
AD-A256 107

RL-TR-92-46
In-House Report
February 1992

RELATIVISTIC DYNAMICS OF A CHARGED
SPHERE: UPDATING THE LORENTZ-
ABRAHAM MODEL

Arthur D. Yaghjian

APPROVED FOR PUB/ IC R-EL4/ SE, DISTRIBUI7"ON UNLIMI7 ED.

92-26667!• • iII IILILI I IlIIllLlll II U III

Rome Laboratory
Air Force Systems Command

Griffiss Air Force Base, NY 13441-5700



This report has been reviewed by the Rome Laboratory Public Affairs Office

(PA) and is releasable to the National Technical Information Service (NTIS). At NTIS
it will be releasable to the general public, including foreign nations.

RL-TR-92-46 has been reviewed and is approved for publication.

APPROVED: V Y~t C w

ROBERT V. McGAHAN, Chief
Applied Electromagnetics Division

FOR THE COMMANDER: d

JOHN K. SCHINDLER, Director
Electromagnetic & Reliability Directorate

If your address has changed or if you wish to be removed from the Rome Laboratory
mailing list, or if the addressee is no longer employed by your organization, please

notify RL(ERCT) Hanscom AFB MA 01731-5000. This will assist us in maintaining a

current mailing list.

Do not return copies of this report unless contractual obligations or notices on a

sDecific document require that it be returned.



Form Approted
REPORT DOCUMENTATION PAGE ApB No 07040d88

Public reporting burden for this collecion of nformation s5 estlrratýd to . I•era,;e h,.u, oer "rpso e. T P . t'e '.il.en g "rt .. :os ., . - -l , r ' -

gatherinq and maintaining the data needed. and comoieting and rev.e-nq the <olleClsor of -nf-mrn!IOn '-rd r-r'r. t, rn3 .,dtdln trls O.utdJn . •,,'-."
colilection of information. ncluding suggetstons for redu(ing this burden to v•vashingt.n Heaoau-r'e,'s -io r- " toiite for 'rfor aatro . -' d nS e. ts / 'Pe s W5
oavsý Hqfh.ae. Suite 1204. Arlington. VA 22202-4302. and to the Oft'e of Manaqerete1 id 8.d;e 'roe'.•cr. ;.roe p-r_ I't t..O.S , ',tn. L' T ( 0

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
FEBRUARY 1992 Scientific Interim

4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

RELATIVISTIC DYNAMICS OF A CHARGED SPHERE: UPDATING THE PE - t,2"02F

LORENTZ-ABRAHAM MODEL PH - 46uO

6. AUTHOR(S) w1A - i5

Arthur D. Yaghjian

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
REPORT NUMBER

Rome Laboratory/ERCT
Hanscom AFB, MA 01731-5000 RL-TR-92-ý 6D

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING MONITORING
AGENCY REPORT NUMBER

N/A

11. SUPPLEMENTARY NOTES

RL Project Engineer: Arthur D. Yaghjian/ERCT/617-377-3961

12a. DISTRIBUTION/ AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Approved for public release; distribution unlimited

13. ABSTRACT (Maximum 200 words)

The primary purpose of th.is work is to determine an equation of motion for the classical Lorentz model of the electron that
is consistent with causal solutions to the Maxwell-Lorentz equations, the relativistic generalization of Newton's second law of
motion, and Einstein's mass-energy relation. The work begins by reviewing the contributions of L.orentz, Abr;diam, Puoit.:arr.
and Schott to this century-old problem of finding the equation of motion of an extended electron. Their original derivations.
which were based on the Maxwell-Lorentz equations and assumed a zero bare mass, are modified and generalized to obtain a
nonzero bare mass and consistent force and power equations of motion. By looking at the Lorentz model of the electron as a
charged insulator, general expressions are derived for the binding forces that Poincari posailated to hold the dharge distribution
together. A careful examination of the classic Lorentz-Abraham derivation reveals that the self electromagnetic force must
be modified during the short time interval after the external force is first applied. The resulting modification to the equation
of motion, although slight, eliminates the noncausal pre-acceleration that has plagued the solution to the Lorentz- Abraham
equation of motion. As part of the analysis, general momentum and energy relations are derived and interpreted physically for
the solutions to the equation of motion, including "hyperbolic" and "runaway" solutions. Also, a stress-momentunr-energy tensor
that includes the binding, bare-mass, and electromagnetic momentum-energy densities is derived for the charged insulat or model
of the electron, and an asessment is made of the redefinitions of electromagnetic momentum-energy that have been proposed
in the past to obtain a consistent equation of motion.

14. SUBJECT TERMS 15. NUMBER OF PAGES
110

Lorentz Electron Relativistic Dynamics 1P C

Charged Shphere 16. PRICE CODE

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT
OF REPORT OF THIS PAGE OF ABSTRACT
UNCL-ASSIFI ED UNCLASSIFI ED UNCLA§ Fi ED )

NSN 7540-01-280-5500 St'darj ;uorn 218 (Rev 2 89,
24Mc 1 1



Foreword

'l'his is a reinarkahl' work. Arhiurn Y aghjiali is by training 'Ind ,, l4Jt('es".i(oll ( chrical
engineer; but he has a deep hiterest in hnidaentlal questiotl umii'-alx r'servt.d for plihxicists.
\Vorking largely in isolation he has stulied the relevant laper> of ai (lurl lioius lite'rature
accumulated over a centurv. The result is a fresh am! novel appljroach to uld prolehmi s and
') t lheir solution.

1,h1y.sicists Since' IltteimlZ hav(. lokcdt,, at tli'r ()illlI. t•i' 4,lc .liuii, ,If lml ,,l ,) f ,a
charged object priniarily as a Iroblemn for tle descript iol of a fulidaiewn al inrl ice. typlically
an electron. Yaghjian considers a iacrosecopic object, a spherical itiulator wilth a mrfat,
charge. He was therefore not ltemptd to take the point liiiit .and lie th savoided li pit falls

th iat have misguided research in this hield since D)irac's famous p)ape(r of 19:38.
Perhaps the author's greatest ar'bitm'ient was the discovery that one does not need

to invoke quantum nuechanics and the corresponde(nece pri ncil 1e ill or(ler to exclude the
unphysical solutions (runaway and I)re-ac('(,h'ration solutions). h~at hen as he (discov",n •d, lhe
derivation of the, classical equations of imot ion from the Maxwell Loreit ×. iraliolls is invalid
when the time rate of change of the d ynannijeal variables is tI()m large (even iit lie rOw la ix'istic"
i(lse). There-fore. solutiois that show s"To beihavior ar" nt n oisitelit cousen't "; INlie

classical theory is thus shown to be physically consist('nlt Ix it self. It is 'nlarrassu iig to

say twe least--that this observation had it i btvn inla(l(' l)folre.
Tinhis work is an apt tribute to the ('ennteaimual of Worenitz's semninal paper of I-')2 in which

ie' first proposed the Lorentz force C(IlUation.

Fritz Rolorlich

Syracuse U nliiversitv

Ili



Preface

This re-examination of the classical mlo(hel of the elect ionr, Hit rodwedt 1) yif\. A Lweit / loo

years ago, serves as both a review of the subject auid as a ((oil(text for p)reeliting new niai erial.

F'hc new material includes the determination and elimiiat ion of the basic cause of the pre-
.1,eleI'ration, anid lhe derivatlion of Ilie blilding forces and total sless-rllni'llt i -,'rlergy

I,.iisor for a charged illstilator movilg with arl)itrary velocilv. Most of t he work prr,,nit ed
hire was done while oil sabdbatical leave as a guest, professor al I 'Iecl Ioliuagli•il ics t[IW1 it tc

of lie Technical U niversity of l)enmark.
I am indebted to Professor Jesper E. Hansen and the Da)ish leseaich Acadeimy for

niicouraging and supporting the research under Grant No. FSS0153. I ami grateful to Dr.
Thorkild B. Hansen for checking a number of the derivationls. to Marc G. ('ote for helping

to prepare the final camera-ready colpy of the manuscript, and to Jo-.\ •ir M. 1)ucharme for

typing the initial version of the manuscript..

The final version of the report has benefited greatly from the helpful suggestions and
lhoughtful review of Professor F. lHohrlich of Syracuse IViliversi v. and 1the pere'•' p1C e oin-
ii eitt of Professor T. T. Wu of Harvard Iiuiversity.

Arthur 1). Yagh.piall

Concord. Nlassachuselts
April 1992
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Chapter 1

INTRODUCTION AND

SUMMARY OF RESULTS

Thie pr-iniarN p1inpose of this wor-k is to determnine ant ([Ira iI ofnitinfrth sIl
L~oment z model of t~he electron that Is consiste(nt withi causal Solu tions to thle N laxwedi-Lol-oeritz
equations, the relativistic generalization of Newton's secondI law of mot ion. arid Lu"Ist em's

mt ass-energy relation. (The latter twvo laws of phyisics were( not dIiscoveredI until after t lie,
original works of Lorent z, A braham, and Poincar-6. The hope of L orenrt z arnd( Al na ham

ori (lei-ving time equation of muot ion of anl electron fr-om- thle self for-ce( (ete('rrfiredi 1)' the

Maxwell- Lorentz equations alonie was riot fully realized.) Thel( wor-k begins bYie 'wmng the

contri-butions of' Lorentz, A braham, Pion care6, ain]( Schot t to thIiis (('amityr-old pr-ofh'nii of

finudinrg the equiat ion of nmot ion of aim ext endled electr-on. I leiir original derivat ioni,. wh i ch
wer-e based on thle NI axwelI- Lorentz equations and assumed a zer-o b~are mass. are modified

anid generalized to obtain a nonzero hare niass and consist en? force,( andl power. eqiatioriS
of motion. By lookinig at the Lorentz model of the electiron as a charged linsulator,. general

exj)IreSSions are decnr't(d for thle bind inrg Foirces t hat Poinrca re post ulaleei to hold thIe char-ge
I istrihimtion together-. A catreftil exami tnatiron of thme (classic i ,reiit z- Abi-aliarii den lvat ion

recveals that the self electromagnetic for-ce muist b~e modhified I d un rig Ihe sI or't t ime' 1iterval

after- tre external force-( is first applied. lire re(sullting niodifir.at lonl to IlIe( eqimat ionl of ruT ion.1

although slight. elimniniates thie riorcuasa I pie-accelerat ion thliat has plagire( thle Solu t ion to

heI( Lorenrltz-A br-alia III equation of rml d run. As partI of tIre analyvsis. genertal inror ierItuii aI mIld
eInergy relat ions are dlerivedI andit tcempireted physically foi.t Ire solrmi ions to tw lie eqtat ion

44 miot on, including -hryper-bohic' arid -1.rrriawav'' solirt ions. A.lso. a sIt ess in1olicieituii nen

('itg tensoi' that includes tire binding, bare-mass. andl ('ledmrinagmet ic furorrwiet rrnri-elierg

dlensities is deri-ved for the chl-agel insulator- mlodel of tlie ce~lec our anid anl assessriient i

tirade of the r-~edeinitiotis of electroira grietc i( riornielitrrri'rierlgv thatm have breeni pr-opos)5'(li1
lie( past to 01)?airm a conisistenit einat Ioll (if rmot ionl.

Ma ny fine ar-ticles have b('eu wmiftten oni the classical the isof thle electiron . Su ch as

(6.29.36,.37,11, 56i,571, to corriplerrierit lie or-iginal wor-ks lY1,omerrt/ [31,.\ nai~a rri [2].I oian
[161, arid Schot 113]:t. Ilowevem., III met irrr1rL" tot Ilw om-Ligital 'itirsolomi i\raa.
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lo~ncit(d i. and Schott, re-examitini ig t ili('1 In detaill mnodifyinig t hemn when necessary, and

supict VIwretting them With HIC IV'rSIr Its Of spec~ial relativity not, conitai ned explicitly in the

NMaxwcll- Lorentz equatilons, It is possible to clarify andl resolve a number of tHie subt~le prol)-

lemls thatt htave reltitaiiitd with th le classical thliorY of the Luo(ientiz IiOl4'dl off tHie ('Xtl ~idc'd

111l~elingilg ti0 vatioi II to lthe presentt analysis Is the idea that one( (-;tit separate the

p)roblem i of deriving the equat ion of iiotilon of the ext~ended model of the electron from the
ques,,t joltof whethier the model al)r~ioxitflates an ac-itul electron. Oneccould, in principle, enter

the classical laboratory, distribute a charge ( uniformly onl the surface of an insulating sphere
Of ralills a. apply an external electromagnetic field to the charged insulator and observe a

caulsal tinot ion predhictab~le front thle relativistically Invariant equations of classical physics.

Mw1-fcov r. the short- ranige 'Ii polar forces hind ing the excess charge t~o the surface of thle'

lirl: I'l (I. ul iced l iot, Li postUlated. 111t Should be derivable from thle relativistic gerieralizatiOti
()f N' wIoii \ second law of ini totn ap pl ied t~o both the charge andl i nsulat or. arid from the

reqili rceriit that lhe cltargc r'icinail uniformly (list~rilbited on tHie spherical Insulator Iin its

POC ii oTet al framne of ieferet' i. A sumnmary of the results in each of thle succeeding
hla pter>ý flIlows.

Cha pr r 2 Inttroduces the( original Lorentz- AbLraharn force and power equations of mno-
11011 for Loreit 7xs relativist ically rigi ncIr odel of thle electron moving wi thl arb~it rary velocity.

nmIt ;111 1 A braltarit erv theirl fomu' equlationl of muot ion by dletermininimg t lieself electro-

li;14 cforce intduced by~ thle niiovimtg charge dist~ribution uipont itself, and sevtting the suill

off HIe ( 4'Ntii all l, app l ied andt self elec tromi agnetic force equal to zero, Ifi at is. they assumed

itz(er7 "h are" mass. Similarly ' ,te lr d thenr power equation of mot ioit by setting the

ý'tlni of' the( externally' applied otild self electroniagrietic p)ower (work done per unit time by,
thei forces on the charge (list ributi 1iom) equal to zero.

To Iliii consternation of A bra ham anid Lorent z, these two equations of mnot~ion were not

('l~01111cit . lI it prt icullar, the scalar product of the vlctofthe charge center with the self

411c roIiiaii net ic fo rce (force c(iiiii 1 on of mrotion ) (lid not equal the self electroi nagn etic power
I Ipwel,1pail o iltoiot ) Mc-c inrdcing a titoizer() bare mass Into the equations of

ld~flil (Iue' nlot remilove t is ill( uul-i~t('itt bet ween t ie forcearid p)oV(r equal iois of 11101ion.

N lo.-c ,vsr. it Is showl it hat 11I1' apparent Iniconisistenicy b~et weeni self electronmagnetic force

ard] po4wer is not at r-c'uIt of the( elect romagmnetic rilass InI the equat ions of riot ion equaling

1 /3 tinreI4 trust at i( mass5. noi r a neeus sary ('onseque(ji ce of the electromiagnet~ic iromentuni-

t.lierfv flo!tIraiisforruiriit like .t foiit-vect(,r. Thel( -1/3 factor occurs Ili b)oth the force and

p(Mer eti l' Iiiolts of 1(iti t, in.2.1I ) and~ I2.1 ). arid it was of 110 conicerni to Alu-ahiani. Lorentz,

,) I* POili T14I Iii" I heir,1 or igIina I \-(, ks \%h ich, ats iiient iotttt allOVC, appe)ared before ETinstein1
plopo>(Aillc Icliiass-cleii'rv iuItp

Ncit lici lie sevlf I'll,( lroilitutiet c forte- power nor the momenIC~t utmt-elit-'r transforms as a

!'l- vc 1 or. ( For thItis reasonl, thi 'atrte r 'fern 'd to Itercini as. force-power aii nIion oentrnm-en-

'r~rat her thani fom rr- force a ii f'ollr-1iiiouicrit lln) IHowever, there are au;ii,\ number of force

a t1 t4VO' fllntlt ii lt 'utl t c L 4l bc Adcd to the elect rotntagtiet ic tulorentnit u arid energy t hat

m wd jke ilie tot1aI moiiteti i tnenergy (call it W~) I raniisform like a font vector, and yet riot



satisfy dG'1/ds u, - 0, so that the iiiconJsIen'icy betwo'ti Owt forcc and power' t'(ji;0l oll" of
inotiorn would remain. Coniversely, it is possible for thle 4 pnqw liii) le ci Vat it' ofimnolicIent till

an d eniergy (f7orce-power) to t ransforim it s at four-%cetr iv di I li fv d >1.'. ib -r wit houl

lie niomienturn-eitergv G" itself t ransformniig, like a four- wtor. III fact . P oiticart' iIIt Iwl .(;li

binding forces t hat renoved thle cimimsisteiicv bet weelitieft",e ami! piowetr ('fidtoils of

ii 0tiorion, andl restoredl the force- power to it folit -vector. wxv on t a frectig th 1 '/ 3 fa( or iii

t hese equalit ions or Inquiiring t lie Iiioiinii riii aiid eiiegV of I Qit lAarpQ' sp~litr(' to On ralslrit

as a four-vector.

trhe appareiit iticoiisist eiit bet w'een tlie A(f lctrn aI~int iitc and power i-ýre-i

gatedI in detail iii Chapter :3 by reviewing t lie, Ahrahlaii- Lolent:, derivation~. aiit rilt_,ooiP-lV

r"Wlriving the A'lctoiiiagtet ic force and power for a cliargt' moving with arbitrary veoc-

it 'v. For the Lo~rentzt model( of the elect ron iiioviliig with arilt vi iy Velocit v one finds thial

lie Abraham- Loreit z derivation depends ill p)art on (liclerciit iat ing, with1 res'pect I') tiriie'

lie velocity in the elect roinagnetic iiioiieit un and energ dV er11ittitied- for a. CliarýI~e liStri-i

bittionl mloving withi consati utVelocity. AlIt lionli L 1.oreiitz and Abrallarit g~ive at plalusible

aiguenwit for the validity (if this procedure, thle first rigorolts dcrivat ion of' ilie self elect io-

iniagneti c force atnd power for thle Loren t z elect lol i11n0611gi wit aarbi trar rv eioc it y wa given
byx Sclhott in 19 12. several years after tlie original leriva tiou s of I ovreiitz aniid A brabanl iivB-

cause Schott s rigorous derivathio of t h ('eec rkoniaW&e ic force and( powert, obt ai net d(i rect Ilv

from tlie Li~na rd- Wiechert pot eitials for anarbit rarily, it oy ing hrc , xrn yivle

aiid dlifhicult to repeat. a toluch siimpler, yet rigorous deriva tion i,, ptrovided'il inA\ppeindix 13.

It is emtfphiasizedl itl Section :3.1 t hat the self elect roitiagrict ic for-ce and power are t'tual to
lie inUtenal Lorent z force and power densities inmtegratedl o'.ei thi Salag-Miireiit (list ribt ion

of the extendled electronii and thius otn has no ti ;)Iitli glia rant eev that Hey will obt'v thle

satiie relativistic ttatisfornmiatiois as an t'x'inial force and powver appdit'(lo ito poinit iid~5.Al

imiport ant contseq(uenice of the rigorolti> derivat ioiis of' it'e elect ilmuag tict ic force aiid power
of the e'xtendled elect ron. withI arbitriary velocit ,v, is that lie iiiteg-rat ed ý,ulf elect r l'-ma ietic

force, and thlus tlhe Loi-eit Z-A AbiahantI force' equiat iol Ut illtiol ol of thlie ext eid~etl t~'le1 oil is

shown to tranisforn is ;ian e~xt (rial for-ce a pplied to at point tliiii5. Hol~wever, liec ii goroliý

det-ivations also reveal tha thev integrated Oef elect roinagiwlit p0WfT,' aid Ittis tilie L~orentz-

:\brahamn power equtat ion of' mtotioii. for ihe reclativist icallv rigid mnodel of the( cxi toided

e'lectroni (0 not, transforni as thle lioxyT' deliverM i'di a tiioxh! p oitn mas h'lis tu~rrn- ouit lo he

rit(' even whten thle radiuts of thn' chiarged splicre approacllft- /. h. ecaflise ilit iiit'linil fielL

lecmne singulat as the radius approaclo' zero anid tlit' vel ii , v lif the tliý strii i oion is
niot the same at each podiint otn a mioviigitr t(ati\-ist icallv rigl d ~icil. Illiit'• it is iiot pl-lrin<>ible

to uise the simrple poirit-itass relativist ic tranisformnat(ion (if power to fiill, thle integrated self
elctoroagnetic powe'r of the u'xetitt'i elect kon ini an idi thu ,ai v tilowin g iiitttial rebr weic

fra toe froml its sinaI!- velocity valuec. (Tiiii is uinifor-tunate I 'tcaii~c ' t(u' pt-oper- tratie anid

sýiiia IIkvlocit v valties oif self electrionwriia i" i' force adua powwr ieý,Jwcltivt'l\. are Iiiilic ediet

tot detrive' than) their arbit arýir framei viii'- hrt'1i a c-rit- Adni'i f in'le tial\icir

c~cittic fields; 't Aippiildix A.)

Ihe igo oll, di'iva ioll" o "'I ('('(p'"'er ll ('ha i-I 3 , ilinl1



confirtin t he discrepanicy I 4t"Iwt WnIle i .oMMiz- Abralho i' loce and power ( 1 iiitioiis of nuot hmi
Ahat Wt I Ai rodllces Amw de)1 la11 1ile(-d pictuire' of the I renTOZ riiodel of t lie ('i(ct roll a,- a Chari~ge
uiinfoiniiii (dist ribute'd oi I lie suirface of a nonrotat jug inisulatoir that remiaini, sp~herical withI
Mnl a i in i its proper inertl ai eferecie frame. A pplv ing the relativist ic version of Newt~on *s

secon law of niiot ion to0 I he su rface (liarge and ii si iator sepiarately. vwe prove the rem-arkahLi
conChIiision of Poincar th a t th InIiserepa ncy Wvet l we ii he Lorent~z- Abraliain force and power
(qilatarios of niot ion. is cawi is Y fivtlie neglect of the short -range di pok' forces b~inding lie
charge to the surface of thle inhiulator. Even t hoiighi these shortr-range dlipole forces nieed

10t conlt ribu11t e to t he total se'lf force or rest energy of formnat ion thley add1( to t he total self
P)tWeI ý1li amioiltit t hat ('Xact't v canicels the dliscrep~ancy betweeni the Loretilti- Akr,11iani force

anrd p~owe(r equations of in ot ionl Moreo ver, thle power eqIuat ion of uiiotio i modified by thli
adldlil IOn ol I I fI IIe powe r (levIi vt redl 1)'v thle lbiniidi ' t, lorcss now transfornis relativist icaliv like thle
p~ower delivered to a point uuass,. WithI the atddititon of l'oiiicar6 binding foi ces, the power-
eqa-p jia n of motion of the Lortit z muodel of thle ealetreu derives from t li Lorentz-Ahrahlani

foru apIiat jot of inot ion, andI no Ionuger uicedlS sep~arate considlerat ion.
Wf Lanw, Phiouiar dW fot know what, Wev do today, ab~out tHie rlattiir of theme surface

force>, whel lie pilildi~slid his r'slt inl 1906, so lie siiiilly assunuied the niecessity of ''other,[
frce>. r bonds" t hat tranforniti like the elect roiiiagnietic forces. Also. iPoincar6, drew hiis

couiliilsi~ius froml the anal lvs-is of' tih' fields and forcs ofI a cliargeci sphere moving with con
st ant velocit v; see Sect ion I. I. 11! d '(eri vat ion iii Sect ion 4.2 fromn thle re! tivistic version
ot* Nf i'.-ton 5 secondi law of ni ut 1)1 reveal.s. iii i~ldit ioi to hI' originial 1Poi icareý stress, bothi

11011('lif tgei'CHOtS- and~ lihouloii.t'tl'oui5 surface st r(sses t hat are e' qiuied to keep the surface'
cliarn_,e hound to thle iliisnatitw riovring wih-li ir enter velocityv. Tlw extra mnhouloge-
r1t'n1*,t1(55 integyrates 0 to~ whe " itaiclmn~ating t1e total b~inding forceali power. 11ieextra
fiorniogtneonis binding force aind power julst (qual Wetll negative of the' t innw rate of chang(' of
tIllittltuitun and~ i'ii('gv ni't'l('t to accelerate W le mass of the inicliarg('( inlsulator. It as

v~n>~swhitn th Iii' ass ('F th li' l(liargel ýiisiilator is zvro.
The in atss oft II'indc r~' ilil Ial11 r shioiuld 11o beI~ conifused w\illhi the .,l-a(' mnass- of

Ilie nt,11(ce (liiirgni. ItoiLiv til bare lnas s'lioill If I h viewed as siiiipiv oi liat hiiniaticaflyI
l1(inw niInass icsIni red to r a ikc the~ Ior'litz- Alrahilnn riforce C('jlat ion of rnoiot 01 conipatib1)1

with Ti . ria't ivisto( versionl of Newton's set'onol law\ )I* riotioiu and~ thle l.insi('ii mlass-euiergy
wrlit oi. AlIso, thle analvy- ini Saltim L2 (Olilililis tIh original results of 11 iiucari that. thle
fir~ct Iiinlldig thie clirn ) to te iin'-.iiltor rclinove thle inconisistonc ,v hetweeti the Lorenitz-
Al ra aiii f ,rte andi powI ItiIr i of 11imi ion t iitl is, lilt wt'e 5('If fsc al( power), lbill

o :T'r i jove t leh 1/3 fi ri I jim ivdin 10i. t i( wlec-not ath nii ass rin t lie eqiit ions of inot iuil

II re l ye tlie rI( nor ni'll t iltIfl'r t ianoi ia a for i- veil o, 'Wit fi tlie add it ion of t lie
ki1di11 I. orne>, ilhe force- pwoi,[i. I ult 1ii4it thit Inill ('Ii li energyi('i~. t raniform.is as a fouir-vect or.

CtIiplter 5 d'terlliinuws tlie :eLititinsllhips beitw.*'t'i the' various iiiasses (cel('trolliagnet ic,
illctit ,I'l if-,c hale, IlwasucLil 'ttnl ill,1ilittil NiiiSA~'s) llit(Iiv('d with thli ali;il~vsis (of the (las
,ii,!l in defil of the electron w" ai chill-td inihtl.S'pit;fii illy, tilt Liii,:tt'iti unass-4t1'rIP~

iain ill'niin'l tli 11 tilt' nna'-1irctd s of tltw clliigfed inslaýIhtor ''qni.dýl~w t 'msril of' the
- I I 'I .1' '15> d thle 11l-, I t '' 1:1i ha!ý'c noý to i . an i w( lill V ally Imass dild



()ill oji Newtou s secon td law of i 'ot,(I In hele (1, ir"Idft hat I Iii' Ilto 1!it 111: oi I If,

haiti Illazs cqjUa!, H ~it' dI ifleircie 1)-1wecri t lit' T111~,0 ii' 111rr of I' l I t !a iit (ivc I i a!l~ ti Itil

('h'(t-l'05t at-ic miass, regardless (if thet( va Ilie of the Illns. '' ! he n-lic 1 lat o[.

