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Abstract

Computational methods in statistics often are defined through an algorithm. It is argued
that a precise finite sample specification of the goals to be achieved by the algorithm is at least
equally tmportant. The issues are discussed in the special case of Projection Pursuit Regression.
An interesting initial result of this work (which still is in progress) is that the Friedman-Stuetzle
algorithm appears to he systematically biased toward overfitting.

1 Introduction

Computer intensive methods in statistics nowadays are defined more often through specific algo-
rithms than through specific goals. Names such as PPR (Projection Pursuit Regression) or ACE
(Alternating Conditional Expectations). correspondingly refer to the process rather than to its end
product.

In part, this is a matter of philosophy. Another, more practical reason is that precise finite sample
goals are hard to specify, and on top of that, after one has specified them, one is confronted with an
even harder task: one then is obliged to produce an algorithm that approaches those goals. With
a mere algorithm, it suffices— at least for a start—to demonstrate that it works in a number of
concrete examples.

Typically, simple goals exist in the abstract population case only. For example, such a goal might be
to minimize the expectation of the average squared prediction error. It is difficult and ambiguous to
translate such a description to a nou-parametric finite sample situation, where the true underlying
distribution is unknown, where smoothers must take over the role of conditional expectation oper-
ators, and where the bandwidth of such smoothers will have to be determined by cross-validation
from the same sample itself. It may actually be easier and more straightforward to translate it by
heuristic analogy directly into an iterative algorithm that makes sense in the finite sample case.

The custom of specifying aun algorithm rather than its goals has the embarrassing (or should one
say welcome?) side effect that alternative algorithms for the same problem are nearly impossible

*Prepared with the partial support of Contract No. AFOSR-89-0412
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to compare. If the algorithm fails in a specific instance, is the algorithm to blame or is it a fault of
the problem (non-existence of a solution)? Without a formal specification of goals the question is
vacuous.

I believe it is important to think about specific finite sample goals in order to shore up the al-
gorithins. More precisely. those goals should help to more fully understand them. to establish
firmer results about them. and. for example, allow us to assess the effects of compromises in favor
of computational efficiency. This essay shall discuss some of the issues in the specific example of
Projection Pursuit Regression (PPR). Its writing was triggered by some problems we ran into when
trying to apply PPR to a specific low-noise fitting problem (see Section 3 below).

2 The Goals of PPR

In the population case. the goals of PPR can be described simply and accurately. Assume (X,Y')
is a random variable with values in RP x R. The task is to approximate the response surface

fix) = E(Y|X = x) (2.1)

by a function representable as a sum of ridge functions:
m
T
g(x) =" g,(a] x). (2.2)
1

If m and the projection directions ay.....an, are kept fixed, the best approximation in terms of
the expected mean square error

E(Y - g(X))? (2.3)

is obtained by a function ¢ uniquely characterized by the property that its conditional expectations
agree with those of f in all m projection directions:

E(f(X)|alX) = E(g(X)la] X). (2.4)

See Huber (1935, p. -166) and Huber (1991) for more precise results about the existence and unique-
ness of the solution. Then one should optimize over all possible projection directions, and select
the lowest possible number m of summands giving a satisfactory approximation. It is clear for a
priori reasons that one cannot expect a unique optimal set of directions, because of the well-known
polvnomial indeterminacy of the representation (2.2).

We can rewrite the.last displaved equation as
gia'X) = E(Y = g(X) + g;(a] X)|aT X) (2.5)

and turn it into an algorithin iteratively improving the component functions g; by backfitting:
assume the right hand side of this equation is based on the currently best versions of g and g;, then
the left hand side defines a new. improved version of the summand g;.

The PPR algorithms proposed by Friedman and Stuetzle (1981) are very clever finite sample ver-
sions of such an iterative approximation, with compromises in favor of efficient computation. The
basic idea is to replace conditional expectations E( |aJTX) by scatterplot smoothers, and to build
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up the sum of ridge functions by a greedy algorithm: find a first direction and a first summand
capturing as much as possible of the variability, then apply the algorithm to the residuals in order
to find a second direction and ridge function. and so on. The trickiest part is that the algorithm
must be tuned indirectly. based on goodness of prediction rather than on goodness of fit, and hence
must use cross-validation techuiques within the optimization loop.

