a trace structure algebra over C¢ to
a trace structure algebra over C;.. A sufficient condition for a corresponding lower bound is:

if z ¢ P, then h(z) is not in the set of possible traces of W ((T). Thic leads to the definition
¥i(T) = (v, h(P) — h(Bc(A4) - P)).

The conservative approximation ¥ = (¥, ¥,) is an example of a conservative approzimation
induced by h, which is formalized in the definition below using a slightly tighter lower bound
for ¥;. Using this concept, if one proves that A is a homomorphism between two trace algebras
(which is often quite easy), then one obtains a conservative approximation between trace struc-
tures with no additional effort. A conservative approximation induced by a homomorphism A

is closely related to homomorphisms on w-automata [57].

2.4. CONSERVATIVE APPROXIMATIONS 47

Definition 2.41. Let h be a homomorphism from C¢ to Ct, and let Ac = (C¢,T) and
Ac = (C¢,T') be trace structure algebras. We naturally extend h to sets of traces.

Assume ¥, and ¥, are functions from 7 to 7' such that

¥(T)
¥, (T)

e,

(v, h(P))
(7, h(P) = K(Y = P)),

N

where
Y= J{X CBe(4): (v, X) €T A A(X)C h(P)}.

By lemma 2.42 (below), ¥ = (¥,, ¥,) is a conservative approximation from A¢ to A,
which we call a conservative approzimation induced by h from Ac to A If the two set
inequalities above are replaced by equalities, then W is called the tightest conservative

approximation induced by h from A¢ to Aj.
Notice that h(P) — h(Bc(A4) — P) is a subset of A(P) = (Y — P), so

W(T) = (v,MP))
¥(T) = (v,h(P) - h(Bc(A) - P))

(as described at the beginning of this section) is an example of a conservative approximation
induced by h. This conservative approximation is independent of 7 the tightest conservative
approximation induced by h depends on both h and 7.

Definition 2.41 defines both the class of conservative approximations induced by a ho-
momorphism h and a distinguished approximation in that class, which we call the tightest
conservative approximation induced by h. It is obvious that this distinguished approximation
is in fact the tightest approximation within the class we defined. That is, if ¥ is the tightest
conservative approximation induced by h and ¥’ is any conservative approximation in induced
by h, then ¥)(T) C ¥\(T) and ¥,(T) C ¥/(T) for any trace structure 7.

However, it is not immediately clear that class of approximations we defined includes all
conservative approximations that might intuitively be “induced” by h. If there is a larger class
of conservative approximations “induced” by &, then it might include an approximation that is
tighter then the tightest one given in definition 2.41. We provide evidence that this is not the
case in section 4.4, where we consider the inverse of a conservative approximation. This result

depends on the particular set Y used in definition 2.41, and would not be true if we replaced

48 CHAPTER 2. TRACE ALGERRA, PART I

Y by « simpler expression such as Bc(.4). With our current understanding, we cannot give
any intuitive motivation for the definition of Y’ it is simply the smallest set (which leads to

the largest ¥;(T)) we could find that made the proof of leama 2.42 go through.

It is straightforward to take the general notion of a conservative approximation induced by a
homomorphism, and apply it to specific models. Simply construct trace algebras C and C’, and
a horromorphism A from C to C'. Recall that these trace algebras act as models of individual
behaviors. Using the results described so far in this chapter (without any additional proofs),
one can construct the trace structure algebras A = (C,T)and A’ = (C',T’), and a conservative
approximation ¥ induced by h (where 7 and 7" are the sets of all trace structures over C and
C’, respectively). Thus. one need only construct two behavior models and a homomorphism
between them to obtain two trace structure models along with a conservative approximation
between the trace structure models.

The remainder of this section proves the claim made in definition 2.41: a conservative

approximation induced by a homomorphism is in fact a conservative approximation.

Lemma 2.42. In definition 2.41, ¥ is a conservative approximation.

Proof. By definition 2.41, ¥ = (0;,9,) 1s such that

o
M
oy
=
—~
o

1
o
=
]

I
o
—

where
Vo= [{X CBc(4): (v.X) € T AR(X) C R(P)}.

By theorem 2.36, the current lemma is satisfied if ¥ is a conservative approximation
when the two set inequalities above are replaced by equalities. Thus, we need only

consider the case where
U (T) = (v,h(P))
W(T) = (v,h(P)=A(Y - P)).

By theorem 2.35, we can show that ¥ is a conservative approximation by showing that
1t satisfies A1l through A4.

2.4.

CONSERVATIVE APPROXIMATIONS

Lemma 2.43. ¥ satisfies Al.

Proof. Let T =T || Ty; then
P = {z € Bc(A): proj(A:)(z) € P, A proj(4;)(z) € P,}.
Let T' (Tl) ” \I’ (Tz) then
= {z' € Bp(A): proj(A)(z') € h(P,) A proj(Az)(z') € h(P;)}.
We must show that h(P) C P'.
h(P) {h(z) € Bo(A) : proj(Ai)(z) € Py A proj(A;)(z) € P,}
S {h(z) € Bo(A) : h(proj(Ai)(z)) € h(Py)
A h(proj(4;)(z)) € h(P2)}

since h is a homomorphism
= {h(z) € Bc(A) : proj(A1)(h(z)) € h(P;)
A proj(42)(h(2)) € h(Py)}
C {2’ € Bo(A) : proj(4:)(2') € h(P1) A proj(A2)(2) € h(Py)}
= P

Il

a

Lemma 2.44. VU satisfies A2.

Proof.
h(proj(B)(P)) = {h(proj(B)(z)): = € P}
since h is a homomorphism
= {proj(B)(h(z)): z € P}
= proj(B)({h(z):z € P})
= proj(B)(h(P)).
a

Lemma 2.45. ¥ satisfies A3.

49

50 CHAPTER 2. TRACE ALGEBRA, PART |

Proof.
h(rename(r)(P)) = {h(rename(r)(z)):z € P}
since h is a homomorphism
= {rename(r)(h(z)):z € P}
= rename(r)({k(z): z € P})
= rename(r)(h(P)).
a

Lemma 2.46. U satisfies A4.

Proof. Assume U,(T}) C ¥;(T;). Then 4; = A4,; let A = 4,. We must show that
P1 g Pz.
Let z € P, and
Y = {X CBc(4):(7.X) e T AR(X) C h(P,))}.
By the definition of ¥, the assumption ¥,(T}) C ¥(T,) implies A(P,) C h(P,) -
h(Y — P;). Thus, by the definition of Y, and since (v,P) € T, we know P, C Y.
Therefore, z € Y.
We show that P, C P, with the following series of implications:
) € h(P)
since h(P,) C h(P,) — h(Y - P,)
h(z) € h(P,) — (Y — P,)

t€P = hz

)
)

h(z) & h(Y — P,)
since ¢ € Y — P, implies h(z) € (Y - P,)
= z¢Y-P,
sincez € Y
= 2z € P,

2.5. SUMMARY 51
2.5 Summary

It is worthwhile to summarize the results of this chapter and to described how they are applied
and extended in the remainder of the thesis. We began by defining concurrency algebra, an
abstract algebra in which each element of the domain represents an agent (def. 2.6, p. 23).
Associated with each agent is a signature, which is a set of input symbols along with a (disjoint)
set of output symbols. Each of these symbols might represe ‘i a wire in a circuit or message that
can be sent between communicating processes, etc. The union of the inputs and tlie outputs
is the alphabet of a signature. A concurrency algebra has three operations on agents: parallel
composition, projection and renaming. These operations must satisfy axioms C1 through C9,
the azioms of concurrency algebra. These axioms formalize certain minimum requirements
that any agent model should be expected to satisfy.

Concurrency algebra includes no notion of what it means for an agent to satisfy a specifi-
cation. We address this by using trace set containment, which is a generalization of standard
verification techniques based on language containment. Each agent is represented by a trace
structure, which is an ordered pair of a signature v and a set P of possible traces. Each trace
in P represents a possible behavior of the agent. Both implementations and specifications are
represented by trace structures. One trace structure satisfies the specification given by another
trace structure iff the set of possible traces of the first is contained in the set of possible traces
of the second.

The above description of trace structures does not say what kinds of mathematical objects
are used as traces. In normal language containment methods, a trace is a finite or infinite
sequence, so a set of traces is a formal language. We want to be much more general than this,
because we do not want our use of trace structures to limit the kinds of real-time models we
can consider. On the other hand, we do not want to allow completely arbitrary traces because
we want to have general theorems that are true of all trace structures (so the theorems do not
have to be reproven every time a new class of trace structures is constructed).

We satisfy these constraints by using the idea of a trace algebra. A trace algebra (def. 4.20,
p- 86) is an abstract algebra with a set of traces as its domain, where each trace is interpreted
as an abstraction of a physical behavior. Traces are classified according to their alphabet.
There are two operations in a trace algebra: projection and renaming. These operations must
satisfy axioms T1 through T8, the azioms of trace algebra. Other than these axioms, no other
restrictions are placed on what kinds of mathematical objects can be used as traces in a trace

algebra.

52 CHAPTER 2. TRACE ALGEBRA, PART I

Once trace algebra is formalized, it is possible to formalize trace structures. The set of
trace structures (def. 2.15, p. 33) over a trace algebra C is the set of ordered pairs (-, P), where
7 is a signature and P is a subset of the traces of C with the same alphabet as v. A trace
structure algebra is an ordered pair A = (C, T), where C is a trace algebra and 7 is a subset
of the set of trace structures over C. The operations of parallel composition, projection and
renaming are defined on trace structures in 7 using the operations of projection and renaming
on individual traces in C (def. 2.18, def. 2.19 and def. 2.20, p 33). The set of trace structures
T must be closed under these operations. The axioms of trace algebra are quite weak, but
they are strong enough to guarantee that the operations on trace structures satisfy the axioms
of concurrency algebra. Thus, a trace structure algebra is a special case of a concurrency
algebra.

Using these ideas to construct agent mouaels only requires constructing a domain of traces,
along with projection and renaming operations, and proving that they satisfy the axioms
of trace algebra. A trace structure algebra, which is guaranteed to satisfy the axioms of
concurrency algebra, can be constructed from the trace algebra without having to prove any
additional theorems. Thus, our general results greatly simplify the task of constructing new
agent models.

One of the uses of being able to easily build new process models is to study the relation-
ships between models that can be efficiently mechanized and models that accurately represent
physical reality. Ideally, correctness proofs (of trace set containment) in the efficient model
would be logically equivalent to correctness proofs in the accurate model, but this is rarely the
case. The best we can usually do is to have correctness in the efficient model imply correct-
ness in the accurate model. This is formalized by using a conservative approzimation from the
accurate model to the efficient model (def. 2.34, p. 42). Let Ac = (C¢,7) and A} = (CL,T")
be trace structure algebras. A conservative approximation from Ac to A% is an ordered pair
¥ = (¥, %,), where ¥; and ¥, are functions from 7 to 7'. For a given trace structure T
in Ac, the trace structure ¥;(T) is a kind of lower bound of T, while U, (T) is an upper
bound (relative to trace set containment). By definition, if a verification problem in Cc is
converted into a verification problem in C¢ by applying a conservative approximation ¥, then
a correctness proof in the latter problem implies a correctness result in the former problem.

A general method for constructing conservative approximations involves homomorphisms
on trace algebras (def. 2.38, p. 45). A homomorphism from C to C' is just a function from the
traces of C to the traces of C' that satisfies the standard homomorphism laws for the operations

of trace algebra. A conservative approzimation induced by h (def. 2.41, p. 46) is a conservative

2.5. SUMMARY 53

approximation from A¢ = (Cc,7T) to Ay = (C,,T'), for appropriate 7 and 7.

We take advantage of these results in the next chapter, where we show that a continuous
time model can be conservatively approximated by a discrete time model. We need only
construct the appropriate trace algetras and homomorphisms; the trace structure algebras
and the conservative approximations are obtained without any additional effort.

The conservative approximation defined in the chapter 3 maps to a discrete time model that
represents simultaneity explicitly, which can make the model more expensive to automate. We
would like to define a conservative approximation from this model to a discrete time model with
interleaving semantics. Such an approximation cannot be induced t.om a homomorphism, so
a new technique for constructing conservative approximations is needed. In chapter 4 we show
how to use a power set algebra over a trace algebra (def. 4.1, p. 77), which is a trace algebra
C vhere each trace in C is a set of traces in some other trace algebra C’. The operations
on traces in C are the natural extension to sets of the corresponding operations in C'. For
example, C' might have interleaved traces while a trace in C might be the set of interleavings
of a trace with explicit simultaneity. Thus, C would be isomorphic to a more conventional
representation of explicit simultaneity. The relationship between C and C' can be used to
construct a conservative approximation from A = (C,7T) to A’ = (. T') (def. 4.2, p. 78).
This technique is used to complete the conservative approximatic: i1om continuous time to

discrete time with Interleaving semantics.

o4

CHAPTER 2. TRACE ALGEBRA, PART 1

Chapter 3
Approximating Continuous Time

Methods for modeling and verifying real-time systems can be classified according to the type of
timing model that is used. Continuous time allows more accurate modeling of physical reality.
Discrete time models give an approximation to reality that can be automated more efficiently.
This chapter develops several different trace structure algebras for modeling real-time systems,

and describes conservative approximations from continuous time to discrete time.

3.1 Timing Models

In this chapter, we consider four different kinds of timing models:
¢ Continuous time,
¢ Quantized time with simultaneity,
¢ Quantized time with interleaving, and
¢ Synchronous time.

These models are informally described in this section; the formal definitions are given in the
remainder of this chapter and in the next chapter. The classification is similar to that used by
Alur and Dill [2], except that they did not differentiate the two quantized time models; they
called them the fictitious clock model. They also used discrete to refer to what we call the
synchronous model. We say a timing model is discrete if it is either synchronous or quantized.

For each of the four kinds of timing models, we can construct trace algebras with ap-

propriate domains of traces. Using the results of the previous chapter, we can construct

55

56 CHAPTER 3. APPROXIMATING CONTINUOUS TIME

corresponding trace structure algebras and conservative approximations between them. Thus.
we obtain a hierarchy of domains of agent models at different levels of abstraction. In this sec-
tion, we give an informal overview of the trace algebras and the conservative approximations
that we use.

Continuous time is our most accurate and realistic timing model. The time of occurrence
of each event is represented by a real number. As an example, consider the continuous time

trace
z = {(a,0.2), (6.2.3), (c,2.8), (d.2.8), (e.5.3)}.

The behavior is represented by a set of events; each event is an ordered pair designating an
action and the time at which the action occurred. The order in which events occurred can be
derived from the time stamps.

In a continuous time model, it is possible for an infinite number of events to occur in a
finite period of time (Zeno's paradox). Such behaviors are not produced by the agents we wish
to model, so we exclude them from the trace algebras we use.

The synchronous time model is the least accurate of the four types of models. In the
synchronous time model, the time at which events occur is represented by integers. which can
be derived by truncating the real numbered time stamps in the continuous time model. Thus,
we can define a homomorphism / from continuous time traces to synchronous time traces such

that

h(z) = {(CL,O), (6,2), (c,2). (d,2), (,5)}.

Notice that in the synchronous time model, information about the order of occurrence of the
b event and the c event is lost. as is information about the simultaneity of ¢ and d. This is
equivalent to assuming that all events that occur sometime during a given unit length period
all occur simultaneously at some time point during that period. Since h is a homomorphism,
there are conservative approximations induced by A from continuous time trace structures to
synchronous time trace structures.

In some cases, we wish to truncate time stamps to integers, but also preserve information
about the order and simultaneity of events. To do this, we begin by modeling continuous time
behaviors with a different, but provably isomorphic, representation. For example the example

behavior z described above can be represented by the sequence

= <({a}70'2)’ ({b}72'3)7 ({Cvd}’2'8)7 ({6}75'3»'

3.1. TIMING MODELS ol

Here a behavior is represented by a sequence of ordered pairs; each pair contains a non-empty
set of actions (non-singleton sets represent simultaneous events) and a time stamp for the
actions. The time stamps are real-valued, and must be (strictly) increasing. Notice that the
order of events, and whether or not events are simultaneous, is represented more explicitly
by the trace y than the trace z, even though they both represent the same behavior at the
same level of abstraction. The isomorphism between these two kinds of continuous time traces
depends on our assumption that only a finite number of events can occur in a finite period of
time.

We can define a function h’ that takes traces like v and truncates the time stamps:
Yy p

R'(y) = (({a},0). ({8}.2), ({c,d},2), ({z}.5)).

Information about the relative order of the the b event and the ¢ event is preservéd by A’
because this information is represented explicitly in the trace y. The simultaneity of the ¢
event and the d event is also reflected in A'(y). The trace h'(y) is a trace in a quantized time
with simultaneity model, and A’ is a homomorphism from continuous time to quantized time
with simultaneity. In this model, a trace is a sequence of ordered pairs; each pair contains a
non-empty set of actions and a time stamp for the actions. The time stamps are integer-valued,
and must be (non-strictly) increasing. As with synchronous time, the homomorphism A’
induces conservative approximations from continuous time trace structures to trace structures
for quantized time with simultaneity. Quantized time models are of intermediate accuracy
between the synchronous and continuous time models.

In quantized time with interleaving, simultaneity is modeled with nondeterminism. Thus,

the continuous time behavior z is represented by two traces:

g = <(av0)’ (bv2)7 (6,2), (dg 2)3 (.’L‘,5)>
" = ((a,0),(b,2), (d,2), (¢,2), (z,5)).

It is possible to construct a conservative approximation from quantized time with simultaneity
to quantized time with interleaving. However, it is not a conservative approximation induced
by a homomorphism. It 1s an example of a conservative approzimation induced by a power
set algebra (def. 4.2, p. 78) and it depends on the way that traces with simultaneity can be
represented by sets of interieaved traces.

The traces z’ and z” can be equivalently represented by infinite strings that include a

special symbol ¢. Each occurrence of ¢ represents the passage of one unit of time. Thus, the

58 CHAPTER 3. APPROXIMATING CONTINUQUS TIME

traces z' and z" are equivalent to

!

n

appbdeopozop-- - .

Each trace has an infinite number of ¢ to represent the passage of an unbounded amount of
time (the normal interpretation of a complete trace). If we restrict our attention to safety
properties, then only finite prefixes of these traces need be considered. The restriction to
safety properties can be formalized in a general way using partial traces and a conservative
approximation induced by a power set algebra (a complete trace is represented by the set of
all partial traces that are prefixes of it). Thus. by a series of conservative approximations
and isomorphisms between trace structure algebras, we go from a continuous time model to
a quantized time with interleaving model that can be easily implemented uéing normal finite

automata.

3.2 Modeling Continuous Time

We model continuous time behaviors with two different, but isomorphic, trace algebras: CSTU
(“continuous time unordered”) and CST° (“continuous time ordered”). Having two repre-
sentations simplifies the construction of conservative approximations from continuous time to
discrete time. In particular, CSTV is used in the mapping to synchronous time, and CS7° is
used in the mapping to quantized time with simultaneity.

In this section we describe CSTY, which uses traces consisting of a (possibly infinite) set
of events, where each event is an ordered pair (a,t)in A x R” that represents the occurrence
of action a at time ¢. Only a finite number of actions are allowed in any finite period of time.
The order of events is implicit and ‘can be determined from their time stamps. For thic reason,

\

the model is called unordered.

CETY is shown to be a trace algebra, it is possible to construct the trace structure

Once
algebra AZTY = (CETY TCTU) where TCTV is the set of all trace structures cver Bl
The construction makes use of the results of the previous chapter, and does not involve any
additional proofs. This is an example of how constructing a trace algebra is all that is needed
to construct a trace structure algebra which serves as a domain of agent models.

The remainder of the section formalizes the definition of CETY, and proves that it is a trace

algebra.

3.2. MODELING CONTINUOUS TIME 59

Note 3.1. The definition of a trace algebra is relative to a set of signals W (for example, see
the definition of C§, def. 2.2, p. 27). In the sequel, the set of signals W will be implicit
in the definitions of particular trace algebras. The phrase “all alphabets” is used to refer

to all alphabets over W.

Definition 3.2. We define the trace algebra C§TY = (B¢, proj, rename) as follows. For all
alphabets A, a trace z in B¢(A) is such that z C 4 x R” and for any ¢t € R7, there are
only a finite number of (a.t') € ¢ such that ¢’ < t. If z € B¢(A), then

proj(B)(z) = {(a:t): (art) €z ha € B}
rename(r)(z) = {(r(a),t):(a,t) € z}.

cTU
CC

Lemma 3.3. 1s a trace algebra.

Proof. To show that C§TV is a trace algebra, we must show that it satisfies T1 through T8.

We only consider T4; the proofs for the remaining axioms are straightforward.

Lemma 3.4. CS7Y satisfies T4.

Proof. Let z and 2’ be traces in B¢(A4) and B¢(A4'), respectively. Assume
proj(4 N A')(z) = proj(A N A')(e)
and let A" be such that AU A" C 4"”. We must show that there exists 2" € B¢o(.A")
such that z = proj(A)(z") and z' = proj(4')(z").
Let 2" = (z Uz'). Notice that " is an element of B¢ (4"), and
proj(A)(z") = {(a,t):(a,t) € 2" hac A}
sineert” = z U
= {(a,t):(a,t)czAhae A} U {(a,t):(a,t) €2’ Na € A}
since ¢ € Be(A4) and 2’ € Be(A4)
= ¢ U {(at):(a,t) ez’ Nae (AN A"}
since proj(A N A')(z) = proj(A N A’)(z')
= ¢ U{(e,t):(a,t)exhac(4n4)}
=1 .

