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Goals versus Algorithms
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Peter J. Huber DIst Special

Department of Mathematics
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September 27, 1991

Abstract

Conipurtarionoal inethod. in -tatistics often are defined through an algorithm. It is argued
that a precise finite samiple specification of the goals to be achieved by the algorithm is at least
equally important. The issue• are discussed in the special case of Projection Pursuit Regression.
An interesting initial resutd of this work (which still is in progress) is that the Friedman-Stuetzle
algorithm appearS to ht iw enmatically biased toward overfitting.

1 Introduction

Computer intensive metlhods in *t•atistics nowadays are defined more often through specific algo-
rithms than through specific goals. Names such as PPR (Projection Pursuit Regression) or ACE
(Alternating Conditional tExpectations), correspondingly refer to the process rather than to its end
product.

In part, this is a matter of philo,,opliy. Another, more practical reason is that precise finite sample
goals are hard to specify, and on top of that, after one has specified them, one is confronted with an
even harder task: one then is obliged to produce an algorithm that approaches those goals. With
a mere algorithm, it suffices-- at least for a start-to demonstrate that it works in a number of
concrete examples.

Typically, simple goals exist in the abstract population case only. For example, such a goal might be
to minimize the expectation of thie average squared prediction error. It is difficult and ambiguous to
translate such a description to a iou-parametric finite sample situation, where the true underlying
distribution is unknown, where -smoothers must take over the role of conditional expectation oper-
ators, and where the bandwidt h of such smoothers will have to be determined by cross-validation
from the same sample itself. It may actually be easier and more straightforward to translate it by
heuristic analogy directly into an iterative algorithm that makes sense in the finite sample case.

The custom of specifying ami algorithm rather than its goals has the embarrassing (or should one
say welcome?) side effect that alternative algorithms for the same problem are nearly impossible

"Prepared with the partial support of Contract No. AFOSR-89-0412
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Peter J. Htuber Goals versus Algorithms 2

to compare. If the algorithm fails in a specific instance, is the algorithm to blame or is it a fault of
the problem (non-existence of a solution)? Without a formal specification of goals the question is
vacuous.

I believe it is important to think about specific finite sample goals in order to shore up the al-
gorithins. More precisely, those goals should help to more fully understand them. to establish
firmer results about them. and. for example, allow us to assess the effects of compromises in favor
of computational efficiency. This essay shall discuss some of the issues in the specific example of
Projection Pursuit Regression (PPR). Its writing was triggered by some problems we ran into when
trying to apply PPR to a specific low-noise fitting problem (see Section 3 below).

2 The Goals of PPR

In the population case, the goals of PPR can be described simply and accurately. Assume (X,Y)
is a random variable with values in RPx R. The task is to approximate the response surface

f(x) = E(YIX = x) (2.1)

by a functionl representable ,L a it inii of ridge functions:

rn.

O(x) = (aTX). (2.2)

If m and the projection directions a,. am are kept fixed, the best approximation in terms of
the expected mnean squa re error

E(Y - g(X)) 2  (2.3)

is obtained by a function g miiquelv characterized by the property that its conditional expectations
agree with those of f ini all m projection directions:

I.(f(X)IaTX) = E(g(X)IafX). (2.1)

See Huber ( 1.95. 1). 166) and lluber (1991) for more precise results about the existence and unique-
ness of the solution. Then one should optimize over all possible projection directions, and select
the lowest possible number m of summands giving a satisfactory approximation. It is clear for a

priori reasons that one cannot expect a unique optimal set of directions, because of the well-known
polynomial indeterminacy of the representation (2.2).

We can rewrite the-last displayed equation as

q,(tafX) - E(Y - g(X) + gj(a TX)laTX) (2.5)

and turn it into an algorithm iteratively improving the component functions g, by backfitting:
assume the right hand side of this e(quation is based on the currently best versions of g and g, , then
the left hand side defines a new. improved version of the summand gj.

The PPR algorithms proposed by Friedman and Stuetzle (1981) are very clever finite sample ver-
sions of such an iterative approximation, with compromises in favor of efficient computation. The
basic idea is to replace conditional expectations E( IaTX) by scatterplot smoothers, and to build
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up the sum of ridge functions by a greedy algorithm: find a first direction and a first summand
capturing as much as possible of the variability, then apply the algorithm to the residuals in order
to find a second direction and ridge function, and so on. The trickiest part is that the algorithm
must be tuned indirectly, based on goodness of prediction rather than on goodness of fit, and hence
must use cross-validation techntiques within the optimization loop.

