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Yoreword

The objective of the coutse ana the course notes is to present the state-of-the-art, as well as recent dovelopments in
unstructured grid methods, suitable for the computation of high Reynolds number compressibic and incompressible flows, and
other related subjects, Topics and methods covered include:

~ Least Squares Galerkin and Streamline Dittuston Finite Element Methods

— Finite Volume Mcthods and Higher Order Polynomial Reconstruction

— Esscntially Non Oscillatory Schemes for Unstructured Grids

— Multidimensional Upwind Schemes on Triangles and Tetrahedra

== Grid Generation Methods for Unstructured Grids Using the Frontal Method and Delaunay Principle

-- Turbulence Maodelling on Unstructured Grids

— Error Estimators and Solution Adaptivity

~ Parallet Computing on Unstructured Grid

~ Post Processing Unstructured Grid Data Bases for Flow Visualization Analysis

A wide range of applications is presented, going from incompressible free surface problems transonic acrodynamics and
hypersonic reeritry flows.

Getting these notes prepared in time was a difficult task. Only those who have been in this stuation realize the tme and work it
needs to write such lecturcs. We wish to congratulate all lecturers, who in between their busy professional activities have found,
or betier made, the time to write detailed and high quality contributions.

Ttis our opinion that we have here a reference work which will be used by a whole generation of PhDs and other rescarchers who
wish to jump into the absorbing subject of unstructured grid methods in CFD.

We are convinced that *he lecture series for which these notes have been made will be a great success, and we thank both our
institutions, the von Karnxin Institute and the NASA Ames Research Center for hosting the course, We thank AGARL and the
Fluid Dynamics Pancl, its past Chairman Jim McCroskey, Executive Winston Goodrich and Secretary Anne-Matie Rivauit for
their encouragement and professional support.

Herman Deconinck and Tim Barth
Course Directors
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Avant-Propos

Lobjet de ce cours et du support de cours est de présenter éat de Fart, ainsi que certains développemients réeents dans le
domaine des méthodes ch maillages nonsstructurés pour le cateul d'écoulements compressibles et non-compressibles & grand
nombre de Reynolds et d'autres sujets connexes. Les questions et les méthodes couvertes sont les suivantes:

— méthodes des lements finis moindres carrés Galerkin et & diffusion longitudinale

— méthodes de volumes tinis ot reconstruction polynomiate d'ordre élevé

- méthodes essentiellement non-oscillatoires pour maitlages non-structurés

— schémas multidimensionnels de discrétisation décentrée sur triangles et tétracdros

— méthodes de génération de maillages pour grilles nen structurées selon la méthode frontale ctle principe de Delaunay

— modélisation de Ia turbulence sur maillages non-structurés

- cstimateurs d'erreur ot algorithmes pour maillages adaptatifs

— calcul en paralicle sur maitlages non-structurds

— post-traitement des bases de données sur maillages non structurds pour la visualisation des éconlements.

Un large éventail d'applications est présenté, allant des problemes de surfaces libres von-compressibles i Faeradyngamique
transsonique et les écoulements hypersoniqucs rentrants,

Lo mise en forme de ce support de cours dans les délais imparti ¢ avérde ditticile, Seuls coux gui ont voou ung elte situaiioi
seront conscients du temps et des efforts qu'il faut consacrer & la rédaction de tels cours, Nous tenons done, & féliciter tous nos
conférenciers, qui, malgré des emplois de temps trés charges. ont trouvé, ou plutot créé, le temps néeessaire pour éerire des
textes détaillés de grande qualité.

A norre avis, il sagit d'un véritable ouvrage de référence qui trouvera un large accucil aupres de toute une génération de
diplomds troisitme cycle et drautres chercheurs soubaitant découvrir fe sujet passionnant des méthodes des maillages non-
structurdés en aérodynamique numérique,

Nous sommes convaineus que le cycle de conférences pour lequel ces cours ont été éerits aura beaucoup de succes, et nous
tenons a remercier nos deux organismes, llnstitut von Kdrmadn et le NASA Ames Research Center pour Forganisation du cours,
Nous remercions ¢galement TAGARD et le Panel de ta dynamique des fluides, son ancien Président Jim MceCroskey, son
Administratcur Winston Goodricit ¢t sa Scerétaire Annc-Marie Rivault pour leurs encouragements et leur soutien
professionnel.

Herman Deconinek et Tim Barth
Direetenrs de cours
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FINITE ELEMENT METHODS FOR FLOW PROBLEMS

Clacy Johnson
Dept.of Mathematics
Chatmers Univetsity of Techiology
412 96 Goteborg
Sweden

0. INTRODUCTION

0.1. The SD-method

The purpose of this note is to give an
overview of the Streamline Diftusion
method SSI)-method helow), also referred
to as Galerkin/Least Squares or SUPG
(Streamline Upwind Petrov-Galerkin), as a
Fencral finite clement method for
iyperbolic type partial differentiai
equations modelling convection-diffusion,
compressible/ incompressible fluid flow or
wave propagation. The SD-method,
developed by Tom Hughes and the author
together with co-workers during the
cighties, gives the first general solution to
the fundamental problem of constracting
finite eleinent methods for hyperbolic
problems with tiie desired combination of
good stability and high accuracy. The
SD-method is a modified Galerkin method
based on pievewise polynomiai
approximation with the following two basic
modifications:

(0.1) a "streamline diffusion" modification
of the test functions giving a weighted least
squares control of the residual R(U) of the
finite element solution U,

(0.2) introduction of an artificial viscosity
¢ of typically the form
¢ = max(e, CA|R(OU)|/|VU], ChY2) o

¢ = max(e, Ch3|R(U)|/ v, cn¥l?),
where h is the local mesh size and ¢ s
the given viscosity and € denotes positive
constants.

Further, the SD-method is characterized
by

A e s TR

Lotk
¥

(0.3) consistent use of space-time finite
clement discretization for time dependent
problems, with the basis tunctions being

discontinuous in time and continuous (or .
discontinuous) in space. $

Each of the modifications (0.1) and (0.2)

increases the stability of the underlying

Galerkin method in different ways and :
through different mechanisms. The first i
modification (0.1) gives control of the i
residual R(U) of the finite clement

solution U, obtained by inserting the finite

clement solution into the exact differential {
cquation, in a weighied Ly-norm with ;
4

weight proportionai to h*. The second

modification (0.2) gives I;zv(f()lli-rol of all

. . . .4
first derivatives of U with the weight ¢7*.
The two medifications (0.1) and (0.2)
together add sufficient stability to

. ey

guarantee e.lg. the following important '
properties of the SD-method (when ‘
applicable): maximum norin stability, ¢

cntropy consistency, error localization and

monotone shock resolution. Further, the

modifications play a crucial role in the

adaptive SD-methods based on a posteriori

crror estimates developed recently, We

recall that the finite element in jts basic

form, i.e. the standard Galerkin method

with piecewise polynomial approximation,

which has been so remarkably successful for

elliptic and parabolic problems, does not 3
work in general for hyperbolic problems: i
Unless the exact solution is glohally smooth

(or the mesh sufficiently refined

everywhere) the standard Galerkin finite .
clement solution will contain large spurious
oscillations making the ervor large over
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farge vediions of space and time, The
spurivus oscillations reflect the lack of
seanility in the standard Galerkin method
concerning the residual and derivativos of
the finite element solution,

The space-time discretization {(0.3) of the
SD-method ofters a great tlexibitity in the
digcretization, in particnlar through the
possibility of using space-time meshes
oriented i space-time. This gives a happy
marriage of Fulerian and Lagrangean
deseriptions in the SD-moethod combining
the advantages of each of the twe
approaches while avoiding the dis-
advantages of a full Euclidean or
Lagrangean approach. Using space-time
meshes oriented according to characteristics
(or particle paths), we obtain a special
variant of the SP-method, which we refer
1o as the Characteristic SD-method, ov
(SH-method for short, and which is of
particular interest for incompressible flow
including also free (or moving) boundarices,
Orienting the mesh in space-time according,
to the nature of the solution, we obtain
vatiants of the SD-method with features of
shoek-fivting methods.

The Sy -method with basically the first
modilication (0.1) was introdaced in the
hoginning of the eighties by Hughes and
Brooks [T for stationary conveetion
diffusion problems. ‘The theoretical analysis
of the method in this torm including also
extonsions to time-dependent probleins
based on space-time finite elements, was
carried out in the carly ecighties by
Johmson, Navert and Pitkiranta {IN], [N).
[INP}. A main result of this analysis was
0 vx{nihit the role of the maodification (0.1)
to increase the stability of the Galerkin
method. To emphasize the stability aspect,
the term “streamdine diffusion" directly
related to stability was used (instead of
streamline upwind [H32]), with motivation
from scalar convection problems where the
least squares modification giving weighted
L, -control of the convective derivative of

the finite element salution corresponds to
introducing a diffusion term acting in the
direction of the streamlines.

Extensions of the SD-method to the
incompressible Navier-Stokes equations
followed quickly ({12}, [IS]) with further
developments in recent years to a simple

equal order velocity -pressuve formulation,
which has found wide applications
including free boundary flow ([HS], [113]).

A decisive step in the development of the
SD-method was taken in the mid eighties
with the introduction of the second
muditication (0.2) opening i particular the
possibility of applying the SH-method to
compressible flow including shocks ([lll-'ll.
[J5z1], Sz}, It appears that the residua

based artificial viscogity of the form ¢ =
ChiR(UM/IVU], which has a new con-
struction as compared to artificial
viscositics used in finite difference/volume
methaods, is cloge to the minimal viscosity
required to make a Galerkin method
(including also (0.1)) work well for e,
problems with shocks.

As indicated, space-time finite elements
were introduced early in the SD-method,
([INP], [N]). but the full exploitation of the
genorality of the space-time mesh was
itiated later {[.l'\h'. (4], |96}, [Ha2-3]) in
the form of the C§ )—mctfm( with applica-
tions to free boundary flow ({Had]). The
idea of using, space-time finite elements
wag taken up in (jJShl, [ShU) and recently
also in (['PLB) with applications to free
houndary flow. Another recent develop-
ment concerns adaptive SH and CSH-
methods, (see [EJ7-8], [12], [I523], [HJ],
[J11}), where in a new way the basic
tmodifications (0.1) and (0.2) come to use
e, L0 prove a posteriornt error estimates
underlying the adaptive procedures. As far
as we know these results ave the first to
show that efficient and reliable ervor
control iz possible tor hyperholic problems.

The SD-miethod has now suceessfully been
applicd to, in particular, stationary and
titne dependent

(i) conveetion-ditfusion problems.,
(i) incompressible Faler and
Nawvier -Stokes equations,
(it compressible Buler and
Navier-Stokes equations,
(iv) reactive compressible flow,
(v) second order wave equations ([J5),

[u)).

A large number of and numerical
theoretical results are availabe. The
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theoretical resulis in geneval go beyond
previous results for other methods
{including finite dim.n'ence(l'init.e volume
methods) in generality and/or precision.
Some basic features of the SD-method
aupported by theoretical and numerical
evidence are as follows:

High accuracy: (?(hp Q%) for
smooth solutions with
polynomials of degree p.

Good stability: sharp mouwotone
resolution of shocks and contact
discontinuities.

Localization: quick decay in
upwind or crosswind propagation
in scalar convection probletus.
Adaptive forms available based
on sharp a posteriori ciror
estimates.

Limits of SD~-solutions satisfy all
enttopy conditions (entropy
consistency).

Convergence {or scalar
conservation laws in several
dimensions with piecewise
polynomials of arbitrary degree
on general meshes.

{0007 Probloms with free or
movingboundaries may be
approached in anatural way using
the flexibility of the space-time
mesh.,

(0.4)

(0.5)

(0.6)

(0.7}

(0.8)

(0.4)

>

o.'z.l Comparison with other methods in
crD.

We now briefly compare the SD-method
with other numerical methods in
Computational Fluid Dynamics CFD such
as (ag finite difference methods, (b) finite
volume methods, () particle methods and
{d) shock-fitting methods.,

In each case (a)-{d) there is a closely
related variant of the SD-method realizing
the essential feature of the method (a)-(d)
in a full finite efement. context,

(a) Finite difference methods

The classical finite difference method for
fluid flow is obtained by modifying a
centered difference approximation of
convective terms by adding a combination
of artificial viscosity of first order

ChA U and third order (:h"’Aﬁn. where

2 N
4y, and Ay are discrete analogs of the

Laplacian and hilaplacian, respectively,
with a switch from first order to thied order
in regions of soothness. Now, the
standard Galerkin finite element method
typically produces centered difference
approximations to convective tertis and
the modificat’™ s (0.1) and (0.2) add
attificial visee .ty in nou-standard forms
including in particular an automatic
"switch" related Lo the size of the

coefficient— ¢ = ChjR(1)}/ VU], which is
typically of order 2(h) close Lo shocks for

example and of order 0?:2) cr smialler in
regions of smoothness Thus, the
SD-method contains basic features of
centered difference schemes with artificial
viscosity, but the technicalities are
diffevent. in the SD-method. In particular,
the SD-method avoids the use of fourth
order dissipation and realizes the "switch"
in viscosity in a full finite clement context
which is casy to implement and accessible
for analysis.

(b) Finite volume methods

The SD-methad miay for non-vizeons flows
be used with discontinnous approximation
in space. We refer 1o this variant of the
SD-method, including ihe maodifications
(0.1) and (0.2) properly interpreted, as the
Dizcontinuous Galerkin or DG-method.
With piccewise constant approximation
this leads to more or less classical finite
volume methods depending on the context.
With higher order discontinuous
polynomial approximation the DG-method
may be viewed as a higher order finite
volume method. ‘Thus the DG-method
gives the natural formulation of higher
order finite volume methods, which have
not. found a really satisfactory formulation
within the classical context of finite volume
methods involving ad hoc flux limiting, flux
correction, post processing et.cet. For an
analysis of the DG-method for conservation
laws, see [JJ)].

() Particle_methods

With space-time meshes oriented according
to particle paths the SH-method may be
viewed as an approximate particle method
with restart, or a variant of a method of
the form "exact transport + projection”.
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However, the SD-method does not require
exact transport or precise particie tracing.
The mechanism is just the orientation of
the space-time mesh in space-time which
brings in a "particle feature” to the
method, but precise orientation or "exact
transport” is not required. The method will
work also on non-oriented standard
meshes, but the precision is improved by
suitable approximate mesh orientation.
Further, the SD-methoa offers a built in
modified L, -projection entering when the

space mesh is changed at discrete time
levels. This makes it possible to change the
space mesh often without decreasing the
accuracy by introducing oscillations or too
much dissipation. Thus, the SI;-method
with space-time meshes oriented according
to particle paths gives a general
formulation of a '"particle method" with the
followir.g advantages: precise particle
tracing is not necessary and frequent
restarts with remeshing in space are
possible without essentially decreasirg the
accurary.

(d) Shock-{itting methods

Finally, orienting the space-time mesh
according to solution features such as
shocks rather than particle paths, which
can naturally be realized in adaptive forms
of the SD-method, we make contact with
so called shock-fitting methods. In the
SD-method the mechanism is again only
the mesh orientation which may * pically
be obtained from derivative information
from the computed solution.

To sum up, the SD-method characterized
by (0.1)--(0.3) offers a large degree of
generality and flexibility and may be
viewed as giving very patural
generalizations of all the classical
techniques of CFD including finite
difference, finite volume, particle and shock
fitting methods. Thus, the SD-method
brings a surprising degree of nnity to CFD
combining in particular the two workls of
Euclidean and Lagrangean inetheds,
everything realized by a modifiea Galerkin
approach with piecewise polynomials on
space-time meshes.

0.3. The stability concept. Artificial
viscosity.

A main resuit of the thecretical analysis of
the SD-method is to exhibit the
importance of a correct notion of stability
both for stationary and time dependent
problems. The classical stability concept
for hyperbolic probleias typically requirin
in a time dependent problem an L,-boun

of the solution for positive time in terms of
the L2-norm of initial data at t = 0, or in

the case of a stationary problem an
L2—bound of the solution in terms ot the

Ly-norm of the right-hand side, turns out

not to be fully adequate. Instead, a new
stability concept for the discrete problem
involving in addition weighted L,-control

of the residual (ihrough the streamline
diffusion modification (0.1)) and first
derivatives of the discrete solutions
(through the artificial viscosity (0.2)} in
terms of e.g. the Ly-norm of the initial

data, turns out to be more appropriate and
ugeful. Tn addition a new stability concept
for linearized versions of the continuous
problem is used in the context of deriving a
posteriori error estimates underlying the
adaptive versions or the SD-method. Thus,
we emphasize the extreme importance of
using relevant stability concepts for both
the discrete and continuous problems and
the new aspects of this fundamental
problem brought to the light through the
analysis of the SD-method. .

0.4. Adaptive SD-methods. A posteriori
and a priori error estimates.

The improved stability properties of the
SD-method in particular make it possible
to prove sharp a posteriori error estimates
which may be used to design reliable and
efficient adaptive variants of the
SD-method. This seems to open for the
first time the field of CFD to adaptive
quantitative error control on mathematical
basis with accurate resolution of fine scale
features in e.g. boundary layers and shocks.

The a posteriori error estimates for the
SD-method for hyperbolic flow problems
typically have the form:



[RPENY e

e Artmarintee

[P, I,

(0.10) el < Cin% ROV
2 2

< CI|min(h|VU|,h"kR)”L ,
2

where e is the error, R(U) is the residual
of the computed solution U, h is ihe mesh

size and we used the definition of ¢ . This
estimate should be compared to the typical
corresponding estimate for the Standard
Galerkin method for hyperbolic problems:

(0.11)  Tlelly, <CHRI, ,
L, = VWL,

and the standard Galerkin method for
elliptic problems:

2
(012) llelly, < CINRIy,
2 2

The estimate (0.11) is in general useless for
adaptive purposes since the right hand side
of (0.11) will increase with decreasing mesh
size until all features have been resolved.
The estimate (0.12) for elliptic problems is
sharp and may be used as the basis for
reliable and efficient adaptive algorithms.
Clearly (0.10) is a mixture of (0.11) and
(0.12) using in particular the ellipticity in
the SD-method introduced through the

artificial viscosity €, together with the
particular design of €.

The proof of the a posteriori error estimate
(0.10) has the following structure:

1. Representation of the error in terms of
the residual of the finite element
solution and the solution of a
continuous (linearized) dual problem.

2. Use of the Galerkin orthogonality built
in the finite element method.

3. Interpolation estimates for the dual
solution.

4. Strong stability estimates for the
continuous dual problem.

We note the crucial roles played here by
the residual, the Galerkin orthogonality
and the strong stability of the continucus
dual problem.

The typical a priori error estimate for the
SD-method with piecewise polynomials of
degree p takes the form

L4 b
(0.13)  felly < Cla"* 0P 1uuL2.

. . +
where u is the exact solution and DP lu
is the maximal modulus of derivatives of u
of order p+l.

The proof of the a priori error estimate
typically has the following structure:

1. Representation of the error in terms of
the exact solution and a discretized
dual problem.

2. Use of the Galerkin orthogonality to
introduce the truncation error in the
error representation.

3. Interpolation estimates for the
truncation error.

4. Strong stability of the discrete dual
problem.

We note the similarity in the structure of
the proofs of the a priori and a posteriori
error estimates, and also the differences: In
the a priori case the key roles are played by
the truncation error and the strong
stability of the discrete problem, and in the
a posteriori case these roles are taken by
the residual and the stability of the
continuous problem. Both the a priori and
a posteriori error estimates are
fundamental: The a priori error estimate
shows that the discretization error (and the
residual) will tend to zero with decreasing
mesh size, and the a posteriori error
estimate is the basis for adaptive
quantitative error control.

0.5. Summary of the design principles of
the SD-method

We recall some of the fundamental
problems in CI'D:

?0.14 design of artificial viscosity,
0.15) unstructured raeshes,
(0.16) how to combine Eulerian and
Lagrangean methods.
Each of these problems has reccived
massive attention over tiie years, but
conclusive answers are still lacking to a
large extent within the classical
methodologies of CFD (finite difference
methods, finite volume methods, pariicle
and shock-fitting methods). Our main
point is now that the SD-method with the
three cornerstones (0.1}-(0.3) offers a new
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approach to each of the fundamental
problems (0.14)-(0.16).

The construction of the artificial viscosity

¢ in the SD-method with the dependence
on the residual has a solid mathematical
basis and appears to be close to the
minimal artificial viscosity required to
guarantee features such as eniropy
consistency, maximum norm stability,
(almost) moncione shock resolution et cet,
of prime interest in classical CFD. In

addition, the artificial viscosity € of the
SD-method makes it possible to design
efficient, adaptive SD-methods based on a
posteriori error estimates. Thus, the
SD-method offers a solution of the
fundamental problem (0.14).

The space-time discretization of the

SD-method has a maximal flexibility and

z(xppe:;,rs to solve (0.16) as well as of course
0.15).

To sum up, it appc s that the finite
element method { .alerkiu + piecewise
volynomial approximation) with the design
principles {0.1)-(C.3), that is the
SD-method, gives a fresh approach to the
fundamental problems of CFDw  a

surprising de%ree of unificatic 1 0pens
many possibilities for the fut

0.6. Outline

An outline of the cont . of this teis as
follows:

1. SD-methodsf i .
convection - "

2. SD-methods f{or time dependent scalar
linear convection-diffusion.

3. The CSD-method for scalar linear
cobvection-diffusion.

4. The 8D and CSD-methods for the

incompressible Euler and

Navier-Stokes equations.

The SD--method for the compressible

Euler equations.

The DG-method for conservation laws.

Adaptive SD-methods for Burgers'

¢ _uation.

Numerical .esults

scalar lincar

.CJ!

e x® =N

Conclusion. Prospects for the fut ...

1. SB-METHODS FOR STATIONARY
LINEAR SCALAR CONVECTION-
DIFFUSION

1.1. Introduction

As a basic model problem we shall consider
the following stationary linear scalar
convection~diffusion problem: Find the
concentration u = u&) such that

(1.1a) B-Vu+ au - div(eVu) = f in Q,
(1.1b) u =gonlT,

where Q is a bounded convex domain in
the plane B2, 8 = f(x) = (8,(x), f(x)) is

a given velocity field, o = ax) is an
absorption coefficient, ¢ = e(x) is a
positive viscosity coefficient, which we
typically assume to be:"small" in a sense to
be made precise, and f € LQ(Q) and g€

LZ(F) is a given production term and

boundary data. Note that (1.1) is the basic
model for processes involving
convection-absorption-diffusion-reaction
with a very large range of applicability. All
coefficients 4, @ and ¢ are assumed to be
"sufficiently smooth" according to
requirements made more precise below. We
shall assume that

(1.2) (-% v+ a)(x)> ag > 0,

where @, is a positive constant. This
assumption is not cssential in many cases
where it is sufficient to assume (- %div 8+
@) to be bounded from below (cf. [JNP]).
If ¢ =0 then (1.1) reduces to
gVu+ou=f in 0,

u=g onTl ,

(1.3a)
(1.3b)

where now the boundary condition is only
enforced on th inflow part I' = {xeI';

n(x)-f(x) < 0} of I'y where n{x) is the
outward unit normal to I'. The solution u
of (1.1) will typically have an outflow layer
of width 0(5 at the outflow part

I, = {xel:n(x)-4x) >0} of the

boundary and may have internal layers of

wi-wh O(€) along streamlines x(t) given
by 4, i.e. solutions of
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(142) =909 >0,
(L4b)  x(0) = &,

e.g. if the inflow data g is discontinuous
or if { is discontinuous across a streamline.
Thus, the solution u of (1.1) tyvically has

features on the different scales 2(1), Jive)
and J(c¢). The essential difficulty in the
numerical solution of (1.1) is now the
presence of small scale features in u, which
if nos resolved n.ay iead to spurious
oscillations in a standard Galerkin
approach. Let us remark here, anticipating
the discussion of adaptive SD-methods
below, that even if an adaptive process may
lead to a final mesh wher all features of
the exact solution are resolved so that on
the final mesh standard Galerkin would be
possible to use, the meshes in the initial
stages of the adaptive process would not be
fine enough to resolve all features, in which
case we need robust discretization methods
like ithe SD-method which is able to
produce good results without requiring
global resolution. The only way to avoid
this would be to use an intitial mesh
refined uniformly everywhere which is not
cost, effective, or just impossible in most
interesting cases.

The basic problem is now to design and
analyze a finite element method éar (1.1)
which is higher than first order accurate,
and which has good stability properties so
that resolution of all features wi'l not be
necessary to produce reasonable results; an
unresolved local feature should not degrade
the error globally but only locally. We shall
see that the SD-method gives a very
satisfactory solution to this problem. Note
that if we give up the requirement of
accuracy higher than first order, the

solution is imrnedeate: Just take € = °
C|B]h as artificial viscosity and apply the
standard Galerkin method. However, this
method in general adds much too much
articial viscosity and will require excessive
mesh refinement to give reasonable
accuracy, and thus cannot be considered to
give a satisfactory solution in general. Note
that this simple method corresponds to the
classical artificial viscosity method or
upwind method iu finite ditfcrence theory.

In the formalation of the SD-method below
the given viscosity € will, if the mesh size

is not small enough, be replaced by the

artificial viscosity € depending on the
computed solution U and the mesh size h.
It is convenient {and natural) to split the
total error e = u - U into

(1.5) u-U-=(u-u)+(d-U),

where @ satisfies (1.1) with ¢ replaced by

€, i.e., 1 is the solution of the continuous
problem

(1.6a) pB-Vi+ ai-div(eVa) =f in Q,
(1.6h) it=g on I.

Now, u - U is the difference between the
solutions of two continuous problems with

different viscosity ¢ and ¢, and 0 -U is
the discretization error related to (1.6) with

now ¢ considered to be given. The
advantages of the splitting (1.5) are as
follows: The estimation of the

discretization error a4 - U will concern a
linear problem, whereas the full problem is

nonlinear since € depends on U. Further
in an adaptive approach the perturbation

error u - i may be controled by
controlling the difference € - ¢, cf below.

1.2. Finite element prerequisites

For simplicity we shall below restrain the
detailed presentation to the simplest
possible finice elements: piecewise linear
functions on triangles {two dimensions) or
tetrahedrons (three dimensions). This is
not, essential and all methods to be
presented have natural generalizations to
general piecewise polynomial approxima-
tion.

Below Q will denote a bounded domain in

[Rd, d = 2,3, with polygonal or polyhedral
bundary T. By T, = {K} we will denote

a triangulation of 2, i.e., a subdivision of
) into triangles ﬁd = 2 or tetrahedrons
(d = 3) K such that different elements K
which intersect, share either a vertex or a
side (d = 2) or a vertex, edge or face

(d = 3). The local mesh size of T} will be

given by the mesh function h(x) satisfying
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(1.7) ClhK < h(x) ﬁthK for x €K,

where ¢ and Cy are positive constants
independeni of T} and hK is the

diameter of K. We shall further assume
that the smallest angle of the elements K €
T, are uniformly bounded below.

The basic finite element space used below
will now be the following: Vh ={viv is

continuouson =QUT and v is linear
on K, VKe ’I‘h}, i.e. the space of con-

tinuous piecewise linear functions on f2.
By m, we shall denote a standard inter-

polation operaior into Vh defined by

nodal interpolation (or variants thereof
involving local smoothing) or through
L2--projection. We shall assume that T

satisfies the following interpolation
estimates: There are constants C
independent of T p such that

1 1] k/ _ AN
(1.8a)  {iD v ”h"))lll?(g)

m-km ) ‘

m-4pam .
< Ch D™ ”[12(1(),

1<m<2, ke lh,

where K is the union of K and the
nearest neighbors of K if m =1, and

K=K if m=2,and

1 .
D™v = max ])av,
a|=m

Qg+t

with DY =2 — ] = @y b
o oda 1=

(ys using standard multiindex notation.

We further recall the following inverse
estimate: There is a constant C such that
for all ve Vh

(1.9¢) IIVV||L2(K)

"1 r
< Chy ||v||L2(K), KeT,.

We shall below use the following notation

(v,w) = [ vwdx,
L}

(Vv, Vw) = s]2Vv-Vw dx,

Vil = (v,v)E, (IVvfi = (W, Vv)%.
1.3. Formulation of the SD-method for
(1.1) and (1.3).

To define the SD-method for (1.1) with
g=0 for simplicity, let ¥, ¢ Hy(9) be

the standard finite element rpace of
piecewise linear functions on a
triangulation Ty = {K} of @ whick

vanish on I'. The SD-method for (1.1)
now reads as follows: Find U e Vh such
that

(1.10) a(Uyv) =L(v)  We?,

where
a(w,v) =
= (f-Vw + aw, v + §-Vv+av))
+ (€Vv, Vv),
Liv) = (f, v + §8-Vv + av)),

where

(L1a)  6=C) max(h - 5, 0)/|A),
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(1.11b) ¢ == é(h, R(U)) =

max(c', Cgh ‘I’l’v}‘é'lll_)’_‘ﬁ') 03113/2)v

R(U) = RI(U) + R2(U),

(1.11¢) R (V) =

|8:VU + aU - div(¢VU)-f| in K,

(1.11d) Ro(U)ly; =

1,0 |
max max 5 |[€ ng-VU]| /hy,
S S 210 K

where [é ng-VU] denotes the jump in the

quantity ¢ nS-VU across a triangle side S
(in the interior of Q) with normal ng.

Further, we use the conventicn that
integrals over  coxtaining second
derivatives are to be interpreted as a sum
of integrals over the clements K, and we
also recall that hix) ~ hI\’ for x € K. The

constants C1 and G, only depend on the

type of polynomial approximation and the
shape of the elements. For p =1 and
triangular elements one may take

C, = 02 ~ 0.5. The constant C3 may

normally be chosen to be zero, but there is
(at least in theory) a reason to have
03 > 0. Note that with ¢ very small, we

have 6~§%BT and e~% (if Cy is

small), while 6 =0 for ¢ > h|8| and
¢ = ¢ if €2 max (CohR(U)/(|VU]+h),

C3h3/ 2). Notice further that in principle

¢ is implicitely defined through (1.11b)

since R(U) depends on ¢ through
(1.11¢). This may be simplified in practice

by choosing € =0 in (1.1ic,d).

Notice that (1.10) is obtained multiplying

(l.laz)eby 8(B-Vv+av), where the ¢éé-term
may be omitted in the case of piecewise
linear approximation in space, see [JNP].

1-9

Let us also formulate the SD-me$hod for
the reduced problem (1.3) as follows using
the space Vh of continuous piecewise

linear functions on © without any
boundary conditions enforced and imposing
the inflow condition (1.3b) weakly: Find
Ue ‘v’h such that

(112)  ay(Uwv) = Li(v)  WveV,,

where

ao(w,v) = a(w,v) - {1 wv3.nds,

Lo(v) =L{v)- [ gvf-nds.
r

where & and € are defined by (1.11) with
e=0.

Let us note that with C1 = C2 = C3 =0,

in gl.lo) and (1.12), we get the standard
Galerkin method (with weakly imposed
boundary conditions in the case (1.12)),

while the choice C; =0 and setting € =

‘h|B| would give the classical artificial
viscosity method corresponding to a full
upwind 2pproximation of the convective
derivative (with piecewise linears). 1In the
following table we roughly summarize the
characteristics of the three methods
discussed with a plus or minus sign
indicating a satisfactory quality or not.

