
AD-A256 191

Design and Implementation of
Practical

Constraint Logic Programming Systems

Spiro Michaylov

August 24, 1992

CMU-CS-92-168

DTIC
ELECTE
OCT 0 7 1992 School of Computer Science

Carnegie Mellon University
5000 Forbes Avenue

Pittsburgh, PA 15213-3891

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy.

|o-" f~~..•.•l e•4•.a'.... ...- :O..d"

0•;•i u -,, "1 -.- ;,.:'- rte . o

- -92-26623

@1992 by Spiro Michaylov

This research was sponsored partly by IBM through a graduate fellowship and a joint study agree-
ment, and partly by the Avionics Laboratory, Wright Research and Development Center, Aeronautical
Systems Division (AFSC), U. S. Air Force, Wright-Patterson AFB, OH 45433-6543 under Contract
F33615-qOn-C-1465, ARPA Order No. 7597.

The views and conclusions contained in this document are those of the author and should not be
interpreted as representing the official policies, either expressed or implied, of the U.S. Government.

=L•• 112

Keywords: programming languages, declarative programming, logic program-

ming, constraints, programming methodology, efficient implementation

• egie School of Computer Science

DOCTORAL THESIS
in the field of

Computer Science

Design and Implementation of
Practical Constraint Logic Programming Systems

SPIRO MICHAYLOV

Submitted in Partial Fulfillment of the Requirements
for the Degree of Doctor of Philosophy

ACCEPTED:

1/ ,

MAJOR PROFESSOR DATE

DEAN [DATE

"APPROVED:

PROVOST DATE

Abstract

The Constraint Logic Programming (CLP) scheme, developed by Jaffar and Lassez,
defines a class of rule-based constraint programming languages. These generalize tra-
ditional logic programming languages (like Prolog) by replacing the basic operational
step, unification, with constraint solving. While CLP languages have a tremendous
advantage in terms of expressive power, they must be shown to be amenable to prac-
tical implementations. This thesis describes a systematic approach to the design and
implementation of practical CLP systems. The approach is evaluated with respect to
two major objectives. First, the Prolog subset of the languages must be executed with
essentially the efficiency of an equivalent Prolog system. Second, the cost of constraint
solving must be commensurate with the complexity of the constraints arising.

The language CLP(JZ), whose domain is uninterpreted functors over real numbers,
is the central case study. First, the design of CLP(7Z) is discussed in relation to pro-
gramming methodology. The discussion of implementation begins with an interpreter
that achieves the efficiency of equivalent Prolog interpreters, and meets many of the
basic efficiency requirements for constraint solving. Many of the principles applied in
the interpreter are then used to develop an abstract machine for CLP(JZ), leading to a
compiler-based system achieving performance comparable to modern Prolog compilers.
Furthermore, it is shown how this technology can be extended so that the efficiency
of CLP(TZ) approaches that of imperative programming languages. Finally, to demon-
strate the wider applicability of the techniques developed, it is shown how they can
be used to design and implement a version of Elf, a language with equality c')nstraints
over A-expressions with dependent types.........

AcceE•c:;,; Fc;; \ . .

NTIS CF.-d

By)

Axr :;- .t-..

Di':,t .".. :•

/111
Iiio,

iv

Contents

I Background 1

1 Introduction 3

2 Constraints and Logic Programming 9
2.1 Logic Programming and Prolog 9

2.1.1 The Prolog Operational Model 9
2.1.2 Implementation Techniques 13
2.1.3 Programming Methodology and Practical Experience 14

2.2 Constraints and Constraint Programming 14
2.2.1 Constraint Solving 15
2.2.2 Classification of Constraint Languages 17
2.2.3 Review of Systems 18

2.3 Constraint Logic Programming 20
2.3.1 Examples 21
2.3.2 Review of Languages and Systems 21
2.3.3 Applications 27

II Languages and Programming 29

3 Language Design 31
3.1 CLP Operational Model 31
3.2 Complications Related to Deciding Constraints 33
3.3 Effect on Language Design 34

3.3.1 Syntactic Restrictions 35
3.3.2 Dynamic Restrictions 35

3.4 Looking Ahead 39

4 CLP(TZ) 41
4.1 The Language and Operational Model 41

4.1.1 The Structure JZ 41
4.1.2 CLP(7Z) Constraints 42
4.1.3 CLP(JZ) Programs 42
4.1.4 The Operational Model 44

4.2 Basic Progfamming Techniques 48
4.3 Major Examples: Electrical Engineering 52

4.3.1 Analysis and Synthesis of Analog Circuits 52
4.3.2 Digital Signal Flow 62
4.3.3 Electro-Magnetic Field Analysis 64

4.4 Survey of Other Applications 66
4.5 Empirics 67

5 AProlog and Elf 75
5.1 The Domain 75
5.2 The Languages 77
5.3 Higher-Order Abstract Syntax 81
5.4 Manipulating Proofs 86
5.5 Programming Methodolog, 87
5.6 Empirical Study 89

5.6.1 Properties of Programs 89
5.6.2 The Measurements 91
5.6.3 The Programs and Results 92

III Implementation Techniques 99

6 Implementation Strategy 101
6.1 Run-Time Strategy 102
6.2 Compile-Time Strategy 103
6.3 Summary 105

7 Organization of Solvers 107
7.1 Adding Delay to The Implementation Model 107
7.2 Multiple Constraint Solvers 109
7.3 Interpreting CLP(1Z) 111

7.3.1 Unification 112
7.3.2 The Interface 117
7.3.3 Linear Equations and Inequalities 117
7.3.4 Some Examples of Constraint Flow 120

7.4 Summary 121

8 Managing Hard Constraints 123
8.1 Delay Mechanisms 124
8.2 Wakeup Systems 124
8.3 Structural Requirements of a Wakeup System 127
8.4 Example Wakeup Systems 129
8.5 The Runtime Structure 130

8.5.1 Delaying a new hard constraint 133
8.5.2 Responding to Changes in E 134

vi

8.5.3 Optimizations 134

8.5.4 Summary of the Access Structure 135

9 Incremental Constraint Solvers 137
9.1 Practical Implications of Incrementality 137

9.2 Incrementality and Prolog 139

9.3 Strategy for Incremental Solvers 140
9.4 Incrementality in Four Modules of CLP(1Z) 141

9.4.1 Unification 141
9.4.2 Linear Equations 141

9.4.3 Linear Inequalities 144

9.4.4 The Delay Pool 144
9.5 Summary 146

10 Compilation 147

10.1 Prolog Compilation and the WAM 148.
10.2 The Core CLAM 150

10.2.1 Instructions for Arithmetic Constraints 150
10.2.2 Runtime Issues 152

10.3 Basic Code Generation 154

10.4 Global Optimization of CLP(1?) 160

10.4.1 Modes and Types 160

10.4.2 Redundancy 160
10.5 The Extended CLAM 162
10.6 Summary of Main CLAM Instructions 165

10.7 Empirics 165
10.8 Extended Examples 167

11 Efficient Implementation of Elf 177
11.1 Higher-Order Unification 177
11.2 Hard Constraints 179

11.3 Easy Cases of Constraints 181
11.4 Other Implementation Issues 184

IV Conclusions 187

12 Conclusions 189

A Electrical Engineering Programs 191

A.1 Circuit Solver 191

A.2 Transistor Circuit Analysis and Design 194
A.3 Signal Flow Graph Simulation 201

vii

B Natural Semantics Programs 205
B.1 Expressions of Mini-ML 205
B.2 Natural Operational Semantics 206
B.3 The Value Property and Evaluation 207

B.3.1 The Value Property 207
B.3.2 Transformation of Evaluations to Value Deductions208

viii

List of Figures

1.1 Requirements of a Programming Language 4

2.1 Simple Prolog example 11

4.1 Successful derivation sequence for ohm query 46
4.2 SEND + MORE = MONEY 51
4.3 Piecewise linear diode model 53
4.4 Resistive circuit with diode 54
4.5 Use of the general package to solve a DC circuit 56
4.6 RLC Circuit 57
4.7 DC model of NPN transistor 59
4.8 An NPN type transistor 59
4.9 Biasing Circuit for NPN transistor 60
4.10 High frequency filter 63
4.11 Input and output for filter 63
4.12 Liebmann's 5-point approximation to Laplace's equation 64
4.13 Solving Laplace's equation 65
4.14 Small Programs: Resolution and Unification 72
4.15 Small Programs: Arithmetic 73
4.16 Large Programs: Resolution and Unification 73
4.17 Large Programs: Arithmetic 74

5.1 Elf program to convert propositional formula to negation normal form . 78
5.2 Summary of Elf syntax 80
5.3 Basic Computation 93
5.4 Proof Manipulation 94
5.5 Mini-ML comparison 95

6.1 Basic Implementation Model 102

7.1 Generic Implementation Model with Delay 108
7.2 Delay/Wakeup Mechanism 108
7.3 CLP(1Z) Solver Organization 113
7.4 Unification Table for CLP()Z) Interpreter 114

ix

8.1 Wakeup degrees for pow/3 129
8.2 Wakeup degrees for mult/3 130
8.3 Wakeup degrees for array/4. 131
8.4 Wakeup degrees for conc/3 131
8.5 Wakeup degrees for clo~s/2, conc/3 and or/3 in CLP(') 132
8.6 The access structure. 134
8.7 The new access structure. 135

9.1 Solver state after two equations 143
9.2 Solver state after choice point and third equation. 143
9.3 Delay stack and access structure 145

10.1 Unification Table for CLAINI Execution. 154
10.2 Summary of Main CLALM Instructions. 166
10.3 Prolog benchmarks 167
10.4 Program for reasoning about mortgage repayments 168
10.5 Four queries for the mortgage program. 168
10.6 C function for Q I.168
10.7 C function for Q2 169
10.8 Timings for Mortgage program. 169
10.9 High-level pseudocode: mortgage specialized for Q,.I. 170
10.lOHigh-level pseudocode: mortgage specialized for Q2 170
1O.llHigh-level pseudocode: mortgage specialized for Q3 171
10.l2High-level pseudocode: mortgage specialized for Q 171
10.l3Core CLAM code for general mortgage program 172
10.l4Extended CLAM code for mortgage program, specialized for Q'. .. 173
10.l5Extended CLAM code for mortgage program, specialized for Q2. 173
l0.16Extended CLAM code for mortgage program, specialized for Q3.174
10.l7Extended CLAM code for mortgage program. specialized for Q4. 175

11.1 Comparison of solutions in Huet's aaid Miller's algorithms 179
11.2 Core unification table for Elf 180
11.3 Wakeup system for Elf. 182
11.4 Conventional term representation for Elf. 183
11.5 Functor/Arguments term representation for Elf 183

x

Acknowledgements

The task of remembering all the people who helped me to get to the point of finishing
this thesis, without missing anybody, is almost as daunting as writing the thesis itself.

I'm grateful to Gordon Preston for convincing me that I should learn some math-
ematical logic, thus bumping me onto the right path. John Crossley actually got me
interested in it, and since then has provided valuable encouragement and support.
Joxan Jaffar got me interested in logic programming, somehow convinced me that I
really wanted a Ph.D. no matter how much I had thought otherwise, and that I was
prepared to move to the other side of the world for five years to get it. Since then
Joxan has provided guidance, encouragement and support beyond measure, in addition
to fostering a thrilling research environment that transcended minor details like geo-
graphical location. During the years since it has been my pleasure and privilege to also
work closely with Nevin Heintze, Peter Stuckey, Roland Yap and Chut Ngeow i'ee, who
all demonstrated through the fellowship of the "bird cage" that research could also be
fun. I am also grateful to Jean-Louis Lassez for his thoughtful guidance and staunch
support.

I have been most fortunate since coming to CMU in having a dynamic, friendly and
supportive environment in which to work. I am particularly grateful to Nico Habermann
for his insistence that I should be free to pursue my interests as much as possible, to
Ed Clarke for his early support and guidance, Peter Lee for enthusiastic support as
my co-advisor, and to Dana Scott for his insightful comments and guidance. Frank
Pfenning's support, encouragement and guidance has been invaluable for the last few
years. He has taught me a great deal about the A-calculus and type theory, has never
been phased by the sheer denseness of my questions, and has helped to make even
writing a thesis quite exciting. The excellent administrative and support staff in the
School of Computer Science have made my life and work much easier than they might
have been.

At various times I have also learned a great deal by working with Scott Dietzen,
Mike Epstein, Ed Freeman, Niels Jorgensen, Pierre Lim, David Long, Kim Marriott,
Benjamin Pierce and Vijay Saraswat. The other faculty and students of the Ergo
project and its successors have also provided many valuable learning opportunities.

I would like to thank my office-mates Nevin Heintze and Dean Pomerleau for putting
up with me through good times and not-so-good, and finally all of my friends, including
many of the above, who have helped make life so interesting, and have in recent times
helped to keep me relatively sane.

xi

For the past four years I have been supported financially by IBM through a graduate
fellowship and other programs. These have contributed significantly to the progress of
the work described in this thesis, and have helped to ensure my academic freedom.

It's just as well we don't have to thank our parents for all the wonderful things
they do. In addition to the usual amazing efforts, my parents made great sacrifices
to make sure I didn't have to participate in eastern Europe's half-century of wasted
potential. For all these things, and their support as I have done what I wanted to do,
my gratitude is boundless.

Pittsburgh

August 24, 1992

xii

THESIS COMMITTEE

Peter Lee (co-chair)
Frank Pfenning (co-chair)

Dana Scott

Joxan Jaffar (IBM)

xiii

xiv

Part I

Background

Chapter 1

Introduction

Declarative programming is based on the idea that, for software engineering reasons,
programs should be as close as possible to specifications of the problem and problem
domain. While declarative languages have traditionally had a disadvantage with respect
to imperative programming languages in terms of efficiency, it has been argued that the
software engineering advantage made up for the lack of efficiency. While this argument
is to some extent valid, the efficiency disadvantage has nevertheless hampered the
acceptance of such languages for serious applications programming. The high-level
goal of this thesis is to demonstrate, through the use of two specific languages, how
this disadvantage can be alleviated for the constraint logic programming paradigm,
which consists of a class of rule-based constraint programming languages.

The essential idea of logic programming is that a program should be a set of axioms
in some logic and a computation should be a search for a constructive proof of a goal
statement from the program. In the late 60s and early 70s a number of researchers
developed systems that put these ideas into practice in the form of the programming
languages Absys and Prolog. Over the next decade a great deal of work was done on se-
mantics, programming methodology and implementation technology, to the point where
now a substantial number of commercial Prolog systems exist, and Prolog has begun
to be taken seriously as a programming language. Recently, considerable progress has
been made towards the goal of developing Prolog compilers that achieve performance
comparable to conventional imperative languages.

It has been widely observed that the expressive power of logic programming lan-
guages like Prolog is limited when reasoning in certain basic domains, such as arith-
metic. The logic programming framework in its pure form requires the programmer to
write code describing these domains in excruciating detail, and hence Prolog systems
have tended to include ad hoc facilities for such reasoning. For this reason, Jaffar and
Lassez defined the Constraint Logic Programming (CLP) scheme [83], which defines a
class of rule-based constraint languages. These differ from traditional logic program-
ming languages in that the basic operational step is constraint satisfaction rather than
unification. A CLP language over a particular domain of computation can provide
tremendous advantages in terms of expressive power over a logic programming lan-
guage like Prolog, if the domain is appropriate to the applications being tackled. As

3

4 CHAPTER 1. INTRODUCTION

PROGRAMMING IMPLEMENTATION

Ease of Progranmming Efficiency
and Modification

Figure 1.1: Requirements of a Programming Language

a result, it is easier to realize the high-level software-engineering objectives of logic
programming with CLP languages.

Because the CLP scheme is so general, using it to design a practical CLP language
requires more than choosing a domain that seems useful: efficiency must be taken
into consideration. Indeed, it is easy to design a CLP language that is potentially
useful, in terms of expressive power, yet obviously unimplementable. This may be
the case if the language requires constraint solving in a domain that is undecidable,
if no efficient decision algorithm exists, or no such algorithm is adaptable to the CLP
operational model. Even the more realistic languages pose difficult implementation
problems, as complicated decision algorithms can have too much overhead for the kinds
of problems repeatedly arising in the execution of a program. The question is whether
it is possible to define a range of CLP languages powerful enough to provide real benefit
over traditional logic programming and yet can be efficiently executed.

The specific objective of this thesis is to develop and demonstrate language de-
sign and implementation techniques for making a class of CLP languages practical. It
describes a systematic approach to the design and implementation of practical CLP sys-
tems. The work begins with the understanding that designing a practical CLP language
depends on an understanding of not only programming methodology, but also imple-
mentation efficiency issues. Furthermore, to implement a CLP language efficiently, it
is again necessary to consider programming methodology. To clarify what is unusual
about this approach to language design and implementation, let us consider the dia-
gram in Figure 1.1. It expresses the essential requirements of a programming language
and its implementations. The parameters that need to be balanced are language de-
sign, programming methodology and implementation strategy. The requirements can
be broadly divided into those that are external (semantic clarity of the language, ease

5

of developing and modifying code, efficient execution of programs) and those that are
internal (the causal relationships between the parameters). Some of the internal rela-
tionships between the parameters are natural or even trivial, and others are forced on
us by pragmatics. The natural ones are:

"* design - implementation

Obviously, the language design defines the implementation problem.

"* design -- methodology
Again, the programmer can only use what is provided by the language.

"* methodology - design
It should come as no surprise that the language designer is typically influenced
heavily by an intended style of programming and class of applications.

The following influences are less than desirable, but in the case of CLP, must be ob-
served.

* methodology - implementation
Ideally, it should be possible for the implementor to work in a vacuum: simply
implement all features of a language as efficiently as possible. Because of the
power of CLP languages, this is often impossible. In particular, implementing
some aspects of constraint solving efficiently will hinder the efficiency of another
aspect. For this reason, it is important to know which features are most important
to the programmer.

* implementation - design
Again, because of implementation difficulties resulting from an excessively gen-
eral domain, it is necessary to consider the problems of solving various kinds of
constraints when designing the language.

* implementation - methodology

This is what we hope to avoid: ideally, the programmer should not have to
understand how the system is implemented.

As a result of exploring these relationships for two case studies and considering
other domains, this thesis relies heavily on the observations that:

" The simple cases of constraint solving are usually the most frequent.
A programming language based on rules and constraints is useful largely because
programs can be more than just static descriptions of constraint satisfaction prob-
lems. During the execution of a program, systems of constraints are gradually
constructed, composed and specialized. Such computation results in large num-
bers of simple constraints on the way to building complex constraint networks.

"* For a large range of domains and applications, handling the simple cases of con-
straint solving well is necessary for an efficient implementation overall.

6 CHAPTER 1. INTRODUCTION

These cases are frequent enough to form a bottleneck if the overheads of deal-
ing -. ith them are too high. It is still important to deal with the general case
efficiently, but it is not sufficient.

The language CLP(R), whose domain is uninterpreted functors over real numbers, pro-
vides the central case study. First, the design of CLP(1Z) is discussed in relation to
programming methodology. The discussion of implementation begins with an inter-
preter that achieves the efficiency of equivalent Prolog interpreters, and meets many of
the basic efficiency requirements for constraint solving. Many of the principles applied
in the interpreter are then used to develop an abstract machine and compilation model
for CLP(Z). The IBM compiler-based CLP(7Z) system has been heavily influenced by
the ideas in this thesis, and in turn has provided a testbed for them. It achieves per-
formance comparable to modern Prolog compilers for Prolog programs, and improves
significantly on arithmetic constraint solving performance of the earlier interpreter.
This system has been widely distributed, and has been used by various programmers
for developing non-trivial applications. It is also shown how this technology can be
extended so that the efficiency of CLP(E) approaches that of imperative programming
languages.

Finally, to demonstrate the wider applicability of the techniques developed, it is
shown how they can be used in the design and implementation of Elf, a language with
equality constraints over A-expressions with dependent types. Superficially, Elf is a
very different language to CLP(74). However, the parallels with CLP(7Z) in terms of
programming methodology and implementation tradeoffs are quite striking.

Some comments need to be made about the context of the work on CLP(TZ) de-
scribed in this thesis.

CLP(7Z) was first described in 1986 [70], and its original implementation was de-
scribed in [85] and distributed openly in 1987. Hence, CLP(JZ) was the first arithmetic-
based CLP system available. A number of CLP languages related to CLP(JZ) eventually
emerged. The first of these, Prolog III, was described in [30], formally specified in [31]
and distributed (commercially) around 1990. While the significant differences between
CLP(7?) and Prolog III are described in subsequent chapters, the important point here
is that the work done in this thesis is completely independent from that on Prolog III.

The author has participated in the ongoing CLP(1Z) implementation effort from
its beginnings, thus putting into practice many aspects of this thesis. However, there
are aspects of CLP(1Z), and of CLP in general, that are not addressed in this thesis.
For example, solving linear inequalities and projecting constraints for output are not
addressed in detail.

The remainder of the thesis is organized as follows. Chapter 2 concludes this part
of the thesis with a survey of the areas of logic programming, constraint programming
and constraint logic programming, concentrating on language design, programming
methodology and system implementation issues. Part II deals with language design
and programming methodology. It begins with Chapter 3, introducing CLP language
design issues, as affected by programming methodology and implementation issues.
Then Chapter 4 discusses the design of CLP(1Z), explores one area of application in de-

7

tail, and ends with an empirical study of CLP(1Z) programs. Similarly, Elf is explored
in Chapter 5. Part III deals with implementation issues and techniques. Chapter 6
deals with implementation issues in greater detail, and outlines a strategy for efficient
implementation of CLP systems. The following four chapters explore four aspects of
this strategy in detail, concentrating on two implementations of CLP(7Z). Chapter 7
discusses the organization of multiple constraint solvers, and Chapter 8 discusses man-
aging the delaying of hard constraints. Chapter 9 deals with the problem of tailoring

constraint solvers to support the CLP operational model. Then Chapter 10 addresses
the issue of compiling CLP languages, again concentrating on CLP(JZ). Finally, Chap-
ter 11 discusses a plan for implementing Elf from the viewpoint of the same basic
techniques.

8 CHAPTER{ 1. INTRODUCTION

Chapter 2

Constraints and Logic
Programming

The concept of Constraint Logic Programming is a natural fusion of the concepts of
logic programming and constraint programming. Therefore, we begin by considering
the basic concepts and history of the two separate areas. Then we introduce CLP,
review a number of CLP languages and systems, and discuss applications.

2.1 Logic Programming and Prolog

The original motivation for logic programming was the belief that, for software engi-
neering reasons, it is desirable for programs and specifications to be identical. That is,
programming should be done in an executable specification language. Furthermore, it
was believed that first-order logic was an appropriate specification language. It then
remained to determine how some subset of first-order logic could be made executable,
given the understanding that general theorem proving in first-order logic was infeasible
as a basis for a programming language.

For various perspectives on the history of logic programming, see [25, 48, 98]. In
this brief review, we will ignore the development of logic programming semantics, for
which the interested reader should see the book by Lloyd [110]. Instead, we concen-
trate on the development of the operational model (and hence design of the language),
the development of efficient implementations, and the understanding of programming
methodology.

2.1.1 The Prolog Operational Model

Much of the early work on logic programming was the result of the confluence of two
different research endeavors: automated theorem proving and natural language process-
ing. This work was made possible by Robinson and others [146] through the discovery
of resolution and the re-discovery of unification, earlier described by Herbrand in 1930
(71]. Thereafter, a number of systems were developed that essentially incorporated a

9

10 CHAPTER 2. CONSTRAINTS AND LOGIC PROGRAMMING

subset of resolution and could loosely be called logic programming languages. The first
one seems to have been Absys 1, developed in 1967 by Elcock and others [48, 49, 541.
PLANNER, which was notable for its extreme inefficiency, was developed by Hewitt
[72] in 1RM69. Colmerauer and others [26, 27] implemented Prolog (Programmation et
Logique) in 1973 and Kowalski [97, 100) systematically formulated the procedural in-
terpretation of a Horn clause set in 1974. It was the work of the groups headed by
Colmerauer and Kowalski that was the precursor of much of modern logic program-
ming, and Prolog is still clearly the dominant logic programming language. Because of
the importance of logic programming and Prolog to the subject matter of this thesis,
an informal introduction is given here.

The essential idea of Prolog, as Kowalski showed, is that an axiom

A if B1 and B 2 and ... and B,,

can be considered as a procedure definition in a recursive programming language, where
.4 defines the name and arguments of the procedure and the Bis are the body. Also, it
says that to solve A, it is sufficient to solve all of the Bs - that is, to execute them.
Now, a program is a set of such procedure definitions, and to run a program we give a
goal, which is just a list of procedure calls. That is,

B1 and B 2 and ... and B,

which simply says that the B,s need to be solved. The axioms correspond to definite
Horn clauses in first-order logic, with function symbols used to create data structures.
Goals correspond to the negation of a conjunction of atoms in first-order logic. Hence
executing a program correspon#a to combining the negation of a statement with a set
of Horn clauses, and deriving a contradiction by resolution, hence proving the original
statement by reductio ad absurdam.

Prolog is an implementation of this idea with a different syntax and a specific rule
describing how the search aspect of resolution is to be carried out. Variables are strings
starting with an upper case character, and predicate and function symbols are strings
starting with lower case characters. Commas represent conjunction and :- represents
"'if". Goals begin with ?-, and both rules and goals end with a period. Operationally,
a list of goals is solved from left to right, and the search for appropriate rules is depth-
first. The notion of unification is altered somewhat, as we will describe later. To give
a simple example, the incomplete program from [1721 in Figure 2.1 represents a simple
ancestor relationship, where father(X,Y) says that X is the father of Y. and son(X,Y)
says that X is the son of Y. An approDriate goal might be ?- grandfather(terach,
X). with the expected answer being X a isaac.

It is important to consider why Prolog was designed the way it was. The choice of
language (definite clauses) and program invocation (a conjunction of atoms) interacts
with the choice of operational model (linear resolution, depth-first search) in a signif-
icant way. At each operational step. a derived goal is resolved with an input clause.
Thus each resolution step can be seen as analogous to a procedure call in a conventional
programming language. Furthermore, this enables the notion of "activation record"

2.1. LOGIC PROGRAMMING AND PROLOG 11

father(terach, abraham).
fathar(abraham, isaac).

male(terach).
male(abraham).
male(isaac).

son(X, Y) "-
father(Y, X),
male(X) .

grandfather(X, Z)
father(X, Y),
father(Y, Z).

Figure 2.1: Simple Prolog example

from conventional programming languages to be used to represent variable bindings in
Prolog - an important step in making a Prolog implementation efficient, by avoiding
the copying of clauses. Because depth-first search is used, the proof tree that needs to
be represented at any point in time is a list, so the space used is merely linear in the
depth into the tree. Backward chaining search (starting from the goal and searching
back to the axioms) also helps make programming correspond more intuitively to al-
gorithmic notions. The left-right atom selection rule enforces this correspondence, as
the programmer knows what order "statements" will be executed in. Additionally, this
avoids the cost of keeping track of which atoms have yet to be reduced, as a simple
continuation can be uzed. Similarly, the depth-first search rule allows the use of a
single failure continuation. Even at this level, however, the operational model Livolves
a compromise. While corresponding well to algorithmic notions of programming, and
being amenable to efficient execution, completeness has been lost. A program may
logically imply some solution, but the execution will result in an infinite loop. This is
the first of many examples we will discuss of language design being influenced by obser-
vations about implementation and programming methodology. It was judged that the
problems inLoduced by this operational model would not interfere with programming
significantly, and that the efficiency benefits were sufficient to justify the decisions.

A further compromise in the design of Prolog was the omission of the occurs check.
This is a case of the usual Robinson unification algorithm that prevents a variable from
being unified with a term that properly contains it, since no finite term can satisfy the
corresponding equation. Clearly the decision to omit the occurs check makes sense from
an efficiency viewpoint, since it is expensive, in general requiring a full traversal of a
(possibly large) term. At the time it was believed that the cost could not be avoided in

12 CHAPTER 2. CONSTRAINTS AND LOGIC PROGRAMMING

any other way. This damages soundness and completeness, causing most real systems
to crash under certain circumstances - the consequences were described in some detail
by Plaisted [144]. It was originally believed that only contrived programs would cause
a problem. However, since then it has been shown that

" It can be determined dynamically and efficiently that the occurs check can safely
be eliminated in many cases (see for example [11]).

" Global analysis techniques can conservatively inform a compiler of many more
instances where the occurs check can be eliminated.

" Certain important programming techniques (e.g.: difference lists) result in pro-
grams that run incorrectly as a result of leaving the occurs check out.

" As will be discussed in more detail later, an alternate approach to solving this
problem is to change the semantics of Prolog so that the problem becomes a
feature. This was the approach taken by Colmerauer in Prolog II [28].

In contrast with the largely successful compromises described above, the occurs
check provides an example about the pitfalls of making design decisions on the basis of
the kinds of programs "nobody writes", since they are really observations about what
"nobody has written yet". Later we will have cause to remember this lesson.

Even the choice of basing Prolog on Horn clauses was a major compromise in its
design. One unfortunate aspect of programming with Horn clauses is that it is not
possible to directly represent negative information. That is, we cannot say that a
certain property does not hold or that a certain property holds if some other does not.
Such negation would require a more general form of resolution, which would introduce
inefficiency and does not correspond readily to algorithmic notions. A closely related
problem is that of disjunction - we cannot say that one of a number of facts holds,
without knowing which one.

The history of "solutions" to the negation problem again contains some interesting
lessons. The original compromise solution, dating all the way back to Absys, was
to add the (semantically) incorrect inference rule called negation as failure. Again
it was argued, somewhat convincingly, that it was whit programmers really needed.
Again, examples were found where this was false. More recently, there have been many
attempts to formulate a notion of negation that are feasible, semantically well-behaved,
and actually useful to programmers. An approach that fits in well with the ideology
of this thesis is that of nH-Prolog [111], which implements classical negation, but such
that pure Prolog programs can run efficiently, and efficiency degrades depending on how
much negation is used. The name "nH-Prolog" comes from the idea that the language
is best suited to programs that are "near Horn". For a general overview of the issue
of negation in logic programming, the reader should consult the two survey papers by
Shepherdson [157, 158].

2.1. LOGIC PROGRAMMING AND PROLOG 13

2.1.2 Implementation Techniques

As soon as Prolog was developed, a large amount of activity was devoted to striving
for more efficient implementations. The invention of structure sharing by Boyer and
Moore [18, 122] was important to making the early implementations at all practical,
as large numbers of derived goals could be represented. In the mid to late 1970s,
D. H. D. Warren and others at the University of Edinburgh developed the DEC-10
Prolog compiler [188, 1901. This was a significant development, as it demonstrated
that Prolog could be executed just as efficiently as LISP. At that time, it had been
considered that Prolog's efficiency disadvantage with respect to LISP was a barrier to
its broader acceptance.

In 1982, both Bruynooghe [20] and Mellish [116] reported that in some cases struc-
ture copying was appropriate for the representation of complex terms, laying part of
the foundation for the Prolog compilers of today. In particular, these studies showed
that while neither strategy had a very clear advantage in terms of space utilization
copying made accessing complex terms faster, while making their creation slower. The
issue was settled by the observation that a structure, once created, might be accessed
many times.

In 1983 D.H.D. Warren [189] described an abstract instruction set intended as a
target language for compiling Prolog, as well as an associated architecture. This became
known as Warren's abstract machine (WAM), and has provided the basis for most
modern Prolog compilers. The WAM is particularly suitable for software emulation
of compiled code. The essential idea behind it is that the instructions can be used
to represent variants of the unification operation - specialized by partially evaluating
unification with respect to the terms in the program. Since the WAM was described,
a number of less major developments have led to a number of efficient compilers being
made available commercially. These developments include clever strategies for register
allocation, clause indexing (whose effect is heavily dependent on programming style),
management of dynamic code (that is, involving assert/retract), and so on. Many
variants of the WAM exist for mal~ing various operations more efficient, and many
systems use a vastly increased number of specialized instructions to improve overall
performance. Native code compilers are now also widely available.

Most recently, two Prolog compilers developed by Van Roy [147] and Taylor [180]
have demonstrated that even the efficiency of imperative languages may eventually be
attainable. Both systems are based on global analysis of programs using the technique of
abstract interpretation [40]. This technique obtains large amounts of information about
the types and instantiation of variables in clauses, allowing particularly efficient code
to be generated. Once again the efficiency is obtained by making some assumptions
and claims about programming methodology. The programmer is required to give
information about which predicates will be used in queries and how - and in the
case of Taylor's system, is limited to using only one predicate symbol at the top level.
The analysis and hence compilation works best if this set of "allowed queries" is quite
limited. Furthermore, the analysis only works well if the use of dynamic code and
meta-level programming is reasonably localized - preferably limited to a few modules.

14 CHAPTER 2. CONSTRAINTS AND LOGIC PROGRAMMING

2.1.3 Programming Methodology and Practical Experience

Like the areas of logic programming semantics and Prolog implementation, the area of
Prolog programming methodology has come a long way. While Clocksin and Mellish
[24] gave the first detailed account of how Prolog could be used for serious programming,
the text by Sterling and Shapiro [172] takes a more modern and conceptually sounder
approach. Most recently, O'Keefe [132] described how to write Prolog programs that
are both well-structured and efficient, and Sterling [171] collected a number of articles
describing the use of Prolog in practical settings. In summary, Prolog programming
methodology has been widely discussed and is quite well understood.

The accumulated wisdom falls into the following broad categories:

" Effectively expressing the program.
This begins with rule-based programming. The use of recursion, logical variables,
and partially instantiated data structures is also important. At a more advanced
level, we have the use of difference lists, and "all solutions" predicates.

" Making programs efficient.
This involves understanding aspects of the implementation, and using them to
the programmer's advantage. For example, many Prolog compilers index clauses
using only one argument position in the head. Thus it can be useful for the
programmer to know which argument position this is. Furthermore, many com-
pilers include special optimizations for shallow' backtracking and tail recursion,
and taking advantage of these can be very useful. Sometimes programs can be
written to make it easier for the compiler to determine that a predicate is de-
terministic, so that choice point records are not created. (Choice point records
are a runtime structure used to keep track of which alternate clauses might be
used to solve a subgoal.) Judicious use of certain control predicates, such as the
cut predicate, can help the compiler find opportunities for removing choice point
records that have already been created.

" Sidestepping the deficiencies of Prolog.
This includes the effective (and correct) use of negation as failure. The cut and
once predicates, and if then else are important for limiting the number of
solutions to subgoals.

2.2 Constraints and Constraint Programming

Constraint programming has its roots in artificial intelligence. Traditionally, constraint
satisfaction problems (CSPs) consist of a graph ()V, A) where nodes X = in,.... , nk}
and A C A xAN, a set of values V = {vj,...,v,} and for each arc a E A a set
V, g V x V. The problem is to find a mapping 0 of values to nodes such that for each
(fl, nj) E A, we have (.O(ni), 0(n.4)) E V(n,,n,)" This and its many small variations are
often called the labeling problem. The idea is that the nodes correspond to variables

1Shallow backtracking is searching for an appropriate clause head.

2.2. CONSTRAINTS AND CONSTRAINT PROGRAMMING 15

that need to be assigned values from the domain V such that the constraints represented
by the V0, are satisfied. (Clearly, a relation can trivially be regarded as a constraint.)

The essential idea of constraint programming has been that a language should
include a number of primitive predicates and operators over some domains (such as
equality and inequality predicates, and addition and subtraction operators, on inte-
gers) and that computation should proceed by applying built-in constraint satisfaction
algorithms for these domains. The hope is that this makes computation non-procedural
(ie: declarative) since the order of constraints is unimportant, and thus a program is
a problem specification rather than a procedure for solving the problem. The analogy
with CSP is weak since the arc relations are replaced by the definitions of primitive
constraints, and constraint satisfaction is no longer necessarily just a search problem.

As an example, let us consider the problem of modeling a simple electrical circuit
with a voltage source V and two parallel resistors R, and R2 . The currents through
the resistors are I, and 12 respectively, and that through the voltage source is IT. Then
the system is described by the constraints

IT =-11 + 12
V = IAR
V = 12 R2 -.

We will return to this in the following discussion. We begin by discussing constraint
satisfaction techniques in isolation, then discuss how constraints can be used as the
basis for a programming language, and finally survey some of the major systems based
on these ideas.

2.2.1 Constraint Solving

A large part of the power of constraint languages comes from the power of the underlying
constraint solving algorithms, which are briefly surveyed here.

Classical Constraint Satisfaction

Classical constraint satisfaction problems are in general NP-complete, and are typically
solved by some form of backtracking search through the possible assignments to respec-
tive variables. This search can be made more efficient by incorporating some form of
intelligent backtracking [421, heuristics to help choose which variables to instantiate
first, and with which values, to maximize pruning (variable and value ordering - [64]),
and consistency labeling techniques. These are a class of pruning techniques that make
use of local inconsistences [64]. They include the well known techniques of forward
checking, partial lookahead and full lookahead. The papers by Davis [37] and Dechter
& Pearl [41] provide a comprehensive overview of this area.

Algorithms for Specific Domains

Of course a number of domains are so important that constraint solving in them has
generated a large amount of specialized investigation. They need to be considered from

16 CHAPTER 2. CONSTRAINTS AND LOGIC PROGRAMMING

a number of viewpoints, including theoretical complexity and performance in practice.
Furthermore, as we shall see later, it is sometimes important that they be flexible. In
particular, algorithms that can quickly re-solve an augmented set of constraints are of
great value. Here we give an overview of some of the algorithms of greatest potential
interest for CLP systems.

Real arithmetic has generated the most activity because it is so fundamental and
so important in practice. Tarski [179] showed that the theory of real closed fields was
decidable, and gave a decision algorithm. Not only is the worst-case complexity of this
algorithm doubly exponential, but it is totally infeasible in practice. Some work has
been done on more efficient variants of this algorithm (by e.g. Arnon [8]), but this seems
to have had little impact on applications. The restricted case of linear equations and
inequalities has been dealt with rather successfully. For linear equations, we have Gaus-
sian elimination, and a host of iterative algorithms with various advantages, mostly in
terms of numerical stability if floating point arithmetic is to be used. Linear inequali-
ties can be solved using linear programming techniques, such as the Simplex algorithm
[351, which is exponential in the worst case, performs well in practice, and is in a for-
mal sense polynomial on average [15, 153]. Khachian [94] gave a linear programming
algorithm that is polynomial in the worst case, but is disappointing in practice. More
recently, another polynomial-time algorithm by Karmarkar [93] has been getting quite
impressive results. In fact, sets of linear inequalities restricted to no more than two
variables per constraint can be solved very efficiently, as was shown by Shostak [161].
The algorithm was extended to larger numbers of variables, and seemed to perform
well, as long as the number of variables was not too high. Nonlinear real constraints
are more problematic. Techniques used include interval arithmetic, iterative methods,
and symbolic algebra based on Grdbner bases [149]. It should be noted that the typical
implementations of the algorithms mentioned use floating point arithmetic, which is
unsound. This is an instance of compromise between efficiency and semantics.

Because of the unsoundness of floating point arithmetic, some work has been done
on (infinite precision) ration~." 4rithmetic. Rational arithmetic for polynomials with
equations and inequalities is also decidable. Additionally, work has been done on sound
implementations of floating point arithmetic [133, 105].

Boolean constraint solving, essentially propositional theorem proving, has also gen-
erated a substantial amount of activity. Of course it is well known that the problem is
NP-complete, so the work has concentrated on algorithms that tend to work relatively
well in practice, if only for certain kinds of problems. The techniques include the method
of truth tables, semantic unification [21], SL-resolution [100], and Gr6bner bases [151].
The Gr6bner bases technique has the advantage of producing a canonical form (whose
significance will be discussed ;n Part III), not introducing spurious variables, and being
somewhat incremental (another issue to be discussed in Part li1). SL-resolution is also
incremental, but requires formulas to be translated to clausal form. The Davis-Putnam
algorithm is also being considered, and appears to be able to deal with constraints on
much larger numbers of variables. However, the representation it uses is not well suited
to the problem of producing a suitable projection of the constraints for the purpose of
output.

2.2. CONSTRAINTS AND CONSTRAINT PROGRAMMING 17

Word equations, or equivalently equations between string expressions where con-
catenation is the only operation, are of considerable theoretical and practical interest.
In particular, they are applicable to natural language processing. The decidability
problem was solved by Makanin 1113], although the decision procedure 'given there did
not actually produce a set of solutions to an equation. Jaffar [81] gave a decision pro-
cedure that also generates a (possibly infinite) minimal and complete set of solutions.
This algorithm, however, is impractical, and this problem has not been solved in the
unrestricted case. Furthermore, it is not clear that a restriction can be found that
makes the problem tractable but useful. An attempt at this will be discussed later in
0.is chapter.

2.2.2 Classification of Constraint Languages

It is rather difficult to review the development of constraint programming historically
because the work has often failed to build upon or even acknowledge previous work.
However, constraint programming languages tend to be characterized according to three
key parameters:

" How constraints in a program are interpreted. The issue is whether they represent
constraints as such or are templates for constructing constraints at run time. The
former are called static constraints, and the latter dynamic constraints, and the
run-time copies of these are constraint instances.

"* Whether ýonstraints affect the control of a program. That is, what effect, if any,
the result of solving some constraints can have on the future execution of the
program.

" How and to what extent constraints are solved. A system of constraints is solved
by local propagation if all the variables in the system become determined af-
ter a finite number of local propagation steps. A local propagation step occurs
when a constraint has a sufficient number of determined variables for some of its
other variables to be determined. These newly determined variables may then
precipitate further local propagation steps in other constraints. Instead of local
propagation, a more involved algorithm, such as Gaussian elimination, may be
used. Also, it is possible to specify that only constraints in certain syntactic
classes are solved. For example, constraints on real numbers might be restricted
to being linear.

Returning to the electrical circuit example above, the 2nd and 3rd equations can
be seen as instances of the (dynamic) constraint V = IR. Now, if we are given values
for V, R 1 and IT, then all unknowns can be solved using local propagation as follows:

I, - V/R 1.
12 - IT - Ii

R2 - V/i 2

18 CHAPTER 2. CONSTRAINTS AND LOGIC PROGRAMMING

where - denotes assignment. On the other hand, if we are given R1, R2 and IT, it is

not possible to order the equations so that they can be solved by this simple evaluation
and assignment method, since there are cyclic interdependencies between the variables.
That is, the system cannot be solved by local propagation, and a simultaneous equation
solver is needed.

2.2.3 Review of Systems

Now, rather than attempting a historical development, we will classify some of the
most important constraint languages according to the above three parameters, and
their intended application areas, where appropriate.

A Problem Solving Language: REF-ARF

In 1970, Fikes [53] described a system called REF-ARF. The REF component was an
essentially procedural programming language, with if-then and condition constructs
where boolean conditions were either integer or boolean constraints. Programs were
executed by the system called ARF, which employed heuristic-controlled backtrack-
ing, since the statements involving constraints potentially resulted in nondeterministic
choicepoints. The integer constraints only allowed addition and subtraction, so were
relatively easy to solve. The test and generate paradigm was also employed. This was
facilitated by integer variables always being bounded above and below.

The MIT Approach

The MIT Al Lab studied constraints in the 70s and early 80s from the viewpoint of gen-
eral problem solving and especially applications to circuit analysis and synthesis. The
CONSTRAINTS system, described by Steele and Sussman [169, 170, 176] used local
propagation to solve constraints. The system of constraints was built up by connect-
ing instances of macro-definitions, but was essentially static. To avoid the problem of
solving simultaneous equations, special-purpose heuristics, such as the voltage divider
law, were built into the circuit analysis programs. Some of the other systems, such
as EL/ARS [175, 168] and SYN [39] used MACSYMA as their basic constraint solver,
to avoid the restrictions of local propagation. While Steele [169] noted the conceptual
correspondence between logic programming and the constraint paradigm, he did not
take any concrete steps to exploit this correspondence.

Interactive Graphics: SKETCHPAD, THINGLAB, MAGRITE and JUNO

Sketchpad [177] was the first interactive drawing program. It allowed the user to build
up geometric objects from primitives and geometric constraints. The constraints were
solved using local propagation where possible, and relaxation.

ThingLab [16, 17] was an object oriented language incorporating many of the ideas
of Sketchpad. It also used local propagation and relaxation, but separated constraint
solving into planning and execution phases. When a user started to manipulate part of

2.2. CONSTRAINTS AND CONSTRAINT PROGRAMMING 19

an object, a plan was generated for quickly re-solving the appropriate constraints for
that part of the object. This plan was then repeatedly executed while the manipulation
continued.

While some of the process was later automated, in the original version of ThingLab
the user had to specify methods for propagating values for each constraint predicate.
The user was also responsible for ensuring that these methods actually satisfied the
predicate. Instances of constraint templates could be obtained by using the object-
oriented facilities of the language, but were essentially static during execution.

Magritte [58] was an editor for simple line drawings. Local propagation was used
to solve constraints, but the constraint network was searched in a breadth-first manner
to find the shortest path to a solution.

Juno [1291 was a system for geometrical layout. It was unusual in not using local-
propagation at all - everything was solved using a Newton-Raphson solver. The ap-
proach to defining constraints was novel, as either textual or graphical description could
be modified by the user, changes immediately being reflected in the other form.

Typesetting: METAFONT and IDEAL

Ideal [184] is a picture description language for typesetting. It uses complex numbers
to represent positions, and solves linear equations only. One complex equation really
corresponds to two real equations. The language has no general purpose control struc-
tures. Constraints are built up hierarchically using boxes. METAFONT [95], a font
definition package, uses a solver similar to that of Ideal, but somewhat weaker. Li [108]
describes a text layout system that also solves linear systems.

Amalgamation with Other Paradigms

Freeman-Benson [56] describes and motivates incorporating constraints into impera-
tive programming. The paradigm is called Constraint Imperative Programming (CIP).
In the sample language, Kaleidoscope '90, there are two kinds of constraint expres-
sions. These are explicit constraints and Smalltalk-80 assignments. Variables are
time-stamped, so an assignment of the form x <- x + 1 establishes the constraint
x,+1 = x, + 1. Constraints are also hierarchical, some being required, and others just
being preferred, at various levels of priority.

Hill [731 developed a language called MEL, which adds constraints to LI'P. Dar-
lington and Guo [361 proposed a framework for Constraint Functional Programming.

Spreadsheets and Modeling Tools

Spreadsheets such as VisicalcTM are essentially constraint systems relying on local
propagation. The constraints are generally static, but they do incorporate (rather ad
hoc) control constructs. Their special feature is that the user's view is a matrix of
data cells that are related by constraints. Changing the value of a cell instantly results
in changes to the values of the cells that depend on it. However, in most systems
the propagation tends to be "forward propagation" in the sense that some cells are

20 CHAPTER 2. CONSTRAINTS AND LOGIC PROGRAMMING

designated data cells, whose values are provided by the user, and others are "derived"
calls, whose values are to be computed based on the values of other cells.

TK!Solver [96] is a spreadsheet-based system that incorporates undirectional con-
straints. solved by full local propagation and, where necessary, relaxation. If relaxation
is to be used, the user is required to provide an initial guess for the values of the
appropriate variables.

HEQS [43] is a financial modeling system incorporating an extended version of the
Ideal constraint solver.

A Meta-Language for Constraint Languages: BERTRAND

Leler [1061 proposed the language Bertrand essentially as a meta-language fcr imple-
menting constraint solvers. It is a general constraint programming language, based
on term rewriting, with dynamic constraints and general control mechanisms. All con-
structs of the language are based on augmented rewrite rules. and the programmer must
simply add rules for the constraint solving algorithm. A solver for linear equations, us-
ing Gaussian elimination, is one of those proposed. Constraint solving in Bertrand can
control the execution of programs, through a conditional mechanism called "higher or-
der constraints" - constraints on other constraints. Some interesting ideas on compiling
Bertrand were also proposed.

2.3 Constraint Logic Programming

A number of researchers recognized that replacing the syntactic unification of Prolog
with some other form of unification would increase its expressive power. A lot of the
early work dealt with unification with respect to some equality theory that was part
of the program, using an operational model that relied on generalized unification [150].
A general framework for such languages was given by Jaffar, Lassez and Maher [80].
The major problem with these languages is that unification with respect to an equality
theory has never been shown to be efficient in practice.

Apparently the first deliberate attempt to replace unification uniformly by con-
straint solving in some other domain was Colmerauer's Prolog II [28], which is based
on the observation that unification without the occurs check corresponds more closely
to solving equations over rational trees. as described below.

The Constraint Logic Programming scheme was originally described by Jaffar and
Lassez in [82, 83]. It defines a class of rule-based constraint languages, each of which is
specified by giving a structure of computation. That is, it gives a formal basis for logic
programming languages where unification of finite trees is replaced by constraint solving
in some domain as the fundamental operational step. Traditional logic programming
can be seen as an instance of this scheme.

2.3. CONSTRAINT LOGIC PROGRAMMING 21

2.3.1 Examples

Let us consider a number of structures and simple example programs for CLP over
those structures. First, consider a subset of boolean algebra with the underlying set
{0, 1}, the interpreted constants 0 and 1, interpreted function symbols V, E, ., - and
the only interpreted predicate (constraint) symbol =. Then a full adder with inputs
Inl and In2, carry input CarryIn and output Out and carry output CarryOut could
be represented by the singlc - e

adder(Inl, In2, CarryIn, Out, CarryOut)
Inl E In2 X1,
In1 • In2 = Al,
Xl E CarryIn = Out,
Xl • CarryIn = A2,
Al V A2 = CarryOut.