Friedman and Stuetzle noticed that after two or more summands have been found, the quality of the
approximation can be improved by the finite sample version of backfitting, and often considerably
so. That is, one leaves out a summand in the estimated fit

m

g(x,) =Y _g;(alx), (2.6)
1

say ¢,. and redetermines a new ¢, by sinoothing the partial residuals

=t

" :yz—y(xl)‘*'!h(a,Txi)

against the aJ-Tx,'. repeatedly cvcling through all values of j. We note that neither the projection

direction a; nor the function g, occur in the partial residual (the terms involving them cancel out),
so one can use the opportunity to unprove the direction at the same time. At least in principle one
might iterate this procedure to convergence. but in practice one will prefer to stop much earlier.

As in the population version. oue does aim for a best m-tuple of directions, minimizing the sum of
the squared residuals r, = y, — ¢(x,).

A comparison of this procedure with the population case raises several interesting mathematical
questions. I believe they are uunscived if we except the special case to be considered in Section
5. Assume that the projection directions and the smoothers are kept fixed (i.e., no adjustment
by cross-validation during the iterations). Does the finite sample backfitting process have a fixed
point” Is it unique? What exactlv. if anvthing. is minimized by this fixed point? Does backfitting
converge to that fixed point?

3 A Case Study: Low-noise PPR

The application in guestion was to machine-learn a function from a sample of approximately 1,000
of its values (joint work with Ying Zhao and Chris Atkeson). In a specific example, the functions to
be learned were the torques needed to move the endpoint of a two-joint robot arm along arbitrary
paths in space-time. That is. the robot would have to learn two smooth functions connecting the six
state variables (twe angles and their first two derivatives) to the torques applied at the two joints,
without knowing and making nse of the underlying dynamics. In our examples, the independent
variables were random. either uniformly or normally distributed. in up to 6 dimensions, while the
dependent variables were for all practical purposes noise-free.

When we applied PPR to this problem we found, much to our surprise, that the fitied “smooth”
function g tended to be a lot noisier than the original raw data, and we puzzled for months about
the reason.

We quickly eliminated Suspect No. I: Programming error, in favor of Suspect No. 2: Numerically
poor smoothing algorithms. We had primarily been using local straight line fits and smoothing
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splines. The computationally efficient updating algorithm for fitting local straight lines iz known
to be numerically poor, and the condition number of smoothing spline algorithms depends on the
ratio between the range of the abscissae and the smallest interpoint distance. and thus, depending
on the projection direction. can become arbitrarily poor.

After convincing ourselves that this was not the cause of our problem., we looked into the more
esoteric pathologies of scatterplot smoothers, some of which are discussed in Buja, Hastie,and
Tibshirani (1989). Suspect No. 3 was Instability through iteration: some innocent looking linear
smoothing operators have singular values slightly larger than 1, and may go astray after continued
iterations. While this was not the cause of our problem, we unintentionally verified that it can be a
serious issute when we checked Suspect No. {, Premature stopping: a frequent problem with greedy
algorithms (for example, with the steepest descent methods) is that they initially exhibit rapid
improvements and then grind to a near halt at the bottom of a valley, still far from the ultimate
limit point. Our Suspects No. 5 and 6 were Concurvity (an effect analogous to collinearity, but
having to do with the superposition of non-linear functions), and the closely related possibility of
Non-closedness of the space of ridge function (in which case the component functions g; may go
out of bounds while the sum g stays bounded) (see Huber [1991]). Then there was No. 7, Initial
overfitting: the latter stages of PPR fitting might not have been able to counteract the after-effects
of over-fitting in the initial ~tages. There may have been a few more ephemeral suspects.

Ultimately, after eliminating all other possibilities, we found that the real culprit was a rather
mundane Bias problen.. \ll the more usual smoothers (in particular local straight lines and cubic
smoothing splines) are able to follow straight lines exactly, but they are biased when the response
surface is curved. In any projection the resulting bias in g, is small for the central part of the set of
projected sample points afxl. hut near the more sparsely populated ends of the range, the bias can
become rather large. For any other sufficiently different projection direction, the biases deriving
from the jth projection behave like raudom noise with a few interspersed outliers (the latter caused
the by large biases occurring near the end-points of the range). This problem became even more
serious because we mistakenly had believed that robustness (or more precisely, outlier resistance)
was unimportant in our case. where the longest-tailed distributions happened to be the uniform
and the normal.

