Naval Research Laboratory

Washington, DC 20375-5320

 AD-A256 071 NRLIMRISS20-92.7136
LT

System Design and Development of a Low Data Rate
Voice (1200 bps) Rate Converter

J. P. HAUSER

Communications Systems Branch
Information Technology Division

September 30, 1992

e

|
|
|

I
¥
g

-

CT09 1992 g

li

)
i

92—2ﬁ|8 12

LT

92 10 & 246

Approved for public release; distribution unlimited.

REPORT DOCUMENTATION PAGE ;m:wg;;o,a,

|Public reporting burden for this collection of inf ion is d to age 1 howr per resp mhm'v iewing instn i isting dete sowrces,
| gethering end mai "_MM ““ ",-\d iewing the collection of inf i thmummmdm
Mection ef ind inciuds o this burden, to Washi mmsamu.r' for inf and Reports, 1218 Jeffersen
[Davis Highway, Suits 1204, men. VA 22202-4302 and to the Office of Mansgemant and Budget. Peparwork Reduction Project 10704-0100) Washington, DC 20603.
1. AGENCY USE ONLY (Lesve Blenk) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
September 30, 1992 Interim 7/91-6/92
4. TIWTLE AND SUBTITLE 6. FUNDING NUMBERS
System Design and Development of a Low Data Rate Voice (1200 bps) Rate Converter PU - 0602232N
y en P (1200 bps) PR - RC32A13
6. AUTHOR(S)
J. P. Hauser
7. PERFORMING ORGANIZATION NAME(S) end ADDRESSIES) 8. PERFORMING ORGANIZATION
REPORT NUMBER
Naval Rescarch Laboratory
Washington, DC 20375-5320 NRL/MR/5520—92-7136
9. SPONSORING/MONITORING AGENCY NAME(S} AND ADDRESSI(ES) 10. SPONSORING/MONITORING
AGENCY REPORT NUMBER
Naval Command, Control and Ocean Surveillance
San Diego, CA 92152-5122

11. SUPPLEMENTARY NOTES

12e. DISTRIBUTION/AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Approved for public release; distribution unlimited.

13. ABSTRACT (Meximum 200 words)

This report presents both a high level and a detailed design for a low data rate voice Rate Converter (RC). On the transmit
side, the converter reduces 2400 bps voice gencrated by an Advanced Narrowband Digital Voice Terminal (ANDVT) to a 1200 bps
bit stream. On the receive side it converts the 1200 bps bit stream back to a 2400 bps stream in ANDVT format. Rate reduction is
accomplished with little degradation to the inherent voice quality of the ANDVT.

This primary focus is upon the real-time software design which is implemented using VxWorks, a real-time, multi-tasking
operating system and development environment. The high level design defines four tasks, each having its own execution thread and
its own ‘‘pipe”’ to facilitate inter-task communication. The Supervisor Task performs initialization and manages input of commands
and data to the RC. The Compressor Task reduces a 2400 bps bit stream to 1200 bps while the Decompressor Task converts from
1200 bps back to 2400 bps. The Output Task manages the output of data from the RC. Latter sections of this report describe the
software in detail.

14. SUBJECT TERMS 16. NUMBER OF PAGES
Low data rate voice Data/voice intcgration 41
Rate conversion 16. PRICE CODE
17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT
OF REPORT OF THIS PAGE OF ABSTRACT
UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED UL
NSN 7640-01-280-§500 Stenderd Form 208 Raev. 2-88)

Prescribed by ANSI St 238-18
i 208-102

| I 00) - 1
L PUIPOSE ... e e e e e et e e 1
1.2 Communication Support System (CSS) Architectural Context 1
1.3 Voice Subscriber Terminal (VST)ttt iininnrenennn. 1
1.4 Document Overview itiiirieeneennennennnnn 3
2.0 REFERENCED DOCUMENTSttt ittiiiinenernnnnnnnnnnn 4
2.1 Government DOCUMENLSottt it ittt it it ineeneeennnnens 4
2.2 Nongovernment Documentsccuiiiiennenennneennens 4
30 GLOSSARY e e e e e e e 5
4.0 HIGH LEVEL SYSTEMDESIGNt iititiiirnnnnnennn. 6
4.1 Hardware Specification i i i e 6
4.2 Software Designttt i e e e e 6
5.0 DETAILED SOFTWARE DESIGNttt initeneennnn. 10
5.1 CodeLayoutoiiiiiiiiineinneenereneneeneeenaannas 10
5.2 UserDefined Data Types00t iiiiieeeenenenannenns 11
53 Message Formats0 ... ittt iinennenennennnenn. 15
5.4 TaskModules ittt it iennennnns 16
5.5 HODDevices . .. i vttt it i e i e e et e et e e e, 27
6.0 REAL-TIME IMPLEMENTATION ittt ttninnnnennnn 29
T.0 Appendices i e e e e et e e, 31
7.1 Overview of the ANDVT Rate Conversion Algorithm 31
7.2 Example Compression/Decompression of Four Consecutive ANDVT Frames 35
lccession_ror //

NTIS GRA&I A

% DTIC TAR a

™ Unannouncead d

.:’,?! Justiricatie

{k By .
' | Distribution/
Avallabillty Coces
Avall end/or
Dis Spralal

]

ese

‘ G‘" ” j _’.-!.:

SYSTEM DESIGN AND DEVELOi’MENT OF A LOW DATA RATE
VOICE (1200 bps) RATE CONVERTER

1.0 SCOPE

1.1 Purpose

This document encompasses both the high level and the detailed design of the Low Data
Rate Voice Rate Converter (RC). Both the hardware and the software designs are covered,
with primary attention given to the software design, since all RC development work in-
volves software, while the hardware is strictly off-the-shelf.

1.2 Communication Support System (CSS) Architectural Context

The Rate Converter should be understood within the context of the Communication Sup-
port System (CSS) architecture. The goal of the CSS is to support a wide variety of Navy
applications, €.g., voice, tactical data, record message, etc., by granting access to a single
systermn that manages all the communication resources. The CSS System Specification
makes the following statement:

“A cornerstone of the CSS concept is that the users are not aware of the media em-
ployed to transfer data to or from other users. The users are also not aware of data rate,
coding mechanisms, link protocols, or timing relationships. The users regard the CSS
as only providing the required communications services in terms of distribution, securi-
ty, quality, timeliness, and throughput.”

The CSS architecture includes both satellite and terrestrial RF transmission systems. Sat-
ellite channels, links, and networks within CSS have the bandwidth required to support
both voice and data applications, but can benefit from the reduced throughput require-
ments afforded by low data rate voice techniques. However, terrestrial digital RF networks
that are characterized by low bandwidths and dynamically varying connectivities, demand
the use of low data rate voice techniques as a prerequisite for the support of voice applica-
tions. The Rate Converter seeks to meet that demand.

Figure 1, which is redrawn from the CSS System Specification, depicts the CSS architec-
tural context. As the figure illustrates, users always access CSS communication facilities
via « Subscriber. For voice applications, a Voice Subscriber Terminal is currently under
development.

1.3 Voice Subscriber Terminal (VST)

Advanced Communication Systems (ACS), Inc., developed a preliminary version of a
VST under SBIR N89-41, while Naval Research Laboratory (NRL) Codes 5521 and 5531
have developed the RC with funding from the Shared Adaptive Internetworking Technol-

ogy (SAINT) 6.2 program.