To run this on a typical example we could use the goal ?- adder(l, 1, 1, Out,
CarryOut). and obtain the answer constraint Out = 1, CarryOut = I, or, alter-
nately, we can use a goal like ?- adder(l, 1, CarryIn, Out, 1). to obtain the
answer constraint Out = CarryIn.

As another example consider the structure with the finite (possibly empty) strings
over the alphabet {a, b6 with the interpreted constants E, a, b, interpreted function sym-
bol E for concatenation, and equality. Then a program for recognizing and generating
palindromes might be written as:

unit(a).
unit(b).

palindrome (c).
palindrome(X)

unit(X).
palindrome(X e Y e2 X)

unit (X),
palindrome(Y).

Then the goal ?- palindrome(a (b (a). can be expected to succeed with an
empty answer constraint, while the goal ?- palindrome (X E b ED a). has an infinite
number of potential answer constraints including X = a, and X = a ED b, etc.

2.3.2 Review of Languages and Systems

Since the CLP scheme was defined, a number of older programming languages have
been described in terms of it, and many new languages have been designed with it in
mind. Prolog II can be seen as an instance of the scheme. This subsection is a review
of the major proposed CLP languages and/or implemented systems.

22 CHAPTER 2. CONSTRAINTS AND LOGIC PROGRAMMING

ABSYS

As already mentioned, the early versions of Absys were very similar to Prolog. However,
in a late version [49] some simple arithmetic constraints were introduced. These were
solved by local propagation.

Prolog II

Described in [28, 29], the intent of Prolog II was to design a version of Prolog that had
a defensible, yet efficient, unification algorithm. It was observed that the kinds of loops
that the occurs check sought to avoid occur in rational trees. Rational trees can be
defined as either

"* the possibly infinite trees with a finite number of subtrees, or

"* those that can be represented as a finite set of term equations of the form

xi = (,)

where the ti are parameters, x, to x,, are all distinct variables, and the right hand
sides are all finite terms.

Unification of rational trees was quite efficient, and would solve one of the major se-
mantic problems of Prolog. Since it was observed that equations were being solved in
the domain of rational trees, and disequations could be solved as well, explicit disequa-
tions were added to the language. An interesting aspect of the language is that delay
is used to deal with disequality constraints. In particular, the dif/2 predicate is really
a disequality constraint that suspends whenever a variable could be bound to make
the two terms equal. That is, for example ?- dif(f(X) ,g(X)) immediately succeeds,
?- dif(f(c),f(c)) immediately fails, and ?- dif(f(X),f(c)) suspends until X is
instantiated (bound to something other than a variable). In that case, it is awakened
and fails if X is now c, and succeeds otherwise. The utility of general delay was also
recognized, leading to the implementation of the freeze/2 predicate, which delays the
second argument, a goal, until the first has been instantiated.

Unfortunately, while it is possible to give small programs that simulate certain au-
tomata, Prolog II has never found a major application area of its own. It can reasonably
be used as an alternative to Prolog, but there are certain applications of Prolog where
finite trees are the appropriate domain. For example, in the implementation of queues
in terms of difference lists as described in [172], the clause empty(X\X). describes an
empty queue, but without the occurs check a call to this clause may succeed erroneously
with a non-empty queue, through the creation of a cyclic binding.

2.3. CONSTRAINT LOGIC PROGRAMMING 23

CLP(7Z)

CLP(7Z) [70, 85] incorporates uninterpreted functors over real numbers as the domain,
allowing as explicit constraints equalities between terms and equalities and inequali-
ties between arithmetic terms. Constraints that are deemed to be too difficult for the
constraint solver are delayed in the hope that they will become simpler. The imple-
mentations use floating point arithmetic to approximate real arithmetic. Throughout
this thesis, the design, programming methodology and implementation of CLP(TZ) will
be discussed at length.

Prolog III

Prolog III [30, 31, 32], the successor to Prolog II, was designed as a general fusion be-
tween constraint programming and logic programming. The domain consists of rational
trees, rational numbers, lists and booleans. Equality and disequality constraints are
available on all terms. Furthermore, inequalities are available for rationals. The usual
four arithmetic operations are available for rationals, concatenation for tuples, and the
usual boolean connectives. In what was called a "Final Specification" for Prolog III
[31], the difficulty of dealing with nonlinear arithmetic, and arbitrary list concatena-
tions (essentially word unification) was acknowledged. The problem was dealt with
through syntactic restrictions. That is, a product of two variables was syntactically
disallowed, as was list concatenation where the first list was a variable and its length
was not explicitly given. This had the advantage of leaving the operational semantics
very clean, but restricting the way programs could be written. This methodological
issue will be discussed at considerable length later. However, Version 1.1 of Prolog III
deals with both situations by delaying the constraints until sufficient information is
available. In the case of list concatenation, this complicates matters somewhat. Since
the length of a list variable may be specified by annotation with a numeric variable,
list constraints and arithmetic constraints can affect each other. This use of delay
mechanisms was pioneered in the work on CLP(JZ) dcqcribed in this thesis.

Given the restriction on list concatenation, its implementation in Prolog III is
straightforward. Arithmetic is handled using a simplex algorithm on an infinite preci-
sion representation of rational numbers - i.e.: pairs of unbounded integers. Version
1.1 also implements floating point arithmetic, with some guarantees of precision, but
the algorithm has not been published. In many respects the constraint solving and out-
put algorithms differ radically from those in CLP(J?). Booleans were originally solved
using SL-resolution, but a Davis-Putnam solver has recently been experimented with.
Prolog III is available as a commercial system.

CHIP

CHIP (Constraint Handling in Prolog) [46, 183] was designed to tackle constrained
search problems, which are typically NP-complete. Its approach is strongly influenced
by the operations research and classical constraint satisfaction viewpoints. CHIP op-
erates on somewhat disjoint domains: finite trees, natural numbers, rational numbers,

24 CHAPTER 2. CONSTRAINTS AND LOGIC PROGRAMMING

booleans and finite sets of constants or natural numbers.
The novel aspect of the language is how it deals with the finite sets. That is, clas-

sical constraint satisfaction problems are encoded as sets of constraints over variables
whose values are known to lie within these finite sets. Rather than using the temporal
backtracking of Prolog, which leads to a generate-and-test search, the forward checking,
lookahead and partial lookahead rules of classical CSP are used. These are known as
consistency techniques [112]: a priori pruning, using constraints to reduce the search
space before discovering a failure.

Variables that take their values from finite sets are known as "domain" variables -
not to be confused with the generic use of the term "domain". Natural number terms
consist of natural numbers, domain variables over natural numbers, and terms built
up from the usual natural number opeit.'•rs. Consistency techniques are used to solve
equations, inequalities and disequalities on itaturaI number terms, symbolic constraints
on domain variables, and user-defined constraints. The user declares certain predicates
to be suitable as constrints for forward checking purposes if they satisfy a certain
calling pattern. Then these are used in addition to primitive constraints for pruning
the search space.

CHIP has been used for a large number of classical operations research problems
with remarkable success. The implementation of a CHIP compiler was described by
Aggoun and Beldiceanu in [1], and this provides a useful contrast with the design of the
Constraint Logic Arithmetic Machine (CLAM) for CLP(TZ) compilation as described
in this thesis. In particular, the CHIP compilation model does not allow for many low
level optimizations of constraint solving to be expressed.

CAL

CAL [151] is actually a pair of languages using Grdbner bases techniques to solve con-
straints. Boolean CAL uses a special modification of the Buchberger algorithm for
boolean constraints. In real CAL, polynomial equations are solved using the classical
Buchberger algorithm for complex numbers. This is rather problematic, since unsatis-
fiability in complex numbers implies unsatisfiability in real numbers, but the converse
does not hold. It is not satisfactory to simply say that it is a CLP language on complex
numbers, however. In particular, the applications that the authors wish to address
include robotics, where the existence of imaginary solutions is far from useful in many
cases.

RISC-CLP(R)

Another system dealing with nonlinear arithmetic constraints, based on partial cylin-
drical algebraic decomposition and Gr6bner bases is described by Hong [75]. The above
concern about complex numbers is avoided by using the unsatisfiability in the complex
domain only for pruning. This work is only preliminary, and the practicality of the
approach has not yet been established.

2.3. CONSTRAINT LOGIC PROGRAMMING 25

B NR Prolog

BNR Prolog [1331 was developed by Bell Northern Research in Canada. It provides
arithmetic constraints on closed intervals of the real line. The motivation is to make
real relational arithmetic sound, which it is usually not when floating point arithmetic
is used. An unconstrained variable begins as the entire real line (or really bounded
by the highest and lowest machine real) and constraints result in this "aterval being
narrowed. It is possible that an interval will be narrowed to a point. To maintain
soundness, intervals are always rounded "outwards" when an arithmetic operation is
performed. Iterative solution techniques are us2d for nonlinear constraints.

Trilogy

Trilogy [103, 185, 186] has an operational model that is substantially divorced fron-
logic programming. Prolog-like rules are combined with procedures of conventional
programming paradigms. Linear equations and inequalities are solved in the domain of
integers (Pressburger arithmetic). Mode declarations are used. It is available cheaply
as a commercial product for personal computers.

AProlog and Elf

For our purposes, both AProlog [126] and Elf [139] can be seen as solving equations
between terms of the \-calculus with simple types and dependent types, respectively.
The motivation for AProlog was meta-programming for both programming languages
and logics. It is particularly suited to this application as variables in an object language
can be represented using abstraction in the meta language. Elf does not have predi-
cate variables of AProlog, but programs may reason about their partial correctness by
manipulating ptoofs of sub-goals in a way that is guaranteed to be type correct.

CLP(r')

The domain of CLP(v') [187] is regular s5ts. The language is "ntended to provide
a logic-based formalism for incorporating string handling and even file handling into
logic programming. The author also points out that problems in computer security
can be solved by reasoning with regular expressions. The atomic constraints of the
language are of the form x in e where x is either a variable or a string, and e is a
regular expression possibly containing variables. Where such a constraint can have
multiple solutions, these are dealt with through backtracking. This brings up issues
of scheduling, since constraints may have infinitely many solutions. The scheduling
strategy allows only constraints capable of generating a finite set of solutions to be
selected from a conjunction for evaluation. That is, others are essentially delayed. This
ensures termination of unsatisfiable conjunctions.

26 CHAPTER 2. CONSTRAINTS AND LOGIC PROGRAMMING

CIL

CIL (Complex Indeterminate Language) [124, 125] is designed for natural language
processing. It is a CLP language over partially tagged trees (PTTs). The terms are
called Partially Specified Terms (PSTs), which have been described [3] as being exactly
the same as feature matrices used in Unification Grammars [159]. CIL incorporates the
f reeze/2 predicate of Prolog II.

LOGIN and LIFE

LIFE [3] is a language consisting of logic programming, functional programming and
a facility for structured type inheritance - the b-calculus. The logic programming
component together with the ?P-calculus is a CLP language over what are called 0-
terms, and the subtyping and type intersection operations of the C-calculus. This
language is called LOGIN [4]. A iO-term is essentially a data structure built out of
constructors and access functions, and subject possibly to some equational constraints
that reflect sharing of structure. In this way the calculus formalizes data structure
inheritance.

CLPS

The CLP Shell, described by Lim and Stuckey [109] is an interesting and potentially
valuable alternate approach to the systems discussed above. The objective of CLPS is to
allow multiple constraint solvers to be incorporated into a CLP system with minimum
effort. However, it remains to be shown that the overhead resulting from this loose
coupling of constraint solvers is not excessive. The promise stems from the fact that
the system may be useful for prototyping if the overhead is less than say an order of
magnitude.

Concurrent Constraint Programming, and the Ask/Tell Framework

Concurrent Constraint (CC) programming [152] grew out of the work on committed
choice logic programming languages [1561, such as Concurrent Prolog [155]. These lan-
guages differ from normal logic programming in that they don't have the usual "don't
know" nondeterminism. Instead, they use what is called "don't care" nondetermin-
ism. That is, all clauses for a given predicate are tried concurrently, until one of them
reaches a commit operation, at which time the other alternatives are discarded. Com-
mitted choice languages originally depended on complicated and cumbersome methods
of synchronization. The idea of concurrent constraint programming was to deal with
this problem by making synchronization dependent on whether some constraint was
entailed by a global constraint store. Such constraints are "Ask" constraints. This
global store is maintained by combining constraints asserted throughout the program
"- "Tel!" constraintS. The vie"' of constraints in CC languages is rather different from
that of this thesis, because entailment rather than (un)satisfiability is used to control
execution. This view of constraints gives rise to an interesting and challenging set of

2.3. CONSTRAINT LOGIC PROGRAMMING 27

design and implementation problems quite different from the ones discussed in this
thesis.

2.3.3 Applications

In recent years, considerable work has been done on a.pplications of various CLP lan-
guages. One of the major application areas has been electrical circuit analysis, synthesis
and diagnosis [59, 123, 163, 165, 164, 166, 162, 167]. Civil engineering [102] and me-
chanical engineering [173] have also attracted some attention. Engineering applications
tend to combine hierarchical composition of complex systems, mathematical or boolean
models, and - especially in the case of diagnosis and design - deep rule-based rea-
soning. Another major area has been that of options trading ý74 78, 79, 104] and
financial planning [12, 13, 14, 19]. These applications have tended to take the form of
expert systems involving mathematical models. More traditional operations research

problems have included cutting stock [44] and scheduling [45].
More exotic applications areas have included restriction site mapping in genetics

[192]. Levitt surveyed the use of constraint languages in music [107], and Tobias im-
plemented an expert system for tutoring about harmony in CLP(7z) [182]. CLP(1Z)
was also used for generating test data for communications protocols [57]. Prolog was

developed by the Marseille group for natural language processing, so it should come as
no surprise that this is turning out to be significant application area for LIFE [3], CIL
[125], Prolog III [31] and AProlog [120, 34]. Both AProlog [62] and Elf [117] have been
used for implementing natural semantics of programming languages. AProlcg has also
been used for implementing natural deduction-style theorem provers [52]. Applications
of CLP(JZ), AProlog and Elf will be discussed in more detail in Part II.

28 CHAPTER 2. CONSTRAINTS AND LOGIC PROGRAMMING

Part II

Languages and Programming

29

Chapter 3

Language Design

To design a CLP language, it is necessary to choose a domain of computation. Recall
that choosing a domain involves choosing the underlying set of values with which we
are computing, the expressions (operations) allowed on that set, and the constraints
allowed on variables ranging over the set. As we shall see, the major theme of CLP
language design is introducing suitable compromises, based on complications result-
ing from implementation issues. Furthermore, it is necessary for compromises to be
introduced to the operational model as well.

It is also important to consider what minimum domain is necessary to provide
enough utility to solve the required class of problems. In particular, most CLP lan-
guages should probably include uninterpreted functors, thus at least nominally making
Prolog a subset. This makes a language more amenable to "general purpose" pro-
gramming, providing at least basic data structuring mechanisms. As a medium term
consideration, in order for CLP to be adopted into the applications community, it
will be necessary to promote the languages as extensions of Prolog, which run Prolog
programs essentially without modification, and with more or less the usual efficiency.

For the purposes of the following discussion, we define a CLP program as being a
finite set of rules of the form

A :_-71,..,• n _> 0

where A is an atom and each -i is either a constraint or an atom. An aton' consists of a
predicate symbol with the appropriate number of terms as arguments, and a constraint
is a constraint symbol with the appropriate number of terms as arguments. A term is
built up from variables and constants and function symbols from the domain.

3.1 CLP Operational Model

We begin by formally defining a CLP operational model, with enough generality to
account for compromises motivated by implementation concerns. Inherent in the oper-
ational model of CLP is a subgoal selection strategy, which selects a delayed constraint
or an atom from a given goal. Now let P denote a CLP program. Let G denote a

31

32 CHAPTER 3. LANGUAGE DESIGN

goal consisting of a sequence yj, .'.... j and a function partitioning this sequence into
multisets A of atoms, E of solved constraints and A of delayed constraints. In an initial
goal, all the constraints are delayed (in A). We say that there is a derivation step from
G to another goal G2 if the subgoal selection strategy selects some 7i for 1 < I < I and
one of the following holds:

* -Y, E A and E U {-yi} is satisfiable.
Then G 2 is the sequence G with partition A2 = A, A 2 = A \ {7i} and E2 =
N, U Oil.

* yi E A and the program P contains a rule R that can be renamed so that it
contains only new variables and takes the form: the head atom is H, the body is
the sequence denoted by B1 , B 2 ,..... Bs, s > 0, partitioned similarly into multisets
A1 and A1.
Then G2 is the sequence y1 7i-i,7i = H',B1 ,.... , 7 ... ,-ys, with the
partition E2 = E, A 2 = A U A1 U {-i = H} and A2 = (A \ {fy}) U A1.

We say that yi in G above is the selected subgoal. Equivalently, yi is the subgoal of G
chosen to be reduced.

A derivation sequence (or simply sequence) is a possibly infinite sequence of goals,
starting with an initial goal, wherein there is a derivation step to each goal from the
preceding goal. A sequence is successful if it is finite and its last goal contains only
solved constraints. A sequence is conditionally successful if it is finite and its last
goal contains only solved and delayed constraints. Finally, a finitely failed sequence
is finite, neither successful nor conditionally successful, and such that no derivation
step is possible from its last goal2 . The constraints in the last goal of successful and
conditionally successful sequences are called answer cn.•traints, and they constitute
the output of CLP programs.

Thus a program and goal are executed by a process of continuously reducing
any remaining atoms or solving delayed constraints in the goal. There are two non-
deterministic aspects in 6btaining a derivation sequence from a given initial goal as we
have defined above. One pertains to the subgoal selection strategy, The other pertains
to the search strategy, which determines which rule is used next in the reduction of a
selected atom in a subgoal.

As an example, consider the following program solving real arithmetic constraints.

ohm(V, I, R) :- V = I * R.

The following, in which we indicate solved constraints by underlining them, illustrates
a successful derivation sequence:

'This abbreviates the collection of equations between corresponding arguments in y, and H.21f the subgoal selection strategy is fair in the sense that every delayed constraint and atom in an

infinite sequence is eventually selected, then one has the usual soundness and completeness results with
respect to successful and finitely failed sequences (82].

3.2. COMPLICATIONS RELATED TO DECIDING CONSTRAINTS 33

?- ohm(V1, I, Ri), ohm(V2, I, R2), V = V1 + V2,
RI a 15, R2 = 5.

?- V1 = V', I = I', R1 = R', V' = I' *R,
ohm(V2, I, R2), V = Vi + V2, R1 = 15, R2 a 5.

?- Vi 1 V', I = I', Ri = W', V' = I' * ,
ohm(V2, I, R2), V = Vi + V2, Ri = 15, R2 = 5.

? - Vi 1 V', I = I', R1 = R', V' = I' *R',
V2 = V", I = I", R2 = R", V" = I" * R",
V = Vi + V2, R1 = 15, R2 = 5.

?- Vi V'1 , I = I', Ri = R', V' = I' * R',
V2 * V", I = I", R2 = R", V" = I" * R",
V = VI + V2, Ri - 15, R2 = 5.

?- Via V', I = I', Ri = R', V' = I' * R,
V2u V", I - I", R2 ZR", V" = I// * R",
V - V1 + V2, R1 = 15, R2 = 5.

?- Vi = V', I = I', R1 = R', V' = I' * R',
V2 = V, I = I", R2 - R", V' = V/ * R",
V = VI + V2, RI = 15, R2 = 5.

?- V' V V1, V" = V2, I = I' = I", R' = R1, R" = R2,
V1 0.75*V, I = O.05*V, R1 = 15, V2 = 0.25*V, R2 = 5.

Note that a "left-to-right" subgoal selection strategy was used above, except when the
nonlinear delayed constraint V1 = I' * R' was leftmost. The next leftmost and linear
constraint was selected instead. In the fourth last goal, the constraint RL = 15 became
a solved constraint and so the delayed nonlinear constraint V' = I' * R' becomes linear.
As will be discussed later in this chapter, this was no accident. It is then selected next.
In the third last goal above, R2 = 5 was selected, thus allowing the other nonlinear
constraint V" = I" * R" to be selected next. Finally, note that we have written the
last goal in a simplified form.

3.2 Complications Related to Deciding Constraints

In reality, a number of considerations complicate the language design process. Much of
this thesis deals with these complications, and some of the techniques for dealing with
them to produce "practical" programming languages and systems. For many seemingly
desirable domains, the required decision algorithms simply do not exist. For others, the

34 CHAPTER 3. LANGUAGE DESIGN

decision problem may be open. It is then necessary to decide whether undecidability
is expected to be a problem in practice. For many more domains, either the decision
problem is known to be intractable, or the best known algorithms are impiactical. Even
when a reasonably (or very) efficient decision procedure exists, it may be incompatible
with the CLP operational model. In particular, a CLP implementation requires incre-
mental satisfiability testing to be efficient. That is, it must be possible to determine
efficiently whether a satisfiable set of constraints, augmented with a new constraint,
is still satisfiable. Efficiency here loosely means that the time should be proportional
more to the size of the added constraint than that of the previous, satisfiable, set. Fur-
thermore, because of backtracking, it must be possible to undo such augmentations of
the constraint set efficiently.
To make the above more concrete, let us consider a number of examples.

" Natural numbers and integers are useful domains for many applications of an
operations research flavor. Nonlinear polynomial equations over integers, known
more commonly as diophantine equations, are undecidable. Linear equations and
inequalities are decidable but expensive to decide.

"* Equations between simply-typed A-expressions are undecidable.

" Real polynomial equations and inequalities are decidable, but all known algo-
rithms are extremely inefficient. Real linear equations and inequalities are effi-
ciently decidable: polynomial algorithms are known, and some are even known
to be efficient in practice.

" A linear algorithm for unification of finite trees is available: one was described by
Paterson and Wegman in [136] However, no linear unification algorithm is known
to perform well in practice. It is instructive to notice that the usual (Robinson)
algorithm for unification of finite trees, as implemented in most Prolog systems,
is quite incremental in practice. The cost of backtracking is linear in the number
of variables instantiated since the last choicepoint, and unification cost is only
somewhat dependent on the number of prior constraints (as instantiated variables
are more costly to unify than free ones, since they have to be traversed). The
Robinson algorithm is, depending on how terms and unifiers are represented,
either exponential or polynomial in the worst case.

3.3 Effect on Language Design

Issues of incremental satisfiability are discussed further in Chapter 9. Where an efficient
incremental solver is not readily available, the problems discussed above can often be
dealt with by appropriate restriction and organization of constraint solvers. To apply
these techniques, the design of a CLP language must begin with an intended application
area (or areas) and programming style. If constraint solving is to be restricted, certain
kinds of constraints must be identified as being too difficult to solve in the general case.
In this thesis they will be called the hard constraints. We now consider various ways

3.3. EFFECT ON LANGUAGE DESIGN 35

to deal with hard constraints, given that the domain of computation is general enough
that such constraints can be expressed in the language.

3.3.1 Syntactic Restrictions

One approach is to syntactically restrict the kinds of constraints on the given domain

that can be expressed. Note that the domain itself specifies the operations and relations
on the underlying set that are allowed. The syntactic restrictions here determine what
expressions can be built up using the operators, and what expressions the various
relation symbols can be applied to. Let us consider some examples.

"* Arithmetic expressions can be restricted to being linear, by requiring that multi-
plication only occur between two constants or between a constant and a variable,
but not between two variables.

" Simply-typed A-expressions can be restricted essentially such that, for example,
one existentially quantified variable cannot be applied to another. The detailed
definition of the restricted language, and the significance of the restriction, will
be discussed in Chapter 5.

"* Word equations can be restricted to avoid the case where the length of an initial
variable is unknown.

" Consider linear equations and inequalities on reals or rationals. Shostak [161]
gave a decision algorithm based on computing loop residues that is particularly
efficient when there are no more than two variables per constraint (note that three
variables per constraint are sufficient to express any set of constraints).

The syntactic restrictions should be such that they still enable the programmer to
express what is needed. As a result, not all problems of undecidability or inefficiency
can be handled in this way. One reasonable alternative is to insist that the expressible
constraints should at least be decidable. However, even this restriction is sometimes
excessive, as is the case with AProlog and Elf, which will be discussed in Chapters 5
and 11. At the very least, the language should be restricted sufficiently as to make the
dynamic restriction techniques discussed below applicable and useful. It turns out that
syntactic restriction is usually an excessively brutal way to obtain an efficiently imple-
mentable programming language. This is because constraints that appear syntactically
complex can often be simplified considerably by the time they are selected at runtime.
These observations will be discussed in more detail in the next two chapters.

3.3.2 Dynamic Restrictions

In the philosophy of constraint programming it is important that the programmer
should not have to be concerned with when information becomes available but just
needs to provide enough constraints for it eventually to become available. A more
effective way to cut the constraints down to size, then, is to restrict them dynamically.

36 CHAPTER 3. LANGUAGE DESIGN

That is, impose conditions on the form of a constraint when it is selected, rather than
when it is parsed. By the time a constraint is selected, some of its variables may have
been involved in a number of other constraints. Thus enough may be known about
them that deciding the constraint has become much simpler than might be expected
by examining it syntactically, in isolation. For example, a nonlinear arithmetic equation
might be made linear by the grounding of one or more variables. Or an equation between
two simply-typed A expressions might similarly become deterministic. Of course, we
should note that this discussion hinges on the language designer having a clear idea
about the programming methodology that the language is intended to support. This
issue will be discussed in some detail in the next two chapters.

There are two possible ways to deal with the situation where a constraint is selected
and does not meet the appropriate syntactic requirements.

"* Runtime error
Halt execution of the program, and print an error message, hopefully giving in-
formation on how the restriction was not satisfied.

" Delay
Assume, for the time being, that the constraint is consistent with the collected
constraints, but do not solve it - just store it. Then if it later does satisfy the
restriction, add it, and backtrack if it is inconsistent.

The first approach is the usual way to deal with system predicates in Prolog. For
example, in most Prolog systems,

?- X = 1, Y a 3, Z is X + Y.

binds Z to 4, while

?- X = 1, Z is X + Y, Y = 3.

will cause a runtime error when Z is X + Y is selected, as Y is still free. This is certainly
an improvement on static restrictions. For example, in a CLP language dealing with
reals, consider the following constraints with a left-right atom selection rule.

?- If + 12 a 10, II - 12 = 0, V - 12 * R + 2 * 12 * R.

By the time the third constraint is selected, II and 12 have values, so the equation
is linear. However, such a restriction still places on the programmer the burden of
worrying about when information becomes available, rather than just that of giving
enough information.

Delay mechanisms have quite a long history in logic programming: a systematic
study by Naish can be found in [1281. They have most commonly been used to delay
the calling of certain subgoals, either by annotating the subgoal with a delay condition,
or by annotating the rules defining a given predicate with the condition. Prolog II's
freeze/2 predicate is an example of the former, and the wait declarations of MU-
Prolog and when declarations of Nu-Prolog are examples of the latter. MU-Prolog and

3.3. EFFECT ON LANGUAGE DESMGN 37

Nu-Prolog also use delay on certain system predicates, such as a special predicate for
multiplication by local propagation. Carlsson [22] described how such general delay
mechanisms could be implemented efficiently. To see the advantages of delay mecha-
nisms for constraints, consider a permuted version of the example above, and assume
that nonlinear equations and inequalities are delayed until they become linear.

?- V = 12 * R + 2 * 12 * R, II + 12 = 10, II - 12 = 0.

Here the first equation can simply be delayed when selected, and when the values of Ii
and 12 are obtained from the subsequent constraints, it can be "awakened". Deeper
examples of this phenomenon in real programs will be discussed in Chapter 4. As an
example in a different domain, let us consider word equations. The goal

?- X.Y = abcde, Y = c.Z

has the unique answer

X = ab, Y = cde, Z = de

But if constraints are delayed until the variable on the left of a concatenation is of
known length, the constraints will not produce an answer. However, the goal

?- X.Y = abcde, Y = c.Z, IZI = 2.

can obtain the answer using delay as follows.

"* After the first constraint is delayed, additional constraints are established:

lxi + l•Y = 5, lxi <= s, lxi >= 0

"* After the second constraint is encountered, the first cannot yet be awakened but
additional (arithmetic) constraints are established:

lXI + IZI = 4, IXI <= 4, X.c.Z = abcde

"* Finally, the addition of the third constraint makes it possible to infer the con-
straint

IXI = 2

so the first constraint can be awakened, binding X to ab and Y to cde.

The interested reader can find similar examples for CLP(v') in [187].
Delay gives the programmer considerable flexibility, but also additional responsibil-

ity. For a start it is now possible to obtain deadlock - a situation where only delayed
constraints remain, but none meets the selection criteria. This might be considered an
error condition, or the notion of termination might be extended to include the possibil-
ity of a deadlocked computation, where the answer to the query is maybe. The answer

38 CHAPTER 3. LANGUAGE DESIGN

constraint could then be printed, with its correctness being contingent on the (undeter-
mined) satisfiability of the delayed constraints. Additional problems of programming
methodology arise when this approach is chosen. In particular, the programmer is
not really freed from the burden of understanding when information becomes available.
Where constraint (un)satisfiability is used to control search, an inconsistency that is
detected too late can lead to an infinite loop, both in cases when the query should have
succeeded, and in cases where it should have failed finitely. Such a delay mechanism
can thus lead to rather insidious bugs in a program. These problems are partially illus-
trated by the following definitions of the predicates silly and dangerous. We again
assume that nonlinear equations and inequalities are delayed until enough information
is available to make them linear.

silly(X) :- X*X < 10, X > 4, loopalways(X).

dangerous(X) :- X*X < -5, loopalways(X).
dangerous (3).

Any call to silly should simply fail, since the two constraints are inconsistent. How-
ever, if X is free in the call, the first constraint will be delayed, and the second does not
produce enough information to awaken it. Hence the call to loopalways will happen,
producing an infinite loop. A call to dangerous with a free value of X should succeed,
binding X to 3, as the constraint is unsatisfiable. However, such a call will result in the
constraint being delayed, thus ending up in an infinite loop. Of course, it should be
pointed out that the problem we are describing is not new: the operational model of
Prolog itself introduces very similar problems.

The issue of how to restrict a CLP language appropriately has often come up and
been addressed in different ways in real systems. As will be discussed in some detail in
Chapter 4, in CLP(1Z) the selection rule is modified to delay nonlinear constraints until
they become linear. In the early documents on Prolog III on the other hand, including
the so-called "Final Specification" [31], the syntactic approach to this same problem
was strongly advocated, although the claims of this thesis about the methodological
advantages of delay, had already been made. However, recent commercial versions of
Prolog III employ delay for nonlinears also. Furthermore, the same approach is now
used in Prolog III to deal with the intractability of word unification. A word equation is
delayed until the length of any initial variables is known. (In fact, at the implementation
level, it delays them until it is known whether the length of the leading variable is zero
or non-zero [33]. As will be discussed in subsequent chapters, a similar argument has
occurred over how the non-determinism of higher-order unification should be handled.
Likewise, a delay approach could be applied to constraints on data aggregates, such as
arrays. These examples will be discussed in more detail in Chapter 7.

It should be noted that even for applications that can run correctly with certain
dynamic restrictions, these might have an adverse effect. For example, in Chapter 4
a crypto-arithmetic program is discussed that uses linear inequalities heavily. If only
equations were decided, and inequalities were delayed until ground, this program would
still run correctly. However, an important trade off exists in terms of efficiency: deciding

3.4. LOOKING AHEAD 39

linear inequalities causes earlier pruning of the search space, but is considerably more
costly per constraint. Thus which approach is faster actually depends on the number
of constraints pruned versus the cost of solving an inequality.

Delay mechanisms, of course, bring their own implementation difficulties, although
delaying constraints is not as problematic as delaying general calls, as described in [22].
For the operational model to be reasonably intuitive for the programmer, it is necessary
to awaken delayed constraints as soon as possible after they become sufficiently simple.
However, on backtracking, an awakened constraint must be resuspended. Naturally,
backtracking complicates any indexing structures that are used for timely awakening.
Of course there is an overhead associated with checking for awakened constraints when-
ever the constraint store is augmented, but this can usually be kept low. These issues
are discussed in detail in Chapter 7.

3.4 Looking Ahead

The role of the next two chapters, about language design and programming method-
ology aspects of CLP(1Z), \Prolog and Elf, make the assertions of this chapter at a
more concrete level. All three languages are now well-enough understood and are used
widely enough that some quite specific comments can be made about the interaction
between language design and programming methodology. One of the claims of this
thesis is that the pragmatic approach to designing CLP languages through restricting
constraint solving by delay provides the right compromise between expressive power
and efficiency.

40 CHAPTER 3. LANGUAGE DESIGN

Chapter 4

CLP(i)

The design and implementation of a CLP language for real arithmetic was essentially
motivated by two observations:

"* Real arithmetic is of fundamental importance in computer science, simply because
of the demands of applications.

"* Historically, many declarative programming languages have not dealt well with
arithmetic.

In particular, real arithmetic was grafted onto most Prolog systems at an early stage,
but in a form that ran counter to the philosophy of logic programming. This was
usually in the form of the two-argument is predicate, which evaluated the arithmetic
expression in its second argument, expecting all the variables in the expression to have
already been bound to numbers, and assigning the resulting value to the free variable
in the first argument. That is, arithmetic was essentially handled in the same way as
in imperative languages. The following discussion introduces CLP(IZ), a systematic
attempt to use the CLP framework to produce a language with real arithmetic that
maintains the advantages of the logic programming framework. This is followed by an
extensive discussion of programming methodology, together with empirical observations
about the kinds of constraint solving that are required in typical programs. A discussion
of some relatively large scale applications is included.

4.1 The Language and Operational Model

We now describe the syntax of CLP(1Z) programs and their intuitive semantics. Then
we describe the operational model of the CLP(JZ) system, an approximation to the
model prescribed by the CLP scheme as described in Chapter 3.

4.1.1 The Structure 1?

Essentially, 7? is a two-sorted structure where one sort is the real numbers, and the other
sort is the set of trees over uninterpreted functors and real numbers. The construction

41

42 CHAPTER 4. CLP(7Z)

of trees using uninterpreted functors is the only tree operation. The only real number
operations are addition and multiplication. While equality is the only relation between
trees, both equality and inequality are defined on numbers. The truth of these relations
is defined in the obvious way: two trees are equal iff their root functors are the same
and their corresponding subtrees, if any, are equal. The truth of real number relations
is defined in the standard way.

We now proceed with the syntactic formulation of RZ. In what follows, we shall
assume tacitly, to avoid further formality, that the language CLP(JZ) is (statically)
typed in the sense that the type (real number or functor) of each argument of each
predicate symbol and functor, as well as the type of each variable, is pre-determined.
In CLP(R) programs, therefore, each predicate symbol, functor and variable is used ii-
a consistent way with respect to its type.

4.1.2 CLP(1Z) Constraints

Real constants and real variables are both arithmetic terms. If t4,t 2 are arithmetic
terms, then so are (tl + t 2), (t1 -t 2) and (tl * t 2). Uninterpreted constants and functors
are like those in Prolog. Uninterpreted constants and arithmetic terms are terms, and
so is any variable. The rest of the terms are defined inductively as follows: if f is an
n-ary uninterpreted functor and tl,...,t,, are terms, then f(t 1 ,...,tn) is a term.

If tj and t 2 are arithmetic terms, then tj = t2 , tl < t 2 and tj :5 t 2 are all arithmetic
constraints. If, however, not both the terms tj and t2 are arithmetic terms, then only
the expression t1 = t 2 is a constraint. Both these kinds of constraints will be used in
programs, and they form a subset of all the predicates that may appear in a program.
Because these constraints have pre-defined meanings, we shall sometimes emphasize this
by calling them primitive constraints (or simply constraints when confusion is unlikely).
A primitive constraint is solvable iff there is an appropriate assignment of real numbers
and ground terms to the variables therein such that the constraint evaluates to true.

In what follows, we adopt the (Prolog) convention of using strings beginning with
capital letters to denote variables.

4.1.3 CLP(TZ) Programs

An atom is of the form p(tI,t 2,... ,tn) where p is a predicate symbol distinct from =,

<, and <, and t1 , ...,t,z are terms. A rule is of the form

A0 :- O1 ,aC2 ,. .a.,k.

where each aj, 1 < i < k, is either a primitive constraint or an atom. The atom A0
is called the head of the rule while the remaining atoms and primitive constraints are
known collectively as the body of the rule. In case there are no atoms in the body, we
may call the rule a fact or a unit rule. In case there are no atoms and constraints in
the body, we may abbreviate the rule to be simply of the form

A0 .

4.1. THE LANGUAGE AND OPERATIONAL MODEL 43

Finally, a CLP(1Z) program is defined to be a finite collection of rules.
Thus rules in CLP(1?) have much the same format as those in Prolog except that

primitive constraint, may appear together with atoms in the body. The same applies
to a CLP(7Z) goal; this is of the form

?- , a2, . k.

where each ai, 1 < i < k, is either a primitive constraint or an atom. A sub-collection
of the atoms and constraints in a goal is sometimes called a subgoal of the goal.

The following is a CLP(1Z) program for computing Fibonacci numbers:

fib(0, 1).
fib(l, 1).
fib(N, Xl + X2)

N > 1,
fib(N - 1, Xl),

fib(N - 2, X2).

Its declarative semantics is clear. A goal that asks for a number A such that fib(A)
lies in between 80 and 90 is

?- 80 <= B, B <= 90, fib(A, B).

and, as will-be shown next, the answer obtained when the program and goal are executed
is A = 10, B = 89.

We conclude this subsection with another example program:

available-res(l0).
available.res(14).
available.res (27).
available.res(60).
available.res(100).

available-cell(10).
available-cell(20).

ohm(V, I, R) :- V = I * R.

sum([], 0).
sum(EH I TJ, N) :- N = H + M, sum(T, M).

kirchoff(L) :- sum(L, 0).

The program, together with the goal below, represents a simple preferred value problem
in which we have an electrical circuit template and can choose from a finite set of

44 CHAPTER 4. CLP(fl)

components to select those that make the circuit satisfy a (2rtain property. In this
example, the simple circuit has two resistors connected in series:

?- 14.5 < V2, V2 < 16.25,
available.res (R1), available.zes (R2),
available-cell(V),
ohm(V1, Ii, RI), ohm(V2, 12, R2),
kirchoff([II, -12]), kirchoff([-V, V1., V2]).

The three answer constraints for the program and goal are as follows.

14.5 < V2, V2 < 16.25,
V1 / 10 - V2 / 27 = 0,
V1 + V2 = 20

14.5 < V2, V2 < 16.25,
VI / 14 - V2 / 60 = 0,
V1 + V2 = 20

14.5 < V2, V2 < 16.25,
V1 / 27 - V2 / 100 = 0,
V1 + V2 = 20

4.1.4 The Operational Model

The operational model presented in Chapter 3 is rather general: unnecessarily so for
this discussion. In discussing CLP(JZ), we specialize the operational model by specify-
ing a left-right subgoal selection strategy for atoms and delayed constraints. That is,
considering atoms and delayed constraints as one sequence, these are solved one by one
from left to right. Recall that in the general CLP operational model, all constraints are
initially considered delayed. Selected constraints that are considered hard (in CLP(7z),
the Donlinear arithmetic constraints) remain delayed after selection, but are re-selected
as soon as they cease to be hard, in preference to other delayed constraints. This
specialized operational model suggests a rather different presentation, as given here.
This presentation corresponds more readily to the programmer's mental view of the
execution of programs.

Now let P denote a CLP(JZ) program. Let G denote a goal

E, A ?- A1,,A2,.-.., A, n >_ 0.

where v is a set of solved constraints, A is a set of delayed constraints, the A, are
either atoms or constraints. We say that there is a derivation step from G to another
goal G2 if one of the following holds:

* Some 6 E A is not hard with respect to E. and E U {6} is solvable. Then G2 is of
the form

Eufb},A\{b} ?-AI,A2,...,An.

4.1. THE LANGUAGE AND OPERATIONAL MODEL 45

"* The first condition does not hold, A1 is a constraint, and is hard with respect to
E. Then G2 is E, A U (A,} ?- A2, ... An.

Of course, E remains solvable.

"* The first condition does not hold, A, is a constraint, is not hard with respect to
E, and E U {A 1} is solvable. Then G2 is

EU{A1},A ?- A2,...,A,•.

"* The first condition does not hold, and A1 is an atom. The program P contains a
rule R that can be renamed so that it contains only new variables and takes the
form

B B 1,B 2 ,...,B8 , s>0.

Then G2 is
E,A ?- A = B, Bj.... ,BsA2,... ,An

where A = B abbreviates the collection of equations between corresponding ar-
guments in A and B. Of course, E remains solvable.

In the initial goal, E = A = {}.
A derivation sequence (or simply sequence) is a possibly infinite sequence of goals,

starting with an initial goal, wherein there is a derivation step to each goal from the
preceding goal. A sequence is successful if it is finite and its last goal is E, {} ?-. A
sequence is conditionally successful if it is finite and its last goal is E, A ?- where
A is nonempty. Finally, a finitely failed sequence is finite, neither successful nor condi-
tionally successful, and such that no derivation step is possible from its last goal.

As an illustration, we return to the program and query used in Chapter 3, which
happened to be in CLP(TZ).

ohm(V, I, R) :- V = I * R.

The successful derivation sequence is shown in Figure 4.1.
CLP(IZ) is an approximation to the operational model of the CLP scheme for four

main reasons:

" To solve equations between non-arithmetic terms, an algorithm similar to a con-
ventional unification algorithm is used. No "occurs check" is done, as this issue
is largely orthogonal to those of interest.

" As has already been mentioned, a left-right subgoal selection strategy is used, and
nonlinear arithmetic constraints are delayed until they become linear. CLP(TZ)
employs a "top-to-bottom" depth-first search strategy in the generation of deriva-
tion sequences.

46 CHAPTER 4. CLP(JZ)

{}, {}
?- ohm(V1, I, Ri), ohm(V2, I, R2), V = Vi + V2, R1 15, R2 = 5.
{1, {}
?- V1=V', I a ', R1 - R', V' = I' * R',
ohm(V2, I, R2), V a Vi + V2, Ri 1 15, R2 = 5.

{ Vi = V', I = I', Ri = R' }, { V1 - I' * R' }
?- ohm(V2, I, R2), V = Vi + V2, R1 = 15, R2 = 5.

{ Vi V', I = V', R1 =P.' }, { V' I ' * P.' }
?- V2 V, I = I", R2 = RP., V" = Il* R",
V = V1 + V2, Ri = 15, R2 = 5.

{ Vi V', I - I', R1 = R', V2 = V", I = I", R2 3 R" },
{ VI I /' * Rl, V" = Ill * R/" }

?- V * VI + V2, Ri a 15, R2 = 5.
{ Vi = V', I I', R1 - R', V2 = V, I = I", R2 = R", V = VI + V2 }
{ V1 = I' * R', V" = I" * R" }
?- Ri1 15, R2 a 5.
{ Vi = V', I - I', R1 = P., V2 = V", I = Il, R2 = R",
V = Vi + V2, R1 a 15 },
{ V' = I' * P', V" = I" * P" }

R- R2. 5.

{ Vi 1 V', I = I', R1 = R', V2 = V", I = I", R2 R P",

V = V1 + V2, R1 - 15 V' = I' * R' },
{ V" a I" * R" }
?- R2=5.
{ Vi = V', I = I', R1 = R', V2 = V", I = I", R2 PR",
V - Vi + V2, R1 a 15 V' = I' * R', R2 - 5 },{ V" - I" *•. }
7-

{ Vi " V', I I', R1 = R', V2 = V", I = I", R2 = P",

V a VI + V2, Ri - 15 V' = I' * R', R2 = 5, V" = I" * R" }
{}
7-

{ V' a V1, V" = V2, I - I' = I", R' - RI, R" = P2,
Vi a 0.75*V, I - 0.05*V, R1 = 15, V2 a 0.25*V, R2 5 },
{}

Figure 4.1: Successful derivation sequence for ohm query

4.1. THE LANGUAGE AND OPERATIONAL MODEL 47

"* A floating-point representation of real numbers is employed. A small and speci-
fiable fixed tolerance is used in the comparisons of numbers.

"* The constraint solver does not determine the solvability of all nonlinear con-
straints.

The first two points pertain to Prolog implementations as much as to CLP(1Z). The se-
lection and search strategies are chosen simply for pragmatic reasons. In short, CLP(IZ)
inherits the approaches to these two issues, as well as the occurs check, from usual Pro-
log implementation strategies. The third point, using floating-point numbers, clearly
can give rise to unsoundness. However, our estimation is that alternative implemen-
tations (e.g. rational number or interval based methods) are unacceptably costly in a

general-purpose system. Our experience over many application programs shows that
the use of floating-point numbers has rarely been problematic, but there is certainly
scope for a CLP system to be developed around some sound form of real arithmetic.

We now discuss the last point in the remainder of this section. As an example of

delay in CLP(1?), the following rule can be used for multiplying or dividing complex
numbers:

c-mult(c(R1, II), c(R2, 12), c(R3, 13))
R3 = Ri * R2 - Il * 12,
13 = R1 * 12 + R2 * Ifl.

Any of the following goals will return a unique answer:

"?- c..mult(c(1, 1), c(2, 2), Z).
?- cjmult(c(i, 1), Y, c(O, 4)).

- c-mult(X, c(2, 2), c(O, 4)).

Execution of the first goal is performed by evaluation and assignment in the traditional
way. The other two goals require the division of complex numbers, and the unique
answers, one for each of the two cases, can only be obtained by the solution of (two)
simultaneous linear equations. Thus none of the three goals above gives rise to any
delayed constraints. The following goal, however, does:

?- cjmult(c(X, Y), c(X, Y), c(-3, 4)).

This is because the constraints obtained from expanding this goal are

X*X - Y*Y = -3,
2*X*Y a 4.

If, however, this goal also contained an atom or constraint whose expansion or solution
grounds either X or Y, then a unique answer can be obtained. For example, with the
rule

48 CHAPTER 4. CLP(1Z)

p(Y, Z) :- Y = 2*Z, Z - Y-1.

and goal

?- cmult(c(X, Y), c(X, Y), c(-3, 4)), p(Y, Z).

the call to p gives a value to Y (grot-nds Y to 2), and so the goal can be executed by
the CLP(7Z) system to return X = 1, Y = 2, Z = 1.

Clearly the delay/wakeup technique allows the easy introduction of many other
(nonlinear) arithmetic functions. For example, it is a trivial matter to augment the
CLP(IZ) system to include the functions sin, cos, abs and pow. We can define that the
abs function is delayed until either the input can be evaluated as a ground value, or
the vartiable equated to the output is ground and not positive. Similarly, the equation
X = pow(Y, Z), representing X = yZ, can be defined to awake upon the grounding of
two of three variables X, Y, Z, or the grounding of Y to 0 or 1, or the grounding of Z
to 0 or 1, etc.

4.2 Basic Programming Techniques

We begin this discussion with a number of quite simple programming examples. These
will also serve to illustrate a range of CLP(JZ) programming techniques, and hence lay
the foundations for a discussion of programming methodology and later implementa-
tion, as well as supporting earlier assertions about language design.

A primitive constraint in a rule typically represents a local property of the sub-
problem at hand. While these constraints represent the relationship between various
parameters in a particular part of a problem, (for example, Ohm's law for a resistor
in a circuit), we require global constraint'- to describe the way these parts interact
(for example, the use of Kirchoff's current law in node analysis). In CLP(JZ), global
properties of a problem are represented by means of rules, and the corresponding global
constraints are those associated with the answer constraints of the program.

The most straightforward way to represent global properties in a program is by
hierarchical composition. For example, a rule of the form

p...) 4- constraints, Pl(..-). ... ,pn(...

can be used where Pj,..., p,, are definitions of largely independent parts of some system,
and this rule combines these into a whole by sharing variables in the arguments and
via the list of constraints. As a concrete example, consider the rule

resistor(V, I, R) :- V = I * R.

which describes the local property of a resistor's voltage/current relationship. Then
the rules

4.2. BASIC PROGRAMMING TECHNIQUES 49

parallel-circuit(V, I, Ri, R2)
Ii + 12 = I,
resistor(V, I1, R1),
resistor(V, 12, R2).

series.circuit(V, I, RI, R2)
VI + V2 = V,

resistor(Vi, I, Ri),
resistor(V2, I, R2).

combine two resistors to model their behavior in parallel and in series respectively. This
is achieved in the first case by summing their currents and then using the common
variable V to constrain the voltage drops across them to be equal. In the second rule,
we have the dual situation - a shared variable for current and a constraint for voltage.
One can build up more complicated systems by building a multi-level hierarchy of
components. For example, to describe two parallel pairs of resistors in series we may
write

parallel-series(V, I, Ri, R2, R3, R4)
V1 -+ V2 = V,

parallel-circuit(Vl, I, R1, R2),
parallel-circuit(V2, I, R3, R4).

While the output of answer constraints is beyond the scope of this thesis, a lot
of CLP(1Z) programming' is centered around producing such answers. Consider, for
example, the following program, which relates the key parameters in a mortgage:

mortgage(P, Time, I, HP, B):-
Time > 0,

Time <= 1,
Interest = Time * (P * 1/1200),
B = P + Interest - (Time * MP).

mortgage(P, Time, I, HP, B):-
Time > 1,
Interest = P * 1/1200,
mortgage(P + Interest - MP, Time - 1, I, MP, B).