Incidentally, the best results (i.e.. smoothest and closest fits) were obtained through a laborious
backfitting process with smoothing splines. cycling through j while slowly lowering the Lagrange

multiplier A in
Z(I ’—Jjax +’\Z/ (k) z))¥dz

to (almost) 0. That is. we were getting close to an interpolating spline (with & = 2 or 3). This
process had to be controlled rather carefully: for small A, especially if the abscissae are irregularly
spaced. smoothing splines suddenly can become unstable.

The following example exhibits the bias problem in the purest possible form. The response surface
was defined as

y = 1000z - 1000z,
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and n = 1000 error-free points (ry,. 2. y,) were generated from a standard bivariate normal dis-
tribution for (zy,z,). An approximate representation

g(x,) = q(xy) + 92(12,)

was determined by backfitting the g, and iterated to convergence. Two different smoothers were
used: (1) local straight lines. and {2) cubic smoothing splines. The smoothing parameters were
adjusted so as to obtain an approximately optimal fit of g, and g, to the true functions 1000z} and
— 100022, respectively. The results are shown in Figures 1 and 2.

Figure 1 here

Figure 1: Local straight line fitter. The errors in the fit are on the order of 177 of the y-values; note
the large errors near the end points in the plots of (g,— true) against z,.

Figure 2 here

Figure 2: Cubic smoothing splines. The results are qualitatively similar, but the scale of the errors
is about 2 orders of magnitude ~inaller than for the local straight line fitter.

4 Specification of Goals Through Fixed-Point Properties?

The overall task is to find algorithms that not only can be implemented efficiently, but which are
also amenable to theory {convergence proofs. ete.). This task can be approached either from the
side of the algorithms or from the <ide of the theoretical goals; it may be advantageous to work
from both sides.

It usually is straightforward to translate a fixed-point property into an algorithm and vice versa.
One may say that any iterative algorithm has its own, built-in goals: its set of fixed points. This
leaves open three mathematical problems: (i) to show that a fixed point exists; (ii) to establish its
uniqueness (or lack of uniquenessi: and (iii) to show that the algorithm converges to it. Apart from
that there is a conceptual problem: what is the interpretation of the fixed points, are their features
compatible with the ideas one liad iu mind when devising the algorithm?

Already proving the existence ot . *vedd point can be surprisingly difficult. In principle, almost any-
thing can happen. A fixed point v «xist but be unstable. The algorithm may show convergence,

chaotic behavior. ar divergence. + .0 the behavior of the algorithm may be different for different
starting points. One big probliin - that with any of the more sophisticated statistical algorithms,
such as PPR, a single loop of t1ie :"ci.tion is very complex and consists of the application of several
different, typically non-linear ope:iators. Even a simple, heuristically appealing linear smoothing
operator may on closer scrutiny i out to have singular values larger than 1, and thus pose the

danger of an exponential explo~iou ou iteration. The usual tools for proving fixed-point or stability
properties (such as Liapunov functions) practically are equivalent to an external characterization
of the fixed point in termms of a minimum principle.

If a smoother is defined in terms of a minimum principle, several of the above-mentioned problems
do not occur. For example. a linear smoother then automatically corresponds to a symmetric




Peter .J. Huber ' Goals versus Algorithms 6

operator with eigenvalues between 0 and 1. On the other hand. smoothers defined in terms of a
minimum principle tvpically are more expensive to calculate.

5 Specification of Goals Through Minimum Properties?

A precise goal in terms of a minimum problem almost always helps with convergence proofs. but
on the other hand it may not provide much help toward constructing an efficient algorithm.

A somewhat simple-minded finite sample specification of the target function

m

g(x) =3 g,(alx) (5.1)

1

of PPR in terms of a minimum problem involves two terms: a penalty for the fitting error cr misfit
yi — g(x,) at the observed poiuts. and a penalty for the roughness of the component ridge functions
g;. The conceptually simplest (although not necessarily best) roughness penalty is the integrated
square of sotne higher order derivative, corresponding to smoothing splines. To fix the idea, we
shall use it for the following arguments (and afterwards explain what aspects are unsatisfactory).
The two penalties are combined with the help of Lagrange multipliers into an expression of the

form
Y g = gx )P+ 304, /(.¢1§'°)(~’))2 dz. (5.2)
J

t

This is a clean. strictly convex (actually quadratic) minimum problem. If we write down the
variational conditions for the minimum. it is immediately evident that this minimum is uniquely
characterized by the property that it is a fixed point of the backfitting process. More precisely,
those variational conditions are cquivalent to requiring that solving the spline smoothing problem
with abscissae afx,. ordinates y, — g(x,) + gj(afx,-) and Lagrange multiplier A; yields g,, and this
for every j.

