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ABSTRACT

The goal of this investigation is to design minimum

weight arch structures which span the distance between two

points in two-dimensional space. An arch of unknown shape and

variable cross-sectional width is modeled as a series of

straight bar-beam elements. Finite Element Methods are used

to compute the stresses in each element. Automated Design

Synthesis (ADS) software is then used to vary the slope of

each element and the cross-sectional width to prevent the

yield stress of the material from being exceeded as ADS

minimizes the arch volume to arrive at the minimum weight

structure. Results are presented for a number of different

loadings and boundary conditions.
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I. INTRODUCTION

A. MOTIVATION

Since the beginning of recorded history, the arch has been

used in the design of a wide range of structures. The arch

was initially developed as a more reliable and efficient way

of building a portal in a wall comprised of bricks or stone

blocks. Over the years, it has been applied to an ever

increasing number of load bearing structures. A significant

reason for its popularity with architects and engineers is the

aesthetically pleasing form of the arch. Many designers still

enjoy the idea of an ordinary person being moved to wonder how

a structure manages to stand with so little visible support.

The development of the digital computer in the latter half

of this century placed an incredibly powerful tool in the

hands of designers who previously had to rely mainly on

experience to select the best arch design for a given

application. Using the high speed calculation capability of

the computer, a designer could now use the techniques of

numerical analysis to approximate the solution of a complex

differential equation with a high degree of accuracy. These

techniques could be usea to model a structure under loading

and obtain the optimum design. The arch has been the subject

of several such studies.
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In 1976, Farshad (ref. 1] derived two governing nonlinear

partial differential equations for statically determinate,

hinged-hinged arches. The system's total potential energy,

modified by several objective functions through the use of

Lagrange multipliers, was minimized in regards to design and

state variables to achieve optimality and equilibrium. For an

arch with specified span and loading, the nonlinear systems of

equations for optimal thrust, minimum length, and minimum

volume were presented, but not solved.

In 1980, Rozvany et al. [ref. 2] used the Prager-Shield

criteria to determine the optimal shape of hinged-hinge

frames. His frames consisted of two rigidly connected

inclined beams with a point load applied at mid-span. He

concluded that, for a single load condition, the optimal

structure developed either bending only or axial forces only

in the entire arch. When the ratio 4L/D, where L is the

length of the span and D is the constant depth of the cross-

section, is greater than eight, only axial forces develop. In

this case, the optimal height of the arch is L/2. When 4L/D

is less than eight, only bending develops and the optimal

structure is a straight beam. The width of the cross-sections

varied linearly from support to axis of symmetry. The author

also found that although for a single system of point loads,

the optimal arch consisted of straight segments, curved

segments occurred if several alternative systems of point

loads were considered.
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Also in 1980, Lipson et al. [ref. 3] conducted a numerical

study using an automated design routine to determine an

optimal arch design with the arch shape and cross-sectional

dimensions allowed to vary. He modelled a uniformly loaded

parabolic arch as a system of straight segments with thin-

walled, rectangular cross-sections. When he studied arches of

constant depth and width, the wall thickness determined the

optimal shape for minimum weight. The resulting shape was

found to be a parabolic curve with a height of 0.342 times the

span length.

In 1988, Ang et al. [ref.4] investigated the optimal shape

of plastically designed non-funicular arches under a uniformly

distributed load. The problem was solved by parameterizing

the unspecified arch axis using spline functions and employing

a smoothing function to approximate the non-smooth objective

function (arch weight). The arch considered had a rectangular

cross-section of variable width and constant depth. It

carried a uniform load and its supports were either hinged-

hinged, hinged-clamped, or clamped-clamped. The optimum shape

of the arch was found to be a parabola with a height of 0.433

times the span length, which appears to disagree with Lipson's

results.

In 1990, Charles Scott McDavid of the Naval Postgraduate

School [ref. 5] investigated the optimization of circular

arches subjected to various loading and boundary conditions.

He modelled the arches as systems of straight segments with

3



constant depth and variable width. He concluded that the

bar/beam model was a viable technique in the approximation of

arch structures and that the more statically indeterminate

an arch structure was, the more efficient it was under

identical loading. Lieutenant McDavid also proposed several

further topics of research in this areas. One of the

recommended topics was taken up Margaret Anne Menzies in 1991

[ref. 6]. She investigated circular arches with varying depth

and width. She also validated the bar/beam model as an

approximation of an arch, but was limited by computer

restrictions to a relatively small number of straight

segments. This investigation looks into another area

suggested by Lieutenant McDavid by allowing the radius of

curvature (shape of centroidal axis) to be one of the design

variables.

B. PROBLEM STATEMENT

The arch considered by this investigation has a rectangular

cross-section with constant depth and varying thickness. The

radius of curvature is allowed to vary to obtain the optimum

shape of the arch. The distance spanned in the horizontal and

vertical directions will be specified. The cross-sectional

dimensions are assumed to be small with respect to the radius

of curvature, which implies that the centroidal axis and the

neutral axis coincide.
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The governing equations for the behavior of the arch are

the beam equilibrium equation:

(Elv')" = P.(a) (1)

and the bar equilibrium equation:

(AEU')" -P,(a) (2)

The prime superscript indicates a derivative with respect to

the independent variable,s. The variables in the equations

are defined as:

E = Young's Modulus

I = Cross-sectional Moment of Inertia

A = Cross-sectional Area

v = Lateral displacement

u = Axial displacement

Py = Lateral loading

P. = Axial loading

s = independent variable

The arch is approximated by a system of straight elements.

The local displacements are used to generate the internal

pseudo stresses by applying the virtual load techniques

described by Ding and Esping [ref. 7]. When the stress

distribution is known, the volume of the arch is minimized to

obtain a shape that keeps the developed stresses below the

maximum allowable stress.

5



The purpose of this study is to minimize the total weight

of an arch spanning a specified horizontal and vertical

distance under a variety of loading conditions. The material

of the arch is assumed to be linearly elastic, homogeneous,

and isotropic. The slope of the arch and the cross-sectional

width at each node are allowed to vary to obtain the optimum

(minimum weight) structure. Automated Design Synthesis

software [ref. 8] is used to carry out the optimization.

6



II. PROBLEM FORMULATION

A. PROBLEM STATEMENT AND ASSUMPTIONS

As stated previously, the goal of this investigation is to

design a minimum weight arch which spans a pre-defined

distance in two-dimensional space. The radius of curvature

and cross-sectional width of the arch are allowed to vary to

obtain the optimum shape. The following assumptions are made

to simplify the problem:

"* The arch material is homogeneous, isotropic, and linearly
elastic. This implies that the minimum volume arch is
also the minimum weight arch.

"* The arch is modelled as a series of straight bar-beam
elements whose behavior is governed by equations 1 and 2.

"* Failure is assumed to occur when the yield strength of the
material is exceeded.

B. MATHEMATICAL MODEL

The arch spans a distance in two-dimensional space from

point A to point B (see fig. 2.1). The number of elements,

NEL, the cross-sectional height, h, and the horizontal

distance spanned by each element, DX, are specified. DX is

constant and is defined as:

DX = AX = L/NEL (3)

where L is the distance between A and B in the horizontal

7



direction.

Y

A AY.;: X

-L
Figure 2.1: Arch Model

The design variables in this case are the cross-sectional

base, b1 , at each node and the slopes, SLPi, of the first NEL

- 1 elements. SLPi is defined as:

SLPI = (),= (YI 1 - Y)/D (4)

where Yi÷: and Yi are the vertical coordinates of the nodal

points at the ends of the ith element. Since the structure

must rise a distance H, the slope of the last element is not

a design variable, but is fixed by whatever values the slopes

of the previous NEL-1 elements take.

The base dimension from one element to an adjacent element

maintains smooth piece-wise continuity, as does a plot of the

8



spatial coordinates of the nodal points. The resulting

elemental shape is a three-dimensional trapezoid (fig. 2.2)

whose volume is determined by multiplying the average base and

the height with the length of the element. The elemental

length, li, is defined as:

11 = ýDX2 + (SLPj * DX) 2  (5)

Therefore, the volume of the ith element is defined as:

Volumej = b.*• * h * ij

where?

bove = (bi., + bi)/2

bi = nodal base dimension (6)

h = nodal height dimension

=i = elemental length

i = it" element

Figure 2.2: Elemental Shape
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The volume of the entire arch is obtained by summing the

individual elemental volumes.

C. OPTIMIZATION PROBLEM

The goal of this investigation is to obtain a minimum

weight (volume) arch which maintains a stress distribution

which does not exceed the yield strength of the material. The

volume of the arch is defined as:

maU NEL
volume= Vol umej = Ebee * h* 1 (7)

This equation can be rewritten as:

JJL
Volume = h * DX * (E beve * V3. + SLPJ2 ) (8)

I-1

The objective function for the optimization problem is defined

as:

iIZ
o0 87 beve * V1 + (SL.) 2  (9)

Since h and DX are constant, minimizing the objective function

will minimize the arch volume.

Constraints are imposed upon the objective function and

design variables to ensure the applicability of the governing

equations and to prevent failure by yielding. The strength

constraint can be simply stated as follows:

10



a j -s y
or in normalized form:

-7 _ 1.0 : 0.0
y (10)

where:

oj = maximum stress at i node

Sy = material yield strength

The stress distribution in the arch is obtained by Finite

Element Methods. This process is described in Chapter IV.

The constraints placed on the base dimensions of the arch

are used to ensure the validity of the bar and beam

equilibrium equations (equations (1) and (2)). Limiting the

base relative to the constant height prevents the structure

from behaving like a shell ar a deep curved beam. The

following limits are imposed through the use of the ADS side

constraints on bi :

0. 1*h :sbj :5 3 *h 1

It is also important to choose a cross- sectional height

dimension that is small relative to the length of the entire

structure.

One limit on the cross-sectional dimensions that was not

considered by this investigation is that imposed by the

requirement for elastic stability. The obvious importance of

avoiding failure by buckling is an interesting area for future

research.

11



III. OPTIMIZATION ANALYSIS

The computer optimization is performed by ADS, a general

purpose numerical optimization program containing a wide

variety of algorithms. The program minimizes one function,

the objective, subject to bounds imposed on the design

variables by constraint functions. The solution of the

general problem is separated into three basic levels which are

strategy, optimizer, and one-dimensional search. For this

constrained minimization problem, the ADS user's guide [ref.

8] recommends a Sequential Linear Programming strategy, a

Modified Method of Feasible Directions optimizer, and a Golden

Section Method one-dimensional search.

A. STRATEGY

Sequential Linear Programming (SLP), linearizes nonlinear

objective and constraint functions, then obtains a solution to

the approximation of the problem by linear programming methods

(see fig.3.1). The problem is linearized again about the

design point yielded by the solution to the previous

approximation and resolved. This process is repeated until a

precise solution is obtained [ref. 9].

The nonlinear functions are linearized through the use of

a first-order Taylor Series expansion in the following manner:

12



finimize: F(2) - F(2.) + VF(2o) * 69

subject to: gi (2o) + Vg (4o) * 82:r 0 (12)

where: 82 = X - -0

j = j I constraint

The zero subscript identifies the point about which the Taylor

series expansion is performed. At the initial design, the

objective and constraints are linearized to give straight line

representations of the functions.

In an under-constrained problem like this one, where there

are fewer active constraints than design variables, this

method sometimes performs poorly. This occurs because the

linear approximation may be unbounded. This problem is dealt

with by imposing move limits on the linear approximation as

shown in figure 3.1. This ensures that the optimum is

eventually reached within a tolerance of the move limits. In

practice, these move limits are reduced during the design

process so that a solution is found with the desired accuracy.

SLP tends to converge rapidly to a solution, but while the

solution of the linear problem is near the nonlinear optimum,

it is in the infeasible region.

B. OPTIMIZER

The Modified Method of Feasible Directions for constrained

minimization is used to solve the approximate optimization

13
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Figure 3.1: Sequential Linear Programming

sub-problem (eq. 12). In this method, a search direction

vector is first found. The vector containing the design

variables is then updated by moving in the direction of the

search vector in the following manner (refer to fig. 3.2):

14



q ~+ Sq(13)

The scalar a* defines the distance moved in the direction of

the search vector in design variable space and q represents

the iteration number. From the initial design, the objective

function is moved in the direction of steepest descent in

design variable space. This will continue until a constraint

is encountered. Once this happens, a new search direction is

obtained by solving the sub-problem:

Maximize: -VF(2) *

Subject to: Vg() • j JEJ

where: (14)

2 = vector whose elements are the design variables

F = the objective function

S= the search vector

J = number of active constraints

The search direction will follow the constraint, but will

allow the design to leave the constraint boundary if the

objective function can be further reduced. If the scalar

product of the gradient of each critical constraint with the

search vector is less than zero, the search vector is moving

away from the currently active constraint. This constraint is

then dropped from the set of active constraints. If the

search vector is the null vector, or numerically small, the

optimization is terminated because this indicates that the

Kuhn-Tucker conditions for optimality have been met [ref. 9].

15



XI ~

TNV OPaV

Figure 3.2: Modified Method of Feasible Directions

C. ONE-DIMENSIONAL SEARCH

The scalar a* in equation (13) is found by the Golden

Section Method. Basically, this determines how far the

optimizer will search in the direction of the search vector.

The one-dimensional search attempts to find the optimal value

16



of a* which will result in the minimum value of the objective

function. It accomplishes this by progressively bracketing

the minimum of the function by comparing the values of the

function at smaller and smaller limits.

D. ADS PROGRAM PARAMETERS

Reference 8 contains a table of ADS program parameters.

It is possible to change these parameters from their default

values with the first call to ADS using an INFO value equal to

-2. The purpose of modifying these parameters is to try to

obtain a better optimal design by "fine tuning" the program.

For instance, modifying the constraint tolerance, CT, can

ensure that the active constraints will be closer to the

desired value. However, this can also mean that it will take

much longer for the solution to converge. The only parameter

modification done in this investigation was to inhibit the

auto-scaling function of ADS.

17



IV. STRESS ANALYSIS

In order to accomplish the goal of designing a minimum

weight arch, a FORTRAN computer was used to evaluate the

objective function and constraints and to invoke the ADS

software. The strength constraints require that the stress at

each nodal point remain below the yield strength of the

material. Determining the stress distribution in the arch is

a complex problem, because of the need to be able to analyze

a statically indeterminate structure. Finite Element Methods

are used to calculate the displacementj at each nodal point.