The parameters above are principal (P), life of the mortgage in months (Time), annual
interest rate (%) compounded monthly (I), the monthly payment (MP), and finally, the
outstanding balance (B). The goal

?- mortgage(100000, 360, 12, MP, 0).

asks the straightforward query as to how much it would cost to finance a $100,000
mortgage at 12 percent for 30 years, and the answer obtained is MP = 1028.61. The

'See Section 4.4 for a discussion of experience with large amounts of CLP(R) code.

50 CHAPTER 4. CLP(JZ)

main point of this example, however, is that we can ask, not for the values of, but for
the relationship between P, MP and B. For example,

"?-mortgage(P, 120, 12, MP, B).

gives the answer

B = 0.302995*P - 69.700522*.P.

This particular example shows that answer constraints may be viewed as a partial
evaluation of the program. In this case, the equation above is the result of partially
evaluating the program with respect to Time = 120 and I = 12.

The "test-and-generate" methodology is typically applied to combinatorial and
constraint satisfaction problems (CSPs) for which no better approach is known and
so a search technique is used. (See [46], for example, for numerous references about
successful practical applications.) This involves searching through the problem solution
space and making use of the constraints to guide the search either by actively generating
values or by pruning when the constraints become unsatisfiable.

In CLP(1Z), the general structure of a test-and-generate program is:

p(...)
... primitive constraints ...

... constraints expressed with predicates ...

... generators for the variables.

where generators are used to instantiate the variables that range over a particular
domain. This is generally a better search strategy than "generate-and-test" since the
constraints are tested before2 the generators, thus avoiding generation whenever it is
already clear that the constraints are inconsistent. In principle, with a perfect constraint
solver for the underlying problem domain, the constraints alone are sufficient to define
the answers without resorting to generators. No search would be required, except that
which is done internally by the solver. Perfect constraint solvers over discrete domains,
however, are typically impractical to use or even impossible to obtain.

Consider the following cryptarithmetic puzzle: find an assignment of the the digits,
0 to 9, to the variables S, E, N, D. M, 0, R and Y such that no two variables are assigned
the same digit, and the equation

S E N D
+ IM 0 R E
M 0 N E Y

can be evaluated in the obvious way. The CLP(1Z) program in Figure 4.2 is a direct
representation of the problem. We note that even though the primitive constraints in
the program are to be interpreted over the natural numbers, CLP(1z) can still prune the
search space. This is because unsolvability of those constraints in JZ implies their un-
soivability in the natural numbers, and in this problem it is common for the constraints
to be unsolvable in the reals.

2 1Recall that CLP(R) uses a left-to-right subgoal selection strategy.

4.2. BASIC PROGRAMMING TECHNIQUES 51

solve(ES, E, N, D, M, 0, ft, Y])
constraints(ES, E, N, D, M, 0, R, YJ),
generate([D, R, 0, E, N, M, Y, S]).

constraints([S, E, N, D, M, 0, R, Y])
S >= 0, E >= O, ... , >= ,
S <= 9, E <= 9, ... , <= 9,

S >= 1, M >= 1,
Cl >= 0, C2 >= 0, C3 >= 0, C4 >= 0,
Cl <= 1, C2 <= 1, C3 <= 1, C4 <= 1,
M = Cl,
C2 + S + M = 0 + Cl * 10,
C3 + E + 0 = N + 10 * C2,
C4 + N + R = E + 10 * C3,
D + E = Y + 10*C4,

bit(Cl), bit(C2), bit(C3), bit(C4).

bit(O).
bit(l).

generate(L)
gen-diff -digits(L, [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]).

gen.diff-digits ([], _).
gen-diff-digits([H I T], L)

select(H, L, L2),
gen-diff-digits (T, L2),

select(H, [H I T], T).
select(H, [H2 I T], [H2 I T2])

select(H, T, T2).

Figure 4.2: SEND + MORE = MONEY

52 CHAPTER 4. CLP(1Z)

4.3 Major Examples: Electrical Engineering

Electrical engineering is an interesting application area for CLP(IZ), since both arith-
metic computation (constraint-based) and knowledge representation (rule-based) are
appropriate. It is not surprising that this area provided the driving examples for the
pioneering work on constraint programming [39, 168, 175]. A preliminary discussion of
the work in this section appears in [69].

4.3.1 Analysis and Synthesis of Analog Circuits

Before considering examples of the analysis and synthesis of analog circuits in CLP(1Z),
we will briefly sketch a broad methodology for such programming. In general the con-
straints of such a system can be viewed in terms of a hierarchy. Leaf constraints describe
the relationship between variables at a sub-system or "local" level, for example Ohm's
law for a resistor in a circuit. Parent constraints describe the interaction between these
sub-systems, for example the use of Kirchoff's current law in node analysis, which
states that the sum of currents flowing into a node is zero. This distinction assists
us in writing programs whose hierarchical structure reflects that of the problem to be
solved. Such programs are easier to understand and reason about. In this program-
ming methodology, leaf constraints are usually encapsulated within a single rule, while
parent constraints are programmed as a single rule that combines a number of program
modules. Readers needing an introduction to the basic material covered here might
wish to consult [68] for circuit analysis and [154] for electronics.

Analysis of DC Circuits

Much of the material necessary for analysis of DC circuits has already been used for
simple examples earlier in this chapter, although the approach here will be more system-
atic. The first component needed is a resistor. and recall that the rule for its behavior
is just

resistor(V, I, R) :- V = I * R.

Some other components will need a piecewise linear model, which can be handled
systematically using:

linpiece(X, [piece(C1,C2,F1,F2) IPs))
C1 < 1.
X <= C2,
F1 = F2.

linpiece(XJPIPs):
linpiece(X,Ps).

Intuitively the program checks whether the value X falls within the limits C1 and
C2 and if so creates an equation F1 = F2.

4.3. MAJOR EXAMPLES: ELECTRICAL ENGINEERING 53

I

forward
bias

reverse
bias

reverse
breakdown

Figure 4.3: Piecewise linear diode model

- Now the resistor model can be re-expressed as:

resistor(V, I, P):-
linpiece(V, (piece(-.... V, I * R))).

More usefully, diode behavior can be modeled using the piecewise linear approxi-
mation of Figure 4.3. The three linear pieces correspond to the three areas of operation
of the diode - reverse breakdown, reverse biased and forward biased. Non-determinism
and backtracking together take care of the question of which state the diode may be in
for a particular circuit.

diode(V, I):-
linpiece(V, [piece(_, -100, I, (V+100)*1O-O.i),

piece(-100, 0.6, I, 0.001*V),
piece(0.6, _, I, (V-0.6)*100+0.0006)]).

The following goal determines the behavior of the circuit in Figure 4.4 for circuit values
V = 5 volts, R1 = 100f, R 2 = .50n, R 3 = 50f, R 4 = 10002

?- V = 6, R1 = 100, R2 = 50, R3 = 50, R4 = 100,
resistor(V-A, Ii, P1),
resistor(A, 12, R2),
resistor(V-B, 13, R3),
resistor(B, 14, R4),
diode(B-A, IS),
Ii + IS = 12, 13 = IS + 14.

54 CHAPTER 4. CLP(TZ)

R1 R3

V VI

R2 R4

Figure 4.4: Resistive circuit with diode

Let us make some observations on what kinds of constraint solving are necessary to
execute this program.

* Since the resistor values are provided at the beginning of the gual, the nonlinear
equations established by repeated uses of resistor are immediately linlear, so no
delay is required.

e The diode model essentially offers a choice of three linear relationships. Usu-
ally, two of these will be inconsistent with the remaining component and input
values, and hence the appropriate part of the diode's operation will be chosen
by backtracking. For each possible branch of the model for each diode (in the
example there is only one) simultaneous linear equations will have to be solved
to determine consistency.

Analysis of Steady-State RLC Circuits

We first consider the application of this approach to the analysis of sinusoidal steady-
state RLC (resistor, inductor, capacitor) circuits. We represent (sinusoidal) voltages
and currents in the circuit as phasors using complex numbers, where c(X, Y) is used to
represent X + iY. For example the inductor and capacitor have voltage (V) - current
(I) relationships V = I(iwL) and V = I/(iwC) respectively, where L is inductance,
C is cap',citance and w is angular frcquency. These devices may be modeled by the
io~lowing rules:

inductor(V, I, L, Omega)
c.mult(I, c(O, Omega*L), V).

capacitor(V, I, C, Omega)
c_mult(V, c(O, Omega*C), I).

where c-mult is the complex multiplication predicate defined earlier in this chapter,

4.3. MAJOR EXAMPLES: ELECTRICAL ENGINEERING 55

by:

c-mult(c(R1, I1), c(R2, 12), c(R3, 13))
R3 = R1 * R2 - Ii * 12,
13 = R1 * 12 + R2 * Il.

Let us consider now in more detail how the c-mult predicate might be used and
what kinds of constraints it might establish. We use the italic notation for CLP(7Z)
variables that have known values.

"* In general, two nonlinear equations may have to be delayed until further infor-
mation is available.

"* When the two complex values to be multiplied are available in advance, the two
constraints can be solved by local propagation, using simple arithmetic evalua-
tion. That is, when two complex numbers are multiplied, RI, I1, R2, and 12 are
available, so the equations can be directed as the independent propagations:

R3 - R 1R 2 - 1112

13 - R112 + R 211

"* When two complex values to be divided are available in advance, two simultaneous
linear equations must be solved locally. That is, for example, when RI, II, R3,
and 13 are all available, it is necessary to solve

R3 = R1R2- 1l12
13 = R112+ IR2

for R2 and 12.

To connect networks of these components together, we have to satisfy the various
conservation laws at the interface of the components. This can be done by ensuring
that:

* all component terminals that are connected together are at the same voltage, and

* for each node, the sum of the currents flowing into the node is zero.

Appendix A.1 contains a general package for solving arbitrary sinusoidal steady-
state RLC circuits that incorporates these ideas. The package is run using the predicate
circuit-solve with four arguments. They are respectively: the source frequency,
circuit representation, the nodes at ground potential and the nodes whose values are
to be printed after the analysis. The package can also be used for D.C. analysis by
setting the frequency and imaginary parts of quantities to zero. This is illustrated by
the following goal, which analyzes the circuit of Figure 4.5.

56 CHAPTER 4. CLP(JZ)

V T• V R2 D

ground

Figure 4.5: Use of the general package to solve a DC circuit

-W = 0,
Vs = 10,
RI = 100,

R2 = SO,

circuit._solve (V,
[
[voltage-sourcevi,c(Vs,0),[nlgroundl],

[resistor, rl, RI, [nl, n2]],
[resistor, r2, R2, [n2, ground]],
[diode, dl, in914, [n2, ground]]

[ground],
In2)

Output is:

COMPONENT CONNECTIONS TO NODE n2
resistor rl: 100 Ohms
Node n2 Voltage c(0.60082, 0) Current c(-0.0939918, 0)
resistor r2: SO Ohms
Node n2 Voltage c(O.60082, 0) Current c(0.0120164, 0)
diode dl: type in914
Node n2 Voltage c(O.60082, 0) Current c(0.0819754, 0)

The second example shows a larger RLC circuit (Figure 4.6).

?- W = 100, Vs = 10, Trl = 5, Tr2 = 0.2,
RI = 200, R2 = 1000, R3 = 50, R4 = 30,
C1 = 0.05, LI 0.005,
circuit.solve(W,

[
[voltage-source, v1, c(Vs,O),[in, groundi)),
[resistor, ri, RI, [in, nl]],

4.3. MAJOR EXAMPLES: ELECTRICAL ENGINEERING 57

cl
R1 R2

Inni n2 n4out

TRi n TR2

R3 R4 L

groundl ground2 ground3

Figure 4.6: RLC Circuit

[transformer, t1, Trl,[nl, groundl, n2, ground2J],
[resistor, r2, R2, [n2, n3]J,
[capacitor, cl, Ci, En3, n41],
[resistor, r3, R3, [n4, ground2]],
[transformer, t2, Tr2,[n4, ground2, out, ground3l],
[resistor, r4, R4, [out, ground3)]
[inductor, 1i, LI, [out, ground3)]

[ground1, ground2, ground3],
[out3).

Output is:

COMPONENT CONNECTIONS TO NODE out
transformer t2: ratio of 0.2
Node out V c(3.34983e-06, 0.0001984) C c(-0.0003968 8.78204e-08)
resistor r4: 30 Ohms
Node out V c(3.34983e-06, 0.0001984) C c(1.11661e-07,6.61185e-06)
inductor 11: 0.005 Henry
Node out V c(3.34983e-06, 0.0001984) C c(0.0003967, -6.69967e-06)

Finally, let us again consider the critical operations that this program's execution
depends on:

"* traversal of the data structures representing the circuits, requiring essentially
syntactic unification

"* solving simultaneous linear equations representing constituent relationships and
network relationships

"* backtracking to find the right operating mode for components modeled by a piece-
wise linear relationship

Transistor Circuits: Analysis and Design

If more realistic applications are to be tackled, transistors must be addressed in some
way. While the voltage-current behavior of the transistor is highly nonlinear, it can

58 CHAPTER 4. CLP(JZ)

be modeled for most practical purposes using piecewise linear techniques. We will
illustrate this approach through the analysis and design of amplifier circuits using the
bipolar junction transistor. This approach is equally applicable to other types of circuit
and other types of transistor.

Typical engineering methods for the design of transistor circuits are iterative and
guided by heuristics. This involves estimating key circuit parameters, computing the
remaining unknown values, and then making corrections to the original estimates. The
programs we present use a similar approach. However, we replace iteration by back-
tracking.

The design of transistor amplifiers falls into three stages.

1. The basic form of the amplifier is selected (for example: common-base, emitter-
follower).

2. The biasing circuitry is designed to ensure that the transistor will operate in
its active mode within the expected range of inputs to the circuit. Design re-
quirements include insensitivity to transistor parameters such as common-emitter
current gain, and temperature.

3. The requirements of the small signal operation of the amplifier are satisfied. These
requirements may include high input resistance, low output resistance and pre-
dictable gain.

The package presented in Appendix A.2 provides both simple D.C. analysis for
biasing and digital circuitry, and small signal analysis for transistor amplifiers. The
transistor is modeled by three modes of operation: active, saturated and cutoff. For
amplifier circuits we are primarily interested in the active mode of operation, while for
digital circuits the saturated and cutoff modes become important. The rules in Figure
4.7 give the D.C. properties of an NPN transistor (Figure 4.8) in the three modes.
The variables Beta, Vbe and Vcesat are device parameters; Vx and Ix are respectively
voltages and currents, where x ranges over b (base), e (emitter), c (collector).

Again this will introduce an element of nondeterminism into the analysis, as the
solution of simultaneous equations (and possibly inequalities) will cause backtracking
until a consistent configuration is found.

4.3. MAJOR EXAMPLES: ELECTRICAL ENGINEERING -59

transistor-.dc(active, npn, Beta, Vbe, Vcesat,
Yb, Vc, V., Ib, Ic, Ie)

Yb = V. + Vbe,
Vc >u Yb, lb >- 0,
Ic = Beta*Ib,
Ie Ic + lb.

transistcr-.dc(saturated, npn, Beta, Ybe, Vcesat,
Yb, Vc, V., lb, Ic, Ie)

Yb = Ve + Yb.,
Vc = V. + Vcesat,
lb >= 0, Ic >= 0,
Ie = Ic + lb.

transistor..dc(cutoff, npn, Beta, Yb., Vcesat,
Yb, Vc, V., lb, Ic, le)

Yb < Ve + Yb.,
lb = 0,
Ic = 0,
I. a 0.

Figure 4.7: DC model of NPN transistor

V

V l
b

be
le

ve

Figure 4.8: An NPN type transistor

60 CHAPTER 4. CLP(1Z)

ccl

100k R91 5k R,

V 15V b e

50k ýR 3k R•

gnd

Figure 4.9: Biasing Circuit for NPN transistor

With the addition of the previously defined rule for modeling the (D.C.) properties
of resistors, we are able to analyze some simple circuits. For example the simple biasing
circuit shown in Figure 4.9 may be analyzed using the following goal:

?- resistor(IS - Vb, It, 100),
resistor(-Vb, 12, 50),
It + 12 = Ib,
transistor(State, npn, 100, 0.7, 0.3,

Vb, Vc, Ve, Ib, Ic, Is),
resistor(Ve, Is, 3),
resistor(IS - Vc, Ic, 5).

Notice how the variable State is used here to determine which of the three modes
the transistor must operate in.

The full program in Appendix A.2 is an extension of these rules to allow the D.C.
analysis of more general transistor circuits, which may include capacitors and diodes.
This program is written to reflect the structure of the problem by defining component
voltage-current relationships at one level, and component connections, at a higher level,
in terms of these voltage/current parameters. The circuit structure is defined by listing
the components and their connections. For example, the following goal again analyzes
the circuit of Figure 4.8.

?- Vccl = 15, dc-analysis(Vccl, , E
[resistor, rbl, 100, [ccl, b)],
[resistor, rb2, 50, [gnd, b]],
[transistor, ti, [npn,trl,State], Cb,c,e)),
[resistor, re, 3, [.,gndJ],
[resistor, rc, 5, [C,ccl]]]).

4.3. MAJOR EXAMPLES: ELECTRICAL ENGINEERING 61

Output is:

State = active

A number of different types of problems can be solved with this package. For ex-
ample the following goal does not specify the component values, but instead constrains
them to lie within certain ranges.

?- Vccl = 15, 27 <= R1, R1 <= 100, 5 <= R2, R2 <= 27,
dc-analysis(Vccl, -, [

[resistor, ri, Ri, [ccl,b)J,
[resistor, r2, R2, [gnd,b]J,
[transistor, t1, [npn,trl,State], [b,c,e]],
[resistor, r3, 3, [e,gnd]],
[resistor, r4, 5, [c,ccl]]]).

Output is:

State = active
R• = 50
R2 = 27

In this case, the resistor relationships only become linear when the solving of other
equations results in the currents being determined. Then the resistances can be deter-
mined uniquely.

Finally we can re-employ the analysis program as a design program. This can

be achieved by constraining the design parameters, choosing a circuit template, and
co-routining the search for suitable components with a circuit analysis - the test and

generate technique. After a circuit template has been chosen, the circuit analysis rules

are used to set up the appropriate constraints, and then the search for components takes
place. When values are chosen for components, an inappropriate choice will often cause
the system of constraints to become unsatisfiable immediately, leading to backtracking
(assuming that the determination of unsatisfiability does not rely on the consideration
of nonlinear constraints). In this way we avoid an exhaustive search to find component
values that satisfy the design constraints. A goal for designing a positive gain transistor

amplifier is shown below.

?- Vcc = 15, Stability < 0.5, Gain > 0.5,
Inresistance >= 25, Outresistance <= 0.5,
full-analysis(Vcc, -, Circuit, -, -, Type, Stability,

Gain, Inresistance, Outresistance).

Output is:

Circuit= [
[capacitor, cl, C1, [pi,b]],

[resistor, rl, 100, [b,ccl]],
[resistor, r2, 100, [b,gnd]],

62 CHAPTER 4. CLP(TZ)

[transistor, tr, [npn,trO,active], [b,ccl,e]],
[resistor, re, 5, [e,gnd)J,
[capacitor, c3, C3, [eout)]]

Type = emitter-follower
Stability = 0.13
Gain = 0.99
Inresistance 45.51
Outresistance = 0.47

The approach of co-routining constraint satisfaction with the search for components
results in a search space pruning of two orders of magnitude and the total time taken
is reduced by more than an order of magnitude over the exhaustive search approach.
The execution of the analysis program when used in this way is completely different.
The circuit template is chosen first, and then all of the various constraints are imposed
without any actual component values having been established. This means that a large
solved form of linear equations and inequalities, as well as delayed linear inequalities,
will be established. Only when all this has been done will the component values be
guessed at exhaustively, resulting in the partial simplification of solved constraints
and the awakening of delayed constraints, which will frequently have to be undone
when an incorrect guess is made. As this goal will certainly exercise our claims about
the kinds of constraints arising in constraint solving, and the subsequent decisions
about implementation, we will naturally return to it in the empirical study of CLP(1Z)
programs.

4.3.2 Digital Signal Flow

We concentrate in this subsection on the simulation of linear shift-invariant digital
systems with time as the independent variable [134]. We represent digital systems in
terms of linear signal-flow graphs. A signal flow graph is a collection of nodes and
directed branchers. Associated with each node is a variable, which represents the
signal value at that node. Source nodes have their signal value determined at each
stage by some input signal. Branches are either multiplier branches or delay branches.
A multiplier branch multiplies the signal at its input end by its labeling coefficient to
give its output; a delay branch has as output its input at the previous time step. The
signals at each node in the signal flow graph are such that the signals in any outgoing
branches are equal to the sum of the signals in the incoming branches (the summing
constraint). As an example, consider the digital filter described in Figure 4.10.

We simulate the signal-flow graph by computing the signal values at the nodes
at successive time steps, starting from some given initial values. This is achieved by
collecting branch equations and summing constraints for each node. This, along with
the input signal values to the source nodes, is sufficient to determine the signal values
at each node for each time step.

The signal-flow graph simulator appearing in Appendix A.3 is called using the
predicate flow with a description of the graph as the first argument and the name of
the node where the value is to be printed as the second argument. The following goal
describes the low pass filter of Figure 4.10.

4.3. MAJOR EXAMPLES: ELECTRICAL ENGINEERING 63

n1 n2 n3 n4 n5
delay delay delay delay

input

0.2 0.2

0 Woutput7
n6

Figure 4.10: High frequency filter

0 I

0- II

I \ / \ /

Figure 4.11: Input and output for filter

?- flow([
[source, in, nil,
[delay, n1, n2], [delay, n2, n3],
[delay, n3, n4], [delay, n4, n5],
[coeff(0.2), ni, n6], [coeff(O.2), n2, n6],
(coeff(0.2), n3, n6J, [coeff(0.2), n4, n6],
[coeff(0.2), n5, n6]
1,

Ws).

Figure 4.11 shows the output from the program in graphical form corresponding to the
accompanying square wave input.

Again we should consider what kind of constraint solving is needed in this applica-
tion. Much of it involves local propagation, as specific inputs are given, and just need
to be propagated through the nodes of the signal flow graph. However, consider what
happens when the graph involves a loop. We can reason about the way constraints are
solved analogously to how the signal flows through the graph. So if the loop contains a
delay branch, The node that obtains the feedback value depends only on earlier values,

64 CHAPTER 4. CLP(1Z)

B

bh

p 0 A

qh

Q

uo(ap + bq) UA auB + up) UQ

apbq a(a + p) b(b + q) p(p + a) q(q + b)

Figure 4.12: Liebmann's 5-point approximation to Laplace's equation

so local propagation is still sufficient. However, if there is no delay element in the
loop, that node's value depends partly on itself. Hence simultaneous equations must
be solved.

4.3.3 Electro-Magnetic Field Analysis

Often it is undesirable or impractical to analyze electrical systems i, terms of
lumped circuit components. In many cases an analysis using electro-magnetic field
theory is required, typically involving the solution of partial differential equations sub-
ject to some boundary or initial conditions. A simple way to solve these problems is
to use a finite difference approximation. We will consider the five-point approximation
to Laplace's equation known as Liebmann's method described in Figure 4.12, which
can be used to solve Dirichlet, Neumann and mixed boundary value problems. The
finite difference equations are the leaf constraints - they apply to a neighborhood of
points. The complete finite difference problem is a parent constraint arising from the
overlapping of these neighborhoods.

Figure 4.13 shows a simple program to solve the Dirichlet problem for Laplace's
equation in two dimensions, with a sample query and output. The region of interest is
represented as a matrix (list of lists) of anonymous variables, with constants at the edge
specifying the boundary values. Constraints (finite difference equations) are collected
at each point of the matrix by "'sliding- a "window" of 9 points across the matrix and

4.3. MAJOR EXAMPLES: ELECTRICAL ENGINEERING 65

Program:

laplace(L[,_]).
laplace([H1,H2,H3 IT])-

laplace-vec (H 1,H2,H3),
laplace([H2,H3 IT]).

laplace-vec(L[_,_, [_,_], [,_).
laplace.vec([TL,T,TRIT1] , [ML,M,MRIT2], [BL,B,BRIT3])

B + T + ML + MR - 4*M = 0,
laplace-vec([T,TRIT1],[M,MRIT2],[B,BRIT3]).

Sample goal:

?- laplace([[0, 0, 0, 0, 0, 0, 0],
[100, 100],
r100, -"i .. 100),
[1o00 .- , - , . .. 100],
[100, 100],
[100, 100],
[100, 100, 100, 100, 100, 100, 100]]).

Output:

[[0, 0, 0, 0, 0, 0, 0],
[100, 53.1, 37.1, 33.1, 37.1, 53.1, 100],
[100, 75.4, 62.1, 58.1, 62.1, 75.4, 100],
[100, 86.5, 77.9, 75.0, 77.9, 86.5, 100],
[100, 92.8, 87.9, 86.2, 8".9, 92.8, 100],
[100, 96.9, 94.6, 93.9, 94.6, 96.9, 100],
[100, 100, 100, 100, 100, 100, 1001]

Figure 4.13: Solving Laplace's equation

66 CHAPTER 4. CLP(7Z)

referring only to the variables in that window. Simultaneous linear equations must be
solved at run time.

4.4 Survey of Other Applications

Since the first prototype implementation of CLP(1Z) became generally available in 1987,
a number of other applications have been explored in considerable detail by various
researchers. In fact, some of these projects were inspired by early versions of the work
described above. Some of the more significant projects are briefly outlined here. Most
use versions of the system based on material in Part III of this thesis.

" Genetic Restriction Site Mapping
The restriction site mapping problem is to reconstruct the placement of certain
DNA subsequences on a molecule corresponding to a given enzyme given data on
the digest fragments produced when the molecule is treated with that enzyme.
In (1921, Yap describes a methodology for solving this problem using CLP(7Z)
programs. The problem is of tremendous practical importance, and is compu-
tationally intractable in general. The programs involve reasoning with linear
equations and inequalities on real-valued variables.

" Civil Engineering
In [102], Lakmazaheri and Rasdorf described the use of CLP(1Z) for the analysis
and partial synthesis of truss structures. Their program consists of only sixteen
rules, and deals with general two-dimensional truss structures with pin and roller
supports, concentrated loads, and truss elements with uniform cross section. The
program uses constraints to describe the physical behavior of structural compo-
nents. Considerable use is made of symbolic answer constraints. The constraints
tend to be linear and nonlinear equations. In addition to checking the validity of
truss and support components, the program can be used to generate their spatial
configurations.

" Options Trading Analysis
OTAS [104, 78, 791 is a system for designing stock option investment portfo-
lios. Linear equations and inequalities, as well as nonlinears were used to model
expected payoffs. Unsatisfiable linear inequalities were also used. Additionally,
considerable use was made of CLP(1Z)'s output constraints.

In [74], Homiak described the use of CLP(7Z) for solving partial differential equa-
tions arising in the domain of options valuation. Problems are described using
a symbolic input language from which CLP(1Z) constraints are generated. The
examples in the document include cases where the grid has up to 6000 elements.
The PDEs are solved using various finite difference techniques, and thus this
(large) piece of software is a natural generalization of the tiny program shown
above for solving Laplace's equation.

4.5. EMPIRICS 67

Configuration Design for Mechanical Systems
In [173], Sthanusubramonian discusses the use of CLP(JZ) to design gear boxes,
given physical constraints on the size and layout of a gearbox, as well as functional
constraints on the outputs. The arithmetic constraints are mostly nonlinear,
and hence CLP(1Z) is mostly used to collect and maintain systems of nonlinear
constraints.

* Generation of Test Data for Protocol Verification
In Mockingbird [57], CLP(JZ) is used to implement grammars that model com-
munications protocols. By running the programs "in reverse", these grammars
are used to generate sample messages, and additional constraints are used to tune
the type of messages produced. The constraints are typically linear equalities and
inequalities, and the values considered are usually integers.

* Temporal Reasoning
In [135], Ostroff describes the use of CLP(1Z) as a computational logic for mod-
eling, simulating and verifying real-time discrete event processes. Constraint
solving is used to avoid the combinatorial explosion that results from the state
enumeration normally used for such verification. The constraints are mostly sim-
ple linear equations and inequalities, and the intended domain of the modeling is
that of integers.

In [5, 6], Amon and Borriello describe the use of CLP(7Z) for verifying that behav-
ioral constraints on classes of asynchronous circuits are satisfied. The programs
make use of linear equations and inequalities, and use answer constraints to relate
timing delays, making tradeoffs apparent.

* Interactive Tutoring for Music Theory
In [182], Tobias discusses the Harmony Intelligent Tutoring System, with particu-
lar emphasis on the Harmony Expert module, which is implemented in CLP(7?).
The Harmony Expert involves a complex set of inference rules incorporating lin-
ear equations and inequalities on variables ranging over a finite, convex set of
integers. The methodology makes use of non-trivial output constraints as well.

* Modeling Concurrent Execution of Progrums
In [116], Mercouroff and Weitzman discuss the use of Prolog III and CLP(7Z) to
model the execution times of a class of recursive parallel programs. The CLP pro-
grams involve linear equations and inequalities, and provide analytical solutions
to the problem of determining the execution time of the corresponding parallel
program. Rational numbers are the ideal domain.

4.5 Empirics

Now that we have studied programming methodology and typical programs from a
static viewpoint, we need to understand how programs behave at run time. Thus
we provide measurements for the runtime behavior of a number of CLP(7Z) programs.

68 CHAPTER 4. CLP(7Z)

Some of the results were foreshadowed by the study of Yap [191], using an early CLP(1Z)
interpreter. The measurements were obtained by instrumenting Version 1.1 of the IBM
CLP(7Z) compiler, many aspects of which are described in some detail later in this
thesis. This analysis is somewhat circular, since the results are being used to justify
'-cisions made about the language design and implementation, and are obtained from

a system incorporating those decisions, using programs written by programmers often
aware of those decisions, for that implementation. While this means that the figures
should be taken with a grain of salt, they are still clearly of great value, since they
demonstrate certain characteristics rather decisively.

The statistics are presented on a per-goal-per-program basis for a representative
suite of programs. Some of the parameters will not make very much sense at this ?oint
in the exposition because they rest heavily on subsequent implementation chapters.
Below we attempt to give some intuition as to what they correspond to :n terms of the
programs. They are in four broad categories:

"* Resolutions
This indicates the overall amount of computation and search.

Call The number of subgoals reduced. Shallc- backtracking does not add
to this total, but deep backtracking does.

Fail Number of failures of any kind, thus a measure of amount of
backtracking.

"* Disagreement Pairs
These are essentially equations arising from attempting to resoiv'e a subgoal.

Top Number of top level equations. Each attempt to reduce a subgoal with
an n-ary predicate results in n such equations. Thus backtracking adds
to this total.

Rec This is the total number of equations. One equation of the above kind
can result in several equation, say when subte':--is of uninterpreted
functors are equated. We call these equt..ions disagreement pairs.

%PP The percentage of disagreement pairs that equate two solver variables.
% VP The percentage of disagreement pairs that equate a solver variable and

a free variable.
% VV The percentage of disagreement pairs that equate two 'ree variables.

4.5. EMPIRICS 69

"* Arithmetic Equations
Summarizes the amount of arithmetic dynamically occurring.

EQ Number of explicit linear arithmetic equations. This is loosely related
to the number of such equations occurring in the program, since the
compiler performs transformations on constraints.

Num Number of real (floating point) numbers explicitly assigned to solver
variables.

Calls Number of equations actually passed to the linear equation solver.
New Number of the above equations that did not really require solving,

since they included a new variable.
Ground Number of the above that immediately give a ground value to the new

variable.
Par Number of equations passed to the solver that resulted in a simplifying

substitution. Essentially these are the rest of the equations passed to
the solver.

"* Inequalities
This is to capture the number of explicit linear inequalities arising.

GT Number of strict linear inequalities encountered.
GE Number of non-strict linear inequalities encountered.
ICalls Number of inequalities and equations passed to the inequality solver.

There is no simple relationship between this parameter and the others
above. The inequalities passed result either from the GT or GE pa-
rameters, but the equalities can result either from EQ instances of the
Par kind, or from Num instances or PP type disagreement pairs. This
will be explained in more detail when discussing the implementation
of CLP(TZ).

The results are summarized in four tables. The first two, in Figures 4.14 and
4.15, are for a set of simple example programs. Some of these, like Mortgage or SMM
actually perform a lot of computation, but they are typically small programs written to
illustrate various aspects of the use or performance of CLP(1Z). The third and fourth
tables, in Figures 4.16 and 4.17, contain results from more substantial programs. Most
of these were also written to illustrate the use of CLP(RZ), but are often quite large and
complicated, are more concerned with the actual applications, and in some cases were
written by programmers who were not involved with any implementation of CLP(JZ).
Many of the programs have already been discussed. We give some relevant details
about the programs and queries.

"* Fib
The Fibonacci program for early in this chapter. The first goal uses it to compute
F14, and the second goal computes the inverse function.

"* Mortgage
This is a form of the mortgage program (similar to that shown in this chapter)

70 CHAPTER 4. CLP(TZ)

given in Chapter 10. The four queries given there are used, as they represent four
different uses of the program.

" Option
This is a program for reasoning about algebraic combinations of stock option
transactions, described in [104]. The two goals obtain all solutions to queries
about combinations of put and call options.

" Ladder
A simple program for reasoning about resistive circuits - specifically various volt-
age dividers, ladder networks and bridges. Used for teaching CLP(IZ) program-
ming at the University of Washington, and written by Alan Borning. The various
goals analyze various circuits of this kind.

" SMM
This is the SEND+MORE=MONEY puzzle of Figure 4.2.

" Laplace
This is the program shown in this chapter for solving Laplace's equation, with a
larger goal grid.

" Critical
This is a program written by Roland Yap for critical path analysis. Constraints
are used to avoid the multiple passes through the graph. The goals analyze various
sizes of graphs.

"* Discrete
This program, written by Jonathan Ostroff and Jeff Klein, is described in [135]. It
reasons about discrete event processes, and the query used to obtain these results
is the filterpath(trainGate) query described in the paper.

"* Verify
This program described above, was written by Amon and BorrieUo [5, 6] for
verifying asynchronous circuits. Some of the goals run for a very long time.
These are examples from their various papers.

" DNA
This is the program for genetic restriction site mapping written by Yap [192],
using various examples similar to those in that paper.

"*EE
This is a program similar to that described earlier in this chapter and in [69]
for analysis and synthesis of electrical circuits with diodes and transistors. The
first goal determines the activation state of a transistor in a circuit, the second
analyzes a NAND gate, the third designs an amplifier using the test-and-generate
methodology, and the fourth obtains the same design with much more work, using
exhaustive search.

4.5. EMPIRICS 71

* Gears
This is a gear-train design program, written by Devika Subramanian and Cheuk-
San Wang at Cornell University. The query is the biggest synthesis query made
available, searching only for the first solution.

While we will draw heavily on these results in subsequent chapters, it is appropriate
to make a few general observations at this stage.

1. The large numbers of VV and VP cases in unification in many programs show
the importance of the extended unification algorithm in Chapter 7.

2. The "New" category of arithmetic equations shows that many linear equalities
encountered are a priori clearly consistent with the set of collected constraints.

3. The "Ground" category of arithmetic equations demonstrates that a substantial
fraction represent forward propagation steps.

4. The analysis of inequalities shows that in many programs a substantial fraction
of inequalities are simple tests. The ratio of the number of arithmetic constraints
to the number of disagreement pairs varies substantially between programs, but
generally is very small.

5. All of the programs make use of non-trivial arithmetic constraint solving, but
most of them do so sparingly.

72 CHAPTER 4. CLP(7)

P IQ Resylutions Disagreement Pairs
Program Query Call Fail Top Rec %PP %VP %VV

Fib Fw 611 0 2438 2438 75 25 0
Bw 1505 999 8155 8155 70 30 0

Mortgage 1 361 1 1805 1805 0 80 20
2 361 1 1805 1805 0 100 0
3 361 1 1805 1805 0 100 0
4 358 3 1800 1800 0 100 0

Option 1 33 15 206 206 0 63 27
2 105 49 690 690 0 62 30

Ladder 1 15 4 47 117 1i 26 3
2 14 3 42 99 11 25 3
3 20 7 73 188 11 26 3
4 19 6 68 170 11 26 3
5 21 9 86 227 11 27 3
6 20 8 81 209 11 27 3
7 213 101 930 2254 12 27 4

SMM 1262 1247 6580 11202 10 33 0
Laplace 113 90 514 2582 0 29 6
Critical 1 124 80 595 1433 0 15 16

2 511 446 2882 7219 0 13 16
3 382 339 2139 5310 0 14 15

Discrete 1 1079 547 1891 3439 0 28 0

Figure 4.14: Small Programs: Resolution and Unification

4.5. EMPIRICS 73

Arithmetic Equations Inequalities

Program Query EQ Num Calls New Ground Par GT GE ICalls

Fib Fw 1827 1221 4627 3049 1218 1218 609 0 0
Bw 5559 3206 12848 8766 3071 4028 2475 0 39

Mortgage 1 719 5 1083 1083 719 0 360 359 0
2 719 5 1083 1082 359 1 360 349 1
3 719 3 1081 1080 359 1 361 360 362
4 716 6 1081 1075 356 6 357 359 365

Option 1 15 28 66 62 6 4 14 32 37
2 50 105 235 235 25 0 48 108 126

Ladder 1 12 10 35 23 0 12 0 0 0
2 11 8 30 20 0 10 0 0 0
3 19 15 56 36 0 20 0 0 0
4 18 13 51 33 0 18 0 0 0
5 24 14 65 41 0 24 0 0 0
6 23 12 60 38 0 22 0 0 0
7 267 111 686 438 19 248 19 0 0

SNIM 4 63 276 64 0 212 0 26 236
Laplace 81 40 122 113 0 9 0 0 0
Critical 1 28 7 40 37 24 3 2 0 0

2 105 21 151 133 81 18 10 0 0
3 77 16 110 101 66 9 7 0 0

Discrete 1 22 362 194 171 22 23 0 30 31

Figure 4.15: Small Programs: Arithmetic

f~ Reqolutions IDisagreement Pairs1
Program Query Call Fail Top Rec %PP %VP %VV

Verify 1 26941 26404 108466 226915 0 5 1
2 132189 134280 543085 1078951 0 2 0
3 6003326 6116029 24589775 49470767 0 1 0
4 5036771 5148358 20702284 41478978 0 1 0
5 6003267 6116029 24589775 49470767 0 1 0

DNA 1 99 68 549 1181 5 37 4
2 11)445 8939 58565 136715 6 41 2

EE 1 109 106 990 1733 1 8 23
2 137 131 1248 2255 0 10 21
3 1623 1978 17941 27605 1 9 23
4 101583 126118 1062863 1745129 0 7 25

Gears 39161 26261 157762 659201 6 25 6

Figure 4.16: Large Programs: Resolution and Unification

74 CHAPTER 4. CLP(TZ)

1Arithmetic Equations Inequalities
Program Query EQ Num Calls New Ground Par GT GE ICalls

Verify 1 51 523 586 571 38 12 714 86 48
2 175 1030 1217 1205 157 12 1417 482 49
3 1218 8292 9511 9484 1102 27 9986 2276 279
4 1254 6929 8184 8167 1168 17 8812 2874 257
5 1218 8290 9509 9482 1102 27 9986 2276 281

DNA 1 64 27 147 105 43 42 35 26 87
2 6969 1030 11350 8029 5311 3321 5383 1035 8896

EE 1 24 50 83 76 3 7 0 2 4
2 37 59 103 93 7 10 2 4 7
3 389 974 2586 1400 42 1186 2 20 364
4 24215 18971 53085 45353 2436 7732 2 1472 3617

Gears 88650 53558 242001 230115 77805 11846 3419 0 0

Figure 4.17: Large Programs: Arithmetic

Chapter 5

AProlog and Elf

The idea of a language based on solving equations between simply-typed A-expressions
emerged from the desire to use A-abstraction as a means of representing data rather
than defining functions. The first language based on the idea was AProlog [121]. In
this chapter we will discuss the closely related language Elf [139], although much of the
material is equally applicable to AProlog. The chapter will begin with an introduction
to the languages, and will continue with a discussion of programming methodology and
empirical observations.

5.1 The Domain

The core domain of Elf is the set of ý3ra-equivalence classes of A-expressions with
dependent types. where application is the only operation and equality is the only re-
lation. The terms are thus typed lambda expressions with constructors (functors and
constants) and existentially quantified variables. A term free of existential variables
can be considered ground. As we shall see later, full Elf actually involves constraints
on expressions from the A-calculus with dependent types. For an introduction to the
simply-typed A-calculus. the reader should consult [143]. Here we will give only a brief
overview by way of example. The equalities

Ax r. x = Ay: r. y

Ax :r. fo = Ax : r. f((Ay : r. y)a)

hold, while
Ax :r. Ay:r.x = Ay:r. Ax:r.x

does not. Now consider equalities involving terms with existentially quantified variables.

3M :r. Ax :r. AI x = Ax :r. x

is satisfiable, with Al = Ax : r. x being one solution. This is maximally general, and
also unique, modulo 377a-equivalence. On the other hand, some constraints can have

75

76 CHAPTER 5. APROLOG AND ELF

more than one maximally general solution. For example,

3M: 7 -- r. faa = Ma

has the solutions

M = Ax:7. fxx

,X :T. fxa

Ax :T. fax

Ax : r. faa

of which no two are 3r7a-convertible. In fact, sometimes there are infinitely many
maximally general solutions. Consider

3M :7 - 7. AI(fa) = f(Ma),

which has the solutions

M'=Ax:r. f'x, nE {0,1,2,..}.

One major design issue related to these languages comes from the fact that con-
straint satisfiability is undecidable. It is semi-decidable, but the pre-unification algo-
rithm of Huet [76], and Elliot's extension to dependent types [50], as demonstrated
above, involve backtracking through solutions to individual equations. Details of these
issues will be discussed in Chapter 11.

There are three prevailing approaches to dealing with this problem:

"* Tolerate the inefficiency
It may be that some kinds of programs actually can benefit from the full generality,
although this has not been argued convincingly.

" Restrict the language to a fragment with decidable constraints
In [119], Miller presents a language L\, described below, which is syntactically
restricted such that the hard cases of unification do not occur. It is claimed that
this subset is satisfactory for most examples. However, programming becomes
more difficult for certain examples. as idioms that can be expressed directly in
the full language here have to be coded up explicitly. This can also result in a
loss of efficiency, as will be demonstrated in Section 5.6.

" Introduce delay for the constraints that cause inefficiency
Many Elf programs actually conform to the restrictions of LA, and it turns out
that many programs that do not conform to the syntax of LA still do not involve
the difficult case of unification dynamically. Furthermore, it has been argued by
Pfenning [139] that many of the remaining programs could avoid the difficult case
if certain constraints were deferred until they were sufficiently instantiated to fall
into an easier case. This is directly analogous to the case for delay of nonlinears
in CLP(IZ), and will be examined more closely here and also in Chapter 11.

5.2. THE LANGUAGES 77

It should be noted that, while Elf is certainly a CLP language in essence, it departs
from the pure CLP scheme in a number of unusual ways.

* it is strongly typed;

* embedded implication, first described by Miller in [118], is used to modify the
program with temporary assumptions, as a central programming technique;

* universal quantification is provided, and is central to programming technique, as
it essentially provides a new constant different from all other constants occurring
so far;

* programs can manipulate proof objects, in a way that is kept under control by
the type system.

The language AProlog is closely related to Elf, many of the same design, program-
ming and implementation observations apply, and it is more widely used than Elf.
Hence, it is useful to consider how the two languages differ. AProlog has no ability to
reason about proofs of goals. However, it allows polymorphic constructors and predi-
cates to be defined, and it also allows predicate variables. That is, predicate symbols
are in many respects treated as constructors.

Finally, LA [119] is a syntactically restricted version of LA, with a corresponding
restriction of LF [140] for Elf, where variables that are universally quantified at the top
level of a. clause can only be applied to a set of distinct bound variables. As mentioned
before, and discussed fully in Chapter 11. this is intended to avoid the hard case of
solving constraints.

5.2 The Languages

To introduce Elf, let us consider in Figure 5.1 an example that is essentially a Prolog
program. It converts propositional formulae to negation normal form. This is very
straightforward, and can be directly translated to Prolog.

First, bool is declared as the type of boolean truth values, and var as the type
of propositional variables. Then the constructors not, and and or are the usual log-
ical connectives. Three sample propositional variables vi to v3 are defined, and the
constructor prop turns a propositional variable into a boolean proposition. The pro-
gram consists of one relation negn, which is first declared as a relation between two
booleans. The first rule defining negn, named t-nn, eliminates double negation. The
next two rules t.na and vcno flip conjunction and disjunction while carrying over a
negation. The two base cases (for termination) are t-v and t-nv. Finally, t-o and t-a
pass trough conjunction and disjunction without changing them.

78 CHAPTER 5. APROLOG AND ELF

bool type.
var type.

not :b ->b.
and b -> b -> b.

or b ->b ->b.

vI var.
v2 var.
v3 var.

prop var -> bool.

negn : bool -> bool - type.

t-nn negn (not (not X)) Y
<- negn X Y.

t-na negn (not (and X Y)) (or X1 YO)
<- negn (not X) Xl
<- negn (not Y) Y1.

t-no negn (not (or X Y)) (and Xl Y1)
<- negn (not X) XI
<- negn (not Y) Y1.

t-v negn (prop X) (prop X).
t-nv negn (not (prop X)) (not (prop X)).
t-a negn (and X Y) (and Xl Yl)

<- negn X X1
<- negn Y Y1.

t-o :negn (or X Y) (or Xl Yl)
<- negn X X1
<- negn Y Yl.

Figure 5.1: Elf program to convert propositional formula to negation normal form

5.2. THE LANGUAGES 79

As an example query, consider

?- negn (not (and (or (not (prop vi)) (prop v2))
(or (prop v3) (not (prop vi))))) X.

which obtains the answer

X = or (and (prop vi) (not (prop v2)))
(and (not (prop v3)) (prop vi))

with proof object

"t-na (t..no (t.nn t._v) t.nv) (t..no tnv (t..nn t.v)).

Proof objects will be discussed in more detail in Section 5.4. Essentially, a proof
object is a term constructed from constants declared in an Elf signature, or equivalently
the names of Elf rules. It represents a record of how the rules of a program were used
to solve a particular query.

Now we can discuss Elf somewhat more systematically. The basic building block
of an Elf program is a signature, that is, a sequence of constant declarations. Some of
these declarations have the character of declarations for data constructors (functors) or
predicates, while others have the character of declarations of inference rules or clauses.
In principle, each declaration could be given all of those interpretations, but in practice
few are meaningful.

This unusual way to view a program stems from the origin of Elf as a computational
view of the Edinburgh Logical Framework (LF) [65], which is type-theoretic. This
relationship is justified by the Curry-Howard isomorphism, and Elf is described in that
way in [138].

For a tutorial introduction to Elf, see [117]. Here we give only a brief overview. The
first kind of declaration is that of a constant type or type family. Types and type families
are classified by kinds, the simplest of which is type. Data constructors are declared
using decl, type and atom. Data is represented using objects. The dependent function
type, { var : type } type. is elsewhere often written as Ilvar : type. type. Juxtapo-
sition is left-associative. The square brackets denote A-abstraction, and [var : type]
obj is more traditionally written as Avar : type. obj. We adopt the shorthand [var I
and { var } for those cases of abstraction or quantification where we want Elf type
reconstruction to fill in the omitted types. The scope of the abstraction C...] and
quantification f... } extends to the end of the declaration or enclosing parentheses. We
summarize the syntax of Elf in Figure 5.2.

In Elf, predicates manifest themselves as type families and thus a type family decla-
ration can be interpreted as a predicate declaration. When defining rules we often use
the more conspicuous left-pointing arrow. One should bear in mind that this has no

semantic significance, and A <- B and B -> A are parsed to the same internal repre-
sentation. The backwards arrow is left associative and a Prolog rule p q, r. would
be represented via the type p <- q <- r.

The variable name convention of Elf is much like that of Prolog. Any token begin-
ning with an upper case letter is automatically a variable, and if an explicit quantifier is

80 CHAPTER 5. APROLOG AND ELF

famdecl : famconst : kind.

kind : type

I type -> kind
I { var type } kind

decl const type.

type atom
I type -> type
I {va : type} type

atom : famconst obj ... obj

obj := const

I var
I [var : type] obj
I obj obj

Figure 5.2: Summary of Elf syntax

5.3. HIGHER-ORDER ABSTRACT SYNTAX 81

not provided, one will be added by type reconstruction. Additionally, variables that are
explicitly quantified need not start with an upper case letter. We follow the convention
that bound variables that will become logic variables (and thus subject to instantiation)
during execution of a query are written in uppercase and bound variables that become
parameters (and thus act like constants to unification) are written in lowercase.

In Elf, unlike Prolog, an underscore character does not denote an anonymous univer-
sally quantified variable, although it can sometimes be used for this purpose. Instead,
it describes an existntially quantified anonymous variable, and type reconstruction is
at liberty to replace an underscore with any term, depend:ng on the available type
information. Thus {x}B and {x:_}B are fully equivalent. In Prolog, since no variables
are ever instantiated during parsing, this distinction does not arise.