Similarly, ¢’ = proj(A')(z"). Therefore, 2" satisfies T4.

60 CHAPTER 3. APPROXIMATING CONTINUOQUS TIME

a

Definition 3.5. We define AT to be the ordered pair (CETY, 7 CTYV), where T €TV is the set

of all trace structures over CS7V. By theorem 2.27, ASTY is a trace structure algebra.

3.3 Modeling Synchronous Time

This section describes a trace algebra for modeling synchronous time, and shows how this
model can be used to conservatively approximate continuous time. The trace algebra of

synchronous time, C27, is similar to CSTV except that real-valued time stamps are replaced

ETV to CET that truncates the values of the

by integers. We define a homomorphism A from C
time stamps for traces in CSTY. The homomorphism % allows us to construct a conservative
approximation induced by h from trace structures over C§7Y to trace structures over C37.
This approximation is intended primarily as a simple example to illustrate mappings from
continuous time. The conservative approximation used in the verification algorithms later in
the thesis are based on quantizec time rather than synchronous time.

One effect of the homomorpkism A is that two centinuous time events (a,2.2) and (a.2.7),
for example, are both represented by a single synchronous time event (a,2). Thus, in addition
to losing information about the exac! time at which events occur, we also loose information
about the number of events that occur in a given unit interval.

Although we do not provide the details here, it can be shown that C5T is isomorphic to a
trace algebra in which a trace over an alphabet 4 is an infinite sequence z over 24. In such a

trace, if @ € z(n), then action a occurred at time n. The representation of traces in C37 that

we have chosen simplifies the homomorphism (described below) from CETY to CAT.

Definition 3.6. ‘Ve define the trace algebra C2T as follows. For all alphabets 4, a trace z in
Bc(A) is such that £ C 4 x A'*. The definition of the operations on traces is identical
to that of CSTY: if z € B¢(A), then

proj(B)(z) = .{(a,t) :(a,t) €z Na € B}
rename(r)(z) = {(r(a),t): (a,t) € z}.

Lemma 3.7. C37 is a trace algebra.

3.3. MODELING SYNCHRONOUS TIME 61

Proof. The proof is analogous lemma 3.3, which showed that CS7V is a trace algebra.
a

Definition 3.8. We define A7 to be the ordered pair (CET,757), where 757 is the set of

all trace structures over CZT. By theorem 2.27, AT is a trace structure algebra.

3.3.1 Approximating Continuous Time

In this section we describe the first of our conservative approximations from continuous time
to discrete time. We construct the conservative approximation by first defining the homomor-

phism A from CSTY to C5T such that

h(z) ={(a,[t]): (a,¢) € 2}

(see lemma 3.9 for a proof that h is a homomorphism). By lemma 2.42, h induces a conservative
approximation from trace structures over CS7Y to trace structures over CET. This is an example
of how the results of the previous chapter simplify the task of constructing a conservative
approximation between two domains of agen. models.

The tightest conservative approximation ¥ = (¥;, ¥,) induced by h from ATV to A3T
has

Vu(T) = (1.h(P))
U(T) = (7,h(P) - (Y = P)),

where

Y = | {X CBSTY(A) : (v, X) e TTY A B(X, C R(P)}.

/

Recall that 7TV is the set of all trace structures over CETV. As an example of applying ¥,

let T = (v, P) be the trace structure in ASTY such that
A = {a}

v = (0,4)
= {{(a,t)} € BETU(A):0.5 < t < 2.5}.

62
This gives
)7
¥.(T)
¥(T)

CHAPTER 3. APPROXIMATING CONTINUOUS TIME

U{X S BETY(A4) : h(X) C A(P)}

(X € BETY(A) : h(X) C {{(a,0)}, {(a, 1)}, {(,2)}}}

(X CBETY(A): X C {{(a,t)} e BSTY(A):0< t < 3}}
(

{
{{(a,t)} € BETUV(4):0 <t < 3}

(7v:A(P) = h(Y = P))

(7,h(P) = h({{(a,t)} € BET"(4) : (0 <t < 0.3) vV (2.5 < t < 3)}))
(7 A(P) = {{(e,0)}, {(a,2)}})

(7:{{(a,1)}})

Notice that ¥,(T) C ¥,(T), as expected.

Let T be the set of all trace structures over C§7U that have no events before time 0.5; that

is,

T ={(,P) € TV . VaVbt[(z € P A (bt) € z) = ¢ > 0.5]}.

Let Ac = (C§TY,T); it can be shown that Ac is a trace structure algebra, although we do

not give the details here. We can use A¢ to demonstraie how the definition of a conservative

approximation induced by a homomorphism depends ¢ the set of trace structures in the trace

structure algebra being approximated. Let A and T be as defined above (clearly T T). Let

¥' = (¥}, ¥,) be the tightest conservative approximation induced by & from A¢ to C&T. Then

¥ =¥, and

Y

UH{X S BETY(A) : (v,X) € T A h(X) C A(P)}

)
U{X S BSTY(4) : X C 2038 p (X)) C {{(a,0)}, {(a, 1)}, {(a,2)}}}
U{X S BETY(4) : X C {{(a,t)} € BETU(4) : 0.5 < t < 3}}

{{(a,t)} e BETY(A): 05 < t < 3}

(7:h(P) = A(Y - P))

3.3. MODELING SYNCHRONOQUS TIME 63

= (7,(P) = h({{(a,t)} € BETY(A):2.5 <t < 3}))
= (1. h(P) = {{(e,2)}})
= (1,{{(a,0)}, {(a,1)}}).

Notice that {(a,0)} is a possible trace of ¥}(T) but not a possible trace of ¥;(T). Thus, ¥/
gives a tighter bound than ¥,. This is a direct result of T being a proper subset of 7¢77,

The re:nainder of this section proves that h is a homomorphism.
Lemma 3.9. The function h from CSTY to C37T given by
h(e) = {(a,[t]) : (a,t) € o}

is a homomorphism.

Proof. Clearly h(z) € BZT(4). All that remains to be shown is that

h(proj(B)(z)) = proj(B)(h(z))
h(rename(r)(z)) = rename(r)(h(z)).

We considér proj; the rename case is also straightforward.

h(proj(B)(z)) = h({(e,t)€x:nc 7}
= {(a (t]):(a,t)€znac B}
= proj(B)({(a, [t]) : (a,t) € z})
= proj(B)(h(z)).

3.3.2 False Positive Example Revisited

In section 1.2, we described an example of how modeling a circuit in synchronous time can lead
to a false positive verification result relative to a continuous time model. In section 3.3.1, we
showed that a synchronous time model can be a conservative approximation of a continuous
time model. To understand the relationship between these two results, it is helpful to analyze

the false positive example more thoroughly.

64 CHAPTER 3. APPROXIMATING CONTINUOUS TIME

The circuit behavior we used to demonstrate the false positive result is represented in ¢ uid

by the complete trace
z = {(w,0), (23,1.3), (2,1.9), (y2,2.3), (z1,2.5), (z,3.3)}.

Consider the exclusive-or gate driving the signal yl (see fig. 1.1, p. 14). Notice that 4 =
{z1,22,yl} is the alphabet of that gate. Let

y = proj(A)(z)
= {(22.1.9), (z1,2.5)}.

The complete trace y represents the local behavior of the gate driving y1 during the global
behavior represented by the trace z. Thus, if T is the trace structure over CSTY that represents
the gate, then y € P. Notice that there is no transition of the signal y1 in the trace y. This is
because of the continuous time inertial delay model, since the inputs z1 and z2 have non-equal
values only during a period that is shorter than the gate’s minimum delay of 1.

Let h be the homomo;phism from CSTY to C5T described in section 3.3.1, and let ¥ =
(¥, ¥,) be a conservative approximation induced by h from trace structures over CETY to
trace structures over C37. If we were to use the synchronous time model to verify the circuit
relative to some specification, then we would construct the trace structure 7' = W,(T'), which
1s a co.nservative, synchronous time model of the gate driving y1. By the definition of ¥,
we know h(P) C P’ where h is naturally extended to sets of traces (if ¥ is the tightest
conservative approximation induced by h, then A(P) = P’). Since y € P, we have that

y' € P', where

¥y = h(y)
= {(a2,1), (=s1,2)}.

However, in the synchronous time model that we informally used in section 1.2, the only

behavior of the gate that could result from that sequence of inputs z1 and z2 is

y' = {(3327 1), (y1,2), (3132)’ (y1a3)}'

A conservative, synchronous time model of the gate driving y1 must contain both of the traces
' and y": The fact that the informal model used in section 1.2 did not contain the trace y' 1s
the reason for the false positive verification result described there.

Notice that the trace y” allows continuous time behaviors where the first three transitions

(in order) are z2, z1 and y1. This is more conservative than necessary; such behaviors are not

3.4. MODELING QUANTIZED TIME WITH SIMULTANEITY 65

possible in the continuous time model of the gate. A tighter approximation can be obtained by
using quantized time instead of synchronous time, since quantized time preserves information

about the order of events.

3.4 Modeling Quantized Time with Simultaneity

In this section, we define a trace algebra cé’” for quantized time with simultaneityv. A homo-
morphism from continuous time traces to CC?TS 1s used to construct a corresponding conser-
vative approximation.

A trace in CC?TS with alphabet A consists of two (possibly infinite) sequences of the same
length. The first is a sequence over 24 — {0} representing a sequence of sets of simultaneous
events. The second sequence provides an integer-valued time stamp for each set of events; it
1s a non-strictly increasing sequence.

Defining the homomorphism from continuous time traces to Cé’ T involves defining a second
trace algebra, C§7?, for continuous time traces. A trace in CS7° is similar to a trace in -l
except that the sequence of time stamps is a strictly increasing sequence of real numbers.
There is a homomorphism from C§7° to cé’”; 1t simply truncates the values of the time
stamps in each trace. This implies that there is a homomorphism from C§TY to cé’”, since

CETY is isomorphic to CST°.

QTS
C

The remainder of this section formalizes the definition of C and proves that it is a trace

algebra.

Definition 3.10. We define the trace algebra CZ7° as follows. For all alphabets 4, a trace
z = (u,7) in Bg(A4) is such that
 uis a (possibly infinite) sequence over 24 — {0},
o 7 is a (possibly infinite) sequence over N7,
e u and 7 are the same length,

* ng < n; implies 7(ng) < 7(n;) (increasing), and

if 7 has infinite length, then it is unbounded:
Vt'e N7 [3n e N7 [t < 7(n)]).

Let z = (u,T) be a trace over some alphabet A.

66 CHAPTER 3. APPROXIMATING CONTINUOUS TIME

o proj(B)(z) = (v'.7"), where u’ is the sequence formed from u by removing every
symbol a not in B. and 7' is formed from 7 by removing the corresponding time

stamps. More formally. len(u') and len(7') are both equal to

{7 €N :0<j<len(u)ru(j)" B =0},

u'(k) = u(n)N B
(k) = 7(n).

where n is the unique integer such that u(n) " B £ 0 and
k={jeN:0<j<nAu)" B=0}.

o rename(r)(z) = (An £ A r(u(n)), 7).

Lemma 3.11. C37° is a trace algebra.

Proof. To show that CCQTS Is a trace algebra. we must show that it satisfies T1 through TS$.

We only consider T4; the proofs for the remaining axioms are straightforward.

Lemma 3.12. CCQTS satisfies T4,

Proof. Let z = (u.7) and 2’ = («',+') be traces in Be(A) and Be(A'). respectively.

Assume
proj(4 " A')(z) = proj(4 1 4')(z'),

and let A" be such that 4 _ 4’ C 4”. We must show that there exists 2" & Be(A4")
such that ¢ = proj(A)(z") and z' = proj(A’)(z").

We defined Cé’” so that traces are a pair of sequences. However. in this case it
1s useful to also think of a trace as a sequence of pairs; the 1somorphism is obvious.
Thus, we write z(n) to denote the pair (u(n),7(n)).

We must show how z and 2’ can be combined to form an appropriate z”. Our
strategy is to first split the sequence 2 into in infinite number of subsequences y,
such that the time stamp of all of the pairs in y, is n. We also form Yy, from z'in
analogous fashion. We show how to combine each Yn and y, into y! such thgt

"o__ . m_n_n
T =Y Yy

3.4. MODELING QUANTIZED TIME WITH SIMULTANEITY 67

has the desired property.
For every non-negative integer n, let y, be the sequence over (24 — {0}) x {n}
such that
len(ya) = {7 : 7(5) = n}/

and

yn(3) = z(k + 7),
where k is the smallest integer such that 7(k) = n. Since 7 is unbounded when it is
of infinite length, each y, is of finite length. Thus, y, € ((24 — {0}) x {n})*. Notice
that
& ="Ye Y1 Yp e
We define y/ analogously to y,.
Each sequence y,, is of the form
Yn = Vo (a0,n) -+ i1 (ajo1,m) vj,
where each v; € (24747~ {0})x {n})* and each a; € 2% — {0} such that a;N 4’ # 0.
Similarly, each y,, is of the form
yrlx = 1)6 (aé,n) T v_lj'—l (a',lj'—l?n) Ujts
where each v} £ ((2M4'-4) ~ {0})x {n})* and each a! € 2*' — {0} such that a;NA+#£0.
The assumption proj(A N A')(z) = proj(4A N A’)(z’) implies that j = ;' and
a;N(AnA)y=dn(An 4
for all i < j. Since a; € 24 — {0} and a} € 24° — {0}, this implies
a;NA"=a/N A.
Let
I. I. !

"_ ' ' . . .
Yn = Vo Vg (@0 U ag, n) ++ vy v;_y (aj-1Uaj_y, n)vj v

Notice that
proj(A)(y,,)
= proj(A)(vo oh (a0 Ul m) - vjos vy (8 Uy, m) vy)

since v} € ({744 {8} x {n})*

68 CHAPTER 3. APPROXIMATING CONTINUOUS TIME

= proj(A)(ve (a0 Uag, m) -+ v;1 (a1 U al_y, n)v;)
since a; N A Cua;
= proj(A)(vo (a0, n) + -+ v;-1 (a-1,7) v;)
since v; € (2474 - {0}) x {n})* and q; € 24 — {0}
= vy (ao,n) -+ vjoq (€jo1,n) vy
= Y.

Similarly, proj(A')(ys) = yn-

Let

n_n_n

.II
T =YolY1 Ys -

Then,

n_n_n

proj(A)(z") = proj(A)(ys vy vs -+)
= proj(A)(yo) proj(A)(yy) proj(A)(y;) -+
= Yol Y2 -

Similarly, ¢’ = proj(A4'){:"). Therefore, " satisfies T4.

(3

Definition 3.13. We define A3™° to be the ordered pair (CgTS,TQTS), where 7975 is the

set of all trace structures over CS1°. By theorem 2.27, A3™5 is a trace structure algebra.

3.4.1 ' Approximating Continuous Time

In this section we describe our next conservative approximation from continuous to discrete
time. The first step is define another trace algebra, CST?, for representing continuous time,

CET0 is an ordered pair (u,7) like

and show that it is :somorphic to CSTY. A trace z in
Cé’” except 7 is a strictly increasing sequence of real numbers rather than a sequence of
integers. We define a homomorphism h from CS7° to C8™° such that if z = (u,7) is a
trace in C§7%, then h(z) = (u,7’), where 7'(n) = |r(n)]. By lemma 2.42, h induces a

. . . TS
conservative approximation from trace structures over CST9 to trace structures over Cg .

3.4, MODELING QUANTIZED TIME WITH SIMULTANEITY 69

This conservative approximation is analogous to one described in section 3.3.1, which was
induced by a homomorphism from CSTV to C27.
The remainder of this section proves these claims. We begin by formally defining C§7°

and showing that it is a trace algebra and is isomorphic to C§7V.

Definition 3.14. We define the trace algebra CS7° as follows. For all alphabets 4, a trace
z = (u,7) in Be(4) is such that
 u is a (possibly infinite) sequence over 24 — {0},
e T is a (possibly infinite) sequence over N7,
o u and 7 are the same length,
® ng < n; implies 7(no) < 7(ny) (strictly increasing), and
o if 7 has infinite length, then it is unbounded:

V'€ R7[3n € N[t < r(n)]).

Let ¢ = (u,T) be a trace over some alphabet A. The definitions of proj and rename are

identical to those for CZT°:

o proj(B)(z) = (v, r'), where v’ is the sequence formed from u by removing every
symbol a not in B, and 7' is formed from 7 by removing the corresponding time

stamps. More formally, len(u’) and len(r') are both equal to
{i € N:0 < j < len(u) Au(f) N B # 0}

Also,
u'(k) = u(n)NB
(k) = r(n),

where 7 is the unique integer such that u(n) N B # 0 and
k={jeN:0<j<nAu(j)NB 0}

o rename(r)(z) = (An € N7 [r(u(n))], 7).
To show that CST is a trace algebra, it is sufficient to show that there is a isomorphism

h from C§T9 to CETY. Since CSTV is a trace algebra, this demonstrates that CETO is a trace

algebra, as well as showing that it is isomorphic to CSTV.

70 CHAPTER 3. APPROXIMATING CONTINUOUS TIME

Lemma 3.15. CST9 is a trace algebra and is isomorphic to CaTY,

Proof. Let z = (u,r) be » trace in BST?(A). We define A such that
h(z) = {(c.t): 3n < len(u)[a € u(n) A t = 7(n)]}.

It can be shown that 4 is a surjection, since traces in BETV have only a finite number of

actions during any finite period of time.

Also, it straightforward to show that h is an injection and for all ' € BSTU(4).
Rz = (u.7).

where u and 7 are uniquely determined by the following constraints. First. the length of

u and T is

{t': 3a € 4[(a.t)) € 2]} .

Pl

Second, if n < len(u) then 7(n) is the unique real number such that Jal(a,7(n)) € z/

and
n=[{t' <7(n):3a€ Al(a,t') € 2]}

Third. if n < len(u) then

It is also straightforward of show that h is a homomorphism. For example. the reader
can easily verify that if = (u.7) is a trace in BET?(4), then both proj(B)(h(z)) and

h(proj(B)(z)) are equal to

{(a,t): 3n < len(u)(a € (u(n) N B) A t = 7(n)]}.

3.4. MODELING QUANTIZED TIME WITH SIMULTANEITY 71

Lemma 3.16. Let h be the function from CS7° to C27° such that if z = (u,7) is an element
of BET9(4), then

Then h is a homomorphism.

Proof. Clearly h(z) € BS7®(4). All that remains to be shown is that

h(proj(B)(z)) = proj(B)(h(z))

h(rename(r)(z)) = rename(r)(h(z)).

The reader can verify that both A(proj(B)(z)) and proj(B)(h(z)) are equal to (u", "),

where len(u”) and len(r") are both equal to
{7 €N :0<j <len(u) Au(j)N B # 0}

and
u"(k) = u(n)NB
(k) = [r(n)],

and n is the unique integer such that u(n) N B # 0 and
k=H{jeN:0<j<nAu(g)NnB#0}.

Also,

h(rename(r)(z)) = h((An € N7 [r(u(n))], 7))
= (e N [r(u(n))], dn e N*[[r(n)]))
= rename(r)((u, An € N7[|r(n)]]))
= rename(r)(h(z)).

72 CHAPTER 3. APPROXIMATING CONTINUOUS TIME

3.4.2 False Positive Example Revisited

In section 3.3.2 we analyzed the false positive example of section 1.2 with a conservative,
synchronous time model. In this section, we do a similar analysis with a quantized time

model.

Recall that the continuous time trace

y = {(22,1.9), (z1,2.5)}

represents the local behavior of the gate driving y1 in the false positive example. Let z' be

the result of applying our homomorphism A from CSTY to cé?":

2 = h(y)
= (({:c2},l), ({:cl},Z)).

A trace structure over C§T5 representing the gate should also contain the trace

2" = (({=2},1), ({y1},2), ({=1},2), ({y1},3)..

representing a behavior in which the time between the z2 and z1 events is greater than or

equal to 1, such as
{(22,1.9), (y1,2.9), (=1,2.95), (y1,3.95)}.

Recall that the synchronous time model of the gate needed to include the traces

vy = {(z2,1), (z1,2)}
y' = {(z2,1), (y1,2), (‘7"172)’ (y1,3)}

As stated earlier, the trace y” allows continuous time behaviors where the first three transitions
(in order) are 22, z1 and y1. This is more conservative than necessary because such behaviors
are not possible in the continuous time model of the gate. Since the trace z" does not allow

such continuous time behaviors, it is a tighter approximation than y" is.

3.5 Application to Automatic Verification

Let us consider how conservative approximztions from continuous time trace structures to
discrete time trace structures can be applied in automatic verification. One method for me-

chanically verifying that a implementation satisfies a continuous time specification is as follows.

3.5. APPLICATION TO AUTOMATIC VERIFICATION 73

First, construct data structures for each of the continuous time trace structures representing
the specification and the components of the implementation. Then, algorithmically convert
each of the continuous time trace structures to discrete time, and then decide the verification
problem in discrete time.