Figure 2 shows the CSS compatible VST now under development by ACS. The VST must
support several interfaces: 1) an interface to an Advanced Narrowband Digital Voice Ter-
minal (ANDVT) operating in voice only mode that transmits and receives 2400 bps red

Manuscript approved July 23, 1992

Low Data Rate Voice (1200 bps) Rate Converte: July 16, 1992 1

CSS

Communication
Resources

w0 O %N KD
N OO N KD

FIGURE 1. CSS Architectural Context.

VME Chassis

Rate Converter

P
,

CSS sce}—_

SUN
VST GUI

200->2400

[RS-232C, synchronous]

RED DIGITAL (2400)
[MIL-STD-188-114]

ANDVT
(Voice only mode)
(Application #4)

FIGURE 2. CSS compatible Voice Subscriber Terminal (VST) with a Rate Converter (RC) server.

Low Data Rate Voice (1200 bps) Rate Conventer July 16, 1992

(i.e., unencrypted) voice data via the J2 connector [MIL-C-28883A], 2) a graphical user
interface (GUI), 3) an interface to the Standard Communication Environment (SCE), i.c.,
the remainder of the system, via an Ethernet using a CSS interprocess communication pro-
tocol (OS/IPC), and 4) an interface to the RC, which provides 1200 bps voice capability
by compressing (for transmission) and decompressing (upon reception) the 2400 bps
voice produced by an ANDVT. A broad definition of a CSS Subscriber, as pictured in Fig-
ure 1, would include all the elements of Figure 2 as components of the Subscriber, except
for the User and the SCE. Thus, the RC, the ANDVT, the Handset, the Interface Convert-
er, the GUI, and the VST are all Subscriber components.

1.4 Document Overview

Having shown where the Rate Converter fits into the context of the CSS, the remainder of
this document is devoted to presenting the RC design and implementation. We begin with
a high level system design and then proceed to a detailed design of the RC software. We

conclude with a discussion of current progress in producing a real-time implementation of
the RC. .

Low Data Rate Voice (1200 bpe) Rate Converter July 16, 1992 3

2.0 REFERENCED DOCUMENTS

2.1 Government Documents

G. S. Kang and L. J. Fransen, “ANDVT Rate Conversion Algorithm (From 2400 b/s to
1200 b/s),” NRL Report 9357, September 1991.

“System Specification for the CSS,” NOSC (now NRaD) CSS Program Office, Code
8503, June 1991.

“System Specification for the CSS Standard Communications Environment (SCE),”
NOSC (now NRaD) CSS Program Office, Code 8503, June 1991.

MIL-C-28883A, “Military Specification for the Advanced Narrowband Digital Voice
Terminal (ANDVT) {CV-3591(p)/U (Tactical Terminal)] [J-3953/U (Interface Unit)]
[C-11006/U (Modem/Voice Processor Unit)]”, Space and Naval Warfare Systems Com-
mand, Wash., D.C., 1 June 1987.

EE160-GP-OMI-010/W151-USC-43, “Technical Manual - Operator and Organization-
al Maintenance for Advanced Narrowband Digital Voice Terminal - Terminal Sets AN/
USC-43(V)1 through AN/USC-43(V)6”, ITT Defense Communications Division, 31
July 1987.

2.2 Nongovernment Documents

Brian W. Kemighan and Dennis M. Ritchie, The C Programming Language, Second
Addition, Prentice-Hall, 1988.

Margaret A. Ellis and Bjarne Stroustrup, The Annotated C++ Reference Manual, Addi-
son-Wesley, 1990.

VxWorks Programmer’s Guide, Wind River Systems, Inc., Alameda, CA
X Protocol Reference Manual, O’Reilly & Associates, Inc., Sebastapol, CA

Low Data Rate Voice (1200 bps) Rate Converter July 16, 1992 4

3.0 Glossary

ANDVT - (Advanced Narrow Band Data Voice Terminal)

CPG/SM - (Connection Plan Generation / Key Management)

CSS - (Communication Support System)

GUI - (Graphical User Interface)

LPC -10 - (Linear Predictive Code of order 10)

MC68020 - Motorola microprocessor that is a first generation full 32 bit machine.

MC68030 - Motorola microprocessor that is a second generation full 32 bit machine. It
has on-chip caches and multiple internal buses for both data and instructions.

8. MC68040 - Motorola microprocessor that is a third generation full 32 bit machine.
9. MVMEI135A - VME board-based computer that uses a MC68020.
10. MVME147 - VME board-based computer that uses a MC68030.
11. MVMEI167 - VME board-based computer that uses a MC68040.
12. OS/IPC - (Operating System / Inter-Process Communication)

13. RC - (Rate Converter)

14. RS-232 - serial interface specification

15. SCC - (Serial Communication Controller)

16. SCE - (Standard Communications Environment)

17. TCP - (Transport Control Protocol)

18. VME - (Virtual Memory)

19. VST - (Voice Subscriber Terminal)

20. VxWorks - real-time, multi-tasking, operating system and accompanying program de-
velopment environment commercially available from Wind River Systems, Inc.

21.Z8530 - Zilog SCC chip

NSV b wN =

Low Duta Rate Voice (1200 bps) Rate Converter July 16, 1992 S

4.0 High Level System Design

4.1 Hardware Specification

The Rate Converter design was originally targeted for implementation on a MYME135A
card running a VxWorks, real-time, multi-tasking, operating system. This card uses a Mo-
torola MC68020 microprocessor with 4 Mb of onboard RAM. Timing tests have indicated
the need to go to a faster board (section 6.0), even after optimizing the C code for rapid ex-
ecution. It appears that our best hardware option is to implement the RC on a MYME167
board.

Since both the RC and the VST use a common VME bus, the bus will be used to support
the RC/ VST interface. An Ethernet card (ENP-10L) will be used to support the VST /
SCE interface in the target system. In the development environment, the Ethernet is also
used as an interface to the Sun Unix host development system to support software down-
loading and debugging.

4.2 Software Design

4.2.1 Task Decomposition

Figure 3 shows a top level RC software design composed of four tasks running under con-
trol of the VxWorks multi-tasking operating system. A task in VxWorks is an independent
program unit that has its own stack and program counter. Task execution is scheduled by
the operating system kernel using preemptive priority-based scheduling. Each task (except
the Supervisor Task) is coupled to an input pipe that it reads to get messages sent to it by
the other tasks. The Supervisor Task reads its input messages from an input device, which
may be either a serial communication port (RS232) located on the micrmprocessor’s front
panel or a socket that uses the VME backplane. (For more description of I/O facilities, see
section 5.5.)

An important feature of the RC design is the division of input and output handling into
separate tasks.This division frees the Supervisor Task from handling both input and output
to the VST and, consequently, allowing the call to the read function to temporarily block
output. Even with full duplex communication facilities available, this partitioning is nec-
essary to decouple RC input and output.

The functional description of each task follows:

1. Supervisor Task
» Spawn other tasks.
« Create and open pipes (one pipe per task to handle intertask communication).
» Read and decode messages from VST.
» Send ANDVT voice frames (generated locally) to Compressor Task.

Low Data Rate Voice (1200 bps) Rate Converter July 16, 1992 6

RC Messages \

Test Result

Status Report
Compressed Data
Decompressed Data
Qcknowledgmem

FIGURE 3. Rate Converter (RC) implementation using VxWorks Tasks.

» Send compressed voice data (compressed by a remote node and received by the
local node) to the Decompressor Task.

* Generate acknowledgments for every message received from the VST and send
them to the Output Task.