Queries to the Elf interpreter consist of a type, possibly with free variables, which
act as logic -,ariables. The goal is to find a term of the given type. In the most common
interpretation, this term represents a deduction of the judgment that is represented by
the type. During the solution of a goal, the free variables in the query are instantiated
as necessary, as in Prolog. As will be described in more detail later, the names of rules
are used as constructors in assembling deductions.

The operational model of Elf is superficially much like that of Prolog and AProlog. A
computation rule similar to Prolog's left-right atom selection rule is employed. When
using a rule, the subgoals will be solved "inside-out". For example, resolving the
goal ?- p. with the rule c : p <- q <- r will first solve subgoal q and then r.
Unification is modulo 3Jqa-convertibility, where certain equations are postponed as
constraints. A goal of the form A -> B is solved by adding A to the set of rules available
for goal reduction. The third form (universal quantification) is solved by replacing the
universally quantified variable with a new constant.

One complication is that rules and types in Elf are essentially indistinguishable.
In fact, the only desired distinction is that of operational behavior. For this reason,
the L,; module system [66] allows type families to be defined as either open o- closed.
Rules defining a closed type family are used to solve goals by search. This nistinction
is described in more detail in [139]1.

5.3 Higher-Order Abstract Syntax

Most of the important application areas for Elf are natural extensions of applications
of AProlog. The major application of AProlog is meta-programming, where the ob-
ject language is typically either a programming language or a logic. This is because
AProlog's simply-typed A-expressions enable the use of a meta-programming technique
known as higher--rder abstract syntax. This approach was inspired by Church [231,
Martin-L6f [131] and fluet & Lang [77]. A A-calculus-based meta-la-r.guage is used to
represent expressions of the object language. This enables variable binding and s'oping
in the object language to be represented with the help of A-abstraction in the meta-

'In more recent work towards a module system for Elf [66] open declarations are called static and
closed declarations are called dynnrnic according to their role in proof search.

82 CHAPTER 5. APROLOG AND ELF

language. This, in turn, enables substitution and variable occurrence restrictions to be
implemented using 3-reduction in the meta-language, which avoids, for example, the
requirement to perform explicit a-conversion to prevent capture of bound variables.

To illustrate these ideas, let us extend the above program to the first-order predicate
calculus. The additional code below introduces the type d for the doinain of quantified
variables, and a sample predicate symbol p. The interesting constructors arc exists
and forall, which use abstraction to represent quantifiers. That is, for some formula
,b, Vx(D(x) is represented by V(Ax.o(x)), etc. The rules t.E and tA simply pass through
the quantifiers. Note how applying an abstraction to a universally quantified variable is
used to descend through the body of the abstrac:ion, and to reconstruct an abstraction
from the result. The same technique is used in t.nE and ._nA. except that the quantifiers
are flipped because of the descending negation.

dom : type.
p dom-> var.

exists (dom -> bool) -> bool.
forall] (dom -> bool) -> boo!.

t_nE negn (not (exists X)) (forall X1)
<- {y : dom} negn (not (X y)) (Xi y).

t_nA negn (not (all X)) (exists X1)
<- {y dom} negn (not (X y)) (Xl y).

tE :negn (exists X) (exists Xl)
<- {y dom} negn (X y) (Xl y).

tA :negn (forall X) (forall Xi)
<- {y dom} negn (X y) (Xl y).

As an example query, consider

?- negn (not (exists ([x] (not (prop (p x)))))) X.

has the execution trace

[Solving goal negn (not (exists ([x:dom] not (prop (p x))))) ?X207
Resolved with clause tnE
Solving goal {y:dom} negn (not (not (prop (p v)))" (?X1230 y)
Introducing new parameter !y232
[Solving goal negn (not (not (prop (p !y232)))) (?X1230 !y232)
Resolved with clause t-nn
[Solving goal negn (prop (p !y2 3 2)) (?X1230 !y 2 3 2)
Resol'-ed with clause t-v

which obtains the answer

X = all ([y:dom] prop (p y))

5.3. HIGHER-ORDER ABSTRACT SYNTAX 83

with proof object

t.nE ([y:dom t._nn t•.v).

Using AProlog for higher order abstract syntax was described by Pfenning and
Elliott in [141]. With this technique, AProlog has been used as an implementation
language for type inference [137], meta-interpretation [61] and theorem proving [52].
These techniques are readily applicable when programming in Elf. We illustrate the
techniques here with parts of the Elf type inference and evaluation code for Mini-ML, as
described in [117]. Mini-ML is a small functional language based on a simply typed A-
calculus with polymorphism, products, conditionals, and recursive function definitions.
We use the example of application, A abstraction and polymorphic let. The relevant
concrete syntax is as follows.

e

I lambda x . e
I el e 2

[let x = e1 in e2

r -> T

The three relevant types rules are

H , z x r, - e E r2
oflam H H- lambda x . e E r1 -> 7-

of-app HI- el E r2->r- H1 1-- e 2 E 72

Hf H- el e2 E ri

of-let HI el E ri I H [el /X]e 2 E r 2

H - let z = el in e2 E r 2

and the relevant evaluation rules are

evaldarn I- lambda x . e =:ý lambda z . e

evalappamH e 1 => (lambda x, el) H- e2 = a2 H [a 2 /X]el a
H- el e2 *= a

84 CHAPTER 5. APROLOG AND ELF

evallet F" el I=* (1 I - [al /z]e 2 => * 2
I- let z = el in e 2 => a2

We define a representation function ()+ from Mini-ML expressions and types to Elf
expressions. This is not implemented in Elf, since we consider the right-hand sides the
result of parsing. The relevant part for our description is:

(x)+ = X
(lambda x .e)+ = lam ([x:exp] (e)+)

(el e2)+ = app (el)+ (e2)+
(let x=el in e2)+ = let (el)+ ([x:expJ (e 2)+)

(7 1 -> 72)+ = arrow (7 1)+ (7 2)+

In the defining signature, we require no syntactic category for identifiers since all
Mini-ML variables correspond directly to Elf variables. Thus we only need expressions
(exp in Elf) and types (tp in Elf, since type is a keyword). The relevant types in Elf
are

tp type.
exp : type.

arrow : tp -> tp -> tp.

lam : (exp -> exp) -> exp.
app exp -> exp -> exp.
let exp-> (exp -> exp) -> exp.

Notice how the types of lam and let are analogous to the existential and universal
quantification in the previous example. Some of the programming techniques will also
be similar.

In the Elf implementation of type inference, the declaration of the predicate (judg-
ment) of is:

of : exp -> tp -> type.

That is, the first argument is a Mini-ML expression and the second argument is its
Mini-ML type.

The rule for lambda illustrates universal quantification in a goal, as well as the
use of embedded implication to represent assumptions. The scope of the quantifier
{x:exp} below extends all the way to the end of the declaration. Thus the rule has
one subgoal, as expected. The rule for app is straightforward. The first condition in
the body of the third rule ensures that the let-bound term El is well-typed in isolation.

The second condition uses an extension of the technique used to implement lam. The
let-bound variable in the body is replaced by a parameter x, and a rule is assumed
that ensures that whenever x is encountered while type-checking E2, the expression El

5.3. HIGHER-ORDER ABSTRACT SYNTAX 85

will be type-checked in its place. Note that the type A of x is universally quantified
within the asserted rule, so that x can be given different (Mini-ML) types at different
occurrences in E2.

of-lam : of (lam E) (arrow Al A2)
<- {x:exp} of x Al -> of (E x) A2.

of.app of (app El E2) Al
<- of El (arrow A2 Al)

<- of E2 A2.
of-let of (let El E2) A2

<- of El Al
<- {x:exp} ({A:tp} of x A <- of El A)

-> of (E2 x) A2.

As is the case of the previous example, these rules, and all the others for type inference,
conform to the L,\ restriction of Elf.

We begin the operational semantics with the declaration of the evaluation predicate
eval:

"eval exp -> exp -> type.

The first argument is a Mini-NIL expression, and the second argument is the value of
that Mini-ML expression. The first rule below simply states that an abstraction is
already in normal form. The second rule first evaluates the operator until it reduces to
an abstraction. This of course may fail, and the other rules for application, not given
here, are tried. If it succeeds, the argument is evaluated, and Elf application is used to
represent the object-level substitution of the argument through the function.

eval-lam eval (lam E) (lam E).
eval-app-lam eval (app El E2) V

<- eval El (lam El')
<- eval E2 V2

<- eval (El' V2) V.
eval-let : eval (let El E2) V2

<- eval El Vl

<- eval (E2 Vl) V2.

Notice that the rule eval-app-lam does not fall into LA, as the variable V2 in the term
(El' V2) is existential. However, notice that in the expected use of this rule, when the
last subgoal is reached, El' will already be bound to an Elf abstraction representing
the function being applied. Hence, as we shall see in Chapter 11, the hard case of
constraint solving that the syntactic restriction of LA is intended to avoid actually
doesn't arise when this program is run. This observation also applies to evalilet. In
Appendix B, this application is explored in some more detail. The expression syntax
of Mini-ML is given in Appendix B.1, and the natural operational semantics is given
in full in Appendix B.2.

86 CHAPTER 5. APROLOG AND ELF

5.4 Manipulating Proofs

In previous sections we have already seen some examples of proof objects created during
program execution. To be more precise, when a fact is used directly to solve a subgoal,
the corresponding proof object is merely the name of that rule. If a non-base rule is
used to solve a subgoal, the resulting proof object is formed by applying the name of
that rule to the proof objects obtained from solving all the subgoals in the body of the
rule. The proof object corresponding to a universally quantified subgoal is a function
from a term of the required type to the proof object corresponding to the body. The
proof object for an embedded implication is a function from a proof of the assumption
to a proof of the conclusion. That is, given a proof of the assumption, it produces a
proof of the conclusion.

The name of a rule, then, can be used as a constructor in a program, anywhere
that a normal constructor can be used. Thus, in addition to proof objects being built
automatically for a query, a program can build proof objects explicitly, and, as we shall
see in the example below, the type system of Elf will ensure that the constructed object
is correct. Furthermore, an automatically constructed proof object can be captured,
and manipulated in a way that is verified by the type system. To capture a proof
object, the sigma quantifier is used. Let us consider a rather trivial example. For any
boolean formula -t, if the negation normal form is T, then

;57A) = T A T.

Now let a be the proof object corresponding to finding T. Clearly, the proof object for
finding (D A -0 is just (t.a a a). Let us consider how to embody this in a very simple
Elf program that implements this transformation. It's declaration is:

transform-proof : negn F F1 -> negn (and F F) (and F1 F0) -> type.

and the one rule needed would be

transform-proof P (t-a P P).

The declaration states that the first argument is the proof object for the original
transformation, and the second argument is the proof object for the transformation
of the conjoined expression. The Elf type system then guarantees that each rule for
transform-proof actually maintains the required property.

This example is trivial, but of course the program could be extended to handle
cases like 'D V 4 (also trivial) and -(D, which would require a recursive traversal of the
original proof object, switching occurrences of t-o and t.no, etc. An example query
might be:

?- sigma [P : negn (n (a (prop vi) (prop v2))) X]
transform-proof P P1.

In [117], a number of aspects of the meta-theory of the natural semantics of Mini-
ML are coded in Elf and explained in considerable detail. As a simple example, consider

5.5. PROGRAMMING METHODOLOGY 87

the subject reduction property of Mini-ML: evaluating an expression does not change
its type. This can be expressed as an Elf program by defining a relation sr between an
evaluation proof object, a type inference proof object for the original expression, and
another for the resulting expression. That is,

sr : eval E V -> of E A -> of V A -> type.

and to choose an interesting example rule,

sr.evalapp-lam : sr (eval-app-lam P3 P2 P1) (of-app D2 D1) C
<- sr P1 D1 (oflam C1)
<- sr P2 D2 C2
<- sr P3 (Cl - C2) C.

That is, in the case of a A abstraction applied to some expression, the transformation
is performed transforming the proof for the abstraction, obtaining (lam C1) and the
proof for the argument, obtaining C2, and then using these to construct the type in-
ference proof for the result of actually performing the substitution. To see how this
works, recall from above the rule of -lam. The proof object constructed by applying
this rule will of course have of .lam as its principal functor. Following the rules for con-
structing proof objects, as given above, the argument will be a function that accepts an
expression and a proof that it has the correct argument type, and returns a proof that
the body of the abstraction will have the result type. In the first subgoal in the body
of sr-eval-app.lam above, this function is obtained as C1. Then it is used in the last
subgoal, obtaining the first argument from Elf type reconstruction, and the second from
the previous subgoal, where transformation is performed for the argument, producing
C2. Other cases, some of which are even more complicated, are described in detail in
the above reference. Another example of this kind of reasoning is given in Appendix
B.3, where a definition of a Mini-ML expression that is a value is given, followed by
a program that transforms the proof object for an evaluation to one showing that the
resulting expression is a valhe.

As we shall see in Chapter 11. the creation of proof objects will have consequences for
the efficiency of Elf. Creating and storing them takes time and space, and sometimes
substitutions must be applied to them. For this reason, it will be useful to detect
when they are not used. Additionally, while proof objects resemble simply-typed A-
expressions at the term level, their types are somewhat more complicated. As types
sometimes need to be compared during constraint solving, the complexity of these types
can result in considerable cost. Even when they are not being compared, creating them
and substituting through them also takes time, and storing them takes space.

5.5 Programming Methodology

Considerable experience has been accumulated over the last few years in programming
in AProlog. Elf is a more recent language and has been used much less extensively.
However, to understand Elf programming methodology we can draw upon the expe-
rience with AProlog since most AProlog programs can be directly translated into Elf.

88 CHAPTER 5. APROLOG AND ELF

The major observations about "typical" AProlog programs that can be made are as
follows.

"* While many programs fall into the L\ subset of the language, there are also many
that do not.

" Many programs that do not fall into L,\ would not trigger the expensive case of
unification. This is because they breach the L,\ syntax with an application of two
existential variables where that in the function position is already instantiated to
an abstraction.

" Many programs that trigger the expensive case of unification would not do so if
certain readily-identifiable constraints were deferred, and would still run correctly.

" The occurs check is needed for termination and correctness in some real (non-
contrived) programs. This is particularly the case with theorem proving applica-
tions.

"• Many constraints involve comparison of ground terms or assignment of a term to
an existential variable. Frequently, the assignment is to a new variable, so that
the occurs check can be omitted.

" Certain programs, like some theorem provers, may turn out to need the full
generality of the constraints, without delay.

" A large proportion of terms in programs are of a form that can be seen as cor-
responding closely to first-order terms. For example, only a few of the syntactic
constructs treated in a higher order abstract syntax tend to have A abstractions,
and the heads of rules tend to match with terms of the form (f X 1 ." X,,) where f
is a constructor and the rest are existential variables. These often match against
a term that is of the form (g t ... tin) where g is a constructor and the rest are
terms, about which the same observation typically holds. If f and g are different
the match fails, and otherwise we must have n = m, and so recursive assign-
ment takes place. However, there is a caveat: unless the occurs check can be
safely omitted, assignment can result in normalization to delete occurrences of
the variable being assigned.

" An important case in the use of higher order abstract syntax is application of an
existentially quantified variable instantiated with an abstraction to a universally
quantified variable. The dual case of an equation between an instantiated exis-
tential variable and the application of a free variable to a universally quantified
variable to essentially "remove" occurrences of the latter is also important and
frequent.

In addition, certain observations can be made about Elf programs with respect to
AProlog.

5.6. EMPIRICAL STUDY 89

" Many Elf programs are essentially AProlog programs with additional meta-theoretic
constraints, that are evaluated on typechecking but have virtually no runtime
consequences.

" Otherwise, large parts of the execution of an Elf program are just AProlog execu-
tion. This is because program execution is often divided between disjoint phases
of meta-programming (essentially AProlog) and meta-theoretic reasoning (Elf's
proof object manipulation).

" Another style of Elf program tends to evolve by adding a couple of arguments to
a AProlog, say to build proof objects.

Furthermore, some comments can be made about the use of the distinctive features of
Elf.

"* A large proportion of the proof objects created are never examined, except when

they are printed at the end of a computation.

"* In some cases, manipulating proof objects is a major part of the program.

"* In many cases a lot of runtime typechecking can be avoided.

Finally, we note some other work on the applications of Elf. A number of veri-
fied theorem-provers have been written. Additionally, in [63], Hannan and Pfenning
describe using Elf to verify a compiler from the untyped, call-by-value A-calculus to
the Categorical Abstract Machine. In [7], Anderson describes the use of Elf to extract
programs in a functional language from proofs in first-order logic. Proof transforma-
tions for program optimization and specialization are also represented in Elf. This work
involves some of the most computationally int,'-ive Elf code written to date.

5.6 Empirical Study

As in the previous Chapter 4, we need to understand how programs behave at run
time. Thus we provide measurements for the constraint solving load of a number
of Elf programs. The measurements were obtained by instrumenting the constraint
solver and other components in Version 0.2 of the CMU implementation of Elf. This
implementation, unlike the CLP(R.) compiler instrumented for Section 4.5, is relatively
naive. Hence we are able to obtain relatively precise information about the nature of
the programs and queries, relatively unpolluted by the specifics of the implementation.
although the results are influenced somewhat by the fact that hard constraints are
delayed.

5.6.1 Properties of Programs

Since our concern is with efficient implementation (and its interaction with language
design), the properties of programs that we most need to study are the dynamic prop-
erties: how frequently do various phenomena arise when typical queries are executed?

90 CHAPTER 5. APROLOG AND ELF

This allows us to tune data structures and algorithms. On the other hand, to evaluate
the possibility of syntactic restrictions, we also need to know what occurs syntactically
in programs. We begin by discussing these syntactic properties and why they are of
interest. Then we go on to discuss the dynamic properties.

Static Properties

L\ vs. general variable applications. Because of our interest in the syntactic
restriction to L.\, we need to understand how often and why programs do not fall into
this subset. Even within the L\ subset, we can observe interesting static properties
of programs. For example, many programs structurally recurse through an object
language expression, where the object is represented using higher-order abstract syntax.
Type redundancy. Both in AProlog and Elf there is a potential for much redundant
run-time type computation. In AProlog. this is due to polymorphism (see [101]), in
Elf it is due to type dependency. Such redundancy can be detected statically. How-
ever, the question about the dynamic properties of programs remains: how much type
computation remains after all redundant ones have been eliminated.
Level of indexing. This is an Elf-specific property of a program. Briefly, a (simple)
type is a level 0 type family. A type family indexed by objects of level 0 type is a level
1 type family. In general, an type family indexed by objects whose type involves level
n families is a family of level n + 1. For example.

0 : type. 7. propositions, level 0.
pf : o -> type. % proofs of propositions, level 1.
norm : pf A -> pf A -> type. 7% proof transformations, level 2.
proper : norm P Q -> type. % proper proof transformations, level 3.

This is of interest because the level of indexing determines the amount of potentially
redundant type computation. Empirically. it can be observed that programs at level
2 or 3 have in some respects different runtime characteristics than programs at level
1. We have therefore separated out the queries of the higher-level. This also helps
to separate out the part of mur analysis that is directly relevant to AProlog, where all
computation happens at levels 0 and 1 (due to the absence of dependency).

Dynamic Properties

The major dynamic properties studied here are substitution, unification and constraint
solving.
Substitution. Substitution can be a significant factor limiting performance. It is thus
important to analyze various forms of substitution that arise during execution. When
measuring these, our concern is simple: substitutions with anything other than param-
eters (Uvars) result from the fragment of the language outside L,\, so these represent
substitutions that would have had to have been performed using Elf code if the L\
restriction had been applied. Moreover. the relative frequency of parameter substitu-
tion suggests that it is crucial for it to be highly efficient, while general substitution
is somewhat less critical. A proposal regarding efficient implementation of terms has
been made in [127].

5.6. EMPIRICAL STUDY 91

Unification and Constraint Satisfaction. We measure various aspects of unifi-
cation and constraint satisfaction. Terms involved in equations (disagreement pairs)
are classified as Rigid (constant head), Uvars (parameters, i.e., temporary constants),
Evars (simple logic variables), Gvars (generalized variables, i.e., logic variables applied
to distinct, dominated parameters [119]), flexible (compound terms with a logic variable
at the head, but not a Gvar), Abst (a term beginning with a A-abstraction), or Quant
(a term beginning with a H-quantification, in Elf only). These terms will be explained
in Chapter 11.

One of our goals is to determine how close Elf computations come to Prolog com-
putations in several respects:

"* How many pairs, at least at the top level, require essentially Herbrand unification?
These are the Rigid-Rigid and Evar-anything cases.

"* How many pairs still have unique mgus, that is, Gvar-Gvar, or admit a unique
strategy for constraint simplification, that is, Gvar-Rigid, Abst-anything, or Quant-
anything?

"• How often do the remaining cases arise (which are postponed to avoid branching)?

"* How successful is rule indexing (as familiar from Prolog) to avoid calls to unifi-
cation?

5.6.2 The Measurements

The two tables in each figure give data on five areas of interest, as follows:

"* All Unifications
The total gives an indication of computational content, while the breakdown
indicates the usefulness of first-argument indexing and the amount of deep search.

Unif Total number of subgoal/head pairs to be unified.
%Ind Percentage of above total unifications avoided by rule indexing.
%S Percentage of total unifications that succeeded.
%F Percentage of total unifications that failed.

"* Dynamic Unifications
It is also useful to have this information for rules assumed through embedded
implication, since indexing of such rules is more complicated, and compilation
has a runtime cost.

Dyn Total number of subgoal/head pairs to be unified, where the head is
from a rule assumed (dynamically) through embedded implication.

%Ind, %S, %F
Percentages of number of unifications with heads from dynamic rules,
as above.

"* Dynamic/Assume
By knowing how many rules are assumed dynamically, and on average how often

92 CHAPTER 5. APROLOG AND ELF

they are used, we can see whether it is worthwhile to index and compile such
rules or whether they should be interpreted.

Ass Number of rules assumed by implication.
U/Ass Normalized ratio of total unifications with dynamic rules to number

of rules assumed by implication.
AU/Ass As above, but using only those rules where the unification was not

avoided through indexing.

"* Disagreement Pairs
We study the kinds of disagreement pairs that arise to determine which kinds of
unification dominate.

Tot Total number of disagreement pairs examined throughout the
computation.

%E-? Percentage of disagreement pairs that involved a simple Evar.
7G-? Percentage of disagreement pairs that involved a Gvar that is not a

simple Evar.
%R Percentage of disagreement pairs between two Rigid terms.
%A Percentage of disagreement pairs between two abstractions.

"* Substitutions
Substitutions and abstractions (the inverse of Uvar substitutions) are expensive,
and the efficiency of one can be improved at the expense of the other. Fur-
thermore, some kinds of substitutions are more costly than others. Thus it is
useful to know what kinds of substitutions arise, how often both substitution and
abstraction arise, and their relative frequency.

Tot Total number of substitutions for bound variables.
%0UV Percentage of the above where a Uvar is substituted.
Abs Number of abstractions over a Uvar.
Ab.s/Uv Normalized ratio of such abstractions to substitutions of Uvars.

5.6.3 The Programs and Results

Figures 5.3 and 5.4 show the data for basic computation queries and proof manipulation
queries respectively, for the range of programs. Thus Figure 5.3 is especially applica-
ble to the understanding of AProlog programs. while Figure 5.4 measures Elf-specific
behavior.

The examples used are as follows:

* Extraction - Constructive theorem proving and program extraction [7]

This example involves a large number of level 2 judgments. Indexing is particu-
larly effective here, and assumed rules are used unusually infrequently. Note that
these examples do not include any basic computation.

5.6. EMPIRICAL STUDY 93

All Unifications Dynamic Unifications Dynamic/Assume
Program Unif %Ind %S %F Dyn %Ind %S %F Ass U/Ass AU/Ass

Mini-ML 15333 87 13 0 1532 93 7 0 67 22.87 1.61
Canonical 177 66 28 6 8 50 50 0 3 2.67 1.33
Prop 677 60 30 10 41 44 41 15 9 4.56 2.56
F-O 359 65 28 7 33 18 82 0 17 1.94 0.07
Forsythe 2087 38 23 39 16 25 75 0 10 1.60 1.20
Lam 240 50 40 10 26 80 15 5 4 6.50 1.25
Polylarm 982 65 34 1 389 88 12 1 45 8.64 1.00
Records 2459 61 31 8 274 61 39 0 28 9.79 3.79
DeBruijn 451 25 39 36 5 40 60 0 5 1.00 0.60
CLS 278 0 32 68 0 - - - 0 - -

[Disagreement Pairs Substitutions
Program Tot %E-? %G-? %R %A A Tot %Uv Abs Abs/Uv

Mini-ML 8716 47 0 52 0 6411 98 0 0.00
Canonical 427 41 8 56 0 180 96 36 0.21
Prop 1681 54 0 45 1 202 100 8 0.04
F-O 438 40 6 58 0 108 100 58 0.54

Forsythe 5812 43 0 57 0 39 100 0 0.00
Lam 874 41 0 59 0 149 86 0 0.00
Polylam 2085 48 3 50 1 7907 89 81 0.01
Records 3880 46 3 53 0 1347 100 204 0.15
DeBruijn 1554 44 1 56 0 688 97 16 0.02
CLS 2455 36 0 65 0 0 - 0 -

Figure 5.3: Basic Computation

94 CHAPTER 5. APROLOG AND ELF

SAB Unifications Dynamic Unifications Dynamic/AssumeProgram Unif %Ind %S %F Dyn %Ind %S %F Ass U/Ass AU/Ass

Extraction 87"1 89 11 0 165 82 17 1 54 3.05 0.54
Mini-ML 2415 73 11 16 107 87 13 0 10 10.70 1.40
CPS 162 59 41 0 72 57 43 0 48 1.50 0.6.5

Prop 4957 67 25 8 509 71 14 15 71 7.17 2.10
F-O 1140 69 27 4 27 0 100 0 13 2.08 2.08
Lam 369 50 44 6 36 75 22 3 12 3.00 0.75
DeBruijn 627 20 44 36 77 31 30 19 24 3.21 1.58
CLS 333 30 42 28 0 - - - 0 - -

Disagreement Pairs Substitutions
Program Tot %E-? %G-? %R %T Tot %U Abs Abs/Uv

Extraction 1580 22 9 66 6 9016 96 1124 0.01
Mini-ML 5872 17 1 76 6 3644 96 55 0.02
CPS 592 24 34 54 0 1509 100 1029 0.68
Prop 13809 35 3 63 1 12040 99 443 0.04
F-O 6800 21 1 74 5 12716 99 38 0.00

Lam 3464 2"2 2 74 3 1825 94 83 0.05
DeBruijn 13441 15 1 71 13 14632 99 150 0.01
CLS .5227 23 0 77 0 2 - 0 -

Figure 5.4: Proof Manipulation

5.6. EMPIRICAL STUDY 95

All Unifications Dynamic Unifications Dynamic/Assume
Program Unif %Ind %S %F Dyn %lnd %S %F Ass U/Ass AU/Ass

Comp 5562 90 10 0 [1532 92 8 0 67 22.87 1.61
ExpComp 7200 70 10 20 1798 80 8 12 87 10.67 4.30
ExpindComp 7200 88 10 2 1798 92 8 87 10.67 4.30
Trans 2159 70 11 19 107 86 14 0 1c 10.70 1.40
ExpTrans 5255 29 10 59 633 15 13 72 67 9.45 8.06
ExplndTrans 5255 76 11 13 633 84 13 3 67 9.45 8.06

Disagreement Pairs = Substitutions
Program Tot 7 E-? 7 G-? %R %A Tot %Uv Abs Abs/Uv

Comp 2424 43 0 57 0 445 97 0 -

ExpComp 10765 24 4 56 17 22743 100 778 0.03
ExplndComp 4251 32 10 52 8 15801 100 778 0.05
Trans 5709 17 1 76 7 3612 96 55 0.02
ExpTrans 27342 20 4 61 16 280679 97 2522 0.01
ExplndTrans 13482 17 8 65 12 264399 98 2522 0.01

Program Computation Transformation

Implicit 1.30 2.48
Explicit 8.48 155.09
Explicit- Indexed 5.80 145.89

Figure 5.5: Mini-NIL comparison

96 CHAPTER 5. APROLOG AND ELF

" Mini-ML [117]

An implementation of Mini-ML, including type-checking, evaluation, and the type
soundness proof. Because of the large number of cases, indexing has a stronger
effect than in all other examples.

" CPS - Interpretation of propositional logics and CPS conversions [60, 142]

Various forms of conversion of simply-typed terms to continuation-passing and
exception-returning style. Substitutions are all parameter substitutions, and uni-
fication involves an unusually large number of Gvar-anything cases. The redun-
dant type computations are very significant in this example - all the queries are
level 2 judgments.

" Canonical - Canonical forms in the simply-typed lambda-calculus [139]

Conversion of lambda-terms to canonical form. A small number of non-parameter
substitutions arise, but mostly unification is first-order. Here, too, there is much
redundant type computation.

" Prop - Propositional Theorem Proving and Transformation [66]

This is mostly first-order. In the transformations between various proof formats
(natural deduction and Hilbert calculi), a fairly large number of assumptions arise,
and are quite heavily used. Unification involves a large number of Evar-anything
cases.

" F-O - First-order logic theorem proving and transformation

This includes, a logic programming style theorem prover and transformation of
execution trace to natural deductions. There is rather little abstraction.

" Forsythe - Forsythe type checking

Forsythe is an Algol-like language with intersection types developed by Reynolds
[145]. This example involves very few substitutions, all of which are parameter
substitutions. Thus the runtime behavior suggests an almost entirely first-order
program, which is not apparent from the code.

" Lam - Lambda calculus convertibility

Normalization and equivalence proofs of terms in a typed A-calculus. A relatively
high percentage of the substitutions are non-parameter substitutions.

" Polylam - Type inference in the polymorphic lambda calculus [1371

Type inference for the polymorphic A-calculus involves postponed constraints,
but mostly parameter substitutions. Unification can be highly non-deterministic.
This is not directly reflected in the given tables, as this is the only one of our
examples where any hard constraints are delayed at run time (and in only 10
instances). In fact, one of these hard constraints remains all the way to the
end of the computation. This indicates that the input was not annotated with

5.6. EMPIRICAL STUDY 97

enough type information (within the polymorphic type discipline, not within the
framework).

* Records - A lambda-calculus with records and polymorphism

Type checking for a lambda-calculus with records and polymorphism as described
in [67]. This involves only parameter substitutions, and assumptions are heavily
used.

* DeBruijn [63]

A compiler from untyped A-terms to terms using deBruijn indices, including a
call-by-value operational semantics for source and target language. The proof
manipulation queries check compiler correctness for concrete programs. Indexing
works quite poorly, and an unusually large number of Abst-Abst cases arise in
unification.

6 CLS[63)

A second compiler from terms in deBruijn representation to the CLS abstract
machine. Simple queries execute the CLS machine on given programs, proof
manipulation queries crieck compiler correctness for concrete programs. This is
almost completely first-order.

Overall, the figures suggest quite strongly that most unification is either simple
assignment or first-order (Herbrand) unification, around 95%, averaged over all exam-
ples. Similarly, substitution is the substitution of parameters for A-bound variables in
about 95% of the cases. The remaining 5% are substitution of constants, variables, or
compound terms for bound variables. These figures do not count the substitution that
may occur when clauses are copied, or unifications or substitutions that arise during
type reconstruction.

Finally, we compare the Mini-ML program with a version written using explicit
substitution, to evaluate the effects of a syntactic restriction along the lines of LA. The
computation queries had to be cut down somewhat because of memory restrictions. In
Figure 5.5 we show the same data as above for the computation and transformation
queries with and without explicit substitution. We also show a version with explicit
substitution with the substitution code rewritten to take better advantage of indexing.
Then we compare the CPU times (in seconds) for the two sets of queries for all three
versions of the program, using a slightly modified 2 Elf version 0.2 in SML/NJ version
0.80 on a DEC station 5000/200 with 64MB of memory and local paging. These
results show that there is a clear efficiency disadvantage to the L\ restriction. Note
that the disadvantage is greater for the transformation queries, since a longer proof
object is obtained, resulting in a more complicated proof transformation. Explicit
substitution increases the size of the relevant code by 30%.' Substitutions dominate the

2The modification involves building proof objects only when needed for correctness.
3 Actually, the meta-theory was not completely reduced to Lx, because type dependencies in the

verification code would lead to a very complex verification predicate. We estimate that the code size
would increase an additional 5% and the computation time by much more than that.

98 CHAPTER 5. APROLOG AND ELF

computation time, basically because one meta-level 3-reduction has been replaced by
many substitutions. These substitutions should all be parameter (Uvar) substitutions,
which suggests that some (but clearly not all) of the performance degradation could
be recovered through efficient Uvar substitution. See the previous footnote on why
non-parameter substitutions still arise in the proof transformation examples. We will
draw heavily on these results in Chapter 11.

Part III

Implementation Techniques

99

Chapter 6

Implementation Strategy

The remainder of this thesis deals with efficient implementation of CLP systems. In this
chapter, a general strategy is outlined for dealing with the efficiency issues introduced
in Chapter 3, largely by taking advantage of the observations made in that chapter and
illustrated in Chapters 4 and 5. The following chapters discuss the implementation
techniques in detail, illustrated by the implementation of a CLP(T7) compiler. Finally,
a strategy for applying these techniques to AProlog and Elf is outlined.

Consider the basic implementation model for a CLP language, as shown in Figure
6.1. The inference engine, using a goal and the rule base, controls search through the
rule base. During the search, it passes constraints to the constraint solver, which are
then added to a collected set of constraints. If the newly augmented set is consistent,
the answer yes is returned, and otherwise no is returned. Whenever the inference
engine needs to backtrack through the search tree, it sends a backtrack signal to the
constraint solver for every time the most recent remaining constraint is to be removed
from the current set of constraints. The set of constraints currently stored in the
constraint solver at any given time will often be referred to as the solved form. Finally,
when it is time to output an answer constraint, the inference engine gives the constraint
solver the set of variables on which the solved form is to be projected, and the result is
output. To avoid confusion, note that our use of the term "inference engine" is not quite
"standard. In discussing Prolog systems, it tends to be used to describe both the search
and unification components. Here we use it to refer only to the search (resolution)
component.

Our discussion of implementation will focus on the following aspects:

* Suitable data structures for dealing with the incremental nature of constraint
solving in the context of backtracking.

* Organization of the constraint solver, and assignment of additional responsibility
to the inference engine, such that simple constraints are executed as efficiently as
possible.

* A conceptual framework for specifying delayed constraints, and resulting data
structures, so that constraints may be delayed and awakened efficiently.

101

102 CHAPTER 6. IMPLEMENTATION STRATEGY

GOAL ANSWER CONSTRAINTS

CONSTRAINT

INFERENCE BACKTRACK CONSTRAINT
ENGINE SOLVER &

STORE
OUTPUT

YESINO

RULE BASE

Figure 6.1: Basic Implementation Model

9 Compile time optimization resulting in more efficient execution of simple cases of
constraints.

In more detail, the implementation strategy can be divided into two broad cate-
gories. The first line of attack is to carefully design the run-time organization, data
structures and algorithms. Then the resulting performance can be further improved
upon through optimizing compilation.

6.1 Run-Time Strategy

The run-time strategy rests on the understanding that the simplest constraints occur
most commonly in typical programs, and hence that it is important to solve these
with minimal overhead. Powerful and general constraint-solving capability can often
be very useful to programmers. However, in many domains and application areas,
programmers do not make use of this generality all of the time. Programs might often
contain very large numbers of constraints, most of which are quite simple. Furthermore,
the collected set of constraints is typically changed by small amounts very often. It
would not be acceptable if the performance of a CLP system able to solve very complex
constraints was consequently very poor when solving simple constraints. Empirical and
methodological justification for the strategy can be found in Chapters 3, 4 and 5.

6.2. COMPILE-TIME STRATEGY 103

The specifics of this strategy can be summarized as follows:

"* Classify and prioritize constraints, reflecting:

- estimated relative frequency of occurrence;

- relative cost of solving.

"* Treat constraint solving as generalized unification, thus making the Prolog case
most important.

"* Avoid general constraint solving machinery where possible.

"* Design data structures to favor simple cases.

"* Check for hard constraints that should be awakened without undue impact on
the efficiency of constraint solving.

"• To facilitate backtracking, store details of all changes to the collected constraint
set, rather than backing up all or part of it at every change.

The organization and restriction of the constraint solver is addressed in Chapters 7
and 8, while data structures for incrementality and efficient backtracking are discussed
in Chapter 9. These ideas were incorporated in a CLP(7I) interpreter project in which
the author collaborated, and further refined in the compiler-based system discussed
below. The system was based on structure-sharing Prolog interpreter technology, as
exemplified by C-Prolog. The performance on most Prolog programs is comparable
with such Prolog interpreters, and performance for arithmetic constraints has been
sufficiently good for non-trivial applications to be implemented.

6.2 Compile-Time Strategy

The usual approach to the compilation of Prolog rests on two basic ideas:

o The unification algorithm can usefully be partially evaluated with respect to the
partially constructed terms appearing in rules.

o The backtracking-based execution model for Prolog can be mapped onto the
stack-based paradigm for executing conventional programming languages.

Most modern Prolog compilers are based on the Warren Abstract Machine (WAM),
defined by D. H. D. Warren [189]. This is an abstract machine specification including
various stacks and registers, together with a special-purpose target instruction set for
compiling Prolog. The reader seeking a tutorial introduction to this style of Prolog
compilation should consult the book by Ait-Kaci [2]. The WAM has been used in the
implementation of a number of commercial systems, many emulating the WAM at run
time, others generating native code.

104 CHAPTER 6. IMPLEM\ENTATION STRATEGY

Since Prolog performance of CLP systems is a high priority, it is natural to want
to apply the usual Prolog compilation techniques to these languages. However, the
question is whether compilation can be of benefit to solving constraints more general
than Prolog unification. Chapter 10 gives a detailed description of an approach to
compiling CLP languages, with a particular emphasis on CLP(T-,I This rests partly
on the assumption that certain simple kinds of constraints can tw: detected easily at
compile time, so that with the use of peephole optimization these might be executed
more efficiently than if such an analysis were to be carried out at run time. as mentioned
above. For compiling CLP(1Z), the Constraint Logic Arithmetic ,Machine (CLAM) is
described in Chapter 10. This is an extension of the WAM with instructions and extra
structures for arithmetic constraints. These ideas have been incorporated in IBM's
compiler-based implementation of CLP(1Z), in which the author participated. This has
now been widely available and in use for over two years, and has been the platform
for a number of large applications. Significantly. the performance of the CLAM-based
CLP(7Z) system on Prolog programs is close to that of the major commercial Prolog
implementations. Furthermore, there is a significant performance improvement over
the interpreter mentioned above for arithmetic constraints.

It has long been observed that Prolog programs could be executed more efficiently
if they were specialized with respect to certain classes of allowed queries. Given a class
of allowed queries specified in some formal language, it is possible to analyze a program
globally to determine various properties of its execution for queries that are in this
class. These properties include determinism, types of variables, and modes (informa-
tion about a variable having a certain level of instantiation at a certain point in an
execution). The best known technique for such global analysis is abstract interpreta-
tion. This is based on the idea of executing a program on a special domain known
as the abstract domain, which captures the kinds of properties that are desired. The
program is executed with respect to a query that represents the set of allowed queries
for the program, using arguments built up from the abstract domain. For an overview
of abstract interpretation, the reader should consult [40], although the literature on this
topic is quite large. In their respective dissertations, Van Roy [148] and Taylor [181]
have shown that abstract interpretation has the potential to enable Prolog compilers
to achieve performance comparable to that of compilers for conventional languages.

Abstract interpretation of CLP programs was described by Marriott and Sondergaard
[114], and Jorgensen et al [91] describe various global analysis techniques for CLP(7Z),
but otherwise little work has been done on global analysis for CLP languages. The
approach to compiling CLP languages, described in detail in Chapter 10 rests on the
the following observations:

* Local optimizations can help to solve obviously simple constraints efficiently.

o Parts of programs (say modules) tend to be called in a number of specific ways,
some cf which result in apparently complex constraints collapsing into simple (or
simpler) cases.

6.3. SUMMARY 105

"* Such special cases can be detected by state-of-the-art program analysis techniques
(beyond the scope of this thesis) and efficient code can be generated by multiple
specialization of these modules.

"* Abstract machines can be designed to take advantage of the above compilation
ideas.

While a compiler based on these techniques has not yet been implemented for
CLP(IZ), the CLAM has been extended to take advantage of the sort of information
that can be obtained from global analysis of CLP(JZ) programs. The CLAM emu-
lator that forms the core of the compiler-based CLP(7T) system described above has
been extended to obtain empirics on hand-compiled programs. This has demonstrated
dramatic performance improvements for a number of programs with various allowed
queries. These results are also described in Chapter 10.

6.3 Summary

This major difference between this part of this thesis and other work that has been done
on CLP(TZ) implementation is the emphasis on handling frequently-occurring special
cases of constraint solving well. This difference in emphasis results from the fact that
these implementation efforts have been driven by a study of programming methodology,
and thus static and dynamic properties of programs, rather than a classical (operations
research-oriented) view of constraint solving.

106 CHAPTER 6. IMPLEMENTATION STRATEGY

Chapter 7

Organization of Solvers

The basic architecture for a CLP system as outlined in Figure 6.1 in Chapter 6 is in
practice not adequate for two reasons. First, it does not facilitate delay, which we have
argued to be essential. Second, it assumes that constraint solving is all handled by a
monolithic "black box", the details of which are invisible to the inference engine and
other modules. For most CLP languages. such an abstraction cannot be adhered to in
practice if acceptable performance is to be attained. It needs to be broken down in two
ways:

1. A typical constraint domain will consist of various subdomains, with possibly
more than one kind of constraint on each. Different individual solvers will be
needed to solve different kinds of constraints, to hide the complexity of solving
one kind from the algorithm implementing another.

2. Details of constraint solving will have to be made available to the inference engine.
at least to facilitate rule indexing.

In this chapter we develop an implementation model to facilitate delay mechanisms
and for multiple constraint solvers. which may interact more closely with the infer-
ence engine. After generalizing the basic implementation model to one with delay, we
explore the required properties of multiple constraint solvers for efficiency and correct-
ness. Finally, we use the organization of the constraint solver modules in the CLP(JZ)
interpreter (and subsequent compiler-based implementation) to illustrate how these
principles are applied in practice.

7.1 Adding Delay to The Implementation Model

Figure 7.1 shows a generalization of the basic implementation model of Figure 6.1 to
incorporate delay. This is still a generic model, in that it is not specialized for any
particular domain. However, it illustrates some of the ideas that will be taken further
below. First we have the notion of a constraint being too "hard" for the general
constraint solver, ai,d thus being stored in the delay pool. This is really an active
agent, constantly monitoring the constraint solver to check when a constraint becomes

107

108 CHAPTER 7. ORGANIZATION OF SOLVERS

GOAL ANSWER CONSTRAINTS

CONSTRAINT

INFERENCE CONSTRAINT
ENGINE SOLVER &

STORE

HARD AWAKENEDBACKTRACK
& OUTPUT

RULE BASEDELAYED

Figure 7.1: Generic Implementation Model with Delay

'4EW HARD BACK TO SOLVER:
CONSTRAINTS SOLVER STATE NO LONGER HARD

- -

..........................

OUTPUT

Figure 7.2: Delay/Wakeup Mechanism

7.2. MULTIPLE CONSTRAINT SOLVERS 109

"runnable", so that it can be awakened before the next inference. When a constraint is
awakened it re-enters the solver as if it were a new constraint, except it is now known
not to be hard (although its processing may give rise to further hard constraints). The
runnable constraints must be queued because one change to the solver state can result
in several constraints being awakened. The first of these can make another change to the
solver state awakening more constraints, and so on. Figure 7.2 describes this in some
more detail. Henceforth we dispense with representing flow of control (for modules such
as backtracking and output) in these diagrams, and just note that every component
of the constraint handling mechanism conceptually must be able to handle these. The
detailed implementation of the delay/wakeup mechanism can actually be quite complex.
The conceptual framework and implementation strategy will be described in detail in
Chapter 8.

7.2 Multiple Constraint Solver3

The most straightforward use of multiple constraint solvers is to deal with composite
domains: those composed from a number of simple domains. For example. the domain
of CLP(7R) is composed of uninterpreted functors and real arithmetic. In such cases it
is desirable to combine multiple solvers because algorithms are typically available for
the simple domains. Then the collected set of constraints is deemed inconsistent if and
only if one of the solvers finds that it has an inconsistent store, but the whole point is
that each solver should see only the constraints on that domain. For obvious efficiency
reasons it is necessary to limit the number of constraints in each store. Most come
directly from the input constraints, but others can be generated by the other solvers,
to link all the constraints together correctly. Thus we need a formal understanding of
the minimal amount of informa~ion that must be shared.

Typically, the simple domains do not share function symbols. This case has been
studied quite heavily. In [130], it is shown that it is sufficient for each solver to export
only the equations between pairs of variables to the other solvers, and disjunctions of
such equations that are implied by its store. For solvers that cannot imply disjunctions
of such equalities (so-called convex domains), only individual equations are transferred.
The result is interesting both in theory and practice. Other, more specific, work on
such combinations of solvers includes that by Kaplan [92] on the theory of arrays
with constant indices, by Shostak [160] on Presburger arithmetic with uninterpreted
function symbols, and by Suzuki and Jefferson [178] on Presburger arithmetic arrays
and uninterpreted function symbols.

Unfortunately, the property required for this result is too restrictive for an important
use of multiple solvers. Sometimes a single domain can include constraints of differing
difficulty, so a low-overhead solver is desirable for the easier constraints, and a more
complex. higher-overhead solver is used for the rest. As will be discussed below, this
is the case for CLP(7Z). It is a very valuable technique for implementing CLP systems
efficiently, but the above correctness result does not hold, as often function symbols
are shared. Furthermore, no corresponding result is available, so that ensuring the

110 CHAPTER 7. ORGANIZATION OF SOLVERS

correctness of multiple solvers combined in this way must be done on a case by case
basis.

For this reason, we formalize the exact correctness criterion. Consider a CLP system
with a solver component consisting of n solvers S1 to S,,, with respective constraint
stores C1 to C,. The function p maps a constraint to a solver index: an integer from
1 to n. The function 4 selects all the relevant constraints from the stores of the other
solvers. In general this function will have to be conservative, but if we are to obtain
the benefits of multiple solvers, it should not be too conservative.

When a nev., constraint arrives, say, c, then we require that

3 (C^ c) iff I = 0(c) A Si J ^ 3(iA0,C1..... ,C,) A c).

We will have nothing more to say about this correctness issue, and will not prove
the correctness of the organization of solvers in CLP(7Z). However, it is worth looking
at an example to get an intuitive feeling for what can go wrong. As was shown-in

Chapter 3, Prolog III tuple concatenation constraints (really word equations), give rise

to integer constraints. Let us consider the execution of the query

"?- U = X.Y, IU1 = 3,. IxI > 1, IYI > 1.

The constraints in this query are unsatisfiable: if U is of leng h 3 and both X and Y are
of length greater than 1, one of the latter must -.-vc non-integral length, which would
not make sense. Let us consider in some more detail how such a query would be solved.
When the first constraint is selected, a nun.bor of additional integer constraints result:

I. lUl = lXI + IYI

2. IUI >= 0

3. IXI >= 0

4. IYI >- 0

Then the remaining constraints only interact with the integer solver, and in conjunction
with the four integer constraints resulting from the original word equation, have no

integer solution. The interesting point is that Prolog III does not have an integer
solver. Now it is not sufficient to mark the length of any word variable to be integral,
since the rational arithmetic solver only determines that there is a rational solution. In
the example above a rational solution exists - in fact there are infinitely many, and
this is the problem. Because non-integer solutions are actually not generated in this
case, Prolog III fails to detect that the query above is unsatisfiable. In fact this is quite
consistent with the stated behavior of Prolog III, since word equations are delayed until
the first argument of a concatenation is of known length. Hence we have to go deeper
to see what the problem is. Consider the query

U- u = x.Y, lxi = 2, IUI > 2, IU1 < 3.

7.3. INTERPRETING CLP(TZ) 111

The query is again unsatisfiable, but the word equation is awakened by the integer
constraint IXI = 2, so a definitive answer would be expected. However, the integer
equations generated do have a rational solution, so Prolog III again fails to detect
that the query is unsatisfiable. Finally, it is reasonable to ask what model of solving
word equations could be supported by just solving rational arithmetic constraints. For
an equation of the form X = Y + Z to have an integer solution whenever it has an
arithmetic solution, any two of the variables must be ground. This means that only
local propagation can be supported in this way, in which case the arithmetic equations
on lengths of word equations become quite useless.

In summary, while the benefits of using multiple communicating constraint solvers
are considerable in practice, the system designer must consider the correctness issues
carefully. Implementing a CLP system with such a constraint solving structure is a
non-trivial engineering problem.

7.3 Interpreting CLP(Pv)

The organization of constraint solving in a CLP(R) interpreter provides a good oppor-
tunity to study the runtime aspects of constraint solving. The material in this section
is discussed from a somewhat different viewpoint in [88].