Friedman and Stuetzle noticed that after two or more summands have been found, the quality of the
approximation can be improved by the finite sample version of backfitting, and often considerably
so. That is, one leaves out a suniniand in the estimated fit

m

g(xý) = -g9(afxi), (2.6)
1

say y,. and redeterniinos a jw% yJ• by smoothing the partial residuals

r =y, - 9(x,) + g,(a Txi)

against thJe afxi. repeatedly cycling through all values of j. We note that neither the projection
direction a. nor the function 9, occur in the partial residual (the terms involving them cancel out),
so one can use the opportunity to improve the direction at the same time. At least in principle one
might iterate this procedure to convergence, but in practice one will prefer to stop much earlier.

As in the population version. one does aim for a best in-tuple of directions, minimizing the sum of
the squared residuals r, = y, - (x,).

A comparison of this procedure with the population case raises several interesting mathematical
questions. I believe they are unmsolved if we except the special case to be considered in Section
.5. Assume that the projectioln directions and the smoothers are kept fixed (i.e., no adjustment
by cross-validation during tile iterations). Does the finite sample backfitting process have a fixed
point" Is it unique? What exactlv. if anmvthing. is minimized by this fixed point? Does backfitting
converge to that fixed point?

3 A Case Study: Low-noise PPR

The application in question was to machine-learn a function from a sample of approximately 1,000
of its values (joint work with Ying Zhao and Chris Atkeson). In a specific example, the functions to
be learned were the torques needed to move the endpoint of a two-joint robot arm along arbitrary
paths in space-time. That is. the robot would have to learn two smooth functions connecting the six
state variables (two angles and their first two derivatives) to the torques applied at the two joints,
without knowing and making ui.e of the underlying dynamics. In our examples, the independent
variables were random. either unmiformly or normally distributed, in up to 6 dimensions, while the
dependent variables were for all practical purposes noise-free.

When we applied PPR to this problem we found, much to our surprise, that the fitted "smooth"
function g tended to be a lot noilier than the original raw data, and we puzzled for months about
the reason.

We quickly eliminated Suspect No. 1: Programming error, in favor of Suspect No. 2: Numerically
poor smoothing algorithms. We had primarily been using local straight line fits and smoothing
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splines. The computationally efficient updating algorithm for fitting local straight lines iz known
to be numerically poor, and the condition number of smoothing spline algorithms depends on the
ratio between the range of the abscissae and the smallest interpoint distance, and thus, depending
on the projection direction. call become arbitrarily poor.

After convincing ourselves that this was not the cause of our problem, we looked into the more
esoteric pathologies of scatterplot smoothers, some of which are discussed in Buja, Hastie,and
Tibshirani (19S9). .S".;pect No. .3 was Instability through iteration: some innocent looking linear
smoothing operators have singular values slightly larger than 1, and may go astray after continued
iterations. While this was not the cause of our problem, we unintentionally verified that it can be a
serious issue when we checked Supect .Vo. jl, Premature stopping: a frequent problem with greedy
algorithms (for example, with the steepest descent methods) is that they initially exhibit rapid
improvements and then grind to a njear halt at the bottom of a valley, still far from the ultimate
limit point. Our Suspucts No. 5 and 6 were Concurtity (an effect analogous to collinearity, but
having to do with the superposition of non-linear functions), and the closely related possibility of
.Von-closedness of the space of ridge function (in which case the component functions gj may go
out of bounds while the sum g stays bounded) (see Huber [1991]). Then there was No. 7, Initial
overfitting: the latter stages of PPR fitting might not have been able to counteract the after-effects
of over-fitting ill the initial 'taI,,. There may have been a few more ephemeral suspects.

Ultimately, after eliminating all other possibilities, we found that the real culprit was a rather
mundane Bias problenm .\l[ the more usual smoothers (in particular local straight lines and cubic
smoothing splines) are able to follow straight lines exactly, but they are biased when the response
surface is curved. In any pro jection the resulting bias in g, is small for the central part of the set of
projected sample points aTx,. but near the more sparsely populated ends of the range, the bias can
become rather large. For aiuv other sufficiently different projection direction, the biases deriving
from the jth projection behave like random noise with a few interspersed outliers (the latter caused
the by large biases occurring uear the end-points of the range). This problem became even more
serious because we iiistakeulv had believed that robustness (or more precisely, outlier resistance)
was unimn[portant ill our Case. where the longest-tailed distributions happened to be the uniform
and the normal.