2. Compressor Task
* Receive messages containing ANDVT data from Supervisor Task.

* Decode 54 bit ANDVT frames (22.5 ms per frame = 2400 bps) to obtain LPC-10
parameter values.

¢ Collect and normalize LPC-10 values from four contiguous ANDVT frames.
* Test frame arrival time intervals to insure continuity of data.

» Execute compression algorithm to convert four sets of LPC-10 parameter values to
one set of RC parameters.

 Encode compressed RC parameter values into one 108 bit frame (90 ms per frame
= 1200 bps).

» Assemble 108 bit frame of RC compressed data in a message and send it to the
Qutput Task.

3. Decompressor Task

 Receive RC compressed data (i.c., message containing 108 bit frame) from
Supervisor Task.

» Decode 108 bit frame to obtain RC parameter values for input to decompression
algorithm.

Low Deta Rate Voice (1200 bps) Rate Converter July 16, 1992 7

« Execute decompression algorithm to obtain four sets of LPC-10 parameter values.
« Encode one 54 bit ANDVT frame per parameter value set.
 Assemble each ANDVT frame in a message and send it to the Output Task.

4. Output Task

* Generate and encode sequence numbers for all RC messages except
acknowledgments.

« Send RC messages to VST.

4.2.2 VST/RC Interface

Another important feature of the RC design shown in Figure 3 is the VST/RC interface.
The interface is composed of two sets of messages: 1) VST messages sent by the VST to
the RC and 2) RC messages sent from the RC to the VST. Using X Window System proto-
col terminology (appropriate because CSS mandates the X protocol), the VST is the client
and the RC is the server in the client/server paradigm. Likewise, the VST messages are re-
quests and the RC messages are replies. Table 1 describes these messages.

Table 1: VST/RC Message Interface

Type S;r;’t Message Function
Reset VST | Requests RC to reboot.
Built-in-Test VST | Requests RC to rur a built-in-test procedure.
Status Request VST | Requests the RC to generate and return a Status Report.
Rate Compress VST | Requests the RC to compress a 54 bit ANDVT frame.

(see section 7.1) Four contiguous ANDVT frames must
be received by the RC to generate one 108 bit Com-
pressed Data frame.

Rate Decompress VST | Requests the RC to decompress a 108 bit Compressed
Data frame. The RC regenerates four ANDVT frames.

Test Result RC | Reply to Built-in-Test message. The RC tests for proper
initialization, executes both the Compression and
Decompression algorithms with canned input, and com-
pares the results with predetermined values. (Section 7.2
uses the input and output values incorporated in this test.)

Low Deta Rate Voice (1200 bps) Rate Converter July 16, 1992 8

Table 1: VST/RC Message Interface

Type

| ————————— ———————
Status Report

Sent
By

RC

—_— e |

Message Function

Reply to Status Request Message. The following infor-
mation is included:

* numbers of Rate Compress and Rate Decompress mes-
sages read in by Supervisor Task

« arrival times for the most recent Rate Compress and
Rate Decompress messages
* number of ANDVT frames passed to Compressor Task

* number of ANDVT frames discarded by Compressor
Task

« difference in arrival times between current anu preced-
ing ANDVT frames

« number of Compressed Data (108 bit) frames passed
to Decompressor Task

Compressed Data

RC

Reply to Rate Compress message. Actually, four contigu-
ous Rate Compress messages are required to generate one
Compressed Data message reply. Message continuity is
defined by a maximum allowable delay from one Rate
Compress message to the next (i.e., one ANDVT frame to
the next).

Decompressed Data

RC

Reply to Rate Decompress message. Four Decompressed
Data messages are generated for each Rate Decompress

request.

Acknowledgment

RC

One Acknowledgment is generated by the RC for each
VST message received.

Low Data Rate Voice (1200 bps) Rate Converter July 16, 1992 9

5.0 Detailed Software Design

5.1 Code Layout

The RC source code is written as a set of compilation modules and header files. All the
modules, except for one coded in C, are written in C++. Four of the C++ modules define
the main routines for VxWorks tasks. The remaining C++ modules define the additional
data types, i.e., Bitvectors and Msgs, and a few other miscellaneous functions. The C
module, rcConvert.c, defines additional functions that implement the rate conversion algo-
rithms. Compilaticn files are described in Table 2, header files in Table 3, and other files in

Table 4.
Table 2: RC Compilation Files
File Name Type Description

Misc.C C++ | defines the new and delete operators. These are C++ operators
for dynamic memory allocation.

helper.C C++ | defines functions for constructing and destructing C++ glo-
bals. These are required since VxWorks does not directly sup-
port C++.

rcComp.C C++ | defines the Compressor Task’s main program. It also includes
functions for decoding ANDVT frames, encoding compressed
data frames, and incrementing a clock tick counter.

rcConvert.c C | defines rate compression and rate decompression algorithms.

rcDecomp.C C++ | defines the Decompressor Task’s main program. Also, it
defines functions to decode compressed voice data frames and
encode ANDVT frames.

rcMsg.C C++ | defines Class Msg (see section 5.2.2).

rcOutput.C C++ | defines the Output Task’s main program and a function to
compute message sequence numbers.

rcSupv.C C++ | defines the Supervisor Task’s main program and functions for
the RC’s self test and status report.

vx_bitclass.C C++ | defines Class Bitvector (see section 5.2.1) and Class Bitob-
ject.

vx_bitmatrix.C | C++ | defines Class Bitmatrix (required for loading Class Bitvector).

Low Data Rate Voice (1200 bps) Rate Converter

July 16, 1992 10

Table 3: Header Files

File Name

rc.h

Type

C++

Description

[————""—""""——— — —

provides declarations and compiler directives for the follow-
ing compilation modules:

¢ rcComp.C

e rcDecomp.C

rcMsg.C

rcOutput.C

rcSupv.C

¢ e o

vx_bitclass.h

C++

provides declarations and compiler directives for the follow-
ing compilation mcdules:

* rcComp.C

¢ rcDecomp.C

* rcMsg.C

* rcOutput.C

e rcSupv.C

+ vx_bitclass.C

vx_bitmatrix.h

C++

provides declarations and compiler directives for the follow-
ing compilation modules:
* vx_bitmatrix.C

Table 4: Miscellaneous Files

File Name Type Description
makefile ASCII | contains commands for the make program.

rc binary | contains the RC object code and is created by running make

rc.dat binary | contains initialization data for the reflection coefficient
tables used by the rate conversion algorithms.

script ASCII | contains a script that VxWorks uses after rebooting to load
the RC object code and execute a helper function to initial-
ize C++ globals.

vxBoot ASCII | contains VxWorks boot commands.

5.2 User Defined Data Types

We define two additional data types using the object-oriented facilities of C++ - Class Msg
and Class Bitvector. A C++ class is an extension of a C structure that adds exccutable
code and/or member functions to the structure’s set of declared variables. These additional
data types are quite useful in simplifying the code required to implement the VxWorks
tasks outlined in section 4.2.

Low Deta Rate Voice (1200 bps) Rate Converter July 16, 1992

5.2.1 Class Bitvector

Class Bitvector provides bit handling capability. The functions getbir and putbit use one
byte variables (type char) having values of zero or one to specify bitvector bit values.
Also, genint and putint provide conversion to positive integer (type int) values, while get-
textbits converts bitvector contents to a string of ascii 1’s and 0’s.