The displacements are then related to the nodal forces and

moments by the direct stiffness method. Once the forces and

moments are known, the stresses can be evaluated with a

knowledge of the cross-sectional aimensions.

A. STRESS DEVELOPMENT

For the purposes of this investigation, the arch is

assumed to fail if the total stress at any nodal point exceeds

the yield stress of the material. The total stress is defined

as the sum of the normal stresses due to bending and axial

loading.

18



a-= bI + IQaM
where:

at: = total normal stress (15)

ab = normal stress due to bending

a = normal stress due to axial load

The absolute values of the bending and axial stresses are used

because at either the top or bottom extreme fiber the stresses

will be additive. In other words, the yield stress is assumed

to be the same in compression and tension. There will be

shear stresses developed in the arch, but the geometric limits

imposed by the side constraints ensure that these stresses

remain negligible (see Appendix A).

To calculate the two normal stress components, the arch is

modelled as a series of straight elements, which can be

considered to behave as beams to calculate the bending

stresses and as bars to calculate the axial stress. The

bending stress in an element is defined as:

where:

M = bending moment (16)

c = distance from centroidal axis to extreme fiber

I = Moment of Inertia of cross-section

The moment, M, is calculated by:

19



I = EIvI"

where:

E a Young's Modulus

v - lateral displacement

By substituting equation (17) into equation (16) the following

equation is obtained:

a= EcV" (18)

In a similar manner, the axial stress is calculated. The

stress due to axial loading is defined as:

*A

where: (19)
F = axial load

A = cross-sectional area

The axial force, F, is determined by the following equation:

F = AEu'

where: (20)

u = axial displacement

By substituting equation (20) into equation (19), the

following result is achieved:

an = EU1 (21)

Combining equations (18) and equation (21) results in:

at = E(cv"1 + U') (22)
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The approximate values of the lateral and axial

displacements are obtained through the use of the Galerkin

Finite Element Method. With the use of these values, the

stresses at each nodal point can be calculated.

B. FINITE ELEMENT BEAM EQUATION DEVELOPMENT

The Galerkin Finite Element Method is used to transform

the fourth-order differential equation governing static

displacement of the beam into a system of linear algebraic

equations. In order to maintain continuity of slopes and

displacements from element to element, a family of cubic shape

functions is introduced [ref. 5 and ref. 6]. An approximate

solution for lateral displacement is defined as:

v V=070

where:

v = exact solution in continuous space (23)

S= approximate solution in discrete space

g = vector containing shape functions

S= vector containing lateral displacements and slopes

The next step is to form a measure of the error of the

approximation, or residual:

R = [EI•l] - py(s) (24)

where py is the lateral load and s is the independent

variable. Substituting equation (23) into equation (24)

yields the following equation:
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R = [EXI(g'i) "1" - p(a) (25)

The residual can be minimized if:

-(s) d 5 d (26)

where the quantity on the right hand side of the equation is

the null vector. Substitution of equation (25) into equation

(26) gives the following result:

f?[EX(VV'"I]"das - JiiPy(a)ds = 0 (27)

Integration by parts is performed twice on equation (27),

resulting in:

+ f (M"Er (gi) 'Ida - f~ ~ 0 6(28)

where 1, indicates an evaluation at the boundary points of the

structure. Since the displacement vector is a constant,

equation (28) can be rewritten as:

NfEZ•T)"] •iB- (h'EI(• T) "•I'i

+ (40 IEX "da - =, (a) d(29)

From the beam equilibrium equation, the shear force, V, is

defined as:

V - EyIV"' (30)

and the moment, M, by:
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M = EIv" (31)

Therefore, the boundary term load vectors are defined as:

iV'= IEI(W7)",]i'IB (32)

and:

R•=(1 'Er( OP) "V•IB (33)

A system stiffness matrix is defined as:

TB = fO( ,,E(07),"do (34)

and a system force vector by:

Fb = fj&>, (s) do (35)

Substitution of equations (32) through (35) into equation (29)

yields the following system of linear equations:

01B - RIB + kBV- f• (36)

If a load vector of internal and external applied loads is

defined as:

/•B - /b + 'RI B- VID (37)

equation (36) reduces to:

KBVf -F-2 (38)

The global bending stiffness matrix is constructed from the

union of the elemental bending stiffness matrices and the

global bending force vector is constructed from the union of

the elemental bending force vectors.

23



C. FINITE ELEMENT BAR EQUATION DEVELOPMENT

The development of the Galerkin Finite Element Method for

the bar equilibrium equation is done in a manner similar to

that for the beam equation. However, since the bar equation

is a first-order differential equation, a family of linear

shape functions can be used to maintain continuity of

displacement from element to element [ref. 5 and ref. 6].

Once again, an approximate solution for the axial

displacement, u, is formed as follows:

u

where:

u - exact solution in continuous space (39)

C = approximate solution in discrete space

= vector containing shape functions

C = vector containing axial displacements

The residual is defined as:

R(s) = [AE ' + p,(a) (40)

The residual can be minimized if:

f[R(s) I do = 0 (41)

Substituting equation (40) into equation (41) results in the

following equation:

LRA~V)''a+ f~ &p(s) ds =6(42)

Unlike the beam equation development, only one integration by

parts is performed to yield:
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AEOPM fD [AE 2O)'/I do + fDý, (a) do = -0 (43)

where ', indicates an evaluation at the boundary points of the

structure. Since the axial displacement vector is a constant,

equation (43) can be rewritten as:

IV(AEi* T) 101 - f (A) I[AE(FiT)'] d6O + fjik = -0 (44)

From the bar equilibrium equation, the axial force, F, is

defined as:

F = AEuf (45)

Therefore, the boundary term load vector vectors are defined

as:

=E T)' (46)

A stiffness matrix is defined as:

jA= f'9'A()I a(47)

and a system force vector by:

P. =f~t, (s do(48)

Substituting equations (46) through (48) into equation (44)

yields the following equation:

-5-kAll+F 'P (49)

By defining a new load vector as:
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F A = F1 + (50)

equation (49) reduces to:

KAa FA (51)

The global axial stiffness matrix is constructed from the

union of the elemental axial stiffness matrices and the global

axial force vector is constructed from the union of the

elemental axial force vectors.

D. THE ELEMENTAL STIFFNESS MATRIX

The global Galerkin FEM stiffness matrices in equations

(38) and (51) are constructed from the union of elemental

axial and bending stiffness matrices. A single beam element

has four degrees of freedom, which yields a 4x4 elemental

stiffness matrix. A single bar element has two degrees of

freedom, which yields a 2x2 elemental stiffness matrix. These

elements can be combined into a single bar-beam element (fig.

4.1) which has six degrees of freedom [ref. 5 and ref. 6].

3CA

Figure 4.1: Bar-Beam Element - Degrees of Freedom
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This results in a 6x6 elemental stiffness matrix. The

elemental displacement vector can be expressed as:

($') = 8±' 82 ', 8 8, ,86)'

where for the i t element:

,' = axial displacement at local node 1

82" = lateral displacement at local node 1 (52)

83•' = beam slope at local node 1

64 1= -. ial displacement at local node 2

5 i'= lateral displacement at local node 2

at" = beam slope at local node 2

The elemental force vector can be expressed as:

(e4,)T <f 1 •', f 2
4 1if 3

4 1,, 1 f5 /f5 , fV >

where for the i • element:

f14' = axial force at local node 1

f 24' = lateral force at local node I (53)

f 3 ' = moment at local node 1

f4J = axial force at local node 2

f5' = lateral force at local node 2

f44' = moment at local node 2

Therefore, the combination of the Galerkin bar and beam

equations yields:

= P' (54)

where the elemental stiffness matrix takes the following form:
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AE 0 AE 0FT,

0 1 2 AE 6 -E 0 -12 E- 61 1 3 i1 2 i1 3 1 2

0 6 -E 4 E 0 -65 E 2 Er
-- -12 J.,2 1

AE AE (55
0 0 - 0 0

0 - 1 2 EI _6 -E! 1 2 Er -6 EX
1•3 1 j2 1 ?3 i 2

o 6AE,2 -r 0 -6 -- 4 L1- 1i 12 14

It is apparent from the form of the elemental stiffness matrix

that the bar and beam have uncoupled behavior.

E. COORDINATE TRANSFORMATION OF THE ELEMENTAL SYSTEM OF

EQUATIONS

Each element in the arch will have a unique orientation

with respect to the global x and y axes. In order to solve

the global system of equations, it is necessary to transform

each elemental Galerkin equation into global coordinates. The

global reference coordinate system is defined as the

horizontal and vertical axes of the entire arch, Each element

makes an angle ai with the horizontal axis and an angle 131 with

the vertical axis.

The local displacements and forces (indicated by prime

superscript) are defined as follows:
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a, 81,'COS(G,) + 82'COB(P,)

82" / -8 1 jCOOB(PI) + 821COS(al)

63 1/83 j(56)
841 8,'COS (a,) + as.COe(PI)

85.1 V -8 4 'coe(P,) + 851kos(G,)

and:

if1 . if1 'COS(G,) + if2 'COB(P.J)

f2.1' = -f 1 'COS(P,) + if2 1 coS(G,

f3 1f3 J(57)
f4 .1' ="O if'o(a,) + if5 1cos(pj)

f5.1 J -f 4 'cos(PI) + f5 .'coe(G,)

Therefore a transformation matrix can be defined as:

COB (a,) Coo (PI) 0 0 0 0
-COSB(pi) COB (G,) 0 0 0 0

rl 0 0 1 0 0 0 (58)
0 0 0 Cooe(G,) COS (P,) 0
a 0 0 -COS (p,) COBs(4j) 0

0 0 0 0 0 1.

This reduces equations (56) and (57) to:

5.1' =P6,15. (59)
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and:

• =(60)

where:

(51) . <81,82 1,83 , 8j ,8j,86 > (61)

) = < '•,£ 2 ',f 3  ', fsj1,f 6  > (62)

The transformed elemental stiffness equation becomes:

P'l's, =-fill (63)

Multiplying both sides of equation (63) by the inverse of the

transformation matrix, which is an orthogonal matrix, yields:

(-)2TP'(J)5I = lj (64)

where the elemental stiffness matrix in terms of global

coordinates is defined as:

' = (pJ)2~ii(•~i) (65)

,,\,

Figure 4.2: Coordinate Transformation
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F. SOLUTION

The global stiffness matrix and global force vector are

constructed from the union of the elemental stiffness matrices

and elemental force vectors, which yields the following

equation:

TA=
where:

K= global stiffness matrix (66)

A= global displacement vector

P = global force vector

By multiplying both sides of the equation by the inverse

of the global stiffness matrix, the global displacement vector

can be calculated. The global displacements are then

transformed back into the local displacements and can be used

in conjunction with the elemental stiffness matrix to

calculate the local forces:

'= p' (67)

These local forces and bending moments are used to

calculate the stress at each nodal point. The stresses of

internal global nodal points are averaged since local nodal

point 2 of the it' element is the same as local nodal point 1

of the (i+l)th element.
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V. PROGRAM DESCRIPTION

The Fortran 77 code originally used in references 5 and 6

to analyze circular arches was modified to analyze the non-

circular arches of interest in this study. A copy of the

program is included in Appendix B. The program reads

information from an input file which provides the following

user-supplied data:

L = horizontal distance spanned by arch

H = vertical distance spanned by arch

HGT = depth of cross-section

YOUNG = Young's Modulus

YIELD = yield strength

NEL = number of elements

ISTRAT = ADS parameter which designates strategy

IOPT = ADS parameter which designates optimizer

IONED = ADS parameter which designates one-d search method

IPRINT = ADS print control parameter

IGRAD = ADS parameter which designates method of gradient
calculation

DVBG = initial value of design variable

DVLO = lower side constraint on design variable

DV_UP = upper side constraint on design variable

CLAN = node at which concentrated load is applied

FX = concentrated horizontal force (positive to the right)
in pounds
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FY = concentrated vertical force (positive upwards) in
pounds

FM = concentrated moment (positive counter-clockwise) in
pound-inches

FA = distributed load in pounds per inch

BX = boundary condition on horizontal displacement at 1,
first node, or 2, last node (= 1 - fixed,= 0 - free)

BY = boundary condition on vertical displacement at 1,
first node, or 2, last node (= 1 - fixed,= 0 - free)

BM = boundary condition on rotation at 1, first node, or 2,
last node (= 1, - fixed,= 0 - free)

LABEL = string character identifying particular case study

The program then utilizes several subroutines to perform the

FEM analysis and call the ADS program to perform the

optimization.

An outline of the program, ARCHOPT, and its subroutines is

provided in fig. 5.1. The first subroutine called by the main

program is OPTIMIZATION_TOOL, which establishes the ADS

parameters before the first call of the ADS program. The

first call serves to override some of the default parameters

in order to "fine-tune" the program. After ADS is called,

OPTIMIZATIONTOOL calls subroutine EVAL to evaluate the

objective function and constraints, which are functions of the

design variables.

Subroutine EVAL calls subroutine ARCHSTRESS, which in

turn calls subroutines FORM and FORCEVECTOR. The latter

subroutines are used to form the global stiffness matrix and
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the global force vector, respectively. Subroutine BNDRY

imposes the user-supplied boundary conditions by modifying the

stiffness matrix and the force vector. An equation solver

from the IMSL library, L2ARG, is used to solve the Galerkin

FEM equation by matrix inversion. Once the global

displacements are known,they can be used to calculate the

nodal stresses, which is done in subroutine STRESS. Once the

design constraints are evaluated for the initial design, the

problem is returned to ADS, where an updated design is chosen.

This process continues until the solution converges.

Once the termination criteria for optimization is

satisfied, the main program calls subroutine ARCHOUT, which

creates an output file, ARCHOUT, which contains the problem

parameters, the optimized design, and the arch volume. Copies

of the output files for all case studies are provided in

Appendix D.

