
Naval Research Laboratory
Washington, DC 20375-5320

AD-A256 071 NRIJMR/5520-92-7136I 1111111liltl11 11 11 111 hIqll lii 1 111I!

System Design and Development of a Low Data Rate
Voice (1200 bps) Rate Converter

J. P. HAUSER

Communications Systems Branch
Information Technology Division

September 30, 1992

TýW. DTIC
"0 ---- MLCT.(0°, CT0.r 9. 199t.

Approved for public release; distribution unlimited.

REPORT DOCUMENTATION PAGE OSf.00 8

sP.*k ,poati burd. for thMe mcocton of bnformntaioei artimsed to avorage I ho.e per rueporm, iwckxV the timo fo roviowen insaeeo, oareiff s dote sueeo.
oeoteriru md nm6rd@* the dete needed. ad cempatin ord ovwinowkV w. ceaoction of ikormatiom Sen cofnmena n rdi th bued estime ofw aty aeipe Of dU.
coboeol, of igormstien. I -dudi q suggero for reduckV in bsdtmde to Washkuton Headquorte Servicoe. Diroctorsto for l.*rmation Oporeiom aMd Reports, 1216 Jeffomen
Davis Hisihw,. Suits 1204. Auigten. VA 222024302. Mnd to the Office of Magemomrt nd Budget. Papetwork Reductio Projoct 10704-0181). Wmhington. DC 20503.

1. AGENCY USE ONLY (Lave .ibnk) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

September 30, 1992 Interim 7/91-6/92
4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

System Design and Development of a Low Data Rate Voice (1200 bps) Rate Converter PU - 0602232N
PR - RC32A13

6. AUIhOR(S)

J. P. Hauser

7. PERFORMING ORGANIZATION NAME(S) awd ADDRESSIES) 8. PERFORMING ORGANIZATION

REPORT NUMBER
Naval Research Laboratory
Washington, DC 20375-5320 NRL/MR/5520-92-7136

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING

AGENCY REPORT NUMBER
Naval Command, Control and Ocean Surveillance
San Diego, CA 92152-5122

1I. SUPPLEMENTARY NOTES

12s. DISTRIBUTION/AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Approved for public release; distribution unlimited.

13. ABSTRACT |Maximum 200 words)

This report presents both a high level and a detailed design for a low data rate voice Rate Converter (RC). On the transmit
side, the converter reduces 2400 bps voice generated by an Advanced Narrowband Digital Voice Terminal (ANDVT) to a 1200 bps
bit stream. On the receive side it converts the 1200 bps bit stream back to a 2400 bps stream in ANDVT format. Rate reduction is
accomplished with little degradation to the inherent voice quality of the ANDVT.

This primary focus is upon the real-time software design which is implemented using VxWorks, a real-time, multi-tasking
operating system and development environment. The high level design defines four tasks, each having its own execution thread and
its own "pipe" to facilitate inter-task communication. The Supervisor Task performs initialization and manages input of commands
and data to the RC. The Compressor Task reduces a 2400 bps bit stream to 1200 bps while the Decompressor Task converts from
1200 bps back to 2400 bps. The Output Task manages the output of data from the RC. Latter sections of this report describe the
software in detail.

14. SUBJECT TERMS 15. NUMBER OF PAGES

Low data rate voice Data/voice integration 41

Rate conversion 16. PRICE CODE

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT
OF REPORT OF THIS PAGE OF ABSTRACT

UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED UL

NSN 7540-01-280-5500 Standad Form 233 Rev. 240S)
PINewamd by ANS SW 238-1S

293-102

CONTENTS

1.0 SCOPE .. 1

1.1 Purpose .. 1
1.2 Communication Support System (CSS) Architectural Context 1
1.3 Voice Subscriber Terminal (VST) 1
1.4 Document Overview ... 3

2.0 REFERENCED DOCUMENTS .. 4

2.1 Government Documents 4
2.2 Nongovernment Documents ... 4

3.0 GLOSSARY ... 5

4.0 HIGH LEVEL SYSTEM DESIGN 6

4.1 Hardware Specification .. 6
4.2 Software Design .. 6

5.0 DETAILED SOFTWARE DESIGN 10

5.1 Code Layout ... 10
5.2 User Defined Data Types 11
5.3 Message Formats .. 15
5.4 Task Modules .. 16
5.5 I/O Devices ... 27

6.0 REAL-TIME IMPLEMENTATION 29

7.0 Appendices ... 31

7.1 Overview of the ANDVT Rate Conversion Algorithm 31
7.2 Example Compression/Decompression of Four Consecutive ANDVT Frames 35

hooesslon For
NTIS GRA&I
DTIC TAB 0I

r-) Unannounccd x
-) JuUf~it. e .or

iii A-allabullty Codes---- ieAiz em~or
iiin

SYSTEM DESIGN AND DEVELOPMENT OF A LOW DATA RATE
VOICE (1200 bps) RATE CONVERTER

1.0 SCOPE

1.1 Purpose

This document encompasses both the high level and the detailed design of the Low Data
Rate Voice Rate Converter (RC). Both the hardware and the software designs are covered,
with primary attention given to the software design, since all RC development work in-
volves software, while the hardware is strictly off-the-shelf.

1.2 Communication Support System (CSS) Architectural Context

The Rate Converter should be understood within the context of the Communication Sup-
port System (CSS) architecture. The goal of the CSS is to support a wide variety of Navy
applications, e.g., voice, tactical data, record message, etc., by granting access to a single
system that manages all the communication resources. The CSS System Specification
makes the following statement:

"A cornerstone of the CSS concept is that the users are not aware of the media em-
ployed to transfer data to or from other users. The users are also not aware of data rate,
coding mechanisms, link protocols, or timing relationships. The users regard the CSS
as only providing the required communications services in terms of distribution, securi-
ty, quality, timeliness, and throughput."

The CSS architecture includes both satellite and terrestrial RF transmission systems. Sat-
ellite channels, links, and networks within CSS have the bandwidth required to support
both voice and data applications, but can benefit from the reduced throughput require-
ments afforded by low data rate voice techniques. However, terrestrial digital RF networks
that are characterized by low bandwidths and dynamically varying connectivities, demand
the use of low data rate voice techniques as a prerequisite for the support of voice applica-
tions. The Rate Converter seeks to meet that demand.

Figure 1, which is redrawn from the CSS System Specification, depicts the CSS architec-
tural context. As the figure illustrates, users always access CSS communication facilities
via Subscriber. For voice applications, a Voice Subscriber Terminal is currently under
development.

1.3 Voice Subscriber Terminal (VST)

Advanced Communication Systems (ACS), Inc., developed a preliminary version of a
VST under SBIR N89-41, while Naval Research Laboratory (NRL) Codes 5521 and 5531
have developed the RC with funding from the Shared Adaptive Internetworking Technol-
ogy (SAINT) 6.2 program.

Figure 2 shows the CSS compatible VST now under development by ACS. The VST must
support several interfaces: 1) an interface to an Advanced Narrowband Digital Voice Ter-
minal (ANDVT) operating in voice only mode that transmits and receives 2400 bps red

Manuscript approved July 23, 1992

Low Dat Raft Voice (1200 bps) Rate Comvm=L July 16, 1992

FIGRE1 SSArhitctra Cntxt

UserRa Converterio Use

L. L

n n Use

RED~ AUIO -EIIAL (200

FIGRE . SS omptile oie Subscribe TemnU(S)wt Rt ovre R)serer

Low~ ~ ~~~~Md saaRt oc 10 p)RwCmetr Jl 619

(i.e., unencrypted) voice data via the J2 connector [MIL-C-28883A], 2) a graphical user
interface (GUI), 3) an interface to the Standard Communication Environment (SCE), i.e.,
the remainder of the system, via an Ethernet using a CSS interprocess communication pro-
tocol (OS/IPC), and 4) an interface to the RC, which provides 1200 bps voice capability
by compressing (for transmission) and decompressing (upon reception) the 2400 bps
voice produced by an ANDVT. A broad definition of a CSS Subscriber, as pictured in Fig-
ure 1, would include all the elements of Figure 2 as components of the Subscriber, except
for the User and the SCE. Thus, the RC, the ANDVT, the Handset, the Interface Convert-
er, the GUI, and the VST are all Subscriber components.