We do not use this method, however, because we want to avoid having to construct a
machine readable representation for any continuous time trace structures. Instead, we rec-
ommend a method involving a specification language with both continuous and discrete time
semantics. The discrete time semantics must be shown to be a conservative approximation of
the continuous time semantics, for any specification written in that language. The user writes
descriptions of the specification and the components in this specification language, keeping the
continuous time semantics in mind. The descriptions are translated into discrete time trace
structures that are used to decide the verification problem. The result is a conservative ap-
proximation of the continuous time verification problem the user had in mind. but continuous
time trace structures are never constructed. Implementing a specification language that can
be used in this way is an area for future research.

Our results so far describe a conservative approximation from continuous time to quantized
time with simultaneity. Using trace structure algebra techniques described in the next chapter
(conservative approzimations induced by power set algebras), we can extend this conservative
approximation to quantized time with interleaving. The verification method described above

can be used for the extended conservative approximation, as well.

CHAPTER 3. APPROXIMATING CONTINUOUS TIME

Chapter 4

Trace Algebra, Part 11

This chapter describes more advanced features of trace algebra such as partial traces and
conservative approximations induced by powerset algebras over trace algebras. We use these

features to extend the conservative approximations described in the previous chapter.

4.1 Power Set Algebras over Trace Algebras

We begin with an example to motivate power set algebras over trace algebras. Let CS be the

trace algebra given by:
o BZ(4)= (24 - {0})=.

e proj’(B)(z) = z', where z' is the sequence formed by intersecting B with each element
of the sequence z and then removing any instances of the empty set that result. More

formally, len(z') is equal to
[{i €N :0<j <len(z) Az(s) N B # 0},
and
z'(k) = z(n) N B,
where 7 is the unique inieger such that z(n) N B # 0 and

k=[{GEN:0<j<nAz()nB£0}

75

76 CHAPTER 4. TRACE ALGEBRA, PART II
e rename’(r)(z) = An € N7 [r(z(n))].

This trace algebra was also described in section 2.2.1; it is an untimed behavior model with
explicit simultaneity. The proof that CS is a trace algebra is left as an exercise to the reader.

It is well known that a trace with explicit simultaneity can be represented by its set of
interleavings. We use this fact to construct a trace algebra CZ’ that is isomorphic to C& and
that is a power set algebra over CL. Each trace in C' is a set of traces from C%; this set of
traces is the set of interleavings of some trace in CZ. The operations of C3! are the same as
those in CL except that they are naturally extended to sets. The main result of this section
is the description of how to use power set algebras to construct conservative approximations
from (for example) trace structures over C& to trace structures over C4. The approximations
are independent of the details of the trace algebras; they depend only on the fact that C3’ is
isomorphic to CZ and is a power set algebra over Cie

The construction of C&' involves the function interleave from traces in C3 to sets of traces

in C}. Let « be a trace in BE. For all n € N'* such that n < len(z), let

n-—-1
In(z) =) lz(k)l.
k=0
We define interleave(z) to be the set of traces z' € BL such that for all n,

z(n) = {'(k) : la(z) < k < L (2)}.

Intuitively, this is the set of traces that can be formed from z by constructing a permutation
of each of the sets z(n) and then concatenating the permutations together. Notice that for all
alphabets 4, if z € B{(4), then interleave(z) C BL(A).

The function interleave is an injection. To see this, let o and z; be distinct traces in Bg.
Since zo and z; are distinct, there exists a smallest n such that zo(n) # z1(n). Also, there

exists a b such that either
b€ zo(n) — z1(n)
or
be zi(n) — zo(n).

Consider the first case; the second case is analogous. Since b € zo(n), there exists a trace

2’ € interleave(zo) such that z'(l,(zo)) = b. Since b & z1(n), there does not exist a trace

4.1. POWER SET ALGEBRAS OVER TRACE ALGEBRAS 7

z' € interleave(z,) such that z'({,(z1)) = b. Since n is the index of the first element on which

zo and z; differ, [,(z¢) = (). Thus,
interleave(zo) # interleave(z;).

Therefore, interleave is an injection.
Since interleave is an injection, we can use it to construct a trace algebra C5' that is
isomorphic to C& and such that each trace is a set of traces from CZ:
B (A) = {yC Bi(A): 3z € B:(A)[y = interleave(z)]}
proj°'(B)(y) = interleave(proj®(B)(interleave™!(y)))
rename® (r)(y) = interleave(rename® (r)(interleave ™' (y))).

The reader can verify the following identities, which relate the operations of C3 to those

of C&:

{proj'(B)(z') : ' € interleave(z)}

interleave(proj*(B)(z))

interleave(rename®(r)(z)) {rename’(r)(z') : 2’ € interleave(z)}.

These are used to show that the operations of C3' are just the natural extension to sets of the

corresponding operations of C/:

proj*!(B)(y) = interleave(pro;®(B)(interleave™(y)))

= {proj'(B)(z') : 2’ € interleave(interleave™'(y))}
= {proj’(B)(z) : 2’ € y};
similarly,

rename® (r)(y) = {rename!(r)(z') : &' € y}.

These properties of C57 make it a power set algebra over CL, as defined below.

Definition 4.1. Let Cc = (B¢, proj, rename) and C' = (B, proj', rename’) be trace algebras.
¢» PTOJ g

We say Cc is a power set algebra over Cg iff
¢ ¢ € Be(A) implies ¢ C B, (A),

¢ proj(B)(z) = {proj(B)(z') : 2’ € z},

¢ rename(r)(z) = {rename'(r)(z') : ' € z}.

78 CHAPTER 4. TRACE ALGEBRA, PART II

We want to construct a conservative approximation from trace structures over C! to trace
structures over C. (which, because of the isomorphism between CS and C&, allows us to
construct a conservative approximation from trace structures over C’g to trace structures over
Ct). To do this, we need to find a way that a set of traces in Ct can be interpreted as
representing or approximating a set of traces in Cex

Let X be a subset of B'(4) for some alphabet A. Since each trace z in Céis a set of
traces in C¢, the set P’ = UX is well-defined and is a subset of B(A4). The set P' can be
thought of as representing the largest set P of traces in CZ" such that P’ = UP. This is a
standard way of using a set of interleaved traces to (approximately) represent a set of traces

with explicit simultaneity or partial order semantics. Notice that P is the largest set of traces
in C&" such that P' = UP if and only if

ze B (A)rAeCP © zcP

So the above logical equivalence specifies when P’ represents P exacily. For a conservative
approximation, we do not need to represent P exactly, but we do need to construct P! and P
(subsets of BL(A4)) that represent upper and lower bounds on P. The above requirement for

exactness can be split into two parts to form requirements for such upper and lower bounds:

2B (A)AcCP « rcP
2B (AANeCP = zcF

The requirement that ¢ ¢ BZ(.4) is ~edundant in the reverse implication since P C B3I(4).
This leads to the follnwing definition of a class of conservative approximations from (for ex-

ample) irace structures ove: C2! to trace structures over Ce.

Definition 4.2. Let C{ be a trace algebra and let Cc be a power set algebra over Cl. Let
Ac = (Cc,T)and A, = (C-,T') be trace structure algebras. Let ¥, and ¥, be functions
from 7 to 7" such that if T, = ¥,(T) and T} = V)(T), then

Yo = 7
N o=y
:cQP; & ze P, , (4_1)
z € Bc(A)AeC P = zeP (4.2)

By lemma 4.3 (below), ¥ = (¥,,¥,) is a conservative approximation from A¢ to Al.

We call ¥ a conservative approzimation from Ac to Ay induced by the power set algebra

4.1. POWER SET ALGEBRAS OVER TRACE ALGEBRAS 79
C. If

B = P,
Pl = UP-U{z€Bc(A)-P:z CUP}

then the above constraints on P, and P/ are clearly satisfied. In this case, we call ¥ the
u 1

standard conservative approzimation from Ac to Ap induced by C.

In chapter 2, we were able to characterize the tightest conservative approximation induced
by a homomorphism. An obvious question is whether there always exists a tightest conservative
approximation induced by a given power set algebra. The smallest (by inclusion ordering) P!
that satisfies formula (4.1) is clearly P, = UP. However, in general, there is no largest P/
that satisfies formula (4.2), so there is no tightest conservative approximation. Qur definition
of the standard conservative approximation induced by a power set algebra is a compromise
that works well in many cases. |

The remainder of this section proves that a conservative approximation induced by a con-

servative approximation is in fact a conservative approximation.

Lemma 4.3. A conservative approximation induced by a power set algebra is a conservative

approximation.

Proof. Adopt the notation used in definition 4.2. By theorem 2.36 (which states that a
conservative approximation remains conservative when “loosened”), the current lemma

is satisfied if ¥ is a conservative approximation when P is the smallest set satisfyving

formula (4.1). Thus, we may assume that
¥, (T) = (y,UP).

We use theorem 2.35 to show that ¥ is a conservative approximation by showing that ¥
satisfies A1l through A4.

Lemma 4.4. U satisfies Al.

~Proof. Let T =T || Ty; then

. P = {z € Bc(A): proj(4:)(z) € P1 A proj(4,)(z) € P,}.

80 CHAPTER 4. TRACE ALGEBRA, PART II
Also, let T| = U(T1), T; = ¥,(T>) and T’ = T! || T4. We must show that UP C P
¢'€ UP & 3z € Bc(A)[z' € 2 A proj(4;)(z) € P, A proj(4,)(z) € Py
by the definition of ¥,
= dz € Bc(A)[z' € z A proj(A4;)(z) C P| A proj(4,)(z) C P
by the definition of proj on traces in C¢
= proj(4:1)(z') € P/ A proj(A4:)(z') € P}
& e P

O

Lemma 4.5. V¥ satisfies A2.

Proof.

Uproj(B)(P) = {z':3z € proj(B)(P)[z' € z]}
by the definition of proj(B) on sets of traces in Ce
{e': Jy € Plz’ € proj(B)(y)]}
since Va'3y'z' = proj(B)(y')], by T4
{proj(B)(y') : 3y € Plproj(B)(y') € proj(B)(y))}
by the definition of proj(B) on traces in Ce
{proj(B)(y') : 2y € Ply' € y]}
by the definition of proj(B) on sets of traces in CL
proj(B)({y': 3y € Ply € y]})
proj(B)(UP).

3

Lemma 4.8. ¥ satisfies A3.

Proof.

Urename(r)(P)
{z': 3z € rename(r)(P)[z' € '}

4.2. QUANTIZED TIME WITH INTERLEAVING SEMANTICS . 81

by the definition of rename(r) on sets of traces in (¢

= {z':3y € P[z' € rename(r)(y)]}

since rename(r) is a bijection in any trace algebra

= {rename(r)(y') : 3y € Plrename(r)(y’) € rename(r)(y)]}
by the definition of rename(r) on traces in C¢

= {rename(r)(y'): 3y € Ply’ € y}

by the definition of rename(r) on sets of traces in C}
rename(r)({y': 3y € Ply’' € y|})

rename(r)(UP).

0

Lemma 4.7. ¥ satisfies A4.

Proof. Assume ¥,(T) C ¥,(T;). Then 4; = A4,; let 4 = A;. Also, let T{ = 9,(Ty)
and T, = ¥;(T;). We must show that P, C P,.
rze P
by the definition of ¥,
= giGlR
since P| C P,
= zc P,
by the definition of ¥,

= -'EEPg

4.2 Quantized Time with Interleaving Semantics

In this section, we describe two different, but isomorphic, trace algebras for quantized time

with interleaving. The first, CCQTI, is quite similar to CgTs, except that for a trace z = (u,) the

82 CHAPTER 4. TRACE ALGEBRA, PART II

sequence u is over A rather than 24 —{0}. It is used to construct a conservative approximation
from quantized time with simultaneity to quantized time with interleaving, which extends the
conservative approximation from continuous time. The second, CgT’“’, has traces that are
sequences over 4 U {¢}, where ¢ is a special symbol that indicates the passage of a unit of
time [16, 17, 18]. For example, the trace wby represents a behavior in which a b event has a

time stamp o: 2.

The remainder of this section formalizes these ideas.

Definition 4.8. We define the trace algebra CgTI as follows. For all alphabets 4. a trace
¢ = (u,7) in Br(A) is such that
¢ uis a (possibly infinite) sequence over A,
¢ 7is a (possibly infinite) sequence over A7,
e u and 7 are the same length,
® no < n implies 7(ng) < 7(ny) (increasing), and
e if 7 has infinite length, then it is unbounded,
Vte N7 [In € N7t < 7(n)].

Let z = (u,T) be a trace over some alphabet A.

o proj(B)(z) = (u',7'), where v is the sequence formed from u by removing every
symbol a not in B, and 7’ is formed from 7 by removing the corresponding time

stamps. More formally, len(v") and len(r’) are both equal to
{7 €N :0< 5 < len(u) Au(f) € B}

Also,
u'(k) = u(n)
(k) = 7(n),

and = is the unique integer such that u(n) € B and
k={7eN:0<j<nAu(j) e B}

o rename(r)(z) = (An € N7[r(u(n))], 7).

Lemma 4.9. C§™" is a trace algebra.

4.2. QUANTIZED TIME WITH INTERLEAVING SEMANTICS 83

Proof. The proof is analogous to lemma 3.11, which show that CgTs is a trace algebra.
O

Definition 4.10. We define the trace algebra CZ7'* as follows:
o The set Bc(A) of traces over an alphabet A is the set of z € (4 U {¢}) such that
¢ appears infinitely often in z (we assume ¢ & W, see note 3.1, p. 59).
o If 2 € Bc(A4) and B C 4, then proj(B)(z) is the sequence formed from z by
removing every symbol a not in B U {¢}. More formally,
proj*T1*(B)(z) = proj’(B U {¢})(a)-
e If z € Be(A) and 7 is a renaming function with domain A, then rename(r)(z) is

the sequence formed from z by replacing every a € A4 with r(a).

Lemma 4.11. CZ™% is a trace algebra.

Proof. The proof is a slight modification of the proof that C{ is a trace algebra (lemma 4.33),

and is left as an exercise for the reader.
0

Definition 4.12. We define A3™' to be the ordered pair (C3™, T where T 97! is the set
of all trace structures over ch’. By theorem 2.27, AgTI is a trace structure algebra.

AZ3™% is similarly defined.

Lemma 4.13. C5"'* is isomorphic to CZT .

Proof. It is sufficient to show that there is a bijection h from CZT'* to CE™ that satisfies

the requirements of a homomorphism.

Let z be a trace in BE"'*(A). We define h such that h(z) = (u,7), where

and n is the unique integer such that z(n) # ¢ and
k={jeN:0<j<nAz(j)# e}

It is straightforward, but tedious, to show that h is an bijection and that it satisfies the

requirements for being a homomorphism. The proof is left as an exercise for the reader.

84 CHAPTER 4. TRACE ALGEBRA, PART II

|

Corollary 4.14. AZ™ is isomorphic to AST.

4.2.1 Approximating Continuous Time

In this section we complete the conservative approximation from AETY to Aé’”. Since we have
already constructed a conservative approximation from ASTY to Aé’". it is only necessary to
go from Aé’" to AgTI. There exists a trace algebra C'gTSI that is a power set algebra over
CE™ and is isomorphic to AST*. This allows us to construct a conservative approximation
¢ P C PP
from A2™ to AT, We define the set of interleavings of a trace in C2™ to be a set of traces
G c g C
in C'CQTI. Each trace in C'gTSI 1s the set of interleavings of a trace in Cé’".

The remainder of this section proves these claims.

Definition 4.15. Let z = (u,7) be a trace in B3*S(A). Forall n € N'# such that n < len(z),

la= ni lu(k)|.

We define interleave(z) C BST/(A) to be the set of traces ¢/ = (u',7') such that for all

and

Vh(ly < k < lnay = 7(n) = 7'(k)].

d

Definition 4.16. We define the trace algebra C37*' as follows. For all alphabets A,

B3TSI(A) = {interleave(z) : z € BETS(A)}.

QTSI
(o]

The operations on traces of C are the natural extension of the operations of C2 to

the sets of C3™' traces in B2
Corollary 4.17. ¢35 is a power set algebra over 3™,

Lemma 4.18. C'gTSI is a trace algebra and it is isomorphic to Cé’".

4.3. PARTIAL TRACES . 85

Proof. Since CZ7° is a trace algebra, it is sufficient to show that there is a bijection A from
CgTS to CST°" that satisfies the requirements of a homomorphism. This demonstrates

that CgT” 1s a trace algebra, as well as showing that it is isomorphic to CgTS.

Let z = (u,7) be a trace in BS™°(4). The obvious candidate for A is
h(z) = Interleave(z).

[t is straightforward. but tedious, to show that A is an bijection and that it satisfies the
requirements for being a strong homomorphism. The proof is left as an exercise for the

reader.
Al

Theorem 4.19. There is a conservative approximation (up to isomorphism) from AgTS to
A

Proof. Since C9T%! is a power set algebra over C97!, definition 4.2 can be used ‘o construct
a conservative approximation from trace structures over C9T5! to trace structures over
COTI. This can be used to construct a conservative approximation from 4979 to 497!

since C97% is isomorphic to T4,

4.3 Partial Traces

Recall the distinction described in section 2.2 between two different kinds of behaviors: com-
plete behaviors and partial behaviors. A complete behavior has no endpoint; a partial behavior
has an endpoint and can be a prefix of a complete behavior or of another partial behavior.
Complete traces and partial traces are used to model complete and partial behaviors, respec-
tively. So far we have only considered trace algebras and trace structure algebras that contain
complete traces but no partial traces. In the next several sections we extend these algebras to

include partial traces.

86 . CHAPTER 4. TRACE ALGEBRA, PART II

4.3.1 Trace Algebra with Partial Traces

A trace algebra C with partial traces includes, for each alphabet, a set of complete traces and a
set of partial traces. In addition, a concatenation operation “-” is included that takes a partial
trace as its first argument and a partial or complete trace as its second argument. Besides
the axioms T1 through T8 for trace algebra without partial traces, trace algebra with partial
traces must satisfy axioms T9 through T19, which state requirements on the concatenation

operation and on the effects of projection and renaming on partial traces.

Definition 4.20. A trace algebra with partial traces C over W is a 5-tuple
(B¢,Bp, proj, rename,).

For every alphabet 4 over W', Bo(A) and Bp(A) are non-empty sets, called the set of
complete traces and partial traces over 4, respectively. Notice that Bo(4) and Bp(A4)
are not necessarily disjoint. Slightly abusing notation, we also write Bc and Bp as

abbreviations:

Be = |J{Bc(4): Ais an alphabet}
Bp = |J{Bp(A4): 4is an alphabet}.

We also write B(A) for Bo(A) U Bp(A) and B for B¢ U Bp. For every alphabet B over
W and every renaming function r over W, proj(B) and rename(r) are partial functions
from B to B. The concatenation operation ‘.’ is a partial function from Bp x B to B. The
axioms T1 through T8 (see definition 2.7, p. 26) must be satisfied, with each instance of
B¢ replaced by B in the statement of these axioms. The following axioms T9 through
T19 must also be satisfied.

T9. For every alphabet 4, if z € Bp(A) and y € B(A), then z - y is defined and is an
element of B(A). If there is no alphabet 4 such that z ¢ Bp(4) and y € B(A),
then z - y is undefined. '

T10. If z - y is defined and is an element of B(A), then
y€Bc(A) & z-ye Bc(4)
S BP(A) & zToyeE BP(A)

T1l. (z-y)-z=z - (y-2).

4.3. PARTIAL TRACES . 87
T12. lfz-y=2-y', theny = ¢'.

T13. For every alphabet A, there exists a distinguished element €4 of Bp(4) such that
z-€g=zforall zc Bp(4)and es-y=yforally € B(A). Also,if z-y = €4, then

T =¢€4 and y = €4.

!

T14. Ifz-y =z’ -y, then there exists 2,2 € Bp and z" € B such that z-z = 2’ - 2’ and

2 g == g

T15. If 2,2' € B(A) and z # 2/, then there exists z and y such that

zoy=zAVY [z -y’ £2] or z-y=2AWz-y #:2].

T16. If z € B(A) and proj(B)(z) is defined, then
2 € Bo(4) & proj(B)(z) € Bo(B)
z € Bp(A) = proj(B)(z) € Bp(B).

T17. For all z, y and 2/, z -y = proj(B)(z') iff there exists ' and 3’ such that z =

!

pI‘Oj(B)(:E’), y= PTOJ(B)(y') and ' -y = 2/,

T18. If rename(r)(z) is defined, then
¢ € Bo(dom(r)) < rename(r)(z) € Bc(codom(r))

z € Bp(dom(r)) <> rename(r)(z) € Bp(codom(r)).
T19. rename(r)(z -y) = rename(r)(z) - rename(r)(y).

T9 states when concatenation is defined. T10, T16 and T18 state when the results of an
operation are partial or complete traces. Notice that if proj(B)(z) is a partial trace, then z
need not be a partial trace. For example, this can happen z is an infinite sequence and B = 0.