It, is the Ilegat Iv'l bar(' mass t lhat rirliovcs lie 1 /:1 f',1(t or frotrI h,- elect, Is it ;it P I Iws 1

-thc IAor('it-z- Aibllil .i- Pltloiriinr c(l;I'(fid titiof mot loll and r iii k(-, t1wit I,) iii a lint of t ii , Feinr-pid
ilsto at or ('omiltp l hh' v, it 1i t hc( elect rust l '1 rIC c'>t ' 'ti (J F,' I 11,1 1ý . \\'I~I th 1!1 t 11 Iio

uof Imt I I t IeI hain I as aII; i d SL t I I 1 ) f(111g I stt1 111 '"')s Ia r Iul i ii I nI I Ia _Y Fvi w'- f ! ch potA

'ra iisfor'in as for r-v\ect orS. \ViI,' -i 't1111, Ak aI ii il F111 aIi h( ' t~'!ii'lt I )Fl\'I(' Oti C I 1111in1,11Y

;I'SlrIII led as late as 19 ¶15 1F h ti ii lit hitI ( :1 iasý w~i>'Zcr o 1:, 1N Twot rI III lol S i 5. 1
Tlie fitial recrrIth ot'i I I '-, i aays 4f ( Fhiplttoi ~lit citi l kmf ,iI' iot 1t I .12 1fotr a I hargitI

Ill irlitor. Wirijlit ilide wit 11 1 a'c \la;\weil I'cllcti' lit 1A)eftl , lo I lta' Alkt lvlýt I( eso of Newt~onls
StICO~ld law of' tmot loll. aiid th It(, iiistfri ia111re~ relltl loll 'I Fie Itsi cii\ owlsdcerd hy

S)ir'ac, of extr tn incoieittlini-etrergv teICi sP illi , re( Plat vrIý 1,1 Ic r Jii Newtolln (, seolaf law
of' trot ion for cli a r'ged init ich 's a lld F the ( i tJI4,1 "A s Il~' ll ilt II I- sFllorllid -a is' V. ;lii' di.,,

i. I:S-ect ion 5. 1.A.)
Chapter 6 fligiis b 'lIllariZilig. I he( I ra 1isfortiin 11loll proIp'in id's of ltii'ififh'(rcit Force-

piowerts arid! '11iriiieit lllllcic(ritgl('5. ad~a drivio, In a total st I'S-,- rioliierit ii11-ltj-i'iilL'\ telisil, thint

accounlts for thet hi)i(fiiig forcc's and( bar' inrass., as well as ew 'lec t romiatuieth( wlf ftre cfor the
chlarged in-.arllatoi moiidel of till' electI i~ol. Wt' t lienl conlsider the red(Ilm'iit lole) of el!( CItrlrgre

jirlorent uiti-(~TI('l .1v thLit iidv( b~e( i liiotio~i'( to obtalln co)? -'istilit tl(i(ii'ri'tiirr anid erri'rn'v
en(illatiolis of iliot loll withioiull itittrod(IcI'irii sra' Itn hjidrr-ifI 10't'('S a lit'l lorerias.Wth F
i'xi't'tiOt'i of tiii' tliolii'ltiili-i'li('lg\' o(J hi\hie tire-not's I0 t iii ri'(ifjil'd Iilritlii'litirrf-
er a'rgy (leirsit es cai Ii' foun nd for I In 1.1ilvlit / 1mciilI of III' eliC 1101 bV itiltipf1)VIrII- tb'' fourl-
velocilt of th f ci('('lt ' of till exte('tded ch~i!ý !' 'v al ti ova i 1t11t It loll u of I hei ',ledr In iIl~lIIet inC

hiolud. Thle total liiittii-'i'rvof t Ili. ini-ge ilist rliii jut lh'ilviiit w\it hi c''aistanlt vi'locitv
Then transforirns w-s a four-veetor, aiid tot, arli-ht;I v ý-h';t\' pieilicts ( olPiiittri I "'a ter-ilis t or
FIhe ;(elf force and ',('If povA.s'l'. t fiat v., (oli.iZ¼'tit 1/(f!" illii iM t lie, forte ?ilill pol~vil i'jlmtlotiSý

,d, riot ion. I lo'\'ex-e. thfese Iivtalna lit ti (lt ri itolls. of' 'F it-clt In '..ii' lc iireIli-'i' do

Sciiwiiigens 4r(' hid I2J eoij fwit Inig I It(' fun''' ,ýor diluletsit t a e tIlle clvrL't.lc' of
titisor that dewii'rns o)It tilt' ciarjýt'- Ill [ri-ti hIT, riljitl Ptal for.c'tu( elilt\ it)() WigwthI con"l.ntd

\('F,oIjtv. T'his t'lia I'i.g-clirrlA'1it titisi' I" toft l(It'dl fron t hen' I Cilia1 'lu cl('tnIlIIiigll('tr '-1 P'5.-

Ilthe velo'l('(it' Is iottstalit it hI total ilOlICI 11 lil ri-'l''2vtll 'iSfoinrre- as at foiri'-vi'"tur'.
.[Iris ilietiroi prdii'oiii's t h it, i t raidl~ii nII :,eactl(in t('li'tti %vT" w ,l a cirissterIt~l I /11It ITT

ilie Force andi poiwe'r '1 iiatloits of I)t t I oi i fo r ;it 1) 1t t'atI'v \'i'luiic I I I I' :I'to-I f II nent ItI I froir I hIsII
menthod)] ý is nniitiwionlws to wit hin ti atit i.II r;1oI c fIi'iei'''s teI Itrint' ci'tii( i'lit r-ates

n(,I ,v trlsoil. dcriviuI for tI lc 6m'if L~l Inotiih q whiri' tI xli ie \ ' ;du I' lii'ss t F1w Mt-l1tlttl It

I t (inI to i to 11 i, 1 1



li'lln(,Va, of tlic. .1/3 factour l111i!t1iplyling!i t( c''li 0-w tit ir iiass in tIlt origial ey wlailtri Af

>t'l Raw adfl powerF ic('l(l14m aiagli Iclit or oz1 ll('riM') hal (1o not equala tlt' Lorent z foi-ce ad l~

powi' (ko latio'r o. geiel xrt>>tli i i riiolliellt tiian olt'r'gv !"ctlt ioveirg the rgeonare

fo l'brced llatele. sall to o( it(,'llteiicl( urn-enegy fia has* te'o ipln the exfc oil hsdternaTus

hiese' flds t'tii boinding fo c' , ' It atCL In ls k i( t [ aId. I otaliae s I iiiie C-S11 11C 10II t'l('lV. tllo 0Ie\'Cn l-iiie
faI II' c X l I lia 1

frted IIs tI ii I 1 1 b(t I tt Ii lioliei llitlitli, IS ofiV I'&' te eS('fc iolýc n a11n o

1101011!iit lt-cenergyio as ellas ini it't ait!ndlia I it! eri!d l tlielitii womci-eliel-gv.t,

stonMin boerthnii of and~ ''Sellor nwatrel'la loll r lioltmtulli-lielg of an t'atIx'eu florlcei

to tlip,'uierged partihe. a2dl'l d lo, ir ita Il'ha[lali l l~ll b iien suplied byl~ the extenal'g

tilt I lt or'llat iligc Cidl ( be ing appIlied, l5'di I l\'' nergy1)111 cneii ' a is(lla Iov~ te ts o Scho ttifiln cif hat it'

aIist'r~at lol of miometii in-tum t 'iwru is not violitil by1li a charge ill hyperibolic inotion nrela-

T i>~i I' ally unifornii at(C(Ie'raiit I. t" INy thle liotiowi~'ri'o rnniaway so111Inans to the e'qliatimn

l1)IitT S 610i~il by Av1 ilig tilt tvfllotlul of niti"Oll for Acit exteneiidtt (lhirp. in netliiilitai-
IllItiol. W\hien olin liit'ele tt I Iit h iighe(r ordierI t4rl'V0 ( lin ladl 1 ip 0 a) litheq('t tlit )1 of iliotionl one

ohtiwi, thit', wt'l-knwii Am Iit~t'(llion solilt ll imi uA the tw a svlliJtotdic (ond~itiobus that

thev wlidw'b 'n~ti apipliathit', mu'l in thle Cistaiit WItilii ~Wheni tih' t'xrt('lii tonc approat'it's

"'(11*1) ji thei( distalit fl lunt' ill'i Ilie %,.lo( 11 a ui l' /t'lri Ii ti t' remotte 1 ta',l It isSh w

thlat tl117' p in-at t'leaialoll sob lioll, w bicli viola It's 1.115 no itI 10 strlictly valid soluitioni to

I ftC c1lt'l ijli f 11loll o m t io of Ila ii' xtt'il(!l if aigi' lwc'iiii ot thle lprei'ach'rtlor lwl doe's niot satit 'sv

th'je I an It at('t't that il iI th iiIi' i glit r order . V'd it at ar , itug Unfi i ibe t'x a n ele

a wla~ hil srfles d icll t , ili'" I iw [,rciii \Vlahi I l oit lidat eq a ft n 44lmo,'. arell it 7''( fl allet 110

b' Ili zerton ami2the tool~ a al f: i, o ilt'- n icit .ll il promIii. h IS ijjli('l ' If I m l i t)s lA ,~o

ai Ql lo scie ab l I I",' lil.iIili 'atol I ie llt ! he i lt l lI!itl force asii I ll) ii Zer fo al t'( iiatt



b havioior at t U.1) or- desl loyiinqly 1/to covaui n '- tý/* ' Iepinlo o -' of ;l 4 itui It al'unslr

that the Mit al acceleratio loltf the charge eqia Is thet inditallý applid cIcet riaI furee di vitlt'd

1w the mnass.
If oile is riot (0lW'cIl('( wvithI thet proper heliav iý 4 lkf I ýe •t tInt un lo tli eq ia;it'll of

iit lol (luring ther I line, ininietliately 4fter t ie (' NV; qilItv Iar WC- !!l a tjl~it't. 01W Call ,I ta ilII

a tuliveli icliet powe'r series solutition Ito liOtn't (i)!' 1 !14 1 1~ 1 w4 , t rrn Is If ll(411>

seAV r 'es sol it it 1l ale founi it ii Sect jull fo. 1 11c 1-, ti Ittliictil a t Ial 'ii of Iiluot ion, 'lin ill

S'ection S.A for thle general equal ionl ofuliutionl of' Olhe exit nit ti a rge. ltir On spei(cial eas of it

;I charge mocving ill a iiniforni iliagliet ic field, the first t wo t elilli r' lolI t ft(li per411 inatittli

Woliitioii obtained for the synchirotroii radiatio froint high w'lwrg\ t'lect rttis. Tilt synchroltroll

solution emerges ill ia siuiiple foriiillCl cuii('I itlit for tleterlliiiiiii! ht ll r1a tot'ctry ()f the 'lt'ctl'ulll

as well as its change ini eiivgv and Wkl ls 4f iinU.:n ilt tt'l liii Ii lit.

Sect ion 8.5 considlers the liiiitc (lifFt'eiciie equal illl tfni on f tilt t'xtenited t~ctlorll
Oat hats bee'n lr)it~~e'( as ani alteiniat vt' tou th li' iff eli 'li ill Ct illatui itt Of Ilut) ion. WCt fillit

that, t here is lit tle juist~ificatioii to acep(1t th lit'liiitt' iiifFertlice ttpl at lull as' a val id I '
t i I ali (t tf

niit oi Imealise it in'glets all 11011liuiea k triis (in th lit' T I huo'Ianit' of tlit cliarge ) ix ulvinti

p~rodulct s of the t inme derivatives of thle x''hci t V, amnd r('t a s a 11011 lgenlN'ois runa wax 5)1l~ inf

that, leads to pre-aceelerat ion.

Chapter S e'1ds1 by coiisiderinig lt'e possibilityx of delc't llil111 ing e~xplicit ly th lt' tiiid alld

hiighier order tern is in thle power subis >etllittion to Sole e irua 1 i of' notion. Fcor tin' cric-

lroll these third and( higher mkTe twiiis p~roduce' a chanige t hat is less thlani H ie ('uro taulsei

at linitt value ats tOlie radius of, t lit chiarige aIppruad i's Zt'ru chIl~licji raesti thiitd an hiit g-hei
Ordler t tuills, but sacrifiees a (ittaii(l undt'st aidiiig ufit( lielitctlinal ptinsics of thle chiarge

Loueiit z-Di rac -leiolimilaliz'tl equlatlonl of' lo't toll for th lit itilit t by g'L lne eulret'tital filic-

juin t hat nuiltiptlits tiw radiation reaclioni. ;\s ill lit last'of lt'u t'Xtt'itl cliarpt' ; hs slight

correctioni to th li'Iol('lt z- Iia( (quait ul of in 10116M f (A tin tI11 Ca~lcý,' 1T'I il l tt" On ti' 11011-

cauisal pre-aCCC'lKiat ol As a ttuist'qi'it'ow N i' lthe l r ~iiorilai/;,t ittli.lu, 't lie tetit t

tilits thn' reiiorniiiilzt't m1ass Ofthe pIWIcnt lii'g jnwt ofiti Ow t:;trii~i~i fh)t' V



Chapter 2

LORENTZ-ABRAHAM FORCE
AND POWER EQUATIONS

2.1 Force Equation of Motion

Toward the end of the i IIete(iit II centurv Lorentz modeled thie electron by a spherical shell
of uinform surface charge densitY and set about the difficult task of deriving the equation
of motion of this electron miodel by determining, from Maxwell's equations and the Lorentz

'CC law. t lie retar(lde self electromagnetic force that the fields of the accelerating charge
distribhition exert upon the charge itself [1]. With the help of Abraham, a highly successful
theorY ,f thie moving elect ron •od(el was completed by the early )90i)'s 12,3). Before Fiin-
.'Wiil pdapers O-1f,.5 on special relativity appea'red in 1905, they had derived the following
fore eqiat ion of int ion

.1 ~22 1

Fr 1, ----- (U) u -___

12 , { . .)2
- 7U. 1 + (u h)' u +0(a). (2.1)

11 C

f,, a "l ivisti,,lv i gid slifri'al shell of total iliarge and radius a,. moving (without
votat i,, wil It trbiltary (i litr.r vi.hcit v, u t (t), anrd ext ernally applied force F,,.t(). (

1 h -p,'d of light alild pl-1tiittivitY in free space are denoted by c and (0, respectively.
'I It u,ti, iiid nik ..\ ittcriit iotal sysltn of iiills is used throughout, and dots over tIh'
\* ( ,I() le tot ,eilk ' (I 111'el nt lait I1 w it I] '('il-ect to t 1in 0.

"I, lat ivistli allv ligid" 1'ferus to tle l0tir icular model of the elect'ron, p)roposed originallv
B;' .,Lr.itz. t hIat rinainis sIh)iri, al ill its proper (instantanueous rest) frame. and in ani arbi-
rtarv it iirtial frame i> ('ont ra t r i tc le( direction of velocity to an oblate spheroid with minlo

aXis ,',il;d to 2al/',. Lo)'ett/. t lwe'EF. used the word 'deformable" to refer to this model of



the electron. (Eveni a relativistically rigid uniIiteC I ) (-) -i y i It > IT(11 t 'v eX i . 1)( hi i I IN it IW( )11ld

transmit mjotion iiistaiitaneoiisly throughout its lilit %ititi. Mm!W onipc linm&) ikcs thc

a~ssumpltioni of relativist~icahly "rigidl fi'onill to a%"ujil Ilie oslunvt('
HIIiolS Within tilie ('Xteiide( Inod1(1( of thle elect run [.r 1;, I :132.

Likewise, "without rotation" mreans thlit tile sitigiiliir \'i'IcitV of ('lii 1,(111 ii ote ~Ilit'iicr
is zero in its proper frame of reference.

The deTiivat lon of the differential cqiit in of runti (ol 2. ) imupli" Am~ AV lint ale elt ( I1

externally applied force be ainalvytic f~iiiitoils of hue. W~s is Witiswd in (TlapTr Owhn

dealing with the proliliin of pre-acceleratikn

Theli iinfinit e suminiiat iori uf order a inl t lie ejiin t iiýT of i nut ion i 2. 1 ) groes I oe a, 0

applro)aches zero. The inequalities (8.21 ) ini Sectloll S.2 -,ive llie condititins onl the tinie

(lerivatives of the veocity of tile charge for nieglecting the ka)( r el is in (2.1. Namiely. it is

suficient that thre f7ract ioiial changes ini thle secoii anid Ii iiicr time dcrinvat i vc ('I' velucitv be

small (hiring tile timeH it takes light, to travel across the c(nrelist rihiut ionl Alter nat ivev.c

the inequalities (8.1) combine with ý8.16) iii Section ý.3 to showx that the 0()a) leItTi In

(2.1) are negligible if the fractional changes in W le first aid hitýher tillie derivativesý of thle

externally applied force are small during tilie tin ic light t inverses tilie chl ge.

The right side of (2.1 ) is the iieat ive of thle self elect romafiiiet ic oreF,, determniuedl by

L~oreiit~z aiid Abraham for the moving chaurge dist ribiition. Iiiis (2.1 )exprecsses \(,%toii's

secoind law of ;iiotioii for thre shell of charlge wheii thle uiikiiown *iiarc- imass. or -iiilitrial"

imass as Loreintz cal led it,. in Newt on's secoiid( law of mot ion is set (,vialI to) zero , ith the

acceptance of special reOat Pvtv[1] and1( ini [art icu la thle Finist cii iiass-eiergv eupiivalence

relation (.5], ;*t is ho longer valid to ass ume. as did Loirat z aniid A braha in. thIiat the blare iia'-ss

is indlependent of thle elect~rostatic energy of frnmatiii thlit iW. ii wnlmpide of lie total
chrcc and radius a. We shall return iii Chlapter .5 to t lie subjectl of t ie kare mlass' and tile

questbin of why Lmreiiz (/ (J1 believed thle blare miass of tl elect Iron iwas inegligible)

Remarkably, the special relativistic factor oinl thle thine rteul chance of imilent iiii (firt.

lterm oii the right sidle of (2.1 )) and the radiation rea( t ioi s('11 f(,ce wit Ii coefficienit

that, dloesn't depend oii the size or shape of thle charge (second teniion )ie A right side of (2.1)

Wvere both corr-ct ly revealed. so thlat (2.11 is inva'lriaint to it (In t ivist ic !raiisforiui]at ionl froml

one inertial refreice frmew to aiot lie. I hat is bothi sides of the forc-(e eqiuat ion of loot ion

(2.1) transform covarinit lv. \lorcotr' oile could choose the ic h'ins ea such that tilie inertial

elect roimagnetic rest, mass

et1 ialed the nleasim re(hrst mnass of thle elec tron.

2.2 Power Equation of Motion

As long as ILor ii a/nd AIM W.\ 11-1( 1 tin Ii it, in !Iu -I Ia I, Iill )I I i i-tithe forcc cpi atioii

of riiotiori (2.11. V lie smW ilO illelisist 'net '- ili I W 1,ent l/ ni0fl 1 f th lie 'le 1-01. 1 oreCit z

was Unconcernied wit Ii t he teritis of o I ler. a t hat a r" Iec wý-ki i n t In -i 1ýf for(ce I "'ealne ie



assuted the classical radius 4,f w thlect ron was both realisiic and small enough that. ol'v

the 'next term of the series [tlie radiation reaction terin in (2.1) rakes itself felt" [3., mw.

:371.
Ioretitz and Abraham were also unconcerTed with the electromagneltc mass mr in (2.1)

equaling -1/3 the electrost at ic mass In,,, defined as hle energy of fornmat iu of the spherical

charge divided by c2

C (2 .3 )

'SiTe1 ,ac2

because they derived the eqttat on ,f iot ion (2.1 ) before Einstein's 1905 papes on relativistic

electrodynamics [4] and tht •uass-eiemrgy relation [5]. In neither of the original editions of

their books [2,3] do they itnt ion the .1/3 factor in the inertial electromagnetic mass of (2.1)

being incompatible with thle elect rostatic energy of formation, or, conversely, the energy of

format ion of the electron having to equal the intu ial electromagnetic mass times c2 [7].

In 1904. however, Abraham [8]. [2. sees. 15 and 221, [3. sec. 180] derived the following

power equation of motion for the Lorentz relativisibcally rigid model of the electron by

dletermiining from Maxwell's equatiols the time rate of change of work done by the internal

electrounagnet ic forces

( 2 d1 (21ý: rY )2 1
F u u 0 : --cu. ii + (u--uu), + o(a). (2.1)

As Abraham and L.orentz pointed otut, the powt r equation of motion (2.A ) is not consistent

with the force equat ion of uinot ion (2.1). Specifically. taking tlhe scalar product of the center

v,-,locitv u with equation (2.1 gives

, : ,lI , 2'4 [ 3 /
F 2 4,W W-ii 2 +- u 0(a) (2.5)

67, t yi dl (t 6 T 1 C' C2

w'l tih diler.•s from (2.1) t, tli' trir

24 Troa dt (o,.(2
1bis is lWe discrepaltcy between tlhe force equation of motion and the power equalion of

tiottion for the Iorentz mrodel that concerned A\braham and L.orentz: nanteev. that the scalar

produ(t of u with I t le t il rate of changc' ,f th , elet iromag i'tic otett m um did not equal
Ihle timit rate of change of4 tle wk dowi' by Itho internal electromagnetic forces.

tib ike, ith' force ,quali,, olf mtiotl (2.1). lie lft a 1nd right sides of 11w power equatioui

(A tmotinu (2.1 do nmt tlraul i,•t• ,',,varialitv: se,' .\ptendix A. Moreover. Oither the force-

It,, ,,,n the righti It's tf '2. ) awtI (2.A1) nor Ii(' uomeonittu-energy transforms as a four-

v',t,: -(,.' S('tt ion 6. I. (Ior,,lt t/ and A.\braham did |uot mention and were probably not awart'

i,:. thi- ti:,tuovariar-,' lm,.at", I, e.i.e ,q'at.iouns w,'w tliscussed outside the general framework

;,1,d ,vit lont the correct vl,,iiyv traisfori||atiois of special relativity: comupare [9] with [1].)
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After the derivation of (2.1). they still saw no p~rolblemtt with the 1/3 f'actor "it tIe,, in,,rt1;ji

electromttagnetic mass, nor withI the cojiveittionalI elect ro:t! tIt I I0cll o t I I thuI(1 -e.ergy f r .rs

(before taking the time (lerivative) fai ling to transform as a relat ivist I[Ic four- v, <or..\ Mo,,'over."

if one rewrites (2.1) in four-vector notation to obtain

c 2  du ' dh 2 ± /1 , ) ± ) .
67r+0. ~s (I, \ .--'` + -' _. _ý_ ()((1) ('2,

one recovers eqmiation (2.1) and (2.5) tromt (2.7) alnd mi•,cis cit ir-elv th lie Iisciti h I iitro-
duced iy the power equation of motion (2.1) derived from>it Maxwell's equiiat iolts Iy A\rat aham.

(If tihe mass in (2.7) is "'renormalized" to a finite valhue as the ritdius of the charge approachlis
zero, the O(a) term.s vanish and (2.7) becomes identical to t he Iorcntz-1)irac equtation of mo-

lion [10,111; s,, Sectiot 8.7. karly muse of t he foutr- vector lOtl itlion for t he radiation re;actionl

airt of the equation of motion (2.7) c-ail be found in P'auli's article ott relativitV theory ý6 sec.
321. Ilerein we use the four-vector notation of 1Panofskv allnd Phillips [Ill, who n<,l'•tdiz<d

tie four-velocity to be dimensionless.)
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Chapter 3

DERIVATION OF FORCE AND
POWER EQUATIONS

The inconsistency between the l(power and force equations of motion, (2.4) and (2.1) or (2.5),
is so surprising that one is tempted to question the Abraham-Lorentz derivation ([8], [2, secs.
15 and 221. [3. sec. 180]) of (2.1) and (2.4). Thus, let. us take a careful look at their method
of dcIiriation.

"Ille right side of (2.1) is the iigative of the self electromagnetic force, F•e, and the
right ýide of (2.4) is the negative of the work done per unit time, Pr, by the internal
electromagnetic forces on the moving shell of charge; specifically

F~t(t) = (rJ)[E(rt) + u(r,t) x B(r,t)]dV = - c1 E x BdV (3.1)
Jc jrge dt space,

J ef(t) /p(r,t)u(rt) . E(r,t)dV -d co / (E' + c2 B 2 )dV (3.2)
dl 2 La space

wlhere p(r. f) and u(r. t) are the density and velocity of the charge distribution in the shell.
and E(r,t) and B(r.t) are the, electric and magnetic fields produced by this moving charge
distrill lion. The iicagnetic field does not appear in the first integral of (3.2) because the
magri(tic force is perpendiiular to Ihe velocity.

The second equations iit (3. 1) and (3.2) are, of course, identities derived from Maxwell's
equal ions. assuming there are lto radiat ion fields beyond a finite distance from the charge
distri Inlion [12, sec. 2.5, ec,1.(2.5) andtI sec. 2.19, cq.(6)].

For the Lorentz r(-lativistically rigid model of the electron, the charge density and ve-
locity of each part of the shell cannot be the same for an arbitrarily moving shell if the
shell is to maintain its sphcrical shape and miiforn charge density in its proper frame of
referetce (inertial frame at rcst in stantaneously with respect to the center of the electron).
In part icular. the relativistic ,,wt ra,:tiou of the moving Lorcntz model of the electron, fromn
a spherical to an oblate spheroidal shell, demands that the velocity of its charge distribution
cannot be uniformly equal (exept in the proper frame) to the velocity of the center of the
>hcll ,iclioted simply by u = u t) in our previous equations (see Appendix A). If u(r, t) did

12



not depend on the position r within the shell, as inI Abrahlian's wIII(Itieut Iact Inig (IIoIIrr!ittIis-
tically rigid) model of the electron [2], u(r, ) (coulhi be rouidi ht ot side thle chtarge jut egrals
in (3.1) and (3.2), Pt. would equal F, -u, and~ the (liscrepaii 'v (2(6) lietxýcvn ý2. I aiid (2.5)
or (2.1) wvould v;a 'sh. Such a model is unrealistic lbecauise it wonuld have ait Single III' (ICrc
inertial frame c ' ecrence in which it were spherical (with fixed radius a ) and its urnpa~ ax`;
w~ould stretch j -n Infinite length in its proper fraTIut Nwhn its velI lt V with Iirespell to thle

* 1preferred frame approached the speevl of light.
Still we can ask 1f t he variable velocity ViI the (ha rge lnt egralsý of 0.1) atid 13.2) Iior theI

Lorentz model of the electron actually prodluces the 1 iscrela nix (2.6)i bet weert eqji at ions

(2.4) and (2.5) or (2.1). For a charge withI velocityV other thart zero,~ both A brahamn andi
L~orentz derived the first terms on the right sid1es of (2.1 ) and (2. 1). the t erins inI qiest ionl.
not from- the charge itgasin (3.1) anid (3.2) bitt by evaliiatijig the itiomientumi and energY
integrals (second integrals ) in (3.1) and (31.2) for a charge m ov ing witl conulst a nt vc locitv
with respect to trime, then (1iflferentiat inrg t he resiult ing fi iii ct io of veloci ty witl~l r''pect to
time [2, sec. 22]. [3, sec. 180]. We know that falsely seItting thle charge vclori tv u( r.I
Inideperndent of r in the first Integrals, of (:1.1 ) and (3.2) (liiia.t lie dikcrepayicv 2.6). Is
it really Justifiable, as Lorent z [3, sec. 18:31 arid A brahiamn [2, sec. 231 argue. to aso'iine a
charge velocity constant in timre Ini the secondl Inrtegrals of (3.1 ) anrd (3.2) to derive thle first
termis of (2.1 ) and (2.4), the terms t hat p~rodulce t lie discrepanlcy (2 .6i)?

A pparently, this question was not d(leided withI ccrt aiit uni itil the work of Schot t [1 31
who derived bothI th~e force aitd power eqfuat ions of motion. (2.1 ) and( (2.4), by evalu atilng
dlirectly the integrals in (3.1) anid (3.2) over the charge dlist ribltit ion for the Lorentz niodel of
the electron moving (without rotation) with arbitrary center velocity u . fit particular, his
evaluation of the charge integral in (3.2) Indeed yielded the powe'r equation of miotiont (2.4)
to prove that the dliscrepancy (2.6) with the force equat ion of niot ion (2.1 ) actuial ly existed.
III fact, Schott's book appears to be the first reference in which either the force orpoe
equation of miot Ion c-an he found iii t he general formi oif (2.1 I anrd (2.A ). Tlo obtain these
equ1 nat ions from the wvork of Lorentz anrd A brahnam. one hias to piece together th lie rsult s of a
nunbler of their papers or various sect ions of their hook,, (for vexan iple. secs. 28,32.37.1 79.and
ISO of [31 plus secs. 15 and~ 22 of [2]).

Schot t's derivations of the force anild power eq nationis of iiiot ion, (2. 1) anrd (2.4). front
lie charge integrals of (3.1 ) arid (3.2) itivolve extremely t eio'sw niiand ilat ions (if th lie onble

Int egrations of the 1,i6nardl-Wiechert pot entials for ain arIat rari lv iiiov inrg charg~e (iist ribilt Io.
T hey are so involved that Schott 's rigorous apiproachi to th le a nialysis oif the I oreri / IIOI Id

of the electron has riot appearedI or been repeated,. as far- as I ala aware, in any sitbscquerit

review or textbook. Page [14] also (leriyes, thle force equlat ion of mnot ion (2.1 ) by evalu at inrg
an~d integrating dlirect ly the self elect rorliagnet ic fields over thle chiarge (list ribult ion. I Iowev('r,
Page's dlerivationi does riot show expl icit lY thle Variat ion iivIII it v of thle chiarge dIi'1t rhutioni
I flioligioiout lhe Sl 11fl. k iid thuit C annot he11/ to~ ti V'll' D4VC (''("i liiiIn iIf 11 (lt olt
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3.1 General Equations of Motion from Proper-F~rame
Equations

Lorentz ailso (derived the force equation of motion from thle charge Integral for elect ro magnetic
force in (3. 1) by mneanis of it double integral of the Litriard-Wieclrert potentials, but only InI
the pro)per framne of the elect ron where the velocity of the charge is zero) and the derivation

simplifies greatly to %lieIld the %%ell-krown res-ult [3,111 (derived in Appendix A)

t2

Fe ----- U ----- + 0(a). u - 0 (3.:3)
67t~ac2 6 7uu5

( )

to whliich the generalI force equiat ion of mrot ion redu rces when the velocitY u in (2.1) is Set
equal to zero) (or when (ue)2 «ý, 1 ).

For a velocity much less than th le speed of light., a (lenivet ion performed in Appendix A.
si nlirto Ioet' (eIva o of (3.3), 1hut applied to h le charge integral for- elect ro magnet IC
power in1 (3.2), yields the sriiall-cvlocity po~ver equat ion of motion

Fe 11-U-- Uii±140(a), ( <) 1 (3.4)

towli( hi the general power equation of motion (2.1) reduces wheni only the first order termis
in u/c are retaiined. Note once aga in that t lie scalar pn-odimct of u with th le force equation (3.3)
(does riot, yiel d the powe~r equation (3.1). Section A. 1.2 of Appendix A shows explicitly that
tie variation of thle velocity over the charge (list ribution. even for (u/c-)-' < 1, must be taken
into account to derive thle correct expression (3.4 ) for the small-velocity elect roniagnetic
power.

Now equrat ions (3.3) ind (3.1) raise an Importanit question. Since the force andl power
equat lowri of 'riot ion. (3.3) and (3.4 ). are dlerived rigorously from (3.1 ) and (:3.2) for u ap
p~roachini g, zero. whY n ot i pva pplv the relativistic transformation to thle velocity, Its t irIIe
dleriva tives,. anrd tire externai IfOrce ]in (3.3) and (3. 1) to obtain tihe general equations of mno-
tio ri 2.1 1) anrd ( 2.4 ii anr a rIiira r\ framne. [her eby. onet( would avoid the di fficult evallnationl
of lie s;clf foru-( amid poe diiect ly frorin (3. ) and (:3.2) for a relativistically rigid shell of
charge mioaving with arbi ttrarv center velocity U

Indeed a relativistic traii formai ia of 11u. ul anrd F,,, ]in thle lproper-frai ie force equaltion
of Iii'tP I (:3.3) produ rces thle genera I force equlal ion of rn()tion (2.1) [1.5,0]J. However, the
sarne relativistic t ra risforrinat ions appllied to (:3.1 ) produrce the equaltion (see Appendix A)

F, . uii +- - U-(.1:1)2] + 0(,) (3.5)

Wnjlih oes; riot agre'~with eilFrI ie eea ~wr i~aii fri1in(.)o h qa o
(2.ý (dained fronithe scaiar prodia. I oi u with lcfreertiiofn n(.)
111i1ý app~arent pairadoxN is; xpiairned 1), retuirrinig to (:3.1) and (:3.2). Since the Self force

F.,ý and -self power Pi iII i3.1I ) arid (:3.2) are quranititlie, obtained by Integrating over a finite,
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dlistribution of charge and are not the force and power applied to it point miass. it Is iot valid
to apply the point relativistic transformuat ions of force arid wr'iter velocityv (arid (lerivdtilVes

of velocity) to determine the general vallues of the Iut egrals iii (3.1) arid (13.2) fror i their

1)roper-frame or small-velocity valuies. For the force eqirat ioi of roirot ro. I lit i ntegral'-d Iff
force (3.1) maintains the transformation properties of a point force. itin( thIus ith poi t

relativistic transformations can still be ap~plied to obt1amn thre genjeral Inutegra ted clt'I force

(3.1) in an arbitrary inertial frame fromr its jproper- frame valuie our rthle right sidle of (3.3).
Un fort tinately, one. proves this fact by performing the dlifficult evalurat ion of (3. 1) in tIhe

arb~itrary inertial frame.) For the power epilatioli of mnotion. however. th lient egrat ('( power
(3.2) does not transform as thre timle rate of change of energy of a moving point mnass (see
A ppendix A), even as the radius of the charged shell approachies zero. anrd thlus the point
relativistic transformrat ions applied to thre sririall- velocIt V power (riIght side of (3. 1) a1 (1 - ()

donot give the correct valu-e Of tire p)ower iII arlbit rary jinert ia rm rgh ieo 2
From the viewpoint of thre elect roniagnetuc st ress-rrrorrrt fttiiin-enerýtgy% teiisttr kltisclirsed

iii Chapter 6), it is not surprising t hat thre p~ower' equa t~ior of mnot itn d(oes trot t ra risforim
covariantly, because thre elect romagnet ic stress-ruionienit rnrr-errergv,.% tenisor of a cliarire~l shell
is riot Ii vergenceless and the electrormagnret ic iforlenli~l tur-erlregv (does nrot t ransforir i as a

fouir-vector.
In summary, then, since the p)oint relativistic trarisfornirat loris (10 not nrecessari ly ajpply to

ain integrated force or power (and the electromagnectic Strs-lririr n-nrytelisOr is lhot
(livergeniceless), It is otmathematically rigruto sehsera frm inso ldte
integrated self force and power, (3.1) and (3.2), in ant a rhit rril v1% nioviriig inert al reft'rerrct
framre from their proper- frame or snail- velocity expressions (3.3) arid (3.4). M\or'oviT', as
exp~lained in Section 3, the classic Loreiitz- Abrahami derivat ion of (2.,1) anid (2..1) for ari-it~trarlv

u also lacks rigor' becauIse it dlepenlds upon the evaluat ion of tIhe mronienirtir an cnt cltrgv of

at shell of charge moving with constant, rather than arbitrarY tirme varyring velocityv. Thus.
it appears that Schott's book [1:3] contains tire only rigorous derivatiorn to date of 1)0th thre
force equation of motion (2.1 ) and the power eqilat Ion of niot iolr (2.4).