1.4 Document Overview

Having shown where the Rate Converter fits into the context of the CSS, the remainder of
this document is devoted to presenting the RC design and implementation. We begin with
a high level system design and then proceed to a detailed design of the RC software. We
conclude with a discussion of current progress in producing a real-time implementation of
the RC.

Low Data Rate Voice (1200 bps) Rae Convener July 16. 1992 3

2.0 REFERENCED DOCUMENTS

2.1 Government Documents

" G. S. Kang and L. J. Fransen, "ANDVT Rate Conversion Algorithm (From 2400 b/s to
1200 b/s)," NRL Report 9357, September 1991.

" "System Specification for the CSS," NOSC (now NRaD) CSS Program Office, Code
8503, June 1991.

" "System Specification for the CSS Standard Communications Environment (SCE),"
NOSC (now NRaD) CSS Program Office, Code 8503, June 1991.

" MIL-C-28883A, "Military Specification for the Advanced Narrowband Digital Voice
Terminal (ANDVT) (CV-3591(p)/J (Tactical Terminal)] [J-3953/U (Interface Unit)]
[C-11006/U (Modem/Voice Processor Unit)]", Space and Naval Warfare Systems Com-
mand, Wash., D.C., 1 June 1987.

" EE160-GP-OMI-010/W151-USC-43, "Technical Manual - Operator and Organization-
al Maintenance for Advanced Narrowband Digital Voice Terminal - Terminal Sets AN/
USC-43(V) I through AN/USC-43(V)6", ITM Defense Communications Division, 31
July 1987.

2.2 Nongovernment Documents

"* Brian W. Kemighan and Dennis M. Ritchie, The C Programming Language, Second
Addition, Prentice-Hall, 1988.

"* Margaret A. Ellis and Bjarne Stroustrup, The Annotated C+ + Reference Manual, Addi-
son-Wesley, 1990.

"• VxWorks Programmer's Guide, Wind River Systems, Inc., Alameda, CA

"* X Protocol Reference Manual, O'Reilly & Associates, Inc., Sebastapol, CA

Low Dta Rate Voice (1200 bps) Rate Convener July 16. 1992 4

3.0 Glossary
1. ANDVT - (Advanced Narrow Band Data Voice Terminal)

2. CPG/SM - (Connection Plan Generation / Key Management)

3. CSS - (Communication Support System)

4. GUI - (Graphical User Interface)

5. LPC -10 - (Linear Predictive Code of order 10)

6. MC68020 - Motorola microprocessor that is a first generation full 32 bit machine.

7. MC68030 - Motorola microprocessor that is a second generation full 32 bit machine. It
has on-chip caches and multiple internal buses for both data and instructions.

8. MC68040 - Motorola microprocessor that is a third generation full 32 bit machine.

9. MVME135A - VME board-based computer that uses a MC68020.

10. MVME147 - VME board-based computer that uses a MC68030.

11. MVME167 - VME board-based computer that uses a MC68040.

12. OS/IPC - (Operating System / Inter-Process Communication)

13. RC - (Rate Converter)

14. RS-232 - serial interface specification

15. SCC - (Serial Communication Controller)

16. SCE - (Standard Communications Environment)

17. TCP - (Transport Control Protocol)

18. VME - (Virtual Memory)

19. VST - (Voice Subscriber Terminal)

20. VxWorks - real-time, multi-tasking, operating system and accompanying program de-
velopment environment commercially available from Wind River Systems, Inc.

21. Z8530 - Zilog SCC chip

Low Dma Raft Voice (1200 bps) Rate Conver inly 16. 1992

4.0 High Level System Design

4.1 Hardware Specification

The Rate Converter design was originally targeted for implementation on a MVME135A
card running a VxWorks, real-time, multi-tasking, operating system. This card uses a Mo-
torola MC68020 microprocessor with 4 Mb of onboard RAM. Timing tests have indicated
the need to go to a faster board (section 6.0), even after optimizing the C code for rapid ex-
ecution. It appears that our best hardware option is to implement the RC on a MVME167
board.

Since both the RC and the VST use a common VME bus, the bus will be used to support
the RC / VST interface. An Ethernet card (ENP- 10L) will be used to support the VST /
SCE interface in the target system. In the development environment, the Ethernet is also
used as an interface to the Sun Unix host development system to support software down-
loading and debugging.

4.2 Software Design

4.2.1 Task Decomposition

Figure 3 shows a top level RC software design composed of four tasks running under con-
trol of the VxWorks multi-tasking operating system. A task in VxWorks is an independent
program unit that has its own stack and program counter. Task execution is scheduled by
the operating system kernel using preemptive priority-based scheduling. Each task (except
the Supervisor Task) is coupled to an input pipe that it reads to get messages sent to it by
the other tasks. The Supervisor Task reads its input messages from an input device, which
may be either a serial communication port (RS232) located on the micr'tprocessor's front
panel or a socket that uses the VME backplane. (For more description of I/O facilities, see
section 5.5.)

An important feature of the RC design is the division of input and output handling into
separate tasks.This division frees the Supervisor Task from handling both input and output
to the VST and, consequently, allowing the call to the read function to temporarily block
output. Even with full duplex communication facilities available, this partitioning is nec-
essary to decouple RC input and output.

The functional description of each task follows:

1. Supervisor Task

"* Spawn other tasks.

"* Create and open pipes (one pipe per task to handle intertask communication).

"* Read and decode messages from VST.

"* Send ANDVT voice frames (generated locally) to Compressor Task.

Low Dou Rawe Vo (120 bps) Rate Comverter July 16, 1992 6

/0 VST Messaget-

1200 3. ResRt
CS nomressed voice Budlt-divTestStatus Request :

Re Compress

local~~~~at nod) o heDeomreso Ts

2C pCsmpresr Task
2400 b (40-420 VST/RC
LPC-0 voice -, Interface

Recweikme V Supervisor Task.

1200 b•

oparamete valuwes.

Decompress Task VT fsames.

(1200-Tm2400) Test ResultI I Status Report
2-400 bps).mpressed Data
Aecompressed voice sgeo ampressed Data

Ou pu Task. as

FIGURE 3. Rate Converter (RQ) implementation using VxWorks Tasks.

"• Send compressed voice data (compressed by a remote node and received by the

local node) to the Decompressor Task.

" Generate acknowledgments for every message received from the VST and send
them to the Output Task.

2. CoSpressor Task
"• Receive messages containing ANDVT data from Supervisor Task.

"• Deoe 54 bit ANDVT frames (22.5 ms per frame = 2400 bps) to obtain LPC2-10

ee r parameter values.
"• Collect and normalize LPC-10 values from four contiguous ANDVT frames.

"• Test frame arrival time intervals to insure continuity of data.

" Execute compression algorithm to convert four sets of LPC-IO parameter values to
one set of RC parameters.

"• Encode compressed RC parameter values into one 108 bit frame (90 ms; per frame
= 1200 bps).

"• Assemble 108 bit frame of RC compressed data in a message and send it to the
Output Task.

3. Decompressor Task

"• Receive RC compressed data (i.e., message containing 108 bit frame) from
Supervisor Task.

"• Decode 108 bit frame to obtain RC parameter values for input to decompression
algorithm.

Low Dot" Rm Vok•e (1200 bps) PRle Cmnvelter July 16, IM92

"* Execute decompression algorithm to obtain four sets of LPC- 10 parameter values.

"* Encode one 54 bit ANDVT frame per parameter value set.
"• Assemble each ANDVT frame in a message and send it to the Output Task.

4. Output Task

"* Generate and encode sequence numbers for all RC messages except
acknowledgments.

"• Send RC messages to VST.