The methodology of the program was thoroughly validated in

references 5 and 6. Once the modifications were made, the

program was used to analyze several statically determinate

structures (i.e. a cantilever beam) to verify that the

approximate values of stress and displacement came close to

the exact values. The results confirmed that the FEM analysis

provided an excellent approximation, with less than 0.8% error

for a twelve element model of a cantilever beam with a

lateral concentrated load at the free end.
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VI. CASE STUDIES

The optimized designs for eleven different cases of

loading and boundary conditions are presented. Cases (1)

through (4) are hinged-hinged arches which span equal

distances in the horizontal and vertical directions. Each

case has a different loading. Cases (5) through (8) are

arches which span equal horizontal and vertical distances, but

which have different boundary conditions. Cases (9) and (10)

are hinged-hinged arches which span different distances in the

vertical direction. Plots of arch shape, base dimensions, and

stress are provided for each case. It should be note that the

distributed loads are applied in a direction normal to each

element. This would closely approximate a situation where the

arch was under hydrostatic, or pressure loading. Twelve

elements were used to model the arch in all cases. This

implies that there are thirteen nodal points and thirteen

stress constraints. A Young's Modulus of 30,000,000 psi and

a Sy of 52,000 psi are used in all cases. The output files

from program ARCHOPT are presented in Appendix C.
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A. CASE 1: HINGED-HINGED ARCH WITH DISTRIBUTED LOAD

This design has nine active stress constraints and

thirteen active side constraints (lower limit on base). The

stress due to axial loading is higher than the bending stress

at all nodes. This indicates that the minimum area cross-

section is better able to withstand an axial load than a

bending moment. A predominantly axial stress distribution is

more efficient since the entire cross-section is stressed to

the same degree. In the case of a bending stress

distribution, the material has to be strong enough to

withstand the extreme fiber stress, which means that the

internal part of the cross-section will be stressed below the

yield strength.

"* H = 32.0 inches

"* L = 32.0 inches

"* h = 1.5 inches

"* Distributed load = -100 pounds/inch

"* Volume = 10.324 cubic inches

100 1

Figure 6.1: Case 1 - Initial Shape
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Case 1: Arch Shape and Width
32 -0.3

_28-

24-
40 -0.2 1.

S6 ... .. . 0.15

12-0-0
u 8-

>I -0.05

0 - 0

0 4 8 12 16 20 24 28 32

X-Coordinate (in.)

[-'- Y-CoL -- Base

Figure 6.2: Case I - Arch Shape and Width
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Case 1: Stress

55
50

.' 45-

35

02 3 4 5 7 8 9 10 11 1 13

Node

I--Axial Strew --- Bending Stress -~-- Total Stress

Figure 6.3: Case 1 - Stress
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B. CASE 1A: HINGED-HINGED BEAM WITH DISTRIBUTED LOAD

This case is presented for comparison to Case 1. The

slopes of the elements are not allowed to vary, so the arch

remains a straight beam. There are seven active stress

constraints and no active side constraints. The bending

stresses dominate and the axial stresses are negligible. The

volume of this arch is more than six times greater than that

for Case 1.

"* H = 32.0 inches

"* L = 32.0 inches

"* h = 1.5 inches

"* Distributed Load = -100 pounds/inch

"* Volume = 68.387 cubic inches

Itoo

Figure 6.4: Case 1A - Initial Shape
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Case 1 A. Arch Shape and Width
32 :1.5

.•. 28
S-1.25

S24-

zo 2
S18 0.75

VM
. 120 -0.5 000

U 8-

> "I 4- -0.25

0 4 8 12 16 20 24 28 32
X-Coordinate (in.)

--m- Y-Coor n-- m

Figure 6.5: Case 1A - Arch Shape and Width
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Case IA: Stress
60

55

-! 50

- 45

u 440

U) 35-

30-

25-25 2 3 4, 5, , 7, 8 9 1o0 I'1 2 13
Node

-- Bending Stress

Figure 6.6: Case 1A - Stress
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C. CASE 2: HINGED-HINGED ARCH WITH CONCENTRATED LOAD

This arch has a concentrated vertical load applied

downward at node 7. There are seven active stress constraints

and thirteen active side constraints (lower limit on base).

The arch has taken the shape of two straight lines meeting at

the center node. At eight of the thirteen nodes the axial

stress dominates.

"* H = 32.0 inches

"* L = 32.0 inches

"* h = 1.5 inches

"* Concentrated Load = 2000 pounds (downward)

"* Volume = 10.239 cubic inches

Figure 6.7: Case 2 - Initial Shape
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Case 2: Arch Shape and Width
32 0.3

21- 280.25

Z-24-

20.2

* 15- 0.15

0 z 0.1
0

S10.05

0 /

0 4 a 12 16 20 24 28 32

X-Coordinate (in.)

-. Gowt ".*- Bm

Figure 6.8: Case 2 - Arch Shape and Width
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Case 2: Stress
60

55-

15-

40-
35-

I 3' 4 5 is i lb 9 o l 1ý 63

Node

AMl SuM -*-- iBDm Sam. -•- Tomi Sim

Figure 6.9: Case 2 - Stress
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D. CASE 3: HINGED-HINGED ARCH WITH CONCENTRATED LOAD

This design has five active stress constraints and twelve

active side constraints (lower limit on base). The arch has

taken the shape of two straight lines meeting at node 7, where

the concentrated load is applied. Once again, this design

shows a preference for axial loading cver bending moments.

"* H = 32.0 inches

"* L = 32.0 inches

"* h = 1.5 inches

"* Concentrated Load = 2828 pounds (applied down and to the
right)

"* Volume = 10.842 cubic inches

Figure 6.10: Case 3 - Initial Shape
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Case 3: Arch Shape and Width
32- 0.3

S28- ý025

S24-

Z 20 0

0 04121

0.0

0 $

0 4 a 12 16 20 24 28 32

X-Coordinate (in.)

-an- Y.Coaid --o- Due

Figure 6.11: Case 3 - Arch Shape and Width
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Case 3: Stress
60
55-,
50-

•"35 1

S30

V) 20-
1 5-

5-1 2 3 4 ,5 8 7 8 9 10 11 12 13

Node

AIM Som ---* Smm-- TOMiS No

Figure 6.12: Case 3 - Stress
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E. CASE 4: HINGED-HINGED ARCH WITH CONCENTRATED MOMENT

This design has one active stress constraint and twelve

active side constraints (lower limit on base). The arch

assumes the shape of a straight line, which is the minimum

shape for a feasible design. The maximum base is at node 7,

where the concentrated moment is applied.

"* H = 32.0 inches

"* L = 32.0 inches

"* h = 1.5 inches

"* Concentrated Moment = 6000 pound-inches

"* Volume = 10.207 cubic inches

Figure 6.13: Case 4 - Initial Shape
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Case 4: Arch Shape and Width
32, 0.3

S24-

,o o•i

0 4 8012 16 20 24 28 32

X-Coordinate (in.)

Figure 6.14: Case 4 - Arch Shape and Width
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Case 4: Stress
60

50

130

20

10 -

I 2 
lb 

4 7 8 9 0 12 13

Node

Figure 6.15: Case 4 - Stress
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F. CASE 5: ROLLER-HINGED ARCH WITH DISTRIBUTED LOAD

This design has ten active stress constraints and twelve

active side constraints (lower limit on base). The arch has

assumed a nearly circular shape. In this case, the bending

stress dominates throughout the arch. It appears that the

arch has attained the maximum degree of axial loading that can

be achieved with these boundary conditions.

"* H = 32.0 inches

"* L = 32.0 inches

"* h = 1.5 inches

"* Distributed Load = -100 pounds/inch

"* Volume = 11.329 cubic inches

Figure 6.16: Case 5 - Initial Shape
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Case 5: Arch Shape and Width
32- .3

28 0025

24-

0.2

S1 4 0.05

0 4 8 12 16 20 i4 28 32

X-Coordinate (in.)

Y-CwW -*-- m

Figure 6.17: Case 5 - Arch Shape and Width
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Case 5: Stress
6o
55-

50-

35"

30-

S25-

20"

151= = = = ..

Node

-w AA Sam --- ak Sure TodS

Figure 6.18: Case 5 - Stress
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G. CASE 6: ROLLER-FIXED ARCH WITH DISTRIBUTED LOAD

This design has four active stress constraints and ten

active side constraints (lower limit on base). The bending

stresses dominated for the most part, but the axial stresses

are significant. The maximum base is at the fixed end, as

expected.

"* H = 32.0 inches

"* L = 32.0 inches

"* h = 1.5 inches

"* Distributed Load = -100 pounds/inch

"* Volume = 14.431 cubic inches

I0o % •1I,

Figure 6.19: Case 6 - Initial Shape
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Case 6: Arch Shape and Width
32 .. 0.45

2- ,28 .0.4

.,24 -0.35

Z 0-0.3 ;z

00.25

0 0.2

8 0 a -0.15

roi
0 4 a l• 2b 30io.05

X-Coordinate (in.)

-±-2o--i

Figure 6.20: Case 6 - Arch Shape and Width
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Case 6: Stress
60
55
50.

-45-

• 25-

M 20

15
10

1 4 5 1 0 1 1 s 1 2 13

Node

-a- AM SwM "- D Swm -- TOi Sim

Figure 6.21: Case 6 - Stress
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H. CASE 7: FIXED-FREE ARCH WITH DISTRIBUTED LOAD

Using the cross-sectional depth of the previous case

studies resulted in a design that consistently violated the

stress constraints at the nodes at and close to the fixed end

of the arch. Therefore a cross-sectional depth of 3 inches

was used. The resulting design has seven active stress

constraints and six active side constraints (lower limit on

base). The arch has taken the shape of a tapered beam with a

maximum base at the fixed end. The bending stresses dominate

and the axial loads are negligible. Because of the lack oC

support at the free end, the arch is unable to attain axial

loading in the elements.

"* H = 32.0 inches

"* L = 32.0 inches

"* h = 3.0 inches

"* Distributed Load = -100 pounds/inch

"* Volume = 72.614 cubic inches

Figure 6.22: Case 7 - Initial Shape
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Case 7: Arch Shape and Width
32 1.35

28- -1.24

-1.13

.,°• 24-1.02
20-0.91 *

. t6 -0.8

520.69
0 -0.56
0 a

-0.47
4-1 -0.36
00

X-Coordinate (in.)

-n-Y-C=Wr -- *- a

Figure 6.23: Case 7 -Arch Shape and Width

59



Case 7: Stress
60-

10-

30-

1 2 3 4 5 6 7 8 9 10 11 12 13

Node

Figure 6.24: Case 7 - Stress
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I. CASE 8: FIXED-FIXED ARCH WITH DISTRIBUTED LOAD

This design has six active stress constraints and eleven

active side constraints. The arch curves outward slightly in

the center. With the exception of the nodes at the ends,

axial stresses dominate in the arch. The maximum base

dimensions occur at the fixed ends.

"* H = 32.0 inches

"* L = 32.0 inches

"* h = 1.5 inches

"* Distributed Load = -100 pounds/inch

"* Volume = 11.308 inches

Figure 6.25: Case 8 - Initial Shape
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Case 8: Arch Shape and Width
32-.4

10,1:128mo 0.415
-0.38

Z24- -0.345
.20 -0.31

Z i- 1027
-02

0w

8-4

0.1

X-Coordinate (in.)

Y-zW I*I B

Figure 6.26: Case 8 -Arch Shape and Width
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Case 8: Stress
60

50

S30-

S20-

101

o1 2 3 5 6 7 6 9 1 lo 12' 13
Node

A- I Siarmi -- -mbg mSum-- TamiW 5m

Figure 6.27: Case 8 - Stress
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J. CASE 9: HINGED-HINGED ARCH WITH DISTRIBUTED LOAD

This case differs from Case 1 only in the distance spanned

in the vertical direction , H. In this case, H = 18.475

inches. There are eleven active stress constraints and

thirteen active side constraints (lower limit on base). The

arch has assumed a curved shape similar to Case 1. Once

again, there is a clear preference for axial loading.

"* H = 18.475 inches

"* L = 32.0 inches

"* h = 1.5 inches

"* Distributed Load = -100 pounds/inch

"* Volume = 8.391 cubic inches

Figure 6.28: Case 9 - Initial Shape
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Case 9: Arch Shape and Width
20- 0.3

__ 18"

16- o025

12-

8-0 -0.15
o 0.1

U
I 4- -0.05

"2-

0 0z -ý0 4 5 12 16 20 24 28 32

X-Coordinate (in.)
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Figure 6.29: Case 9 - Arch Shape and Width
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Case 9: Stress
60

50-

S'-20

0 t/
1~~l 2 I 6 76 9 01 12 13

Node

AuSd --=B-mbg So--- ToW Sumi

Figure 6.30: Case 9 - Stress

66



K. CASE 10: HINGED-HINGED ARCH WITH DISTRIBUTED LOAD

This case differs from the previous case only in the

distance spanned in the vertical direction, H. There are

eight active stress constraints and twelve active side

constraints. Once again, the arch curves outward and the

axial stresses dominate.

"* H = 55.426 inches

"* L = 32.0 inches

"* h = 1.5 inches

"* Distributed Load = -100 pounds/inch

"* Volume = 15.149 cubic inches

/

Figure 6.31: Case 10 - Initial Shape
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Cas 10: Arch Shape and Width
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Figure 6.32: Case 10 -Arch Shape and Width
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Case 10: Stress

Node

Figure 6.33 : Case 10 - Stress
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VII. CONCLUSIONS

The conclusions of this study are:

"* The objective function appears to have local optimum
points, because the initial shape of the arch affected the
output from ADS. This required a trial-and-error approach
to find the true optimal design for each case.

"* In the optimum designs, the base dimensions were reduced
to the maximum extent possible, and the arch took a
rounded shape to decrease bending moments and increase
axial loading. One exception to this was the case of the
fixed-free arch, which was unable to attain axial loading
and took the shape of a straight, tapered beam. The only
other exception was Case (4), the hinged-hinged arch with
a concentrated moment.

"* The smooth, curved shapes that most of the arches assumed
confirmed that modelling an arch as a series of straight
elements was a valid approach as long as the number of
elements was relatively high (greater than eight).

"* When using the combination of strategy and optimizer
(S.L.P. and M.M.F.D.) that this investigation employed, it
is critical that the initial design be feasible. Since
the initial shape in all cases was a straight beam, the
initial base dimensions had to be large enough to allow
the beam to be able to withstand the bending stresses that
would dominate in such a structure. If the initial design
was not feasible, the resulting output from ADS had many
violated constraints.

"* The most inefficient method of spanning the distance from
point A to point B was the cantilever beam (Case (7)).