Since this liiglrly' commendable derivation by Schott is also ext renrelv tetdiouis anrd (difficiult

to rep~eat or check, a mnuch shorter, simp~ler, yet, rigorous (lerivat ion of t re Self elect rorniat unet Wc
force and power is given in Appendix 11 by applying tire relativistic t ranrsfornmat ions of t li
elect romragneti1c fields at each point withini the arbitrarily monvinrg shell of charge hofore
performing the Inrtegrat ions in (:3.1 ) anid (3.2). (All t hese hen vatittrims t eperid 1ir 1 j oCt'pNIMMrig,

ire p)osition, velocity, and accelerationr of (eachr eletrent of tho'( tirargt' at1 1ltir ret artdet 1 t1101 e11

at series about tire present, timie. \Vhleri the exte(riial forte is appltiied at t =It. iia viwi irI etri
zero for t < 0, Sectionr 8.2 shows that t lii('s series expansirons niitst b e rinio)dIifit d sigirt Iyv near

t=0. This slight modification elimi n at es tire r ti'ýrr',sal lpre-aocelerat ion thiat plagirt thre
solution to the miniriodified eqrration of riotilon: see (Chlapt er S.)



Chapter 4

INTERNAL BINDING FORCES

III Append ix 13, we have criticallyv confir rued the evaluat ion of the self elect romiagnetic force

arid power, (3.1 1) anId (:3.2). leadIing Ito the forc and1( power equat ions of nmot ion (2.1) and (2.A1).

Nit 2.1) and (2.4) are incon~stistn since faking the scalar p~rodluct of u with (2.1) gives

(2.5). which diffes from (2A1 byK the terin (2.6) Nlot only the self elect oinagnetic rnonen-

turn-energy 1)ut also the self elet rotagnet c forre- power fails to transform as a four-vector.

%\'hat has gone wrong.
To ..ee clearly thle prob~lem and1( its resolution, ithelps to divorce the analy\sis of the mlovinig

spheri a I shell of chiarge froum I lie qu estioni of whlet I ir it models tilie electron. The analysis is

based cleit irely iipoti ClOSiAl! fields, forces, and eli amre and thle extent to wh~iich it describes

the i nt ernal struct ure of thle electl-on is i relevaita to lie question of the inconsistency be-

tweeti the force e-qual ion of miot ion (I2.1) and the power equation of muot ion (2.4). We could

enter our classical laboratory, disribute a charge unifornilv on the surface of an arbitrarily.

small. niassless (or nearly inias~l~ss ), relativist i ally v rigid", inslat nig sphere, accelerate ths

charged sphere, and, presumably, get consistent results b-etween Ilie force t hat. is required to

accelerate the sphxre and1( thle power delivered to thle ji dre.

4.1 Poincare' Binding IForces

1orevisualized sulch aI model in his 190)6 paper mn tilie lynianilics of' th i(' lectronl [1t].J

(A( tua ll. I ~oincarb [11 sec, imietit ons thle cha rg# (list ribut ed on a condi l(Ior rather than at

inisulat or. 1e choose thle uulda or model to avoid the possibility of lihe chiarge re(hisi ribu~t iug

it-,elf when the sphecre nmovc, ý H argued t 1 at th mlwa thle charge could rermaini onl lie

sphere was for there to exist bitiditg foru's, exertedl onl the charge by the insulator that wouldl

exact ly caticel the repuikivc pI rIion of' tlie cI'ect romtagtet ic forcesý. Ihiese internal binding

forces are iiot k'pt jonual. tIe ahnc ' ";t, scvsar ,v in a stable classical L~orentit indiioI'. Trhey are thle

short -range dipole forces t ial aw (I ia Iv exis't at. the n.Suirface of t he insulator to hold the excess

chargpt the surface. Althioui ph hIna ' didno have today's knowhlgo h a e(

the internal binding forces, lie assatinwd they cxisled. To quote the n' glil t ran-lationi oft

Poi near., I Iieriufore it is indccbd nr's~arv to assiutne Oin th le orenitz moiide.l] that in addit ion
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to electoroagnetic forces [of the excess chmage alone]. thler'e a re other forces or lnorl [16,
sec. 1].

Tfhus the total force exert c] on thle charge hii Lot i th force arid power ejuat lilns A'

motvion, (2.1) and (1(24), must indilde these internal bindidnjg forces (whi clh we kno1w t o(a ,v
are alsoelectromagnetic in origin) as well as theinUtneia electrornagritic forces of tI.'cs

chI arge.

Flor a stationiary charged sphere, as lhimnicar exp~lainied. t he b~ inding forces exert el 1, ' t he
relativistically rigidl irisuilator on the excess charge must be( equanl and opposite the repullsive

elect romagnet i c forces produtcedl by t ie( excess charge (list riLu t ion. Howxever. Ill ordler to

include the bindinrg forces in the force alid power equat ions of mi ot ion, one has to know thin

"vaue of the binding forces for an arltitrarilvy moving shel of charge. lIomrrcare dletermninedl
lie internal bindinig forcs on a muovinrg shiell by assum55inirg it -po~t rilate (of relat ivii v*' namiely

that the -~imp-ossi Lilitq of experinnieitallv demlnstrdting thle abmolrte moilveri(it tl e e1tarthl

would be a general law of natulre": an rd. in par't, Ienllrr. livjo a I izc sie vith ii olcnti / I. ec

81 that the internal forces ini lie Loreni model(1( worill Ame % I1n, slanin I rarf~inao l ,i tm-hat

Maxwell's eqrratioris inirpied for the elect rormagnetimc forces [I6 hoI troidiictioil. l~oili( avi (lid

not have the benefit of Einsteins reiltivity lIapers [4,7)1 when lie Subirt ted his paper '16]
ini .July 190.5, or thle knowledge that he b inidinrg force '5w( ' shor - ranlge dipole forces of

electromiagnetic origin.)
As at consequence of this latter hypothesis, Poiricalr d r 'v a startling coniclursion . 'l'ie

niternal binding forces that canrceled the irit erial sef elect rstat ic forces of tlie( excci, ch~(arge

on the sphere at rest, when transforniid to a moving shell. no ri/t nol contrihit e to I lie total

self force on the mvoving charge but mu1,(1coritrihrite to thle toal l ine rate of change of energy

(power) delivered to the charge in the I ,or'iit / model of heW moving charge. Specihca II v when
Poincare assurined with Lorentz that t he sphiericalI shell 'ompilressedl to t lie shiape of an oblate

spheroid in the direction of its v'elocitN by a fact or of 1I -- 1121Ic' th linrio rate of c'hanige oif

the binding self elir'gy juist. canceled dtlied iscrepa r c ( 2() in ho'( powver (salation of muotioni

(2.1).

To see how hPoinicar arr'ived at t his remrarkabie result. heiuir xvit i thle ei('t r( (51ate f'orce

ti n it surface charge

for' a statimonarv sphere of radius (a anid~ total charge lt ' The rindinrg f'orice w'o' uniit (hazf-w

reqrired to hold t he charge on t ite st at iorla rv- sphiei'e is thlen biyi th le negative of f," or

Now let the charged sphere move with a const ant velocitY Vu arid (-(.(it ract iii t Ire direct l( ti of

u to an oblate spheroid wvith rmior a xis equala to a~vl. I -- n /O2 =~ 'I / t( . Le orcn t z force law

anld Maxwell's equrat ions applied to thIiis ilmiovng obbla e spheroid predicthat the elct ruaSt i

force per unit charge ini (I.1) arid thu Ow lie n Lidig fre per "rrit clamte in ( 1.2) t anisforuis
t o

±, C" I + 1.3
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where tilie siubsc.ripts,.1 and I.rt'itr to theii th1C('-VCt'itF COMIi)tiNitTii' pIMdll('l arid !"'!) 1..tht-

ular to the velocity u. The t anisttmie,! hiiidiii foi e iv ( 11) is diroctcd along tile no. mal
into tile surface of thle Oblate splic'r d.

Thie binding force per unit char~e (4A.) integrto'( "er t he surfa"ch(large of the obale
spheroid, because of Ats symiiatrv.~ gives a total hindi ug forteo F, "~pal5 zero as in the (ase
of the statijona ry sphei(re. thIat is

Hoiwever, t he work tak-en by thle iridiiig fortes Riomn Ble (barge (list rilit ion as tihe Am,~ ~(
accelerates from zero to veh)itv ti, if wc cani ass tin W..3) is va lid for tlie ;iccelerat~inig cha rgc
as well as the charge miovingii~vithI (unistant ,'ecit , woitlo hc

~~f,- jJrj h l f ./ 1j (h c -/ Ei dri, : ~ (.

"W e li it is the angle Inmet nil tlie piosi tion v(ctoi r' to thelt' '1 io n! 'f charged(( and the veloci tv
Li. liii. ('larg(' eleiuit (A can 1w' ('Xipi'5i' as tWle productu of thli siirlace chmarg density v i)

lie 11(mte (Q/470a) andi thei pnotit't' of'ii th iii' ac ii'a rea'C clemieiit, of thle sphlere onito, tlie

'U"11 pii pe'idiciiiai to U j-- I:(4)

11011 (41.21. the in~t~grarld of(.a5ti he reWuit t eI' as

I, r ( I Its (/r . (4.7')

SuhS~!itlnuiiO~l Of1.6) 1idi' i: il I o 1 s'5 1 S

__1__ (4.4)

ouaiiuii 1,iS ( .) en i Ai 1"w I.9Kuk¼ th wini iI.tak~ NO by thet ~intcunl ia 1111( T' forcesý a, t In
qplii'itial Giart tfl'tiihotiu~ a, M'le!(t' 0i1I it ra( ts to) tli shi tpe of atn oblate spheroid

i the anive as th lit'\Vok tIx alt'i V. k ' isatit itc's'ni. /''21r( 1 onl , sphere that isý
l'oii)t'rssedl to ali of,laiitc~iii'l Ini if,( wo.-s of' ihe Enrglishi traiisktoiw Of iPoiic'ai'. -'I
have attt'nipte' to d( errni i 'ib Ihi ant id I foii I that it can he c,)inipa t'd to a constant
uxterna~l prissuirt acting~ on 11w' d'f~uuai.!e am!~ outiqiresilie ch'' no ;tvr . lt' k of which is



The negative of the time clerivat v'' of (1.A) (lerterni ne> ihe work done per i iiiit I inle. P-,.

I, the internal binding forces onl the moving charge

that must be sub1t ract ed fromi t lIeo right side of the p~ow~(r cq iat ion of motI ion (2. 1. 'oniparin Ig

(010l) with (2.6). we see, as Poincarc6 dlid, that the tito, rawe (of chiange N tOe work Sale 011

tloe charge by thle lbirnding force requ iredl to keep thle (h rcge mi thIn ins lat or julst Ui 11(11 the

discrepancy ( 2.6)' in power between thle piower equation of noion (t2.1 ) a i ii the force ( ( at ion

of miotion (2.1). As (41.4) shows, the Pointcar" hintd inrg f r(,(.- lo iiot aIt er. however. thle total
force on the charge distribution, and thus ISi Jim,' qualm Ii of in0 olln (Q 1). in cding Mti 4/13
factor multiplying the ( lectrostatic mass5 (2.0), iyinaih, utunAfic d by Wh Poain cr binding
forces. Neither does the powe r (4. ) dtht i'red by/th IS Pni can bindin7 forcs ix more lIS
41/3 factor froin the potter equation of ruo0tioli (2.4 ). nor do I/it '( binding fomc(. C/lange tif
rest energy of the charged sph i'e bca se It!~ in (4.9) ran isIf,- ;rht ti > zt rn.

4.2 Binding Forces at Arbitrary Velocity

'[he formulation and integrations of the Poincare b~indling forces in the previousý secT ion ale
based on the fields an d forces of charges it uni riformn mot ion. It is uniicert ain thIiat ti(eresuiilts

o1)-dined assumning a constant velocity are valid for a shell of c-]arge tinovirig wvithI arbit rary
velocity, especial i when taking t he t imre derivative of (.1.1) to (let etuine the coutri ut ion

[1.-10) of the internal binding forces to the power equat ion o)f miotion. Thus. we s-;hallI derive
tie inolecular bindcing forces needed to keep the charge on an inusuIa tor moving "witi arbit rary
velocity, assumning that the charge remains uin iformly (list ribuoltedI oi lie spherical inis ila tor

ini its propcr inreriahl frame of reference. (Incidentally, thIe qun'tAnn raised by. braaIi an and

Lorentz [3, sec. 1821 of what, keeps thre electron iii stable qu iii Irium in an be anisweredl for

lie charged insulator model as the notnclassical inolecula r energy vnhIix~u atimtis Qvepi ig 1the
rinsu latinig material 'rigid" in its proper framne; see Sect io LE.1..)

('nsider the shell of total charge c inn its proper frairn' as a imiiiforti d ist ri but ion of vol u~ln

charge density located between the rad iri a and a + h where b is lie Wrnit igl sriiaH II t icknieýs

of the spherical shell (see Fig. 1). At thle one instant of time /it it s proT hrfanw tietle v"dlci t

ti r, t ) of the chiarge at. every 1 )osit ion r withIiin thle shel is Pero. bu t thle accelera tion idr (Ar

atid higher time derivatives of velocityv are not niecessari- lv zro nor i nieperpentvi of p '>iot

r within the shell.

In A ppemidx U we determine the i entma I electric ati! tinagrie c fields ini theInu rI r fra tue
of the accelerating shell of charge. adtl it part iciular find thle sef &netIrNniaguetici force 1et

unit charge withbitn the shell to equal

f,,(r ~)([- 2  -ah 26 26 4 ~ 1 3Vj- Ja. i .1

I



6 total charge t?

r -- unifor~ily distributea
within a thin shell

Figure 1. Lorentz modtrl. of the electron v'iewed in its proper frame

(Ilir . I ). as t hrougliouit. whn u11 andrl Its, tinie rlerival ives are written Without the explicit,
funict ional dlep~endence ( r. f), t hey refer to the velocity and its time dlerivatives of the center
of, the '1ell.)

IThe force on any- volumne elenient, of charge inI the shell is the SUM of the externally
applied force, the internal clect rornagnetic force., andl the internal binding force on that
celeneut . Frorin Newton's secon(I law of "nrotion, we assume the sumn of these three forces
eqJUalS ant unknown "bare" mass of that charge element mrultiplied by the acceleration (see
Sect ion *.5.1 ). Specifically

f,,-,(r.I1) + fa.(r, i) + f6(r. t) -toii(r, t), u 0 (41.12.)

where f.,( r. t), f,( r, t ), aindI f ( r. t) are Ott, c xternal, Internial self elect~romagnetic, and Inter--
nial hindIing forces per tni t ('h arge, iespect iveiy. at the position r 'in the shell at thle instanlt
of t inie I Wi tw liproper franic ( ,u( r. /) = ( I) = 0).

Tlw :,(-( ailed bare Miia '' . whlich Imoi'eiitz iSO ( I e!al to zero, shold~~ 11ot be associatedl
with tlie iiiicliarged niass of tie lidiuator on whichi the charge is placed. Iii principle, thec
u rass of th Iein~sulat~or can be' u one iregl igi be, but .11 on the right side of (4. 12) is dependent
upoin tihe charge dles pite its I rd(Iii i( AI label as "bare" mnass. The following (lerivation shows
h lat the biridiing force I, uIdepenideii of i hie value of the bare mass .1l01. (The determination

of the Ii iass Mo and ; Ile reas-onl Lon rcitz t honight, It was negligible are discussed iii Section 5. 1

fitn 1.12) we asnr ic tlel'r nia.ss J/( (if H ie charge IS lllrifonriily1ý distributed with thre
cliargc III its proper franit. o I linit t lie hare mrass per unit, charge at, eachr point, imr the spherical
s lic Iis 1 I, Si ia il a n. wc sli al asu me I Ihat, tire variation of the external force is negligible
ov-er t~w (Ii arge (list rib1urtion iso ti~t Iait is applied uni forml~v (to ordler a) throughout the
prIop(i'-fraitin shiell. ie
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As a consequence of tlie shell remaining spherical in its I roprpe it, rtia I fraime of reference, we
have from equation (A.8) of Appendix A that the acceleration ii(r, f) of the charge elemenut
at r is related to the acceleration, 6 = fi(t), of the cent.r of the nonrolating shell biv the
formula

ii(r, t) = u - U) + (,, 2) (t.1.1)

Inserting the external force (4.13), the internal self elect iorragnetic force (4.11). and the
acceleration from (4.14) into the equal ion (-1.12), we oti ain

Fext( a +- 6r - fC(r t)

- r - -ra) __ ____- . U + 0(a). 1, 0. (4.15)

4- 4ro6a2  57r( 0C4  3 /

Next, integrate (4.15) over the entire charge on the shell to get

(c2 C.12
F,6t _ ( c2 + A +10) + A- d + ]f,(r, th+ O(,, =0, ?1= 0 0)4.16/

67-.oac 7,-ccý' charge

since the integral of i" over the uniform spherical charge distribution is zero. l)ivide 14.16)
by the total charge c and subtract the result from (4.15) to show that the hiinding force has
to satisfy the equat ion

fb(r,t)- 1f f ,(rt)d.
C; J7harge

-- (r-- a). _____ 1- +C0(-),
7r 0 6Ia2  5 -( 1 O(a), u = 0. .17)

The most general solution to (-1. 17) can he found by let I Ing the binding force eqi ral the right
side of (4.17) plus a homogeneous solution fbh(r, t)

- .- a ) _ _ _ _1 .. 1 2)

f,(r, t)- -e47rc 2 r-') - i' (ff I- [.,
rtV . 0 r 57r0oc 4  

-

+fbh(r, t) + O(a), i=O. (1.1)

Substituting fb(r,t) from (4.18) into (4.17) and again noting that the integral of r over the
charge distribution is zero, one sees that the homogeneous solition must satisfy the conidit ion

fbh(r,t) = - jfh(rIt)d(1

The right side of (4.19) is not a function of position r, so thIe ,lef side, fi, (r, / ). can oti be a
function of r, that is

f~bh(r,) = fh,(O) 1 .20)

and (4. 19) reduces to an ident itv.
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Si nce we have proven t hat thle hiomrogeneous solutiion fb1 , for tw lin irdinrg force is inde-

pendenit of the posit in of the charge elermnt waithin the shell, it does riot average to zero

"when integrated over the charge unless it is ideritically zero. This hoio~geneous bindin~g

force is e~xerte(1 on thle inisulator iii the opposite dIirection. Specifrall Av i thre rest mass of

the unchargedl insulator is Mm,, (assumned uniforrlv dlist ributed over 'he sphere), fbh is given

"simplyl as

-- U (4.21)

from Newton's second~ law (it riot ion applied to the intsuiator hii its lr.qiwr franie. (The into-

mogerieous binding fore in (4118 ) is alm Is(xerteNl in th le opposite direction on the insulator

but becatuse its total integrated value in zero it (does not contribute to thle acceleraton of

the rigidI insulat or. WithI the MAW((1 o of thle troriogeteous hr 1(1 g force (41.1)L the brindi ng

force (U. IS) per unit charge needed to keep the charge on the moving insulator is given by

-( 7,-- (1) /
I r - 6 a 6!

- 6~l + 0(a). 11r.f (40.2)

EQoation (4.22) shows t ha t thre hi nding force is in dependent of tHie bare mass Al0 .

The Bt-t terni on the right side of (.122). when inrtegratedI over t le thrick ness of the shell

of cha _ e. produces the static hit ding force (4.2 jwtr unit charge given byV Poi ncaro2 [161.
The second toerni on the right side of (1.2) is a bin' rng force t hat does riot appear in

Poincaroe s analysis using a chargedl shell mimin wit constant. Woky t 1 isre.d to
cancel the self elect romragnet ic acceleration forces ini (4.1 I) t.hat va iv with Ipositi~mi r about

the shell.
Thre thliird ternm on lie right sWWl of (4.22) a (ciunits Wr thle force exerted oin the charge to

accelerate t le iriass of thre mitki(rwirr l inrsublaor. If pra~iatiorial fields [I17.1$] or the dipolar

Lindidnre forces rit ribrilte to 11ie rest enerýgy of formrat ion, this mass can he, included in the

Mnass of the unmchrargedh irstilatwii.

\\Iai we integrate the ftun t per init charge in (1.22) over the Mhll the frst two terms

onl thre right side of (1.22) vat isti uo give a total hindring force equal to the homTogeneous

binding force

FC /)i(I,'J2 0(,), ?, = 0 (1.2 3)

nceeti d to, accele~ratet Hie iinusltmn in thIe pnqopr ramnro. FIr-thIermrot, hccirisc the first two,

termns of lie iirte-Inl 1irimlinme !"!,. (.22) at every point xviii~ini the cl~iaieu shell equal Ihe

Niegat ive of the initernral ectre'' onira n-i ic force ( .L). except fur the hterm in (.11) that are

indepenident of ý,teaa t ppe.11lixets ") a-nrd Ii c-an also, he applied to these internal
hinding r forces to) obt riiin lie tot i' i ridinig force( a1rid thle total power tieli\,ti ed to the chiargt

hv' tý I )iAn~d inng for"e. in air ad itrnaix. franie of refernce In particular. thle genreralizat ion of'

the o, wd terini on tire right sil' o! (.1.22) to an arlutiafy itnertial franie integrates to zeiro

Wiri Whirdgi the toual bhlrdi;r Aown% and leads to d tehiii of order a "A"reT finding the tootal



power delivered to the charge by the binding forces. ihe first terin on the right side of (4.22)
also integrates to zero in an arbitrary inertial frame but ('ont rihtites to lihe power delivered to
the charge by thte amount given in (2.6) or (41.10) when iult iplicd by the velocity u(r. t) and
integrated over the charge. And, of course, the third term in (-1.22) generalizes imnedliatelv
to -mj1 d("tu)/dt, which contributes --m,.,c'2d-y/dt to the power delivered to the charge.

Thus, the total binding force and( power, contributed by the rigorously derived internal
binding force per unit charge needed to keep the charge on an i siLiator iiloving with arhiitrarv
velocity, are identical to those given in (1.4) and (.1. 10) ,y Polti naert (for a massless insulator.
Mi,• = 0) using binding forces inferred fromi the fields and frces o0 a ChargC dliI.-tibUt io
moving with constant velocity, that is

f. (I('y u)
Fb6(t) = f(r,t)d , 0(a -n,,). 1± = i) 1.2-1a)

PA(O =- ~•fb(r, t)'-u(r' t)dc = 2 47rcoa dt - m... 'j-[+O,. .!)

cfharge d4ra1(t
Recall that the velocity u(r,t) for each portion of the charge (list ribution cannot equal

the velocity u(t) of the center of the shell (except when u(t) = 0) if the shell is to remain
spherical in its proper frame of reference (see Appendix A). 'Thuis u( r. t) in the charge integral
of (4.24b) cannot be taken outside the integral sign. Also, we rely on t lie indirect procedtires
of Appendixes A and B to determine the charge integrals in (.1.2.1) for an arbitrarily moving
shell, rather than transform the proper-frame binding force per umiit charge (1.22) to obtain
the general binding force per unit charge fb(r,t) iin an arbitrary inertial fraie. The reasoi
for this indirect procedure is that (4.22) holds for differennt spat ial points within tlie shell at
one instant of time only in the proper frame, but the relativislic transforinaltion of (4.22)
to an arbitrary inertial frame for different spatial points within the shell requires the force
over an interval of time in the original (proper) frame of reference, even as the radius a
approaches zero, because of the 1/a2 term in (4.22).

Equations (4.24a) and (4.24b) critically confirm that lhe rigorously derived binding forces
for charge on a relativistically rigid insulator moving with arbitrary center velocity, like
the original Poincar6 binding forces (41.2), remove the discrepancy (2.6) between tle power
equation of motion (2.4) and the force equation of motion (2.1), while having no mefect (e'xcept
for the addition of the mass of the unchuarged insulator) on the force equation of iootion (2.1 1.
or the 4/3 factor in the electromagnetic mass. With the addit ion of tI Ie binding stresses to
the self electromagnetic stresses, the force-power, but not the inoinenn im-energy, t ransforms
as a four-vector; see Section 6A.

4.2.1 Electric polarization producing the binding forces

One can find a particular polarization at the surface of the is•dslator that will p'odinc he
static binding forces derived in the previous section. Wheni hit <large is at rest, t lie elect ,iC
field for the dipolar hind ing forces is giveni by the first term of ( 1. I>) wil Ii i the s~l,'t ,,f cilarge
(a < r < a + b) and zero everywlhere else. A\ eclectric polarniation that would jtoditn(' t iils
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internal binding electric field is gi ven sinmply by a radial polarization ders it v. P( r;ý withinii
lie thin AShl of charge proportion al to the ni ndling elect cfield

P()--1i br < a.+ (4.25)

Ihle tot al elect nc tieldl . ,r. is I he sum of thle eb tric field of t, Iiv'frecharge andI the
electric field produced by the(- radial polarization densiy. For the charge at rest, it is given
by

EI~) 0 < a Kt+ t'5 (4.26)

Ini other words, the polarization adds a bou nd volunicm charge dlensity k --V, P) that cancels
thte free-chiarge density wit hillii lie surface layer (a Ký r < a + 6), arid a compensating bound
su rface chiarge density (P -i) at the Ou tei surface (r1 + 6). The total charge (free-chiarge

Pl)1 bi ound polarization charge i redu jces to t hat of Lorenitz 's origina free-charge shell imodel
of tie elect ron as the thickniess 'ý of thle shell approaches zero.

:V the thickness 6 of thle shell ap1 proaches zero, tQh electrostatic energy of frumat on of
the frec-charge and polarizat ion (it ribut ion is t he same as thle. free- charge alonle: thereby
(on fi ruming that the rest eia rg an lin ass contIribWii e by, t ilie short -ranrge dipolar bi ndinzg
forcc > cani be assumed zero. For the shiellI at rest , thare is no net force exerted onl the free-
chmarg by t he polarization. ( When i lie charge is novin g. the results of Sect ions 4. 1 and 41.2
show that lie polarization binding forces siinpiv a net force and pow\er to the free-chiarge
given in (4.24).)

One can also deteminer an eAWNc m.nolecuilar plmazizabiiy required to produce the po-
lariza tion that holds the frce-eliari2,t on thle stationary i nsulhat or. For a Ininca r, homrogeneouis.
i-ot ropic dielectric insulator. thle polariza tion densityv is proportional to t lie local field

p - (tOEIý + ) l - , U1Y < K K< a±+ (4.27)

wtieit' the Iproportiurialit.- \ on>! iiit o) iý the nunoleilar pulavizabilit per unit volume [11,
ch. ý. hslazt equzation tI ~~1hat the effective m olecuIa r polariza hi lit v at the surface
Of the( ilisuilator mu11st be (cliadi to 3.0 iii or-der for tie free-charge distri-iuitioni to excite thlie
ro(1lirodt polarizationi lezisit v.

In a ief, the frnec-chiargt' iifnuilv distributed in a thn layer at A, lisrahce of the inisula-
tor iiid 'ices anl effective (lielett Iij p jlari/ahi lit v 4 3.A wit liiu t his la~vr az "d a p~olarized field
that ca ricel s the self repuli sive foret , that the frt( (hi arge exerts onl itsel!. Opposite forces
are, of course, exerted on thle polariied nuolecule of thle dielectric ilisuilt r. These insulator
inoleciules (10 riot fly apart lit' 1 is1he are held t g'thier ill the stalble' energy- Coifigur-a-

(iolls, Uesc(ribcd by iionlclasý,i(al phIuNics 'qulalit ii) e~clec odyuianiics ritt her thlani th(e classical
elect 1odl\Iliiis emiployed l ert.)

Mmoue leaving thki (lal~te on w lientiernial liziding foce, let us sununivirin, withI h~idi~sighuI
the oriie in ad elimination of Ilie dis( iepmncy ini 1"mT (2(i) between Ohw LOrvitz-Ahralnani



force and power equations of motion. When thie charged sphlere is stat iriarvy, each cleihment of

the charge experiences a repulsive force due to its own electric fiel(d. TI} hv ) 'ct rt)stat ( forte

integrated over the charge contributes nothing to the total force tn t ill, charge. \VWlii lthe

charged sphere moves, this static self force transforms relat ivist icallv. liut still irit egLrit, to

give a zero total force. However, the moving charged sphere o'lt racts relativisticallv ii thet

direction of the velocity by an amount proportional to 1/'), while the component of thle stat ic

self force per unit charge parallel to the velocity reminas muchaiiged. lhus. the componeiit

of the static self force parallel to the velocity (loes work at a rate(' prop)ortional to 0)tie time

rate of change of 1/>Y, as exhibited by the negative of the power in (2.().

In addition to the self electrostatic force on the stallonar\' cliarge (ist riit ion, each
elenflent of barge is held to tie insulator by a binding force that just cancels. lihe elect. r,,>tali

force. When the chargt'd sphere moves, this bindingr force exert',i on li(e hht•g. (onit iibLiitc(s

exactly the negative of the power delivered to the charge by the electrostatic force. thereby

canceling the discrepancy in power (2.6) between the force and power equations of motion.

A subtle question arises concerning the mass of the iistila t•r. Even if the rest nass of

the insulator is negligible, the insulator exerts a biinding force on the chia-rge (list ribut ion that

does work on the moving charge at, the rate given by (2.6) or (.1.10). "l'he negative of thiis

binding force is exerted on the insulator bv the charge. (oniqini•eintly. work is doln on itlt,

moving insulator at the rate given by the iliegati,,y of (2.(i). hlh•ii. one rmight ask if tie ma>s
of the moving insulator is changed bv this work done upoun it iyv the dimiring forces. tHas the

problem of the excess power term (2.6) simply been transferredI from thie. charge dist ributiion

to the uncharged insulator?
To some extent, it has, but it is a problem that can be allayed b lookitig at a specific

model of the insulator material. In particular, if it is assumed that the insulator malterial is

composed of point particles separated in free space, the forces Am ,ach of thci poi lt particles

in the stationary insuiator must suni to zero. Moreover, the tolal work (lone by these forces.

when the insulator moves, is zero because the equal anid opposite forces on each of m hie poit

particles are separated by the infinitesimal diameter of each particle. and thus contract

relativistically by an infinitesimal anioutit . The total work donh)' bv the forces thi oughout

the insulator material is zero. In other words, the work done )v the bliriding for((,s oil the

surface of the insulator are canceled by the internial st'resses of lihe poilt-paratiche ml,)e] 4f
the insulator material, and thus does not affectt lhe mass uif tine iisilat,,r.
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Chapter 5

ELECTROMAGNETIC,
ELECTROSTATIC, BARE,
MEASURED, AND INSULATOR
MASSES

Asa ii ca ii of d1iscussing t tic va irii s ii a.sss. i' i wrs summniarize the basic results that have
beenl dcrivcd <o far in1 011i r r-Cxai iii iiat ion of Hi L orenitz1 model of the electron. We beglIn
with ita sp~ecific miodet' th wt- (em(n. Iit prin ciple, realize in our classical laboratory, namely.
a un ~e iiiforml ii l(isir in e( ou the surfaceý of an Insxilator -which remains spheric'al

itW11 coi -4talitt rad i jl N illit,, plroiper ;wertial fram e of recferen ce. Whet her or Tiot the model
actuta lY a pproxr mat *, thle it enai atrucnii re of tie ('lct ron is Irrelevanit to It, an alysis, whicidh

is' b a>'- o n Max vuciis equa ion t s wo h ret ard( d (;,i isa I) solutit onts only. the L orentz force law.

tie ri,1at vvtI ocneueral izallwii of Newt oit. s seci 'ii law of mot ion, the Fillnst cii mass-eiieriavl

relationl. nilni tIli 'hort-range' itiubuilar dipole forces binding the charge to die insulator

'iirfa cc.

