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ON THE DETECTION OF ULTRAWIDEBAND RADAR SIGNALS

1. INTRODUCTION

An ultrawideband (UWB) radar is a radar that has an instantaneous bandwidth which is relatively
large. An impulse radar, which is one type of UWB radar, is a radar that has a time-bandwidth product
nearly equal to 1. An introduction to impulse radar can be found in Ref. 1.

The primary use of UWB radar is in applications in which conventional radars do not perform
satisfactorily. Fowler et al. [21 concluded, however, that impulse radars

* show no evidence of phenomenological advantages,
* have no unique advantages in terms of anti-stealth, and
* possess no special low probability of intercept (LPI) advantages.

But Fowler et al. also concluded that UWB radars may prove to be more effective over conventional
radars in certain short-range applications which require high range resolution (HRR) such as terrain
profiling. Reference 3 lists target identification, detection of specific air-turbulence patterns, and
detection of low radar cross section targets as other potential HRR applications.

An obstacle to implementing a true wideband radar is the tremendous amount of data which needs
to be processed in real time. Another problem is in generating the energy, within a period typically on
the order of picoseconds, necessary to detect or discriminate a target.

This report examines general signal processing aspects of UWB radar from a detection standpoint.
In Section 2, we model the process and derive a detector structure for a point target in white Gaussian
noise. Section 3 derives a new generalized moving target indicator (MTI) detector design for cases of
correlated Gaussian noise or clutter, and extends the detector to a generalized Doppler filter bank.
Additionally, the associated effects of bandwidth on performance in the presence of clutter are examined.
Section 4 considers range spread targets and derives three fundamental detector structures. Section 5
discusses future work areas and summarizes the report.

It should be mentioned that much of the work is based on extending, when necessary, conventional
radar processing theory taken from Van Trees [4,51.

2. POINT TARGET DETECTION

We will now derive the optimal detection statistic for an UWB signal assuming a point target. We
assume the (single pulse) transmitted waveform is given by

V2 Re[E, f(t) exp(jwt)],
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M. STEINER

where E, is a constant representing the transmitted energy of the signal and f(t) is the complex envelope

of the transmitted signal we, the carrier frequency. It is assumed that

I If(t) 12dt = 1.

We assume that the propagation and reflection processes are linear and frequency-independent, and that

the target is at a distance Ro at t = 0 and is moving with constant radial velocity v. Under these
circumstances, it is straightforward to show 14, p. 241] that the received signal is

r2Re[IE bf@ - T(t)) exp.fia(t -

where

r(t) 2Ro/c 2vt/c
1 - v/c 1- v/c

is the round-trip time delay, b represents an unknown complex amplitude, which is often assumed to have
a zero mean Gaussian distribution. We can reduce exp (jwc(t - r(t))) by absorbing the first term of

into -
2 vw/cl

T(t) into b and defining wd - l-o/c as

exp(jAc(t - r(t)) oc exp(j(wc + Wd)t).

To simplify f(t - r(t)), the approximation r(t) = 2Ro/c - 2 vt/c is made for conventional radars.

However, the actual time the signal return begins (which we will refer to as tb) assumingf begins at t

= 0, is when T(tb) = tb, which simplifies to

2 Ro/c

tb= 1 + v/c

whereas the latter approximation yields

2R0 /c
tb = I + 2v/c"

Now suppose we are trying to detect a high-speed target with R, = 20,000 nr and v = 600 m/s. The
approximation yields Tb = 1.333328E - 4 whereas the actual time is Tb = 1.333301E - 4, a difference
of 2.7- 10. Such a difference may seem insignificant until it is compared with the extent of a typical
pulse. For example, assuming a bandwidth of 5 GHz, the pulse widtlý is on the order of a few hundred
ps, or of the same order as the time difference between the approximated value and the actual value.
Thus, we could he in range error by as much as one range cell width when using this approximation. We
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2RoIc
can now accurately approximate f(t - r(:)) by f(t - -r) where - 1 v. Note that we have1+ Ulc

removed the dependence of r(t) on t by replacing r(t) by the epoch tb of the received pulse. This is
valid as long as the compression or stretching of the time scale caused by the dependence on time is not
significant. It is shown in Ref. 4 (p. 241) that this is the case whenever the time bandwidth product of
the received signal is 4 c/(2v); this will be assumed for the UWB signals considered here.