"* Case Studies (5) through (8) confirmed the conclusions of
references 5 and 6 that, for a given loading, the more
statically indeterminate the structure, the greater the
efficiency. However, Case (1) contradicted this
conclusion since it is less statically indeterminate than
Case (8) but has a slightly smaller volume.
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Suggested areas for future research are:

"* Optimization of an arch with a more complex cross-section
(i.e. thin-walled tubes, WF's, etc.)

"* Optimization of arches with geometric constraints which
prevent global buckling and local crippling.
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APPENDIX A: JUSTIFICATION FOR OMITTING SHEAR STRESSES

(The following appendix is taken from ref. 5)

The shear stress distribution through a beam of

rectangular cross-section has a parabolic distribution along

the depth of the member. The maximum shear stress, located at

the neutral axis of the beam, is (from ref. 10):

A

where: (B.1)

Tm = maximum shear stress

V = shear force

A = cross-sectional area

The maximum normal stress due to bending is given by:

Mc

where:

.= maximum normal stress (B.2)
M = bending moment

c = distance from N.A. to extreme fiber
h3

1 =I = moment of inertia
12

Redefining the normal stress in terms of the cross-

sectional dimensions yields:
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on = M(h/2)/(bh 3/12)

or: (B.3)

S-- = 6M/hA

The ratio of the maximum shear stress to the maximum

normal stress due to bending is denoted by r and given by:

r = (B.4)
oan

Substituting equations (B.1) and (B.3) into equation (B.4)

yields:

r = (1.SVA)/(6M/hA)

o0 : (B.5)
vh
4H

For the cases investigated in this study, the maximum value r

can attain is when the loading is that of a uniformly

distributed load, py. In this case:

V= p/L

and: (B.6)

M = PYL 2/2

which upon substitution into equation (B.5) yields:
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r = (p)L)h14(pL 2 /2)

or: (B.7)

.r=h
2L

The use of the beam equation requires that length of the

beam to be at a minimum ten times the height, or in other

words:

L a 10h (B.8)

To maximize the value of r, let L equal 10h, the minimum

allowable length. Substituting this value of L into Equation

(B.7) yields:

r s h/2 (1Oh)

or: (B.9)
r : 1/20

Therefore, the maximum shear stress accounts for less than

5% of the bending stress developed in the structure. Five

percent is high considering this analysis over-assumed the

value of the shear stress by assigning the maximum shear

stress to the entire cross-section of the beam. Moreover, at

the outermost fibers where the normal stress is a maximum, the

shear stress is zero. Therefore, under the circumstances of

this study, the addition of shear stresses was deemed to be

unwarranted.
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APPENDIX B: Program ARCHOPTFILE: ARCHOPT FORTRAN A

PROGRAM ARCHOPT

C*
Cx ARCH OPTIMIZATION ANALYSIS CODE
CM
C!•MMMMMMMMMMMMMMMMNMMMMMMNMMNMMMMMMNMMMMMMENNNMMMMMNNMNMMMMMMMMM•XNWNN

C
C ALPHA .... TRANSFORMATION ANGLE OF ELEMENT (ANGLE TO X-AXIS)
C BAVE ..... THE AVERAGE BASE DIMENSION ACROSS AN ELEMENT
C BASE ..... ARRAY CONTAINING THE ELEMENTAL BASE DIMENSIONS
C BASEL .... ARRAY CONTAINING THE ELEMENTAL BASE DIMENSIONS LOWER
C SIDE CONSTRAINT
C BASEU....ARRAY CONTAINING THE ELEMENTAL BASE DIMENSIONS UPPER
C SIDE CONSTRAINT
C BETA .... TRANSFORMATION ANGLE OF ELEMENT (ANGLE TO Y-AXIS)
C B_1 ...... BOUNDARY TERMS APPLIED AT END "1"
C B 2 ...... BOUNDARY TERMS APPLIED AT END "2"
C Pl,..,CS.CONSTANTS RELATED TO ELEMENT STIFFNESS COEFFICIENTS
C tLAN.....CONCENTRATED LOAD APPLICATION NODE (THE NODE FX,FYFM ARE
C APPLIED
C DOF ...... DEGREE OF FREEDOMS (UNKNOWN DISPLACEMENTS & SLOPES)
C DV1BG .... DESIGN VARIABLE I1 (BASE DIMENSION) INITIAL ESTIMATE
C DVlLO .... DESIGN VARIABLE 11 (BASE DIMENSION) LOWlER SIDE CONSTRAINT
C DV1UP .... DESIGN VARIABLE 11 (BASE DIMENSION) UPPER SIDE CONSTRAINT
C DV2BG .... DESIGN VARIABLE 32 (SLOPE) INITIAL ESTIMATE
C DV2LO .... DESIGN VARIABLE #2 (SLOPE) LOWER CONSTRAINT
C DV2UP .... DESIGN VARIABLE #2 (SLOPE) UPPER CONSTRAINT
C EK ....... 6X6 ELEMENT STIFFNESS MATRIX IN LOCAL XY COORDINATES
C EKPR ..... 6X6 ELEMENT STIFFNESS MATRIX IN ELEMENT LOCAL COORDINATES
C ELEN ..... LENGTH OF ELEMENT
C F ........ FORCE VECTOR OF SYSTEM
C FA ....... CONSTANT DISTRIBUTED LOAD OUTWARD FROM END TO END
C FM ....... CONCENTRATED MOMENT AT CLAN
C FX ....... CONCENTRATED LOAD IN X DIRECTION AT CLAN
C FY ....... CONCENTRATED LOAD IN Y DIRECTION AT CLAN
C G ........ THE ARRAY OF CONSTRAINT FUNCTIONS
C GAMMA .... 6X6 ELEMENT TRANSFORMATION MATRIX
C GK ....... (NDOF)X(NDOF) GLOBAL STIFFNESS MATRIX
C HGT ...... CONSTANT DEPTH OF CROSS-SECTION
C INFO ..... ADS PARAMETER USED TO SIGNAL THAT THE OPT IS COMPLETE
C IPRINT... ADS PARAMETER USED SELECT THE DATA OUTPUT FORMAT
C ITERATE..THE NUMBER OF TIMES ADS IS TO BE RELOADED WITH THE
C PRECEEDING DATA
C IWK ...... ADS INTERNAL WORK SPACE ARRAY
C NCON ..... NUMBER OF DESIGN CONSTRAINTS
C NDOF ..... NUMBER OF DEGREES OF FREEDOM
C NDV ...... NUMBER OF DESIGN VARIABLES
C NEL ...... NUMBER OF ELEMENTS
C NRIWK .... ADS INTERNAL WORK SPACE ARRAY DIMENSION
C NRWK ..... ADS INTERNAL WORK SPACE ARRAY DIMENSION
C NSUP ..... NUMBER OF SYSTEM NODAL POINTS
C OBJ ...... THE OBJECTIVE FUNCTION OF THE OPTIMIZATION
C OPTDCS... OPTIMIZATION DECISION TO OPTIMIZE THE PROBLEM OR NOT
C P1...P5..PARAMETER DIMENSION CORRESPONDING TO THE NEL, NSNP, NCON,
C NDOF, AND NDV RESPECTIVELY
C PRCSN.... THE PRECISION DESIRED TO SOLVE THE FEM SYSTEM OF EQUATIONS
C SIGMAB..THE ELEMENTAL NORMAL STRESS DUE TO BENDING
C SIGMAN..THE ELEMENTAL NORMAL STRESS DUE TC AXIAL FORCES
C SIGMA_T..THE MAXIMUM TOTAL STRESS IN EACH ELEMENT
C SX ....... GLOBAL HORIZONTAL COORDINATE
C SY ....... GLOBAL VERTICAL COORDINATE
C U ........ THE "DISPLACEMENT" VECTOR OF THE SYSTEM OF LINEAR EQUATIONS
C VLB ...... ADS ARRAY CONTAINING UPPER SIDE CONSTRAINTS
C VUB ...... ADS ARRAY CONTAINING LOWER SIDE CONSTRAINTS
C WK ....... ADS INTERNAL WORK AREA
C X ........ ADS ARRAY CONTAINING THE VALUES OF THE DESIGN VAR!,BLES
C YIELD .... YIELD STRENGTH OF THE ARCH MATERIAL
C YOUNG .... YOUNG'S MODULUS OF THE ARCH MATERIAL

C234567 .... DECLARE THE VARIABLES .......................................
INCLUDE 'ARCHCOM FORTRAN'

C
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FILE: ARCHOPT FORTRAN A

C .... read the input parameters ...................................
OPEN(8, FILE='ARCHIN', STATUS='OLD')

C
READ(8,J) L,H,HGT
READt8,M) YOUNG,YIELD
READ(8,N) NELISTRAT,IOPT,IONED,IPRINTIGRAD
READ(8,*) DVIBG,DVILO,DVIUP
READ(8,*) DV2BGDV2LO,DV2UP
READ(8,*) CLAN,FX,FY
RE Dt8,M) FM,FA,OPTDCS
READ(8,) ITERATEPRCSNBX1,BY1,BM1
READ(8,*) BX2,BY2,BM2
READ(8,M) LABEL

C
C .... define constants ............................................

NSNP = NEL + 1
NDOF = 3*NSNP
NCON = NSNP
NDV 2 NSNP + (NEL - 1)

C
C
C .... OPTIMIZE THE PROBLEM ......................................

CALL OPTIMIZATION_TOOL
C
C .... COMPILE AND FORMAT THE OUTPUT .............................

CALL ARCHOUTPUT
C

END

C
SUBROUTINE OPTIMIZATION-TOOLC

C THIS SUBROUTINE DIRECTS THE PROGRAM FLOW OPTIMIZATION DECISION
C I.E., OPTIMIZE THE PROBLEM OR NOT. IT ALSO SERVES TO SET UP &
C EXECUTE THE ADS OPTIMIZATION SOFTWARE.C
C .... declare the variables .....................................

INCLUDE 'ARCHCOM FORTRAN'
INTEGER I
DO 100 =I1,NSNP

BASE(I) DV18G
BASEL(I) DVILO
BASEU(I) DV1UP

100 CONTINUE
DO 150 I=1,NEL-1

SLP(I) DV2BG
SLPL(I) = DV2LO
SLPU(I) DV2UP

150 CONTINUE
SLP(NEL)=DV2BG
SLPL(NEL)=DV2LO
SLPU(NEL)=DV2UP

C
C .... COMBINE BASE AND SLP ARRAYS INTO DESIGN ARRAY .........

DO 200 I=INSNP
X(I) = BASEEI)
VLB(I) = BASEL(I)
VUB(I) = BASEU I)

200 CONTINUE
DO 250 J=NSNP+1,NDV

X(J) = SLP(J-NSNP)
VLBIJ)=SLPL(J-NSNP)
VUB(J):SLPU(J-NSNP)

250 CCVoINUE
C
C .... MAKE OPTIMIZATION DECISION ...............................

IF (OPTDCS .NE. 1) THEN
CALL EVAL
RETURN

ENDIF
C
C .... DEFINE THE SIZE OF THE WORK ARRAYS FOR ADS ................
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FILE: ARCHOPT FORTRAN A

NRA:65
NCOLA=97
NRWK 40000
NRIWK = 2000

C .... ready to optimize .........................................
DO 280 1=1,NSNP

IDG(I}=0
280 CONTINUE

INFO =-2
CALL ADS (INFO,ISTRATIOPT,IONEDIPRINT,IGRAD,NDVNCONX,VLB,VUB,

OBJG,IDGNGTIC,DF,A,NRA,NCOLAWKNRWKPIWK,NRIWK)
IWK(2J=O

300 CALL ADS (INFOISTRAT,IOPT,IONED,IPRINTIGRAD,NDVNCON,XVLB,VUE,
* OBJ,G,IDG,NGT,IC,DF,A,NRA,NCOLA,WK,NRWK,IWK,NRIWK)

C
C .... evaluate the objective function and constraints...........

IF (INFO .NE. 0) THEN
CALL EVAL
GOTO 300

ENDIF
END

C
SUBROUTINE EVAL

C
C THIS SUBROUTINE IS USED TO EVALUATE THE OBJECTIVE FUNCTION,
C CC•STRAINT FUNCTIONS, AND SIDE CONSTRAINTS OF THE OPTIMIZATION
C PROBLEM,.
C ----------
C .... declare the variables ......................................

INCLUDE 'ARCHCOM FORTRAN'
INTEGER I,J,K
REAL PI
PARAMETER (PI=3.141593)

C
C .... SEPARATE THE DESIGN ARRAY INTO BASE AND SLP ARRAYS

DO 50 I=1,NSNP
BASE(IM : X(

50 CONTINUE
DO 75 I=1,NDV-NSNP

SLP(I) = X(I+NSNPJ
75 CONTINUE

DX=L/NEL
SY(1 =O.O
DO 80 I=1,NEL-1

SY(I+1)=DX*SLP(I) + SY(I)
80 CONTINUE

SLPtNEL)=(H - SY(NEL]]/DX
C
C .... calculate the objective function ..........................

OBJ = 0.0
C

DO 100 I=1,NEL
BAVE(I) = (BASE(I)+BASE(I+1)]/2.0
OBJ : OBJ + BAVE(I)]SQRT(l + SLP(I)02]

100 CONTINUE
C .... CALCULATE ALPHA(I),BETA(I), AND ELEN(I) ............

DO 150 I=I,NEL
ALPHA(I =ATAN2(SLP(I)]DXDX]
BETA(I.=(PI/2) - ALPHA(I)
ELEN(I)=SQRT[DX**2 + (SLP(I)]DX)]*2)

150 CONTINUE
C
C .... determine the design constraints ..........................

CALL ARCHSTRESS

Do 230 I=1,NSNP
0•() (SIGMAATfl)/YIELD - 1.0)

230 CONTINUE
END
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FILE: ARCHOPT FORTRAN A

SUBROUTINE ARCH-STRESS
C
C THIS SUBROUTINE IS USED TO PERFORM THE FINITE ELEMENT ANALYSIS
C OF THE STRESSES DEVELOPED IN AN ARCH OR BEAM FOR A GIVEN LOAD-
C ING.
C
C .... declare the variables .....................................

INCLUDE 'ARCHCOM FORTRAN'
INTEGER IPVT(99)
REAL F(P4)
REALMS BK(P4,P4),BF(P4),BU(P4),FAC(9801J,WORK(99)

C
C .... form the element and system matrices ......................

CALL FORM
C
C .... FORM THE FORCE VECTOR, F ..................................