Incidentally, the best results i.e.. smoothest and closest fits) were obtained through a laborious
backfitting process with smoothing splines. cycling through j while slowly lowering the Lagrange
multiplier A in

Y(r` - gJ(a'xL)) + AJ(g(k)(z))2dzSJJ

to (almost) 0. That is. we were g-etting close to an interpolating spline (with k = 2 or 3). This
process had to be controlled rat her carefully: for small A, especially if the abscissae are irregularly
spaced. smoothing splines ndenmlYv can become unstable.

The following example exhibits the bias problem in the purest possible form. The response surface
was defined as

y = 10004 - 1000x2,
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and n = 1000 error-free points (.rL,,x2,, y,) were generated from a standard bivariate normal dis-

tribution for (X1 , z 2 ). An approximate representation

Y(x,) = g1(xzt) + 92 (X2 ,)

was determined by backfitting the yj and iterated to convergence. Two different smoothers were

used: (I) local straight lines. and t2) cubic smoothing splines. The smoothing parameters were

adjusted so as to obtain an approximately optimal fit ofg 1 and 92 to the true functions 1000Mx and
- 1000r,. respectively. The results are shown in Figures 1 and 2.

Figure 1 here

Figure 1: Local straight line fitt er. [lie errors in the fit are on the order of 17c of the y-values; note

the large errors near the end point., in the plots of (g9- true) against x1 .

Figure 2 here

Figure 2: Cubic smoothini..- >plin,,. lihe results are qualitatively similar, but the scale of the errors

is about 2 orders of nuagniude -mti¢tller than for the local straight line fitter.

4 Specification of Goals Through Fixed-Point Prope.rties?

The overall task is to find algioti hI ii. that not only can be implemented efficiently, but which are

also amenable to theory (coi',l r,0,h', proofs, etc.). This task can be approached either from the
side of the algorithms or froim tI, -ide of the theoretical goals; it may be advantageous to work

from both sides.

It usually is straightforward to t;iatilate a fixed-point property into an algorithm and vice versa.

One may say that an, iterat ti,, ;d-oIrithln has its own, built-in goals: its set of fixed points. This
leaves open three inathematrical piohlenhs: (i) to show that a fixed point exists; (ii) to estabfish its

uniqueness (or lack of uniquni(,:ui ,: .1n1d (iii) to show that the algorithm converges to it. Apart from

that there is a conceptuial pirohl,'m: -, fiat is the interpretation of the fixed points, are their features

compatible with the idl;-s onie I,.,,i in mind when devising the algorithm?

Already proving the existence )I \,-.I point can be surprisingly difficult. In principle, almost any-
thing can happen. A fixed poit .. xi-t but be unstable. The algorithm may show convergence,

chaotic behavior, or divergetin+. li.e behavior of the algorithm may be different for different

starting points. One big prohil, - hat with any of the more sophisticated statistical algorithms,

such as PPR, a single loop of i , :'h.- t iio is very complex and consists of the application of several

different, typically non-linea ,,.: .,toi. Even a simple, heuristically appealing linear smoothing

operator may on closer scruti,,i ,i -n out to have singular values larger than 1, and thus pose the

danger of an exponential explu-,io ii, iteration. The usual tools for proving fixed-point or stability

properties (such as Liapunov funict ions) practically are equivalent to an external characterization

of the fixed point in terms of a niuinituni l)rinlciple.

If a smoother is defined in terms of a minimum principle, several of the above-mentioned problems
do not occur. For example. a linear smoother then automatically corresponds to a symmetric
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operator with eigenvalues between 0 and 1. On the other hand. smoothers defined in terms of a
minimum principle typically are more expensive to calculate.

5 Specification of Goals Through Minimum Properties?

A precise goal in terms of a minimum problem almost always helps with convergence proofs, but
on the other hand it may not provide much help toward constructing an efficient algorithm.