In addition to the direct bit handling capabilities, Class Bitvector supports the concept of a
Jfield. Bitvectors can be subdivided into fields by giving the starting bit position and the
length of the field within the bitvector. Fields are also bitvectors and, therefore, have the
same bit handling capabilities. Fields provide a natural way to specify and manage mes-
sage formats and their contents.

Bitvectors are used extensively by the Compressor and Decompressor Tasks to decode and
encode ANDVT frames. Also, bitvectors are used to implement Class Msg since messages
are formatted on the bit level. The interface to Class Bitvector is presented in Table 5.

Table 5: Class Bitvector Interface

Member Function Declaration Function Description
_— = e e—
bitvector () constructor used to initialize a bitvector.
bitvector (int sz) alternate constructor that takes the bitvec-
tor’s length in bits as input.
~bitvector () destructor used to garbage collect a
bitvector.
void array_initializer (int sz) same as alternate constructor - used for
array initialization.
void attach (int *buf, buf, of length size_in_bits, becomes the
int size_in_bits) contents of the bitvector.
int start () returns the starting position of the bitvec-
tor in the buffer that holds it.
int length () returns the length of the bitvector in bits.
char getbit (int i) returns the value of the bit at bit position
in the bitvector (first position = 0).
void putbit (int i, puts a bit of value b at position j in the
char b) bitvector.
char *gettextbits (char *dest, places a character (‘1’ and ‘0’) represenia-
int size_of_dest) tion of the bitvector’s contents into dest.

Low Dsta Rate Voice (1200 bps) Rate Converter July 16, 1992 12

Table §: Class Bitvector Interface

Member Function Declaration

bitvector *field (int i1, int i2)

I — — |

Function Description

returns a pointer to a new bitvector that
accesses a portion of this bitvector’s con-
tents (i.c., a field) starting at bit position j1

and extending for j2 bits in length.
int getint (int num_bits_in_field =-1, converts the binary number starting at
int pos_of_first_bit=0) pos of first bit and extending for pum_-
bits in field to a positive integer and

returns the value (default: entire contents
of bitvector if no input parameters given).

void putint (int i,
int num_bits_in_field = -1,

converts a positive integer to binary and
inserts it in bitvector beginning at

int pos_of_first_bit=0) pos of first bit and extending for pum -
bits in field
void setallbits () sets all bits to ‘1°.
void clearallbits () clears all bits to ‘0’.

void setbit (int i)

sets bit at position j to ‘1°.

void clearbit (int 1)

clears bit at position j to ‘0’.

void assign (bitvector *b_v,
int num_bits_to_copy=-1,
int pos_of_first_bit_to_copy =0,
int pos_of_dest_bit = 0)

copies contents of b_v, starting at

pos of first bit to copy and extending
for num bits to copy, into this bitvector,
starting at pos of dest bit,

bitvector *and_bits (bitvector *bv)

replaces the contents of this bitvector with
the bitwise logical and of this bitvector
and by (bitvector lengths must be equal).

bitvector *or_bits (bitvector *bv)

replaces the contents of this bitvector with
the bitwise logical or of this bitvector and
bv (bitvector lengths must be equal).

bitvector *ones_complement ()

replaces the contents of this bitvector with
the ones complement of this bitvector.

char is_zero ()

retums TRUE if all bits are ‘0’.

char same_as (bitvector *bv)

returns TRUE if this bitvector and by have
the same contents.

Low Data Rate Voice (1200 bps) Rate Converter

July 16, 1992 13

Table 5: Class Bitvector Interface

Member Function Declaration Function Description
int state() returns one of three state values
e BV_IS_MAIN (=0)
« BV_IS_NOT_MAIN (= 1)
¢ BV_IS_UNATTACHED (= 2)
5.2.2 Class Msg

A high level description of the message set that implements the RC/ VST interface ap-
pears in section 4.2.2. Class Msg hides the low level details of handling messages behind
the interface given in Table 6. The same messages used externally to support the RC/ VST
interface are used internally for intertask communication via pipes.

Table 6: Class Msg Interface

Member Function Declaration Function Description

M

sg () constructor used for initializing a msg.

~Msg () destructor used to garbage collect a msg.

void setContents (MsgType tp, sets the contents of msg by providing val-
unsigned char sn, ues for msg type, sequence number, msg
int In, length (bytes), and data (default: if by is

bitvector *bv=NULL)

not given, msg has no data, but the msg
type, the sequence number, and the msg
length in byres must be given).

void setLength (int In)

sets the msg length to]n bytes =] byte
msg type + 1 byte sequence number +
bytes data).

void setSeqnum (unsigned char sn)

sets the msg sequence number to sn (0 -
255).

bitvector *getContents (returns a pointer to the contents of msg
(type + sequence number + data).

MsgType getType () returns the type of msg.

unsigned char getSeqnum () returns the sequence number of msg.

int getLength returns the length in bytes of msg.

bitvector *getData () returns a pointer to the data of msg.

void display (int fd) displays msg on device designated by file

descriptor fd,

Low Dsta Rate Voice (1200 bps) Rate Converter

July 16, 1992 14

Table 6: Class Msg Interface

Member Function Declaration Function Description
===___—_—-—————————1

int mread (int fd) reads contents of msg from stream ori-
ented device designated by file descriptor
fd. (see section 5.5)

int pread (int fd) reads contents of msg from message ori-
ented device (e.g., VxWorks pipe) desig-
nated by file descriptor fd,

int mwrite (int fd) writes contents of msg to device desig-
nated by file descriptor fd,

5.3 Message Formats

All message formats used by the RC have the following three fields:

* message type (1 byte), -]
* sequence number (Wﬁ
* data (0 - 35 bytes).

The message type field is one byte in length. Message type values are given by the follow-
ing enumeration:

/Tnmpo { \
RESETmsg, /* VST->RC: RC reboots */

TESTmsg, /* VST->RC: RC runs test */
STATUSmsg, /* VST->RC: RC returns status */
COMPmsg, /* VST->RC: RC compresses 2400 data */

DECOMPmsg, /* VST->RC: RC decompresses 1200 data */
RESULTmsg, /* RC->VST: test result */

REPORTmsg, /* RC->VST: status report */

coMDDmsg, /* RC->VST: compressed data */
DECOMDDmsg, /* RC->VST: decompressed data */
ACKmsg, /* RC->VST: acknowledgment */

\ J

The sequence number field is an unsigned char that has a decimal value in the range O -
255. The length and contents of the data field depends on the type of message, as shown in
Table 7.

Table 7: Data Field Formats
Msg Data Field
MsgType Length Range Data Field Format
(bytes) (bits)
e ——— ————— e |
RESETmsg 2 0 none

Low Data Rate Voice (1200 bps) Rate Converter July 16, 1992 15

Table 7: Data Field Formats

Msg Data Field

NsgType Length Range Data Field Format
(bytes) (bits)
STATUSmsg 2 0 none
CoMPusg 9 0-53 54 bit ANDVT frame
DECOMPmSG 16 0-107 108 bit compressed voice data frame
RESULTmsg 3 0-2 ¢ (0) error in table initialization

¢ (1) error in rc24t012 execution
¢ (2) error in rc12t024 execution

REPORTmsg 35 0-263 * (0-7) TRUE if pipe & task initialization OK

* (8 - 39) number of coMpmsgs read in by Su-
pervisor Task

* (40 - 71) number of pECoMPmsgs read in by
Supervisor Task

¢ (72 - 103) clock tick count when most re-
cent CowPmsg read in

* (104 - 135) clock tick count when most re-
cent DECOMPmsg read in

* (136 - 167) number of coMPmsgs read in by
Compressor Task

¢ (168 - 199) number of coMPmsgs discarded
by Compressor Task

* (200 - 231) number of clock ticks for most
recent CoMPmsg arrival interval

* (232 - 263) number of pecoMPmsgs read in

by Decompressor Task
COMDDmsg 16 0-107 108 bit compressed voice data frame
DECOMDDmsg 9 0-53 54 bit ANDVT frame
ACKmsg 2 0 none

5.4 Task Modules

Subsection 4.2.1 provides functional descriptions for each of the task modules. In the fol-
lowing subsections we outline the code required to implement each VxWorks task module
and the rate conversion algorithm module. Each task module contains the following ele-
ments:

Low Data Rate Voice (1200 bpe) Rate Converter July 16, 1992 16

¢ Include files - header files that contain declarations and #define statements. Both #in-
clude and #define are C preprocessor statements that can be viewed as a first step in
compilation. #includa copies the contents of the included file into the module’s source
code. Similarly, #define replaces tokens in the source code with replacement text.