4.2.2 VST/RC Interface

Another important feature of the RC design shown in Figure 3 is the VST/RC interface.
The interface is composed of two sets of messages: 1) VST messages sent by the VST to
the RC and 2) RC messages sent from the RC to the VST. Using X Window System proto-
col terminology (appropriate because CSS mandates the X protocol), the VST is the client
and the RC is the server in the client/server paradigm. Likewise, the VST messages are re-
quests and the RC messages are replies. Table 1 describes these messages.

Table 1: VST/RC Message Interface

Type Sent Message Function

By

Reset VST Requests RC to reboot.

Built-in-Test VST Requests RC to rur' a built-in-test procedure.

Status Request VST Requests the RC to generate and return a Status Report.

Rate Compress VST Requests the RC to compress a 54 bit ANDVT frame.
(see section 7.1) Four contiguous ANDVT frames must
be received by the RC to generate one 108 bit Com-
pressed Data frame.

Rate Decompress VST Requests the RC to decompress a 108 bit Compressed
Data frame. The RC regenerates four ANDVT frames.

Test Result RC Reply to Built-in-Test message. The RC tests for proper
initialization, executes both the Compression and
Decompression algorithms with canned input, and com-
pares the results with predetermined values. (Section 7.2
uses the input and output values incorporated in this test.)

low Data Rate Voice (1200 bpu) Rate Comneer July 16.1992 8

Table 1: VST/RC Message Interface

Type Sent Message FunctionBy

Status Report RC Reply to Status Request Message. The following infor-
mation is included:

"* numbers of Rate Compress and Rate Decompress mes-
sages read in by Supervisor Task

"• arrival times for the most recent Rate Compress and
Rate Decompress messages

"• number of ANDVT frames passed to Compressor Task

"* number of ANDVT frames discarded by Compressor
Task

" difference in arrival times between current anu preced-
ing ANDVT frames

number of Compressed Data (108 bit) frames passed
to Decompressor Task

Compressed Data RC Reply to Rate Compress message. Actually, four contigu-
ous Rate Compress messages are required to generate one
Compressed Data message reply. Message continuity is
defined by a maximum allowable delay from one Rate
Compress message to the next (i.e., one ANDVT frame to
the next).

Decompressed Data RC Reply to Rate Decompress message. Four Decompressed
Data messages are generated for each Rate Decompress
request.

Acknowledgment RC One Acknowledgment is generated by the RC for each
VST message received.

Low Daa Raue Voice (1200 bps) Rate Canvener July 16, 1992 9

5.0 Detailed Software Design

5.1 Code Layout

The RC source code is written as a set of compilation modules and header files. All the
modules, except for one coded in C, are written in C++. Four of the C++ modules define
the main routines for VxWorks tasks. The remaining C++ modules define the additional
data types, i.e., Bitvectors and Msgs, and a few other miscellaneous functions. The C
module, rcConvert.c, defines additional functions that implement the rate conversion algo-
rithms. Compilaticn files are described in Table 2, header files in Table 3, and other files in
Table 4.

Table 2: RC Compilation Files

File Name Type Description

Misc.C C++ defines the new and delete operators. These are C++ operators
for dynamic memory allocation.

helper.C C++ defines functions for constructing and destructing C++ glo-
bals. These are required since VxWorks does not directly sup-
port C++.

rcComp.C C++ defines the Compressor Task's main program. It also includes
functions for decoding ANDVT frames, encoding compressed
data frames, and incrementing a clock tick counter.

rcConvert.c C defines rate compression and rate decompression algorithms.

rcDecomp.C C++ defines the Decompressor Task's main program. Also, it
defines functions to decode compressed voice data frames and
encode ANDVT frames.

rcMsg.C C++ defines Class Msg (see section 5.2.2).

rcOutput.C C++ defines the Output Task's main program and a function to
compute message sequence numbers.

rcSupv.C C++ defines the Supervisor Task's main program and functions for
the RC's self test and status report.

vxbitclass.C C++ defines Class Bitvector (see section 5.2.1) and Class Bitob-
ject.

vx bitmatrix.C C++ defines Class Bitmatrix (required for loading Class Bitvector).

Low Data Rate Voice (1200 bps) Rate Conveuter July 16,1992 10

Table 3: Header Files

File Name Type Description

rc.h C++ provides declarations and compiler directives for the follow-
ing compilation modules:
* rcComp.C
* rcDecomp.C
• rcMsg.C
* rcOutput.C
• rcSupv.C

vx bitclass.h C++ provides declarations and compiler directives for the follow-
ing compilation mdules:
* rcComp.C
* rcDecomp.C
* rcMsg.C
* rcOutput.C
* rcSupv.C
• vxbitclass.C

vxbitmatrix.h C++ provides declarations and compiler directives for the follow-
ing compilation modules:
* vx_bitmatrix.C

Table 4: Miscellaneous Files

File Name Type Description

makefile ASCII contains commands for the make program.

rc binary contains the RC object code and is created by running make

rc.dat binary contains initialization data for the reflection coefficient
tables used by the rate conversion algorithms.

script ASCII contains a script that VxWorks uses after rebooting to load
the RC object code and execute a helper function to initial-
ize C++ globals.

vxBoot ASCII contains VxWorks boot commands.

5.2 User Defined Data Types

We define two additional data types using the object-oriented facilities of C++ - Class Msg
and Class Bitvector. A C++ class is an extension of a C structure that adds exc.utable
code and/or member functions to the structure's set of declared variables. These additional
data types are quite useful in simplifying the code required to implement the VxWorks
tasks outlined in section 4.2.

Low Dsta Rawse Vokce (1200 bps) Rtue Convmwe July 16.1992 IM

5.2.1 Class Bitvector

Class Bitvector provides bit handling capability. The functions getbit and putbit use one
byte variables (type char) having values of zero or one to specify bitvector bit values.
Also, getint and putint provide conversion to positive integer (type int) values, while get-
textbits converts bitvector contents to a string of ascii l's and O's.

In addition to the direct bit handling capabilities, Class Bitvector supports the concept of a
field. Bitvectors can be subdivided into fields by giving the starting bit position and the
length of the field within the bitvector. Fields are also bitvectors and, therefore, have the
same bit handling capabilities. Fields provide a natural way to specify and manage mes-
sage formats and their contents.

Bitvectors are used extensively by the Compressor and Decompressor Tasks to decode and
encode ANDVT frames. Also, bitvectors are used to implement Class Msg since messages
are formatted on the bit level.The interface to Class Bitvector is presented in Table 5.

Table 5: Class Bitvector Interface

Member Function Declaration Function Description

bitvector 0 constructor used to initialize a bitvector.

bitvector (int sz) alternate constructor that takes the bitvec-
tor's length in bits as input.

-bitvector 0 destructor used to garbage collect a
bitvector.

void arraylinitializer (int sz) same as alternate constructor - used for
arrmy initialization.

void attach (nt *buf, buf, of length size-in bits, becomes the
int sizein_bits) contents of the bitvector.

int start 0 returns the starting position of the bitvec-
tor in the buffer that holds it.

int length 0 returns the length of the bitvector in bits.

char getbit (int i) returns the value of the bit at bit position j
in the bitvector (first position = 0).

void putbit (int i, puts a bit of value h at position j in the
char b) bitvector.

char *gettextbits (char *dest, places a character ('I' and '0') representa-
int size_of dest) tion of the bitvector's contents into dUs.