Sta- Accuracy
bility

Standard
Galerkin - +

Classical art-
ficial vis- + -
cosity

C,=0, é=hlB|,

Streamline
Diffusion
~ N 5
C 1 J2 0.0, + +

C3 small
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1.5. The basic stability estimates for the
SD-method

The motivation for the two modifications
(0.1) and (0.2) characterizing the
D-method is to increase stability (without
sacrificing accuracy). Let us now derive
the basic stability estimates for the
SD-method (1.10) and (1.12). These
estimates will follow from the following
coercivity properties of the bilinear forms
a(v,v) and ao(v.v): There are positive

constants ¢ dependingon o and a
such that

(1.13)  avy) 2 didl® we

2 )
(1) agvw) SAMIG Y e v,
where.
9 il 19 1 9.4
vl = Clivil™ + E29v]|7 + |62 8- Vv||7)?,

Il = (NI + 5 ] 18-l ds)

To prove (1.13) we note that by Green's
formula

[ B:Vvvdx =- [ 3-Vvvdx

Q Y}

- [ div BvZdx + [ f-n v2ds,
1Y) r

which gives

(B-VYv + av, v)
1. 1 9
=((-ad + , + “f. ]~’
(( 3 iv #+ a)v, v) ?I{Vﬁ"(b

from which (1.13) and (1.14) directly follow
recalling (1.2). We note the improved
stability of the SD-method as compared to
the standard Galerkin method satisfying

(1.13) and (1.14) with =0 and € =e.

1.6. An a priori error estimate for the
SD-method

Let us prove an a posteriori error estimate
for the SD-method (1.12). Without loosing
the essential part of the argument we shall
then assume for simplicity that

¢ =0 and a = 0. Recalling (1.3) we then
have

ao(u,v) = Lo(v) VeV,

which together with (1.12) gives the error
equation

(1.15)  aglu-U,v)=0 WeV,.

Recalling the stability estimate (1.14) we

get using (1.15) with v = m u - U, where
mu € Vh is the interpolant of u,

dlla - UJZ ¢ ag(u- U,u - V)
= aG(u -U,u- 1rhu)
+ag(u- U, mpu-U)
=ag(u-U,u- 7rhu)
e -4
<Né*B-¥(u - U)i-1l6"*(u - mpu)l|
% 4
+ (167 8- V(u-U)|![|6* B-V(u~-m u)
+([{(u-U)2|ﬂ-n|dS)1/2

4 (u-,u)%| Bn|ds) /2

<SMa-UlE + cleHu - myu)®
+ €182 4.V (u-m,u)||®

+ (if‘ (u-1rhu)2|ﬂ-n|ds)1/2.

Recalling (1.8) this proves that
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[LRPery



o g g s b

L A e g

.t Ty L e e o v i e

(1168)  flu-Ully < CI*/ 2Dl

which is the basic a priori error estimate
for the SD-method (1.12).

We note that (1.162?, in addition to the
slightly non-optima 1,2-estimat,e

(1.16b)  Im=U}l < O3 2Dy,

' . 4
contains the estimate ||628:-V(u-U)|| <

C||113/ 2p2y)|, that is assuming for
simplicity that h(x) = h constant and
| 3] ~ 1, we have the optimal estimate

(1.162) 13- 9(u-U)]| < ClIbD2u

for the convection operator 8-V applied to
error u - U. In particular we have for the
residual R(U) == {-3-VU-aU = g-V(u-U) +
a(u-U) the following optimal estimate

(1.16d) IR(U)| < ChD2ul].

The estitates {(i.16a-d) for the SD-method
should be compared with the following
estimates for the standard Galerkin method

(1.16¢) lu-UJ| < CiuD>ul],
(1160 R(U)| < CDul),

which are seriously non-optimal.

The error estimates (1.16a-d) are
meaningful only if h is small enough to
resolve all features of u requiring h to be
smaller than € in e.g. outflow layers. In
case some features of u are not resolved
we may replace for instance (1.16b) by a
localized analog of cssentially the form

™ 3/2 2
1.1 -U i < G =D, i
(1.16¢) Jlu-Uliy (g ¢ CIT"D7lly ()

where Q' c Q" c N and u is smooth in
Q". The truncated domain 2" is obtaired
from @ by downwind or crosswind
"cut-off" with cut-off distances of order ¢

(h) and d(h3/4), respectively. This
means that unresolved layers do not
degrade the error at the indicated distances
in upwind or crosswind directions. This is
contrast to the standard Galerkin where an

1-11

unresolved iayer may degrade the error in
the whole domain. Proofs of the indicated
cut-off rcsults for the SD~method, which
are based on the improved stability
resulting from the streamline diffusion
modification, are given in [JNP].

1.7. An a posteriori error estimate for the
SD-method

Let us now prove a basic a posteriori error
estimate for the SD-method (1.12). In this

case the artificial viscosity € plays a
crucial role, while we may take é=0 and
also o= 0 without loosing the essentials
of the argument. The discrete problem thus
reads: Find U ¢ V), such that

(1.17)  (B-VU,v) + (¢VU,VV)
- [ Uvf-nds =(f,v) - j gvB-nds
I r

Vv e Vh.

The perturbed continuous problem with
solution u takes the following variational
form: Find @ € H(Q) such that

(1.18)  (B-V,v) + (€Vu,Vv)

- [ uvB-nds = (f,v) - [ gvB-nds,
I I

v e niq).

Let us now introduce the following

continuous dual probicm: Find ¢ € HI(Q)
such that

(1.19) (v, 8-Yp) - ((div B)v, ¥)

+ (€Vv, Vy) + 1] vBon ds

= (v, &) W c 1Y,
l'll(ﬂ) where € =0 -U and I' = {x:
B(x)-n(x) > 0}. Taking v ==¢€ in (1.19)

we get the following error representation
formula
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182 = ~(&, 8-99) - ((div B2, v)

+(eVe, Vo) +{‘ épp-nds

+

=(8- Ve, w)+(eVe, qu)—{‘ el ds

= (B-VQ, p) + (eVa, Vo)

- { apf-n ds - (3-VU, ¢)

- (€VU, Vp) + {‘ Uppfn ds

= (f,¢) - lf geB-nds - (8-VU, ¢)

- (eVU,Vp) + [ Uppnds
I‘

=(f, p-®) + j (U-g){p-P)F n ds
I‘

- (8-VU, p-@) - (<VU, ¥(p-2))
so that
(i.26)  fle]l = (f - B-VU, ¢ - )
+ [ (U-g)p-d)Fn ds
i

- (eVU, V(p-9)),
where we integrated by parts and used
(1.17), (1.18) and ® € Vh is arbitrary,

Integrating by parts on cach clement K in
the third term on the right hand side of
(1.20), we get

(1.21)  [|eli® =(f-8-VU+div(éVU),0-d)

-3 e ey
Kok K

+ lf (U-g)(¢-)8-n ds

= (-4-VU + div{¢VU), ¢-@)
vf [¢ 5= (?U N&p ¢)ds

-Je ( ¢)ds
r
/

+

J (U-8)(p-@)8-ncs

= (RI(U)a ‘lo—q,)

+ 5[ hy Ro(U)(p-®)ds,
Kok K 2
whete
R,(U)]y =

(F-6-FU + div(eWV)) | ¢ K €T,

[ —lj [€ ng- VU] on 8K,

h Ry (U)=1
K2 —ég% onS c IK,

-(-Z)—+(U g)p-n on ScaK,

if OKNI'=0, Scl',, or SCT_,
respectively.
We shall now choose ¢ = N and use the

following strong stability estimate for ¢ 0
estimate cp-@ via (1.8) (for a proof we
refer to [EJ7)):

Lemma 1 1. Under sufficient regularity

assumptions on g and ¢ thereis a
constant, C such that if ¢ satisfies (1.19),
then

1 . A
ol + Nle?Vell + |Idiv(eVe)|

+ 18-V + @ div gl| < Clle|}

(278
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and

leDpll < C

[¢]l.

Recalling the error representation formula
(1.21) we now get

by 3 2 ~ ‘2"-—1
(122) PRI < e Ry,

where K =R, + Ry, R; = |R,]| and

R‘?. | K= %ucm,})[( mgx |R.2|,

We thus obtain the following a posteriori
error estimate for (1.12) recalling that ¢ =
max(C,hR(U)/ VU1, (‘..3113/2):

Theorem 1.1. There is a constant C such
that if U and 0 satisfy (1.17) and (1 18),
then e = 0 - U satisfics

(1.23)  Jle)l < IE(UDHL

where

1

B(h,U0) = Ch2 IR

= Cmin(C,'n|vu1, e iRy,

We note that by (1.16d) the quantity

E(h,U[) appears to be of order O(hJ/ ’))
in regions of smoothuness of the exact
solution and of order (1) close to a
discontinuity. Thus, (1.23) appears to be as
sharp as possible, FFor numerical results for
adaptive algorithms based on (1.23) we
refer to (EJ7). In such algorithms one
seeks, in an iterative process, a mesh

Ty, = 1K} sueh that

]_')(h,U,f)|Kh[,\- N 'I‘O!,/,,/l\rh' y VYK € Ty

where TOL > 0 is a tolerance given by

the user and Nh is the number of elements

K in T,, corresponding to equidistri-
h q

bution of the element contributions in the
right hand side of (1.23).

1-13

With ¢ > 0, we may add the condition

€ = ¢ in the adaptive process,
corresponding to resolution of all details,
se¢ Section 8.

2. SD-METHODS FOR
TIME-DEPENDEN'T LINEAR SCALAR
CONVECTION DIFFUSION.

2.1. A model problem

We shall now consider the SD-method for
the following time dependent model
probiem:

(21a)u, + B Vu - div(eVu) = f in Qx|
(2.1b) nw =0 on I'xI,
(2.1¢) u(-,0)==u in Q,

where u = -g%, B = B(x,t) is a given

smooth velocity field, e(x,t) is a positive
viscosity, € is a bounded polygonal

domain in R with boundary I', 1 =
(0,T) with T > 0 isa given time interval,
and f=f(x,t) and g = tg(x) are given

data.
2.2. Space-time discretization

lat 0= Y0 < tl < t.z <. < L“ <o LN = T

be a sequence of discrete time levels, set

Ly = (b s Ky =ty — by and

introduce the space-time stripg or "slabs"
Sn =Qx ln' Let for n=1,.., N, T" =

{K} be a finite elemeat subdivision of S
into space-time elements K of diameter
h]\’ with corresponding mesh function
1 al
$ Y / - = -
h(x.0) andlet V. c (S )= ((ve

1 ul
H (S“): v=0on I'x I“} be a

corresponding finite element space, and
define

N
V=1 Vn
n=1

= {wv: v|Sn € Vn, n=1,.,NL

. ~a€1r"“

A T e
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The space-time mesh T = {K} on 5
may typically consist of standard tvnkox
product elements K = x x l where w is

a triang?lc or quadrilateral in lR
"tilted" such elements (see b(\low), m
tetrahedrons K of height k . The mesh

T, may also be more general with time
steps variable in space.
We notice that v € V may be

discontinuous in time at the discrete time
levels t“ and to account for this fact we

define

n, o\ _ . .
v ()= lnn+u ‘l'ni:‘)‘

&
-0

[vn] =0
. .

Using the proper generalization of (1.9)
and (1.12) to the time-dependent case, we
shall now seek an approximation U €V,

2.3. The SD-method on general
space-time meshes.

We now formulate the SH-method for (2.1)
as follows: Find e V' osuch that

(22)  a(Uy) = L{v) Vvev,

where

a (wy) =

= (w, + -Vw,v + v + p‘-VV))n

t

+ (iVW,VV)n + (¢ W ‘)"

N 1
Yo(f, \'u‘)(v - V\'\) + (110,v )
n=0

L(v) =

(viw) = [ (v,w)dt,

n
with

o (b2 w2 2yt .
6:(,|(k" +hy | 817) on S,

~
{

= max (¢, Czl‘R(U)/WU', 03113/2)’

3
kW) = ¥ R0)

R](U) = Ut+p‘-VU—div(éVU) on K,

Roy(U) |y = mi})l‘\é 5 [[cn - VU] | /b,
[¢

Ry(U) = [[U"]|/k, on S,

where {¢n VU denotes the jump in the

quantity En\,-VU across a side S of K

. . _ -
wititaormiai ne= {noongd, and where 160

is extended Lo S" as a constant in L.

The basic a priori error estimate for (2.2)

analogous to (1.16a) reads in the case ¢ =
¢ = 0 with piccewise lincar approximation
i % and t,

5 _ ip3/2 )'2
(2.3) "H" < b1 "”l,g(Q)

where
(230 IVl = (vl
St — 112( Q )

ATV
+ N 6 (v, +8- WY (e
n=0 t ]"Z(Sn)

N -1

n 1/2
+ ..J v N
IERCATHRS

\" ere h(\ 1)~ diam K it (x,t) € K and
l l)“ t)u is the maximal partial

derivative of u of order 2 with respect to

[POws—
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(x.t). We note the presence in Jljvij| of the
juraps [v").

3. THE CSD-METHOD FOR LINEAR
SCALAR CONVECTION-DIFFUSION
PROBLUMS

3.1. A moel problen

We now turn to a particular variant of the
SD-method (2.2) for time-dependent linear
scalar convection diffusion obtained by
orienting the ruesh approximately along
characteristics locally in time. As
indicated, we will refer to this method as
the characteristic SD-method or
(SD-method. This method combines the
advantages of both ISulerian and
Lagrangean techniques without suffering
from the disadvantages of either approach,
i.e. oscillations or excessive artificial
diffusion in Eulerian methods and mesh
distortion difficulties in Lagrangean
methods.

To isolate the essential features, we shall as
a model problem consider the following
pure initial value problem:

l";}_i;\."lulxt,{)‘v'\"'ll-(ii\f((-?u =i{xi i 3,
v T
(3.1b) u(+,0) = ug inR-,
2 2
where Q = R™x(0,1'), and 3 Q -R" isa
smooth velocity field with
(3.2) divg=0 in Q,

and { and ug are given functions with

compact support in Q =R x [0,0) and IR2
respectively and ¢ 2 0 is constant. The
restrictions o A pure initial value problem,
a divergence-free velocity field g and
constant ¢ are not essential.

We recall that the characteristics of the
differential operator (?;)T + §-V) in (3.1a)

are curves x = x(y,7) given by
(3.3a) g; = fx,7) r>0,

(3.3b)  x(a,0) = x.

We note that

(34 u(x(v.rhn)

e X e
= aF Vy == u ¢ 5V,

so that for example in the case ¢ = 0, the
cquation (3.1) takes the simple form

(3.52) 47 (x(xi7)s 7)

={(x(x.7).7), 1>0,
(3.5b)  u{x(x.0),0) = U()( )

which is a family of ordinary differential

cquations parametrized by 1\ € RZ. This
expresses the fact that in Lagrangean
coordinates (y,7), the convection part
(u, + #:Vu) of (3.1a) takes a very simple

form.
"To be more precise, let us now introduce
the mapping F: Q - Q defined by (x,t) =

F(x,7) = (x(x.7), 7), where x(x,7)
satisfies (3.3). We recall that | J] = det J,

wheie J = -‘éi satistios the equation
| .J -
AL = div g 19 =0, 310 =1 50

that |[J|(-,r) =1 for r2>0, which shows
that F: Q - Q is 1-1 and onto. Defining

now u(y,7) == u(x,t) where (x,t) = F(y,r)

and Aﬂ(\:,r‘ = Au(x,t), the problem (3.1)
takes the lol(owing form in characteristic
coordinates (\. 7),

(3.6a) u_ - eAi=1 i Q,)
(3.6b)  @(-,0) =4, in RY

which is a variaut of the standard heat
equation with a variable coefficient analog

A of the usual Laplacian,

In the CSD-method for (3.1) the mapping
F is now built in, in a suitable discrete
form, which basically will make the
CSD-method for (3.1) equivalent to the
Discontinuous Galerkin method (the
DG-method) for the parabolic problem
(3.6) with tensor product elements in the
characteristic coordinates (y,7). In

— |

g
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Fulerian coordinates {x,t) this wiil
correspond o using space~time meshes on
each slab Sn approximately oriented along,

characteristics. For the DG-method for
parabolic problems with tensor product
space-tite clementy, a very precise error
analysis, including in particular integration
over large time with frequent romeshg, is
available ([J4], [J3]). Applying these results
10 (3.6} we obtain sharp error estimates for
the CSD-method for (3.1). which signi-
ficantly improve the corresponding
estimates for the general SD-method
without mesh orientation. In particular it
follows that integration over large time and
frequent remeshing is possible in the
CSD-method without serious accumulation
of errors or dissipation of fine scales.

3.2. 'The CSD-method

As above, let 0 = ty < t‘ <

< <thy T T & sequence of discrete
time levels with associated time intervals

1“ = U.“‘ ‘mi}‘ time steps l\n =t

DY )
and slabs b'_‘ =R" x "1‘ and let for each n

[l
——

afinite claiment space \‘\'.:‘.
piccewise linear functions on a mesh
'I‘“ = {n} on R with clements & and
mesh gize hn = h“(x) he given. Let ug

now for a given q > 0 for each n
introduce a mapping Foos, - Sn defined
by

(3.7)  (xt) = -‘"(x.t)

(v, N N .
= (X R iv Hj(.\). ).

(x.t) € b"‘

where the B, ¢ W p e functions to be
defined so that

(3.8)  B(x.t) = B(x,t)

1t
st -~
C

j:()(t' ) By(0),

will be an approximation of #(x,t) on Sn.

Hete {X,1) takes the wle (locally on each
Sn) of the characteristic coordinates (y.7)

above. We note that with I the identity,
A (5,0)
g (-t
=1+ E — T ) Bi(x),
=0 ‘
which proves that the mapping l"n: Sn -
S, is one-to-one and onto if

n
q k)

@)% <Ay L <
=0 1T Y, w2

®
with ¢ small enough. This pots a mild
condition on the time step k, i 4 s

smooth. In the case of a non-smooth 3,
we may in order to avoid restrietions on the
tame step k. define the approximation B3

by first smoothing 3 Next we note that
X = xX(X, ) defined by (3.7) satisfics

(3.10a) A = ) tel .
"
dt
(3.101) K(xity) = x.

This means that the cerves x(x,t) detined
Ly {2 "4) will be approxinations to the

exact characteristics (1) dofined by
(1.3), if B{x.t) approxumates gixgt). In
tiwe siimple basic case with ¢ = G, we have

(311)  Bst) = Blgt) = By(x),

WHeIY b(, ¢ Wn will be an interpolant of

gl PRI 2 A
A= ).

Continuing the notation used above, we
adopt the convention of as ociating a

ol
N
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function v(x.t) on 5 witha given

function ¥(%,t) on S“\ and vice versa, by

writing v(x,t) = ¢(&.t) where (x.t) =
l-‘n(x,i). We now introduce the following
space of functions v{x,t) with the
corvesponding v(x.1) being tensor-product
(piecowise) polynomials in (X.t):

V, = v e S vint) = v(xd)

I whor v
(L-ty) Lj‘ where Uj e W }.

in which an approximate solution U of
(3.1) will be sought on cach S“. Note that

CR=F (ax1), K€’ ives
(K: W =1 ( ). K€ {‘“} gives a
subdivision ol S, into oriented space-time

cloments ("titled curved prisms") K =
Folexd). K€ T, corresponding Lo the
subdivisi xl kel ) of S into
subdivision {axl K€ ) of S inte
straight prismg K x i

nw

We now define the CSD-method as follows:
For n =01, find UszUf, eV such
n

that

Ba2) [ (U AV

h
I
{v+ (\(vto- V) )dxdt
v ERULBvdxdts [ (U
u

= [ (v ¢ vy - Puddt
s\\

VveV ,
n
0
Y W [ =
where U7 = u,.

£ 2 "2 ‘.). "‘} .
«5—-‘(..1(\\'" ¢ hn |3-B17Y 7 on '\n‘

¢ = max(c. CARUY/ITUL, Coh*3),

on S,
n

3
R(U) = % R,
S

}‘_‘.

R (U)=| U, 4 PU-f-div(iVU)} on K,

RA0) | = max -l)- Hin - VUJ| fuye,s
- 7 ‘

Ry(U) = [[UT]] [k, on S,

[U"] is now extended Lo Sn to he
constant along the approximate
characteristies (x) = I (x. ) L c b

Let us now reformulate (3.12) in
charactotistic courdinates (%.1). We shall
then use the following notation where

{(x.) = I (X4)

n

i

LS V- ). v

_T “1e
J J Vo
1 N n N X

where :‘\‘l = (1\"l)‘ with T here
denoting the trangpose. We note tha

. D)
J "(x.tn) =1 for x € BT and recall that
with I.lnl = det

are d i
CREIN \.lnl = div M.lnl, tel

1

from which follows that
. g, .

with ||-]l the matrix norm induced by the

Euclidean nort in R” it VB is bounded
on S and ks small enough. We

further note that

e R T IR
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v+ BV = v+ B.Wv+ (4-B)-Wv

=9 y(x(x,0), ©) + (B - B)
g V)—(V =Vi+ &-Viv =Vp+ a- Vv,

where V_V = V7. Changingto (,t)

coordinates, (3.10) now takes the form:

For n=0,1,2,..N Find U= l—J|q € Vn =
n

{v: ve V,} such that

[ (Uz+a-VO)(v+6(vp+a-V9)) |J |dsdi

..

i

(3.15) + [ é90-¥9|J |dxdi+ ] [U"vdx
9

n R~

Ui~

J tweo(vy + @ V)| fdxdt, Vv eV,
S n n
1

with ¢ and 6 defined as in (3.12).
Clearly, (3.15) corresponds to the
DG-method with tensor product
space-time clements for the following
variant of (3.6):

(3.6) i

{+abu- div(eVu) =1,

where @ will be small if § is smooth. If

x| < Ce, then (3.15) has full "parabolic
nature" and the sharp error analysis from
|EJ3] for the DG-method applies, whereas

for &= ¢(1) the general SD-analysis may
be used. Now, |&| <C|3- B, so the size

of & is directly connected to the quality of
the velocity approximation B of
defined by (3.11). By standard interpola-
tion crror estimates with B a suitable
interpolation approximation of 3, we have

(317) b~ Bl (q)
<Gk DEB I, (g

212
+ || DX’B"Lm(Q),
where h = hn and k = kn on Sn’

We now state error estimates for (3.15)
under various assumptions on the size of @
as compared to ¢. We recall that ¢ will
satisty Coh%/2 < &< Coh if ¢ is small
As in [EJ7-8] we shall compare U with
the solution @ of (3.1) with € replaced by

€. Theerror u - 4 changing ¢ to € in
the continuous problem may be estimated
separately, see [EJ7-8]. For simplicity of

notation we identify @ and u below.

Case (i): |a| <Cle] in S_, Vn.

n’
As indicated, in this case we may directly
use the sharp error estimates for the
DG-method for parabolic problems given in
[EJ3] under the E)non—restrictive)
assumption that

(3.18) ke max hi(x)/.
X
We then obta'n the following a priori error

estimate assuming € and a&/¢ are
sufficiently smooth: There is a constant C

such that for U (max E)—l we have
with I = (0, LN)

(319)  lw-Ully, (gpy,.) ¢
0

9)

q+lq+l -

9)

2.2
+ |[h*D%a|| TR
L (€,T,L,)



- ATl paprons -

| A a
where L = max (log 2L + 1 1/"‘, and
2 ( e )

n
¥, (0:151.) = 208, nv(ouL2 &
This is a fully optimal error estimate with
the constant C independent of N q,nd
the time step k coupled with derivatives
of @ wich respect to the characteristic

woordinate t. Improved variants with q+1
replaced by 2q+1 mav also be derived, see

[EJ3). Further, the following a riori
analog of (3.19) was derived in [EJ3| (for
simplicity stated in the case { = 0):

1
(3.20) |[lu Llle(o,T;Lg)

< CLUIUMY, (0,1;L,)

2.2
+ VDU, (0. 1y1,)
IR L

* IOV, (0,1.1,))

where the * indicates that the integrand
should replaced by zeroon 1 if W, ¢

W, and [U] isextended to S~ as

constant in time. We note the close
similarity with (3.19).

The case |@&| < Cé considered typically
would be relevant with q =0 if DTﬂ is

small or with q =1 if K2 < C¢, assumning

now Qz—g bounded, i.e., giving the time
ar”

step restriction k < Chsl 4 if €= Chs/ 2

In both cases this indicates the possibility

of choosing the time step k_ larger than

the one corresponding to CFL > 1.

Case (ii): |a] <C et

In this case we state the following a
posteriori derived in [EJ8):

”“‘U|IL2(Q)

=1.2.
< C"(kn +€ "h )R”L2(Q)’

with C independent of T. A typical case
could now be as follows: q = 0,

¢ = o(u3?), x_= cn¥/%, indicating

again the possiblity of taking the time steps
larger than the space steps corresponding to
CFL > 1.

Case (iii): |&] > C &%,

In this case we may use the general
estimate (2.3) for the SD-method (2.2)
analogous to (1.16a).

3.3. Exact transport and projection ETP
In the case 8 = constant, q =0, B =4,
in which case we may take &= 0, the CSD
method (3.12) takes the form (assuming
also f = 0 for simplicity): Find

UeV, ={v:v{xt) = w(x) with x=

x+(t-t )8, w € W_} such that

(321) [ (U.+8-VU)vdxdt + | éVU-Fvdxdt
L ,

S

n n

+] [Un]v? dx=0, WeV.
[R2

Since v, * V=0 if veV_, wecan

n’
wriie (3.21) as follows: Find U’: EW,
such that

(3.22) 12 Ulvdx+k 12 VU Vvdx
R R

n-1
= é? U, " (x-k Gv(x)dx, YveW ,

where we used the fact that by the

definition of V__, Ul(x) =

TS “"' N | ,
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Ui"l(x—kn__lﬂ). With € = 0 this means
that

(328) U'=P T UM

nn-+

where P_: Lo(R%) » V_ is the
L,-projection defined by (Pw.v) - wv)
Vve Vn’ and Tn is the translation
defined bv

(T V() =v(x-k 5.

Clearly, (3.22) corresponds to a method for
the problem (3.1) with € = 0 based on
"exact transport + L2—projection". With

the proper definition of ¢ in the present
case, i.e.,

» 2
¢ = Ch2 10"k,

the CSD-method (3.22) corresponds to a
method of again the form (3.23) with now a

modified L.,-projection f’n: Hl(|R2) -V
defined by

n

(3.21) (f—’nw,v) + (ek VP w,Vv)

= (w,y) Vv e Vn’

5 2
where ¢k = Coh |in - w|. Inthe
presence of discontinuities the modified
projection 13‘n shows improved

performance as compared to the standard
L2—projection P e with monotone

resolution of discontinuities where Pn
gives mild oscillations.

We have now seen that the CSD-method in
the case # constant e =f=0,and q=10
reduces to a method of the form "exact
transport + projection”, or ETP for short,
with a built-in modified Ly-projection with

good stability properties. More generally,
the CSD-method wili reduce to a method
of this form (in the case ¢ = 0) if the

discrete velocity B in the CSD-method
defined by (3.8{is equal to the exact
velocity 8. We recall that the idea of ETP
underlines the Godunov method and
generalizations thereof (VanLeer, PPM),
and can probably be viewed, together with
the idea of centered difference approxima-
tions and artificial viscosity, as the bearing
principle in classical CFD not including
finite element methods.

Althoufh thus ETP has been fairly
successful as a principle for the generation
of schemes in CFD, ETP does not offer a
full disceetization procedure since it
requires the “exact transport" step to be
periformed form one discrete time level to
the next, which in general is highly
non-trivial (e.g. requiring the solution of
Riemann problems).

Now, our point is that the CSD-method,
which coincides with ETP ir siraple cases,
and which gives a full discretization for
general problems, may be viewed as the
natural generalization of ETP. The

following advantages are obtained this way:

(i) Fully discrete schemes for general
problems are obtained; it is no longer

necessary to solve the given equations
exactly between discrete time levels.

(ii) The analysis of the CSD-method is
more precisc than the classical analysis of
ETP. For example the CSD-analysis shows

accuracy 0(h2/JE) with piecewige linears
in space and 4 =0 when k is the time
step, while the ETP-anaiysis gives

0(h2/k). Further, with the sharp
CSD-analysis related to (3.19) it can be
proved that in the CSD-methord a
discontinuity may be propagated over lon
time intervals with little smearing, see [J4).

4. THE SD AND C5D-METHODS FOR
THE INCOMPRESSIBLX NAVIER-
STOKES EQUATIONS

4.1. Formulation of the SD and
CSD-methods

In ¢his section we present, the SD and
CSD-methods for the incompressible

Navier-Stokes equations in Rd (d = 2,3):
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Find the velocity u = (ui)?=1, and the
pressure p such that

(4.1a) ut+(u~V)u+Vp - eAu=f inQ,
(4.1b) u=0 on T x({0T)
(4.1¢) u(+,0) = ug

where Q =2 x (0,T), and Q isa

bounded domain in Rd, € is a positive
(small) constant and f and u, are given

data.

Let now as above {t } be asequence of
discrete time steps and let for each n,
W C H(IJ(Q) be a finite element space

consisting of piecewise linear functions on a
mesh T = rx} of mesh size h . For a

given velocity field U on § =Qx1  let

us now introduce the particle paths x(%,t)
defined by

(422) Bouymi) tel,

dt n

(42b)  x(x,t ) =% xef,

and the corresponding mapping Fg: Sn -
s defined by (x,t) = FU(x,0) where x

= x(X,t) satisfies (4.2). We next introduce
for a given q > 0, the spaces

(432) VY= (venl(s )% oz
= 2o, vew, %

(43b) QY = {ge (s ) axi)

gl=]

0 e - j =
= jio (ty=tp)'ay(X), q; € W},

together with their analogs in
(x,t)-coordinates:

1-21

U_ .. o-oN
(4.3c) V= {vive V“},

QU ={aqce al).

We can now formulate the CSD~method,
for simplicity without shock-capiuring

(¢ = ¢), as follows: For n =0,1,2,..., N,

find (U,P) = (UP)|; € VY x WY, such
' n
that

(44) (U, +(U-V) U,v) - (P, divv)
+ (q, div U)n+ ¢(VU, Vv)n
+6,(Up + (U-V)U + VP - €AV,
v, (U-V)v +¥q - eAv)n
+ (b divU, div v) + (353U,v)n

= (f, v + (v + (U-T)y
+TP - eAU)) V(v,q)eVIxQY

where
b‘l = Clk

n’

Coh if divU < K

_ : _J 2
by = &y(div U) = C, if divU>K

v 0) if divU <K
6, = 6,{div U) =
3773 divU if divU > K,
and as above

(v,w)" = [ (v,w)dt, (v,w) = [ v-wdx,
I Q

n
(Wv,fw) = J (Vv,Iw)dt,
Il‘.
'AAY g [ (Vv.-V
viw)= Y v, -Vw, dx
( ) izln( i Vw,
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Notice that as defined the CSD--method
(4.4) involves an additional non-linearity

since VE depends on U. By standard

fixed point arguments it can be proved that
(4.3) has at least one solution (U,P).
Normally we expect to be able to find such
a solution by computing a sequence of

k) p(k)y by seeking (),

solutions (U

P(k)) € Vg x QS . Depending
on the choice of initial approximation

( U(O), P(O)) and the number of iterations
we may get different variants of the

CSD-method: For example with U(o) =0
and k =1 we get a standard SD-method
with non-oriented tensor-product elements
in (x,t). In a typical implementation of the

CSD-method we would let U(O) be
obtained from the previous time step and
iterate once (k =1).