Here the generic implementation model is modified with the aims of:

1. solving Herbrand (unification) constraints with the efficiency of a Prolog inter-
preter;

2. performing simple arithmetic test and local propagation efficiently;

3. solving linear equations without concern for unrelated linear inequalities.

To satisfy the first objective, it was clear that the inference engine would have to be
integrated with a Prolog-style unifier for Herbrand constraints. The engine is an adap-
tation of a structure-sharing Prolog interpreter. There are two central data structures,
both of which are stacks. The major step performed by the engine is the creation of
bindings of certain variables: this is activated either in the reduction step for a subgoal,
or when certain kinds of equations are encountered. The following section elaborates on
this. As will be described below, when arithmetic constraints are encountered, they are
passed to the arithmetic constraint solver, which is really a cluster of three constraint
solvers, as follows:

* an interface, which evaluates complex arithmetic expressions and transforms con-
straints to a small number of standard forms;

• an equation solver, which deals with linear arithmetic equations that are too
complicated to be handled in the unifier and interface;

o an inequality solver, which deals with linear inequalities;

112 CHAPTER 7. ORGANIZATION OF SOLVERS

In this case, as has been mentioned before, nonlinear equations are considered hard
constraints, and are delayed.

The interface between the unifier and linear solvers transforms constraints into a
standard form. In this transformation, the input constraint is broken up into parts
that are handled by different modules of the solver. The interface does some con-
straint satisfaction on its own, thus further lessening the need to use the solver. The
equation solver maintains its equations in parametric solved form, that is, some vari-
ables arising from program execution are described in terms of parametric variables.
The equation solver may need to send some equations to the inequality solver. The
inequality solver may communicate back to the equation solver. This happens when
implicit equalities, that is, equations entailed only by non-strict inequalities, have been
computed. The nonlinear constraint handler obtains nonlinear equations to be delayed
from the interface. Based on information in the linear equality solver, it sometimes
awakens these constraints and ships them to that linear equation solver. The output
module then needs information from the engine/unifier, both linear solvers, and the
nonlinear handler. The details of output are beyond the scope of this thesis: see [84]
for an account of output in CLP(7Z). Figure 7.3 summarizes the activities allocated to
the various modules. In what follows. we describe the conceptual details behind the
implementation

7.3.1 Unification

Equations between non-arithmetic terms are handled by a standard unification algo-
rithm to ensure that Prolog programs execute with Prolog speed. Furthermore, this
unification algorithm is closely associated with the inference engine so that terms can
be used for rule indexing. Many other kinds of equations, however, can also be handled
using the basic binding mechanism inherent in a unification algorithm. To define what
these equations are, first define that a solver variable is one that appears in the collec-
tion of constraints held by the arithmetic constraint solver. The kinds of constraints
that are solved directly within the unifier are then described as follows:

"* an equation between two non-solver variables:

"* an equation between a non-solver variable and a solver variable;

"* an equation involving an uninterpreted functor;

"* an equation or inequality between two numbers, and

"* an equation between a non-solver variable and a number.

The table in Figure 7.41 summarizes the binding mechanism used in the unification
algorithm in the engine. As is usual, a variable can be either bound by pointing to
another term structure or to another variable forming a chain of references. We note,

SAlllvariables mentioned there have been fully dereferenced. The empty slots represent the sym-

metric cases.

7.3. INTERPRETING CLP(1Z) 113

......................... Inference Engine

SEARCH UNIFICATION

..
I N E Q OB I N D I N G S

Solver

INEQUALITIES

i INTERFACE

-- ~LINEAR .

"EQUATIONS

NLIN AWAKENED

Figure 7.3: CLP(7Z) Solver Organization

114 CHAPTER 7. ORGANIZATION OF SOLVERS

CLP(1Z) Unification Table
T1

T2
var s-var__ number func 1 arith func

var bind

s-var T1 -- T2 solver

number TI -- T2 solver Ti = T2 ?

func T1 - T2 n/a n/a Ti = T2 ?
arith func interface interface interface n/a interface

Legend:

bind - Bind T1 to T2. or bind T2 to Ti
T1 - T2 - Bind T1 to T2
var - ordinary free variable
s-var - solver variable
func - an uninterpreted functor

arith func - an arithmetic functor
TI = T2? - are the topmost symbols equal?
n/a - not applicable (corresponds to a type error)

Figure 7.4: Unification Table for CLP(J) Interpreter

however, that unlike in Prolog where a variable can only be free or bound to a term,
variables in CLP(JZ) can belong to one of several distinct classes. In addition, a variable
can also be bound by means of an implicit binding, as explained below.

Some of the different cases covered in the unification table are:

"* non-solver variable and non-solver variable;
Choose one variable, and this choice may depend on the current run-time struc-
ture, and then bind this variable to the other.

"* non-solver variable and solver variable;
To avoid invoking the constraint solver, the non-solver variable is bound to the
solver variable, rather than vice versa. This choice is crucial for efficiency.

" functor and any term;
In case the term is a non-solver variable, a straightforward binding of this variable
to the other term is performed. In case the term contains a functor, the principal
functors of both terms are checked to see if they are equal. If so, then their
corresponding arguments are recursively unified.

7.3. INTERPRETING CLP(IZ) 115

" number and number;
Because we use a floating-point implementation of numbers, we say that two
numbers are equal if they are sufficiently close to one another.

" non-solver variable and number;
Since a non-solver variable does not appear in the solver, the variable can be
simply bound to the number.

" solver variable and solver variable or number;
The interface, and then perhaps the constraint solver, are invoked.

" arithmetic term and anything;
Here also the interface, and then perhaps the constraint solver, are invoked.

This should become clearer as a result of the examples later in this section. Now let us
consider the special class of bindings between a variable and a number. Such a binding
can occur in

" the unifier, when a non-solver variable is equated with a number that appears in
the program;

" the interface, when a non-solver variable is equated to a directly evaluable arith-
metic expression;

" the equation solver, when a system of equations is solved and it follows that
certain variables must take specific values;

" the inequality solver, as a consequence of an implicit equality, that is, an equation
entailed by a number of non-strict inequalities.

The bindings in the first two cases are of an explicit nature, and have their counterparts
in standard logic programming systems. In the remaining two cases, the bindings occur
in an implicit manner. For fast access to all these values, they are collected together
in a central data structure, an implicit binding array, and this structure is accessible
from all modules in the system. Thus the implicit binding mechanism plays the role of
a cache.

Now that we have described the mechanism, let us consider its significance. The
empirical results in Section 5.6 show that a very large fraction of disagreement pairs are
between a non-solver variable and an arithmetic variable (%VP). These are essentially
arithmetic equations, but the binding mechanism we have described does not treat
them that way, and thus drastically reduces the number of constraints added to the
equality solver. Furthermore, especially in the larger programs, the number of syntactic
disagreement pairs tends to dwarf the number of arithmetic constraints, showing the
importance of handling syntactic unification with minimal overhead.

Finally, we need to consider why this approach of doing as much constraint solving
as possible by unification cannot reasonably be taken further for CLP(JZ). To deal
with an equation of the form x = t, where t is an arithmetic term and x is a non-solver

116 CHAPTER 7. ORGANIZATION OF SOLVERS

variable, it would be quickest simply to bind the variable x to some representation of
t. Such equations are, of course, always consistent with the constraints already stored
in the solver, and hence the solver need not be invoked. It would become necessary
to dereference such variables x in any term encountered later. The solver would then
be invoked only when the equation at hand, after having been dereferenced, does not
contain a non-solver variable as one operand. This implementation scheme, however,
has two main drawbacks:

" Cyclic bindings;
To implement dereferencing, the problem of cyclic references must be dealt with.
This problem is analogous to the "occurs check" problem when dealing with
non-arithmetic terms. An important difference, however, is that an arithmetic
equation whose representation contains a cyclic binding is not necessarily unsat-
isfiable. Further, it is not possible to argue, as is done for most Prologs, that
cyclic bindings are pathological events and so the problem can be ignored.

" Thrashing behavior when backtracking;
The use of arithmetic bindings can lead to long binding chains, which in turn
can cause a thrashing-like behavior when backtracking takes place. For example,
consider the program

loop (0).
loop(I)

I > 0,
P,

loop(I - 1).

?- loop(N).

whose intent is to perform some operation p a total of N times, where N is given
as a number. Let 1,, 12, etc, denote the various occurrences of the variable I
created during execution. In the first iteration, Ii will be bound to the number
N; then 12 will be bound to the term/1 - 1. 13 to (11 - 1 - 1, and in general, 1, will
be bound to a term of height j - 1. Now consider the unit rule and the recursive
call above, and note that in the jth iteration, an equation will be generated to
compare the term 1, - 1 with 0. The cost of evaluating this equation, because
of the bindings associated with Ij. is proportional to j. Thus the overall cost of
executing the program, ignoring the cost of executing p, is proportional to N2 in
the best case. In contrast, if these equations are handled by a constraint solver,
the cost can be linear in N.

Arithmetic bindings are not employed in the CLP(JZ) system because of these two
problems.

7.3. INTERPRETING CLP(7Z) 117

7.3.2 The Interface

This module is called from the engine whenever a constraint contains an arithmetic
term. The interface first simplifies the input constraint by evaluating the arithmetic
expressions. If, as a result of this, the constraint is completely ground, then the ap-
propriate test is made. If exactly one non-solver variable appears in the constraint and
if the constraint is an equation, then an implicit binding is made, providing that it is
easy to solve for this variable. In all other cases, the solver is invoked.

Before the interface invokes the solver, it first transforms the simplified constraint
into a set of smaller constraints in canonical form. A constraint in canonical form is
one of:

"* an equation of the form
n

ZciXi = d

"* an inequality of the form
n

ZciX, > d
i=1

"* an inequality of the form

ZciX, > d

"* an equation of the form Variable = c * Variable Variable

where c, ci and d are real numbers, and all X, are variables.

7.3.3 Linear Equations and Inequalities

The equality module is invoked in one of three ways.

1. From the interface with a linear equation in a form described above.

2. From the inequality solver with an implicit equality,

3. From the nonlinear constraint handler with an equation that has been awakened.

The equality solver returns true if the satisfiable constraints already stored in the solver
as a whole are consistent with the input equation, and false otherwise.

The central data structure in the equality solver is a tableau that stores, in each
row, a representation of some variable in the form of a linear combination of parametric
variables. The basic method of solution is a form of Gaussian elimination. A critical
operation is that of simplifying substitutions, that is, the replacement of a chosen
parametric variable by an equivalent parametric expression. Another critical operation
is the communication between the equality and inequality solvers.

118 CHAPTER 7. ORGANIZATION OF SOLVERS

The Equation Tableau

The set of solver variables sent from the interface is partitioned by the equality solver
into two sets of variables: parametric and non-parametric variables. Linear equations
are stored in parametric solved form: using a matrix notation for convenience, this is a
possibly empty collection of equations of which the ith one is of the form:

Xi = bi + ci, 1 * TJi + ci, 2 * Ti, 2 + + ci., * Ti,,

where n >0 , Xi is a non-parametric variable, the cij, 1 < j !_ n, are real number
coefficients, and the Ti,j, 1 < j <_ n, are parametric variables. The variable Xj is called
the subject of the equation.

Adding a New Linear Equation

Call the initial (empty) parametric solved form 00. We now describe, given a parametric
solved form 0j_1 and an input linear equation E,, j > 1, how to determine whether
03-1 A E. is solvable. If so, we obtain a new solved form OP

Let C, be the result of substituting 2 out each non-parametric variable X in Ej,
where X appears in the tableau 0j_1. with the corresponding parametric form for X.

(1) If Cj is now o~r the form 0 = 0. then 83 = 0)-,, that is, the input constraint is
already implied by p3-1.

(2) If C, is of the form 0 = c where c is a non-zero real number, then the collection
E, A E2 A ... A E. is inconsistent, and so Oj does not exist. We simply return
negatively.

(3) If C) contains new variables, not currently in the solver, say Xi, X 2,... , X
rn > 1, then choose one of them, say XV1, and rewrite C, with X 1 as the subject.
X1 becomes a non-parametric variable and the remaining variables X2, ... , X.
become new parametric variables. The resulting equation is then added to OJ-i
to obtain 6,.

(4) If C3 contains no variables other than parametric variables, then choose one, say
T, and rewrite C, with T as the subject. For efficiency reasons, the choice of such
a T is not arbitrary:

* we choose T, if possible, such that it does not appear in the tableau of the
inequality solver;

* if, however, all the variables in Cj appear in the inequality solver, then we
choose, if possible, T such that T is a basic variable (the precise definition
of basic is not needed here) in the inequality solver;

* if, however, all the variables in Cj appear in the inequality solver as nonbasic
variables, then we may arbitrarily choose one of them to be T.

2Substitutions involve both replacement of terms for variables and collection of like terms.

7.3. INTERPRETING CLP(7Z) 119

Now the resulting equation, call it C' defines a substitution that enables parame-
ter elimination. That is, Oj is obtained from 0.-1 by substituting out the variable
T using this substitution, and then adding the equation C' to the tableau. Note
that the variable T, once eliminated in this way, will never become a parametric
variable again except possibly as a result of backtracking. We will see later that
the equation C' may need to be exported to the inequality solver. If so, the truth
va -,f returned by the equality solver is the answer subsequently received from
the inequality solver,

In summary, the equality solver returns affirmatively in case (1) and negatively in (2).
In case (3), if m = 1, we must consider the possibility of nonlinear constraints being
awakened as a result of the input equation. Otherwise, we simply return affirmatively.
Finally, in case (4), we must address the question of whether the inequality solver need
be invoked.

Awakening Delayed Constraints

When variables become ground (and this can happen in steps (3) and (4) above), it will
be necessary to communicate this fact to the nonlinear constraint handler. However. it
is important that the nonlinear module be invoked only after the current equation has
been completely dealt with. This is because the nonlinear module can itself invoke the
equality solver. Some complications arise in the implementation because of these two
facts:

* the equality solver uses one set of global data structures, and

* the equality solver and nonlinear handler are recursively dependent on each other.

We observe here that a negative response from the equality solver may be caused by a
nonlinear constraint that has been awakened.

Calling the Inequality Solver

The inequality solver is called by the equality solver if:

* we fall into case (4) above, and

* every variable in the equation C' appears in the tableau of the inequality solver:

in which case the equation input to the inequality solver is C'. The value returned by
the equality solver is just that returned by the inequality solver.

The formal proof that only the above-mentioned kind of equations need be sent
to the inequality solver is beyond the scope of this thesis. Intuitively, we may reason
as follows: specific solutions to a parametric solved form can be obtained by simply
instantiating the parametric variables with arbitrary values. In particular, we can
use values consistent with the constraints about parametric variables in the inequality

120 CHAPTER 7. ORGANIZATION OF SOLVERS

solver. Thus the only new additions to the equality solver that may be affected by
the inequality solver are those that make a parametric variable, which appears in the
inequality solver, no longer independent from the other parametric variables. This
happens only as described above. For a detailed description of linear inequality solving
in CLP(1?), the interested reader should consult (174].

The empirical results in Section 4.5 show that not only are arithmetic inequalities
less common than explicit arithmetic equations, but also that this treatment of inequal-
ities often avoids the use of the Simplex solver. This is because the variables involved
are often ground by the time the inequalities are encountered, and they essentially just
behave like tests.

7.3.4 Some Examples of Constraint Flow

Let us begin by considering the query

"?- X * X + Y * Y > 0, X + Y = 10, X - Y = 8.

The execution of this query proce-d.. as follows:

1. The first constraint ik h, -.en up into the three constraints

(a) T1 = X * Y

(b) T2 = ' Y'

(c) Ti + T2 > 0

of which the first two are delayed. and the third is passed to the inequality solver.

2. The second constraint results in the parametric equation X = 10 - Y being passed
to the equality solver, which stores it.

3. The third constraint is passed to the equality solver, which rewrites it using the
previously stored parametric equation, and solves it giving Y = 1.

4. This value for Y is substituted throughout the equality solver, reducing the above
parametric equation to X = 9.

.5. The bindings for X and Y are propagated back to the unifier.

6. The same bindings are used to awaken the two delayed nonlinear equations, which
are put in the runnable queue as

(a) T, = 1

(b) T2 = 81

7. T1 = 1 is taken from the head of the runnable queue, and passed to the equality
solver, which considers T1 to be parametric since it was involved in an inequal-
ity. Since all variables in the equation are then parametric, it is passed to the
inequality solver, which essentially rewrites its one inequality to T2 > -1.

7.4. SUMMARY 121

8. T2 = 81 is taken from the runnable queue, and similarly pas3ed to the inequality
solver, which simply confirms that 81 > -1 is true.

To further illustrate the role of the unifier, let us consider the query:

"?- Y + 3 - Z = 0, f(X,Y) = f(U,U), X = 4.

Its execution proceeds as follows:

1. The first constraint results in, say, the parametric equation Y = Z - 3 being
stored in the equality solver, and both Y and Z being solver variables.

2. The second (Herbrand) equation is treated by the unifier, which in turn generates
the equations

(a) X = U

This is treated by the unifier, say binding X to U.

(b) Y = U
This again is treated by the unifier. Since Y is a solver variable, U must be
bound to Y.

3. In solving the third constraint. X deferences to Y, which is a solver variable. Hence,
the equation Y = 4 must be passed to the equality solver, which uses its stored
parametric equation to rewrite it, resulting in Z = 7, which is passed back to the
unifier.

7.4 Summary

We have pointed out the importance of carefully organizing multiple constraint solvers
in a CLP system to improve efficiency. It is of central importance that simpler, more
frequently occurring classes of constraints be spared the overhead of general constraint
solving. Furthermore, different algorithms must be combined to solve constraints on
compound domains, and some aspects of constraint solving need to be available to
the inference mechanism for reasons such as the requirement for rule indexing. It has
also been pointed out that there is a correctness issue involved in combining multiple
solvers, for which there seems to be no simple recipe. This is complicated by the fact
that extra communication between solvers may be required for efficiency in addition
to correctness. Finally. the organization of solvers in the implementations of CLP(1Z)
demonstrate all of the three motivations for not treating a constraint solver as just a
single "black box".

122 CHAPTER 7. ORGANIZATION OF SOLVERS

Chapter 8

Managing Hard Constraints

A standard compromise approach to obtaining efficient constraint solvers has been
to design a partial solver. That is, one that solves only a subclass of constraints,
the directly solvable ones. These of course may or may not be consistent with the
state of the solver. The remaining constraints, the hard ones, are simply delayed from
consideration when they are first encountered; a hard constraint is reconsidered only
when the constraint store contains sufficient information to reduce it into a directly
solvable form. It may then be processed. resulting in success or failure, or even more
hard constraints. In the CLP('Z) system, for example, nonlinear arithmetic constraints
are classified as hard constraints, and they are delayed until they become linear.

The key implementation issue is how to process efficiently just those delayed con-
straints that are affected as a result of a new input constraint. Specifically, the cost of
processing a change to the current collection of delayed constraints should be related
to the number and size of the delayed constraints affected by the change, and not to all
the delayed constraints. The following two items seem necessary to achieve this end.

First is a notion of how far a delayed constraint is from being awakened. For
example, it is useful to distinguish the delayed CLP(TZ) constraint X = max(Y.Z),
which awaits the grounding of Y and Z, from the constraint X = max(5, Z), which

awaits the grounding of Z. This is because, in general, a delayed constraint is awakened
by not one but a conjunction of several input constraints. When a subset of such
input constraints has already been encountered, the runtime structure should relate
the delayed constraint to just the remaining kinds of constraints that will awaken it.

The other item is some data structure, call it the access structure, which allows
immediate access to just the delayed constraints affected as the result of a new input
constraint.

There are two main elements in this chapter. First is a framework for the specifica-
tion of wakeup degrees which indicate how far a hard constraint is from being awakened.

Such a formalism makes explicit the various steps a CLP system takes in c'tducing a
hard constraint into a directly solvable one. The second element is a runtime structure
that involves a global pool of the delayed constraints, and an access structure for that
pool. A preliminary discussion of this work appears in [89].

123

124 CHAPTER 8. MANAGING HARD CONSTRAINTS

8.1 Delay Mechanisms

The idea of dataflow computation, see e.g. [91, is perhaps the simplest form of a delay
mechanism since program operations can be seen as directional constraints with fixed
inputs and outputs. In its pure form, a dataflow graph is a specification of the data
dependencies required by such an operation before it can proceed. Extensions, such as
the I-structures of [10], are used to provide a delay mechanism for lazy functions and
complex data structures such as arrays in the context of dataflow.

Carlsson [221 describes an implementation technique for freeze(X, G). While an
implementation of freeze can be used to implement more sophisticated annotations
like wait and when, this will be at the expense of efficiency. This is mainly because
the annotations can involve complicated conjunctive and disjunctive conditions. Since
freeze takes just one variable as an argument, it is used in a complicated manner in
order to simulate the behavior of a more complex wakeup condition.

In general, the present implementation techniques used for Prolog systems have
some common features:

" The delay mechanism relies on a modification of the unification algorithm [22].
This entails a minimal change to the underlying Prolog engine. In CLP systems,
this approach is not directly applicable since there is, in general, no notion of
unification.

" Goals are awakened by variable bindings. Each binding is easily detectable (dur-
ing unification). In CLP systems, however, detecting when a delayed constraint
should awaken is far more complicated in general. In this paper, this problem is
addressed using wakeup degrees, described in the next subsection.

" The number of delayed goals is not large in general. Thus, implementations in
which the cost of awakening a goal is related to the number of delayed goals
[22], rather than the number of awakened goals, can be acceptable. In a CLP
system, the number of delayed constraints can be very large, and so such a cost is
unacceptable. However, it should be noted that both the number of delayed goals
and the ii-,mber of delayed constraints varies dramatically between programs.

8.2 Wakeup Systems

Presented here is a conceptual framework for the specification of operations for the
delaying and awakening of constraints. We begin by formalizing the notions of delayed
and directly solvable constraints.

A hard constraint will be defined here as a primitive relation symbol, together with
a mapping from its arguments to variables in the constraint solver. So, for example,
the CLP(TZ) constraint

X+Y+Z*V=3

would, internally, have to be broken up into the constraints

8.2. WAKEUP SYSTEMS 125

X + Y + Ti = 3
mult(TI, Z, V)

where all of the arguments of mult are variables.
Formally, each hard/delayed constraint 6 is a tuple (9,0) where IQ is an n-ary hard

constraint symbol and 0 is a substitution of variables potentially in E for the argument
variables A1 to A,, of this instance of I. Hence, in the example above, the second
constraint is the informal representation of the formal hard constraint

(mult, {AI - T1, A2 - Z, A3 -- V}).

The state of the constraint solver at any given time be denoted by a tuple (A, E),
where A is the set of delayed constraints (meta-variable 6), and E is the set of directly
solvable (and hence solved) constraints (meta-variable ao), otherwise known as a solved
form.

To indicate how far a hard constraint is from being awakened, we associate with
each constraint symbol T a wakeup system. Intuitively, a wakeup system corresponds
to a finite state automaton, where the final state corresponds to a hard constraint
having become directly solvable, and the other states, all of them initial, indicate how
far a delayed constraint is from being directly solvable. All of these states are known
as wakeup degrees. We will denote these using the possibly subscripted meta-variable
D, and the degree corresponding to directly solvable constraints is distinguished with
the name awakened. Formally, for a given TI, the set

D = {Do,", D,, awakened}

is a set of wakeup degrees for T. For given E, each degree represents a subset of A
such that all of DVS represents a partition of A. We will say 6 i-*E D to mean that
dela~ed constraint 6 is mapped to degree D with respect to N. A delayed constraint in
awakened is ready to be removed from A, and processed by the solver.

The point is that we want to execute the various finite state automata for each
of the delayed constraints, in order to manage their awakening (and, on backtracking,
resuspension) efficiently. Taking the analogy further, we need to describe the transition
conditions. These are really the main point of the exercise, because they are intended
to be relatively inexpensive tests to determine when a constraint is coming closer to
being awakened.

Associated with each wakeup degree D is a collection of pairs (W,'), where each
W4) is a generic wakeup condition and each jV is a wakeup degree called the new degree.
Each generic wakeup condition is a condition, expressed in some formal language, on
the argument variables of any delayed constraint assigned to the degree D. Such a
condition is satisfied by a solved form v for a particular delayed constraint 6 = (T, 0)
if E - WO. Here k may be the entailment relationship used for constraint solving,
or it may be a different one especially for awakening constraints. Note that WO will
frequently be referred to as a dynamic wakeup condition. In terms of the automaton
analogy, 6 makes a transition from degree D to degree /" under these circumstances.

126 CHAPTER 8. MANAGING HARD CONSTRAINTS

We will need to impose some structural conditions on wakeup systems so that they
make sense, but first we will give an example. To facilitate this and other examples in
this thesis, we need to develop a language as mention above, for describing the function
,E that partitions a A for a particular E, and also the generic wakeup conditions.
We emphasize that this choice of language is arbitrary, and the appropriate choice may
vary depending on the domain.

Let the meta-constants be a new class of symbols, and hereafter, these symbols are
denoted by a, /3 and y. A meta-constant is used as a template for a (regular) constant.
Define that a meta-constraint is just like a constraint except that meta-constants may
be written in place of constants. A meta-constraint is used as a template for a (regular)
constraint.

To describe the partition function for a particular symbol k[, we simply assign to
each wakeup degree other than awakened a description of the hard constraints placed
in that degree for a given E. Each such description is a pair (t,C) where

* t is a term of the form (tl, t,•) where each ti is either a variable, constant
or meta-constant,

9-C is a conjunction of meta-constraints whose variables and meta-constants, if
any, appear in t. We allow the additional meta-constraint nonground(X) which
asserts that the variable X is not ground.

In our language, generic wakeup conditions have the same form as the meta-constraint
component of a degree description.

For the entailment relationship. let us use CLP(IZ) constraint satisfiability. Then
-. assigns a delayed constraint ('J,O) to the degree D if the description of D is
('(t t),C), and j[E •" (A, = t, A ... A A, = t, A C)0]. Here the existential
closure is intended to deal with the meta-constants as if they were variables. Hence, an
equation between a variable and a meta-constant is satisfied if the variable is ground
with respect to E, and then the meta-constant stands for this ground value.

Of course, we require that these descriptions form a partition of the possible in-
stances of a T constraint under any E. In CLP(Pv) for example, the wakeup system for
the hard constraint symbol pow, where pow(X, Y, Z) denotes X = yZ, might include
a degree assigned the description

pow(A,B,a), a $ 0 A nonground(A) A nonground(B).

An instance of a pow constraint would be assigned to the corresponding degree if the
first two arguments were not uniquely defined by E and the third was determined as a
non-zero real number.

Consider once again the CLP(J) constraints involving pow. These constraints may
be partitioned into classes represented by the following wakeup degrees:

Do : pow(A,B,C), nonground(A) A nonground(B) A nonground(C)
VD : pow(a,B,C), nonground(B) A nonground(C)
D2 : pow(A,cr,C), nonground(A) A nonground(C)
D3 : pow(A,B,a), nonground(A)Anonground(B)

8.3. STRUCTURAL REQUIREMENTS OF A WAKEUP SYSTEM 127

For the degree Do, an example wakeup condition is C = a. This indicates that when
a constraint, e.g. Z = 4, is entailed by the constraint store, a delayed constraint such
as pow(X, Y, Z) is reduced to pow(X, Y, 4). This reduced constraint would be assigned
the new degree D3 . Another example wakeup condition is A = 1, indicating that when
a constraint such as X = 1 is entailed, a delayed constraint of the form pow(X, Y. Z)
can be reduced to pow(l, Y, Z). This reduced constraint, which is in fact equivalent
to the constraint Y = 1 V (Y # 0 A Z = 0), would be assigned the degree awakened
if the solver could deal with disjunction (which in CLP(7Z) it cannot). We note that
stipulating that a variable is nonground in this way is going to be rather cumbersome.
Hence we will leave the stipulation out, and assume it to apply whenever nothing else
is said about a variable in a description. We exemplify some other uses of wakeup
conditions below.

8.3 Structural Requirements of a Wakeup System

For the remainder of the discussion we need the concept of a path from one wakeup
degree to another, and that of such a path being satisfied by a solved form.

Definition 1 (Finite Path) .4 finite path from degree D to degree D' is a sequence
of degrees Dj and connecting generic wakeup conditions Wp, associated with them:

DI . W-, -P2, -i. •A,-l_ 1 , Wvn,_l) D,D

for some n > 1. If n = I then this is a null path. We write v IHs p for 6 = (Td,O) and
a finite path p of length n if either

1. n = 1, or

2. for all j: 1 < j < n. E Wp 0:

and for all (MA") associatcd with P, E U {1} # WV0

Informally, we say that the path p is enabled by E for 6. We will need to disallow the

possibility of infinite paths being enabled, so we define them formally also.

Definition 2 (Infinite Path) A infinite path from degree D is a sequence of degrees
D] and connecting generic wrakeup conditions WjD associated with them:

-D1, ýVI,• , DO2, VVV,," ""-

We write 7 1 =5 p for 6 = (T,.0) and an infinite path p if for all j : 1 < j, VE 1= Wi O.

Now we are ready to state the structural conditions on wakeup systems. First, we
require that every transition of every delayed constraint toward being awakened can be

represented somewhere in the wakeup degree - essentially a soundness property.

128 CHAPTER 8. MANAGING HARD CONSTRAINTS

Definition 3 (Soundness) A wakeup system for TP is sound if for all A, E, 6 =

(1k, 0) E A, and a whenever b ý- V and 6 ý-r.u{,} D' we have that all of the following

hold:

1. There exists a path p from D to V)' such that E U {10} 1[-6 p;

2. For all D" different from D such that there exists a path p' from D to D" and
V U {fa} 1[6 p', we have D' = D";

3. There are no infinite paths q starting at D such that E U {a} I1H6 q.

The exact formulation of this condition needs some explanation. What we desire is
that the for any hard constraint 6 and the addition of any constraint to E, the degree
assignment function -E and the wakeup system agree on how this addition affects the
status of 6. This is captured directly in the first major condition. The complication is
that it is not possible to define any suitably small granularity of constraints added to
E such that there will only be a single corresponding transition in the wakeup system
for the individual hard constraint. This will usually be the case, but there will be cases
where a single, very simple constraint added to the solved form triggers a chain or,
as we have defined it above, a path of transitions. these paths will, in general, not be
unique, since it is necessary to allow for the transitions occurring in any order, but
of course they must all end up in the same degree. This is the reason for the rather
complicated second major condition. As an example of where the complications arise,
consider the sequence of constraints

pow(X,Y,Z), Y = Z, Z = 5

where the final constraint causes the pow constraint to be awakened straight from being
in the "least awakened" degree. Finally, as we will see in Chapter 11, it will sometimes
be necessary to allow cycles in wakeup systems (that is, non-null paths that begin and
end at the same degree). However, the transition enabled by any solver state for each
delayed constraint should be finite, so we must not allow the possibility of an infinite
path being enabled at the starting degree. Hence. we rule it ou- in the third major
condition.

Our second structural requirement is that all of the wakeup degrees and dynamic
wakeup conditions have some potential use, in a way that is locally sensible. We call
this minimality since we want to exclude useless additional components.

Definition 4 (Minimality) A wakeup system for 41 is minimal if for all V and all
(M)V,A) associated with D there exist E. a and 6 = (%P,0) such that all of the following
hold:

2. 6 V

3. E U {a} H WO

8.4. EXAMPLE WAKEUP SYSTEMS 129

I oo:pow(A,B,C) D1:poa,,#aO 1
D2 pow(A,a,C),a#OAa# 1 D3 pow(A,B,,a#OAa#

Legend: w 1 :A=0 w 2 :4= 1 w3 :A=aAa•O Aa#.1w 4 :B=1 w:Bl 3 6 :B=aAa# ^a8 1

W7 C =0 W 8 :C--1 .wg:C=aAa OA6 a 1
W10 :B-=a W1 1'=:C=-a w 1 2 :A=a
W1 3 : C = a 14 : A = w 1 5 :B = a

Figure 8.1: Wakeup degrees for pow/3

8.4 Example Wakeup Systems

The illustration in Figure 8.1 contains an example wakeup system for the CLP(7R)
constraint symbol pow. A wakeup degree is represented by a node, a wakeup concition is
represented by an edge label, and the new degree of a reduced constraint is represented
by the target node of the edge labeled with the wakeup condition that caused the
reduction. Similarly, multiplication in CLP(RZ), denoted by the symbol mult, is shown
in Figure 8.2.

Generic wakeup conditions can be used to specify the operation of many existing
systems which delay constraints. In Prolog-like systems whose constraints are over
terms, awaiting the instantiation of a variable X to a ground term can be represented
by the wakeup condition X = a. Awaiting the instantiation of X to a term of the form
f(...), on the other hand, can be represented by 3Y.X = f(Y). We now give some
examples on arithmetic corstraints. In Prolog-III, for example, the wakeup condition
X < a could specify that the length of word must be bounded from above before further
processing of the word equation at hand. For CHIP, where combinatorial problems are
the primary application, an example wakeup condition could be a < X A X _< 3 A
0 - a < 4 which requires that X be bounded within a small range. For CLP(7R),
an example wakeup condition could be X = a * Y + 03, which requires that a linear
relationship hold between X and Y.

As another example, consider equational constraints involving two dimensional ar-
rays. Let array(A, X, Y. E) denote the equation A[X,Y] = E, which might sensibly
be delayed until all of A, X and Y are ground, at which time it becomes a simple

130 CHAPTER 8. MANAGING HARD CONSTRAINTS

w

DO

LDO: mult(A,B,C)
Legend: A1 = a-

B B= 3 3 C

Figure 8.2: Wakeup degrees for mult/3

equational constraint. Then a suitable wakeup system is shown in Figure 8.3.
It might be expected that the wakeup system for word equations would be inter-

esting. However, assuming a sufficiently powerful decision algorithm for the arithmetic
constraints associated with word equations, we obtain only the very simple system in
Figure 8.4, where concat(A,B,C) denotes the equation A.B = C. Initially, one might
expect that there should be a separate degree for the situation where the length of B
is known, as this makes it easier to determine the length of A. However, if the decision
procedure for the associated arithmetic constraints is sufficiently powerful, the length
of A will always be supplied by that algorithm as soon as possible.

In CLP(v7) [187], constraints of the form x E e, where x is a string and e is a
regular expression on strings, are delayed until they have a finite number of solutions.
In general, this is the case when x is ground or e is ground and has no closure operators.
To express this in our framework, we need to break these constraints into the three forms
x E y*, x E y.z and x E y + z, where x, y, and z must be syntactically either variables
or strings. Denoting these constraint by clos, conc and or respectively, the wakeup
system is shown in Figure 8.5.

8.5 The Runtime Structure

Here we present an implementational framework in the context of a given wakeup
system. There are three major operations with hard constraints, which correspond to
the actions of delaying, awakening and backtracking:

1. adding a hard constraint to the collection of delayed constraints;

2. awakening delayed constraints as the result of supplying a directly solvable con-
straint, and

8.5. THE RUNTIME STRUCTURE 131

w

10 12

D4 D5 D6

tý5 ý7 ý8Dl D2 D3

DO

DO: array(.4, B,C, D)
Dl: array(a, B, C, D) D2: array(A,3, C, D)
D3: array(A. B, -y, D) D4: array(a, 3. C, D)

Legend: D5: array(c,,B,t, D) D6: array(A,d3,y,D)

"., :A-= a B = 0-2 B=" :=
";4: B=• W5: C= w 6 :A=aw7 =7 •s ,4 a wg:B=•
•. Co C=y 1 11 : B=3 w 12 :A=a

Figure 8.3: Wakeup degrees for array/4

w

0

DO

{ DO concat(4, B, C)
Legend:

ro 84 I = a

Figure 8.4: Wakeup degrees for conc/3

132 CHAPTER 8. MANAGING HARD CONSTRAINTS

clos conc or

www

) 012 3

0 (t 10 1' 14

102 D3 D5 36

\14 V7 8

DO Dl D4

DO: cios(A, B)
"ul conc(A,B,C) D2: conc(A.3, C) D3: conc(A,B,y)
D4 or(A, B, C) D5: or(A, 3, C) D6: or(A, B. 7)

,,, A : a a, B f
Legend: 3 :4 a B=3 W5 :C=3

a6 : A C 3 w8:"A =
w9 A -)10o : C yt

w11 :, &;ow2: B 3
Wl3 : A = 14 C 4 Y
,15: A a w,6: C 43

Figure 8.5: Wakeup degrees for clos/2. conc/3 and or/3 in CLP(E')

8.5. THE RUNTIME STRUCTURE 133

3. restoring the entire runtime structure to a previous state, that is, restoring the
collection of delayed constraints to some earlier collection, and restoring all aux-
iliary structures accordingly.

We deal with the third operation, as well as other aspects of incrementality and back-
tracking, in Chapter 9. The first of our two major structures is, for the time being,
a pool of delayed constraints. Thus implementing the first operation, delaying a hard
constraint, simply requires adding a record to the pool, with the current form of the
constraint, and a field indicating its degree in the appropriate wakeup system.

Now consider the second operation. In order to implement this efficiently, it is
necessary to have some access structure mapping an entailed constraint -f to just those
delayed constraints affected by -/. Since there are in general an infinite number of
entailed constraints, a finite classification of them is required. The classification we use
is the set Qa.E of all dynamic wakeup conditions for all the delayed constraints in A for
the current E, noting that delayed constraints may have dynamic wakeup conditions
in common. That is.

Q Wn 0I 6 =(QP,0) EA A D

Of course this set will change every time A or E change.
We now specify an access structure that maps a dynamic wakeup condition into

a doubly linked list of nodes. Each node contains a pointer to a delay pool element
containing a delayed constraint 1 . Corresponding to each occurrence node is a reverse
pointer from the delay pool element to the occurrence node. For a generic wakeup
condition W we refer to the dynamic wakeup condition WO as DV. Call the list
associated with MVV E Q,1.1 a DW-list. and call each node in the list a DW-occurrence
node.

Initially the access structure is empty. The following specifies what is done for the
basic operations.

8.5.1 Delaying a new hard constraint

This operation adds new hard constraint 6 = (T,0) to A, such that 6 '-- D. First
add a new delay pool element including its wakeup degree, P. Let W1, ., ,V be
the generic wakeup conditions of P. Then:

* Augment QIAE with all of the DWM. *.., DWVV.

* For each DWý, insert into the PVV-list of the access structure a new occurrence
node pointing to the delay pool element for 6.

* Set up reverse pointers from the 6 node to the new occurrence nodes.

'The total number of occurrence nodeg is generally larger than the number of delayed constraints.

134 CHAPTER 8. MANAGING HARD CONSTRAINTS

Al A2 A3 A4 AS A6 A7 AS A9

C2

"Delay Pool /

SA :X=0 A 2 :X=1 A 3 :X=aAa#OAa#1
Legend: 4 :Y=0 0 5 :Y A6 :Y=aAa 0Aa•I

A 7 ::Z=0 A 8 :Z=I A 9 :Z=aAa#0Aa-4I

Figure 8.6: The access structure

8.5.2 Responding to Changes in

When ý = DW for some DW E _A.,y and this can happen whenever E is augmented,
we need to update our structures.

Consider the DW-list L. Then consider in turn each delayed constraint pointed to
by the occurrence nodes in L. For each such b node, perform the following.

* Delete all occurrence nodes pointed to by the 6 node., and delete DW from fA.E.

* Update the node with the new wakeup degree of 6 using the function . Then
perform the modifications to the access structure as described above when a new
delayed constraint is added.

Figure 8.6 illustrates the entire runtime structure after storing the two hard constraints
pow(X, Y, Z) and pow(Y, X, Y) in that order. Note that we are representing the hard
constraints informally. Figure 8.7 illustrates the structure after a new input constraint
adds X = 5 to the solved form.

8.5.3 Optimizations

An important optimization is to merge DW-lists. Let there be lists corresponding to
the dynamic wakeup conditions DW1. ... DW,. These lists can be merged into one
list with the condition 19W if

* adding any delayed constraint b results in either (a) no change in any of the n
lists, or (b) every list has a new occurrence node pointing to 6;

8.5. THE RUNTIME STRUCTURE 135

A4 AS A6 A7 AS A9

C3

c.
SpowlS.YZ)

D . elay Pool

Legend: f A 4 Y = 0 A 5 • I 4. 6 : = a A a 0 A a 5a 1

A7 Z =0 A 8 :Z=1 Ag:Z=aAa$OAaa#1

Figure 8.7: The new access structure

9 for any 7 we have E = MVV iff D • 19Wi for some 1 < i < n.

In the example of Figure 8.6, the three lists involving X can be merged into one list
which is associated with the dynamic wakeup conditions X = a. Similarly for Y and

Z.

This optimization is very frequently applicable, and of great importance. Recall
that the dynamic wakeup conditions must be monitored constantly, so it is essential
that they be as simple as possible. It seems likely that delay with timely awakening will
be prohibitively expensive in systems where this optimization cannot be successfully
applied.

8.5.4 Summary of the Access Structure

The access structure maps a finite number of dynamic wakeup constraints to lists of
delayed constraints. The constraint solver is assumed to identify those conditions for
which an entailed constraint is an instance. The cost of the basic operations can be
summarized as follows.

1. Adding a new constraint b simply involves determining its wakeup degree, creating
a delay pool entry. creating new occurrence nodes corresponding to b and the
setting of pointers between the new delay pool entries and occurrence nodes. The
cost here is bounded by the number of generic wakeup conditions associated with
(the degree of) 6.

136 CHAPTER 8. ,MANAGING HARD CONSTRAINTS

2. Changing the degree of a constraint 6 involves replacing 6 with 6', determining
the degree of 6', and deleting and inserting a number of occurrence nodes. Since
the occurrence nodes are doubly-linked, each such insertion and deletion can be
done in constant time. Therefore the total cost here is bounded by the number
of generic wakeup conditions associated with 6 and 6'.

3. The cost of backtracking is important, and will be discussed together with the
scheme for implementing it, in Chapter 9.

In short, the cost of one primitive operation on delayed constraints (delaying a new
hard constraint, upgrading the degree of one delayed constraint, including awakening
the constraint, and undoing the delay/upgrade of one hard constraint) is bounded
by the (fixed) size of the underlying wakeup system. The total cost of an operation
(delaying a new hard constraint, processing an entailed constraint, backtracking) on
delayed constraints is proportional to the size of the delayed constraints affected by the
operation.

Chapter 9

Incremental Constraint Solvers

A major challenge in implementing CLP systems stems from the required utility of the
constraint solvers. To be somewhat precise, a constraint solver maintains constraints
with respect to three kinds of operations for adding, removing and solving constraints
as follows:

"* A state S = 'Si. .S,) where, for each i. S, = {=c,'".Cn,}. The c, are

constraints, and S, represents the set of constraints added since the most recent
choice point..

"* A function cp that maps (S,.. .S,.) to (SS.. ,

"* A function bt that maps (S1 . "S,.) to (S1 ". ,).

"* A function solco- that maps a state S = (S 1,"',S,.) and a constraint c to

- state (S. "'. S, U {c}) and answer true if S1 U ... U S, U {c} is satisfiable

- the old state S and answer false otherwise.

The original state is S = ({}). The function cp establishes a choice point - a state to
which the computation will backtrack on a subsequent failure. The function bt actually
effects such backtracking - rolling back to the state before the most recent choice point.

The function solve, of course, tries to augment the solver state with a new constraint.
checking that it is consistent with the constraints already there.

In this chapter we discuss the practical implications of this required utility, and
a strategy for dealing with them. We discuss Prolog from this viewpoint, and then
consider in detail the techniques for making the CLP(P.) constraint solvers incremental.
Much of this material is presented from a different view'oint in [89] and [88].

9.1 Practical Implications of Incrementality

We should note that, in principle, any constraint solving algorithm can be used without
modification to provide this functionality. It can simply be re-invoked on the constraints

137

138 CHAPTER 9. INCREMENTAL CONSTRAINT SOLVERS

in S every time solve is invoked, and the states can be stored "outside" this solver.
However, the following methodological and empirical observations about the expected
nature of program execution show that such a naive approach, no matter how sophisti-
cated the actual solving algorithm, is unlikely to be practical. These observations stem
from Part II of this thesis.

In a given computation:

1. The number of constraints handled by solve can be extremely large (say tens of
thousands or more).

2. The number of constraints in the solver state S can also be extremely large,
but typically, because of backtracking, it wili not contain all of the constraints
handled.

3. The number n of sets Si of constraints between choice points can vary substan-

tially, because some programs are much more deterministic than others.

4. For the same reason, the number of choice points can vary substantially.

5. While the set of constraints collected in the solver state may be very complicated,
a large proportion of the individual constraints handled may be very simple.

Now, returning to the possibility of re-invoking a standard constraint algorithm for
every use of solve. Assuming (optimistically) that this algorithm takes time propor-
tional to the number of constraints, the cost of using solve n times will be of order n 2 .

This is unacceptable for a programming language.
The objectives of the design of a constraint solver are then to find an appropriate

decision algorithm and representation of state such that:

1. Individual invocations of solve should be affected more by the size and complexity
of the constraint added, rather than of the constraints already stored in the state.
We will call this the incrementality criterion.

2. The overhead of such invocations should not be excessive.

3. The space needed is not substantially more than linear in the size and number of
constraints stored, with low overhead.

4. The cp function is implemented with very low overhead (virtually none) in space
and time.

5. The cost of the bt function is dependent more on the amount the store was changed
in adding the constraints now being be removed than on the size of the entire
store. This is just another facet of the incrementality criterion.

The phrase solved form is typically used to describe such a representation of the
constraint store. In general, the incrementality criterion is a rather vague notion. In its
strictest form, it is virtually unattainable. Clearly, since the consistency of constraints

9.2. INCREMENTALITY AND PROLOG 139

with the store is being tested, the cost will be somewhat affected by the number and
complexity of the related constraints. That is, if all the variables in a new constraint are
new to the store, the size of the store should be irrelevant. On the other hand, if many
constraints on the same variables are already being stored, that is an unreasonable
requiriment. The notion of incrementality for some algorithms and representations
may be made precise, but in general it will be an empirical property.

9.2 Incrementality and Prolog

Before moving on to CLP in general, let us consider to what extent unification in Prolog
is incremental. It it assumed that the reader is somewhat familiar with the standard
Prolog implementation techniques, especially the WAM.

We begin with the solve operation. Variable bindings in a Prolog interpreter es-
sentially constitute an efficient solved form. When a new equation is encountered, the
bindings of only some of the variables will have to be looked up, and likewise for the
variables in the terms they are bound to, and so on. However, if free variables are
considered not to be in the solved form, the solved form is unchanged when a new
equation is dealt with: it is only augmented. For example, consider the equation

f(X, g(V)) = f(h(Y, Z), U)

in the context of a solved form including the bindings

U = g(W)
W = g(g(g(Y)))

Y = g(g(Z))

but without any bindings for variables X or V. Since X is new, it is simply bound to
h(Y, Z) and the bindings of Y and Z do not have to be considered at all - because
the occurs check is omitted. The binding of U must be looked up to ensure that the
principal functor can be a g. as it already is. Since V is new, it can simply be bound
to W, whose binding again need not be considered. In summary, the cost of such a
unification is only related to the size of the solved form in so far as parts of the solved
form are truly relevant to the unification. Nevertheless, unification is exponential in
the worst case.

Now we consider the operations involving backtracking. Recall that choice point
records are inserted into the runtime stack at nondeterministic branches, and some
bindings are trailed' so they can be undone on backtracking. However, backtracking is
reasonably cheap, since:

* Bindings between activation records point from the newer variable to the older.
This is useful if the binding is made before the first choice point after the cre-
ation of the new activation record. The binding doesn't need to be trailed, since

'The trail is a stack containing choice point records interleaved by a sequence of pointers to changed
variable locations that must be restored on backtracking.

140 CHAPTER 9. INCREMENTAL CONSTRAINT SOLVERS

the entire activation record will be removed on backtracking, thus removing the
bindings.

"* Bindings that are created pointing from above the most recent choice point record
are never trailed, for the same reason.

"* The cp operation involves only creating a choice point record, and affects the cost
of subsequent bindings somewhat.

"* The bt operation is relatively fast, since the trail simply lists locations where
bindings have to be deleted. This is because the solved form is never changed
beyond being further instantiated.

As we will see below, many of these fortunate properties are lost when other kinds
of constraints have to be solved. Nevertheless, it is important to understand the impact
of these properties on the performance of Prolog systems.

9.3 Strategy for Incremental Solvers

In general, to satisfy the above criteria, constraint solvers must typically rely on a
solved form, with the implementation having the following properties:

1. When a new constraint is handled by solve, the relevant parts of the solved form
must be found quickly. That is, the solved form is essentially indexed on variables.
Then the index is used to look up the parts relevant to the variables in the new
constraint. Ideally the index is an extension of Prolog variable bindings.

2. The satisfiability check usually involves attempting to construct a new solved
form, augmented with the new constraint. This should affect as little of the
solved form and supporting structures as possible. However, in the worst case, the
entire solved form may have to be examined, and may also have to be extensively
modified.

3. Since the solved form is, in general, modified rather than just further instantiated,
simple trailing is insufficient. A tagged value trail is needed. On backtracking,
the tag is used to determine what the inverse operation is, the usual address is
used to determine where it is to be performed, and the value field, which may
involve a complex data structure, is used to perform the inverse operation.