+ External declarations - extern is a C keyword that introduces a variable or function
that is defined in an external module (i.e., file) into the scope of the module using the
extern declaration. Because the RC source code is partitioned into several modules,
the use of the extern declaration is required to give a module access to certain vari-
ables and functions defined in other modules. Placing the external declarations directly
in the source code rather than in a header file helps to show the external variables and
functions that a module depends on.

 Global variables - variables that have global scope within the module, i.e., are defined
outside of any function and are accessible by every function in the module.

 Functions - most are called by the main program of the module in which their defini-
tions appear, but a few are designed to be called from other modules. For example,
rcinit() is defined in rcConvert.c because it initializes arrays that are likewise defined in
rcConvert.c. However, rcinit() is called by the main program of rcSupv.C.

» Main program - a module’s main routine is defined just like any other function. The dif-
ference is that it is executed by a call to the VxWorks system function spawn(). A call
to spawn() gives the function its own program counter and stack, thus making it a vx-

Works task. In the following subsections, we describe main programs in terms of pseu-
do code.

Low Deta Rate Voice (1200 bps) Rate Converter July 16, 1992 17

5.4.1 Supervisor Task (rcSupv.C)

Include files:
pathname 101 VXWworks ese hles are included 1 sockets are to be used for R,
pn host system ST communication. Otherwise, RS232 ports are used.

. ern “C” { }isre-
#ifndef 9.3232 : Ruired to prevent C++
#define S‘I'DC
#xnclude. ;
“jnames different from
e C names that #in-

‘elude will look for.

o ‘I"{homelnaunlusﬂhauscrlvwsozm.(so’cmb i
- #include mome/nautxluwauscdeSWsockeLh"

#endif -
#inclode ~ "vx bxtclass h" [These files will be renamed to C++ names,
\finclude “rch” — which is fine since they are C++ files.

Low Data Rate Voice (1200 bps) Rate Converter July 16, 1992

External declarations:

++ names for Compressor,
ompressor, and Output
Task main programs.

efined by VxWorks]

§-232 port Supv C.

frile descniptors tor all task]
input pipes and the com-
munication socket (or
jport) are defined in rc-

RO UL P A e

jin rcSupv.C.

FSTiES 5 & Structure that T CORTAIRS ST -
‘formation for each of the tasks and is defined

int suvanmCOMngsIn,

int supvCOMPmsgTic; ~ /* tic cat (20ms/tic) of most recent COMP msg */

int compNumFramesRd; /* number of frames read in by compMain */
int compDiscardCnt; . /* number of frames discarded by compMain */

int decompNumFramesRd; 7* nnmb:r o*‘ {rames read in by decompMam *f
]statszALSEOOOOOOOO} '

-

int supvNumDECOMPmgsin; um DBCOMP msgs read in by supvMain *f '

int supyDECOMPmsgTic; /* tic cnt (20ma/tic) of most recent DECOMP msg *j

int compFrameDelay; ./* number of tics from prev:ous frame 10 current fmmc *

Low Data Rate Voice (1200 bps) Rate Converter July 16, 1992

19

Functions:

* yoid doTest (Msg& result) - called by rcSupvMain() in response to a TESTmsg request
from the VST. doTest() in turn calls rcTest() (defined in rcConvert.c) to run the self test
and places the results of the self test into the Msg supplied as a parameter of doTest().

* yoid getStatus (Msg& report) - called by reSupvMain() in response to a STATUSmsg.
getStatus() encodes the contents of an rcStatus structure into the REPORTmsg supplied
as a parameter to getStatus().

Pseudo code for rcSupvMain():

create and open input pipes for
> Compressor Task
> Decompressor Task
> Output Task

if (RS232 defined)
open a raw RS232 port at 9600 baud for communication with VST

else

open a stream socket for communication with VST
LISTEN —»- listen for a connection |Spawn is a VxWorks command that creates and acti-

accept a connection_—tvates a task. An active task can be scheduled to execute.

spawn tasks /
> Compressor Task
> Decompressor Task
> Output Task

call initialization rcinit() - reads in rc.dat file

check for successful creation of pipes and tasks and store result in status variable

main loop
read a Msg from input device (RS232 port or socket)
if (read successful)
write ACKmsg to Output Task’s input pipe
if (RESETmsg)
reboot the RC
else if (TESTmsg)
do self test
write RESULTmsg to Output Task’s input pipe
else if (STATUSmsg)
get a status report
write REPORTmsg to OQutput Tasks’s input pipe
clse if (COMPmsg)
update COMPmsg count
update COMPmsg time tick
write COMPmsg to Compressor Task’s input pipe

Low Data Rate Voice (1200 bps) Rate Converter July 16, 1992 20

else (DECOMPmsg)
update DECOMPmsg count
update DECOMPmsg time tick
write DECOMPmsg to Decompressor Task’s input pipe
else (read not successful)
print error
if (RS232 not defined)

close socket
goto LISTEN —

end main loop

5.4.2 Compressor Task (rcComp.C)

Include files:

Low Data Rate Voice (1200 bps) Rate Converter July 16, 1992 2

Globals continued:

1itvectors used to assemble the bits
xtracted from ANDVT frames.

/t:xtvectorp('l) /*scratch bn:v : COINgG pItct
f{bxtvec:or vcd4{4 scratch o e

bitvector *rcStoIOle = fIZ.ﬁeid (IS 27
 bitvector *rcitodFrm2 = (12 field (28, 40; - 7+

 bitvector *rcSto10Frm2 = F12.field (40, 3% /* rc5 10 1010 frn2 (13 bx “'.
bxtvector *rclto4F!m3 t‘12 ficld (54, 66), , f" el 1o to4 frm3 (13 bxts) /-

bitvector *amprml fl2 ﬁcld (8? 91). L
bitvector *ampFrm2 = - £12.Feld 92,96);
bitvector *ampFrm3 = = f12. field (97, 101),

- bitvector. "chrderm £12.field {102, 102), ;

- bitvector *vcFrm] = - £12.field (103, 103y

bxtvector “chrmZ f12 field (104 104), :

A , \ﬁ;ne value of syncbits is used to set the lést ' ot
N __“Yeld of 12 alternately to binary 00 or 11. -)

1

1s a bitvector containing IUs bits. It 1S parntioned 1nto helds by

the bitvector pointers defined following it. Parameters generated by
Fate compression are encoded into these fields, and, thus, into f12.