This being said, let us now consider the
CSD-method in the full non-linear
formulation (4.4). Wc note that with (41.2)
satisfied, we have

N 2 2 y(x(x,D)t) = U, + U-T,
ot ot

which shows that in CSD-method in the

local coordinates (%,t) on each slab Sy

the convection term takes a very simple
form. In particular, we have that when

written in (X,t)-coordinates, the discrete
equations (4.3) correspond to a modified
Stokes problem.

4.2 An a posteriori error estimate for the
CSD-method

Let us now give a (formal) proof of an a
posteriori error estimate for the
CSD-method. The proof is based on a
strong stability estimate for a linearized
dual problem, which appears to be
fundamental but seems difficult to establish
by analytical techniques in interesting

cas¢ . However, there is a clear possibility
of testing this stability condition
numerically.

For simplicity, let us consider the method
(1.3) with 6, =0, j = 1,2,3, which does not

essentially affect the details of the
a.r%ument to follow. Let us introduce the
following linearized dual problem: Find

(9.0) € Ly(t; [H@)] % Ly() = W such
that in Q

(4.52) -9, - (w-V)p+tVU - ptVl-cAp = e

(4.5Db) div ¢=0
4.5c; div ¢ =0 on Ixl,
4.5d o(+,T) =0 in Q,

where e = u - U. Multiplying (4.4) by e
and integrating over 1~ together with

. integration by parts gives

(4.6) ||e||%2(Q)

N
= X

{(- ¢, - (0 Tp+TU-g,€)
n=y '

+(V9, e)n + (Vi Ve)n}

N

n=
- (0dive) + (eVp,Ve) - (p-P.div gp)n}
N
+ ¥
n=

[ ({U"], ¢")dx
09Q

N
= 3 {(“t+ u-Yu+¥p, ga)n+(eVu, ch)n
0

n=

- (Ut + U-VU + VP, (p)n + (eVU, Vg))n

N
+(0,divU) } + 20 (j) ([UM], Mdx

n=

N
=- % {(UL + U-VU + VP, cp-@)n
n=0

+ (eVU, V(w-d)))n + (div U, ()—G))n}n

T
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+ 2 f ([Un]’ vﬂ_@n)dx,
n=0

where (@, e)lsn e VU QY will be
chosen to interpolate (,0).
We shall now assume the following stability

estimate for the linear dual problem (4.5):
There is a constant C such that

A7) e, + (“‘V)V’"L?(Q)
. ||V0—6A¢||L2(Q) ¥ ||‘52V‘-’"||LQ(Q)

“ldly_q) < Olelly, (q)

Without the term VU-¢ present this
estimate follows by multiplying (4.4a) by
(o, * (u-V)¢) and integrating by parts

using the fact that divu =dive =0.
Note thst by eliiptic regularity for the
Stokes cquations it follows that

. 2 :

(4.3) ||V0||L2(Q) + |leD ¢||L2(Q)
< ClIVA - eAyl .
<Cll Pl

Combining (4.5)~(4.7) and recalling (1.8)
we obtain the following (formal) a
posteriori error estimate

(4.9) ||e||L2(Q) < C[Illlzf_lnlll,Z(Q)

e i
IRl () + v Ul ).

where

Ul’l
R=]U, +0-U+ VP -] + LA

n

and for simplicity the usual jump terms
involving € %u; , have been omitted.
Further, the viscosity coefficient ¢ in (4.9)

1-23

should be replaced by an artificiai viscosity
¢ defined as above. With suitable choice of

¢, the estimate (4.9) appears to give a
reasonably efficient. adaptive algorithm.

The stability properties of the dual problem
(4.5) obviously play a crucial role. In
general the stability of (4.5) can only be
evaluated computationally. We have here
very briefly scratched the surface of a topic
we hope to develop further in the future:
Adaptive (C)SD-methods for incompres-
sible flow, with a very large area of
application,

3.3 The CSD-method for free boundary
ow

The CSD-method is ideally suited to
handle flow problem with free boundaries
or moving boundaries with prescribed
motion: Just let the nodes on the boundary
move according to (4.2) with U a
computed or prescribed velocity. To be
more precise, let us present the
CSD-method for the Navier-Stokes
equations with free boundary occupying the
volume Q(t) at time t ¢ (0,T): Find
{u,p) such that for t €I,

(4102)ug+(u-V)u+Vp- div o=f inQ(t),

(4.10b) div u=0 in Q(t),
(4.10¢) c-n=0 on I'(t),
(4.10d) u(-,0)=u, in ©(0),

where o= {aij} is the stress tensor
defined by

=" p&ij + 2;:cij(u),

and o-n= (Zo jnj) is the stress on the

boundary T'(t) of Q(t) with outward
normal n. Here Q(t) = {x(x,t): x € (0)}
where x(x,t) satisfies

(4.11a) {%’{- = u(x,t), t>0.
(4.11b) x(x,0) = x.

T ————
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Note that (4.10c) states that the (total)
stress on the free boundary is zero.
Under sufficient regularity assumptions it
is known that (4.10) admits a unique
solution if T is small enough.

To define the CSD-method for (4.109) let
{tn} be a squence of discrete time levels,

suppose the approximation @ of Q(tn)
is given, let W~ be the space of
continuous piecewise linears on a
triangulation T of Q, and define VE

and Qg by (4.3). Note that in this case
the functions in Wn are not restricted to
be zero on the boundary of Qn. Note
further that in this case the functions in
VH and Q ZE are defined on §n =

U . -0 x ]
Fo(S,) with S = xI. The
CSD-~-method can now be formulated as

follows ([Ha3]): Find
(U.P)e VU< QY such that
(4.12) (U 4+ (U-VU)UW)
- (P,divv)n +(q,div U), + 2p(e(U), e(v))n
+8,(U + (U-N)U + VP, v, + (U-W)v +Vq) |
+ (62div U, div v)" + (53U‘v)n +
63<(2p£(U) - pl)n, (2m~:(v)—ql)-n>Il

= (fv+ 8y(v, + (U-T)V ¢ V),

meeVExQ&

where 6j, j=1,2,3, are defined as above,

64 is a positive constant independent of h,

and

{ vewdx dt

where @ (t) = {x(x,t): x€Q } with x
satisfying (4.2) for x € . We note that
boundary condition (4.10c) is enforced
weakly in (4.12) since the velocities in VH

are not restrained on the boundary of Sn =

F}{(Sn). Further, we note that the

S 4-term gives least squares control of the

discrete boundary stress.

In Section 8, we present some numerical
results from [Ha3] for the method (4.12)
applied to non-stationary fountain flow

using q = 0, k = | and with U(0)|S
n
given by UIS .
n-1

5. SD-METHODS i'OR
COMPRESSIBLE FLOW

5.1 Formulation of the SD-method
In this section we present the SD-method
for the compressible Euler equations for a

perfect gas in R2:

2
(5.1a) u+ ¥ [ (u), =0 X € IR2, t >0,
i=1 N
(5.1b) u(x,0)=uo(x) X€ Rz,
where
1 %
w .
1 1i
=p  f=wu+p
Wol 1! 2
e

i

Here p is the density, w = (w,, w2) is
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the velocity, e is the total energy density,
2 2 .

P = (7-1)(pe - p(w] + wg)/2) is the

pressure, 6i j the Kronecker delta, and

> 1 1is a constant. The conservation law
25.1) can also be written in the form

2
(5.2) u, + ) Ai(u)ux =0,
i=1 i
of, _
where A, = = s the Jacobian of f;(u).
Let now {S } be the usual sequence of

space-time slabs S, = R In’ let for each

nV,c H](Sn)4 be a finite element space

andset V=1 Vn. The general

n20
SD-method for (5.1) can now be
formulated as follows: Find U eV such
that U=Ulg €V = satisfies:

n

(5.1 T+ %A (U
\5‘3) ([ t + Si Al(‘l)le‘

v+ 8, + \T Aj (U)vxi))n + (UM, v

+ (§VU, W) + (€U, v,), =0 VveV,

where T again denotes transpose and

2 -4

A’,
12 -2 & )
=z (+n? § AU T o s,

i=1

(55) & =é(U) = Cph 1%%'

R(U) = |U, +?Ai(U)Uxi|

+|[UMI/k, on 8.

The simplest instance of the SD-method
(5.3) is obtained with a L IPO-

approximation in space-time on tensor

product elements K = 7 x ln (or "tilted"

such elements) with the basis functions
continuous in x and discontinuous in time,
see Section 5.3 below.

Remark 5.1. To see that square root in
(5.4) is well defined we recall ([H1]) that
there is a positive definite matrix AO =

Ag(U) such that A= AA, is symmetric,
i = 1,2,. Thus

-k 4 -4 - -1

2 ? — 2 A 2

is symmetric, s0 the similarity transform
L

induced by A(’) transforms the matrix M

= (k;]‘{2 1+h72 X A(‘iz) to an obviously
i

positive definite symmetric matrix. It
follows that M has positive eigenvalues
and a full set of eigenvectors which shows

-4
that M ? can be computed. In [Had]
explicit formulas for the eigenvalues and
eigenvectors of M are given, We recall

-1
that .'\0 =7

uu where n(u) =

= -¢plog(pp”7) is the entropy. -

5.2. Entropy consistenc[y

To prove convergence of any numerical
method for the Euler equations (5.1) is for
the moment impossible, since existence of
solutions of the Kuler equations has not
been proved mathematically. For the

SD -method the following weaker result is
possible to prove (with polynomial
approximation in space-time of any order):
Limits of SD-solutions will satisfy any
entropy condition for (5.1)([JSzH], [Sz1]).
A corresponding result in the same
generality for finite difference/volume
methods is known only for first order
approximations.

5.3. An explicit form of the SD-method
The SD-method (5.3) leads to a system of
non-linear equations to solve for each slab
Sy If the time step is sufficiently small

(corresponding to CFL < 1/2 say), we
expect to be able to solve this system with
few Newton-like iterations. We shall now
consider the simplest case of E’l o

approximation in (»,t) on tensor product
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elements 7x I (or more generally
"tilted" such elements), continuous in x

and discontinuous in t. Writing U=
UIS the SD-method (5.3) can in this case
n

be formulated as follows: Find U" ¢ Wll
such that

(56) (U"-u"ly)

+ EAUMUL v g AUMTY )k,
i i i i

+ (WU, W)k =0 Wew,

where W Hl(le)4 consists of
continuous piecewise linears and the
corresponding vV, ¢ }.Il(Sn)4 is defined by

- Lig v o4y =
Vi =Avel (5% v(-4) =w for tel,
where we W }.

To compute U" from (5.6), we may
iterate in various ways: The simplest
possible variant is obtained by lumping the
mass matrix related to the inner product
(+,-) in the first term, and changing the
index n to n-1 in all terms except the
first, which gives a fully explicit scheme of
the form ([Ha 4])

= n_ -l e n-l
(87 U} = U3 R BHU, 0

-1 n~-1,T
-~ kn(iE Ai(d )Uxi, b‘iJAi(U ) vj.xi)

N |
—kn(eVU ,Vgpj),

where U":SU}1 z,oj(x) with {V’j} the

standard E’l-basis functions of Wn' The

resulting method may be viewed as a
variant of certain well-known "upwind"
finite difference methods, see [Had]. Many
variants of (5.7) with improved per-
formance in certain cases may be obtained
by keeping the mass matrix and e.g. the

é-term on the left hand side of (5.6) in an
iterative method, and using c.g. the
conjugate gradient method, at each
iterative step.

In Section 8 we present some numerical
results for the explicit method (5.7) applied
to a standard test probelm: Mach 3 flow in
a channel with a step up. We further give
some results for (5.6) extended to the
compressible Navier-Stokes equations for
flow over a flat plate. In both cases the
adaptive mesh control is based on (formal)
:(1 pos)teriori error estimates of the form
0.10).

6. The DG-method for conservation laws
In this section we present the
Discontinuous Galerkin methed
DG-method) which is a variant of the
SD-method with discontinuous approxi-
mation in space as well as in time. The
DG-method may be viewed as a gene-
ralized Finite Volume method. The
DG-metlod is fully analogous to the
SD-method with the basic two modifi-
cations (0.1) and (0.2) and in addition
certain jump terms related to inter-element
discontinuities.

Let as bove {t,} be a sequence of discrete

. X _ _ w2
time levels, ln = (t", tn+l)’ Sn = R“x I“,

andlet T = {K} be a finite clement
triangulation of Sn into space-time
clements K of diameter h[\" Typically
the elements K may be prisms & x In
with & a triangle or "tilted" such prisms,
or tetrahedrons. Define for g > 0

Vi = (veLy(S,): vI el (K). K € T},

V=1 V_,
n20 n

We shall present the DG-method for a
scalar conservation law:

9
oSN . 2
+ iil li(u)xi =0 in R*xR,,

u(+,0) = Xo

(6.1a) uy

(6.1b) in [Rz,
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where the fi: R +R are smooth fluxes and

ug € Lm(lR2) has compact support. ‘The

DG-method for (6.1) reads as follows: Find
UeV suchthat U= Ulg satisfies
n

6.2 ) U,+¥f(U
62 5 0T
(v + {v,+ TA(U)v, ))dxdt
i i

+ [ € YU Vv dxdt

»

K
Vv ¢ Vn’
where ny is the outward unit normal to

K, Vv = (W, vy,

Vg = Vi

[(U) = (U, £, (V). fp( U)),

(6.3)  Fp(U) =5 (f(U) + [{U)) nge
+ C(Upe - Up) at (x,t) € 9K,

where K' is an element sharing the face S
common to K and K' containing (x,t),
and

C if Dy =k (1,0,0),

I —

K~
Cy = Ch™7 otherwise,

with C a positive constant and v > 0
small. Further,

-4
?

— "2 “2 S\ 2
§=C (k" +h %,fi(ll))

¢ = Coh(JU, + )ijfi(U)xl|

+max  |Up - Up | /hy, in K,
scok ' B K /g

1.27

with g < @ < 2. Note that here we use a

variant of the artificial viscosity ¢ used
above.
Remark. Note that if ny = (-1,0,0)

corresponding to the "bottom" of K. then
Fi(U) = - 3 (U + U
1
+3(Uy-Ul) =-ul

where as above U: = lim, U{t_=s), so
+ 7\
s-0
that

((F(UK) - r(UK'))'nK)VK

. n n,.n
= (U - Ut

which gives the usual jump term. FFurther,
if ng = (1,0,0), then

(]"l\(U) = i(UK))-llK = 0,

which means that there is no coupling
forward in time. Note further that the l"K

are hasically the Lax-Friedrichs' thaxes.

For ¢ =0, (6.2) gives an implicit variant
of the Finite Volume method. The accuracy

of (6.2) is formally of order 0(11(”%), thus
of accuracy higher than one if

q 2 1. In particular, the use of the
Lax-Friedricks' fluxes (6.3) does not
degrade the accuracy to first order if q 2 1.

It is possible to prove convergence of the
method (6.2) with q > 0 using the same
method of proof as for the SD-method with
continuous basic functions in space based
on the DiPerna uniqueness result for
measure valued solutions of scalar
conservation laws (see {S22], (JJ]). =

7. ADAPTIVE CSD-METHOD FOR
BURGERS' EQUATION

7.1. Introduction

In [kd7-3], [J2), [I5] and [JSz?l], we prove a
posteriori error estimates and formulate
corresponding adaptive algorithms for

YR b s s g Y i
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linear convection-diffusion problems, the
linear wave equation, and systems of
conservation laws in one space diwension,
respectively. Further, in [HJ] we discuss
extensions and present computational
results for compressible flow in two space
dimeasions. As far as we know, our results
are the first to show that reliable and
efficient adaptive error control based on a
posteriori error estimates is possible for
finite element methods for hyperbolic
problems. Of particular interest are the
results on adaptive {inite element methods
for systems of conservation laws, which
seem to open a large area of application. In
the proofs of the a posteriori error
estimates we use our new strong stability
concept in a crucial way; using classical
stability concepts it appears to be
impossible to obtain useful a posteriori
error stimulates for hyperbolic problems.
The case of conservation laws presents a
remarkable example of the utility of the
new concept of strong stability: In this case
the linearized dual problem is indced
strongly stable, buu is unstable with the
classical weak stability concept cor-
responding to the fact that selutions of
conservation laws do not in general show
continuous dependence L., with cespeet to

change of initial data or right hand side in
L.
2

To illustrate the essential points, we shall
in this section indicate the proof of an a
posteriori crror estimate for a finite
element method for a scalar conservation
law in one space dimension (Burgers'
equation). IFor move details and the
important extension to the case of systems,
we refer to [JS2#2].

7.2. An a posteriors crror cstimate for a
finite element method for Burgers' equation
We consider Burgers' equation: Find the

scalar function u¢ = ut(x,t) such that for
XxeR, t>0

o € . . . .'2 €
(10 B 2 (3097 - T =0,

("X:'
(7.1b) nc(x,t) 20, X~ #0, t>0,
(7.1c) u€(x,0) = uo(\), X €R,

where u, € Lw(lk) has compact support,

and ¢ is a small positive constant. For
¢ > 0 this problem is uniquely solvable. As

¢ tends to zero, the solution u® will
converge 1o a limit u, the entropy solution
of the inviscid Burgers' equation
corresponding to (7.1) with ¢ = 0. BEven if
the data U, is smooth, u(:,t) may

become discontinuous in finite time,
corresponding to the development of
shocks. The entropy condition states that
at shocks (discontinuities), we have

u (x,t) > ut(x,t), where

u*(x,t) =lim  u(x +s§,;t)
§-0

is the left~-hand and righu-hand limit,
respectively. This means that clese to
€
shocks %‘i,— may be very large negative
ot . )
(but =g~ will be bounded above). In such

a case the linecarized problem

; n2
(7.2a) g{ir%(uc(b) - ¢ i;—‘é’ =0,in Q,
ax
(7.2b) dlx,t) = 0, x-0
(7.2c) ¢(x,0) = ¢0(X)X € R,

where Q =R xR_ obtained by linearizing
(7.1a) around the solution u®, is unstable
in L?, since multiplicating (7.2a) with ¢
and integrating with respect to x leads to

% ??f I{t ¢2(x,t)dx

: . 9 € o
rel [Qﬂ}gﬂ] dx=-1 ! B Pxdy,
where the right-hand side may be large if
o€

%%(— is large negative, which corresponds to
the fact that (7.1) is not continuous in L?

with respect to Ly-perturbations of initial
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data. This argument. seems to indicate that
¢ posteriori error control in L2 for

approximate solutions of (7.1) would be
impossible in the presence of shocks. The
remarkable fact is, however, that such an
crror control in fact is possible to establish,
if we use a proper stability concept and use
the Galerkin orthogonality intrinsic in the
finite element. method, which we now
proceed to demonstrate.

The a posteriori error estimate in L2, for a

finite eleinent method for (7.1) to be
presented, may be extended to the case of
system of conservation laws in one space
dimension. This yields a way out of the
stalemate position of the classical approach
to conservation laws, based on

L, -continuity, which is limited to the

scalar case.
For simplicity, we shall consider a
"semi-discrete" finite element method for

(7.2) of the form of "exact transport +
Lo~projection”. cf. [J4]. The extension to

ihe fully disciete case with discretization in

space-time, using space-time elements,

follows the same principles, see [JSz3).

Let 0= 1y <t; <t, <. beasequence of

discrete time-levels and let, for cach time

interval T = (t_ ., t ), afinite element
n n-1

space V. ¢ Ill(ﬂl) be given, consisting of

piecewise linear continuous functions on a
finite element subdivision 7 = {K} of R.

For simplicity, we shall assume h to be
independent of x and t, but this is not
essential. We shall consider the following
finite elerment method for (7.2): Find u

such that, for n = 1,2,..., vy |
h Rxln

satisfies on R x ln‘

(7.3b) uh(x, t) =0, x-tw, >0

i + . -
(7.3¢) wu(x, Ln—l)zpuuh(x’tn«l ), xcR,

1-29

¢ = Ch,

£ '
O ) = T, 05ty £,

where

- i 1 .
u, (x,0) = ug(x), and P : H(R) - v, o
the 1.2-1)r0jecti(nx defined by

(74) [P vwdx=[vwdx VweV .
R R n

Note that (7.3) corresponds to a method of
the form "exact transport + 1,2--projecti011",

similar to (for instance) ihe Godunov
method, cf. [J4]. Note further that the

viscosity coefficient € in (7.3) is chosen as

¢ = Ch, which makes (7.3) at most first
order. Other more sophisticated choices of

¢, with ¢ depending on the residual of uy,

(shock-capturing artificial viscosity) are
possible, giving higher order meshods, see
above.

We shall now prove an a posteriori error
estimaie in Ly(l,) for the discretizavion
error ¢ = ¢ - Uy where u® satisfies
(7.1) with ¢ = ¢, which appears to be or
2, .

order Z(h") in smooth parts and of order
O(h?) in the presence of shocks. To obtain
a complete estimate for u¢ - u., we would

also need to estimate u* ~ u', i.e., the
cffect of changing the viscosity coefficient
in the continuous problem (7.1) from € to
¢ We refer o [FJ7-8] and [JS22) for
details in this regard.

Let now T =ty > 0 bea given final time,

and let us seek an @ posieriori error

estimate for the quantity |je]| , where
Y 1¥hu(Q)

Q = R x (0,1). To this end, we introduce
the following linearized dual problem, the
stability properties of which are crucial:
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(7.5 "a) -a - =k o=, in
ox PR

(7.5b) ¢(x,t)=0, X2, 0<t<],

g.sc) #(x,T)=0, x¢€ R,

where a = (u‘" + nh)/fz. Multiplying (7.5a)

by €, integrating by parts over each R x
In, n=1,.. N, and using that

9= Y- LB,

we obtain

N N 9 ¢
N f7, 1] g 1 2 L g
vl [ 1 ey (W) -
Y S MR N

5 -
+n_lé(l P uh(x - l.)'( - (Jdx,

so that, by (7.1a) with ¢ = ¢ and (7.3a),

using the defining property (7.4) for P

(7.6) Ilell‘i‘)(q)

N
2 UJ; (I- I’n)uh(x. tn—l)

n=|
(l - pn)‘j)(Xa tn_l)dx.

To eshumtc the quantity
(1- ")d)\ o) we shali use the

following strong stability cstimate for the
solution ¢ of the dual problem (7.5):

Lemma 7.1, Suppose 3‘ is bounded from

above. Then there is a constant C such
that the solution ¢ of (7.5) satisfies

(7.7) H q% Lo(G)
' m‘ e g'{?"LQ(Q)
o g,

< Cllell
Yot L @

a) by ((')xg)‘

integrating over Q, and integrating by
parts, we get,

Proof. Mualtiplyiag (7.5

)
= f ‘1;%‘-‘- [b‘\b] dxdt - [ eé —-——X" dxdt
Q- Q

which proves the lemima by a Gréonvall

incquality, since the third term on the
left-hand side integrate to zevo. g

We now iurn to the error representation

(7.6). Using the standard estimates for the
Ly-projection P,

0= P )0ty

-2 Ii“)ztﬁ
<Ch® P55 (0t )“ ,
l ox’ n-1 L,

s
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we get by Cauchy's incquality
el yS[, % 100 P ot &

(&

cnt ] [ ‘ w( | )"'3 \ ]*
22,2 - V-1 nj
kn n=1" o 1,2

where Kk, t-r If we now assume
that k > (,h fon S0I0E positive constant

C, and recall that ¢ = Ch, we have that

2
||‘3||112(Q)

N ) /2
SC’A[ B AP Juy oty I, kn] '
n=1 2
where /

N a2 12 /2
A=[\3 e )l k]
n=| Kg n-1] Ly "

may be viewed as an approximation of
)
it . .
X . cf. below. Using Lemn
lie ,‘,S"L.‘Z(Q) f. belov ing Lemma
4.1, we thus conclude that

(7.9) ||e||[“)(Q) <ClT - l’)“l:"l,.,(Q)‘

wh_ere, for convenience of notation, we have
defined for Lc—ln,

(- Phuy(st) = (1= Py (x, 4 )
so that
"(l - l’)u,’,lllhz(Q)

2
A\l 2 )
- \ "(l - P llh ) l"l)“ kn] '

We have thus arrived at the surprisingly
simple a posteriori error estimate ('.’.9%
which can be made niore concrete by

»

[ERY

cstimating the projection crror (1 - l’n)u‘;
as follows ([IS22]):

- Py,

h ”Dh"h n-l)”l2‘

where, with K = (xl,x.z) el

n-1"
D2ur
huh(x’t‘n-l)ll\'
M,
=h ! max [ L} — (x., o l)H
=1,2
9 -
(')“ul
+ Max —.-;-(-‘l. ) )I
Ko Loy Tl
M,
\_.l;i'\!\_ L_Jll\' i “ ”lﬂ nln\n |n Hu\
Ui V-1
éhl"

L h . :
rivative -p— at (x..t . bxt g
derivative g b (X0t l) Extending

l‘.-
‘)21'[1 to (0,T) by defining

2oy T e
l)huh(.\,t.) =D uh(x,tn__l) for L€ ln‘

we can thus express the a posterion error
estimate (7.9) alternatively as follows:

D T S
. < Clh*Di .
(7100 Helly () € CIMDylly, )
Some comments are in order. First, the
‘\xsumpnon used above, that
A e _'5"1 Q) can eagily be avoided,

using also tho presence of the other terms
in the strong stability estimate (7.7). see

[JS22] for details. Secondly, the a posteriori

cstimate (7.10) appears 1o be optimal, i.c.,
in pdlm( ular second order accurate for
smooth solutions.This is a consequence of

the choice of ¢ as ¢ = Ch, which itself

would correspond to an (h) perturbation

—b— o
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for smooth solutions, and thus reduce the
accuracy of the total approximation to first

order. With the more elaborate choice of €
as, for instance, € = C max(h2R(uh),

w3/ 2), where R(uy) is the residual of uy

defined below, which is a typical choice of
the artificial viscosity in the SD-method
(see above), we would obtain a method of

total accuracy 0(h3/ 2) for smooth
solutions satisfying the following a
posteriori error estimate (cf. (1.5))

(7.11) "eHL?(Q)

< Clmin(1, hl/?'I{(uh)IiLQ(Q)

or

« i T | 3/2 2 “an
C \ D ,
< Cpmin{i, b "h’llL?(Q)

where we define

R(uy,) = (I - P Jug (-t _)/hoon 1.

We summarize the results obtained for
Burgers' equation as follows:

Theorem 7.2. Let uy, be the solution of

(4.3) and u® that of (7.1) with € = ¢ =
Ch and k" > Ch. Suppose that

g% == %% (ué+ uy,) is bounded from

3
above, and that v~ and uy, are bounded.
Then there are constants € such that

(7.13) ”“é'"h”I?(Q)

al - 1 2 2 -
<Cli(r- P)Uh||L2(Q) <Clh'D uh!!L2(Q)'

Remark 7.1. Note that the estimates (7.13)

indicate ¢(yh) accuracy (which is
optimal) in the presence of shocks since, in
an ¢(h)-neighbourhood. of the shock, the
integrands on the right-hand side would be
of order o(1).

Remark 7.2. The dual problem (7.5) may
be L2—unstable, since multinlication of

(7.5a) with ¢ gives

_ _é_a(lt"{ ¢2(x,t)dx + f[{t [g% (x,t)] 2dx

Do =

“/zgj—: 62 (x,t)dx + [ e(x)glxt)dx,

which may lead to instability if -g% is large

negative, cf. the discussion abovc for the
linearized problem (7.2).

For analogs of (7.13) for full discretizations
of (7.1) and extensions to systems of
conservation laws in one space dimension,
we refer to [JSz3], where we also consider

the case of rarefaction waves with %

possibly large for t small, (-g% < 1/t),
using a weighted norm technique. The a
posterieri error estimate of Theorem 7.2
may be extended to systems of conservation
laws in one dimension under appropriate
assumptions including the presence of
shocks, and rarefaction waves. As far as we
know, these results are the first to show
that « posteriori error control for systems
of conservation laws is possible. To
establish the crucial stability estimates in
the system case corresponding to Lemma
7.1, diagonalization together with a
weighted norm technique is used.

The techniques for proving a posterior:
error estimates for conservation laws
indicated above may formally be extended
to systems of conservation laws in several
dimensions, leading te a posteriori error
estimates of e.g., the form (0.10), if the
corresponding %inearized dual problem
saiisfies strong stability estimates
analogous 0 {7.7). In ﬁ’-IJ] we give
computationa! results for the corresponding
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adaptive algorithms in the case of
time-dependent compressibie flow in two
dimensions. Below we present a correspond-
ing result for a stationary shock reflection
problem. The question if the linearized dual
problem satisfies the strong stability
estirnates in the case of systems of
conservation laws (or the incompressible
Navier-Stokes equations%in several
dimensions is theoretically very complex,
but, as indicaved, may probably be tested
computationally. We plan to give more
details on this topic in future work.

8. NUMERICAL RESULTS
in this section we present some numerical
results for SD and CSD-methods applied to

(8.1) stationary convection-diffusion

(8.2) non-stationary
convection-diffusion

(8.3) the incompressible Navier-Stokes
equations with free boundary
(fountain flow)

(8.4) the compressible Euler and
Navier-Stokes equations

9. CONCLUSION. PROSPECTS FOR
THE FUTURE

We have given an overview of the
SD-method as a general unified approach
to CFD bas>d on the principles: modified
Galerkin + space-time finite elements.

The SD-method may be viewed to
generalize all the main classical techniques
of CFD such as finite difference, finite

volume, particle and shock-fitting methods.

The SD-method proposes a solutior to the
fundamental problems of design of artificial
viscosity, combination of Eulerian and
LLagrangean approaches, adaptive quanti-
tative error control, and of course is
applicable on general unstructured meshes.

The method appears to have a strong
potential, in particular in adaptive form.
Various features of the SD-method are
today used in several cornmercial and
resezrch codes. A rapid development into
full exploitation of SD-features such as
space-time elements and adaptivity in
these codes is t0 be expected.
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FIG. 1 - Comparison of Standard Galerkin, Classical artificial diffusion and the SD-method
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FIG. 5 - The CSD-method for the incompressible Navier-Stokes equations with free bound-
ary (fountain flow)
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Mach 3 channel flow with a step up.

Adaptivity according to (0.10)
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FINITE ELEMENT METHODS FOR FLUIDS

by

Thomass J.R.Hughes
Division of Applied Mechanics
Stanford University
Stanford, CA 94305-4040
‘United States

Outline

¢ Stabilized methods.
o Space-time formulations.
o Symmetric linear advective-diffusive systems.

e Incompressible Euler and Navier-Stokes equations;

Stokes Problem.

¢ Compressible Euler and Navier-Stokes equations;

Entropy variables.
¢ Nonlinear operators and shock-capturing.
¢ Solution algorithms.

¢ Examples.
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Stabilized methods

Example: Scalar, steady advection-diffusion equation.

def

Lu= a Vu-V-kVu=f on 2 c R4

Assume V-a=0, x>0.

Consider u=0 on I  (Dirichlet problem).

Remark:

a = hja|/(2x) = element Peclet number

h = element mesh parameter

Interested in 0 < a < 00;  « >» | is viewed as “hard.”
V* = typical finite element space of continuous, piecewise

polynomials of order k.

Point of departure: Galerkin’s method

Find #® € V* such that for all wh e Vh,
Bwh ut) = L(w™)

where

B(w", «*) def f(—a LTt 4 Vot kVut) dO
o}

L{wh) = /w"f dQ
JO

Remark: Galerkin's method possesses poor stability proper-
ties for a > 1. Spurious oscillations are generated by unre-

sotved internal and boundary layers.