Low Data Rate Voice (1200 bps) Rawe Cmvaer July 16. 1992 12

Table 5: Class Bitvector Interface

Member Function Declaration Function Description

bitvector *field (int iI, int i2) returns a pointer to a new bitvector that
accesses a portion of this bitvector's con-
tents (i.e., a field) starting at bit position il
and extending for i2 bits in length.

int getint (int numbits_in_field = -1, converts the binary number starting at
int pos-of-firsLbit=O) oi rst bit and extending for nmw -

biinfid to a positive integer and
returns the value (default: entire contents
of bitvector if no input parameters given).

void putint (int i, converts a positive integer to binary and
int num_bitsinfield = -1, inserts it in bitvector beginning at
int posof..isrst.bit=O) pos of firstjbit and extending for nmmL-

bits in field,

void setallbits 0 sets all bits to'1'.

void clearallbits 0 clears all bits to '0'.

void setbit (int i) sets bit at position i to '1'.

void clearbit (int i) clears bit at position i to '0'.

void assign (bitvector *b_v, copies contents of Ly. starting at
int num_bits._to_copy=-l, pos of first bit to copy and extending
int posof_first bit_tocopy =0, for hum bits to copy, into this bitvector,
int posmof-dest-bit = 0) starting at Ios of dest bit.

bitvector *andbits (bitvector *bv) replaces the contents of this bitvector with
the bitwise logical and of this bitvector
and by (bitvector lengths must be equal).

bitvector *or_bits (bitvector *bv) replaces the contents of this bitvector with
the bitwise logical or of this bitvector and
by (bitvector lengths must be equal).

bitvector *ones..complement 0 replaces the contents of this bitvector with
the ones complement of this bitvector.

char is-zero 0 returns TRUE if all bits are '0'.

char same-as (bitvector *bv) returns TRUE if this bitvector and by have
the same contents.

Low DNa Rate Voice (1200 bps) Rate Converter July 16 , 1992 13

Table 5: Class Bitvector Interface

Member Function Declaration Function Description

int state() returns one of three state values

"* BVISMAIN (= 0)

"* BVISNOTMAIN (= l)

- BVISUNATTACHED (= 2)

5.2.2 Class Msg

A high level description of the message set that implements the RC / VST interface ap-
pears in section 4.2.2. Class Msg hides the low level details of handling messages behind
the interface given in Table 6. The same messages used externally to support the RC / VST
interface are used internally for intertask communication via pipes.

Table 6: Class Msg Interface

Member Function Declaration Function Description

Msg 0 constructor used for initializing a msg.

-Msg 0 destructor used to garbage collect a msg.

void setContents (MsgType tp, sets the contents of msg by providing val-
unsigned char sn, ues for msg type, sequence number, msg
int In, length (bytes), and data (default: if by is
bitvector *bv=NULL) not given, msg has no data, but the msg

type, the sequence number, and the msg
length in bytes must be given).

void setLength (int In) sets the msg length to In bytes = I byte
msg type + 1 byte sequence number + n
bytes data).

void setSeqnum (unsigned char sn) sets the msg sequence number to mn (0 -
255).

bitvector *getContents 0 returns a pointer to the contents of msg
(type + sequence number + data).

MsgType getType 0 returns the type of msg.

unsigned char getSeqnum 0 returns the sequence number of msg.

int getLength 0 returns the length in bytes of msg.

bitvector *getData 0 returns a pointer to the data of msg.

void display (int fd) displays msg on device designated by file
descriptor fd

Law Data Rase Voke (1200 bps) PA, Ca,•,. July 16. I92 14

Table 6: Class Msg Interface

Member Function Declaration Function Description

int mread (int fd) reads contents of msg from stream ori-
ented device designated by file descriptor
&.L (see section 5.5)

int pread (int fd) reads contents of msg from message ori-
ented device (e.g., VxWorks pipe) desig-
nated by file descriptor fd.

int mwrite (int fd) writes contents of msg to device desig-
nated by file descriptor fd.

5.3 Message Formats

All message formats used by the RC have the following three fields:

" message type (1 byte), - A I

" sequence number (1 byte), -

"* data (0 - 35 bytes).

The message type field is one byte in length. Message type values are given by the follow-
ing enumeration:

enuisxgm p
RZSZTing, /* VST->RC: IRC reboots */
TZSTmg, /* VST->DC: RC runs test '/
STATUSsag, /* VST->RC: RC returns status '/
COIpmsg, /* VST->RC: IC compresses 2400 data */
DZCONFmsg, /* VST->RC: iC decompresses 1200 data */
DESULTag, /* RC->VST: test result */
RZPORTmsg, /* RC->VST: status report */
COQDmsg, /* RC->VST: compressed data */
DWCODmsg, /* RC->VST: decompressed data */
ACKmag, /* RC->VST: acknovledgment '/

The sequence number field is an unsigned char that has a decimal value in the range 0 -
255. The length and contents of the data field depends on the type of message, as shown in
Table 7.

Table 7: Data Field Formats

Msg Data Field
XsgType Length Range Data Field Format

(bytes) (bits)

DE•sE g 2 0 none

Low Dut Rate Vowe (1200 bps) Rlae Cnvawe July 16, 1992 15

Table 7: Data Field Formats

Msg Data Field
xsgType Length Range Data Field Format

(bytes) (bits)

TZSI~mg 2 0 none

STATUSMsg 2 0 none

COmKusg 9 0-53 54 bit ANDVT frame

DzcmwaBmg 16 0- 107 108 bit compressed voice data frame

RZWsLTug 3 0-2 * (0) error in table initialization
• (1) error in rc24to12 execution
* (2) error in rc12to24 execution

RRPORIMsg 35 0-263 * (0 -7) TRUE if pipe & task initialization OK
* (8 - 39) number of coummgs read in by Su-

pervisor Task
* (40 - 71) number of Dcowmgs read in by

Supervisor Task
• (72 - 103) clock tick count when most re-

cent cowing read in
(104 - 135) clock tick count when most re-
cent DZCOtMmg read in

* (136- 167) number of comaizgs read in by
Compressor Task

* (168 - 199) number of coummgs discarded
by Compressor Task

* (200 - 231) number of clock ticks for most
recent comamag arrival interval

* (232 - 263) number of DEcoawmgs read in
by Decompressor Task

COIDDt g 16 0- 107 108 bit compressed voice data frame

DZCMSWD=g 9 0-53 54 bit ANDVT frame

ACOsg 2 0 none

5.4 Task Modules

Subsection 4.2.1 provides functional descriptions for each of the task modules. In the fol-
lowing subsections we outline the code required to implement each VxWorks task module
and the rate conversion algorithm module. Each task module contains the following ele-
ments:

Low Dia Raft Voice (1200 bps) Rate Crrvener Mly 16. 1992 16

" Include files - header files that contain declarations and #define statements. Both #in-
elude and #define are C preprocessor statements that can be viewed as a first step in
compilation. linclude copies the contents of the included file into the module's source
code. Similarly, #define replaces tokens in the source code with replacement texL

"External declarations - eztern is a C keyword that introduces a variable or function
that is defined in an external module (i.e., file) into the scope of the module using the
aStern declaration. Because the RC source code is partitioned into several modules,
the use of the aetern declaration is required to give a module access to certain vari-
ables and functions defined in other modules. Placing the external declarations directly
in the source code rather than in a header file helps to show the external variables and
functions that a module depends on.

"Global variables - variables that have global scope within the module, i.e., are defined
outside of any function and are accessible by every function in the module.

" - most are called by the main program of the module in which their defini-
tions appear, but a few are designed to be called from other modules. For example,
rcinitO is defined in rcConvert.c because it initializes arrays that are likewise defined in
rcConvert.c. However, rcinitO is called by the main program of rcSupv.C.

" Main =gram - a module's main routine is defined just like any other function. The dif-
ference is that it is executed by a call to the VxWorks system function spawnO. A call
to spawnO gives the function its own program counter and stack, thus making it a vx-
Works task. In the following subsections, we describe main programs in terms of pseu-
do code.

Lw Daua Rate Voice (1200 bps) Rat Convener July 16. 1992 17

5.4.1 Supervisor Task (rcSupv.C)

athname for Vx ork [-eseties are includdi sockets are to beuse for
n host system VST communication. Otherwise, RS232 ports are used.

7cxtern
P"C'

*#inclade "flomw/auilus2(hauser/vw5OZ~tyWorksh
#tinclude "Aiome/nautilus2/hauser/vw5O2MWsys~ibi't ern vc" { is re-
Afifdef RS232 uired to prevent C++
#define,_SThC. om renaming these in-
#include "A ome/nautilus2/hausct w5O2/brAypeh"' lude files to C++
#include "/bonnauilusZ/hauserAw5O2Ah[m..h" J ames different from
#include tI homern tilus2/hauser/vw5O2dhlsockLib.h" Jie C names that #in-
#include "fllominatilus2/hauscrfvw5O2A/bsockeLby lud willokfr
Oendif

I#include '~vx-.bitclass-h" hese ties willb renunm to C++nms
\"include 'trc.h" ý_ hich is fine since they are C++ files.