Functions:

» void decodeF24 (bitvector *{24, short *vp) - decodes the LPC-10 parameters from an
ANDVT frame passed in via f24 and places the results at yp.

 void encodeF12 (short *output) - encodes 1200 bps compressed voice parameters
passed in via Qutput into the globally defined bitvector, f12.

» yoid clkTick () - increments a counter every time it is called by the VxWorks auxiliary
system clock.

Low Data Rate Voice (1200 bps) Rate Conventer July 16, 1992 22

Pseudo code for rcCompMain():
connect the VxWorks auxiliary system clock (AuxCIlk) to clkTick()
set the AuxClk rate to 50 ticks/s, i.e., 20 ms per tick
enable the clock, i.e., start AuxClk

define automatic variables used in this main program

set frameCnt to 0 - used to count four ‘contiguous’ ANDVT frames for compres-
sion

main loop
save current number of clock ticks in tic
read a Msg (i.c., COMPmsg) from this task’s input pipe
update status variables
> compNumFramesRd - running sum of number of ANDVT frames read in
> compFrameDelay - time (i.e., number of 20 ms ticks) that the main loop was
blocked waiting to read a Msg from the input pipe
if (compFrameDelay is greater than 10 ticks. i.e., 200 ms)
update compDiscardCnt (running sum of the number of ANDVT frames dis-
carded because of a lack of continuity, i.e., > 200 ms gap between
frames)
set frameCnt back to 0
call decodeF24() to decode the ANDVT frame just read in and put the decoded
LPC-10 parameter values into a vector of the array called jnput
if (frameCnt equals 3, i.e., four contiguous ANDVT frames have been decoded)
call rc24t012() to compress four sets of LPC-10 parameters into one set of rate
compressed parameters
call encode12() to encode the rate compressed parameters into one 108 bit
frame
place the contents of the 108 bit frame into a COMDDmsg
write the COMDDmsg to the Output Task’s input pipe
increment frameCnt
if (frameCnt is greater than 3)
set frameCntto 0

end main loop

5.4.3 Decompressor Task (rcDecomp.C)
Include files:

Low Data Rate Voice (1200 bps) Rate Converter July 16, 1992 23

External declarations:

rcDecompMain() reads from decomp-
PipeFd and writes to outputPipeFd.

(Hefinedin rcLofnpin-
sed here to encode
JANDVT frames

Globals:

rb:wa::or cp(‘l),

rar ‘ encodeF24() to
.“‘ encode AND-

Functions:

 void decodeF12 (bitvector *£12. short *op) - decodes one 108 bit frame of compressed

voice data and places the compressed voice parameters in a vector pointed to by op.

» void encodeF24 (int j, short *out, bitvector *an) - takes the output (pointed to by oup)
of rc12t024() and encodes one ANDVT frame (pointed to by an).

Pseudo code for rcDecompMain():
define variables global to Decompressor Task’s main program

main loop
read a Msg from this task’s input pipe
increment decompNumFramesRd, the number of compressed voice data frames
read in for decompression
call decodeF12() to decode a frame of rate converted data
call rc12t024() to decompress the frame of rate converted data
for loop (4 iterations)
call encodeF24 to encode one ANDVT frame
put contents of ANDVT frame into DECOMDDmsg
write DECOMDDmsg to Output Task’s input pipe
end for loop

end main loop

Low Data Rate Voice (1200 bps) Rate Converter July 16, 1992 24

5.4.4 Output Task (rcOutput.C)

Include files:

Functions:

 unsigned char getSeqNum () - returns a new sequence number value.
Globals:

Pseudo code for rcOutputMain():

define variables
outFd is initialized to the external, ystFd (This works fine if ystFd is a socket.)
if (RS232 defined, i.e., ystFd is a RS232 port in read only mode)
reinitialize outFd as a RS232 port in write only mode

main loop
read a Msg from the Output Task’s input pipe
if (Msg is not an ACKmsg)
set the Msg’s sequence number field with a value obtained by calling getSe-
qNum()
write the Msg to outFd

end main loop

Low Data Rate Voice (1200 bps) Rate Converter July 16, 1992 25

5.4.5 Rate Conversion Algorithms (rcConvert.c)

This file contains the functions that implement the rate conversion algorithms. These algo-
rithms are fully described in section 2.1 of [Kang]. rcConvert.c has no main program.
Rather, its functions are called by the tasks defined in other code modules.

The rate conversion algorithms were originally written in Fortran. For the sake of com-
pactness and efficiency, they have been rewritten in C. However, the original Fortran code
is still retained as comments within the C code.

Include files:

Globals:

and 1{3 are arrays of reflection coefficients. They are
e only valid coefficient values for 1200 bps rate converted
oice.

itl - unvoiced, 8192 sets of C, - C,
it2 - voiced, 8192 sets of C; - C,
it3 - voiced, 8192 sets of C; - G,

, it2x, and_it3x hold indexes into the coefficient arrays.

Functions:

« void rcinit () - initialization function that reads a binary file (rc.dat) to initialize the glo-
bals given above.

» yoid rc24t012 (input. output) - function that implements the rate compression algo-
rithm. Four sets of LPC-10 parameter values are passed in via input and one set of 1200

bps rate converted voice parameter values are passed out via gutput.

 void rc12t024 (in. out) - function that implements the rate decompression algorithm.
One set of 1200 bps rate converted voice parameter values are passed in via jn and four
sets of LPC-10 parameter values are passed out via out.

» int pchdec (ipitchx) -decodes an error coded value for pitch, ipitchx, and retumns an un-
coded value.

« int fixrc (ircx. icorr) - use hamming code to fix a reflection coefficient value that con-
tains bit errors.

Low Data Rate Voice (1200 bps) Rate Converter July 16, 1992 26

* int fixamp (iamp. icorr) - use hamming code to fix an amplitude value that contains bit
errors.

» char* rcTest () - function designed to test the correct operation of the rate conversion al-
gorithms. The return value is a pointer to a character array of length 3 with the follow-
ing meaning:

char [0] - TRUE if global arrays (jtl - jt3x) have been properly initialized.
char [1] - TRUE if a call to rc24to12() with test input data produces the correct output.
char [2] - TRUE if a call to rc12t024() with test input data produces the correct output.

5.5 1/0 Devices

The read and write functions defined in Class Msg (mread(), pread(), and mwrite()) inter-
face to VxWorks 1/O devices. VxWorks and Unix devices have nearly identical interfaces.
However, each of the devices discussed in the following subsections have some unique
characteristics.

5.5.1 Pipes

VxWorks pipes are message oriented devices rather than byte stream oriented devices.
This means that a Vxworks pipe must be written to and read from a message at a time. Ac-
tually, this is an advantage when implementing a message based design, as we have done
in the RC. When a VxWorks pipe is read, we are free to specify the maximum possible
message length for the number of bytes in the read request. Only the number of bytes actu-
ally in the message will be read. This feature makes it easy to read and process messages
from pipe devices. Thus, the code for the pread() member function of Class Msg is less
complex than the code for byte stream oriented devices.

5.5.2 Serial Port

If the symbolic constant RS§232 is defined using a #define C preprocessor command, the
RC source modules will be compiled for RS-232 communication with a VST. A portis a
byte stream oriented device. When reading from such a device, the problem of knowing
how many bytes to read must be handled. The approach taken by the Class Msg mread()
member function is to read the first byte in order to determine the message type and, by in-
ference, the message length. Then the remainder of the message is read.