Galerkin/least-squares

B(w", u?) + an Lwh r(Lub — f) d2 = L(w")

SUPG
B(w",u") + ‘ o Vur r(Luh - f)d0 = L(w")
CRSE WA (
Classical artificial diffusion

B(wh, ") + / Vuh  khOut dQ = L(wh)
2

Notations:
¢ = domain of eth element.
k" = artificial diffusivity, typically O(%).

T = parameter determined by convergence analysis.

= O(h/la]) for a large.
= Q(h%/K) for a smali.
Remarks: ¢

1. The additional terms improve upon the stability of
Galerkin’s method.

2. The classica! artificial diffusion method amounts to
overkill. Accuracy is himited to first-order, independent
of k.

3. Galerkin/least-squares and SUPG are satisfied if u «— u
(“residual methods”); unlike classical artificial diffusion.

4. Good stability and higher-order accuracy are combined in
Galerkin/least-squares and SUPG.

¢ Global error ecstimates for smooth solutions:
k+ % (at least) in Lo(82), usually & + 1 in practice.

e For rough solutions, same rates are observed outside
of small neighborhoods of layers (“interior estimates,”
or “localization results”).

o Interior estimates are impossible for Galerkin. Layers
create global pollution.

5. Galerkin/least-squares is conceptually simpler than SUPG

and slightly casier to analyze.
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Space-time formulations

Initial-value problem for  ivection-diffusion equation:

Lo ui+ Ly =f on Qx]0, T}
u(x,0) =uw(x) =z€Q

u =0 on I'x]0, T{

Discontinuous Galerkin method in time
Space-time (ie., 0Qx]0,T[) is divided into time slabs,
Ox|tnytagi|, where 0=to < t) < -+~ <ty =T.

t

lml

t.

Q

V* = piecewise polynomials of order k, continuous in #, but

discontinuous across time slabs.

Point of departure: Galerkin’s method

Find u* = uh(z,¢) such that for all w* = wh(x,t),

B.(wh,u*) = L. (w"), n=0,1,...,.N -1

where

L]
B..(w",u")d_i.' / * (— /wf';u'l dQ+B(wh,u")) dt
Jo

+/ﬂ h(t;+1) “A(‘;M) aQ

L,.(wh) def /"..

S,

Y L de+ / W () uh(tg) d
113

w(5) Y ub(z,t5) =uw(z) =<eQ

21

Remark: Continuity of the solution across time slabs is weakly

enforced.

Generalization of the other methods proceeds analogously to

the steady case, For example,

Galerkin/least-squares

tast
Ba(w*,uh) +/ ) S / Low® T(Lou® - f) dQdt = Lo (wt)
. T Ja

Remarks:

1. The mathematical convergence theory is virtually identical

to its steady counterpart.

2. Same error estimates and localization results hold in terms

of the order, k, of the space-time elements employed.

3. The issue of time integrator is obviated by the choice of
space-time interpolation.

4. Unconditional stability is achieved for any choice.

5. Gives rise to @ system of linear algebraic equations on each

time slab.
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i Symmetric linear advective-diffusive systems Galerkin
Bu(WhVhy = L(W"), n=01,. ,N-1
) LV AgVid LV = F
3 ‘ . LY {
: : cv WA .vv-v.Kvv Ba(Wh V) X f \—/ﬂ“’.’i F AV 02 + B<W"'V")) d:
1 k"
V =(Vi, Ve, V) + / WhL,) - AdVH(t,) d9
: o> -~ ~ Ja
3 AT = [A,,Ag,...,;t,]
! -
! Ky - Ku Luw") ¥ / LW™") dt+ / WHED) - AV (1) dO
i A . St 2
i K =1 : :
’ IT{( e E « of
, LT “ VA(eg) % Vi) = Vi)  xeQ
A9V = ATVV = /Il?_‘_’_ bk A ‘3" Galerkin/least-squares
6:1:1 ‘ 0
B,(Wh V) +/ V‘/ LW (L, VE ~ F) dQdt
. Ay =mxmsymm, >0 Ge
: . ) = Lu(“’h)
R Ai=mxmsymm,1 <:<d
K= (m-d) x (m-d) symm,, >0 Remark: Error estimates analogous to those of the scalar case
: ‘ Find V = V (=, ) satisfying (V) and may be proved for Galerkin/least-squares (and SUPG).
| V(e,0) = Vo(z) x€f - . .
% A definition of the matrix = (H.-Mallet 1986, Shakib 1988)
§ V =0 onI'
¥
% o -1/2
_y-r{ 1 i-t T -1
! Analogous to the scalar, steady case we have: T=L (L A¢ Ay AL ) L
i
i
3 Galerkin where
' Ag=LLT ) Cholesky factorization
BWh vhy= [(wh
Lo - — = bl()ck-diag (AQ, ceay Ao)
_: § B(wh v f(-vw" CAVE L OWE L KVVY) a0
: : e
t A ( 0fy 3 ]
LwhE [ whor g0 at Ao
% LA
. e A
Galerkin/least-squares :
- a -
A¢ = Bg‘ As
: A B(Wh vh) 4 Z/ CWh r(LVh - F) dQ = L(W?)
; —~ Ja-
: ; Remarks: TB%'{ %
3 ¥y
: l. r=mx ., > 0 (H.-Mallet, 1986). \
H ™ symu, > 04 e 56) Remark: If A, is only positive semidefinite, then Ay Lis to
4 $ : .
§ : 2. Simple arguments reveal that 7 should not be diagonal, . understood as the inverse on the non- degenerate subspace,
T H
i ! even in 1d.
T : ven in e.g.
1
]
¥ i . . " b . . - . r -
é Space-time formulations are developed in identical fashion to if Ao = ls g] , then A5 def [col g]
the scaler case:
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Incompressible Euler and Navier-Stokes Equations

as a Symmetric Advective-Diffusive System

wy
va{"

ug

4

1 0 0 0

0 100
Ad=rly 01 0

0 0 00

T o

~ 0 e .
A.~=u.~Ao+l ] 1<i<3
[ 4

e; = cartesian basis vector

Kiu=Kp=Ky=vA , v=E

p
Kj=0, i#j
Remarks:
1. 7 is very simple in general. Assuming
96 _ o 2
20 & TR
R
i 0 r0 0
(o070
0 00 X
= _h o ;o oa= hlul _ element Reynolds number
T 2ul Y9+’ T w ¥
(Ve

1 W

0o ’ a
{3
IR N
h? ! T2

by asa=-—0

. Assume V, = 0 and 4; =

2-5

2. The formulation simplifies ¢considerably due to the sparsity

of the arrays. See Szepessy, 1987, and Hansbo-Szepessy,
1990, for an analysis and nuraerical results for a related
method at high Revnolds number, and Johnson-Sarinen,
1986, for analysis of incompressible Navier-Stokes via re-
lated formulations.

eT T; . Then, the method

becomes a nonsymmelric Stokes solver, and is convergent
for all continuous pressure interpolation (i.e., no Babuska-

Brezzi coundition). Galerkin/least-squares and related ap-
proaches to the Stokes problem:

Brezzi-Pitkaranta, 1084
H.~Franca-Balestra, 1986
H.-Franca, 1987
Brezzi-Douglas, 1988
Franca-H.-Loula~Miranda, 1988
Franca-H., 1988

Pierre, 1983, 1989
Franca, 1989
Douglas-Wang, 1989
Duran-Nochetto, 1989
Sylvester-Kechkar, 1990
Stenberg, 1990
Franca-Stenberg, 1991
Franca-H.-Stenberg, 1991
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Compressible Euler and Navier-Stokes equations

(U) Ui+ A-VU -V .KVU =F

U = (pl Py, pt_liy pus, pe)T

Remarks:
1. Neither A nor K is symmetric or definite.
2. Classical L»(Q) stability estimates ave derived by taking
the dot product of (U} with U. This does not even make

dimensional sense,

fa

=P (L U+ ) ]+
N e
m

6o —
a

This snggests that the La(Q)-inner-product structure is
inappropriate for compressible Navier-Stokes and conse-

quently so would he a classical type Galerkin formulation.

Eniropy variables

Godunov 1962, Mock 1980, Harten 1983, ‘Tadmor 1984, Dutt
1985, H. et al. 1986, Johnson et al. 1987.

H=HU) = -ps

R
s=1In (1% (%‘1) ) = noh-dimensional entropy

V = gg = entiopy variables

Remarks:

1. H is a conver function of U, Thus U = U(V) is a well-

defined change of variables which transforms (U) to (V).

2. The dot product of (V) with V results in the Clausius-

Duhem inequality:
0=V (AV,+ A.VV V. (KVV) - F)
implies

(o) V. (pnu) + V. (g) + %r_ >0

3. The space-time formulation inherits this property. Replac-

ing W* Ly V* results in a global statement of C.D.I.

. In practice, the term

wh (AVi+ A vV =

wh (U(Vh) e v FUVHY)

appearing in B,(W") is integrated-by-parts over cach time
slab. Global conservation is attained cven when approxi-

mate element quadrature is employed.
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Nonlinear operators and shock-capturing

Remarks:
1. Galerkin/least-squares, SUPG are linear methods.

2. They produce approximations to discontinuities like

3. No linear higher-order accurate method will produce mono-
tone profiles.

4. The iden is to introduce nonlinear operators in order to
control oscillations about discontinuities, but not upset
higher-order accuracy in smooth regions (“locally first-
order”), H.-Mallet-Mizukami 1986, H.-Mallet 1986,
Dutra do Carmo-Galedo 1087, Johnson-Szepessy 1986-
1989.

2.7

tnsr -~ -~
f }:/ BV W AV VH dQdt
tn . Jar

B =pB(V*) is a sealar
V¢ = a non-dimensional space-time clement gradient operator

Ag = block-ding(Ay, ..., Ag)

Examples:
1. B=|CVh-F|, / ESAaN
where
T = block-diag(r,...,T)
1Xl- = (X rx)}
IXlr = (X -7X)}
2. g =2lc,vh _f|i/|6¢V"|2A°
where

1XIa, = (X + Ao X)}
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Inviscid

Ilow past a Double Bllipse (M. = 26.0)
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Flow past a Blunt Body (M. = 17.9)
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Conclusions

1. a) Galerkin/least-squares is an effective method for

advective-diffusive systems.

b) Nenlinear shock-capturing operators are essential

when discontinuities and unresolved sharp layers are

present.

c) Mathematical convergence proofs have been estab-

lished for all linear and some nonlinca, -itnati o

2. Focal points of research:

e Compressible Fule: and Navier-Stokes equations.

¢ Generation and adaptive refinement of unstructured

meshes, esvecially in three dimensions.

¢ Design and analysis of effective shock-capturing oper-

ators.

3. Current developments:

s More attention paid to turbulence modelling.

o Commercially available compressible flow codes.

o Application to more cumplex systems, in particular,

chemically reacting flows, combustion, MHD.

o Increased emphasis on iterative strategies for parallel

architectures.

o Further mathematical analysis of algorithms and the

devalopment of design principles based upon the math-

ematical theory of finite elements,

Multi-Element Group Partitioring

(Domain Decomposition)

o Algorithm allows different solution techniques on different

subdomains

o For example:

Implicit/direct
group

o group-interior node
® group-boundary node

Tmplicit/iterative
P group

Explicit group

e Generalizable to arbitrary number of element groups

o Eixplicit clement group 3
W
AP = =
0 2"

o Implicit/ direct element group

Structure of the Left—-Hand-Side Submatrices

1=

Uncoupled set of symm., vos. def. nodal block matrices

L[ A
A‘"r = =

I

Al Al

|

q’"%_ﬂ_\
.
= s,

s

s

Fully coupled - stored in skyiine column height form

e Implicit/iterative elenient group

! i
) LAY e
ter _
A Ailrv Ailrr
N 22

Fully coupled - stored in “unassembled” clement file

Global System of Equations

o 'The left-hand -side matrix

rALY 0 0 0
0 Ay 0 Al
0 0 Al Al

0 AL A (AWTHAL A

¢ The nght--hand-side vector

Lyrr
b-‘“r
b.ltu-
(l,;rp + b.znr + b;lrr)

e The vector of unknowns

,nu‘lrr

thly

S———— |
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Partial Reduction of the System

¢ Explicit element group: solve for **?

erp exp . herP
AT a®P = b
dir

¢ Implicit/direct element group: statically condense x

idie def 4 di - iry—1 g di
Adr 4 AfE - Al (At Al

idir def 5] ir ir\— i
b A g ady (Al el

o Reduce the system of equations to

“‘ilclcr A’il’.’cr zilcr

A&'f' (AZZP + A§§'+A§'{' pbndy
iter
bl

(b;ZP + i,_lzlir 4 b‘iztcr)

Rewrite as

w1
at
I
o>

Pre—preconditioning

e Transform system to enhance convergence of iterative solver
e Diagonal pre—preconditioning
xr def .. g
xr —
W = diag(A)

(W-IAW 1) (Wiz) = (W 1h)
e, trtmsr’ e o et e
A x b

s Block-diagonza! nre-preconditioning

W = block(A) = N

=0T (Cholesky decomposition)

N —
@ ]

(OU-TAT-YY(UF) = (U~Th
T

GMRES Algorithm

(Saad and Shultz - Mallet et al.)
o Search for solution & = a4 4 7, such that
wmin 16— Al + )|
K Span{re, Ary,. .., A¥'ry)
ro = b- Axq,
¢ Calculate the orthogonal basis of I,
U, == [uy, Uy, .. )

using Modified Gram-Schmidt orthogonalization

o Generate a 1ectangular apper Iessenberg matrix, H,
H, = (k+1) x k

such that

AUA- = U&-HHL-
o Reduce the minimization problem to
min ||b — Ao -+ 2 =

minjle ~ Hyy |l =
Y

" ol ! T " ‘l
. 0 Y2
min . - i
v : 0 ,
0 ) |

&
z = E yiu,
j=l

e Solve the above problem using a QI algorithm

Preconditioning on Element Group Basis

e Formally replace the system of equations by

(L'AUYUe) = (L7'b)

LN

e

T Y

=gt in s o AR A o N, 3

L

o

Hhemoait et ~2 o3
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2-16
¢ Preconditioner
Ty 1
Lo HL(y) ; 1 H U@
g=1 g=ngy
e For implicit/iterative element group:

Element-by-element (EBE) preconditioners

T L
Liter def Hi'c ; yiter def H e

c=1 e=ngy

Regularized element arrays

A® = A° - Diag(A%) + I

Gauss-Seidel EBE (sum decomposition)
Le+U =A+1
e Nonsymmetric “Cholesky” EBE (product decomposition)

LU= A°

Supersonic Flow over a Flat Plate

't

M=3
e = 1,000

e

Shock

Boundary layer

IMacl:M\bcrl /

o CFL = 25

e CPU-time (sec) per lirear sol re

Wy

Elements Direct Diagonal Block-diag.
112 1.5 1.2 0.3
448 12.2 6.1 0.9
1,792 102.7 35.6 5.0
7,168 1,174.4 176.3 24.5
28,672 — 628.3 130.9

Computed on Convex—C1
o Storage of iterative solver is substantially less than direct
solver
o Effect of EBE preconditioning

¢ CPU-time (sec) per linear solve

Blo<k-diagonal pre-preconditioning

Elements | No-EBE | GS-EBE | NC-EBE
112 0.3 0.3 0.4
448 0.9 0.9 1.3
1,792 5.0 48 6.5
7,168 24.5 21.2 30.4
28,672 130.9 112.0 263.0
e CFL =125

1,792 elements

Block-diagonal pre-preconditioning

=== 1 3 f |
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S 1E4 | W .
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| \\ ™~ \\\
2 1E6} k=s—_\\_ T
1E-7 4 ' L 1 L > 2 .

CPU-time (sec)
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0 50 100 150 200
Time step

100

.01
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CPU-time {min)

NACAO0012 Airfoil
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e Cormparison of global and local time-stepping strategies
s CFL =50

¢ Block-diagonal pre-preconditioning

100 T - Y T

e At o -

E
- 9 lobal
obal time-steppin i

8 1B} € pping
3T IES 1
8
d 1ES -
g local time-stepping
S 1E10 J
Z

1E-12 & 100-step marks+

1E-14 L s .

40 60 &) 100

CPU-time (min)

¢ Local time stepping strategy
CFL = 50 for implicit
CFL = 0.5 for explicit
Block-diagonal pre-preconditioning with iterative algo-

rithms
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100

.01
1E-4
1E-6
1E.8

1E-10
1E-12
1E-14 1

Normalized residual

GS-EBE -

no EBE

Al

\
NC-EBE —~ \ \

l; 100
CPU-time (min)

1000

o At normalized residual 10-13:

Method Time Steps CPU-Time Storage
(min) (MByte)

Explicit 13,977 356.33 0.830
Direct 104 118.05 9.752
No-EBE 147 17.42 4.249
GS-EBE 132 14.83 4,249
NC-EBE 132 16.53 7.354

o Two-element group partitions
§0%-20%

/ 60%—~40%

40%-60%

90 T \ T T b
o 80T 1
.E 10} ]
= 60
[ L Implicit on the inside
(I 11] h
g wof Implicit on the outsid ]
= mplicit on the outsi
5 30 K ____‘\\'/ ) e ]
E 0k \\____‘__§\ ]
= 10 | ‘.‘N\‘\\ N
0 . i i 1 1 \\
0 0.2 0.4 0.6 08 1.0

Fraction of implicit clements

1.0 L) Al ¥ T

0.9 4
g osf :
S otk ]
5 0
% 06} :
T ost :
2 o4l .
g 03f i
Z 02} E

0.1 1

0 e L. . 1 i 1 i
0 0.2 0.4 0.0 038 1.0
Fraction of implicit elernents
Conclusions

e Block—diagonal pre-preconditioning significantly improves

the convergence of the GMRES algorithm.

¢ Implicit/iterative algorithm is superior to both explicit and

implicit/direct algorithm, even for very small problems.

o Implicit/explicit partitioning is useful for making optimal

use of storage and CPU resources.

e We expect implicit/iterative algorithm wo exhibit even
better performance on large three—dimensional problems,

but further research in reducing storage of the element ar-

rays is needed.

1
1
157 ¢ p— ¢
1E-4 .00t 0 1 1
Mosh size, &
100 - . T — r T o —~—rrivn
E T =f>/
10 | . 1
\
s e :
1 i % y : ]
:E’: Tade \ . = E
H
RN - ' E
- E -1
- e
Ol Adaal A aiaald, L 1
1E4 001 01 1 1
Mesh size, h




10 3.0 T T T T T
1k (ODC-Quady L.
25 p
A .
o H
— O0F E 3 20} / g
= 2 J
!0k s .
Y e st ; ]
T OAE4 | :
tES - | 10—t T T =~ exact solution |
1 A 1 1 '} S
186 b R 30 T T T T T
1B - (DC-Livear)  ______.
1E-4 001 01 1 3 25 b
Mesh size, b e
5 20 4
100 £
L4 i1 v T A “
H A 15 F :
g ]
i 10 |
' 1 A 1 J. 4 1 ‘
== : 30 — Y T T T T v T -
: : (DC-Mallet) g
E 25+ <
; .
. 1  20r B
: g
‘ N a
N 15 b J
1E-3 s — L
1E4 up (] -1 1
1.0 4
Mesh size, A . L 1 N L 3 1
6 -4 2 0 2 4 [
Distance from initial shock, =
3.0 \ ¥ T
N 5
an b i 4 line plots i
2y i B
20 4 : i
X . ¥
thy 1 M=o Shack : H
= ' %
w0 -« exnet solution | 10° / ;- M =164 2
! ma——— é
L I Y S - §
20 10 0 10 20 29° [
Distance from initial shock, » TRE ° H
;‘i
)
5

L5
b




Density,

Density, o

Densiyy, »

145 i T T J
3 - - (DC-Quad.)
14 E -
13t !
1.2 -
v
11t : J
1.0 F exact solution ——=c M
09 " 1 1 1
T T T T
ol (DC-Linear)
14
1.3
1.2
11
wh LD
' i
)
(DC-Maller)
1
09 i L —h 1, L
0 0.2 0.4 0.6 [tE] 1.0
Distance from wall, y
v
M =12378
M=29 M =1.942
——— @ enat———.
line plots s - R e e
—- T

Density, p

Density, p

Density, o

SEXUEASHRITEMTII T

3.0 T T T T
(DC-Quud.) . -
28 './ p
20} : ]

i :0— exact solution

4

> A be 4.

T ¥

{DC-Lineat)

o L 1 1 1
T T Y ag
[ L IR
v . - —]

Distance along the wall, r

Constant-in-tine, r = 0

Cunstant-in-titne, r = 0

20

19
]
=1
)

05 |

0 A L d 01 1 1

[ ] k] i 0 1 H 3

T T
02 L L I
e [} K] 3

Lineat-in-time, r =0

2] T Y
08 - 4
3 10 ==aoee 4 04 T
ol B 2
3 o0t E
051 B _yesnaseny
[(J ERENERVRL O Y £ S v
0 L L h 22 L A A
0 \ 2 3 0 ' ] 3
Lincar-in-time, ¢
20 T T T ¥
15 | 4 )
4 4
1k p
3 _
058 S
S, E
0 1. 1 02 1 L (]
1] 1 2 1 0 1 2 3
Iy K
1 Y
L ol AU S T
% ~—-- Exact solution
- P ul time |
3 0s ; v T=1\c
. .
2 06 | ' \ 1
' (]
I ! \
] ‘ \
E 04 F R \ 1
5 ! \
] '
v oot ! . 1
! K
(l \\ ----------- ————t
0.2 L i
-1 1 2 3

0.8

06 |

Density perturbation, {p— g9) x 10°
(=2
3
-

Dimensionless distance, =/ \

e ]

e R e,

P T

T A ARG 1 e A e P

P Py ey sy e

I ATRVEETS

e e



References

1.

o

Lol

o

o

-5

b

=

1

=3

[X]
=

C.1. Bajer, *Notes on the stability of non-rectangular space-time finite ele-
ments”, Int. J. Numer. Methods Bng., 24, 1721.1730 (1987),

. AN, Brooks and ‘T.JR, Hugles, “Streazaline upwind/Prtrov-Golerkin for-

mulations for convection dominated fows with particnlar emphasis on the
incompressilble Novier-Stoker equntions™, Compald. Methods Appl. Mech. Eng..
32, 109-259 (1982).

J.E. Caster, “Numericnl solutions of the Nuvier-Stokes equntions for the
supersonie lainar flow over a two.dimensionnl compression coruer”, NASA
Technical Report, NASA ‘Tt R-335, 1972,

F. Chalot, L.P Francy, I Hazac, TJ.R. Hughes, F. Shakib, M. Maltet,
J. Patisux and B. Stoutliet, "Calenlation of two-dimensional Enler flows with a
new Petrov-Galerkin finte element method”, in A, Dervivux and B, Van Leer
{eds), Noles on Nusner al Fluid Mechanies, Yieweg, 1o appeat.

. PEK. Dutt, “Stuble boundary conditions and difference schenies for Navier-

Stokes type equations”, PR Tk
1985.

. University of Californin, Los Angeles,

. R.M. Ferenez, “Element-by-element presonditioning techuiques for Insge- seale,

vectorized finite eletens anatysis in nonlinear solid and structural mechanics
Ph.D, Theny, Division of Applicd Mechanics, Stanford University, in prepars.
tion.

. LB, Franea, 1. Harari, T 3R, Hughes, M. Mallet, F. Shakib, T.E. Spelee,

F. Chalot aud [.E. Tezduyar, *A Petrov-Galerkin finite cicinent method for the
comprestible Euler and Navier-S.okes cquations”, in T.E. Tezdugar and T.J.R.
Hughes {als), Numerical Mcthods for Compresawble Fows- Finde Differance,
Blement and Volune Techniques, AMD Vol 73, ASME, New Yurk, 1986, pp.
19-43,

AC. Galedo and E.G. Dutra do Canmne, “A consistent appraximete upwimed
Petrov-Gulerkin method for convection-dominated problems”, Comput. Mcth.
ods Appl. Mech. Eng ., 08, §3-93 (1985).

LS K. Godunov, “The probiem of a geacralised salution in the theory of

quasilinear equations and in gns dynamics™, Ruas. Math. Swrueys, 17, 115-1%6
(19623,

G.H. Golub aad CF Vau Loan. Matriz Cumputahons The Johns Hopkins
University Press, Baltimore, 1983,

B Gustafeon and A Sundstrom. “ineopletely parabolic probleais in fload
dynnmics™, SIAAM 7 apol Math,, 35, No 2, pp. 343357 (1978)

A, Harten, “On the symmetric form of system of conservation laws with
eatropy™. J Compud, Phys, 49, 15164 (1953).

M S Holden, "A stdy of flow sepatation in tegons of shock wave-bundagy
Tayer intetactivn in hypersonie ow™, ATAA 11 Fhad and Plasra Dynanacs
Conferenve, Srattle, Wash, July 10-12, 1978

T IR ughes,  Ctocent progress o the development aud unduostanding of
SUPG wethads with speand reference te the compienible Euler and Navie:
Stokes equations”, Int. J Numer Methods Flurds, 7, 1261-1275 (1987).

TIR Magghes and AN Breoks, “A multidimensionad upwind scheme with
uo crosswind dtfusion™. m TLR. Hughes (ed), Fimitr Element Mehods for
Convection Daminated Flows, AMD Vol 5§, ASME. New York, 1979, pp
19-35.

T LR Hughes and AN Biooks, “A thootetical framewerk for Pettov.Galethin
methods with diseontinnons weighting functions, Apphention to the streataline
upwiad procedure”. m RH Gallagher et al (eds), Finste Blewment e Fluds.
Vol i, Wiley, Cliichester 1982, pp 4765

T TR llughes and RM. Ferencz, ~lmphicit solution of large seale contact

and qmpact problems emploving sy EDE preconditioned iterative solver™.
IMPACT 37 International Conference on Effects of Fast Trannent Loading
1 the Contezt of Structural Meehanies, Lausanue, Switzerland, August 26-27,
1987.

- TR, Hughes, M. derenez wad 1O Hallguist, “Lat.caenbe vectotized

implion caleulations in solid mechanics on & CRAY X-M1I'/48 utiiizing EBE
preconditioned conjngrte gradicnts”, Comput. Methods Appl. Meeh. Eng., 01,
215248 (1987),

9. TR Nughes, L.P. Franca, §. Harari, M. Maltet, B Shiskib and T-E. Speles,

“Finite element muethed for high-specd Bows: Consistent eatendation of bonnd-
ary fux®, ATAA 25t Aerospace Scicnces Meeting, Poper No  §7.0556, Reno.,
Nevada, January 1937

TR, Hughes, L.P Pranca and G.M. Huelbert, “A new finite element for-

mnlation for computaticasl Quid dyaamics: VUL The Galeskin/lerst-squares

2

22,

2

«

9.

e

3>
&

3

2
3

31

33

M.

36.

Ji.

2-21

tmethod for Advectivediffusive squations”, Comput.  Methods Appl.  Mech.
Eng | to appent

T.J R Bughes, L. Franea and M Mallet, *A new finite lanent formulation
for computational thuud dynamivs: T Symmetric fosmsof the compessible e
and Navier Stokes equations and the sevontd tnw of thermodynnmies”, Comput
Methods Appl. Mech. Eng., 54, 223-234 (1985).

TJIR. Hughes, L.P Franca and M. Mallet, “A new finite clement foru-
tntion for computationa)! lutd dynimics: VI, Convergence analysis of the
tonal

generalized SUPG formtation, for linear time.depond teicli

advectiv
(1087).

dilfucive systems®, Comput. Methods Appl Mech Eng., 03,97 112

T.JIL flughes and G.M. Hulbert, “Space-time findte clement methods for
lostad ics. Formmlations and cnor estimates”. Comput, Mecthads Appl
Mech. Eng., 66, 339-363 (1988).

TJA Hughes and M. Mallet, “A new finite element formulntion for compu-
tational fluid dynomics: 111 The generalized stieamline operator for multidi
wmensional advective-dithusive systoms™, Comput. Mczhads Appl. Mech, Eny.,
53, 300-328 (1936},

- T Hughes and M. Maldlet, *A new finite element formulation for computa

tional luid dynamies: IV. A discontinuity-capturing, opetator for multidinien-
siond wdvee ditfusive systems™, Comput. Methads Appl. Mech. Eng, 53,
329 39 (1056)

ST R Hughes, M. Mallet and A, Mizukami, *A new findte oleneat formulntion

for computativnnl findd dynanies: 11 Beyond SUPG®, Comput. Mcthods Appl
Mcch, Eng., 84, 341-355 (1956).

. TJ.R. Hughes ond F. Shakib, “Computational acrodynumics and the tinite

clement method”, ALAA 26th Aerospace Sciences Meeting, Paper No. §5-0051,
Reno, Nevada, Janunry 1953,

TIR Hughes and T.E. Tezduyar, “Finite element methods for tisst-order

hyperbolic systems with patticular emphasis on the compressible Euler vqua:
tions", Comput. Mcthods Appl. Mech. Eng., 45, 217-284 (1954)

- T IR Hughes ae P70 E. Teaduyni, “Analysis of <ome fully-discrete algenthuns

fer the one.dimensional heat equation”, Int. J Nwmer. Methads Eng . 81,
163-168 (1985).

G.M. Hulbert. "Space tine finite element miethods for second-order hypreholie
equations”, P4 D Thesa, Stanford University, in prepartion.

CAM Rung and RAW. MacCommack, “"Numesical solations of suparonic and
hyperronic lauinar compression corner flows" . A74A4 Jowranl 11 Noo 4475,
481 (1976}

C. Johnson, U Navert nud ] Prkaranta, “Finite element nethods for Buew
hyperholic problems®, Comput. Methods Appl  Mcch  Eng, 45, 285 312
(1954).

C Johnson and A Szepessy, “Convergenee of a finite eleme
noninens iyperboie conservition inw”, dehnicsi Acpo
ics Depitinent, Chaliners University of Tedhnology, Goteboy

AL nnthad for n
Sy Mativnai-

woden, 1989

C Johuson aud A Szepessy, "A shock-eapturing streamiine diffision finite
clement wethod for o noulinear hyperbolic conservation law”, Techmical Ke.
port 1936-09, Mathvwatics Depattient, Clslinets Univensity of Techaalogy,
Gatebung, Sweden, 1936

C. Jolmvon sud AL Sicpessy, "Ou the convergence of stieambine diffusion
finite elrment piethods for hyperbolic conservation laws™, in T.E. Tezduyar
and T IR Nughes (edsy, Numencal Methods for Compresable Flows  Finate
Drfference, Elemant and Yodume Techmgues, AMD Vol 78, ASME, New York,
1936, pp. 75N

C Jolinsen, A Siepessy and P Hansbo, "On the convergence of shack
capturing streambine diffsion finite element methods for hyoverbolie conse
o {nws™, Techmical Report 1987-21, Mathematics Departinent, Chalta
University of Technology, Goteborg, 1987,

S.K. Jordan and J E. Fronum, “Oscillutar - dzag. tift, and torque un a circalar
eylinder in n uniform low®, Phya Flaeds 15, No 3, 372376 (1972)

S. Lang. Dyfferenttal Manwfolds, Addiwn-Wesley, Reading, Massaclnsetts,
1072

. M, Mallet, =A finite eleaent method for computational flud dynamices™, PA.D.