Moreover, each backfitting ~step decreases the value of (5.2), and given that the minimum is unique,
it follows from a simple compactness argument that the process must converge to that unique
minimum.

Evidently, this formalization can be generalized in several details; for example, by replacing the
square in the first term of (5.2) bv a more general convex function, involving some weight and
scale parameters in order to achieve robustness, and by pulling the Lagrange multipliers A; inside
the integral and making them depend on = ir order to allow for different degrees of smoothness in
different parts of the domain.

However. even with such modifications the formalization remains unsatisfactory in several respects.
First. it is difficult to determine good a priori values for the Lagrange multipliers. To be realistic,
the above formulation werely specities the formn of the functions g; as being smoothing splines,
with the A, remaining free parameters. Thus, while retaining the form of the functions, we must
in practice determine those free parameters from the data, ideally by solving yet another minimum
problem.

Second. the fitting error is a relatively meaningless quantity. One really is interested in the pre-
diction error and one should determine ¢ so that it minimizes the prediction error rather than the
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fitting error. There are several possibilities for squeezing a surrogate prediction error out of the
fitting procedure, all called by the generic name “cross-validation.” But there is a fundamental
difficulty: the prediction error is not experimentally observable unless we have additional data not
used for determining the fit. Strictly speaking, this catches us in an impossible dilemma: if we try
to determine the fit such that it minimizes the prediction error, we must use data we are forbidden
to use! Because of the dilemma just mentioned, some caution is indicated when cross-validation is
used inside an iterative process.

One possibility for cross-validation is to leave out single observations, one at a time. to re-determine
the fit. and then to compare the results at the point where the observation has been left out. In
general, this is a computationally expensive process (O(n?) operations, although there may be
shortcuts). and moreover it is only indirectly relevant to the original fitting procedure: if one leaves
out an observation, one no longer uses the identical procedure; the carrier {x,} has been changed,
and even the sample size is ditferent. We therefore propose to use a version based on the fitting
procedure itself. with the same sample size n. to be called self-consistent prediction. Often, it leads
to the identical results as the leave-one-out approach, giving the latter an a posteriori justification.

Assume ¢ is the fitted fur-tion. [ts value at a point x € R? depends on the observed data (x;, yi),
t = 1.....n and on some parameter(s) A (for example. the Lagrange multiplier in the case of splines,
or the bandwidth on the smoother):

GIX) = g(XIX)e oo Xy Yler s Yns A (5.3)°
We define the self-consistent predictor j, of y, at x, by the property that
G = PIX X e e e X Yl o Y Pis Yidle - Yna A). (5.4)
Example: Linecar fits. ;\ssmno.tho fitted value is linear in the y,:

Bo=g(x) =Y hay (5.5)
l

where the coeflicients h; do uot depend on (yy,....y,). but they may depend in any way on the
other data. Then ile self-consistent predictor is defined by

b= huidi + Y hayts
r#i

and it is easy to verify that the fitting error and the residual of the self-consistent predictor are
related by

Yo~ Jo = (1= h)yi = Gi)- (5.6)
For later use we note the following consequence of this relation:
h,:
gi = § = = ; — Ji). 5.7
U] 1_hn_(y‘ gi) (5.7)

Note that h,; is the self-influence on the (th observation on its own fitted value, that is the change
induced in the latter by a unit change in the former. The reciprocal of the self-influence h;; might
be taken as the formal definition of the effective bandwidth (or, perhaps more accurately, of the
effective number of degrees of freedom) of the smoother at this point.

It is heuristically plausible that for “reasonable” non-linear fitting procedures a similar, approxi-
mately linear relation will hold: in specific cases it may be possible to derive the exact reiationship.
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Therefore, the misfit, if suitably scaled, can be used as a surrogate for the prediction error. For the
moment, we shall continue the argument for linear smoothers.

In the backfitting process the smoothers are applied separately to the separate projections, with
possibly different smoothing parameters A;. It is relatively straightforward to determine the coef-
ficients of self-influence h,,, for the individual univariate backfitting smoothers.

