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Foreword

This is a remarkable work.  Arthur Yaghjian is by training and profession an electrical
cugineer; but he has a deep interest in fundamental questions nsually reserved for physicists.
Working largely in isolation he has studied the relevant papers of an enormous literature
accumulated over a century. The result is a fresh and novel approach to old problems and
to their solution.

Physicists simee Lorentz have looked at the problem of the equations of motion of a
charged object primarily as a problem for the description of a fundamental particle. tvpically
an clectron. Yaghjian considers a macroscopic object, a spherical insulator with a <surface
charge. He was therefore not tempted to take the point fimit. and he thus avoided the pitfalls
that have misguided research in this ficld since Dirac’s famous paper of 1933,

Perhaps the author’s greatest achievement was the discovery that one does not need
to imvoke quantum mechanics and the correspondence principle in order to exclude the
unphysical solutions (runaway and pre-acceleration solutions). Rather. as he discovered, the
dertvation of the classical equations of motion from the Maxwell Lorentz equations is invalid
wheti the time rate of change of the dynamical variables is too large (even in the relativistic
case). Therefore, solutious that show soch behavior are inconsistent consequences. The
classical theory is thus shown to be physically consistent by itself. It is embarrassing - to
say the least—that this observation had not been made before.

This work is an apt tribute to the centeantal of Lorentz’s seminal paper of 1892 in which
hie first proposed the Lorentz force equation.

Iritz Rohrlich
Syracuse University
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Preface

This re-examination of the classical model of the electron. introduced by H. . Loventz 100
vears ago, serves as both a review of the subject and as a context for presenting new maierial.
The new material includes the determination and elimination of the basic cause of the pre-
aceeleration, and the derivation of the binding forces and total stress-momentum-cnergy
tensor for a charged nsulator moving with arbitrary velocity. Most of the work presented
here was done while on sabbatical leave as a guest professor at the Electromagnetics Institute
ol the Technical University of Denmark.

[ am indebted to Professor Jesper E. Hansen and the Danish Rescaich Academy for
encouraging and supporting the rescarch under Grant No. ESS0153. [ am grateful to Dr.
Thorkild B. Hansen for checking a number of the derivations. to Marc G. Cote for helping
to prepare the final camera-ready copy of the manuscript. and to Jo-Ann M. Ducharme for
tvping the initial version of the manuscript.

The final version of the report has benefited greatly from the helpful suggestions and
thoughtful review of Professor I'. Rohrlich of Syracuse University, and the perceptive com-
ments of Professor T Wu of Harvard University.

Arthur D. Yaghjian
Concord. Massachusetts
April 1992
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Chapter 1

INTRODUCTION AND
SUMMARY OF RESULTS

The primary purpose of this work is to determine an equation of motion for the classical
Lorentz model of the electron that is consistent with causal solutions to the Maxwell-Lorentz
cquations, the relativistic generalization of Newton’s second law of motion. and Einstein’s
mass-energy relation. (The latter two laws of physics were not discovered until after the
original works of Lorentz, Abraham, and Poincaré. The hope of Lorentz and Abraham
for deriving the equation of motion of an clectron from the self force determined by the
Maxwell-Lorentz equations alone was not fully realized.) The work begins by reviewing the
contributions of Lorentz, Abraham, Poincaré, and Schott to this century-old problem of
finding the equation of motion of an extended electron. Their original derivations. which
were based on the Maxwell-Lorentz equations and assumed a zero bare mass. are modified
aud generalized to obtain a nonzero bare mass and consistent force and power equations
of motion. By looking at the Lorentz model of the electron as a charged insulator. general
expressions are derived for the binding forces that Poincard postulated 1o hold the charge
distribution together. A careful examination of the classic Lorentz-Abraham derivation
reveals that the self electromagnetic force must be modified during the short time interval
after the external force is first applied. The resulting modification to the equation of motion.
although slight. eliminates the noncausal pre-aceeleration that has plagued the solution to
the Lorentz- Abraham equation of motion. As part of the analvsis. general momentun and
cuergy relations are derived and interpreted physically for the solutions to the cequation
of motion, including “hyperbolic™ and “runaway™ solutions. Also. a stress-momentum-en-
ergy tensor that includes the binding, bare-mass, and electromagnetic momentum-energy
densities 1s derived for the charged insulator model of the clectron, and an assessment s
made of the redetinitions of clectromagnetic momentume-energy that have been proposed in
the past to obtain a consistent equation of motion.

Many fine articles have been written on the classical theories of the electron. such as
[6.29.36.37,41.56,07]. to complement the original works by Lorentz [3]. Abraham [2]. Pomneard
[16]. and Schott [13]. Howeveroin returning to the original devivations of Lorentz. Abraham,
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Poincare. and Schott, re-examining them in detail, modifving them when necessary, and
supplementing them with the results of special relativity not contained explicitly in the
Maxwell-Lorentz equations. it is possible to clarify and resolve a number of the subtle prob-
lems that have remained with the classical theory of the Lorentz model of the extended
clectron,

An underlying motivation to the present analysis is the idea that one can separate the
problem of deriving the equation of motion of the extended model of the electron from the
question of whether the model approximates an actual electron. One could, in principle, enter
the classical laboratory. distribute a charge ¢ uniformly on the surface of an insulating sphere
of radius a. apply an external electromagnetic field to the charged insulator and observe a
cansal motion predictable from the relativistically invariant equations of classical physics.
Moreover. the short-range dipolar forces binding the excess charge to the surface of the
isulator need not be postulated. but should be derivable from the relativistic generalization
of Newton's second law of motion applied to both the charge and insulator, and from the
requiretient that the charge remain uniformly distributed on the spherical msulator in its
proper nertial frame of reference. A summary of the results in each of the succeeding
chapters follows.

Chapter 2 introduces the original Lorentz-Abraham force and power cquations of mo-
tion for Lorentz’s relativistically rigid model of the electron moving with arbitrary velocity.
Lorentz and Abraham derived their foree equation of motion by determining the self electro-
maoenetic force induced by the moving charge distribution upon itself, and setting the sum
of the externally applied and self electromagnetic force equal to zero, that is. they assumed
a zero “hare” mass. Sumlarly, they derived their power equation of motion by setting the
sum of the externally applicd and self electromagnetic power (work done per unit time by
the forces on the charge distribution) equal to zero.

To the consternation of Abraham and Lorentz, these two equations of motion were not
consistent. In particular, the scalar product of the velocity of the charge center with the self
clectromagnetic foree (foree equation of motion) did not equal the self electromagnetic power
(power equation of motion). Merely introdncing a nonzero bare mass into the equations of
motion does not remove this inconsistencey between the force and power equations of motion.
Moceover, 1t is shown that the apparent inconsistency between self electromagnetic force
and power is not a result of the electromagnetic mass in the equations of motion equaling
1/3 the electrostatic mass, nor a necessary consequence of the electromagnetic momentums-
crergy not transforming like a four-vector. The 4/3 factor occurs in both the force and
power eqiations of motion. i2.1) and (2.4}, and it was of no concern to Abraham, Lorentz,
or Poincard in their original works which, as mentioned above, appeared before Finstein
projosed the mass-energy relationship.

Neither the self electromacnetic force-power nor the momentum-cnergy transforms as a
four-vector. (For this reason. they are referred to herein as force-power and momentum-en-
erpyv rather than four-force and four-momentum.) However. there are any number of force
and power functions that could he added to the electromagnetic momentum and energy that
wonld meake the total momentnm-energy (call it (') transform like a four vector, and vet not
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satisfy dG'/ds u; = 0, so that the inconsistency between the force and power equations of
motion would remain. Conversely, it is possible for the proper timme derivatives of momentum
and energy (force-power) to transform as a four-vector and satisfy dG/ds u, = 0 withomt
the momentum-cnergy G° itself transforming like a four-vector. In fact, Poincare introdneed
binding forces that removed the inconsistency between the foree and power equations of
motion, and restored the force-power to a four-vector. without aifecting the 1/3 factor in
these equations or requiring the momentum and energy of the charged sphere to transform
as a four-vector.

The apparent inconsistency between the self electromagnetic force and power is investi-
vated in detail in Chapter 3 by reviewing the Abraham-Lorentz derivation. and rigorously
rederiving the electromaguetic force and power for a chiarge moving with arbitrary veloc-
ity. For the Lorentz model of the electron moving with arbitrary velocity one finds that
the Abraham-Lorentz derivation depends i part on differentiating with respect to time
the velocity in the electromagnetic momentim and energy determined for a charge distri-
bution moving with constant velocity.  Although Lorentz and Abraliam give a plausible
arguiment for the validity of this procedure. the first rigorons derivation of the selt electro-
magnetic force and power for the Lorentz electron moving with arbitrary velocity was given
by Schott in 1912, several years after the original derivations of Lorentz and Abraham. Be-
cause Schott’s rigorous derivation of the electromagnetic force and power, obtained directly
from the Licnard-Wicchert potentials for an arbitrarily moving charge, is extremely involved
and difhicult to repeat. a much simpler, vet rigorous derivation is provided i Appendix B.

It is emphasized in Section 3.1 that the self electromagnetic force and power are equal to
the internal Lorentz force and power densities integrated over the charge-current distribution
of the extended electron, and thus one has no a priort gnarantee that thev will obeyv the
same relativistic transformations as an external force and power applied to a point mass. An
nnportant consequence of the rigorons derivations of the electromagnetic force and power
of the extended electron, with arbitrary velocity, is that the integrated self electromagnetic
force. and thus the Lorentz- Abraham force equation of motion of the extended electron s
shown to transform as an external force applied to a point mass. However, the rigorous
derivations also reveal that the integrated self clectromagnetic power, and thus the Lorentz-
Abraham power equation of motion, for the relativistically rigid model of the extended
clectron do not transform as the power delivered to a moving point mass. T'his turns ot to be
true even when the radius of the charged sphicre approaches zero, becanse the iternal fields
become singular as the radius approaches zero and the velocity of the charge distnibition s
not the same at cach point on a moving. relativistically rigid shell. Thus, it s not pernssible
to use the simple point-mass relativistic transformation of power to find the integrated self
electromagnetic power of the extended electron in an arbitranly moving mertial reference
frame from its small-velocity valne.  (This is unfortunate becanse the proper-frame and
small-velocity valnes of self electromaenetic foree and power, respectively. are mneh ecasier
to derive than their arbitrary frame values from a <eries expansion of the Licnard-Wiechert
clectric fields: see Appendiv AL

The rigorons derivations of self electiomagnetic force and power in Chaptor 3 cineally




confivin the discrepancy between the Lorentz- Abraliam force and power equations of motion.
Chapter Fintroduces a more detailed picture of the Lorentz model of the electron as a charge
uniformly distributed on the surface of a nonrotating insnlator that remains spherical with
radins a in its proper mertial reference frame. Applying the relativistic version of Newton's
second law of motion to the surface charge and isulator separately. we prove the remarkable
conclusion of Poincaré that the discrepancy between the Lorentz-Abraham force and power
cquations of motion 1s causzed Ly the neglect of the short-range dipole forces binding the
charge to the surface of the insulator. Even though these short-range dipole forces need
not contribute to the total self force or rest energyv of formation, thev add to the total self
power an amount that exactly cancels the discrepancy between the Lorentz- Abreham foree
and power equations of motion. MMoreover, the power equation of motion modified by the
addition of the power delivered by the Linding forces now transforms relativistically like the
power delivered to a point mass. With the addition of Poincaré binding forces, the power
equation of motion of the Lorentz model of the electren derives from the Lorentz-Abraham
force eqnation of motion. and no longer needs separate consideration.

Ot course, Poincaré did not know what we do today about the nature of these surface
forces when he pablished his results in 1906, so he simply assumed the necessity of “other
forces - bonds™ that transformed hike the electromagnetic forces. Also, Poincaréd drew his
conclisions from the analvsis of the fields and forees of a charged sphere moving with con-
stant velocity; see Section 4.1, The derivation in Section 4.2 from the re! tivistic version
of Newton's second law of motion reveals. o additio. to the original Poincaré stress, botl
“inhomogeneous” and “homogencous™ surface stresses that are required to keep the surface
charec hound to the insulator moving with arbitrary center velocity. The extra inhomoge-
nesnis stressantegrates to zero when caleulating the total binding force and power. The extra
homogeneons binding foree and power just egnal the negative of the time rate of change of
momentum and energy necded to aceelerate the mass of the uncharged insulator. It also
vanizhes when the mass of the ancharged nsulator is zero.

The mass of thie nncharged insulatar should not be confused with the “bare mass™ of
the snrtace charge. Today the bare mass shonld be viewed as simply o mathematically
detined mass requived to make the Lorentz-Abraham force equation of miotion compatible
with the relativistic version of Newton's second law of motion and the Finstein mass-energy
relation. Also, the analysi- in Section 1.2 confirms the original results of Poincaré that the
forces binding the charge to the insulator remove the inconsistency between the Lorents-
Abratiam foree and power eqiations of motion tthat s between self foree and power). but
donot remove the 173 facror mudtipiving the electrostatic mass in the equations of motion
or require the momentum cnerey to travsform as a fonr-vector. With the addition of the
Binhing torees, the foree-power. hut not the momentume-energy. transforms as a four-vector.

Chapter 5 determines the relationships between the various masses (electromagnetic,
clectrostatics bare, measured. and nisnfator masses) mvolved with the analyvsis of the clas
sical model of the electron as a charged insalator. Specifically, the Einstein mass-energy
refation demands that the measired mass of the chiatged insulator equals the sum of the

clectiostatic mass and the s ol the vnchareed isidator (which canmelinde any mass die




to gravitational ficlds and the short range dipole forces bindiig the charoe to the insalator,
U thetr contribution to the rest energy of formation s not aeslipiblei T he velativistie ver
stonn of Newton's second law ol motion then de nands that the monentum of the so-called
bare mass equals the difference between the mome:tam of the clectromavnetio mass and the
electrostatic mass, regardless of the value of the mas. 7 the insulator.

It is the negative bare mass that removes the 1/3 factor from the electrostatio mass in
the Lorentz-Abrahan- Poincard equation of motion and inakes the momentum of the charged
msudator compatible with the electrostatic rest cnergy of [ormation. With the inelnsion
of both the bare mass and binding stvesses: the momentnm cterey as well as force power
transform as fonr-vectors. Why Lorentz, Abraliam. and the veneral phyvsies community
assumed as late as 1915 that the bhare mass was zero is explaimed o Section 5012

The tinal result of the analvsis of Chaptes 5 s an equation of motic (5020 for a charged
nenlator (‘()Ill])illil)l(' with the Maxwell Lorentz eqiations, the relativistic version of Newton's
second law of motion. and the Fiusten mass-cnergy refation CThe possibility, considered by
Dirac. of extra momentun-energy terms i e relativistie version of Newton's <econd law
of motion for charged particles. and the conditions these terns <hould watisfv, are discrssed
i Section D.1.1)

(‘hapter 6 begins by suonmarizing the transformation properties of the different force-
powers and momentin-energies. and deriving a total stress-momentinm-cnergy tensor that
accounts for the binding forces and bare mass, as well as the clectromagnetic self foree for the
charged insulator model of the electron. We then consider the redefinitions of electramagnetic
momentum-cnergy that have been proposed 1o obtain cor~istent momentum and energy
cquations of motion without introducing specific binding wrees and hare masses. With the
exception of the momentunenergy of Schwinger’s tensors 205, the redefined momentum-
energy densities can be found for the Loventz model of the electron by mnltiplving the four-
velocity of the center of the extended charze by an invatiant function of the electromagnetic
field. The total momentum-energy of the chavge distribntion moving with constant velocity
then transforms as a four-vector, and for arbitrary velocity predicts conusistent 1/a terms for
the self force and self power, that s, consistent /e tovms i the force and power equations
of motion. However! these invanant redef nitions of electromagnetic momentum-enerey do
not predict the correet vadiation reaction terins in the equations of motion.

Schwinger's method [20] consist< of writing the force power density as the divergence of

tensor that depends on the chiarge-carrent distribution for charee moving with constant
veloeity, This charge-current tensor is subtracied from the oteinal electromagnetic <tress-
mementum-energy tensor, to obtain a divergenceless stress momentum - cperay fensor twhen
the velocity 18 constant) ar o total momentuni-energy that transfornes as a four-veetor,
This method prodices the correct radiation reaction terms as well as consistent 1/a terms in
the foree and power equations of motion for arbitrary velocitv, Lhe tensor resnlting from this
method 1= ambievons to within an arintrary divergenceless tensor. Schwinger concentrates
on two tensors which for a thin shell of ciaree, ave eqgmvalent vo the stressomomentum-en-
eren tensor derived for the cloreed insalaror when the value of the mass of the insulator 1«

chosen eqal to zevo and m, /13,




None of these methods of redetining the electromagnetic momentum cnergy require the
removal of the 4/3 factor mdtiplyving the c'estrostatie mass in the ornginal equations of
motion. They have the drawback for the Lorents model of the electron of requiring unknown
~elf torce and power {electromagnetic or otherwise) that do not equal the Lorentz force and
power. Also. none of the redetined stress momentini-energy tensors recover the secondary
hinding forces necessary to hold the aceclerating charee to the surface of the msulator. Thus.
redefining the electromagnetic momentum-cnergy seems an nnattractive alternative to the
deteriintstic binding forces, bare mass and total stiress momentwin-cnergy tensor derived
for the charged-insnlator model of the extended electron.

In Chapter 7, general expressions for the momentum and energy of the moving charge are
derived from the equation of motion. The reversible kinetic momentum-energy, the reversible
schott aceeleration momentum energy, and the rreversible radiation monientum-energy are
sceparated in both three and {onr vector notation. AMfter the application of an external force
to the charged particle. all the momentum-energy that has been supphed by the external
force has been converted entirely to kinetic and radiated momentun energy. However, while
thie external foree is being applied, the momentum-cnergy is converted to Schott aceeleration
momentum-erergy. as well as kKinetic and radiated mementum-energy.

A understanding of the “Schott acceleration momentum-cnergy™ as reactive momen-
tumi-energy may be gained by looking at time harmone motion and comparing the energy
of the oscillating chiaree with the reactive energy of an antenna. It 1s also contirmed that the
conservation of momentum-encrey s not vielated by a charge in hyperbolic motion (rela-
tvistically uniform accelerationi. or by the homogencons runaway solitions to the equation
of motion,

Chapter 8 begins by sobving the equation of motion for the extended charge in rectilinear
motion. When oue neglects the higher order terms (in radius a of the equation of motion, one
obtains the well-known pre-aceeleration solution under the two asviaptotic conditions that
the acceleration approaches zero i the distant future (when the external foree approaches
zero i the distant future) and the veloctt approaches zero in the remote past. It 1= shown
that this pre-aceeleration solution, which violates cansality. is not a strictly vahd solution to
the canation of motion of the extended charge because the pre-aceeleration does not satisfy
the reguirement that the neglected ingher order terms 1 a are negligible. Unfortunately.
when licher order termsan the Lorentz- Abraham Poimecaré equation of motion are retained.
the noncansal pre acccleration remanns: its time dependence merely changes.

[n Section X2 the oot canse of the noncausat pre-aceeleration sointion is traced to the
assuinption in the classical dervation of the solf clectromagnetic foree that the position.
velocitvoand aceeleration of cach element of charec at the retarded tiae can be expanded i
a Tavior series about the present time. When the eoternal forees assumed zero for all time
lessothan zero and analviic for all time greeter than zero s applied ot ¢ = 0, these Taylor
series expansions are invalid durme the initial Lo tone anterval Lieht 1akes to traverse
the chiaree distribntion 10« - 20/ When tihe derivation of the <elf foree is done
properly near ! G. the radiition reaction vand cach ener order torm) e the equation

of motion s mnltiphied by o correcnion finetion that tereases menotonically from zero to




unity during the time interval approximately equal 1o 20/ atter the external foree s applied,
Romarkably, this small corvection oo e cquation of wiotion vomorves catively the noncau il
pre-aceeleration from the solution fo the cquaiion of motion. withoa! cniroduciong ~poriois
behavior at t = 0, or destroying the covariance of the cquation of motion. 1t al<o cusures
that the initial acceleration of the charge equals the initially applicd external foree divided
by the mass.

+

If one is not concerned with the proper behavior of the <olution to the equation of
motion during the time immediately after the external foree s first applied. one can obtain
a convenient power series solution to the equation of motion. The first two terms of this
power series solution are found in Section 3.3 for the rectilinear equation of motion, and in
Section 8.4 for the general equation ol motion of the exiended charge. For the special case of
a charge moving in a uniform magnetic field. the first two terms reduce 1o the perturbation
solution obtained for the synchrotron radiation from high encrgy electrons. The syuchirotron
solution emerges in a simple form convenient for determining the trajectory of the electron.
as well as its chauge in energy and radins of curvature per unit time.

Section 8.5 considers the finite difference equation of motion of the extended clectron
that has been proposed as an alternative to the differential cquation of motion. We find
that there is little justification to accept the finite difference equation as a valid equation of
motion because it neglects all nonlinear terms (in the proper frame of the charge) involving
products of the time derivatives of the velocity, and retains a lomogeneous runaway solntion
that leads to pre-acceleration.

Chapter 8 ends by considering the possibility of deternining explicitly the third and
higher order terms in the power series solution to the equation of motion. For the elec-
tron. these third and higher order terms produce a change that is less than the error caused
by ignoring quantum effects [53]. Renormalizing the mass in the equation of motion to
a fimite value as the radius of the charge approachies zero climinates the thied and higher
order terms, but sacrifices a detailed understanding of the internal physics of the charge
distribution. The renormalized version of the corrected equation of motion differs from the
Lorentz-Dirac renormalized equation of motion for the point charge by the correction fune-
tion that multiplies the radiation reaction. As in the case of the extended charge. this slight
correction to the Lorentz-Dirac equation of miotion of the point charee eliminates the non-
causal pre-acceleration. As a conseqnence of the renormalization. however, the acecleration
times the renormalized mass of the ponnt chavge, just after the external foree s apphied. does

not equal the inttial value of the external forces as it daoes for the extended charoe.




Chapter 2

LORENTZ-ABRAHAM FORCE
AND POWER EQUATIONS

2.1 Force Equation of Motion

Toward the end of the nineteenth century Lorentz madeled the electron by a spherical shell
of uniform surface charge density and set about the difficult task of deriving the equation
of motion of this electron model by determining, from Maxwell's equations and the Lorentz
force law. the retarded self electromagnetic force that the fields of the accelerating charge
distribution exert upon the charge itself [1]. With the help of Abraham, a highly successful
theory of the moving electron model was completed by the ecarly 1900°s [2,3]. Before Fin-
stein's papers 5] on special relativity appeared in 1905, they had derived the following
foree equation of motion

* d (2",2 3’)2
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for a relativistically rigid™ spherieal shell of total charge « and radius «, moving (without
rotation; with arbitrary center veloeity, u = u(f). and externally applied force F, (7).
The speed of light wnd permittivity in free space are denoted by ¢ and «¢q, respectively.
The tanonalized mksA international system of wnits is used throughout, and dots over the
velocity denote differentiation with respect to tinae.

“Refativistically vigid™ refers 1o the particular model of the electron, proposed originally
by Loventz, that vemains spherical in its proper (instantaneous rest) frame. and in an arbi-
trary inertial frame s contracted in the direction of velocity to an oblate spheroid with minor
axis equal to 2a/5. Lorents. however, used the word “deformable”™ to refer to this model of
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the electron. (Fven a relativistically rigid finmite hody cannot strictly exist becanse 1t wonild
transmit motion mstantancously throughout its finite voinne. Nonetheless, one makes the
assumption of relativistically “rigid motion™ to avoid the possibilite of exciting vibratnional
modes within the extended model of the electron [6, pp 131 1321

Likewise, “without rotation™ means that the angular velocity of cach point on the sphere
15 zero in its proper frame of reference.

The derivation of the differential equation of wotion {2.1) requives that the velocity and
externally applied force be analytic functions of time. This is disenssed i Chapter S when
dealing with the problem of pre-acceleration.

The infinite summation of order a m the equation of motion 12.1) goes 1o zero as o
approaches zero. The inequalities (3.21) i Section 8.2 give the conditions on the time
derivatives of the velocity of the charge for ueglecting the Oted tenms in (211 Namelv, it is
sufficient that the fractional changes in the sccond and higher time derivatives of velocity be
small during the time it takes light to travel across the charse distribution. Alternatively,
the inequalities (8.47) combine with (8.46) in Section 2.3 to show that the Ola) terms in
(2.1) are negligible if the fractional changes in the first and higher time derivatives of the
externally applied force are small during the time hight traverses the charge.

The right side of (2.1) is the negative of the self electromagnetic foree F, - determined by
Lorentz and Abraham for the moving charge distribution. Thas (2.1) expresses Newton's
second law of motion for the shell of charge when the nnknown “bare™ mass. or "material”
mass as Lorentz called 1t, in Newton's second law of motion s set equal to zero. (With the
acceptance of special relativity [1] and in particular the Einstein mass-energy equivalence
relation [5], it is no longer valid to assume. as did Lorentz and Abraham, that the bare mass
is mdependent of the electrostatic energy of formation. that i< independent of the total
charge ¢ and radius a. We shall return in Chapter 5 to the subject of the bhare mass and the
question of why Lorentz ¢t al. believed the bare mass of the electron was negligible.)

Remarkably. the special relativistic factor 5 in the time rate of change of momentum (first
term on the right side of (2.1)) and the radiation reaction self foree with coellicient /67 ¢yc?
that doesn’t depend on the size or shiape of the charge (second term on the right side of 12.1))
were both correctly revealed, so that (2.1 s invariant to a relativistic transformation from
one inertial reference frame to another. That 1s, both sides of the force equation of motion
(2.1) transform covariantly. Moreover, one could choose the ridins « such that the juertial
clectromagnetic rest mass

;2

N, = oo {
OTepes
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equaled the measured rest mass of the electron.