We assume that one of two hypotheses is received. The hypotheses are signals present with additive
noise n(t) under H, and only additive noise under Ho. Under hypothesis H1 we receive

r(t) = qR•E[7f(t- ) exp(]t(wc ÷+ Wd))+ n(t) exp(]wct)], (1)

while under Ho

r(t) = iF2Re[n(t) exp(jwct)] (2)

is received. wd is an added Doppler frequency shift. We now make the additional assumption that the
signal is band-limited. Under these circumstances, there exist the transformations

rc(t) = ( r•r(t) coswct).,L

r,(t) = (V2r(t) sinw•t)Lp

r(t) = F2rc(t) coswt + F/r 5(t) sinw)t

where (.)Lp represents a low-pass operation. Note these operations are invertible, hence by the
factorization theorem [51 it can be shown that the problem is equivalent to discriminating between

P(t) = vEibf(t - r) exp(j'Aodt) + n(t) under H1 and

r(t) = n(t) under H,. (3)

This problem has the solution [4, p. 245]

Hi

0 (t)f* (t- r) exp(-j'wdt)dt 2 >-

Ho

where Tp is the pulse repetition interval and -y is a threshold associated with the probability of false alarm.

The test is uniformly most powerful for the case where b = " exp(jo), " is unknown and 0 is a
uniformly distributed random variable on [0,27-r. To prove this, examine Ref. 5 (p. 339). The test is

optimal in the case where b is assumed Gaussian distributed with zero mean, which is the case when "

3
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is Rayleigh distributed and 0 is uniformly distributed on [0, 2w][ 7 ]. For the case of n pulses, this
becomes

H1

or(t) f*(t - r) exp(-jfdt)dt 12
i=O

Ho

or

H,

E o0 r(t)f' *(t - T,) exp(-jwdt)dt12 <(4)

Ho

2 (R - iv Tp)Ic
where r ( -Iu ) + iTp i = 0,..., n - 1. This detector assumes knowledge of

"a 2 uwc/c which, in practice, is typically not known. An implementable detector structure is
I +ulc

developed in Section 3 that does not assume knowledge of wJd and is extended from a white noise

assumption to correlated noise or clutter.

3. DETECTION IN CLUTTER

In the derivation of Eq. (4), the target is not assumed to lie in the same range cell from pulse to

pulse. The associated delays T, are dependent upon the target velocity in contrast to a conventional radar

where r-i = iTp is nearly velocity independent. In the presence of clutter or correlated noise, this

difference has important consequences. In the conventional case, the clutter within the target range cell
can be cancelled using only data from returns of the target at the same range cell. Hence, the same data

can be used to both cancel clutter and integrate the target energy from successive pulses. In the UWB
case, however, the target may move through range cells between successive pulses so that the range cells
that contain the target may not be sufficient to cancel the clutter. That is, the degree of clutter correlation
between successive target returns that lie in different range cells may be much less than in the case of
conventional radars. In general, we would require additional data that do not contain the target to fully
cancel the clutter and obtain reasonable detection performance.