The trace z - y represents the execution of z followed by the execution of y. Given this
interpretation of concatenation, it is clear that concatenation should be associative, as required
by T11. T12 states that if two behaviors differ for some suffix, then they are different behaviors.
For every alphabet A, T13 requires the existence of a trace €4 that is analogous to the empty

string for formal languages.

Note 4.21. We often write « instead of €4 when A is clear from context or ¢ is independent

of A.

88 CHAPTER 4. TRACE ALGEBRA, PART II

T14 says that if ¢ and " are both prefixes of some trace w, then there exists some partial
trace w' that is a prefix of w such that = and z’ are both prefixes of w’. T15 says that for any
two distinct traces z and z', there must exist a trace z such that z is a prefix of z but not of
', or a prefix of 2’ but not of z.

The reverse implication of T17 is equivalent to requiring that projection distribute over
concatenation. The forward implication can be interpreted as follows. Assume the trace
proj(B)(z') can be split into the pieces z followed by vy, i.e., z -y = proj(B)(2'). Then the
trace ' can be split into pieces z’ and y’ such that z = proj(B)(z') and y = proj(B)(y').

It is natural for renaming to distribute over concatenation, as required by T19.

Note 4.22. We naturally extend the concatenation operation on traces to an operation on

sets of traces.

As an example trace algebra with partial traces, we construct C?, which is an extension
of the trace algebra (without partial traces) C. formalized in definition 2.9. As with CL, the
superscript / is a mnemonic for an (untimed) interleaving model. The proof that C’ is a trace

algebra is delayed until lemma 4.33 (p. 91).

Definition 4.23. We define the trace aigebra with partial traces C! as follows:
o The set BL(A) of complete traces over an alphabet A is 4% (notice that this
definition of BL(A4) is consistent with the definition of B{(4) given for CL).
o The set B5(A) of partial traces over an alphabet 4 is A°.
® The projection and renaming operations are the same as in &

o The concatenation operation is standard concatenation of sequences.

can be extended to include partial traces. Notice in the definition below

Similarly, C3T!*

that the set of partial traces over an alphabet 4 is not (4 U {¢})’; non-empty sequences must
end with . This is related to the fact that partial traces in a discrete time model must

represent a time period that is an integer number of time units long.

Definition 4.24. We define the trace algebra with partial traces C9T* as follows:

o The set Bc(A) of traces over an alphabet A is the set of z € (4 U {#})“ such that

@ appears infinitely often in z.

4.3. PARTIAL TRACES 89

o The set Bp(.A) of partial traces over an alphabet A is

e+ (AU {e})({e}),

that is, the empty sequence and all finite sequences over A U {} that end with .

o Ifz € B(A)and B C A, then proj(B)(z) is the sequence formed from z by removing
every symbol a not in B U {¢}. More formally,

proj?™!¥(B)(2) = proj'(B U {¢} ().
o If z € B(A) and 7 is a renaming function with domain A, then rename(r)(z) is the

sequence formed from z by replacing every a € A with r(a).

¢ The concatenation operation is standard concatenation of sequences.

Given a trace algebra with complete traces, there are several related trace algebras that

we can define, as follows.

Definition 4.25. Given a trace algebra C = (B¢, Bp,proj, rename,), we use the subscripts
C, P and PC to denote the trace algebras
Cc = (Bc,proj,rename)
Cp = (Bp,Bp,proj,rename,)
Crc = (Bp,proj, rename).

Lemma 4.37 (p. 92) proves that Cc, Cp and Cpc satisfy the appropriate axioms of trace
algebra.

Typically, Cc is used when only complete traces are of interest. We have already seen an
example of this notation with the trace algebras C! and Cé. The algebras Cp and Cp¢ are used
when restricting to safety properties; using only traces in Bp is analogous to using only finite
sequences, without infinite sequences, to represent behaviors.

We can use the concatenation operation to define suffizes and prefizes.

Definition 4.26. Let ¢ € Bp(A) and Z C B(A). The functions suf(z,Z), pref(Z) and
suf(Z) are given by '

suf (z,2) {yeB(A):z-ye Z}
pref(Z) = {z € Bp(A):suf(z,Z) # 0}

suf(Z) = U suf(z, 2).
zepref(2)

90 CHAPTER 4. TRACE ALGEBRA, PART II

Definition 4.27. We say X is prefiz-closed iff pref(X) C X.
Note 4.28. If z € B, we sometimes write pref(z) to denote pref({z}). Similarly for suf(z).

The remainder of this section proves the claims made above, and proves some additional
results about trace algebras with partial traces. It may be skipped on first reading.

We begin with some simply corollaries that follow immediately from the axioms of trace
algebra.

Corollary 4.29.

1. By T17, proj(B)(z) - proj(B)(y) = proj(B)(z - y).
2. By T13 and T15 (with z" = €4). if z £ B(4) is not equal to €4, then there exists =

and y such that z -y = z and z # €,.
We also prove some simple corollaries related to suffixes and prefixes.
Corollary 4.30.

suf (z, X UY)
pref(X UY)
suf(X UY)

suf (z,X) U suf(z,Y),
pref (X)L pref(Y),
suf (X)) U suf (Y').

Corollary 4.31. If X C Y, then

suf(z,X) C suf(z,Y),
pref(X) C pref(Y),

suf(X) C suf(Y).

Corollary 4.32.

1. By T13,1f Z # 0, then € € pref(Z).

2. By T13, (21 Bp) C pref(2).

3. By item 1, Z C suf(Z).

4. By T11, suf(z,suf (y, X)) = suf(y - z, X).

4.3. PARTIAL TRACES . 91

5. By T6, T7 and T19, rename(r)(suf(z,.X)) = suf(rename(r)(z), rename(r)(X)).
We must also prove our claim that C7 is a trace algebra.

Lemma 4.33. C! is a trace algebra with partial traces.

Proof. To show that C! is a trace algebra with partial traces, we must show that it satisfies
T1 through T19. Axioms T1 through T8 hold since C{ is a trace algebra without partial
traces and B = BL. T9. T10, T16 and T18 are easy to verify. T11 and T12 are a basic
properties of concatenation of finite and infinite sequences. The €4 of T13 is just the

empty sequence €, for every aiphabet A. T19 is also easy to show. All that remains is

T14. T15 and T17.

Lemima 4.34. 7 satisfies T14.

Proof. Assume z-y = z'-y’; we must show that there exists partial traces z and z’ such
that z - z = z'- 2. There is no loss of generality in assuming that len(z') < len(z).
Let z = e. By our assumptions, the length of ¥’ must be at least len(z) — len(z').
Let z' be the prefix of y' that has length len(z) — len(z'). Both 2’ and z are of finite
length, sc they are partial traces. It is easy to check that ' -z’ = z - z. Let 2" = y;

ciearly z - 2" = y.
a

Lemma 4.35. (! satisfies T15.

Proof. Assume z ang z' ar~ distin~t =i ments of B(4). If z and 2’ have different lengths,
then there is no loss of generality in assuming that z' is the shorter of the two. In
this case, z’ must have finite length, say n, and z must have a length of at least
n+ 1. T15 is satisfleo by letting « v (e length n + 1 prefix of z.

If z and z' have the same :vzth n, then there must exist a k < n such that
z(k) # 2'(k). T15 is satisfied by letting z be the length k + 1 prefix of either z or

z.

92 . CHAPTER 4. TRACE ALGEBRA, PART II

Lemma 4.36. C/ satisfies T17.

Proof. The reverse implication of T17 is equivalent to
proj(B)(z"- y') = proj(B)(z') - proj(B)(y"),

which follows easily from the definition of proj.

To prove the forward implication, let B C 4. We consider the case where 2’ is
a finite length sequence; the generalization to the infinite case is straightforward.

There is no loss of generality in assuming that
! ry . 1 ! !
z' = zobgziby -2, buog2),

where b; € B and z; € (A — B)". If z -y = proj(B)(z'), then there must exist a k
such that

z=by- by and y=by - by_;.
Therefore, it is sufficient to let ' and 3’ be such that
Z" = Z’é)bo O 'i;r,_],bk—l

1 1 ! !
Yy =apbe oz _(baiz.

Next we prove the claim made in definition 4.25 about the existence of trace algebras Cc.

Cp and Cpc, given a trace algebra with complete traces C.

Lemma 4.37. If C = (B¢, Bp, proj, rename, -) is a trace algebra with partial ‘1acer, thop

Cc = (Bc,proj,rename)
CP = (Bp,Bp,proj,rename,-)
Crc = (Bp,proj,rename),

are trace algebras.

Proof.

Lemma 4.38. Cc is a trace algebra without partial traces.

4.3. PARTIAL TRACES 93

Proof. Since C satisfies T16 and T18, Cc is closed under projection and renaming. We
must show that Cc satisfies T1 through T8. Except for T4, all of these axioms
obviously remain true when traces are removed from the domain. To prove T4, let
z € Bc(A) and 2’ € Be(A') be such that proj(4 N 4')(z) = proj(4 N A")(z'), and
let A” be an alphabet such that 4 U 4’ C A”. Since C satisfies T4, there exists
z" € Bc(A") UBp(A") such that z = proj(4)(z"”) and z' = proj(4’)(z"). We must
show that z” € Bc(A"), which is true since z € Be(A4), ¢ = proj(4)(z") and C
satisfies T16.

Next we must show that Cp is a trace algebra with partial traces. Since C satisfies
T10, T16 and T18, Cp is closed under concatenation, projection and renaming. We must
show that Cp satisfies T1 through T19. The next lemma shows that Cp satisfies T4: the

remaining axioms are handled in a later lemma.

Lemma 4.39. Cp satisfies T4.

Proof. To prove T4, let zo € Bp(4) and z{ € Bp(A’) be such that proj(A N 4')(ze) = -
proj(AN A")(zy), and let A” be an alphabet such that AU A’ € 4”. We must show
that there exists zg € Bp(A") such that zo = proj(A4)(z) and z} = proj(A’)(z!).

Since C satisfies T4, there exists w” € B(A") such that zo = proj(A)(w") and
= proj(4")(w").

Since C satisfies T13, 2o - €4 = proj(4)(w") and z}, - €4 = proj(A’)(w"). Since C
satisfies T17, there exists z; € Bp(A”) and y; € Bc(4") U Bp(A”) such that zo =
proj(A)(z1), €4 = proj(A)(y:) and z; -y; = w”. Similarly, there exists | € Bp(A")
and y; € Be(A4") U Bp(A") such that 2y = proj(A’)(z}), ear = proj(A’)(y}) and
zy oy = w

Notice that z; - y; = z] - y;. Since C satisfies T14, there exists 21,21 € Bp(A")
and z" € B(A4) such that z,-z;'=z! - 2} and z, - z{ = y1. Notice,

2o =y & z1-(z1-2)) =21 9
since C satisfies T11
= (2:1-21)'2;l= Z1+h

since z, -y, = 27 -y and 2, - 2y = z} - 2]

94 CHAPTER 4. TRACE ALGEBRA, PART II

e (e1-z3)-2 =21y

since C satisfies T11

® o (n-5) =2y

since C satisfies T12

! !

' "no__
(=4 2102 =,

Also,
25 =y = proj(A4)(z1 - 2{) = proj(A)(y1)
since proj(A4)(y;) = ¢4
o proj(A)(z - =) = ex

since C satisfies T17

n

& oroj(A)(z) - proj(4)(=!) = e
since C satisfies T13

& proj(A)(z) = e,.

Similarly, proj(A')(2}) = ey.
Let z5 = z; - z1; notice that z” € Bp(A").
proj(A)(al) = proj(A)(a: - 1)

since C satisfies T17

= proj(A)(z1) - proj(4)(z1))
since zg = proj(A)(z,) and €4 = proj(4)(z;)
= z-€4

since C satisfies T13

= Iy.

Similarly, proj(A')(zy) = z{. Therefore, z!! has the properties needed to show that
Cp satisfies T4, since zq € Bp(4”), 2o = proj(A)(zl) and z}, = proj(A')(z}).

0

Lemma 4.40. Cp is a trace algebra with partial traces.

14.3. PARTIAL TRACES 95

Proof. As mentioned earlier, Cp is closed under concatenation, projection and renam-
ing. We must show that Cp satisfies T1 through T19. Clearly T1, T2 and T3 remain
true when traces are removed from the domain. The previous lemma showed that
Cp satisfies T4.

Clearly T5, T6, T7 and T8 remain true when traces are removed from the
domain. To prove T9, we must show that for all z,y in Bp, z -y is defined iff
there exists an alphabet such that z € Bp(4) and y € Bp(A4). This follows since C
satisfies T'9. Since C satisfies T9 and T10, both sides of both iff's in T10 for Cp are
identically true, so T10 holds.

Clearly T11, T12, T13 and T14 remain true. Since C satisfies T10, the z and Y
in T15 must be elements of Bp, so T15 remains true.

Since C satisfies T1 and T16, both sides of the iff and the implication in T16
for Cp are identically true, so T16 holds. Since C satisfies T10, the z' and y' in T17
must be an elements of Bp, so T17 remains true.

Since C satisfies T5 and T18, both sides of both iff’s in T18 for Cp are identically
true, so T18 holds. Clearly T19 remains true.

O

Lemma 4.41. Cpc is a trace algebra without partial traces.

Proof. Let C' = Cp. By the previous two lemmas, ' and Ce are trace algebras. There-

fore, Cpc is a trace algebra, since Cpc = C.

The final result of this section shows that traces can be characterized by their set of prefixes.

We will use this result when restricting models to represent only safety properties.

Theorem 4.42. For some trace algebra C = (Bg, Bp, proj, rename, -) and some alphabet A,
let z and 2’ be elements of B(A). Then

z=2" & pref(z) = pref(z').

96 CHAPTER 4. TRACE ALGEBRA, PART II

Proof. The forward implication is obvious. To prove the reverse implication, assume that =

and 2’ are distinct elements of B(4). By T15, there exists and y such that
g-y=zAVY'le-y #2] or z-y=2 AV gy #z].
Therefore,

z € pref(z) Az & pref(z') or =z & pref(z') Az & pref(z).

4.3.2 Restricting to Safety Properties

It is commeon to restrict a verification technique to handle only safety properties, since this
can be computationally more efficient than handling full liveness properties. If traces are
sequences, then this is just a matter of restricting to prefix-closed trace structures with only

finite sequences. We generalize this idea to arbitrary traces, as follows.

Definition 4.43. Given a trace algebra C = (B¢, Bp, proj, rename,), we use the subscript

PC to denote the trace structure algebra,
Apc = (Cpc, T),

where 7 is the set of all prefix-closed trace structures over Cpc (see def. 4.25. p. 89). A
trace structure T = (, P) over Cpc is prefix-closed iff pref(P) C P. Lemma 4.44 proves

that Apc is a trace structure algebra.

For an arbitrary trace algebra C with partial traces, it is possible to construct a conservative
approximation from trace structures over C¢ to Apc. We do this by using an isomorphism
based on identifying a single trace in C¢ with its set of prefixes (each prefix is a trace in Cpc).
The result is a power set algebra over Cpc that is isomorphic to Ce, which can be used to
construct & .conserva,tive approximation induced by a power set algebra. The approximation
is only useful for verification if the specification does not include any liveness properties;
otherwise a false negative will result (assuming the implementation satisfies its specification)..

The remainder of this section proves these claims.

mma 4.44. If C is a trace algebra with partial traces, then Apc (as in def. 4.43) is a trace

structure algebra.

4.3. PARTIAL TRACES 97

Proof. Let 7' be the set of all trace structures over Cpc. By theorem 2.27, (Cp¢,T') is a

trace structure algebra.

For all alphabets B, let L(B) be the class of all prefix-closed sets of traces of Bp(B).
Let

T"={T T :PcL(A).

It is easy to check that L£(B) satisfies L1 through L4. Thus, by theorem 2.30. since
(Cpc,T') is a trace structure algebra, so is (Cpc,7"). Notice that 7" is equal to T.

Therefore, Apc = (Cpc.T) is a trace structure algebra.

oy’

Definition 4.45. Given a trace algebra C = (Bc,Bp, proj, rename,), we use the subscript

C/P to denote the trace algebra,
Ccp = (Beyp, proj, rename),

where
Bep(A) = {pref(z):z € Be(4)},

and proj and rename are naturally extended to sets of traces. Lemma 4.46 (below)

proves that C¢/p is a trace algebra and is isomorphic to Ce.
Notice that C¢/p is a power set algebra (definition 4.1) over Cpc.

Lemma 4.46. If C is a trace algebra with partial traces, then Cop (as in def. 4.43) is a trace

algebra. Also, Az[pref({z})]is an isomorphism from C¢ to C¢/p.

Proof. By theorem 4.42, the function Az[pref({z})] is an alphabet preserving bijection from
Bc to Beyp. All that remains is to show that it satisfies the homomorphism laws for proj

and rename.

pref({proj(B)(z')})
= {z:3Jyle-y = proj(B)(<)]} -

98 CHAPTER 4. TRACE ALGEBRA, PART II

since C satisfies T17
= {z: 33" y]
2’y =z Az = proj(B)(z') Ay = proj(B)(y")]]}
since Jy[y = proj(B)(y')] for all y' ¢ B¢(B)
= {z:32y[e' -y' = 2" Ne = proj(B)(<')]}
by definition of the natural extension of proj(B)
= proj(B)({z': 3y'[z’ -y = 2]})
= proj(B)(pref({z'})).

Also,

pref({rename(r)(z')})
= {z:3y[z -y = rename(r)(')|}
since C satisfies T6 and T7
= {z: 3ylrename(r~')(z - y) = 2]}
since (C satisfies T19
= {z : 3y{rename(r~')(z) - rename(r~')(y) = =]}
since C satisfies T6 and T7
= {rename(r)(z') : Sy'[z’ - y' = 2']}

= rename(r)(pref({z'})).

Now we can construct a conservative approximation from trace structures over Cc to trace
structures over Cpc by using C¢/p, which is isomorphic to Cc and is a power set algebra over
Cpc. The upper bound ¥,(T) is simply the result of composing the isomorphism with the
upper bound of the standard conservative approximation induced by Cc/p. The lower bound
¥,(T) is equal to ¥,(T) when T has no liveness properties; otherwise, it is equal to the empty

trace structure.

Theorem 4.47. Let C be a trace algebra with partial traces, and let Ac = (Cc,Tc) be a
trace structure algebra, where 7¢ is the set of all trace structures over Cc. Let ¥, and

¥, be functions from trace structures T = (7, P) in Ac to trace structures in Apc such

4.3. PARTIAL TRACES 99

that ¥,(T) = (v, P.) and ¥,(T) = (v, P/), where

P, = pref(P)
o {pref(P), if [z € Be(A) A pref({z}) C pref(P)] = z € P;
L 0 otherwise.

Then ¥ = (¥,,¥,) is a conservative approximation from A¢ to Apc.

Proof. Let Acp = (C¢p, T¢/p) be a trace structure algebra, where T¢/p is the set of all trace
structures over C¢/p. By lemma 4.46, Cc/p is isomorphic to C¢, so by corollary 2.40, Ac

is isomorphic to .A¢/p. The isomorphism from Ac¢ to Ac/p is the function H such that

H((~.P)) = (v,{pref({z}) : z € P}).

We show that U is a conservative approximation from A¢ to Apc by first constructing
a conservative approximation ¥' from Ac/p to Apc, and then showing that ¥ is equal

to ¥’ composed with H.

Let ¥, and ¥; be functions from trace structures T = (v, P) in Ac¢p to trace struc-
tures in Apc such that ¥,(T) = (v, P,) and ¥)(T) = (v, P/), where

Pl = P

P {UP, if [z € Be(A)Az C UP] =z € P;
l =

0 otherwise.

It is easy to check that ¥' = (¥}, ¥}) is a conservative approximation from A¢/p to Apc

induced by the power set algebra Cc/p. It is also easy to check that

£
-
|

o
i

where H is the isomorphism from A¢ to A¢)p described above. Thus, ¥ is a conservative

approximation from Ac¢ to Apc. '

100 CHAPTER 4. TRACE ALGEBRA, PART II

4.3.3 Trace Structure Algebra with Partial Traces

If T'is a trace structure and ¢ € pref(P), then z represents a partial behavior that is a prefix
of some complete behavior of T. After T executes z, we might say that 7 has changed tr
a different state. It is often useful to think of each state of an agent as being a differe

agent [76]. With this in mind, we might say that T becomes a different agent after executing
z. We define the function suf on trace structures so that we can write suf(z,T) to denote the

agent that T becomes as a result of executing z.

Definition 4.48. If C = (B¢, Bp, proj, rename,-) is a trace algebra with partial traces and
T is a subset of the trace structures of Cc (recall that Cc = (Bc.proj.rename). as
described in definition 4.25), then A = (C,T) is a trace structure algebra with partial
traces iff the domain 7 is closed under the following operations on trace structures:
parallel compozition (def. 2.18), renaming (def. 2.20), projection (def. 2.19) and suffixing
(det. 4.49).

For trace structure algebras with partial traces, the operations of parallel composition,
renaming and projection on trace structures are defined exactly the same as thev were for

trace structure algebras without partial traces. Thus, they form a concurrency algebra.
Definition 4.49. suf(z,T) = (v,suf(z, P)), where z € pref(P).
The operation of suffixing is clearly monotonic with respect to trace structure containment.