2.2 Power Equation of Motion

As long as Lorentz and Abraham Tnuoed themselves 1o the derivation of the foree equation
of motion (2.1). they saw no inconsistencies in the Lorents maodel of the olectron. Lorentz
was unconcerned with the terms of order o that are neglected in the <elf foree because he




assumed the classical radius of the electron was both realistic and small enough that ouly
the “next term of the series [the radiation reaction werin in (2.1)] makes itself felt” [3, sec.
37).

Lorentz and Abraham were also unconcerned with the electromagnetic mass me, in (2.1)
equaling 4/3 the electrostatic mass m, ., defined as the energy of formation of the spherical
charge divided by ¢*

(,1

Mes = :\frrq,u; (23]
because they derived the equation of motion (2.1) before Einstein’s 1905 papers on relativistic
electrodvnamics [1] and the mass-cnergy relation [5]. In neither of the original editions of
their books [2,3] do they mention the 4/3 factor in the incrtial electromagnetic mass of (2.1)
being incompatible with the electrostatic energy of formation, or, conversely, the energy of
formation of the electron having to equal the inertial electromagnetic mass times ¢ [7].

In 1904, however, Abraham [8]. [2. secs. 15 and 22, {3, sec. 130] derived the following
power equation of motion for the Lorentz relativistically rigid model of the electron by
determining from Maxwell’s equations the time rate of change of work doue by the internal

electromagnetic forces

¢ d 1 (27‘ 372
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As Abraham and Lorentz pointed ont, the power equation of motion (2.4) is not consistent
with the force equation of motion (2.1). Specifically. taking the scalar product of the center
velocity u with equation (2.1) gives
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which ditfers from (2.4} by the term
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This is the discrepancy between the force equation of motion and the power equation of
motion for the Lorentz model that concerned Abraham and Lorentz; namely. that the scalar
product of u with the time rate of change of the electromagnetic momentum did not equal
the time rate of change of the work done by the internal electromagnetic forces.

Unlike the force equation of motion (2.1). the left and right sides of the power equation
of motion {21 do not transforta covariantly: see Appendix AL Morcover, neither the force-
power on the right sides of (2.1) and (2.1) nor the momentum-energy transforms as a four-
vector: ~ce Section 6.1, (Lorentz and Abraham did not mention and were probably not aware
of this noncovariance becanse these equations were discussed outside the general framework
atied without the correet veloeity transformations of special relativity: compare [9] with [1].)
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After the derivation of (2.1). they still saw no problem with the 1/3 factor in the inertial
electromagnetic mass, nor with the conventional clectromagnetic momentuni-energy per se
(before taking the time derivative) failing to transform as a relativistic four-vector. Morcover,
if one rewrites (2.1) in four-vector notation to obtain

e? du et [d?u cduy du?

= o - -+ u
Omegu ds 6rey \ ds? ds s
0

['vx

ert

+ Ofa) (2.7

one recovers equation (2.1) and (2.5) from (2.7) and misses entirelv the discrepanes intro-
duced by the power equation of motion (2.1) derived from Maxwell's equations by Abraham.
(If the mass in (2.7) 1s “renormalized™ to a finite value as the radius of the charge approaches
zero, the O(a) terms vanish and (2.7) becomes identical to the Lorentz-Dirac equation of mo-
tion [10,11]; see Section 8.7. EFarly use of the four-vector notation for the radiation reaction
part of the equation of motion (2.7) can be found in Pauli’s article on relativity theory [6. sec.
32]. Herein we use the four-vector notation of Panofsky and Phillips [11]. who normalized
the four-velocity to be dimensionless.)




Chapter 3

DERIVATION OF FORCE AND
POWER EQUATIONS

The inconsistency between the power and force equations of motion, (2.4) and (2.1) or (2.5).
is so surprising that one is tempted to question the Abraham-Lorentz derivation ([8], [2, secs.
15 and 22]. [3. sec. 180]) of (2.1} and (2.4). Thus, let us take a careful look at their method
of devivation.

The right side of (2.1) is the negative of the self electromagnetic force, F.p, and the
right side of (2.4) is the negative of the work done per unit time, FP.,, by the internal
electromagnetic forces on the moving shell of charge; specifically

d
= _f W , = —— ’ .
F.(t) /Cﬂ(;e E(r.0) + u(r.t) x B(r, )4V = ~Zco | E x Bay (3.1)
d .
Pu(t) = [pr.tu(r.t) - E(r,t)dV = —=2 [ (E? 4 2B?)dV (3.2)
Joharge dt 2 all spuce

where p(r.f) and u(r.t) are the density and velocity of the charge distribution in the shell.
and E{r,t) and B(r.t) are the electric and magnetic fields produced by this moving charge
distribution. The magnetic ficld does not appear in the first integral of (3.2) because the
magnetic force 1s perpendicular to the velocity.

The second equations in (3.1) and (3.2) are, of course, identities derived from Maxwell’s
equations, assuming there are no radiation fields beyond a finite distance from the charge
distribution [12, sec. 2.5, eq.(23) and sec. 2.19, eq.(6)].

For the Lorentz relativistically rigid model of the electron, the charge density and ve-
locity of each part of the shell cannot be the same for an arbitrarily moving shell if the
shell is to maintain its spherical shape and nniform charge density in its proper frame of
reference (inertial frame at rest instantaneously with respect to the center of the electron).
In particular, the relativistic contraction of the moving Lorentz model of the electron, from
a spherical to an oblate spheroidal shell, demands that the velocity of its charge distribution -
cannot be uniformly equal (except in the proper frame) to the velocity of the center of the
shell denoted simply by u = uif) in our previous equations (see Appendix A). If u(r, t) did
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not depend on the position r within the shell, as in Abraham’s noncontracting (nonrelativis-
tically rigid) model of the electron [2], u(r,t) could be brought outside the charge integrals
in (3.1) and (3.2), P, would equal F,, - u, and the discrepancy (2.6) between (2,17 and (2.5)
or (2.1) would vi»ish. Such a model is unrealistic because it would have a single proferred
inertial frame ¢ " ~eicrence in which it were spherical (with fixed radius «) and its major axis
would stretch .o ~n infinite length in its proper frame when its velocity with respect to the
preferred frame approached the speed of light.

Still we can ask i the variable velocity in the charge integrals of (3.1) and (3.2} {or the
Lorentz model of the electron actually produces the discrepancy (2.6) between equations
(2.4) and (2.5) or (2.1). For a charge with velocity other than zero. both Abraham and
Lorentz derived the first terms on the right sides of (2.1) and (2.1), the terms in question.
not from the charge integrals in (3.1) and (3.2) hut by evaluating the momentum and energy
integrals (second integrals) in (3.1) and (3.2) for a charge moving with constant velocity
with respect to time, then differentiating the resulting functions of velocity with respect to
time (2, sec. 22], [3, sec. 130]. We know that falsely setting the charge velocity u{r./
independent of v in the first integrals of (3.1) and (3.2) climinates the discrepaney (2.6, Is
it really justifiable, as Lorentz [3, sec. 183] and Abraham [2, sec. 23] argue. to assume a
charge velocity constant in time in the second integrals of (3.1} and (3.2) to derive the first
terms of (2.1) and (2.4), the terms that produce the discrepancy (2.6)7

Apparently, this question was not decided with certainty until the work of Schott [13]
who derived both the force and power equations of motion. (2.1) and ({2.1), by evaluating
directly the integrals in (3.1) and (3.2) over the charge distribution for the Lorentz model of
the electron moving (without rotation) with arbitrary center velocity u . In particular. his
evaluation of the charge integral in (3.2) indeed yielded the power equation of motion (2.4)
to prove that the discrepancy (2.6) with the force equation of motion (2.1) actually existed.
In fact, Schott’s book appears to be the first reference in which either the force or power
equation of motion can be found in the general form of (2.1) and (2.4). To obtain these
cquations from the work of Lorentz and Abraham. one has to picce together the results of a
number of their papers or various sections of their books (for example, secs. 28.32.37.179.and
130 of [3] plus secs. 15 and 22 of [2]).

Schott’s derivations of the force and power equations of motion, (2.1) and {2.1). from
the charge integrals of (3.1) and (3.2) involve extremely tedious manipulations of the double
integrations of the Liénard-Wiechert potentials for an arbitratily moving charge distribution.
They are so involved that Schott’s rigorous approach to the analysis of the Lorentz madel
of the electron has not appeared or been repeated, as far as [ am aware. in any subscquent
review or textbook. Page [14] also derives the force equation of motion (2.1) by evaluating
and integrating directly the self electromagnetic ficlds over the charge distribution. However,
Page’s derivation does not show explicitly the variation in velocity of the charge distribution
throughout ihie siiclls and thus it cannot be uged to dorive the power eqnation of motion

(2.1).




3.1 General Equations of Motion from Proper-Frame
Equations

Lorentz also derived the force equation of motion from the charge integral for electromagnetic
force in (3.1) by means of a double integral of the Li¢nard-Wiechert potentials, but only in
the proper frame of the electron where the velocity of the charge is zero and the derivation
simplifies greatly to yield the well-known result {3,11] (derived in Appendix A)

o .
(3 . 2

F... = -u+ Ofa), u=0 (3.3)

(jrcofu'zu ; 63
to which the general force equation of motion reduces when the velocity u in (2.1) is set
equal to zero (or when (u/c)? < 1).

For a velocity much less than the speed of light, a derivation performed in Appendix A.
similar to Lorentz’s derivation of (3.3), but applied to the charge integral for electromagnetic
power in (3.2), yields the small-velocity power equation of motion
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to which the general power cquation of motion (2.4) reduces when only the first order terms
inufcare retained. Note once again that the scalar product of u with the force equation (3.3)
does not yield the power equation (3.1). Section A.1.2 of Appendix A shows explicitly that
the variation of the velocity over the charge distribution. even for (u/¢)* < 1. must be taken
into account to derive the correct expression (3.4) for the small-velocity electromagnetic
power.

Now equations (3.3) and (3.1) raise an important question. Since the force and power
equations of motion. (3.3) and (3.1). are derived rigorously from (3.1) and (3.2) for u ap-
proaching zero. why not simiply apply the relativistic transformation to the velocity, its time
derivatives, and the external foree in (3.3) and {3.1) to obtain the general equations of mo-
tion (2.1) aud (2.4) inaun arbitrary frame. Thereby, one would avoid the diflicult evaluation
of the self force and power directly from {3.1) and (3.2) for a relativistically rigid shell of
charge moving with arbittary center velocity u .

Indeed a relativistic transformation of u. @ and F,,, in the proper-frame force equation
of motion (3.3) produces the general force equation of motion (2.1) [15.6]. However, the
same relativistic transformations applied te (3.1) produce the equation (see Appendix A)

F Gy A 0+ :"2( 1)+ Ofu) (3.5)
B | u-i+ —(u-u u 3.5
' 2rega dt Byt c? (

which does not agree with cither the general power equation of motion (2.4 or the equation
(251 abtained from the scalar product of u with the force equation of motion (2.1).

Thix apparent paradox is explained by returning to (3.1) and (3.2). Since the self force
F.; and <elf power Py in {3.1) and (3.2) are quantities obtained by integrating over a finite
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distribution of charge and are not the force and power applied to a point mass. 1t 1s not valid
to apply the point relativistic transformations of force and center velocity fand derivatives
of velocity) to determine the general values of the integrals in (3.1) and (3.2) fron their
proper-frame or small-velocity values. For the force equation of motion. the integrated self
force (3.1) maintains the transformation properties of a point force, and thus the point
relativistic transformations can still be applied to obtain the general integrated self force
(3.1) in an arbitrary inertial frame from its proper-frame value on the right side of (3.3).
(Unfortunately, one proves this fact by perforining the difficult evaluation of (3.1, in the
arbitrary inertial frame.) For the power equation of motion. however, the integrated power
(3.2) does not transform as the time rate of change of energy of a moving point mass (see
Appendix A), even as the radius of the charged shell approaches zero, and thus the point
relativistic transformations applied to the small-velocity power (right side of (3.1) as v — 0)
do not give the correct value of the power in an arbitrary inertial frame (right side of (2.1}).

From the viewpoint of the electromagnetic stress-momentum-energy tensor (discussed
in Chapter 6), it is not surprising that the power cquation of motion does not transform
covariantly, because the electromagnetic stress-momentum-energy tensor of a charged shell
15 not divergenceless and the electromagnetic momentum-energy does not transform as a
four-vector.

In summary, then, since the point relativistic transformations do not necessarily apply to
an integrated force or power (and the clectromagnetic stress-momentum-energy tensor is not
divergenceless), it is not mathematically rigorous to use these transformations to find the
integrated self force and power, (3.1) and (3.2), in an arbitrarily moving imertial reference
frame from their proper-frame or small-velocity expressions (3.3) and (3.1). Moreover, as
explained in Section 3, the classic Lorentz-Abraham derivation of (2.1) and (2.4) for arbitrary
u also lacks rigor because it depends upon the evaluation of the momentum and energy of
a shell of charge moving with constant, rather than arbitrary time varying velocity. Thus.
it appears that Schott’s book [13] contains the only rigorous derivation to date of both the
force equation of motion (2.1) and the power equation of motion (2.4).

Since this highly commendable derivation by Schott is also extremely tedious and difficult
to repeat or check, a much shorter, simpler, yet rigorous derivation of the self electromagnetic
force and power is given in Appendix B by applving the relativistic transformations of the
electromagnetic fieids at each point within the arbitrarily moving shell of charge hefore
performing the integrations in (3.1) and (3.2). (All these derivations depend upon expanding
the position, velocity, and acceleration of cach element of the charge at the retarded 1imie
a series about the present time. When the external force is applied at + = 0. havine been
zero for £ < 0, Section 8.2 shows that these series expansions must be modified slightlv near
t = 0. This slight modification eliminates the nonenusal pre-aceeleration that plagues the
solution to the unmodified equation of motion; see Chapter 8.)




Chapter 4
INTERNAL BINDING FORCES

In Appendix B, we have critically confirmed the evaluation of the self electromagnetic force
and power, (3.1) and (3.2). leading to the force and power equations of motion (2.1) and (2.4).
Yet (2.1) and (2.4) are inconsistent. since taking the scalar product of u with (2.1) gives
(2.5). which differs from (2.1) by the term (2.6). Not only the self electromagnetic momen-
tum-energy but also the self electromagnetic force-power fails to transform as a four-vector.
What has gone wrong?

To see clearly the probleni and its resolution, it helps to divoree the analysis of the moving
spherical shell of charge from the question of whether it models the electron. The analysis is
based entively upon classical fields, forces, and charges. and the extent to which it describes
the internal structure of the electron is irrelevant to the question of the inconsistency be-
tween the force equation of motion (2.1) and the power equation of motion (2.4). We could
enter our classical laboratory. distribute a charge uniformly on the surface of an arbitrarily
simall. massless (or nearly massless), relativistically “rigid”, insulating sphere, accelerate this
charged sphere. and, presumably. get consistent results between the foree that is required to
accelerate the sphere and the power delivered to the sphere.

4.1 Poincaré Binding Forces

Poincard visualized such a model in his 1906 paper on the dynamics of the electron [16].
(Actually, Poincaré [16, sec. ] mentions the charge distributed on a conductor rather than an
isulator. We choose the insulator model to avoid the possibility of the charge redistributing
itsel{ when the sphere moves.) He argued that the only way the charge could remain on the
sphere was for there to exist hinding {orces exerted on the charge by the insulator that would
exactly cancel the repulsive portion of the electromagnetic forces. These internal binding
forces are not optional. they are necessary ina stable classical Lorentz model. They are the
short-range dipole forces that actually exist at the surface of the insulator to hold the excess
charge to the surface. Although Poincaré did not have todav’s knowledge of the nature of
the internal binding forces. he assumed they existed. To quote the English tran:lation of
Poincaré, = [herefore it is indeed necessary to assume {in the Lorentz model] that in addition
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to electromagnetic forces [of the excess charge alonel. there are other forces or honds™ {16,
see. 1.

Thus the total force exerted on the charge in both the force and power equations of
motion, (2.1) and (2.4), must include these internal binding forces (which we know today
are also electromagnetic in origin) as well as the internal electromagnetic forees of the excess
charge.

For a stationary charged sphere, as Poincaré explained. the bindiug forces exerted by the
relativistically rigid insulator on the excess charge mnst be equal and opposite the repulsive
electromagnetic forces produced by the excess charge distribution. However. in order to
include the binding forces in the force and power equations of motion, one has to know the
value of the binding forces for an arbitrarily moving shell of charge. Pomncard determined
the internal binding forces on a moving shell by assuming a “postulate of relativity™, namely
that the “impossibility of experimentally demonstrating the absolute movenment of the earth
would be a general Taw of nature™ and. i particular. hypothesized with Lorentz B0 see,
8] that the internal forces in the Lorentz model would obey the same transformations that
Maxwell's equations implied for the electromagnetic forces [16. Introduction). (Poineare did
not have the benefit of Einstein's relativity papers [4.5] when he submitted his paper [16]
in July 1905, or the knowledge that the binding forces were short-range dipole forces of
electromagnetic origin.)

As a consequence of this latter hypothesis, Poincaré drew o starthing conclusion. The
internal binding forces that canceled the internal self electrestatic forces of the excess charge
on the sphere at rest, when transformed to a moving shell, would not contribute to the total
self force on the moving charge but would contribute to the total time rate of change of energy
(power) delivered to the charge in the Lorentz imodel of the moving charge. Specificallv. when
Poincaré assumed with Lorentz that the spherical shell compressed to the shape of an oblate
spheroid in the direction of its velocity by a factor of \ﬂ —u?/ed the time rate of change of
the binding self energy just canceled the discrepancy (2.6) in the power equation of motion
(2.1).

To see how Poincaré arrived at this remarkable result, begin with the electrostatic force
per unit surface charge

1) = ¥ (1.1)
ST
for a stationary sphere of radius @ and total charge ¢ The binding force per umit charge

required to hold the charge on the stationary sphere is then given by the negative of £ or

r. (+.2)

Now let the charged sphere move with a constant velocity u and contract in the direction of
u to an oblate spheroid with minor axis equal to ay/1 — u?/e? = u/~. The Lorentz force law
and Maxwell's equations applied to this moving oblate spheroid prediet that the electrostatic
force per unit charge in (1.1) and thus the binding force per nnit charvee in (1.2) transforms
to

f= 6+ 0/~ (1.3
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where the subseripts, || and L. refer to the three-vector components parallel and nerp Ldic-

ular to the velocity u. The transtormed binding force 10 (1.3 15 directed along the nomal
into the surface of the oblate spheroid.

The binding force per unit charge (1.3) integrated over the surface charge of the ob-ate
spheroid. because of its symunetry. gives a total binding force F, equal to zero as in the case
of the stationary sphere. that is

F.= [fd = / (l‘;,JH + f,?J_/",) de =0 . (4.1)

charge

STy

However, the work taken by the binding forees from the charge distribution as the charge
accelerates from zero to velocity u, if we can assutne ((1.3) is valid for the accelerating charge
as well as the charge moving with constant velocity, would he
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where 6 is the angle between the position vector rto the eleinent of charge de and the velocity
u. The charge element de can he expressed as the product of the surface charge density on
the sphere (e/4xa®) and the projection of the surface area element of the sphere onto the
plane perpendicular to u

Y
de o e S0 (1.6)
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From (1.2). the integrand of (100 can be rewritten as

£ dry = — - cosddry . (4.7)
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Substitution of (16) and (17 o (151 gives
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Faguations (83) and {19) veveal that the work taken by the inteenal binding forces as the
spherical charge distribution accelerates and contracts to the shape of an oblate spheroid
i the same as the work taken Do constant pressure, /3274 0t on a sphere that s
compressed to an oblate spherard. Tn he words of the English translation of Poincaré, -1
have attempted to dorermine this force, and | found that it can be eompared to a constant
external pressure acting on the deformable and compressible clectvon. the work of which is

proportional to the vanations of the volmme of this electron™ [16, Introdiction).




The negative of the time derivative of (1.9) determines the work done per unit time, 14,
by the internal binding forces on the meving charge

—e2 4 /1
p=—_2fZ BREE
2wega dt \ v

that must be subtracted from the right side of the power equation of motion (2.1). Comparing
(4.10) with (2.6), we see, as Poincaré did, that the time rate of change of the work done on
the charge by the binding force required to keep the charge on the insulator just cancels the
discrepancy (2.6} in power between the power equation ol motion 2.1} and the force equation
of miotion (2.1). As (4.4) shows, the Poincar¢ binding f rees do not alter, however. the total
force on the charge distribution, and thus the force equation of motion (2.1), ineluding the /3
factor multiplying the electrostatic mass (2.3), remains wnaffectod by the Poimcard binding
forces. Neither does the power (4.10) delivered by the Poincard binding forees remove the
1/3 factor from the power equation of motion (2.4), nor do thesc binding forces change the
rest energy of the charged sphere because Wy in (7.9) vanishes when u s zero.

4.2 Binding Forces at Arbitrary Velocity

The formulation and integrations of the Poincaré binding forces in the previous section are
based on the fields and forces of charges in uniform motion. It 1s uncertain that these results
obtained assuming a constant velocity are valid for a shell of charge moving with arbitrary
velocity, especially when taking the time derivative of (1.9} 1o determine the contribution
(1.10) of the internal binding forces to the power equation of motion. Thus. we shall derive
the molecular binding forces needed to keep the charge on an insulator moving with arbitrary
velocity, assuming that the charge remains uniformly distributed on the spherical insulator
in its proper inertial frame of reference. (Incidentally, the question raised by Abraham and
Lorentz {3, sec. 132] of what keeps the electron in stable cquilibrium can be answered for
the charged insulator model as the nonclassical molecular energy contigurations keeping the
mmsulating material "ngid” in its proper frame; see Section 1.2.1.)

(onsider the shell of total charge e in its proper frame as a nmform distribution of voluine
charge density located between the radins ¢ and a+6, where ¢ is the Iimitingly small thickness
of the spherical shell (see Fig. 1). At the one instant of time £ in1ts proper frame the velecity
u(r,t) of the charge at every position r within the shell 1s zero. but the acceleration a(r. )
and higher time derivatives of velocity are not necessarily zero nor independent of position
r within the shell.

In Appendix CC we determine the internal electric and magnetic fields in the proper frame
of the accelerating shell of charge. and in particular find the self cectromagnetic foree per
umt charge within the shell to equal

- 20 20 : I..\1
fori)= (LW, 2 2u +-Lf~<(m --Q:l'.r)Jﬁ()(u\,. w= 0. (L1l
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Figure 1. Lorentz model of the electron viewed in its proper frame

(u(r,t) = 0,u(r,t),u(r,t).... #0).

{In (1.11). as throughout. when u and its time derivatives are written without the explicit
functional dependence (r.t). they refer to the velocity and its time derivatives of the center
of the <hell))

The force on any volume element of charge in the shell is the sum of the externally
apphed force, the internal electromagnetic force, and the internal binding force on that
element. From Newton's second law of metion, we assume the sum of these three forces
equals an unknown “bare” mass of that charge element multiplied by the acceleration (sce
Section 3.1). Specifically

forelrot) + fe(r,t) + fy(r.t) = '\%Q(r.t), u=0 (4.12)
where f, . (r t), f.(r.t), and fi(r.t) are the external, internal self electromagnetic, and inter-
nal binling forces per unit charge, respectively, at the position r in the shell at the instant
of time ¢ i the proper frame (u(r.f) = u(t) = 0).

The so-called bare mass M. which Lorentz set cqual to zero. should not be associated
with the uncharged mass of the imsulator on which the charge is placed. In principle, the
mass of the insulator can be made negligible, but M, on the right side of (4.12) is dependent
upon the charge despite its traditional label as “bare”™ mass. The following derivation shows
that the binding force 15 independent of the value of the bare mass My, (The determination
of the mass My and the reason Lorentz thought it was negligible are discussed in Section 5.1
below. )

In (1.12) we assume the bare mass My of the charge is uniformly distributed with the
charge niits proper frame <o that the bare mass per unit charge at each point in the spherical
shell is My /e Similarly. we shall assume that the variation of the external force is negligible
over the charge distribution so that it is applied uniformly (to order «) throughout the
proper-frame shell, e

E‘Prl(l)
—-— 4 Ola) . (1.13)

f, (v t) =

!
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As a consequence of the shell remaining spherical in its proper inertial frame of reference, we
have from equation (A.8) of Appendix A that the acceleration u(r,t) of the charge clement
at r is related to the acceleration, a = u(t), of the center of the nonrotating shell by the
formula “

a(r,t) = — —(F-u)u+ Oa?). (4.14)

2
Inserting the external force (4.13), the internal self electromagnetic force (4.11). and the
acceleration from (4.14) into the equation (1.12). we obtain

l?er A . ' .
t—( < +ﬁ)u+—(~,u4fh(r.t)

€ 6mepact € 6renc?
—¢(r —a). o . i|_|2 O 0 15]
=z r —_— . u — — u l R — . . ;
dmegba? 57rfgc4r u 3 ) u )

Next, integrate (4.15) over the entire charge on the shell to get

2 2
Fopt — (-‘—,+Mo)u+6 i+ [flrde + O(a) =0, u=0 (1.16)

Gneoacz W(0C3 charge

since the integral of ¥ over the uniform spherical charge distribution is zero. Divide (4.16)
by the total charge ¢ and subtract the result from (4.15) to show that the binding force has
to satisfy the equation

fo(r, 1) — l fio(r, t)de

€ Jcharge
_ —e(r—a). ¢

r- ((ni - -Iilu[‘z) + O(a), u =090. (4.17)

T —
dmegda? Sreped

The most general solution to (4.17) can be found by letting the binding force equal the right
side of (4.17) plus a homogeneous solution fi,(r, t)

fy(r,t) = —elr—a), e, (uu— %—w)

dmegba’ - HSrepct .
+fn(r,t) + Ola). u=0. (1.1%)

Substituting fy(r,t) from (4.18) into (4.17) and again noting that the integral of t over the
charge distribution is zero, one sees that the homogeneous solution must satisfy the condition

1
fon(r.t) = — [ fon(r. t)de . (1.19)

€ Jcharge

The right side of (1.19) is not a function of position r, so the left side, fy,(r. 1), cannot be a
function of r, that is
fon(r.t) = fur(t) (1.20)

and (4.19) reduces to an identity,




Since we have proven that the homogeneous solution fy, for the binding force is inde-
pendent of the position of the charge element within the shell, it does not average to zero
when integrated over the charge unless it is identically zero. ‘This homogeneous binding
force is exerted on the insulator in the opposite direction. Specifically, if the rest mass of
the uncharged insulator is 11, (assumed uniformly distributed over the sphere), fyy is given
simply as

fbh(f.):-—'”#—‘f-u (4.21)
.
from Newton's second law of motion applied to the insuiator in its proper frame. (The mho-
mogeneous binding force in (1.18) is also exerted in the opposite direction on the insulator
but because its total integrated value is zero it does not contribute to the acceleration of
the rigid insulator.) With the addition of the homogeneous binding force (1.21), the binding
force (4.1R) per unit charge needed to keep the charge on the moving insulator is given by

—e{r —aj, ¢ . . i . )

fi(r. t)= ——T — - 1r-(uu—‘—]u!2
Inepdar DT, 3

'711715

\

—u -+ Ofa). u=0. (4.22)
P
Equation (4.22) shows that the binding force is independent of the bare mass Mj.