4
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We refer again to the hypothesis testing problem of Eqs. (1) and (2) where we model the cluttern(t)
by a correlated zero-mean nonwhite Gaussian noise process. The optimal detector is found by using
standard techniques

HI

0 I rt()g *(t) exp(-fi..dt)dt I~ ~ 5

Ho

where g(t) is the pseudosignal formed by solving

-|f(t -_ T) -- To
ni=

~~~~ P( , " K.(t,u)g(u)du

and K,(t,u) = E(n(t)n * (u)). The pseudosignal would take into account correlation in range as well
as time correlation from pulse to pul. e.

Generally, the Doppler Wd is unknown. A bank of filters of the form of Eqs. (4) or (5) may be used
such that each filter is matched to a different Doppler shift. When the maximum of these filters is
compared with a threshold, the resulting test is often referred to as a generalized likelihood ratio test
(although an infinite number of filters is technically required). In this case, we would require a number
of integrators to perform the computation of either Eqs. (4) or (5).

Let us denote the output of a filter matched to f(t) by

u(t) = J r(T)f*(r - t)dr. (6)

Suppose that nearly all the energy off(t) is concentrated within the time interval [0, Tf7. If (dT varies
relatively little during this interval, we can make the approximation [8]

u(t) - exp(jWdt) r(r)f*(T - t) exp(-jWdT)dr.

For the case of white Gaussian noise, the detector structure of Eq. (4) then reduces to the optimal solution

Hi

M_' t2 > (7)
E exp(-jwdr,)u(r,) < ".()

Ho

Although Eq. (6) is a sufficient statistic for the detection problem in white Gaussian noise, it is not in
general sufficient for arbitrary correlated noise. However, in the case of a conventional radar
(T, = iTp,), a complex weighting a, is typically substituted for the values exp(-jwdir) in Eq. (7). The

5
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use of an appropriate weighting is well known to eliminate the effects of most clutter. The resulting
detector is then

Hi

n-1 2 > (8)

I E a,u(r,) <(8

Ho

This detector for appropriate ai is referred to as an MTI. A bank of such filters is a Doppler filter bank.

In the case of UWB operating in clutter, the detector structure of Eq. (8) may not be sufficient to
cancel the clutter. This is due to the loss of correlation between the u(ri) which may occur if the target
moves between range cells on successive pulse repetition intervals. A generalization of Eq. (8) is thus

H,

-l -I > (9 )
[ aiju(r,+ T(] - i))M

i=0 j=0

Ho

where n is the number of pulses. We define a detector of the form described in Eq. (9) to be a
generalized MTI (GMTI), and the n by n matrix A of elements aij to be the GMTI coefficients. We can

extend the GMTI to a generalized Doppler filter bank as follows. Let a (wd) be a set of Doppler

coefficients matched to a target with associated Doppler wd. We can compare each filter with a threshold
or declare a detection whenever

HI

max n - n-1j aj u(T + Tp(/ - i)) > < .

d =0 j =0

Ho

Performance in the white Gaussian noise case is well known. We can relate the probability of
detection Pd with the probability of false alarm Pf 14, p. 2461

' + (10)Pf= ý d

where A = FINo, F is the expected value of the received signal energy and No is the (complex) noise

spectral density. In the case of correlated Gaussian noise, Eq. (10) holds although A = Z" ff(t)g * (t)dt.

In either case, performance is limited by the spectral density of the thermal noise and the received signal
energy. This is also the case for conventional radar.

6



NRL REPORT 9517

3.1 Computation of GMTI Coefficients

In this section we show how to compute the GMTI coefficients of Eq. (9). Consider the vector x
where xo = U(ro), x, = U(To+Tp), ... , x,-l = u(ro+(n-l)T,), x, = u(Tr-Tp), x,, U(o),

U(To), X2,,-, = u(T1 + (n - 2)Tp) continuing through x,2- 1 . In general, xi1,j = u(Tr + Tp(j - i))

where 0 < i < n - I and 0 < j _< n - 1 (seeFig. 1). We see that the entries xin,xin+1,,..,xin.,_l