Whn jil ext errir force is, apphed ito thre siell (if char~ge. for exanmple. by means of ali
ext ellitn ciei tric tied, thue charge dis.trIbibtilonl moves Wit h velocity tiir. I). l'Ncept when the
inrIsiilltor has zerIo \ elocitY. t he( veloc ity 4 thle charge at different posit ions r oil the( surface
of tIel insullator calinot 1i;1ve tlie sale1' velocity 1 -~ u(t) as the ceniter of, the Insulator ii'

dw in !ui lat or reutin i splorin(ý int, ll pro per fra i on (The relationiship betwxeen ii( r. t) aindI
the cetiof r velocitY utý (. t> lvell ill (i; at ion A.! 1 for nl/c)2' << 1 .m a i Ie at ion (13.31 ) for

arbitrary v t

"VHie fore*( onl each differ, Ill ]I I i 1 1l (ei1d of th Ili, oving charge is t lie sumt of t he externally
;Ipjilie tori pe1r init , hiiare f . i r.I /, thle Hit( rnal elect roiaguietic for, v per mnilt charge

fr. i ecreral ed by the charge it 'elf. 'i rd thle uitolculiiilr bindinig forceos per. unlit charge

f. 1r. f iioldb I i ll( t l ie l rge ito t lie rc~iitat r. thLat is1

1i 1 11 1 t I. ý vi I- ik f~ 1t)1Ie'IýI- i I .Ii ý It Ie I thee f irce )1 on th 11' 1enie1uOit 1ltfg (it chnre & MOVing



with velocity u(r, t) is

[fL1 (r, t) + fd(r, t) + fb(r. t)]- u(r, .t)/5. ,)

The internal self electromagnetic force is determined by, thlt, Iorenit z force law in iernis of
the self electric and magnetic fields excited by the moving charge. The self electroniagii1t1ic
lields in the charge distribution derive from Maxwell's equations with retarded (cau-al)
potentials to give the self electromagnetic force per unit charge in (41.1 1) in the proper framne.
The binding force per unit charge was derived in Section -1.2 by applying Newton's second
law of motion to each differential element of charge under the requirermients that tlie charge
remains uniformly distributed on the relativistically rigid spherical insulator in its proper
frame of reference (instantaneous rest frame) and that the mass of the charge distribut ion is
uniformly distributed with the charge in its proper frame. The binding force per unit charge
exerted on the charge in the proper frame by the short-range dipole forces holding the charge
to the insulator is given in (4.22). It is emphasized that this binding force is not s,,'('tilat('d
but deduced from the specific model of the charge residing oii lie surface of a iionitatiina
insulator that maintains its spherical shape and uniform charge distributioll in its proper
frame.

The total force F(t) exerted on t he charge and tle total ow\ver /'(/) del i\crc to tile
charge are found by integrating (5.1a) and (5.1b) respectively. over the charge distribution

F(t) =[fet(r,t)dc + fe(r, t)d( + Jfb(r.t)d ,5.2a)

Jcharge dchargc chargy(

P(t) = fezt(r, t) u(r, t)de +±fee(r, t) u(r, t)d + [fb(r, ) u(r. t)di. (5.2b)
J harge J har ge i.ha r q],

By definition

I fet(r,I)d = F,ý,(O) . (5.3a)
hqr!e

Also, because the radius a is assumed small enough that the externally applied force varies
negligibly with the position over the charge distribution (see (I .13)), the hiltegral inlvilii g

the external force in (5.2b) becomes

fet(r, t) u(r, t)dc = u(t) [-fr,(r, t)d + 0(a21) F u(t) + 0(a"). (5.3b)charge J char~qr

The expression (B.31) in Appendix B for u(r, 1) in ternIs oflie velocity u(I) oft lel. (t':eIie
of the shell has been used to perform the integration in (5.3T).

The integrals of the self electromagnetic Lorentz force and plower in (5.2a) and (5.2b),
shown explicitly in (3.1) and (3.2) and evaluated rigorously in A\ppendix B for the arbil rarily
moving shell of charge, are just the negative of the right hand si(hls of Ole Lorentz- Al (ihani

force equation of motion (2.1) and rhie Lorent z-Abraham iow ('c i, ci , if imiot on 12. 1)
respectively. That is
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2~ d + 2 .2 +* 3-12 (
lff drY -)b (yu) + -- au + c-•--(u • )u

charge 6-r,((OaC 2  i 67r (03

+,-2 (u [ ) U+- + o() (5.a)

and

jf (r,t) u(rt)d, -
'h~i 67rtOa dt 41

(2.4 [ i3

+ (u.) + -5)-(U . ,')2 + O(a) (5.4b)

where, as throughout. u and its derivatives on the right sides of (5.4) refer to the velocity
u(t) of the center of the shlell.

"1lie integrals of the binding force and power in (5.2a) and (5.2b) were evaluated in
Section 4.2 and are given explicitly in (4.24a) and (.1.24b), respectively. The total binding
force (4.24a) is zero for a rnassless insulator, but the power delivered by the binding force
(4.241B) to the charge just cancels the electromagnetic power term in the right side of (5.,lb)
that creates the discrepancy (2.6) between the right side of (5.4b) and u dotted into the
right side of (5.4a). Thus, as a result of adding (5.3), (5.4) and (4.24), the total force (5.2a)
and power (5.2b) become

F(t) = Fi.At) + II ,,,) +(Su) + 6r°c fi + _(u •t)f.

(It 11(1(-31 +, U.• 6) + -2( "u + O(a) (5.5a)

Pi() F(l) u(t) = F,(t(). u(t) - + III,,nc) -
2'2 ^ 1 [)- 2 U . ...

+ [(u, i) +--( o(a) (5.51))

Because the binding force has removed the discrepancy between (5.5a) and (5.5b), these two
equatiorns can also be written con(ciselv in the four-vector notation given in (2.7). Also. all
the information in b)oth (5.7a) ,d 11 (5.51)) is contained in (5.5a) alone.

5.1 Bare Mass in Terms of Electromagnetic and Elec-
trostatic Masses

In (5.5a) we have derived i le total force F(1). internal plus external. exp)erienced by the
clharge moving with arbitra ry center velocity u(f). What should this total force equal?
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One's first thought might be that the total force on the charge shioulId equal thie inie rate of
change of momentum, mesd(-ju)/dt, where I,, is the rest. mass of the charge (apart froin the
insulator); or that the total force should be zero so that the externally applied force equals
the time rate of change of the electromagnetic inoiuentuni when ,n, is zero. But thlii- would
be incorrect if one accepts the relativistic generalization of Newton's second law of mnotion
[19),[6, sec. 29] that says the total (xtirnal force applied to a particle should equal (apart
from the radiation reaction and forces of order a of a charged particle) the time derivative
of momentum of the particle, i.e.

dF•.t(t) =m-•(-)u(t)) + (radiation reaction) 0-(a) (5.6a)

or in four-vector form

dW'

•t =-rn . + (radiation reac ion) + 0(a) (5.6b)

where m is the measured rest mass of the particle (charge phls insulator).
Accepting the rest mass term iin (.5.6) as an experimentally verified relation (possible

extra terms are discussed in the next subsection 5.1.1), one secs that (5.5) is compatible
with (5.6) if the total force in (5.5) equals t he tinm rate of change of moment urn

dF(t) = o0(-•u) + O(a) (5.7a)

or in four-vector form F' •du t

= M,,c- + O(,,) (5.7b)

with the "bare" mass A!0 related to the electromagnetic rest mass (2.2) and the mneasured
rest mass by

A!0 = M - m~1 - 711., .5.8)

Furthermore, the measured rest mass ni of the charge shell can be predicted theoret icaliv.
Assume the charge is initially distributed uniformly on a sph'erical surface of infinite radius
where it has zero mass. The work required to assemble this charge quasi-statically from
infinity to the surface of the insulator of radius (I is determined from a simple elect rst at i"C
calculation (12, sec. 2.7] as C2/8ir(ca.

By the Einstein mass energy relation, the rest imiass of the la rged insuilator willt lhen be
this electrostatic energy of formation divided by c2, or what is called the electrostatic mass
in (2.3), plus the mass nin,, of the uncharged insulat,,r (If gravitational fields [17.18i or the
short-range dipolar forces binding the charge to the in sulator co ntrLii tc nonnegligily to
the rest energy of formation, this riass (-an be included! in MO . ) Thius. tihe incasured rest
nmass of the charged insulator equals the sim of the electrowttatic nia-, alid i]e mniss of tile

Insulator
U =n,., + m,,. (5•.9)
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and the hare mass in (5.8) c-art be written ,imply as

1,1 -- 1, (5.10)

or from (2.2) and (2.3)
(2

Emphiat ically, the value of lie harte mass does ijot. del enid oil tile mass III,,, of the insulat or-

'file finial form of the equjat ion of mnotion (5.6) or equivalently, (5.5) and (5.7), can now

be written for the charged Insulator as

F~1() [~~~a2+ 1f~s (u u+ _(U ii)ii

u+ I~~ (U -ij + [(U .ii)2 + + 0(a) . (5.12a))

Of com-se. (.5.12b) is redundant bec'ause it is consistent with the equation ob)tained by taking
the dot. product of u with (5.1 2a). 'file negative bare mass A10 in1 (55.11 ) eliminates the 41/3

factor in thle inertial rest rinass of the original Lorentz-Abraham equation of motion (2.1) 111
which thle bare Mass was assumed zero. WVith the addition of the bare-miass force-power to

the binding andl electromagnetic force-power, thle total force- powver and( thle total inomen-
tum-energv transform as fuiir vect ors: see Sect ion 6.

The mnass of th lIensuilatr t(n 7 ) allows the e(jIiatliois of imot ion (5.12) for the charged
1nsulatior to be writ ten withI ant arbitrary value of the inertial mass. Thuiis, (5.12) coinfornms
with the results of Schwinger [0.wososta tesmmn n-nrytnoswtI
covarianit mnorrientuni-energv for st akled charge-current distributions canl be constructed with

or wit lioit the 4/3 factor. Setting Mtn equal to 711"/3 andl zero, respectively, corresponds

to Scliwing-els t ensois withI and wit hoit the .1/3 fact or-, see Section 6.2. (The mass n,

can even 1e negative sIince, as Mtentit oned above, 'it. 'Includes gravitational andI binding-force
format;11,I VIon NorICe which, III general . are negative.)

5.1.1 Extra momentum-energy in Newton's second law of mo-
tion for charged p)articles

filie relativistic gent ral izat ion ()I Newton X. second law of muot ion (5.6) for a charged part i-

cAe is riot deterriuin I ii iiqiiely t rom lie lionrelat iv\ist ic version of Newton's second law for
linicliargedl particles. Froiim pi iirely t I eorct ical considerations, any foiir-x-~ct or function of ye-

Iou-itx amid Its tunic derivat ive, t hat vanishes when the charge is zero cotildl be added to thle

might side of (5.6). 1If. liow-%r. we, assumec th~at t ie only Irreversible loss of nionientuiiil
cnoer,_%)! the chtargc(I pant]t Vh i the radiated utomnertiimi-encrgy (so t hat when the initial
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and final velocity and its derivatives are the same, the only change in inolnentini-energy
will be that which is radiated) then this extra four-vector function nmst be expressible as
the time derivative of a momentuni-energy function. In ahdtition, since all the fu iictions iil
(5.6b) satisfy the condition that their scalar product with it, equals zero (that is. tiht time
rate of change of momentum and energy comnponents of (5.6b1) are coniipatilb[e) tlh, extra
function must also satisfy this condition. Thus, on theoietical grounds (5.6b) can be fulrther
generalized to (101

It, 2 du' d ;,
=1c -ic + (radiation reaction)+ ±- -T + 0(a) 5 .1:3)

ds ~d.,

where dG'•tta/d.s is a four-vector function of velocity and its, derivatives, that exists onlyv for
charged particles, and satisfies

d.- -1, = 0 . (5.1 1)

Of course, dGQtra/ds is a function of the charge c, since it vanishes when the charge vanishes

and may be a function of the radius a of the charge distribut ion.
If we also assume that the only irreversible loss in angular momentuni-energv ,f lie

charged particle is the radiated angular mouientum-energy, since the shell of charge is as-
sumed to translate without rotation, then u x G,,t,, and its four-vector version. W•(,rr' -
U1Glexrta must be expressible as the time derivative of an angular touiient uim-enera'y func-

tion [21]. This follows from taking the cross product of the posit ion vector r of the c'uter of
tlie particle with the three-vector equat ion of mnot ion in (5. 13) to get

d_ (r rali at ioui
r x u X x yu) + r x 1 5a)

d

or in four-vector form

Sd angular ra(liation
X,' I F - =1 c 2 = " rcu')'i+ angu Ia+

ds react ion

ds
d T (x,-,rta X tr)-\c'er - (~',rn. + 0 (o ). (3.15Sb)

When the initial and final position, velocity, and higher derivatives of the position of the
center of the particle are the same, the only change in angular nuioinentiurn will be in the radi-
ated angular momentum if u x G•,.• is a wrfecl time differeut ial of an angular moment 1n11n
function (Lxtr,)

u X G, ,,5, L,1 ( )a

or in four-vector form
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Trhere Is apparently 11o experimienital evj~lerice for. tilie existence of ;IIextra mlonlicrtuillt-

energy funict ion in the equal ion of miot ion of a cha vged part iclec at least to order aI, and. asý
Dirac said, "they are all munch niorc compllicatedl t han [!mc 2dW1' /ft] so that one would hardly
expect themn to apply to a Ipe thling like airt elect ron- [10. p. 15, Tj'huis we will assunie

G1 is zero arid accept (5-6) as t he correct gnr l a oll ot Newton s ,econd law or motion
for the charged shell.

5.1.2 Reason for Lorentz setting the bare mass zero

All the tools of special relativ~ity 1,5] were riot ava ila.,ie to Lureri~ z anld Abraham' when they
originally (derived the total force onl the moving Lorettt x n odel of tht( Ici on. Ini particular.
the Einstein miass-energ-1% relationship [51 and thL relati:vistic version of Newton's second litw

of rmot ion [19] had not appeared. H owever, Lorenutz (lid assumne the pre-relat ivistic form of
Newt on's second law of rrtotlout a ml t hus vet thle total force equal to a constant bare mnass
.If, willich Lorent z called tlie -.ii aterial- mass, t~imes the acceleration u' [3. secs. 2S. :32 and
179] to get

d~u - u rl--ation
F, (~t) (II) radiation 0(a) .(5.17)

6j-,, ac- dt (11 reaction

Forl thle charged insulator mwlco, 1L~orenutz% belire miass M! inr (5-. 17) wouldi in~:lude the mlassý
of the uinch arged irv-alat(r. that is,..XI = k 1 n0

The key feat tire 4 (5. 1 70 1:- t hat Lorerut z assumeod t li constant bare ritass M! in (5.171)
wasir lilIt iplied by do 'did rat l~ i arthl d(ru )/dt ( even thourgh he and Al)raltariii had (lisýovcre(i((
the -1factor in t lhe tirtie ratec of chatnge of the tlct rouinagnet~iC r10Ilotieritui iii1 (5.17) before
1905).

Bet weeri I1901 a 11( 1905. 1Kaun friian [22] proridc e eist ltcniH h hret
mnass rat io for "fast inovino itglect ronus. Lorenttz and .\brahiam hoped that t licse experi merits
would (lecidle bt weert Lorerit' cm wit ract ing ( relati-vistically rigid) mi odel of the elect ron anrd
A hra ita riis n111orteoit acting, rinot I 'a t ivist ically rigid) model . Although Illrs experiments wvere
riot accu rate enough to wettle thitis (quest ion [23). lKaufmannr's experinrcnit s showed clearly
that th li'prepot deranrce of r wititt'rul1 Ill tiliite elect rout varied as d( 2 u )/,'d rat her than Iul/dt'
-huts .ortilt z alccepied l~urit sresult s asý cxpertinitertal evidence t hat the hare utiass rnl
(5.1I7 i was niegligible. lo qiiutue Lwowti/, 13, se~c. 32], "Of coturse we are, free to believe, If'

we flot. hawt thlere is sorte mti i tiaerial [hare] Ittass at tachied to the elecct rot, say equal to

one- hulotn"Ine h part of the citiI(I tmia nlet ic "Ate. i it with a viwto si rt1diptt it will he best
to admiit IKaufunani,'s corucli-isiurt )In hiyja:tesis. if %ve prefer so to (call it. that the negative
electrotus have "lo oMtterial rýmrtlrc Il" "t all. hIIls is certa'rtly onec of Illce mrost important
reCslrltý of miodlerti physics ....... :\It Abilitail also urlicitided frontI lKairfrrtarnu's experimnerts thtat
the banec rutass oif thte I lect r wt ' [2, sec. I6.

As, lWe as 1912. ' hiott ((t itt elw to ".,upt05( l.1 co. iii accorilarit with thIe most recent!

rtasreert 1 13. pAi 7sj. I~ketu aiter experlientsl. 1v liuichert r [2.1] imu 1909, Neu ma nn [2.5] ill
19I 1. amd1 Hltir [26C ilNI-) 1915 Idecj! irt favor of IA~lolttz\s coritracil iug rmiodtl over Abrahamits
ruoriconit naclfd rig d'1) t of i elect t1.ru. r 1 lt also corifirrited thle ptt'it ltionl of special
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relativity, at least for "electrical systems," the h~are mlass was giiierallv as-suined out side lie

jui dliction of special relativity and thlese exlperillteit s were r'(0:' alri (edlias (Olifi ri'ling Iihat the

bare mass was zero. R~ichardson [2Y, cht. 11] suniii io zes the c L'(l(l'ra cowisrisuis il 191-5:

"These experiments [IBucherer's] app~ear to dispose effect n~Il v of thle riIgidl ýAlXI lrala is

iron relativi 'Ically rigid or noncontract inrg] electron anid t he\ niny v e regardled as irakIrig 11
reasonably certain that Thomison's corpuscles are dlevoid of niass cxi('jI)1 siuch ats is due to

the charge that, they carry. For this reason we shall al ways iefer to themn ill thle seq1uel as

negative electrons. We shall find later that the relation bet" o! "t he niovirig nias;s] atiul LtfI e
rest mass] characteristic of the Lorent z conttract ible elect ron is t rue of ; il clecti ical ýx stciln.

according to the principle of relativity. lBucherer's e-xperirrtent wiay thlerefore he regai-ded as

e'vidence in favor of that principle. A earal con firna tion of the relat ivi ty vxpressiOri

for the mass of a moving particle has recent ly been ob'anined 1)y N. Roh1r front (o(niider-at ion
of the decrease of velocity of o and 3 rays ili passintg through miatter."

C unningham [28] also gives a very readable a ccoun nt of thle conch nsIiin' d rawni ii 191-1
from the f-xperiments of Kaufmanan 0 al.

By 1990, it was generally acceptedl that the princicple of rclat ivitv appl~iedl to all i nass.

and Pauli would write, "The old idea that one could 1 (ist ingulisi. between the cols-t ant 'trule

[bare] mia s and the -appa rent' elect romlagnet ic mass, by me: us of deflect ion eoeine its l

cathbode rays, can therefore not lbe maintained" [6i. sec. 29].
fluone cannot accept (.5.17) or continue to assumne a ba.re, mass .11, emIiali to zero, for

our specific model of the electron as a charged insulator. withbout violating thte eiquiivaleiice of

mass and enorgy and the relativistic version of Newton's secondl law of mnotiomt. whticht imply

the negative bare mass, (5.11) for this niode). Also the bare- mass, as pointed out Ini Section
41.2, should not be confused with the nrn.-'arged mass of thie insulat or. However, because

Lorentz's bare mass corresponds to ( M0 + Min5) in our- analysis of the charged ins i.aton.

Lorentz's bare mass 11I can still be zero iii tho special caise when tilie niass i,.of the
insulator equals -. 1( or rns/3. lIn thIat special case the, t oral miass of lie charged inistilat or
would be (4/.3)7n~,



Chapter 6

TRANSFORMATION AND
REDEFINITION OF
FORCE-POWER AND
MOMENTUM-ENERGY

In chapter -4 it was shown that the specific model of an electron as a charged insulator de-
niand- molecular forces. bindirig the charge to the insulator, that just. cancel the discrepancy
(2.6) between the Loirentz-Abrahain force and power equations of motion, (2.1) and (2.4).
In Chapter 5 we saw that t he relativistic generalization of Newton's second law of motion.
together with the Einstein •mass-energy equivalence ielation, require the negative bare mass
(5.11) that eliminates the factor of 4/3 multiplying the electrostatic mass in the original
equation of motion (2.1). In this chapter we summarize the transformation properties of
the celectromagnetic, binding, and bare-mass force-powers and moment.u-nenergies, derive a
total stress-morenttin-eiirgv tensor for the charged insulator model of the electron, and
review the redefinitions of electromagnetic momenturn-energy that have been proposed for
the C\.weill(d(l elect roil.

6.1 Transformation of Electromagnetic, Binding, and
Bare-Mass Force-Power and Momentum-Energy

In ordter to su nimarize the traiisforimation propelrties of the electromagnetic, binding, and
bare-nmass moment ai a ir citergy >. well as their ltime derivatives, force and power, for the
charged insulator model of lhe elect ron, it will be li epfuil first to make a concise list of these

,I i nt i i's. The self hlectroinagnel ic, biilding, and bare-nmass forces exerted on the charge.
a ntl thIl associated it,,wer, t ,live.tl to the charge call be written from the preceding chapters
it~s (IGi 4 _ .1 d( "lu)

F,., . + (1) (6.1a)
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P =dWet 4 2 )d +
dt 3 d • 4- (

dGb _ d(-yu)
F 6 =- 1dt - . Ins dt + (u) ((.2a1

dVV'b 2d11 4 2 f/(1Pb - 71t_ " .2d- - -c -. O(a) (6.2h)

dt dt 3 (it (11-1

dGO 1 d(-,, u) (6.3a)
dt 3 (it

PO dI Vo 1 711 C2(1 (6.31))

it - 3 (it

where the electrostatic mass is given in (2.3). Adding tile externally applied force and
power to the sum of the electromagnetic, binding, and bare-mass forces ," 'owers in
(6.1),(6.2),(6.3), and setting the total force and power equal to zero giv, th, . inations
of motion (5.12) for the charged insulator.

The momentum and energy of the charged insulator system as a whole can l, e found
by integrating the expressions (6.1),(6.2),(6.3) of force and power withi respect to time for
zero initial velocity. For zero initial velocity, the initial electromagnetic io),nillt uii. •(, f E x
BdV, is zero, and the binding and bare-mass momenta are cliosen zero. (I say "cliosen
zero" because the binding and bare-mnass momenta could be given nonzero initial values as
long as the sum of their initial momenta equaled zero.) The initial electromagnetic e'nergy.
(co/2)f(EP + c2B 2)dV, equals the rest energy of formation of the charge (mesc 2) and the
initial binding energy is chosen equal to the rest energy of the mass of the insulator (?nmi,, 2).
Then, the initial cnergy of the negative bare mass is zero because the total rest energy of
formation of the charged insulator is assumed equal to the sum of the electrostatic and
insulator rest energies. (If it is more appealing to have the initial energy of the bare mass
equal to -(1/3)m,,c, one can choose the initial binding energy equal to mj,,,c 2 + (1/3)mesc'.
Such a change would add and subtract (1/3)inmc 2 in the following expressions for Wb and
l1o, respectively.)

G -e in=,,yu - 0(1) (6.4a)

WVee=,mesc2 ( - + +0(1)= inc 2- 1 +- +0(1) (6.4b)

Gb = L,,,TIU + 0(o) (6.5a)

11/,- =lm*(, 2  3 + 1n11C2 (I- I) + O(a) (6.5,)

Go - u(6).( a)

11 m•c(•- 11 (6.6b)

3
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F-rom thlese expressions of force power and ion lentumi-energy. onle draws the following
conclusions about their transformation properties . Neither the electromagnetic inonien11-
turn-energy (cG~e, We,) nor its t ine derivative, tIfbe electromagneti)c force-power ý (cF~,, Pi),
transforms as a four-vector. Sinillarly, nieither thre binding incionentuiri-energy (ct,1V) nor

thebiningfoce-owe TiFA Pb) transfornm, as a four-vector. Also (Fce -u. - Pe,) and
(Fb -u - Pb) are not equal t o zero. E'ven the sumi of thle electromagnetic and binding momen-
turn-energy does not transform as a four-vector. lowe-ver, the sumi of the electromagnetic and
binding force- power t ransformis as a four-vector and satisfies (F~e +Fb) u -([-',+ Pb) =0. The
bare-mass force-power -,(cFi1 . PO) also transforms as a four-vector satisfying F(, - u - PO= 0:
whereas, thle bare-mass mion ter urn-eniergy (cC11,11,0) does not t ransfornm as a four-vector, but,
contributes to the electromiagnet ic anud bindling inoinent~uni-energv to yield a total rnorene-
turn-enlergy that is free of thle .1/3 factor and transforms as a four vector. (If, as mentioned
above, the initial binding energy were chosen equal to rnli 3 c 2 + (1 /3)rnesc2 , so that the initial
energy of the bare mass equaled -(1/3)?n,,c', then both the bare-mass inomentum-ener-
gv andI the sum of the elec tromiagnetic and binding moment um -energy would transfo-.rm as
four- vectors.)

It miay still be disconicert irg that the total miomentum andl energy of a charged massless
insulator is not given by the conventional elect romragnetic Momentum andl energy

G,-( uE x BdV (6.7a)

- ( E ( 2 +c (B 2)(IV (63.7b)

or that the total nmonentuini of a charged massless insulator is not given by the conventional
elect roniagiteti inomn ent u i alone, even when thle velocity of the charge is inuch less thtan

lie sp' ed of light,. but co~io-ali s also the moment urn1TY of a negative bare, mass. However,
one canl take conlsolatonl *In realiziii that. no law of physics is violated] 1)' the conventional
elect ron iagnet icr momnenttinl i not (equ ali ng the total momentum of the clharge. What we know
fromn Einstein's mass- energY relation and the relativistic version of Newton's second law of
motion is, t hat the total iitonientummu equals (in addition to the radiation mnomentumn) the
electrostatic mnass (M..i. rstA energy of formation dlivided by c') timres the velocity (ju ).
However, what we know fr~in Maxwell's equations andl the Lorentz force law is mierely that
the s1111 ol' the external and self dclciroinagnectic forces onl the charge is Ftrt - lco f E x BdV.
Only if this force on the chiargýe (quals zero, can the tot~al inomentuni of' the p~article be
given entirely by the convent ional c lect rontagnet ic inonnenturn. Since -4-((, E x BdV equals

I/ 3) ,rto(d( ; u ) dl ( phis radl at ton tern is ) rather thani m. ,d( ju )/dI . ',he Eiiist eini mass-energy
relation and( _Newton's sec')ii 'iaw for relativistic imot ion dlemiandl that this force not be zero
butt equal (-. 1ll /:(u~d-u/I t onsequeiit ly, t It at the total r1ilomeritu ini of thle nilovin g
chargI [lo~t be equall to it', (ofivlit Wlal I l('ct ronia~gTletjf liionicittumni alone.

Fimo the standp1oitnt of i lic e lect roitiagnetie st ress-mniollcinttumm-elierg\' tensor, it is niot

Slirrpi llIff that lhe 'onvniintlho (lcclromnlagnet 'c ilmonlen tutu-energy d1oes tiot represent thle
to~tal m niiti-e, yof tlt(, iitoviiig charge (Ilisltbltioli. B~ecause tk(, e~lecroniagimetic
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stress-momentum-energy tensor is not divergenceless when chairge-current is presenit, the
associated momentum-energy will not., in general, be a four-v.ctoi. Thus the electromagnetic
momentum-energy could not, in general, be expected to represent the total moment urn-en-
ergy of the system.

6.1.1 Total stress-momentum-energy tensor for the charged in-
sulator

The four-divergence of the electromagnetic stress-nmoment uni-eiiergy tnrisor T• (r. f) equals
the force-power density [11], that is

0Xj fZ (6.8)

where

f - p(r,t) [ft(rt), fCe(r, t) u(r, t) (6.9)
¢

and T, can be written out as

TTt = [ -E 2 cggBe 1•' (6.10)

TeeEOF( 2i ) 1C(~~ )j A6la

g,, = EoE x B (6.1 1b)
S= -(E2 + c2B2) . (6.11c)

2

One can also construct stress-momentum-energy tensors with divergences equal to the
binding and bare-mass force-power densities, that is

OT - ( t), f p(r, t) fb(r, t). f(r.t) u(r,t) (6.12)

O9Toj , ~ u d-f,
=- f(r,t), f' 24 2p(r, f) Cd ' (6.13)

(As usual, when u = u(t) appears without the functional dependence (r. t), it refers to the
velocity of the center of the charged shell.) Adding the binding and bare-mass tensors to the
electromagnetic tensor would then produce a total stress-niomentum-energy tensor whose
momentum-energy density would forim a four-vector when integrated over all space. Taking
the time rate of -harige of this four-vector momentum-energy pro(luces a fouir-vector force-
power that, when set equal to the externally applied force, results ii the force and power
equations of motion (5.12). If no external force is applied to tle charged insulator. so that
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its velocity is constant. the total stress-onmlenturn-energy tensor is divergenceless and the
associated four-vector momentunr-energy is conserved.

First, let us construct the bare-mass tensor 7"', from its following three-vector equationis
corresponding to (6.13)

V)go _ -g d(-,u) (6.14a)
ITo + O 4r acp dt

cv. go + - P (6.14b)
c t9- 24rtoac dt

A fairly obvious solution to (6.14) is
-- C

go 24r 0ac 2 "U (6.15a)

Wo = roP (6.15b)24,x•oa

To = puu (6.15c)
247roac-

or in four-vector notation
- f P )UI (6.16)

Rohrlich [29, sec. 6-1] includes the bare,-mass tensor (6.16) as part of the "cohesion" or
binding stress-momentum-energy tensor. However, for the charged insulator model, it seerns
preferable to separate the bare-mass tensor from the binding tensor, because we found in
Chapters 4t and 5 that the binding forces do not make the inertial mass compatible with the
rest energy of formation.