CALL FORCEVECTOR (NELNDOF,ELEN,ALPHA,BETA,FA,F]
C
C .... SET THE BOUNDARY CONDITIONS AND LOADS .....................

CALL ENDARY (NDOFGKCLANFX,FY,FMF,BX1,BYl,BMlBX2,BY2,BM2)
C
C .... SOLVE "iHE SYSTEM OF EQUATIONS .............................

IF (PRCSN .EQ. 2) THEN
C .... CHANGE GK AND F ARRAYS TO DOUBLE PRECISION ........

CALL UPSCALE (NDOF,GK,F,EKBF)
C .... SOLVE THE SYSTEM OF EQUATIONS ................................

CALL DL2ARG (NDOF,BK,P4,BF,1,BU,FAC,IPVT,WORK)
C .... CHANGE BU ARRAY TO SINGLE PRECISION ..........................

CALL DOVINSCALE (NDOF,EUU)
ELSE

C .... SOLVE THE SYSTEM OF EQUATIONS ................................
CALL L2ARG (NDOF,GK,P4,F, IU,FACIPVT,WORK)
ENDIF

C
C .... determine the stress distribution.........................

CALL STRESS
C
C RETURN

END

SUBROUTINE FORMC
C This subroutine is used to construct the global stiffness mat-
C RIX FOR THE ARCH PROBLEM.
C
C .... declare the variables .....................................

INCLUDE 'ARCHCOM FORTRAN'
INTEGER IEL,I,J,K,II,JJ,KK,III,JJJ
REAL ClC2,C3,C4,C5,CACBEK(Pl,6,6),GAMMA(6,6),EKGA(6,6),

GAEKGA(6,6),BH,BH3
C

DO 120 IEL=I,NEL
C .... define the constants Cx ....................................

Cl = YOUNG/ELEN(IELJ
C2 = (1.0/ELEN(IEL))]]2.0
C3 = (l.O)/(2.0*ELEN(IEL))
C4 = (1.0)/3.0
C5 = (1.01/6.0

C
C .... initialize the work arrays ...............................

DO 100 I = 1,6
DO 90 J= 1,6

EKPR(IEL,IPJ) 0.0
GAMMALI,J) = 0.0
EKGA(I,J) = 0.0
GAEKGA(I,J) = 0.0
EK(IEL,I,J) = 0.0

90 CONTINUE
100 CONTINUE

C
C .... calculate the area and inertia terms ......................
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FILE: ARCHOPT FORTRAN A

SH BAVE(IEL)*HGT
BH3 BAVE(ZEL)*(HGTEm3.0)

C
C .... determine the EKPR matrix .................................

EKPR[IELI,1) = CINBH
EKPR(IELX,4) = -Cl*EH
EKPR(IEL,2,2) = CIC2*SH3
EKPR(IEL,2,3) = C1uC3*BH3
EKPR(IEL,2,5) = -C1MC2NBH3
EKPR(IEL,2,6) = C1*C3wEH3
EKPR(IEL,3,2) = Cl•C3*BH3
EKPR(IEL,3,3) = Cl*C4*BH3
EKPR(IEL,3,5) = -CI*C3*BH3
EKPR(IEL,3,6) = CI*C5SEH3
EKPR(IEL,4,1) = -Cl*BH
EKPR(IEL,4,4) = C1CBHEKPR(IEL,5 2) = -Cl*C2%BH3
EKPR(IEL,5,3) = -CIxC33BH3
EKPR(IEL,5,S) = Cl*C2*BH3
EKPR(IEL,5,6) = -CI*C3*BH3
EKPR(IEL,6,2) = Cl*C3*BH3
EKPR(IEL,6,3) = CI*C5SEH3
EKPR(IEL,6p5) Z -CI*C3*BH3
EKPR(IEL,6,6) C=IC4*BH3

C
C .... determine the GAMMA matrix ................................

CA = COSIALPHA(IEL))
CB = COS(BETA(IEL))

GAMHA(1,1) Z CA
GAMHA(1,2) = CE
CAMHA(2,1) = -CS
GAtfliA(2,2) = CA
GAM:IA(3,3) = 1.0
GAIMA(4,4) = CA
GAMA((4,51 = CE
GAMMAf5,4) 2 -CB
GAMMA(5,5) = CA
GAHMA(6,6) = 1.0

C
C .... determine the EKGA array ..................................

rO 220 I = 1,6
Do 215 J = 1,6

DO 210 K = 1,6
EKGA(IJ) = EKGA(I,J) + EKPR(IELI,K)JGAMMA(K,J)

210 CONTINUE
215 CONTINUE
220 CONTINUZ

C
C .... determine the GAEKGA array ................................

DO 240 I = 1,6
DO 235 J = 1,6

DO 230 K = 1,6
GAEKGA(I,J) = GAEKGArI,J)+GAMNA(K,I)*EKGA(KJ)

230 CONTINUE
235 CONTINUE
240 CONTINUE

C
C .... copy the GAEKGA array into the EK array ...................

DO 260 1 1,6
DO 250 J = 1,6

EK(IEL,IJ) = GAEKGA(IJ)
250 CONTINUE
260 CONTINUE
120 CONTINUE

C
C .... initialize the GK array ...................................

DO 150 I = 1, NDOF
DO 140 J = 1, NDOF

GK(IJ) = 0.0
140 CONTINUE
150 CONTINUE
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C
C .... construct the OK matrix ...................................

DO 300 IEL 1, NEL
11 : 30(IEL-1)

DO 290 J 1, 6
JJ II + J
DO 280 K = 1, 6

KK = II + K
GK(JJ,KK) = GK(JJ,KK)+EKIIEL,J,K)

280 CONTINUE
290 CONTINUE
300 CONTINUE

C
C RETURN

END

SUBROUTINE FORCE-VECTOR (NELNDOFELENALPHABETAPFA,F)
C
C This subroutine is used to construct the force vector for the
C FEM PROBLEM SPECIFIED.
C
C .... DECLARE THE VARIABLES .....................................

INTEGER NEL,NDOF,I,Il,I2,I3,P1,P4
C

PARAMETER(Pl:32,P4=99)
C

REAL ELEN(P1JALPHA(P1),BETA(Pl),FAF(P4)
C
C ... FORM THE F-VECTOR .........................................F(l) = (ELENII)/2.0) * (-COSIBETA[1])))

F(2) = (ELEN(1)/2.0) * (CCS(ALPHA(1)))
F(3) = 0.0

C
Do 100 I=2,NEL

I1 (I-1)*3 + 1
12 : (i-1)*3 + 2
13 = (i-1)*3 + 3

C
F(I1) = (ELEN(I)/2.0)*(-COS(BETA(I)))
* +(ELEN(I-1 /2.0)w(-COS(BETA(I-1)))
F(I2) = (ELEN(I)/2.0J1(COS(ALPHA(I)))
* +(ELEN(1-1)/2.0]*(COS(ALPHAtI-1)]]
F(I3) = 0.0

100 CONTINUE
C

F(NDOF-2) = (ELEN(NEL)/2.0)*(-COS(BETA(NEL)))
F(NDOF-13 = (ELEN(NEL)/2.01(COS(ALPHA(NEL)])
F(NDOF) = 0.0

C
C .... SCALE THE F-VECTOR BY FA ..................................

DO 200 I=I,NDOF
F(I) = FA,*F(I)

200 CONTINUE
C
C RETURN

END

SUBROUTINE ENDARY (NDOFGK,CLANFXFY,FM,F,BX1,BYI,BM1,BX2,
BY2,BM2)

C
C This subroutine is used to impose the boundary conditions upon
C THE GLOBAL STIFFNESS MATRIX AND FORCE VECTOR.

C ....declare the variables .....................................
INTEGER NDOFBX1,BYI,BMI,BX2,BY2,BM2,CLANIN,I1,12, 3,P4
PARAMETER(P4=99)
REAL GK(P4,P4),FX,FY,FM,F(P4)

C
C .... invoke the essential boundary conditions ...................

IF (BX1 .EQ. 1) THEN
CALL IMPOSEBC (NDOF,GK,1,F)
ENDIF
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C
IF (BYl .EQ. 1) THEN

CALL IMPOSEEC (NDOFPGK,2,F)
ENDIF

C
IF (EM1 .EQ. 1) THEN

CALL IMPOSEEC (NDOF,GK,3,F)
ENDIF

C
IF (BX2 .EQ. 1) THEN

N=NDOF-2
CALL IMPOSEBC (NDOF,GKN,F)

ENDIF
C

IF (BY2 .EQ. 1) THEN
N:NDOF-1
CALL IMPOSESC (NDOFPGKNPF)

ENDIF
C

IF (BM2 .EQ. 1) THEN
CALL IMPOSEEC (NDOFGKNDOFF)

ENDIF
C
C .... ADD THE CONCENTRATED LOAD TO THE FORCE VECTOR ............

Il=(CLAN-1)*3+1
12=(CLAN-1)M3÷2
13=(CLAN-1]*3+3

C
F(I1)=F(I1)+FX
F(12)=F(I2)+FY
F(13):F(I3 ]+FM

C
C RETURN

END
CN•NMNNMMWWNWNNWNWNMNNWNWNwN•XXNKWNN•NNINNN~NNMMNNWN•KMNN

SUBROUTINE IMPOSEBC (NDOFGKN,F)

C This subroutine is used to do the redundant leg work of impos-
C ING THE BOUNDARY CONDITIONS.
C
C .... DECLARE THE VARIABLES .....................................

INTEGER NrOF,N,I,P4
PARAHETER(P4=99)
REAL GK(P4,P4),F(P4)

C
C .... IMPOSE THE BOUNDARY CONDITION ON THE GK AND F ARRAYS ......

DO 100 I=1,INDOF
GK(N,I) = 0.0

100 CONJTINUE
GK(N,N) = 1.0
F(N) = 0.0

C
C RETURN

END

SUBROUTINE UPSCALE(NDOFGK,F,BKBFJ
C
C This subroutine is used to change the stiffness matrix & force
C VECTOR FROM SINGLE PRECISION TO DOUBLE PRECISION IN ORDER TO
C SOLVE THE LINEAR SYSTEM OF EQUATIONS IN DOUBLE PRECISION.
C .i
C .... DECLARE THE VARIABLES .....................................

INTEGER NDOF,I,J,P4
PARAMETER (P4z99)
REAL GK(P4,P4),F(P4)
REAL*8 BK(P4,P4),BF(P4)

C .... GENERATE THE DOUBLE PRECISION COMPLIMENTS OF GK AND F ......
DO 110 I=1,NDOF
DO 100 J=I,NDOF
BK(IJ) 2 GK(I,J)

100 CONTINUE
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BF(I) = F(I)
110 CONTINUE

C
C RETURN

END
Cw•MMMNwMMMMWMMMNWNWMMMMNNwwWNNE~wMwNNuuMM•NwwIMMNxMMwUNNK~wNNNw

SUBROUTINE DOWNSCALE(NDOF,BU,U)
C
C This subroutine is used to do down scale the double precision
C SOLUTION OF THE LINEAR SYSTEM OF EQUATIONS BACK TO SINGLE PRE-
C CISION. ADS COULD HAVE PROBLEMS WITH DOUBLE PRECISION NUMBERS!
C
C .... declare the variables .....................................

INTEGER NDOF,I,P4
PARAMETER (P4=99)
REAL U(P4)
REALM8 BU(P4)

C
C .... GENERATE THE SINGLE PRECISION COMPLIMENT OF BU ......

DO 100 I=INDOF
U(i) = BU(M)

100 CONTINUE
C
C RETURN

END

SUEROUTINE STRESS
C
C THIS SUBROUTINE COIIPUTES THE STRESS AT EACH NODAL POINT.
C
C .... declarations ..............................................

INCLUDE 'ARCHCOM FORTRAN'
INTEGER I1,I2,I3,14,Z5,I6,I,J,K
REAL CA1,CB1,K1,K2,FPR(P4,6),UPR(6],NORM1,NORM2,

BENDIBEND2
C
C .... determine local forces from stiffness and displacement....

DO 100 1=1, NEL
Il=(1-1)M3+1

12=(i-I)*3+2

I4:(i)*3+1
S=(i)*3+2

I6=(i)]3+3

C31= COS(BETA(I))
CAI= COS(ALPHA(I))

C
UPR(1)= U(II)*CAI + U(12)*CB1
UPR(21= -U(I1]MCB1 + U(I2)*CAl
UPR(3)= U(13)
UPR(4)= U(14)ZCAl + U(15)*CB1
UPR(5)= -U14)NCBI + U(I5)*CAl
UPR(6)= U(16)

C
DO 250 JJ=l,6

FPRIIJJ)= 0.0
230 CONTINUE

C
DO 300 J=1,6

DO 350 K=1,6
FPR(I,J)= FPR(IJ) + EKPR(IJ,K)]UPR(K)

350 CONTINUE
300 CONTINUE
100 CONTINUE

C .... determine the bending and normal stresses .................
SIGMAN(1) : ABS(FPR(1,ljM(1.O/(EASE(1)*HGT]))
SIGMA_3(1) : ABS(FPR(1,3)w(6.0/(BASE(1)*(HGT**2.0)1)J
SIGMA T(1) z SIGMA_B(l) + SIGMA_N(1)
DO 400 6=2,NELKl = 1.0/(BASE(I)%HGT)

K2 = 6.0/(BASE(I)*(HGT**2.0)
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NORNI = ABS(FPR(i,I)*Kl)
NORM2 = ABS(FPR(i-1,4)*K1)

BEND1 = ABS(FPR(i,3)*K2I
BEND2 = ABS(FPR(i-1,6)*K2)
SIGMA N(i) = (NORMI+NORM2)/2.0
SIGMA-B(i) = (BEND1+BEND2)/2.0

SIGMA_T([) = SIGMA_2(i) + SIGMAJN(i)

400 CONTINUE

SIGMA-N(NSNP) = ABS(FPR(NEL,4)*(I.O/(BASE(NSNP)*HGTJ))
SIGMAB(NSNP) ABS(FPR(NEL,6)w

(6.0/(BASE(NSNP)*(HGT**2.0))])
SIGMAT(NSNP) = SIGMAB(NSNP) + SIGMA_N(NSNP)

C
C RETURN

END
CKNMMNUMKWNMEWNINNWWWWMWMMXN•NIRNNWMMNMMMN•NNNMNNKNMMWNNN•

SUBROUTINE ARCH-OUTPUT
C
C THIS SUBROUTINE FORMATS THE FINAL RESULTS AND OUTPUT OF THE
C OPTIMIZATION PROBLEM AND STORES IT IN A FILE NAMED ARCHOUT
C
C .... DECLARE VARIABLES .........................................