will be correlated because of the temporal correlation of clutter, while xj,x.jý , .X(n-I)nj will be
correlated because of the spatial correlation of clutter. Other cases represent combinations of both time
and spatial correlation. Assuming stationarity, we can represent the covariance matrix R of x by

Rr RS H ... R,._2 Rs._I

R ,, R, ... Rs_, Rs._

R =E(xxn)=

R,.¶M"2 Rs:H ... Rt R,1

R i, R•H H. Rs R,

where R, represents the covariance matrix associated with any row of Fig. 1 and R•, is the cross

covariance matrix associated with any two rows of Fig. I that are separated by i rows. x" denotes the
Hermitian transpose of x. Hence, R, is a clutter covariance matrix that may have relatively large values,
while the matrices R, will typically diminish with increasing i as the clutter decorrelates spatially.

Xn- 1 * ** is

x ".X2n-1 ' n+1 Xn

. . .Xn2in+l Xn2_n

TIME

Fig. I - Matched filter output array for a target with range decreasing in time.

Target occupancy is X0 , Xn.I ... , Xn2 1 .

Assuming Gaussian noise n(t), the vector x is easily shown to be Gaussian. We can formulate the
new detection problem as

y = x + s exp(jýý) under H, and
y = x under Ho,

7
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where s is the expected value of x under H, and 0 is a random uniformly distributed phase. It is known
19] that the optimal solution is

H1

> (11)
I -< 3i=O

HO

where c = R s*. To illustrate this, we assume for simplicity that n = 2, s = (1,0,0,1)" and

001 p0

OOp 1

The optimal coefficient vector is then given by (l,-p,-p,l). As p approaches one, the optimal solution
becomes

I0- x -xi-X2+X 31 < '

HO

which essentially removes the clutter and integrates the signal. Note that the signal only lies in two
components. A similar result could easily be derived to allow implementation with a transversal filter.
Hence, in cases such as this, Eq. (8) would not be adequate. This situation is extreme in that the target
returns are separated by at least a range cell between pulse repetition intervals. In cases where this does
not occur, the complex representation of Eq. (3) is very useful, as the optimal detector of Eq. (11) will
incorporate the phase change of the signal relative to the carrier frequency, allowing relatively slow
targets to be detected.

3.2 Spatial Correlation

Increasing bandwidth or resolution may have the effect of spatially correlating range cells compared
with a narrowband radar. The effect that spatial correlation might have on the signal-to-noise ratio can
be determined via measurements made to estimate the covariance matrix R. Let R, be the covariance
matrix where entries due to spatial correlation are zero. It is known 191 that the optimal improvement in
signal-to-noise ratio is given by

!lsTR-'s * 1 (12)

where s is any signal vector corresponding to Eq. (11) and y' is the received signal-to-noise ratio. We
simply mention here that a measure of relative performance is given by

6 Is TR-s
Is TRIS Is

8



NRL REPORT 9517

3.3 Clutter Resolution

Increasing the resolution will have an impact on a radar's ability to resolve a limited number of
clutter scatterers. The problem will be examined by considering the processing of a single transmitted
pulse without Doppler processing. The environment is assumed to consist of a target between two clutter
scatterers. The detection performance is investigated as a function of both the bandwidth and the distance
a target is between the two clutter scatterers. The general resolution problem was studied in detail by
Van Trees [4, pp. 323-335], although we are interested in the effects of bandwidth on clutter resolution.

We fix the distance between the two clutter scatter,,rs at I m for the examples to follow simply to
illustrate the effects of bandwidth on clutter resolution by conventional and optimal processing. We
assume that a point target is located at a distance d from cluttei scatterer number I as indicated in Fig.
2. Let f(t) be the received signal and for simplicity zero target Doppler is assumed. The received