§.5.3 Stream Socket

If the symbolic constant RS232 is not defined, the RC source modules will be compiled
using a stream socket for communication with a VST. In this instance, the VST will also
have to create a stream socket and initiate a connection with the RC. The RC in its roll as
a server, will listen for and accept a connection from a VST in its roll as a client. The ad-
vantage of using sockets as opposed to RS-232 devices is that the protocol (TCP) that sup-
ports stream sockets can be run over the VME backplane, or even over a network, i.e.,

Low Dats Rate Voice (1200 bps) Rate Convener July 16, 1992 27

Ethernet, if that is deemed appropriate. Assuming the design presented in figure 2 is im-
plemented, the VST and RC will communicate over the VME chassis backplane.

There are a couple of differences between using sockets and using ports. The first is that
two ports are opened to the RC’s RS-232 device, one for reading and one for writing. On
the other hand, the same full-duplex RC socket is used for both reading and writing. The
second difference is that a reset request (RESETmsg) from the VST will break the connec-
tion between the RC and VST sockets. This connection must be reestablished after the RC
has rebooted. On the other hand, an RS-232 connection is always there, unless the RS-232
cable is unplugged or the RS-232 ports are otherwise physically disconnected. Therefore,
a reset request behaves in a simple and straightforward manner if RS-232 ports are being
used.

Low Data Rate Voice (1200 bps) Rate Converter July 16, 1992 28

6.0 Real-Time Implementation

C is used for the Rate Compression and Rate Decompression algorithms. These algo-
rithms were originally coded in Fortran, but for the sake of run-time efficiency they were
recoded in C. The rate compression algorithm, implemented in the function rc24t012(), is
by far the most CPU intensive component of the RC. In particular, the binary tree search
through the set of reflection coefficient vectors to find the one that most nearly matches the
ANDVT generated vector is the computational loop that uses the bulk of CPU time.

To ascertain the ability of the RC to run in real time, we have concentrated our efforts on
timing the execution of the rc24t012() function. Also, we have made efforts to further im-
prove the efficiency of the C code, particularly in the aforementioned search loop. The re-
sults of our timing tests are given in Table 8.

Table 8: Execution Times for Calls to rc24to12()

C Execution
VME Board Processor Compiler | Time (ms) Comments

MVME147SA-1 MC68030 AT&T 247 analyzer measurement

MVMEI167C MC68040 AT&T 117 analyzer measurement

MVMEI135A MC68020 Gnu 222 timexN() measure-
ment

MVMEI135A MC68020 Gnu 147 timexN() measure-
ment (revised C code)

The RC software, i.c., the unimproved version of rc24to12() function, was benchmarked
at Motorola using a MYME147SA-1 and a MVMEI167C board in conjunction with a
board analyzer that measured the entry and exit times from the rc24to12() function.
Benchmarks on the MVME135A board, i.e., our development system, were performed us-
ing the VxWorks timexN() system function, which called the rc24to12() function multiple
times to get an accurate average value for execution time.

The execution times shown in Table 8 are surprising when one considers that the MIPS
rate approximately doubles going from a MVME135 to a MVME147 board and, again,
doubles going from a MVME147 to a MVME167 board. The comparatively high perfor-
mance of the MVME13S board is due to the use of the Gnu C compiler instead of the
AT&T C compiler. Also, our efforts in speeding up the C code paid dividends, but was not
good enough to reduce execution time to less than 90 ms, which must be done for the RC
to meet real-time requirements. Since an ANDVT produces one 54 bit frame of data every
22.5 ms (= 2400 bps), the RC must compress four frames every 90 ms to keep up. Also,
the RC needs a litde time for doing other chores, so a more realistic timing requirement
would be < 80 ms. It appears that a MVME147 board with Gnu compiled code would be
adequate to run the RC in real time, assuming the Gnu compiler improves the
MVME147’s performance by a 2:1 factor and our code improvements work well on the
MVME147. A safer bet would be to use a MVME167 board. The additional $500 in cost

Low Data Rate Voice (1200 bps) Rate Converter July 16, 1992 29

(for a MVME167 compared to a MVME147) could mean the difference between marginal
and rock solid performance.

Low Dats Rate Voice (1200 bps) Rate Converner July 16, 1992 30

7.0 Appendices

7.1 Overview of the ANDVT Rate Conversion Algorithm

The following overview is extracted directly from material presented in [Kang]. Fora
comprehensive discussion of the ANDVT Rate Conversion Algorithm, we refer the reader
to that document. The brief description presented here is intended to give the reader
enough understanding of the ANDVT LPC and the Rate Conversion algorithms to facili-
tate understanding this report.

An ANDVT processes voice in the manner illustrated by figure 4. On the transmit side,
analog speech is A/D converted and analyzed. The analysis generates a set of ten reflec-
tion coefficients that characterize the spectral content of the voice, values for amplitude
and pitch, and a binary voicing parameter. One set of these parameters is encoded into a 54
bit ANDVT frame every 22.5 ms to yield an output rate of 2400 bps. On the receive side
the process is reversed and the 2400 bps input stream is used to regenerate analog voice.

(b) Recelver

FIGURE 4. ANDVT voice processing.

Low Data Rate Voice (1200 bps) Rate Converter July 16, 1992 n

The following table describes the LPC-10 parameters in more detail and indicates the
number of bits allocated by the ANDVT Encoder to represent each parameter.

Table 9: ANDVT Parameters
Speech .
P ter Bits/Frame Remarks
Amplitude 5 RMS value of preemphasized speech waveform quan-
tized semi-logarithmically over a 60 dB dynamic range
Pitch 6 Quantized logarithmically from a pitch interval of 20 to
160 samples at 20 steps per octave
Voicing 1 Binary voicing decision
Reflection 41 (Voiced | The first through tenth reflection coefficients are quan-
Cocfficients frames) tizedto 5, 5,5, 5, 4, 4, 4, 4, 3, and 2 bits, respectively.
20 The first through fourth reflection coefficients are quan-
(Unvoiced | tizedto 5, 5, 5, and § bits, respectively. Twenty bits are
frames) used for protecting the four most significant bits of the
reflection coefficients and amplitude parameters by Ham-
ming (8,4) codes. One bit is unused.
Sync 1 Alternating “1” and “0”

ANDVT parallel-to-serial conversion and framing generates a 2400 bps bit stream com-
prised of contiguous frames having the formats shown in figures S and 6. Two formats are
defined, one for voiced frames and another for unvoiced frames. Voiced frames encode a
full set of ten reflection coefficients. Unvoiced frames encode only the first four refiection

coefficients and use the bits thus freed to store error protection codes.
. - Transmission Sequence
1“7 2

3 4 $ 8 7] 9 10 " 12 13 14 15 16
CHicy|c| P A |CN|GY) |y CHjcy)| A P | C&
0 0 0 0 0 1 1 1 1 1 2 0 2 2 2 1

tSignilicance

7 18 1 20 21 2 2 24 25 26 7 28 2 30 31 32
CHNjCa | Ca| A |[CH|N)|CY) |Ca| A P | C2) | CM | &8) cq)

3 2 3 2 3 4 3 4 3 4 3 4 0 0 4 4

33 34 35 8 37 3 »] 4o 42 «Q “ 45 46 47 438
colcom|cmjecro|ceicsijce|Cn[Cm| P |CS | C6) [C0)|CEo | P |9

0 0 1 1 1 1 1 2 0 s 2 2 1 2] 1

® S0 S 52 83 o4 « Bit significance of “0” means the least-significant bit.

« C{]) refers to the jth reflection coefficient code (| = 1, 10).