It is easily shown that the solhio on (6.15) satisfies (6.14), or that (6.16) satisfies (6.13):
specifticallv we have

- 7T 0  - . a2(V" pu)u (6.17a)
247r, 0ac~

-g F n9LU) O+)• - _ _ P,• 0'C [ - + -,Yl (1 -

o)1 2 hir~oacl I) t a

f( (QU) 121 P -' dt 7 .V Poulu ((;.I 7i

-- 0

*' -go V •pu) (6.17c

So - ,:' + a] - u) (6.17d
r o 2,-, ....j( 0 of10 t 21-, (() c(V 0u) 16

winch ,rdlice ide•'itite." •hlwh j insertd into the left sides of (6.1,4a) andl (6.1 1b).
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The binding stress-momentum-energy tensor must sat isfy thli followiIg three-vector equa-
tions corresponding to (6.12)

- gb C,2 ...,,, d
- V.Tb + - = 'y6(r° - a)i' ) p(-u) (.lSa)

at 327r (Oa d

I1C0wb ( 2 M ,•,.,c d-tcV- 9b + -=( - a)i, • u(r.t) + -P- (6.18b)

c 0t 327r2 oa4c dt

The charge density in the first terms on the right sides of (6.18) has been expressed as a
function of the static charge density, that is

(

p(r,t) = )po(r 0 ) = -yb(ro - a), (6.19)

where r0 is given in terms of r at. the time t by the Lorentz trarlsformation

ro = (r - rj)± + j(r - rJ)11 (6.20a)

and the position rc of the center of the charged shell can be written in terms of the selocity
of the center as

r, u(t')dt' . (6.20b)

(The subscripts I and 11 mean perpendicular and parallel, respectively, to the center velocity
u(t) at the time t; and 6(x) is the Dirac delta function.) The binding force per unit charge in
(6.18) is equal to the exact binding force per unit charge in (4.22) with the first term on the
right side of (4.22) averaged over the thickness of the shell and generalized to an arbitrary
inertial reference frame. The second term on the right side of (4.22), which is preseilt when
the velocity of the charge is not constant, is not included in (6.18). Also, the expressions
(6.19) and (6.20a) neglect terms of second order and higher in (r - r,,) when the velocity of
the charge is not constant (see (B.29)). These seconddry binding forces are necessary to hold
the accelerating charge to the insulator, but they are inconsequential to the integrated force
and power because the results of Chapter 4 (specifically, equations (4.24)) show that their
integrals over the charge distribution are of O(a). (In principle. Tb3 could be modified to
include the secondary binding stresses, but in practice it may be rather tedious to construct
the necessary, relativistically invariant modification.)

A particularly simple solution to (6.18) is

gb = -iYpu (6.21a)

Wb C h(a - r0 ) + (6.21b)
327w2 •a 4

Ci III ,*

Tb h(a - ro)I - -- ýpuu (6.21c):327rq',a(4
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or in four-vector notation

7" 27r¾.. 4h(a - 7,)g" 4 pit, p -'u (6.22)h 327ý- 2:oa4 C

where q' is the metric tensor

-1 0 0

gtj (0 1 0 1 (6.23)' -- 0 0 - 1 0 ( .3

0 0 0 1

and h is the unit step function.
The preceding solution for 7"' can be used to prove immediately that the m,n, part of

the solution in (6.21) satisfies (6.18). To see that the remaining part of the solution in (6.21)
satisfies (6.18), evaluate V Th and Owb/dt for that part to get

- . Vh(a - [o 3C Oh . A ]

-1. To- 322~a~' 7ro- 2 o- tj 4 ro,/Or
or

-V • -- rol2 +o - o
:32 7r(0 a4 Voh Oritoj; ruj1 O 01]

4 ____- •[ -otl +r i•oij

or

- V , aPf) (6.24a)

anbt t 2- 01) 2 O/ -( r - r ,) ] _ 2 Oro +c 2 (r - a)r Or
_____ __ _V/oh -_ ___

Ot 32 7rc0 0 Of 3-)32r~oa 4  Ot :32 7r~ 0a4  Ot

or bince from (63.20)

Or0  (Or, 4 ,), -j + (r- Or,,, ý j +rold

having madIe use of ( Or, /10)) 111 . so t fhat

__r, + (u ' ro (I 1

c~~ ro (I(u11 _( -pfh Ull(r,/
-~~ 2 (6.2-11,))c :- 2 7 cft C"
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Inserting (6.24a) and (6.24b) into (6.18) shows that the binding stress-noieitir-energy
tensor in (6.21) indeed satisfies its defining equations (6.1S). or equivalently, that (6.22)
satisfies (6.12).

Equations (13.31) and (A.21) have been used to prove J, (6.2 1tb thal (to ord'r r,2)

[ u+u 1 + od() = ull(r.t) . (6}.2.5)

Thus, the time derivative of wb in (6.21b) equals -pf- ull(r. t) rather than -pf, • u(r. I.
However, the difference is inconsequential with respect to the integral over all space of the
power density, because

l .Pfb " u)(r,1)(1" = 0 (6.26)

so that
upfb-uli(r, t)dV pfh u(r, t)dl ' (1_) (6.27)

t11 space fal space 2'.17,- t '

exactly the right value to cancel the discrepancy (2.6) between the electromagnetic force
and power. Note that if we had assumed u were constant in our derivation of the binding
force tensor, ull(r, t) would equal u, and the total power obtained by integrating the power
density would erroneously equal zero, that is

pfb . u1ldV =uu pfbdV = 0 (6.28)
fall space II spac,

as explained previously in Chapters 3 and 4. (From (6.24) through (6.30) below, the terms
involving the mass of the insulator are ignored since they are irrelevant to this discussion.)

One can also obtain the result (6.27) by integrating the energy density W;, of the binding
tensor over all space to get

=-wbdV- e24 1  (6.29)alýl space 247r(I)a "•

and taking the negative of the time derivative. Note that lV6 in (6.29) differs by a constant
((2 /247rc0a) from its value in (4.9) or (6.5b) (with , 0). This is because lib calculated

from

1410 = ,dti 2 --- (6.30)) II lpac, 24 7r" 1(()a

differs from Wo in (6.6b) by the negative of the same constant (-c 2 /2.1r(,a). so that the
sum, Wb + Wo, remains the same whether it is calculaled by adding (6.29) and (6.30) or
(6.5b) and (6.6b). As mentioned in Section 6.1, an arbitrarv constant energy can he added
and subtracted from the binding and bare-mass energies, Ii • and lW0(, respective'ly. with-
out changing the total energy of forinalion or the final equalitons of 11100 io1 of t lie chlarged
insulator.
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nlit suinuiary. a tot al test o iitiineeg tensor iPJ ha-s been derTivedl for the chiarged
islat htor miodel of thle elect ion . It can be writ ten a,. the sutim of the elect romiagnetic. bi tld-

ing-forcc. and bare-imass strs-i onn ti-nryteiis(rs

T"Ir, t T,' + _h (a - r0 )g'" + -- (In ,,, + Ml,j3((rc, - a)u tu' (6.31)

with the bare mnass Wo equal, of course, to -111,/3 -C 2 / (247r~oac'). lIn (6.31) the right
side of (6.19) has replaced 1) li (6.16) arnd (6.22), and( ro is given In terms of (r, I) by the
general Lorentz t~ransfortiiat ion (16.20). The four-divergence of P3 produces the time rate
of change of the total ronoientunb('nergy density, for the charge distribution bound to the
insulator, throuighout all space andl turne; speccifically

01'11
dx -fP - JO'

_____ dn) h 11,(( 1' (IiduJ)])71"+ 11111 }c - - L ++ 0(a) (6.32)
d"; 6-,(, s dsd

with p(r. 0) given lin k6.19).
The integral over all splice of -0'JJ'prodl~c('s the sumn of the elect romagnetic, bind-

ing, and bare-imass force- powers given previously inl equations (6.1) throuigh (6.3) as well as
the radiation reaction and~ higher ordler elect romnagn et Ic force-power termis. In other words.
OT:J/ih. integrated over all space yields a four-vector force-power and the consistent equa-

tiois of not ion (5.12) for the (ha rged insulator when this integral is set equal to the external ly

appliedI force. Also, the integral of 7"'Z over all sp~ace prodluces the four-vector sumn of the

electromiagnetic. binlding- force. andl bare- mass mioment tim-energies given lin the equations

(6.1) thirough (6.6), phis1 the four-vector electromagnetic radiation- react ion moment ufi-eri-

crg\'. If lie velocityv of the (ta rge d istri but ion is, conist ant the right side of (6i.32) 'IS Zero.

or equilvalently, the divergence of P-1 is zero, and~ it thereby' yields a conserved four-vector

moenetimtiin- energy.
\\hcii thle velocity U is a cotst a it the stress- unoritetittlln(im-enrgy, tenlsor P1~ given in (6.31)

toget her withI (6.20). Is bas ical Iv thlt saniti as Schwinger's "first stress tensor" [20, eq. (.12)].
The difFerence is due to Schw intgt r% l ensor having its bare-mass p~ort ion distributed through-

ouit thle oblate s. heroild. whtcrea s we have assu med the bare- mass andl mass of the insulator

are (l ist ri buted with Ii lie I hinl shel ) f cha rge, Of' cou rse. t he st ress tenisors of Schwi nger are

not~~~~~~~~ liie rn h ltale lay,,ote chiarged1 i nsuilato mnodel of Ih electron, but, are(
cotisirt ('mted by subt racting at chargec-ut r1reuit st ress tensior, for a charge lin uniform motion.
from the elect romaamct tc sre- iouenitneegytensor, so that, thle dIivergence of the re-

stigtensor is zero. (The st res., t cuoiss of Scltwiriger are (discussed fitrtlher lit the following



6.2 Redefinition of Electromagnetic Momentum and
Energy

A number of authors, beginning apparently with Fermi [30], hav( suggested that the (onsid-

eration of specific binding forces and bare masses could be avoided in obtaining the eqiration
of motion (5.12) by redefining the electromagnetic monmentumn and energy (arid associated
stress-momentum-energy tensor) used to determine the self elect romagnetic force anrd power
[20,29,31]. In particular, they replace the original electroniagnietic momentum and energy
densities, c0E x B and co(E' + c2B'2)/2, in the second integrals of (3.1) and (3.2) Ky new
momentum and energy densities, g,,,(r,) and ir,,,r, ). such that the total momentunm
G,,, and energy lV,,•,

1.1Space

GICL•,(t) = j .L','r. f 6.33b)

J.1Spice

transform as a four-vector, at least when the charge has constant velocity, anrd satisfy the
consistency requirements (5.14) and (5.1.6b). Moreover, gnrc and W,,, can be chosen to
eliminate the 4/3 factor that arises using the conventional definition of electromagnetic
momentum and energy.

For example, if the stress-momentum-energy tensor is redefined so that the monmentum
density gne(r, t) equals -,2u multiplied by any invariant function involving the electromag-
netic field, charge-current, or both [12, sec. 1.23) (invariant with respect to all inertial frames
moving with constant relative velocities), and the energy (hensitY wlcL,(r, f) equals -!2 C2 times

the same invariant, that is
g,,f,(r, t) = -12 uI (6.3a)

Ut,, ,. ( r, t) = -YIc 2 I (6.341))

where u is the velocity of the charge, and I is the invariant, then the total momentum
and energy in (6.33) of a charge distribution moving with constant velocity transform as
"a four-vector. The total momentum and energy in (6.33) calculated from (6.3-1) determine
"a four-vector because (ju,-yc) is a four-vector and f l1l is an invariant, proruid I is

calculated for a charge distribution rooting with constant if locily.
Rohrlich et al. [29,31] redefine the momentun-energy to yield the specilic invariant

=to - cB 2) (6.:35)
2c"

which can be inserted into (6.34) and integrated in (6.33) for a uniformly charged sphere
moving with constant velocity u to give the four-vector

G '" ... (1) 7= 7 ,.,•tu (6.36a)

G,,,.( i) n ,,, u !(6.:la))
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'](E 2 _ c(' t•2)dV ... . (6.36c)

For a charged sphere moving with arbitrary x•.locity u, (6.35) still yields (6.36) for the

dominiant 1/a terms of the momentum and energy. Thus when one replaces %E x B anid
c( E2 + c2/B3)/2 in the self electromagnetic force and power equations (3. i) anrd (3.2) by g,,,,.
and w..,, in (6.34a) and (6.311,). with I inserted front (G.35), the I/a terins in the final forms
of the force and power equations of mot ion, (5.12a) and (5.12h), emerge wit hout the explicit
introduction of binding forces or a nonzero bare mass. However, for arbitrary velocity 11
the invariant (6.35) does no' predict the (orrect radiation reaction terms in the equations of
motion (5.12).

Alternative momentum and energy densities to (6.34) can be found that produce con-
sistent results for the 1/a terms (consistent with the requirements (5.14) and (5.16b) on
the rate of change of linear and angular nmomentun-energy) and correct radiation reaction
terms in the momentum and energy equations of motion. Probably the simplest way to do
this is to subtract the mnomeniturn-energy density (g.,, w,) from the original electromagnetic
nmomenttin-energy density c0 [E x B, (E-' + c"B 2 )/2] to form

g -IC, t0 E x B - g, (6.37a)

t,,, (E' + 2 13'2 ) - (6.37b)

suth that

..... (o E x Bdl' - f g'dl" (6.38a)
Jull space Ial spa, C

artd II,,,,. -,'" / j(i<2± + H.2 l)dl - j w,,tV (6.38h)
2 ital s.,,)ce, Jai1 space,

will form the tour-vector ,; u.tcl2). that is

.711',u (6.39a)

I 1,,,,,. = LS')( (6.39%)

when th( clharge has const•,i vewlocity, where ni, is an arbitrary cosltant mass. For a
relatl , i. tall' rigid chlargedt 51l)1re, tiioving with constant velocity, %e see fr•on Appendix B
or (,.la.b) that

4
() ,E >x BdV --3 ,sIu (6.40a

0l~ich 1,,blln, %%it 11 (6.38) an,1 (6;.39) to show t hat, g, and U'1" 11111st Sal i~fY

f I1 I
44 g M U (6.41a)
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I ?.,ugdV -=l-, - --• "(i.,4InC

fail space k3/

Moreover, if (g,, u',) are chosen to satisfy (6.41a) and ((i.-I b) for arbitrary velocilty u. then

the time derivative of (6.38a) and (6.38b) for arbitrary velocitv will yield 1/a termis consistent

with (5.14) and (5.16b), and correct radiation reaction ternis (and all higher elect roinagnetic

terms) in the self force and power.

Schwinger [20] has derived divergernceless stress- roiient inm-energy tensors for constant

velocity charge-current distributions, such that a (g,, nw,) can satisfy (6. 11) for m, = ii.i

or (g9,117.) can satisfy (6.41l) for in, equal to the electrostatic Irllass Mu,. Ard. inI fact, his
method can be immediately generalized to find a (g,. n'i, that will satisfy (6.11 ) for an
arbitrary value of the constant mass In, in the I/a term of the redefined ionieriturm-energy

given by (6.38).
Specifically, Schwinger rewrites the electromagnetic force-power density for irilfornilv

moving (constant velocity) charge (list ribn tions, that anc spherically svyiimet ric in thei r rest
frames, as the divergence of a tensor that depends only on the charge-curreit distrib ution.
When this force-power tensor, which is not unique, is subtract ed fronm lhe electromagnetic

stress-momentum-energy tensor, a new divergenceless stress-momentnm-etnergy tensor re-
sults for which the total momentum-energy is a four-vector. In particular, he finds the two
stress-momentum-energy tensors

7"'j = + (g -'u' ) T (6.42a)

and
r2 T~f + g"1T (6.421))

where T is a scalar that depends on the spherical charge distribmition. (The first is found by

subtracting the tensor uuP3 T, which is divergenceless at constant velocity. froii the second.)

For the uniformly moving shell of charge

€2
T" -3 2 N2a4h(a - ro) (6.42c)

with r0 given in terms of (r,) throiigh the Lorentz transformation. Thus, the tirst tensor

(6.42a) is essentially the same as the st ress-miomenttuiii-efiergv tensor (6.31) derived for the
charged insulator model when the mass of the insulator Mm,, is zero. Its mass. determined
by the integral of the energy or momenturn over all space, equals the electrostatic mass. (As
mentioned in Section 6.1, the slight difference between (6.42a) and (6.31 ) with , zero is
the result of the bare-mass portion of Schwinger's tensor being distributed throughout the
oblate spheroid rather than in the thin shell of charge.) The mass associated with the second

tensor (6.42b) equals the electromagnetic mass. It would correspond to a charged insulator
with the mass of the insulator material equal to 1/3 the electrostatic mass.

Of course, there are drawbacks to redeli n ing the elect ron iagnmetic Inlolnienl 11 a1tl c1lerg.y.
If the momentum and energy densities are changed iii t he second integrals of (3. 1) aid (3.2).
so as to also change the values of the tirte derivatives of these integrals. these new values of
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self electromagnetic force and power will no longer equal the Lorenlz force and power (the
first integrals in (3.1) and (:3.2)) for the shell of charge. This implies one or more of the
following alternatives:

1. the definition of the Lorentz force must change

2. Maxwell's equations imist change

3. the charge-current distribution must change

4. unknown forces (electromagnetic or nonelectromagnetic) are present that contribute
to the total self force and power of the charge distribution.

None of these alternatives seem very attractive because they each involve introducing

extra unknowns unnecessarily into the simple, deterministic model of the electron as an
insulator that remains spherical and uniformly charged in every proper inertial frame of
reference. Also, none of the redefined stress-momenut m-energy tensors predict the second
and higher order binding forces on the right hand side of (1.22) that are necessary to hold

the accelerating charge to the insulator.
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Chapter 7

MOMENTUM AND ENERGY
RELATIONS

"Thle equations of motion (5.12) for the charged insulating sphere of radiuls a moving with

arbitrary center velocity u(t) can be rewritten in four-vector not ation [11] Is

T e 2  1i duý 1 ('(12 U 1 (111, du1

I ,a d.,; 3 d.s2  + - / + o(,) (7.1

with

F' -, F (7.2at
U

i,(- 2b)

1, - -u ,1 (7.2(7)

d,; = -dt. (7.2d)

The factor e2 /87r~o may be expressed as m1,1ac 2 , where m1 is the electrostatic mass given n

(2.3). The mass mi,, of the uncharged insilator material has becn set equal to zero in 17.1 ).
T[he total moment urn G2 antd eii'rgy 1112 supplied by thle exterrnal force to the charge

between the times t 1and t 2 is given by

tt 2
G12 F, Ft (t)dl 7T.3a)

aind

a[ i2 F (I). t

or in four-vector notat ion

6,2 = (cG 12 V,1 12)= ,. (7.17
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Substituting F.',, from (7.I1 into (7.]1) we obtain

| du tdi (

tlt - ,Is + O(a) . (7.5)

If the velocity and acceleration of the particle is the same at times tl and t2, that is., at .s
and q-2. the momentunm-energy in (7.5) reduces to

(2 ( 2 [ u duljd

Gi - u - -a., + 0(a). (7.6)
6Ti~0  (1, ds,

In three-vector notation

ul 12-I + (U U ) (u.c) (7.7)

so that (7.6) becomes

G'12 =(CG12. "i'I")

_ 6,r~c~ 2 K 2 + (U )2 (u,c)dt + O(a) . (7.8)67,- ,,c-• , .c2, u

The ilitegranld in (7.S) is Just the momentum and energy radiated per unit time by aii
accelerating point charge [32],[2, sec. 15]. Thus, (7.8) says that the momentum and energy
imparted to the charge by the externally applied force during any time interval is equal to
the nimiient urn and energy radiated by that charge, provided the initial and final velocities
and aiTclerat ions are the same. In other words., the du'/d.s and d2 u'/d.s2 terms in the
equat MiO (of mot ion ( 7.1 ) replreseint rv(ersible rates of change of moment um-energy, while the
1,1 j !i-,. /d.s teinn reprertits thie. irreversible rate of change of mometiturn-energy that
radiat, t o the far field.

The reversible di'/d.s t(-Inl i.i, of course, the usual rate of change of momentumn-energy
fouir-vc(tor in tille relativisti• %t(i ,,)i of Newton 's second law of motion

(2 ~ d
--- u, :.Y ). (7.9)

(()( d- N"r c(J( a

It, intg.ral over a proiper time interval detertmihs the reversible change iii kinetic mnoineii-
tiirTI-'rierg ' of tflie ap itiche 1tiriig ., h,it timie i erval.

"Ti't rexv,'rsiLie d2 u'/d.2 te.ii r; ii be writijen it, tirce-vector form as

( , ,!, (;,2 7 + (fC2 c '
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When this perfect differential is integrated over proper time it yields a reversible change in
momentum-energy that cannot be classified as eit her a change in kinetic imonieltuiil-eliergY
or a change in radiated momentum-energy (which is irreversibly lost to the far field). 'chot
[33] called the energy port ion of (7. 10), that is

67r0oc(uu) (7.11)

the "acceleration energy" because i' "'must be regarded as work stored ii t lie electron in
virtue of its acceleration". Therefore, this part of (7.10) is sometimes referred to as the
Schott energy term, although Abraham [2, sec. 15] had previously separated the reversible
momentum as well as the reversible energy of (7.10) in his derivation of the radiation reaction
for a charge moving with arbitrary velocity.

Before and after the external force is applied, the acceleration of the charge is zero so
that the Schott acceleration momentuni-energy is zero; and. as expected. the momenturn-en-
ergy that has been supplied by the external force has been converted entirely to kilnetic and
radiated momentum-energy. However, while the external force is being applied, the charge
is accelerating and the momentum-energy supplied by the external force is converted to
"Schott acceleration momentum-energy", as well as kinetic and radiated momentum-energy.

A physically intuitive understanding of the "acceleration" momentum-energy can be
gained by looking at (7.1) for time harmonic motion. With the help) of (7.7), (7.9) and
(7.10), the momentum and energy equations of motion in (7.1) may be written separately in
the three-vector notation as

Fc2t - C d(tu) C2  d ý •2 l + (u" 1)u

c• [v:'1 + +(u' 1:i2] u} + o(aj) (.:

a7rd 87roa€ dt 67rco3 Lit d
-w t,! + (u u) + O(a). (7.12a)

[I- [V12 + 5Y(U . i1)2] }+0a
The first terms on the right sides of (7.12) can be interpretedl siimplv as the rates of change of
kinetic momentum and energy required to accelerate the static energy that is connected with
the moving charge. To understand the second terms on the ringht sides of (7.12). consider a
charge oscillating rectilinearly with sinusoidal frequency ,,'. so t hat the velocity is given Lv

and the radiation react ion teriis in t he energy equat ioil of hnot ion (7.12b)14 becomne

andi
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1 Vt2 + 2(u )2 1¾I'2 COS2(WI) (7.15)

whtet (u/c)2 < 1.
The irreversible reaction term (7.15) behaves as a time-harmonic radiated power, that

is. it has the time dependence of the Poynting vector integrated over a closed surface in the
far field. Its average over time has the positive value U02w 2/2. The reversible "acceleration"
reaction term (7.14) behaves as a reactive power whose average over time is zero. In other
words, if the oscillating charge were an antenna fed by a single-frequency input voltage and
current. (7.14) and (7.135) would contribute to the reactive and resistive (radiation resistance)
parts, respectively, of the input impedance of the antenna.

For a charge whose velocity and acceleration are continually increasing with time, rather
than oscillating, the reversible kinetic energy continually increases, the irreversible radiated
power increases, and more and more reactive or Schott acceleration energy is taken from the
electromagnetic fields of the charge. A sinilar unlimited increase in the radiated and reactive
energies occurs when the frequency of an oscillating charge or electric dipole is continually
increased, as one can see from (7.15) and (7.11). llowever, the reactive energy taken froni
the fields of an oscillating charge, although it can increase without limit by increasing the
frequency, is always returned to zero and supplied to the fields in an equal amount during
each half period of oscillation.

7.1 Hyperbolic and Runaway Motion

For hyperbolic motion (relativist ically uniform acceleration), which is defined as [29, sec. 5-3
and 6-111,

(12 uA du (u3ds2-+u " -0(7.16)
(j52 U ds ds

the reversilhe reactive power cancels the radiated power and the equation of motion (7.1)
reduces to that of an Icrharged particle

F 2 da'
,t -roa + O(a) (7.17)

dhat is. the time rate of change of kinetic momentum-energy equals the applied force minus
the 0(n) terms. The charged part]ice, radiates by drawing energy from the reactive fields of
the charge. the reactive fields con(tiuaMlv being replenished by the increasing acceleration of
the chiarge.

For thlie rullhawaiv so(lll ionls, ý (' hapter 8), exponent ially increasing, homogeneous solu-
tions to (7.1). the rcactivC loWC1r 'ancels botii lie radiated power and tHie kinetic power,
that is

*W - du dIs ds , 3 d t  (7.1s)
I +'

(I.,Is' (is 4la (Is
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(neglecting O(a) terms), or in three-vector notation

d- 2i + 14(u 'ri)u 1 4 1 112+ (U . L1)21 U + . ' 7.U)19a)

d 12. 19 11.)

d +? ] (7.1.%)d +. u2 = +~i 4a d)t ' I-

Even though these runaway solutions are presumably not physically realizable, they are
mathematically valid homogeneous solutions to the differential equation of motion that do
not violate conservation of momentum-energy. Both the increasing reversible kinetic mo-
mentum-energy and the increasing irreversible radiated inornentum-eriergy are taken entirely
from the reservoir of reversible reactive momentum-energy that is continually being supplied
by the increasing acceleration of the charge. It is emphasized that the unlimited supply of
reactive momentum-energy for the runaway modes is produced by the unlimited increase
in the four-acceleration of the particle, and is not dependent upon the radius of the charge
approaching zero or mass of the particle approaching infinity.

Although the homogeneous runaway solutions do not violate the conservation of momen-
tum-energy, it is shown in Chapter 8 that the exponentially increasing runaway behavior is
eliminated from the complete solution of (7.1) by invoking the asymptotic condition of zero
acceleration as t approaches infinity.

In an attempt to get an equation of motion that involves only the kinetic and radiated
momentum-energy of a charged particle, one may be tempted to simply discard the reactive
momentum-energy term in (7.1) or its three-vector equivalent in (7.12). Unfortunately, the
resulting simplified equation of motion would no longer be consistent with Fl ui zero. In
terms of the three-vector equations, the scalar product of u with (7.12a) would no longer
equal (7.12b).

It seems quite remarkable that without the insight and transformations of special relativ-
ity, Abraham was able to determine the reversible (reactive) parts of the radiation reaction
force and power in (7.12) from a knowledge of the radiated momentumn and energy of an
accelerating point charge; then prove that the solution was unique [2, sec. 15]. (In the four-
vector notation of (7.1) and with the transformations of special relativity, the determination
of the reversible part of the radiation reaction from the radiated part is an elementary ex-
ercise. Uniqueness of solution follows from the fact that a four-vector which reduces to zero
in the proper inertial frame must be zero in an arbitrary inertial frame.)
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Chapter 8

SOLUTIONS TO THE EQUATION
OF MOTION

As a preliminary to solving the equation of motion (7.1) for the uniformly charged sphere of
radius u and total charge (, write the magnitude of the four acceleration in (7.1) as

dul did (W .•w ')l wa1
-* (8.la)

ds ds -2c6 C4

where w is defined in terms of the velocity of the center of the shell by

w =u. = (I - u - (2 + w2 /c 2 )1/2  (8.1b)

and the primes denote derivatives with respect to the proper time

d- = dt/y . (8.1c)

lusertion of (8.1 ) into (7.1) yields the three-vector equation for w

" "F,8..-. 6 2  
-1 _ 4w + 4 U( "2 (W. wI)2  + 0(a). (8.2)

F"h r" 1ut. iiu f 1 ,,r 1ol ]io(I iII l he x . 1 , rct iou

F,1  F,5 (8.3a)

w = x (8.3b)
Wild (,'.2_) tc o c,'• ,I ,'

2 [• 4 ,, 4 W'2.W

"�w "(+ + + ((a)..
3C 

2)]
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Following Schott [331 we see that the substitution

w/c =sinh(V/c)(.)

reduces this equation for rectilinear motion to the simipler dlifferential equat iOn

where the electrostatic mass has beeni inserted from (2.3). and (division by iii, changes the

0(a) terms in (7.1) to 0(a') in (8.6).

8.1 Solution to the Equation of Rectilinear Motion

If the terms of order a' in (8.6) are neglected, the most general soluition to lhe res"ult'1irug

equation of rectilinear motion can be written as

V'(7) = ]C3T4 c F77) ,r/"T Aj (8.7)

- 00 < Tr < 00 k~ o

where the external force is applied at 7T 0 and is assumed zero for all timte 7 < 0. Integration
of (8.7) with respect to the proper time 7 gives the general soluition for V as

V(Tr) = B + I1 F tf 1(7')d(1'

00- 3c r/4a I Fi.IO r( 7') C 3 ,,'/4,1(/7 + lIa] . (8.8)

Integrating (8.8) with respect to the proper time, one could also obtain the p)osit ion of Ohe
center of the shell. This would introduce a third arbitrary constant (A and B being thet( othler
two) that can be determined by specifying the position of the p~article at at (ert ani titte. or,
in the remote past.

To determine the two remaining constants, A and 1B. two ot her boundary co~i~lit ions. art,

reqluired. This is one miore constant an(l boundary condition than is reqrilred bY New ollis
second law of motion for uncharged particles, Which inIvole(s onlyV the first d(lIVat ive Of
velocity, rather than the first and second (leri vat ives lin (8.6). At first thoughi. slin(e t lit,

external force is not applied until 7 = 0. oneC minght set the veloci tyN and acceleration eq na

to zero at 7 = 0 to Obtain zerO for liol I] thIe constanits A1 arid 1B. 'Ilhern ( .)wouldl breoiC(

V(r-) j ')r , (T -- '(T.

?1?,, ,

-X-- < 7 < -CM
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Unfortunately, there is a serious problemn with the solution (8.9). The velocity function V(r)
and all its derivatives approach infinitv (u(t) -, c) as r - cx, even when the external force
is applied for a finite time.