Low DuzRanteVoice (1200 bps) Rate Cuwefer JMy 16,1992 1

External declarations:

extern "C" void =CoapMaizyv 0 or HEC" forCompressor,
exterin "C vo••d DecompMainIi• 0; ompressor, and Output[
ettern "C" void v•• •itptMain.Yv ; ./•!Eask main programs.,
e~xtem C' void rcimit 0;
extem "C"~ char' rcltst() n nrcnet
extem "'C' double ceil (double);

extam "C' int pipefleYQmaft (char*,i* o;
extern "C* int open (char*,~ int, .
extern "C" int taskSpawn (ch~ar* 4 . ..

exe "C'" void reboot Cint);
extern "C" int prhitErr (char #fmr1 ..
extern "C't int printf (cmachar *fmt, ..

#ifndef RS232
extem "C't void bzero (char *b, unt length);
extern '"C jilt close (int);
#endif

ext ern hit cIk Cnt .
r m f1

Globals:

I' GLOBALS '1 1e descript-ors for allasR
int compPipeId F; filt descriptor for comp pipe./ nput pipes and the com-
iint dMewpwpPipeFd, Wile descriptor fo ••odcomp pipe *I unication socket (or
int outputPipeFd; /' file descriptor for output pipe 'I rt) are defined in rc-
hit vstFd,, 1* file descriptor for RS-232 port or smocket up V.C.• **************************************............

Sglobalastatus variables Status is a structure that contains status in-
.l.als..usornmation for each of the tasks and is defined

gtruct rcstatus rcuvC
char supvlnitOK; /* TRUE if pipes. & tasks . init OK *1I
int supvNumCOMPmgs•, P num COMP msgs read hn by supvMain *1
int supvNumDECOMPmgsin; 1' nwm DECOMP msgs read in by supvMain *1
int supvCOMPmsgTic; /* tic cnt (20ms/tic) of most recent COMP msg *1
int supvDECOMPs&Tia; I' iic cat (20wm&tc) of most recent DECOMP msg *1
int compNumFramesRd; I* number of frames read in by compMain *t
int compDiscardCnt; l' number of frames discarded by compMain *1
int compFb l)RzelaWr,: / numberof tics fom peviu framer to current frame19
int decompNummnuesRd; /* numi-r of rame read in by decompMain *

}star ={FALSE, 0, 0, OD, 0, 0, 0, 0, 0)], :-:.. ..

Low Daeta Raw, Voice (1200 bps) Rate Converter MuY 16, 1992 19

Functions:

" void doTest (Msg& result) - called by rcSupvMain0 in response to a TESTmsg request
from the VST. doTesto in turn calls rcTestO (defined in rcConvert.c) to run the self test
and places the results of the self test into the Msg supplied as a parameter of doTesto.

" void eetStatus (Msg& re=rt) - called by rcSupvMaino in response to a STATUSmsg.
getStatuso encodes the contents of an rcStatus structure into the REPORTmsg supplied
as a parameter to getStatuso.

Pseudo code for rcSupvMaino:

create and open input pipes for
"> Compressor Task
"> Decompressor Task
"> Output Task

if (RS232 defined)
open a raw RS232 port at 9600 baud for communication with VST

else
open a stream socket for communication with VST

LISTEN -. listen for a connection Spawn is a VxWorks command that creates and acti-
accept a connection vates a task. An active task can be scheduled to execute.

spawn tasks * I

"> Compressor Task
"> Decompressor Task
"> Output Task

call initialization rcinito - reads in rc.dat file

check for successful creation of pipes and tasks and store result in status variable

main loop
read a Msg from input device (RS232 port or socket)
if (read successful)

write ACKmsg to Output Task's input pipe
if (RESETmsg)

reboot the RC
else if (TESTmsg)

do self test
write RESULTmsg to Output Task's input pipe

else if (STATUSmsg)
get a status report
write REPORTmsg to Output Tasks's input pipe

else if (COMPmsg)
update COMPmsg count
update COMPmsg time tick
write COMPmsg to Compressor Task's input pipe

Low DteM Rae Voice (1200 bps) Roe Convtner July 16. 1992 20

else (DECOMPmsg)
update DECOMPmsg count
update DECOMPmsg time tick
write DECQMPmsg to Decompressor Task's input pipe

else (read not successful)
print eriro
if (RS232 not defined)

close socket
go to LISTEN -sp

end main loop

5.4.2 Compressor Task (rcComp.C)

Include files:

External declarations:

.............conipPipeFd an
....... tes; to outputPipeFd.

............ ... ~ .
e ter i!'C; 0: i Ti~ x~~tSgnt;$ J ~ ~ ~ h i

......... to coun sysateock.... u...a r
........ ~ ~ ~ ~ ~ N\...

mt~~~~~~~~~.lh -rh vausstr.i.teearasg.. h itps
..t~ L1Zi9 n fLC-1 aamtr i nAD rm

Globals:

..

..w Vos (1nO syst) NaUMBue ul1.192

Globals continued:

btVectors used to assemble he ts
xtracted from ANDVT frames.]

biwector *cdM4; 1* scratch bi .4ector for decoding p oitchm. 1
bitvector vcd52(); 1O scratch bit v 7t for decoding voiced parmms *1
bitvect~or nvcd4(4);1 scratch bitvector for decoding vwoiced params *1

bitvector f12(108); I= 2afed of 1200 data (108 bits) *:
bimvector *drpdFrm f fl.21eld (0,1 Y. f * dropped famne (2 bits) "'I
bitvector *rcIto4Frml = fl2.field (2, 14); /1 rcl to rc4 frmI (13 bits) *-
biwector *rc5tol0Fn = f12.ield (1S. 27); 1* r5 torcl0 frmn1 (13 bits) *1
bivector *cI toh rm2 =1l.field (280 , 40); /*rcI to ic4 frm2 (13 bits) */
bitvector *rcStolOFrm2= f2.field (40,53); /* rcp torlO frn2 (13 bits) */
bitvector *rcato4Frm3 = f12.field (54, 66); t* rcl to it4 frm3 (13 bits) */
bitvector *r5toIFrm3 = fl2.field (67, 79); /* rc5 tourcl frm3 (13 bits) *1
bitvector *pitcb =fl 2,ield (&0, 86); 1. pitch (7 bit$) */
bitvector *ampFrml =e M1.field (87, 91); /* amplitude frimi (5 bits) */
bitvector *ampFnn2 = fl 2.field (92, 96); 1"' amplitude ftm2 (5 bits) *1
bitvector *ampPrm3 - 2.field (917, 101); /* amplitude frrn3 (5 bits) */
bitvector *vcDrpdF = fl2.field (102, 102); / voicingdrpd frm(1 bit)*/
bitvector *vcFrml = f 12.field (103, 103>, /* voicing frml (I bit) */
bitvector *vcFni2 = f12.field (104,104); /* voicing frni2 (1 bit) i.......
bitvector * vcFrm3 = f121i2old (105,.105); /i voicing frm3 (I bit) .i/
bitvector *sync =fl12field (106,107)X /"' synchronization (2 bits) */
int syncbits = 0; P st ncbts alterntely to0 (==00) or 3 (== 1) "• .ne value of svnc its 5s use to set thela-st I:::::::::::::::

K,. "•field of fl..22 alterately to binary 00 or I1.

is a bitvector containing 1U8 bits. It is partitioned into ields y
e bitvector pointers defined following it. Parameters generated by

ate compression are encoded into these fields, and, thus, into f12.

Functions:
"void dec 2e4 (bitvectr "t" shor y - decodes the LPC-10 parameters from an
ANDVT frame passed in via f24 and places the results at YR.

" void encodeF 12 (short *ouWut) - encodes 1200 bps compressed voice parameters
passed in via outpu into the globally defined bitvector, f12.

" void.clk.Ti.k0 - increments a counter every time it is called by the VxWorks auxiliary
system clock.