Th

Stanford University, 1985

M. Mallet, J. Peninux and B Stonfltet, ~Convergenee accelerntion of Fnite
element methods for the solution of the Enler and Navier.Stokes equations of
compressible faw™, Pracredings of the 7th GAMM Conference on Numerical
Methods i Fluid Dynamics. to appear

. LE. Marsden and T3 Hughes, Mathematical Foundations of Elsncity,

Prentice Hall, Englewood Cliffs, New Jersey, 1087

-
-

L.

e

A TV Ve R

1

..




! g v

i
]
13
X
!
i
i
’
¢

-

2-

LER

e
E=%

22

. AL Mizuhami, “A mixed finite element method for boundary ax computation™.
Camput Methals Appl Mech Eug, 87, 230-243 (1956).

. M.S. Mock, “Systemis of canservation laws of mixed lype™, . Differenteal

Equatiens, 37, 70-8§ (1950).

B, Nour-Omid, B.M. Patlett and A. OGoefsky, “Comparizon of Lanczos with

conjugate gendient using eleinent preconditioning”, v B, Glowinski ¢ al. (ods),
Pracecdings of the Firal Internationel Sympasium on Domain Decomposition

2”3“-"! for Partial Differential Equattons, STAM, Philadelphia, 1988, pp. 250
G0.

- Y. Saad snd AMH. Selwltz, “GMRES: A generalized wininnan  resid:
ual algotithm for solving nonsymmetrie linear systems™, Resanch Beport
'ALEU/DCS/RR-254, Yale University, Departnent of Computer Seicver,
New Haven, 1083,

. F. Shukib, T J.R. Hughes and 7. Johan, “A inulti-element geonp precondi:

tioned GAMRES nleoritlum for nonsyaunetric systems atising in finite clenwent
annlysis”, Comput. Methods Appl. Mech. Eng., to appear.

A. Szeprssy, “Convergence of a shock.capturing strasmline ditfusion finite

18

49.

clenent mothad for a scalar conservation law in lwo space dimmensions®,
Techmeal Repost 1955-07, Mathemativs Departinent, Chalmers University of
Tedmvlogy. Giteborg, Sweden, 1988

E. Twlmor, “Skew.iclfadjoint {otms for systems for consarvation laws®, J.
Math, Anol Appl. 103, 125-442 (1984).

LA Thowmpson, Compreasible-Fluid Dynamics, McGrnw-Hill, New Yuork, 1972,

E.A. Thoruton, P'. Decl pived aud G, Venganti, “A finite el ¢ approach
€1 picdiction of actuthermal ioads”, ATAAJASME A Flad Mechames,
Plasma Dynamics and Lasers Cunference, Paper No.  $6.1050, Atlanta,
Crorgin, May 12.14, 1086,

. RF Warming, RAL Deam and B, Hyett, “Dingonnlization st sinwltanevus

synunetrization of the gaa-dynatics matricea”™, Math. Comput, 29, Nu. 132,
1037.1045 (1975)

R.F, Wanaing and D.J. Hyett, “The moditied cquation approach to the stn-
bility and aceuraey annlysis of finite.diffevence methods™, J. Comput. Phyaies,
14, pp. 159-179 (1974).

oy Ay ot AR g

A UL o 1 spant bt cvof PO,

" s At



- A TR et

P REERE Ay by

T Y N o dla gt e an L LR rp

L R

—

31

FINI'TE ELEMEN ¥ COMPUTATION OF UNSTEADY INCOMPRESSIBLE FLOWS
INVOLVING MOVING BOUNDARIES AND INVERFACES
ANDITERATIVE SOLUTION STRATEGIES

by

Tayfun E, Tezduyar
Departinent of Aerospace Engincering and Mcchanics,
Army High-Performance Computing Research Center
and
Minnesota Supercomputer Institute
1200 Washington Avenue South
Uniiversity of Minnesota
Minncapolis, MN 55415
United States

Outline

Abstract
I introduction
II.  The Governing Equations of Unstcady Incompressible Flows
II.  The Space-Time Formulation with the Galerkin/Least-squares Stabilization and Application to Moving
Boundarics and Interfaces: tho DSD/ST Procedure
A, Themcthod
B.  Application to flows involving moving bodics
IV.  The Formulations with the SUPG and PSPG Stabilizations
V.  CEBE (Clustered Element-Ry-Element) Preconditioning
VL. CC (Cluster Companion) Preconditioning
V1. Mixed CEBE/CC Preconditioning
VIIL. Numerical Examples for Unsteady Incompressibie Flows
A.  Unsteady flow past a cylinder at Reynolds number 100
B, Pulsating drop
C.  Largc-amplitude sloshing
D.  Flow past an oscillating cylinder
F.  Flow past an oscillating airfoil
IX. Numerical Tests for the Mixed CEBE/CC Preconditioning
12 21

Appendix t¢ Mixed CEBE/CC Preconditioning: Derivations Related to B “ad B
References

Abstract

In these lecture notes, we review some of the recent progress on stabilized finite element formulations used in
computation of incompressible flows. These stabilization techniques are uscd to prevent the numerical oscillations that
might be gencrated by the presence of dominant advection terms or by inappropriate combinations of interpolation
functions uscd for the velocity and pressure. The stabilization techniques emphasized in these lecture notes are the
Galerkin/lcast-squares, sircamline-upwind/Petrov-Galerkin, and pressure-stabilizing/Petrov-Galerkin formulations, all of
them are consistent formulations in the scnse that an exact solution still satisfies the stabilized formulation, Some of
these techniques arc based on finite clement discretization in both space and time. Most of the numerical examples
considered are unsteady flow pioblems, with emphasis on those involving moving boundaries and interfaces, such as
free-surface flows, liquid drops, flow past an oscillating cylinder and flow past an oscillating airloil. Flow past a
vertically oscillating cylinder mounted on springs is solved as a simple but fundamental fluid-structure intcraction
problem.

Also revicwed arc the iteration strategics cmployed to solve the implicit equation systems resulting from the finite
clement discretization of these flow problems, including thosc discretized by using the space-time formutation. In the
space-time formulation the finite clement interpolation functions are discontinuous in time so that the fully discrete
equations are solved one space-time slab at a time, and this makes the computations feasible. Still, the computational
cost associated with the space-time finitc clement formulations using piecewise lincar functions in time is quite heavy.
For large-scale problems it becomes imperative to employ efficient itcration methods 10 reduce the cost involved, This
is achieved by using the generalized minimal residual (GMRES) iteration algorithm with the clustered clement-by-
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clement (CEBE) preconditioners, The CEBE preconditioning is a gencralized version of the standard clement-by-ciement
(EBE) preconditioning. In the CEBE preconditioning the clemients are partitioned into clusters of elements, with a
desired number of clemients in each clustor, and the iterations are performed in a cluster-by-cluster fashion, The number
of clusters should be viewed as an optimization parameter o minimize the computational cost. Recently we have been
performing this type of computations in the massively parallel enviconments of the Connection Macizines 2 and 5. For
these implementations we have been so far using diagonal preconditioners. We will include some cxamples from these
massively parallel computations.

In these lecture notes we also describe a new mixed CEBE/CC preconditioning method for finite element
computations. The CC (cluster companion) preconditioning method shares a common philosophy with the multi-grid
methods. Tho CC preconditioners are based on companion meshes associated with different levels of clustering. For cach
level of clusteting, we construct a CEBE preconditioner and an associeted CC preconditioner. Because these two
preconditioners in a sense comploment each other, when they are used in a mixed way, they can be expected o give
better performance. In fact, our numerical tests, for two- and three-dimensional problems governed by the Poisson
equation, demonstsate that the mixed CEBE/CC preconditioning tesults in convergence rates which are, in most cascs,
significantly better than the convergence rates obtained with the best of the CEBE and CC preconditioning methods.

1. Imtroduction

The purpose of these lecture notes is to present a review of our solution strategies for incompressible flows using
finitc clemenis. These strategics include the stabilized formulations, the space-time finite clement approach to flow
problems with moving boundari¢cs and interfaces, iteration techniques for solving the implicit equation systems
involved, massively parallel implementations, and sophisticated preconditioning techniques. The description of the
strategics reviewed in these lecture notes, and the numerical results reported, have mostly been extracted from recent
articles by Teiduyar ct al.1-5, Mittal and Tezduyar® and Behr et al.7. The numerical examples considered here are
unsteady flow problems, including those involving moving boundarics and interfaces, such as large-amplitude sloshing,
liquid drops, flow past an oscillating cylinder and flow past an oscitlating airfoil.

Finite clement computation of incompressible flows involves Lwo main sources of poiential numerical insiabilitics
associated with the Galerkin formulation of a problem. One source is due to the presence of advection terms in the
governing cquations, and can result in spurious node-to-node oscillations primarily in the velocity ficld. Such
oscillations become more apparent for advection-dominated (i.c., high Reynolds number) flows and flows with sharp
layers in the solution. The other source of instability is due to using inappropriate combinations of intcrpolation
functions to represent the velocity and pressure fields, These instabilities usually appear as oscillations primarily in the
pressure ficld. In fact, there is not much about cither of these numerical instabilitics that could be considesed to be
inherene to the finite ¢lement formulation. Such instabilitics appear also in the standard versions of other discretization
techniques such ac finite difference amd finite volume methods,

For the formulations considered in these lecture notes, the stabilization of the numerical method is achieved by
adding to the Galerkin formulation a scrics of stabilizing terms. These terms can be obtained by minimizing the sum of
the squared residual of the governing cquations integrated over cach clement domain, This kind of a stabilization is
inown as ths GLS (Galerkin/Lcast-squarcs) stabilization. This approach has been successfully applied to Stokes flows8,
compressible flows?-10, and incompressible {lows at finitc Reynolds numbers2-3:11+12, For time-dependent problems,
a strict implementation of the GLS stabilization technigue necessitates finite clement discretization in both space and
time, and therefore leads to a space-time finite element formulation of the problem. The space-time finite clement
formulauon has recently been successfully used, in conjunction with the GLS stabilization, for various problems with
fixed spatial dumains, We can give as example the work of Hughes ot al 13, Hughes and Hutbert14, Shaxib10, and
Hansbo and Szepessyl2,

Perhaps one of th: most striking applications of the stabilized space-time finite clemeny formulation is, as it was
first pointcd out and implemented by Tezduyar et al.2™3, in computing moving boundarics and interfaces. The DSD/ST
(Defonning-Spatial-Domain/Space-Time) procedure introduced by Tezduyar ot a1.2-3 serves this purpose and was
successfuliy applicd io scveral unstcady incompressible flow problems involving moving boundarics and interfaces,
such as free-surface flows, liquid drops, two-liquid flows, flows with drifting cylinders. In the DSD/ST procedure the
finite element formivlation of a problem is written over its space-time domain, and therefore the deformation of the
spatial domain with respect to time is taken into account automaticelly. Furthermore, in the DSD/ST procedure the
frequency of remeshing is minimized. Here we define remeshing as the process of gencrating a new mcsh, and projecting
the solution from the old mesh to the new one. Since remeshing, in general, involves projection errors, minimizing the
frequency of remeshing results in minimizing the projection crrors. Furthermore, minimizing the frequency of
remeshing increases the massive parallelization potential of the computations.
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It is important to rcalize that the finite clement interpolation functions are discontinuons in time so that the fully
discrete cquations are solved one space-time slab at a time, and this makes the computations feasible. Still, the
computational cost associated with the space-time finite clement formulations vsing piccewise lincar functions in time
is quite heavy. For large.scale problems it becomes imperative to employ efficient iteration imethods 10 reduce the cost
involved. This was achieved in Liou and Tezduyar! ! by using the gencralized minimal residual (GMRES)!S iteration
algorithm with the clustered element-by-clement (CEBE) preconditioners. We will review such preconditioning
techniques later in these leciurc notes.

Computation of time-dependent incompressible flow problems, over fixed spatial domains, can be performed by
using the finite element discretization in space only, rather than in both space and time. In this cas¢ we first consider
the GLS stabilization for the steady-state cquations of incompressible flows. Then in the definition of the stabilizing
terms, we replace the rosidual of the steady-state equations with the tinie-gependent ones. These stabilizing terms are
added 10 the Galerkin formulation of the time-dependent cquations. If, at the clement interiors, we further neglect the
contribution 10 the weighting function from the viscous terms (it is identically zero for lincar velocity interpolation) we
get a formulation with combination of SUPG (strcamline-upwind/Petrov-Galerkin) and PSPG (pressure-
stabilizing/Petrov-Galerkin) stabilizations. The former prevents the numerical oscillations caused by the presence of
advection terms, while the latter allows one to use equal-order functions for velocity and pressure without genenating
oscillations in the pressure,

The SUPG formulation was introduced by Hughes and Brooks!6, A comprehensive description of the formulation,
together with various numerical examples, can be found in Brooks and Hughcs”. The implementation of the SUPG

formulation in Rrooks and Hughes” was based on QIPO (bilincar velocity/constant pressure) elements and one-step
time-intogration of the semi-discrewe equations obtamed by using such clements. For hyperbolic sysiems in general, and

compressible Euler equations in particular, the SUPG stabilization was first reported by Tezduyar and Hughcsls. The
SUPG stabilization for the vorticity-strecam function fcrmulation of incompressible flow problems, including those

with multiply-coanected domaias, was introduced by Tezduyar et all?,

It was shown that (sce Brezzi and Pitkaranta20, and Hughes et al.21), with proper stabilization, elements which do
not satisfy the Brezzi condition can be used for Stokes flow problems. The Pewov-Galerkin stabilization proposed in

Hughes ct al.2! is achicved, just like in the SUPG stabilization, by adding to tte Galerkin formulation a series of
integrals over clement domains. The PSPG stabilization term proposed in Tezduyas ot al.l is a gencralization, to finite
Reynolds number flows, of the Petrov-Galerkin stabilization term proposed in Hughes ct al.2! for Stokes flows. In
Tezduyar ¢t al., the SUPG and PSPG stabilizations are used together with both onc-step (T1) and multi-step (T6) time-
integration schemes22, With the T1 scheme, the SUPG and PSPG stabilizations are applicd simuliancously. With the
T6 scheme, on the other hand, the SUPG stabilization is applicd only to the steps involving the advective terms, and
the PSPG stabilization is applied only to the steps involving the pressure evms, Both schemes were implemented in
Terduyar et al.] based on the Q1Q1 (bilincar velocity and pressure) and PIP1 (lincar velocity and pressure) clements,
and were successfully applied (o a set of nearly standard test problems.

‘The elemeni-by-clement (EBE) preconditioners, which are constructed as series products of element level mairices,
have been successfully applicd to several clases of probtems23-26, They can be used effoctively with the conjugate-
gradient and GMRES 15 methods, and are highly vectorizable and paraliclizable?3:27-28, They can also be used together
with the implicit-explicit and adaptive implicit-explicit time-integration schemes26:28-30, In CEBE (clustcred element-
by-clement) preconditioning! 131, the elements are merged into clusters of elements, and the preconditioners arc
construcicd as serics products of cluster level matrices. In Liouw and Tczduyar3l. the CEBE preconditioning, together
with the conjugate-gradient method, was used for solving problems with symmetric spatial operators (c.g., for problems
governcd by the Poisson cquation). In Liouw and ’I‘czduym‘l i the CEBE preconditioning was cmployed, in conjunction
with the GMRES mcthod, to solve compressible and incompressible flow problems. Applications to the space-time
finite clcment formulation of incompressible flows were included in Liou and Tezduyar! !, To facititate vectorizstion and
parallel processing, as it is done in the grouped clement-by-clement (GEBE) method27, the clusters can be grouped in
such a way that no two clusters in any group are connected. Furthermore, depending on the number of elements in the
ciuster, within cach cluster, clements can again be grouped in the same way. Each cluster matrix ts formed by
assembling together the clement level matrices associated with the clements in that cluster. The number of elements in
cach cluster can be viewed as an optimization parametcr that can be varied to minimize the computational cost, In fact,
in Mittal and Tczduyar6. the unsteady incompressible flow computations were performed by using a space-time finile
clement formulation with a nearly optimal cluster size which was determincd by numerical experimentation,
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In these lecture notes we review the CC (cluster companion) preconditioning iniroduced by Tozduyar et al.3, In
the construction process of the CC preconditioners, wo first sit with a "primary” mesh with different levels of
clustering. For cach lovel of clusicring in this primary mesh, we define a "companion” mesh, such that cach cluster of
the primary mosh forms an eloment of the companion mesh. We then define a CC preconditioner bused on ench
companion mesh, such that there is a CC precenditioner associated with each CERE preconditioner based on a certain
level of clustering. This way. for cach level of clustering, we obtain a CC preconditioner which we expect to have more
inter-cluster coupling information then the associated CEBE preconditioner has. Conversely, tho CEBE preconditioner
can he axoected (0 have more intra-cluster coupling information than the associated CC preconditioner has,

The mixed CiBE/CC preconditioning introduced by ‘Tezduyar et al.3 is based on the belief that the CEBE and
CC preconditioners comploment cach other, and theretore when they are mixed together they will result in betler
convergence rutes. The mixed preconditioning can be implemented by using these two preconditioners alternately at each
iteration of the conjugate gradicnt method or at ecach outer iteration of the GMRES mceibod.  Recently Sand32 has
formulated a new version of the GMRES algorithm which allows changing the preconditioner at every innet iteration.
In fact, n GMRES subroutine, based on this new formulation and made available to us by Saad, is what we use 0
imploment our mixed preconditioning.

1. The Governing Lquatioas of Unsteady Incompressible Flows

Let Q€ R™d pe the spatial domain at time t ¢ (0,T), where ngd is the number of space dimensions. Let Iy
denote the boundary of Q. We consider the following velocity-pressure formutation of the Navier-Stokes equations
goveming unstoxdy incomprossible flows:

p(g%wtu-Vu)«cV.o:o on  Vie (0T, mn
Vou=0 on y Vie (0,T), 2)

where p and v are the density and velocity, and o is the stress tensor given as

gi{pu)=-pl+2pne(u) 3)

with
1 W
s{uy=3{Vut{Vu) ). )

Here p and gt are the pressure and the dynamic viscosity, and T is the identity tensor. The part of the boundary at which
the velocity is assuraed to be sprciticd is denoted by (1pg :

u=g on (IN'Yg Vie (OT). )

The "nawral" boundary conditions associated with (1) arc the conditions on the stress components, and these e the
conditions assumed to be imposed at the remaining part of the boundary:

na=h on (Mg Ve OT). ©)

The homogencous version of (6), wiich corresponds 10 the "traction-free” (i.¢., zero normal and shear stress) conditions,
is often imposed at the out Qow boundaries. As initial condition, a divergence-free velocity ticld ug(x) is specified over
the domain Qqatt = 0

u(x,0) = up(x) on Q. )]

Lot us now consider two immiscible fluids, A and B, occupying the domain Qq, Lot (Q)A denote the subdomain
occupicd by fluid A, and (TDA denote the boundary of this subdomain. Similarly, lot  ()p and (I")B be the
subdomain and bouwndary associated with fluid B, Furthermore, let (I)A B be the intersection of (')A and ()R, i.c..
the interface between fluids A and B,
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The kinematical conditions at the interface (TY)AB are based on the continuity of the velocity field. The dynamical
zonditions at the interface, for two-diinensional problems, can be expressed by the t*ollowing cequation:

BA°CA+DB OB =hA Y /Rp cn (FPaB Ve OT), (8)

whiere nA and np are the unit outward normal vectors at the interface, 6A and o are the steess tensors, y is the surface
wnsion coefficient, and R4 is the radius of curvature defined 1o be positive when na points towards the center of :
curvature. The condition (8) is applicable also to free-surface flows (i.e., when the sccond fluid does not exist), provided
that subdomzin () A is the one assigned to be occupied by the fluid.

YIi. The Space-Time Formulation with the Galerkin/Least-squares Stabilization
snd Application to Moving Bounderie: and Interfaces: the DSD/ST Procedure

v e ase e

———

A . The method

In the space-time finite element formulation, the time interval (0.™) is partitioned into subintervals Iy = (tn.tn+1). :
where 1y and tp+1 belong to an nrdered series of time levels 0 =19 < i) <... <tN =T. It was first shown in :
Tezduyar et al. 23 that the stabilized space-time finite zlemert formulation can be effectively applicd to fluid dynamics
ccmputations involving moviag boundaries and interfaces. In this formulation the spatial domains at various time
levels are allowed 10 vary. We let Q) = Q and I'y = I't,, and define the space-time slab Qq as the space-time domain
encidsed by the surfaces 0, Qpyq and Py (see Figure 1), Here Py, the lateral surface of Qy, is the surface described by 3
the boundary T, as t traverses I . Similar to the way it was represanted by equations (5) and (6), Py, is decomposed into

(I’'n)g and (Pp)p with respect to the type of baundary condition bein,, imposed.

e ——

- g

oy ——

Figure 1. The space-time slab for the DSD/ST formulation

Finite clement discretization of a space-time stab Qp is achieved by dividing it into clements Qﬁ. c=12, ..., (0eDn,s

where (ne))n 1s the number of clements in the space-time slab Qy . Associated with this discretization, for each
space-time slab we define the following finite elemert interpolation function spaces for the velocity and pressure :

(Shn= [ uP 1uh e [ IR Q)] "sd, ub = gh on (Prg ) . )
Vo= (whiwh e {HIP Q) "sd, wh 2 0 on (Pa)g ) . (10)
Spn= (Vo= (aMIghe HIh Qp ) an

Here 1Y (Qn) represents the finite-dimensional function space over the space-time slab Qp. This space is formed by o
using, over the parent (2lement) domains, first-order polynomials in space and time. It is also possible to use ,
zeroth-order polynomials in time. In either case, globally, the interpolation functions arc continuous in space but

discontinuous in iime.



3-6

The space-time formulation of (1)-(8) can be written as follows: start with

(M) = o) ; (12)

sequentially for Q1,Q2, ..., QN-1, given (uy_, find b e (St and phe (sg),., such that V wh'e (Vi)

and vV qh € (V;)n

h
jwh-p (a—%w uh.v uh) dQ + J'e(wh) : o(phub) dQ
Gn ¢ Cn

- th.hdl’ - th-nAy/RAdp
Pnn (PrAB

¢ Jatowahaq + fuhlp @hy - whp g
Qn o)

(neD) h

+ Zn ft [p (%“Ll- + by wh)—- V~c(qh,wh):|-
e=1_¢

Q

at

h
[o (—a-'-'-+ uh.v yh )-- V-c(ph.uh)] Q=10 . (13)

where (Pp)AB is the space-time surface described by the boundary (T)AB as t traverses the time interval (in.ta+1)-

In the variational formulation given by (13), the following notation is being used:

+
@iy = tim 550 uPn £ 8, (14)
fe.odQ= | ft.rdQd, (15)
N |
n *
fe.odp= | [( Hdra. (16)
Pn
i, T
Rerarks
1. If we were in a standard finite ciement formuiaiion, rather thar a space-time one, the Galerkin formulation of (1)-

{8) would have consisted of the first five inegral, (their spatial versionz of course) appearing in equation (13). In
the space-time formalation, because the iricrpolation funcuions are discontinuous in time, the sixth integral in
equation (13) enfoices, weakly, the coatinuity of the velocity in time. The remaining series of integrals in
cquation © - e the least-squares tezms added to the Galerkin variational fexmulation to assure the numerical
dabifyz . s computations. The coudficient T dctermines the weight of such added terms.

2. Thiskind o tabilization of the Galarkin forniiation is referred to as the Galerkii/deast-squares {(GLS) procedure,
and can be considered as a gereralization ¢f the stabilization based on the streamline-upwind/Percv-Galerkin

NG A
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(SUFG) procedure employed for incompressible flows. It is with such stabilization procedures that it is possible
to use clements which have equal-order interpolation functions for velocity and pressure, and which arc otherwise
unstable.

It is important to rcalize that the stabilizing terms added involve the momentam equation as a factor. Therefore,
despite these additional terms, an exact solution is stiil admissible to the variational formulation given by
cquation (13).

The coefficiont t used in this formulation is obtained by a simple multi-dimensional generalization of the optimal

T given in Shakib 19 for onc-dimensional space-time formwation. The expression for the © used in this formulation is

h 172
= ((32;)2 « G, (%)2) \ {an

where v is the kinematic viscosity. and At and h are the temporal and spatial "clement lengths".

Remarks

4,

=

Because the finite element interpolation functions are discontunuous in time, the fully discrete equations can be
solved one space-time slab at a time. Still, the memory needed for the global matrices involved in this method is
quitc substantial, For example, in two dimensions, the memory needed for space-time formulation (with
interpolation functions which arc piecewise lincar in time) of a problem is approximately four times iore
compared to using the finite clement method only for spasial discretization. However, iterction methods. can be
employed to substantially reduce the cost involved in solving the lincar equation systems arising from th space-
time finite clement discretization.

The kinematical conditions at the interface (')A B are automatically satisfied because the discratized subdomains
(QpA and (Q)B share the same nodes at this interface.

The additicnal term (i.e., the fourth integral) in equation (13) enforces the dvnamical conditions associated with
the interfaces and free-surfaces in the presence of surface tension effects. If the interface is to be interpreted as the
frec-surface of a single fluid, then the fluid is assumed to occupy subdomain (£2¢)A . This variational
formulation can of coursc be'casily extended 10 more than two fluids,

For two-liquid flows, the solution and variational furction spaces for pressurc should include the functions which
are discontinuous across the interface,

. Application to flows involving moving bodies

As a special case of moving bodics let us now consider a {recly moving cylinder. The cylinder moves with

unknown lincar velocity components Vi and V2 and angular velecity 6. The temporal ¢volutions of these additional
unknowns depend on the flow ficld and can be described by writing the Newlton's law for the cylinder;

dvi (V). V2, 8,U)

v v (18)
av2 L (V}, V2,8,U)

vz, v _ (19)
0®_T(V],V2.8.U) 20)

d J '

where D, L, and T are the drag, lift and torque on the cylinder, while m and J are its mass and polar moment of inertia.
The vector of nodal values of velocity and pressure is denoted by U. Temporal discretization of cquations (18)-(20) leads
10 a sct of cquations which, in an abstract form, can be wrilten as
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V-V =AtD(V .V, U). (21)

Here V (unknown) and ¥V~ (known) are vectors representing the motion of the cylinder, respectively, inside the current
space-time slab and at the end of the previous one. The current slab thickness th41 —tn is At. For linear-in-time
interpolation, equation (21) takes the form

T o A
Vo Vi), E{(Dn +D_, )
AON N a -
n+l n 2in (Ln + Lm—l)
©)n4 ©), -;}'(T; £ T,
< . > _ < =AYy, o (22)
V1), vy, om Pn ™ Dy
vy va), Ly = Loy
®y ©) LT - T, )
L&) (O (85T ™ o))
Bascd on the general expression (21), we can write the incremental form of (22) as
— At g—%)au - (I—Al(g—l‘:)) AV =RV (U,Y) . @3)

Equation (23) is of course coupled with the incremental form of the discrete equation systein resuiting from (13):

My 8V + M) AV =Ry UV). @4)

In computations reported in this article, the system (23)-(24) is solved by = block ieration scheme in which the term
(3—3) is neglected. During cach iteration, equation (24) is solved for AU only, using the vaiue of V from the

previous itcration; and then V is updated by (23) while U is held constaut. However, the full system can, in principle,
be soived simultancously (o take advantage of larger time steps afforded by a fully implicit method. Iieiating on the
solution will still be needed not only because of the nonlinear nature of (1), but alsn hecause of the cepradence of the

L] M c
cicment domains Q n o0 the vector V.,

Remaik

§.  Inthe DSD/ST procedure to facilitate the motion of free-surfaces, interfaces and solid boundaries, we need to
move the boundary nodces with the normal component of the velocity at those nodes. Except for this restriction,
we have the freedom to move all the nodes any way we would like to. With this frecdom, we can move the mesh
in such a way that we only nced to remes. vhen it becomes necessary 1o do so Lo prevent unacceptable degrees of
mesh distortion and potential entanglements, By minimizing the frequency of semeshing we minimize the
projection errors expected 10 be introduced by remeshing. In fact, for some computations, as a byproduct of
moving the mesh, we may be able (o get a limited degree of automatic mesh refinement, again with minimal
projection errors. For example, a mesh moving scheme suitable for a single cylinder drifting in a bounded flow
domain is described in Tezduyar et al.3. Also by minimizing the trequency of rem cshing, we increase the massive
parallelization potential of the ccmputations.
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IV. The Formulations with the SUPG and PSPG Stabilizations

The space-time formulation, described in the previous section, has the advantage of being able to handle flow
problems involving moving boundari¢cs and interfaces, but is quite costly for large-scale problems. The CEBE itcration
technique can be used to reduce the cost substantially, For problems that do not involve any moving boundaries and
interfaces, one can use even less costly formulations. These formulations are based on finite element discretization in
space only, rather than in both space and time. In this section the variational formulations with the SUPG and PSPG
stabilization terms arc described.

Associated with the finite element discretization of 2, we define the following finite element interpolation function
spaces for the velocity and pressure

S:=(uhluhe (HIh(Q)) "sd,ub=ghonry ), @5)
Vio (whiwhe [HIh (@) "sd,whZ0onTy), 26)
hovR_ (qhighe HIb

Sp=Vp= (d"lahe HIN @) @n

Here HIP (Q) represents the finite-dimeasional function space over the spatial domain €2. This space is formed by
using, over the element domains, first-urder polynomials in space. The stabilized Galerkin formulation of (1)~(7) can

be written as follows: find ull e S: and phe S:: , such thatV whe V: andV qhe V:;

h

jwh-p (Q;—sf uh.v uh)dQ + Is(wh) :o(phuhydQ - jwh - hdT
Q t Q r
A

+ nI qhp V-ub do

fef h
+3 j(sh + ehy. [p (ga!(* uh.v yh ) V-d(ph.uh)] Q=0 . (28)
e=1 ot

As it can be scen from equation: (28), two stabilizing terms have been added (o the standard Galerkin formulation of (1)-
(7); the one with 88 is the SUPG term, and the one with gl is the PSPG (pressure-stahilizing/Petrov-Galerkin) term.
For definitions of the Petrov-Galerkin functions 5P and &b sec ‘Tezduyar et al. 1.

The spatial discretization of cquation (28) lcads to the following sct of non-lincar ordinary differential equations:
M+M5la+NW+Ns(M+(K+K§v-(G+Gg)p = F+Fg§, (29)

GTv+Mga+ Ne(v) + Keg v+ Gep = E+Eg, (30)

where v is the vector of unknown nodal values of ub, a is the time derivative of v, and p is the vector of nodal valves
of p. The matrices M, N, K and G are derived, respectively, from the ime-dependent, advective, viscous, and pressure
terms. The vector F is duc to the boundary conditions (5) and (6) (i.c.. the g and & terms), whereas the vector E is
duc to the boundary condition (5). The subscripts 8 and € identify the SUPG and PSPG contributions, respectively.
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Let us consider the time-integration of equations (29) and (30) by a one-step gencralized trapezoidal rule; i.e.,
given (uh)l. find (uh)l +1 and (p")n +1 (this will be referred to as T1 formulation). When writicn in an incremental

form, the T1 formulation ‘eads to
L L
M Aa-G Ap=R, &)))

G aa+Geap=Q . (32)
where

R=F +F§- [(M + M§)a + N(v) + N§(v)

+(K+Kgv-(G+Gg)pl . 33)
Q=E+Ec~[GT v+Mga+Neg(v)+Kev+Gepl . 34)
M‘=M+Ms+am(%'}+-a£§+x+xs). (35)
G =G+G§ , (36)
(GT)‘=Me+aAt(§£i+xe+cT). 37

The parameter o controls the stability and accuracy of the time integration algorithm.
Remarks

9. The equation systems (31) and (32) can be solved by treating the velocity explicitly in the momentum equation.
Since the SUPG and PSPG supplements arc applied to all terms in the momentum equation, in explicit
computations the coefficient matrix of the pressure equation is gencrally not symmetric. All explicit Tl
computations reported in this paper are based on the symmetrization of the coefficient matrix of the presgule

* »
equation, and the results are obtained with 2 passes per time step. In such computations M , G and (GT) are

replaced with
[ ]
M =M , (38)
[ ]
G =G, 39
GH =aaGT, @

where M, is the lumped version of the mass matrix M.