4. In general, parts of the solved form will be changed many times between choice
points. Hence, it is often best not to store all of the changes made for the purposes
of backtracking. It may be better to backup an appropriate chunk of the solved
form when making the first change after a choice point. Then, subsequent changes
will not require trailing until another choice point is encountered. This works well
when appropriately small chunks can be identified, so they are not too expensive
to save.

9.4. INCREMENTALITY IN FOUR MODULES OF CLP(TZ) 141

5. Certain cross-referencing structures are too large and complex, and are changed
too often to be worth trailing. It is better to rebuild these on backtracking. This
has the advantage that no cost is incurred unless unless backtracking actually
takes place.

For an interesting discussion of incrementality in constraint solving, see [55]. There
is an important problem that we have not discussed so far: to date little work on
decision algorithms has taken incrementality into account. This means that for some
domains with a well known, efficient decision algorithm, at may be the case that either:

* there is no known incremental algorithm,

e the incremental algorithms are extremely slow, or

* there is a good incremental algorithm, but it is completely different to the best
decision algorithm overall.

This factor limits the kinds of CLP languages that can be made practical. and hence
needs to be considered by the language designer.

9.4 Incrementality in Four Modules of CLP(R-)

We now return to our major case study, and discuss the aspects of the implementations
of the various solver modules in the two CLP(1Z) implementations that are related to
incrementality.

9.4.1 Unification

Unification in CLP(Tv) is sufficiently close to Prolog unification that it inherits the
incrementality discussed above. However, even here the trailing (for backtracking)
becomes somewhat more involved, since it is no longer the case that bindings must
simply be undone. In particular, variables with implicit bindings (see Subsection 7.3.1)
may have to go back to being of type s-var.

9.4.2 Linear Equations

The algorithm for solving linear equations in CLP(JZ) was presented in Subsection
7.3.3. The parametric solved form is represented mainly by a tableau of linked-lists.
We also need a cross-reference table mapping each parametric variable to the list of
its occurrences within the main tableau. Additional structures include a tagged trail
stack for backing up parametric forms that are about to be changed for the first time
since the last choice point. We now briefly outline the critical operations in the equality
solver given this method of representation.

142 CHAPTER 9. INCREMENTAL CONSTRAINT SOLVERS

Parametric Substitutions

Given that a parametric variable T is to be replaced in the tableau, the first operation
is to obtain, from the list in the cross-reference table corresponding to T, the list of
occurrences of T in the tableau. The actual substitutions will have a cost proportional
to the length of this list.

An important consideration is how much this substitution enlarges the tableau.
A straightforward heuristic for minimizing this number is to choose T such that its
frequency in the tableau is minimal. At the present stage of our implementation,
we have not found this to be necessary, and this suggests the frequencies tend to be
uniformly distributed over the variables T we choose.

Backtracking

In CLP(J), as foreshadowed above, substitutions actually change the form of a para-
metric equation. Thus when each row is changed for the first time after a choice point,
the previous form, or some representation of it. must be stored. Given the data struc-
tures above, it is clear that not only do the parametric forms themselves have to be
saved for backtracking, but also the support structures, such as the cross-reference table,
must be saved. Thus some complicated administrative mechanisms are also required,
two of which need to be discussed.

First consider the parametric forms themselves. If we assume that the parametric
form of a variable is, in general, going to be short, then it is reasonable to copy the entire
equation when it is changed after a choice point. The extra space used is not a problem
since the number of parameters is small, and this method is very simple and hence
fast. The alternative is to trail each change in an equation. While this "fine-grained"
method usually benefits space utilization, it can suffer both from added complexity and
reduced efficiency because many changes can go by between one choice point and the
next. Next consider the cross-reference table. As with parametric forms, we could save
entire entries corresponding to variables that are just about to be changed in some way.
Instead, we choose to reconstruct the appropriate entries whenever parametric forms
are restored upon backtracking. Since equations are typically small, reconstructing
the cross-reference table from the restored equation and the current equation is cheap
and furthermore, this method does not incur any overhead when backtracking does not
occur.

Example

Figure 9.1 shows the major solver structures after the constraints X = Y + Z and W = 2
* Z + 1 have been solved, with variables Y and Z chosen as parametric, and the others

as non-parametric. Figure 9.1 shows the state after a choice point has been encountered
and the additional constraint W = S has been solved. Notice how the old parametric
forms have been saved but their index structure has not. In the trail fragments shown,
P denotes that the variable was newly bound to a parametric form, and C denotes that
a parametric form was changed. In the stack fragments, S denotes that the variable is

9.4. INCREMENTALITY IN FOUR MODULES OF CLP(1) 143

l ""."""'"""-"...
P_-
P Y-

P X S
P -

TRAIL STACK

Figure 9.1: Solver state after two equations

P Y........

TRAIL STACK

Figure 9.2: Solver state after choice point and third equation

144 CHAPTER 9. INCREMENTAL CONSTRAINT SOLVERS

a solver variable, bound to a parametric form. We omit the details of distinguishing
between parametric and non-parametric variables, and of implicit bindings.

9.4.3 Linear Inequalities

The details of the linear inequality solver are beyond the scope of this thesis - see [86]
and [174]. It is based on an incremental formulation of the first phase of the two-phase
simplex method. The constraints that are actually sent to this solver are described
in Chapter 7. In the worst case, of course, the algorithm can be exponential in the
size and number of these constraints. However, each new constraint tends to take, on
average, less than one pivot to be incorporated. The internal data structures of this
solver are very similar to those of the equality solver.

9.4.4 The Delay Pool

The main issue is maintaining the delay pool and access structure in the presence
of backtracking. For example, if changes to the structure were trailed using some
adaptation of Prolog techniques, then a cost prnportional to the number of entries
can be incurred even though no delayed constraints are affected. We return to the
exponentiation example in Chapter 8 as our running example.

The delay pool itself is implemented using a stack. Thus delaying a hard constraint
simply requires a push on this stack. Additionally, the stack contains hard constraints
that are reduced forms of constraints deeper in the stack. For example, if the hard
constraint pow(X, Y, Z) were in the stack, and if the input constraint Y = 3 were
encountered, then the new hard constraint pow(X. 3, Z) would be pushed, together
with a pointer from the latter constraint to the former. In general, the collection of
delayed constraints contained in the system is described by the sub-collection of stacked
constraints that have no inbound pointers.

When a new hard constraint is being delayed, entering the appropriate record into
the delay pool consists of just pushing it onto the delay stack. When a new constraint
is entailed, and some delayed constraint is affected, placing the form C' of C in the delay
pool changes somewhat. C' is pushed onto the stack, setting up a pointer from C' to C.

Figure 9.3 illustrates the entire runtime structure after the two hard constraints
pow(X,Y,Z) and pow(Y,X,Y) were stored, in this order, and then a new input con-
straint makes X = 5 entailed. Note that this one equation caused the pushing of two
more elements, these being the reduced forms of the original two. The top two con-
straints now represent the current collection of delayed constraints. This is equivalent
to the diagram in Figure 8.7.

Restoring the stack during backtracking is easy because it only requires a series
of pops. For the access structure, no trailing/saving of entries is performed; instead,
they are reconstructed upon backtracking. Such reconstruction requires a significant
amount of interconnection between the global stack and access structure. In this run-
time structure, the overhead cost of managing an operation on the delayed constraints is
proportional to the size of the delayed constraints affected by the operation, as opposed

9.4. INCREMENTALITY IN FOUR MODULES OF CLP(7Z) 145

A4 AS A6 A7 A8 A9

powlS-,YZ

D2

pow(SX,,Z)

DO

Delay Stack

Figure 9.3: Delay stack and access structure

to all the delayed constraints. In more detail, the primitive operation of backtracking
is the following:

"* Pop the stack, and let C denote the constraint just popped.

"* Delete all occurrence nodes pointed to by C.

"* If there is no pointer from C (and so it was a hard constraint that was newly
delayed) to another constraint deeper in the stack, then nothing more need be
done.

" If there is a pointer from C to another constraii:t C' (and so C is the reduced
form of C'), then perform the modifications to the access structure as though C'
were being pushed onto the stack. These modifications, described above, involve
computing the dynamic wakeup conditions pertinent to C', inserting occurrence
nodes, and setting up reverse pointers.

Note that the access structure obtained in backtracking may not be structurally the
same as that of the previous state. What is important, however, is that it depicts the
same logical structure as that of the previous state.

Additional efficiency can be obtained by not creating a new stack element for a
reduced constraint if there is no choice point (backtrack point) between the changed
degrees in question. This saves space, saves pops, and makes updates to the access
structure more efficient.

Another optimization is to save the sublist of occurrence nodes deleted as a result of
changing the degree of a constraint. Upon backtracking, such sublists can be inserted

146 CHAPTER 9. INCREMENTAL CONSTRAINT SOLVERS

into the access structure in constant time. This optimization, however, sacrifices space
for time.

Finally, let us reconsider the complexity. The cost in backtracking of popping a
node C, which may be the reduced form of another constraint C', involves deleting and
inserting a number of occurrence nodes. The cost here is bounded by the number of
generic wakeup conditions associated with C and C'. In short, the cost of one primi-
tive operation on delayed constraints (delaying a new hard constraint, upgrading the
degree of one delayed constraint, including awakening the constraint, and undoing the
delay/upgrade of one hard constraint) is bounded by the (fixed) size of the underlying
wakeup system. The total cost of an operation (delaying a new hard constraint, pro-
cessing an entailed constraint, backtracking) on delayed constraints is proportional to
the size of the delayed constraints affected by the operation.

9.5 Summary

It is essential that the designer and implementor of a CLP system understand the
consequences of the incrementality requirement imposed by the operational model.
This chapter emphasizes those consequences and gives some guidance as to how they
may be dealt with. However, no recipe can be provided for dealing with this problem,
and in many cases it cannot be solved. Dealing with incrementality is likely to remain
a major engineering challenge in realizing practical CLP systems.

Chapter 10

Compilation

When considered at a very high level, the challenges that arise in compiling CLP
languages correspond closely to those that arise in compiling Prolog. These can be
summarized as:

1. Suitably mapping the operational model to the linear sequential structures of von
Neumann machines.

2. Improving the efficiency of constraint solving by partially evaluating the con-
straint solving algorithm with respect to the partially constructed constraints
appearing in the static program.

The extra challenges posed by CLP in the first respect have already been discussed at
some length in earlier chapters of this thesis. The second challenge is more problematic,
as partially evaluating a constraint solver with respect to individual constraints is not
always of great benefit. It is useful for unification because of the highly syntactic
nature, but for domains where the constraints are much less syntactic in nature, this is
usually not the case. Certainly some overheads of interpretation will be removed, and
some peephole optimizations will be made possible, and this is very useful. However, in
many cases, constraint solving can only be made substantially more efficient if special
cases are detected. Global analysis of programs to obtain type and mode information
is the major technique for obtaining such information.

In this chapter we will illustrate these concepts by describing in detail some tech-
niques for compiling CLP(JZ). In this particular instance our objective will be to
develop an abstract machine architecture for CLP(7Z) that allows us to:

1. Demonstrate that for the Prolog subset of CLP(1Z) it is possible to attain perfor-
mance that is close to that of state-of-the-art Prolog compilers.

2. Remove basic interpretation overheads from general arithmetic constraints.

3. Take advantage of present and future work on global analysis for CLP(7Z) pro-
grams, with multiple specialization of procedures. (That is, determine the calling
patterns with which a procedure is to be used, and generate multiple specialized
code sequences for different patterns where appropriate.)

147

148 CHAPTER 10. COMPILATION

Preliminary discussions of various aspects of this work appear in [91] and [87].
Abstract machines have been used for implementing programming languages for

many reasons. Retargetability is one: only an implementation of the abstract machine
needs to be made available on each platform. Another is simply convenience: it is
easier to write a native code compiler if the task is first reduced to compiling for an
abstract machine that is semantically closer to the source language. The best abstract
machines sit at just the right point on the spectrum between the conceptual clarity
of the high-level source language and the details of the target machine. In doing so
they can often be used to express programs in exactly the right form for tackling the
efficiency issues of a source language. For example, the Warren Abstract Machine
(WAM) [1891 revolutionized the execution of Prolog, since translating programs to
the WAM exposed many opportunities for optimization that were not apparent at the
source level. An example from further afield is the technique of optimizing functional
programs by first converting them to Continuation Passing Style (CPS) [991. CPS
conversion has lead to highly optimizing compilers for Scheme and Standard ML. The
benefit from designing an appropriate abstract machine for a given source language
can be so great that even executing the abstract instruction code by interpretation
can lead to surprisingly efficient implementations of a language. For example, many
commercial Prolog systems compile to WAM-like code. Certainly more efficiency can
be obtaned from native code compilation, but the step that made Prolog usable was
that of compiling to the WAM.

Because we wish to attain Prolog performance for the Prolog subset of CLP(JZ),
it seems reasonable that the abstract machine should be based. on the WAM. Other
implementation models have been proposed (and even used) for Prolog recently, but
these tend to be concerned more with aspects of the final realization than just the
compilation model. We will concentrate on those aspects that support the compilation
model.

After reviewing some aspects of Prolog compilation and the Warren Abstract Ma-
chine (WAM), we describe the design of the core of the Constraint Logic Arithmetic
Machine (CLAM). The Core CLAM has been used as the basis of a widely distributed
compiler-based CLP(JZ) system, in which CLAM code is interpreted by an emulator
written in C. As will be demonstrated in Section 10.7, this system achieves almost
the performance of the best commercial Prolog systems, and the speed of constraint-
solving is improved significantly. Finally, some of the interesting global properties of
CLP(7Z) programs that can be detected by global analysis (itself beyond the scope of
this thesis) are introduced, and the CLAM is extended to take advantage of these. The
performance improvement is estimated by coding the specialized CLAM programs by
hand.

10.1 Prolog Compilation and the WAM

As was mentioned in Chapter 2, the Warren Abstract Machine [1891 (WAM) revolu-
tionized the compilation of Prolog. We review some of the basic ideas here, but readers

10.1. PROLOG COMPILATION AND THE WAM 149

not familiar with the WAM should consult the tutorial by Ait-Kaci [2]. The WAM
is particularly suitable for software emulation of compiled code. The essential idea
behind it is that the instructions can be used to represent variants of the unification
operation - specialized by partially evaluating unification with respect to the terms
in the program. Furthermore, it is particularly successful in mapping the depth-first
search of Prolog with a left-right atom selection rule to the conventional von-Neumann
model of program execution.

The major data structures of the WAM are as follows:

"* stack
For storing activation records, consisting of variable bindings and return infor-
mation.

"* heap
For storing complex structures and those variable bindings that need to be kept
after their activation record has been trimmed through tail recursion.

" trail
For keepintg pointers to variables that need to be unbound on backtracking. Also
contains choice point records, which keep track of which rule is to be used next
on backtracking.

"* registers
For arguments of procedure calls both at call and return, and also for temporary
values.

The basic types of instructions are:

" partial construction and unification of terms
These are used to construct a simple or complex term, or get it from a memory
location, and put it in a register. They also unify such terms with the contents
of a register.

"* control
These include procedure call. choice points and backtracking.

"* indexing
These typically check whether the first argument of a call is instantiated enough
to use table lookup rather than backtracking to find the appropriate rule.

Commercial implementations variously interpret WAM code using an emulator writ-
ten either in a high level language or machine code, or compile to native code. Most
of those using an emulator use many additional instructions obtained from combining
pairs or groups if instructions commonly found in sequence, in order to reduce the fetch
and decode overhead.

Considerable work has been done on extending the WAM for different kinds of
unification or different control strategies (see [22], for example).

150 CHAPTER 10. COMPILATION

10.2 The Core CLAM

Presented here is a set of basic instructions that, in addition to those of the WAM, are
sufficient to execute CLP(7T) programs in general. In order to understand the design
of the instructions, it is necessary to recall some key aspects of the constraint solver.
Mainly, we will describe basic instructions that organize constraints for the solver.
Some specialized versions of these instructions are also described. We then discuss the
necessary runtime support.

10.2.1 Instructions for Arithmetic Constraints

Recall that a linear parametric form is co + cl V1 + ... + cV-Y., where n > 1, each
c, is a real number and each Vi is a distinct solver variable. A linear equation, say
V = co + clW 1 + ... + c,,W,,, equates a solver variable and a parametric form. The
variables W, are known as parameters and V is a non-parameter. Linear inequalities are
stored in the form lpf >_ 0 or lpf > 0 where lpf is a linear parametric for,ý,. The solver
ensures that every solver variable appearing in an equation either is a parameter, or
appears as a non-parameter in at most one equation. It also ensures that every variable
in the inequalities is parametric if it appears in an equation.

The basic instructions of the core CLAM build and manipulate parametric forms:

" initpf1 cO
initializes a parametric form with constant cO.

" addpf va{lr}2 ci, Vi
adds the term ci * Vi to the parametric form3 . The two versions of the instruc-
tion (var or val) correspond to whether Vi is a local variable appearing for the
first time. If so, we need to create storage for the variable, and we may also sim-
plify constraint solving. The variable V, may be a parameter, in which case ci is
added to the coefficient of V1 in the parametric form, or already have a parametric
representation lpf, in which case c, * lpf is added.

"* solve-eqO
signifies the end of the construction of the linear form. The equation c0 + cj'i +
... + cV,, = 0 is solved by the equation solver.

"* solve-geO and solve-gtO
Similar to the above, but forming an inequality or strict inequality instead of an
equation.

For example, consider the constraint 5 + X - Y = 0, where X is a new variable. It
could be compiled as shown below. We also indicate how the instructions are executed
in the case where Y is non-parametric, say Y = Z + 3.14 is in the solver.

'The "pf" stands for parametric form.
2 This brace notation indicates addpf-val or addpf-var

3V, is either a register or a local variable in the stack; the distinction is not important for this paper.

10.2. THE CORE CLAM. 151

initpf 5 lpf: 5
addpf-var 1, X lpf: 5 + 1 * X
addpf.val -1, Y lpf: 1.86+1*X-1*Z
solve-eqO solve: 1.86 + 1 * X - 1 * Z = 0

Recall that a constructed parametric form contains only parametric and new vari-
ables. Also recall that the process of solving an equation built using such a parametric
form roughly amounts to:

(a) finding a parameter V in the form to become non-parametric,

(b) writing the equation into the normalized form V = lpf,

(c) substituting out V using Ipf in all other constraints, and finally

(d) adding the new constraint V = lpf to the solver.

Suppose there is a new variable in the equation to be compiled. Then it will always
appear in the parametric form at runtime, so it can be chosen in step (a). Since this
choice is made at compile time, much of the work of step (b) can also be compiled away.
Step (c) is not needed since the variable is new. Hence all we need is a new instruction
for step (d), one for which the solver always returns true. A similar simplification can
be made for the compilation of inequalities that contain a new variable. Three new
instructions are Needed:

e solve-no-faileq V
* solve-no-fail-ge V
* solve-no-fail-gt V

For example, the above constraint 5 + X - Y = 0, where X is new, can be better
compiled into the instructions

initpf -5 lpf: -5
addpf-val 1, Y Ipf: -1.86 + 1 * Z
solve-no._fail-eq X add: X = -1.86 + 1 * Z

Finally, there are a number of simple enhancements we can make to the instruction
set to facilitate commonly occurring cases. The cases where the constant is zero or the
coefficient is 1 or - I occur in the majority of instances, so special instructions can be
expected both to reduce the code size and cut down on decode time. This can be done
using

* initpfO start a new linear form with constant 0;
* addpfva{lr}_{+-} Vi add a term consisting of a variable with

coefficient ±1.

Nonlinear constraints can be separated out at compile time, as discussed in Section
10.3, so that they appear in one of a few particular forms: X = Y x Z, X = pow(Y, Z),

152 CHAPTER 10. COMPILATION

X = abs(Y), X = sin(Y), X = cos(Y). Since CLP(1Z) delays the satisfiability of
nonlinear constraints until they become linear, the role of these instructions is to check
whether the constraints are runnable, and accordingly either delay them or invoke the
appropriate solver. Instructions are provided for creating a nonlinear constraint in any
one of its degrees, so for example there are five instructions for pow corresponding to
the various wakeup degrees:

"* pow-vvv Vi, Vj, Vk for Vi = pow(Vj, Vk) where V,, Vj, Vk are variables.
"* pow-cvv Vj, Vk for c = pow(Vj, Vk)

" pow-vcv Vi, c, Vk for Vi = pow(c, Vk)
" pow.vvc Vi, Vj, c for Vi = pow(Vj,c)
"* pow-cvc cO, Vj , c2 for C0 = pow(Vi,c 2)

(In fact, an extra degree of freedom results from allowing V instead of v so that a
variable can be initialized.) For example X = pow(3, Y) compiles to pow-vcv X, 3, Y.
The remaining forms of a pow constraint, e.g. 8 = pow(2, X), are equivalent to linear
equations and hence the exponentiation is evaluated at compile time, and replaced with
a linear equation, e.g. X = 3. There is also a class of variants of these instructions,
such as powVcv, which allow a variable (the one indicated by V) to be initialized. The
other nonlinears are handled similarly.

FinaPly, note that numbers in complex terms can be treated much like constants,
with the putnum, getnum, uninum and bldnum instructions.

10.2.2 Runtime Issues

The CLAM requires the same basic runtime support as the WAM, with the addition
of the arithmetic constraint solver and its data structures, extended unification and
additional backtracking support.

Data Structures

Some data structures needed to support the CLAM are a routine extension of those
for the WAM - the usual register, stack, heap and trail organization. The main new
structures pertain to the solver. Variables involved in arithmetic constraints have a
solver identifier, which is used to refer to that variable's location in the solver data
structures.

The modifications to the basic WAM architecture are:

"* Solver identifiers
Arithmetic variables need to be represented differently from Prolog variables. In
addition to the usual WAM cell data types, one more is required. Cells of this type
contain a solver identifier. The basic unification algorithm needs to be augmented
to deal with this new type.

"* Tagged trail
In the WAM, the trail merely consists of a stack of addresses to be reset on

10.2. THE CORE CLAM 153

backtracking. For CLP(7Z), the trail is also used to store changes to constraints.
Hence a tagged value trail is required. The tags specify what operation is to
be reversed, and the value component, if present, contains any old data to be
restored.

" Choice points
Choice points are expanded slightly so as to save the "high water mark" for solver
identifiers and inequalities. That is, the tableau entries beyond which all entries
should be deleted on backtracking.

" Linear form accumulator
A linear constraint is built up using one instruction for the constant term, and
one for each linear component. During this process, the partially constructed
constraint is represented in an accumulator. One of the solve instructions then
passes the constraint to the solver. We can think of this linear form accumu-
lator as a generalization of the accumulator in classical computer architectures,
accumulating a linear form instead of a number.

Unification

Unification in the CLAM is again similar to that in the WAM, except that solver
identifiers are included, as was shown previously in Figure 7.4. However, the arithmetic
expressions and arithmetic constants of that table do not appear here, as they are
separated out using the special arithmetic instructions. Thus, the CLAM unification
table shown in Figure 10.1 is a simplified version of the earlier table.

Backtracking

As mentioned above, backtracking is somewhat more complicated because many differ-
ent operations need to be trailed, and backtracking may require operations other than
mere unbinding. The cases are:

"* simple (un)bindings

"* restoring a linear equation or inequality to empty

"• restoring a linear equation or inequality to a previous (non-empty) form, as stored
in the trail

"* rolling back a delayed nonlinear constraint that has come closer to being awak-
ened, or has been awakened

154 CHAPTER 10. COMPILATION

CLP(7Z) Unification Table
T1

T2
var svar[func

var bind
s.var T -- T2 solver
func T1 T2 In/a T1 = T2 ?

Legend:

bind - Bind T1 to T2, or bind T2 to T1
T1 - T2 - Bind T1 to T2
var - ordinary free variable
s-var - solver variable
func - an uninterpreted functor
T1 = T2? - are the topmost symbols equal?
n/a - not applicable (corresponds to a type error)

Figure 10.1: Unification Table for CLAM Execution

10.3 Basic Code Generation

The basic code generation issues for CLP(TZ) can be divided into three groups:

1. Constraint level - implicit and explicit

2. Rule level

3. Procedure level (indexing)

Here we concentrate on the first and second groups. In terms of code generation, we
have to deal with constraints in two forms: implicit half-constraints in the argument
of a predicate, and explicit constraints in the body of a rule. A half-constraint is an
arithmetic term that is going to become half of an arithmetic equation at run time.
The compilation of an individual CLP(7Z) rule proceeds in three stages:

1. separation of implicit arithmetic half-constraints as explicit constraints,

2. rewriting and reordering of explicit constraints for optimization purposes, and

3. transforming explicit constraints to a canonical form for direct code generation.

The difference between implicit and explicit constraints is actually very minor.
Implicit half-constraints are treated as much as possible like terms in arguments of
predicates in Prolog programs. In CLP(1Z), the interesting part in both cases is dealing

10.3. BASIC CODE GENERATION 155

with the arithmetic subterms (if any) of a term. If the entire term is an arithmetic
term, we simply have an arithmetic constraint, which can be treated as described below.
Arithmetic constants, in terms of code generation, are handled exactly like constants
when in the context of an uninterpreted functor, using an analogous set of instructions.
The first stage transformation is as follows. Where a complex arithmetic term appears
as an argument of a functor, the approach is to replace it with a new variable, and add
an explicit equation to the rule between the new variable and the arithmetic term. If
the term was in the head, the obvious place for the new constraints is just after the
head. If in a body atom, the obvious place is just before the atom. There may be
reasons for putting them elsewhere, but these will be discussed below. It should be
noted that for code generation purposes, a variable appearing immediately under an
uninterpreted functor is treated as a general variable. In many cases its involvement in
arithmetic constraints elsewhere in the rule may suggest treating it differently, and this
is a useful optimization, but it is not essential, because of the way unification works.

As an example of how arithmetic subterms are removed in the first phase transfor-
mation, the rule

p(X, Y + Z, f(4), g(Y - Z)) q(h(X + Z)), r(Y - X).

would be transformed to

p(X, T1, f(4), g(T2))
T1 = Y +Z,
T2 = Y - Z,
T3 = X +Z,
q(h(T3)),

T4 =Y- X,
r(T4).

The aim of the second stage is to examine all the explicit arithmetic constraints in
the rule together, along with information about intervening :•ubgoals, to replace them
with a more efficient set of constraints.

If we ignore subgoals. there are a number of basic transformations that can be
useful:

1. separation of common subexpressions
This is very similar to the issue in imperative languages, but in CLP(JZ) we
potentially have more freedom, since the subexpression can be dealt with before,
between or after its original occurrences. For example, the constraint sequence

X + Y + Z = 3, Y + Z + 7 > 0

can be transformed to any of

X + T = 3, T = Y + Z, T + 7 > 0
T = Y + Z, X + T = 3, T + 7 > 0
X + T = 3, T + 7 > 0, T = Y + Z

156 CHAPTER 10. COMPILATION

As is the case in imperative languages, of course, common subexpressions can be
quite well hidden. However, some of these will be taken care of by the transfor-
mations described below. For example,

X +Y+Z=2*Z+ S+2*Y

is a linear equation, and in preparation for generating linear code in the third
stage would be transformed by collecting variables to:

X-Y-Z-5 =0.

Those that are hidden under nonlinearity or truly multiple constraints cannot,
however, be dealt with so easily.

2. re-ordering of constraints
Certain orders of constraints result in inefficiency. For example, for the sequence

X = Y * Z, T + Z = 4, T - Z = 0

the most obvious code generation would result in the nonlinear constraint being
delayed and then almost immediately awakened by the subsequent pair of con-
straints, which ground Z to 2 and hence make the first constraint linear. The
order

T + Z = 4, T - Z = 0, X = Y * Z

would be much more favorable. Even if we d- not wish to do the necessary
analysis to realize that Z would be grounded, it is reasonable to put nonlinears
as late as possible in a constraint sequence. This will be especially important
below, where we actually generate simple nonlinears by pulling them out of more
complex constraints: this tells us where to put them.

The situation can be more extreme:

X = Y * Z, Y = 2

should become not merely

Y = 2, X = Y *Z

but rather

X a 2 * Z, Y =2

and of course

10.3. BASIC CODE GENERATION 157

X = Y * Z, Y - 2, Z = 3

should be rewritten all the way to

X = 6, Y = 2, Z = 3

and in the last two transformations the simple equations can be discarded if the
variable does not appear anywhere else.

3. constraint fusion
Where certain variables are used to communicate between two constraints, and
for no other purpose, it may be possible to combine the constraints. For example,
in the sequence

X = Y + Z + W, Z > 0

if the Z is not used elsewhere we just need

X-Y-W>0

All of these transformations can become more complicated if there are subgoals
between the constraints considered. This is because, as undesirable as it is, the user
may have been relying on the specific level of instantiation or restriction of certain
variables for control or side-effects. In fact, the first is virtually unavoidable in general.
because of depth-first search. This means that a constraint should never be moved
beyond a subgoal containing "related" variables, and this property (at least somewhat
conservatively) is easy to check. Moving a constraint forward across a related subgoal
can not cause problems if the subgoal uses rules that are free of side-effects and non-
logical predicates, and this can be checked globally, as discussed below.

Now it remains to consider explicit arithmetic constraints. As we have seen above,
the CLAM provides instructions for almost the most general form of linear equation
or inequality, but only the most simple nonlinear equations. Of course, any CLP(P.)
arithmetic constraint can be transformed such that these instructions are sufficient (in
fact, more than sufficient) but in general there are a number of ways to do this for any
one constraint. The simplest way to generate code for a general arithmetic constraint
is to break it at every internal node of its parse tree. This results in a large number of
constraints of the form

(bo, b1,.. , b,,))

where, for each i, bi is either a variable or numeric constant, P is either equality
or inequality, and (9 is an arithmetic operation. This would naturally suggest single
instructions for each of the operations.

For example, the obvious parse tree for the inequality

I + Y + Z * W >= X + U - V + 5

158 CHAPTER 10. COMPILATION

suggests the inefficient breakup

Ti = X + Y
T2 = Z * W
T3 = T1 + T2
T4 = U - V
T5 = X + T4
T6 = 5
T7 = TS + T6
T3 >= T7

However, the more general linear arithmetic instructions described above are in-
tended to provide a more efficient vehicle for a class of constraints that occurs relatively
frequently in programs. The intention is that linear subterms of arithmetic constraints
should not be broken up, but treated together by a single chain of appropriate in-
structions. This potentially complicates the issue somewhat, because certain algebraic
transformatioiLs on constraints may produce longer runs of linear components. For
example, the constraint

(X + Y) * (U + V) = Z

could be brolen up directly into the simple constraints

Ti = (X + Y)
T', -(U + V)
TI + T2 - Z = 0

or by rewriti'ig it using the distributive law as

X* U + X* V + Y*U+Y* V =Z

it can be broken up into

T =X*U
T. =X*V
TT=Y* U
T4= Y *V

T; + T2 + T3 + T4 - Z = 0

Now the question is whether this is actually desirable. It tends to increase the
number of constraints overall, increase the number of nonlinear constraints (potentially
delayed) that are dependent on each variable, and produces a long linear equation
rather than a number of short ones, but the components of the long one tend to be
dependent on potentially delayed nonlinear constraints. In short, it seems to be of
little value. However, the answer is less obvious when a linear term is multiplied by a
constant. For example,

X + 3 * (Y + Z) = U

10.3. BASIC CODE GENERATION 159

is probably best expanded to

X+3* Y+3*Z-U

as the disadvantage of having to use instructions with explicit coefficients (rather than
the implicit 1) is outweighed by not having to deal with the apparent nonlinearity.
However, for a constraint with more variables in the linear term, like

X + 3 * (Yi + Y2 + Y3 + Y4 + Y5 + Y6) = U

it is no longer clear that it is better to multiply through in advance. It is important,
however, to put the instructions for the apparently nonlinear term after the arguments
become available. That is, the order

T1 - Y1 - Y2 - Y3 - Y4 - YS - Y6 = 0
T2= 3 *Ti

X + T2- U = 0

will have little overhead, whereas

T3 - Ti * T2

X + T3- U = 0
T2 - Yi - Y2 - Y3 - Y4 - Y5 - Y6 = 0
Ti= 3

where none of Yi to Y6 have values yet would be unacceptable, as a nonlinear constraint
would first be delayed, and then awakened by the last constraint.

Because of the tradeoffs involved, a relatively simple scheme of flattening has been
used to date: the distributive law is usually not applied, but commutativity and asso-
ciativity are used extensively. As a more complicated example,

X * Y * Z >= 3 + cos(U + V) + Ul + Vi

would be expanded to

TI- X *Y

T2 =T * Z
T3- U -V 0
T4 = cos(T3)

T2 - T4 - U1 - V1 - 3 >= 0

and, returning to our earlier example.

X +*Y + Z * W >= X + U - V + 5

should be transformed to

Y + Ti - U + V - 5 >- 0
Ti = Z *W

In summary, CLP(JZ) code generation is of course an extension of Prolog code
generation. Beyond the usual issues carried over from Prolog, the remaining ones
are largely generalizations of those arising from arithmetic expressions in conventional
programming languages. Finally, special role of linearity in CLP(1?) results in code
being generated in ways that favor linear equations.

160 CHAPTER 10. COMPILATION

10.4 Global Optimization of CLP(R)

The kinds of program analysis required to utilize the specialized CLAM instructions
include those familiar from Prolog - most prominently, detecting special cases of unifi-
cation and deterministic predicates. Algorithms for such analysis have become familiar;
see [40] for example. The extension to constraints involves a reasonably straightforward
extension to these algorithms.

10.4.1 Modes and Types

One of the principle mechanisms for enhancing efficiency is to avoid invoking the fully
general solver in cases where the constraints are simple. For example when they are
equivalent to tests or assignments. Given some fixed calling pattern for a predicate,
including information about which variables are ground or unconstrained at call time
we can determine which constraints can be executed as tests or assignments.

Consider the following simple program, whose structure is typical of recursive defi-
nitions in CLP(JZ):

sum(0, 0).
sum(N, X)

N >= 1,
N' =N- 1,
X X -N,

sum(N', X').

and consider executing the query sum(7, X). The first constraint encountered, N > 1.
can be implemented simply as a test since the value of N is known. The second con-
straint, N' = N - 1, can be implemented simply as an evaluation and assignment to N'
because N' is a new variable and the value of N is known. These observations continue
to hold when executing the resulting subgoal sum(6, X') and for each subsequent sub-
goal. Hence for any query sum(c, X). where c is a number, the constraint N > 1 is
always a test, and N' = N - 1 is always an evaluation/assignment.

Even when the above properties do not hold, some simplifications can be made. For
example, consider the constraint V = I * R + Vo where the values of I and V0 will be
known when the constraint is encountered. Since I will be known, it is clear at compile
time that the constraint will be linear and hence there is no need to separate out the
multiplication. Furthermore, the constraint becomes a linear equation on two variables
since V0 is also known.

More information about obtaining mode and type information for CLP(1Z) programs
can be found in [47, 90, 114]. In particular. Jorgensen [90] has automated the analyses.

10.4.2 Redundancy

An obvious way to enhance efficiency is to minimize the number of constraints in the
solver. Toward this aim we want to eliminate redundant constraints, and an obvi-

10.4. GLOBAL OPTIMIZATION OF CLP(1Z) 161

ous starting point is to eliminate newly encountered constraints that are redundant.
However, such constraints are rare. What is more common is that new constraints
make some earlier collected constraints redundant. We concentrate on linear con-
straints in this subsection since detecting redundancy involving nonlinear constraints
is intractable.

We now discuss two forms of redundancy: one associated with variables and the
other with constraints.

Redundancy of Variables

We say that a variable is redundant at a certain point in the computation if it will
never appear again. The elimination of these variables from the solver produces a more
compact representation of the constraints on the variables of interest. Eliminating these
variables not only saves space, but also reduces solver activity associated with these
variables when adding new constraints. Every variable becomes redundant eventually;
thus to gain the most compact representation we may project the constraints onto the
remaining variables. (For example, if the only variables of interest are S and T, the
constraints T = T 1 , T, = T2 + T3 - T4 , T4 - T3 = 1,T 2 = S + 2 can be better represented
by T = S + 1.) However, projection can be expensive, especially when inequalities
are involved. It is only worthwhile in certain cases, one of which is identified below.
We note that identifying redundant variables could be achieved at runtime as part
of general garbage collection. However, greater benefit can be obtained by utilizing
CLAM instructions to remove these variables in a timely fashion.

Consider the sum program above. After compiling away the simple constraints as
described above, the following constraints, among others, arise during execution of the
goal sum(7, X):

(1) A = - 7
(2) X" = (X-7)-6
(3) X'" ((X- 7) -6)-5

Upon encountering the second equation X" = X' - 6 and simplifying into (2), note
that the variable X' will never occur in future. Hence equation (1) can be deleted.
Similarly upon encountering the third equation X". = X" - 5 and simplifying into (3),
the'variable X" is redundant and so (2) can be removed. In short, only one equation
involving X need be stored at any point in the computation.

Redundancy of Constraints

Of concern here are constraints that become redundant as a result of new constraints.
One class of this redundancy that is easy to detect is future redundancy defined in [91],
where a constraint added now will be made redundant in the future, but it does not
effect execution in between these points.

162 CHAPTER 10. COMPILATION

Consider the sum program once again, and executing the goal sum(N, X) using the
second rule. We obtain the subgoal

N >= 1, N' = N - 1, sum(N', X')

and note that we have omitted writing the constraint involving X. Continuing the
execution we have two choices: choosing the first rule we obtain the new constraint
N' = 0, and choosing the second rule we obtain the constraint NV' > 1 (among others).
In each case the constraint N > 1 is made redundant. The main point of this example
is that the constraint N > 1 in the second rule should be implemented simply as a
test 4 , and not added to the constraint store.

Detecting redundant variables and future redundant constraints can in fact be done
without dataflow analysis. One simple method involves unfolding the predicate def-
inition (and typically once is enough). and then, in the case of detecting redundant
variables, simply inspecting where variables occur last in the unfolded definitions. For
detecting a future redundant constraint, the essential step is determining whether the
constraints in an unfolded predicate definition imply the constraint being analyzed.
Some further discussions appear in [91].

The experimental analyzer implemented by Jorgensen [90] indicates that many
CLP(7Z) programs can be analyzed quite effectively.

10.5 The Extended CLAM

Above we described the core CLAM and associated runtime structures. Here we present
some new instructions that implement some key optimization steps in arithmetic con-
straint solving. Specific kinds of global analysis are required in order to utilize these
instructions.

To take advantage of inferred modes, a new data type, fp-val, is provided to rep-
resent arithmetic variables whose value is known to be ground. They can be thought
of as "un-boxed" variables, except that some tag discipline is still needed in certain
cases if heap garbage collection is to be used. (In CLP(1?) fp-vals are in fact stored in
adjacent pairs of registers, or in adjacent stack locations.)

4 1n general, these tests are not just simple evaluations.

10.5. THE EXTENDED CLAM 163

The new instructions are:

"* litf c, FPi load a numeric constant into an fp-val;
"* getf Vi, FPj convert a solver variable to an fp-val;
"* putf FPi, Vj convert an fp-val to a solver variable;
"* stf FPi, S put an fp-val on the stack frame (offset S);
"• ldf S, FPi read an fp-val from stack frame (offset S);
"• mvf FPi, FPj copy one fpsval to another;
"* addf FPi, FPj, FPk add fp-vals; similarly for mulf, subf, divf;
"* addcf FPi, c, FPk add a constant to an fp-val;

similarly for mulcf, subcf, divcf;
"* jeqf FPi, L jump to label L if FPi is zero;
"* jgtf FPi, L jump to label L if FPi is positive.
"* jgef FPi, L jump to label L if FPi is nonnegative.

For example, when N is known in advanced to be a ground arithmetic variable, and
N' is known to be a free arithmetic variable, the constraints N > 1, N' = N - 1 can
be compiled into

subcf N, 1, Tmp
jgef Tmp, cont
fail

cont: mvf Tmp, N'

We add new instructions for creating parametric forms using fp-val variables:

* initpf..fp FPi begin a parametric form obtaining constant
from an fp-val;

* addpf.fp-va{rl} FPi, Vi add a linear component obtaining the
coefficient from an fp-val.

The constraint V = I * R + 1',½ when I and V0 are known to be ground arithmetic
variables, may then be compiled into

initpf-fp Vo
addpf-fp.val I, R
addpf-val- V
solve-eqO

We finally remark that the instructions for nonlinears are also augmented to make use
of variables stored in fp-vals.

For redundant variables, we add the following instructions to the CLAM:

o addpf.va{lr}e ci, Vi
o addpf.va{lr}e_{+-} Vi
* addpflfp.va{lr}e FPi, Vi

164 CHAPTER 10. COMPILATION

As before, these augment the current parametric form with an entry involving Vi, but
now they indicate that the variable Vi is redundant (i.e. will not occur again) and
can be eliminated (hence the "e"). Returning to the sum example above, a possible
sequence of instructions for the iterations is:

(1) initpf -7
addpf-val_+ X
solve-no.fail-eqO X'

(2) init.pf -6
addpf-vale_÷ X/

solve-no-faileqO X"

(3) initpf -5
addpf_vale_. X"

solve-no.fail-eqO X/'

Notice that a different set of instructions is required for the first equation from that
required for the remaining equations. Hence the first iteration needs to be unrolled to
produce the most efficient code.

Now let us briefly consider implementation of the instructions. Eliminating a vari-
able X from the constraint solver is quite simple: if X is a non-parametric variable,
then we just remove the linear form associated with X (as in the above example). If,
however, X is a parameter, then to eliminate X we must (i) find an equation containing
X, (ii) rewrite the equation with X as the subject, (iii) substitute out X everywhere else
using this equation, and finally, (iv) remove the equation. Thus when X is a parameter.
there is a trade-off between having one less equation and performing the work toward
this aim (because this work is essentially equivalent to adding one new equation). For
example, removing an equation is not worthwhile if execution immediately backtracks
after its removal.

The following illustrates a typical execution sequence. Suppose the solver contained
X = Y + 1, T = U + Y - 1 and a new constraint Y + X - T = 0 is encountered. Suppose
further that it is known that Y does not appear henceforth and so can be eliminated.
A straightforward implementation would (a) write the new constraint into parametric
form U - Y = 0, (b) substitute out U everywhere by Y, (c) add the new constraint
U = Y, and finally (d) using the information that Y is redundant, process the three
resulting equations X = Y + 1. T = 2 * Y - 1, U = Y in order to eliminate Y in
the manner described above. A much better implementation will (a) write the new
constraint into parametric form U - Y = 0, and (b) substitute out Y everywhere by U
(instead of vice versa).

For redundant constraints, we add the new instructions

* solve-no-add-eqO
@ solve-no-add-geO
* solve-no-add.gtO

10.6. SUMMARY OF MAIN CLAM INSTRUCTIONS 165

that behave like the solve class of instructions, but do not add the new constraint. In
general this task involves significantly less work than the usual constraint satisfiability
check and addition since we do not have to detect implicit equalities and may avoid
substitutions.

We finally remark that, in our experiments, implementing future redundancy has
lead to the most substantial efficiency gains compared to the other optimizations dis-
cussed here. The main reason is that inequalities are prone to redundancy, and the cost
of maintaining inequalities in general is already relatively high. Equations in contrast
are maintained in a form that is essentially free of this kind of redundancy.

10.6 Summary of Main CLAM Instructions

In Figure 10.2, the main CLAM instructions other than those directly inherited from
the WAM are tabulated.

10.7 Empirics

Here we wish to demonstrate:

"* the performance of the CLAM-based CLP(PZ) compiler for Prolog programs,

"• the pcrformance of the same compiler for programs involving arithmetic con-
strair.ts, and

"* the potential for improvement from a highly optimizing CLP(7R) compiler. based
on global analysis, generating extended CLAM code.

Throughout this section. all timings (in seconds) were obtained on an IBM RS
6000/530 workstation running AIX Version 3.0. The C compiler used throughout was
the standard AIX C compiler with '-0' level optimization. The systems tested are

* The CLP(R-) interpreter, written entirely in C. whose inference engine uses stan-
dard Prolog structure sharing techniques.

* The CLP(7Z) compiler system. executing core CLAM code. The CLAM code is
interpreted, using an emulator written in C.

* An emulator, as above, for the full CLAM. executing handwritten code.

* Quintus Prolog version 3.0b, a widely-used commercial system.

* Two C programs, for comparison with a CLP(1Z) program compiled into CLAM
code.

In Figure 10.3 we compare CLP(JZ) with Quintus Prolog. The programs chosen are a
naive reverse benchmark (six times on a 150 element list, built using a normal func-
tor rather than the list constructor), a program for converting boolean formulae into

166 CHAPTER 10. COMPILATION

Mnemonic Arguments Explanation

initpf cO initialize accumulator lpf with
constant cO

initpfO initialize accumulator lpf with
constant 0

initpflp FPi initialize lpf with constant from fp-val

addpf-va{lr} ci, Vi add ci * Vi to lpf in accumulator
addpf-va{lr}_{+-} Vi add linear component, with 1 or -1

coefficient
addpf-fp.va{rl} FPi, Vi add linear component,

with coefficient from fp-val

addpf-va{lr}e ci, Vi like addpf -va{lr}, eliminating V
if possible

addpf-va{1r}e-{+-} Vi like addptfva{lr}_{+-} , eliminating Vi
if possible

addpf-fp-va{lr}e FPi, Vi like addpftfp-va{lr} , eliminating Vi
if possible

solve-eqO invoke equation solver on lpf = 0

solve-geO invoke inequality solver on lpf > 0

solvegt•O invoke inequality solver on lpf > 0

solvenao-ail-eq V simply add V = lpf to solver

solve-no-fail-ge V simply add V > lpf to solver
solve-no-fail-gt V simply add V > lpf to solver
solve-nooadd-eqO check Ipf = 0, do not add to solver

solve.no-add-geO check lpf > 0, do not add to solver

solve-no-add-gtO check lpf > 0, do not add to solver
litf c, FPi load numeric constant into fp-vsa

getf Vi, FPj convert solver vriable to fp-va]

putf FPi, Vj convert fp-val to solver variable
stf FPi, S put fp-val on stack frame (offset S)
ldf q, FPi read fp-val from stack frame (offset S)
Mvf FPi, FPj copy one fp-val to another
addf FPi, FPj, FPk add fp-vals;

similarly for mulf, subf, divf

addcf FPi, c, FPk add a constant to an fp-val;
similarly for mulcf, subcf,
divcf, subfc, divfc

jeqf FPi, L jump to label L if FPi is zero
jgtf FPi, L jump to label L if FPi is positive
jgef FPi, L jump to label L if FPi is nonnegative
poWvvv Vi, Vj, Vk for V = pow(V., Vk)

here i, Vj, Vk are variables
poWvcvv Vj, Vk for c = pow(Vj, Vk)
pow-vcV Vi, c, Vk for V½ = pow(c, Vk)
poW-VVC Vi, Vj, c for Vj = pow(Vj, c)
powvcvc cO, Vj, c2 for co = pow(Vj,c2)

similar groups of instructions for cos,
sin, abs and multiplication

Figure 10.2: Summary of Main CLAM Instructions

10.8. EXTENDED EXAMPLES 167

program Quintus 3.Ob CLP(R) interpreter CLP(TZ) compiler

nrev 0.66 1.91 0.79
zbnf 0.61 1.89 0.78
zebra 1.33 2.58 1.57
8 queens 45.2 94.3 51.7

Figure 10.3: Prolog benchmarks

disjunctive normal form, a program that solves a standard logic puzzle by combina-
torial search, and obtaining all solutions to the 8 queens problem. The programs in
themselves are not interesting, and hence the code is not shown here. The important
point is that they test major aspects of a Prolog inference engine. The purpose of
this comparison is first to indicate the relative speeds of the inference engines of the
two CLP(1Z) systems. and more importantly, to give evidence that the CLAM can be
implemented without significantly compromising Prolog execution speed.

The main part of this section deals with the constraiat aspects of the CLAM. We
use the program in Figure 10.4 in four different ways, as shown in Figure 10.5, so as to
utilize different constraint solving instructions

Given the calling pattern associated with the first query, the program can be com-
pile& as though it were a simple recursive definition. Similarly for the second query,
thoigh a different recursive definition is obtained. Figures 10.6 and 10.7 contain C
fulictions that implement these two definitions. The th;id query essentially propagates
constraii.ts, and hence it cannot be compiled so simply. Similarly for the fourth query,
which essentially carries out a search.

In Figure 10.8. timings are tabulated for the interpreter, core CLAM and full CLAM.
To separate the effects of the mode-based optimizations from those of the redundancy-
based optimizations. Figure 10.8 also contains timings for full CLAM code that does
not take advantage of redundancy. The first two timing columns illustrate the benefit of
compilation over interpretation. For the next two columns, the program is specialized
with respect to the modes corresponding to the four queries.

10.8 Extended Examples

In this section we return to the mortgage program to show, in detail, CLAM code for
the general program as well as versions specialized for the various kinds of queries. We
begin with the general program in Figure 10.13. Then we give high-level pseudocorle
for the four specializations (Figures 10.9, 10.10, 10.11 and 10.12) and the respective
pieces of CLAM code (Figures 10.14, 10.15, 10.16 and 10.17).