Low Data Rate Voice (1200 bps) Rate Convener July 16, 1992 22

Pseudo code for rcCompMainO:

connect the VxWorks auxiliary system clock (AuxClk) to clkTickO

set the AuxClk rate to 50 ticks/s, i.e., 20 ms per tick

enable the clock, i.e., start AuxClk

define automatic variables used in this main program
set frament to 0 - used to count four 'contiguous' ANDVT frames for compres-
sion

main loop
save current number of clock ticks in k
read a Msg (i.e., COMPmsg) from this task's input pipe
update status variables

"> comNumFrmsRd - running sum of number of ANDVT frames read in
"> coMRFmeea - time (i.e., number of 20 ms ticks) that the main loop was

blocked waiting to reaa a Msg from the input pipe
if (comRFrameDelav is greater than 10 ticks, i.e., 200 ms)

update com2DiscardCnt (running sum of the number of ANDVT frames dis-
carded because of a lack of continuity, i.e., > 200 ms gap between
frames)

set frameCnt back to 0
call decodeF24() to decode the ANDVT frame just read in and put the decoded
LPC- 10 parameter values into a vector of the array called japz
if (frameCnt equals 3, i.e., four contiguous ANDVT frames have been decoded)

call rc24to120 to compress four sets of LPC-10 parameters into one set of rate
compressed parameters

call encodel2() to encode the rate compressed parameters into one :08 bit
frame

place the contents of the 108 bit frame into a COMDDmsg
write the COMDDmsg to the Output Task's input pipe

increment franiCnt
if (framneCnt is greater than 3)

set frameCnt to 0

end main loop

5.4.3 Decompressor Task (rcDecomp.C)
Include files:

-C X -:: -..
extern 4 '
#include '1home/natilua2dhauterNw5OY2jb/vWo$

Anclude "rcit"

Low Data Rawt Vou* (1200 bps) Rawt Canvtu Muy 16.,9IM 23

External declarations: •c~ecompMam0 readts from dlecomp-
peFd and writes to outputPipeFd.

extern int dec(-ompPipeK- /* file descriptor for decomp pipe
extern int. outputPipeFd; I/' file descriptor for output pipe *1
exteninit bitkeyVcdti2j[71, /* decoding key forvoiced-* aefinein rcCmp.
extern hit bitkeyunvcd[12) [91; sed here to encode
extern "C"t const short iS~enct 161; DTfae
extern "C void rcl 2to24(short*,shot); s" su bi armtine fo IW~ W-
"exter .C. .nt p.intf (Oar #ff...
exten saw res tauis . stat.

Globals:

bitvector ep(7); /* scratch bitvector for encing pitch / '-" ese bitvec-
bitvector evcd.(5); /* scratch bitvector for encoding voicd params ors are used by
bitvector eved4(4) 1* scratch bimector for encoding voiced paraims ncodeF24() to
bitvector evcd3(3M, I* scratch bitvector for eniodiqgvoiced pa s ncode AND-
bitvector evcd2(2); /* scratch birvector for encoding voiced p& T frames.
bitvector eunved5(5); /* scac biwveto.fo en~coding unvoiaed
bitvector ehamn4(4); /* scratch bitvector for encoding hamming cod -

Functions:

"* ygid decoeF2 (bitvctr v fe2c thor • - decodes one 108 bit frame of compressed
voice data and places the compressed voice parameters in a vector pointed to by SM.

"• oid encodeF24 fint j, shor !oUL bitvector *n - takes the output (pointed to by QIt)
of rc 12to24() and encodes one ANDVT frame (pointed to by an).

Pseudo code for rcDecompMain0:

define variables global to Decompressor Task's main program

main loop
read a Msg from this task's input pipe
increment decompNumFramesRd, the number of compressed voice data frames

read in for decompression
call decodeF 120 to decode a frame of rate convened data
call rc 12to240 to decompress the frame of rate convened data
for loop (4 iterations)

call encodeF24 to encode one ANDVT frame
put contents of ANDVT frame into DECOMDDmsg
write DECOMDDmsg to Output Task's input pipe

end for loop

end main loop

Low Data Rate Voice (1200 bp) Rat Converter July 16, 1992 24

5.4.4 Output Task (rcOutput.C)

Include files:

extern "C"
#include "/homenauzlus2lhauser/vw5O2Wvxoks'

#include "vx~bitolass.W.l
#include `mch"

External declarations:

extem imt outputPiPeFd; /* fie descriptor for output pipe *1
extern int vstFd; /* Mie descriptor for RS-232 port or socket/
extern "C"t hit open (char*, int, .
extern "C int ioctl (mt fdl, hit function,...)
extern "C" m t printf (char *fmt,

Functions:

• unsigned char getSeaNum 0 - returns a new sequence number value.

Globals:

unsigned char seqNun =0; /* counter used to generate m-sg, sequence ED~'

Pseudo code for rcOutputMaino:

define variables
outFd is initialized to the external, vs& (This works fine if vstEd is a socket.)
if (RS232 defined, i.e., LstEd is a RS232 port in read only mode)

reinitialize outFd as a RS232 port in write only mode

main loop
read a Msg from the Output Task's input pipe
if (Msg is not an ACKmsg)

set the Msg's sequence number field with a value obtained by calling getSe-
qNum(

write the Msg to outFd

end main loop

Low Data Rate Voice (1200 bps) Rate Converter July 16,1992 25

5.4.5 Rate Conversion Algorithms (rcConvert.c)

This file contains the functions that implement the rate conversion algorithms. These algo-
rithms are fully described in section 2.1 of [Kang]. rcConverLc has no main program.
Rather, its functions are called by the tasks defined in other code modules.

The rate conversion algorithms were originally written in Fortran. For the sake of com-
pactness and efficiency, they have been rewritten in C. However, the original Fortran code
is still retained as comments within the C code.

Include files:

Globals:

......... ,,and u3 are arrays of reflection coefficients. 'Iey are
rtit[�9]f •e. only valid coefficient values for 1200 bps rate converted

................) ic e .

shot 2[f it- unvoiced, 8192 sets of C3- C4
sbo IN M i- voiced, 8192 sets of C.- C&

it3 - voiced, 8192 sets of C5 - q0

ii2, and it hold indexes into the coefficient array
:4 ..kenp.C i.....

Functions:
"• Void rcinit 0 - initialization function that reads a binary file (rc.dat) to initialize the glo-

bals given above.
"* void rc24to12 (input, ouputM - function that implements the rate compression algo-

rithm. Four sets of LPC-10 parameter values are passed in via ja=. and one set of 1200
bps rate converted voice parameter values are passed out via otput.

" void rc 12to24 (in. out) - function that implements the rate decompression algorithm.
One set of 1200 bps rate converted voice parameter values are passed in via ja and four
sets of LPC- 10 parameter values are passed out via out.

" int 1&hdec fipitchx) -decodes an error coded value for pitch, ipitchx, and returns an un-
coded value.

"• int fixrc (ircx. icorr) - use hamming code to fix a reflection coefficient value that con-
tains bit errors.

Law Daa Ram Voice (1200 bps) Rase Conver July 16. 1992 26

" int fixamn (iamp. icorr) - use hamming code to fix an amplitude value that contains bit
errors.

" char* rbi.Q- function designed to test the correct operation of the rate conversion al-
gorithms. The return value is a pointer to a character array of length 3 with the follow-
ing meaning:

char [0] - TRUE if global arrays W1 - jt) have been properly initialized.

char [1] - TRUE if a call to rc24tol2() with test input data produces the correct output.

char [2] - TRUE if a call to rcl2to24() with test input data produces the correct output.

5.5 I1O Devices

The read and write functions defined in Class Msg (mreado, preadO, and mwriteo) inter-
face to VxWorks I/O devices. VxWorks and Unix devices have nearly identical interfaces.
However, each of the devices discussed in the following subsections have some unique
characteristics.