The first term on the right side of (4.22). when integrated over the thickness of the shell
of charge, produces the static binding force (4.2} per unit charge given by Poincaré [16].

The second term on the right side of (1.22) is a binding force that does not appear in
Poincaré’s analysis nsing a charged shell moving with constant velocity. It is required to
cancel the self electromagnetic acceleration forees in (4.11) that vary with position r about
the shell.

The third term on the right side of (1.22) accounts for the force exerted on the charge to
accelerate the mass of the uncharged insnlator. If gravitational fields [17.13] or the dipolar
binding forces contribute to the rest energy of formation, this mass can be included in the
miass of the uncharged wmsulator.

When we integrate the force per nnit charge in (1.22) over the shell, the first two terms
ou the right side of (1.22) vanish to give a total binding force equal to the homogeneous
binding force
7;7]5 .

s 1 )
= (e de = =G Oy, u =0 (1.23)

S e (

needed 1o accelerate the insnlator in the proper frame. Furthermore, becanse the first two
terms of the internal binding force (1220 at every point within the chirge shell equal the
negative of the internal elecrromagnetic foree (1.11), except for the terms in (1.11) that are
independent of £, the analvses in Appendives A and B can also be applied to these internal
hinding forces to obtain the totai hinding force and the total power delivered to the charge
by the binding forces in an arbitrary frame of reference. In particular, the generahization of
the sevond term on the right side o (4.22) to an arhitrary inertial frame integrates to zero
when finding the total binding force. and leads 1o a term of order @ when finding the total
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power delivered to the charge by the binding forces. The first termn on the right side of (4.22)
also integrates to zero in an arbitrary inertial frame but contributes to the power delivered to
the charge by the amount given in (2.6) or (4.10) when multiplicd by the velocity u(r. ) and
integrated over the charge. And, of course, the third term in (1.22) generalizes immediately
to —mnd(yu)/dt, which contributes ~m;.,c2dy/dt to the power delivered to the charge.

Thus, the total binding force and power, contributed by the rigorously derived internal
binding force per unit charge needed to keep the charge on an insulator moving with arbitrary
velocity, are identical to those given in (1.4) and (1.10) by Poincaré (for a massless insulator.
mins = 0) using binding forces inferred from the fields and forces of a charge distribution
moving with constant velocity, that is

{ .
Fo(t) = [fo(r, t)de = —mm,i-(‘y—u) + Ofa)., u=29 (1.21a)
charge d
—e? d (1 Sy )
Bty = [f(r,t)- ,de = — |~ —m.c =4 Ou). (1.24b)
() ch‘;ge ) ulr, t)de 24reqa dt <'7) et dt Ol >

Recall that the velocity u(r,t) for each portion of the charge distribution cannot equal
the velocity u(t) of the center of the shell (except when u(t) = 0) if the shell is to remain
spherical in its proper frame of reference (sec Appendix A). Thus u(r. ) in the charge integral
of (4.24h) cannot be taken outside the integral sign. Also, we rely on the indirect procedures
of Appendixes A and B to determine the charge integrals in (1.21) for an arbitrarily moving
shell, rather than transform the proper-frame binding force per unit charge (1.22) to obtain
the general binding force per unit charge fy(r,t) in an arbitrary inertial frame. The reason
for this indirect procedure is that (4.22) holds for different spatial points within the shell at
one instant of time only in the proper frame, but the relativistic transformation of (4.22)
to an arbitrary inertial frame for different spatial points within the shell requires the force
over an interval of time in the original (proper) frame of reference. even as the radius a
approaches zero, because of the 1/a? term in (4.22).

Equations (4.24a) and (4.24b) critically confirm that the rigorously derived binding forces
for charge on a relativistically rigid insulator moving with arbitrary center velocity, like
the original Poincaré binding forces (1.2), remove the discrepancy {2.6) between the power
cquation of motion (2.4) and the force equation of motion (2.1), while having no effect (except
for the addition of the mass of the uncharged insulator) on the force equation of motion (2.1).
or the 4/3 factor in the electromagnetic mass. With the addition of the binding stresses to
the self electromagnetic stresses, the force-power, but not the momentuni-energy, transforms
as a four-vector; see Section 6.1.

4.2.1 Electric polarization producing the binding forces

One can find a particular polarization at the surface of the iusulator that will produce the
static binding forces derived in the previous section. When the charge is at rest. the electrie
field for the dipolar binding forces is given by the first term of ( 1.15) within the shell of charge
(a <r < a+6)and zero everywhere else. An electrie polarization that would produce this
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internal binding electric field is given simply by a radial polarization density, P(r;, within
the thin shell of charge proportional to the hinding electric field

Pr) = %f' ca<r<atd (1.25)
0 Ladatb<r<a,

The total electric field, Epir). s the sum of the electric field of the free-charge and the
electric field produced by the radial polarization density. For the charge at rest, it is given
by

0 Lor<a+4d

Er(r) = “—F . r>a+é. (4.26)

s

In other words, the polarization adds a bound volume charge density (--V-P) that cancels
the free-charge density within the surface layer (¢ < 7 < @ + 6), and a compensating bound
surface charge density (P - r) at the outer surface (r = @ +9). The total charge (free-charge
plus bound polarization chargel reduces to that of Lorentz’s original free-charge shell model
of the electron as the thickness & of the shell approaches zero.

A~ the thickness o of the shell approaches zero, the electrostatic energy of formation of
the free-charge and polarization distribution is the same as the free-charge alone: thereby
contirming that the rest cucrgy and mass contributed by the short-range dipolar binding
force~ can be assumed zero. For the shell at rest, there is no net force exerted on the free-
charge by the polarization. {When the charge is moving. the results of Scections 4.1 and 4.2
show that the polarization binding forces supply a net force and power to the free-charge
given in (44.24).)

Que can also determine an effective molecutar polarizability required to produce the po-
larization that holds the free-charge on the stationary insulator. For a linear, homogencous.
isotropic dielectric insulator. the polarization density is proportional to the local field

P P ,
P:; r, (()El‘-f-T :()"-Ti'. (1<7'<(I+(" (‘137}

where the proportionality constant o, s the molecalar polarizability per unit volume [11,
ch. 210 This last equation shows that the effective molecular polarizability at the surface
of the nsulator must be equal to 3.0 order for the free-charge distribution to excite the
required polarization density,

In brief, the free-charge umformly distribnted ina thin laver at the surface of the insula-
tor indnces an effective diclectiie polarizability of 3.0 within this laver and a polarized field
that cancels the self repulsive forces that the free charge exerts on itzelf. Opposite forces
are, of course, exerted on the polarized molecules of the dielectric insulator. These insulator
molecules do not fly apart hecause they are held together in the stable energy configura-
tions described by nonclassical pliysies (quantum electrodynamices rather than the classical
electrodynamies emploved herey.

Before leaving this chapter on the internal binding forees, let us summarize with hindsight
the origin and elimination of the discrepancy in power (2.6) between the Lorentz-Abraham




force and power equations of motion. When the charged sphere is stationary, each element of
the charge experiences a repulsive force due to its own electric field. This electrostatic force
integrated over the charge contributes nothing to the total force on the charge. When the
charged sphere moves, this static self force transforms relativistically. but still integrates to
give a zero total force. However, the moving charged sphere contracts relativistically in the
direction of the velocity by an amount proportional to 1/4, while the component of the static
self force per unit charge parallel to the velocity remains unchanged. Thus. the component
of the static self force parallel to the velocity does work at a rate proportional to the time
rate of change of 1/v, as exhibited by the negative of the power in (2.6).

In addition to the self electrostatic force on the stationary charge distribution. each
clement of < harge is held to the insulator by a binding force that just cancels the electrostanic
force. When the charged sphere moves. this binding force exerted on the charge contributes
exactly the negative of the power delivered to the charge by the electrostatic force. thereby
canceling the discrepancy in power (2.6) between the force and power equations of motion.

A subtle question arises concerning the mass of the insulator. Even if the rest mass of
the insulator is negligible, the insulator exerts a binding force on the charge distribution that
does work on the moving charge at the rate given by (2.6) or (1.10). The negative of this
binding force is exerted on the insulator by the charge. Consequently. work is doue on the
moving insulator at the rate given by the negative of (2.6). Thus. one might ask if the mass
of the moving insulator is changed by this work done upon it by the binding forces. Has the
problem of the excess power term (2.6) simply been transferred from the charge distribution
to the uncharged insulator?

To some extent, it has, but it is a problem that can be allaved by looking at a specific
model of the insulator material. In particular, if it is assumed that the insulator material is
composed of point particles separated in free space, the forces v cach of the point particles
in the stationary insulator must sum to zero. Moreover, the total work done by these forces,
when the insulator moves, is zero because the equal and opposite forces on each of the point
particles are separated by the infinitesimal diameter of each particle. and thus contract
relativistically by an infinitesimal amount. The total work done by the forces throughout
the insulator material is zero. In other words, the work done by the binding forces on the
surface of the insulator are canceled by the internal stresses of the point-particle model of
the insulator material, and thus does not affect the mass of the isulator.
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Chapter 5

ELECTROMAGNETIC,
ELECTROSTATIC, BARE,
MEASURED, AND INSULATOR
MASSES

As a means of discussing the various masses, It us summarize the basic results that have
been derived <o far in our re-examination of the Lorentz model of the electron. We begin
with a specitic model that we can. in principle. realize in our classical laboratory, namely.
a charege « uniformly distribnired on the surface of an insulator which remains sphenical
with constant radins « in its proper inertial frame of reference. Whether or not the model
actuallyv approximates the internai structure of the electron is irrelevant to its analysis, which
i~ based on Maxwell's equations with retarded (causal) solutions only. the Lorentz force law.
the relativistic generalization of Newton's second law of motion. tiie Einstein mass-energy
relation. and the short-range moleenlar dipole forees binding the charge to the insulator
surface.

When an externai foree is applied to the shell of charge. for example. by means of an
external electrie tield, the charge distribution moves with velocity uir.t). Except when the
insulator has zero veloeity. the velocity of the charge at different positions ¢ on the surface
of the msulator cannot have the same velocity u = u(t) as the center of the insulator if
the insulator remains sphevical i its proper frame. (The relationship hetween u(r, t) and
the center velocity uify as given i equation (N30 for (u/e)® < 1 and equation (1B.31) for
arbitrary /e

The foree on eacls differential cletent e of the moving charge is the sum of the externally
apphied torce per unit charee £,0r /), the jntornal electromagnetic force per unit charge
f..ir t) sencrated by the chaige itself, and the molecular bhinding forces per unit charge
f.ir .t holding the charge to the insnlator, that is

ety + for t) e )] de . (5.1a)

Stralarive the vork done per nnit time by these forces on the element of chiarge de moving
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with velocity u(r,t) is
(fore(r,t) + foo(r t) + f(r )] - ur. t)de . '5.1h)

The internal self electromagnetic force is determined by the Lorentz force law in terms of
the self electric and magnetic fields excited by the moving charge. The self electromagnetic
fields in the charge distribution derive from Maxwell’s equations with retarded (causal)
potentials to give the self electromagnetic force per unit charge in (4.11) in the proper frane.
The binding force per unit charge was derived in Section 1.2 by applving Newton's sccond
law of motion to each differential element of charge under the requirements that the charge
remains uniformly distributed on the relativistically rigid spherical insulator in its proper
frame of reference (instantaneous rest frame) and that the mass of the charge distribution is
uniformly distributed with the charge in its proper frame. The binding force per unit charge
exerted on the charge in the proper frame by the short-range dipole forces holding the charge
to the insulator is given in (4.22). It is emphasized that this binding force is not speculated
but deduced from the specific model of the charge residing on the surface of a nonrotating
insulator that maintains its spherical shape and uniform charge distribution in its proper
frame.

The total force F(t) exerted on the charge and the total power P(f) delivered to the
charge are found by integrating (5.1a) and (5.1b) respectively. over the charge distribution

/ferg (r,t)de + [fee(r.t)de + [ fi(r.t)de 15.24)
charge charge charge
/fm (r.t)-u(r,t)de +/fe, (r,t)-ulr,t)de + [fo(r.t) - ulr.t)de. (5.2b)
harge harge Jeoharge
By definition
/f”, (r.t)de = F. (1) . (5.3a)
harge

Also, because the radius a is assumed small cnough that the externally applied force varies
negligibly with the position over the charge distribution (see (1.13)). the integral involving
the external force in (5.2b) becomes

fore(r, t)-u(r, t)d /fm v, )de + O(a?) = F, (1) ult) + Ofa?). (5.3H)

charge harge
The expression (B.31) in Appendix B for u(r.t) in terms of the velocity u(t) of the center
of the shell has been used to perform the integration in (5.3b).
The integrals of the self electromagnetic Lorentz force and power in (5.2a) and (5.2h).
shown explicitly in (3.1) and (3.2) and evaluated rigorously in Appendix B for the arbitrarly
moving shell of charge, are just the negative of the right hand sides of the Lorentz-Abraham

force equation of motion (2.1) and the Lorentz-Abraham power equation of motion (2.4),
respectively. That is

tw
-1




—<* d 3 [ 3y?
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’ S PN .
+7—2 (u-ﬁ)+—72—(U-u)2] u+}+()({z) (5.4a)
I ¢
and .y l .
—t
t) t)de = — - —
/}tz'(x,rJ:‘ r )(( 67"(0(1 dl (7 47)
2.4 9.2
. (u-u)+ i(’u~l'l)2 + O(a) (5.4b)
GWCQ(,“ ?

where. as throughout. u and its derivatives on the right sides of (5.4) refer to the velocity
u(t) of the center of the shell.

The integrals of the binding force and power in (5.2a) and (5.2b) were evaluated in
Section 1.2 and are given explicitly in (4.24a) and (1.24b), respectively. The total binding
force (4.24a) is zero for a massless insulator, but the power delivered by the binding force
(1.24h) to the charge just cancels the electromagnetic power term in the right side of (5.4b)
that creates the discrepancy (2.6) between the right side of (5.4b) and u dotted into the
right side of (5.4a). Thus. as a result of adding (5.3), (5.4) and (4.24), the total force (5.2a)

and power (5.2b) become

2 d ST A S .
wnszur~(‘ ;+rmJ1gnn+‘7 {U+i%m-Mu

breguc 6meg?
./Z 3']2
+7[(u'ﬁ)+ v—Q(u'u)] }“)( ) (5.5a)
A"l“(l 2 l
P(t) = F(t)-ult) = Fo(t) -u(t) — ¢ o dy
brepa dt
2.1 2 o
+ S i+ 22 ()] 4 O(a) (5.5h)
Orege? 2

Because the binding force has removed the discrepancy between (5.5a) and (5.5b), these two
cquations can also be written concisely in the four-vector notation given in (2.7). Also. all
the information in both (5.94) and (5.5b) is contained in (5.5a) alone.

5.1 Bare Mass in Terms of Electromagnetic and Elec-
trostatic Masses

In (5.52) we have derived the total force F(¢). internal plus external, experienced by the
charge moving with arbitrary center velocity u(f). What should this total force equal?
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One’s first thought might be that the total force on the charge should equal the time rate of
change of momentum, m.,d(yu)/dt, where ., 1s the rest mass of the charge (apart from the
insulator); or that the total force should be zero so that the externally applied force eqnals
the time rate of change of the electromagnetic momentum when 1,5 1s zero. But this would
be incorrect if one accepts the relativistic generalization of Newton's second law of motion
[19],[6, sec. 29] that says the total erternal force applied to a particle should equal (apart
from the radiation reaction and forces of order a of a charged particlej the time derivative
of momentum of the particle, i.e.

d . :
F..(t) = m;i—t(ﬁ‘u(!)) + (radiation reaction) + O(a) {5.64)
ot in four-vector form
. pdu’ oo A o
., =mec + (radiation reaction) + Ofa) (5.6b)

(s

where m is the measured rest mass of the particle (charge plus msulator).

Accepting the rest mass term in (5.6) as an experimentally verified relation (possible
extra terms are discussed in the next subsection 5.1.1), one sees that (5.3) 1s compatible
with (5.6) if the total force in (5.5) equals the time rate of change of momentum

Il

F(t)

-1

ot

d
Mo=(yu) + Ota) (

or in four-vector form L
F'= Myt S 4 Oa) (5.7h)
ds

with the “bare™ mass M, related to the electromagnetic rest mass (2.2) and the measured
rest mass by

4

My=m-—m., —my, . (5.8)

;

Furthermore, the measured rest mass m of the charge shell can be predicted theoretically.
Assume the charge is initially distributed uniformly on a spherical surface of infinite radius
where it has zero mass. The work required to assemble this charge quasi-statically from
infirity to the surface of the insulator of radius « is determined from a simple electrostatic
calculation {12, sec. 2.7] as €?/8weqa.

By the Einstein mass energy relation. the rest mass of the charged msulator will then be
this electrostatic energy of formation divided by ¢, or what is called the electrostatic mass
in (2.3), plus the mass m,,, of the uncharged insulator. (If gravitational fields [17.18] or the
short-range dipolar forces binding the charge to the msulator contribute nonnegligibly to
the rest energy of formation, this mass can be included 1 m,,..) Thus. the measured rest
mass of the charged insulator equals the sium of the electrostatic mass and the mass of the
insulator

o= 1,y 4 My (5.9)
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and the bare mass in (5.8) can be written simply as
My =m, -ty (5.10)

or from (2.2) and (2.3)
2
¢
[V 7 — (5.11)
( U rgac?
Emphatically, the value of the bare mass does not depend on the mass m,,; of the insulator.
The final form of the equation of motion (5.6) or. equivalently, (5.5) and (5.7), can now

be written for the charged insulator as

(2 d ("2V2 3,72
er )= |-——+ ins| 5, \7 - - ¥ e VL
Forll) [8#(00('2 o ] dt( ru) 6megcd {u + c? (u-uju
P :;AZ
+—/; (u u)+—{2—(u u)z] u}+0(a) (5.12a)
c c
: .| d 4yt .. 3y o
F.. o u= ot S S i)+ e(uw) |+ Oa) . (5.12D)
drega dt  breyct 2

Of course. (5.12b) is redundant because it is consistent with the equation obtained by taking
the dot product of u with (3.12a). The negative bare mass Mg in (5.11) eliminates the /3
factor in the inertial rest mass of the original Lorentz- Abraham equation of motion (2.1) in
which the bare mass was assumed zero. With the addition of the bare-mass force-power to
the binding and electromagnetic force-power, the total force-power and the total momen-
tum-energy transform as foar vectors: see Section 6.1.

The mass of the insulator (m,,) allows the equations of motion (5.12) for the charged
msulator to be written with an arbitrary value of the inertial mass. Thus, (5.12) conforms
with the results of Schwinger [20], who shows that stress-momentum-cnergy tensors with
covariant momentum-energy for stable charge-current distributions can be constructed with
or without the 4/3 factor. Setting m,,, equal to m /3 and zero, respectively, corresponds
to Schwinger's tensors with and without the 1/3 factor; see Section 6.2. (The mass m,,,
can even be negative since. as mentioned above. it includes gravitational and binding-force
formation energies which, i general, are negative.)

5.1.1 Extra momentum-energy in Newton’s second law of mo-
tion for charged particles

The relativistic generalization of Newton's second law of motion (5.6) for a charged parti-
cle is not determined uniquely trom the nonrelativistic version of Newton's second law for
nncharged particles. From purely theoretical considerations. any four-vector function of ve-
locity and its time derivatives that vanishes when the charge is zero could be added to the
right side of (5.6). I, however, we assume that the only irreversible loss of monmientum-

energy of the charged particle i the radiated momentum-energy (so that when the nitial
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and final velocity and its derivatives are the same, the only change in momentum-energy
will be that which is radiated) then this extra four-vector function must be expressible as
the time derivative of a momentum-energy function. In addition, since all the functions in
(5.6b) satisfy the condition that their scalar product with u, equals zero (that is. the time
rate of change of momentum and cnergy components of (5.6h) are compatible) the extra
function must also satisfy this condition. Thus, on theoretical gronnds (5.6b) can be further
generalized to [10]

. du! L ) G,
F.= mcz—(z— + (radiation reaction) + Clertn + Ofa) (5.13)
5 as

where dG .. /ds is a four-vector function of velocity and its derivatives, that exists only for

charged particles, and satisfies

(1(":=rtrn -
——u, =0. (5.11)
ds
Of course, dG* .. /ds is a function of the charge ¢, since it vanishes when the charge vanishes

and may be a function of the radius a of the charge distribution.

If we also assume that the only irreversible loss in angnlar momentum-energy of the
charged particle is the radiated angular momentum-energy, since the shell of charge is as-
sumed to translate without rotation, then u x G4, and its four-vector version. u'G;?

ertra
"

J
U ertra®

must be expressible as the time derivative of an angular momentum-energy func-
tion [21]. This follows from taking the cross product of the position vector v of the center of

the particle with the three-vector equation of motion in (5.13) to get

d radiation
rxF.,=m—(rxsyu)+rx )
dt reaction

d
+a (r X G, prq) —u X Gyypra + Ola) (3.15a)

or in four-vector form

, - - angular radiation
r'FLy O F, = md— (' - ') + 6 _
; s reaction

d, . - ,
+ (7'Clos = 27 CL00) = (0 Gl — G L) + OLa). (5.15h)
S

When the initial and final position, velocity, and higher derivatives of the position of the
center of the particle are the same, the only change in angular momentum will be in the radi-
ated angular momentum if u x G, is a perfect time differential of an angular momentum
function (Lez¢rq)

d
ux G, = -L, . (H.16a)
dt
or in four-vector form /
' . « 1) - N
(T CS TR S N Ly {5.16h)
S
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There is apparently no experimental evidence for the existence of @i extra momentuiii-
energy function in the equation of motion of a charged particie at least to order a, and. as
Dirac said, “they are all much more complicated than [inic?du' /4s], so that oue would hardly

51]. Thus we will assume

expect them to apply to a simple thing like an electron™ {10, p. 15

C'x

Textra

for the charged shell.

is zero and accept (5.6) as the correct generalization of Newton's second law of motion

5.1.2 Reason for Lorentz setting the bare mass zero

All the tools of special relativity [1.5] were not availanie to Lorentz and Abraham when they
originally derived the total force on the moving Lorentz mdel of the «tecivon. In particular.
the Einstein mass-encrgy relationship [5] and the relativistic version of Newton's second law
of motion [19] had not appeared. However, Lorentz did assume the pre-relativistic form of
Newton's second law of motion and thus set the total force equal to a constant bare mass
M, which Lorentz called the “material™ mass, times the acceleration a [3. secs. 28. 32 and
179} to get

o d du radiation
Coll) = —— o — M— + ) )Na) . 5.7
Feral) brregue? dl( A dt ' reaction + Ola) (5:17)

(For the charged mmsulator model, Lorentz’s bare mass M in (5.17) would include the mass
of the uncharged insulator, that isc M = My 2 my,,.)

The kev feature of (5.17) 1> that Lorentz assumed the constant bare mass M in (5.17)
was multiplied by du/dt rather than d{~u)/dt (even though he and Abraham had discovered
the = factor m the time rate of change of the electromagnetic momentum in (3.17) before
1905).