INCLUDE 'ARCHCOM FORTRAN'
REAL VOLVOLUME

C
C .... OPEN OUTPUT FILE AND WRITE HEADER .........................

OPEN(9, FILE='ARCHOUT', STATUS='OLD')
C

WRITE(9,100) LABEL
WRITE(9,100) I OPTIMIZATION SOLUTION'
WRITE(9,105) I----------------------------------------------------
--------------------------------------

100 FORMAT(/SX,A]
105 FORMAT(SX,A)

C
C .... SECTION "A" ...............................................

W•/TE(9,100) ' A] PROBLEM PARAMETERS:'
%dRITE9, 11O) ' HORIZ. SPAN:', L, ' YOUNGS MODULUS:',YOUNG
WRITE(9,110) ' VERT. SPAN :', H, ' YIELD STRENGTH:',YIELD
U:RITE(9,115] ' NO OF DESIGN VAR:', NDV, ' NO OF ELEMENTS:',NEL

110 FORMIAT(8X,A,F12.3,T38,A,F12.1)
115 FORftAT(8X,AI7,T38,A,I10O

C
C .... SECTION "B". ...............................................

WRITE(9,100) ' B) DERIVED CONSTANTS:'
WRITE(9,120) ' NO OF SYSTEM NODAL POINTS...',NSNP
WRITE19,120) ' NO OF DEGREES OF FREEDOM ..... ',NDOF
WRITE(9,125) ' HORIZ. LENGTH PER ELEMENT...',DX

120 FORMAT(BX,A,16)
125 FORMATI8X,A,F12.4)

C
C .... section "C" ...............................................

WRiTE(9,100) I C) STRUCTURE LOADING:'
WIRITE(9,125) 'FX ........................... ,FX
VIRITE[9,125) 'FY ........................... ,FY
WIRITE(9,125) 'FM ........................ . ,FM
WRITE(9,125) 'FA .......................... lFA
WRITE(9,120) 'CONCENTRATED LOAD AT NODE...',CLAN

C
C .... section "D" ...............................................

SX(1I:0.0
SY(1)}0.0
DO 150 I=I,NEL

SX(I+I):INDX
SY(I+1):DX*SLP(I) + SY[I)

150 CONTINUE
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WRITE(9,100) ' D) ELEMENTAL DIMENSIONS AND STRESS DISTRIBUTION:
WRITE(9,210) 'NODE','X-COORD','Y-COORD','BASE','AREA'

C
210 FORMAT(8X,A,T21,AT36,A,T49,A,T62,AJ
220 FORMAT(SX, 14,T17,F1O.5,T32,F1O.5,T48,FS.5,T60,F8.5)

VOLUME =0.0
C

DO 300 I=1,NSNP
AREA =BASE(I)*HGT
WRITE(9P220) I,SX(I )PSY(I IBASE(II),AREA

300 CONTINUE
C
C -section "Ell................................................

VOL HGTKDX*OEJ
WRITE(9,100) 'E) OBJECTIVE FUNCTION:'

C
WRITE(9310) 'TOTAL STRUCTURE VOLUME:I,VOL

310 FORMAT(/12XA,F12.6/J
C

WRITE(9,330) 'NODE', 'NORMAL STRESS', 'BENDING STRESS' ,'TOTAL'
DO 320 I=INSNP

WRITE(9,340) i,SIGMAN(i),SIGMAE(i),SIGMAT(i)
320 CONTINUE
330 FORMAT(8X,AT18#A,T35,AT57,A)
340 FORMATL8X,14,Tl5,F14.1,T32,F14.1,T49,Fl4.1J

C
C .... section "F"................................ o.......... o......

WRITE(9,100) I F) BOUNDARY CONDITIONS:'
WIRITE(9,41O) 'NODE','X-DISPL','Y-DISPL','SLOPE'
VIRITE(9v430) 1,EX1,BY1,EM1
WRITE(9,430) NEL+l,3X2,BY2,EM2

C
C... SECTION "G".................................................

WRiTE*(9,100) ' G) SOLUTION VECTOR:
WRITE(9,4101 'NODE't'X-DISPL','Y-DISPL','SLOPE'
Do 400 I:1,NSNP
I1=( I-11*3+1
12: I-i )*3+2
13=11-1 )*3+3

WRITE(9,420) I,U(I1 J,U( 12 ),UL 13)
400 CONTINUE
410 FORMAT(T9,A,T17,A,T31,A,T46,A)
420 FORMAT(7X,I5,3E14.6)
430 FORMAT(7X,15,T20,14,T34,14,T48,I4)

C
C RETURN

EN~D
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OPTIMIZATION NO.1

OPTIMIZATION SOLUTION

A) PROBLEM PARAMETERS:
HORIZ. SPAN: 32.000 YOUNGS MODULUS: 30000000.0
VERT. SPAN : 32.000 YIELD STRENGTH: 52000.0
NO OF DESIGN VAR: 24 NO OF ELEMENTS: 12

B) DERIVED CONSTANTS:
NO OF SYSTEM NODAL POINTS... 13
NO OF DEGREES OF FREEDOM .... 39
HORIZ. LENGTH PER ELEMENT... 2.6667

C) STRUCTURE LOADING:
FX ............................... 0.0000
FY ............................... 0.0000
FM .......................... 0.0000
FA .......................... -100.0000
CONCENTRATED LOAD AT NODE... 7

D) ELEMENTAL DIMENSIONS AND STRESS DISTRIBUTION:
NODE X-COORD Y-COORD BASE AREA

1 0.00000 0.00000 0.15000 0.22500
2 2.66667 4.30175 0.15000 0.22500
3 5.33333 8.23110 0.15084 0.22627
4 8.00000 11.74150 0.15022 0.22533
5 10.66666 14.87895 0.15092 0.22633
6 13.33333 17.72124 0.15014 0.22522
7 16.00000 20.31323 0.15000 0.22500
8 18.66666 22.73409 0.15000 0.22500
9 21.33333 24.91997 0.15000 0.22500

10 23.99998 26.86490 0.15000 0.22500
11 26.66666 28.66069 0.15000 0.22500
12 29.33331 30.59526 0.15000 0.22500
13 31.99998 31.99998 0.15000 0.22500

E) OBJECTIVE FUNCTION:

TOTAL STRUCTURE VOLUME: 10.324365

NODE NORMAL STRESS BENDING STRESS TOTAL
1 36039.3 0.1 36039.5
2 36031.7 15159.3 51191.0
3 35823.3 16175.0 51998.3
4 35975.3 15313.8 51289.2
5 35809.8 15699.2 51509.1
6 35994.7 16009.5 52004.3
7 36033.5 15762.4 51796.0
8 36044.7 9766.7 45811.4
9 36049.8 7516.0 43565.8

10 36041.4 12457.1 48498.6
11 36016.8 16026.7 52043.5
12 36039.7 15969.3 52009.0
13 36081.4 0.0 36081.4

F) BOUNDARY CONDITIONS:
NODE X-DISPL Y-DISPL SLOPE

1 1 1 0
13 1 1 0

G) SOLUTION VECTOR:
NODE X-DISPL Y-DISPL SLOPE

1 O.OOOOOOE+00 O.OOOOOOE+00 -0.131531E-01
2 0.509330E-01 -0.387271E-01 -0.114481E-01
3 0.863026E-01 -0.696029E-01 -0.814113E-02
4 0.106222E+00 -0.913596E-01 -0.505612E-02
5 0.114465E+00 -0.104831E+00 -0.221819E-02
6 0.113685E+00 -0.110495E+00 0.528031E-03
7 0.105703E+00 -0.108688E+00 0.315360E-02
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8 0.921987E-01 -0.100249E+00 0.519679E-02
9 0.761242E-01 -0.871751E-01 0.652113E-02

10 0.589296E-01 -0.703301E-01 0.798611E-02
11 0.396341E-01 -0.485910E-01 0.100210E-01
12 0.162884E-01 -0.231430E-01 0.100252E-01
13 0.OOOOOOE+00 O.OOOOOOE+00 0.89556SE-02
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OPTIMIZATION NO.1A

OPTIMIZATION SOLUTION
-------------------------------------------------------------

A) PROBLEM PARAMETERS:
HORIZ. SPAN: 32.000 YOUNGS MODULUS: 30000000.0
VERT. SPAN : 32.000 YIELD STRENGTH: 52000.0
NO OF DESIGN VAR: 24 NO OF ELEMENTS: 12

B) DERIVED CONSTANTS:
NO OF SYSTEM NODAL POINTS... 13
NO OF DEZEES OF FREEDOM .... 39
HORIZ. LENGTH PER ELEMENT... 2.6667

C) STRUCTURE LOADING:
FX .......................... 0.0000
FY .......................... 0.0000
FM .......................... :0.0000
FA .......................... -100.0000
CONCENTRATED LOAD AT NODE... 7

D) ELEMENTAL DIMENSIONS AND STRESS DISTRIBUTION:
NODE X-COORD Y-COORD BASE AREA

1 0.00000 0.00000 0.79198 1.18797
2 2.66667 2.66933 0.78408 1.17612
3 5.33333 5.33867 0.78335 1.17503
4 8.00000 8.00800 0.98644 1.47966
5 10.66666 10.67200 1.16866 1.75299
6 13.33333 13.33852 1.27656 1.9148(
7 16.00000 16.00357 1.30861 1.96291
8 18.66666 18.66756 1.27457 1.91186
9 21.33333 21.33154 1.16462 1.74693

10 23.99998 23.99666 0.98731 1.48096
11 26.66666 26.66280 0.78324 1.17436
12 29.33331 29.32883 0.78168 1.17252
13 31.99998 31.99998 0.78982 1.18473

E) OBJECTIVE FUNCTION:

TOTAL STRUCTURE VOLUME: 68.386749

NODE NORMAL STRESS BENDING STRESS TOTAL
1 91.5 0.0 91.5
2 92.6 26676.4 26769.0
3 92.2 43556.6 48648.8
4 72.9 52068.1 52140.9
S 61.6 52094.5 52156.1
6 56.0 52183.3 52239.4
7 54.3 52353.9 52408.3
8 56.5 52263.8 52320.3
9 62.2 52273.6 52335.8

10 73.0 52014.1 52087.1
11 92.3 48564.5 48656.7
12 91.5 26770.9 26867.4
13 89.5 0.2 89.8

F) BOUNDARY CONDITIONS:
NODE X-DISPL Y-DISPL SLOPE

1 1 1 0
13 1 1 0

G) SOLUTION VECTOR:
NODE X-DISPL Y-DISPL SLOPE

1 O.OOOOOOE+00 O.OO0OOOE+0O -0.432361E-01
2 0.113423E+00 -0.113326E+00 -0.410106E-01
3 0.215283E+00 -0.215100E+00 -0.347033E-01
4 0.297166E+00 -0.296917E+00 -0.262325E-01
S 0.355750E+00 -0.355571E+00 -0.175074E-01
6 0.390952E+00 -0.390785E+00 -0.876822E-02
7 0.402699E+00 -0.402549E+00 -0.976327E-05
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8 0.390992E+00 -0.390840E+00 0.875361E-02
9 0.35S829E+00 -0.355653E+00 0.175100E-01

10 0.297182E+00 -0.296983E+00 0.262491E-01
11 0.215351E+00 -0.215151E+00 0.347106E-01
12 0.113571E+00 -0.113364E+00 0.410251E-01
13 O.O00000E+00 O.O00000E+00 0.432590E-01
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OPTIMIZATION NO.2

OPTIMIZATION SOLUTION

AJ PROBLEM PARAMETERS:
HORIZ. SPAN: 32.000 YOUNGS MODULUS: 30000000.0
VERT. SPAN : 32.000 YIELD STRENGTH: 52000.0
NO OF DESIGN VAR: 24 NO OF ELEMENTS: 12

B) DERIVED CONSTANTS:
NO OF SYSTEM NODAL POINTS... 13
NO OF DEGREES OF FREEDOM .... 39
HORIZ. LENGTH PER ELEMENT... 2.6667

C) STRUCTURE LOADING:
FX ............................... 0.0000
FY ............................ -2000.0000
FM ............................... 0.0000
FA ............................... 0.0000
CONCENTRATED LOAD AT NODE... 7

D) ELEMENTAL DIMENSIONS AND STRESS DISTRIBUTION:
NODE X-COORD Y-COORD BASE AREA

1 0.00000 0.00000 0.15000 0.22500
2 2.66667 3.00301 0.15000 0.22500
3 5.33333 6.30157 0.15000 0.22500
4 8.00000 9.60067 0.15000 0.22500
5 10.66666 12.91733 0.15000 0.22500
6 13.33333 16.27870 0.15000 0.22500
7 16.00000 19.31017 0.15000 0.22500
8 18.66666 21.33359 0.15000 0.22500
9 21.33333 23.39781 0.15000 0.22500

10 23.99998 25.46082 0.15000 0.22500
11 26.66666 27.54510 0.15000 0.22500
12 29.33331 29.74944 0.15000 0.22500
13 31.99998 31.99998 0.15000 0.22500

E) OBJECTIVE FUNCTION:

TOTAL STRUCTURE VOLUME: 10.239457

NODE NORMAL STRESS BENDING STRESS TOTAL
1 31082.2 0.3 31082.6
2 31095.7 20958.1 52053.9
3 31109.7 18671.2 49780.9
4 31109.4 16336.5 47445.9
5 31107.6 12623.3 43730.9
6 31097.4 5386.4 36483.7
7 27975.7 24094.0 52069.8
8 24863.7 27275.3 52139.0
9 24863.7 27252.7 52116.4

10 24863.8 27320.7 52184.5
11 24857.5 25720.0 50577.5
12 24846.4 14678.1 39524.5
13 24841.8 0.0 24841.8

F) BOUNDARY CONDITIONS:
NODE X-DISPL Y-DISPL SLOPE

1 1 1 0
13 1 1 0

G) SOLUTION VECTOR:
NODE X-DISPL Y-DISPL SLOPE

1 O.OO0000E+O0 O.OOOOOOE+O0 -0.169057E-01
2 0.461328E-01 -0.465305E-01 -0.150352E-01
3 0.866829E-01 -0.849686E-01 -0.112998E-01
4 0.115632E+00 -0.114025E+00 -0.799962E-02
5 0.134663E+00 -0.134988E+00 -0.526077E-02
6 0.146308E+00 -0.149906E+00 -0.354366E-02
7 0.151127E+00 -0.159717E+00 -0.898687E-03
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8 0.146949E+00 -0.158800E+00 0.292259E-02
9 0.134488E+00 -0.147268E+00 0.700891E-02