5.5.1 Pipes

VxWorks pipes are message oriented devices rather than byte stream oriented devices.
This means that a Vxworks pipe must be written to and read from a message at a time. Ac-
tually, this is an advantage when implementing a message based design, as we have done
in the RC. When a VxWorks pipe is read, we are free to specify the maximum possible
message length for the number of bytes in the read request. Only the number of bytes actu-
ally in the message will be read. This feature makes it easy to read and process messages
from pipe devices. Thus, the code for the pread(member function of Class Msg is less
complex than the code for byte stream oriented devices.

5.5.2 Serial Port

If the symbolic constant RS232 is defined using a #define C preprocessor command, the
RC source modules will be compiled for RS-232 communication with a VST. A port is a
byte stream oriented device. When reading from such a device, the problem of knowing
how many bytes to read must be handled. The approach taken by the Class Msg mread0
member function is to read the first byte in order to determine the message type and, by in-
ference, the message length. Then the remainder of the message is read.

5.5.3 Stream Socket

If the symbolic constant RS232 is not defined, the RC source modules will be compiled
using a stream socket for communication with a VST. In this instance, the VST will also
have to create a stream socket and initiate a connection with the RC. The RC in its roll as
a server, will listen for and accept a connection from a VST in its roll as a client. The ad-
vantage of using sockets as opposed to RS-232 devices is that the protocol (TCP) that sup-
ports stream sockets can be run over the VME backplane, or even over a network, i.e.,

Low Data Raw Voice (1200 bpi) Rate Converter July 16. 1992 27

Ethernet, if that is deemed appropriate. Assuming the design presented in figure 2 is im-
plemented, the VST and RC will communicate over the VME chassis backplane.

There are a couple of differences between using sockets and using ports. The first is that
two ports are opened to the RC's RS-232 device, one for reading and one for writing. On
the other hand, the same full-duplex RC socket is used for both reading and writing. The
second difference is that a reset request (RESETmsg) from the VST will break the connec-
tion between the RC and VST sockets. This connection must be reestablished after the RC
has rebooted. On the other hand, an RS-232 connection is always there, unless the RS-232
cable is unplugged or the RS-232 ports are otherwise physically disconnected. Therefore,
a reset request behaves in a simple and straightforward manner if RS-232 ports are being
used.

Low Dmat Rate Voice (1200 bps) Rae Converter July 16. 1992 28

6.0 Real-Time Implementation

C is used for the Rate Compression and Rate Decompression algorithms. These algo-
rithms were originally coded in Fortran, but for the sake of run-time efficiency they were
recoded in C. The rate compression algorithm, implemented in the function rc24to120, is
by far the most CPU intensive component of the RC. In particular, the binary tree search
through the set of reflection coefficient vectors to find the one that most nearly matches the
ANDVT generated vector is the computational loop that uses the bulk of CPU time.

To ascertain the ability of the RC to run in real time, we have concentrated our efforts on
timing the execution of the rc24tol2() function. Also, we have made efforts to further im-
prove the efficiency of the C code, particularly in the aforementioned search loop. The re-
sults of our timing tests are given in Table 8.

Table 8: Execution Times for Calls to rc24to120

VME Board Processor C Execution Comments
Compiler Time (ms)

MVME147SA-1 MC68030 AT&T 247 analyzer measurement

MVME167C MC68040 AT&T 117 analyzer measurement

MVME135A MC68020 Gnu 222 timexN0 measure-
ment

MVME135A MC68020 Gnu 147 timexN0 measure-
ment (revised C code)

The RC software, i.e., the unimproved version of rc24tol2() function, was benchmarked
at Motorola using a MVME147SA-1 and a MVMEI67C board in conjunction with a
board analyzer that measured the entry and exit times from the rc24to120 function.
Benchmarks on the MVME135A board, i.e., our development system, were performed us-
ing the VxWorks timexN0 system function, which called the rc24to120 function multiple
times to get an accurate average value for execution time.

The execution times shown in Table 8 are surprising when one considers that the MIPS
rate approximately doubles going from a MVME135 to a MVME147 board and, again,
doubles going from a MVMEI47 to a MVME167 board. The comparatively high perfor-
mance of the MVME 135 board is due to the use of the Gnu C compiler instead of the
AT&T C compiler. Also, our efforts in speeding up the C code paid dividends, but was not
good enough to reduce execution time to less than 90 ms, which must be done fur the RC
to meet real-time requirements. Since an ANDVT produces one 54 bit frame of data every
22.5 ms (= 2400 bps), the RC must compress four frames every 90 ms to keep up. Also,
the RC needs a little time for doing other chores, so a more realistic timing requirement
would be < 80 ms. It appears that a MVME147 board with Gnu compiled code would be
adequate to run the RC in real time, assuming the Gnu compiler improves the
MVMEI47's performance by a 2:1 factor and our code improvements work well on the
MVME147. A safer bet would be to use a MVMEI67 board. The additional $500 in cost

Low Data Rate Voice (1200 bps) Rate Convener July 16. 1992 29

(for a MVME 167 compared to a MVME 147) could mean the difference between marginal
and rock solid performance.

Low Dou Raft Voie (1200 bps) Raft Convamu July 16, 1992 30

7.0 Appendices

7.1 Overview of the ANDVT Rate Conversion Algorithm

The following overview is extracted directly from material presented in [Kang]. For a
comprehensive discussion of the ANDVT Rate Conversion Algorithm, we refer the reader
to that document. The brief description presented here is intended to give the reader
enough understanding of the ANDVT LPC and the Rate Conversion algorithms to facili-
tate understanding this report.

An ANDVT processes voice in the manner illustrated by figure 4. On the transmit side,
analog speech is A/D converted and analyzed. The analysis generates a set of ten reflec-
tion coefficients that characterize the spectral content of the voice, values for amplitude
and pitch, and a binary voicing parameter. One set of these parameters is encoded into a 54
bit ANDVT frame every 22.5 ms to yield an output rate of 2400 bps. On the receive side
the process is reversed and the 2400 bps input stream is used to regenerate analog voice.

(a) Tranmitlner

(b) Receiver

FIGURE 4. ANDVT voice processing.

Low Dam Raw Voice (1200 bps) Raw Cmue July 16. 1992 31

The following table describes the LPC-10 parameters in more detail and indicates the

number of bits allocated by the ANDVT Encoder to represent each parameter.

Table 9: ANDVT Parameters

Speech Remarks
Parameter Bits/Frame

Amplitude 5 RMS value of preemphasized speech waveform quan-
tized semi-logarithmically over a 60 dB dynamic range

Pitch 6 Quantized logarithmically from a pitch interval of 20 to
160 samples at 20 steps per octave

Voicing 1 Binary voicing decision

Reflection 41 (Voiced The first through tenth reflection coefficients are quan-
Coefficients frames) tized to 5, 5, 5, 5, 4, 4, 4, 4, 3, and 2 bits, respectively.

20 The first through fourth reflection coefficients are quan-
(Unvoiced tized to 5, 5, 5, and 5 bits, respectively. Twenty bits are

frames) used for protecting the four most significant bits of the
reflection coefficients and amplitude parameters by Ham-
ming (8,4) codes. One bit is unused.

Sync 1 Alternating "1" and "0"

ANDVT parallel-to-serial conversion and framing generates a 2400 bps bit stream com-
prised of contiguous frames having the formats shown in figures 5 and 6. Two formats are
defined, one for voiced frames and another for unvoiced frames. Voiced frames encode a
full set of ten reflection coefficients. Unvoiced frames encode only the first four reflection
coefficients and use the bits thus freed to store error protection codes.

IA1 Trunfmsiion Sequence
1 2 3 4 5 6 7 S 9 10 11 12 13 14 15 16

C(1):I I()T() C(1) C(2) C(3) IP IA C(1) C(4) IC(3IAI P %(4)
0 o 0 0 0 1 1 o 1 111 2 0 2 2 2 11

17 - tBt Sinifcno*

1 1 20 21 22 23 24 25 26 27 28 29 30 31 32

C()C(2) C(3) C(4) A CM1 C(2) C(3) CM A) C(2) M(7I C(S) P C(4)
3 3 2 3sj 2 3 4 3 41 34 4 3 1 4 1O0 L014
33 34 35 36 37 38 30 40 41 42 43 44 45 46 47 46

C(S) C(GC7) C() P C(S) o.6), COO.) C(.) P C(9)

49 s0 51 52 63 *4 Bit signifllence of *0" means the ienst-signillcant bit.