Between 1901 and 1905, Kaufimann [22] performed expertments to determine the charge to
mass ratio for “fast moving™ electrons. Lorentz and Abraham: hoped that these experiments
would decide between Lorentz’s contracting (relativistically rigid) model of the electron and
Abraham’s noncontracting tnonrelativistically rigid) mnodel. Although his experiments were
not accurate enough to settle this question [23]. Kaufmann's experiments showed clearly
that the preponderance of inementum in the electron varied as d{yu)/dt rather than du/dt.
Thus Lorentz accepted Kaufmann's results as experimental evidence that the bare mass in
(5.171 was negligible. To quote Lorentz [3, see. 32], “Of course we are {ree to believe, if
we likeo that there s some sniall material [bare] mass attached to the clectron, say equal to
one hundredth part of the clectromagnetic one, bt with a view to simplicits, it will be best
to admit Kaufmani’s conclusion, or hypothesis. if we prefer so 1o call it. that the negative
electrons have no material hare! mos ot all. This s certainly one of the most important
results of modern phyvsies. 7 cAbraham also concinded from Kaulmann's experiments that
the bare mass of the dlectron was zoro (2, sec. 16]))

Asfate as 19120 Schott continned to “suppose M vero, in accordance with the most recent
measurements” (13, p A 780 Exenafter experiments by Bucherer [24] in 1909, Neumann [25] in
FO1E aud Bohr [26] in 1915 decided in favor of Lorentz’s contraciing model over Abraham’s
noncontracting model of the electron, and thas also confirmed the prediction of specizal
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relativity, at least for “electrical systems,” the bare mass was generally assumed outside the
jmdiction of special relativity and these experiments were regarded as confirining that the
bare mass was zero. Richardson [27, ch. 11] summaiizes the general consensus in 1915

“These experiments [Bucherer's] appear to dispose effectually of the rigid [Abraham’s
nonrelativi “ically rigid or noncontracting] electron and they mav be regarded as making i
reasonably certain that Thomson’s corpuscles are devoid of mass except such as 1s due to
the charge that they carry. For this reason we shall alwayvs refer to them in the sequel as
negative electrons. We shall find later that the relation hetwcen {the moving mass] and [the
rest mass| characteristic of the Lorentz contractible electron is true of all electiical systems
according to the principle of relativity. Bucherer’s experiinent may therefore be regarded as
evidence in favor of that principle. A remarkable contirmation of the relativity expression
for the mass of a moving particle has recently been obtained by N. Bohr from consideration
of the decrease of velocity of v and 3 rays in passing through matter.”

Cunningham [28] also gives a very readable account of the conclisions drawn in 1914
from the experiments of Kaufmann et al.

By 1270, it was generally accepted that the principle of relativity apphed to all mass,
and Pauli would write, “The old idea that one could distinguist, between the constant “true’
[bare] ma: s and the "apparent’ electromagnetic mass, by me: ns of deflection experiments on
cathode rays, can therefore not be maintained” [6. sec. 29}

I'hus, one cannot accept (5.17) or continue to assume a bare mass My equal to zero. for
our specific model of the electron as a charged insulator, without violating the equivalence of
mass and encrgy and the relativistic version of Newton's second law of motion. which imply
the negative bare mass (5.11) for this model. Also the bare mass, as pointed out in Section
1.2, should not be confused with the uncharged mass of the insulator. However, hecause
Lorentz’s bare mass corresponds to (My + my,,) in our analysis ef the charged s vator,
Lorentz’s bare mass A can still be zero in the special case when the mass m,. of the
insulator equals — My or m,,/3. [u that special case the total mass of the charged insulator
would be (4/3)mn,,.
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Chapter 6

TRANSFORMATION AND
REDEFINITION OF
FORCE-POWER AND
MOMENTUM-ENERGY

In chapter 4 it was shown that the specific model of an electron as a charged insulator de-
mands molecular forces. binding the charge to the insulator, that just cancel the discrepancy
(2.6) between the Lorentz-Abraham force and power equations of motion, (2.1) and (2.4).
In Chapter 5 we saw that the relativistic generalization of Newton’s second law of motion,
together with the Einstein mass-energy equivalence relation, require the negative bare mass
(5.11) that eliminates the factor of 4/3 multiplying the electrostatic mass in the original
equation of motion (2.1). In this chapter we summarize the transformation properties of
the clectromagnetic, binding, and bare-mass force-powers and momentum-energies, derive a
total stress-momentum-encrgy tensor for the charged insulator model of the electron, and
review the redefinitions of electromagnetic momentum-energy that have been proposed for
the extended electron.

6.1 Transformation of Electromagnetic, Binding, and
Bare-Mass Force-Power and Momentum-Energy

[n order to summarize the transformation properties of the electromagnetic, binding, and
bare-mass momentum and cnergy as well as their time derivatives, force and power, for the
charged sulator model of the clectron, it will be helpful first to make a concise list of these
quantitics. The self clectromagnetic, binding, and bare-mass forces exerted on the charge.
and the assocated powers delivered to the charge can be written from the preceding chapters

as

dG.,; 4 d(~u)

dt - 57\—(” +0(1) (6.1a)




Py = vd?:e‘ = —”;mpsczz‘f; (7 - %) +O(1) (6.1b)
F, = -—d—(?f—b = —nzin,d—(;yl—;l—) + Ofu) (6.2a)

P, = —%Z—"’ = —171,n302(—(11% - %777”62(([—[[ (-11—1) - Ofa) (6.2b)
Fo = —‘150 - %m,,d((‘{’f“) (6.34)

P, —d(‘;"’ = %me,c“f[—;’ (6.3h)

where the electrostatic mass is given in (2.3). Adding the externally applied force and
power to the sum of the electromagnetic, binding, and bare-mass forces . ~d nowers in
(6.1),(6.2),(6.3), and setting the total force and power equal to zero give the . juations
of motion (5.12) for the charged insulator.

The momentum and energy of the charged insulator system as a whole can be found
by integrating the expressions (6.1),(6.2),(6.3) of force and power with respect to time for
zero initial velocity. For zero initial velocity, the initial electromagnetic momentum. ¢, [ E x
BdV, is zero, and the binding and bare-mass momenta are chosen zero. (1 say “chosen
zero” because the binding and bare-mass momenta could be given nonzero initial values as
long as the sum of their initial momenta equaled zero.) The initial electromagnetic energy.
(€0/2) [(E* + ¢?B*)dV, equals the rest energy of formation of the charge (m.,c?) and the
initial binding energy is chosen equal to the rest energy of the mass of the insulator (m,,c?).
Then, the initial energy of the negative bare mass is zero because the total rest energy of
formation of the charged insulator is assumed equal to the sum of the electrostatic and
insulator rest energies. (If it is more appealing to have the initial energy of the bare mass
equal to —(1/3)m.,c?, one can choose the initial binding energy equal to my, ,c?+(1/3)m,c?.
Such a change would add and subtract (1/3)m.,c? in the following expressions for W), and
Wo, respectively.)

4
G, = ;;—m.e,’yu 4- O(1) {6.4a)
4 2 | 9 u?
We = —me,c® |y — — | + O(1) = mc®y [ 1+ — | + O(1) (6.1b)
3 45 3c?
Gy = musyu + O(a) (6.5a)
. i 1
Wy = myn ety + ?nwc2 (— - l) + Ola) (6.5h)
: g
1
Gy = ——;m,.;,u (6.6a)
i
Wy = nime,c(‘)(y —1). (6.6h)
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From these expressions of force power and monientum-energy, one draws the following
conclusions about their transformation properties.  Neither the electromagnetic momen-
tum-energy (cGee, W) nor its time derivative, the electromagnetic force-power 4(cFes, Pes).
transforms as a four-vector. Similarly, neither the binding momentum-energy (¢Gyg, W}) nor
the binding force-power y(cFs. By) transforms as a four-vector. Also (F. - u — FP.,) and
(Fy-u — Py) are not equal to zero. kven the sum of the electromagnetic and binding momen-
tum-energy does not transform as a four-vector. However, the sum of the electromagnetic and
binding force-power transforms as a four-vector and satisfies (F o +Fy)-u— (P, +P,) = 0. The
bare-mass force-power ~(cF,. Iy) also transforms as a four-vector satisfying Fo-u— £ = 0;
whereas, the bare-mass momentum-cnergy (¢Gg. Wy) does not transform as a four-vector, but
contributes to the electromagnetic and binding momentuni-energy to yield a total momen-
tum-energy that is free of the 1/3 factor and transforms as a four vector. (If, as mentioned
above, the initial binding energy were chosen equal to myn,c? + (1/3)m.,c?, so that the initial
energy of the bare mass equaled —(1/3)mn.c?, then both the bare-mass momentum-ener-
gy and the sum of the electromagnetic and binding momentum-energy would transform as
four-vectors.)

[t may still be disconcerting that the total momentum and energy of a charged massless
msulator is not given by the conventional electromagnetic momentum and energy

G.i=¢ [ Ex BdV (6.7a)
all space
. ¢o 2 22 -
W, =9 / (E2 4 2 BY)dV (6.7h)
2 Jau space

or that the total momentum of a charged massless insulator is not given by the conventional
electromagnetic momentum alone, even when the velocity of the charge is much less than
the speed of light, but contains also the momentum of a negative bare mass. However,
one can take consolation in realizing that no law of physics is violated by the conventional
electromagnetic momentum not equaling the total momentum of the charge. What we know
from Einstein’s mass-cnergy relation aud the relativistic version of Newton's second law of
motion is that the total momentun equals (in addition to the radiation momentum) the
electrostatic mass (m,,. rest energy of {ormation divided by ¢?) times the velocity (yu).
However, what we know from Maxwell's equations and the Lorentz force law is merely that
the sum ol the external and self clectromagnetic forces on the charge is F . — d%fo JExBdV.
Only if this force on the charge equals zero, can the total momentum of the particle be
given entirely by the conventional electromagnetic momentum. Since -}t—((, [ E x Bdl" equals
(V735 d(a)/dt (phis radiation termisy rather than m, d(yu)/dl. the Einstein mass-energy
relation and Newton's second faw for relativistic motion demand that this force not be zero
but equal (—1/3)m. d(~u)/dt. and consequently. that the total momentum of the moving

be equal to its conventional electromaguetic momentumn alone.

charge not
From the standpoimnt of the clectromagnetic stressamomentum-energy tensor. it is not
surprising that the conventional eleciromagnetic momentum-energy does not represent the

total imomectum-energy of the moving charge distribution. Because the electromagnetic
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stress-momentum-energy tensor is not divergenceless when charge-current is present, the
associated momentum-energy will not, in general, be a four-vector. Thus the electromagnetic
momentum-energy could not, in general, be expected to represent the total momentum-en-
ergy of the system.

6.1.1 Total stress-momentum-energy tensor for the charged in-
sulator

The four-divergence of the electromagnetic stress-momentum-energy tensor 70/(r.t) equals
the force-power density [11], that is

14 .
S = e (6.8)
where
. u(r.t?
fee = p(r,t) [fee(r,t), f.o(r,t)- (( )] (6.9)
and T% can be written out as ]
T = [ “Ter | cBe } (6.10)
CBet Weg
_ 1E? 132
TC(ECO[(EE— 5 >+c’ (BB—L)—)] (6.11a)
gt = cE x B (6.11b)
Wee = f2—°(52+c2132). (6.11¢)

One can also construct stress-momentum-energy tensors with divergences equal to the
binding and bare-mass force-power densities, that is

T . N

oo = =fi(n ), 3= p(r) [fb(r,t). ey 4 )J (6.12)
Ty . o d(yu) (17] ‘
5m7 = ~fo(r. 1), fozmp(r,”[ E CEJ : (6.13)

(As usual, when u = u(t) appears without the functional dependence (r.t), it refers to the
velocity of the center of the charged shell.) Adding the binding and bare-mass tensors to the
electromagnetic tensor would then produce a total stress-momentum-energy tensor whose
momentum-energy density would form a four-vector when integrated over all space. Taking
the time rate of ~hange of this four-vector momentum-enecrgy produces a four-vector force-
power that, when set equal to the externally applied force, results in the force and power
equations of motion (5.12). If no external force is applied to the charged insulator, so that
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its velocity is constant. the total stress-momentum-energy tensor is divergenceless and the
associated four-vector momentum-energy is conscrved.

First, let us construct the bare-mass tensor 1y’. from its following three-vector equations
corresponding to (6.13)

-, 0o —¢  d(yu)
-V T4+ — = 6.11
ot ot 247r(oac'2p dt ( 2)
1 dw, —-¢ dy
V. - = —_. 6.141
Vgt ¢ Ot 247rt0acpdt ( )
A fairly obvious solution to (6.14) is
—e _
go = Y Py ac;ﬂpu (6.15a)
2drey
—¢ ]
wo = gr——7p (6.15b)
L2 Qg
Ty = . ~ypuu (6.15¢)
24mregact
or in four-vector notation
—€
Ty = ———pu'u’ . (6.16)

2imegany

Rohrlich [29, sec. 6-1] includes the bare-mass tensor (6.16) as part of the “cohesion™ or
binding stress-momentum-cnergy tensor. However, for the charged insulator model, it secems
preferable to separate the bare-mass tensor from the binding tensor, because we found in
Chapters 4 and 5 that the binding forces do not make the inertial mass compatible with the
rest energy of formation.

It ix casily shown that the solntion (6.15) satisfies (6.14), or that (6.16) satisfies (6.13);
specifically we have

VY Ty= ———r (V- pu)u (6.17a)
2ireyac?
Q& = —¢ )(’}(‘w,u) + ')'uijﬁ
i 2 mepuc? ot ot
- (l(7u) . \ .
= j];;(](l;} [) Jt - ":lv . /JU)U} (()l Th
e\ogy = __,f_f_,_,./(v - pu) (6.17ci
2reyac
I duey, - i)y dp - )y
- = - —| = ——|p— =5V 6.17d
e M Mrxepac [/' ot e (r}t} Qreqic [ﬂ 9l A /)U)J (6.17d)

which produce identities when inserted into the left sides of (6.14a) and (6.1 1h).




The binding stress-momentum-energy tensor must satisfy the following three-vector equa-
tions corresponding to (6.12)

- agb (“2 - ”Ims d . \
-V Ty + i = -————327r2(0a476(r0—(1)ru+ — pa(')u) (6.18a)
1 ws ¢? _ . Mipsc dry o

. - = 8(rg — - i —. A8
cV-g + .y 32#2(0(1%7 (ro —a)ry - u(r.t) + i (6.18b)

The charge density in the first terms on the right sides of (6.13) has been expressed as a
function of the static charge density, that is

[4

p(r,t) = ypo(ro) = vé(ro — a)—; (6.19)
ira
where rg is given in terms of r at the time t by the Lorentz transformation
ro=(r—rc)L+y(r—r (6.20a)

and the position r. of the center of the charged shell can be written in terms of the velocity
of the center as

t
. =/ u(t')dt' . (6.20b)

(The subscripts L and || mean perpendicular and parallel, respectively, to the center velocity
u(t) at the time ¢; and é(z) is the Dirac delta function.)} The binding force per unit charge in
(6.18) is equal to the exact binding force per unit charge in (4.22) with the first term on the
right side of (4.22) averaged over the thickness of the shell and gencralized to an arbitrary
inertial reference frame. The second term on the right side of (4.22), which is present when
the velocity of the charge is not constant, is not included in (6.18). Also, the expressions
(6.19) and (6.20a) neglect terms of second order and higher in (r —r.) when the velocity of
the charge is not constant (see (B.29)). These secondary binding forces are necessary to hold
the accelerating charge to the insulator, but they are inconsequential to the integrated force
and power because the results of Chapter 4 (specifically, equations (4.24)) show that their
integrals over the charge distribution are of O(a). (In principle. T;’ could be modified to
include the secondary binding stresses, but in practice it may be rather tedious to construct
the necessary, relativistically invariant modification.)
A particularly simple solution to (6.18) is

Mins

g = Tpu (6.21a)
€
2 2
€ MinsC _
y = — _ - 9
Wy, 327:260(14’?((1 ro) + ——p (6.21h)
- ¢? = Mins .
Tb = 32”2(“(’.4 h((l - TO)I - vpu” (6‘21(‘)
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or in four-vector notation

1, = .—fT—/z(a - ro)g" + Mhns® putu’ (6.22)
' -32”‘(.004
where ¢' is the metric tensor
-1 0 0 0
0 -1 0 0
o= 9
=10 0 -1 0 (6.23)
0 0 0 1

and A is the unit step function.

The preceding solution for 7y’ can be used to prove immediately that the m,,, part of
the solution in (6.21) satisfies (6.13). To see that the remaining part of the solution in (6.21)
satisfies (6.18), evaluate V - T, and dw,/0t for that part to get

. —¢? —e? oh oh ]
N Ty = —Vhla~rg) = ——— |- -y + .— I
’ 3272eqat (@ =ro) 32r2eya? [(/r“ ! ()rL"’J
or ,
—€ h ah
-V T, = r ——T
b 3272¢pat [7 ()7'UHFUH * Org, Ol]
= orteal Voh - [71'“”1'-(,“ + f‘oﬂ'oi}
or ,
e4o(ry — a)= r
-V T = —(—“—-)— rgy + —=| = —pf (6.24a)
327 cpa’ 5
and _ , ]
dwy, ¢ Phla —ry) B ¢? i drg _ —€e%8(rg —a), Org
ot Preat at T 32reqat ot T Irega? o ot
or since from (6.20)
dry Jr, 0 iR roj dv
—_— 4+ —i~ - r. = - + —r. )y = - —_——
ot ((’)z ) git(rorll = myu oGy = ut R

having made use of (dr, /dt), = u, = 0. su that

()_I‘l, = -5 | + (_u .br“)i[_ l
" ut dt \n

1 chiey, E(ry — aiy u-rgd (1 u”(r.l)
- = P AT 1 + - — = —pf, ———. 3. 241
c ot Prega'e fo-tt u? ot P ¢ (6.24b)

then
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Inserting (6.24a) and (6.24b) into (6.18) shows that the binding stress-momentum-energy
tensor in (6.21) indeed satisfies its defining equations (6.18). or equivalently, that (6.22)
satisfies (6.12).

Equations (B.31) and (A.21) have been used to prove ii {6.21h) that (to order r;)

) L () | Y 6.25
w di\v/| AR (b-29)

Thus, the time derivative of wy in (6.21b) equals —pf, - uy(r.t) rather than —pf, - u{r.1).
However, the difference is inconsequential with respect to the integral over all space of the
power density, because

ply-uy (e, )dV =0 16.26)
all space
so that g
. — 1
ofy - uy(r,)dV = [ pfy-u(r t)dl = —— = (—) (6.27)
all space all space 2iwepa dt T,

exactly the right value to cancel the discrepancy (2.6) between the electromagnetic force
and power. Note that if we had assumed u were constant in our derivation of the binding
force tensor, u)(r,t) would equal u, and the total power obtained by integrating the power
density would erroneously equal zero, that is

ply-updV =u- [ pfidV =0 (6.28)

all space nll space
as explained previously in Chapters 3 and 4. (From (6.24) through (6.30) below, the terms
involving the mass of the insulator are ignored since they are irrelevant to this discussion.)
One can also obtain the result (6.27) by integrating the energy density w; of the binding

tensor over all space to get
L

W, = / wpdV = — (6.29)

il space 247!'(0(1:)—
and taking the negative of the time derivative. Note that 11 in (6.29) differs by a constant
(e?/24mega) from its value in (4.9) or (6.5b) (with m,,, = 0). This is because Wy calculated

from ,
Wo:/ wodV = ———+ (6.30)

{l space 24 Tepa

differs from Wy in (6.6b) by the negative of the same constant (—¢?/2irepa), so that the
sum, W, + Wo, remains the same whether it is calculated by adding (6.29) and (6.30) or
(6.5b) and (6.6b). As mentioned in Section 6.1, an arbitrary constant energy can he added
and subtracted from the binding and bare-mass energies, Wy and Wy, respectively, with-
out changing the total energy of formation or the final equations of motion of the charged
insulator.




In summary, a total stress-momentum-energy tensor 7' has been derived for the charged
insulator model of the electron. It can be written as the sum of the clectromagnetic. bind-
ing-force, and bare-mass stress-momentum-energy tensors

2 2
(e t) =T + — (‘) hla —ry)g"” + —r-,—(m,n, + My)é(ro — a)u'v’ (6.31)
I272e¢yat ) dra*
with the bare mass My equal, of course, to —m /3 = —e?/(24megac?). In (6.31) the right

side of (6.19) has replaced p in (6.16) and (6.22), and rp is given in terms of (r,t) by the
general Lorentz transformation (6.20). The four-divergence of T produces the time rate
of change of the total momentum-cnergy density, for the charge distribution bound to the
insulator. throughout all space and time; specifically

arv ; , .
T =i f—fo
plr.t) ydud N T T du, du! , .
= - ¢S + ins 1€ - - ‘ + e () 6-3.)
BL (11t 11t ds b6rey \ ds? ¢ ds ds +Otla) ( )

with p(r.t) given in (6.19).

The integral over all space of =T /do? prodizces the sum of the electromagnetic, bind-
ing, and hare-mass force-powers given previously in equations (6.1) through (6.3) as well as
the radiation reaction and higher order electromagnetic force-power terms. In other words.
aT" /dr' integrated over all space vields a four-vector force-power and the consistent eqgua-
tions of motion (5.12) for the charged insulator when this integral is set equal to the externally
applied force. Also. the integral of T over all space produces the four-vector sum of the
electromagnetic, binding-force. and bare-mass momentum-energies given in the equations
(6.1) through (6.6), plus the four-vector electromagnetic radiation-reaction momentuni-en-
crgy. I the velocity of the charge distribution is constant the right side of (6.32) is zero.
or equivalently, the divergence of T is zero, and it thereby yields a conserved four-vector
momentum-energy.

When the velocity uis a constant the stress-momentum-energy tensor 1% given in (6.31),
together with (6.20), is basically the same as Schwinger's *first stress tensor” [20, eq. (12)].
The difference is due to Schwinger’s tensor having its bare-mass portion distributed through-
out the oblate spheroid. whereas we have assumed the bare mass and mass of the insulator
are dixtributed with the thin shell of charge. Of course, the stress tensors of Schwinger are
not derived from the detailed analysis of the charged insulator model of the electron, but are
constructed by subtracting a charge-current stress tensor, for a charge in uniform motion.
from the electromagnetic stress-momentum-energy tensor, so that the divergence of the re-
sulting tensor is zero. (The stress tensors of Schwinger are discussed further in the following
section.)




6.2 Redefinition of Electromagnetic Momentum and
Energy

A number of authors, beginning apparently with Fermi [30], have suggested that the consid-
eration of specific binding forces and bare masses could be avoided in obtaining the equation
of motion (5.12) by redefining the electromagnetic momentum and energy (and associated
stress-momentum-energy tensor) used to determine the self electromagnetic force and power
[20,29,31]. In particular, they replace the original electromagnetic momentum and energy
densities, ¢(gE x B and ¢( E? + ¢*B?)/2. in the second integrals of (3.1) and (3.2 by new
momentum and energy densities, g, (r.t) and wp.(r.t). such that the total momentum
G .. and energy W, ...

nmu j gnru(r t '/\ (();3&)
all space

Woealt) = [ tenenlr. )l (6.33b)
all space

transform as a four-vector, at least when the charge has coustant velocity, and satisfy the
consistency requirements (5.14) and (5.16b). Moreover, gne. and wye, can be chosen to
climinate the 4/3 factor that arises using the conventional definition of electromagnetic
momentum and energy.

For example, if the stress-momentum-energy tensor is redefined so that the momentum
density gqe.(r,t) equals y%u multiplied by any invariant function involving the electromag-
netic field, charge-current, or both [12, sec. 1.23) (invariant with respect to all inertial frames
moving with constant relative velocities), and the energy density wye,.(r,t) equals ~?¢? times
the same invariant, that is

Erew(r 1) = y2ul (6.31a)

W (P, 1) = e | (6.34h)

where u is the velocity of the charge, and [ is the invariant. then the total momentum
and energy in (6.33) of a charge distribution moving with constant velocity transform as
a four-vector. The total momentum and energy in (6.33) calculated from (6.34) determine
a four-vector because (yu,~c) is a four-vector and [ /4dV is an invariant, provided | is
calculated for a charge distribution moving with constant velocity.

Rohrlich et al. [29,31] redefine the momentum-energy to vield the specific invariant

I= 2( °(E* - B?) (6.35)

which can be inserted into (6.34) and integrated in (6.33) for a uniformly charged sphere
moving with constant velocity u to give the four-vector

G, (1) =m, (6.36a)

”'nr'u'(l') = 771(57(‘2 (U.:;G}))
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2
S i"—/ (E* = B )dV = — (6.36¢)
all space Smeguc?

For a charged sphere moving with arbitrary velocity u, (6.35) still yields (6.36) for the
dominant 1/a terms of the momentum and energy. Thus when one replaces ¢oE x B and
€ol E2 4+ ¢ B%)/2 in the self ¢lectromagnetic force and power equations (3.1) and (3.2) by gnew
and w,,, in (6.31a) and (6.31b). with [ inserted from (6.35), the 1/a terms in the final forns
of the force and power equations of motion, (5.12a) and (5.12b), emerge without the explicit
introduction of binding forces or a nonzero bare mass. However, for arbitrary velocity u
the invariant (6.35) does not predict the correct radiation reaction terms in the equations of
motion (3.12).