168 CHAPTER 10. COMPILATION

mortgage(P, T, I, R, B)
T > 1,

T1 =T- 1,

P >= 0,

P1 = P * I - R,

mortgage(P1, Ti, I, R, B).
mortgage(P, T, I, R, B)

T = 1,
B = P * I - R.

Figure 10.4: Program for reasoning about mortgage repayments

Q1 :- mortgage(100000, 360, 1.01, 1025, B).

Q2 : ?_ mortgage(P, 360, 1.01, 1025, 12625.9).
Q3 : R > 0, B >= 0, mortgage(P, 360, 1.01, R, B).

Q4 0 <= B, B <= 1030, mortgage(100000, T, 1.01, 1030, B).

Figure 10.5: Four queries for the mortgage program

double mgl(p, t, i, r)

double p, t, i, r;
{

if (t == 1.0) return (p*i - r);

else if (t > 1.0 t& p >= 0.0)

return mgl(p*i - r, t - 1.0, i, r);

else exit(1);

Figure 10.6: C function for Qi

10.8. EXTENDED EXAMPLES 169

double mg2(t, i, r, b)
double t, i, r, b;
{

double p;
if (t =- 1.0) return ((b + r)/i);
else if (t > 1.0) {

p = (mg2(t - 1.0, i, r, b) + r)/i;
if (p >= 0.0) return p; else exit(1);

} else exit(1);
}

Figure 10.7: C function for Q2

CLP(IZ) CLP(JZ) CLP(JZ) full CLAM CLP(JR) C
query interpreter core CLAM but no redundancy full CLAM program
Q1 0.10 0.05 0.0042 0.0042 0.0010

Q2 2.08 1.78 0.0054 0.0054 0.0016
Q3 2.35 1.84 1.05 0.0700 n/a
Q4 11 4.20 2.05 1.78 0.0640 n/a

Figure 10.8: Timings for Mortgage program

170 CHAPTER 10. COMPILATION

mortgage(P,T,I,R)
if T> 1

T, -T-1
if P>_0

P--P*I-R
return mortgage(Pi,Ti,I,R)

else fail
else if T = I

return P* I - R
else fail

?-P- 100000
T - 360
I - 1.01

R- 1025
B- mortgage(P,T,I,R)

Figure 10.9: High-level pseudocode: mortgage specialized for Q,

mortgage(T,I,R,B)
if T> I

T- T- - 1
P1 - mortgage(TiI,R,B).
if P>O

return P
eqn(P1 = P * I - R)
else fail

else if T = 1
V, - (B + R)/I
return V,

else fail

?-T -360
I- 1.01

R- 1025
B - 12625.9
P- mortgage(T,I,R,B)

Figure 10.10: High-level pseudocode: mortgage specialized for Q2

10.8. EXTENDED EXAMPLES 171

mortgage (P,T,I, R,B)
if T>1

Ti1 -T-1
fr-ineq(P >= 0)
eqn(P1 = P * I - R)
mortgage (Pl, T1 , I, R, B)

else if T = 1
eqn(B = P * I' - R)

else fail

?-T - 360

I - 1.01
mortgage(P,T,I,R,B)

Figure 10.11: High-level pseudocode: mortgage specialized for Q3

mortgage(P,T.,I,R,B)
fr-ineq(T > 1)
eqn(T1 = T - 1)
if P>0

Pi1 -P*I-R

mortgage (P, ,T1 ,I, R,B)
else fail

mortgage(P,T,I,R,B)
eqn(T = 1)
V1 -- P*I-R
eqn(B = V1)

?-ineq(0 <= B)

ineq(B <= 1030)
P 100000
I - 1.01
R ,- 1030
mortgage (P, T,I, R,B)

Figure 10.12: High-level pseudocode: mortgage specialized for Q4

172 CHAPTER 10. COMPILATION

mg try Mg1, S

trust mg2

mgl initpf -1

addp-val-+ ST

solve..gt 0
initpf 1

addpf..val -1, ST

addpf-.var-+ #tmpl

solve-eq0

initpf.-0
addpf-val-+ OP

so lv e-geQ

mult-Vvv Stmp3, #P, #I
initpf.O

addpf-.val-+ SR

addpf-.val -1, Stmp3

addp-v'ar..+ Stmp2

solve-.eq0

getvar #P, *tmp2

getvar #T, Stmpl

jump Mg

mg2 gettnum 1, ST

mult..Vvv Stmpl, #P, *I

initpf-0
addpf-val-4 SR
addpf..val -1, Stmpl

addp-val-+ SB
solve..eqO

proceed

Figure 10.13: Core CLAN!l code for general mortgage program

10.8. EXTENDED EXAMPLES 173

mg subcf #T, 1, #tmp
jgtf Ntmp, mg1
jeqf Ntmp, mg2
fail

mgl mvf #tmp, #T
jgef #P, cont
fail

cont mulf #P, *I, #tmp
subf #tmp, #R, #P
jump mg

mg2 mulf #P, #I, #tmp
subf #tmp, #R, #B
proceed

Figure 10.14: Extended CLAM code for mortgage program, specialized for Qi

mg save 0
subf #T, 1, #tmp
jgtf #tmp, mgl

jeqf #tmp, mg2
fail

mgl
mvf #tmp, NT
callp mg
addf #P, #R, #tmp

divf #tmp, NI, #P
jgtf #P, contl
jeqf #P, conti

fail
contl

restore
proceed

mg2
addf NR, *B, Ntmp
divf Ntmp, #I, #P
restore
proceed

Figure 10.15: Extended CLAM code for mortgage program, specialized for Q2

174 CHAPTER 10. COMPILATION

mg subcf *T, 1, #tmp

jgtf *tmp, Mgl

jeqf #tmp, mg2

fail

Mgl subcf #T, 1, #T

jgtf iT, conti

fail

cant 1 initpf-O

addpf-val-+ V
solve-no-add-geO
initpf-0
addpf-fp..val *I, #P
addpf-.val- #

solve-no-fail-eq #tmp3
getvar #P, #tmp3
jump M9

mg2 subcf *T, 1, #tmp4

jeqf *tmp4, cont2

fail

cont2 subfc 0, #1, #tmp2

initpf -0

addpf-.val-+ *R
addpfifp-.val *tmp2, #P

addpf..val-+ *B

solve-eqO
proceed

Figure 10.16: Extended CLAM% code for mortgage program, specialized for Q3

10.8. EXTENDED EXAMPLES 175

Mg

try Mgl, 9

trust mg2

Mg 1

initpf -1

addpf..val-+ #
solve..no-.add-gtO

initpf -1

addpf-val-+ #

solve-.nolfail-eq #tmp

jgtf #P, conti

jeqf #P, conti

fail

cont 1

Muif #P, #I, #tmpl

subf #tmpl, #R, #P

gettvar #T, #tmp

jump mg

mg2

initpf -1

addpf-.val-+ #

solve-eqO

Muif Op, *I, #tmpl

subf *tmpl, #R, #tmp2

initpf -f p Stmp2

addp-val-- #B

solve-eqO

proceed

Figure 10.171: Extended CLAN[code for mortgage program, specialized for Q4

176 CHAPTER 10. COMPILATION

Chapter 11

Efficient Implementation of Elf

The objective of this chapter is to give some specific proposals for an efficient imple-
mentation of Elf, based on the ideas and techniques presented in the rest of this thesis.
Many of the.comments made about Elf will also be applicable to AProlog. This chapter
does not describe any existing implementation, but the prescriptions are based heavily
on the empirical study described in Section 5.6.

We begin by discussing the problem of implementing CLP languages with equality
constraints on typed A-expressions. Then we give an overview of higher-order unifi-
cation, the standard technique for solving these constraints for the simply-typed A-
calculus, as described by Huet [76], and extended by Elliott to dependent types [50].
We restrict the constraint problem as described in Chapter 5 to avoid the hardest cases,
and thus describe a modified form of higher-order unification, and show how this fits
in with the methodology for managing hard constraints as described in Chapter 8. Fi-
nally, based on empirical evidence we describe how to prioritize constraint solving so
that the frequent simple cases are solved with relatively low overhead.

11.1 Higher-Order Unification

To understand the relevant points of higher-order unification, we need to take another
look at first-order unification. Recall that the Robinson unification algorithm for first-
order terms is usually formulated as a set of rewrite rules on a set of disagreement
pairs, each of which is a pair of terms, and a most general substitution for the variables
is required making the terms in each such pair equal. This is called a most general
unifier (mgu), which is guaranteed to exist if the equality constraints are satisfiable,
and to be unique modulo variable renaming. Note that the mgu is a solved form for the
set of equality constraints in the sense that it is a representation of certain eliminable
variables as terms possibly including non-eliminable, or parametric variables.

Higher-order unification can be described in a similar way, but there are compli-
cations. The notion of uniqueness for solutions is now modulo not only re-naming
existential variables, but also ac3r-convertibility. As we have already discussed, in this
respect most general unifiers do not exist. If we require answers in solved form as

177

178 CHAPTER 11. EFFICIENT IMPLEMENTATION OF ELF

described above, the best we can do is an algorithm that will enumerate the possibly
infinite set of pre-mgus. That is, each solution will be an instance of at least one of
the unifiers. As has already been mentioned in Chapter 5, this has unpleasant practi-
cal consequences. However, if we relax the solved form requirement, a pre-unification
algorithm is available. If a set of constraints is satisfiable, the algorithm terminates
with a solution in the usual form, together with some equality constraints that do not
conform to the solved form, but are known to be satisfiable. For reasons that will be
made clear below, these constraints are called Flex - Flex pairs. Thus unification is
now, at a pragmatic level, more like general constraint solving, since a store is needed
to maintain the set of substitutions and Flex-Flex pairs. At times, Flex-Flex pairs will
disappear in the forward direction as more information becomes available, and then
have to be restored on backtracking. Note that these constraints are not "hard" or
"-delayed" in the usual sense, as their satisfiability is guaranteed rather than assumed,
but many of the same implementation issues arise.

The pre-unification problem is still undecidable, and so this algorithm still may not
terminate when no solution exists. This is because it is still non-deterministic, requiring
a search through possibly infinite sets of unifiers for some sub-problem, for one that
corresponds to a solution of another part. If none exists, the search may be infinite, but
if a solution does exist, it will eventually be found. This problem arises because of some
other kinds of disagreement pairs, the so-called Flex - Rigid pairs, and Flex - Guar
pairs, a special case of Flex - Flex pairs. (and of course their symmetric cases). To
illustrate these situations, consider two constraints ci and c2 , where cl has an infinite
set of pre-mgus, c2 has a finite one, but cl and c2 are jointly unsatisfiable. The pre-
unification algorithm will choose the first solution to cl, and then search through the
solutions to c2 to find one that is compatible. None will be found, and the same will
happen for the second solution to cl. and the third. and so on. The procedure doesn't
terminate, since it never runs out of solutions t.o cl to try, and none are consistent with
any of the solutions to c2 .

In Chapter 5 it was argued that Flex-Rigid and Flex-Gvar pairs will occur rather
rarely, and in Section 5.6 the empirical results bore this out, as they occurred in only
one of the examples. Furthermore, it was shown that these can be deferred until they
become simpler through additional information becoming available. This means that
we can classify them as hard constraints, and delay them until they are simplified
sufficiently to avoid this problem. Then unification itself will always terminate, but of
course the usual potential problems of search control that are associated with delay are
introduced.

There is an additional complication, in that Flex-Flex pairs can actually give rise
to hard constraints when further information becomes available. This will be discussed
further in Section 11.2.

It should be noted that Elliott's extension of Huet's pre-unification algorithm, and
Pfenning's extension of Miller's algorithm for the L\ subset are incomparable in terms of
which disagreement pairs they actually solve. This is summarized in the set inclusion
diagram in Figure 11.1. Of course neither of them solve Flex-Flex pairs, or for the
most part Flex-Gvar pairs, although the latter can be solved by the Miller/Pfenning

11.2. HARD CONSTRAINTS 179

Huet / Elliott Miller / Pfenning

Flex-Rigid Gvar-Gvar

Figure 11.1: Comparison of solutions in Huet's and Miller's algorithms

algorithm as an optimization for certain special cases. We should also note that in this
discussion the Flex case does not include the Gvar case, unlike in Huet's usage.

Now, let us list the various forms fo terms in disagreement pairs. For higher-order
unification for dependent types, the interested reader is referred to [511 - we restrict
the discussion to the simply-typed subset. An Evar is an existential variable, and a
Uvar is a temporary constant introduced by pi-quantification. An Evar E is said to
depend on a Uvar x in a goal if E is bound inside the scope of x in the goal.

"* Flex
FMIMV2 ... M,, n > 0 where F is an Evar and the Al, are terms, and the G-r
conditions below are not satisfied.

"* Gvar
FxIx 2 " •X, 0 < m < n where F is an Evar, the x, are Uvars, F does not depend
on any xi, and the xi are all distinct.

"* Rigid
f 1.M2 ... M,, n > 0 where f is a constant or a Uvar and the Ali are terms.

Note that, to simplify the discussion, types have been omitted, and the the other
classes of disagreement pairs have been omitted since they are dealt with by straight-
forward recursive unifications.

11.2 Hard Constraints

In this section, our aim is to describe the management of hard constraints in Elf in terms
of the framework developed in Chapter 8. We will work towards this goal somewhat
gradually.

180 CHAPTER 11. EFFICIENT IMPLEMENTATION OF ELF

Core Elf Unification Table
r Gvar E Flex I Rigid

Gvar unify
Flex delay delay
Rigid unify delay unify

Figure 11.2: Core unification table for Elf

The situation is described in Figure 11.2.
Because a Flex-Flex pair, which is not a hard constraint, can lead to a hard con-

straint we include Flex-Flex pairs in the wakeup system. Hence, ideally, we need five
wakeup degrees in addition to awakened, These are for Flex-Flex, Flex-Rigid, Rigid-
Flex, Flex-Gvar, and Gvar-Flex. We note that it is not desirable to combine symmetric
cases. This is because the transitions of the two sides of the equation depend on the
binding of different variables, and we need to distinguish them for efficient implemen-
tation.

The transitions between these three forms of expressions that we Rieed to consider
are as follows. Note that we do not consider leading abstractions.

1. Flex * Rigid
The head F is bound to

Ax, ... Axk. gN 1 ... Nm

where g is a constant or a Uvar and the Ni are terms. The resulting Rigid term
will, of course, be of the form

gP 1 ... P1.

2. Guar =# Rigid
Same as Flex =. Rigid.

3. Flex =: Gvar

(a) All of the arguments are bound to universal variables, such that the partial
permutation property holds. (This is very unlikely, and expensive to check
for, so it has not been implemented to date).

(b) The head F is bound to

Ax, ... AXk. Gy, .. y,

where G is an existential variable, each y, is either a Uvar or one of the xi,
and the resulting term is a Gvar. That is,

GZ1 ... • zj

such that the z1 are all distinct Uvars, and G does not depend on any of
them.

11.3. EASY CASES OF CONSTRAINTS 181

4. Gvar • Flex
The head F is bound to

Ax "AXk. GNI "" Nm

where G is a an existential variable and the Ni are terms, such that the Gvar
criteria are now violated. The resulting Flex term will be of the form

GP ..."P1.

Notice that the above transitions admit the possibility of cycles. A Flex term
can turn into a Gvar term when more information becomes available, and with still
more information may turn back into a Flex term, all without backtracking. This
makes the wakeup system cyclic, as shown in Figure 11.3. Note that the two arcs
shown using a thinner line correspond to the case that is expensive and unlikely, and
might be omitted. We describe the generic wakeup conditions in symmetric pairs, to
avoid notational clutter, and ignore the term that does not change in each pair. The
language in our description of the degrees and wakeup conditions is different to that
used in Chapter 8, to make it more intuitive in this context.

11.3 Easy Cases of Constraints

Finally we consider details of the actual implementation of higher-order unification,
given the empirical data of section 5.6. Recall that that most unification was either
simple assignment or first-order (Herbrand) unification, around 95%, averaged over
all examples. Similarly, substitution was the substitution of parameters for A-bound
variables in about 95% of the cases. The remaining 5% were substitution of constants,
variables, or compound terms for bound variables.

The aim is to find a representation for Elf terms, substitutions and constraints that
is suitable for the general problem at hand but is especially suited to the frequent
simple cases. The obvious representation is that corresponding to first-order abstract
syntax: a DAG with special nodes for application, abstraction etc. This is problematic
because of the frequency of the Rigid-Rigid case in unification - remembering that
unification avoided by indexing represents otherwise uncounted instances of Rigid-Rigid
unification.

Representing application in the obvious way, as shown in the example in Figure
11.4, is particularly problematic. The term shown in the example is FMIM2M3 Al 4 .
Consider the problem of classifying a disagreement pair. The classifications are mostly
based on the nature of the head: in particular whether it is bound to a constant or
not. Furthermore, in the frequently occurring Rigid-Rigid case, it is necessary to know
which constant: as the pair is only decomposed into argument pairs if the heads are
identical. In this representation, obtaining information about the head is too expensive.
It is necessary to have the head immediately accessible, and then the arguments might
as well be a list. This representation. for the same example, is shown in Figure 11.5.

182 CHAPTER 11. EFFICIENT IMPLEMENTATION OF ELF

(G-G, R-R, G-R, R-G)

o3

17 18

(0 (0)

1 2

F FM1 M2 ... M,
G Fx~h x• ••k¢,

R fM 1 M2 ... M,

F -> R (w1, ,W2,0 W1 ,'W14 , W1 5 , •16) F = Ax1 .~.. gN 1 .. Nm
F -> G (ws, w6) M1 = x1 A'"AM,=,

A Gvar(Fx1 .. xn)
F -> G (wz3, w4, w11l, w12, W1 7, ,wl8) F = Ax1 ... Axk. Gy1 "ym

A (X 1 . Xk. Gyl ym)M "M 1M'

A Gvar(M')
G -> R. (w, w 0) F = x ""Xk. gNs " Nm

G -> F (w4, w8) F = Axl'"jk. GiV. NV
A (2X1 " xk.GN. Nm)M;.Mn-M'
A -'Gvar(M')

Figure 11.3: Wakeup system for Elf

11.3. EASY CASES OF CONSTRAINTS 183

@ 4

@ M3

F M

Figure 11.4: Conventional term representation for Elf

F O

M 2

M 3

M 0
3 /

M 4 nil

Figure 11.5: Functor/Arguments term representation for Elf

184 CHAPTER 11. EFFICIENT IMPLEMENTATION OF ELF

Notice that this representation also makes it easier to make use of clause indexing on
rigid term heads.

Note that this functor/argument representation can be problematic when the head is
flexible, since it can then be bound to an expression which requires some normalization,
producing a new head, and the old one needs to be stored for backtracking in some
way. These complications are outbalanced by the efficiency improvement for the simple
cases.

Note also that this discussion hinges on rigid terms being in close correspondence
with constructed terms in Prolog. The constant head is the functor, and the remain-
ing terms are the arguments. There is then also a close correspondence with Prolog
indexing. In short, Prolog unification is an important special case of Elf equality con-
straints. and this fact affects the representation of application especially. We conclude
that functor/argument representation. as was in fact used in Nadathur's original im-
plementation of AProlog up to LP2.7, is an essential optimization for a AProlog or Elf
implementation.

11.4 Other Implementation Issues

A number of other representation and implementation issues arise from a study of the
empirical data in Section 5.6. Here we make a number of brief comments on those
issues.

" Term Comparison
In principle, an important part of term comparison in these languages is the test
for a-convertibility. The Duke representation proposal [127] suggests a De Bruijn
[38] representation of terms for this reason. While that suggestion may well be
appropriate, we should note that the empirical study showed the comparison of
two abstractions to be a rare occurrence, and hence it should be probably not be
allowed to determine the choice of term representation.

" Substitution and Abstraction
The obvious way to handle substitutions is to produce explicitly the new t :in.
However, this is time-consuming since the function applied must be traversed,
and space consuming, since multiple copies of a large term may have to be made.
However, other representations of substitutions tend to be complicated in general.
This is not the case for substitutions of Uvars. Furthermore, most of the substi-
tutions actually performed are Uvars, and these are frequently abstracted over as
well. Abstraction is typically less expensive when substitutions are not actually
made, but represented in some explicit way. The Duke proposal advocates using
embellished environments to represent substitutions efficiently.

" Building Deductions
Building deductions is expensive. However, it need only be done when the overall

11.4. OTHER IMPLEMENTATION ISSUES 185

deduction is requested by the user, or when a deduction is needed for further com-
putation. In this sense goals that do not use partial deductions for computation
lead to behavior that is closer to that of)Prolog.

" Types
Type computations in Elf are a significant part of the overall work done, and
eliminating redundant type computations is likely to be important.

" Extended Occurs Check
The occurs check is particularly important in AProlog and Elf, as programs quite
commonly depend on it to run correctly. However, even local analysis of rules
can be used to avoid many uses of it in most Elf programs. This is because heads
of rules are typically linear, so that each variable occurs only once, and thus the
occurs check can largely be avoided when these variables are bound. Likewise the
dependency check can often be avoided.

186 CHAPTER 11. EFFICIENT IMPLEMENTATION OF ELF

Part IV

Conclusions

187

Chapter 12

Conclusions

The main contribution of this thesis has been to demonstrate the practicality of con-
straint logic programming by using CLP(T7) as a case study. It has been shown that
paying close attention to the relationship between programming methodology, language
design and efficient implementation can enable us to design CLP systems that have the
expressive power to provide leverage to programmers yet be efficiently implementable.

The specific contributions can be summarized as follows:

* An understanding of CLP(1?) and Elf programming methodology. This consists
of an understanding of both static program structure and the empirical aspects
of program execution.

* A discipline for dealing with hard constraints by delaying them at runtime.

* A strategy for structuring constraint solvers to take advantage of frequently oc-
curring simple cases of constraints.

* An understanding of the problems of adapting constraint solvers to the opera-
tional model of CLP by making them incremental.

* Design of suitable data structures for incremental constraint solving.

* A strategy and abstract machine design for compiling CLP(7Z) based on the
central data structure of the constraint solver.

* A strategy for making use of highly optimizing compilation of CLP(1) based on
global program analysis and multiple program specialization.

The broad applicability of the techniques developed here has been demonstrated
through a second case study. Elf is superficially almost totally unlike CLP(1), except
for being essentially a CLP language. However, when viewed in the way that this thesis
advocates, the two languages, and to varying extents the various other CLP languages,
can be seen to be strongly related not only conceptually, but also pragmatically. This
relationship is more obvious for most of the other CLP languages discussed, and the
parallels are even stronger. The ideas and techniques in this thesis have been validated

189

190 CHAPTER 12. CONCLUSIONS

in practice to a considerable degree. In particular, the CLP(RZ) systems have been used
for a substantial number of non-trivial applications, as described in Chapter 4.

There is still much work to be done in the practical aspects of Constraint Logic
Programming. To mention just a few important areas of research:

"* Incremental constraint solving for other domains, and for wider class of con-
straints in the usual domains.

"* Practical, highly optimizing compilers for CLP(R) and other languages.

"* Control and usability issues in language design.

"• Pursuit of other application areas.

"* A program debugging methodology to accommodate search for causes of failure
through constraint unsatisfiability.

It is hoped that this thesis, however, provides a practical guide for future developers
of CLP systems.

Appendix A

Electrical Engineering Programs

A.1 Circuit Solver

This program carries out a steady state phasor analysis of RLC circuits. It is called
through the predicate circuit-solve() which has as arguments

e the angular frequency for the analysis.

* the component list.

* the list of nodes which are to be *grounded' - otherwise all voltages are relative.

e the 'Selection' list - a list of nodes for which computed information is to be
printed.

The circuit is defined by a list of components. Each component is described by the
component type, name, value and the nodes to which it is connected. The component
type is used to determine the component characteristics.

circuitsolve(W, L, G, Selection)
get-node-vars(L, NV),
solve(W, L, NV, Handles, G),
formatprint(Handles, Selection).

get-node-vars([[Comp, NUN, X, Ns]ILs], NV)
getnode-vars (Ls, NV1),
insert-list(Ns, NV1, NV).

get-node-vars(0, []).

insert-list([CINs], NVI, NV3)
insert-list(Ns, NV1, NV2),
insert(l, 1V2, NV3).

insert.list(C, NV, NV).

insert(l, [[N, V, I]INVI], [[N, V, I]INV1]).

191

192 APPENDIX A. ELECTRICAL ENGINEERING PROGRAMS

insert~l, 111i, V, IIll'iiJ, CLN, V, I)11V2])
insert(l, lVI, 1V2).

insert(l, 01, [[1, V, C(O, 0)]]).

solve(W, EXIXs), NV, [~HIs], G)
addcomp(W, X, IV, IVI, H),
solve(W, Xs, lVI, Hs, G).

solve(W, 0, NV, 0, G)
zero-.currents(NV),
ground-nodes(NV, G).

zero-.currents(EEN, V, c(O, 0)]lLsl)
zero-currents(Ls).

z'3ro-currents(OC).

ground-.nodes(Vs, Eli~s])
ground-.node(Vs, N),

ground-.nodes(Vs, Ns).
ground-nodes (Vs, []).
g:ou~nd..node(EEI, c(0, 0), 1] IVsJ, N).

ground-node(EENi, V, I~lVsl, N)
ground..node(Vs, N).

7,The following rules deal with two-terminal component'.

addcomp(W, EComp2, Ium, X, Nli, N12], NV, NV2,
EComp2, lum, X, Eli, Vi, Ill, EN2, V2, 12]]):-

c-.neg(Ii, 12),

iv..reln(Comp2, II, V, X, W),

c-.add(V, V2, Vi),

subst([Nl, Vi, Ioldi], [Ni, Vi, Inewi], NV, NVi),
subst(E12, V2, Iold2), E12, V2, Inev2], NVi, 1V2),

c-add(Ii, Ioldi, Inewi),
c-add(I2, Iold2, Inew2).

% Voltage/current relationships for two-terminal components.

iv~reln(resisto-, I, V, R, W)

c-mult(I, c(R, 0), V).
iv-reln(voltage-.source, I, V, V, W).

iv..reln(isource, I, V, I, W).
iv~reln(capacitor, I, V, C, W)

c-mult(cCO, W*C), V, I).
iv..reln(inductor, I, V, L, W)

iv-reln(connection, I, c(0, 0), L, W).
ir reln(open, c(0, 0), V, L, W).

A.1. CIRCUIT SOLVER 193

iv-reln(diode, I, V, D, W)
diode(D, I, V).

% Three rules per diode type.

diode(in914, c(I, 0), c(V, 0))
V < -100, DV = V + 100, I = I0*DV.

diode(in914, c(I, 0), c(V, 0)) :-

V >= -100, V < 0.6, I = 0.001*V.
diode(in914, c(I, 0), c(V, 0)) :-

V >= 0.6, DV = V - 0.6, I = I00*DV.

% The folloving rules deal with transistors.

addcomp(W, [transistor, Num, X, [NI, N2, N311, NV, NV3,
[transistor, Num, X, [Ni, Vi, I1],

[N2, V2, 121, [N3, V3, 13]]):-
transistor(X, R, Gain),
c.add(II, 13, IT),
c-neg(I2, IT),
c-add(Vin, V2, VI),
c.mult(I1, c(R, 0), Vin),
c.mult(Il, c(Gain, 0), 13),

subst([N1, Vi, Ioldl], [Ni, Vi, Inewl], NV, NVW),
subst([N2, V2, Iold2], [N2, V2, Inew2], NVi, NV2),
subst([N3, V3, Iold3], [N3, V3, Inew3], NV2, NV3),
subst([N4, V4, Iold4], [N4, V4, Inew4], NV3, NV4),
c-add(I1, !olid, Inewl),

c-add(12, Iold2, Inew2),
c-add(I3, Iold3, Inew3),

c-add(I4, Iold4, Inew4).

% We need one fact for each kind of transistor we wish to consider.

transistor(bc108, 1000, 100).

% The following rule deals with transformers.

addcomp(W, [transformer, Num, X, [NI, N2, N3, N41], NV, NV4,
[transformer, Num, X, [Ni, VI, I1], [N2, V2, 12],
[N3, V3, 131, [N4, V4, 14]]):-

c-neg(Ii, 12),
c-neg(I3, 14),
c_add(Vin, V2, VI),
c-add(Vout, V4, V3),
c-mult(Vout, c(X, 0), Vin),

194 APPENDIX A. ELECTRICAL ENGINEERING PROGRAMS

c_mult(Ii, c(X, 0), 14),
subst([Ni, V1, Ioldil, [Ni, Vi, Inewl], NV, NVI),
subst([N2, V2, Iold2], [N2, V2, Inew2], NV1, NV2),
subst(EN3, V3, Iold3), [W3, V3, Inew3], NV2, NV3),
subst(E14, V4, Iold4], [N4, V4, Inew4], N;3, NV4),
c.add(I1, Ioldl, Inel),
c-add(I2, Iold2, Inew2),
c-add(13, Iold3, Inev3),
c-add(I4, Iold4, Inew4).

subst(X, Y, [ZIL1, rYIL1J).
subst(X, Y, [ZIL1i, [ZIL2])

subs, (X, Y, LI, L2).

'.

% These rules define complex arithmetic.

c_mult(c(Rel, Iml), c(Re2, Im2), c(Re3, Im3))
Re3 = Rel*Re2 + -l*Iml*Im2,
Im3 = Rel*Im2 + Re2*Iml.

c¢add(c(Rel, Iml), c(.e2, Im2), c(Re3, Im3))
Re3 = Rel + Re2,
Im3 = Tml + Im2.

c-neg(c(Re, Im), c(Rei, Iml))
Rel = -Re, Iml = -Im .

c.eq(c(Rel, Iml), c(Re2, Im2))
Rel = Re2, Iml = Im2

c-real(c(Re, Im), Re).
c-imag(c(Re, Im), Im).

% format.print(H, Selection) --- Print out node information.

A.2 Transistor Circuit Analysis and Design

This program solves transistor amplifier design and analysis problems, and D.C. circuit
analysis problems involving transistors, diodes and capacitors. The first main goal,
used for dc analysis of circuits, is

'- dc-analysis(Vccl, Vcc2, Circuit).

The parameters are two (optional) source voltages which will ensure that the node ccl
is at voltage Vccl, similarly for cc2, and a circuit description in the following form: a
list of elements each of which is a list containing four elements, the component type, the
component name, the data for the component, and a list of nodes that the component

connects.

A.2. TRANSISTOR CIRCUIT ANALYSIS AND DESIGN 195

The second main goal, used for transistor amplifier design and analysis, is

?- full-analysis(Vccl, Vcc2, Circuit, In, Out, Type,
Stability, Gain, Inresist, Outresist).

The first three parameters are as above. The rest are the input node for the amplifier,
the output node for the amplifier, and the type (emitter-follower, common-base) of the
amplifier. The final four parameters are design parameters: the stability of collector
currents on 50% deviation of Beta values and 10% deviation of Vbe values for the
transistors of the amplifier, the gain of the amplifier, and finally the open-circuit input
resistance and output resistance of the amplifier.

Note that several conventions are followed in this program. In the D.C. case, ca-
pacitors are considered to be open circuits. However, for small signal analysis, they are
considered to be short circuits. Additionally, it is assumed that any amplifier circuit
type used for a full analysis appears in the database of circuits and that all components
used appear in the database of components.

% Entry Points.

dc-analysis(Vccl, Vcc2, Circuit):-
choosecircuit(Circuit),
solve_dc(mean, Circuit, [n(ccl, Vccl, [_),

n(cc2, Vcc2, [_), n(gnd, 0, [J)J,
Nodelist, Collector-Currents),

current.solve(Nodelist),
print.circuit(Circuit),
print.value(Nodelist).

full-analysis(Vccl, Vcc2, Circuit, In, Out, Type,
Stability, Gain, Inresist, Outresist):-

V, Choose a circuit template.
circuit(Vccl, Vcc2, Circuit, In, Out, Type),
% Construct circuit constraints.
solvedc(mean, Circuit, [n(ccl, Vccl, [j),

n(cc2, Vcc2, [L), n(gnd, 0, [_])],
lodelist, CollectorCurrents'),

currentsolve(Nodelist),
%I Determine stability constraints.
stability(Vccl, Vcc2, Circuit, CollectorCurrents, Stability),
%. Determine input resistance and gain constraints.
solvess(Circuit, Collector-Currents,

[n(ccl, 0, [_J), n(cc2, 0, [_j),
n(gnd, 0, [A), n(In, 1, [IinI),
n(Out, Vout, [1)], Nodelist2),

current.solve (Nodelist2),
Inresist = -1 / Iin,
Gain = Vout,

196 APPENDIX A. ELECTRICAL ENGINEERING PR0O7itAMS

% Determine Output resistance constraints
solve-.ss (Circuit, Collect or-.Currents,

E(nccl, 0, [j), n(cc2, 0, [j),
n(gnd, 0, [j), nCOut, 1, (lout))], Iodelist3),

current ..solve(Nodelist3),
Outresist = -1 / lout,
%I Choose circuit values - all (real) choice points occur here
choose-.circuit(Circuit).

% Small signal equivalent circuit analysis.

solve-.ss([Q, 0, List, List).
solve..ss([[Component, -, Data, Points]Il~est], CCin,

Innodes, Outnodes):-
connecting(Points, Volts, Amps, Innodes, Tmpnodes),
component-.ss(Component, Data, Volts, Amps, CCin, CCout),
solve~ss(Rest, CCout, Tmpnodes, Outnodes).

component..ss(resistor, R, EV1, V21, [I, -1*1), Cc, Cc):-
VI-V2 = R*I.

component-.ss (capacitor, -, IV, V1, [I, -1*1], Cc, Cc).
component-.ss~transistor, (npn, Code, active, M~ean, -, 2

(Vb, Vc, ye], (lb, Ic, Ile, (IcolICC]., CC):-
Mean = data(Beta, -,-, Vt),
Vb -V. = (Beta*Vt /Icol)*Ib,
Ic =Beta*Ib,

le + Ic + lb = 0.

%h D.C. component solving.

solve-dcC.., [I, List, List, C)).
solve-dc(Kind, ((Component, -. Data, Points] I Rest],

Inlist, Outlist, CCin):-
connecting(Points, Volts, Amps, Inlist, Tmplist),
component-.dc(Component, Data, Volts, Amps, CCin, CCout, Kind),
solve..dcCKind, Rest, Tmplist, Outlist, CCout).

component..dc(resistor, R, (VI, V2j, [I, -1*I], Cc, Cc, .. :
VI-V2 = R*I.

component-.dc(capacitor, _, (V1, V23, (0, 0], Cc, Cc, J.
component-.dc(transistor, (Type, Code, State, Mean, Min, Max],

Volts, (lb, Ic, I.], [IcICC]*, CC, mean):-
Mean =data(Beta, The, Vcestat, .J,
transistor..state(Type, State, Beta, The, Vcesat, Volts,

(Ib, Ic, Is]).
component..dc(transistor, (Type, Code, State, Mean, Min, Max],

A.2. TRANSISTOR CIRCUIT ANALYSIS AND DESIGN 197

Volts, [Ib, Ic, Is], [IcICCJ, CC, mnin):-
Mini = data(Beta, The, Vcestat, -.),
transistor-.state(Type. State, Beta, Vbe, Vcesat, Volts,

component-.dc~transistor, [Type, Code, State, Mean, Min, Max],
Volts, [lb, Ic, Is), [IcICC), CC, maxx):-

Max = data(Beta, Vbe, Vcestat, -),
tranuistor-state(Type, State, Beta, Vbe, Vcesat, Volts,

component..dc(diode, [Code, State, Vf, Vbreak], Volts, Amps,
CC, CC, *j:-

diode..state(State, Vi, Vreak, Volts, Amps).

%I Diode and transistor states / relationships.

diode..state(forva~rd, Vi, Vbreak, [Vp, Vm], [I, -i*I]):-
'h forward biased
Vp - Vat = Vf,
I >= 0.

diode state(reverse, Vf, Vbreak, [Vp, Vm], [I, -1*I]):-
%reverse biased

Vp - V. < Vi,
Vm - Vp < Vbreak,
I =0.

transistor-.state(npn, active, Beta, Vbe, -,[Vb, Vc, Ve],

Vb = Ve + Vbe,
Vc >= Yb,
lb >= 0,
Ic = Beta*Ib,
Ie+Ib+Ic = 0.

transistor..state(pnp, active, Beta, Vbe, -,[Vb, Vc, Ye],

Vb = Ve + The,
Vc <= Yb,
lb <= 0,

Ic = Beta*Ib,
Ie+Ib+Ic = 0.

transistor-state~npn, saturated, Beta, The,
Vcesat, [Yb, Vc, Ye], [lb. Ic, Ie)):-

Vb = Ve + The,
Vc = Ve + Ycesat,
lb >= 0,
Ic >= 0,
Ie+Ib+Ic = 0.

transistor-.state(pnp, saturated, Beta, The,

198 APPENDLY A. ELECTRICAL ENGINEERING PROGRAMS

Vceaat, [Vb, Vc, V.), [Ib, 1c, Is]):-
Vb = V. + Vb.,
Vc = Ve + Vcesat,
lb <= 0,
IC <= 0,
Ie+Ib+Ic = 0.

transistor-.state(npn. cutoff, Beta, Vbe,
Vcesat, [Vb, Vc, Ve), [lb, Ic, I.)):-

Vb <= V. + Vbe,
lb = 0,
Ic = 0,
I. = 0.

transistor-state(pnp, cutoff, Beta, Vbe,
Vcesat, [Vb, Vc, V.], [lb, Ic, Ie]):-

Vb >= V. + Vbe,
lb = 0,
Ic = 0,
Ie = 0.

%h Component connections.

connecting(EJ, D. 0. List, List).
connecting([PIPR), [VIVR), [VIP.), Inlist, OutJlist):-

connect(P, V, I, Inlist, Tmplist),
connecting(PR, VP., IR, Tmplist, Outlist).

connect(P, V, 1, [), [n(P, V, [ID))

connectCP, V, I, [n(P, V, Ilist) I Rest), [n(P, V, [VIlist))IRestJ)

connect(P, V, I, CAiRest), [Allewrest))
connectCP, V, I, Rest, Nevrest).

%. Stability analysis.

stability(Vccl, Vcc2, Circuit, CollectorCurrents, Stability):-
solve..dc~minn. Circuit, [n~cci, Vcci, [-I),

n(cc2, Vcc2, [.j), n~gnd, 0, [j)],
lodelisti, KinCurrents),

current-.solve(Nodelist 1),
solve..dc(naxx, Circuit , [n~ccl, Vccl, [2),

n~cc2, Vcc2, [-D, n(gnd, 0, [j)),
Iodelist2, MaxCurrents),

curreut~solve(Iodeliit2),
calculate(MinCurrents, MaxCurrents,

CollectorCurrents, Stability).

A.2. TRANSISTOR CIRCUIT IANALYSIS AND DESIGN 199

calculat.(NiuCurrents, MaxCurrents, CollectorCurrents, Stability):-
cal(MinCurrents, MaxCurrents, CollectorCurrents, Percents),
maxiCPercents, 0, Stability).

calCCMinIRimj, DMaxiRaxJ, [IciRcJ, CPciRpc)):-
Pc = max(Ic-Min, Max-Ic),
cailftin, Rax, Rc, Rpc).

calC], [0, 0, 01).

maxiC[fllIR], 12, P):-
14 = maxNIi, 12),
maxi(R, M4, P).

isaxi(0, P. P).

current ..solve(C]).
current-.solve([nC., -, L) IRest])

kclCL),
current-.solve(Rest).

print..yalue(0E).
print-.value([n(P, V. I) I Rest])

printf('% at %i %\n",, (P, V, ID),
print-.value(Rest).

print..circuit(0).
print-.circuit([[Comp, Name, Data, Points] I Rest]))

printf(" %I at % %/\n", [Comp, Name, Data]),
print-circuit(Rest).

sum(EXITJ, Z)
x+P = Z
sumCT, P).

suxCO3, 0).

kcl(L) :
sum(L, 0).

% Choose circuit values.

choose-circuit([[Cozuponent..type, -,Data, -1J RestofCircuit]):-
choobe-.component(Component-.type, Data),
choose-.circuit(RestofCircuit).

choose-.circuit C 0).

choose-.conponent (resistor, R):
resistor-.val(R).

choose-.component(capacitor, .

200 APPENUIX A. ELECTRICAL ENGINEERING PROGRAMS

choose-.component(diods, [Code, -, Vf, Vbreak)):-
diode-.type(Code, Vf, Vbreak).

choose-.component~transistor, [Type, Code, _, Meani, Min, Max]):-
transistor-.type(Type, Code, MeanBeta,

Mean~be, MeanVcestat, MeanVt, mean),
Mean = dataCKeauBeta, MeanVbe, MeanVcestat, MeanVt),
transistor-.type(Type, Code, KinBeta,

MinVbe, MinVcestat, MinVt, minn),
Min = dataCMinBeta, KinVbe, MinVcestat, MinVt),
transistor-.type(Type, Code, MaxBeta,

MaxVbe, MaxVcestat, MaxVt, maxx),
Max = data(MaxBeta, MaxVbe, MaxVcestat, MaxVt).

%, Database of circuits and components.

resistor-.val(100).
resistor-.val(S0).
resistor-.va.1C27).
resistor-va1 10).
rem istor-.va.1CS).
resistor-.valC2).
resistor..val~l).

diode-type~dil, 0.6, 100).

transistor-.type(npn, trO, 100, 0.7, 0.3, 0.025, mean).
transistor-.type~npn, trO, 50, 0.8, 0.3, 0.025, minn).
transistor..type~npn, trO, 150, 0.6, 0.3, 0.026, maxx).

transistor..type(pnp, tri, 100, -0.7, -0.3, 0.025, mean).
transistor..type(pnp, trl, 50, -0.8, -0.3, 0.025, mian).
transistor-.type(pnp, tri, 150, -0.6, -0.3, 0.025, marx).

circuit(l5, 0, [
[capacitor, cl, cl, [in, b]),
[resistor, ri, Ri, [b, cc~l),
[resistor, r2, R.2, [b, grid)),
[transistor, tr, Cunpr, trO, active, Mean, Minn, Maxx], [b, c, el
[resistor, re, Re, [e, gnd)),
(capacitor, c2, c2, Cc, out)),
[resistor, rc, PRc, Cc, cci)),
[capacitor, c3, c3, [a, gird)]),

in, out, common..emitter).

circuit(15, 0, C
[capacitor, ci, C1, [gid, b)),
[resistor, ri, R1, Eb, cc~l),
[resistor, r2, R.2, Eb, gird)),

A.3. SIGNAL FLOW GRAPH SIMULATION 201

[transistor, tr, [pnp, trl, active, Mean, Minn, Maxx], [b, c, ell,
[resistor, re, Re, [e, grid)],
[capacitor, c2, C2, [c, in]],
[resistor, rc, Rc, Ec, ccl]),
[capacitor, c3, C3, Ce, out]]],

in, out, common-base).

circuit(IS, 0, C
[capacitor, cl, C1, (in, b]],
[resistor, rl, R1, [b, ccl]],

[resistor, r2, R2, (b, gnd]],
[transistor, tr, [npn, trO, active, Mean, Minn, Maxx],

[b, ccl, ell,
[resistor, re, Re, Ce, gnd)),
(capacitor, c3, C3, [e, out]]],

in, out, emitter-follower).

A.3 Signal Flow Graph Simulation

This program simulates the signal flow graph presented to it as input, and describes
the value at the required node at each time interval by drawing a graph. The goal is
of the form

?- flow(Spec, Output).

The first argument describes the signal flow graph as a list of arcs and the second is
either the name of a node in the graph for which the value is to be plotted, or an empty
list signifying that the value at each node is to be printed at each time interval. Each arc
description is of the form [delay, nodel, node2) or [coeff (coefficient), nodel,

node2,.

%, First convert the goal to an internal representation.

flow(Spec, Output)
convert.list(Spec, Specd, [Nodes, Sources]),
get-node.index(Output, Nodes, -, Oindex, no), !,
analyze(Specd, Oindex).

convert.list([SISs], Spec2, Info2)
convertlist(Ss, Specl, Infol),
convert_arc(S, Specl, Spec2, Infol, Info2).

convertlist(O", (, [0C, Sources])
read.sources(Sources).

convert_arc([Type, In, Out], Specl, Spec4, Infol, Info3)
get.index(Type, In, Infol, Info2, Indexl, Newnode.flagl),

202 APPENDIX A. ELECTRICAL ENGINEERING PROGRAMS

get-.index(not-.source, Out, Info2, Info3,
Index2, Nevnode...lag2),

node-.insertCSpeci, Spec2, Newnode..flagl),
node-insert(Spec2, Spec3, Nevnode-flag2),
insertCSpec3, Spec4, Index2, [Type, Indexi)).

get-.index~sou~rce, N, (lodesl, Sources], (lodesi, Sources],
Index, no) :

get-.node-.index(l, Sources, -. Index, no).
get-.indexCType, Node, Clodesi, Sources], [lodes2, Sources],

Index, Newnode...!lag) :
get-.node-.index~lode, Nodesi, Nodes2, Index, Nevnodejflag).

%I Find an index to a node in the list, adding it if necessary.

%. get-.node-.index(Node, Old..node..list, Nev..node-list, Index,
% Nevnode.f lag)

get-.node-.indox(X, EXial), ElI~s], 1.0, no).
get-node-.index(X, [Xdl~s), Eldilds), V + 1, Newnode-.f lag)

get-.node-.indexCX, Ns, lids, V, Neunode-.flag).
get-.node-.index(X, 01, EX], 1, yes).

%# Add new nodes by setting up a new list on the specification list.

node..insertCS, S, no).
node-.insert(ES1ISsl), ESiISs2], yes)

node-.insert(Ssl, Ss2, yes).
node-.insertC0, E0], yes).

% Insert the arc in the new specification.

insertCESISs], ESITsJ, Index, Arc)
Index > 1,
insertCSs, Ts, Index-i Arc).

insert((SISs], EEArcISJISs), 1, Arc).

anaJlyzeCSpec, Output) :
getinitial(Old),
sigtlov(Old, Spec, Output).

sigflowCOld, Spec, Output) :
getsources (Sources),
stepflowCOld, Sources, New, Spec, New),
printnodes Clev, Output),
sigflov(lew, Spec, Output).

A.3. SIGNAL FLOW GRAPH SIMULATION 203

getsources(Se) :
readsourcesCSs).

getsources(O, 03).

getinitial(Old) :
readinitialCOld).

% stepflow(aldnodes, Sources, Newiiodes, Spec, Nevnodes..left-.to..process)

steptlov(Oldnodes, Sources, Newnodes, [SISpec], [NINew])
stepflowCOldnodes, Sources, Newnodes, Spec, New),
calcnode(Oldnodes, Sources, Newnodes, 5, N).

stepflow(Oldnodes, Sources, Newnodes, C], [3).

%I calcnode(Old~nodes, Sources, Newnodes, Arcs, Newnode)
calcnodeCOldnodes, Sources, lewnodes, EArclArcs], New)

low =Newi + New2,
calcarc(Oldnodes, Sources, Newnodes, Arc, Newi),
ca~lcnodeCOldnodes, Sources, Nevnodes, Arcs, New2).

calcnode(Oldnodes, Sources, Newnodes, 1], 0).

% acr(ldoeSuceNIoes rNw

%calcarc(Oldnodes, Sources, leuxiodes, cefC, Arc], New)

New - C*Value = 0,
find-.index(Value, Newnodes, Arc).

calcarc(Oldnodes, Sources, Newnodes, [delay, Nlndex3, New)
New - Value = 0,
I ind-.index(Value, Oldnodes, Nlndex).

calca~rc(Oldnodes, Sources, Newnodes, [source, Name], New)
New - Value =0,
find-.index(Value, Sources, Name).

%, find..index(item, list of items, place in list)

find-indexCV, EVIVsJ, 1).
find..index(VV, [V IVs], N)

I > 0,

find..index(VV, Vs, NN).

% printnodes() - print out output signal
% readsourceso), readinital() - read data from files

204 APPENDIX A. ELECTRICAL ENGINEERING PROGRAMS

Appendix B

Natural Semantics Programs

This is an extended excerpt from the Mini-ML natural semantics code, given in full in
[117]. We begin with the Mini-ML expression syntax, then give a natural operational
semantics. Finally, we give a definition of what it means for a Mini-ML expression to be
a value, and a program that transforms a deduction of an evaluation into a deduction
showing that the result of the evaluation is a value.

B.1 Expressions of Mini-ML

exp type.

true exp.
false exp.
if exp -> exp -> exp -> exp.

z :exp.
S exp.

pred exp.
zerop exp.

pair exp -> exp -> exp.
fst exp -> exp.
snd exp -> exp.

lam (exp -> exp) -> exp.
app exp -> exp -> exp.

let exp -> (exp -> exp) -> exp.

letrec (exp -> exp) -> (exp -> exp) -> exp.
fix (exp -> exp) -> exp.