I 1 1 * C() reer 10 we pth relcto coefficient cod. (jzul,10).c(s) c(G) CM7 o) C() SYC A Is Ow amplitude code.

FIGURE S. Transmiuson sequence for a voiced frame.

Low Dua Rame Vmce (1200 bps) Rote Convww July 16. 1992 32

Tranen•Tslon Sequence
1 2 3 4 5 6 7 S 9 10 11 12 13 14 15 16

C I)C2 () P A C () () P A C ()C3 P C(4)

-I- I HI1tIIL±1o E 211

17 1- 1? 20 21 22 23 24 25 26 27 29 30 31 32

o)C2I)oC.3) i C(4) A CM) C2 4 A P A C.4)

33 34 35 36 37 36 39 40 41 42 43 44 45 46 47 48

48 50 51 52 1 84 si Bignlellnosln~ of "0" means ths eakst-sIgnlflcant bit.
... v A 1 .the amptde code.

...1...
. Eror.ccrrectlon bits are Identified by shsded boxes.

FIGUTRE 6. Transmission sequence for an unvoiced frame.

The rate conversion algorithm redluces four 54 bit AND VT frames to one rate convertedframe that is 108 bits in length. Elimination of one of the four ANDVT frames is the first
step in rate compression. The most redundant frame is determined by comparing each of
the first three frames with adjacent frames. The fourth frame must be kept because it will
be adjacent to the first frame of the following se of four. This procedsre reduces inter-

frame redundancy.

Intra-frame redundancy is reduced by eliminating just-noticeable differences and non-
speech sounds from the ANDVT's repertory of reproducible sounds. The rate conversion
algorithm accomplishes this by pattern matching the large set of ANDVT patterns with a

much smaller set of patterns peculiar to the human voice and only transmitting a key torepresent the pattern. This vector quantization process used during compression is by far
the most computationally intensive part of the rate conversion algorithm.

Rate compression and decompression are summarized in figures 7 and 8.

Skippedu4 Framen Oe Median Frames Frames of

Frame of Voicing the ANDVTANDT Refirot of rearu ile s el rate con noeri
rrse Decision pat cing Code Ampiztude Mor Cocieent c

ANodCod

4 bis *4 Fham'61O6:1 79. r~ s
2I

1200 bpsSi St-- am

FIGURE 7. Rate conversion from 2400 bps to 1200 bps.

Low Dua Rant Voice (1200 bps) Rant Cmwner July 162 1992 33

1200 bp. Bit Stream

L .. XfSnhronize and DermdiltiDlex So ' Parameter Codes

Skipped 4 Frame. Ones Median 3 Frames 3 Frames of
Frame of Voicing ANDVT of ANDYT Reflection Co-
rides Decision Plitch/Volo- Amplitude efficient Pat-

Cod"e Ing Code Code" tern Codes

________ _______Reinmstat ANDVT
eRate Parametlw Code r SkIDed Frame- Error-Protection IfSpeech i. Unvoiced

ANDVT Plc-/ ANDVT Am- ANDVT Re.
Voicing Cde plitude Code flection Cosl-

ficient Codes7 .7 .t• Iso
r bbfys lu 41 tblW~ I bit

I Multiplex Speech Parameter Codes In ANDVT Formt Sync Bit

ANDVT Bit Stream

FIGURE 8. Rate conversion from 1200 bps to 2400 bpL

Low Dow Ram Vokae (1200 bps) Rame Cenvemtr July 16,1992 34

7.2 Example Compression/Decompression of Four Consecutive ANDVT
Frames

In figures 9 through 11 we present the flow of data frames from an ANDVT through the
rate compression and, then, the rate decompression side of the RC and back to an AND-
VT.

•i~ii~i~rig 00000 0 0 01100GOiii•l°°°0 001100 0 11•1002110111101910 11 a

FraZme 1 Frame 2

1 11101 -3 1 00001 1
decodeF24 2 11100 -4 2 11111 -1

3 00000 03 00010 2
4 00010 2 410101 -11
5 1111 - 0000 0
6 0011 3 6 1100 -4
7 1111 -1 7 0110 -6
, 0101 5 0000 0
"9 111 -1 000 0

10 11 -1 10 10 -2
itch 0000000 0 itch 0000000 0

00010 2 11010 26

Frame 3 Frame 4 1

100011 3 00011 3
11110 -2 2 11111 -1

3 00001 1 300001 1
4 10110 -10 410011 -13

7 0110 6 0 0110 6
111 - 1110 -2

99 111 -1001 1
10 11 -1 10 10 -2
itch 0101011 43 itch 0101011 43

11011 27 11100 28

FIGURE 9. An ANDVT generates four contiguous frames of 2400 bps voice data. From these frames
the decodeF24() function decodes four sets of LPC-IO parameters that, in turn, are used as input
for a call to rc24tol20.

Low Data Rate Voice (1200 bps) Rate Cnvener July 16, 1992 35

....... 1200 bps Frame __

zc24ol2ODropped Frame 10 2
CI - C4 (Frame 1) 1001110001010 5002
CS - Cl0 (Frame 1) 0100100110111 2359
C1 - C4 (Frame 2) 1101011000010 6850
C5 - CIO (Frame 2) 0010001100100 1124
C1 - C4 (Frame 3) 1001010100100 4772
C5 - ClO (Frame 3) 0110101111101 3453
Pitch 0101011 43
Amp (Frame 1) 00010 2
Amp (Frame 2) 11010 26
Amp (Frame 3) 11100 28
Voicing (Drpd Frm) 1 1
Voicing (Frame 1) 0 0
Voicing (Frame 2) 0 0
Voicing (Frame 3) 1 1
Sync 00 0

•i•:i:.i 104040 110010001 00ol U 101:1119Uu 1109XOil 000100:.011001 0M

J SS -c transport

1200 bps Frame

Same as above if CSS delivery is error free.

LI

FIGURE 10. The function rc24tol20 compresses four sets of LPC.10 parameters into one set of rate
converted parameters for a 1200 bps frame. The 101 bits for this frame are encoded by a call to
encodeF120. After delivery to a remote RC by the CSS, the decodeFl20 function decodes the rate
converted parameters and uses them as input to a call to rcl2to240.

Low Data Rate Voice (1200 bps) Rate Convener July 16,1992 36

.a Trams

1 11101 -3 1 00001 1
20 11101 -3 00000 0

311111 -1 00000 0
4 00010 2 410110 -10

...00...... 000 0
rc I2to24O does .000........00.00

not regenerate 0000M c 000
Hamm'ing codes 00010 2c 100 26
for unvoiced 0 21002

frames. Ham - ___

ming codes are Frame 3 rame 4 1_

regenerated by 1 00011 3 1 00011 3
enoelOr- 2 11111 -1 2 11111 -1
enoe1(r- 3 00001 1 300001 1

or to encoding 4 10100 -12 410100 -12
54iADT 5 1111 -1 51111 -154 bit NV 6 1111 -1 61111 -1

fae.70100 4 7~ 0100
0 1101 -3 1101 -3

9001 1 001 1
10 10 -2 I10 10 -2
itch 0101011 43 itch 0101011 43

11011 L2 7 11100 28

lanming codes regenerated for unvoiced frames
200 00000 0

&A0 ~0 0
.. I L 0 2 1 * : ..: -:.:.:.:0

0 0
:

'.1.1......00
0,..1.....002.

01....00.0.......

FIG ...E.... Th...t....nt .nrgeeatsfo rses.f....p.a etr (xep o
Ham ingcods i unoicd fame) fom ne et f rte.o.vrte.In.t.araetes...c.e xO I

called four times, on~ ~~ce o ac e o..... LP... prmees...noe.. armtr It ou N
frames.~~~~~~~~~~. .fafae.su ..cd.amngcdsar.eeeatd.rme.r.upuvaaVT oa......T.

LowDat Ra Voce(120 b) RteC. iae6......