signals from scatterers I and 2 are, respectively, b1f(t - TI) exp(ji 1 t) and b2f(t - T2 ) exp(iow2t),
where rT -2d/c, and r2 = 2(1 - d)Ic. Hence we formulate the hypothesis

r(t) = EE, bJ(t) + ýE, bf(t - r1) exp(fjwit) + n(t) under H, and
i = 1

r(t) = ý h f- f(t - ri) exp(jwit) + n(t) under H0.
i=0

0S 2

LU

LU TARGET

$1

Fig. 2 - Depiction of clutter scenario. S, and S2
arc clutter scatterers separated by I meter.

Target is at d meters from S1.

The b, are assumed to be zero mean complex Gaussian random variables such thatE(bibj*) = '6
where 6,, = I for i = j and 0 otherwise. n(t) is zero mean white Gaussian noise with covariance

function E(n(t)n *(u)) = Nob(t - u). We first assume the detector is of the conventional type, and
later assume the detector is optimal. In either case, the performance of this detector can be derived as
14, p. 2511

pfa = pý

9
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where the performance exponent A = A, for the conventional receiver and A = Ao for the optimal
receiver. The conventional detector is given by

HI

I r(t)f -(t)dt 7
Ito

and the performance coefficient [4, p. 327] is given by

AC No ,(13)

+ E E1 + ooE- 0(r 1 , w1) + oOr,,).

where T• = 2E, G2, and O(T,ý.w,) is the ambiguity function of f(t),

6(T,W) =Jf(t _ T )f *(t _ T ) exp(joil)dt 12.

The conventional receiver is not optimal due to the inclusion of the clutter scatterers. It can be shown
14, p. 3301 that the optimal receiver is

H1

Jr(t)g (t)dtl < Y

H0

where
2

g(t) = gof(t) + • gif(t - rj) exp(jwot)
i=l

and the coefficients gi are computed as follows. Define:

- -r) exp(jw1t)1

f(t - T2) exp(jco 2 t)j

p = ff(t)fj(t)Hdt

P j = f/(t)f(t)dt.

10
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Then go = •o1 and

g .�[ 1  = -2 + Ap*]APdg2 I [I

Additionally, the optimal exponent A, can be derived as

= -•0  [ - HPd4I+1Ap*Ap (14)
A 

A°

We assume w. = 0 and Y = C/N for i = 1,2, and define R, and Ro A. . R and RoK £ INo K0/No

represent normalized signal-to-noise ratios after conventional and optimal filtering, respectively. In this
case, Eq. (13) can be rewritten as

1,

1 l O(TI, 0) + f20(T2 ,0)No No

and Eq. (14) as

Ro= 1 + N 2 1 + O (TI,0) + 0( )
I+ -- - 0 [ T - T2,0]CI

-2J10 ( T - T2'0)0(TIp0)0(T 2 ,O))] (16)

where rT and r2 are parameterized by d as in Fig. 2. Hence, the performance of both the conventional
and optimal receivers depends on the ambiguity function of f(t). For example, let f(t) be a Gaussian
pulse

f(t) -[ 2 ]:exp ]
It is known that the ambiguity function is 14, p. 2831

0(rW) = exp [ ' + T272 ,]

11
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where 7 is a constant proportional to the useful duration of the pulse. It is easily shown that the power

spectrum of f(t) is proportional to e-: 2 and, hence, the 3 dB bandwidth W3dB 2 radians per

second.

Assuming a Gaussian pulse, we plot in Figs. 3(a)-3(d) R, vs d, and in Figs. 4(a)-4(d), R, vs d, for
various C/N ratios and w0 3dB bandwidths. It is seen that at 100 MHz, detection performance is limited
by the clutter residue, while at higher frequencies, much of the region is free of the clutter from a
detection standpoint. Also note in cases such as W3dB = 1 GHz the optimal solution substantially
improves subclutter visibility of the target echo over the conventional processor.

0 0
N C 0 di l5 5 NN

-10 I

•020 20 FdR

25 25

30 -30
0 01 02 03 04 05 06 07 08 09 1 0 01 02 03 0.4 0.5 0.6 0.7 08 09

d (m) d (m)

Fig. 3(a) - R, vs d, frequency = 100 MHz, Fig. 3(b) - R, vs d, frequency = 1 GHz,
conventional processor conventional processor

S0dl C 0dB
N2d N

III I ld

10 -10

. 15 - 15

20 20

25 -25

30 301 I I
0 01 02 03 04 05 06 07 08 09 1 0 01 02 03 04 05 06 07 08 09

d (m) d (m)

Fig. 3(c) - R, vs d, frequency = 5 GHz, Fig. 3(d) - R, vs d, frequency = 10 GHz,

conventional processor conventional processor
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0 -- - r - 7 0,

c 0 dB

N-

-5 -5 0 dBN

00d
-10 - =25d

-20 =20dB -20

-25 -25

-30 I I I i I I -30
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