10. Onc can also write a multi-step (T6) time integration formulation for equations (1)-(7). In the T6 formulation
thc SUPG term is applied only to the sub-steps involving the advective terms. Taue PSPG term, on the other
hand, is applied only to the sub-steps involving the pressure. For details of the T6 formulation and its

performance see Tezduyar et al.122,

e My e
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V. CEBE (Clustercd Elemeunt-by-Element) Preconditioning
Consider a linear cquation system
Ax=Db (C)))

encountered in finite clement computation of a problem, Based on the finite element discretization of the problem
domain £, the matrices A and b are formed by adding together their element level constituents; i.e.,

el
_ 3
A= E{“ : @2)
Def
_ ¢
b=Xb , @3)
e=1

where ng] is the number of clements,

Remarks

- A" S g T8 Yt At

11. The domain £ can also be a space-time domain, in which case the clements are spacs-time elements.

12. The element level matrices A€ and b® have the same dimensions as the global matrices A and b, respectively; i
i.e., neq X negq and neq X 1, where neq is the number equations. However, the only non-zcro entries for these
element icvel matrices are those corresponding to the nodes of element ¢, and this fact is taken into account in the
implementation.

We assume that direct solution of (41) is not computationally feasible and that we would like to design a good
preconditioner to maximize the efficiency of the iterative solution procedure. To achicve this, first we rewrite (41) in a
scaled form

Ax=b, @4)
where

A=w12,,w 12 @5)

b =w V2, @6)

x =wl2y, @7

The scaling matrix W is dcfined as

W =diag A . @8)
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Remarks

13.  This definition for the scaling matrix W is a good onc when the matrix A is positive-definite. However, when A
is not positive-definite, the following altcmative definition?? can be used:

W=lump M “9)

where lump M is the lumped version of the mass matrix M. It is perhaps reasonable to look into defining a
scaling matrix bascd on a combination of (48) and (49).

14. In scaling a matrix, no matter what the level of that matrix is, the global scaling matrix W is the same. For
example, the element Icvel matrices A% and b® are scaled as

;c =W -1/2 AS w-—!/2 , (50)
b¢ =w ~ M2 pe. o1
The matrix A can be expressed as
el
A=W Zi (AS- W 52)

In the scaled form this expression becomes

A=l+ B, G3)
c=1
where
B¢ =A% - W°® , e=12 ..0g. (54)

The clcment-by-clement (EBE) preconditioning is based on the approximation of (53) by a sequential product of
clement level matrices. Earlicr implementations can be scen in Hughes et al.23-24_ various vectorized versions and
applications to three-dimensional problems can be found in Hughes and Ferencz23, Parallcl implementation of the

mcthod is achieved in Tezduyar ct al.28 based on the grouped clement-by-clement (GEBE) approach27. in which
clements are ordered in groups with no inter-element coupling within cach group. The number of groups is minimized
to minimize the overhead associated with synchronization in parallel computations. Applications in conjunction with

the implicit-explicit and adaptive implicit-cxplicit clement grouping can be scen in Tezduyar and Liou26, Tezduyar et
al.28, Shakib et al.29 and Liou and Tezduyar30. Depending on the form of matrix A, the EBE type preconditioners can
be used with the conjugate gradicnt, GMRES!3, or some other sophisticated scarch algorithm,
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Level 1 Level 2
_
Level 3 Level 4
Figure 2. Four different levels of clustering for a uniform 16 x 16 mesh; in cach frame the thick lines depict the

cluster boundaries and the associated companion mesh,

In the CEBE (clustered clement-by-clement) method the sct of elements € is partitioned into clusters of clements
€3, J = 1,2, ..., N¢1. For example, Figure 2 shows four different levels of clustering for a uniform 16 x 16 mesh. The
cluster boundarics are marked with thick lines. In the first frame each cluster consists of one clement, and therefore this
would lead to an EBE method. In the last frame the cluster size is 8 % 8; the next level of clustering after that (i.e., level
5) would lead to a direct solution method. The global matrix Ay associated with cluster J is dzlincd as

-
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Ay = 2 A° . (55)

CCEj
The matrix A can then be exprossed, simila to (52), as
Nt

A=W+ (Ap=Wp) . (56)
J=1

In the scaled form this expre. becomes

. Net
A=1+3 8B, (6))
=1
where
By=A;-W; , J=12 ..N¢l. (58)

The CEBE preconditioning is based on the approximation of (57) by a sequential product of cluster level

matrices. Here we give two cxamples (sce Liou and 'l‘ezduyarl ! -3‘): 2-Pass CEBE preconditioner and Crout CEBE
preconditioncr. The 2-Pass CEBE preconditioner is defined as

~ Ncl l -~ 1 1 -~
Pc= MU+ 3B)) N@+ 3By, (59)
J=1 J=N¢|

and the Crout CEBE preconditioner is defincd as

~ Nera Nera 1 a
Po= lILy NID Mu, . o
€ gartgan Peng? 0
A A A
where Ly, Dj and Uj arc the matrices resulting from the fellowing Crout factorization:

A A A

I+ ﬁj = LJ D] UJ ’ J= 1. 2; seey NC' . (61)

In Liou and Tezduyar3!, these types of preconditioning were used, in conjunction with the conjugate gradient method,
for problems govemcd by the Poisson equation, In Liou and Tezduyar!! they were used, together with the GMRES
method, for compressible and incompressible (low problems. Of course the convergence rates depend on the cluster
sizes. In Mittal and Tezduyard, for the space-time finite clemeat formulation of an incompressible flow problem, an
optimal cluster size was deteemined by numerical cxperimentation and was used in the computations.

VI, CC (Cluster Companion) Preconditioning

Let us consider a mesh with different levels of clustering. For cach level of ¢lustering in ihis "primary” mesh, we
define a "companion” mcsh, such that cach cluster of the primary mesh ferms an clement of the companion mesh. For
example, Figure 2 can now also be seen as showing the companion meshes associated with four different levels of
clustering in a 16 % 16 primary mesh. In cach frame of Figure 2, the thick lincs not only mark the cluster boundarics
for a certain kevel of clustering, but also depict the companion mesh associated with that Ievel of clustering. In the first
frame the companion mesh is the same as the primary mesh. In the last frame the companion mesh is 22 X 2 esh, In
our nowation, the Icvel of clustering and the associated companion mesh will be identificd by the same integer number;
i.c., companion mesh | will be associated with clustering level |,

Because the companion mesh 1 is the same as the primary mesh, cquations (41)-(43) can also be writicn as

1 1 1
(A) (x) = (b) _ 62
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W = X A%
=1 ) : ©3)
!
b)) = ¥ 0%
c=1 ' ()
where the superseript "1" denotes the companion mesh number.
1
Let (u) be the approximation of & displacement-like scalar field u over the companion mesh 1, such that
1
)‘ ("nzp) (N)i ( )‘
W = g(wp .
B=1 ! €5)

1 t
where (npp)  is the number of acdal points in companion mesh 1, (N)p is the shape {unction associated with node B,

1 1
and (u)g is the value of (u) at node B. A similar expression can be written to approximate u over the companion mesh
2

onp®
) = Y Ny
B=1 e ©6)

1 1 1 2 2 2 2
Let (W) =((wp,B=12,.., (npp) )} and (v) =((up ,B=1, 2, o0 (nop) }. Given (u) , we would like to
1

1
obtain an expression thay approximates (w) . Based on least-squares minimization of the difference (u) - (u) , we
obtin

11 | 12 2
M (W =M { , ©D
whene
11 1 | 1
M )AB = j(N)A (N)B aQ , A/B=12.. (nnp) . (68)
Q
12 1 2 1 2
M HAB = J(N)AMNBIQ, A=1,2,.., (ngp) .B=12,.., {npp) . )
Q
From (67), we can write
| 12 2
W) =E (v (70
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12
with the "intorpolation” matrix E  dofined as

g2 -t 12
or
‘12 11 -1 12
E =[lumpM ] M (12)
2 1
An cxpression similar to (70) can be written to obtain (1) from (u)
2 ‘2l 1
() =E @ 3
with
21 22-1 21
of
21 22 -1 21
where
22 2 2 2
M )ap = J(NJAMNBIQ , A, B=12,.., (mp) , (76)
Q
21 2 1 2 i
M Jap = (NDA(Ny dY, A=12 () JB=12 L () o))

Q

12 21
More on the derivations related to E and E - can be found in the Appendix. Assuming that the Dirichlet type
boundary conditions are somchow taken care of in the implementation, we can also use equations (70) and (73) 10 obtain

1 2
(x) and (x) from cach other. That s,

1 12 2
(x) =

0t

=
—

o
~

, (78)

2 21 i
(x)

1]

w
-

(]
N

Q)

1 2
Yurthermore, by assuming that (b) and (b) are force-like quantitics and that the encrgy-like quantitics expressed over
2 2

the two companion meshes, i.c,, (b) (x) and (b) (x)". arc cquivaleni, we can write

2 21 1
() =F () . (80)

l~ 12 2
®) =F ®) @1
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where

2t ar

12 2171
F =& ) ®3)
1 -
From (62), (78) and (80) we can wrile an approximate expression for [(A) )
1-1 Jz o 2-1 21

This expression is the starting point for us to construct a companion preconditioner based on the companion mesh 2,

The matrix (A) cun be computed cither by using the definition of A over the companion mesh 2, or by using the
(oltowing expression;

22 112
(A =F (A) E

@85)
We wote, for implementational purposes, that (85) is cquivalent to
t
®) 21 1n
@A) = YF (AYH E . {86)
=1

1 2
We also not¢ that, it (A) is symmetric and positive-definite, so is (A) given by the expression (85). However, we

-1
cannot say the same thing for [(A) | given by the cexpression (84). Thercfore, to define our companion
preconditiones, we s & icgularization similar to the one used in (82). The cluster companion preconditioner based on
companion mcsh 2 is then defined as

121 -1 4R -1 20 1221
IPce) ) =W + B ([(A)) ~E WT'F )F &
In scaled form, (87) can be rewritien as follows:
~ 121 - 12 21 21, 12 21
Peo) | =1+W 2B ()1 -E  wole ) wi (88)
We also experimented with the following moditied version of (87):
121 -\ 4 12 2.2
(Pee) 1 =W + B [(A)] ¥ @)

which can be written in scaled form as

~ 121 -1 12 2-1 2
(Peo) 1 =1+ W2E () F w2 ©0)
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We can repeat the expressions given by (88) and (90) for the cinster companion preconditioner based on the companion
mesh 3:

. 131 - B 3.1 3 13Mm

(Pee) 1 = LaW2E 7 (ayy -8 wole Tyt wi o
~ 1311 3 3131 4,

P 1 = 1 WZE T A)) B Wi 02

13 n
Here B and B can be computed cither by using definiticns similar to those given by equations (71)-(72) and (74)-
(75), or by using the following relations:

13122
=E E ©3)

(94)

3 13
Inany case, the matrices ¥ and £ are defined as

‘13 l n l 3 1‘
F = (E ) ‘ (95)
RE ‘31 T
18 = (E ) (96)
Remark

15, Tt is quite clear that the philosophy behind this type of preconditioning is similar to the philosophy behind
multigrid iteration methods,

16, One could also incorporate the idea of “companion” meshes in conjunction with formulations employing higher-
order clements. For example, for a mesh using bi-quadratic elements only the nodes at the corners of the higher-
order clements will form the companion mesh at tevel 2. To go to level 3 one could cluster elements in the
mesh at level 2 and so on.

VII. Mixed CEBE/CC Preconditioning

It is rcasonqble to expect that the CEBE preconditioner has more inua-cluster coupling information than the CC
preconditioner has, §t is also reasonable to expect that the CC preconditioner has more inter-cluster conpling
information than the CERE preconditioner has. ‘Therefore, because these two preconditioners in a sease complensent
cach other, it is reasonable to hope that when they are mixed together they lead 10 better convergence rates.

Initially our plan was to use these two preconditioners alicenately at cach iteration of the coajugate gradicn:

: : ~ ~ = (o . N o 2

method or at cach outer iteration of the GMRES mcthod. However, it was recently brought to our attentaon that Saad32

has formulated a new version of the GMRES algorithin which allows one to change the preconditioner ¢* every inner

- - itcration. A GMRES subroutine bascd on this new formulation was made available to ns by Saad, and we simply use
this subroutine 10 implement our mixed preconditioning.

In our notation, CERE-l will represent the CEBE preconditioning based on clusiering leve: |, CC-l will
represent the CC preconditioning based on comparion mesh | associated with clustering level | and CEBE/CC- will
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represent the mixing of the two. For example, CC-1 would lead to a dircct solution method, and therefore we will
normally start our test computations with | = 2 or higher,

Remark

17. We note that as | increases, the cost associated with CEBE-l increases and the cost associated with CC-l
tkrreases.

VIIi. Numerical Examples for Unsteady Incompressible Flows

All solutions using the space-time formulation, presented here, were oblained with lincar-in-time interpolation
functions. For the details of the computations sce Tezduyar ¢t al 1-3, Miutat and Tezduyar6 and Behr et al.”.

A. Unsteady flow past a cylinder at Reynolds number 100

In this test problem the dimensions of the computational domain, normaalized by the cylinder diameter, arc 30.5 and
16.0 in the flow and cross-flow dircctions, respectively. 1h:¢ free-stream velocity is 0,125, Reynolds number is based on
the free-strcam velocity and the diameter of the cylinder. Symmetry conditions are imposed at the epper and lower
computational boundarics, and the traction-f: ;e condition is imposed at the outflow boundary.

To have a better basis of comparison between the solutions obtained by using Q1Q1 and P1P1 elements, meshes
generated with both the elements are required 1o have the same distribution of the velocity and pressure nodes. The noal
values of the strean function and vorticity are obtaincd by the least-squares interpolation. For the meshes geacrated
with the PIP1 clement, these quantitics arc computed from the velocity ficld by using the meshes generated with the

Q1Q1 clement. For details of the computations and the performance characteristics see Tezduyar et all.

The mesh used for Q1Q1 consists of 5240 clements, while the number of elements for P1P1 is 10,480, Both
meshes contain 5350 velocity nodes. A time sicp of 0.125 was chosen for the computations. ‘The periodic solution is
computed by introducing a short term perturbation to the symmetric solution. We have observed, at least for smeit
perturbations, that the periodic solution is independent of the mode of perturbation.

For the O1Q1/ST computatioas we usc the clustered clement-by-clement iteration method to solve *ac resulting
cquation system. At each time step about 31,500 equations are solved simultancously. We chose a Krylov vector space
of dimension 25 and a cluster size of approximately 25 elements. For this problem, the CEBE technique takes less then
one-scventh the CPU time and Iess then one-third the storage needed by the direct method. It should be mentioned at
this point that we have had the successful experience of solving this problem, using the space-time formulation, with a
much larger time step (1.0). Here we usc a smaller time step to compare the solution with the oncs obtained with other
formulations.

Strouhal number and the time hictory of the lift and drag cocfficients for the various formulations 2 shown in
Figure 3. The QIQI clement gives a Stronhal aumber about 2% higher than what the P1P1 clement gives. Although
the lift and drag coefficients show no significant difference 2mong ditferent formulations, the Q1Q1 clement gives a
slightly higher drag cocfficient than the PIP] element, and the Q1Q1/T1 formulation gives a sligatly kigher drag
cocfficicnt than the Q1Q1/ST formulation,

The periodic solution flow patterns corresponding (0 the crest value of the lift coefficicnt arc shown in Figures
4-6. The patterns corresponding to the tough value of the lift cecflicient are simply the mirsor images, with respect to
the horizontal centerline, of the patteras shown in Figures 4-6. The solutions obtained with different formulations are
very similar. However it can be seen, upon close comparison, that the Q1Q1 element is less dissipative than the P1P1
clement and that the Q1Q1/ST formulaion shows less dissipation than the Q1Q1/T1 formulation. On comparing these
solutions with the ones reported in Tezduyar et al.33, it can be observed that the solutions obtained with the Q1Q1 and
P1P1 clements ar¢ very vlose to the ones oblained with the pQ2P1 and QIPU/T6. If we compare these solutions with
the ones reported for the T6 formulation in Tezduyar et al., we observe that T6 formulation is less dissipative than the
T1 formylation and the Q1Q1/ST formulation gives solutions very similar to Q1Q1/T6.

B. Pulsating drop

In this problem the drop is initially of elliptical shape with axial ditnensions 1.25 (horizontat) and 0.80 (vertical).
The density, viscosity and the surface tension coefficient are 1.0, 0.001 and 0.001, respectively. The cffect of gravity is

T ey ahan 4lemnm buing + af tha awvinl
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dimensions of the drop. Figures 8a, and 80 show the flow ficld and finite clement mesh cerresponding, approximaicly,
to points "a", and 'b" in Figure 7.

C. Large-amplitude sloshing

This problem is similar to the one that was considered in Huerta and Liu34. Iitially the fluid is stationary and
occupies a 2,667 x 1.0 rectangular region. The density and viscosity are 1.0 and 0.002. The gravity is 1.0, and the
surface tension is neglected. The wave is created by applying a horizontat body force of A sin(wt), where A =0.01 and
o = 0.978. The Reynolds number (bascd on the height of the fluid and the gravity) is 514. Inviscid boundary
conditions are assumed at the walls of the "tank". Compared to the problem considercd here, the Reynolds number used
in Huerta and Liu34is 5 14,000. Furthermore, in Hucrta and Liu34 the horizontal body force is removed after ten cycles;
in this case, on the other hand, this force is maintained during the entire computation. The number of elements is 441,
and the time step size is 0.107. With these values of the frequency and the time step size, a single period of the forcing
function takes 60 time steps. Figure 9 shows the time history of the vertical location (rclative to the stationary level of
1.0) of the free-surface along the left- and right- hand-sides of the "tank”. Figures 10a, and 10b show the flow ficld and
finite element mesh corresponding, approximately, o points "a®, and "b" in Figure 9,

D. Flow past an osciliating cylinder

This is a simple but fundamental fluid-structure intcraction problem. The computation involves flow past a
circular cylinder that is mounted on flexible supports and is free to respond to the fluid forces in the vertical dircction;
the Reynolds number tor this simulation is 324. The dimensions of the computational domain, normalized by the
cylinder radius, are 61.0 and 32.0 in the flow and cross-flow directions, respectively. The mesh employed consists of
4060 elements and 4209 nodes. Symmetry conditions are imposed at the upper and lower computational boundarics,
and the traction-free condition is imposed at the outflow boundary. The periodic solution is obtained by introducing a
short term perturbation to the symmetric solution. In these computations, we use the CEBE iteration method to solve
the resulting equation system. At cach time step about 25,000 cquations are solved simultanccusly. We chose a
Krylov vector space of dimension 25 and an average cluster size of 23 clements. For this problem the CEBE technique
takes less then onc-sixth the CPU time and less then one-third the storage needed by the direct method.

At this Reynolds number the natural frequency of the spring mass system and the vortex shedding frequency for
flow pas: a fixed cylinder have very ciose values. Consequently, the cylinder undergoes high amplitude oscillations
(aprroximatcly one cylinder radius) in the vertical direction. These oscillations alter the flow field significantly. Figure
11a shows, for the initial stages of the simulation, time history of the lift, drag and torque coefficients and the
nomalized vertical displacement and velocity of the eylinder. We observe that the cyliner oscillates with an increasing
amplitude. The drag and torque coeff:cicnts for the cylinder also increase while the lift coefficient shows a decreasing
amplitude. It is intcresting to note that both the mean and peak values of the drag coefficient increase with time, but the
tnygh valie remains almost constznt.  The quantities displayed in Figure 11a are shown in Figure 11b for a later
sirch cof time when the cylinder reaches a steady-state oscillation amplitude of about one radius. The cylinder oscillaics
wii. :*s natural frequency, and so does the torqae cocfficient; the drag coefficient oscillates with twice the natural
freay: s5icy of the cylinder. The dominant frequency for the lift coefficicnt corresponds to the natural frequency of the
cylinder. In addition, there is a very small component of the lift coefficient with thrice the frequency of the dominant
one. Figure 12 shows a sequercy of frames for the vorticity during one period of the cylinder motion. The first, third
and last frames correspond 10 mean cylinder location, while e sccond and fourth frames correspond, respectivcly, to the
lower a;::g upper cxtrame positions of the cylinder. Fo: details of this problem and the computations see Mittal and
Trzduy.

E. Flow pasi ar. oscillating airfoil

This computation, perionned on the Connection Mackin. CM-5, involves flow past a NACA 0012 airfoil piiching
at Reynolds number 1009. The solution is obtaiicd using the space-time algorithm with Galerkin/lcast-squares
stabilization. The mesh consists of 6609 nodes and 3460 clements. Linear-in-time shape functions are used. At each
time step, approximately 39,000 cquations are solved simultancously. Thie implicit equation sysicin i5 solved using the
GMRES method in conjuaction with a diagonal preconditioner. The steady-state sclution for flow past a stationary
airfoil at an angle of attack of 10 degrees and at Reynolds number 1000 is used as initial condition. Then the airfoil is
forced to pitch about its half chord voint “vith a non-dimersional fiequency of 1.0 (fc/U). Figure 13 the vorticity field at
various instants of the pitching motion. During cach period of airfoil oscillation two vortices are shed, one from the
leading edgz and the other from the trailing edge. For details of this problem and the implementation on the Connection

Machine soe Miual and Tezduyar® and 8Behr et al.”.
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elements cover the entire domain and the intersection betwesn
elemsnts occurs only on common points, sides or triangular faces in
the three dimensional case. The final grid is constructes in a bottom-
up manner. The process starts by discretising each boundary curve.
Nodes are placed on the boundary curve components any then
contiguous nodes are joined with straight line segments. In later
steges of the generation process, these senments will become cides
of some triangles. The length of these segments must therefore, be
consistent with the dasired local distribution of grid size. This
operatior i repeated for each boundary curve in turn,

The next stage consists c! generating trianguiar planar faces. For
each two dimensional regior or surface to be discretised, ali the
edges produced when discretising its boundary curves are assembled
into the so called initiat front. The refative orientation of the curve
components with respect to the suface must be taken into account in
order to give tho correct orientation to the sides in the initial front,
The front is a dynamic data structure which changes continuously
during the generation process. At any given time, the front contains
the set of all the sides which are currently available to form a
triangular face. A side is selected from the front and a triangular
element is generated. This may involve creating a new node or
simply connecting to an existing ons. After the triangle has been
genserated, the front is updated and the generation proceeds until the
front is emply. Figure 3.1 illustrates the idea of the advancing front
technique for a circular planar domain by showing the initiai front
and the form of the grid at various stages during the generation
process. The size and shape of the generated triangles must be
consistent with the local desired size and shape of the final grid. In
the three dimensional case, these triangles will become faces of the
tetrahedra to be generated later.

K %:
\e;v

9

Figute N

The advancing trom techniq ring dierent stmges during the triangulation

process.

For the generation of telrahedru the advancing front procedure is
taken ore step further. The front is now mede up of the triengular
faces which are available to lorm a tetrahedron. Thae initial front is
oblained by assembling the trlangulations of the boundary surfaces.
Nodes and elements will bs simultaneously created. When forming a
new tetrahedron, the thies nodes bslonging to a triangular face from
the front are connected either to an existing node or to a new node.
After generating a tetrahedron, the front is updated. The generation
procadure is completed when the number of triangles in the front is
zero.

3.2 Characterisation of the Grid: Grid Paramsters

The geometrical characternistics of a general grid are locally defined
in terms of certain grid parameters. lf N (=2 or 3), is the number of
dimenstons then, the parameters used are a set of N mutually
orthogonal diractions g; i=1, .. N, and N associated element sizes §;
i=1, .. N (see figure 3.2). Thus, at a certain point, if all N element
sizes are equal, the grid in the vicinity of that poin{ will consist of
approximately equilateral elements. To aid the gJrid generation
procedure, a transformation T which is a function of g; and §; is
defined. This t formalion is represented by a symmetric NxN
matrix and maps the physical space onto a space in which elements,
in the neighbourhood of the point being considered, will de
approximately equilateral with unit average tize. This new space
will be refered to as the normalised space. For a general grid this
transformsiion will be a function of position. The transformation T
is the result of superimposing N scaling operations with faclors /§;
in each g; direction. Thus

N
Ti.8)= 3 6l_|“'°“‘ (3.1
)

where ® denotes the tensor product of two vectors. The effect of
this transformation in two dimensions is illustrated in figure 3.3 for
the case of constant grid parameters throughout the domain.

e - X)

@)

Figure 3.2
Charactoriselion of the grid. (a} the grid parameters In two dimensions. (b) the orid
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Figure 33

The effect of the trarctormation Tiur a constant distribution of the grid parameters.

23 Grid Contrel: The Background Grid

The inclusion of adequaie grid control is a key ingredient in ensuring
the generation of a grid ol the desired form. Control over the
characteristics is obtainod by the speciiication of a spatial
distribution of grid parameters by means of a background grid. The
background grid is used for interpolation purposes only and is made
up of triangles in two dimonsions and tetrahedra in three dimansions.
Values of g; and §, and herce T, are dafined at the nodes of the
background grid. At any point within an elament of the backgiound
grid, the transformation Tis computed by linearly interpolating its
components from the aelement nodal values. The background grid
employed must cover the fegion to be discretised (see figure 3.4). In
the generation of an initial grid for the analysis of a particular
problem, the background grid will usually consist of a small number
of elements, The generation of the background grid can in this case
be accomplished without resorting 1o sophisticated procedures e.g. a
background grid consisting of a single slement can be used to impose
the requiremant of linear or constant spacing and stretching through
the computational domain. The generation process is always carried
oul in the normalised space. The transformation T is repeatedly
used to transform regions in the physical space into regions in the
normalised space. In this way the process is greatly simplitied, as
the desired size for a side, triangle or tetrahedra in this space is
always unily. After the elemant has been generated, the coordinates
of tho newly created point, it any, are transformed back to the
physical space using the inverse transrormation. The eflect of
prescribing a variable grid spacing and stretching is illusirated in
figure 3.5 for a rectangular domnin and using a background grid
consisting of two triangular elements.

Figure 4

The background grid fcr the specilication of & spatial distribution of ¢rid p
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3.4 Curve Discretisation

The discretisation of the boundary curve components is achieved by
positioning nodes along the curve according 1o a spacing dictated by
the local value of the grid parameters. Consecutive points are joined
by straight lines to form sides. In order to determine the position
and number of noaes to be created on each curve component, the
following steps aro followed:

i) Subdivide recursively each cubic segment into smaller cubic
segments until their length is smaller than a certain prascribed
value. A sale choice for this value is the minimum spacing specified
in the background grid but often, considerably larger values can be
taken. The length of sach cubic segment is computed numerically.
When subdividing a cubic segment, the posilion and tangent vectors
corfesponding to the new data points can be found directly from the
original definition of the segment.

i) For all the data points E,; jm=1,..0 (i.0. those used io define the
curve and those created to satisfy the maximum length criterion),
interpolate {rom the background grid the coefficients of the
transformation Tjand transform the position and tangent vectors
ie. (=T gand ii = Tj4 The new position and tangent vectors [,
il; J=1,...,n, define a spline curve which can be interpreted as the
image of the original curve component in the normalised space. It
must be noted that because of the approximate nature of this
procedure, the new curve will in general have discontinuities of
curvature even though the curvature of the original curve varies
continuausly.

lii) Compute the length of the curve in the nermalised space and
subdivide it into segments of approximately unit length, For each
nowly created point, calculate the cubic segment in which It is
contained and it parametric coordinate. This information is used to
determine the coordinates of the new nodes in the physical space,
using the curve component definition,
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3.8 Triangle Generation in Two Dimensionsl Domains

The triangle generation algorithm utilises the concepi of a generation
front. At the start of the process the front consists of the sequence
of straight line segments which connect consecutive boundary nodes.
During the generation process, any straighi line ssgment which is
avallable to form an element side Is termed active, whereas any
segment which is no fonger active Is removed from the front. Thus
while the domair. boundary will remain unchanged, the generation
front changes continuously and needs to be updated whenever a new
element is formed. This vpdating process Is itlustrated in tigure 3.6,
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Figure 3.8
The front updating procediwre In two i

P 9

(a) The Initial genvration from. (b)
Crealion of & new slement with (1) no new point created (2) the new point 19 is
created. (c}) The updating of the froni for case (b)(2).

in the process of generating a new triangie the foilowing sleps are
involved (figure 3.7):

i) Select 2 side AB of the frant to be used as a base for the triangle
10 be geneialea. iuia, (he critarion is 1o choose the shortest side.
This is especially advantageous when generaling irregular grids.

it) Interpolate from tha background grid the franstormation T at the
cenire of the side M and apply it to the nodes in the front which are
relevan! to the triangulation. In our implementation we define the
relevant points to be all these which lie inside the circle of cenmire M
and radius three imes the length of the side being considered. Let A,
Qamﬂ denote the positions in the normalised space of the points A,
B and M respectively.

iii) Determine, in the normalised space, the ideal position é‘ for the

vertex of the triangular element. The point E| is located on the line
perpendicular to the side tha! passes through the point M and ai a
distance by from the points A and B. The direction in which B, is

gensrated is determined by the orientation of the side. The value S,
is chosen according to:

1 it 0.55.L «<1 <2l
8 =% 0.55°L. it 0.55.L < 1 3.2)
L it 1> 2.L

where L is the distance betwoen points A and 8. Only in situations
where the side AB happens to have characteristics very different
from those specitied by the background grid will the value of §; be
different from unily. However, tho above inequalities must be taken
into account 10 ensure geomstrical compalibility. Expression (3.2) is
purely empirical and difterent inequalities could be devised to serve
the same purposa.

Iv) Select othar possible candidates f. - vertex and order thom in
a list. Two types of points are considerso viz. (a) all the nodes ﬁh
AQ ... in the current gensration front which are, in the normalised
space, interior to a ci*zie with centrs é. and radlus 7 = &, and (b}
the set of points é_‘,..., E_; generated along the height 484 For each
point §;, constiuet the circle with centre &, on the line delined by
points By and M and which passes thiough the paiats Q;, A and B. The
position of the centres Q. of ihese circles on the line Py} defines an
ordering of the the ﬁ.poinls. A list is creates which contains all ihe
Q polints with the furthest point from P, appearing at the head of
fist. The points Py,.... Bsare added al the end of lnis list.

v) Select the best connecting point. This is the firsi point in the
ordered list which gives a consistent triangle. Consistency is
guarantead by ensuring that none of he now'y created sides
intersucts with any of the existing sides in th~ front,

vi) Finally, if a new node is created, its coordinutes in the physical
space are obtained by using the inversa transformation T-1.

vil) Store the new triangle and update the front by adding/removing
the relevant sides.
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Flgure 3.7
¢ tion of a new tnangh

The

This grid generation procedure is schematically presented in the
diagram shown in ligure 3.8

Grld Quallty Enhancement

In order to enhance the quality of the generated grid, two posi-
processing procedures are applied. These procedures, which are
tocal In nature, do not alter the tolal number of points or elements
in the grid.