10 0.113602E+00 -0.124838E+00 0.110977E-01
11 0.840616E-01 -0.915992E-01 0.150871E-01
12 0.448603E-01 -0.486744E-01 0.181930E-01
13 0.0000001+00 0.000000E+00 0.193311E-01
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OPTIMIZATION NO.3

OPTIMIZATION SOLUTION

A) PROBLEM PARAMETERS:
HORIZ. SPAN: 32.000 YOUNGS MODULUS: 30000000.0
VERT. SPAN : 32.000 YIELD STRENGTH: 52000.0
NO OF DESIGN VAR: 24 NO OF ELEMENTS: 12

B) DERIVED CONSTANTS:
NO OF SYSTEM NODAL POINTS... 13
NO OF DEGREES OF FREEDOM .... 39
HORIZ. LENGTH PER ELEMENT... 2.6667

C) STRUCTURE LOADING:
FX .......................... 2000.0000
FY ........................... -2000.0000
FM ............................. 0.0000
FA................. .............. 0.0000
CONCENTRATED LOAD AT NODE... 7

D) ELEMENTAL DIMENSIONS AND STRESS DISTRIBUTION:
NODE X-COORD Y-COORD BASE AREA

1 0.00000 0.00000 0.15030 0.22545
2 2.66667 3.57692 0.15037 0.22556
3 5.33333 7.11881 0.15045 0.22563
4 8.00000 11.13781 0.15079 0.22618
5 10.66666 14.64122 0.15017 0.22526
6 13.33333 18.30432 0.15000 0.22500
7 16.00000 21.47563 0.23559 0.35339
8 18.66666 23.44431 0.15046 0.22568
9 21.33333 25.24850 0.15008 0.22512

10 23.99998 26.98657 0.15068 0.22603
11 26.66666 28.49719 0.15040 0.22561
12 29.33331 30.15172 0.15009 0.22514
13 31.99998 31.99998 0.15012 0.22517

E) OBJECTIVE FUNCTION:

TOTAL STRUCTURE VOLUME: 10.841561

NODE NORMAL STRESS BENDING STRESS TOTAL
1 32852.1 0.1 32852.2
2 32835.8 8291.1 41126.9
3 32805.9 19268.1 52074.0
4 32730.9 6463.6 39194.5
5 32878.3 7478.3 40356.5
6 32878.2 9143.1 42021.4
7 21034.9 31050.3 52085.2
8 33175.7 16387.2 49562.9
9 33301.1 2650.6 35951.7

10 33157.7 3655.2 36812.9
11 33220.8 15609.0 48829.8
12 33293.2 18737.4 52030.6
13 33272.5 0 .1 33272.6

F) BOUNDARY CONDITIONS:
NODE X-DISPL Y-DISPL SLOPE

1 1 1 0
13 1 1 0

G) SOLUTION VECTOR:
NODE X-DISPL Y-DISPL SLOPE

1 O.OOOOOOE+O0 O.OOOOOOE+O0 -0.927029E-02
2 0.292592E-01 -0.279060E-01 -0.844808E-02
3 0.520934E-01 -0.511700E-01 -0.573258E-02
4 0.676226E-01 -0.677945E-01 -0.436322E-02
5 0.806200E-01 -0.837384E-01 -0.426672E-02
6 0.903615E-01 -0.969766E-01 -0.259323E-02
7 0.912367E-01 -0.102322E+00 O.155546E-02
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8 O.B15972E-01 -0.940706E-01 0.528782E-02
9 O.675751E-01 -0.797142E-01 0.665123E-02

10 O.529933E-O3. -0.638010E-O1 0.657931E-02
11 0.398219E-01 -O.474255E-01 0.73921SE-02
12 0.22711BE-01 -0.264506E-01 0.978718E-02
13 0.OOOOOOE+O0 0.OOOOOOE+00 0. 111381E-01
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OPTIMIZATION NO.4

OPTIMIZATION SOLUTION

A) PROBLEM PARAMETERS:
HORIZ. SPAN: 32.000 YOUNGS MODULUS: 30000000.0
VERT. SPAN : 32.000 YIELD STRENGTH: 52000.0
NO OF DESIGN VAR: 24 NO OF ELEMENTS: 12

B) DERIVED CONSTANTS:
NO OF SYSTEM NODAL POINTS... 13
NO OF DEGREES OF FREEDOM .... 39
HORIZ. LENGTH PER ELEMENT... 2.6667

C) STRUCTURE LOADING:
FX .......................... 0.0000
FY .......................... 0.0000
FM......................... . 6000.0000
FA................... .. .o. . 0.0000
CONCENTRATED LOAD AT NODE... 7

D) ELEMENTAL DIMENSIONS AND STRESS DISTRIBUTION:
NODE X-COORD Y-COORD BASE AREA

1 0.00000 0.00000 0.15087 0.22631
2 2.66667 2.69333 0.15000 0.22500
3 5.33333 5.38662 0.15000 0.22500
4 8.00000 8.07996 0.15000 0.22500
5 10.66666 10.77329 0.15000 0.22500
6 13.33333 13.46662 0.15000 0.22500
7 16.00000 16.10661 0.15377 0.23066
8 18.66666 18.74661 0.15000 0.22500
9 21.33333 21.43994 0.15014 0.22521

10 23.99998 24.13327 0.15005 0.22507
11 26.66666 26.77327 0.15000 0.22500
12 29.33331 29.41327 0.15000 0.22500
13 31.99998 31.99998 0.15000 0.22500

E) OBJECTIVE FUNCTION:

TOTAL STRUCTURE VOLUME: 10.207288

NODE NORMAL STRESS BENDING STRESS TOTAL
1 18.9 0.0 18.9
2 19.0 8935.8 8954.8
3 19.0 17871.6 17890.6
4 19.0 26806.6 26825.6
5 19.1 35742.1 35761.2
6 22.0 44677.8 44699.8
7 24.3 52024.6 52048.9
8 22.0 44303.3 44325.2
9 19.0 35335.9 35354.9

10 21.8 26425.4 26447.2
11 24.6 17591.1 17615.7
12 27.6 8749.7 8777.3
13 30.6 0.1 30.7

F) BOUNDARY CONDITIONS:
NODE X-DISPL Y-DISPL SLOPE

1 1 1 0
13 1 1 0

G) SOLUTION VECTOR:
NODE X-DISPL Y-DISPL SLOPE

1 O.OOOOOOE+00 O.OOOOOOE+00 -0.911602E-02
2 0.238804E-01 -O.236406E-01 -0.836558E-02
3 0.437104E-01 -0.432711E-01 -0.610774E-02
4 0.554325E-01 -O.548738E-01 -0.234471E-02
$ 0.549926E-01 -0.544349E-01 0.292347E-02
6 0.383368E-01 -0.379406E-01 0.969686E-02
7 0.238511E-02 -0.162140E-02 0.177837E-01
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8 -0.336480E-01 0.347801E-01 0.975857E-02
9 -0.505593E-01 0.515273E-01 0.305128E-02

10 -0.514326E-01 0.S23953E-01 -0.215084E-02
11 -0.405827E-01 0.414402E-01 -O.582135E-02
12 -0.219884E-01 0.226625E-01 -0.801783E-02
13 O.OOOOOOE+O0 O.OOOOOOE+O0 -0.874020E-02

-- 94



U

FILE: FILE CASES A

OPTIMIZATION NO.5

OPTIMIZATION SOLUTION

A) PROBLEM PARAMETERS:
HORIZ. SPAN: 32.000 YOUNGS MODULUS: 30000000.0
VERT. SPAN : 32.000 YIELD STRENGTH: 52000.0
NO OF DESIGN VAR: 24 NO OF ELEMENTS: 12

B) DERIVED CONSTANTS:
NO OF SYSTEM NODAL POINTS... 13
NO OF DEGREES OF FREEDOM .... 39
HORIZ. LENGTH PER ELEMENT... 2.6667

C) STRUCTURE LOADING:
FX ............................... 0.0000
FY ............................... 0.0000
FM ............................... 0.0000
FA ............................. -100.0000
CONCENTRATED LOAD AT NODE... 7

DJ ELEMENTAL DIMENSIONS AND STRESS DISTRIBUTION:
NODE X-COORD Y-COORD BASE AREA

1 0.00000 0.00000 0.15000 0.22500
2 2.66667 10.66666 0.16746 0.25118
3 5.33333 16.43103 0.15000 0.22500
4 8.00000 20.18451 0.15000 0.22500
5 10.66666 22.93553 0.15000 0.22500
6 13.33333 25.15350 0.15006 0.22510
7 16.00000 26.92931 0.15000 0.22500
8 18.66666 28.34477 0.15000 0.22500
9 21.33333 29.47061 0.15000 0.22500

10 23.99998 30.29001 0.15000 0.22500
11 26.66666 30.90901 0.15000 0.22500
12 29.33331 31.43495 0.15000 0.22500
13 31.99998 31.99998 0.15000 0.22500

E) OBJECTIVE FUNCTION:

TOTAL STRUCTURE VOLUME: 11.328694

NODE NORMAL STRESS BENDING STRESS TOTAL
1 13798.3 0.1 13798.5
2 12371.2 39641.7 52012.9
3 13857.5 38158.4 52015.9
4 13897.5 36095.7 49993.2
S 13901.5 38115.7 52017.2
6 13895.2 38108.5 52003.6
7 13903.2 38094.6 51997.8
8 13906.0 38087.9 51993.8
9 13909.4 37119.4 51028.8

10 13912.9 37831.8 51744.7
11 13924.4 35752.2 49676.6
12 13922.3 25555.1 39477.4
13 13910.7 1.5 13912.2

F) BOUNDARY CONDITIONS:
NODE X-DISPL Y-DISPL SLOPE

1 0 1 0
13 1 1 0

G) SOLUTION VECTOR:
NODE X-DISPL Y-DISPL SLOPE

I -0.595168E+00 O.OOOOOOE+00 -0.429371E-01
2 -0.174663E+00 -0.110052E+00 -0.327189E-01
3 -0.196828E-01 -0.184795E+00 -0.217266E-01
4 0.462421E-01 -0.234246E+00 -0.141289E-01
5 0.752630E-01 -0.264850E+00 -0.781040E-02
6 0.848358E-01 -0.278872E+00 -0.193522E-02
7 0.822190E-01 -0.277620E+00 0.349024E-02
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FILE: FILE CASES A

8 0.724252E-01 -0.262154E+00 0.860142E-02
9 0.587701E-01 -0.233261E+00 0.134390E-01

10 0.446241E-01 -0.191628E+00 0.180855E-01
11 0.307934E-01 -0.137662E+00 0.225620E-01
12 0.166607E-01 -0.725301E-01 0.262650E-01
13 0.OOOOOOE+00 0.OOOOOOE+00 0.278131E-01
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FILE: FILE CASE6 A

OPTIMIZATION NO.6

OPTIMIZATION SOLUTION

A) PROBLEM PARAMETERS:
HORIZ. SPAN: 32.000 YOUNGS MODULUS: 30000000.0
VERT. SPAN : 32.000 YIELD STRENGTH: 52000.0
NO OF DESIGN VAR: 24 NO OF ELEMENTS: 12

E) DERIVED CONSTANTS:
NO OF SYSTEM NODAL POINTS... 13
NO OF DEGREES OF FREEDOM .... 39
HORIZ. LENGTH PER ELEMENT... 2.6667

C) STRUCTURE LOADING:
FX ............................... 0.0000
FY ............................... 0.0000
FM ............................. 0.0000
FA ............................. -100.0000
CONCENTRATED LOAD AT NODE... 7

D) ELEMENTAL DIMENSIONS AND STRESS DISTRIBUTION:
NODE X-COORD Y-COORD BASE AREA

1 0.00000 0.00000 0.15000 0.22500
2 2.66667 6.78236 0.30329 0.45494
3 5.33333 14.31105 0.24584 0.36876
4 8.00000 19.67329 0.15000 0.22500
5 10.66666 22.94662 0.15000 0.22500
6 13.33333 24.93712 0.15000 0.22500
7 16.00000 26.01016 0.15000 0.22500
8 18.66666 27.14098 0.15000 0.22500
9 21.33333 28.00891 0.15000 0.22500

10 23.99998 28.76320 0.15000 0.22500
11 26.66666 29.50047 0.15000 0.22500
12 29.33331 30.30164 0.15004 0.22506
13 31.99998 31.99998 0.43413 0.65119

E) OBJECTIVE FUNCTION:

TOTAL STRUCTURE VOLUME: 14.430920

NODE NORMAL STRESS BENDING STRESS TOTAL
1 12224.7 0.1 12224.8
2 6057.4 45945.8 52003.1
3 7547.9 44469.5 52017.4
4 12709.8 19397.3 32107.1
5 13071.6 8753.1 21824.7
6 13083.4 10261.1 23344.6
7 12983.4 11714.5 24698.0
8 12980.5 16215.1 29195.6
9 12969.S 18953.1 31922.6

10 12975.1 13532.8 26507.9
11 12951.8 4652.1 17603.9
12 12164.7 39871.4 52036.1
13 3942.6 48101.8 52044.4

F) BOUNDARY CONDITIONS:
NODE X-DISPL Y-DISPL SLOPE

1 0 1 0
13 1 1 1

G) SOLUTION VECTOR:
NODE X-DISPL Y-DISPL SLOPE

1 -0.238121E+00 O.OOOOOOE+00 -0.323442E-01
2 -0.419812E-01 -0.792292E-01 -0.223869E-01
3 0.630188E-01 -0.118314E+00 -0.631173E-02
4 0.662482E-01 -0.122027E+00 0.299570E-02
5 0.5221S9E-01 -0.112946E+00 0.399436E-02
6 0.444548E-01 -0.104995E+00 0.258829E-02
7 0.407258E-01 -0.990568E-01 0.268114E-02
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FILE: FILE CASE6 A