d (m) d (m)

Fig. 4(a) - R. vs d, frequency = 100 MHz, Fig. 4(b) - R. vs d, frequency = 1 GHz,
optimal processor optimal processor

0 0
' c_ 0OdB c

-5 N 05 -0rdB

10dB r =-1dB

-10 =20dB -10 - =20dB

2 -15 2.-15
o 0

-20 -20

-25 -25

- 30I I I I I I I 30
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 08 09

d (m) d (m)

Fig. 4(c) - Ro vs d, frequency = 5 GHz, Fig. 4(d) - R. vs d, frequency = 10 GHz,
optimal processor optimal processor

Implementation of the optimal processor requires knowledge of the positions of the clutter scatterers
and their relative strengths. Such processing, however, may be achieved adaptively by estimating the
clutter strengths and positions assuming a weak target signal. Such a processor may be useful to reduce
the effects of clutter when postprocessing is not sufficient to fully cancel clutter.

4. RANGE SPREAD TARGETS

Due to the fine resolution of HRR radars, target returns will typically occupy more than one range
cell. We consider three cases. In the first case, the target amplitude profile is assumed known up to a
proportionality constant. An optimal detector is derived which is an extension of Eq. (7). In the
remaining two cases, the target profile is not known exactly, although certain second order statistics are
assumed known regarding the target. For the second case, we assume that the target scatterers
individually resolve and model the return as a sum of resolved point scatterers with statistically
independent Gaussian amplitudes. For the final case, the target is modeled by a weighted integral of the
transmitted signal where the weighting function is assumed zero mean Gaussian with known covariance

13
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function. The returns from different ranges are assumed statistically independent. An optimal detector
is found via a low energy coherence (LEC) assumption [4, p. 4311. The LEC case requires that the
eigenvalues Xi in tde Karhunen-Lo~ve expansion of the signal s(t) are small compared to the spectral
density of the white noise level. Since the signal energy is spread across a large bandwidth in UWB
radar, this is a reasonable assumption.

For simplicity, we will assume the target is embedded in white Gaussian noise and considerthe
hypothesis test in Eq. (3). Suppose f(t) can be written as

f(t) = J b(X)s(t - X)dX,

where b(X) is a known complex function proportional to the amplitudes of the target scatterers ands(t)
is the transmitted signal. Let us denote the output of a filter matched to s(t) by

Us(t) = Jr(r)s(r - t)dr. (17)

The optimal receiver of Eq. (7) is given by

Hi

n-1 exp(-jWdr,)u(r,) >

H0

n-io
HH

n-I

exp(-Jj(J T) [ J(r)s*(r - r )dr dr y

HHO

HI
n-I>

p exp((-j -r T jwfr(T) b*(X)S'(r- Tj X)dXld T < dy

Hi

= I exp(-jodari) b*(X)u,(rTi + I)d <

Ho

Note that if the individual target scatterers are resolved, the term I b * (X)us(r, + X)dX essentially is
a coherent addition of the individual target scatterers energies. If the scatterers do not resolve, the
amplitudes will typically be such that some cancellation occurs between the scatterers resulting in a loss
of energy. This effect was noted by Farina 13J who showed that for a moderate number of scatterers,

14
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significant improvements in the detection performance are possible by using an UWB over a low-
resolution radar.

In the second case, we will assume the target scatterers are resolved and that their amplitudes are
independent Gaussian random variables. That is,

K-1

f(t) = bj ss(t - Xi)
i - 0

where the bi are zero mean Gaussian with E(bij*) = 2a• b0. If the X1 are separated enough so that

s(t - X•) can be assumed orthonormal, the signal covariance matrix is separable, and the optimal
solution is [6, p. 3521

Hi
K-1• 20 >2 fr(t)s(t)dt < -

i = o 2a7 + N.
Ho

For n multiple pulses, "=- f(t - r,), we will assume that the scatterers maintain the same geometric

phase relation from pulse to pulse resulting in the detection statistic