However. we need to determine the overall self-influence dy; of y; on g(x,). This is much more
difficult; we are going to give an argument that the approximate relationship between the two is
given by
4, Rj i

—_— = —_— 5.8

| - ([“ XJ: 1 - h,]',',‘ ( )
A rigorous proof is still outstanding, but [ believe the formula is asymptotically accurate for small
self-influences. The empirical evidence suggests that it is too optimistic (i.e., the actual d;; tend to
be larger).

We shall write for short ¢(/) = ¢g(x,) and ¢,(¢) = gj(a}"x,-); a minus sign as in g,(—t) shall denote
the value at the ith point computed by self-consistent prediction leaving out observation y;.

The solution g is a fixed point of backfitting: smoothing y; — g(7) + g;(¢) restores g;(z). If at this
fixed point we do a corresponding cross-validating smooth, omitting the ith observation, equation
(5.6) gives

(o = gl + 9,00 = g,00) = (1= hy ) {{yi = g(8) + 9;(3)] = g;(=1)} (5.9)

or, with r; = y, — ¢{¢) from (5.7}

. : R .
{/AI([)_!/_](—'): #T,‘. (-’).10)
7.8

If the self-influences /1, ,, are small. the changes will superiinpose linearly. If we sum (5.10) over j
and take (5.7) into account. we obtain approximately

. . (l,‘, _ hj,,',' )
gloy—ygyl=1) = T———(—l;r' —zj:(m]—:) T (5.11)

which is the relation announced in (3.3).

Thus. if we want to minimize the cross-validated prediction error, we should minimize
2
Yi — g(xi))
—_— 5.12
Z ( I —dy (5-12)

by varving the paranieters A, in (3.2). Note that for fixed smoothing parameters A; the d;; are
fixed.

For the sake of reducing the technical complications, one might prefer to replace the value d;; in
(5.12) by the average of d;; over i (sometimes called “generalized cross-validation™). It may actually
be preferable to average the scores n,; = d,,/(1 — d;;) rather than the d,; themselves. At the same
time, such averaging seems to improve stability (robustness) of the procedure.
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-

More generally, taking standard robustness considerations into account, one might replace (5.12)
by an expression of the form
¥i — 9(x;) .
Z“"’(s,(l—dn))' (5.13)

where p is a convex svinmetric function, while s; and w; are weight and scale factors whose precise
specification at the moment must be left open.

Friedman and Stuetzle used local straight line smoothers rather than splines, there were quick
and dirty computational shortcuts (instead of an expensive full minimization. they would take the
best out of three values), and there clearly was no intention to iterate the backfitting process to
death. But essentially they applied cross-validation to their backfitting smoothers. In our case and
terminology this amouuts to adjusting the smoothing parameters A, by minimizing

X - 2 2
ye — 9(x) + g,(alx,) - grev(alx,) yi ~ g(x;) .
Z ( x> z,: 1=k, (5.14)

- L—h,.,

separately for each j during the backfitting process. It is not clear whether such a procedure
converges at all. But it is evident from (5.8) that the self-influences used by this procedure are
systematically too small (on average by a factor comparable to the number m of ridge functions),
and thus the result will be biased rowards overfitting. It remains to be seen how serious this bias
can be.

Above. to fix the idea. we had used smoothing splines. This does not mean that I advocate to
use them for PPR. Despite their conceptual elegance, smoothing splines have some unpleasant
properties. They are expensive to compute, and if the abscissae are irregularly spaced, they tend
to become unstable {not onI_\'inunorically). The tentative recommendation is to use a variant of
smoothing splines with a smaller number of fixed, more evenly spaced knots. The search for other
good smoothers that can be characterized in terms of a manageable minimum principle is wide
open.

[ shall briefly mention an unsatisfactory aspect of a rather general nature. One should not have to
worry about smoothness explicitly: at least in principle, the prediction error should be all that is
needed. Any roughness penalty is based on the unwarranted assumption that the best predictors
are furnished by some sort of low-pass filters. That is, high-frequency fluctuations are regarded
as noise to be filtered out. while low-frequency fluctuations are to be modeled as structure. In
defense of smoothness in the coutext of PPR, one might however adduce that structure with a
high spatial frequency is practically linpossible to find, and it manifests itself only in an extremely
narrow angular range of projection directions.
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