8 0.355767E-01 -0.901286E-01 0.447894E-02
9 0.296101E-01 -0.757135E-01 0.667067E-02

10 0.226288E-01 -0.554353E-01 0.867125E-02
11 0.147434E-01 -0.314062E-01 0.92171BE-02
12 0.702276E-02 -0.987708E-02 0.646195E-02
13 0.0000002+03 O.OO0000E+00 0.OOOOOOE+00
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FILE: FILE CASE7 A

OPTIMIZATION NO.7

OPTIMIZATION SOLUTION

A) PROBLEM PARAMETERS:
HORIZ. SPAN: 32.000 YOUNGS MODULUS: 30000000.0
VERT. SPAN : 32.000 YIELD STRENGTH: 52000.0
NO OF DESIGN VAR: 24 NO OF ELEMENTS: 12

B) DERIVED CONSTANTS:
NO OF SYSTEM NODAL POINTS... 13
NO OF DEGREES OF FREEDOM .... 39
HORIZ. LENGTH PER ELEMENT... 2.6667

C) STRUCTURE LOADING:
FX .......................... 0.0000
FY ............................... 0.0000
FM ............................... 0.0000
FA ............................. -100.0000
CONCENTRATED LOAD AT NODE... 7

D) ELEMENTAL DIMENSIONS AND STRESS DISTRIBUTION:
NODE X-COORD Y-COORD BASE AREA

1 0.00000 0.00000 1.31120 3.93359
2 2.66667 2.66377 1.10192 3.30575
3 5.33333 5.25856 0.91330 2.73989
4 8.00000 7.97715 0.73940 2.21821
5 10.66666 11.05349 0.57427 1.72280
6 13.33333 14.02065 0.43146 1.29439
7 16.00000 16.77490 0.31308 0.93925
8 18.66666 19.50882 0.30000 0.90000
9 21.33333 22.17821 0.30000 0.90000

10 23.99998 24.47510 0.30000 0.90000
11 26.66666 27.00243 0.30000 0.90000
12 29.33331 29.40999 0.30000 0.90000
13 31.99998 31.99998 0.30000 0.90000

E) OBJECTIVE FUNCTION:

TOTAL STRUCTURE VOLUME: 72.614471

NODE NORMAL STRESS BENDING STRESS TOTAL
1 0.5 52070.8 52071.3
2 8.9 52066.6 52075.5
3 16.1 52056.2 52072.2
4 61.1 51982.5 52043.6
5 123.9 51879.7 52003.6
6 107.4 51886.1 51993.4
7 92.3 51919.3 52011.6
8 79.6 37074.2 37153.8
9 60.3 23343.8 23404.1

10 28.9 13394.2 13423.0
11 9.9 59397.8 5942.7
12 7.7 1530.9 1538.6
13 0.0 5.7 5.7

F) BOUNDARY CONDITIONS:
NODE X-DISPL Y-DISPL SLOPE

1 1 1 1
13 0 0 0

G) SOLUTION VECTOR:
NODE X-DISPL Y-DISPL SLOPE

1 O.OOOOOOE+O0 O.OOOOOOE+00 O.OOOOOOE+00
2 0.597678E-02 -0.598316E-02 -0.436127E-02
3 0.230543E-01 -0.235304E-01 -0.866592E-02
4 0.528078E-01 -0.527179E-01 -0.130684E-01
5 0.100533E+00 -0.941091E-01 -0.177673E-01
6 0.160387E+00 -0.147924E+00 -0.223668E-01
7 0.228394E+00 -0.213783E+00 -0.267883E-01
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FILE: FILE CASE7 A

8 0.307128E+00 -0.290595E+00 -0.30S781E-01
9 0.392384E+00 -0.375?76E+00 -0.331111E-01

10 0.470241E+00 -0.466157E+00 -0.345477E-01
11 0.558680E+00 -0.559472E+00 -0.353367E-01
12 0.644186E+00 -0.654177E+00 -0.356349E-01
13 0.736590E+00 -0.749316E+00 -0.356983E-01
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FILE: FILE CASES A

OPTIMIZATION NO.8

OPTIMIZATION SOLUTION

A) PROBLEM PARAMETERS:
HORIZ. SPAN: 32.000 YOUNGS MODULUS: 30000000.0
VERT. SPAN : 32.000 YIELD STRENGTH: 52000.0
NO OF DESIGN VAR: 24 NO OF ELEMENTS: 12

B) DERIVED CONSTANTS:
NO OF SYSTEM NODAL POINTS... 13
NO OF DEGREES OF FREEDOM .... 39
HORIZ. LENGTH PER ELEMENT... 2.6667

C) STRUCTURE LOADING:
FX ............................... 0.0000
FY ............................... 0.0000
FM ............................... 0.0000
FA ............................. -100.0000
CONCENTRATED LOAD AT NODE... 7

D) ELEMENTAL DIMENSIONS AND STRESS DISTRIBUTION:
NODE X-COORD Y-COORD BASE AREA

1 0.00000 0.00000 0.40294 0.60440
2 2.66667 3.27370 0.15000 0.22500
3 5.33333 8.18358 0.15000 0.22500
4 8.ro000 12.49695 0.15000 0.22500
5 10.66666 15.68683 0.15000 0.22500
6 13.33333 18.42828 0.15000 0.22500
7 16.00000 20.90140 0.15000 0.22500
8 18.66666 23.20117 0.15000 0.22500
9 21.33333 25.28195 0.15000 0.22500

10 23.99998 27.28166 0.15000 0.22500
11 26.66666 29.15797 0.15000 0.22500
12 29.33331 30.54808 0.15000 0.22500
13 31.99998 31.99998 0.21518 0.32277

E) OBJECTIVE FUNCTION:

TOTAL STRUCTURE VOLUME: 11.308629

NODE NORMAL STRESS BENDING STRESS TOTAL
1 9208.7 42801.0 52009.6
2 25084.6 3375.4 28460.0
3 25443.1 6676.3 32119.3
4 25460.7 9375.9 34836.6
5 25436.8 3831.6 29268.3
6 25386.7 18147.5 43534.2
7 25363.4 26649.6 52012.9
8 25365.1 25377.8 50742.9
9 25379.9 20239.0 45618.8

10 25414.8 1767.0 27181.8
11 25514.8 25373.4 50888.2
12 25579.6 26397.0 51976.7
13 17825.3 34401.1 52226.4

F) BOUNDARY CONDITIONS:
NODE X-DISPL Y-DISPL SLOPE

1 1 1 1
13 1 1 1

G) SOLUTION VECTOR:
NODE X-DISPL Y-DISPL SLOPE

1 O.OOOOOOE+O0 O.O00000E+O0 O.OOOOOOE+O0
2 0.113937E-01 -0.117173E-01 -0.568126E-02
3 0.342988E-01 -0.295478E-01 -0.443323E-02
4 0.505141E-01 -0.446311E-01 -0.473744E-02
5 0.648279E-01 -0.611976E-01 -0.524971E-02
6 0.749570E-01 -0.755686E-01 -0.338176E-02
7 0.768717E-01 -0.821558E-01 0.238845E-03
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FILE: FILE CASES A

8 0.693485E-01 -0.779902E-01 0.431015E-02
9 0.544237E-01 -0.635129E-01 0.773890E-02
10 0.346055E-O1 -O.417868E-01 0.936886E-02
11 0.157549-01 -0.1980102-01 0.765835E-02
12 0.522320E-02 -0.514698E-02 0.419866E-02
13 0.0000002+00 0.0000002+00 0.0000002+00

- 102



U

FILE: FILE CASE9 A

OPTIMIZATION NO.9

OPTIMIZATION SOLUTION

A) PROBLEM PARAMETERS:
HORIZ. SPAN: 32.000 YOUNGS MODULUS: 30000000.0
VERT. SPAN : 18.475 YIELD STRENGTH: 52000.0
NO OF DESIGN VAR: 24 NO OF ELEMENTS: 12

B) DERIVED CONSTANTS:
NO OF SYSTEM NODAL POINTS... 13
NO OF DEGREES OF FREEDOM .... 39
HORIZ. LENGTH PER ELEMENT... 2.6667

C) STRUCTURE LOADING:
FX ............................... 0.0000
FY ............................... 0.0000
FM .......................... 0. 00
FA ............................ -100.0000
CONCENTRATED LOAD AT NODE... 7

D) ELEMENTAL DIMENSIONS AND STRESS DISTRIBUTION:
NODE X-COORD Y-COORD BASE AREA

1 0.00000 0.00000 0.15003 0.22504
2 2.66667 2.28090 0.15000 0.22500
3 5.33333 4.52538 0.15025 0.22537
4 8.00000 6.57364 0.15012 0.22518
5 10.66666 8.44217 0.15017 0.22526
6 13.33333 10.14746 0.15014 0.22521
7 16.00000 11.70146 0.15023 0.22535
8 18.66666 13.11621 0.15000 0.22500
9 21.33333 14.39744 0.15005 0.22507

10 23.99998 15.55445 0.15024 0.22535
11 26.66666 16.59473 0.15000 0.22500
12 29.33331 17.52634 0.15000 0.22500
13 31.99998 18.47499 0.15000 0.22500

E) OBJECTIVE FUNCTION:

TOTAL STRUCTURE VOLUME: 8.390676

NODE NORMAL STRESS SENDING STRESS TOTAL
1 33701.0 0.1 33701.1
2 33704.7 18242.0 51946.6
3 33646.0 18393.0 52039.0
4 33675.5 18362.1 52037.6
5 33663.0 18380.3 52043.3
6 33671.2 18369.3 52040.5
7 33649.9 18380.3 52030.2
8 33702.3 18278.8 51981.2
9 33692.0 18333.3 52025.3

10 33649.5 18317.5 51967.0
11 33703.4 18112.9 51816.3
12 33701.9 17257.1 50959.1
13 33699.5 0.1 33699.6

F) BOUNDARY CONDITIONS:
NODE X-DISPL Y-DISPL SLOPE

1 1 1 0
13 1 1 0

G) SOLUTION VECTOR:
NODE X-DISPL Y-DISPL SLOPE

1 O.OOOOOOE+00 O.OOOOOOE+00 -0.137583E-01
"2 0.273039E-01 -0.379869E-01 -0.123359E-01
3 0.488191E-01 -0.696248E-01 -0.949834E-02
4 0.624682E-01 -0.935884E-01 -0.675184E-02
5 0.696080E-01 -0.110146E÷00 -0.409314E-02
6 0.713910E-01 -0.119528E+00 -0.150820E-02
7 0.687846E-01 -0.121933E+00 0.101241E-02
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FZLE: FILE CASE9 A

8 0.626172E-01 -0.117539E+00 0.347161E-02
9 0.536328E-01 -0.106513E+00 0.587863E-02

10 0.424687E-01 -0.889785E-01 0.824613E-02
11 0.296891E-01 -0.650603E-01 0.105634E-01
12 0.158C94E-01 -0.349536E-01 0.127837E-01
13 O.OOOOOOE+O0 O.OOOOOOE+0O 0.138690E-01
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FILE: FILE CASE1O A

OPTIMIZATION NO. 10

OPTIMIZATION SOLUTION

A) PROBLEM PARAMETERS:
HORIZ. SPAN: 32.000 YOUNGS MODULUS: 30000000.0
VERT. SPAN : 55.426 YIELD STRENGTH: 52000.0
NO OF DESIGN VAR: 24 NO OF ELEMENTS: 12

B) DERIVED CONSTANTS:
NO OF SYSTEM NODAL POINTS... 13
NO OF DEGREES OF FREEDOM .... 39
HORIZ. LENGTH PER ELEMENT... 2.6667

Ci STRUCTURE LOADING:
FX ............................... 0.0000
FY ............................... 0.0000
FM ............................... 0.0000
FA ............................ -100.0000
CONCENTRATED LOAD AT NODE... 7

D) ELEMENTAL DIMENSIONS AND STRESS DISTRIBUTION:
NODE X-COORD Y-COORD BASE AREA

1 0.00000 0.00000 0.15000 0.22500
2 2.66667 11.92522 0.15000 0.22500
3 5.33333 19.67612 0.15000 0.22500
4 8.00000 26.02310 0.15000 0.22500
5 10.66666 30.83034 0.15000 0.22500
6 13.33333 34.78506 0.20405 0.30607
7 16.00000 39.13298 0.15000 0.22500
8 18.66666 42.25943 0.15000 0.22500
9 21.33333 45.35509 0.15000 0.22500

10 23.99998 48.17604 0.15000 0.22500
I1 26.66666 50.91873 0.15000 0.22500
12 29.33331 53.12798 0.15000 0.22500
13 31.99998 55.42598 0.15000 0.22500

E) OBJECTIVE FUNCTION:

TOTAL STRUCTURE VOLUME: 15.148624

NODE NORMAL STRESS BENDING STRESS TOTAL
1 37992.2 0.1 37992.3
2 38009.5 13993.7 52003.2
3 38045.6 13552.0 51597.5
4 38084.5 9528.0 47612.5
5 38055.6 1160.7 39216.3
6 27936.6 24086.0 52022.6
7 38030.6 13224.5 51255.2
8 38061.4 13822.2 51883.6
9 38059.8 13996.9 52056.7

10 38064.1 13974.1 52038.1
11 38067.4 4071.1 42138.4
12 38068.1 13946.2 52014.3
13 38069.7 0.1 38069.9

F) BOUNDARY CONDITIONS:
NODE X-DISPL Y-DISPL SLOPE

1 1 1 0
13 1 1 0

0) SOLUTION VECTOR:
NODE X-DISPL Y-DISPL SLOPE

1 O.OOOOOOE+00 O.OOOOOOE+0O -0.101930E-01
"2 0.103071E+00 -0.389057E-01 -0.639297E-02
3 0.129693E+00 -0.590526E-01 -0.137548E-02
4 0.129351E+00 -0.683836E-01 -0.759869E-03
5 0.133686E+00 -0.787921E-01 -0.207601E-02
6 0.135401E+00 -0.861105E-01 0.737877E-03
7 0.122050E+00 -0.843440E-01 0.261456E-02
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FILE: FILE CASE1O A

8 0.111694E+00 -0.823635E-01 0.266911E-02
9 0.961471E-01 -0.75812SE-01 0.519496E-02

10 0.747049E-01 -0.623201E-01 0.760786E-02
11 0.485993E-01 -0.437086E-01 0.844971E-02
12 0.262193E-01 -0.235824E-01 0.920963E-02
13 O.O00000E+00 O.O00000E+00 0.103006E-01
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