Returning to (8.7) or (8.8) we see that these "runaway solutions' are eliminated as r - zC
if and only if the constant A is given by

A - 3c J`: T' )t( I)( 3
,-,'/4adr,. (8.10)

Equation (8.10) insures that the acceleration in (8.7) approaches zero as T -I c, if the
external force approaches zero as 7 - Dc; and thus (8.10) can be considered a result of the
".asymptotic condition" [10,29]

hill A. = 0 (8.11a)

whenl

lira l'•t(.,i) = 0 .(S.11 Ib)

(Rohrlich [29, sec. 8-2] point, out t hat the asynmptotic condition can be based on a fundamen-
tal "principle of undetectabilitv of small charge", which asserts that the motion of a charged
particle must approach that of a neutral particle in the limit as the charge approaches zero.)
After insertion of A from (8.10), (8.8) can be v.rrtteim as

V(7) = B- + [- Fet( 7)e-c(T'T)I4`dr' + F•, 1,(r' )(IT' (8.12a)
I l f .,

-2C < 7 < "YX

or

V(r) B + J r + r()7/ 4 dr ''] . (8.121))

DO < 7 <

N final boundary condition is needed to evaluate the constant B in (8.12). One can
evaluate B by specilfying thel initial velocity, but this procedure leads to a velocity in the
remote past (7 -x -) that (lepei(nls on the external force, which we have assumed is applied
at 7 .= Specifically, if one enforce., the initial con(lition V(0) = 0 in (8.12) then both the
constant 11 and the velocity fuinctitjn in the rerimote past are given by

B = x V-- j ,/;(7T)(3')-•/4 " d7'. (8.13)

Lhvsically' it is munch more appeal ig to d(,miand I lhat in the remote past tle velocity be zer)
or a constant that is indepe(l(mint 'i,, the applied force. Thus. if the final boundary condition
oti the tmotion of the clharge is all asymptotic comdition on the velocity in the remote past:
iP p)art idular. for zero velocityv iM thlie renmote past

1im u 0= 0 (8.1-1)
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then B = 0 and (8.12) becomes

(r) - [j zt(r + rI)c-:i'<T'lMadTr + J "s.,(T')drJ . I15

-- o < 'r < oc

Equation (8.15), combined with the definitions (8.5) and (8.1). is the general solution
for the rectilinear velocity u of the center of the shell of charge for all time umder the two
asymptotic conditions that the acceleration approaches zero inI the distant future (for zero

external force in the distant future) and the velocity apl)proaches zero inI the remote past. Of

course, the external force must be well-behaved enough for the integrals in1 (8.15) to exist.
and the solution was obtained under the assumption that the terms of order a2 in (6.6) could
be neglected.

The solution (8.15) exhibits two noteworthy peculiarities. The most unsettling one, pre-
acceleration, or acceleration before the external force is appl)iedl at T = 0. is considered in
the next section.

The second pecculiarity with the solution (8.15) is that if t he force is zero aft 'r it is aplietd

over a finite t;ne interval, 0 < 7 < 7(, the velocity reduces to

V(r) = IrI' Fer')dr', 7 > 7re (.16a)

or equivalently

"Iu(t)M= 1 j Fýrt(t')dt', I > 1o (8.16b)

the final velocity one would obtain if the radiation term V" in (8.6) were ignored entirely.
This result (8.16) is not so objectionable, if one realizes that it does not imply that the
radiated momentum-energy is zero, ( - that the work done by the external force is converted

to kinetic energy alone. To see this, integrate (7.12) over all tinie that the velocity is charigi ug
(-s• < t < to) to get (for rectilinear motion)

to to (2J fertdt ] Fertdt = inm,,u(to) + /-u(t)dt ( -1a)
rio 6 2 7( ,

F_,tudt = Ft1 udt = 71,c 2 •,,(t0 ) + - 'ti (t)dt. (S.1T1)

The reversible reactive momentum-energy in (7.12), that is. the Schott acceleration IIo-
mentum-energy (see Chapter 7), does not contribute to (8.17) because the final acceleration
and the acceleration in the remote past are both zero. The first terms on the right sides of
(8.17) give the kinetic momentum-energy. whiLe t lie secornd terms give the change in radiated

momentum-energy. D)uring pre-acceleratiomi ( < t < 0) only the runaway solttion is
present, and, as explained in Chapter 7, lhe reactive nIolnerit Inn-energy cancels )both the

kinetic and radiated momenturn-energy. If the final velocity 4f the charge alo equals zero

(u(to) = 0) the change in the kinetic monietituim-energy is zero a id (,". 17) clifirn s that the
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entire impulse and work delivered by the external force is converted to radiated momentum-
energy. Note that even when the final velocity (as well as velocity in the remote past) is
zero, we have the inequalities

" (I ,1 tdt j 6 rto .cs j6Uu2 u(t)dt (8.18a)

and

to F,1 tudt $ 623o-- 1 6i•i2 (t)dt (8.18b)

That is. iII order for the total momentum-energy radiated to equal the impulse and work
delivered by the externally applied force when the final velocity (and velocity in the remote
past) are zero, the integration of the radiated time rate of change of momentum-energy
must include the pre-acceleration, because the initial velocity u(0) is not zero in the pre-
acceleration solution (8.15).

8.2 Cause and Elimination of the Pre-Acceleration

hlie ,ution (0.05) to thi eq mation of thle motion predicts a nonzero acceleration before the

external force is applied at 7 = 0. One may be tempted to simply set the acceleration or
velocity equal to zero for 7 < 0 to eliminate the pre-acceleration in (8.15). However, the
resulting solution does not satisfy the original differential equation (8.6) (with O(a 2) terms
neglected) because the velocity becomes discontinuous across 7 = 0 (even when the external
force is continuous) and spurious delta functions and derivatives of the delta functions are
introduced into the derivatixes of the velocity at T = 0. For example, if the external force is
a unit step applied at r = 0

F t 0 T < 0 (8.19)l"I -( > 0

then the solution (S.I.) becomes simply

:La 34 7.< 0

Vl-)~ = 5j -- (8.20)I n" 4 , + T 7 > 0 .

We qv tlidi ( ).20) satisfie., tlie eq(I it ti of mnotion (8.6) (with the 0(a-) ternis neglected)

for all 7. whereas setting 'j = 0 for 7 < 0 in (8.20) violates the equation of motion by
introd~irng delta and doubl,i ['11ii, olos i. I '( r) and V"(r) at 7 = 0. Similarly, a spurious

delta funiction is lilt rod(cwd into V") by differentiating (8.20) and setting the acceleration

zero for - < 0. regardless of the initial velocity.

A It h,,ngh t he noncausal pre- a cler at ion decays in the past at t he rapid rate of 1/e in tihe
proper time i nterval lig•,t t ak, , to travel .1/3 the radius of the charge, it should not appear
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in the solution to the equation of motion because the equation of inotion was derived using
only causal (retarded-potential) solutions to Maxwell's equations. It is not surprising that
the equation of motion of a charged particle allows honiogeneoiis solutions like the runaway
modes, which are not present in Newton's second law of ruiotion for uncharged particles.
because the radiation reaction introduces time derivatives of acceleration into the equation
of motion. The disturbing feature of the equation of motion is that when the asyvmptotic
condition (8.11) is applied to elimninate the runaway modes fronm the inhiontogenteous solutiont.

noncausal pre-acceleration cannot be avoided for a solution Ihat remains well-behiaved at
t = 0, the time the external force is first applied.

The root cause of the pre-acceleration solution will be determined by returning to the
derivation of the equation of motion of the extended model of the electron. Before doing
so, however, let us show that the pre-acceleration is not eliminated by including the higher
order terms in the equation of motion (O(a 2 ) terms in the equation of rectilinear motion
(8.6)).

The pre-acceleration solution (8.15) is a solution to (8.6) when the terms of order a2 are
negligible, yet the solution (8.15) violates this requirement. To see this, ret i tin to tlihe series

expansion for the self electromagnetic force (as ini A1 pendix I)) and note that the terris of
order a' in (8.6) are negligible if

1 Idn+ 1it c d "u n

n +1I di"+1  9a dtT

in the proper frame of reference of the charge. The inequalities in (8.21a) represent a sufficient
condition for neglecting the terms in the equation of motion beyond the radiation reaction
term. In words, (8.21a) says that the fractional change (divided . I? + 1) in the second
and higher derivatives of velocity in the proper frame is small during tle timie interval it
takes light to traverse the charge distribution. A necessary condition for neglecting the terms
beyond the radiation reaction is

2 ýd~u .n- d2 u

(n + 1)! d t <' 2 a , d 12  
' = ', Vs . 2lb )

The pre-acceleration solution (8.15) behaves as exp(3cr/4a) for T < (0 and thus ,hoes not
satisfy the conditions (8.21) because

d , 1  (,3Cr/lI) "I "L "-

Thus, the pre-acceleration solution in (8.15) is not a valil solution to the equation of motion

(8.6) for the charged insulator of radius a when the O(w') terms are retained. (This is

confirmed by substituting the pre-acceleration solition into (1). 17).)
U nfortunately, when the QO(a) terms are retained, tie pre accelhrat ion (ru nawav s,,itijotll

for r < 0) is not elimiinated, jist tlihe tiie dependence of the pre-acceleratlion V altered.

Specifically. the analyses of llerglotz [34] and VWilderinuth [35] show that that i!ii•away
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solutions to the linearized. homogeneous form of our equation of motion (7.1) exist for all
time, so that pre-acceleration exists for t < 0, regardless of how many linear higher order
terms are included in the linearized equation of motion [36]. (These results of Herglotz anrd
\Vildermuth apply to the charged insulator when the sum of the bare mass and material
mass of the insulator. .\10 + 111,1s, is less than zero. This condition is met by (7.1) because
the bare mass in (7.1) has the negative value of M0 = -in,/3, and the mass of the insulator

,2ns has been set equal to zero. Even when the mass of the insulator is not zero, the value
of the sum. rmnn - m.,/3, is negative for small enough values of the radius a.)

The analyses of Ilerglotz and Wildermuth are approximate in that they neglect all O(a2 )

terms involving nonlinear products of the time derivatives of velocity in the proper-frame
equation of motion (see Section 8.5). However. the analysis of motion of the two-charge
(dumbbell) problem [37], although it neglects the self force of each individual charge, includes
nonlinear terms and also exhibits the existence of runaway solutions. Thus, in general,
the inclusion of higher order terms in the equation of motion fails to eliminate the pre-
acceleration.

The root cause of the pre-acceleration can be found by examining the assumptions in-
volved in the derivation of lie equation of motion. In Chapters 2 through .5 and the Ap-
pendixes, the equation of mnotion was derived for the extended model of the electron as a
charged insulating sphere of radius a. To simplify the discussion, concentrate on the force
equation of motion (.5.12a) in the proper frame of reference of the charged insulator (with
771i., zero)

(2 2
F •,,(t) = --a - + O (a) (8.23)

8r0oac2 ((q)c3

As explained in Section 5.1. the rest mass. or coefficient of the ii terni in (8.23). is
determined ultimately, not from the elect romagnetic self force, but from the relativistic
generalization of Newton's second law of motion and the Einstein mass-energy relation.
In particular, the rest mass must equal the energy of formation (c 2/S7woa) of the charged
insulator divided by c2 .

The ii and higher order reaction terms in the equation of motion (8.23) are determined
trom the dcrivation of the self electromagnetic force. This derivation, outlined in Appendix
A. depends upon expanding t lie position. velocity, an(i acceleration of each element of charge
at the retarded time (t' = I -- I?'(I')/c) in a Taylor series about the present time (t). For
example., the velocilv of 1l11e ele, t tent of charge at r' int lhe proper frame is expanded as

u( r'.,') = u r'. it ) = - ur ', 0) + ui(r',t 2 + (S.241a)

where the distance /?'(t') has tle Taylor ,cries expansion

l/'(t) = l (t)- (I)R - 6(r', I) + .. 8 2 b
2c

2

These llaylur series expansi,,nt ate %alid pro ridd I/h r'locily fun ction u(r'. F) is an analytli,

function of tinu 1T for 1T bW.,ir',' I' and t. thai i., for T dui,9 h!h I tin ituc'val R'(t')/c
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before It (more precisely, I T - t j< R'/c). For the self-force calculation in the proper frarne
of reference, R'(t') does not exceed a value of about 2a1 (assumiing the velocity does iint
change rapidly for time T' between P' and f; in other words. assuming the velocity% ch ange

is a small fraction of the speed of light during the time it takes light to traverse tike chari-.

distribution).
After the external force is applied at I 0, out, Ii ay assujme that thlie cxterliili foruc

F,,(t), and thus the velocity of the charge u( r',t), iF ;an anialytic function of t for t > 0.
However, since the external force and velocity are zero for t < 0. they cannot be analytic
functions of T between t' and t when t is greater than /ero but less than R'(I')/c < 2atc.
because then 1' is less than zero. In othcr words, th Diiylor .,( r1-1(s fxJnsion., In (_+. 2.•) art

invalid for
0 < I <K2a/c (.>-

and thus the following expression obtained from equat !, ( A0. 1 ) of Appenidix A for the sell

electromagnetic force in the proper framne is not ralid d(iring Ihis short t inie int'rval (8.257
after the external force is first applied

F t) J { + [ - [I{ i(i)++

3 R 3(R.ueaiu 2
+ [(ft. nj) 2 

_-Il] + 3R4' +23 + R) (1dt, ? 0. (8.26,

Fortunately, one can see directly from equation (A.2) of Appendix A how the integral in
(8.26) should be modified for It < R'(t')/c. Specifically, for t < R'(I')/c, u(r', V) and 1i(r' t')
are identically zero so that dE(r,t) in (A.2) reduces to dc'R'/47rco0 ?'2 . Thus, a simple
modification to the integrand of (8.26), shown in the following equation (8.27), produces an
expression for the self electromagnetic force that is valid for all time in the proper frame

Fet(t) I Ih. { + 1, t Y ) [tL - ft+
47rto Ig R"~ C R 2 I? C21R

c ru-• 1] [(R u)R+ uj • (R 2
-d -d2

+3(R'")3 R.

4+ 4  + 2 +O(R) ('dr. u = 0 (8.27)

where h(t) in (8.27) is the unit step function.

Although the step function appearing in (8.27) represents a minor modification, it pre-
vents the exact evaluation of the double-integration in (8.27) dIuring the tinle interval (S.25).
Nonetheless, for t < 0 the value of the Integral is zero. and for t > 2,i/c. thew mitegral Yields
the usual expression (A.11) for the self elect.romagnetic force il I lie proper fran ie.

During the time just after the external force is appllied (0 - I ý< 2//c). •,ie. at ior (A.\2)

reveals that the self electromagnetic force. in a fixed haloratorv fram'e of refe ,en ( (rtlioted
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by L) coinciding with the initial position of the charge distribution, can be written

F 4() = JJif RLW(t de'de + 0 -f (8.28)

R(') = rL(t) -

Since rL(t) can be expanded about t = 0+ as

rL(t) = ro + 6:(0+)t2/2 + ii(0+)t 3 /6 + ... , t > 0 (8.29)

where r0 is the initial position vector of the de charge element, and r' (t') can be expanded

as
rL(t') 0r+ 0(t2), t > 0 (8.30)

where r0 is the initial position v.ctor of the dc' charge element, RL(C') can be written

R'L(1') Ro + O(P)Ro r - r. (8.31)

Substitution of (8.31) into (8.28) yields

F^e de'd( + 0 t < --. (8.32)
F -4r0  Jchrge R2 ra'J

The first term on the right side of (8.32), the double integral over the initial static charge

dist ribution of the sphere. is, zero. Moreover, (8.32) shows that the self elect romagnetic force

approaches zero as t' or faster as I approaches zero. Thus, the self electromagnetic force

increases smoothly from its zero value at t < 0 to its value given in (A. 11) for t > 2a/c.

In all then, during the time interval (8.25), each term in the self electromagnetic force

(A.1 1) is multiplied by a function of time that increases monotonically from zero at t = 0 to

unity at t ;. 2a/c. That is, the self electromagnetic force in the proper frame determined bý

the corrected integral expression (8.27) can be written as

F(,(t) -,,.(1)11(t) + - 12()tfi(t) + O(a), u= 0. (8.33)

711.2 0 , t < 0
1 1 0 2a/c.

When (8.33) is used in ('hapter 5 for the determination of the force equation of motion,

Newton's s•cond law of inotion and Einstein's mass-energy relation demand that the total

force (external phls sclf elctrornagnetic force) equals a tire rate of change of momentum

that cancels the fi ter n in SA•3) and adds the rest-inass time rate of change of moment urn,

U( 2/,g(Uac2 , for all tinic. 'I lih 6 trmn is retained from the self force calculation (8.33) to

yield a proper-frame equationm ,f nition valid for all t!line

NT C ,10) 6 7 ,(- ij()(t) + O(a) u = 0, (8.3.1)
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JA { 0 , 0I t > "aiC.

In an arbitrary inertial reference frane, aiid in four-vector notation. (S.3t1) generalizes to

Ct 2 du I - (s \ d4(d2 11, + ?1 d. (1J.) +O(,).

a d (3 &42d() /.S"0 ,s< 0

1 s>2a.

Note that the scalar function il(s) in (8.35) does not destroy the covariance of the equation
of motion. Also, if the mass of the uncharged insulator material were not negligible. mn,,
would be added to the electrostatic mass (( /87rcoac 2 ) in the first terms on the right sides of
(8.34) and (8.35).

The necessity of the function 71, which increases nionotonicallv from zero to one in the
short time it takes light, to travel across the electron, is quite cwav to unde(rstand physically by
considering two differential ehe,:ients of charge at eIt her erid of t I. liarg distri ht io. These

two elements are at rest separated by a dist ance 2a. \Nklhii the ('xternal force is first applied.
each of these charge elements accelerates and radiates. Ilowever. each element of charge does
not experience the radiation from the other until approximatelv the tine it takes light to
travel beween them. Thus, there will be a tine delay in thie radiation reaction force of about
2a/c between these two elements of charge separated by 2a. For the other combinations of
clarge elements separated by a distance less than 2a, the time delay of the radiation will be
proportionately less. The double integration over the ent ire sphere of charge elements dc and
de' produces a continuous addition of radiation forces withi tire delays varying from zero
to about 2a/c. Hence the function ij appears in (8.3-1) aud (S.35), monotonicallv increasing
from zero to unity between the time the external force is first applied and the time - 2a/c
after which the self electromagnetic force can be expressed entirely in terms of the presio
velocity and its time derivatives.

The function 77 is a small yet important addition to the equation of motion because it
allows well-behaved solutions to the equation of motion that satisfy initial conditiiols on
velocity and t' at are free of pre-acceleration. To show this, r('write (,i.35) for rocdinlimear
motion in the form of (8.6) by means of the change of \arialehs defiied at the h.giiiiii!q of

Chapter 8. Neglectinig the ternis of O( -), we have

V (, 7 ". 71( 7 ) V''r) 7- (8.:1(1

7 < 0

Fquation (8.36) is a first order linear differenitial c(liwia f fr V'"(7- Its solution for all r.
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under the asympt ot ic coiIdlit Ioin (6~.11 ) is gi ven by

V(7) {iLfF 1 (r) ei TT] ,TO(8.37)

where as usual we have assumed that the externtal force is applied at 7r 0 and is zero for
7< 0. Integrat ion of (8.37) over time produces the solution for the velocity of the charge that

is zero for 7 < 0 andl continuous, for all T, even acroSS 7 = 0, as long as F,,,t(-r) is continuous Or
has a finite jumip across 7 0. In other words, the inclusion of the 17 function in the equationl

Of miotion has eliminated the pir-fncccltration fromn the solution to the original equation of

mnotion without introducing Jo/st diicontinuitics in velocity across -r =0 or spurious delta

functions and their drcviLatic(.-, at T =0.

The modified equation of motion (8.35),, or its rectilinear version (8.36), still admits a
hom~ogeroios runaway solution for t > 0: however, this runaway solution is. zero for t < 0 and
thius is el iniin1at ed from the mi odified equation of motion by the asymptotic condition (8.11)

wit hout initroducing noiocausal muot ion (acceleration for t < 0) into the solution. (Interest-
ingly. a nonirelativist ic quaniturn electrodynamnica I analysis of the electron as an extended
charged particle exhibits neither runaway solutions nor observable noncausal motion if tihe
va Lie of ti~e fine-structure constanut of the electron is less than about one, and predicts a
vanishing electrostatic self energy iii the point charge limit. [38].)

For 7 > 2a/c thc solution (8:37) for the acceleration V1 becomes identical to the solution
for acceleration to the original equations of motion (8.6) obtained in Sect ion 8.1, jinaelý

1;(T = 3( / 1_17 C 3,-( 7 - T)/ 4-td7/, -r > 2a/c .(.8
4w.~ ,0 Jr

Vhiell the external force is lirIsi applied at 7 0, the acceleration is given by (8.37) as

0 15d7'.(8.39a);( O /",,, (7') y dT T

lioegra~tiuig (Sý.:39) kv piti-ts Wasý1u1ing F,,(7u() IS a coumtIniious functionl from the right, at

V___ __ 0 4,, dT (8.391))

SIince (,,,2 shows that 1/(7 -) 0( near T = 0J as 7T2 o r faster, the exponent ial in the inutegraind
oýf (81()'b ) is, zero, so Ithat (S~.391)) reduices to simply~l

('s 1J~ ~ll('se. li ii it i isyiig esltthat. thle acc(Aclat(ionof the chargeoI
ln~mlaore~m-~l te eteralfuru~div.ided Lv the mass when the external force is first applied.
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In addition, the acceleration and velocity are zero before the external force is applied (r < 0),
and the velocity is continuous across 7 = 0 for an external force that has at most a finite
discontinuity at r = 0.

Although the solution to tht vorrected equation of motion (8.35) is free of pre-accelratiol,.
it may be bothersome that for t > 2a/c the motion at the present tune, as seen for example
in (8.38), depends on the values of the external force at all future times. Note. however.
that the contribution from future times appreciably greater than the time it takes light to
traverse the charge is not only small but meaningless becasuse (8.3(6) and (8.38) neglect
terms of order a2 . Also, the result becomes understandable, if it is remembered that (8.38)
is the solution to an equation of motion obtained under the restriction that the externally
applied force must be an analytic function of time for all t > 0. Thus, assume that for 7' > 0.
Fet(r') in (8.38) can be expanded in a power series about tr o recast (8.38) in the form

V;(r) =I ,(4a)" dln',F,(r) >.)1/
m = 8 = 30 d-.

which simply states that the acceleration at any one time ( > 2(/c) depends on the tinle
derivatives of the applied force as well as the applied force itself at that time. (Note that
(8.41) is not a valid representation for T < 2a/c; and only the first two terms in the sunima-
tion are a valid asymptotic solution for T > 2a/c because (8.36) and (8.38) neglect terms of
order a2.)

The equation of motion, (8.34) or (8.35), was derived assuming that the external force
is zero for t < 0 and an analytic function of time for t > 0. The nonanalytic point at t = 0
gave rise to the y;-function modification in (8.34) and (8.35). If the external force were not
analytic at other points of time, similar modifications to the equation of inotion would be
needed, in general, near these points.

Abraham also realized that the traditional series represent alion of the self elect rornagnet ic
force became invalid for "discontinuous movements" of the charge. InI Section 2:1 of [2] lie
states, "These two forces [electromagnetic mass term phis radiation reaction] are basically
nothing other than the first two terms of a progression which increases in accordance with
increasing powers of the electron's radius a. .. . Because the internal force is deterinined
by the velocity and acceleration existing in a finite interval preceding the affected point
in time, such a progression is always possible when the movement is continuous and its
velocity is less than the speed of light .... The series will converge more poorly Ithe closer
the movement approaches a discontinuous movement and tle velocity ap)proaches tie sp(e'd
of light . . . . It fails completely for discontinuous rnovenwentl ... Hlere, other methods must
be employed when computing the internal force." Abrahami goes on to derive the raadiated
energy and momentunm of a charged sphere with discontinuous velocity [39]. Hle also derives
Sommerfeld's general integral formulas for the internal electromnagnetic force [.10]. Neither
he nor Sommerfeld, however, evaluates or interprets these general integrals except to show
they yield a null result for a charged sphere moving wit h const ait velocity. A n I. of course.
a key to deriving the corrected equation of motion (8.35) is to realize that the lemodifving

function q applies to the radiation reaction but not to the inertial niass ternm.
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8.3 Power Series Solution to Equation of Rectilinear

Motion

The pre-acceleration solution (8.15) to the equation of rectilinear motion (8.6) was derived
in Section 8.1, and the solution (8.37) to the corrected equation of rectilinear motion (8.36)
was derived in Section 8.2, under the assumption that the O(a 2 ) terms in (8.6) and (8.36)
could be neglected.

To get a solution to the equation of rectilinear motion for the charged insulator of radius
a, that in principle could include the O(a') terms, ignore the correction function q(r) in
(8.36) so that (8.36) becomes identical to (8.6). Then expand the acceleration function
V'(T) in powers of a, that is

V'(r) = '(r) + j'(r)a + O(a 2) (8.42)

so that (8.6) becomes

C 1 a + O(a 2)] (8.-1;3)

where the p~rimes on (t' and 1', as well as V, denote differentiation with respect to the proper
time r. Equating like powers of a in (8.13) we can solve for Q' and 3' in terms of Fet/m,,.

nanaoelv

,ert (8.44 a)

I'(T) - -a"(r)- =4 F-,t (8.44b)
3c 3c r77es

so that the solution (8.42) for the acceleration function can be written

V''(7) + ;4(- . -'',(r) + 0(a2)1 (8.45)

-- 7T <. T C,

lntegiation of (6.45) with respect to the proper time yields the velocity function

V(7) = -. 'd ) + O(a2) (8.16)

-V(T. -L• T '< 1 rd -'j

whjen ti,>e extrrialI fo)rce and velo(itY ;trl' zero before r = 0.
T hIe 0(( 2 ) telr " ill (11.1l1 ) are. neligihle at am. time "T if

I .-f , I (.- dr-'7 = (0, 1,2,... (8.4.7)

hliat '!. whenever thie frat iu.ial clialiges inI Ith(' externally applied force and Is I i•nie (erivatives

rl'e sIlli,•!l during the I inte i ieivI,% it tak-es light to traverse the radius of the charged sphere.
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The solution in (8.16) for the rectilinear velocity fmi (1ii ii of th lc (ha rged1 ns idt or of

radius a contains no runaway solut ions, no pre- accelera lion, ;id is ob1a~c ('i isiti tii t (- sin LJIc
initial condition of zero veloclit imui neit el x before th ele xi mu force is ap~plied. (Of co a r>(

an arbitrary constant velocity couild be adldedl to thle right side of (SAG() it fthle \ 'oi
not zero before the external force were appled. However-, r('gard(Ilss of lie 11it iii) (~
thle velocity is, in general, discontinuious a Cross 7r 0. ar (It lIew series soItit lIon(i 16 ) c(it JI aI I

spurious delta fuinction1s at T =0 that violate lie (it er a (S.17T) and do not sat is Iv tit(
equation of rectilinear motion (8.6).

T[le first two termis Iin the brackets of (8.16i) canil also) be found from Olie prc'aci (('ceat loll

soluitioji (8.15) by e'xpand~inlg thle external force 1K 11,(T f T') iia'I] lo seisabt

puresent timec T, so that integrating termt by term Yield~s 1:11. .11]

V(r-) + F"'(7,)(1I7,'1 ()

- -1 < r < K

However, this exp~ansioni (8.48) of the pre-acceleration inli (gral l ii (8.1 5) doe,, hot . ill general.
yield a valid asymiptotic series soltit ioni to be '6 byonid the first t ermi lii Ilie srimiliraiion o'

(8.18) because (8. 15) was dlerived fromth le equtal ion of mi ot ion (8.6) 1). il('gl(ct iiig 'e f-for-c
termis of order a'. Ili other W~ordls, the (02(I) terills In (8.18) arc' tiot cpidiii to tw li (( 2  rills
Iin (8.46).

It should also be noted that the pow~er series solmitioti (8.48) coniverges to the pre-
acceleration solution (8.15) for -r > 0 but not for 7 < 0. The reason for this discrepancy
between the series solution (8.48) and the exact solution (8.15) to (8.6) with the 0(a') terms
omnitted is that !e(T+ T') cannot be expanded litita Tayllor series aboult 7- < 0 for all 7' > 0
because F,,t(7) is Identically zero for 7' < 0.

When the ext ernal for-ce becomes zero a fter it Is a pplied for a IffitiiIe timre it erval, tilte

power series solut ion (8.46), like the Ipre-acculeratiofl soltit oio (8.15). lpmolitces thle samne
final velocity that would be produced if the radhiat ion reactloiou. t lie V termi ili ( S.6 ). were
nreglected. Also, like the lpre-acceleration solution, the effect of the radiation reaction onl
the power series solution for the velocity function V, dutring the time the external force is

applied, approaches zero as aFeri/m,,, as the radius a of t he charged sphere alplroac:hes zc-.o.
Indeed, the motion of thle charged insuilator should be determined solely by the convenitional
momnentuim, m,,d( -ýu )/dt, as the radi is of the shell app~lroaiche(s zero. sinice thle ii lass mr
becomes infinite while the radiation reactionl terrm renmilats fiji it e a's i lie radiuls approache~s
.ico. As long as I2 /uremnains irit e, however, it is li llpliasizel t hat thl-e'~ e sj ii)(ti

Impully that the radiated miotrieiit (ii and~ eniergy

Iisp('~ctiv('IV. fort Ilie power set'ies sol t ilo of t11 lchalutrgedIiisia ill I'' t I Ii (amlii ,

irroarcl zero as the radiuls (I approaches. /.(mIo. (Note that wit 11 I lie power. <ereS sont6ol )l .
because there is Ito pre-accelferat ioni, t lie rad iate ('Inoilolewilt 111- licrol. J(I 19) is dicic emill ued I v
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integrating the time rate of change of radiated monmentunr-energy starting at the time t = 0
when the external force is applied rather than at I = -Do as in (8.17) for the pre-acceleratio0,

solution (8.15). The difference is negligible for it charged sphere with a radius equal to the
classical radius of the electron.)

8.4 Power Series Solution to General Equation of Mo-
tion

A series solution in powers of a to the general equation of motion for the charged insulator

can be found by ignoring the correction function il(s) in (8.35), so that (8.35) becomes
identical to (7.1), which has t hie thre,-wvector form (7.12a)

F , ., I ) d i - 3 (1 ' + 4 2 -( U *)
F - U) )- -+ 2 u)u

^Y1 (u 2 +o((1). (8.50)

An iterative procedure can hb used to determine the power series solulion to (8.50) (that

is valid except near t = 0 when the external force is first applied). Begin by integrating

(8.50) with respect to 1, to find the solution to - u as

1• - / FJ .(t'),!' + O(a) (8.51 a)

or. solvin1g for u(t) alone-

I(t)
ti - -- O(a) (8.5!b)

v/I + 12(t)/e 2-

wther,

I(,') ] Fer-,t t)dI. (8.51 )

Sunsttitiniz u from )S..l,) i ) to radiat( io| reactlion terms on Owhe right side of (8.5.0.
making use 4f (8.5c), and wtli terms. one ge's

F,:rtI ) l la f(I
- I )( ;F,-t)

, - __2,2 1 + O Wa), ( .'201 II 3M,, C4

- "' -/ + .> l ).]S66



The first two terms of the power series solution for U call be fouInd by i legrating (S.52) with
respect to t, to obtain

u= + 3-- {'YF'2't -c1 F• - -- 1dt ± ()(,L2)3 mC27n,, s C'2/ 2

Again, a sufficient condition for the 0(a') terms in (8.53) to be negligible at any particular
time, is for the externally applied force to satisfy the inequalities ill (8.17).