Diagonal swapping - ‘nis changes the connactivities among nodes in
the grid without altering their position. This process requires a loop
over all the element sides excluding those sides on the boundary. For
each side AB (figure 3.9) common to the triangles ABC and ADB one
considers the possibility of swapping AB by CD, thus replacing the
two lriangles ABC and ADB by the triangles ADC and BCD. The
swapping Is perlormed il a prescribed regularity criterion is
salisfied better by the new configuration than by the existing one. In
our implementation, the swapping operation is perlormed if the
minimum angle occuring in the new configuration is larger than in the
original one.
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Guid generation using the advancing front techniqus. Double lived boxas are onty
required # the stiects of variable grid size and siretching are to be included.

Grid smoothing - this alters the positions of the interior nodes
without changing the topology of the grid. The element sides are
considered as springs of stiffness proportional to the 'ength of the
side. The nodes are moved until the spring system is in squilibrium.
The equilibrium positions are found by iteration. Each iteration
amcunts to performing a loop over the interior points and moving
their coordinates 1o coincide with those of the centioid of the
neighbouring points. Usuaily three to five iterations are performed.

The combined application of these two post-processing algorithms is
found to be very eflective in improving the smootliness and
regularity of the generated grids.

¢ / A n
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Flgure 3.9
The disgonal swapping proceduze. () non-admi ®)

3.6 Surface Dlecrotisation.

The method tollowed for the triangulation of the surface components
is an extension ol the grid generation procedure for planar domains
described above. The discretisation of each surface component is
accomplished by generating a two dimensional grid of triangles in the
parametric plane {(u',u?) and then using tho mapping r{u',u?) defined
in section 2.2, This mapping establishes a one o one correspondence
between the boundary surface component and a region on the
parametric plane (u',u?) (ligure 3.10). Thus, & consistent triangular
grid in the parametric plane will be transformed, by the mapping
t(u',ué), into a valid triangulation of the surface component. The
construction of the triangular giid in the parameter plane (u',u2)
using the two dimensional grid generator, requires the determination
of an appropriate spatial distribution of the two dimensional grid
parameters. These consist of a set of two mutually orthogonal
directions g*; i=1, 2, and two associated element sizes §;; i=1, 2.

u2
s
) AT Huru2)
Ry N, I
e Uy

Figure 3,10
The mapping ol a surface component onto a lwo dimensior:al domaln.

The two dimansional grid parameters in the (u',u2) plane can be
evaluated from the spatial distribution of the three dimensional grid
parameters and the distortion and stretching introduced by the
mapping. To illustrate this process, consider a point £° in the
parametric plane of coordinates (u'f,u2P) where the vaives of tho
grid parameters &, gy i=1,2 are to be computed. lis image on the
surface will be the poimt P = f(u'?,u2P). The transtormation betwaen
the physical space and the normalis: * space at this point Tp can be
ohtained by direct interpolation fromi tne background grid. A new
mapping, valid in the neighbourhood of point P, can now be defined
betweon the parametric plane (u',u?) and the normalised space as

B(ul.u?) = Tp fu',u?) (3.3)

A curve in the parametric plane passing through point £° and with
unit tangent vector§ = (8'.8%) at ihis poinl, is transtormed by the
above mapping into a cuive in the normalised space passing through
the point Tp B. The arc length parameters ds and d{, along the
original and transtormed curves respeciively, are related by the
expression [35)]

2

af 9 .
(dc)2={ )) a%'a%,a'bi}(as)* (3.4)
=1

Assuming that this relation between the arc length paramelers aiso
holds fcr the spacings, we can compute the spacing 8y along tho
direction §§ in the parameter plane as

2 3R 9 12
°a={ %gﬂja's' @s)

[HEA]

The two dimensional grid parameters g 5i=1, 2 are determined
from the directions In which &g atlains an extremum. This reduces to
linding the eigenvaiues and oigenvectors of a symmetric 2 x 2
matrix.
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To form the initial front, the (u',u?) coordinates of the nodes
already generated on the boundary curve components have to be
computed. As the mapping r(u',u?) cannot be inverted analytically,
the coordinates (u',u) of such points are found numerically by using
a direct iteration procedure [31).

3.7 Generation eof Tatrahedre

The staring point for the discretisation of the three dimensional
domain into tetrahedra is the tormation of an initial generation (ront.
The initia} front is the set of oriented triangles which constilutes the
discretised boundary of the domain and is formed by assembling the
discretised boundary surface components. The order in which the
nodes of these lriangles are given defines the orientation, which is
the same as that of the corresponding boundary suiface component.
The algorithm for generating tetrahedra is analogous to that
described above [or the generation of lriangles (see figure 3.8).
Howevsr, in the thres dimensioral case the range of possible options
at oach stage is much wider and the number of geometrical
operations involved increases considerably. Thus, the ability ot the
method 1o produce a grid and the efficisncy of its implementation
ralies hsavily upon the type of strategy selocted. The generation of a
generic tetrahedral element involves the following steps (figure
3.11)

i) Select a triangular face ABC from the front to be a base for the
tetrahedron 1o be generated. In principle, any face could be chosen,
but we have found it to be advantageous in practice to consider the
smallest faces first, For this purpose, the size of the face is defined
in terms of :he size of its shortest height.

i) Interpolate trom the background arid the transformation T at the
centroid of the face M and apply it to the nodes in the front which
are relevant to the triangulation. In our implementaticn, we deline
the relevant points to be those which lie inside the sphere of centre
M with radius equal to thres times the value of the marimum

dimension of the face being considered. Let A, Q_. f; and M denote the
positions in the normalised space of the points A, B. G and M
respectively.

ili) Determine, in the transformed space, the ideal position E, for the
vertex of the tetrahedral element. The point E, liss on the line which
passes through the point M and which is perpendicular to the face.
The ditection in which P, is generated is determined by the
otientation of the face. The location of é] is computed so that the
averaga length of the thres newly created sides which join point B,
with points A, B:_and Q is unity. For faces whose size in the
parametric plane is very ditterent from unity, this step may have to

be modified, as in exprossion (3.2), to ensure geometrical
compatibility. However, such cases rarely occur in practice. Let §;

be the maximum of the distances between point Py and points A, &
and ﬁ

iv) Select other possible candidatas for the vertex and order them in
a ist. Two types of points are cunsidereo viz. (a) all the nodes ﬁ,.
Q. ... in the current generation front which are, in the normalised
space, interior to a sphere with centre M and radius 7= 5y, and (b) a
new set of points Py.... Ps generated along the height P,M. Consider
the set of points A, B and  and denote by D the member of ihis set
which is furthest away from M_ For each point {J;, construct the
sphere with centre Q; on the line defined by points £, and M and
which passes through point Q, and D. The position of the ventres é, of
these spheres on the line P,M detines an ordering of the the Q.poims
with the furthest point from ﬁ| appearing at the head of list. The

points Py,..., Ps are added at the end of this list.

v) Select the best connecting point. This is the first point in the
ordered list which gives a consistent telrahedron, Consistency is
guaranteed by ensuring that none of the newly created sides
intersects with any of the existing faces in the front, and that none
ol the existing sides in the front intersect with any of the newly
created faces.

vi) If a new node is created, its coordinates in the physical space
are obtained by using the inveise transformation T-'.

vii) Store the new triangle and update the front by adding/removing
the necessary sides.

mmm———

i

]
4
e AT

® JDEALPOINT
X HELP POINTS 2
© POINTS IN THE FRONT §
H
Figure 3.91 :
The o of & tetvahedrai o ‘ g
3
4
3.8 Grid Quality Assessment
Any discussion of grid quality shoula be intimately refated to the :
torm of the solution we are trying to rapresent on that grid. Two !
factors need 1o be considerad here: f
i) Determination of the characteristics of the oplimal grid for the i
problem at hand. This introduces the concept of adaptivity and this 3
aspect is considered in section 5. i
i) a_\ssessment on how well the generated grid meets the ;
requirements specified by the grid par s. This t can i
be ‘m_ade by examining the generated grid and determining the H
stalistical disiribution of certein indicators. For example in figure §
34.!2 we havo choson as indicators the number of elements around a
side, !he magnitude of the element dihedral angles and the length of
the side. These indicators are compared with optimal values i.e.
lhos:o of a regular tetrahedron which has the exact dimensions
specilied hy the grid parameters. ‘
NUMBER OF ELEMENTS ;
SURROUNDING A SIDE ‘
P
4
DIHEDRAL
ANGLE
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SRl — "
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Flgure 32,12

Grid quaiity statistics.
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39 Crid Generation for a Generic Fighter Configuration

In computational aerodynamics, a problem of current interest is the
prediction of the inviscid flowfield about complete aircraft
configurations. The problem conaidered here is the simulation of the
flow past a genstic fightor with canard, 70-20 cranked deita wing,
verlical fin and engine inlel. This samo configuration has been
studied previously using an algebraic grid generation approach [36).
Due to the symmetry of the problem only half of the fighter is
modelled. Figure 3.13(a) shows the geomelry definition of the
computational domain. The background grid empioyed is illustrated in
figure 3.13(b). The curve components, defined in terms of cubic
splines and the discretisation of these components is displayed i
figure 3.13(c). The Individual surface components are descrived by
tensor product surfaces and the surface discretisation is illustrated
in figure 3.13(d). An intermediate stage during the tetrahedra
jeneration process is displayed in figure 3.13(e). The final grid
sonsisted of 76,522 tetrahedra and included a full simulation of the

Figure 3.43
add ¢ jon Tor @ complele alicrmt contly (8) the computational domak
and the ¢ y definlion. (b) the backy oid (c) the represeniation of the

urve e and the o= d pointa. (9) the surtace decreliestion. (e) A
pettial view of the tetrabedial gr'd.
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3.10 The Computallon of Traneonic Flow Past an
installed Nacelle

To illustrate the numerical petformance of the unstructuted mesh
solution procedure, we consider the analysis of a transonic inviscid
flow past a realistic wing/pylon/nacelie configuration [69). The
configuration has been testad in a wind tunnet with a turbine powered
simulator to represent the flow into the engine and the jot emerging
from the exhaust. The assumed symmatiry of the probtem means that
only one haif of the configuration nesds to be considered. The
definition of the computational domain (s completed by the addition of
the symmetry plane and planar far field bouraries, as shown in
figure 3.14a. Following the triangulation of the computational
boundaries, the aircraft surface (s represented by an assembly of
36,330 trdangles with 19,167 nodal points. Two different views of
the surface triangulation are given in figure 3.14b. Starling from
this collection of triangular faces, the computational domain is filled
with tetrahedra by the advancing front method, simultaneously
creating interior ncdal points and elements. The 3D grid which is
generated contains 592,380 telrahedra and 112,198 nodes. For the
simulation, a free stream Mach numbar of 0.801 and an angle of
altack of 2,738 degrees are assumed. The fiow within the engine is
simulated by computing a pressure ratio, engine mass flow rate and
a jot total tempetature by assuming that the separate core and fan
streams in the experiment mix together completely within the
turbine powered simulator, before exi.austing through the nozzle.
Stanting from {reo stream conditions, the solution is advarced for
2,500 time-steps, during which time the residual is reduced by tour
orders ol magnitude. The computed distribution of the pressure
contours on the surface of the model is shown in figure 3.14c. In the
experimental configuration, prassure guages are distributed at fixed
sections over the surface of the wing and aiso on the surlace of the
nacello. A comparison of the computed and the expetimentally
observed values of the pressure coelficient at a section along e
wing and on the surface of the nacelle is given in figure 3.14d. The
agreement between the numerically predicted values and the
exporimentally determined pressure data is very good, apart from
the over prediction of pressures on the upper surlace of the wing.
The discrapancies between the experimentally observed pressure
distributions and the predictions of the Euler flow solver on the wing
uppar surtace exist in regions where significant viscous eftacls can
be expected to occur,

(8)
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311 The Use of Multl-Grid Acceleration

The sequence of unstructured grids required for a multi-grid
algorithm of the lype described above is readily produced by the grii
gonetator by simply altering the scaling of the user specified
distribution functions.

Transonle Flow in a Channel

The multi-grid scheme is applied first to the solution of transonic
flow in a channel. This is a 3D simulation of a 2D flow past a 4%
thick circular bump. The free stream condilions cofréspond to a
Mach number of 0.675. The compulation iz periormed by using a fine
grid of 28,822 tetrahedra and throe coarser yiids ol 4,137, 556
and 119 tetrahedra respectively. The corresponding trianguiaticne
of the boundary of the computational domain ere shown in figures
3.15a to 3.15d. Figure 3.156 displays the pressure solution afler
150 multi-grid V-cycles (icycle =1) with A1 =1, N2 «1 and n3 =0.
The increass in the rate of convergence towards the stoady state by
the use of tho mulli.grid schemse is readily observed in figure .15
which compares the convergence history of the flow calculation on
the finest grid with tho one obtained using the multi-grid scheme
with tour grids,

(a)
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Teantonic tiow i & channel At n free stream Mach rimber of 0.678 (a) Fint gad of 119
elements, 63 pokite. (b Sacond giid of 559 elemenis, 216 poirta. (¢) Thitd grid of
4,137 elements, 1,142 polits. (d) Fourth grid of 20,822 elements , 6,709 points. ()

Computed prevsure {1} Compari of the 13 histork duced

by using the fine grid alone and by using multi-grid.

4

Flow About & Twin Engined Aircrati

As an illustration of the performance of the multi-grid accelsration
procedure for a realistic aeronautical configuration, a transonic flow
about a twin engined Dassault Falcon has been computed. For the
simulation, a free stream Mach number of 0.85 Is assumed and the
angle ol attack is taken to be two degrees. Flow through conditions
are imposed at ihe engines. Duv to the assumed symmatry of the
flow, the numericai compulations were performed using only ons
hait of the aircralt geomatry. The represemation of the boundary of
the computational domain consists ot 22 surtace components and 47
curve components. Tho surlace components used to represent the
aircraft geometry are showr in figuro 3.16a. Using this geometrical
definition, three grids are generated, consisting of 863,967,
212,433 and 100,215 elements respectively, The surface
triangulations for these gride are shown in figures 3,1¢h 10 2,169,
A three slage time-siepping scheme and a double W ¢,cle (icycle =2)
is employed, with one pre- and one post-smoothing slep used on each
Qrid( nl =1, nl =1 and n3 =1). A plot showing the of the value of the
logarithm of the density residual versus the number of fine grid
residual evaluations tor both the fine grid only calculation anc. the
multi-grid cycle is shown in figura 3.161. The computed steady state
distribution of pressure contours on the aircraft surtace in shown in
figure 3.160. This solution was oblained in about 180 minutes of cpu
time on a modern sunercomputer using a singlv processor. For this
exaniple. the muiti-grid version of the solver requires 89 storage
locations per node. Thos compares very favourably with the 63
locations per node required by the flow solver on a single grid.
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4. DATA STRUCTURES

{This section has been written in collaboration with J. Bonet,
Institute for Numetical Mathods in Engineering, University College.
Swansea SA2 8PP, UK])

From tho provious section it is apparont that a successiul
implementation of the presented algorithm will roquite the use of
data structures which onable cortain sorting an¢ searching
opearations to be performed efficiently. For instance, the generation
front will require a data structure which allows for tho eflicient
insartion/delation of sidasf{acas and which also allows ftor tha
olficiont idontification ol the sidesiuaces which inlorsect with a
proscribed region in space.

The problem of determining the mombers of a sel of n points which
lie inside a prescribed subregion of an N dimensional space is known
as goometric searching. Several algorithms have been proposed
[37-40] which solve the above or equivalent problems with a
computational expense proportional to lag(n). The problem
complexity increases considerably when, instead ol consideting
points, onod deals with iinite size ohjects such lino sogmonts,
triangles or tetrahedra. A common problem encountered here,
namely geomelric intersection, consists of finding the objects which
overiap a cerftain subregion of the space bwoing considered.
Algorithms for solving this problam in two dimensions exist [41] and
have been applied in determining the inlersection beilween
geometrical objects in the plane. To our knowledge, lhe only
algorithm capable of solving this problem in three dimensions is
based on the use of the alternate digital tree [42). The particular
application which motivated the development ot this data structure
was the implementation of the grid generation algorithm described in
the previous sectisn.

in what follows. we shall describe an algoriihm and associated data
struclure, called the alternating digital tree (ADT), which atlows for
the efficient solution of the geometric searching problem. it
neturally offers the possiility of inserting and removing points and
optimally searching tor the points contained inside a given region. It
is applicable to any number of dimensions, and is a natura! oxtonslon
of the so called digital tree search tachnique which is exhaustively in
(43] for one dimensional problems. A procedure which allows
treatment of any geometrical ooject in an N dimensiona! space as a
point in & 2N dimensional space will bs Introduced; thereby allowing

the proposed technique 1o be employed for the solution of geometric
intersection problems.
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4.1 Binary Tiee Siructures 1. Visit the roo! of the current subliee
Binary trees provide the basis for several searching algorithms, 2. If the left link of the root is nol zero then traverse the left
; including the one 1o bie presented hete. It Is tharelote necessary to sublires.
; inttoduce some basic concupls and terminology relawed to binary 3. i the right link of the root is not zero then traverse the right
4 3 tree struttures, More detailed expositions can be formd i {41,44). subtres.
i The procedute determined by these three steps is cleatly recursive,
} Delinition and Terminology that is, steps 2 and 3 Invake again the algorithm which they deline.
: i Troe structures provide a systematic way of storing a colleclion of  In vrder to Hlusiral-- this process, conskier agein the treo shown in
1 I data ltems which enables not only a quick access to the informatlon  figute 4.1b; for this tres, the rapeated application of the above
i stored, but also trequent insertions and deletions of items. This  alkuorithm ylelds the following sequence:
: degtoe of tlexibility requires the storage of deta itema in non. 1. Traverse the treo (A, B, C, D, E F G, I
sequential locations of the computer memoty. As figure 4.1a 1.1, VisitA
{ ) illustrates, lo achieve this, each data item is extended by the 1.2. Traverse the treo {B)
; : addition of wo integer values, known as the Jefr and right links. and 1.2, yisu
; i stored in what is known as a node of the tree. Each added link can 1.2.2. Skip
i ; oithor ba equal to zero or equal ta ths position in memary whare 1.2.3. Skip
: i another node of the tree can be found, Hence, trem one node of the 1.3. Traverse the tree (C, U, E, F, G, H)
. treo it is possiblo to reach at most wo other nodes. Moreovor, in 1.3.1. VisitC
- order to onsure that every node can be reached, these links must be 1.3.2. Traverse the trae (D, F)
H such that lor oach node except one, known as the root, there is one 1321, YisitD
{ and only one iink pointing at it. This definition establishes a 1.3.2.2. Travorse the lree (F)
i hlorarchy of nodes: the root at the top level of the hierarchy points 1.3.2.2.1 VisitE
H at 0, 1 or 2 nodes at tho next level; each ol thess in turn points at 1.3.22.2 Skip
. ofher 0, 1 or 2 nodos at tho noxt lovel of the hierarchy; and so 13223 Skip
: forth, This hierarchical structure inspires the graphical 1.3.2.3 Skip
: ropresentation shown it figure 4.1b lor a simple troe comptising 1.3.3. Travorse the tree {E, G, H)
v only eight nodes A, 8, C, D, E, F, G, H). 1330, VisitE
t .
! Ganoalogical terms are normally used to doscribe the telative 19.9.2 ‘Tga;?s‘s !{:he!. "E“ fal
! position of nedes in a troe: when a node polnts at & second node, the 18322 Skip
: H tormer is called the father of the latter, and this the son of the 13823 ékip
i . former nodo. A node withoyt sons, that is, with both links blank, is 13.3.3 f:&v‘ol.so the tree (v
callod a terminal node, anc tho only node without a tather is the root D 13331 Mg “'
(node A in figure 4.1b). Given a node, the set of nodes tormed by DO :
‘ : itsoll together with all its descendants constitutes o Sublreo of the 13.3.3.2 Sk:.p
E main troo. For instance, in figute 4.1b the trees {C, D, E, F, G, H) 13.3.3.3 Skip
; v l{"::pou:;iv(;'\ym are sublraos of the main tree rooted at G and E Thus, the nodes of the tree in figure 4.1b in preordsr ate A, 3, C, D,
F.E,Gand H.
i
: We notice in the above algorithim that, before moving on 1o travorse
: DORESS the teit sublree - step 2 In the previcus algorithm - it is nocessary
! i ’ to store the valuo of the right link, that Is, the address of the right
: ‘ | N wmaon son, in order to v.uble the subsequent travorsal of the right sublres,
! - A Moreover, whilst traversing the lelt subtree it is likely that
; ' additional right licks will have 10 ba stored. In fact, a list containing
the addresses of all right subtrees encountered aiony ihw way wihich
QS }_(_ are yet to be traversed, must be kept end has to ba conlinuously
. updated as follows. After visiting each node, the right link, it
o } ditturent from zero, is added to the list end if the left link is nat
: ; ©) 0r0 the lelt subtree is traversed. When a zero lefi link is
: : encountered, the last right link inserted in the list is retrieved, as
y ¥ well as removed, irom the list and the subtree rootsd at this
: Q 8 U address is traversed.
AGORESS
(a) bl
Figuie 4.t
A cinple Hinary tiee and Hs Storage In compuier memory
T
Tree Traversal
4 ‘4 To retrieve information stored in a given node requires knowledge of
: ? its location in memory, which is kept by ils father. Hence, a node in
; e the tree can only be examined or visited it all its ancestors are
H visited first. However, il is possible to systematically examine each
¥ H node in such & way that every node is visited exaclly once. Such an
" t oneration is known as traversing the tree and provides the basis for . N
3 )

' tho searching methods discussed below. Aithough sevoral algotithms
can be found in the literature to traverse a .naty tree [44],
attention will be centred here on the so-called preorder traversal

¢ method. This technique is embodisd In the tollowing three steps: Figure 4.2
The deletion process.
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This type ol list, In which ltlems are insetted one by one and
oxiracted, also one at a \ime, In the reverse otder, 1s Known as a
stack [44). A stack consists of a linear array, ot vector, togother
with an integer varlable to tecors the number of ltems in the array.
This variable, being initlally zero, Is increased by ons every time an
Hem is addud to the stack and decreased by one when an iiem is
oxiracled from it,

With the holp of a stack, any recursive algotithm can be implemented
without the need to use recursive routines. For instance, & non.
recursive implemontation of the traversal algorithm given above can
Ye symboficelly exprossed as:
0.0 Sof root _addirvsn « @ddress of the root node
0. Sofntack_aize = o
1. Visit the nodw stored at: oot addroece
2.0 righe_vank e 0 then;
Setvra-k ni=n Ltaek aine ol
Sof stackistask_gizel = right_link
endil
3a. I lote_1ink ¢ o then:
Sét root addrass = loft_link
yo to 1
endif
v I et 1ink - o then:
Il stack _atzo ¢ 3 then:
Seatyeot_addyons = stackatack_size)
Setatack aize » srack_size - 1
gotlod
endif
ondit
fstack_size - @ - terminate. dhe. RIOLNSS
ineeriing and Oeleting Nodes
In ordor to add a now data item to a binary treo, a node contuining
tho now item of information must be created and stored In o
convenient memory location. The left and tight links of this node are
set to 2a.0. f tha cutrent tree is empty, the new node becomes tho
root of the tree, otharwise the node must be Inserted of IInked 15 the
axisting tres. To achieve this, the tree is followed downwards,
starting from the root and jumping from tather to son, until a blank
link is foynd. This link is thon set 15 tho momory position of the new
node. When moving down the trae, a criteflon must bo provided at
sach node to chose between the left or tight branches. This critetion
dotormines the tinal position in the tree of the new node and,
consequently, the shape of the tree itself.

Detating a node from a binary tree is a staightforward operation
the undesited nodo is a torminal node; changing o zero the
corresponding link of ils tather effeciively 'prunes’ tha node trom
the wee and renders the mamory occupiod by it available tor future
uses. In the case of an nermediate node, the prosess bucomes
slightly more complicated since a gap can not be Isft In tho tree. To
overcomg this problem, the unwanted node is replaced by a terminal
node chosan from among its descendants. Tnis operation can be
carriod out by modifying the links to suit the new structure of the
ttee and without moving the nodes from thoir memary positions.
Figures 4.2a and 4.20 illustrate the dototion of nodo C from thu troe
shown in figures 4.1a and 4.1b and its replacemant by node H.

It tho application at hand demarxds frequent detetion and insertion, a
momory book-keoping systom 1s necossary for the efticiont
implemantation of tree structurss. This is required so that now
nedos can bo placed in the momory space 1eleased by the delotion of
previous nodes. This problem can be solved bty using a linked list
strusture to record all the available memoty spaces. A linked list is
a data structuro tirat diffors from the binary tree data stiuctura
describad above in that evaiy inodo has always only ono link pointing
at another node, and ovely node has always one Lk polnting at it
There are two exceptions, which are the head and the end nodes.
The head is 8 nodo with no link painting at it . the address of which is
kept separately - and the end Is a node with a blank link.

As shown In ligure 4.3 the two data structures, binary treo and
linked list, are updated simultaneously. {zitially, the available
memory is partitioned into cells of tho correct size to store ree
nodes These ¢elis, which contain no relavant informition other than
a single link, are then joined togelher to torm a linked list. Every
time a node neads 10 be inserted into the tree, the maemory space

required by this new rov node Is generated by removing a node from
the list (500 figure 4.3b). Similarly, when a nodo 15 deleted trom the
tree it iz added 1o tho list (so0 figure 4.3¢c). Inserting and deleting
nodes In the list always takes placo at the head. To Insert n node Into
the list, the Hik of the new node Is sol equal to thu adkiress of the
head and the inserted node becomar the new head of the list. The
delotion of the head node can be done by simply allowing its link to bo
the new head,

ADORLSS
N, ===lW T A TH JiRbon
:, e (TR, ETV I 14t AD) A
.
Ny ===l € | N,
", .
e ¢ lwle 8 Q
Nb
Ny ——={ Ne I O [0 il }l (/)
Ny ==aa] Bo ] C | N
My =i & | B | ¢
N, t 6 X‘)
by RN DR
N, o |6
N, S

@--—&@ —b@-—@@—s@ - »»@

ADDRLSS

N ﬁ
ara\a‘ i NN 7 @ O}

(¢)

000 00—

Flgure 43
Qinacy HsMKed st conligurmions. (a) The tred of tigure 4 1 (b) Ater the
teartion of node | and using the siciage twraset by nade a. {v) Altar Jetiog node
<



4.2 The Afternating Digital Tree

Consider a set of n points in a N dimensional space (RN ) and assuine
for simplicity that the coordinate values of their position vectors
(X1, X2 ... &0}, after adequate scaling, vary within the interval
[0,1). The aim of gaometric searching algorithms is to select from
this set those points that lie inside a given subregion of the space. To
facilitate their representation, only rectangular - or ‘hyper-
rectangular’ - ragions will be considered, thereby allowing their
definition in terms of the scaled coordinates of the lower ard upper
vertices as (a. R).

Comnparing the coordinates of each point k with the vertex
coordinates of a given subregion to check whether the condition a; <

x¥; <b; is salisfied for i = 1,2 ... N, would render the cost of the
snarching oparation proportional to the number of points n. This
computational expense, however, can be substantially reduced by
storing the points in a binary tres, in such a way that the structure
ot the tree raflects the positions of the points in space. There exist
several well known algorithms that will accomplish this effect for
one dimensional problems; the most popular are the binary search
tree and digital tree methods [41,43). Binary search trees have
been extended to N dimensional problems in (43}, bul the resulting
tree striucture, knovin au N-d trees, do not allow the efficient
deletion of nodes. The algorithm presented here is a natural
extension of the one dimensional digital tree algcrithm and
overcomes the dilficulties encountered in N-d trees.

Definition and Node Insertion

Broadly sp)aking, an alternating digital tree can be defined as a
binary tree in which a set of n pointe are stored following certain
geometrical criteria. These criteria are based on the similarities
arising between the hierarchical and parental structure of a binary
tree and a recursive bisection process: each node in the tree has two
«ons, likewise a bisection process divides a given region into two
smaller subregions. Consequently, it is possible to establish an
associalion botween tree nedes and subragions of the unit hypercube
as follows: the rool represents the unil hypercube itself; this region
is now bisected acrnss the x! axis and the region for which 0 < x! <
0.5 is assigned to the loft scn and the region for which 0.5 < x' < 1
5 @35igned 1o (e fighi 50n; ai each of Wi8se nodas e prosess is
repeated across the ¥2 direction as shown in figure 4.4. In a wo
dimansional spac. process can bo repeated incefinitely by
cnosing x' and »* ' actions in alternating order: s:milarly, in a
genoral N dimensional space, the process can be continued by
choosing directions x', x2, ... xN in cyclic order.
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Flgure 4.4
The relstion belween a binary tree and a bisection process.

Generally, if & node k at ihe hierarchy level m - the root being level

0 - represents a region (G, ty). the 7 Dregions ussociated to its left

and right sons. (G, di) 8nd (gy,. dx,) result from the bisection of

i dx) by a plane normal to the j-th coordinate axis, where j is
41 cyclically from the N space directions as:

j = 1 + mod(m,N) (4.1)

and mod(m,N) denotes the remainder nt the quotient of m over N.
Hance (G, Gu) and (Cx., die) are obtained as:

L . !
ciy Obh Ul eyt toriwjand o = gl Oy = 3 (ol ¢ di)
(4.2a)

ck,‘ = Cki, dk,i = dk’ fori= j and Cui = ! (Cki + dki). dHi = dki
J 2
(4.20)

This correlation between nodes and subdivisions of the unit
hypercube allows an ADT to be further defined by imposing that each
point in the trea should lie inside the region corresponding to the
node where it is stored. Consequently, if node k of an ADT structure
contains a point with coordinates Xy, the fallowing condition must be
satisfied:

e < X < g fori=12..N (4.3)
Due to this additional requirement there exists only one pussible way
in which a new point can be inserted in the tree. As discussed in the
previous section the tree is followed downwards until an unfilled
position where the node can be placed is tound. During this process,
however, left or right branches are now chosen according to
whether the new point lies inside tha region related to the left or
right sons, theraby ensuring that condition (4.3) is satistied.

Given a predeterminod set of n points, an ADT structure car be buiit
by placing anyone point at the root and then inserting the remaining
points in consecutive order according to the algorithm described
above. This is illustrated in figure 4.5 for a set of 5 points
{A,B8,C,D,E}. The shape of the reo obtained in this way depends
mainly on the spatial distribution of the points and somewhat on the
order in which the points were inserted. The cost of operations like
node insartion/deletion and geometric searching depends strongly on
the shape of the tree; generally poor parformances are to be
expocted from highly degenerated trees (sea figure 4.6), whereas
w~eoll balanced trees (see liguro 4.7), as those obtained for faitly
uniform distributions of points, will result in substaniial reductions
of the searching cost. In these cases the average number of Isvels in
the trae, and theraforo the average cost of inserting a new point,
becomes proportional to log(n): clearly a3 ccensiderable cost it
compared with the cost of storing the poir a sequential fist, but
fully justifiable in view ot the reduction in ching costs that ADT
structures will provide.

. (5) woptoy{ e

R

Figure 4.5
Buikding an ADT by successive imsertion.