A somewhat simple-minded finite sample specification of the target function

m

of PPR in terms of ai iiiniiittiin problem involves two terms: a penalty for the fitting error cr misfit

yi - g(x,) at the observed poiuts, and a penalty for the roughness of the component ridge functions
g,. The conceptually simplest (although not necessarily best) roughness penalty is the integrated
square of somie higher order drivative, corresponding to smoothing splines. To fix the idea, we
.shall use it for the following ar,-i,,ments (and afterwards explain what aspects are unsatisfactory).
The two penalties ai-re comnhined with the help of Lagrange multipliers into an expression of the
form

- (x,))2 + A I (g"k)(Z))2 dz. (5.2)

This is a clean, strictly convex (acttually quadratic) minimum problem. If we write down the
variational conditions for thle minimum, it is imrmediately evident that this minimum is uniquely
characterized by the I)rol)erly that it is a fixed point of the backfitting process. More precisely,
those variational conditions ;irv c(,iivalemt to requiring that solving the spline smoothing problem
with abscissae a xT, ordiimmate, y, - Y(x,) + g}(aTxi) and Lagrange multiplier Aj yields g., and this
for every j.

Moreover, each backhitting ttep decreases the value of (5.2), and given that the minimum is unique,
it follows froim a Simple colimp•ctnss argument that the process must converge to that unique

Evidently, this formalization can be generalized in several details; for example, by replacing the
square in the first term of (5.2) bY a imore general convex function, involving some weight and
scale parameters in order to achieve, robustness, and by pulling the Lagrange multipliers Aj inside
the integral and making themim dlo'md on iW order to allow for different degrees of smoothness in
different parts of the domain.

However. even with such inodificat ions the formalization remains unsatisfactory in several respects.
First. it is difficult to deteriiiine ',mod a priori values for the Lagrange multipliers. To be realistic,
the above formulation nierely ' e)ccifies the form of the functions g9 as being smoothing splines,
with the A, remaining free parammieters. Thus, while retaining the form of the functions, we must
in practice determine those free parameters from the data, ideally by solving yet another minimum
problem.

Second. the fitting error is a relatively meaningless quantity. One really is interested in the pre-
diction error and one should determine g so that it minimizes the prediction error rather than the
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fitting error. There are several possibilities for squeezing a surrogate prediction error out of the
fitting procedure, all called by the generic name "cross-validation." But there is a fundamental
difficulty: the prediction error is not experimentally observable unless we have additional data not
used for determining the fit. Strictly speaking, this catches us in an impossible dilemma: if we try
to determine the fit such that it minimizes the prediction error, we must use data wp are forbidden
to use! Because of the dilemma just mentioned, some caution is indicated when cross-validation is
used inside aiL iterative process.

One possibility for cross-validation is to leave out single observations, one at a time, to re-determine
the fit, and then to compare the results at the point where the observation has been left out. In
general. this is a comtiputationally expensive process (O(n') operations, although there may be
shortcuts), and moreover it is only indirectly relevant to the original fitting procedure: if one leaves
out an observation, one no longer uses the identical procedure; the carrier {x,} has been changed,
and even the sample size is different. We therefore propose to use a version based on the fitting
procedure itself, with the sante sample size it. to be called self-consistent prediction. Often, it leads
to the identical results as the leave-one-out approach. giving the latter an a posteriori justification.

Assume y is the fitted fiu't ion. Its value at a point x E RP depends on the observed data (x,, yi),
i = 1 ..... i and on some paranteter( s) A (for example, the Lagrange multiplier in the case of splines,
or the bandwidth on the s-moother):

q(x) = Y(x: x, ..... xy, l ..... , A). (5.3)"

We define the .clf-ro,,.,i.,te W pr(di(tor L, of y, at x, by the property that

., = !1{X,"X I. .. Xn.Y t....Yi-tli,Yi+l ..... Yn. A). (5.4)

Example: Linear fits. Assutlme t lie fitted value is linear in the y,:

!), = g(x,) = hitY (5.5)

where t lie coefficients bd do not depend on (yi ..... y,J, but they may depend in any way on the
other data. [hen due self-consistent predictor is defined by

h= hi~i + Z hayl,

and it is ea.'v to verify that the fitting error and the residual of the self-consistent predictor are
related by

- = (1 - hi)(yi - M). (5.6)

For later use we note the following consequence of this relation:
- - his-

YL, - y, -= y . (5.7)

Note that h,, is the self-in fluemice on the "th observation on its own fitted value, that is the change
induced in the latter by a uimit change in the former. The reciprocal of the self-influence hii might
be taken as the formal definition of the effective bandwidth (or, perhaps more accurately, of the
effective number of degrees of freedom) of the smoother at this point.