For rectilinear motion of the charged sphere, (8.53) reduces to

"tu j l(t')dI' + la j Jljt + 0(s) .1
Mles 03Cmrl, u

(Equation (8.54) is easily proven by expressing d(-iIFet )/,dt in (ll.52) as
for rectilinear motion.) The equation (8.54) can be shown to agree with the previous power
series solution (8.46) for the equation of rectilinear motion as follows. From the defiinit ions1
(8.lb) and (8.5)

d(cu) = Cosh(V/c)-d (8.55d
d7 d-r d7"

Taking the derivative of V in (8.46) with respect to proper time 7, inserting it into (,8.55).
and changing the proper time to ordinary time via (8.1c), produces the equation.

d(TFu) = t 4 a dF,(t
dl 71es :c~ 5  d

After inserting ui from (8.511) into -ý to show that -, =, + 0(a), integrate (8.56) with
respect to time to convert (8.56) to (8.51): QED,

The power series solution (8.53) is not very useful if the externally applied, force is a
function of the velocity of the charge, for example, when an external magiletic field is applied.

because (8.51c) does not give an explicit expression for I(f) when F,,t d(etends on the vclocitN.
In the case of a magnetic field B•,,(t) applied to a negative charge (denoted by -( in this
section and the following subsection 8.A.1)

F,, = -Cu X Brt (S.Y7)

we can expand ju in the equation of motion (8.50) in the power series

"-u = a + ý3a + 0(a'). (S.58)

From (8.58) the power series for I and u are found to be

= (i c+ ') -)3 0(2) +8.59a)

and

u = a + ( -5- ) + ()(,,") I2).59h)
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with
S- ¢1+ o2/c2 . ( .... )

Taking the time derivative of u in (8.59b) to obtain II, and substituting -ý, u and 6i into
(8.50) with the external force from (8.57). one gets the equation of motion in the form

- ct+ a - 11 2a3 a x B6 1  + ý - 3 dt
-- - ,}+ O(a,). (8.60)

Equating like powers of a. (8.60) divides into an infinite series of equations, the first two of
which are

-- (I
-a x B,1,t = -,a -("ya) (8.61a)
711 5. (It

- a'3)at IB=/±L d 2vý
, x Br., 3cidt-hi,) I&l} (8.611))

(The second equation i8 (8.61a) results from taking the dot product of a with the first
equation to show that Ck - 6 = 0 and thus n and .,,, are constant.)

Equation (8.61a). which is uerchl the equation of motion without tlie radiation reaction
terms, determines cr. Equation (S.61b) determines 0 when ca is substituted from (8.61a),
that is. (8.61b) (teternin.es the perturbation iII the motion of the charge caused by the
raditli(,n reaction. (Note thai tOe Schott acceleration is included in (8-6110).)

8.4.1 Synchrotron radiation

Let Ius .-olve equations (8.61) for tie special case of tIe charge moving in a uniform magnetic

field
B,11 = loz (8.62)

when, BO is a constant. Vndhr 1l1w assumption that tHie velocity of the charge is zero in the
z-direction, the solution to (8.61;a) (an be written in polar coordinates (r,O) as

a = 0 (8.6 3 a)

where ( k 'is a constant related It, tir initial specd'lit) =  1(1 Z-1 0) of the chargpe by

mH2/( .
(8.6:31))

1V a i l r\ fl'n ( )1 di 1 01 A ,. 1
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and

, ( %" .) = 2 0 6 11)

which, when inserted into (8.61b), produces the equaLtion of ruoltjn fori

xpB- x = - - (S.65)

Take the scalar and vector products of (8.65) with a to get the equations of motion for tie
0 and r components of

(H, 1? 4 c2 13,2, t c
dt 3c(II

d(l , (0 2Bo

d t-c 2mr. •.'

The solution to (8.66) after a time I is siiply

= U t 6 •.7a

-4e_ Bu0 0

3 1.13,,c3 (1 _ ,•2/c2 ),122 (.6 )

where a and ,0 have been written from (8.63b) in terms of the initial speed u0.
With ar and 3 from (8.63) and (8.67) substituted into equations (S.59) for u an d we

find that the energy (W) and velocity of the charge as a function of t111e are

2 [ 4132u2 t
W = ,2"C = -1 - -0 - 1 + 0(a') (8.68)

1 11 2 )1/2 67irc~n 'l~ ( I - u '2/C2 )1/2

{~ [ e4 Bo((l U-/C2 )1/2) 1 <.>. 2 _ }
U u 0 1

6 1 - t -= rr i ,0 + 0(a') iS.69)

where the radius a in (8.68) and (8.69) is written in terms of the mass I,, by means of (2.3).
The instantaneous radius of curvature of the trajectory of the charge is lot given by

the initial radius of curvature plus the integral over time of the radial velf+,tv in (8.69).
This is because the center of the radius of curvature does not remain at its initial position.
the reference position for the polar coordinates of the velocity. The instanft aiN)lis radilis
of curvature 1Z(f) can be found from the general forimula for tlie radilis of curvature of a
particle moving in a plane

RLM ~ ~113 S 0R(t) = - S7)
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With u and I'l from (8.69) or ý,.59b)) Insertedl into (8.70), We find th~e inst aftaneous radiuis
of curvature, of the charge moving in a plant- perpendicular to a uniform magnetic field, to
be

7TLMt= '1) [I - w 0 c Ol~ t1/ /] +0((121 (8.7 la)

where 1?O is the initial radiuis of ciir-vat nrc

(8.71 b)

Note fromn (8.68) and (S.71 ) t hat the fractional chiange Iin energy and~ radius of curvature
per unit timie are a)pproximiately equal whenci thte speed of the charge is approximately equal
to the speed of light - Iin agreement with Shen's results 142]. The expression (8.68) predicts
anl energy loss per revolution it 27-7ZO/ruO) that, agrees exactly with Plass's result [41, eq.
1417]. and approximately with Schwiriger's results [43, eq. 1.10]1 when thre speed of the charge
equals approximately the speed! of light (and, of course, when 7n,, is rep~laced by the mass
of the elect ron).

8.5 The Finite Difference Equation of Motion

It wva, shown ini Sect ron 8S.2 t lidt if the evaluat ion of the self elect rom nagnet ic force is done
p~roperly near the time the ext criud force is first applied, a correction function il(s) must
multi1)ly t li radiation react ion iii thle eqiuat ion of mrot ion. Remarkably, this slight modifica-
tion rfi roves; thle pre- accelerat loli from t lie soluition to the uncorrected equaltion of miotionl.
lPowcr c rics sol ut ions obt ainet Iir Sections 8.3 and SA. to the original uncorrected equationl
of miot oio alIso elmi i iate thle lpr(¾acceleration., but at the expenise of introducing spuriouis
delta frnict uris that do niot sat rfY Ilie- equation of nmot ion at the time the external force is
first appliedl.

Through the years a nimiltue of other mrethiods have been prop~osed to eliminate the pre-
acceleriitijon tirat arises Ini thre Solurtion to the original tincorrected equation of motion (7. 1)
ý4 I I-4,s]. 11owe ve r, ti' me of I iese alItecrniiatI Ive met I io ds h ave beetn en t I rel v s uccessfulI becau se
ht eIteeli minate I I Ii f rt1 niIIla 11 a'l0'itIItlderi vati1ves of acct ,lerat Ion [4 6- 4 8], or t hey sumn in fin ite seriles

ex )a II I'IISIfI iioitht neig lec -t n IonI Ii1 rit r enrims T-n 5. Tese l at ter m et hod s [.11. 15] t hat hiave b) een

1) ropos('cd to0 Cli Ii n 11a teV t IrWIe " riAo cra tlej ion or i n iri away soIi i tlt ions f ror iI t lie 'q i ia tion of r not ionl
involve decterminiiirg explicitl lv eii Iti inite series of O( a) ternis Iin tire self electromagnetic
force iii :I13) of he riovi ug cial.r I isus a t or'of i-aolius ti. Specfifcarll~v. Page f14) wrote down.
without Showing the denilva!ol. till,~ inlfinite seCries anild smirrnwd it ili closed form to reveal
that t~ utself ("cltcrmiowi''1ciit iit! c Iin t li( prio 1tr frariie of referentce of thli charge call be

F',i ti - ,2 In~ - 2,1 'c), t/ = 0 (8.72,,1)
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or, in an inertial frame in which the charge is moving with nonzero velocity much less thani
the speed of light, as

C 2

Fei(t) = 12o [u(t - 2a/c) - u(t)]. (ulc)2 K< 1 ($.72b)

provided all nonlincar terms involving products of the time d(rivativ(s of th( triocit/ arc

neglected and the correction function in;, d( riced in Secti ,n 8..2, is igquort(d.

Equations (8.72) can also be found by discarding all but the first series in the double
infinite series that Schott [49] derived for the self electromagnetic force on the noncontracting
sphere (Abraham's nonrelativistically rigid model rather than Lorentz's relativistically rigid
model of the electron). The infinite number of discarded series involve nonlinear products
in Schott's expression that would change for the relativistically rigid model of the electron:
however, the linear first series is the same for both relativistically and nonrelativistically
rigid models of the electron. ( A simple proof of (8.72) is given in Appendix D.)

When the self electromagnetic force (8.721)) is used in the derivation of th le equat ion of
motion given in Chapter 5, we obtain

Fext(t) = (,, + ,, M0p)i 1-2 ua2c[U(t - 2a/c) - ui()], (i/c)2 < 1 I.1)

for the nonrelativistic equation of motion. Again, the nonlinear l)roduct terms have been
neglected in (8.73), and the negative bare mass M0 is given as -m.?/3 in (5.11). (If the bare
mass were omitted in (8.73), the rest mass of the charged shell would not equal 1 ,, +... l ml.)
The relativistic generalization of the finite difference equation (8.72b)) has been derived by
Caldirola [45].

Notwithstanding the appealing simplicity of the finite difference equation (8.7:3) and
its relativistic generalization, there is little justification to accept them as valid equations
of motion that are accurate beyond the usual radiation rea(tion terms, since (S.72) and
(8.73) neglect all nonlinear product terms (involving derivatives of velocity), which atr(e not
necessarily negligible for the Lorentz model of the electron beyon!d the 6i radiation reaction
term.

It can be shown that the nonlinear and linear parts of the self electromagnetic force are
both zero for certain radiationless motion of a nonrelatiristically rigid spherical shell: namely.
when the shell oscillates with an amplitude smaller than its radius and a period equal to
2a/c [50-52). These radiationless oscillations with the self electromagnetic force (S.72) equal
to zero would not, in general, be self sustaining, that is, F, would not equal zero iin (8.73)
except for the special case of Ir,, + .110 equal to zero. (For Lorentz's relativisticallv rigid
model of the electron, Peadre [52] has shown thath boundedl radiation less muotloiiý do r•ont
exist.)

The work of lh'rglot z [341] and \Vildernitith [35], discussed,, in Section S.2. woull i•gr ,t
that the finite difference (linearized) equatioin of motion (8.73ý ,oes not. iH gelneral, eli uinate
the pre-acceleration, that is, runawav solutions for t < 0. Tluhis can tb e prove'n f(•r rectilineiar
motion by letting the velocityv in (8.73) have exp(qt) tim( d(ep)endlence when F,1 , i -ef equal
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to zero. The equ atIoion thaI t Irct, Its for q, %N-h en th m ( Iiater Ial Ilmass oft Ithe it isriator Is I Iep Igi IgIble.
is then

2c-

which has the positive real soluitionl

2(1 -S ) 5(- ~ (8.7C5)

I - 4c4( a

(If the mass of the insishlat or Is not negl igibl)e, the( eqia~tion for q also las a. real p)osit i xe

solutioni providled a is small enotigh for tlie value of + A10 to be negative.) This failure
of thle fir~ite difference equtal ion of m otijon (8.73 ') to eli mi nate the hionuogeneous runaway solui-
tions, for t < 0 as well as t > 0 t~so thfat pre-iacceierat ion will still arise when the asymptotic
condition (8.1 1) is applied), couipled with the fact that the finite difference equation (8.7:3)
neglects all nonlinear terms involving produicts of tlie time derivatives of velocity, leaves lit-
tle reason to prefer (8.7:3) (or its rela;tivistiC gene~ralizationI) to tilie equLationI Of motion t hat

slimply neglects the( O(a) ternills ili (7. 1). Mforeover. li ke (7.1) the finite (1ifrerence eqluat iolu
of motion (8.73) neglects thle correction function 7/( .s) Iin the rigorously derived equaltion of

moot ion ( 8.35). And, as et i8.2 -show~s, It is thiis smnall but Important correction to tithe
c~onvenitional equation of root ion that li ii un ates, the( noicausal pre-accelerat. 10o.

8.6 Higher Order Termis in the Power Series Solution

The first two terms of the power series sol it ion It the eqnation of motion (7. 1) (which is the
samne as the( corrected (l'qI ia t on of mnot ion (8.35) when the y7 correct ion fu et ion is omitted)
h ave been derived d irectlyv from it lie, equal ion of miot ion (7.1), and I ndirect ly, for rectilineril,
ii11 totiou. frotm thle pre accelerationl s' )hiition (8. 15). Of (0ourse. thle fi rst two t ernIls of the power
series soh it ion Call also be f W1d bv expaidng mhztieu (t - 2a Ic) part of lith finuit e differenice

e~juatioI1 olro-o K3) i a havior series ab6out I

It nlay ý,veniu app~ropi ate alt hill, point to fund lie iitxt termi. that Is, thle third term III
the seov(riýres solitit ion lie cqilliation of Iloionl ( )ie wouild b)CP~Ži by fliidingtl hr
tevims { h neai and( llonlilneor ternil iiit iphiod 6y a) ) in thle self electroiiauiietic force of the
r(lIat% IV stical ly ri gid (ha rge I sphere Ili th lie mannr t hat tlite I la, anid radi ation react ion ternuis

werle lerilved ili Apphi)-Ax 13. Althionigh this conild bc doneý,. 't wouild he a Fuitile exercise in
the case of tiue elect ron bccawv~ '-,hier V,3] has shown that the cifcct 4. Hicludhing terms III

the equial ion of riiotlion of Ilie elej ir a bcy,rind lie radiat ion reaction ter'iIis IS to iTuttlOdllCe at
chiang~t that is l Ic =- I 'I 7i 0 . thit '~till ~ elh

I/-ltcc 1 . (pl aid l mit 1 effects,.

8.7 Renormalizat ion of the Equation of Motion

I'liel . .~nu utol iS i -~)\4me:1 dci 'c1frnt m ýciI onofnmat io'l (7.1)
Hr)I twIhe l lired insla"lto'r Ilio. ll! "dft It( ie tie roll. It ashw tatie parsri >ition
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contain delta functions in the acceleration and higher derivatives of velocity that violate the
equation of motion (7.1) at the initial time t = 0 when the external force is first applied. More
importantly, we found the fundamental reason why both the power series solution and, the

exact pre-acceleration solution to (7.1) do not give the correct, solution for the motion of the
charged insulator near t = 0. Namely, a scalar function, niultil)lying the radiation reaction
for a small yet important time interval (0 < t < 2a/c) was overlooked in the derivation of
the original equation of motion (7.1). When the derivation is done properly. the corrected
equation of motion (8.35) emerges instead of (7.1). Moreover. Section 8.2 shows that the
solution to the corrected equation of motion (8.35), under tlie asymptot ic condit ion of zero
acceleration for zero external force as / approaches infinity, satisfies given initiai conditions
on velocity, and is free of noncausal pre-acceleration or spurious behavior at t = 0.

Equation (8.35) emerges as the correct covariant equation of motion of the charged in-
sulating sphere of radius a (with rani, = 0) when the external force is zero for t < 0 and an
analytic function of t for t > 0. However, this charged sphere is obviously not a valid ciassical
model of the electron, if the electron is assumed to be a point charge, because the electro-
static mass of the charged sphere approaches an infinite value as its radius a approaches
zero. If the mass is "renormalized" to the finite value In, of the -inass of the electroni as a
approaches zero, the O(a) terms in equation (8.35) vanish and (8.35) beconies

X,, 2 du' d2 du ,du
= mc d- qo(s) + u d' -1. (8.76)iu 0, ds d., (

Equation (8.76) is identical to the Lorentz-Dirac renornalized equation of iotlion for
the point electron [10], except for the correction function iju(S) that. niulliplics tHie radhiation
reaction terms of (8.76). (As usual, it is assumed that tihe external force is applied at .S = 0
and is an analytic function of time for ,s > 0.) The function 111( ) in (8.76) is cqual io tle
function q(s), defined below (8.35), as the radius a approaches zero. 'l'ie value of r,'(s) is
zero for s < 0, unity for s >2a, and (8.32) shows that it approaches zero like s" or faster as
.s approaches zero from the positive (right) side.

The behavior of the solution to (8.76) can be determined from the results of Section 8.2
by letting the value of a in 710(s) be arbitrarily small yet nonzero. For rectilinear inotion,

the change of variables at the beginning of Chapter 8 redtice' (8.76) to

!'L.t c2
= V' - -r)(T)V". (8.77)

The solution to (8.77) for the acceleration V" is given iii (8.37) with 3c/la replaced by

6ruon~cc/€ 2 and, of course, 1,., replaced with 711. Slpecificail \. the acceleralion V, is zero
for r < 0; it. equals, as shown in (8.10), l't(0)/Ic at 7- 0: and for 7- - 2a/c tlie >olutimu
ist given in (8.38). that is

6 r c: j 1i¾ , ( 7- + r' ) • - if * .

'( ) = 6- + ..... 11 , 7" > 2a,/'(. 1",.7,a7
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Since Feit( 'r) is an analytic fo net ioll of 7 for 7 > 0,. assumeP FI½j(7 + 7 ) cin be expanded III
a power series about T to recast (8.78a) in terms~ of the timie derivat ives of the force

Between 7 0 arid 7T 2a/c the acceleraf ion rises smoothly fromi Ihli initial valuc of

,,1~0012n, to its value in (8.78) ;At 7 9a/c. As thle radius of the charge approaches zero
the change in acceleration bet weeti 7 0 anld T-=2a/ = 0' becomes inicreasingly abrupt.

because VI(0±) as given in (,'.T.')

1 ( ( 27 9a t-I½(o0(879v1(0+ ) = T Z Chiý7} d' a/ ~ (.
n=0

does not. in general. equal the Initial valuie

_1 0~~O _ 'ý1 (0+ (89S

(It Is;i s as IIumIed thIIa t T t1 ( 7- ) 1,is I Co i t ItIIIi oI s ftinIIc t ioi i from the right at 7-ý0 >o that F,1 1( 0+)

F¾,(O).) This rapid rise ini acceleration, to a value different from F,,t(O i/me irnmediately

after the external force is applied is a consequence of reitornializing the mass of the charg( as

its radius shrinks toward z~ero. Nonetheless, tHill rapidl change Iin accelerat ion does niot violate

the renormnalized equmat ion of motion (8.76) because of the funuct ion ~ij(.s ) multiplying the

rad~ial loll reaction. Aiso, OwhelV"ocit V Of ti e cliarge Ioes not chiange (Ill ring this acccle-ratlion
lbetw'eli -r 0 all 7n = 2a /c z If the \elOCIt IS isZero for 7 < 0, thenI

V (U 22= V (0 -) 0 .(8.,S1)

In uininia-Y Iv he reriornmalized ,trslio (8-.76,) of the corrected e7(jiat lOl of mnotion ( 817) )
differs fromi Hle Lorcnltz-D1)m a( rein nalizen equa tion of inor on for thle potint elect ronl by lie

correction fulitetionl itt li iplying Ilie radilation rea ciion. This small difference allows a solut ioi I

to thle renourmalized equat ion I) m ot ion fo~r the point elect ron that, like( tiello' SOLnJ to the

correctedl eqimat ionl of mnlot ion (8.3:51 for thIe extended electron, is free of pre- deceleration.'le

11,t1l]i \('lityo jtiii olit electol~ll il can'h ('hsell /,(:-. Homwevr. th lie c lorac''lt ion timnes t lit

renorm lia izelr i mass, at t he !Iii it i gly Stual timue ( r =~ 0± ) aftcr thle ex\w emlnt force is applied.

dloes not euiial the extecrii~t Lv applied forc( , aý Iit doe., for the('cxtelldedl chicclm b ttut depend"'-

onl the Mititial valurs of t lit' I linn ilemat jve- Of thle n-sternal force ats well.
In ~II ~ e t hi va! dit v of 11 vler~orumaliv-11 eq-lattcit of !tot loll 1Ž. 0fr descrihing tie

classical Ino;ionll of anl(I. elet lo ( l t estld ]i )v dewi ell lin]I~g (xperlulwiclt'dllv whether the

iACCcleat lolt of aim elect roll. umun'djitel',o af ,(- thcxtern~al for e is di~iu.depenedlI~ up()Oi
he i( Mit t inn deriv.atives of the aipphi i for' e as, pirtlicte l in (,S.79). inl practice, 'It IS tinj

feasilhk Io netecl "Ili, -xI i-enn-l\ sTll;IP (oeffilciellt, 2 iTvc -~ 10 1' s-c, ;Id- ((equal to i t le

tt&it Itak' light to iran-rse thOw~ia radiu.- nf 1lteelectro. iil; tvIi-~h derilv:t IVe11

Of 01f- '1111i11"d forie.



Fundamentally, renormalization of the mass of tile charge•d sphire as its radius shrinks to
zero is an attempt to extract the equation of motion of the point elect ro• from the et,,ation)
of motion of an extended charge distribution. Such attempts, as I)irac wrote [.5-1. 'bripg
one up against the problem of the structure of the electron, which has inot vyet received any
satisfactory solution."



Appendix A

DERIVATION AND
TRANSFORMATION OF
SMALL-VELOCITY FORCE AND
POWER

III liI ap)peInlix, we ( !1r1vt ca proper-fra Ime f,,Cc e('lation of motion (3.3) and the small-
rntlo( . powr ('qllat ul' of Iliotioli 3. 1) directlv froni the self electtromagnetic force

and power integrals of the spl ieric', shell of clharge. We then transform (3.3) relativistically
to obi ain tihe force equiat ion of in•o jun (2.] ) for arbitrary velocity. A relativistic transfornia-

ton of (3.4), however. ia(ls to the erro, lolUs result (3.5) for the power equation of motion

rather tharl the power ,equationl of unotion (2.4). We also show that (2.4) does not t ransform

cov'aria~tly. •llere~iv\ confirmiug iha t the general power equation of motion (2.4) is not pro-
lu(ed, bvy i rehlatiistic traisf(,r*iIat ion of the smlall velocity power e(luationl of mllotion (3], ':

SOT Sectionl 3.1.
Lorei'tz [31 anid u,1.1.roll," 1,,ode,,,rn phlysics texts, such as I 1. 151,. 31]. have derived th(

Lureuit z force equatiomi of iimot [()i (3.3) in the proper (instantaneious re.t ) frame. But nonie.

as far as I ar, awa re, have lin ctlv d(rivevd tlhe sriiall-velocitv power eqquation of motion

(3.1). becaise it requires takin, iinto accoun•t th(, variation of tite, velocity over th l( charge

distri,ut ioil. Of coullrs(. (3. I) ('4,1h( be obtained b.y letting u/c b)ec(ome mich less !han unity
it, thie geaneral poxv(r (,quat 0•1 -)f i•l)tion (2.1). WiIich xv,.s rigorously drived by Schott [I13 1.
(A\ ,i-clis'cd in S•el•ct • 3. 5, hul I l' ri• t•essve de•rvtioln is so involved and le.ngthy that it
(diiscolral ,cs a Jetailt, n'- clil;lt II,. loi, e r' w ovidh, atn altrirnativ., simpl 'r, vet rigorous
dclive1' '4,, otf tIl g ip'neral frmce ; ,iid p,we'r eqli;1tohSý of motioln, (2.1 ) a•n (2. 1). in Appendix,
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A.1 Derivation of the Small-Velocity Force and Power

A.1.1 Derivation of the proper-frame force

The self electroniagnet ic force on the spheric al shelI of charg, n its proper ustan a n.,iis
rest) inertial frame of reference can be expressed by the Lorentvz force integral I 1) W3i!.

u(r, t) = 0 , that is

F -J(t) - E(r, t)(h, u(r, ) 0 A:.i)

where the element of charge p(r, t)dl'iIn (3.1) is relabeled d in (A .1). The self elect ric ield
E(r,t) on the charge de at position r is produced by Ihe renmainder of th, charge in the
spherical shell. Specifically, the charge d(' at the positlion r'(/) prodlu(es an electric field
dE(r,t) given by [11]

dE(r, t) dc R [ u r ) x u (r',)
,1T(o 1 - u r × x C

+ - 1 (r", L) [a' I u(r'.c t } (A\.2)

where u(r',t') and ut(r',t') refer to the velocity and acceleration of the charge d(' at Hhe
retarded time

that. is
u~r' l')• dr(t')A. -1

dt'

u(r ') d2 r'(t') A. 5.)

The vector R' is defined as the difference between the poslitwn r ,f de and the positi(n r' I')
of dc' at the rctarId time P'

R'= r- r'(') . (0.;)

When one expands R',u(r',t'), and ti(r',t') about tlhe present tine I, as the ra(iilus of
the charge shell becOmes small, one obtains I lie followinig power seWrics ex!pansilol, of JE(r, I
in (A.2)

dc' { R 1 3Rdr,)• 6r.) 16 1- t) 2R
dE(r,t) - f - -[ (r',I)ftR+ ti(r',h 01- -' -11

17,- to fR2  2)(c12 R 1 8 c I

6 ( r ' ,I ) . :+ ( 13 . 6 ( r ' , t ) ) ý' 2 6 ( r , +Sd~" ~U(r',t + -- + -- A )I .",1
+ 1 c1i 8 (4 1•(

with R = r- r'(t), and u(r'.t) = 0. lFqiatilo (A.7) differs fronIm le corre.ponding exprssion
in [111 where the d(ependence of R' in (,A.) upo, i the retarded tite is ite,,rcd. \1,o. A.7)
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differs from the corresponding eq(uation in [1 51] and [31] as well as [11i, by Including the
spatial dlependenice of the acceleration and its time (derivative over the charge distribution.
Both of these diff,-rences, vanish, as we shall see below, when (A.7) is integrated over dJ' to
get E(r. t) and then E(r, t) is integrated over de in (A. 1) to get the self elect romagnetic force
and the L~orentz force equation of motion. Thcsf dilfcerences do not runi~sh in the subseqiu 0t
dtrii'ation of the. self elect rowaguetic power and th'ius cannot 6f igno7-ed in the derivation of
the powecr equation of rnotion.

The acceleration 1:i(r'. t) of the charge dc' at the position r'(f) can bc written in terms of
the acceleration li:i(t.) of the center of the shell by using the requirement of special relativitv
that the spherical shell corntract s to anr oblate splieroid (to order TV) as the speed increases.
Specifically, wve find for i( r'. t ) =0

tu(r', t) u (1) 6- t 1:(t) + 0(R 2) (A.s)

arid

Subst it uting (AS8) and (A.')) i ito ( A.7) and rintegrating over dc' gives the final form for
the seclf 1clctric field at ( r,/I). iii teTiUs of the acceleration (ii) and the timie derivative of
a(:celerat ioll (ii) of the center of thle shell of charge

E(r. t) +w ~~1~ R 2 1?2 [I 21: -1 ii{(. )R + 1
:1R1< + 3(R - 6),ir +j 26- 0(.}dta .(A t

N ex Isert thle sýelf elect nic field froin (A.10) Inrto ( A.1) arid perform t lie (double Integration
oer the Shell of charge. All the termis with anl odd niumber of product>, of R or r' integrate
to zero itnId lie rermainring 'yeni prodc lt I ems integrate to give the fa mu liar expl-rssionI for
t he self elect ron nagnct. i( force-( ii thl proper framec of reference

l"'>11at ing the Sri1ii1 of Ille externally a pplied force anid the self elect rormagnet ic force to
zero, as Lorerijt/ (!], din hiis origi ia work. [3], one obtains thle Lonent z force equiat ion of mot ion
11.3) in t lie prooer ýrainu~ oi I he >1 pl rical shell of cha rge.

A.1.2 Derivation of the smnall-velocity power

I hie pow\er delivered to the iiio'% Ing l arge by thfe Self elct roinagret ic forces within thle ch arge
uli~tribnu loll is givenl bY tI~ li thu,11ne liute.~al in1 (3.2), ruarrrelv

j u(r, t) * E(r, 1)(I (A.l1)
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where again the element of charge p(r,t)dV in (3.2) is relablte'(d as d/ in (A.12). 'ITli
velocity u(r,t) of the charge distribution in (A.12) is arbitrary. For small veloci',v, u(r.t)
can be written in terms of the velocity and acceleration of the center of the shell vt, using
the information that the spherical shell contracts to an oblat e spheroid (to order 1?-) as the
speed of the charge increases; specifically

u(r, t) f-(t) + 0 fl) A./I

C.2 h~)± (~ C2(A1

Repeating the derivation that led to (A.10), with sinall-velocity instead of zero welocity.
shows that (A.10) also remains valid to order u2 /c 2 , that is

E(r, 4 a { + [ -t [ ) +

I~ R [(t )2 _-f 12] + 3(R~ - +ii 2fi~, ui)d +All+g [R •• I'•+ 4c c+ o I,/ c'. (A. 1.1)

Substitution of E(r,t) from (A.14) and u(r,t) from (A.13) into (A.12) allows PI(t) to be
written as

_____ tB. (r u (t)) ,,dc

Pe,(t) = u(t) -E,-,t)d - 7T f i I J-harg ./?2  C2

+()0 () . A.U15)

The integral of the electric field in (A. 15) is just the self elect romagnetic force given in Ti \. 11
The second integral in (A.15) is the extra term that arises because the velocity of the (lhargo
distribution varies with position around the shell. It evaluates to

(0_ Rt(r.- u(t))d-t2
4er 0  - ta - u. (:\.16)U47rr•0 I • L a ge ? c 2 2 417r(oac2 "

The self electromagnetic power can thus be written as

P~t(t) = u -F,,() - c2U I+O +0 ,a) (A.17)

or
-c 5,2 2 2

[)P,(t) - U -ii + u . ± ()(,). +- << 1 I(\.S)
2.1 7r( 0 aC2 Gwc(( (J (C2

Setting the sum of the power delivered by the ext eriallv a'pplied tf,,rce, F,,, u1 a llad thle
self electromagnetic power PtP(t) equal lo zero, as Loreitz '11d iM, his origiual work ;;1. one
obtains the power equation of inot ion (3A.) for charge slidlls wit i sn all velocriv < , •/e" < 1
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A.2 Relativistic Transformation of the Small-Velocity
Force and Power

As explained in Section 3.1 the point relativistic transformations do not necessarily apply

to tle integrated force and power that comprise the right sides of the Lorentz force and

power equations of motion, (3.3) and (3.4), respectively. Thus, it is not mathematically
rigorous to transform the sniall-velocity equations of motion, (3.3) and (3.4), to obtain the

corresponding equations of motion, (2.1) and (2.1), for an arbitrary center velocity of the

charge distribution. Nevertlheless. a relativistic transformation of the proper-frame force

equation of motion (3.3) does yield the general force equation of motion (2.1); whe:eas. a
relativistic tranisforniation of lhe snall-velocity power equation of inotion (3.4) does not yield

the general power equation of iiotion (2.4). The proofs of these results follow.

A.2.1 Relativistic transformation of the proper-frame force

Let K he the proper inertial reference framne in which equation (3.3) is derived, and K' he

the arlitrary inertial fraie ini which the velocity of the center of the charged shell is u'.