Alternative momentum and energy densities to (6.34) can be found that produce con-
sistent results for the 1/a terms (consistent with the requirements (5.14) and (5.16b) on
the rate of change of linear and angular momentum-energy) and correct radiation reaction
terms 1 the momentum and energy equations of motion. Probably the simplest way to do
this is to subtract the momentum-energy density (g,. w,) from the original electromagnetic
momentum-energy density ¢[E x B, (E? + ¢*B%)/2] to form

Enew = tOFJ‘ x B - gs (6.;7(1)
Wy = (_—;'(Ez + B - w, (6.37h)
such that
G = (0/“E xBdl' - [ gV (6.38a)
all space all space
and .
W= 9 [ (B 4 ety = [ gy (6.38D)
& Jall space all space

will form the four-vector (1, yum,~e?). that is

G = U (6.39a)

. 2 -

Wow = myye (6.39M)
when the charge has constant velocity, where my, is an arbitrary constant mass. For a
relativistically rigid charged sphere moving with constant velocity, we see from Appendix B
or {6.1al) that

: 1
((./ E> BdV = Em(nu (6.40a)
Jall apar-e .
and , |
« / (44 GBIV = S ey = —) (6.40b)
-.3 Al speae ; 1')
which combime with (6.33) and (6.39) to show that g, and w, must satisfy
. 4
/ g dV = (im,, . m_,) Ju (6.11a)
. I{( Q)' 1°r .
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1 s C? \
/ wy,dV = (qnzm ~ ms) yet - ”—I_;‘TL . (6.41b)

{l space

Moreover, if (g,,w,) are chosen to satisfy (6.41a) and (6.41b) for arbitrary velocity u. then
the timne derivative of (6.38a) and (6.38b) for arbitrary velocity will yield 1/a terms consistent
with (5.14) and (5.16b), and correct radiation reaction terms (and all higher electromagnetic
terms) in the self force and power.

Schwinger [20] has derived divergenceless stress-momentun-energy tensors for constant
velocity charge-current distributions, such that a (g,.w,) can satisfy (6.11) for m, = m.,.
ot (g, w,) can satisfy (6.11) for m, equal to the electrostatic mass m.,. And. i fact, his
method can be immediately generalized to find a (g,.w,) that will satisfy (6.11) for an
arbitrary value of the constant mass my, in the 1/a term of the redefined momentum-energy
given by (6.38).

Specifically, Schwinger rewrites the electromagnetic force-power density for uniformly
moving (constant velocity) charge distributions, that are spherically syimmetric in their rest
frames, as the divergence of a tensor that depends only on the charge-current distribution.
When this force-power tensor, which is not unique, is subtracted from the electromagnetic
stress-momentum-energy tensor, a new divergenceless stress-momentuin-energy tensor re-
sults for which the total momentum-energy is a four-vector. In particular, he finds the two
stress-momentum-energy tensors

T9 = T3 + (g% - w'e)T (6-42)

and .
Iy =T7+4¢"T (6.42h)

where 7 is a scalar that depends on the spherical charge distribution. (The first is found by
subtracting the tensor u'w? 7T, which is divergenceless at constant velocity. from the second.)
For the uniformly moving shell of charge

2
T = mh(a ~7) (6.42¢)
with o given in terms of (r,t) through the Lorentz transformation. Thus, the first tensor
(6.42a) is essentially the same as the stress-momentum-encrgy tensor (6.31) derived for the
charged insulator model when the mass of the insulator m,,, is zero. Its mass, determined
by the integral of the energy or momentum over all space, equals the electrostatic mass. (As
mentioned in Section 6.1, the slight difference between (6.12a) and (6.31) with m,,, zero is
the result of the bare-mass portion of Schwinger’s tensor being distributed throughout the
oblate spheroid rather than in the thin shell of charge.) The mass associated with the second
tensor (6.42b) equals the electromagnetic mass. It would correspond to a charged msulator
with the mass of the insulator material equal to 1/3 the electrostatic mass.
Of course, there are drawbacks to redefining the electromagnetic momentnm and energy.
If the momentum and energy densities are changed in the second integrals of (3.1) and (3.2).
so as to also change the values of the time derivatives of these imtegrals. these new values of

t5




self electromagnetic force and power will no longer equal the Lorentz {orce and power (the
first mtegrals in (3.1) and (3.2)) for the shell of charge. This implies one or more of the
following alternatives:

1. the definition of the Lorentz force must change
2. Maxwell’s equations must change
3. the charge-current distribution mnust change

4. unknown forces (electromagnetic or nonelectromagnetic) are present that contribute
to the total self force and power of the charge distribution.

None of these alternatives seem very attractive because they each involve introducing
extra unknowns unnecessarily into the simple, deterministic model of the electron as an
insulator that remains spherical and uniformly charged in every proper inertial frame of
reference. Also, none of the redefined stress-momentum-energy tensors predict the second
and higher order binding forces on the right hand side of (4.22) that are necessary to hold
the accelerating charge to the insulator.
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Chapter 7

MOMENTUM AND ENERGY
RELATIONS

The equations of motion (5.12) for the charged insuiating sphere of radius « moving with
arbitrary center velocity u(t) can be rewritten in four-vector notation [11] as

: e? ldut 1 [P du, dw!
1;“ L= — | = —_ - 4 - J ! () '-'.1
ot 37ey [a s 3 (dsz tu as ds >J + 0Ofa) (.1
with
" u .
I:F.rl = B (F"Ita - Fert) ( { .Zﬂ)
c

ds = <dt . (7.2d)

The factor e?/87¢, may be expressed as m,;ac?, where m,, is the electrostatic mass given in
(2.3). The mass my,, of the uncharged insulator material has been set equal to zero in (7.1).

The total momentum G, and encrgy Wy, supplied by the external force to the charge
between the times tjand ¢, is given by

2
G, = F, . (t)dl! (7.3a)
J
and
Wi = jf*l F, . (1) - u(t)dt (7.3h)
t

ot in four-vector notation

("ZQZ(FGIZ*H'IZ): /'.2[."';"[,\’, (\Tl)
o Q‘
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Substituting £, from (7.1} into (7.1) we obtain

ext

" et (1, ; 1 | du du'
(112 = 87‘.(0 {;‘l‘ [“ (.\2) — U (.\1)] — E; 71: Sy — :K' .\l)
1 82 1 1 J .
x(ll](u (l's +O((l) (‘.:))

- u
3Js ds ds

If the velocity and acceleration of the particle is the same at times {; and {,, that is, at s,

s

and s;. the momentum-energy in (7.5) reduces to

2 )
. —¢ 2 du,; du’ -
o= = [Tw=2500 4 0fa) (7.6)
brey Js, ds ds
In three-vector notation
du, du? SR o g _—
L = s P a4 (o 0)? (ule) (7.7)
//a (1.\ C5 (&
so that (7.6) becomes
11, = (G W)
¢? t2 . ~° o
- __/ Yl + S (u-0)?| (u,e)dt + O(a) - (7.8)
6reyct Sy, c?

The integrand in (7.8) is just the momentum and cnergy radiated per unit time by an
accelerating point charge [32].[2. sec. 15}. Thus, (7.8) says that the momentum and energy
imparted to the charge by the externally applied force during any time interval is equal to
the momentum and energy radiated by that charge, provided the initial and final velocities
and a-celerations are the same.  In other words, the du'/ds and d*u'/ds? terms in the
equation of motion (7.1) represent reversible rates of change of momentium-energy, while the
a'du,ds du [ds term represents the irreversible rate of change of momentum-energy that
radiates to the far field.

The reversible du'/ds ternnis. of conrse, the usual rate of change of momentum-energy
four-vector i the relativistic version of Newton's second law of motion

et du *n (l( ) (7.9)
T = 5 yu o). [
Sregn ds Smeguct di

[t< integral over a proper time interval determines the reversible change in kinetic momen-
tum-energy of the particle during that time interval.
The reversible d4u' /ds? 1¢rm can be writien in three-vector form as

T —ecm -

1
. / . 4 . -
SRS S O Y ~(u- - . ) g0
6o, st Orenet dt rut ('2(u uu (‘(‘) " U)} (7-10)




When this perfect differential is integrated over proper time it vields a reversible change in
momentum-energy that cannot be classified as either a change in kinetic momentum-encrgy
or a change in radiated momentum-cnergy (which is irreversibly lost to the far field). Schott
[33] called the energy portion of (7.10). that is

eyt

o) (7.11)
the “acceleration energy” because i* “must be regarded as work stored in the clectron in
virtue of its acceleration”. Therefore, this part of (7.10) is sometimes referred to as the
Schott energy term, although Abraham [2, sec. 15] had previously separated the reversible
momentum as well as the reversible energy of (7.10) in his derivation of the radiation reaction
for a charge moving with arbitrary velocity.

Before and after the external force is applied, the acceleration of the charge is zero so
that the Schott acceleration momentum-encrgy is zero; and. as expected, the momentume-en-
ergy that has been supplied by the external force has been converted entirely to kinetic and
radiated momentum-energy. However, while the external force is being applied. the charge
is accelerating and the momentum-energy supplied by the external force is converted to
“Schott acceleration momentum-energy”, as well as kinetic and radiated momentum-energy.

A physically intuitive understanding of the “acceleration” momentum-energy can be
gained by looking at (7.1) for time harmonic motion. With the help of (7.7). (7.9) and
(7.10), the momentum and energy equations of motion in (7.1) may be written separately in
the three-vector notation as

e d(yu) e? d [ . 4t
Fcr = P - 5, 2 — U
“7 Rregac?  di 6megcd | dt yudt 24 uju
4 2
—’LZ [|ﬁ|2+ 7—,2(u~i1)2] u} + Ofa) (7.12a)
c c
and 2 g , y
€ Y c 4 .
Fopoou= ——1 - (ot
Sl 8rega dt Bmepc® {(lt( u-u)
.2
—* [1a|2+ ’—2(u-u)2 }+O((z). {7.12b)
c

The first terms on the right sides of (7.12) can be interpreted simply as the rates of change of
kinetic momentum and energy required to accelerate the static energy that is connected with
the moving charge. To understand the second terms on the right sides of (7.12). consider a
charge oscillating rectilinearly with sinusoidal frequency w. so that the velocity is given by

u(t) = Upsin(wt) (7.13)
aud the radiation reaction terms in the energy equation of motion (7.12b) become

d

- d—/(*,"u ) = =LA cos(2et) (7.11)
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2
4 [IUIZ + 7.—2(u . 1'1)2} = ['fw? cos*(wt) (7.15)
when (u/e)? < 1.

The irreversible reaction term (7.15) behaves as a time-harmonic radiated power, that
is. it has the time dependence of the Poynting vector integrated over a closed surface in the
far field. Its average over time has the positive value UZw?/2. The reversible “acceleration”
reaction term (7.14) behaves as a reactive power whose average over time is zero. In other
words, if the oscillating charge were an antenna fed hy a single-frequency input voltage and
current. (7.14) and (7.15) would contribute to the reactive and resistive (radiation resistance)
parts, respectively, of the input impedance of the antenna.

For a charge whose velocity and acceleration are continually increasing with time, rather
than oscillating, the reversible kinetic energy continually increases, the irreversible radiated
power increases, and more and more reactive or Schott acceleration energy is taken from the
electromagnetic fields of the charge. A similar unlimited increase in the radiated and reactive
energics occurs when the frequency of an oscillating charge or electric dipole is continually
increased, as one can see from (7.15) and (7.14). However, the reactive energy taken from
the fields of an oscillating charge, although it can increase without limit by increasing the
frequency, is always returnced to zero and supplied to the fields in an equal amount during
each half period of oscillation.

7.1 Hyperbolic and Runaway Motion

For hyperbolic motion (relativistically uniform acceleration), which is defined as [29, sec. 5-3
and 6-11]
dh du, duw
ds? +u ds ds
the reversible reactive power cancels the radiated power and the equation of motion (7.1)
reduces to that of an uncharged particle

=0 (7.16)

P ]
¢t du
F

ert

-1
—_—
-1

= - + O(a) (7.

Srega ds
that iz, the time rate of change of kinetic momentum-energy equals the applied force minus
the Ofa) terms. The charged particle radiates by drawing energy from the reactive fields of
the charge. the reactive fields contimially being replenished by the increasing acceleration of
the charge.

For the runaway solutions (sce Chapter 8), exponentially increasing, homogeneous solu-
tions to (7.1). the reactive power cancels both the radiated power and the kinetic power.
that is
d*u Jduyd? 3 du

—

(7.18)

ds? ds ds + 1a ds




(neglecting O(a) terms), or in three-vector notation

d 4 4 2 . 3¢ d
d [#’u + L(u- ﬁ)u] =X [w + Z—z(u - u)z] u 4 20dou) (7.19a]
C

dt c? Ya dt

d . e 2
E(V"u a) =+" [w + Z—'z(“ : u)g] +

3¢ dy

Even though these runaway solutions are presumably not physically realizable, they are
mathematically valid homogeneous solutions to the differential equation of motion that do
not violate conservation of momentum-energy. Both the increasing reversible kinetic mo-
mentum-energy and the increasing irreversible radiated momentum-energy are taken entirely
from the reservoir of reversible reactive momentum-energy that is continually being supplied
by the increasing acceleration of the charge. It is emphasized that the unlimited supply of
reactive momentum-energy for the runaway modes is produced by the unlimited increase
in the four-acceleration of the particle, and is not dependent upon the radius of the charge
approaching zero or mass of the particle approaching infinity.

Although the homogeneous runaway solutions do not violate the conservation of momen-
tum-energy, it is shown in Chapter 8 that the exponentially increasing runaway behavior is
eliminated from the complete solution of (7.1) by invoking the asymptotic condition of zero
acceleration as t approaches infinity.

In an attempt to get an equation of motion that involves only the kinetic and radiated
momentum-energy of a charged particle, one may be tempted to simply discard the reactive
momentum-energy term in (7.1) or its three-vector equivalent in (7.12). Unfortunately, the
resulting simplified equation of motion would no longer be consistent with F!_u; zero. In
terms of the three-vector equations, the scalar product of u with (7.12a) would no longer
equal (7.12b).

[t seems quite remarkable that without the insight and transformations of special relativ-
ity, Abraham was able to determine the reversible {reactive) parts of the radiation reaction
force and power in (7.12) from a knowledge of the radiated momentum and energy of an
accelerating point charge; then prove that the solution was unique [2. sec. 15]. (In the four-
vector notation of (7.1) and with the transformations of special relativity, the determination
of the reversible part of the radiation reaction from the radiated part is an elementary ex-
ercise. Uniqueness of solution follows from the fact that a four-vector which reduces to zero
in the proper inertial frame must be zero in an arbitrary inertial frame.)




Chapter 8

SOLUTIONS TO THE EQUATION
OF MOTION

As a preliminary to solving the equation of motion (7.1) for the uniformly charged sphere of
radius u and total charge ¢. write the magnitude of the four acceleration in (7.1) as

J w2 J2
it s
where w is defined in terms of the velocity of the center of the shell by
w=ru. y=(1—-d?/e?) V2 = (1 + w?/*)/? (8.1b)
and the primes denote derivatives with respect to the proper time
dr = dt/~ . (8.1¢)
Iusertion of (8.1) into (7.1) yields the three-vector equation for w
2 ' "2
7Fe = 8;062 % - %w + 3—3—; (uﬂ - (Wc_zv;)_) w] +0la). (8.2)
For rectilinear motion i the o direction
F...= F..x (8.3a)
W= ux (8.3b)
and (227 becomes
2 0 12
Yhere = \7(,(77 ‘—;~ - %w” + %(1%;;—’) + O(a) . (8.1)
c




Following Schott [33] we see that the substitution
w/c = sinh(V/c) (8.5)

reduces this equation for rectilinear motion to the simpler differential equation

v
Pert

m,,

=V - ‘}—aV” + O(a®) (8.6)
3c

where the electrostatic mass has been inserted from (2.3). and division by m, changes the

O(a) terms in (7.1) to O(a?) in (8.6).

8.1 Solution to the Equation of Rectilinear Motion

If the terms of order a® in (8.6) are neglected, the most general solution to the resulting
equation of rectilinear motion can be written as

A
~1
~—

V() = %/t [4m / Foge(7)e> T dr! + 1}

— < T

where the external force is applied at 7 = 0 aud is assumed zero for all time 7 < 0. Integration
of (8.7) with respect to the proper time 1 gives the gencral solution for V as

V(r) = B+—-/1,,,, 7!

m”

3«.1'/411 [ / Fert ) =37’ /4’/ ! li(_l.‘;i . (88)
Mg }

aC
—00< T X

Integrating (8.8) with respect to the proper time. one could also obtain the position of the
center of the shell. This would introduce a third arbitrary constant (A and B being the other
two) that can be determined by specifying the position of the particle at a cevtain time. oy
in the remote past.

To determine the two remaining constants, A and B. two other houndary conditions are
required. This is one more constant and boundary condition than is required by Newton's
second law of motion for uncharged particles, which involves only the first derivative of
velocity, rather than the first and second derivatives in (R.6). At first thought. since the
external force is not applied until 7 = 0. one might set the velocity and acceleration equal
to zero at 7 = 0 to obtain zero for both the constants A and B, Then (3.8) would hecome

1 r (v/ll
Vir) = [T [T )

0
—xX < T7T<X




Unfortunately, there is a serious problem with the solution (8.9). The velocity function V(7)
and all its derivatives approach nfinity (u(t) — ¢) as 7 — oc, even when the external force
is applied for a finite time.
Returning to (8.7) or (8.3) we see that these “runaway solutions™ are eliminated as 7 — >
if and only if the constant .1 is given by
_ -3¢ 5 ; —3(1'/4nd ’ o
/ ool 7 (8.10)

Jmua

Equation (8.10) insures that the acceleration in (8.7) approaches zero as 1 — oo, if the
external force approaches zero as  — oc; and thus (8.10) can be considered a result of the
“asymptotic condition” {10.29]

du’
sl-l-p:l,-d_: =10 (&.11a)
when
lnn‘ Fl . (s)=0. (8.11b)

(Rohrlich [29, sec. 8-2] points out that the asymptotic condition can be based on a fundamen-
tal “principle of undetectability of small charge™, which asserts that the motion of a charged
particle must approach that of a neutral particle in the limit as the charge approaches zero.)
After insertion of A from (3.10), (8.8) can be written as

Y(r) = B + [ Foplr )”””“Mr+/ﬁ@ yh] (8.12a)
1., Ws
- X <7< X
or
Vir) = B+7-[f@7+ry%”mi+/auww]. (3.12b)
nes L

—x < T7T<X

A final boundary condition is needed to evaluate the constant B in (3.12). One can
evaluate B by specifyving the mitial velocity, but this procedure leads to a velocity in the
remote past (1 — —a¢) that depends on the external force, which we have assumed is applied
at 7 = . Specificallyv. if one enforces the initial condition V(0) = 0 in (3.12) then both the
constant 3 and the velocity function in the remote past are given by

H:vw-<:~—— T p (e T g, (8.13)
0
Phvsically, it 1s much more appealing to demand that in the remote past the velocity be zero
or a constant that is independent of the applied force. Thus, if the final boundary condition
on the motion of the charge is an asymptotic condition on the velocity in the remote past:
i particalar, for zero velocity i the remote past

hm =0 (&.11)

s— —
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then B = 0 and (8.12) becomes

i e et T
[/ Fo(r+ ) Mgy 4 I",_,,(T')(IT'] } IR0
Mes LJO 0

-0 < T7T<<X

V() =

Equation (8.15), combined with the definitions (8.5) and (8.1b). is the general solution
for the rectilinear velocity u of ithe center of the shell of charge for all time under the two
asymptotic conditions that the acceleration approaches zero in the distant future (for zero
external force in the distant future) and the velocity approaches zero in the remote past. Of
course, the external force must be well-behaved enough for the integrals in (3.15) to exist,
and the solution was obtained under the assumption that the terms of order ¢* in (5.6) could
be neglected.

The solution (8.15) exhibits two noteworthy peculiarities. The most unsettling one, pre-
acceleration, or acceleration before the external force is applied at 7 = 0. is considered in
the next section.

The second peculiarity with the solution (8.15) is that if the force is zero after it is apphied
over a finite time interval, 0 < 7 < 7y, the velocity reduces to

1 T
V(r) = / Fep(tYdr', 7>y (.16a)
m,s Jo
or equivalently
1 te ,
yult) = — [ Flt)dt' t> 1 (5.16b)
Mes JO

the final velocity one would obtain if the radiation term V” in (8.6) were ignored entirely.
This result (8.16) is not so objectionable, if one realizes that it does not imply that the
radiated momentum-energy is zero, ¢ - that the work done by the external force is converted
to kinetic energy alone. To see this, integrate (7.12) over all time that the velocity is changing
(—oo < t < tp) to get (for rectilinear motion)

to to e? o
/ F.dt = / Fordt = myu(ty) + = . / ~Puu(t)dt (S.17a)
oo 0 Orepe” J-x
to to ¢? o
/ F.udt = / Foooudt = mec?~{tg) + - : / Y (dt. (R.17b)
-0 0 6rege? S

The reversible reactive momentum-cnergy in (7.12), that is. the Schott acceleration mo-
mentum-energy (sce Chapter 7), does not contribute to (8.17) hecause the final acceleration
and the acceleration in the remote past are both zero. The first terms on the right sides of
(8.17) give the kinetic momentum-energy. while the second terms give the change in radiated
momentum-energy. During pre-acceleration (—x < t < 0) only the runaway solution s
present, and, as explained in Chapter 7. the reactive momentum-encrgy cancels both the
kinetic and radiated momentum-energy. If the final velocity of the charge also equals zero
(u(to) = 0) the change in the kinetic momentum-energy is zero and (S.17) confirms that the
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entire impulse and work delivered by the external force is converted to radiated momentum-
energy. Note that even when the final velocity (as well as velocity in the remote past} is
zero, we have the inequalities

2

to 3 to N
/ Foodt £ — / YSutu(t)dt (8.18a)
v 6regc® Jo
and
to 2 to .
/ Fooudt # - .,/ SSa3(1)dt | (8.18b)
0 breygc’ Jo

That is. in order for the total momentum-cnergy radiated to equal the impulse and work
delivered by the externally applied force when the final velocity (and velocity in the remote
past) are zero, the integration of the radiated time rate of change of momentum-energy
must include the pre-acceleration, because the initial velocity u(0) is not zero in the pre-
acceleration solution (8.13).

8.2 Cause and Elimination of the Pre-Acceleration

The solution (8.'3) to the equation of the motion predicts a nonzero acceleration before the
external force is applied at 7 = 0. One may be tempted to simply set the acceleration or
velocity equal to zero for 7 < 0 to eliminate the pre-acceleration in (8.15). However, the
resulting solution does not satisfy the original differeutial equation (8.6) (with O(a?) terms
neglected) because the velocity becomes discontinnous across 7 = 0 (even when the external
force is continuous) and spurious delta functions and derivatives of the delta functions are
introduced into the derivatives of the velocity at 7 = 0. For example, if the external force is
a unit step applied at 7 =0

. 0, 7<0
I'erl(T):{ 1 . T>0 (819)

then the solution (R.13) becomes simply

| 3¢ -
Vir) = — {8.20)
Mo | 2 g g >0

We sce that (5.20) satisfies the equation of motion (8.6) (with the O(a?) terms neglected)
for all . whereas setting Vitj = 0 for 7 < 0 mn (8.20) violates the equation of motion by
introducing delta and doublet fundtions in V/(r) and V”(r) at = = 0. Siunilarly, a spurious
delta function is introduced into V7(7) by differentiating (8.20) and setting the acceleration
zero for = < 0, regardless of the initial velocity.

Although the noncausal pre-acceleration decays in the past at the rapid rate of 1 /e in the
proper time interval light takes to travel 1/3 the radius of the charge, it should not appear
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in the solution to the equation of motion because the equation of motion was derived using
only causal (retarded-potential) solutions to Maxwell's equations. It is not surprising that
the equation of motion of a charged particle allows homogeneons solutions like the runaway
modes, which are not present in Newton's second law of motion for uncharged particles.
because the radiation reaction introduces time derivatives of acceleration into the equation
of motion. The disturbing feature of the equation of motion is that when the asvinptotic
condition (8.11) is applied to eliminate the runaway modes from the inhomogencous solution.
noncausal pre-acceleration cannot be avoided for a solntion that remains well-behaved at
t = 0, the time the external force is first applied.

The root cause of the pre-acceleration solution will bhe determined by returning to the
derivation of the equation of motion of the extended model of the electron. Before doing
so, however, let us show that the pre-acceleration is not eliminated by including the higher
order terms in the equation of motion (O(a®) terms in the equation of rectilinear motion
(3.6)).

The pre-acceleration solution (8.15) is a solution to (8.6) when the terms of order a® are
negligible, yet the solution (8.15) violates this requirement. To see this, return to the series
expansion for the self electromagnetic force (as in Appendix D) and note that the terms of

order a? in (8.6) are negligible if

1
n+1

dntly
dint!

d"u
dtn

c
2a

g

,on=213... (N.21a)

in the proper frame of reference of the charge. The inequalities in (8.21a) represent a sufficient
condition for neglecting the terms in the equation of motion bevond the radiation reaction
term. In words, (8.21a) says that the fractional change (divided by n + 1) in the secoud
and higher derivatives of velocity in the proper frame is small during the time interval it

takes light to traverse the charge distribution. A necessary condition for neglecting the terms
beyond the radiation reaction is
2

c n-1
(n+1)! < <5(7)

The pre-acceleration solution (8.15) behaves as exp(3er/4a) for 7 < 0 and thus does not
satisfy the conditions (8.21) because

d*u
de?

d’n-#-lu
dl"'“

L =23, (3.21b)

dn+ 1

drnti

((.'icr/h) _ Ed_n (f.‘!rr/m,) - (x.22)
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Thus, the pre-acceleration solution in (3.15) is not a valid solution to the equation of motion
(8.6) for the charged insulator of radius ¢ when the O(«?) terms are retained. (This is
confirmed by substituting the pre-acceleration solution into (D.17).)

Unfortunately, when the O(a?) terms are retained, the pre acceleration (runaway solution
for 7 < 0) 1s not eliminated, just the time dependence of the pre-acceleration is altered.
Specifically. the analyses of Herglotz [31] and Wildermuth [35] show that that runaway




solutions to the linearized. homogeneous form of our equation of motion (7.1) exist for all
timne, so that pre-acceleration exists for t < 0, regardless of how many linear higher order
terms are included in the linearized equation of motion [36]. (These results of Herglotz and
Wildermuth apply to the charged insulator when the sum of the bare mass and material
mass of the insulator, My + m,,,, is less than zero. This condition is met by (7.1) because
the bare mass in (7.1) has the negative value of My = —m,,/3, and the mass of the insulator
m,n, has been set equal to zero. Even when the mass of the insulator is not zero, the value
of the sum. m,,, — m.,/3. is negative for small enough values of the radius a.)