C(S) | €& | &N | C9){ CiB) [gync] - A le the amplitude code.

3 3 L’ 2 3 « P ls the plich/voicing code.

FIGURE §. Transmission sequence for a voiced frame.

32

Low Deta Rate Voice (1200 bps) Rate Conventer July 16, 1992

1 2 3 4 5 6 7 L 9 10 L 12 13 14 15 16

cnjca|cH| P | A JCnjCA|Cy| P | A jJC)|CO|CH]| A | P |CY

+ Bit significance of “0” means the least-significant bit.
« C{(]) refers 10 the jth reflection cosfficient code (] = 1, 4).
- Ala the amplitude code.

P is the pitch/volcing code.

Error-correction bits are identified by shaded boxes.

FIGURE 6. Transmission sequence for an unvoiced frame.

The rate conversion algorithm reduces four 54 bit ANDVT frames to one rate converted
frame that is 108 bits in length. Elimination of one of the four ANDVT frames is the first
step in rate compression. The most redundant frame is determined by comparing each of
the first three frames with adjacent frames. The fourth frame must be kept because it will
be adjacent to the first frame of the following set of four. This procedure reduces inter-
frame redundancy.

Intra-frame redundancy is reduced by eliminating just-noticeable differences and non-
speech sounds from the ANDVT’s repertory of reproducible sounds. The rate conversion
algorithm accomplishes this by pattern matching the large set of ANDVT patterns with a
much smaller set of patterns peculiar to the human voice and only transmitting a key to
represent the pattern. This vector quantization process used during compression is by far
the most computationally intensive part of the rate conversion algorithm.

Rate compression and decompression are summarized in figures 7 and 8.

ANDVT Codes
ore 4 Frames o es; a Frame 10
ol X srame’)
Skipped | 4 Frames | One Median SFrames | 3 Frames of
Frame | of Voicing | ANDVT Phiclv | of ANDVT | ANDVT Reflec- si-Ma clen! Inde
‘ndex | Decision | Voicing Code | Amplitude | tion Coefficient
Codes niroduce Error Protection s Unvol
2 bt 4 bits 7 bits 15 bits 78 bits 2 bits
M X ArAMe 0 s Forma Sync Blts
1200 bps Bit Streem

FIGURE 7. Rate conversion from 2400 bps to 1200 bps.

Low Data Rate Voice (1200 bps) Rate Conventer July 16, 1992 33

1200 bps Bit Stream

Synchronize and Demuitiplex Sp Parameter Codes]
Skipped 3 Frames of EGL_ENEVm
Frame of ANDVT | Refiection Co- vert to

Reinstate ANDVT
Error-Protection if
Speech is Unvolced

> —_ 1bit
L_Multiplex Speech Psrameter Codes In ANDVT Format_j«#—— Sync Bit
ANDVT Bit Stream

FIGURE 8. Rate conversion from 1200 bps to 2400 bps.

Low Deta Rate Voice (1200 bps) Rate Converter July 16, 1992

k2

7.2 Example Compression/Decompression of Four Consecutive ANDVT
Frames

In figures 9 through 11 we present the flow of data frames from an ANDVT through the
rate compression and, then, the rate decompression side of the RC and back to an AND-
VT.

3000000011000y 1000T 000011100 I 10111 I0I0I101101100
000010 TP IO0000 10 0 ey I0I000I 00 00001 00EY00001000Y

Frame 1 Frame 2

~ 11101 -3 Cy 00001 1
C2 11100 -4 Ca 11111 -1
Cy 00000 0 Iy 00010 2
o 00010 2 Cq 10101 {-11
Ce 1111 | -1 N 0000 | o
Cq 0011 | 3 Ce 1100 | -4
o 1111 | -1 C, 0110 | -6
o 101 5 Cs 0000 0
Co 11 | -1 C, 000 | o
C10 1 | -1 C10 10 | -2
itch | 0000000 0 itch | 0000000 0

00010 2 11010 | 26

Frame 3 Frame 4
N 00011 | 3 C, 00011 | 3
C, 11110 | -2 C, 11111 | -1
oN 00001 1 o 00001 1
Ce 10110 |-10 C4 10011 [-13
Co 111 | 11 Cq 111 | -1
Ce 111 | -1 Co 111 | -1
C, 0110 | € C, 0110 | 6
Co 111 | -1 Cq 1110 | -2
o 111 | -1 Co 001 | 1
Cm 11 '1 clo 10 ‘2
Pitch | 0101011 | 43 itch | 0101011 | 43
Pmp 11011 | 27 11100 | 28
1

72410120

FIGURE 9. An ANDVT generates four contiguous frames of 2400 bps voice data. From these frames
the decodeF24() function decodes four sets of LPC-10 parameters that, in turn, are used as input
for a call to rc24to012().

Low Data Rate Voice (1200 bps) Rate Converter July 16, 1992 35

1200 bps Frame
Dropped Frame 10 2
C1 - C4 (Frame 1) | 1001110001010 | 5002
CS - C10 (Frame 1) | 0100100110111 | 2359
C1-C4 (Frame 2) | 1101011000010 | 6850
CS5 - C10 (Frame 2) | 0010001100100 | 1124
C1-C4 (Frame 3) |1001010100100 | 4772
C5 - C10 (Frame 3) | 0110101111101 | 3453
Pitch 0101011 43
Amp (Frame 1) 00010 2
Amp (Frame 2) 11010 26
Amp (Frame 3) 11100 28
Voicing (Drpd Frm) 1 1
Voicing (Frame 1) 0 0
Voicing (Frame 2) 0 0
Voicing (Frame 3) 1 1
Sync 00 0

CSS transport i

1200 bps Frame

Same as above if CSS delivery is error free.

FIGURE 10. The function rc24t012() compresses four sets of LPC-10 parameters into one set of rate
converted parameters for a 1200 bps frame. The 108 bits for this frame are encoded by a call to
encodeF12(). After delivery to a remote RC by the CSS, the decodeF12() function decodes the rate
converted parameters and uses them as input to a call to rc12to24().

Low Dsta Rate Voice (1200 bps) Rate Converter July 16, 1992 36

Frame 1 Yrame 2
rc12t024() does
not regenerate
Hammi 0
ing codes 00010 11010 | 26
for unvoiced
frames. Ham- r r
ming codes are rame 3 rame 4
g ed b £, 00011 | 3 C, 00011 | 3
regenerated by C, 11111 | -1 C, 11111 | -1
encodeF12() pri- N 00001 1 oN 00001 1
ortoencoding 4 T (3] E i |-
54 bit ANDVT o 1111 | -1 Ce 1111 | -1
Cs 1101 | -3 Cs 1101 | -3
Co 001 | 1 Co 001 | 1
itch | 0101011 | 43 itch | 0101011 | 43
11011 | 27 11100 | 28
i

Hamming codes regenerated for unvoice
: 20

a0D

d frames

0000000030000 00 0TYURDYIV00ATTOV0000001 00001 00000%NY
33431101 10D090V0101Z930011101081300011113231100110010

FIGURE 11. The rc12t024() function regenerates four sets of LPC-10 parameters (except for
Hamming codes in unvoiced frames) from one set of rate converted input parameters. EncodeF12() is
called four times, once for each set of LPC-10 parameters, to encode the parameters into four ANDVT
frames. If a frame is unvoiced, Hamming codes are regenerated. Frames are output, via a VST, to an

ANDVT.

Low Dats Rate Voice (1200 bps) Rate Converter July 16, 1992 37