205

206 APPENDIX B. NATURAL SEMANTICS PROGRAMS

B.2 Natural Operational Semantics

Sometimes the most "natural" semantics for a programming language is "nondeter-
ministic" in the sense that its execution would require backtracking in our chosen
implementation language. However, the corresponding "deterministic" version is usu-
ally more efficient, and corresponds more closely to practical applications. Here we just
give the nondeterministic (but nevertheless executable) semantics for Mini-ML (note
the nondeterminism in the handling of if-then-else and application). The deterministic
semantics may be found in [1171.

eval exp -> exp -> type.

eval-t eval true true.
eval-f eval false false.
eval-if.t eval (if El E2 E3) V

<- eval El true
<- eval E2 V.

eval-if_.j eval (if El E2 E3) V
<- eval El false
<- eval E3 V.

eval-z eval z z.
eval-s eval s s.
eval-pred eval pred pred.

eval-zerop eval zerop zerop.

eval.pair eval (pair El E2) (pair Vl V2)
<- eval El Vl
<- eval E2 V2.

eval-fst eval (fst E) Vl
<- eval E (pair Vl V2).

eval-snd eval (snd E) V2
<- eval E (pair Vl V2).

eval-lam eval (lam E) (lam E).

eval-app-lam eval (app El E2) V
<- eval El (lam El')
<- eval E2 V2
<- eval (El' V2) V.

eval.app-s oval (app El E2) (app s V)
<- eval El s
<- eval E2 V.

B.3. THE VALUE PROPERTY AND EVALUATION 207

eval-app-pred-s : eval (app El E2) V
<- eval El pred
<- eval E2 (app s V).

oval-app-zerop-t eval (app El E2) true
<- eval El zerop
<- eval E2 z.

eval-app-zerop-f oval (app El E2) false
<- eval El zerop
<- eval E2 (app s V).

eval-let eval (let El E2) V2
<- eval El V1
<- eval (E2 V1) V2.

eval-letrec eval (letrec El E2) V
<- eval (fix El) V1
<- eval (E2 VI) V2.

eval-fix eval (fix E) V <- eval (E (fix E)) V.

B.3 The Value Property and Evaluation

B.3.1 The Value Property

These rules describe what it means for a Mini-ML expression to be a value.

value exp -> type.

val-t value true.
val-f value false.

val-z value z.
val.s value s.
val-pred value pred.

val-zerop value zerop.

val-pair value El -> value E2 -> value (pair El E2).

val-lam value (lam E).
val-app-s value E -> value (app s E).

208 APPENDIX B. NATURAL SEMANTICS PROGRAMS

B.3.2 Transformation of Evaluations to Value Deductions

The vp relation defined here embodies the proof that the result of evaluating any Mini-
ML expression is a value. It does this by transforming a deduction of an evaluation
judgement into a deduction of a value judgement.

vp oval E V -> value V -> type.

vp..t vp (eval-t) val..t.
vp..f vp (eval-.f) val-.f.
vp..if..t vp (eval..if-.t P2 P1) VP2 <- VP P2 VP2.

vp-.if-.f vp (eval..if..f P3 P1) VP3 <- VP P3 VP3.

vp..z VP (eval-z) val-.z.

vp-s VP (eval-s) val-.s.
vp-.pred VP (eval..pred) val-pred.

vp-.zerop VP (eval..zerop) val-zerop.

vp..pair VP (eval-pair P2 P1) (val..pair VP1 VP2)
<- VP P1 VP1

<- VP P2 VP2.

vp.f st VP (eval-.fst P) VP1 <- vp P (val..pair VP1 VP2).
vp..snd VP (eval-.snd P) VP2 <- vp P (val-.pair VP1 VP2).

vp..lam VP (eval-lam) val-lam.

vp..app-lam vp (eval-.app-lam P3 P2 P1) VP3
<- vp P3 VP3.

vp-.app-.s vp (eval-.app..s P2 P1) (val-app-.s VP2)

<- Vp P2 VP2.

vp-.app-pred..s vp (eval-app..pred..s P2 P1) VPO

<- vp P2 (val-app-.s VPO).

vp-.app-.zerop..t vp (eval-app-.zerop..t P2 P1) val-.t.

vp..app-.zerop-f vp (eval-app-.zerop-.f P2 P1) val-f.

vp-let vp (eval..let P2 P1) VP <- VP P2 VP.

vp-.letrec vp (eval-letrec P2 P1) VP <- VP P2 VP.

B.3. THE VALUE PROPERTY AND EVALUATION 209

vpjfix vp (eval-fix P) VP <- vp P Vp.

Bibliography

[11 A. Aggoun and N. Beldiceanu. Overview of the CHIP compiler system. In Koichi
Furukawa, editor, Proc. 8th International Conference on Logic Programming,
pages 775-789, Paris, France, June 1991. MIT Press.

[2] Hassan A't-Kaci. Warren's Abstract Machine: A Tutorial Reconstruction. MIT
Press, 1991.

[3] Hassan Alit-Kaci and Patrick Lincoln. LIFE: A natural language for natural
language. Technical Report ACA-ST-074-88, MCC, 1988.

[4] Hassan A't-Kaci and Roger Nasr. LOGIN: A logic programming language with
built-in inheritance. Journal of Logic Programming, 3(3):187-215, 1986.

[5] Tod Amon and Gaetano Borriello. An approach to symbolic timing verification.
In Tau '92: 2nd International Workshop on Timing Issues in the Specification
and Synthesis of Digital Systems. Princeton, NJ, March 1992.

[6] Tod Amon and Gaetano Borriello. An approach to symbolic timing verification. In
Proc. 29th ACM/IEEE Design A utomation Conference, pages 410-413, Anaheim,
CA, USA, June 1992.

[7] Penny Anderson. Program Development by Proof Transformation. PhD thesis,
Carnegie Mellon University, 1992. In preparation.

[8] D. S. Arnon. A bibliography of quantifier elimination for real closed fields. Journal
of Symbolic Computation, 5:267-274, 1988.

[91 Arvind and D.E. Culler. Dataflow architectures. In Annual Reviews in Computer
Science, volume 1, pages 225-253. Annual Reviews Inc., Palo Alto, CA, 1986.

[10] Arvind, R.S. Nikhil, and K.K. Pingali. I-structures: Data structures for par-
allel computing. ACM Transactions on Programming Languages and Systems,
11(4):598-632, October 1989.

[11] Joachim Beer. The occur-check problem revisited. Journal of Logic Programming,
5(3):243-261, 1988.

210

BIBLIOGRAPHY 211

[12] F. Berthier. Managing Underlying Assumptions of a Financial Planning Model
in CHIP. Technical Report TR-LP-39, European Computer Industry Research
Centre (ECRC), Munich, Germany, November 1988.

[131 F. Berthier. A financial model using qualitative and quantitative knowledge. In
F. Gardin, editor, Proceeedings of the International Symposium on Computational
Intelligence 89, pages 1-9, Milano, Italy, September 1989.

[14] F. Berthier. Solving Financial Decision Problems with CHIP. In J.-L. Le Moigne
and P. Bourgine, editors, Proceeedings of the 2nd Conference on Economics and
Artificial Intelligence - CECIOA 2, pages 233-238, Paris. France, June 1990.

[15] K.-H. Borgwardt. Some distribution-independent results about the asymptotic
order of the average number of pivot steps of the simplex method. Mathematics
of Operations Research. 7:441-462, 1982.

[16] Alan Borning. Thinglab - a constraint-oriented simulation laboratory. Technical
Report SSL-79-3, Xerox PARC, 1979.

[17] Alan Borning. The programming language aspects of ThingLab, a constraint -
oriented simulation laboratory. ACM Transactions on Programming Languages
and Systems, 3(4):252-387. October 1981.

[18] R. S. Boyer and J. S. Moore. The sharing of structure in theorem proving pro-
grams. Machine Intelligence. 7:101-116, 1972.

[19] J. M. Broek and H. A. M. Daniels. Application of constraint logic programming
to asset and liability management in banks. Computer Science in Economics and
Management, 4(2):107-116, May 1991.

[20] M. Bruynooghe. The memory management of Prolog implementations. In K. L.
Clark and S.-A. Tarniund. editors, Proceedings of the 1st International Workshop
on Logic Programming. 1980. pages 83-98, Debrecen, Hungary. 1982. Academic
Press.

[21] W. Biittner and H. Sinionis. Embedding Boolean expressions into logic program-
ming. Journal of Symbolic Computation, 4:191-205, October 1987.

[22] Mats Carlsson. Freeze, indexing and other implementation issues in the WAM.
In Jean-Louis Lassez. editor. Proc. 4th International Conference on Logic Pro-
gramming, pages 40-58, Melbourne, Victoria, Australia. May 1987. MIT Press.

[23] Alonzo Church. A formulation of the simple theory of types. Journal of Symbolic
Logic, 5:56-68, 1940.

[24] W. F. Clocksin and C. S. Mellish. Programming in Prolog. Springer-Verlag, 1981.

[25] J. Cohen. A view of the origins and development of Prolog. Communications of
the ACM, 31(1):26-36, 1988.

212 BIBLIOGRAPHY

[26] A. Colmerauer. Les systemes-Q ou un formalisme pour analyser et synthesizer
des phrases sur ordinateur. Technical Report 43, Dept. d'Informatique, Universite
de Montreal, Canada, 1973.

[27] A. Colmerauer, H. Kanoui, R. Pasero, and P. Roussel. Une systeme de com-
munication homme-machine en Francais. Technical report, Groupe Intelligence
Artificielle, Universite Aix-Marseille II, France, 1973.

[28] Alain Colmerauer. PROLOG II reference manual and theoretical model. Techni-
cal report, Groupe Intelligence Artificielle, Universit6 Aix - Marseille II, October
1982.

[29] Alain Colmerauer. Equations and inequations on finite and infinite trees. In Pro-
ceedings of the International Conference on Fifth Generation Computer Systems
(FGCS-84), ICOT, Tokyo, pages 85-99, 1984.

[30] Alain Colmerauer. Opening the PROLOG-III universe. BYTE Magazine, 12(9),
August 1987.

[31] Alain Colmerauer. Final specifications for PROLOG-III. Technical Report
P1219(1106), ESPRIT, February 1988.

[32] Alain Colmerauer. An introduction to PROLOG-III. Communications of the
ACM, 33(7):69-90, July 1990.

[33] Alain Colmerauer. Personal Communication, CLP Workshop, Marseille, January
1991.

[34] Mary Dalrymple, Stuart NI. Shieber, and Fernando C. N. Pereira. Ellipsis and
higher-order unification. Linguistics and Philosophy, 14:399-452, 1991.

[35] G. B. Dantzig. Linear Programming and Extensions. Princeton University Press,
1963.

[36] J. Darlington, Y.-K. Guo, and H1. Pull. A new perspective on integrating func-
tional and logic languages. In Fifth Generation Computer Systems, pages 682-693,
Tokyo, Japan, 1992.

[37] Ernest Davis. Constraint propagation with interval labels. Artificial Intelligence,
32(3):281-331, July 1987.

[38] N. G. de Bruijn. Lambda-calculus notation with nameless dummies: a tool for
automatic formula manipulation with application to the Church-Rosser theorem.
Indag. Math., 34(5):381-392, 1972.

[39] J. de Kleer and G. J. Sussman. Propagation of constraints applied to circuit
synthesis. Circuit Theory and Applications, 8:127-144, 1980.

BIBLIOGRAPHY 213

[40] S. K. Debray. Global Optimization of Logic Programs. PhD thesis, State Univer-
sity of New York at Stony Brook, 1986.

[41] Rina Dechter and Judea Pearl. Network-based heuristics for constraint-
satisfaction problems. Artificial Intelligence, 34(1):1-38, January 1988.

[42] Rina Dechter and Judea Pearl. Tree clustering for constraint networks. Artificial
Intelligence, 38(3):353-366, April 1989.

[43] Emanuel Derman and Christopher J. van Wyk. A simple equation solver and
its application to financial modelling. Software - Practice and Experience.
14(12):1169-1181, December 1984.

[44] M. Dincbas, H. Simonis, and P. van Hentenryck. Solving a Cutting-Stock Prob-
lem in Constraint Logic Programming. In Robert A. Kowalski and Kenneth A.
Bowen, editors, Fifth International Conference on Logic Programming, pages 42-
58, Seattle, WA. August 1988. MIT Press.

[45] M. Dincbas, H. Simonis. and P. van Hentenryck. Solving Large Scheduling Prob-
lems in Logic Programming. In EURO-TIMS Joint International Conference on
Operations Research and .Mfanagement Science, Paris, France, July 1988.

[46] M. Dincbas, P. van Hentenryck, H1. Simonis, A. Aggoun, T. Graf, and F. Berthier.
The Constraint Logic Programming Language CHIP. In Proceedings of the In-
ternational Conference on Fifth Generation Computer Systems FGCS-88, pages
693-702, Tokyo. Japan, December 1988.

[47] Veroniek Dumortier. Gerda Janssens, and Maurice Bruynooghe. Detection of free
variables in the presence of numeric constraints by means of abstract interpreta-
tion. Technical Report CW 145. Derpartment of Computer Science, Katholieke

Universiteit Leuven. Celestijnenlaan 200A - B-3001 Leuven, Belgium, March
1992.

[48] E. W. Elcock. Absys: The first logic programming language - a retrospective
and commentary. Journal of Logic Programming, 9(1):1-17, 1990.

[49] E. W. Elcock, J. J. McGregor, and A. M. Murray. Data directed control and
operating systems. British Computer Journal, 15(2):125-129. 1972.

[50] Conal Elliott. Higher-order unification with dependent types. In Rewriting Tech-
niques and Applications, pages 121-136. Springer-Verlag LNCS 355, April 1989.

[51] Conal M. Elliott. Extensions and Applications of Higher-Order Unification. PhD
thesis, School of Computer Science, Carnegie Mellon University, May 1990. Avail-
able as Technical Report CMU-CS-90-134.

214 BIBLIOGRAPHY

[52] Amy Felty. Specifying and Implementing Theorem Provers in a Higher-Order
Logic Programming Language. PhD thesis, Department of Computer and Infor-
mation Science, University of Pennsylvania, July 1989. Available as Technical
Report MS-CIS-87-109.

[53] R. E. Fikes. REF-ARF: A system for solving problems stated as procedures.
Artificial Intelligence, 1:27-120, 1970.

[54] J. M. Foster and E. W. Elcock. Absys 1: An incremental compiler for assertions
- an introduction. Machine Intelligence, 4:423-432, 1969.

[55] B. N. Freeman-Benson, J. Maloney, and A. Borning. An incremental constraint
solver. Communications of the A0C!, 33(1):54-63, January 1990.

[56] Bjorn N. Freeman-Benson. Constraint Imperative Programming. PhD thesis,
Department of Computer Science and Engineering, University of Washington,
1991.

[57] Michael M. Gorlick, Carl F. Kesselman, Daniel A. Marotta, and D. Stott Parker.
Mockingbird: A logical methodology for testing. Journal of Logic Programming,
8(1 & 2):95-119, Januarv/March 1990.

[58] J. Gosling. Algebraic Constraints. PhD thesis, Carnegie-Mellon University, 1983.
Available as Technical Report CMU-CS-83-132.

[59] T. Graf, P. van Hentenryck, C. Pradelles. and L. Zimmer. Simulation of hy-
brid circuits in constraint logic programming. In Proceedings of the Eleventh
International Joint Conference on Artificial Intelligence (IJCAI-89), pages 72-
77, Detroit, 1989.

[60] Timothy G. Griffin. Logical interpretations as computational simulations. Draft
paper. Talk given at the North American Jumelage, AT&T Bell Laboratories,
Murray Hill, New Jersey, October 1991.

[61] John Hannan. Investigating a Proof-Theoretic Meta-Language jir Functional
Programs. PhD thesis, University of Pennsylvania, January 1991. Available as
technical report MS-CIS-91-09.

[62] John Hannan and Dale Miller. A meta-logic for functional prolgramming. In
John Lloyd, editor, Proceedings of the Workshop on Meta-Programming in Logic
Programming, pages 453-476. Bristol, England, June 1988. University of Bristol.

[63] John Hannan and Frank Pfenning. Compiler verification in LF. In Andre Scedrov,
editor, Seventh Annual IEEE Symposium on Logic in Computer Science, pages
407-418, Santa Cruz, California, June 1992. IEEE Computer Society Press.

[64] R. M. Haralick and G. L. Elliot. Increasing tree search efficiency for constraint
satisfaction problems. Artificial Intelligence, 14:263-313, 1980.

BIBLIOGRAPHY 215

[65] Robert Harper, Furio Honsell, and Gordon Plotkin. A framework for defining
logics. Journal of the ACM, To appear. A preliminary version appeared in
Symposium on Logic in Computer Science, pages 194-204, June 1987.

[66] Robert Harper and Frank Pfenning. Modularity in the LF logical framework. Sub-
mitted. Available as POP Report 91-001, School of Computer Science, Carnegie
Mellon University. November 1991.

[67] Robert Harper and Benjamin Pierce. A record calculus based on symmetric
concatenation. In Conference Record of the Eighteenth Annual ACM Symposium
on Principles of Programming Languages. pages 131-142, January 1991.

[68] William H. Hayt and .Jack E. Kemmerly. Engineering Circuit Analysis. McGraw
Hill, 1978.

[69]-Nevin Heintze. Spiro Michaylov, and Peter Stuckey. CLP(TZ) and some elec-
trical engineering problems. In Jean-Louis Lassez, editor, Logic Programming:
Proceedings of the 4th International Conference, pages 675-703, Melbourne. Vic-
toria, Australia. May 1987. MIT Press. Also to appear in Journal of Automated
Reasoning.

[70] Nevin C. Heintze. Joxan Jaffar, Chean Shen Lim, Spiro Michaylov, Peter J.
Stuckey, Roland Yap. and Chut Gneow Yee. The CLP(T) programmers manual
- version 1. Technical Report 59. Department of Computer Science. Monash
University, June 1986.

[71] Jacques Herbrand. Sur la th6orie de la demonstration. In W'. Goldfarb, editor.
Logical Writings. Cambridge U. P.. 1971. Original Ph. D. Thesis 1930.

[72] C. Hewitt. Planner: A language for proving theorems in robots. In International
Joint Conference on Artificial Intelligence, pages 295-301. Washington D. C..
1969.

[73] Ralph D. Hill. A 2-D graphics system for multi-user interactive graphics based
on objects and constraints. In E. Blake and P. Weisskirchen, editors, Advances in
Object Oriented Graphics 1: Proceedings of the Eurographics Workshop on Object
Oriented Graphics. pages 67-92. Springer Verlag, 1991.

[74] D. S. Homiak. A constraint logic programming system for solving partial differ-
ential equations with applications in options valuation. Master's project, DePaul
University, 1991.

[75] Hoon Hong. Non-linear constraint solving over real numbers in constraint logic
programming (introducing RISC-CLP). Technical Report 92-08, Research In-
stitute for Symbolic Computation. Johannes Kepler University, Linz, Austria,
1992.

216 BIBLIOGRAPHY

[76] Gdrard Huet. A unification algorithm for typed ,-calculus. Theoretical Computer
Science, 1:27-57, 1975.

[77] Gdrard Huet and Bernard Lang. Proving and applying program transformations
expressed with second-order patterns. Acta Informatica, 11:31-55, 1978.

[78] Tien Huynh and •cherine Lassez. A CLP(1?) options trading analysis system.
In Robert A. Kowalski and Kenneth A. Bowen, editors, Logic Programming:
Proceedings of the Fifth International Conference and Symposium, pages 59-69,
Seattle, Washington, U.S.A., 1988. MIT Press.

[791 Tien Huynh and Catherine Lassez. An expert decision-support system for option-
based investment. Computer Mathema tics uith Applications, 20(9/10):1-14, 1990.

[80] J. Jaffar, J-L Lassez, and M. J. Maher. A theory of complete logic programs with
equality. Journal of Logic Programming. 1(3):211-223, 1984.

[81] Joxan Jaffar. Minimal and complete word unificatlon. Journal of the ACM,
37(1):47-85, January 1990.

[82] Joxan Jaffar and Jean-Louis Lassez. Constraint logic programming. Technical
Report 86/73, Monash University, Victoria. Australia, June 1986.

[83] Joxan Jaffar and Jean-Louis Lassez. Constraint logic programming. In Pro-
ceedings of the 14th ACM Symposium on Principles of Programming Languages,
Munich, Germany, pages 111-119. ACM, January 1987.

[84] Joxan Jaffar, Michael Maher, Peter Stuckey, and Roland Yap. Output in CLP(7z).
In Proceedings of the 1992 Conference on Fifth Generation Computer Systems,
Tokyo, 1992.

[85] Joxan Jaffar and Spiro Michaylov. Methodology and implementation of a CLP
system. In Jean-Louis Lassez, editor, Logic Programming: Proceedings of the
4th International Conference. pages 196-218, Melbourne, Australia, May 1987.
MIT Press. Revised version of Monash University technical report number 86/75,
November 1986.

[86] Joxan Jaffar, Spiro Michaylov, Peter Stuckey, and Roland Yap. The CLP(J?)
language and system. Technical Report RC 16292 (#72336) 11/15/90, IBM
Research Division, November 1990.

[87] Joxan Jaffar, Spiro Michaylov. Peter Stuckey. and Roland Yap. An abstract
machine for CLP(1Z). In Proceedings of the ACM SIGPLAN Symposium on Pro-
gramming Language Design and Implementation, San Francisco, pages 128-139,
June 1992.

[88] Joxan Jaffar, Spiro Michaylov, Peter J. Stuckey, and Roland H. C. Yap. The
CLP(7R) language and system. ACM Transactions on Programming Languages
and Systems (TOPLAS), 14(3):339-395, July 1992.

BIBLIOGRAPHY 217

[89] Joxan Jaffar, Spiro Michaylov, and Roland Yap. A methodology for managing
hard constraints in CLP systems. In Proceedings of the ACM SIGPLAN Sym-
posium on Programming Language Design and Implementation, pages 306-316,
Toronto, Canada, June 1991.

[90] Niels J0rgensen. Abstract interpretation of constraint logic programs. PhD thesis,
Roskilde University Center, Denmark, 1992.

[91] Niels Jorgensen. Kim Marriott, and Spiro Michaylov. Some global compile-time
optimizations for CLP(Pv). In Vijay Saraswat and Kazunori Ueda, editors, Logic
Programming: Proceedings of the 1991 International Symposium, pages 420-434,
San Diego, CA. October 1991. MIT Press.

[92] D. M. Kaplan. Some completeness results in the mathematical theory of compu-
tation. Journal of the AC'M, 15(1):124-134, January 1968.

[931 N. Karmarkar. A new polynomial-time algorithm for linear programming. Com-
binatorica, 4:373-395. 1984.

[94] L. G. Khachian. A polynomial algorithm in linear programming. Soviet Math.
Doki., 20(1):191-194. 1979.

[95] Donald E. Knuth. The .I[ETAFONTbook. Addison Wesley, 1986.

[96] M. Konopasek and S. Jayaraman. Constraint and declarative languages for en-
gineering applications: The TK!Solver contribution. Proceedings of the IEEE,
73(12), December 1985.

[97] R. Kowalski. Predicate logic as a programming language. In IFIP Congress.
pages 569-574, Stockholm, 1974. North-Holland.

[98] R. Kowalski. The early years of logic programming. Communications of the
ACM, 31(1):38-44. 1988.

[99] D. Kranz, R. Kelsey. .1. Rees. P. Hudak, J. Philbin, , and N. Adams. Orbit:
an optimizing compiler for scheme. In ACM SIGPLAN Symposium on Compiler
Construction, pages 219-233, Palo Alto, June 1986.

(100] D. Kuehner and R. Kowalski. Linear resolution with selection function. Artificial
Intelligence, 2:227-260. 1971.

[101] Keehang Kwon. Gopalan Nadathur, and Debra Sue Wilson. Implementing logic
programming languages with polymorphic typing. Technical Report CS-1991-39,
Duke University, Durham, North Carolina, October 1991.

[102] Sivand Lakmazaheri and William J. Rasdorf. Constraint logic programming for
the analysis and partial synthesis of truss structures. Artificial Intelligence for
Engineering Design, Analysis. and Manufacturing, 3(3):157-173, 1989.

218 BIBLIOGRAPHY

[1031 A. Lane. Trilogy: A new approach to logic programming. BYTE, 13:1-,5-151,
March 1988.

[104] Catherine Lassez, Ken McAloon. and Roland Yap. Constraint logic programming
and options trading. IEEE Expert, Special Issue on Financial Software, 2(3):42-
50, August 1987.

[105] J. H. M. Lee and M. H. van Emden. Adapting CLP(1Z) to floating-point arith-
metic. In Fifth Generation Computer Systems, pages 996-1003, Tokyo, Japan,
1992. (also appears as report LP-18 (DCS-183-IR) Univ. of Victoria).

[106] W. Leler. Constraint Programming Languages: Their Specification and Genera-
tion. Addison-Wesley, 1988. Based on Ph.D Thesis. UNC Chapel Hill.

[107] D. Levitt. Machine tongues X: Constraint languages. Computer music, 8(1):9-21,
19,84.

[108] Jiarong Li. Using constraints in interactive text and graphics editing. In P. A.
Duce and P. Jancene, editors, Eurogrnphics. pages 197-205. Nice, France, Septem-
ber 1988. North-Holland.

[109] P. Lim and P. J. Stuckey. A constraint logic programming shell. In P. Der-
ansart and J. Maluszyfiski, editors, Proceedings of the International IWorkshop
on Programming Language Implementation and Logic Programming. Linkiping,
Sweden, August 20-22. number 456 in Lecture Notes in Computer Science, pages
75-88. Springer Verlag, 1990.

[110] J. W. Lloyd. Foundations of Logic Programming. Springer-Verlag, 1984.

'111] Donald W. Loveland. Near-Horn prolog. In Jean-Louis Lassez, editor. Proc. 4th
International Logic Programming Confererce, pages 456-469, Melbourne. Aus-
tralia, May 1987. MIT Press.

[112] A. Mackworth. Consistency in networks of relations. Artificial Intelligence,
8(1):99-118, 1977.

[113] G. S. Makanin. The problem of solvability of equations on a free semi-group.
Math. USSR Sbornik, 32(2), 1977 (English translation AMS 1979).

[1141 Kim Marriott and Harald Sondergaard. Analysis of constraint logic programs.
In Saumya Debray and Manuel Hermenegildo. editors, Proc. of the 1990 Vorth
American Conference on Logic Programming, pages 521-540, Austin, TX, 1990.
MIT Press.

[15] C. S. Mellish. An alternative to structure sharing in the implementation of a Pro-
log interpreter. In K. L. Clark and S.-A. Tarnlund, editors, Proceedings of the Ist
International Workshop on Logic Programming, 1980, pages 99-106, Debrecen,
Hungary, 1982. Academic Press.

BIBLIOGRAPHY 219

[116] Nicolas Mercouroff and Aline 'Weitzman. Automatic analysis of the execution
time of a class of parallel recursive algorithms. SIAM Journal of Computing, to
appear, 199?

[117] Spiro Michaylov and Frank Pfenning. Natural semantics and some of its meta-
theory in Elf. In L.-H. Eriksson, L. Hallniis, and P. Schroeder-Heister, editors,
Extensions of Logic Programming, pages 299-344, Stockholm, Sweden, January
1991. Springer-Verlag LNCS/LNAI 595.

[118] Dale Miller. A theory of modules for logic programming. In Symposium on Logic
Programming, pages 106-114, Salt Lake City., Utah, 19S6. IEEE.

[119] Dale Miller. A logic programming language with lambda-abstraction, function
vari-"les, and simple unification. In Peter Schroeder-Heister, editor, Extensions
of Logic "rogramming: International IWorkshop, pages 253-281. Tiibingen FRG,
December 1991. Springer-Verlag LNCS 475.

[120] Dale Miller and Gopalan Nadathur. Some uses of higher-order logic in computa-
tional linguistics. In Proc. 27th Annual Meeting of the Association for Compu-
tational Linguistics. pages 247-256, Columbia University, 1986. Association for
Computational Linguistics.

[121] Dale A. Miller and Gopalan Nadathur. Higher-order logic programming. In
Ehud Shapiro, editor, Proceedings of the Third International Conference on Logic
Programming, pages 4-18-462, London, July 1986. Springer Verlag LNCS 225.

[122] J. S. Moore. Computational logic: Structure sharing and proof of program prop-
erties, parts I and 1I. Technical Report DCL Memo 67, School of Artificial Intel-
ligence, University of Edinburgh, Edinburgh, UK, 1974.

[123] Igor Mozetiý and Christian Holzbaur. Integrating numerical and qualitative mod-
els within constraint logic programming. In Vijay Saraswat and Kazunori Ueda,
editors, Logic Programming: Proceedings of the 1991 International Symposium,
pages 678-693. San Diego. CA, October 1991. MIT Press.

[1241 K. Mukai. Anadic tuples in Prolog. Technical Report TR-239, ICOT, 1987.

[125] K. Mukai. A system of logic programming for linguistic analysis. Technical Report
TR-540, ICOT. 1990.

[126] Gopalan Nadathur and Dale Miller. An overview of AProlog. In Robert A.
Kowalski and Kenneth A. Bowen, editors, Logic Programming: Proceedings of
the Fifth International Conference and Symposium, Volume I, pages 810-827,
Seattle, WA, August 1988. MIT Press.

[127] Gopalan Nadathur and Debra Sue Wilson. A representation of lambda terms
suitable for operations on their intensions. In Proceedings of the 1990 Conference
on Lisp and Functional Programming, pages 341-348, Nice, France, June 1990.
ACM Press.

220 BIBLIOGRAPHY

[128] Lee Naish. Negation and Control in Prolog. PhD thesis, Department of Computer
Science, University of Melbourne, Parkville, Victoria, Australia. 1985. Appears
as technical report 85/12, and as Springer LNCS 238.

[129] Greg Nelson. Juno, a constraint-based graphics system. Computer Graphics,
19(3):235-243, 1985.

[130] Greg Nelson and Derek C. Oppen. Simplification by cooperating decision proce-
dures. AC.M! Transactions on Programming Languages and Systems (TOPLAS),
1(2):245-257, October 1q79.

[131] Bengt Nordstr6m, Kent Petersson, and Jan M. Smith. Programming in Martin-
L6f's Type Theory: An Introduction, volume 7 of International Series of Mono-
graphs on Computer Science. Oxford University Press. 1990.

1132] R. A. O'Keefe. The Craft of Prolog. MIT Press. 1990.

1133] W. Older and A. Vellino. Extending Prolog with constraint arithmetic on real
intervals. In Proceedings of the Cnnadian Conference on Electrical and Computer
Engineering, pages 14.1.1-14.1.4. 1990.

M134] A. V. Oppenheim, A. S. Willskv. and I. T. Young. Signals and Systems. Prentice-
Hall. 1983.

[135] J. S. Ostroff. Constraint logic programming for reasoning about disciete event
processes. Journal of Logic Programming, 11(3&4):243-270, 1991.

[1:36] M. S. Paterson and M. N. Wegman. Linear unification. Journal of Computer and
System Sciences, 16:158-167, 197%.

r 137] Frank Pfenning. Partial polymorpihic type inference and higher-order unification.
In Proceedings of t'- 1988 .4C. Conference on Lisp and Functional Program-
ming. pages 153-163, Snowbi-d. Utah. July 1988. ACM Press.

'138] Frank Pfenning. Elf: A language for logic definition and verified meta-
programming. In Fourth Annual Symposium on Logic in Computer Science, pages
313-322, Pacific Grove, CA, June 1989. IEEE.

L139] Frank Pfenning. Logic programming in the LF logical framework. In Gdrard Huet
and Gordon Plotkin, editors. Logical Frameworks, pages 149-111. Cambridge
University Press, 1991.

[140] Frank Pfenning. Unification and anti-unification in the Calculus of Constructions.
In Sixth Annual IEEE Symposium on Logic in Computer Science, pages 74-85,
Amsterdam, The Netherlands, July 1991.

[41] Frank Pfenning and Conal Elliott. Higher-order abstract syntax. In Proceedings of
the SIGPLAN '88 Symposium on Language Design and Implementation, Atlanta,
Georgia, pages 199-208. ACM Press, June 1988.

BIBLIOGRAPHY 221

[142] Frank Pfenning and Ekkehard Rohwedder. Implementing the meta-theory of de-
ductive systems. In D. Kapur, editor, Proceedings of the 11th International Con-
ference on Automated Deduction, pages 537-551, Saratoga Springs, New York,
June 1992. Springer-Verlag LNAI 607.

[143] Benjamin Pierce, Scott Dietzen, and Spiro Michaylov. Programming in higher-
order typed lambda-calculi. Technical Report CMU-CS-89-111, Carnegie Mellon
University, Pittsburgh, Pennsylvania, March 1989.

[144] David A. Plaisted. The occur-check problem in Prolog. In Proceedings of the
1st IEEE Symposium on Logic Programming, pages 272-280, Atlantic City, N.J,
USA, 1984.

[145] John C. Reynolds. Preliminary design of the programming language Forsythe.
Technical Report CMU-CS-88-159, Carnegie Mellon University, Pittsburgh.
Pennsylvania, June 1988.

[146] J. A. Robinson. A machine oriented logic based on the resolution principle.
Journal of the ACM, 12(1):32-41, 1965.

[147] P. Van Roy and A.M. Despain. The benefits of global dataflow analysis for
an optimizing prolog compiler. In Saumya Debray and Manuel Hermenegildo.
editors, Proc. of the 1990 North American Conference on Logic Programming.
pages 501-515, Austin. TX, 1990. MIT Press.

[148] Peter Lodewijk Van Roy. Can Logic Programming Execute as Fast as Imperative
Programming. PhD thesis, University of California at Berkeley, 1990.

[149] K. Sakai and A. Aiba. CAL: A theoretical background of CLP and its applications.
Journal of Symbolic Computation, 8(6):589-603, December 1989.

[150] K. Sakai and T. Matsuda. Several aspects of unification: Universal unification.
Technical Report (Technical Memorandum) 0046, ICOT, 1984.

[151] K. Sakai and Y. Sato. Application of ideal theory to boolean constraint solving. In
Proceedings of the Pacific Rim International Conference on Artificial Intelligence,
1990.

[152] Vijay Anand Saraswat. Concurrent Constraint Programming Languages. PhD
thesis, Computer Science Department, Carnegie Mellon University, January 1989.
Available as technical report CMU-CS-89-108.

[153] A. Schrijver. Theory of Linear and Integer Programming. Wiley and Sons, 1986.

[154] Adel S. Sedra and Kenneth C. Smith. Microelectronic Circuits. Holt-Saunders,
1982.

[155] Ehud Y. Shapiro. A subset of concurrent PROLOG and its interpreter. Technical
Report TR-003, ICOT, Tokyo, 1983.

222 BIBLIOGRAPHY

[156] Ehud Y. Shapiro. The Family of Concurrent Logic Programming Languages.
ACM Computing Surveys, 21(3):412-510, September 1989.

[1571 John C. Shepherdson. Negation as failure: A comparison of Clarke's completed
data base and Reiter's closed world assumption. Journal of Logic Programming,
1(1):51-80, June 1984.

[158] John C. Shepherdson. Negation as failure II. Journal of Logic Programming,
2(3):185-202, October 1985.

[159] Stuart Shieber. An introduction to unification-based approaches to 2i-mmar.
Technical Report CSLI Lecture Notes 4, Center for the Study of Language and
Information, Stanford University, 1986.

[160] R. E. Shostak. A practical decision procedure for arithmetic with function sym-
bols. Journal of the ACM, 26(2):351-360, April 1979.

[161] Robert Shostak. Deciding linear inequalities by computing loop residues. Journal
of the ACM, 28(4):769-779, October 1981.

[162] H. Simonis. Formal verification of multipliers. In L.J.M. Claesen, editor, Proceed-
ings of the IFIP TCJO/WGIO.2/WGIO.5 Workshop on Applied Formal Methode
for Correct VLSI Design, Leuven. Belgium, November 1989. IFIP, North Holland,
Elsevier Science Publishers.

[163] H. Simonis and M. Dincbas. Using logic programming for fault diagnosis in digital
circuits. Technical Report TR-LP-18, &.C.R.C (European Computer-Industry
Research Centre), December 1986.

[164] H. Simonis and M. Dincbas. Using an extended prolog for digital circuit de-
sign. In IEEE International Workshop on Al Applications to CAD Systems for
Electronics, pages 165-188, Munich, W.Germany, October 1987.

[165] H. Simonis and M. Dincbas. Using logic programming for fault diagnosis in digital
circuits. In K. Morik, editor, German Workshop on Artificial Intelligence (G WAI-
87), pages 139-148, Geseke, W. Germany, September 1987. Springer-Verlag.

[166] H. Simonis, H. N. Nguyen, and M. Dincbas. Verification of digital circuits us-
ing chip. In G.J. Milne, editor, Proceedings of the IFIP WG 10.2 International
Working Conference on the Fusion of Hardware Design and Verification, Glas-
gow, Scotland, July 1988. IFIP, North-Holland.

[167] H. Simonis and T. Le Provost. Circuit verification in chip: Benchmark results. In
L.J.M. Claesen, editor, Proceedings of the IFIP TCIO/WGJO.2/WG1O.5 Work-
shop on Applied Formal Methods for Correct VLSI Design, pages 125-129, Leu-
yen, Belgium, November 1989. IFIP, North Holland, Elsevier Science Publishers.

BIBLIOGRAPHY 223

[168] R. M. Stailman and G. J. Sussman. Forward reasoning and dependency directed
backtracking in a system for computer-aided circuit analysis. Artificial Intelli-
gence, 9:135-196, 1977.

[169] G. L. Steele. The Definition and Implementation of a Computer Programming
Language Based on Constraints. PhD thesis, Dept. of Electrical Engineering and
Computer Science, M.I.T., August 1980. Available as technical report MIT-AI
TR 595.

[170] G. L. Steele and G. J. Sussman. Constraints. In Proceedings of APL 79, in ACM
SIGPLAN STAPL APL Quote Quad 9(4), pages 208-225, June 1979.

[171] L. Sterling. The Practice of Prolog. MIT Press, 1990.

[172] L. Sterling and E. Y. Shapiro. The Art of Prolog. MIT Press, 1986.

[173] T. Sthanusubramonian. A transformational approach to configuration design.
Master's thesis, Engineering Design Research Center, Carnegie Mellon University,
1991.

[174] Peter J. Stuckey. Incremental linear arithmetic constraint solving and detection
of implicit equalities. ORSA Journa! of Computing, 3(4):269-274, 1991.

[175] G. J. Sussman and R. M. Stallman. Heuristic techniques in computer-aided circuit
analysis. IEEE Transactions on Circuits and Systems, 22(11), November 1975.

[176] G. J. Sussman and G. L. Steele. CONSTRAINTS - a language for expressing
almost-hierarchical descriptions. Artificial Intelligence, 14(1):1-39. 1980.

[177] Ivan Sutherland. A Man Machine Graphical Communication System. PhD thesis,
Massachusetts Institute of Technology, January 1963.

[178] N. Suzuki and D. Jefferson. Verification decidability of Presburger array segments.
In Proc. Conf. on Theoretical Computer Science, University of Waterloo, August
1977.

[179] Alfred Tarski. A Decision Method for Elementary Algebra and Geometry. Uni-
versity of California Press, 1948.

[180] A. Taylor. LIPS on a MIPS: Results from a Prolog compiler for a RISC. In
David H. D. Warren and Peter Szeredi, editors, Proc. of the 7th International
Conference on Logic Programming, pages 174-185, Jerusalem, Israel, 1990. MIT
Press.

[181] Andrew Taylor. High Performance Prolog Implementation. PhD thesis, University
of Sydney, 1991.

[182] Joseph C. Tobias, II. Knowledge representation in the Harmony intelligent tu-
toring system. Master's thesis, Department of Computer Science, University of
California at Los Angeles, 1988.

224 BIBLIOGRAPHY

[183] P. van Hentenryck. Constraint Satisfaction in Logic Programming. Logic Pro-
gramming Series. MIT Press, Cambridge, MA, 1989.

[184] C. J. van Wyk. A Language for Typesetting Graphics. PhD thesis, Department
of Computer Science, Stanford University, June 1980.

[185] P. Voda. The constraint language Trilogy: Semantics and computations. Tech-
nical report, Complete Logic Systems, North Vancouver, B.C., Canada, 1988.

[186] P. Voda. Types of Trilogy.. In R. Kowalski and K. Bowen, editors, Logic Program-
ming: Proceedings of the Fifth International Conference and Symposium, pages
580-589, Seattle, WA, 1988. MIT Press.

[187] Clifford Walinsky. CLP(v'): Constraint logic programming with regular sets. In
David. H. D. Warren and Peter Szeredi. editors, Logic Programming: Proceedings

6th International Conference. pages 181-196, Jerusalem, June 1989. MIT Press.

[188] D. H. D. Warren. Implementing Prolog - compiling logic program3 1 and 2.
Technical Report 39 and 40, Department of Artificial Intelligence, University of
Edinburgh, Scotland, 1977.

[189] D. H. D. Warren. An abstract Prolog instruction set. Technical Report.(Note)
309, SRI International, Menlo Park, California, October 1983.

[190] D. H. D. Warren, F. Pereira, and L. M. Pereira. User's guide to DECsystem-10
Prolog. Technical Report Occasional Paper 15, Department of Artificial Intelli-
gence, University of Edinburgh. Scotland, 1979.

[191] Roland Yap Hoc Chuan. CLP(Z): Some aspects of the constraint paradigm and
the implementation. Master's thesis, Department of Computer Science, Monash
University, August 1988.

[192] Roland Yap Hoc Chuan. Restriction site mapping in CLP(JZ). In Koichi Fu-
rukawa, editor, Proceedings of the Eighth International Conference on Logic Pro-
gramming, pages 521-534, Paris, France, June 1991. MIT Press.

Index

A-calculus, 25 Buchberger's algorithm, 24
AProlog, 177
0p-calculus, 26 C-Prolog, 103
k-terms, 26 CAL, 24

R?, 41 canonical form of constraints, 117
CLP(JZ) operational model. 44 CHIP, 23
CLP(1Z) syntax, 42 choice point records, 149, 153
L,\, 76, 77 CIL, 26
AProlog, 25, 75 CLAM, 148
ask, 26 CLAM data structures, 152
dif/2, 22 classification of constraints, 103
freeze/2, 22, 26, 36, 124 clause indexing, 14
maybe, 37 CLP scheme, 3, 20
tell, 26 CLP shell, 26
wait declarations, 36, 124 CLP(E-), 25, 37
when declarations, 36, 124 CLP(T?). 6, 23

abstract domain, 104 CLPS, 26
code generation, 154

abstract interpretation. 13, 104 cd eeain 5
abstract mahinter n 13. 1commercial CLP systems, 23, 25
abstract machines, 148 committed choice languages, 26
Absys, 3, 10, 12, 22 compilation, 103
access structure, 123 compilation 103
allowed queries, 13. 104 compile-time strategy, 103
analysis of concurrent programs. 67 completenessmt1, 24, 12
answer constraints, 32 complex arithmetic, 24, 47, 55appLications, 27 complex indetermninates, 26
apprximations, of concurrent constraint programming, 26
arithmetic instructions, 150 conditionally successful derivation sequence.

atom selection rule, 11 32, 45
awakening delayed constraints, 109. 119 consistency labeling techniques, 15consistency techniques, 24

backtracking, 142, 153 constraint flow, 120
basic implementation model. 101, 107 constraint functional programming, 19
Bertrand, 20 constraint imperative programming, 19
BNR Prolog, 25 constraint instances, 17
boolean CAL, 24 constraint logic arithmetic machine, 148
boolean constraints, 16, 21, 23, 24 constraint programming, 14

225

226 INDEX

constraint satisfaction problems, 14 equation solver, 111
constraint solver, 101 Evar, 179
constraint templates, 17 extended CLAM, 162
CONSTRAINTS, 18
core CLAM, 148 Fibonacci program, 43
cross reference table, 142 file handing, 25
cryptarithmetic puzzle, 50 finite domains, 24
CSPs, 14 finitely failed derivation sequence, 32,
cylindrical algebraic decomposition, 24 45

Flex term, 179

data structures, 103 Flex-Flex pair, 178

dataflow computation, 124 Flex-Gvar pair, 178

Davis-Putnam algorithm, 23 Flex-Rigid pair, 178

DC circuits, 52 floating point arithmetic, 16, 23, 47

deadlock, 37 forward checking, 15, 24

declarative languages, 3 forward propagation, 19

definite clauses, 10 full lookahead, 15

delay, 23, 25, 36, 112, 123 functional programming, 26

delay pool, 107, 144 future redundancy, 161

dependence, 179 Gaussian elimination, 17, 117
depth-first search, 10 generalized unification, 20, 103
derivation sequence, 32, 45 gnrlzduiiain 0 0derivati ned gl 10 generic implementation model, 107
derived goal, 10 generic wakeup condition, 125
deterministic predicates, 14 genetic mapping, 66
difference ists, 12, 22 global analysis, 12, 13, 104, 147, 162
diode model, 53 global optimization, 160
directly solvable constraints, 123 goal, 10
disagreement pairs, 177 Grcbner bases, 16, 24
domain of computation, 31 Gvar term, 179
domain variables, 24
don't care nondeterminism, 26 hard constraints, 34, 44, 77, 107, 112,
dynamic constraints, 17 123, 177, 178
dynamic restrictions, 35 heap, 149
dynamic wakeup condition, 125 HEQS, 20

Herbrand constraints, 111
EL/ARS, 18 higher-order abstract syntax, 81
electro-magnetic field analysis, 64 higher-order unification, 177

Elf, 25, 75, 177 Horn clauses, 10
Elf operational model, 81
Elf queries, 81 Ideal, 19, 20
Elf syntax, 77, 79 implementation strategy, 102
embedded implication, 77 implicit binding, 114
empirical analysis, 67, 89, 165 implicit bindings, 115
entailment, 26 implicit equalities, 112

INDEX 227

incrementality, 16, 137 mgu, 177
incrementality of unification, 139 Mini-ML, 83
inequality solver, 111, 119 modes, 160
inference engine, 101, 111 mortgage program, 49
inheritance, 26 most general unifier, 177
input clause, 10 MU-Prolog, 36
integer arithmetic, 25 multiple constraint solvers, 26
intelligent backtracking, 15 multiple specialization, 105, 147
interactive tutoring, 67 music theory, 67
interface, 111, 112, 117
interval arithmetic, 16, 25 natural numbers, 23

negation as failure, 12
Jaffar's algorithm, 17 negative information, 12

Juno, 19 new degree, 125
Newton-Raphson iteration, 19

Kaleidoscope '90, 19 nH-Prolog, 12
Karmarkar's algorithm, 16 non-parametric variables, 118
Khachian's algorithm, 16 nonlinear arithmetic, 24

nonlinear constraints, 16, 151labeling problem, 14 Nu-Prolog, 36

language design, 31

Laplace's equation, 64 occurs check, 11, 22, 45
LF, 77, 79 operational model, 31
Liebmann's method, 64 options trading analysis, 66
LIFE, 26 organization of solvers, 107
Linear arithmetic, 16 output constraints, 16
linear equations, 16, 117, 141
linear form accumulator, 153 parametric form, 142

linear inequalities, 117, 144 parametric solved form, 112, 118

linear parametric form, 150 parametric substitutions, 142

linear resolution, 10 parametric variables, 118

local optimization, 104 partial differential equations, 64, 66

local propagation, 17, 111 partial lookahead, 15, 24

logic programming, 9 partial solvers, 123

Login, 26 pirtially specified terms, 26

lookahead, 24 partially tagged trees, 26
PDEs, 64, 66

MACSYMA, 18 piecewise linear model, 52
Magritte, 19 PLANNER, 10
Makanin's algorithm, 17 pre-unification, 178
mechanical design, 67 precision, 23
MEL. 19 prioritization of constraints, 103
meta constants, 126 Prolog, 3, 9, 10
meta constraints, 126 Prolog compilation, 13
METAFONT, 19 Prolog II, 12, 20, 22

228 INDEX

Prolog III, 23, 38 subgoal selection strategy, 44
Prolog syntax, 10 successful derivation sequence, 32, 45

proof manipulation, 86 SYN, 18
protocol verification, 67 synchronization, 26
PTTs, 26 syntactic restrictions, 23, 35

rational arithmetic, 16, 23 tagged trail, 152

rational trees, 20, 22 tail recursion, 14

real arithmetic, 16 Tarski's algorithm, 16

real CAL, 24 temporal reasoning, 67

redundancy, 160 test-and-generate methodology, 50

REF-ARF, 18 ThingLab, 18

registers, 149 TK!Solver, 20

regular sets, 25 trail, 149

resolution, 10 transistor model, 57

Rigid term, 179 Trilogy, 25

RISC-CLP(R), 24 truth table method, 16

RLC circuits, 54 types, 25, 160
Robinson's algorithm, 177 un-boxed variables, 162
rule base. 101 unification, 111, 112, 141, 153
run-time strategy, 102 unification grammars, 26
runnable constraints, 109 unification table, 114

universal quantification, 77
search strategy, 32. 45Uvr19

selection strategy, 31 Uvar, 179

semantic unification, 16 variable bindings, 11, 112
shallow backtracking, 14 Visicalc, 19
Shostak's algorithm, 16
signal flow analysis, 62 wakeup degree, 123, 125

Simplex algorithm, 16 wakeup system, 125

simplifying substitutions, 117 WAM, 13, 103, 148

Sketchpad. 18 WAM extensions, 149

SL-resolution, 16, 23 WAM instructions, 149

solved form, 101. 138 Warren's abstract machine, 13, 103

solver identifiers, 152 word equations, 17

solver variable, 112
soundness, 12, 16, 25, 47
spreadsheets, 19
stack, 149
static constraints, 17
string handling, 25
strings, 21
structural analysis, 66
structure sharing, 13, 103