The analyses of Herglotz and Wildermuth are approximate in that they neglect all O(a?)
terms involving nonlinear products of the time derivatives of velocity in the proper-frame
equation of motion (see Section 8.3). However. the analysis of motion of the two-charge
(dumbbell) problem {37], although it neglects the self force of each individual charge, includes
nonlinear terms and also exhibits the existence of runaway solutions. Thus, in general,
the inclusion of higher order terms in the equation of motion fails to eliminate the pre-
acceleration.

The root cause of the pre-acceleration can be found by examining the assumptions in-
volved in the derivation of the equation of motion. In Chapters 2 through 5 and the Ap-
pendixes, the equation of motion was derived for the extended model of the electron as a
charged insulating sphere of radius a. To simplify the discussion, concentrate on the force
equation of motion (5.12a) in the proper frame of reference of the charged insulator (with
Mins ZCTO)

P
(‘2 ) 2

F..lt) = S+ Ola) . (8.23)

prmed u —
8regac? 6renc

As explained in Section 5.1. the rest mass, or coeflicient of the u term in (8.23). is
determined ultimately, not from the electromagnetic self force, but from the relativistic
generalization of Newton's second law of motion and the Einstein mass-energy relation.
In particular, the rest mass must cqual the energy of formation (¢?/87cya) of the charged
insulator divided by ¢?.

The 1 and higher order reaction terins in the equation of motion (8.23) are determined
from the derivation of the self electromaguetic force. This derivation. outlined in Appendix
A. depends upon expanding the position. velocity, and acceleration of each element of charge
at the retarded time (¢ = 1 — R'{1")/c) in a Taylor series about the present time (¢). For
example, the velocity of the element of charge at r’ in the proper frame is expanded as

Kt Rt 2t
uir'.) =u (r'.l — —A‘—«> =-uar't) ) + ﬁ(r',t)R () + .. (8.21a)

IS C 2(‘2
where the distance f/(t') has the Tavlor series expansion

R(HR - a(r',¢
AOR-wref o

2c?

Ry = R(t) - (8.24h)

These Tavlor series expansions are vahd provided the velocity function u(r'. ') is an analytic
Junction of time T for T between t' and t, that s, for T during the tome interval R'(t) /¢




before t (more precisely, | T — t |< R'/c). For the self-force calenlation in the proper frame
of reference, R'(t') does not exceed a value of about 2a (assuming the velocity does not
change rapidly for time T" between ' and f; in other words. assuming the velocity change
is a small fraction of the speed of light during the time it takes light to traverse the charge
distribution).

After the external force is applied at 1 = 0, one may assume that the external force
F..:(t), and thus the velocity of the charge u(¢',t), 1s an analytic function of t for + > 0.
However, since the external force and velocity are zero for t < 0. they cannot be analvtic
functions of T between ¢’ and t when ¢ is greater than zero but less than R'(t')/c < 2a/ec.
because then t' is less than zero. In other words, the Taylor serics expansions in (X.2]) are
invalid for

s

0<tg2afc (.23)

and thus the following expression obtained from equation (A 10} of Appendix A for the self
electromagnetic force in the proper frame is not valid during this short time mterval (3.25)
after the external force is first applied

1 R 1 [rq SR
Felt) = imeg //charge {F * 2c*R [rrzu B 1} [(R.U)R t u]

. R 9%
u)u + 4 + ()(h’)} de'de, u=0. (8.26)
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Fortunately, one can see directly from equation (A.2) of Appendix A how the integral in
(8.26) should be modified for t < R'(t’)/c. Specifically, for t < R'(1")/c. u(r’,t') and u(r'.t')
are identically zero so that dE(r,t) in (A.2) reduces to df’R’/hr( R?. Thus, a simple
modification to the integrand of (8.26), shown in the following equation (8.27), produces an
expression for the self electromagnetic force that is valid for all time in the proper frame

// +/ L) R R L
) —_— [ —_—
47r(0 harge I{ll C [{2 l{rz 2(‘2]?

_[r u }[(R u)R+u]+—;B[(R u) |u|}

c?

Fe(t)

+3(R_u) + — + O([Z)} } de'de. u=0 (8.27)
4ct 3(
where h(t) in (8.27) is the unit step function.

Although the step function appearing in (8.27) represents a minor modification. it pre-
vents the exact evaluation of the double-integration in (3.27) during the time interval (3.25).
Nonetheless, for t < 0 the value of the integral is zero. and for t > 2a/c. the integral vields
the usual expression (A.11) for the sell electromagnetic force i the proper frame.

During the time just after the external force is applied (0 < 1 < 2a /e). the equation (A.2)
reveals that the self electromagnetic force. in a fixed laboratory frame of reference tdenoted

H9




by L) coinciding with the initial position of the charge distribution, can be written

t2
Fel(l / / '‘de+ 0| =), 8.28)
[ 47!'(0 harge 11)’ t’ ¢'de + ) (02) (

R, () =r.(t) — ¥ (f) .

Since ry(t) can be expanded about t = 0% as

ro(t) = ro + 0(0%)2/2 + 0(0N)*/6+ ..., t>0 (8.29)

where rp is the initial position vector of the de charge element, and r7(t’) can be expanded
as

rp(t') =+ 0(t}), t>0 (8.30)
where r), is the initial position vector of the de’ charge element, R (t') can be writien
R (') =Ro+0O(t*), Ro=ro—ry. (8.31)
Substitution of (8.31) into (8.23) vields
Folt) = // ——de’d(+()(2), 0<t< (8.32)
e harge R3 c

The first term on the right side of (8.32), the double integral over the initial static charge
distribution of the sphere. is zero. Moreover, (8.32) shows that the self electromagnetic force
approaches zero as t? or faster as f approaches zero. Thus, the scll clectromagnetic force
increases smoothly from its zero value at ¢ < 0 to its value given in (A.11) for t > 2a/c.

In all then, during the time interval (8.25), each term in the self electromagnetic force
{A.11) is multiplied by a function of time that increases monotonically from zero at t = 0 to
unity at t = 2a/c. That is, the self clectromagnetic force in the proper frame determined by
the corrected integral expression (8.27) can be written as

2 2
Foolt) = — ““ S (a(t) + 67:( Sn(0)i(t) + Oa). w =0, (8.33)
Y 0
0, t<0
'Il'z(’):{ 1, t>2afc

When (3.33) is used in Chapter 5 for the determination of the force equation of motion,
Newton's second law of motion and Einstein’s mass-cnergy relation demand that the total
force (external plus self electromagnetic force) equals a time rate of change of momentum
that cancels the 0 term in 18.33) and adds the rest-mass time rate of change of momentum,
ue?/R7egact, for all time. The G term is retained from the self force calculation (8.33) to
vield a proper-frame equation of motion valid for all time

2 2
‘ ) €
ult) —

Nrepac? brenc?

F, . (t) - n(tha(t) + Oa)., u=0, (8.31)
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0, t<0
n(l)z{l Z
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In an arbitrary inertial reference frame, aud in four-vector notation. (8.31) generalizes to

o= S |28 2t
ert S0 )\(1‘\‘2 +u T

Ofa). (8.3%
871'(0 + (I) V

€? [1 dut 4 d*u' du, du’)

Note that the scalar function 7(s) in (8.35) does not destroy the covariance of the equation
of motion. Also, il the mass of the uncharged insulator material were not negligible. m,,,
would be added to the electrostatic mass (¢?/8mepac?) in the first terms on the right sides of
(3.34) and (8.35).

The necessity of the function 7, which increases monotonically from zero to one in the
short time it takes light to travel across the clectron, is quite casy to understand physically by
considering two differential eleraents of charge at either end of the charge distribution. These
two elements are at rest separated by a distance 2a. When the external force is first applied.
each of these charge elements accelerates and radiates. However. each element of charge does
not experience the radiation from the other until approximately the time it takes light to
travel beiween them. Thus, there will be a timne delay in the radiation reaction force of about
2a/c between these two elements of charge separated by 2a. Vor the other combinations of
charge elements separated by a distance less than 2a, the time delay of the radiation will he
proportionately less. The double integration over the entire sphere of charge elements de and
de’ produces a continuous addition of radiation forces with time delavs varving from zcro
to about 2a/c. Hence the function 1, appears in (8.31) aud (3.35), monotonically increasing
from zero to unity between the time the external force is first applied and the time =~ 2a/c
after which the self electromagnetic force can be expressed entirely in terms of the present
velocity and its time derivatives.

The function 5 is a small yet important addition to the equation of motion because it
allows well-behaved solutions to the equation of motion that satisfyv initial conditions on
velocity and t. at are free of pre-acceleration. To show this, rewrite (8.35) for rectilinear
motion in the form of (8.6) by meaus of the change of variables defined at the beginning of
Chapter 8. Negleeting the terms of O( ). we have

Fe.r T ' 4 V1 )
o ):V(T)~—j£7)(7')1/ (7). (3.36)
M,y 3('
o n . r<0
’/(‘ - 1 . rZ'Z(l/( .

Fquation (8.36) 1s a first order linear differential equation for V(7). Its solution for all 7.

61




under the asymptotic condition (8.11) is given by
0 , T<U

Vi) = ;—’—‘f Forl) 35 [‘:_%f: n‘(i—:"')} de" . >0 (8.37)

where as usual we have assumed that the external force is applied at 7 = 0 and is zero for
7 < 0. Integration of (3.37) over time produces the solution for the velocity of the charge that
is zero for 7 < 0 and continuous for all 7, even across 7 = 0, as long as F,,(7) is continuous or
has a finite jump across 7 = 0. In other words, the inclusion of the n function in the equation
of motion has eliminated the pre-ucceleration from the solution to the original equation of
motion without introducing false discontinuilies in velocity across 7 = 0 or spurious delta
functions and their derivatives at 7 = 0.

The modified equation of motion (8.35), or its rectilinear version (8.36), still admits a
Lhiomogenous runaway solution for £ > 0; however, this runaway solution is zero for t < 0 and
thus is ehminated from the modified equation of motion by the asymptotic condition (3.11)
without introducing noncausal motion (acceleration for t < 0) into the solution. (Interest-
ingly. a nonrelativistic quantum electrodynamical analysis of the electron as an extended
charged particle exhibits neither runaway solutions nor observable noncausal motion if the
va ue of the fine-structure constant of the electron is less than about one, and predicts a
vanishing electrostatic self energy in the point charge limit [38].)

For 7 > 2a/c the solution (3.37) for the acceleration V* becomes identical to the solution
for acceleration to the original equations of motion {8.6) obtained in Section 8.1, namely

Vi) =

/lm Je U= nqr s 2a e (8.38)

1!!1,;(!

When the external foree is first applied at 7 = 0, the acceleration is given by (8.37) as

, —1 x d AT 1r
Vioy= o [T B () o TR R e, (8.392)
m,q Jo dr’
[ntegrating (8.39a) by parts. assuming I, (7) is a continuous function from the right at
7 = (). une obtains

| CdF T _ac [t Fo (0
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me, o Jo dr’ my,

Since (3.32) shows that y(r) —» 0 near 7 = 0 as 7° or faster, the exponential in the integrand
of (8.39h) is zero, so that (N.390) reduces to simply

Foaa(0
Vi) = L (3.40)

Tit, o

Fauation (S140) expresses the mtnitively satisfying result that the acceleration of the charged
insulator equals the external foree divided by the mass when the external force is first applied.
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In addition, the acceleration and velocity are zero before the external force is applied (7 < 0).
and the velocity 1s continuous across 7 = 0 for an external force that has at most a finite
discontinuity at 7 = 0.

Although the solution to the corrected equation of motion (8.35) is free of pre-aceeleration,
it may be bothersome that for t > 2a/c the motion at the present time, as seen for example
in (8.38), depends on the values of the external force at all future times. Note, however,
that the contribution from future times appreciably greater thau the time it takes light to
traverse the charge is not only small but meaningless becasuse (8.36) and (3.38) neglect
terms of order a2. Also, the result becomes understandable. if it is remembered that (8.38)
1s the solution to an equation of motion obtained under the restriction that the externally
applied force must be an analyiic function of time for all t > 0. Thus, assume that for 7’ > 0.
Fo..(7") in (8.38) can be expanded in a power series about 7 to recast (8.38) in the form

Vi(r) = T2 2afc (8.41)

1 & <i1_ci>”d"F,,r,(r)
< \3c dr
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which simply states that the acceleration at any one time (7 > 2a/c) depends on the time
derivatives of the applied force as well as the applied force itself at that time. (Note that
(8.41) is not a valid representation for 7 < 2a/c; and only the first two terms in the summa-
tion are a valid asymptotic solution for 7 > 2a/c because (8.36) and (8.33) neglect terms of
order a?.)

The equation of motion, (3.34) or (8.35), was derived assuming that the external force
is zero for t < 0 and an analytic function of time for ¢t > 0. The nonanalytic point at ¢ = 0
gave rise to the 5-function modification in (8.34) and (8.35). If the external force were not
analytic at other points of time, similar modifications to the equation of motion would be
needed, in general, near these points.

Abraham also realized that the traditional series representation of the self electromagnetic
force became invalid for “discontinuous movements” of the charge. In Section 23 of {2] he
states, “These two forces [electromagnetic mass term plus radiation reaction] are basically
nothing other than the first two terms of a progression which increases in accordance with
increasing powers of the electron’s radius «. ... Becanse the internal force is determined
by the velocity and acceleration existing in a finite interval preceding the affected point
i time, such a progression is always possible when the movement is continuous and its
velocity is less than the speed of light. ... The series will converge more poorly the closer
the movement approaches a discontinuous movement and the velocity approaches the speed
of light . ... It fails completely for discontinuous movements. ... Here, other methods must
be employed when computing the internal force.” Abraham goes on to derive the radiated
energy and momentum of a charged sphere with discontinuous velocity {39]. He also derives
Sommerfeld’s general integral formulas for the internal clectromagnetic force [10]. Neither
he nor Sommerfeld, however, evaluates or interprets these general integrals except to show
thev yield a null result for a charged sphere moving with constant velocity. And. of course,
a key to deriving the corrected equation of motion (8.35) is to realize that the modifving
function n applies to the radiation reaction but not to the inertial mass term.
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8.3 Power Series Solution to Equation of Rectilinear
Motion

The pre-acceleration solution (8.15) to the equation of rectilinear motion (8.6) was derived
in Section 8.1, and the solution (8.37) to the corrected equation of rectilincar motion (8.36)
was derived in Section 8.2, under the assumption that the O(a?) terms in (8.6) and (8.36)
could be neglected.

To get a solution to the equation of rectilinear motion for the charged insulator of radius
a. that in principle could include the O(a?) terms. ignore the correction function 7(7) in
(8.36) so that (8.36) becomes identical to (8.6). Then expand the acceleration function
V/(1) in powers of ¢, that is

V() = o'(r) + 3(7)a+ O(c?) (8.12)
so that (8.6) becomes )
Fere = [a’ + (5’ ~ ia") a+ ()(ag)] (8.43)
m,, 3c

where the primes on ' and ¥, as well as V', denote differentiation with respect to the proper
time 7. Equating like powers of @ in (8.13) we can solve for o’ and 3" in terms of Fezy/me,.
namely

Py
o(r) = == (8.44a)
m,
4 i1 F]
F(7) = —a’(r) = - == (8.44b)
e 3¢ ey
so that the solution (3.42) for the acceleration function can be written
Y 1 , Ya 2 .
Vi(t) = — |[Fol7) + T[‘CI,(T) + O(a®)| . (8.45)
Mg, 3e
o
Integration of (8.45) with respect to the proper time yields the velocity function
. ] T vy, la o, 2]
Vir) = — / Fodr)dr + =2F (1) + O(a?) (8.46)
m,s LJo 3e ° J
-x <7<
when the external foree and velocity are zero before 7 = 0.
The Of{a?) terms in (3.16) are negligible at any time 7 if
d )y e ldhE (T
— — = | . n=0,1,2,.. 847
([7.n+l ‘ a dT” ? (t ‘)

that i< whenever the fractional changes in the externally applied force and its time derivatives
are szl during the time interval it 1akes light to traverse the radius of the charged sphere.
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The solution in (8.16) for the rectilincar velocity function of the charged msnlator of
radius a contains no runaway solutions. no pre-aceeleration. and is obtained using the single
mitial condition of zero velocity immediately before the external force is applied. Of conrse.
an arbitrary constant velocity could be added to the right side of (8.16) if the velocity were
not zero before the external force were applied. However, regardless of the inttial coneditions.,
the velocity is, in general, discontinuous across 7 = 0, and the series solution (3.16) contains
spurious delta functions at 7 = 0 that violate the criteria (3.17) and do not satisfv the
equation of rectilinear motion (8.6).

The first two terms in the brackets of (3.16) can also be found from the pre-aceeleration
solution (8.13) by expanding the external force F, (7 + 7'} ina Tavlor series about the
present time 7, so that integrating term by term yields [31. 11)

V(T) =

oo . n+1 ln[,‘6 r
3c drn S0

Mes n=0

—xo < T <oC

However, this expansion (8.48) of the pre-acceleration integral in (8.15) does not, in general.
yield a valid asymptotic series solution to (N.6) bevond the first term in the sunmmation of
(8.48) because {8.15) was derived from the equation of motion (3.6) by neglecting ~eli-foree
terms of order . In other words, the O(a?) terms in (8.18) are not equal to the O(a’ 1 terms
in (8.46).

It should also be noted that the power series solution (3.48) converges to the pre-
acceleration solution (8.15) for 7 > 0 but not for 7 < 0. The reason for this discrepancy
between the series solution (8.48) and the exact solution (8.15) to (8.6) with the O(«a?) terms
omitted is that F, (7 + 7') cannot be expanded in a Tavlor series about 7 < 0 for all 7/ > 0
because F, (1) is identically zero for 7 < 0.

When the external force becomes zero after it is applied for a finite time interval, the
power series solution (3.46), like the pre-acceleration solution (8.15). produces the same
final velocity that would be produced if the radiation reaction. the ¥V term in (8.6). were
neglected. Also, like the pre-acceleration solution, the effect of the radiation reaction on
the power series solution for the velocity function V, during the time the external force is
applied, approaches zero as aF.;;/m.,, as the radius a of the charged sphere approaches ze:o.
Indeed, the motion of the charged insulator should be determined solely by the conventional
momentum, me.d(yu)/dt, as the radins of the shell approaches zero. since the mass m,,
becomes infinite while the radiation reaction term remains finite as the radins approaches
acro. As long as F, . /m., remains finite, however, it is emphasized that these results do not
inply that the radiated momentum and energy

2
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respectively. for the power series solution of the charged insulator i rectilinear motion, ap-
proach zero as the radins @ approaches zero. (Note that with the power <eries solntion (5.16).
because there is no pre-acceleration, the radiated momentum -encergy (3.19) is determined by




integrating the time rate of change of radiated momentum-energy starting at the time t = 0
when the external force is applied rather than at f = —> as in (8.17) for the pre-acceleration
solution (8.15). The difference is negligible for a charged sphere with a radius equal to the
classical radius of the electron.)

8.4 Power Series Solution to General Equation of Mo-
tion
A series solution in powers of « to the general equation of motion for the charged insulator

can be found by ignoring the correction function 15{s) in (8.35), so that (8.35) becomes
identical to (7.1), which has the three-vector form (7.12a)

exell) da fd |,
Reedll) 4 ) 1'a{( [Vuﬂ—z(wu)"}
C

Mies - dt Rl i? E
‘r‘ N ’\’2 B
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An iterative procedure can be used to determine the power series solution to (8.30) (that
is valid except near t = 0 when the external force is first applied). Begin by integrating
(8.50) with respect to 7, to find the solution to yu as
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or. solving for u(t) alone
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Substituting u from (3.51h) into the radiation reaction terms on the right side of (3.50].
making use of (3.51¢). and collecting terms, one gets
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The first two terms of the power series solution for u can be found by integrating (3.52) with
respect to ¢, to obtain
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Again, a sufficient condition for the O(a¢?) terms in (8.53) to be negligible at any particular
time, is for the externally applied force to satisfy the inequalities in (8.17).
For rectilinear motion of the charged sphere, (8.53) reduces to
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(Equation (8.54) is easily proven by expressing d(~; F..,)/dl in (5.52) as N E T F 2 etm,
for rectilinear motion.) The equation (8.54) can be shown to agree with the previous power
series solution (8.46) for the equation of rectilinear motion as follows. From the definitions
(8.1b) and (8.5)

d(yu)
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Taking the derivative of V in (8.46) with rebpect to proper time 7, inserting it into (3.53).
and changing the proper time to ordinary time via (8.1c), produces the equation

d(vyu) P da  dF.;
dt  m., 3em., di

= cosh( V/r ad = ‘yd—v (3.55)
dr

+ O(d?) . (

o

36)

After inserting u? from (8.51b) into 7 to show that 7 = ~; 4+ O(a), integrate (8.56) with
respect to time to convert (8.56) to (8.51); QED.

The power series solution (8.53) is not very useful if the externally applied force is a
function of the velocity of the charge, for example, when an external magnetic field is applied.
because (8.51c) does not give an explicit expression for I(#) when F,;, depends on the velocity.
In the case of a magnetic field B,(¢) applied to a negative charge (denoted by —e¢ in this
section and the following subsection 8.1.1)
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we can expand vu in the equation of motion (8.50) in the power series
yu = a+ Ba+ O(d*) . (R.58)

From (8.58) the power series for ¥ and u are found to be

u) + O(a®) (8.59a)
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with
e =1 +a?/ct. (8.59¢)

Taking the time derivative of u in (3.59b) to obtain 0, and substituting v, u and u into
(8.50) with the external force from (8.57). one gets the equation of motion in the form
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Equating like powers of a. (3.60) divides into an infinite series of equations, the first two of
which are
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(The second equation in (3.61a) results from taking the dot product of a with the first
equation to show that a - a = 0 and thus a and 4, are constant.)

Equation (8.61a). which ix merely the equation of motion without the radiation reaction
terms. determines a. Equation (S.61b) determines 8 when a is substituted from (8.61a),
that is. (8.61b) determines the perturbation in the motion of the charge caused by the
radiation reaction. (Note that the Schott acceleration is included in (8.61h).)

8.4.1 Synchrotron radiation

et us solve equations (8.61) for the special case of the charge moving in a uniform magnetic
field

B, = Bz (8.62)
where By s a constant. Under the assumption that the velocity of the charge is zero in the
z-direction. the solution to (8.61a) can be written in polar coordinates (r,0) as

a = b (8.63a)

where o 1s a constant related to the imtial speed uy = wlt = 0) of the charge by
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and
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which, when inserted into (8.61b), produces the equation of motion for 8
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Take the scalar and vector products of (8.65) with a to get the cquations of motion for the
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The solution to (3.66) after a time t is simply
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where a and 4, have been written from (8.63b) in terms of the initial speed ug.
With a and 8 from (8.63) and (8.67) substituted into equations {8.39) for u and ~. we
find that the energy (W) and velocity of the charge as a function of time are
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wherc the radius « in (3.68) and (8.69) is written in terms of the mass 1., by means of (2.3).

The instantaneous radius of curvature of the trajectory of the charge is .ot given by
the initial radius of curvature plus the integral over time of the radial velodity in (8.6Y).
This is because the center of the radius of curvature does not remain at its initial position.
the reference position for the polar coordinates of the velocity. The instantancons radins
of curvature R(t) can be found from the general formula for the radins of curvature of a
particle moving in a plane

“.'3

R(t) =
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(8.70)
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With u and v from (3.69) or {5.59b) inserted into (3.70), we find the iustantaneous radius
of curvature, of the charge moving in a plane perpendicular to a uniformi magnetic field, to
be

R(t) = Ry |1 < Byt + O(a?) (3.71a)
s e 6regedmd (1 — ub/c /2 “ s

where Ry 1s the initial radius of curvature
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Note from (8.68) and (3.71) that the fractional change in energy and radius of curvature
per unit time are approximately equal when the speed of the charge is approximately equal
to the speed of light - in agreement with Shen’s results {42]. The expression (8.68) predicts
an energy loss per revolution {t = 2rRy/ug) that agrees exactly with Plass’s result [41, eq.
117]. and approximately with Schwinger's results [43, ¢q. 1.10] when the speed of the charge
equals approximately the speed of light (and, of course, when m,, is replaced by the mass
of the electron).

8.5 The Finite Difference Equation of Motion

[t was shown 1 Section 8.2 that if the evaluation of the self electromagnetic force is done
properly near the time the external force is first applied, a correction function 7(s) must
multiply the radiation reaction in the equation of motion. Remarkably, this slight modifica-
tion removes the pre-acceleration from the solution to the uncorrected equation of motion.
Power series solutions obtained in Sections 8.3 and %4 to the original uncorrected equation
of motior: also eliminate the pre-acceleration, but at the expense of introducing spurious
delta functions that do not satisfy the equation of motion at the time the external force is
first applied.