Also, the following propositions involving suffixing are satisfied:

suf(eA, T) =T

suf (z.suf (y,T)) = suf(y - z.T)

suf(z,T || T'") = suf (proj(A)(z),T) | suf (proj(A')(z).T")

proj(B)(suf(z,T)) C suf(proj(B)(z), proj(B)(T))

rename(r)(suf(z,T)) = suf (rename(r)(z), rename(r)(T)).

The remainder of this section proves these results.

4.3. PARTIAL TRACES 101

Theorem 4.50. If T and T' are trace structures, then

suf(€,T) =T

suf(z,suf(y, T) = suf(y - z, T)

suf (2, T | T') = suf (proj(4)(z),T) | suf(proj(4')(=), T")
proj(B)(suf(=,T)) C suf (proj(B)(z), proj(B)(T))
rename(r)(suf(z, T)) = suf (rename(r)(z), rename(r)(T)).

In all of the relationships, there is an implicit assumption that the left hand side of the

equation or inequality is defined.

Proof. The first identity follows easily from T13 and the second follows from corollary 4.32.4.

The remaining propositions are proved in the following lemmas.

Lemma 4.51. If z € pref(P N P'), then

suf (2,T || T') = suf (proj(A)(z),T) || suf(proj(A')(z), T").

Proof. Let T} = suf(z,T || T') and let

T, = suf (proj(A)(2), T) || suf (proj(4')(z), T').
We must show that P, = P,.
P = suf(z,{y € Bc(41): proj(A)(y) € P A proj(A')(y) € P'})
= {z € Bc(Ay) : proj(A)(z - z) € P A proj(A')(z - z) € P'}
by corollary 4.29.1
= {z € Be(4) : proj(A)(z) - proj(A)(z) € P
_ Aproj(A')(z) - proj(A)(z) € P}
{z € Be(4) : proj(A)(z) € suf (proj(4)(z), P)
A proj(A')(z) € suf (proj(A')(z), P')}
= P, ‘

102 CHAPTER 4. TRACE ALGEBRA, PART II
Lemma 4.52. If z € pref(P) and B C A, then

proj(B)(suf(z,T)) C suf(proj(B)(z), proj(B)(T)).

Proof. Let Ty = proj(B)(suf(z,T)) and let
T, = suf(proj(B)(z), proj(B)(T)).
We must show that P, C P,.
P = proj(B)(suf(z, P))
= proj(B)({y: -y € P})
= {proj(B)(y): z -y € P}
€ {proj(B)(y) : proj(B)(z - y) € proj(B)(P)}
by corollary 4.29.1
(y) € proj(B)(P)}
(y) € proj(B)(P)}

{proj(B)(y) : proj(B)(z) - proj(B
{proj(B)(y) : proj(B)(z) - proj(B
S {y': proj(B)(z) -y’ € proj(B)(P)}
suf (proj(B)(z), proj(B)(P))

P,.

(B)
(B)

a

Lemma 4.53. If ¢ € pref(P), then

rename(r)(suf(z,T)) = suf(rename(r)(z), rename(r)(T)).

Proof. Let Ty = rename(r)(suf(z,T)) and let
T, = suf(rename(r)(z), rename(r)(T))..
We Inl'lSt show that P, = P,.
Py = rename(r)(suf(z,P))
= {rename(r)(y) iz-y € P}
by T6 and T7
= {rename(r)(y) : rename(r)(z - y) € rename(r)(P)}

4.3. PARTIAL TRACES 103

by T19

= {rename(r)(y) : rename(r)(z) - rename(r)(y) € rename(r)(P)}
by T6 and T7

= {z:rename(r)(z)- z € rename(r)(P)}

= suf(rename(r)(z), rename(r)(P))

- Pg.

4.3.4 Constructing Trace Structure Algebras with Partial Traces

The definition of a trace structure algebra with parti#l traces A = (C,T) requires that the set
of trace structures 7 be closed under the operations on trace structures, including suffixing.
This section proves three theorems that make it easier to prove closure, and shows how to
use these theorems. The theorems are straightforward extensions of analogous results already
proved for trace structure algebras without partial traces (section 2.3.3, p. 39).

The first theorem states that if 7 is =qual to the set of all trace structures over C, then 7 is
closed under the operations on trace structures, so A is a trace structure algebra with partial
traces; which is analogous to theorem 2.27. Recall that the alphabet of a trace structure need
not be a finite set. The second theorem shows that trace structures with finite alphabets are
closed under the operations on trace structures; which is analogous to theorem 2.28.

For the third theorem, let (C,7) be a trace structure algebra with partial traces, where
T is some subset of the set of traces structures over Cc. For every alphabet B, let £(B) be
a class of sets of complete traces over B, that is, £(B) C 28¢(B), Assume that £ is closed
under intersection, renaming, projection, inverse projection and suffixing by prefixes (this is
formalized below). Let 7' be the set of trace structures (v, P) € T such that P is in L(A).
Then 7' is closed under the operations on trace structures, so (C,7"') is a trace structure
algebra with partial t.races. This 1s analogous to theorem 2.30.

Recall that T7 is the set of all trace structures over Cz. By the first theorem, A! = (€, T7)
is a trace structure algebra with partial traces. Recall that 7% is the set of all trace structures

(7, P) over C/, for which « has a finite alphabet and P is a mixed regular set of sequences (that

104 CHAPTER 4. TRACE ALGEBRA, PART II

is, P is the union of a regular set and an w-regular set). By the second and third theorems,
A = (T, T™) is also a trace structure algebra with partial traces.

The remainder of this section formalizes these results.

Theorem 4.54. IfC is a trace algebra and 7 is the set of all of the trace structures over C, then
T is closed under the operations on trace structures (parallel composition, projection,

renaming and suffixing), so A = (C,T) is a trace structure algebra with partial traces.

Proof. Simple extension of theorem 2.27 (p. 39).

D

Theorem 4.55. Let A = (C,T) be a trace structure algebra with partial traces. Let 7' be
the set of trace structures T € 7 such that the alphabet of 7 is a finite set. Then
A" = (C,T') is a trace structure algebra with partial traces.

Proof. Simple extension of theorem 2.28 (p. 39).

O

Theorem 4.56. Let A = (C,T) be a trace structure algebra with partial traces. For every
alphabet B of T, let £(B) be a subset of 25¢(B), Let T be the set of trace structures
T € T such that Pis in £(A4). Then A’ = (C,T') is a trace structure algebra with
partial traces if L1 through L5 are satisfied for every alphabet B of T (L1 through L4

are given on p. 40).

L5. If X € £(B) and z € pref(X), then suf(z,X) € L(B).

Proof. Simple extension of theorem 2.30 (p. 40).

O

Definition 4.57. We define A! to be the ordered pair (€1, TT); recall that 77 is the set of
all trace structures over C} (definition 2.31). By theorem 4.54, A is a trace structuze
algebra.

Definition 4.58. Recall that 7! is the set of all trace structures T = (v, P) over C{ for
which 7 has a finite alphabet and P is a mixed regular set of sequences (definition 2.32).
We define A™® to be the ordered pair (CI,T™). Showing that A is a trace structure

algebra with partial traces is a simple extension of the proof that A is a trace structure

algebra without partial traces (theorem 2.33).

4.4. INVERSE! . ¥ CONSERVATIVE APPROXIMATIONS 105
4.4 Invei:-s of Conservative Approximations

Let ¥ = (¥,,¥,) be a conservative approximation from A¢ = (C¢,7T) to Ay = (C,T'). Let
T €T and T' € T' be such that T' = ¥,(T). As we have discussed, T’ represents a kind
of upper bound on 7. It is natural to ask whether there is a trace structure in 7 that is
represented exactly by 7" rather than just being bounded by 7". If no trace structure in T
can be represented exactly, then ¥ is abstracting away too much information to be of much
use. If every trace structure in 7 can be represented exactly, then ¥; and ¥, are equal and are
isomorphisms from A¢ to +Ap. These extreme cases illustrate that the amount of abstraction
in ¥ is related to what trace structures T are represented exactly by ¥,(T) and ¥,(T).

To formalize what it means to be represented exactly in this context, we define the inverse
of the conservative approximation ¥. Normal notions of the inverse of a function are not
adequate for this purpose, since ¥ is a pair of functions. We handle this by only considering
those T € T for which ¥;(T) and ¥,(T) have the same value, call it 7’. Intuitively, T"
represents T' exactly in this case; the key property of the inverse of ¥ (written ¥;,,) is that
Vino(T') = T. If ©(T) # W, (T), then T is not represented exactly in A}. In this case, T
1s not in the image of W;,,. Characterizing when ¥,,(T") is defined (and what its value is)
helps to show what trace structures in 7 can be represented exactly (not just conservatively)
by trace structures in 7'. The remainder of this section formalizes the idea of the inverse
of a conservative approximation, and characterizes the inverse of the tightest conservative

approximation induced by a homomorphism .

Lemma 4.59. Let ¥ = (¥,,¥,) be a conservative approximation from Ac = (Cc,T) to
¢ = (C¢,T'). For every T' € T', there is at most one T' € T such that ¥;(T) = T and
v,(T)="T".

Proof. The proof is by contradiction. Assume there exists two distinct 7; and T, in T such
that ¥y(Ty), O, (T1), ¥i(T,) and W,(T}) are all equal to T". This implies ¥,(Ty) C ¥;(T)
and ¥,(T3) C ¥y(T1). Thus, by the definition of a conservative approximation, T} C T,
and T; C T). Therefore, T} = T3, which is a contradiction.

O

Definition 4.60. Let ¥ = (¥, ¥,) be a conservative approximation from A¢ = (C¢,T) to
¢ = (Cc,T'). Let T; be the set of T € T such that ¥)(T) = ¥,(T). Let T be the

106 CHAPTER 4. TRACE ALGEBRA, PART II

image of 7; under ¥,. The inverse of ¥ is the partial function ¥,,, with domain 7"
and codomain 7T that is defined for all 7' € 7, so that VUino(T') = T, where T is the
unique (by lemma 4.59 and the definition of 7}') trace structure such that ¥,(T) = T"

and ¥,(T) = T".

Theorem 4.61. Let h be a trace algebra homomorphism from C¢ to Cl, and let ¥ = (¥, 9,)
be the tightest conservative approximation induced by A from Ac = (Ce,T) to AL =
(C,T'). T € T' is such that the set

Z = {X CBo(4): (v, X) € T AR(X) C P},

contains a unique maximal (by inclusion) element P for which P' = h(P), then

¥ino (T') = (7', P); otherwise, ¥;,,(T") is undefined.

Proof. Let T € T have the same signature v as 7", and let
Y= {X CBe(A): (7,X) €T A h(X) C h(P)}.
Notice that P C 'Y, since T € 7. Consider the following sequence of logical equivalences:

Uio(T)=T
by the definition of the inverse of ¥
e V(=T Ny T)=T
by the definition of ¥
& h(P)=P ANY-P=0
since PCY
& h(P)=P' ANP=Y
by the definition of Y and Z
& h(P)=P' AN P=UZ
sinceT €T
& hP)=P' ANP=UZ AN Pe 2,
which is true iff Z contains a unique maximal element P for which P' = h(P). The

reverse implication of this equivalence implies the theorem for the case when Vino(T") is

4.4. INVERSES OF CONSERVATIVE APPROXIMATIONS 107

defined. By the forward implication, if Z does not contain a unique maximal element
P for which P’ = h(P), then there does not exist T € T such that ¥;,,(T') = T, which
implies that ¥;,,(T") is undefined.

The above theorem completely characterizes the inverse of any tightest conservative ap-
proximation induced by a homomorphism k. The final theorem of this section specializes this
result to trace structures algebras that are closed under finite and infinite unions, a property
enjoyed by many of the trace structure algebras we consider. This specialization results in
a simpler characterization of when ¥,,, is defined. In particular, ¥;;,(7") is defined iff there
exists a T € T such that ¥,(T) = T'. This is a strong result. Clearly the existence of such
a T is a necessary condition for the inverse of any conservative approximation to be defined
on T'; when T is closed under finite and infinite unions, and ¥ is the tightest conservative

approximation induced by a homomorphism, it is also a sufficient condition.

Definition 4.62. Let Ac = (Cc,7) be a trace structure algebra. We say Ac is closed under

finite (infinite) unions iff for every signature v the set
{P C Be(4): (1, P) € T}
is closed under finite (infinite) unions.

Theorem 4.63. Let h be a trace algebra homomorphism from C¢ to Cg, and let ¥ = (¥, ¥,)
be the tightest conservative approximation induced by h from A¢ = (C¢,7T) to A, =
(Co,T'). Assume Ac is closed under finite and infinite unions. If 7' € 7' is such that
U,(T) =T' for some T € T, then

Uino(T") = ({X CBc(4"): (7, X) e T ARX) C P}

otherwise, ¥;,,(T") is undefined.

Proof. By theorem 4.61, ¥,,,(T") is defined iff the set

Z={X CBc(A'):(v,X) e T ARX)C P},

108

CHAPTER 4. TRACE ALGEBRA, PART II

contains a unique maximal element P for which P’ = h(P). Since Ac is :losed under
finite and infinite unions, Z contains UZ, so this condition is equivalent to simply re-
quiring that Z contain some eiement P for which P’ = h(P). By the definition of ¥,
this is equivalent to there exists T € T such that ¥, (T) = T'. Also, when Uino (1) is
defined, it is clearly equal to UZ.

Chapter 5

Delay Models

Trace algebras and trace structure algebras are very general mathematical tools for construct-
ing domains of agents models. Conservative approximations provide a general method for
proving relationships between different domains of process models. However, developing do-
mains of agent models i: only part of the task of modeling and specifying real-time systems:
it is also necessary to choose specific agents models to represent specifications and system
components.

Finding a correct formal specification is known to often be quite difficult. However, the
problem of finding good component models has received relatively little attention. For speed-
dependent asynchronous circuits, finding good cornponent models (often called gate models,
in this case) is surprisingly subtle.

In this chapter, we consider several different delay models for verifying speed-dependent
asynchronous circuits. From each delay model we produce a gate model by feeding the output
of an ideal (delay-free) gate into a delay element of the appropriate type. The delay models
are used in the verification two asynchronous FIFO queue circuits: the first was designed by
Seitz [92] and the second was synthesized using the method of Lavagno et al. [61].

The automatic verifier that we use is our extension of Dill’s trace theory verifier [38] that
allows for the use of trace structures over the discrete time trace algebra o2 ¥ (in the verifier,
trace structures actually consist of two sets of traces, a success set and a failure set, but that
difference does not concern us here).

Together with the conservative approximations described earlier, the verifier can be used
to prove correctness relative to the continuous time trace structure algebra ASTU. Although
this verifier was first described in 1989 (16, 17], it still appears to be the state of the art in

automatic verification of speed-dependent asynchronous circuits.

109

110 CHAPTER 5. DELAY MODELS

(y=B)A(z=8) 2o yi=-8

A(z = =0) = failure
z

=-0) = z2:=p

Figure 5.1: Delay insensitive buffer, the meta-variable 8 ranges over {0, 1}.

5.1 Hazard-Failure Delay Model

We begin by considering the trace structure modeling a speed-independent buffer with input
y and output 2. The buffer is described using a production rule notation (see figure 3.1)
somewhat reminiscent of the notation used by Martin [71, 73]. The firing of a production rule
is an instantaneous (atomic) event. It is possible for more than one production rule to fire
simultaneously; however, we will only consider non-simultaneous firings here. Since the buffer
in figure 5.1 is untimed, we can interpret its production rules as representing a set of traces in
C’; since its input is y and its output is z, the traces are elements of BL({y,2}). Recall that
B&({y, z}) is equal to (y + z)*.

A trace is in the set of traces represented by a set of production rules if and only if it
corresponds to a run of the production rules. Consider a run of the production rules in
figure 5.1. In the initial state, with y and z both equal to 0, orly the first rule is firable.
Since the first production rule is labeled with y (the symbol above the arrow), the trace of
the run beg.us with y. If the second production rule firing is a y transition, then the trace
of the run begins with yy, and the buffer goes into failure mode. Once in failure mode, any
trace is possible. Thus, for example, the buffer includes all of the traces in yy(y + z)*. We
call this delay model the speed-independent hazard-failure model, because any hazard puts the
buffer into failure mode (for our purposes, a hazard is two consecutive transitions on the input
of a buffer, without an intervening output transition). The term failure is borrowed from
Dill [38]. Dill used two sets of traces in each trace structure, a failure set and a success set;
for simplicity, we just use one set of traces.

If the second production rule firing is a z transition, then the trace begins with yz. Contin-
uing in this way, one can build up the trace corresponding to a particular run of the production
rules. The set of traces represented by the production rules is equal to the set of traces that
can be built up in this manner.

We can also interpret the production rules in figure 5.1 over the continuous time trace

5.1. HAZARD-FAILURE DELAY MODEL 111

algebra CTV. Recall that each trace in BSTU({y,z}) is a subset of {y, 2} x R”, where R” is
the set of non-negative real numbers. In the initial state, with y and z both equal to 0, only
the first rule is firable and it can fire at any time t'. Since the first production rule is labeled
with y the trace of the run contains the event (y,t’). Assume the next production rule firing
occurs at time t”. If the second production rule firing is a y transition, then the trace of the
run contains the event (y,t"), and the buffer goes into failure mode. Thus, for example, vhe

buffer includes all of the traces of the form

{(ya t’)v (ys t")} vz,

where ¢ 1s a subset of
{y,2} x {teR" :t > t"}.

If the second production rule firing is a z transition, then the trace contains the event (z,t").
Continuing in this way, one can build up the trace corresponding to a particular run of the
production rules.

The next step is to generalize the model of the buffer to include a lower bound Amin
and an upper bound Amgz on its delay. We do this by including clocks in the production
rules to record the passage of time (see figure 5.2). The clock t in figure 5.2 is treated as a
real numbered value when used in' the precondition of a production rule. A clock can either
be running or stopped. When stopped, its value is zero; when running, its value increases
automatically and continuously with the passage of time. All clocks are initially stopped.
The operation restart(t) sets the value of ¢ to zero and starts the clock running, regardless
of whether it was already running. Thus, if a clock is running, then its value represents the
amount of time since it was last restarted. The operation reset(t) sets ¢ to zero and stops it.
A production rule with disallow as its right side has a special meaning: the precondition must
never be allowed to be true. This can lead to complicated backtracking in general, but here
disallow is only used to enforce upper bounds on the response time of a delay element.

Consider a run of the production rules in figure 5.2. In the initial state, with y and z both
equal to 0 and ¢ stopped, only the first rule is firable and it can fire at any time t'. Since the
first production rule is labeled with y the trace of the run contains the evert (y,t'). When the
rule fires, it restarts the clock ¢. Thus, until ¢ is reset or restarted again, its value reflects the
amount of time since the y transition. Assume the next production rule firing occurs at time
t". If Amaz < t" —t', then the precondition of rule 4 becomes true, but this is specifically
disallowed. Thus, we know that t” < t' + Amaz. If the second production rule firing is a y

112 CHAPTER 5. DELAY MODELS

(y=B8)N(2=0) = y := ~0; restart(t)
y = B)A(z = -p) M failure

y=P)A(z=-F) —— =z:=p; reset(t)
(t>Amaz) A(y =B)A(z=-0) — disallow

Figure 5.2: Binary hazard-failure delay, the meta-variable 3 ranges over {0,1}.

transition, then the trace of the run contains the event (y,¢"), and the delay element goes
into failure mode. If the second production rule firing is a z transition, then t" > ¢/ + Amin,
and the trace contains the event (z,t"). In this case, the clock ¢ is reset (set to zero and
stopped) because there is no need to keep track of the passage of time when the delay element
is in a quiescent state. Continuing in this way, one can build up the trace corresponding to a

particular run of the production rules.

5.2 Approximating Continuous Time

We can also interpret production rules as representing trace structures over C ,?g ‘¢ Recall that
for a given alphabet A, the set traces B3TI®(4) of CPII¢ over alphabet A is

e+ (AU {¢})"({#}).

Earlier chapters have described a class of conservative approximations from traces structures
over CETV to prefix-closed trace structures over CRTTe (via @ene. g™, G G, c3™e
and Cg/y"’). Let ¥ be the tightest of these conservative approximations. Let T be the trace
structure over CSTY represented by the production rules in figure 5.2 with Apin = 2 and
Amaz = 3. It can be shown that the trace structure 7' = U.(T) is represented by the
automata in figure 5.3.

The proof of this result is quite tedious and will not be presented here. This tedium can
be avoided by showing the following more general results. Although we feel we have a good
understanding of how to prove these more general results, they remain as future work. First,
define two different formal semantics for the production rule language. The first semantics
would be in terms of trace structures over CSTY (continuous time), the second in terms of
trace structures over C}?gh” (discrete time). Second, prove that for any set of syntactically

. . T B . . .
well-formed set of production rules, the semantics over Cgc“’ 1s a conservative approximation

5.2. APPROXIMATING CONTINUOUS TIME 113

Failure

Figure 5.3: Automata that accepts the set P’ C Bg”"’ of a buffer with minimum delay of 2
and maximum delay of 3.

of the semantics over CSTY (this actually requires having three different semantics: T, ¥,(T)

and ¥,(T), where T is the trace structure giving the continuous tim semantics and ¥ =
(¥1,¥,) is the appropriate conservative approximation). It follows from these results that
if an implementation of a “production rule compiler” satisfies the discrete time semantics,
then it provides a conservative approximation of the continuous time semantics. In such an
implementation (and the one used for the verification examples in this chapter), finite automata
can be used to represent trace structures over C,?g"”.