Thus K has velocity u' with lisl)ect to A". Equal ion (3.3) can be divided into components

parallel and perpendicular to the velocity u'

F 6rt = 62 [11 - l + 0(a) (A. 19 a)6-,ý (ocl u j

C
2

- t -2 [ U + 0(a) . 19.1gb)

From the r(elativistic trajisforniat lion of force(.

F, 1  -, J i Il' " 2 + ((a) (A.2(a)I•'N : (FB't (~c 2 
(1 J

= ,, , (-,,- !,+ 0(a). (A.201)

aI -

lh relativistic taralf~orniaii l , f acceleration ail 1 its tlime derivative

U_ = (A• (A.21t))

3-,'li~ U 1 + uI~'( A. 22

+: iA.22. 1

'.(1



substituted into (A.20) produce the eqiuations in tihe arhitrarv K' syslc.'i

2 " /3
4  

._

"e.t -6__C - c1 11 + O(a) i\.23a)
CJ

/I 02 L c (u' +)fJ + Of,,). (.\.23b)

Adding (A.23a) to (A.23b), combining ternis and removing the lrimes. results in tle tranis-

formed equation of motion

c d 22 3-,"
Fext (-tu) - U-(

67r(OaC2 dt 67,~c C

+±2ý U -6 + 32U .]) u} +±O(a) (A..2)

which is identical to the general equation of motion (2.1) obtaiwl from thle self electroniag-
netic force calculated directly in an inertial frame in which the charge has arbitrarv center

velocity u.

A.2.2 Relativistic transformation of the small-velocity power

In an inertial frame K in which the charge has hinitingly small center velocity u. we have
from equation (3.14)

Fxt 5u 62 [ U + 0.u+O(a), ?I*0. (A.25)

In the K' frame, moving with velocity -u' with respect to N (as it approaches zero). the
velocity of the particle is u'. Thus, in the A" frame (A.25) becomes

2 5fi 1 l t+OaFext • u' [ c - - (A.26)
67roc 2 L4a •

From the relativistic transformations of F,,.,, U and 6 in (A.20a), (A.2?a) and (A.22a). we

find
F,.,,t. u' = F',,.t u (A.27)

and
5 i K, 5 -3 .ij i u' 4u .\.i

Substituting (A.27) and (A.28) into (A.26 ) ndu reniovi g Itli primes. we o)tain the general
power equation of motion (3.5)

5f 2 d- (2 1*3 1~,2
-rt U1 - 6 + - (--(u u' 0 (11 1 A .29

)'u , oa dit 6('(, ( .2
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corresponding to the sinall-velocity power equalion of motion (3.4). IT1nh ke the transfornmc,,l
force equation of motion, (,A\.29) is not identical to the power equation of motion (2.1)
obtained from the self elect romnagnetic power calculated directly in an inertial frame in which
the charge has arbitrary center velocity u. As explained in Section 3.1, we cannot rigorously
apply the point relativistic transformalions to the small velocity self electromagnetic force
and power expressions to find the self electromagnetic force and power of an arbitrarily
moving charge, because the charge is distributed over an extended region of space and not
concentrated at a single point moving with a uniform velocity. The distributed charge motion
does not change the final result of the self electromagnetic force calculation, but does change
the 1/a term in the self elect rouiagnetic power calculation, and the t,'ansforloation properties
of the self electromagnetic power. Indeed, the next section of this Appendix A demonstrates
that the power equation of motion (2.4) does not transform covariantlv.

A.3 Noncovariance of the Power Equation

Begin with the power equationl of miot ion (2.4) ii an a rbitrary inertial frame K,

C 2 d ( 2 " 3 -1 .2 i 2

.u =- 6 adt( [6 u + --- + O0(). (A.30)

In an inertial frame IK', itiovitg with velocity w with respect to Na, the relativistic trans-
format ions of Ff1 . u. u, U d ii(1 - in termns of the corresponding primed variables in the K'

frame iccast (A.30) in the [form ,

(u' + w). F',. -ýo/ac 2 (I - I 1 'u' w/(") )

C) 7(iOraC: 12.. .•u + • -- U' - W/') C'-)

L (.

" U' (12 ' ( u' +0) ]-+ (a)} (0. (A.3 I

If (A.31 I is to be indec,(,il(,il o! w and hold for all w(u" < c), then the ternis in the curly
bracket, of (A.31) uist l(e cro, that is

F ' ,- - ; t 1. .. . .- 2
r -( 2[ I, 21 ±' iZ.( + uw/c2)2J 6it (;,c'

+ - 1(u'. nz)' 6- - ( '- + _-tu . U ')) . (A.32

BIccaui of the 1/.4 tcri in M .\.VI2). Ili, form• of this e(uataion (A.32) depends explicitly (,T) tIl.
velocity w of the A" iminrt ia I'ra 1e. Tus the fo im of (:\.32)is not relativistically nvariant
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with respect to a change of inertial frames, that is, 1 be "eft anid right sides of e•l power
equation of motion (2.4) do not transformi covariaiitlv I_ . -. I ,f tin, ) I ,( I
course, it is this very term that the internal bindinig forces eIiJliriate fromt the I ,owe," tIttat 1011

of motion (2.4); see Chapter 1.



Appendix B

DERIVATION OF FORCE AND
POWER AT ARBITRARY
VELOCITY

hII this appendix the self electromai gietic force aid power are derived from equations (3.1)
and (3.2) for the shell of charge moving with arbitiary velocity. The 1/a terms are derived
from the space integrals i1n (3-.1) mird (3.2) evaluated for arbitrary, time-varying velocity
(unlike the traditional hieuristic derivation which assumes a constant velocity charge). The
radiation react ion terms are found froni the charge (rather than the space) integrals in (3.1)
and (3:.2) c.iluated for a shell of charge moving with arbitrari, time-varying velocity.

B.1 The 1/a Terms of Self Electromagnetic Force and
Power

"I he self electtromagnetic forc( e and power of the moving shell of charge can be written as
space integrals of the elect'rormngriet rc fields of the moving charge [12, sec. 2.5. eq. (25) and
Sec. 2.11). eq. (6;)]

F',tl' = - ,-/ E'(r'. t') x B'(r'. I'),l I + J T fil',lS (1i.1)

I'I 'i '2: -j /"" , '2  . 2 1 ' ((. ."',"t
2',' I C.. E"),' , E' x B') n '

wher, T' i Ia•,weIi' .Me , ,I, ,and I lie 1p),e's dehnote quantitities in a 1K inertial franie
III which the charge shell hi, a!aiti arv c'enter velocity u'(t'). The voluni, V is enclosed iy
the surface S, whiich end'll w .s thle :rrv'ito , bcarge' dist ribution.

"lhe force o' n rl,' ptirt of th. hi ie gf,,d oullat, sphelridl (with major axis 2,l aind minor axis
2,a I -- i2/c 2 )/i Il thie K' fralrie will be caus-ed by thes position of thli reŽt of the charpg, aI
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an earlier time. In particular, the force field on the leading (Pd of the particle will have left
the trailing end of the particle in a tinie At given approxinat clv for small radius a hv

~~~21 1 _,¢,,. t i+ W'/,
(c - zz')AI = 2a 11/c 2  o r Al'/ 11.3

In this time interval At the charge will have traveled a distatnc, Ad gi'vein approxinialelv by

Ad = u'AI - 2ua/c (13'/c I -7 •t

Equation (B.4) says that the motion of the charge, whici the charge is farther away froii
its present position than some finite number times tlihe radius a, will riot affect the self
electromagnetic force calculation. Thus, we can assume, with no loss of generality in the
derivation, that the charge had uniform velocity when evaluating the fields for r' greater than
La where L is an indefinitely large but finite number. In other words, if we choose the radius
of the surface S larger by a factor L then the major radius of the oblate spheroidal charge
distribution, the stress tensor T' and the Poynting vector E' x B' in the surface integrals of
(B.1) and (B.2) can be assumed those of a charge distribution moving with constant velocity.
Because each of these surface integrals is zero for a constant velocity charge distribution.
(B.1) and (B.2) can be written in terms of the volume integrals alone

d'(' = f, E'(r', I') x B'(r'. t')dV' (B.5)

~~(I f0 1 12 1't(t - ' (E' + c2•B' 2 )d' (B.6)
2 dt' v.

with 1V, denoting a finite volume that encloses the charge distribution and having a radius
La proportional to the dimension c of the charged shell. The fact that the radius La of the
volume Va approaches zero as a approaches zero, and yet L is an indefinitely large mumber,
is used in the following evaluations of the 1/a terms of self force and power.

B.1.1 Evaluation of 1/a term of self electromagnetic force

We want to evaluate the space integral in (B.5) at each instant of time t'. l)begin, let this
instant of time be t' = 0, in order to simplify the integral in (B.5) to

IF = E'(r',O) x B'(r',j ),l1". (|1.7)

Next write the fields, E(r', 0) and B'(r', 0) in the R` frame ii tcrlins of the fie lIs ii a proper

inertial frame K at rest instant aneously with the center of the the charg (,isL IriIut ion al
I' = 0. Assume that the origins of the h" and R" franles coincide a;t I Then thei
relativistic transforrmations of the fields are given by

E'(r',O0) = or'. E(r.) I ti' x B (r,/ II.••
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B'(r',0) r'. [B(r,t) + u' x E(r,t)/c 2] (B.8b)

"+'' ' (1 - '1 )-12 (B.Sc)

with
rI (13.9a)

r -l = 'rl (B.9b)
t = -• ' ' r '/ C (B .9•c )

where tLe subscripts I and 11 mean perpendicular and parallel to the center velocity u'.

Substitute (B.8) and ([3.9) into (B.7) and make the change of integration variable

r = r' + iy'rtl (B. 10a)

so that
dV = "dV' (.101))

and (13.7) becomes

IF - a'" [E(rt =-u' r/c 2 )-u' x B(r,t -u'. r/c2)]

x×'. 1B + u' x E/c2] dV. (B.11)

Since we have determined in Appendix C the proper-frame electric and magnetic fields.

E(r. t) and B(r, t). at a fixed time t, the integral of the fields in (B.11i) could be evaluated if

it weren't for the fact that t = -u' r/c 2 is not fixed but varies with the integration variable
r. Fort unately, this difficulty can bh overcome, when evaluating the 1/a term, by expanding

E(r. t = -u'- r/c 2 ) and B(r, t = -u'. r/c 2 ) about the fixed timet= 0; specifically

E(r.t) E(r,0)- E(r,0)t ..... (B.12a)
Ot

B(r./) =B(r, 0) + B(r, 0) t+ ...... (B.12)

lomn .Maxwell's cjiatiouns all li,, timne derivatives of E(r,0) and B(r.0) can be writtell ill
terms of the spatial (lerivali 'IC

UBI3r,0)Mir__- -V x E(r,0) (B.13aOt

E(r.0) V B(r.0) (B.13b)

at
& B(r' )- - OE(r, 0) 'V- x V x B(r. 0) (Bt.13(

O)t -i 0
etc.
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Substitution of the time derivatives froiii (11.13) converts (13.12) to

E(r.t) E(r.0) + c2V x Bir.t0)t + .... 1.4a)

B(r.t) B(r,0) - V x E(r,U)t ...... Li L)

When the piropcr-fratl electric and imagnetic fields. E(r. I). B(r.0) an' 1 liir ,liris. are

inserted froin (('.1) and (C.5) of Appendix C' iito the right sid(e> of (13. 1), ,and the. resulting
fields, E(r, t) and B(r, t), are inserted into the integraid of (1B. I I) wit i t =-- u' r/c"2 ,ime

finds that the B field in the integrand of (13.11) does not cot rihute to t he 1/a terill of thhe
iiitegral and that only the static part of the E field contriilit es to the 1/ 1 te'nn. I1! nil 're
detail

1k -[(' E(r.0)]× x 6'.-(u'×x E(r.O0))ic d\ -+O(1 13. 1.-))

or since a'- (u' x E) -u' x E and a' E IT'E+ (+ - - ' ) U

j, = j ,-[ (1 - 2')(fi'-E)2] -(u'.E)E} dV + (I). IA.lk0

The electric field E(r,0) is found by int(graiing expression I('.1 to get

-1 r.orT•2r + 0(1/ri. r >1

E(r, O) - '.IT!
1 O('/a), 1,< ,

Because V, --+ 0 as a -, 0, the integration variable r -- 0 as 1 1 0 and we are allowetd to use

this small r approxiniation of (C.1) for E(r,0). With E(r.I)) fromn (13.17) siist i;uited into
tlie integrand, tle integral in (13.16) can I), evaluated for large 1. to giVe

0 0I•=4w:t~ac.2 "/+ U +0(1) * (;,,,. +()(! . KBIlN)

For the sake of simplifying the relativistic trarisforitat ion>. I 13. l~ was deirvti for ai
specific instant of time t' = 0. This instant of time could( bhe any instatnt of 1liev. 'I hills I. I >1

holds for arbitra ry tinie P', and (13.18) can be substituted into (B1.5) to give the ]/,/ 1,erni (,A
the self electronimgnetic force

r2 (1

in7he rb¢a"2 Aft'

in the arbitrary h" fra me.

87



B.1.2 Evaluation of 1/u term of self electromagnetic power

Proceeding with the evaluahit l of I lhe self power integral in (13.6)

If, (E'2 + c(2 '2)dV'

in the same manner as in the previous section for the self force integral, one gets

Ip =- f, 1-,1, [II" E(rO)12 + 'lu' x E'12/c2] dV + 0(1) " (B.201)

With E(r,0) inserted from (B. 17). (13.20) integrales for large L to

= . (I + ) +0(1) (13.21)

which, when inserted into 13 .6). gies

,' (I + T)] +0(1) (1..22a)

or equivalently

, - ( "- + 00 13.221
6((r)a dt' (

fulr the 1/a terin of lih self electroutagnetic power in the arbitrary A" franile.

B.2 Radiation Reaction of Self Electromagnetic Force
and Power

1'l'e ai j ve derivation for thee 1/a t einls of the self c'lctrouiagnetic force and power in all
aiX'bl! ie rtiat fraue from lhe momentum and energy integrals in (11.5-) and (13.6) does
not extc ,iI easily to finding the radliation reaction (0(1)) terms of lhe self force and power
l,,cal:,' al infinite number of terris in the series expansion (13.11) of E(r. t) and B(r.I
cornll'hillte to the 0(1) terns of th, itoinentuni an(] energy integrals. Fortunately. we cc l I

filid lie radliltion rcirtioll ternm, of the, self force and pIwer from thle charge inlegrals of .'.)
wIllt T3 .
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B.2.1 Evaluation of the radiation reaction force

Jo dletermnine the 0( 1) ternis of the JOfTl, riiale it IIIt j, JXA' 'in'T! jial t n i
Ilie shlell of cha rge is movineig withI i' trilt i*ri ve'cItlt\. 'A w lt- sh i t i i! lit'1 1 ctit- I i I '

IT) (3.1) at, aft arbitNrar, InStaiilt of tiijit' 1', lu r 1clit he it tIri t.It lh*s ýArhl it I, T ,

chosen as t' =0, initially, so the( self ('lt('tiuiagiiet ic hocIII' In II,, A' hoin,' tan Ithu i

F, r )rE (' )+ u'i(r', 0') x [V( r'. 0iI 1 .k

ut li'I.IT relativistl(c t rdiisforrrat lolls ( b.)antI ( 11.9). Ill Itri it, of, lit, fields 1it IT( p'ir p
A_ At rest inistmalit lli(\llslV. withI the c('(lit (' )f ie cliiI c (it st I 1,1 t loll il f, = I). Si!c I( .t I '

Apptendhix C cilli lbe Isel( to show~~ thatt B(r. ) lit ( L~*tltnlit' (tidl\to ltcii, d "I
trul'er thtan 0(1). F' ati B' lii (B .23) cim Ihe wrilten I lvfittr (l1.S) its

V'I r', 0') = a' -1l~ r. B l.2 la

B'(r', (t) = ;'ui' Y Ei~r. I 11.2 1,

\\licre a' is ilefillI l (i IL'c), r aiid I nit' giveni lit ( B.) n tl i1' 1" 1to' \ T'.i I
d' the (liarge d ist Ii] tiit jloli

) I ' I '(- v lo ity u i( r ', (I) i I a' c l pr pe fri l I Y is! i cI II tit t t Iw f o h I i'l tan I I tll-lI'II, 1 2 l

WI 0
u'( r, 0) 4 + U/- 12

Sinllilrly. t he ('liirge density p)(r. Ii) lil (13.23) trali"sforiw re~it~i vi> t~cidlVIt to ilie ip1 )tpf K
f'.ilici as

liarge distribihttilli at t :-z -<''r/ -i / 2 i teAfin:' t-Itli bte t'xlhitlti o

0 to give

tir tI W -ur. 0)( it' r),c 2 13. -

jl( . I~ r.It) i)p( rt 0 r i.

BecaiilS'us t( r. I) v~ujlts /,ero for ii it'Iitlit l ' tally~ ni it . nhuh l td i H IT , ' 1'1t' ' '1 1 'a o .

li~ivc O~r. 0)11 V , [~r. Mtir. M1 0 ;md >11.-:)(,f Iip



for the charge density in the K' frame. Similarly, substituting (B.27) into (B.25) and ex-
panding in powers of r gives

u'(r',0) = u' - ,+ - ) 0) (u'cr) + 0(02) . (B.31)

The acceleration ii(r, 0) of the charge distribution in the proper frame was given previously
in (A.S) in terms of its center acceleration ii; thus (A.8) shows that (B.30) and (B.31) remain
valid to O(r 2) when the acceleration ui(r,0) is replaced by the center acceleration ii.

Substitute into (B.23) the expressions (B.24) for E'(r', 0) and B'(r', 0), (13.30) for p'(r', 0).
(B.31) for u'(r', 0) (all with r and t replaced from (B.9) and the center acceleration 'i replacing
ii(r.,0) in (B.30) and (B.31)); then make the change of integration variable from r' to r1 +
r:i/-ý' to obtain

, 0 1 (u'6 +O(r2) d'E(r, t)• u

- ', ' ( _ , (u'r) + 0(7.)} x (u' x E(r.1)) dVc (B.32)

with I = -u' cr/C. We want to insert E(r, t) fromn (13.14a) into the itegrand of (B.32):
specifically

E(r.t) = E(r, 0) + c27 x B(r,O)l- c2 x 7 x E(r, 0) -. ..... (B.33)

with t = -u' . r/c2 . Wlhen one replaces E(r, 0) and B(r, 0) in (B.33) by their integral values
given in (C.l) and (C.5), one finds

1
E(r,!) E(r. 0) + terms odd in i + -(terms even in i) . (B.3 1)

a

.As the radius a of the charged sphere approaches zero, the terms odd inl ill (13.34) integrate
to zero it (B.32). The 1/a terni in (13.34) integrate to give I/a terms when multiplied )v
the ternis of order unit\- in the integrand of (B.32), and zero when multiplied yv the terms of
Iorder r a nd higher in (1.32). Also. as a approaches zero, the O(r 2) terms ii (13.32) integrate
to zeru. lin all, (B.32) becomiies

tl'\ ,, u' mh)u'. rlu
F'0) O ) + ./,,(r,0) (u/ - 6(l-r] [a' E(r,O0)

S7, 6(u - r)

I,, - ,'+ -- - ..... x (u' x E(r,0)) dV + O(a) (B.3.))

as (I alpp roaches zero. where (I /lo) in (13.35) denotes t lie 1 /a terms.
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I ns ert i ng E (r .O ) fro n t ( C'.. ) in to ( I A3 y,) u ot in g tlh a ,t A l I, t,.l, ,., i nt e,. r. 1, t,, v c, .,. 1, 1d

extlracting the 1/a ternis, we find

- [a,_26 + w , xu' t x 26

+0(a) ) + , ii +'U' x (u' x fi)] + 0(I) 13.31)

where we have let d(t p(r= O)dl' and performed thle lonlh inlegratluil of Ali ,-a
integrand over the charge.

With
c, i ----y'i q ( •/) u'."ii~ uU , -, ,' W 17 a )

11,2

alial
I' ''t 2i I ,2andu' x (u' x ) - 2 6 + ^(u' • i)' 13 3•Th

C2  C

(B.36) can be written as

F',r(O) + + (1 ) i)U]

or

F;., 0) = ,i (;a,,,+:• illi + ii-L/-1' -+ O (1,). '.•,,

'lTlh d(erivattives of the accele'ration, Uil and fi±. ill the i)1rope' I" frare Cale l Ibe ('xpr<'., ill
t.ernis of the velocity and its derivatives ini the arlitrary I' franiie 1w lilealis (f tihi i(lti i ,H
transforrnations (A.22). Using these transformations (A .22) (o)1vert s (11.3:b) to

'2 r2
F',f(") (= + ii + 3 u-1 '2 U ,)i '

+c= 0 ,-a/+ 3-/ r2( •f ut)" u'j ý 0(a) WI•,!j

C'2 [ 2

where V' has replaced I' = 0 in (13.38) since the time ' = 0 could be an\" instanlt of lim e P'.
The order unity term in (BA.39) is the radiation reaction part of he self (hec0trontygwt ic

force. Combining the 1/a part of the self electromagnetic force in ( 13. 19) with the radiat iol
reaction part in (1.39) produces the total elect ronagn(t ic self force to orler a in allt artHt rary
h' inertial reference frame

(, 2 d . , - i'.2 -_2

F,(' -- 6~rr•°u"2 ;d(t ( 'i') -+ ti(ij' { -h + .,
7'2 ~ ~ ii 3"2u',

+F-> ur'.'U' + 6 .7i,)j u'} +O()C. 3t.10
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B.2.2 Evaluation of the radiation reaction power

To determine the 0(1) terni., of the self electromagnetic power in an arbitrary K' frame.
begin with the charge integral in equation (3.2) at. an arbitrary instant of time t' = 0

Applyi g thie same procedure to (BA.. ) as we applied to (B.23) in the previous section yields

",',stea(I of (B.381)

-( (11) + 6 .iu' (13.12)

Substitutinlg i1j froin (A.22a) into (13.12), rearranging the expression, and replacing the
arbitrary time P' = with t'. results in the ra(diation reaction power in the arbitrary K'
frame

P'I(t) + -. 6 u. ill + (Ul 1 )2 + 0(n). (B.43)
0a 6r(Oc>3 C2  I

The l1/a part of the self electromagnetic power in (B.22) combines with (13.43) to give the
total self electromagnetic power to order a in an arbitrary K' inertial reference frame

t t(t ) -, ' -

C 2/

+("'__ u' i (--2 (u' • /)]' + ()(a) . (13.,1)

This colupletes the derivaliot, of the self eleh"romiagnetic force and power to order a
of Lore'utz's model of the electron. that is, a total charge e uniformly (listributed on a

Slherical insulator of radius a ii uovi'ng without rotation with arbitrar *N cent er velocity u'.
"1, miv knowledge, it is th"e tiiý? rig(,ro~is (lerivation of these results for arbi trary velocitv
5!lice Sehot t• s 13] rigorous, ve(.t xtraurdinarilv len(gt lv derivation from the I.1iiard-Wiechert

putenltials: see ('hapter 13 of II)c1 1iluli text.
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Appendix C

ELECTRIC AND MAGNETIC
FIELDS IN A SPHERICAL SHELL
OF CHARGE

Consider the Lorentz model of the electron as a total charge mnilforinly distribut((d within
a thin, nonrotating, spherical shell of inmer radius a and thickness 6 (see Figure I of lhe

main text). In a proper inertial reference frame at rest :nstantan(neuiislv with the charge
distribution, the velocity u(r, t) will be zero but the accelerat ion and higher tinn ( dcrivatlv,,s

of velocity are, in general, nonzero funct ions of space aiil t Mwe ( u(r, 1 ). i( r. ) ..
In equation (A.10) of Appendix A the i(led tic field prodc('d by this a(ccelera iugii, carge

in its proper frame was found to be

E(r,t) R + I [r -j(. u)1 + 6l

3 r( ag R .1 ' 93(R~uu I c

3IR [(Rj.u)2 1u12] + 3R - + + 0u),1I'. = 0 (('.1)

where fi and 6 in (C.0) refer to the time derivatives of tite ce(ter velocity of tie cflarge'd

sphere at time 1. The position of the charge element d' is desigiated by r'(t) and tite vector
R is defined as r - r'(1).

We can find the magnetic field B( r, t) from the simple relationship between the electric
and magnetic fields of a moving point charge [11]. Letting d•' be the moving point charge.
and dE(r, t) and dB(r, t) be the electric and magnetic fields of this point, charge, we have

dB(r, 1) Rl'(t') x dE(r, /)/c (C.2)

where dE(r, 1) is the integrand of (('.1) and R'(f') is defined as r - r'(/'). I lie dfFerence

vector between t(he position r of the observation point anid lihe position r'(/') of lIe eler(-)erit

of charge dc' at tlite retarded time t' = - H' /c. Extpandling R'(1') in a power series about t
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and making use of (A.8) givc(s

t,(,,) = ft [r'.- [f r uf-] - R [2 [(ft- )2

R-2c2 ~C2 -8(. J -Sr

Stf+ + R2 [ + 0( 3).(.3)

Substituting R'(t') from (C.3) and dE(r, f) from the integrand of (C. 1) into (C.2), one finds
that most of the terms cancel leaving merely

dB(r, 1) r ,4 + O(R) d'(C.')

or
B(r.1) 1 . t, 1( 6 + O(R) dc', ?=0 (C. 5)

2cl

for the miagnetic field in the proper fr'ame.
Equations (C.1) and (('.5) can be integrated in closed form for a uniformly distribute'd

.spherical shell of charge with inner radius a and small thickness 6. In particular, the expre(s-
ýions for the fields within the thin shell simplify to

r 4 a' ýo -( a--2u •26] 5-1r"^(i 62]

E(r, t) = -Tr -- + 3 + --r 6UU - + O(a) (C.6)

C
xii + O(a), (C.7T)I 2 =rl)rnr

u =0, (a <r <a+ )

The elctric field in (C.6) agrees with the results of Sect tions 56 and 57 in Page and Adams
[.. except for the -1/5 termi in (('.6). which is missing ill their work, becausc they do not

take ink,) account the varia tioim (.\S.) in acceleration of the charge with position around the

shell. Also Page and Aoaanmh do iiot include the 11 term in the magnetic field of (C.7).
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Appendix D

DERIVATION OF THE LINEAR
TERMS FOR THE SELF
ELECTROMAGNETIC FORCE

l iegin the (derivation w I Iit i I(, exlpressioii (A. 2) for tl" I ',lect 1it field prodl• ced hY ie I I ,Ii(-II
(clement, of charg(- dW' in the shell of chlarge. Since we Want t,( livihatte this tx" ress it (A.2)
in a proper reference frame (ti(r, t) = 0) discarding all nonlinear terms in u. ii .... W see.
with the help of the expansion ((.3) for R'(t'), and (A.8) and (A.13) for fh(r', f') and u(r'. I').
that (A.2) can be simplified immediately to

Sdc' [Px (it x ul('))
dE(r, t) =

4 ,1 (0 1?c2

+ ft/ - u(t')/c)] + nondinear terms (1).D J

flr 2( I - ft -u(t')/c)3 J

where, of course. R' is a function of the retarded timie t' = t - '//c. Inserting the expansioni

u(_ ')__ -3 :R1u- u(t')
1i- f - 1 ± ± tnh•lint.ar te•rnlis' (DJL)

into (l).l) gives

dI d (-' uft (t')) - Um(t') u(t')
dE(r,t)=47r Ic 2  1?2c

____________'____ '(i') 1
+ 3R(R .-"(l') + 3( + nolilminear terlrm. (OD.3)

No)w

R'(/') = R(t) - 6(t) + ) (- T-:- + ,onlinwar terms D)1)
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or with thle inlsertioni of th iexp' Jansionl

H'(tt R -?c 6-t) leyilca noilrm le. ( I).

2a -+ 6 i)iiia + 'ri+ i

-'I' R hf//c) -+ DIullilicar terms. (1). 7 1

l?' P) ?(t ] ?/C ) +- lion Ii iea r lerius (1) .c

OJr

WVith

/21 - R R 1/1 R.9a
ft - U

II. + flionlihicar terms ( i).

R- ii H -- ii~

Rut - J?/C) R 4- ___)_6() -- + .. + iomil]ilieai, terms. ).-) c 6 ~C

In /'I ) R (I - 1?/( It (1 ('R . '<6. ii {l? ý'\ \

+~~~~~~ -jj[1 ! 01(11 ~ ±nninear termsi. (D112)
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W hen we substitute (D.8a), (D.81)) and (1).12) into (1).). Integrate over d '. t lie ii Hi1 -
tiply by de = pdV and integrate over dc to get i he tolal self (lehcron t•guiic firect we arc

left with integrals of the form [14]

R'dd!dd = 3 iR .d/",/- a"(I

L{2ik'bJ? I I ý- +~ r, ____ 2
= 1, .1.2 . .. 21)1

\Ve see from (1).13) applied to (D.12) that

// R'(t') (/,', = 0 + nonlinear t,(rmhs. 1) 1a)
J ,p h e r e R ' ( 1 ,)

Similarly, from (1). 13) applied to the u(p') part of ().:)

y L3. T 11 dcR - d( d) + nonlinear terms 1).1 1L,)

and from (D.13) applied to the ii(t') part of (D.3)

I Iphere R? -3 Tdd -Iiphrr, Rp kc

+ inonlinear terms. 1),l.tc

Thus, integrating (D.3) over d' and dh aid using (I). 1I) shows thai t lhe cXa( • ,) ression

for the total self electromagnetic force oi lIhe charge call hie wrilite shiiiply as

Fv,(f) f idE(r.,)dt ), if I t* c (IfJsphtre 6()•(C2 J ph,, - R..7 -- d

+ nioliniear leisrin ).1 *

Since iJ:(t - J?/c) can be expanded in tlhe powx er series

U,• l/ ) d"+iu(t) (-, R '

71=0 n! (//)+, (.C

substituting (D.16) into (1).15) and applying the integrals (D).13) yields

+: ( 9__pa a),,l+, i,,+ ,u7

Fe(t) - 127rw(a 2c (,, + 1)! d ut-)-A-+ +nnlinear terjs I).7)

or

c 2F~~d/) ~ 2a /2r.ac ( - c) + floI l lIliar 1, 1r(111 IS. it : 0 )1,'
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or for small velocity

( 2 IL 2

F•((t) = [u(/ - 2a/,) - u(t)] 4 nonlinear termns. - ,: 1. (1).l!1)12 (f1,2•a C C-

'File result (ID.18) was stated without proof biy Page [14]. It can also he obtained from

the first series of a general expression for the self electromagnetic force, oin a nonrelativik.

ticallv rigid charged sphere. that was derived by Schott [49]. The linear part of the self

electromagnetic force (I). 19) is the same for both ,relativistically and non rmlativistically rigid
spheres.
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OF

ROME LABORATORY

Rome Laboratory plans and executes an interdisciplinary program in re-
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Air Force .ser "ommunf ', and other DOD and non-DOD agencies. Rome

Laborato, y maintains technical competence and research programs in areas
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