Through the years a number of other methods have been proposed to eliminate the pre-
acceleration that arises in the solution to the original uncorrected equation of motion (7.1)
148 However, none of these alternative methods have been entirely successful because
they either eliminate a priorall derivatives of aceeleration [46-48], or they sum infinite series
expansions that neglect nonlinear terms [44.:15]. These latter methods [1:1.15] that have been
proposed to eliminate the pre-accelevation or runaway solutions from the equation of motion
involve determining exphcitly the infinte series of Ofa) terms in the sclf electromagnetic
force in (3.3} of the moving charged msulator of radins a. Specifically. Page [14] wrote down,
without showing the derivation. this mfinite series and summed it in closed form to reveal
that the self clectromagnetic foree in the proper frame of reference of the charge can be
expressed as
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or, in an inertial frame in which the charge is moving with nonzero velocity much less than
the speed of light, as

2

F..(t) [u(t = 2a/c) —u(t)]. (u/c)? <1 (3.72h)

T 12megalc
provided all nonlincar terms involving products of the time dervivatives of the velocity arc
neglected and the correction function 1y, derived in Section 8.2, is ignored.

Equations (3.72) can also be found by discarding all but the first series in the double
infinite series that Schott [49] derived for the self electromagnetic force on the noncontracting
sphere (Abraham’s nonrelativistically rigid model rather than Lorentz’s relativistically rigid
model of the electron}. The infinite number of discarded series involve nonlinear products
in Schott’s expression that would change for the relativistically rigid model of the electron:
however, the linear first series is the same for both relativistically and nonrelativistically
rigid models of the electron. ( A simple proof of (8.72) is given in Appendix D))

When the self electromagnetic force (8.72b) is used in the derivation of the equation of
motion given in C‘hapter 5, we obtain

(‘2

(v )

F..(t) = (m,, + Mg)u — (u(t — 2afc) —u(h)]. (u/c)? < 1 (3.73)

127 cyae
for the nonrelativistic equation of motion. Again, the nonlinear product terms have bheen
neglected in (8.73), and the negative bare mass Mg is given as —mn.,/3 in (5.11). (If the bare
mass were omitted in (8.73), the rest mass of the charged shell would not equal m,, + m.;.)
The relativistic generalization of the finite difference equation (8.72b) has been derived by
Caldirola [45].

Notwithstanding the appealing simplicity of the finite difference equation (8.73) and
its relativistic generalization, there is little justification to accept them as valid equations
of motion that are accurate beyond the usual radiation reaction terms, since (8.72) and
(8.73) neglect all nonlinear product terms (involving derivatives of velocity). which are not
necessarily negligible for the Lorentz model of the electron bevond the G radiation reaction
term.

It can be shown that the nonlincar and linear parts of the self electromagnetic force are
both zero for certain radiationless motion of a nonrelativistically rigid spherical shell: namelv.
when the shell oscillates with an amplitude smaller than its radius and a period equal to
2a/c [50-52]. These radiationless oscillations with the self electromagnetic force (8.72) equal
to zero would not, in general, be self sustaining, that is, F,, would not equal zero in {8.73)
except for the special case of m,,, + M, equal to zero. (For Lorentz’s relativistically rigid
model of the electron. Pearle [52] has shown that bounded radiationless motions do not
exist.)

The work of Herglotz [34] and Wildermuth [35]. discussed in Section 2.2, would <uggest
that the finite difference (linearized) equation of motion (X.731 does not. in general, eliminate
the pre-acceleration, that is, runaway solutions for 1 < 0. This can be proven for rectilinear
motion by letting the velocity in (8.73) have exp(qt) time dependence when F, ,, is <et equal
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to zero. The equation that resnlts for ¢, when the material mass of the msulator is negligible.
is then

etmale o (8.71)
2¢
which has the positive real solution
2(1 =57 ¢ c
¢~ ————— -~ .96 . 8.75
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(If the mass of the insulator is not negligible, the equation for ¢ aiso has a real positive
solution provided a i1s small enough for the value of m,,, + My to be negative.) This failure
of the finite difference equation of motion (3.73) to elininate the homogeneous runaway solu-
tions, for ¢t < 0 as well as f > 0 (so that pre-acceieration will still arise when the asymptotic
condition (8.11) is applied), coupled with the fact that the finite difference equation (8.73)
neglects all nonlinear terms wvolving products of the time derivatives of velocity, leaves lit-
tle reason to prefer (8.73) (or its relativistic gencralization) to the equation of motion that
simply neglects the O(a) terms in (7.1). Moreover, like (7.1) the finite difference equation
of motion (8.73) neglects the correction function y{s) in the rigorously derived equation of
motion (2.33). And, as Section 3.2 shows. it is this small but important correction to the
conventional equation of motion that eliminates the noncausal pre-acceleration.

8.6 Higher Order Terms in the Power Series Solution

The Arst two terms of the power series solution to the equation of motion (7.1) (which is the
same as the corrected cquation of motion (8.35) when the 5 correction function is omitted)
have been derived directly from the equation of motion {7.1), and indirectly, for rectilinear
miotion. from the pre-acceleration solution (8.15). Of course, the first two terms of the power
series solntion can also be fonud by expanding tiie u(t — 2a/c) part of the finite difference
equation of motion (3.73) 1 a Tavlor series about (.

It miay seem appropriate at this point to find the next term. that is. the third term in
the power senies solution to the equation of motion. One would begin by finding the third
terms (hnear and nonlinear terms multiplicd by «) in the self electromagnetic force of the
relativistically rigid charged sphere i the manner that the 1/a and radiation reaction terms
were derived in Appendix Bo Althongh this could be done. it would be a futile exercise in
the case of the electron because Shen (53] has shown that the effect of including terms in
the equation of motion of the clectron bevond the radiation reaction terms is to introduce a
change that is e*/he = 1/137 of that introduced by gunantum effects,

8.7 Renormalization of the Equation of Motion

The power xeries solitions in Sections 8.3 - 80 were derived from the equation of motion (7.1}

for the chiarged insulator mode! of the ciectron. It was shown that these power series solutions
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contain delta functions in the acceleration and higher derivatives of velocity that violate the
equation of motion (7.1) at the initial time t = 0 when the external force is first applied. More
importantly, we found the fundamental reason why both the power series solution and the
exact pre-acceleration solution to (7.1) do not give the correct solution for the motion of the
charged insulator near ¢t = 0. Namely, a scalar function. multiplying the radiation reaction
for a small yet important time interval (0 < t < 2a/c) was overlooked in the derivation of
the original equation of motion (7.1). When the derivation is done properly. the corrected
equation of motion (8.35) emerges instead of (7.1). Moreover. Section 8.2 shows that the
solution to the corrected equation of motion (8.35), under the asymptotic condition of zero
acceleration for zero external force as t approaches infinity. satisfies given initial conditions
on velocity, and is free of noncausal pre-acceleration or spurious behavior at ¢ = 0.

Equation (8.35) emerges as the correct covariant equation of motion of the charged in-
sulating sphere of radius a (with m;,, = 0) when the external force is zero for £ < 0 and an
analytic function of ¢ for t > 0. However, this charged sphere is obviously not a valid ciassical
model of the electron, if the electron is assumed to be a point charge. because the electro-
static mass of the charged sphere approaches an infinite value as its radius « approaches
zero. If the mass is “renormalized” to the finite value i, of the mass of the electron as a
approaches zero, the O(a) terms in equation (8.35) vanish and (8.33) becomes

) du' 2 d2 : du. dw’
Flo=meet e = = ’Io(S)( T ) (5.76)
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Equation (8.76) is identical to the Lorentz-Dirac renormalized equation of motion for
the point electron [10], except for the correction function ny(s) that multiplies the radiation
reaction terms of (8.76). {As usual, it is assumed that the external force 1s applied at s = 0
and is an analytic function of time for s > 0.) The function yy(s) in (8.76) is equal 1o the
function 7(s), defined below (8.35), as the radius @ approaches zero. The value of yy(s) is
zero for s < 0, unity for s > 2a, and (8.32) shows that it approaches zero like 5% or faster as
s approaches zero from the positive (right) side.

The behavior of the solution to (8.76) can be determined from the results of Section 3.2
by letting the value of a in ny(s) be arbitrarily small yet nonzero. For rectilinear motion,
the change of variables at the beginning of Chapter 8 reduces (3.76) to
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The solution to (8.77) for the acceleration V' is given in (8.37) with 3¢/da replaced by
6regmec/e? and, of course, m,, replaced with m,. Specificaily. the acceleration V' is zero
for 7 < 0; it equals, as shown in (8.10), F,,(0)/m, at 7 = 0: and for 7 > 20/ the solution
i= given in (3.38), that is
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Since F..(7) is an analytic function of 7 for 7 > U, assume F (7 + ') can be expanded in
a power series about 7 to recast (8.78a) in terms of the time derivatives of the force

Vi) = —

~ 2 n 7["]9”_ .
Z { € (¢ 3 t(T)’ TZI-’}”/(" (878}))
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Between 7 = 0 and 7 = 2a/c the acceleration rises smoothly from the initial value of
Fezt(0)/m, to its value in (R.73) at 7 = 2a/c. As the radius of the charge approaches zero
the change in acceleration between 7 = 0 and 7 = 2a/c = 0% becomes mcereasingly abrupt.
because V/(0%) as given in (N.78)

L\ E(0)

I & ¢ -
Viot)= —Y - 7 =2a/c=0" (8.79)
m, o \Cregrn drn
does not. in general. equal the initial value
F...(0 F00%)
V/(()) — rt( ) — Tl - (SSU)
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(It is assumed that F,,(7) is a continugus function from the right at = == 0 <o that Fe(0%) =
F..(0).) This rapid rise in acceleration. to a value different from F,,,(0)/m.. immediately
after the external force is applied is a consequence of renormalizing the mass of the charge as
its radius shrinks toward zero. Nonetheless, this rapid change in acceleration does not violate
the renormalized equation of motion (8.76) becanse of the function 5y(s) multiplying the
radiation reaction. Also, the velocity of the charge does not change dnring this acceleration
bhetween 7 =0 and 7 = 2a/¢ = 0% f the velocity is zero for 7 <0, then

VOl =V({T) =0. (8.51)

/

In summary, the renormalized version [3.76) of the corrected equation of motion (8.33)
differs from the Lorentz-Dirac renormalized equation of motion for the point electrou by the
correction function nmltiplying the radiation reaction. This small difference allows a solution
to the renormalized equation of motion for the point electron that, like the solution to the
corrected eqnation of motion (8.35) for the extended electron, is free of pre-acceleration. The
initial velocity of the point electron can be chosen zevo. However, the acecleration times the
renormalized mass. at the limitingly small time (7 = 0%) after the external force is applied.
does not equal the externaliy applied force, as it does for the extended clectron, but depends
on the imitial values of the time derivatives of the external force as well.

In prineiple, the validity of the renormalized equaticn of motion (8.70) for describiug the
classical motion of an electron could he tested by deiermining experimentaliy whether the
acceleration of an electron. inunedintely after the external force 1 applicd. depended upon
the initial time derivatives of the applicd force as predicted m (S.79). In practice, 1t s no!
feasible to detect the extrenely siall coeflicient, e */tm e m.e® ~ 1078 seconds (eqnal to the
time it takes light to traverse the classical radius of the electrony muliiphving the derivatives
of the applicd foree,
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Fundamentally, renormalization of the mass of the charged sphere as its radius shrinks to
zero is an attempt to extract the equation of motion of the point electron from the equation
of motion of an extended charge distribution. Such attempts, as Dirac wrote 51, “brirg
one up against the problem of the structure of the electron, which has not vet received any

satisfactory solution.”
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Appendix A

DERIVATION AND
TRANSFORMATION OF
SMALL-VELOCITY FORCE AND
POWER

In this appendix, we derive the proper-frame force egnation of motion (3.3) and the small-
velocity Lorentz power equation of motion 3.1) direetly from the self electromagnetic force
and power integrals of the spherical shell of charge. We then transform (3.3) relativistically
to obtain the force equation of motion (2.1) for arbitrary velocity. A relativistic transforma-
tion of {3.1), however. feads to the erroneous result (3.5) for the power equation of motion
rather than the power equation of motion (2.4). We also show that (2.4) does not transform
covariantly. thereby confirming that the general power equation of motion (2.4) is not pro-
dnced by @ relativistic transformation of the small velocity power equation of motion (3.4
see Section 3.1,

Lorentz 3] and numerons modern physics texts, such as {11, 15b. 31]. have derived the
Lorentz force equation of motion (3.3} in the proper (instantanecus rest) frame. But none.
as far as [ am aware, have directly derived the small-velocity power equation of motion
(3.1). because it reqguires taking into account the variation of the velocity over the charge
distribution. Of course. (3.1 could be obtained by letting w/c become mmnch less than unity
it the general power equation of motion (2.4). which was rigorously derived by Schott [13].
(As discussed in Section 30 Schott's impressive derivation is so involved and lengthy that 1t
discourages a detatled re-cxamination. Thus we provide an alternative, sipler, vet rigorous
derivation of the general foree and power equations of motion, (2.1) and (2.1). in Appendin

B3.)
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A.1 Derivation of the Small-Velocity Force and Power

A.1.1 Derivation of the proper-frame force

‘The self electromagnetic force on the spherical shell of charge in its proper {instantancons
rest) inertial frame of reference can be expressed by the Lorentz force integral in (3.1 with
u(r,t) =0, that is

F.(t)= [E(r.t)de, u(r.fj =0 (AT

churge

where the element of charge p(r.t)dV in (3.1) is relabeled de in (A.1). The self electric field
E(r,t) on the charge de at position r is produced by the remainder of the charge in the
spherical shell. Specifically, the charge de’ at the position (1) produces an electric field
dE(r,t) given by [11]

d I; 3 r . { /‘ ’
dE(r,t)= 6. . {-1137 x {(R’ - uQ_)) x u(r'.t’)}
~17re;o[1 -—R’-u/('] fte ‘
1 W (' )] [ u(r’' .
I I_ A )
+R’2 [1 7 } {R . (A2

where u(r’,t') and u(r’,t') refer to the velocity and acceleration of the charge de’ at the
retarded time

V' =1t- E— (A3)
-
that is ()
dr'(t
") = (A
u{r. ") o AL
1 ! d2r,(t’)
J (A
u(r. £ dt't !

The vector R' 1s defined as the difference between the position r of de and the position r'(#')
of de’ at the retarded time t'
R =r-r'(t). (AL6)

When one expands R’ u(r’,t’), and a(r’,t') about the present time {, as the radins of
the charge shell becomes small, one obtains the following power series expansion of JE(r. 1)

in (A.2)

(le (R i 3a(r. e
dE(r,t) = Tres {1{2 b [R u(r’, i)R+ u(r', I)] - ;—(_x_"R
3 t B(R-G(r, 0. 20(r'./)
AR (e 1) D )+ SR O 2801 AT
4 ¢ 8 ¢t 3 ¢

with R = r—r'(¢), and u(r’. t) = 0. Eqnation (A.7) differs from the corresponding expression
in [11] where the dependence of R” in (A6 upon the retarded time is ignored. Ao, (A7)
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i




differs from the corresponding cquation in {15b] and [31] as well as [11] by including the
spatial dependence of the acceleration and its time derivative over the charge distribution.
Both of these differences vanish, as we shall see below, when (A.7) is integrated over d¢' to
get E(r.t) and then E(r, t) is integrated over de in (A.1) to get the self electromagnetic force
and the Lorentz force equation of motion. These differences do not vanish in the subsequent
derivation of the self electromagnetic power and thus cannot be ignoved in the derivation of
the power equation of motion.

The acceleration u(r’.t) of the charge de’ at the position r'(t) can be written in terms of
the acceleration u(¢) of the center of the shell by using the requirement of special relativity
that the spherical shell contracts to an oblate spheroid (to order R?) as the speed increases.
Specifically, we find for u(r'. 1) = 0

r'-ua(l)

c?

u(r’,t) = a(t) - u(t) + O(R?) (A.8)
and

u(r', ) = a(t) + O(R) . (A.9)
Substituting (A8) and (A9 into (A7) and integrating over de’ gives the final form for
the self electric field at {r.f) in terms of the acceleration (1) and the time derivative of

acceleration (0) of the center of the shell of charge

i : " . .
E(r.t) = /; {R+ I[Ff—thnm+u
SIQT_!)(

{1, R: %R | ¢
3R 3R-u)ja 20

+ 4kR-m2~uN}+-——-+-+ouw}ma u = 0. (A.10)

Se 4t 3
Nextinsert the self electric field from (A10) into (A.1) and perform the double integration
over the shell of charge. All the terms with an odd nunber of products of R or ¢’ integrate
to zero and the remaming even product terms integrate to give the familiar expression for
the self electromagnetic foree i the proper frame of reference

2 L2

T G+ =i+ 0(a), u=0. (A.11]

6o uct 67y
0

F(l(,)

Eqgnating the snm of the externally applied force and the self electromagnetic force to
zero. as Lorentz did in his original work [3], one obtains the Lorentz foree equation of motion
(3.3) 10 the proper frame of the splierical shell of charge.

A.1.2 Derivation of the small-velocity power
The power delivered to the moviug charge by the sell electromagnetic forces within the charge

distribution is given by the charee titegral in (3.2), namely

HHH:/MLH~ULUm (A12)

foaryge

-
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where again the element of charge p(r,t)dV in (3.2) is relabeled as de in (A12). The
velocity u(r,t) of the charge distribution in (A.12) is arbitrary. For small velocity. u{r.t)
can be written in terms of the velocity and acceleration of the center of the sheli by using
the information that the spherical shell contracts to an oblate spheroid (to order £#4) as the
speed of the charge increases; specifically

r-u(l) .

2
u(r, 1) = u(t) - — ()+(’)<3;./f‘f>. (A13)

¢

Repeating the derivation that led to (A.10), with small-velocity instead of zero velocity.
shows that (A.10) also remains valid to order u?/c?, that is

1 R I [r' -1 S
Bir.0) = Mr_eo/charge {E’f T 2R [7 - l} (R WR + )

)}d (A1)

3R -ulu i
+3R [(R-u) —JaP] + 3R uju 24 = 0(
3¢
Substitution of E(r,?) from (A.14) and u(r,t) from (A.13) into (A.12) allows P..(t) to be

4ct
written as

Pa(t) = u(t) - [E(r,t)de — // R (r-ut) .
charge 7"(() charge R? c?

2
+0 <— (1)‘ (A.15)
C

The integral of the electric field in (A.15) is just the self electromagnetic force given in (A.11).
The second integral in (A.15) is the extra term that arises because the velocity of the charge
distribution varies with position around the shkell. It evaluates to

t)) / - . .
// ———— " de'de = ———u-u. (A.16)
47T60 harge 1{2(.'2 247((’(;(1(‘2
The self electromagnetic power can thus be written as
e? _ u? -
Put)=u-Fy(t) - ————u-u+ 0| —.a (A7)
2 mwepuc? o2
or
(1) —5He? - ¢? Ofa). w? « (A18)
¢ = o———u-u — <. AVES
! 2 e act G?r((,( U+ Ofa ot

Setting the sum of the power delivered by the externally applied force F, - u and the
self electromagnetic power £, (t) equal to zero, as Lorentz did in his original work 31 one
obtains the power equation of motion (3.1) for charge shells with small velocity (n#/c5 < 1),

9




A.2 Relativistic Transformation of the Small-Velocity
Force and Power

As cxplained in Section 3.1 the point relativistic transformations do not necessarily apply
to the integrated force and power that comprise the right sides of the Lorentz force and
power equations of motion, (3.3) and (3.4), respectively. Thus, it i1s not mathematically
rigorous to transform the small-velocity equations of motion, (3.3) and (3.4), to obtain the
corresponding equations of motion, (2.1} and (2.4), for an arbitrary center velocity of the
charge distribution. Nevertheless, a relativistic transformation of the proper-frame force
equation of motion (3.3) does vield the general force equation of motion (2.1); whe:eas. a
relativistic transformation of the small-velocity power equation of motion (3.4) does not yield
the general power cquation of motion (2.1). The proofs of these results follow.

A.2.1 Relativistic transformation of the proper-frame force

et A be the proper inertial reference frame in which equation (3.3) is derived, and K’ be
the arbitrary inertial frame in which the velocity of the center of the charged shell is u’.
Thus A has velocity u’ with respect to A, Equation (3.3) can be divided into components

parallel and perpendicular to the velocity u’

e? u u
Fl = o .aﬂ - 7" + O(a) (A.19a)
" 0 . -
N t"’2 l‘]J_ ﬁ.l_ .
Fiho= —— |2~ 2]+ o). (A19b)
YT ¢ C
IFrom the relativistic transtormation of force
. e? u u )
Fl o pl = i =T 4 Ofa) (A.20a)
)T « C
e 1 , ¢ uj ug
F!:! = I.frt/“’ = (__———___2_‘-/ [__— N —] + O(a) t*\ ‘20]”
wmepety' L oa c

' 12y 2 -1/2
~ -:(]~u‘/(> :

The relativistic transformation of acceleration and its time derivative

- 1 . .
Uy = ui', (A\21a)
a, = +"u) (A.21h)
-G
y = 5"y + -y’ (A.22a)
"
-\,"
. 3. 3 . )
L I v LU VI (A220)
B
S0




substituted into (A.20) produce the equations in the arbitrary A system

2 130 L Y gt
, € ~" Y a 3 G / N
Fl = — [ [ A ~u} + Ofa) (A.23a)
6mege a c «
2 (AN} 12 a4
‘Y € ‘Yu_L Yo ‘37 [N R D%
Fert = Greoc? [ T T @ | Ol (A23b)

Adding (A.23a) to (A.23b), combining terms and removing the primes. results in the trans-
formed equation of motion

¢? d €242 32
Fer = — =7 — - : (u -
"7 6megac? dl( u) 6meqcd {u * 24 uju
L 3
+:77 [u-u-f-—’l (u.u)l] u}+0((1) (A.24)
¢ c

which is identical to the general equation of motion (2.1) obtained from the self electromag-
netic force calculated directly in an inertial frame in which the charge has arbitrary center
velocity u.

A.2.2 Relativistic transformation of the small-velocity power

In an inertial frame K in which the charge has limitingly small center velocity u. we have
from equation (3.1)
2 . ..
€ 5u u
F”,-u:——[————]~u+()(u). u—90. (A.23)
6mepc? Lda c
In the K’ frame, moving with velocity —u’ with respect to I\ (as u approaches zero). the
velocity of the particle is u’. Thus, in the A” frame (A.25) becomes

Fe.z:t -’

. .
< [5“ 2w+ 0(a) . (A.26)

4a ¢

6rege?

Irom the relativistic transformations of F,,,,u and a in (A.20a), (A.21a) and (A.22a). we
find
F...-u=F_ u {A2T)

exrt
and

! !

‘u . A2y

‘u

. . - 3. 4 .- . 6

50 U , Hyal AT 33y

Tt | - -
(J

da c

Substituting (A.27) and (A.28) into (A.26) and removing the primes, we obtain the general
power equation of motion (3.5)

= 2 2.1 g2
5t dy 7 .4 -
F U = — U'u+ o (U‘U)ﬁ +()((I| \_)")]
ot 2‘17«'(()([ (1[ 67.’{()("‘ (-J g ( /
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corresponding to the small-velocity power equation of motion (3.4). Unlike the transformd
force equation of motion, (A.29) is not identical to the pewer equation of motion (2.1)
obtained from the self electromagnetic power calculated directly in an inertial frame in which
the charge has arbitrary center velocity u. As explained in Section 3.1, we cannot rigorously
apply the point relativistic transformations to the small velocity self clectromagnetic force
and power expressions to find the self electromagnetic force and power of an arbitrarily
moving charge, because the charge is distributed over an extended region of space and not
concentrated at a single point moving with a uniform velocity. The distributed charge motion
does not change the final result of the self electromagnetic force calculation. but does change
the 1/a term in the self electromagnetic power calculation, and the transformation properties
of the self electromagnetic power. Indeed. the next section of this Appendix A demonstrates
that the power equation of motion (2.4) does not transform covariantly.

A.3 Noncovariance of the Power Equation

Begin with the power equation of motion {2.4) in an arbitrary inertial frame A,
|

e? 1 et L3yt D2
o = — |- —} - —— . _— . . S0
F..-u Greoa di ( ) - - [u u+ = (u-u)| + Ote) (A.30)

In an inertial frame K7, moving with velocity w with respect to K,. the relativistic trans-
formations of Fepou 0,4 and 5 in terms of the corresponding primed variables in the A’
frame recast (A30) in the form

e 1 d(2"u’)
u+w)(F - ——— 1 = — :
( ) { " Gregac? ( W+ w/en ) dr
2.2 RPNL
-l o w
Gmegye? L o2
A'l: ’ .y "‘ 4 ’ DAY
+= (u -u’ ¢ —’T—(u “u )2> U'J + ()(a)} =0. (A.31)
C C

I CA311is to be independent of wand hold for all w(iw < ¢). then the terms in the curly
brackets of (A.31) must be zero, that is

= ! d{~"u’ T
F,.=—-———l —— ,,1 - ) - = - i’
Omeguc? v ~2(1 +u - W/t'l)“J dt’ Gyt
12 e qare
[N i Y ":’ [N ’ 0
touuju o tu e+ e ua) a4 Ofa) (A32)
o 2 (.
J

Becanse of the 1/:4 term in ¢ A32) the for of this equation {A.32) depends explicitly on the
velocity woof the A7 inertial frame. Thus the form of (A.32) is not refativistically invariant

N2




with respect to a change of inertial frames, that is, the left and right sides of the power

. . . _er
cquation of motion (2.4) do not transform covariantly hecanse of the T i{t(l ) term. Of

course, it is this very term that the internal binding forces elimnate from the power equation
of motion (2.4); sece Chapter 1.
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Appendix B

DERIVATION OF FORCE AND
POWER AT ARBITRARY
VELOCITY

I this appendix the self electromagnetic force and power are derived from equations (3.1)
and (3.2) for the shell of charge moving with arbitrary velocity. The 1/a terms are derived
from the space integrals in (3.1) and (3.2) evaluated for arbitrary. time-varying velocity
(unbke the traditional heuristic derivation which assumes a constant velocity charge). The
radiation reaction termns are found from the charge (rather than the space) integrals in (3.1)
and (3.2) «.aluated for a shell of charge moving with arbitrary, time-varying velocity.