Applying the conservative approximation ¥ described above is not the only potential source
of false negatives when using discrete time models. Let T, and T} be continuous time and
discrete time models of a hazard-failure delay element with input yo, output zo, Amin = 1 and
Amaz = 1. We define T} and T similarly except that they have input y; and output z;. In
the agent To || Ty, if a yo transition precede a y, transition, then the resulting z, transition is

guaranteed to precede the resulting z, transition. However, the following trace is possible in

To || Ty:
YoY1p212¢.
To see this, notice that

proj({yo, zo})(vom1pz120) = yow2o
c P

114 CHAPTER 5. DELAY MODELS

proj({y1, 21})(yov192120) = w192
e Pl

5.3 Seitz Queue Element

In this section we analyze the self-timed queue element in figure 5.4. It is based on a circuit
described by Seitz [92]. Seitz’s original circuit does not have the two inverters between the E
and G nodes shown in figure 5.4, and it also includes an initialization signal. Seitz’s circuit
1s not speed-independent, but was intended to work under the more liberal 3/2 rule, which
states that the total delay through any 3 gates is greater than the delay through any 2 gates.
The control signals use 2-phase handshaking.

Seitz’s original circuit was analyzed by Browne and Mishra et al. [9, 77|. They were not
able to model the 3/2 rule, so the circuit was analyzed under a unit delay model. The unit
delay model is more liberal (less conservative) than the 3/2 rule, so any bug discovered under
the unit delay model is also a bug under the 3/2 rule. They discovered a bug, and proposed
a modification to the circuit. Their modified circuit differed from the one in figure 5.4 by the
absence of the two inver.ers between the E and G nodes mentioned above, and the addition of
two more inverters, for a total of five, between the AckOut and E nodes. This circuit satisfied
their specifications, but even in the unit delay model at least one bug remained that was
not caught by their specifications. To see the bug, assume the circuit is in a quiescent state
with the queue full (Fulll is high and Full0 is low) and there is a Reg/n pending. Assume
an AckQut is received, and that there are no other input changes until the circuit is stable.
The queue should become momentarily empty, and then become full again before the circuit
stabilizes. But it is possible for the A signal to not remain high long enough to properly set
the flip-flop, so the circuit can stabilize with the queue empty. We refer to this bug as the
“dropped bit” bug.

Our analysis shows that the circuit in figure 15 «orrect (up to safety properties) in a
unit delay model, and is also correct in some‘tir. els that are more conservative than
the unit delay model. The circuit is not correct, however, in a model as conservative as the
3/2 rule.

Before giving the details of our analysis of the queue circuit, we should describe some of the
limitations of the component model that was used. We started by modeling each gate with an

ideal (delay-free) gate followed by hazard-failure delay element as described in figure 5.2. The

5.3. SEITZ QUEUE ELEMENT 115

Dataln DataOut
™1

ReqOut

1L
L} ¥

AckIn | -R]

—) B
Reqln ¢

AckOut

Figure 5.4: Queue element.

same values of Amin and Ajpqz are used for each gate in the circuit. Nodes with indeterminate
voltages are not modeled. So, it cannot be verified that an initialization signal works correctly,
the verification is simply started with all nodes at the proper initial voltages. Also, the verifier
cannot model transistors as switches, so the pass transistors in the circuit must be modeled as
latches. The negative resistors are simply modeled as buffers with delay. For correct circuit
operation, it is necessary that the delay be at least 3 gate delays for the negative resistor in
the input section, and at least 2 gate delays for the negative resistor in the output section.
These delays could be reduced if assumptions are made about the minimum response time of
the environment. We remove the buffers in the data part since we cannot model their role in
the circuit, which is to convert a dynamic storage node to a static storage node. Only one bit
of the data path was modeled.

If any gate of the circuit goes into failure mode, then the resulting erratic transitions of
the gate’s outout will eventually propagate to the interface of the circuit, causing it to not
satisfy its specification. The gate driving Full0 goes into failure mode, regardless of the values
of Amin and Amag, in the following situation. The queue is full, and a Regln is pending, so
A, B and Full0 are low and Fulll is high. As a result of an AckQut transition, Fulll can go
low. At Asmin time units later, A can go high before Full0 goes high, causing a hazard. This
hazard puts the gate driving Full0 into failure mode. We can use a more liberal model of the
- gate by assuming that it would fire between Amin and Apmgg time units after Fulll goes low,

even in the above scenario. Thus, we modify the trace structure modeling this gate so a trace

116 CHAPTER 5. DELAY MODELS

in which the gate is firable for Amin time units is not a failure, and the gate fires within the
Amaz time unit maximum delay, even if there is a hazard. This means that Full0 can go high
and then go low 2Amin — A gz time units later; thus, the buffer driving D is modeled so that
1t is not a failure whenever it is firable for at least 2A min — Amaz time units, even if there is a
hazard. Thus, the model of the buffer 4riving i) is slightly more liberal than the model of the
gate driving Full0. The other gates could also be modeled similarly, but it is not necessary in
order to verify the correctness of the circuit.

We used the verifier to determine for what valueé of Amin and Amgqz is the circuit correct.
The circuit was originally claimed to be correct under the 3/2 rule, which states that the total
delay through any 3 gates is greater than the delay through any 2 gates. This is not quite
the same as saying the circuit is correct when Amaz = 3 and Apmin = 2, since that would
allow the total delay through any 3 gates to be greater than or equal to the delay through
any 2 gates. Nonetheless, we can show that the circuit is incorrect under the 3/2 rule; the
verifier finds a variant of the “dropped bit” bug (described above) in the circuit when assuming
that Amaz = 6 and Apin = 5, which is a more optimistic assumption than the 3/2 rule. The
verifier' shows this bug by producing an error trace that puts the gate driving Full0 into failure
mode.

The circuit is correct as modeled when Amaz = 7 and Amin = 6. The automatic verifier
checked this by examining 8753 states in about 5 minutes on a Sun 3/60.

In an earlier description of this circuit [17], we reported that the circuit was correct for
Amaz = 6 and Amin = 5. That analysis was based on a discrete time model that differs
slightly from the discrete time model used here (see figure 5.3). The difference is that the
b transition from state 1 returns to state 0, rather than going in to failure mode. Thus, a
hazard shorter than one clock tick (in discrete time) is ignored, which gives a more optimistic
model. The intention was that this model would compensate for the extra conservativeness in
the discrete time model caused by possible reordering of events between clock ticks (see the
end of section 5.2). Now we understand that this discrete time model does not correspond to
any continuous time model, and should be avoided. It does appear, however, that the circuit

works correctly whenever

Ami 5
min o
Amaz 6

based on examining the error trace produced when Apmgz = 6 and Amin = 5. Also, the verifier
shows that the circuit is correct for Amaz = 13 and Amin = 11. For this model, the verifier

examined 44,906 states in about 28 minutes.

5.4. BINARY INERTIAL DELAY 117

(v= B) A (z=B) —— y:= f; restart(t)
(y=B)A(z=-8) —— y:=-0; reset(t)

(tZ2 Amin) A(y=BF)A(z2=20) —=> 2z:=F; reset(t)
(t>Amaz) N(y=B)A(z2=-8) —— disallow

Figure 5.5: Binary inertial delay, the meta-variable 3 ranges over {0,1}.

5.4 Binary Inertial Delay

The hazard-failure model can be overly conservative in many situations. A common alternative
is the inertial delay model [12, 91, 90]. Our formal model of a binary inertial delay element
with input y and output z is given in figure 5.5, using production rules. Consider a run of
the production rules in figare 5.5 In the initial state, with ¥ and z both equal to 0 and ¢
stopped, only the first rule is firable and it can fire at any time #'. Since the first production
rule is labeled with y (the symbol above the arrow), the trace of the run contains the event
(y,t'). When the rule fires, it restarts the clock t. Thus, until ¢ is reset or restarted again,
its value reflects the amount of time since the y transition. Assume the next production rule
firing occurs at time t". If Amge < t” — ¢/, then the precondition of rule 4 becomes true, but
this is specifically disallowed. Thus, we know that t” < t' + Amge. If the second production
rule firing is a y transition, then the trace of the run contains the event (y,t"). If the second
production rule firing is a z transition, then t” > t' + Ampin, and the trace contains the event
(2,t"). In both cases, the clock ¢ is reset (set to zero and stopped) because there is no need to
keep track of the passage of time when the delay element is in a quiescent state. Continuing
in this way, one can build up the trace corresponding to a particular run of the production
rules. The set of traces represented by the production rules is equal to the set of traceé that
can be built up in this manner.

The distinctive feature of the production rule description of inertial delay is rule 2. It
specifies that if two consecutive y transitions occur without a z transition in between, then
the state of the delay element is the same as if no transitions occurred. Thus, a hazard is
treated as if nothing happened. As an extreme example, consider a signal that transitions
every i’ time units, where ¢’ is slightly less then Amin. If this signal is input to an inertial

delay element, then the output is constant, which is clearly overly optimistic.

118 CHAPTER 5. DELAY MODELS

5.5 Binary Chaos Delay

In the binary chaos delay model a delay element goes into a special mode, called chaos mode,
when there is a hazard on its input. When in chaos mode, the output of the delay element
can transition unpredictably, which conservatively models the unpredictability of an actual
gate responding to a hazard. In this sense, chaos mode is like failure mode. The difference is
that chaos delay allows the delay element to leave chaos mode if its input does not transition
for a period of length Amgz, in which case the delay element enters a quiescent state with its
output equal to its input.

A circuit can work properly even if one of its gates enters chaos mode, as long as the
random outputs of the gate are not allowed to propagate to the interface of the circuit. If
the hazard-failure delay model were used when verifying such a circuit, a false negative would
result. There are examples of this happening in practice. The synthesis techniques of Lavagno
et al. [61] can produce circuits that are correct under the chaos delay model but incorrect
under the hazard-failure delay model [60].

The term “chaos” is borrowed from Josephs and Udding [53], who used a chaos process to
represent the response of a delay-insensitive process to a hazard. In their model, however. it
is impossible for a component to ever leave chaos mode.

The production rules for the chaos delay model have an extra boolean state variable ¢
which is equal to 1 if and only if the delay element is in chaos mode (see figure 5.6). Rule 2 is
the major difference between inertial delay and chaos delay; it requires that the delay element
go into chaos mode in response to a hazard. The clock ¢ is restarted in order to record the
amount time that must pass before the delay element can exit chaos mode. In rule 3, the clock
is restarted again if another input transition occurs.

Rules 4 and 5 control the minimum and maximum response time of the delay element
when there are no hazards (i.e., not in chaos mode). Rule 6 allows the output to transition
unpredictably in chaos mode. In rule 7, chaos mode can be exited if sufficient time has passed
and the values of the input and output are equal. Rule 8 requires that chaos mode must be
exited after sufficient time. This forces the output to become equal to the input before more

than Amge time has passed.

5.6. FIFO CONTROLLER 119

Y 0) — = —f; restart(t)
(y=B)A(z=-B)A(c=0) —— y:=-8; c:=1; restari(t)
Y 1

—— y:= -f; restart(t)

(t>Amin) ANy =B)A(z=-0)A(c=0) —Zo 2:=pF; resel(t)
(t>Amaz) Ny =B) N (z = ¢=0)

JA(z=-B)A(c=0) — disallow
(z=8) ANe=1) =25 z:=-8

(t=AQma) Nlu=F)A (z=8) AN(c=1) —— c:=0; reset(t)
(t > Amaz) A (= 1) —— disallow

Figure 5.7: STG specification for a FIFO controller.

5.6 FIFO Controller

We compared the binary inertial delay and binary chaos delay models by verifying a speed-
dependent FIFO controller circuit. The specification for the FIFO controller, which is due to
Chu (30}, is given as a Signal Transition Graph (STG) in figure 5.7. rhe automatic verifier
that was used is based on an extension of Dill’s trace theory that allows for the modeling
of real-time properties [17]. It uses a discrete time model that is a provably conservative
approximation of a continuous time model. As a result, if a circuit is verified correct under
this discrete time model, then it is guaranteed to be correct under the continuous time model.

In figure 5.8, the circuit that was checked is described using a LISP-like language that
can be read by the automatic verifier. For each gate, the first argument is the input(s), the

second argument is the output, and the third argument gives the minimum and maximum

120 CHAPTER 5. DELAY MODELS

; Initially Ri=0, Ao=0, D=0, Ro=0, Ai=0,
5 L=0, Wi=1, W2=1, W3=1, W4=0, W5=1,
5 Wé=1, W7=1, W8=1, W9=1
(compose
(buffer D Ro)
(inverter L W1 (4 7))
(orgate (-Wi -D) W2 (8 12))
(inverter D W3 (4 7))
(orgate (-W3 -W1) W4 (8 12))
(orgate (-Ai -W4) W5 (8 12))
(orgate (-W2 -W5) Ai (8 12))
(inverter Ao W6 (4 6))
(orgate (-W3 -W6 -Ri) W7 (14 21))
(inverter Ri W8 (4 6))
(orgate (-D -W8 -Ao) W9 (14 21))
(orgate (-W7 -W9) L (8 12)))

Figure 5.8: Implementation_of FIFO controller.

delays of the gate. If there is no third argument, then the gate has unbounded delay (i.e., is a
speed-independent gate). Negated inputs are denoted by a minus sign. The circuit is based on
a design synthesized using the method of Lavagno et al. [61]. It was intentionally synthesized
to have an error, in order to test the gate models used with the verifier [60].

We checked the circuit under the inertial delay model and the chaos delay model. In both
cases, gates are modeled as an ideal {delay free) gate whose output feeds a delay element of the
appropriate type. Under the inertial delay model the circuit is correct. The verifier checked
this by examining 6,450 states in less than 190 seconds of CPU time on a Sun 3/60.

Under the chaos delay model the circuit does not satisfy the specification. The counter-

example trace returned by the verifier is

Ri+ ¢* W8— ¢! W7~ ® L+ D+ ot

(5.1)
Wi- W2- W2+ Ai+,

which represents a possible behavior of the circuit that is not consistent with the specification.
The symbol ¢ in this trace gives information about the times at which transitions occur.
Assume the trace begins at time 0, and let T be the basic unit of time. If a transition occurs
between the nth and (n+1)th ¢ in the trace, then the transition occurs between times nT and

(n + 1)T. Superscripts are used to indicate multiple occurrences of ¢. Thus, the transition

5.7. A LESS CONSERVATIVE MODEL 121

of W8 in the trace occurs between times 4T and 5T. The key event in the trace is the final
transition of W1, which causes a hazard on the gate driving W2. This hazard is ignored in the
inertial delay model, but in the chaos delay model it puts the gate into chaos mode, resulting
in two consecutive transitions of W2. This puts the gate driving Ai into chaos mode, causing
an Ai transition earlier than is allowed by the specification. This is an illustration of how the

inertial delay model can lead to false positive verification results.

5.7 A Less Conservative Model

Although the chaos delay model is not as conservative as failing on all hazards, it may still be
overly conservative. This is illustrated in the counter-example trace (5.1). The length of the
hazard in the trace is 4 time units (the time between the D+ and W1— transitions), which is
half the minimum delay of the relevant gate. Depending on how the gate is implemented, a
pulse this short might be reliably filtered out. Also, once the hazard occurs, the output of the
gate (W2) immediately becomes unpredictable. In practice, the output would remain stable
until Amjp time units after the first transition in the hazard (D-+, in this case).

Both of these issues are addressed in the model described in figure 5.9. An additional
parameter, Ahqz, is used to control the length of the longest hazard that is ignored by the
delay element. If a hazard is shorter than Apqz, then that hazard is ignored, just as in the
inertial delay model. If a hazard is longer than Apgz, then the delay element goes into chaos
mode. Thus, this model unifies inertial delay and chaos delay: if Apq, = 0, then it goes into
chaos mode in response to any hazard; if Apgz > Amaz, then it is identical to the inertial
delay model.

The production rules in figure 5.9 use two clocks, ¢, and t.. The clock t, records the delay
until the output z transitions. The.clock t. records the time that must pass before the delay
element can exit chaos mode; thus, it only runs in chaos mode. Both of these functions could
be combined into one clock t in our previous chaos delay model (figure 5.6).

The first production rule in figure 5.9 is the same as the first rule of the original chaos
model, except that t. is used instead of t. Rule 2 of the original model is split into rule 2
(which acts like the inertial model for short hazards) and rule 3 (which goes into chaos mode
for long hazards). Anytime rule 3 fires, ¢, is already running (because of a previous firing of
rule 1) and its value is not affected. The final six rules in figure 5.9 correspond to the final six

rules of the original model. The only changes are that references to ¢ are replaced by references

122 CHAPTER 5. DELAY MODELS

(y=B)A (z=0) N(c=10) v, y := —f; restart(t.)

(t: < Dha) A =B)A(z= B)A(c=0) —L5 y:=-8; reset(t,)

(t: 2 Araz) N (y=B)A (z=-B) A (c=0) B, y := —f; c:=1; restart(t.)
(y=8)A (c=1) Y, oy= —B; restart(t.)

(t: > Amin) Ay =B) A (z=B)A(c=0) —Z5 z:=8; reset(i,)

(t: > Amaz) N(y=B)A(z=-B)A(c=0) —— disallow

(t: > Amin) A (z=8) AMc=1) =5 z:=-8

(te=Bmax) N (y=B)N (2=0) Nc=1) —— c:=0; reset(t.); reset(t.)

(te > Amaz) A (c=1) —— disallow

Figure 5.9: Extended binary chaos delay with hazard length parameter and delayed chaos
output.

to ¢ or i, as appropriate, and rule 7 requires that ¢, > Amip before the output can transition
in chaos mode.

The model can be further generalized to include five parameters, instead of just three.
The parameter Amin could have different values for rules that fire in chaos mode than for
rules that fire when not in chaos mode; similarly for Amge. However, we do not consider this
generalization further here.

We applied the generalized model in figure 5.9 to the verification problem described earlier.
For each gate, we let Apq, = [0.75Amin|. The circuit still did not satisfy its specification even
under this more optimistic gate model. The counter-example trace that the verifier produced
is

Ri+ of W8— o1 W7— 48 L+ D+ o

W3- ¢? W1- ¢? W2— &% Ai+.
Notice that the time between the D+ and the W1— transitions is six time units (which is Apg;
for the gate with those inputs) rather than four, as in the other trace. Also, once in chaos
mode, W2 does not transition until 8 time units after D did.

Determining that the circuit was not correct, and finding the counter-example trace, re-
quired examining slightly fewer states than in the inertial delay case; the verification time
was proportionally reduced. This is typical for automatic verification methods based on trace

theory; finding an error is usually faster than verifying correctness. Since the circuit is still not

5.8. SINGLE TRAJECTORY DELAY MODELS 123

correct even under such an optimistic gate model, it is unlikely that the circuit would work
reliably if implemented. We could not be as certain of this conclusion if we had only used the

more conservative model of figure 5.6.

5.8 Single Trajectory Delay Models

The binary inertial delay can be extended to use ternary logic values. This idea has been used
to develop efficient, conservative simulation algorithms based on inertial delay [90].

Binary bounded delay nodels can be difficult to analyze because of the non-determinism
introduced by having component delays possibly vary. If this non-determinism is represented
using the ternary value X, then it is possible to construct a single trajectory model [11]. The
key property of a single trajectory model is that for a given input stream, only one sequence
of output transitions is possible. Computationally, this can be much more efficient then
representing non-determinism with a large number of different binary transition sequences.
However, single trajectory models can be more conservative and, therefore, lead to more false
negative verification results.

Seger [90, 91] used this idea to develop an efficient algorithm for analyzing races in asyn-
chronous circuits. Unlike the models we describe in this section, Seger’s extended inertial delay
model is not a actually single trajectory model. However, only a single trajectory of Seger’s
model needs to be considered to accurately analyze circuits; this is the key to the efficiency
of his analysis algorithm. In our work, the property that only a single trajectory needs to be
considered is made explicit in the models themselves.

A single trajectory inertial delay model is described using production rules in figure 5.10.
In the production rules for the binary delay models, we labeled the arrows with the name
of the signal that transitioned. In the non-binary models of this section, the label must also
indicate what value the signal transitions to. Two different clocks, tg and ty, are r-quired
in the ternary inertial delay model. The clock tg is used to enforce time bounds on when z
must transition to a binary value; tyx enforces time bounds on when 2 must transition to a
non-binary value. We assume 0 < Amin < Amaz.