HI

K-I 2(1 2 -1oE 2c" + I E exp(-Jn-Ii) Jf(t)s(t - Xi- 1j)dt 12 <(19)

i l+ No j = x(Icd~ 0

Ho

Again we see that the individual scatterer energy is added to form the detection statistic.

Generally the function b(X) is highly target dependent, or may not be known. Suppose b(X) is

modeled as a sample function from a zero mean complex Gaussian process b(X) such that

f(t) = f b(X)s(t - X)dX

and furthermore assume the covariance function of b (X) is of the form

K;(X1,X2) = 6(),' - X2)S(X1 )

where S(X) = E(I•b() *(X)1 2 , and 6(.) represents the impulse function. The optimal solution in
general is difficult to implement because there can be an infinite number of eigenvalues/eigenfunctions
in the Karhunen-Lo~ve expansion of K,(XX,2). However if we make the LEC assumption that the
eigenvalues in a Karhunen-Lo~ve expansion are much less than the spectral density of the white Gaussian
noise, approximations can be used which simplify the detector structure. For the UWB case, this is
typically the case for weak targets due the wide bandwidth of the signal. For strong targets, the detector
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structure, although suboptimum, may still perform sufficiently well, since the strength of the target may
suffice to overcome the deficiencies of the suboptimum detector. For a single pulse, the optimal detector
is 14, p. 4311

Hi

.S(X)Iu(X)IdX < 7,

Ho

n-1

which is easily extended to n multiple pulses E7 = 0 f(t - ri),

HI

n - > (20)
S(X) E exp(-jUAdri)uS(r, + X) () <

Ho

We have compiled three optimal detector structures for range spread targets. The actual detector
structure which is most applicable to UWB depends on the particular targets of interest to the radar
designer and feasibility of implementation.

5. CONCLUSIONS

The purpose of this report is to examine general aspects of the detection of UWB signals and cite
areas for further study. We determined detectors assuming white Gaussian noise and correlated noise,
found a detection structure which generalizes a conventional Doppler filter bank, and illustrated a method
to compute the GMTI coefficients. We also examined the effects of increasing bandwidth on clutter
resolution and compared optimal and suboptimal detectors for single pulse echos. We found that the
optimal processor can result in substantial improvement in subclutter visibility of the target echo. We also
examined range spread or distributed targets. Cases of completely known and incomplete statistical
knowledge of the target profile were treated.

The determination of the parameters of many of the detection structures discussed, such as optimal
weights of a filter bank, has been shown to depend on the statistical characterization of the signal return
which, in turn, depends on many factors. Signal characteristics (such as form and bandwidth), target
characteristics (such as form and velocity), and the environment (which, along with various radar
parameters, determines the degree of clutter and spatial correlation and the signal propagation paths) are
all important factors among others that need to be further studied to properly design an UWB radar.
Propagation models of UWB signals should be developed and their validity tested against actual data.
These models can then be used to determine the parameters necessary to develop viable detectors. These
parameters can be determined via appropriate models and compared by using actual data to assess their
usefulness.

The finding in both Ref. 3 and in this paper that UWB radars yield a processing gain over
conventional radars for targets which have numerous scatterers may imply that UWB radars have unique
advantages.

16



NRL REPORT 9517

It is recommended that future emphasis be placed on the phenomenological aspects of UWB radar
signals. Models should be developed which accurately reflect the propagation of signals and the effects
of clutter so that detectors can be properly designed.
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