It is heuristically plausible that for -'reasonable" non-linear fitting procedures a similar, approxi-
mately linear relation will ho1l: in specific cases it may be possible to derive the exact relationship.
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Therefore, the misfit, if suitably scaled, can be used as a surrogate for the prediction error. For the
moment, we shall continue the argument for linear smoothers.

In the backfitting process the smoothers are applied separately to the separate projections, with
possibly different smoothing parameters Aj. It is relatively straightforward to determine the coef-
ficients of self-influence h, for the individual univariate backfitting smoothers.

However. we need to determine the overall self-influence dii of Yi on g(xJ. This is much more
difficult: we are going to give an argument that the approximate relationship between the two is
given by z ,"(5.8)

1-1111t - (11 1 ji

A rigorous proof is still outstanding, but I believe the formula is asymptotically accurate for small
self-influences. The empirical ovidonce suggests that it is too optimistic (i.e., the actual dii tend to
be larger).

We shall write for short g(i) = .q(x,) and gj(i) = gj(afxi); a minus sign as in gj(-i) shall denote
the value at the ith point coinputfd by self-consistent prediction leaving out observation yi.

The solution g is a fixed point of backfitting: smoothing yi - g(i) + g,(i) restores gj(i). If at this
fixed point we (1o a correspondiim. cross-validating smooth, omitting the ith observation, equation
(5.6) gives

[y, - fi(i) + ,. )]- y,(i) = I - hj.,i){ [yi - g0i)+ gj(i)] - gj(-i)} (5.9)

or, with ri = y, - i ) from 0.7):

M 1(i)- 1(-i) - ri. (5.10)

If the self-influences hb,1 , are inmall, the changes will superimpose linearly. If we sum (5.10) over j
and take (5.7) into accomit. wo obtain apl)proximately

d- r- = E ( h-dri ri (5.11)
1-di, I- ji

which is the relation annountced lit (15.S).

Thus. if we want to minimize the cross-validated prediction error, we should minimize

(Yi - g(xi))

by varying the parameters A, in (5.2). Note that for fixed smoothing parameters Aj the dii are
fixed.

For the sake of reducing the technical complications, one might prefer to replace the value dii in
(5.12) by the average of d,, over 1 (sometimes called "generalized cross-vahdation"). It may actually
be preferable to average the scores q,j = d,,/( I - dii) rather than the dii themselves. At the same
time, such averaging seems to improve stability (robustness) of the procedure.
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More generally, taking standard robustness considerations into account, one might replace (5.12)
by an expression of the form

Wfi , (5.13)

where p is a convex s,*vminetric function, while si and Wvi are weight and scale factors whose precise
specification at the umonient mnuist be left open.

Friedman and Stuetzle used local straight line sinoothers rather than splines, there were quick
and dirty computational shortcuts (instead of an expensive full minimization, they would take the
best out of three values), and there clearly was no intention to iterate the backfitting process to
death. But essentially they applied cross-validation to their backfitting smoothers. In our case and
terminology this amounts to adjusting the smoothing parameters A3 by minimizing

( - I ± - - ,) 1 (5.14)

separately for each j during the backfitting process. It is not clear whether such a procedure
converges at all. But it is evident from (5.S) that the self-influences used by this procedure are
systematically too small (on average by a factor comparable to the number m of ridge functions),
and thus the result will be biased i owards overfitting. It remains to be seen how serious this bias
can be.

Above. to fix the idea. we had wwed smoothing splines. This does not mean that I advocate to
use them for PPR. Despite their conceptual elegance, smoothing splines have some unpleasant
properties. T'hey are expensJive to compute, and if the abscissae are irregularly spaced, they tend
to become unstable (not only -niumerically). The tentative recommendation is to use a variant of
smoothing splines with a snialler iiiiber of fixed, more evenly spaced knots. The search for other
good smoothers that can h)e chlaracterized in terms of a manageable minimum principle is wide
open.

I shall briefly mentionu an uisati.factory aspect of a rather general nature. One should not have to
worry about smoothness explicitly: at least in principle, the prediction error should be all that is
needed. Any roughness l)enalty is based on the unwarranted assumption that the best predictors
are furnished by some sort of low-pass filters. That is, high-frequency fluctuations are regarded
as noise to be filtered out. w hile low-frequency fluctuations are to be modeled as structure. In
defense of smoothlie.s in the context of PPR, one might however adduce that structure with a
high spatial frequency is practically impossible to find, and it manifests itself only in an extremely
narrow angular range of project io (hirections.
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