In the first rule, the delay element is quiescent with binary values on its input and output.
When the input transitions to X, the clock ¢y is started to record the delay before z transitions
to X the clock tp remains stopped. In the second rule, tp is initially running because z is

being driven to a binary value. Once y transitions to X, the clock tg can be stopped; tyx,

124 CHAPTER 5. DELAY MODELS
(¥=B8)A(z=08) ——— restart(ty)
(y=B)N(z#8) —LZZ0 reset(ts)

S, restart(tx); restart(tg)

\
(y=X)A(z=8) LB, restartitp)

(y#8) A(z=8) e A reset(ty); reset(tp)
(y #8) Az = X) _yi restart(tp)
(tx = Amin) A (27 2) zr=gl reset(ty)
(tx > Amin) A (2#X) ———— disallow
z:=

(ts=Amaz) A (y=B) Az #£8) ———" s reset(tp)
(te> Amaz) A (y=B) AN (2 #8) ————— disallow

Figure 5.10: Extended inertial delay. The meta-variable 8 ranges over {0,1}.

which can be stopped or running, is unchanged. When y transitions to a binary value not
equal to z, then ¢p is restarted, as in rules 3, 4 and 6. The fifth rule expresses the key property
of the inertial model: when y transitions to a binary value equal to z, both clocks are reset
as if no hazard occurred. The remaining rules control the transitions of the output z. Notice
that for any sequence of input transitions, there is only one possible sequence of production
rule firings, even if the time of the firings is considered. This is the key property of a single
trajectory model.

It is also possible to define a single trajectory version of the chaos delay model. However,
since the chaos delay model distinguishes between multiple transitions (a hazard) and a sin-
gle transition that occurs at an unknown time (the normal case), three logic values are not
adequate for this purpose. Two additional values D and U (for a total of five) representing
downward and upward transitions must be added. The remainder of this section gives a brief
description of the model (see figure 5.11).

The operations < and > take a single binary argument and are defined by

QO = U >0 = D
a1 = D >1 = U.

5.8. SINGLE TRAJECTORY DELAY MODELS

(y=8) A(z=8)
(y=8) A(z=§)
(y=8) N(z=a)
where (a #) A (a # X)
(y=8) A(z=a) .
where (a # 8) A (a # X)

(y=rB) A (2 # X)

(3 # X) A (z # X)

(y #8) Az =X)

(y # a) A (z = X)
where (a # 0) A (a # 1)

(tx = Amin) A (y = @) A(z = p)

(tx > Amin) A (y=a) A(z=0)

(tp = Amaz) N (y
(tB > Amaz) A (y

N <
it

a
"G

<
i
]

™

125

restart(ty)

restart(ty); restart(tp)

reset(tx); reset(tp)

reset(tx); restart(tp)

restart(tp)

reset(tx); reset(tp)

restart(tp)
reset(tp)

reset(tx)

disallow

reset(tp)
disallow

Figure 5.11: Extended chaos delay. The meta-variables & and 3 range over {0,1, D,U, X} and

{0,1}, respectively.

126 CHAPTER 5. DELAY MODELS

As a memory aide, notice that in the equation >0 = D, for example, the triangle points to
the 0, and D is the value of a signal that is transitioning to 0. In the equation <0 = U, the
triangle points away from the 0, and U is the value of a signal that is transitioning from 0.

The delay element described in figure 5.11 is in chaos mode if and only if its output is X.
Thus, there is no need for the state variable ¢ that was used in the binary chaos delay model.

Transitions from § to o3, where § is a binary value, are not allowed in the model, since
they are not physically meaningful. Similarly, >3 can only transition to 3 and to X, and X
can only transition to a binary value. The single trajectory chaos delay element enforces these
restrictions on its output, and assumes that its input satisfies these restrictions.

In the first rule, the delay element is quiescent with the binary value 3 on its input and
output. When the input transitions to <3, the clock ¢y is started to record the delay before
z transitions to <f3; the clock tp remains stopped. If y transitions from 3 directly to -3, as
in rule 2, then both clocks need to be restarted. Rules 3 and 4 involve y transitions that put
the delay element in chaos mode. This results in z transitioning to X simultaneously with the
y transition, which is represented by having two labels (one for each simultaneous transition)
on the arrow of the production rule. Rules 5 through 8 handle the rest of the possible input
transitions. The remaining rules control the transitions of the output z.

It can be shown that for reachable states of the delay element. if y = 3, then z # «3. Also,
if y=>0, then z # 8 and z # <. Finally, if y = X, then z = X.

5.9 Discussion

We verified two speed-dependent asynchronous circuits, using a variety of delay models. We
demonstrated that the binary inertial delay model can lead to false positive results on one of
those circuits. Using the binary chaos deiay model, the verifier was able to discover an error
in the same circuit.

We described how the binary inertial and binary chaos delay models can be extended to
single trajectory models, using 3-valued and 5-valued logics, respectively. It may be possible to
combine the binary and the extended models to achieve a better balance between efficiency and
accuracy. For example, a subcircuit with reconvergent fanout could be analyzed with binary
chaos delay, with the results then abstracted into the single trajectory model. Then the single
trajectory model could be used to efficiently simulate or verify the full circuit without having

the reconvergent fanout cause an overly conservative result.

5.9. DISCUSSION 127

Any such model could be immediately used by our automatic verifier; all that is necessary

is to compile the models into the appropriate finite automata representations.

128 CHAPTER 5. DELAY MODELS

Chapter 6

Fut ure Research

In this thesis, we have described general techniques, based on trace algebra and trace structure
algebra, for constructing domains of agents models. We introduced the idea of conservative
approximations between trace structure algebras, and constructed conservative approximations
from continuous time models to discrete time models and from explicit simultaneity semantics
to interleaving semantics. We implemented an automatic verifier and demonstrated it on
speed-dependent asynchronous circuits with several new delay models.

The work described in this thesis is very much work in progress. The most pressing tasks are
to formalize continuous time and discrete time semantics for the production rule notation used
in section 5.2, and to show that these semantics are appropriately related by a conservative
approximation. The discrete time semantics would be used in the existing automatic verifier.
If a system is verified to be correct under the discrete time semantics, then it is guaranteed to
also be correct under the continuous time semantics. Currently, it is difficult to verify that the
discrete time semantics of a particular agent is a conservative approximation of the desired
continuous time semantics.

It is important to understand how much information is lost when using a conservative
approximation ¥ = (¥;, ¥,) from a continuous time model to a discrete time model. One way
to describe the information loss is to characterize the set 7 of continuous time trace structures
T for which ¥\(T) = ¥,(T). This is the same as the image of ¥;,, (see section 4.4 for a
description of the inverse of a conservative approximation). If Tp is a continuous time trace
structure that is used in a verification problem, the chances of a false negative verification
result are reduced if Ty is a member of 7. We have described in previous work [19] how 7 can
be made to include more realistic models by using abstractions defined only on wnitially speed-

independent trace structures. A trace structure 7 = (7, P) is initially speed-independent

129

130 CHAPTER 6. FUTURE RESEARCH

if suf(z,P) = P for any partial trace z that represents a behavior where no actions occur
(only time passes); this is a much weaker requirement then speed-independence. All of the
agents that can be expressed using the production rule notation of chapter 5 are initially
speed-independent since all clocks are stopped in the initial state.

An area for future research is to integrate the idea of initially speed-independent trace
structures with our more recent work on conservative approximations of real-time models.
We conjecture that all of the continuous time agents expressible with our production rules
can be represented exactly by trace structures over C9TS (the model of quantized time with
simultaneity). However, an implementation of the production rule language using discrete
time clocks will not always produce this exact representation; a more sophisticated algorithm
is required. We will also explore how these results relate to Henzinger, Manna and Pnueli's
notion of digitizable agents [47].

We would also like to use trace algebra and conservative approximations to st{1dy several
untimed models of concurrency, such as Mazurkiewicz traces and partial orders. We believe
such a study might shed some light on the relationships between these models and interleaving
semantics. The relationship between action based models and state based models is another
area for future research.

We would like to extend some of our techniques. Trace algebra homomorphisms and conser-
vative approximations could be allowed to change alphabets. This would significantly increase
the number of useful abstractions that could be constructed with conservative approxima-
tions. It should also be possible to extend trace structures to include two sets of traces (like
the success sets and failure sets of Dill’s trace structures) and to generalize the notion of

receptiveness [38] to arbitrary trace structure algebras.

Appendix A

Summary of Notation

cTO
CC

Continuous Time with Ordered rep.,
isomorphic to CSTV (def. 3.14, p. 69)

cTU
Ce

Continuous Time with Unordered rep.
(def. 3.2, p. 59)

CI

extends C/ with partial traces (def. 4.23,
p. 88)

(Untimed) Interleaving Semantics
(def. 2.9, p. 27)

CgTI

Quantized Time with Interleaving
(def. 4.8, p. 82)

CQoTle

QTIy
C

extends C with partial traces

(def. 4.24, p. 88)

CCQTI(p

isomorphic to CZ™', uses v to denote
time (def. 4.10, p. 83)

CgTS

Quantized Time with Simultaneity
(def. 3.10, p. 65)

CgTSI

isomorphic to Cg TS power set algebra
over CGT' (def. 4.16, p. 84)

ST
Ce

Synchronous Time (def. 3.6, p. 60)

Table A.1: Summary of Trace Algebras

131

132

APPENDIX A. SUMMARY OF NOTATION

AGTY all trace str’s over CSTU (def. 3.5, p. 60)

Al extends A{ with partial traces (def. 4.57, p. 104)
AL all trace str’s over C} (def. 2.31, p. 40)

AR extends AJ® with partial traces (def. 4.58, p. 104)
AR mixed regular trace str’s over CJ (def. 2.32, p. 41)
A all trace str's over C37" (def. 4.12, p. 83)

AZ™e | all trace str’s over c8™ (def. 4.12, p. 83)

AJTS all trace str’s over C37° (def. 3.13, p. 68)

AT all trace str’s over C37 (def. 3.8, p. 61)

Table A.2: Summary of Trace Structure Algebras

133

Symbol Decorations Denotes

Ar none set of all finite sequences over A

A none set of all infinite sequences over A

A= none A*U A¥

] none floor of ¢

XuY none union of sets X and Y

uXxX none union of the sets in the set X

e none set of subsets of an arbitrary set X

XCY none X subset of V

TCT none trace structure T contained in T’ (def. 2.21,
p. 34)

e | none cartesian product of X and YV

Ty none concatenation of traces in trace algebra
(def. 4.20, p. 86)

0 none empty set

A— B none set of all partial functions with domain .4 and |
codomain B

A— B none set of all total functions with domain 4 and
codomain B

*|imm none function r restricted to domain A4 and
codomain B

E\|F none parallel composition of agents in concurrency
algebra (def. 2.6, p. 23)

T|T none parallel composition of trace structures in
trace structure algebra (def. 2.18, p. 33)

|B| none number of elements in set B

134 APPENDIX A. SUMMARY OF NOTATION

Symbol Decorations Denotes
r none set of all agent signatures (def. 2.1, p. 22)
v primes, integer sub’s | agent signature (def. 2.1, p. 22), default
agent signature of E (note 2.4, p. 23) and T
(note 2.16, p. 33)
Ahaz none length of longest ignorable hazard (p. 121)
Amaz none maximum delay (p. 111)
A none minimum delay (p. 111)
alphabet sub’s empty trace (T13, p. 87), empty sequence
none functional abstraction
@ none passage of a unit of time in traces of CgT""
(def. 4.10, p. 83) and C977¥ (def. 4.24, p. 88)
v primes conservative approxims:‘on (def. 2.34, p. 42)
C Wi, " | primes inverse of ¥ (def. 460, p 105)
v, primes lower bound mapping of ¥ !
v, primes upper bound mapping of ¥ 7
| T primes, integer sub’s | sequence of time stamps (def. 3.14, p. 69) !
!L w none infinity !

1

35

Symbol Decorations Derotes

A primes, integer sub’s | alphabet (def. 2.2, p. 22), default alphabet of
¥ (note 2.3, p. 22)

a primes, integer sub’s | signal (def. 2.1, p. 22)

primes, mnem. sup’s | trace structure algebra with partial traces

(def. 4.48, p. 100)

Ac primes, mnem. sup’s | trace structure algebra without partial traces
(def. 2.17, p. 33)

Apc primes, mnem. sup’s | trace structure algebra of prefix-closed trace
structures (def. 4.43, p. 96)

Al,... A4 none antecedents for thm. 2.35 (p. 43)

B primes, integer sub’s | alphabet (def. 2.2, p. 22)

b primes, integer sub’s | signal (def. 2.1, p. 22)

B primes, mnem. sup’s | set of all traces in a trace algebra with partial
traces (def. 4.20, p. 86)

B(A) primes, mnem. sup’s | set of all traces over alphabet 4 in a trace
algebra with partial traces (def. 4.20, p. 86)

B¢ primes, mnem. sup’s | set of all complete traces in a trace algebra
(def. 2.7, p. 26; def. 4.20, p. 86)

Bc(A) primes, mnem. sup’s | set of all complete traces over alphabet 4 in a
trace algebra (def. 2.7, p. 26; def. 4.20, p. 86)

Bp primes, mnem. sup’s | set of all partial traces in a trace algebra
(def. 4.20, p. 86)

Bp(A) primes, mnem. sup’s | set of all partial traces over alphabet 4 in a

trace algebra (def. 4.20, p. 86)

136 APPENDIX A. SUMMARY OF NOTATIQON

Symbol Decorations ‘Denotes N_‘l
c primes, mnem. sup’s | trace algebra with partial traces (def. 4.21’1’7” R
p. 86)
Ce primes, mnem. sup’s | trace algebra without partial traces (def. ;7 :
p. 26; def. 4.25, p. 89) "
Cp, Cpc primes, mnem. sup’s | trace algebra (def. 4.25, p. 89) ‘11
Cesp primes, mnem. sup’s | trace algebra with traces represented by their I
set of prefixes (def. 4.45, p. 97)
C1,...,C9 none axioms of concurrency algebra (def. 2.6, p. 23)
codom(f) none codomain of an arbitrary function f
D primes, mnem. sup’s | domain of agents for a concurrency algebra
(def. 2.6, p. 23) |
dom(f) none codomain of an arbitrary function f | N
E primes, integer sub’s | agent in a concurrency algebra (def. 2.6, p. 23)
h none homomorphism from one trace algek-a to
another (def. 2.38, p. 45)
I primes, integer sub’s | set of input signals (def. 2.2, p. 22), default
_ input signal set of ¥ (note 2.3, p. 22)
ida(a) none identity function over set 4
l j»rimes, integer sub’s | integer
L(B) none subset of 22(B) (thm. 2.30, p. 40)
Li...,L5 none antecedents for thm. 2.30 (p. 40) and
thm. 4.56 (p. 104)
len(u) none length of sequence u
m primes, integer sub’s | integer
n primes, integer sub’s | integer
N none integers
N7 none non-negative integers
Nt none positive integers
0 primes, integer sub’s | set of output signals (def. 2.2, p. 22), default
output signal set of ¥ (note 2.3, p. 22)
P primes, integer sub’s, | set of possible traces of a trace structure
mnem. sub’s [and u

137

Symbol Decorations Denotes

T1,...,T8 none axioms of trace algebra without partial traces
(def. 2.7, p. 26)

T9,...,T19 none additional axioms of trace algebra with partial
traces (def. 4.20, p. 86)

pref(X) none prefixing on traces in a trace algebra
(def. 4.26, p. 89)

proj(B)(E) none projection on agents in a concurrency algebra
(def. 2.6, p. 23)

proj(B)(T) none projection on trace structures in a trace
structure algebra (def. 2.19, p. 33)

proj(B)(z) none projection on traces in a trace algebra
(def. 4.20, p. 86)

r(a) primes, integer sub’s | renaming function (def. 2.5, p. 23)

R none real numbers

R* none + non-negative real numbers

R+ none positive real numbers

rename(r)(E) | none renaming on agents in a concurrency algebra
(def. 2.6, p. 23)

rename(r)(T) | none renaming on trace structures in a trace
structure algebra (def. 2.20, p. 34)

rename(r)(z) | none renaming on traces in a trace algebra
(def. 4.20, p. 86)

reset(t) none operation on clock ¢ (p. 111)

restart(t) none operation on clock ¢ (p. 111)

interleave(z) | none set of interleavings of a trace z (def. 4.15,
p. 84)

suf (z,T) none suffixing on trace structures in a trace
structure algebra (def. 4.48, p. 100)

suf(z,X) none suffixing on traces in a trace algebra

(def. 4.26, p. 89)

138 APPENDIX A. SUMMARY OF NOTATION
Symbol Decorations Denotes

T primes, integer sub’s | trace structure of a trace algebra (def. 2.15,
p. 33)

3 primes, integer sub’s | clock (p. 111) or time stamp

T primes, mnem. sup’s | domain of trace structures of a trace algebra
(def. 4.48, p. 100)

u primes, integer sub’s | sequence of actions or sets of actions
(def. 3.14, p. 69)

W none set of all signals (def. 2.1, p. 22)

w primes, integer sub’s | trace

X primes, integer sub’s | set of traces

& primes, integer sub’s | trace

. primes, integer sub’s | set of traces
] primes, integer sub’s | trace

Bibliography

(1} R. Alur, C. Courcoubetis, and D. Dill. Model-checking for real-time systems. In LICS90
[67), pages 414-425.

[2] R. Alur and D. Dill. Automata for modeling real-time systems. In M. S. Paterson, editor,
Automata, Languages, and Programming: 17th International Colloquium, volume 443 of

Lecture Notes in Computer Science, Warwick University, England, !990. Springer-Verlag.

[3] R. Alur and T. A. Henzinger. A really temporal logic. In 30th Annual Symposium on
Foundations of Computer Science, 1989.

[4] R. Alur and T. A. Henzinger. Logics and models of real time: A survey. In J. W.
de Bakker, K. Huizing, W.-P. de Roever, and G. Rozenberg, editors, Real Time: Theory

in Practice, volume 600 of Lecture Notes in Computer Science. Springer-Verlag, 1992.

[5] A.Benveniste and G. Berry. The synchronous approach to reactive and real-time systems.
Proceedings of . IEEE, 79(9):1270-1282, Sept. 1991.

[6] D. L. Black. On the existence of fair delay-insensitive arbiters: Trace theory and its
limitations. Distributed Computing, 1(4):205-225, 1986.

[7] S. D. Brookes. A Model for Communicating Sequential Processes. PhD thesis, Oxford
University, 1983.

(8] S. D. Brookes and A. W. Roscoe. An improved failures model for communicating pro-
cesses. In NSF-SERC Seminar on Concurrency, volume 197 of Lecture Notes in Computer

Science. Springer-Verlag, 1985.

[9] M. C. Browne, E. M. Clarke, D. L. Dill, and B. Mishra. Automatic verification of sequen-
tial circuits using temporal logic. IEEE Trans. Comput., C-35(12):1035-1044, 1986.

139

140 BIBLIOGRAPHY

'[10] R. E. Bryant, editor. Third Caltech Conference on VLSI. Computer Science Press, Inc.,
1983.

[11] R. E. Bryant, D. L. Beatty, and C.-J. H. Seger. Formal hardware verification by symbolic
ternary trajectory evaluation. In DAC91 [36].

[12] J. Brzozowski and C.-J. Seger. A unified framework for race analysis of asynchronous
networks. J. ACM, 36(1):20-45, Jan. 1989.

[13] J. A. Brzozowski and C.-J. H. Seger. Advances in asynchronous circuit theory; part I:
Gate and unbounded inertial delay models. Bulletin of the FEuropean Association for
Theoretical Computer Science, 42:198-249, Oct. 1990.

[14] J. A. Brzozowski and C.-J. H. Seger. Advances in asynchronous circuit theory; part II:
Bounded inertial delay models, MOS circuit design techniques. Bulletin of the European
Association for Theoretical Computer Science, 43:199-263, Feb. 1591.

[15] J. R. Busch. A comparison of strict and non-strict semantics for lists. Master’s thesis,
Computer Science Department, California Institute of Technology, 1988. Technical Report
CS-TR-88-12.

[16] J. R. Burch. Combining CTL, trace theory and timing models. In Sifakis (93].
[17] J. R. Burch. Modeling timing assumptions with trace theory. In ICCD89 [50].

[18] J. R. Burch. Verifying liveness properties by verifying safety properties. In Kurshan and
Clarke [56]. Also in Springer-Verlag LNCS 531.

[19] J. R. Burch. Approximating continuous time. Presented at the IEEE Workshop on VLSI,
Orlando, Florida, Feb. 1991.

[20] J. R. Burch. Using BDDs to verify multipliers. In DAC91 (36].

[21] J. R. Burch. Delay models for verifying speed-dependent asynchronous circuits. In Work-
shop on Timing Issues in the Specification and Synthesis of Digital Systems, Princeton
University, Mar. 1992.

[22] J. R. Burch. Delay models for verifying speed-dependent asynchronous circuits. In Pro-
ceedings: 1EEE International Conference on Computer Design, Oct. 1992. To Appear.

BIBLIOGRAPHY 141

[23] J. R. Burch, E. M. Clarke, and D. E. Long. Representing circuits more efficiently in

[24]

[25]

[26]

[27]

[28]

[31]

[32]

symbolic model checking. In DAC91 [36].

J. R. Burch, E. M. Clarke, and D. E. Long. Symbolic model checking with partitioned
transition relations. In A. Halaas and P. B. Denyer, editors, Proceedings of the Interna-

tional Conference on Very Large Scale Integration, Edinburgh, Scotland, Aug. 1991.

J. R. Burch, E. M. Clarke, and D. E. Long. Symbolic model checking with partitioned
transition relations. Technical Report CMU-CS-91-195, School of Computer Science,
Carnegie Mellon University, Oct. 1991.