B.1 The 1/a Terms of Self Electromagnetic Force and
Power
The self electromagnetic force and power of the moving shell of charge can be written as

space integrals of the clectromagnetic fields of the moving charge (12, see. 2.5, eq. (25) and
see. 2,19, eq. (6)]

{
F ) = —(.,-;; / E(r'.t') x B’(r'.t')d\"+/T'.n'ds" (B.1)
oai” gy S5
o
5% AN t RV Y ] -’ 2 LY 7 -/ ot .
Pt = Aij';//,./;‘/ 2 et BV e /\‘(L x B) - 1it'ds (B

where T7 35 Maswell's stuoss tensor and the primes denote quantities ina A inertial frame
i which the charge shell has arhitvary center velocity u’(t’). The volume Vs enclosed by
the surface S, which encloses the moving charge distribution.

The force on any part of the charged oblate spheroid (with major axis 20 and minor axis
2ua(1 = u? /e 0 the K franie will be caused by the position of the rest of the charge w




an earlier time. In particular, the force field on the leading cnd of the particle will have left
the trailing end of the particle in a time At given approximately for small radins a by

2a [ 14 ufe
(c — u)At = 2ay/1 — u'?/c? or At = ”\J St /" (B.3)

PR\ u'fe

Iu this time interval At the charge will have traveled a distance Ad given approximately by

9
Ad = uW'At = (B.1)

Equation (B.4) says that the motion of the charge, when the charge is farther away from
its present position than some finite number times the radius a, will not affect the self
electromagnetic force calculation. Thus, we can assume, with no loss of generality in the
derivation, that the charge had uniform velocity when evaluating the fields for r’ greater than
La where L is an indefinitely large but finite number. In other words, if we choose the radius
of the surface S larger by a factor L then the major radius of the oblate spheroidai charge
distribution, the stress tensor T’ and the Poynting vector E' x B’ in the surface integrals of
(B.1) and (B.2) can be assumed those of a charge distribution moving with constant velocity.
Because each of these surface integrals is zero for a constant velocity charge distribution.
(B.1) and (B.2) can be written in terins of the volume integrals alone

!
eelt') = “‘0‘;7/[ E'(r'.t') x B'(r'.1")dV’ (B.5)
IZ a
{ - bV, v
/(1) = _‘7";1‘7/‘/ (E? 4 2B?)dV (B.6)

with V, denoting a finite volume that encloses the charge distribution and having a radius
La proportional to the dimension ¢ of the charged shell. The fact that the radius La of the
volume V, approaches zero as a approaches zero, and yet L is an indefinitely large number,
is used in the following evaluations of the 1/a terms of self force and power.

B.1.1 Evaluation of 1/a term of self electromagnetic force

We want to evaluate the space integral in (B.5) at each instant of time t'. To begin, let this
instant of time be t' = 0, in order to simplifv the integral in (B.5) to

Ip=/ E'(r'.0) x B'(r',0)d1" . (B.7)
Vi

Next write the fields, E'(r',0) and B'(¢'.0) in the K7 frame in terms of the fields ina proper
iertial frame A at rest instantaneously with the center of the the charge diztribution at
t" = 0. Assume that the origins of the N and A’ frames coincide at ¢ = 1" = 0. Then the
relativistic transformations of the fields are given by

E'(r',0) = a' - [E(r.f) — u’' x B(r.1)] (B.Na)
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B'(r',0) = & - [B(r,t) + u’ x E(r,t)/c% (B.8b)

& =T+ (1 -0, ' =(1-u?/?) (B.8¢)
with
ry =T (B.9a)
r) = 'ry (B.9b)
t=—yu-r/c (B.9¢)

where the subscripts L and || mean perpendicular and parallel to the center velocity u'.
Substitute (B.8) and (B.9) into (B.7) and make the change of integration variable

so that
dV = ~'dV’ (B.10D)
and (B.7) becomes
1 .
I = —1/‘ a' - {E(r‘l =-u-r/c)—u xB(r,t = -u'- l‘/Cz)]
7 'ﬂ
xah[B+u'xEﬁﬂdv. (B.11)

Since we have determined in Appendix C the proper-frame electric and magnetic fields.
E(r.t) and B(r.t). at a fixed tiwe ¢, the integral of the fields in (B.11) could be evaluated if

it weren't for the fact that £ = —u’-r/c? is not fixed but varies with the integration variable
r. Fortunately. this difficulty can be overcome, when evaluating the 1/a term, by expanding
E(r.t = —u’-r/c?) and B{r,t = —u’ - r/c?) about the fixed time ¢ = 0; specifically
JE(r,0
E(r.t) = E(r.0) 4 —E)t )t+ ..... (B.12a)
JB(r,0
B(P./}:B(P,O)-{'—-—(_(),—)t-}- ..... . (Blzl))

From Maxwell's eqnations all the time derivatives of E(r,0) and B(r.0) can be written
terms of the spatial derivatives

JBir.0)

5 x E(r.0) (B.13a)
JE(r, 0 N
f—s'):viBhﬁ) (B.13b)
J*B(r. 7
OBirl) ¢, 9B oo wBie0) (B.13¢
are ot
etc.
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Substitution of the time derivatives from (B.13) converts (B.12) to
E(r.t) =E(r.0) + ¢!V x B{r.0)f + ..... (BB.14a)

B(r./) = B(r,0) = ¥V x E(r.0)f + ... SRR

When the proper-frame electric and magnetie fields, E(r.0). B(r.0) and their curls. are
iserted from (C.1) and (C.5) of Appendix Cinto the right sides of (B.11), and the resulting
fields, E(r,t) and B(r,t), are inserted into the integrand of (B.11) with ¢ = —u’ - r/c?
finds that the B field in the integrand of (B.11) does not contribute to the 1/« term of the

integral and that only the static part of the E field contributes to the 1/a term. In more

. ONe

detail

]
I = —,/ [@’ E(r.0)] x |’ (u x E(r.0))/¢*] dV + Of1] B
8] Va(a—)
orsinceca’ - (U xE)=yu xEanda -E=+E+ (! -+ (0 EW

I = / {u' [7'1;"2 F (1= ) E)‘Z} — (W EJE}dV + O(1), B16
Va{1—0)

The electric tield E(r.0) is found by mtegrating expression (C.1) to get

—CF 4 0(1/r). r>a

Amegr?

E(r.0) = (BT
O(1/a), r< oa,

Because V;, — 0 as a — 0, the integration variable r — 0 as @« — 0 and we arve allowed 1o use
this small r approximation of (C.1) for E(r.0). With E{r.0) from (B.17) substiiuted into
the integrand, the integral in (B.16) can be evaluated for large I to give

+0() = %

Gmefuce

Ip =

- 20
dmegac

+ O (81X

e2u’ R
3

For the sake of simplifying the relativistic transformations, (B.IS) was derived for a
specific instant of time ¢' = 0. This instant of time could be any mstant of time. Thus (BN
holds for arbitrary time t’, and (B.13) can be substituted into (B.5) to give the /o term of
the self electromagnetic force

~ )] ,( i 1 ) ()( - )
()/t(ll(“ (“

F:nf(tl) =

in the arbitrary K frame.




B.1.2 Evaluation of 1/u term of self electromagnetic power
Proceeding with the evalunation of the self power integral in (B.6)
Ip = / (E™* + EB*)dV!
Va

in the same manner as in the previous section for the self force integral. one gets
L
Ip = —,/ [la’ E(r.0)]* + 7'Ju’ x E'*/c?] dV + O(1) . (B.20)
T S Vala—0)

With E(r.0) inserted from (B.17). (B.20) integrates for large L to

€ [ 11 2u”
Ip = . e —'[ + O(1
! ircda L7 +3 (‘7’ ‘7)+2C27J+ ()
L ls u'?
= - 1+ — O(l 13.21
dreda ( + 3(22) o ( )

which, when inserted into (1B.6). gives

[)l ([/ —¢ 2 ([ ’ l n “lz + O(l) (l‘} D) )
= roril i il 2la
i) Swega dt’ | 3l
or equivalently
—¢t d 1
PLu = — - +00 (13.221)
e tmega d < 41'7') + O ' )

for the 1/a term of the self electromagnetic power in the arbitrary A frame.

B.2 Radiation Reaction of Self Electromagnetic Force
and Power

The above derivation for the 1/a terms of the self electromagnetic force and power in an
arbitrary inertial frame from the momentum and energy integrals in (B.5) and (B.6) does
not extend casily to finding the radiation reaction (((1)) terms of the self force and power
hecause an infinite number of terms in the series expansion (B.14) of E(r.¢) and B(r.1
contribute to the O(1) terms of the momentum and energy tegrals. Fortunately, we can
find the radiation reaction termis of the self force and power from the charge integrals of (3.1

and 1324
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B.2.1 Evaluation of the radiation reaction force

To determine the O(1) terms of the self clectromagnetic foree i a A inertial frame owhich
the shell of charge is moving with arbitrary velocity, we shall evalnate the charee inteersd
in (3.1) at an arbitrar, instant of time ¢/ To reduce the alochra, ler this arbitrarse tine b
chosen as t' = 0, initially, so the self electromagnetic force in the K franie can be wrines,

F, = /,,» (L O)E(F.0) + u'(r.0) = B 011" B3
Large

[he clectiie and magnetic fietds, E'(r/.0) and B/(r' 0. 10 013231 can be expressed 1 mcai s

ol the relativistic transformations (B.X) and {B.9). i terts of the fields in the proper fio.

K at rest instantanconsly with the center of the charee distiibution ar 1" = 0. Sinee O 71 of

Appendix " can be used to show that B(r.t) in (3.8) contributes only to terms of hiol er

order than O(1). E" and B in (B.23) can be written simiply from (13.8) as

E'r'. 0y =o'  Eir.t) B2 10

B'(r'.0) = 5'u’ x E(r.t)/* TR

where o is defined in (B.3e) v and £ are given in (B9 and u' s the velociny of the conte
of the charge distribution.

The velocity u’(r’,0) of the charge distribution in the A frame can he swritten in terns

of the velocity u(r, /) n the proper frame by means of the relativistic transformation

o "{:{Q +u [ugr,fz)-u' (l a _l vy 11
u'(r',0) = —t i L V1320
I+ u(r.t)-u /(

Sunilarly. the charge density p/(r',0) in (B.23) transforms relativistically 1o the propes K

frame as

P e 0) = ~p(r. /)[1 alr -u' B2
with v and £ again given in (B.9). The velocity ulr. /) and the charpge density pie /1ot
charge distribution at ¢+ = =30’ - ¢'/¢* = —u’ - v/ in the K frane can be expanded abont
t =0 to give

ulr.t) = -alr.0)n' -r)/et + O (B2
, dp(r.0ju"-r .
pled)y =plr ) — = (i RS AN

Because u(r,0) equals zero for a relativistically ricdd, nonrotating chorge distribation, we
have dp(e 0)/at - -V - [p(r.(l)u(r.l)i] = 00 and (Bo2Ns becomes <imply

plr oty = pir 0) v O 1.0
Substituting u(r.£) from (B.27) and pir.fy from (82.29) inte 18261 gives

- ] (u’ ||4r()|wu ] ,
P 0= ~"p(r.0y |l - — I
[§

NEIRUE
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for the charge density in the A’ frame. Similarly, substituting (B.27) into (B.25) and ex-
panding in powers of r gives

"u’ . u(r,0)(u’ - r)

u(r.0)=u - |Iy + uTﬁ(l -) + O(r?) . (B.31)

‘7'2C2

The acceleration u(r,0) of the charge distribution in the proper framne was given previously
in (A.8) in terms of its center acceleration u; thus (A.8) shows that (B.30) and (B.31) remain
valid to O(r?) when the acceleration u(r,0) is replaced by the center acceleration .

Substitute into (B.23) the expressions (B.24) for E'(r',0) and B’(r’,0), (B.30) for p’(r’. 0).
(B.31) for u’(r',0) (all with r and ¢ replaced from (B.9) and the center acceleration u replacing
u{r,0) in (B.30) and (B.31)); then make the change of integration variable from r’ tor; +
r./v’ to obtain

s

F..(0) = /C{l)(r,O) [1 - (“—‘ic)f“—r) + ()(rz)} [a’ “E(r.t) + 7—2{11

arge (

iy B B e by o x B | av (B.32)
,ul2 7,2C2
with ¢+ = —u’-r/c®. We want to insert E(r.t) from (B.14a) into the integrand of (B.32):
specifically
. , I
E(r.t} = E(r.0) + ¢V x B(r,0)! — *V x ¥V x E(r,0)5 + ... (B.33)

with t = —u’-r/c?. When one replaces E(r,0) and B(r,0) in (B.33) by their integral values
given in (C.1) and (C.5), one finds

1
E(r./) = E(r.0) + termsodd in r + g(terms even in F) . (B.31)

As the radius a of the charged sphere approaches zero, the terms odd in © in (B.34) integrate
to zero in (B.32). The 1/a terms in (B.34) integrate to give 1/a terms when multiplied by
the terms of order unity in the integrand of (B.32), and zero when multiplied by the terms of
order r and higher in (B.32). Also. as a approaches zero, the O(r?) terms in (B.32) integrate
to zero. In all, (B.32) becomes

’

F.,(0) = (%)43[ﬁn;0)[1—(" *ffu'r)][a’-E(nO)

’

+L{m_b,+99u—qﬂ.uw'”}xuermOﬂdV+0w> (B.33)

c? W' ,7/2(:2

as a approaches zero, where (1/a) in (B.35) denotes the 1/a terms.
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Inserting E(r,0) from (C.1) into (B.35), noting that all odd terms integrate to zerol and
extracting the 1/a terms, we find

] ! ] u
o) 17:;//,,",,,.,[ Gt (v r)}"‘ o

| ! .
+0(a) = (—) + _—-( - la’ -u + 7—,u x (u' x )| + OU(a) 1330
a 6mepc? c?
where we have let de = p(r,0)dV and performed the double imtegration of the constant
integrand over the charge.
With o,
P o u -uju oy e
a U =9 u (l —"]’)g'—‘;;“)—’ |H.~3lél)
u
and
‘7' —'711L - All JA l
—u’ x (u’ x u) U+ —(u'-0)u 33T
2 o2 2

{13.36) can be written as
1 2 u Y (u -0’ ,
e(0) = (-) =4 l1-= L l,l) (13.3%a)
a 6repc? 1o o u'?

1 oL L
F/,(0) = ( ) } ;—f‘ : [u“ +h./4 } + Ofa) . 133800

1] Grege

or

The derivatives of the acceleration, 4y and 4y, in the proper A frame can be expressed in
terms of the velocity and its derivatives in the arbitrary A frame by means of the relativistic
transformations (A.22). Using these transformations (A.22) converts (B.38h) to

] 0212 3~ 72
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where ¢’ has replaced ¢ = 0 in (B.38) since the time ¢ = 0 could be any instant of time ',

The order unity term in (B.39) is the radiation reaction part of the self electromagnetic
force. Combining the 1/a part of the self electromagnetic force in (B.19) with the radiation
reaction part in {B.39) produces the total electromagnetic self force to order ¢ in an arbitrary
K’ inertial reference frame

F/ “/ —? (/( ’ (~-,2 -;..'2 [N AN
Al) = 6mcpac? di vy + ()/.(()(‘ W+ ot (- uu
"\’2 37," .
+- 1'-i'x'+—7(u'~il')‘} u'}+()(u). (B.103
c g
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B.2.2 Evaluation of the radiation reaction power

To determine the O(1) terms of the self electromagnetic power in an arbitrary A’ frame,
begin with the charge integral in equation (3.2) at an arbitrary instant of time ¢’ = 0

P0) = /f’(r’,O)u'(r'.O) CE(r,0)dV". (B.41)
charge

Applyving the same procedure to (B.11) as we applied to (B.23) in the previous section yields
msteaa of (B.38b)

1 ?
Py = (=) + oy B.42

el a 6yt l ( )
Substituting Gy from (A.22a) into (B.12), rearranging the expression, and replacing the
arbitrary time t' = 0 with ¢'. results in the radiation reaction power in the arbitrary A’
frame

a 67 ey c?

2.1 12
Plilt) = (l) = [u’-ﬁ'+ il (U""")z] +0(a) . (B.43)

The 1/a part of the self electromagnetic power in (B3.22) combines with (B.43) to give the
total self electromagnetic power to order @ in an arbitrary R inertial reference frame
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¢ ~~/ " . 3.} 12 NIV
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This completes the denvation of the sell elestromagnetic force and power to order «
of Lorentz’s model of the electron. that is, a total charge e uniformly distributed on a
spherical insulator of radius « moving without rotation with arbitrary center velocity u’.
To iy knowledge, it s the fiest rigorous derivation of these results for arbitrary velocity
since Schott’s {13] rigorous. vet extraordinarily lengthy derivation from the Liénard-Wiechert
potentials: see Chapter 3 of the main text,
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Appendix C

ELECTRIC AND MAGNETIC
FIELDS IN A SPHERICAL SHELL
OF CHARGE

Consider the Lorentz model of the electron as a total charge ¢ uniformly distributed within
a thin, nonrotating, spherical shell of inner radius a and thickness ¢ (sce Figure 1 of the
main text). In a proper inertial refercnce frame at rest instantancously with the charge
distribution, the velocity u(r,t) will be zero but the acceleration and higher time devivatives
of velocity are. in general, nonzero functions of space and time (a(r. /). u(r.t)...).

In equation (A.10) of Appendix A the clectrice field produced by this accelerating charge
in its proper frame was found to be

1 R I {r'-u . X
N R IR .
E(r,t) Tres /hw{m abwy- [ = 1} [(R a)R + u}

R . .. JIR-a)u 20
43 [(R.u)2—|u1?]+( u)u+~5+()(lf)},h’. w =0 (1)

Rt 1ct 3&

where @ and 1 in (C.1) refer to the time derivatives of the center velocity of the charged
sphere at time (. The position of the charge element de’ is designated by r'(f) and the vector
R is defined as r — r'(¢).

We can find the magnetic field B{r,t) from the simple relationship between the electric
and magnetic fields of a moving point charge [11]. Letting Jd¢’ be the moving point charge.
and dE(r,t) and dB(r,t) be the electric and magnetic fields of this point charge. we have

dB(r.t) = R'(!') x dE(r.t)/c (('.2)
where dE(r,t) is the integrand of (C.1) and R'(1") is defined as r — r'(1"). the difference

vector between the position r of the observation point and the position r'(1') of the element
of charge de’ at the retarded time ' =t — R'fe. Expanding R'(1") in a power series about !
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and making use of (A.8) gives

. R [r-a s e - [(R- 1)
R'(t) = R—@[ 2 ‘1] [(R'“)R'“]'R2R[ NE

laf  (R-a)] o [(R-g)a : ¥
toa T oa | T T sl TOWRY (C.3)

Substituting R/(t’) from (C.3) and dE(r, ) from the integrand of (C.1) into (C.2), one finds

that most of the terms cancel leaving merely

N x i
dB(r.1) = [M + ()(I{)] de’ (C.4)
Smreyct
or R
_ R(1) x i . .
B(r.t) = e [h”yt [—2(—‘——— + O(R)] de!, u=0 (C.5)

for the magnetic field in the proper frame.

Equations (C.1) and (C.3) can be integrated in closed form for a uniformly distributed
spherical shell of charge with inner radius @ and small thickness é. In particular, the expres-
sions for the fields within the thin shell simplify to

. .), .).- ; - . 2
E(r,t) = — [’ Gpoo 2Lty —:tr (uu- Il;" )] + Ola) (C.6)

O r-- . K 5
dren | da? Jac? 33

B(r.f) = —— & x i + O(a), (C.7)

l?ﬂ'(()(‘q
=10, (a<r<a+d)
The electric field in (C.6) agrees with the results of Sections 56 and 57 in Page and Adams
[55] except for the 4/5 term in (C.6). which is missing in their work, because they do not
{ I g 3
take mto account the variation (A.8) in acceleration of the charge with position around the
shell. Also Page and Aaams do not include the @ term in the magnetic field of (C.7).
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Appendix D

DERIVATION OF THE LINEAR
TERMS FOR THE SELF
ELECTROMAGNETIC FORCE

Begin the derivation with the expression (A.2) for the electric field produced by the moving
clement of charge de’ in the shell of charge. Since we want to evaluate this expression (A.2)
in a proper reference frame (u(r,t) = 0) discarding all nonlinear terms in 4.4 ... we see.,
with the help of the expansion ((.3) for R/(t'), and (A.3) and (A.13) for a(r’, #') and u(r'.#').
that (A.2) can be simplified immediately to

de’ {R x (R x u(t'))
lc?

R’ — u(t')/c

R?(1 — R - u(t')/c)?

+ nonlinear terms (D.1)

where, of course. R’ is a function of the retarded time ¢ = t — I’/c. luserting the expansion

A -3 N
R-u(t 3R - u(l’
[l - ——M} =1+ ————‘i—l + nonlincar terms (Hh.2)

(8 C

into (D.1) gives

de' [R(R-u(t')) —ua(t) u(t)
d t)= —
E(r.0) 4Teg [ Re? R?c
3R(R - u(? R'(1'
+3 ( Rzrl"( ) + R[{(/z )1 + nonlinear terms. (D.3)
Now ) \
. ! [/ "( 'I ’l .
R'(t') = R(t) - 9_{()[_). (H( )) + i(——) (R(( —2) + nonlinear terms N.1)
2 ¢ > g




or with the insertion of the expansion

R -
Rity= R [l - = ,zu + ] (D.5)
L =¢
(Do) becomes
a(t) /R t) R\’
R'{()=R - E(—l <—— + —l—l—(—l (-‘) + ...+ nonlinear terms (D.G)
2 ¢ 6 c.
that is
R'(!) = R(t - R/e) + nonlinear terms. (D.7)
Similarly.
ult’) = u(t — R/e)y 4+ uonlinear terms (D.xa)
alt'y =a{t - k/e) + nonlinear terns (1).xh)
and
1y = Rt - E/c) 4+ nonlinear terms (1).8¢)
or i} .
. B RN R ORY , ;
RiYy=R~R-+ (v) - — (—) + ...+ nonlincar termes. (D.xd)
c 2\ e, 6 \¢
With ) R JR
' <. 12 ¢ A (
))_;_r R 2 RY = — e = . :’) ‘qx
! :IfkR Ry T R.ou=( {D.Yvay
R=R-u (D.9h)
=R + nonlinear terms (1.9
crenserted imto (DSA) 207 Bedomes
R-u /iy Ry
'y = R+ b ( —1> 4 —A—~;—u- (A) t ...+ nonlinear terms, {D.10)
2 o { «
Lhe vector RUP = R/e) can also be expanded in the form
RN A sy
Rit - R/e)=R + E [ —) - M ()-> + ...+ nonlinear ternis (DD
RARNNZ ) ¢
vhich combines with (DO} and (D70 1o give
Rir) Redtfo RT3 (R-a (/f>'-’ R (1.'>-"¢
RR(ty Ry I R\ 2 \e¢ 6 \e/ 7
Lfa gkt iy r? .
+F {%‘ ((—) - ”—:)—) <(—{) + ...| + nonlinear terms. (D12
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When we substitute (D.8a), (D.8b) and (D.12) into (D.3). integrate over de’, then mul-
tinly by de = pdV and integrate over de to get ihe total self electromagnetic force. we are
left with integrals of the form [14]

)m+l )
/ Rm(i( (l( = 3// Rm({l (1! = — ™" 2‘
sphere sphere h’ m -+ 2
mo=-1.0.1.2..... BVREY

We see from (D.13) applied to (D.12) that
R'(t') _
// __,_(1( 'de. = 0 + nonlinear terms. iD.14a)
SphPTC &

Simtlarly, from (D.13) applied to the u(t’) part of (1).3)

// [3RR—I] de'de = 04+ nonlhinear terms (h.1ibh)

sphere

and from (D.13) applied to the u(t’) part of (D.3)

Rie)
//;phere RR - I] de'de = ~_"/ /;ph”r ——[{—‘41(, e

+ nonlinear terms. (D.14e)

Thus, integrating (D.3) over de¢’ and de and using (D.i1) shows that the exact expression
for the total self electromagnetic foree on the charge can be written simply as

.
//(IE r.! (lt = - ———-// E_(._-, *Irl—(/ ‘¢
sphere (i (U(~2 aphere

+ nonhmm terms. (D.19)

Since u(t — R/c) can be expanded i the power series

. X1 d*ha(t) - R\"
u(f—[?/(‘)—‘—Z’j(‘dT:(l—)'< ) (D.16)

n=0 n. ¢

substituting (D.16) into (D.15) and applying the integrals (1.13) vields

v2 . _9 n+1 1 dn+l (t)
¢ 2a u
F., () = ———— (————) + nonhnear teris (D7
e«(t) 2regae S\ ¢ (n + 1Y dint? v ) ')
or ,
c? .
F. () = u(! — 2a/c) nonlinear rerms. u(t) =0 (D.1Ixy
12megae




or for small velocity

2 )2
F.(t) = ——— [u(t — 2a/¢) —u(!)] + nonlinear terms. i <. (D.19)
127 ¢yae o
The result (D.13) was stated without proof by Page [14]. It can also be obtained from
the first series of a general expression for the self electromagnetic force, on a nonrelativis.
ticallv rigid charged sphere. that was derived by Schott [49]. The linecar part of the self
electromagnetic force {D.19) is the same for both relativistically and nonrclativistically ngid
spheres.
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