J. R. Burch, E. M. Clarke, K. L. McMillan, and D. L. Dill. Sequential circuit verification
using symbolic model checking. In 27th ACM/IEEE Design Automation Conference,
1990.

J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill, and J. Hwang. Symbolic model
checking: 10?° states and beyond. In LICS90 [67].

J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill, and L. J. Hwang. Symbolic model
checking: 10%° states and beyond. Information and Computation, 98(2):142-170, June
1992.

J. R. Burch and D. E. Long. Efficient boolean function matching. In IEEE International
Conference on Computer-Aided Design, Nov. 1992. To Appear.

T.-A. Chu. Synthesis of Self-Timed VLSI Circuits from Graph- Theoretic Specifications.
PhD thesis, Massachusetts Institute of Technology, 1987. Technical report MIT/LCS/TR-
393.

E. M. Clarke, J. R. Burch, O. Grumberg, D. E. Long, and K. L. McMillan. Automatic
verification of sequential circuit designs. Philosophical Transactions of the Royal Society
of London, Series A: Physical Sciences and Engineering, 339(1652):105-120, Apr. 15,
1992.

E. M. Clarke, I. A. Draghicescu, and R. P. Kurshan. A unified approach for showing
language containment and equivalence between various types of w-automata. In A. Arnold
and N. D. Jones, editors, 15th Colloguium on Trees in Algebra and Programming, volume
431 of Lecture Notes in Computer Science, Copenhagen, Denmark, May 1990. Springer-
Verlag.

142

[33]

[34]

[35]

[36]

[37]

[38]

39]

[40]

[41]

[42]

BIBLIOGRAPHY

E. M. Clarke and E. A. Emerson. Synthesis of synchronization skeletons for branching

time temporal logic. In Kozen [55].

E. M. Clarke, E. A. Emerson, and A. P. Sistla. Automatic verification of finite-state
concurrent systems using temporal logic specifications. ACM Trans. Prog. Lang. Syst.,
8(2):244-263, 1986.

E. M. Clarke and O. Grumberg. Research on automatic verification of finite-state con-

current systems. Annual Review of Computer Science, 2:269-290, 1987.
28th ACM/IEEE Design Automation Conference, 1991.

J. W. de Bakker, W.-P. de Roever, and G. Rozenberg, editors. Stepwise Refinement
of Distributed Systems, Models, Formalisms, Correctness, REX Workshop, Mook, The
Netherlands, May/June 1989, Proceedings, volume 430 of Lecture Notes in Computer
Scicnce. Springer-Verlag, 1989.

D. L. Dill. Trace Theory for Automatic Hierarchical Verification of Speed-Independent
Circuits. PhD thesis, Carnegie Mellon University, Pittsburgh, PA, 1988. Also appeared
as [42].

D. L. Dill. Trace theory for automatic hierarchical verification of speed-independent
circuits. In J. Allen and F. T. Leighton, editors, Advanced Research in VLSI: Proceedings
of the Fifth MIT Conference. MIT Press, 1988.

D. L. Dill. Complete trace structures. In M. Leeser and G. Brown, editors, Hardware
Specification, Verification, and Synthesis: Mathematical Aspects volume 408 of Lecture
Notes in Computer Science, Cornell University, July 1989. Springer-Verlag.

D. L. Dill. Timing assumptions and verification of finite-state concurrent systems. In
Sifakis [93], pages 197-212.

D. L. Dill. Trace Theory for Automatic Hierarchical Verification of Speed-Independent
Circuits. ACM Distinguished Dissertations. MIT Press, 1989.

J. C. Ebergen. A technique to design delay-insensitive VLSI circuits. Report CS-R8622,

Centrum voor Wiskunde en Informatica, June 1986.

BIBLIOGRAPHY 143

[44]

[45]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

Z. Har’El and R. P. Kurshan. Software for analytical development of communications
protocols. AT&T Technical Journal, 69(1):45-59, Jan.-Feb. 1990.

T. A. Henzinger, Z. Manna, and A. Pnueli. Temporal proof methodologies for real-
time systems. In Eighteenth Annual ACM Symposium on Principles on Programming

Languages, 1991.

T. A. H.nzinger, Z. Manna, and A. Pnueli. Timed transition systems. Technical Report
TR 92-1263, Department of Computer Science, Cornell University, Jan. 1992,

T. A. Henzinger, Z. Manna, and A. Pnueli. What good are digital clocks? In Automnata,

Languages, and Programming: 19th International Collogquium, 1992.
C. A. R. Hoare. Communicating sequential processes. Commun. ACM, 21(8), 1978.

C. A. R. Hoare. Communicating Sequential Processes. International Series in Computer
Science. Prentice-Hall, 1985.

Proceedings: IEEE International Conference on Computer Design, Oct. 1989.

F. Jahanian and A. K. Mok. Safety analysis of timing properties in real-time systems.
IEEE Trans. Softw. Eng., SE-12(9):890-904, Sept. 1986.

F. Jahanian, A. K. Mok, and D. A. Stuart. Formal specification of real-time systems.
Technical Report TR-88-25, Department of Computer Sciences, University of Texas at
Austin, June 1988.

M. B. Josephs and J. T. Udding. An algebra for delay-insensitive circuits. In Kurshan
and Clarke [56]. Also in Springer-Verlag LNCS 531.

R. Koymans. Specifying Message Passing and Time-Critical Systems with Temporal Logic.
PhD thesis, Eindhoven University of Technology, 1989.

D. Kozen, editor. Logic of Programs: Workshop, volume 131 of Lecture Notes in Computer
Science, Yorktown Heights, New York, May 1981. Springer-Verlag.

R. Kurshan and E. M. Clarke, editors. Computer-Aided Verification, Proceedings of the
1990 Workshop, volume 3 of DIMACS Series 'n Discrete Mathematics and Theoretical

Computer Science. American Mathematical Society, 1990. Also in Springer-Verlag LNCS
531.

144 BIBLIOGRAPHY
[57] R. P. Kurshan. Analysis of discrete event coordination. In de Bakker et al. [37].
[58] R.P.Kurshan. Automata-theoretic verification of coordinating processes, March 30, 1992.

[59] R.P. Kurshan and K. L. McMillan. Analysis of digital circuits through symbolic reduction.
IEEE Trans. Comput.- Aided Design Integrated Circuits, 10(11):1356-1371, Nov. 1991.

[60] L. Lavagno, 1991. Personal Communication.

[61] L. Lavagno, K. Keutzer, and A. Sangiovanni-Vincentelli. Algorithms for synthesis of
hazard-free asynchronous circuits. In DAC91 [36].

[62] 1. Lee and S. B. Davidson. Generalized I/O with timing constraints. Technical Report
MS-CIS-87-01, Department of Computer and Information Science, University of Penn-
sylvania, Jan. 1987.

63] 1. Lee and A. Zwarico. Timed acceptances: A model of time dependent processes. In
M. Joseph, editor, Formal Techniques in Real- Time and Fault- Tolerant Systems, Proceed-
ings of a Symposium, Warwick, UK, September 1988, volume 331 of Lecture Notes in
Computer Science. Springer-Verlag, 1988.

[64] H. R. Lewis. Finite-state analysis of asynchronous circuits with bounded temporal un-
certainty. Technical Report TR-15-89, Harvard University, Center for Research in Com-
puting Technology, 1989.

(5] H. R. Lewis. A logic of concrete time intervals. In LICS90 [67], pages 380-389.

[66] O. Lichtenstein and A. Pnueli. Checking that finite state concurrent programs satisfy
their linear specification. In Conference Record of the Twelfth Annual ACM Symposium

on Principles on Programming Languages, 1985.

[67] Proceedings of the Fifth Annual IEEE Symposium on Logic in Computer Science, June
1990.

(68] N. A. Lynch. Multivalued possibilities mappings. In de Bakker et al. (37].

[69] N. A. Lynch and M. R. Tuttle. Hierarchical correctness proofs for distributed algorithms.
In Proceedings of the Sizth ACM Symposium on Principles of Distributed Computing. The
Association for Computing Machinery, Inc., Aug 1987. Also, MIT/LICS/TR-387, April
1987.

BIBLIOGRAPHY ‘ 145

[70] Z. Manna and P. Wolper. Synthesis of communicating processes from temporal logic

specifications. In Kozen [55].

[71] A. J. Martin. A synthesis method for self-timed VLSI circuits. In Proceedings: IEEE

International Conference on Computer Design, Oct. 1987.

[72] A.J. Martin and J. R. Burch. Fair mutual exclusion with unfair P and V operations. Inf.
Process. Lett., 21:97-100, Aug. 1985.

[73] A. J. Martin, S. M. Burns, T. K. Lee, D. Borkovic, and P. J. Hazewindus. The design
of an asynchronous microprocessor. In C. L. Seitz, editor, Advanced Research in VLSI:
Proceedings of the Decennial Caltech Conference on VLSI, Mar. 1989.

[74] A. Mazurkiewicz. Basic notions of trace theory. In J. W. de Bakker, W.-P. de Roever,
and G. Rozenberg, editors, Linear Time, Branching Time and Fartial Order in Logics
and Models for Concurrency, volume 354 of Lecture Notes in Computer Science. Springer-
Verlag, 1989.

[75] C. Mead and L. Conway. Introduction to VLSI Systems. Addison-Wesley, 1980.

[76] R. Milner. A Calculus of Communicating Systems, volume 92 of Lecture Notes in Com-
puter Science. Springer-Verlag, 1980.

[77] B. Mishra. Some Graph-Theoretic Issues in VLSI Design. PhD thesis, Carnegie Mellon
University, Pittsburgh, PA, 1985.

[78] 1. Moon, G. J. Powers, J. R. Burch, and E. M. Clarke. Automatic verification of sequential
control systeras using temporal logic. American Institute of Chemical Engineers Journal,
38(1):67-75, Jan. 1992.

[79] X. Nicollia, J.-L. Richier, J. Sifakis, and J. Voiron. ATP: an algebra for timed processes.
Techniral Report RT-C16, Project SPECTRE, IMAG, Grenoble, France, 1990.

(80] X. Nicollin and J. Sifakis. An overview and synthesis on timed process algebras. In
K. G. Larsen and A. Skou, editors, Computer-Aided Verification, Proceedings of the 1991
Workshop, volume 575 of Lecture Notes in Computer Science, 1992.

[81] J. S. Ostroff. Automated verification of timed transition models. In Sifakis [93], pages
247-256.

146 BIBLIOGRAPHY
[82] J. S. Ostroff. Temporal Logic for Real-Time Systems. Research Studies Press, 1990.

[83] V. R. Pratt. Modelling concurrency with partial orders. International Journal of Parallel
Programming, 15(1):33-71, Feb. 1986.

[84] G. M. Reed. A hierarchy of domains for real-time distributed computing. In M. Main, ed-
itor, Mathematical Foundations of Programming Semantics, volume 442 of Lecture Notes

in Computer Science. Springer-Verlag, 1989.

[85] G. M. Reed and A. W. Roscoe. Analysing tmy: a study of nondeterminism in real-time
concurrency. In A. Yonezawa and T. Ito, editors, Concurrency: Theory, Language, and

Architecture, volume 491 of Lecture Notes in Computer Science. Springer-Verlag, 1991.

[86] G. M. Reed, A. W. Roscoe, and S. A. Schneider. CSP and timewise refinement. In J. M.
Morris and R. C. Shaw, editors, Fourth Refinement Workshop, Cambridge, England, 1991.
Springer- Verlag.

[87] M. Rem, J. L. A. van de Snepscheut, and J. T. Udding. Trace theory and the definition
of hierarchical components. In Bryant [10].

(88] A. W. Roscoe. A Mathemtical Theory of Communicating Processes. I'kD thesis, Oxford
University, 1982.

[89] S. A. Schneider. Correctness and Communication in Real-Time Systems. PhD thesis,
Oxford University, 1990. Published as technical monograph PRG-88.

[90] C.-J.Seger. A bounded delay race model. In IEEE International Conference on Computer-
Aided Design, 1989.

[91] C.-J. H. Seger. Models and Algorithms for Race Analysis in Asynchronous Circuits. PhD
thesis, Department of Computer Science, University of Waterloo, Waterloo, Ontario,
Canada, 1988. Rescarch Report CS-88-22.

[92] C. L. Seitz. System Timing. Chapter 7 in [75], 1980.

[93] J. Sifakis, editor. Automatic Verification Methods for Finite State Systems, International
Workshop, Grenoble, France, volume 407 of Lecture Notes in Computer Science. Springer-
Verlag, June 1989.

BIBLIOGRAPHY 147

[94] M. Tuttle, M. Merritt, and F. Modugno. Time constrained automata. Unpublished
manuscript, Aug. 1988.

[95] Y. Wang. Real-time behaviour of asynchronous agents. In J. C. M. Baeten and J. W. Klop,
editors, CONCUR ’90 : Theories of Concurrency— Unification and Eztension, volume 458
of Lecture Notes in Computer Science. Springer-Verlag, 1990.

96] Y. Wang. CCS+TIME = an interleaving model for real time systems. In J. L. Albert,
B. Monien, and M. R. Artalejo, editors, Automata, Languages, and Programming: 18th
International Colloquium, volume 510 of Lecture Notes in Computer Science, Madrid,

Spain, 1991. Springer-Verlag.

[97] P. Wolper. Temporal logic can be more expressive. In 22nd Annual Symposium on

Foundations of Computer Science, pages 340-348, 1981. Also appeared as [98].

(98] P. Wolper. Temporal logic can be more expressive. Information and Control, 56:72-99,
1983.

148 BIBLIOGRAPHY

Index of Theorems, etc.

Al, 48, 44, 48, 49, 79, 135
A2, 43, 44, 49, 80

A3, 43, 44, 49, 80

A4, 43, 44, 48, 50, 79, 81, 135

Cl, 21, 24, 35, 51, 136

C2, 24, 36

C3, 24, 27, 36

C4, 24, 36

C5, 24, 27, 36

C6, 24, 27, 36

C7, 24, 27, 36

C8, 24, 37

C9, 21, 24, 21, 35, 38, 51, 136

L1, 40, 41, 97, 104, 136
L2, 40

L3, 40

L4, 40, 41, 97, 104

L5, 104, 136

T1, 26, 27, 29, 30, 51, 59, 66, 86, 91, 93, 95,
137

T2, 26, 27, 30, 36-38, 95

T3, 26, 27, 30, 36, 95

- T4, 27, 28-31, 37, 38, 59, 66, 68, 80, 93-95

T5, 27, 30, 95

T6, 27, 30, 36, 91, 95, 98, 102, 103

T7, 27, 30, 36, 91, 95, 98, 102, 103

149

T8, 26, 27, 29, 30, 32, 36, 38, 51, 59, 66, 86,
91, 93, 95, 137

TS, 86, 87, *, 95, 137

T10, 86, 87, 91, 93, 95

T11, 86, 87, 90, 91, 93-95

T12, 87, 91, 94, 95

T13, 87, 90, 91, 93-95, 101, 134

T14, 87, 88, 91, 93, 95

T15, 87, 88, 90, 91, 95, 96

T16, 87, 91, 93. 95

T17, 87, 88, 90-95, 4%

T18, 87, 91. 3, 9%

T19, 86, 87, 88, 91, 93, 95, 98, 103, 137

Definition 2.1. 22, 134, 135, 138
Definition 2.2, 22, 135, 136
Note 2.3, 22, 23, 33, 135, 136
Note 2.4, 23, 134

Definition 2.5, 23, 137
Definition 2.6, 28, 51, 133, 136, 137
Definition 2.7, 26, 86, 135-137
Note 2.8, 27 .

Definition 2.9, 27, 59, 88, 131
Note 2.10, 28

Lemma 2.11, 30

Lemma 2.12, 30

Lemma 2.13, 31

Lemma 2.14, 32

150

Definition 2.15, 83, 52, 138

Note 2.16, 33, 134

Definition 2.17, 33, 135

Definition 2.18, 83, 36, 52, 100, 133
Definition 2.19, 83, 52, 100, 137
Definition 2.20, 33, 84, 52, 100, 137
Definition 2.21, 34, 133

Toneorem 2.22, 34, 35

Lemma 2.23, 35

Lemma 2.24, 36

Lemma 2.25, 37

Theorem 2.26, 34, 38, 44

Theorem 2.27, 39, 40, 60, 61, 68, 83, 97

103, 104
Theorem 2.28, 39, 41, 103, 104
Definition 2.29,. 40

Theorem 2.30, 40, 41, 97, 103, 104, 136

Definition 2.31, 40, 104, 132
Definition 2.32, 41, 104, 132
Theorem 2.33, 41, 104
Definition 2.34, 42, 52, 134
Theorem 2.35, 48, 48, 79, 135
Theorem 2.36, {4, 48, 79
Theorem 2.37, 44

Definition 2.38, 45, 52, 136
Definition 2.39, 45

Corollary 2.40, 46, 99
Definition 2.41, 46, 47, 48, 52
Lemma 2.42, 47, /8, 61, 68
Lemma 2.43, 49

Lemma 2.44, 49

Lemma 2.43, 49

Lemma 2.46, 50

INDEX OF THEOREMS, ETC.

Note 3.1, 59, 83
Definition 3.2, 59, 131
Lemma 3.3, 59, 61
Lemma 3.4, 59

Definition 3.5, 60, 132
Definition 3.6, 29, 60, 131
Lemma 3.7, 60

Definition 3.8, 61, 132
Lemma 3.9, 61, 63
Definition 3.10, 65, 131
Lemma 3.11, 66, 83
Lemmza 3.12, 66
Definition 3.13, 68, 132
Definition 3.14, 69, 131, 134, 138
Lemma 3.15, 70

Lemma 3.16, 71

Definition 4.1, 53, 77, 97
Definition 4.2, 53, 57, 78, 79, 85
Lemma 4.3, 78, 79

Lemma 4.4, 79

Lemma 4.5, 80

Lemma 4.6, 80

Lemma 4.7, 81

Definition 4.8, §2, 131
Lemma 4.9, §2

Definition 4.10, 83, 131, 134
Lemma 4.11, 83

Definition 4.12, 83, 132
Lemma 4.13, 83

Corollary 4.14, 84
Definition 4.15, 84, 137
Definition 4.16, 84, 131
Corollary 4.17, 84

INDEX OF THEOREMS, ETC.

Lemma 4.18, 8/

Theorem 4.19, 85
Definition 4.20, 51, 86, 133, 135-137
Note 4.21, 87

Note 4.22, 88

Definition 4.23, 88, 131
Definition 4.24, 88, 131, 134
Definition 4.25, 89, 92, 96, 100, 136
Definition 4.26, 89, 137
Definition 4.27, 90

Note 4.28, 90

Corollary 4.29, 90, 101, 102
Corollary 4.30, 90

Corollary 4.31, 90

Corollary 4.32, 90, 101
Lemma 4.33, 83, 88, 91
Lemma 4.34, 91

Lemma 4.35, 91

Lemma 4.36, 92

Lemma 4.37, 89, 92

Lemma 4.38, 92

Lemma 4.39, 93

Lemma 4.40, 94

Lemma 4.41, 95
. Theorem 4.42, 95, 97
Definition 4.43, 96, 135
Lemma 4.44, 96

Definition 4.45, 97, 136
Lemma 4.46, 97, 99
Theorem 4.47, 98

Definition 4.48, 100, 135, 137, 138
Definition 4.49, 100
Theorem 4.50, 100

Lemma 4.51, 101

Lemma 4.52, 102
Lemma 4.53, 102
Theorem 4.54, 104
Theorem 4.55, 104
Theorem 4.56, 104, 136
Definition 4.57, 104, 132
Definition 4.58, 104, 132
Lemma 4.59, 105, 106
Definition 4.60, 105, 134
Theorem 4.61, 106, 107
Definition 4.62, 107
Theorem 4.63, 107

151

152 INDEX OF THEOREMS, ETC.

Index

agent, 21, 23 false positive, 11, 15
agent signature, 22 fictitious clock, 55
alphabet, 22

. homomorphism, 45
of a signature, 22

of trace structure, 33 interleaving, 16
of trace structure set, 40

over W, 22 maximal parallelism, 16

behavior parallel composition

complete, 26, 85 in concurrency algebra, 23

partial, 26, 85 in trace structure algebra, 33
b b .
possible traces, 33

carrier, 21 power set algebra, 77

chaos mode, 118 prefix, 89
circuit algebra, 21
clock, 111

closure under unions, 107

prefix-closed, 90
projection

in concurrency algebra, 23

concatenation, 86 in trace algebra, 26

concurrency algebra, 23 in trace structure algebra, 33

conservative approximation, 11, 42
renaming

induced by

homomorphism, 47 in concurrency algebra, 23
9

power set algebra, 79 in trace algebra, 26

ifiverseof. 106 in trace structure algebra, 34
b

conTainTnent renaming function, 23

language, 24 signal, 22

trace set, 34 signature, 22

failure mode, 110, 111 of a trace structure, 33
false negative, 11 of an agent, 22

153

154 INDEX

suffix, 89

trace
complete, 26, 85
partial, 26, 85
trace algebra, 26
with partial traces, 86
trace structure, 33
operations, 33, 100
trace structure algebra, 33
with partial traces, 100