Geomatric Searching

Consider now a set ol points stored in an ADT structure, The fact
that condition (4.3) is satisfied by every point provides tho key to
the efficlent solution of a geometric searching problem. To illustrate
this, ncte lirst that the recursive structurs of the bisection process
described above implies that the region related 10 a given node k
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consequently, all points stored ir these nodas must also lie inside the
region represented by node k. For instance, all points in the ADT
structure are stored in rnodes descended !:om th.. 1301 and, clearly,
all of them lie inside the unit hypercube - tho ragion associated with
the 1oot. Analogously, the campiste sat of points stored in any
subtree is inside the region rupiesented by the root of the subtree

This feature can be eftectively used to reduce the cost of a
geomstric searching precess by chacking, at any node k, the
intersaction beiwesn the saarching range (3.R) and the regica
represented by node k, namely (G, di). !! thase two regions fail o
overiap, then the complete set of points stored in the subtree rooted

«t k can be disregarded from the search, thus avoiding the need to
examine the coordinates of every singls point.

o 9

(8) ®)

Figure 4.6
Degenerated trees.

Flgure 4.7
A wall balanced tiee.

Consaguently, a systematic procedure lo select the points that lie
inside < given searching range (a h) can be derived trom the
traversal aigorithm previously presented. Now the generic operation
'visit the roo! can be re-interpreted as checking whether the point
storad in the root falls inside the searching range. Additionally, the
left and right subtrees need to be traversed only it the reginns
associated with their respective root nodes intarsect with the rang».
Accordingly, a gvometric searching algorithm emeiges in a
recursive form as:

1. Check whother tha coordinates of the node stored in the root, say
Xx. are inside (a,h) i.e. check whetheral< xt < bt fori=12 .. N,

2. If the lnft link of tha root is not zere and the region (g, di)
overiaps with (g, R)ie. ifdy 2 dandcy < blorimr2 . N,
search the left sublree.

3. If the :ight link of the root is not zero and the reyion (Ckr, Qikr!
overlans with (g, b} ie. ifd,} 2 a'andc,) < b fori=12.. N,
search the right subiree.

In order to iliustrate this process, consider the set of puints and the
searching range shown in figure +.8a and the corresponding
alternating digital tree degpicted in figure 4.8b. For this simple
example, the algorithm given above resul's in the following sequence
of steps:

Search the tree {A,B,C,D.E,F,G H}:
1. Gheck it al < xpAls bifori= 1,2
2. Since dg' > &' and cg' < b search the tree
{8.C.0,E):
2.1 Check it a' < xg' s b'
2.2. Sirce d¢'! > a' and cc' < b'search tho tree
{C.E:
2.2.5. Check if a s x¢! < b
2.2.2. Skip (loft link is zero)
2.2.0. Skip {cg! > bY)
2.3. Skip (cp? » BR)
3. Skip (c¢! > bY)

Again 2 ‘non-recursive’ implementation of this algorithm can be

achicvad using a siack in a very similar way to that i
) previousi
described for the traversal aigorithm. '

Note that, with this technique, only the coordinates of points A.B and
C_ are actually oxamined, the rest being immediately disregarded in
view ot their position in the tree. In general, only those points
siored in nodes with associated regions overlapping (a. b) will be
checked during the searching process.

I
?
" l !
. *

{al (L]

Figure 4.8
The ssarching problem in A2

4.3 Geometric Intersection

Gaometrical intersection problems can be found in many applica: 1s;
for instance, a common problem that may emerge in contact
algorithms [46), hidden line removal applications or in the advancing
front grid goneration algorithm presented in section 3, is 1o
determine from a set of three noded triangular elements those which
intersect with a givon .ne saegment. Similar problems. invoiviag
other gwometrical objects, are encourtered in a wide range of
geometrical applications. in general, a qeometric intersection
problem consists of finding from a set of geomelrical objects those
which intersect with a given object. !f every one-to-one intersection
is invesligated, the solution ol these problems can become very
exponsive, especially when complex objects such as curves or
surfaces are involved. Fortunclely, many of these one-to-one
intersections can be quickly discarded by means of a simple
comparison batween the coordinate limits of every given pair of
objects. For inslance, a lriai.gle with x-coordinate varying from 0.5
and 0.7 cannot intersect with a segment with x-cocrdinate ranging
from 0.7 to 0.3. Generally, the intersection betwsen two objects in
the N dimensional Euclidean space, requires each of the N pairs of
coordinate ranges to overlap. Consider for instance the intersection
problem between ftrianguiar facets and a taiget straight line segment
10 RY; then, if {Xk min Xk,max) are the coordinate limits of element k
and (Xo min» Xo,max} are the lower and upper limits of the target
segment (see lipure 4.9), an important step towards the solution of
a geumslric intersection problem is to select those which satisy the
inequality:

xll.mlnIS "O,mu‘
) fori=12..N (4.4)
Ximax' 2 xo.min,

The cost of checking condition (4.4) for every element grows
proportionally to n, and for very numefous sels may become
prohibitive. This cost, howvever, ctn be substantially reduced by
using a simple device whereby the process o! selecting thosse
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elements which satis'y condition (4.4) can be inierpreted as a
goometric searching problem. Addition2lly, since the number of
eiements that satisfy condition (4.4) will normally be much smaller
than n, the cost of determining which of these inlaisects wih the
targat segment becomes affordable.

-

CX 1
n
Komn (b
Target line
segment
Figure 4.9
The detini of dinate limits tor 's and straight line
segments.

In order to interpret condilion (44) as a geomstric searching
problem, it is fust converient to assume that all the elementis to be
considered lie inside a unit nypercube - a requirement thai can be
easily satistied through adequate scaling of the coordinate values.
Consequently, condition (4.4) can be re-written as:

0s xk,min‘ < Xo.mu'

C< xh.minN < l().m:n:N
(4.5)
Xo,min! < LT

xO.r\'ilﬂN s xk,mmlN <

Consider now a giver: object k in RN with caoordinate Himits Xx min.
and Xk max: combining this two sets of coordinate values, it is
possible to view an object k in A as a point in AN with coordinates
Xitori=12.. 2N defined as (see ligure 4.10):

T

Ax= [ !k.mln‘v e xV,minN- xl,mal‘, BEEE ‘k,mu"l (48)
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0 xrnin Xm“ muey
Figure 4.10

The reprasentation ol a region in R! a3 a point in R%
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Using this representation of a given ooject k, condition (4.5)
becomes simply:

al g i fori=12 .. 2N (4.7
where g and b can be interpreted as the lower and upper venices of
a ‘hyper-rectangular' region in A2N and, recalling (4.5), their
components can be obtained in terms of the coordinate limits of e
target object (see ligure 4.11) as:

1 N T
a=(0,...0 Xomax's - - . X0, max" (4.9a)
B={Xomn' .. XomN 1, ... 1) (4.8b)
x.‘hil ‘}
b
0 <x !

—

[ q
| pum——
xo, in X

o+

o.max 1 Xo,man

Figure 4.11
The intersection pioblem in Al asa searchin problem n R,

Consequently, the problem of finding which objects in RN satisty
condition (4.4) becomes equivalent to a geomalric searching problem
in A2N j.e. obtaining the points x, which lie insida the region limited
by 2 and B. Once this subgroup of elements has been selected, the
intersection of each one of them with the target ubject must be
checked to complete the solution of the geometric intersaction
problem.

4.4, The Use of the ADT tor Grid Generation

It is obvious from the advancing froni algorithm described in section
3 that operations such as searching for the points inside a certain
region of the space and determining intersections batwesn
geometrical objects - in this case sides and facec - will be
performed very frequently. The complexity of the problem is
increased by the faet thal the seu of faces forming the generution
front changes continuously as new taces nesd to be inserted and
deloted during the process. Clearly, for grids consisting of a large
number of elsments the cost ol performing this operations ¢an be
very important.

A successful implementation of the above algorithms has been
accomplished by making extensive use of the ADT data structure.
For instance, the aigorithm of section 3.5 for tetrahedra gereration
employs two tree structures; one for ths faces in the {ront and the
other for the s.des defined by tho intersection betv;een each pair of
faces in tle front (see figure 3.11). This combination allows a high
degree of flexibility and the operations of insertion, doletion,
goometric searching and geometric intersecticn can be performed
optimally. The overall computational perfoimance of the algorithm is
demonstrated by generating tetrahodral grids, using the above
method, for a unit cube (see ligure 4.12). Different numbers o!
elements have been obtained by varying the grid size. In figure 4.12
the corputer time required on a VAX 8700 machine has been plotted
agains: the number NE of elements generated. it can be observed thut
a typical NE*{og(NE) behaviour is altained. Using this approach grios
containing up to one million elements have been generated and no
dogradation in the periormance has been detected.
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Grid generalion cpu times.

S. ADAPTIVITY FOR STEADY STATE PROBLEMS

The procedures described above allow for the computation of an
initial approximation {o the steady state solution of a given problem.
This approximation can generally be improved by adapting the grid in
some manner. Here, we follow the approach of using the computed
solution 1o predict the desired characteristics {i. @. element size and
shape) for a new, adaptled grid. The ultimate aim of the adaptation
procedure is to predict the characteristics of the optimal grid. This
can be defined as the grid in which the number of degreses of
freedom required tc achieve a specified level of accuracy is a
minimum. Alternatively, it can be interpreted as the grid in which a
given number of degrees of fraedom are distributed in such a manner
that tha highest possible solution accuracy is achieved. In practical
situations however, there are soveral factors which make the
achisvement of such optimal grids extremely difiicull. Some of these
factors are:

i) The concept of optimality is intimately linked to that of accuracy,
which is nol uniquely defined. Henca optimalily of a grid needs to be
daefired with respect to a given norm or measure of the error. An
additional inconvenience related to the measure of accuracy, in the
present context, arises from the fact that we are attempting to
soive a coupled set of non linear partial differential equations and,
therefore, a rigourous measurs of tha error should involve all the
relevant variables.

i) For linear elliptic operators, as we have shown in Section {1,
Galerkin finite element algorithms are readily dsrived which
guarantee that the approximation obtained is the most &ccurate
amongst all the possihle approximations within the Yial space of
functions. Here, accuracy is defined with respect to a norm implied
by the operator itsell {the energy norm). For the Euler equations,
however, such an energy norm does not exist and no numerical
schemes are known which possess this optimality property.

iiiy This best approximation properly means that the error of the
computed colution, measured in the energy norm, is bounded above
by that of the exact interpolant. i.e. the approximation in the space
of current trial functions which has exact nodal values. Using results
of interpolation theory [47), it is then possible to produco rigourous
bounds on tiie error of the numerical approximation. These results
are tased on certain regularity assumptions on ir.-~ solution, which
for the Euler equalions will be inval vicinity  of
discontinuities in the fiow.

iv) Finally, the orror estimates produced are based on the computed
sofution. As this is oniy an approximate solution, such erior
estimates will only be as good s the computed solution, This means
that, even in the best situation, the optimal grid will only be
achisved in the asymptolic limit. i.e. when the solution is so good
that the computed error becomes very reliable.

In view of these observations and knitations, we have made an
attempt to develop a heuristic adaplive sirategy. This strategy uses
error gstimates which are based upon concepts from interpolation

theory. The possible presence of discontinuities in the golution is
taken into account and, in addition, the procedure provides
information about any directionality which may be present in the
sofution. The advantages of using directional error indicators become
apparent when we consider the nature of the solutions to be
computed involving flows with shocks, contacl discontinuities etc.
Such teatures can be most economically roprasented on grids which
are stretched in appropriate directions. Although, these error
eslimates have no associatcd mathematical rigour considerable
success has been achieved with their use in practical situations.

The computed error, estimated from the current solution, is
transformed into a spatlal distwribution of ‘optimal’ grid spacings
which are interpolated using the current grid. The current grid is
then modified with the objective of meeting these ‘optimal
distribution of grid characteristics as closely as possible. Three
aiternative procedures will be discussed hsre for performing the
grid adaption. The resulting grid is employed to produce a new
solution and this procedure can repeated severat times uniil the user
is satistiod with the quanty of the computed solution.

5.1 Error Indicator in 1D

The development of a method for arror indication is considerably
simplified if we restrict consideration to problems involving a single
scalar variabis. For this reason, whan solving the Euler equations, a
key variable is identified and then the grid adaptation is based on an
ertor analysis for that variable alone. The choice of the best
variable to use as a key variable remains an open question, but the
the Mach number has been adopted for the computations reported in
these notes.

Consider first the one dimensional situation in which the exact
values of the key variable ¢ are approximated by a piecewise linear
function 6. The error E is then defined as

E = a(x!} - 8(x") (5.1)

We note here that if the exact solution is a linear function ot x' then
the error will vanish, This is because cu; approximation has been
obtained using piecewise linear finite slement shape functions.
Morgover, it the exact solution is not lineas, but is smooth, then it
can be represented, 10 any order of pracision, using polynomial
shape functions.

To a first order of approximation, the error E can be evaluated as
the ditference between a quadratic finite eloment solution & and the
linear computed solution. To oblain a piecewise quadratic
approximation one could obviously solve a new problem using
quadratic shape functions. This procedure however, aithough
possible, is not advisable as it would be even more costly than the
original computation. An alternative epproach for estimating a
quadratic approximation from the linear finits element solution is
therefore employeda. Assuming that the nodal vaiues of the quadratic
and linear apgproximations coincide i.e. the nodal values of E are
2er0, @ quadratic solution can be constructed on each element, once
the value of the second derivative Is known. Thus the variation of
the error £ within an slement e can be expressed as

1 :a
e w5 Glhe - §) g iz . (5.2)

where { denotes a local element coordinate and he denotus the
element length. A procedure for estimating the second derivative of
a piecewise linear fungtion is daescribed below.

The root mean square value E,AMS of this ermor over the element can
be cumputed as

"0
Ey? 1 l s
RMS 2 - ——h2 |—=
Eo of he [-14 \,1—2(,"‘- deZ . (5.3)
where | . | staids for absolute value.

Wae define the 'optimal' grid, for a given degree of accuracy, as the
grid in which this root mean square error is squal over each
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elemant. In the presem context, this tequirement may be regarded
as being somewhat arbitrary. Howaver, it has been shown [48) that
the requireament of equidistributior of the error leads to optimal
results when applied to certain elliptiz problems. This requirement is
thorefore written as

&
het d—,‘,:l =C (5.4)

where C denotes a positive constant.

Finally, the requirement of equation (5.4) suggests that the ‘optimal'
spacing § on the nsw adapted grid should bo computed according to

o
8 Ia'x‘_z =C (5.5)

5.2 Recovery of the Second Darivetives

The fitst derivative of the computed solution on a grid of linear
I ts will be pie constant and discontinuous across
olements. Therefore, straightiorward differentiation of 6 teads to a
second derivative which is 2ero inside each elememt and is not
defined at the nodes. However, by using a recovery piccess, based
upon a varialional or weighted residual statement (12), it is possible
to compute noda! values of the second derivatives from element
values of the first derivatives of 6.

To illustrate this process, consider a one dimensional domain 0 < x!
< L which has been discretised into (n-1) linear two noded fi.ite
elements. The piecewiss linear distribution ot the computed solution
o is expressed as

n
§= I N4, (5.6)
J=1

where Nyis the stancard finear linite elemant shape function [12]
associated to node J. Similarly, a piecewise linear approximation to
the distribution of the second derivative, which we seek to
determine, can be wrilten as

(5.7)

n
a2 = BNy 53
J=1 J
The nodal values of the second derivative may be compuied from the
approximate variational requiremant that

" dN d

L aNy N
' = ~J-(J2=.‘ ax' $Vax a
2

0 d
Y fNJNK o0 ) 453
Je1 d K

do do
- (gt Ndxtuo + (37 Nixtat XK= 1,00 (5.8)

The values of the derivatives at the two end points can be inserted,
it known, or can be taken to be equal to the constant value of the
derivative in the adjacent aelements. The resulting set of algebraic
equations can be solved, in a few iterations, by using a Jacobi
procedure [16] or alternatively, the cons:stent mass matrix
appearing on the left hand side of equation (5.7) can be lumped, thus
yielding a diagonal system of equations. Numericat results obtained
to date do not indicate any significant differences in the grids
produced by using these two approaches.

5.3 Extension 1o Multi-Dimensicne

Following the process described above, nodal values of the second
derivative can be oblalned from the approximate solution on the
current grid. The use of expression {5.5) then yisks directly a nodal
value of the ‘optimal' epacing for the new gid.

Expression {5.5) can be directly extended to the N dimensional case
by writing the quadratic form

N
B;F(E‘ mi gip) )-c (5.8)
(TS
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where R is an arbitrary unit vector, 83 is the spacing along the
direction of B, and miare the components of a NxN symmetric
matrix of second derivatives

%

g ——
= axlaxi

(5.10)

These derivatives are computed, at each node of the current grid, by
using the N dimensional equivalent of the procedure presented in the
previous section. The meaning ot equation (5.9) is graphically
illustrated in figure 5.1 which shows how the value of the spacing in
the A direction can be obtained as the distarice from the origin to the
point of intersection of the vector B with the surlace of an ellipsoid.
The directions and lengths of the axes of the ellipsoid are the
principal directions and eigenvalues of the matrix m respectively.

Several alternative procedures exist for modifying an existing grid
in such a way that the requirement expressed by equation (5.8) is
more closely satistied. Three such methods will be described here. In
the first procedure, called grid enrichment, the nodes of the current
grid are kept fixed but some new nodes/elements are created. In the
sacond procedure, referred to as gric movement, the total number
of eloments and nodes remains fixed but their position is altered.
Finally, in tho adaptive regriding algorithm, the grid adaption is
accomplished by completely regenerating a new grid using the grid
generation algorithm presented in section 3.

\
‘o3

X3

.31

Figure 5.1
The dstermination of the value of the spacing 5 along the direction .

5.4 Grid Enrichment

In order 10 adapt a grid using grid enrichment, a sweep over all the
sides in the g.id is made and the ‘optlimal' spacing in the direction of
each side is computed according to expression {5.9). For each side,
the matrix m is taken t) ba the average of its value at the two nodes
of the side. The enrichment procedure consists of introducing an
additional node for each side for which the calculated spacing is less
than the length of the side. For interior sides, this additional node is
placed at the mid-point of the side, whereas for boundary sides, it is
nacessary to refer ‘o the boundary definition and to ensure that the
new ncde is placed on the true boundary. When any side is subdivided
1 this manner, the elements associated with that side will also nesd
to be subdivided in order 10 preserve the consisiency of the final
ygrid. Figure 5.2 illustrates the three possible ways in which this
efement subdivision might have ts be performed in two dimensions.
The number of sides to be refined depends on the chokce of the
constant C in equation 5.9. To avoid excessive refinement in the
vicinity of discontinuities, a minimum threshold vaiue for the
computed spacing can be used. When the grid enrichment procedure
has been completed, the values of the unknowns at the new nodes are
linearly interpolated from the original gric and the solution algorithm
is re-started. This procedure has been successiully implemented in
two and three dimensions and several impressive demonstrations of
the power of this technique have besn made. [8,19,49,50).
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Figure $.2
The grid entichment p ing three possible reti cases lor a

Mcnguliv olement.

The application of the enrichment procedure in the solution of a two
dimensional example is illustrated in ligure 5.3. The problem solved
Is a Mach 8.15 flow past a double ellipse configuration at 300 angle
of attack. The Initial grid and two adaptively enrichcd grids are
shown together with the computed Mach number solutions. The
appiication of tha cnrichmenl aigorithm in three dimensions is shown
in figure 5.4. The inviscid How past a 30°wedge is solved. The free
stream Mach number is 3. This is a two dimensional problem
computed on a three dimensional grid. Two views of the initial grd
and solution are shown. A single application of the enrichment
algorithm produces the grid and solution which are also displayed in
figure 54.

FIRSY MLCSH SECOND MESH THIND MESH
1 71 elements $ 311 elerments 10 €49 clemenis
913 points S 443 poinia

MACH NUMBER SOLUTIONS M.z 815 uz 30

Hgwe §3
Supersonic tiow past 3 double olipss at a 1ree sirsem Mach rumber of 8.15 and &l an
angle of alack of thitty deg 9 & 509 ot grids and solutions obtained
tollowing the use of adapiive entichment,

It can be observed, from the examples presented, how the quality of
the solution is significantly improved by the application of the
enrichment procedure. The main drawback of the approach is that the
number of elements increases considerably following each
application of the procedure. This maeans that, in the simulation of
practical three dimensional problems, only a smali number of such
adaptations can be contemplated.

W
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7

Figure 5.4
Supersonic flow past a wedge of angle thiy deg in three d|
(a) (b)Views of the Initial grid. (¢) The computed density contours.
(d) (e) Views of the enriched grid. (1) The compuled density
contours on the eariched grid.

6.5 Grid Movement

For the grid movement algorithm, the element sides are considered
as springs of prescribed stifness and the nodes are moved until the
spring system is in equilibrium. Consider two adjacent nodes J and &
as shown in figure 5.5. The torce fx oxerted by the spring
connecting these twc nodes can be taken 1o be

Ik = Ci (Ly-ik) (5.11)

where Cjx is the stiflness of the spring and [y and fx are the
position vectors of nodes J and K raspectively. Assuming that

he |01k (6.12)

the adaptation requiremant of equation (5.9) wilt be satistied it the
spring stiffnesses are defined as

N
3 mlnylngy! (5.13)

Cx =h

Here p,x is the unit vector in the direction of the side joining nodes 4
and K. For equilibrium, the sum of spring forces at each nodo should
be equal to zoro. The assembled system can bm brought into
equilibrium by simgie lteration. in each iteration, a loop is performed
over all the Interior nodes and new nodal coordinates are calculated
according to the expression
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Figure $.8
The grid movement algerthm In which eloment sides ate replaced by springs.

Sy
T Cux Ik
LNEY » — (5.14)
o
K=t
where the summation extends over the number of nodes, S,;, which

surround node J. Suflicient convergence is normally achieved after
three to five passes through this procedure.

This technique will not necessarily produce grids of belter quality,
as badly formed elements can appear in regions (such as shocks) in
which the spring coefficients €y vary rapidly over a short distance.
To avoid this problem, the definition of the value of C given in
equation is (5.13) can be replaced by an expression of the form

A Cux

MOD"+80 C
JK

Cu (5.15)

This can be regarded as a blending function definition for the spring
stitinesses and it has been consiructod 5o as o ensuro that, with a
suitable choice for the constants A and B, excessively small or
excessively large element sizes are avoided. This, in turn means
that grids of acceptable quality will be produced. More sophisticated
procedures for controiling the quality of the grid during movement
can also be devised (51] and grid movement algorithms have been
successiully used in two and three dimensional low simulations on
both structured and unsiructured grids [15,51,52).

The grid movement algorithm described has been applied to the
problem at Hiow past a double ellipse configuration which has been
treated previously. Figure 5.6 shows the solutions produced
following two grid adaptations. it can be seen that the improvement
obtained after the second adaptation is minor. This is because the
algorithm does not allow for the creation of new nodes and so the
quality of the tinal solution is very much dependent on the topology
of the initial grid. This is & major drawback of the grid movement
strategy. A possible remudy to this problem is to combine grid
snrichment and grid movemont procedures. This is demonsirated in
tigure 5.7 which shows the application of the movement procedure to
the final enriched grid of figure 5.3.

5.6 Adaptive Regriding

The basic idea of the adaptive regriding technique is to use the
computed solution to provide information on the spatial distribution
of the grid paramsters. This Information wili be used by the grid
generator described in section 3 to generate a completely new
adapted grid for the problem under investigation.

D T o A SV Y

1 793 elements
913 points

MACH NUMDEN SOLUYICNS M.z 815 a= 3

Flgure 8.6
Supersonic flow past a double efip<o nt a frée siream Mach number of 6.15 and at an
anpla of attack of thity deg howing of giids and solutions obtained

a seq
tollowing the use of adaptive gid movement
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Figure 5.7
Supersonic Hiow past a double elipse i a free siream Mach numbir of 8.15 and at an
angle of attack of thily degreas showing the soluti biained foHowing the
application of adaplive grid toap ly enriched grid,

The ‘optimal’ values for the grid parameters are calculated at each
node of the current grid. The directions g;: imv, .., N, are taken to be
the principal diraciions of the matwix m. The corresponding grid
spacings are computed from the eigenvalues e; is1, ., N, as

1w
C .
5 = {;l—} for =, .. N (5.16)

et

PSR

-




o * m———

OBt et BTN i s 5 G et

5-32

The spatial distribution of the grid parameters is defined when a
value is specilied for the constant C. The total number of elements in
the adapted grid will depend upon the cholce of this constant, For
smooth regions of the flow, this constant will determine the valua of
the root mean square error in the key variable that we are willing to
accept. Therefore this constant should Le decreased sach time a new
grid adaption is performed. On the other hand, solutions ol the Euler
equations are known to exhibit discontinuities. At such
discontinuities, the root mean square error will always remain large
and therefore a Jifferent strategy is needed in the vicinity of such
features.

In the practical implementation of the present method, two threshold
values for the computed spatial distribution of spacing are used: a
minimum spacing 8my and @ maximum spacing 8may, so that

Smin S & S Sma for i=t...N (5.17)

The reason for delining the maximum value Smay is to account for the
possibility of a vanishing eigenvalue in (5.16) which would render
that expression meaningless. The value of 5y, is chosen as the
spacing which will be used in the regions where the flow is uniform
(the far field, for instance), On the other hand, maximum valuss of
the sacond derivalives occur near the discentinuities (it anv) of the
flow whers the error indicater will demand thal smalisr eleaoents
are raquired. By imposing a minimum valug Sq, for the grid size, we
attempt to avoid an excessive concentration of elements noar
discontinuities. As the flow algorithm is known to spread
discontinuities over a fixad number of elements (i.e. two or thres),
dmin is theretore set to a value that is considered approptiate to
ensure that discontinuities are represented to a rcquired accuracy.
This treatment also accounts lor the presence of shocks of difterent
strength in which, since the numerical values of the second
derivative are diftereni, equation (5.16) will assign them difterent
grid spacings (e.g. larger spacings in the vicinity of weaker shocks).

The total number of elements generated in the new grid will now
depend on the values selected for C, §,.x, and §.,;,. Howsever, it
turns out that this number is mainly determined by the choice of the
consiant C, which is somehow arbitrary. The criterion employed
here is to select a value that produces a computalionally afiordable
number of elemaents.

The adaptlive regriding stratsgy presented in this section is
ilustrated in figure 5.8 by showing the various stages during the
adaptation precess. Figure 5.8(a) shows the initial grid employed for
the computation of the supersonic tlow past a double ellipse
configuration. The Mach number contours of the solution obtainad on
the initial grid are shown in figure 5.8(b). The Ylow conditions are a
free stream Mach number of 8.15 and an angle of attack of 30%. The
application of expression 5.16 to the solution obtained produces the
distribution ot spacing and streiching displayed in figures 5.8(c) and
5.8(d) respectively. In ligure 5.8(c) the contours corresponding to
the value of the minimum spacing occuring in any direction is shown,
whereas in figure 5.8(d) the valus of and the direction of stretching
is displaysd in the form ot a vector fisld. The magnitude of the
vector represents the amount of stretching i.e. ratio between
maximum &nd minimum spacings, and the ditection of the vactor
indicates the direction along which the spacing is maximum. in this

oxample expression 5.17 has been applisd to the computed spacings
with values of &ney = 15 and 5ymin = 0.9. Figures 5.8(e) - 5.8(h)
show various stages during the regeneration process. It can be
observed how small elements are generated first as discussed in
section 3.5. The completed grid is shown in figure 5.8(i) and the
solution computad on this adapted grid is shown ir figure S$.8(j). It
can be observed how a very signiticant improvement in the solution
is obtained using, in this case, a single adaptation.

Estimating the Number oi El ts to be Generated

The regeneration process uses the current grid as the background
grid. Such a background grid clearly represents accurately the
geometry ol the computational domain. In this case, the number of
oloments to be generated. denoted by N,. can be estimated as
follows. Once the values of C, S,,ax, and &y, have boen selected, the
spatial Jdistribution of grid parameters §, q . i=1, ., N is computed.
For each element of the background grid, the values of the
ransformation T is computed at the centrold. The transformation is
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Figure 5.8
IHustiation of the adagtive regriding procedure applled in the anatysls ol supsrsonic
tow past & double edipse at a free sitsem Mach number of 8.15 and at &) angle ¢
aftaci: of thiny degrees . (a) Initial grid. (b) Mach number contours coniputed on the
Joitlad rid. (¢) The compused distribution of spacings, using min = 9 and Smayx = 15.
(d) The computed values and directions (or the streiching. (4) - (h) Views of the gid
during ditferent stages of the regricing. (i) Flnal adapted grid. (j) The Mach number
contour distribution produced on the sdaplivety d grid.

o b



applied to the nodes of the elament and its volume Vg in the
normalised space is computed The number of slements N, is assumed
1o be proportiona! to tho totat volume in the unstretched space, i.e.

Ny
Ne=x 3 Ve (5.18)
ost

where N,, is the number of elements in the background grid and  is @
constant. The value of x is calculatod as a statistical average of the
values obtained tor several generated grids. The calculated value Is
¥ = 9. This procedure gives estimales of the vaiue of N, with an
error of less than 20%, which is accurate enough for most practical
purposes. If the estimated value of N, is either 100 big or teo small,
then the value of C is reduced or incieased and the process repeated
until the value of C produces a number of elements which is regarded
as being computationally acceptabls.

Application Examples

Double Ellipse

The adaptive regriding procedure is applied twice to the problem of
flow past a double eilipse. The flow conditions are those praviously
considered for this configuration. The initial and two adapted grids
and the sofutions for Mach number are shown in figure 5.9. The
characteristics of the grids employed are displayed in table 5.1.

Grid Elements Points  §pia
1 2027 1110 4.0
KTy ‘1RG4 0.9

3 6403  8iyi 0 PS

Table 5.1 Doublo ollipse (M,=8.15, a=30°): gtid characteristics.

It is observed how the application of the adaptive procedure. when
compared to the snrichment strategy, allows for a larger incroase in
the resolution at the expense of a smaller increase on total number
s! olements. On the other hand the regriding procedure does not
sufter from the limitations inherent in the grid movement algorithm.
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Figure 59
Supeisonic tlow past a double elipie ot & free siream Mach number of 8.15 and at an
angle of attack of thity deg howing the seq of gnds and the
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Shock interaction on a Swept Cylinder

This Is a problem of practical intsrest because its implications to the
design ~! hvpersonic vehicies [53]. The experimental apparalus and
the computational domain adopted are shown dlagramatically in
figure §.10(a). Tha numerical simulation has basn cariied out for a
sweep angle of 159 on a cylinder of diemeter D equal to 3 inches and
length L equal to 9 inches, The undisturbed free stream Mach number
is 8.03. The fluid which has been tumed by the shock generator
enters the computational domain with a Mach number of 5.26. The
initial grid and those obtained after two adaptive regridings and the
dersity contours distribution are shown i figura 5.10(b). The
characteristics of the grids are shown in teble 5.2.

Grid  Elements Points Smin  Smax
1 51 190 10 041 1.0 1.0
2 100 071 18 660 0.5 3.0
3 171 800 31 0°3 0.18 3.0

Table 5.2 3D Shock interactior: on a swept
cylinder: grid characteristics.

The pctenual advantages of tiie adaplive regriding procedure are
clearly illustrated in this thren dimensional exampla. The final
adapted giid has a rosolution of more than five times that of the
initial grid whereas the total number of degrees of {reedom
increases by only a factor ol 3.4. The eltec's of the three
dimensional adaptation are best shown in figure 5.10(c) which shows
the cross section through the grids halt way along the cylinder. Two
views of the throe dimensional grid for the final adaptation together
with the soiution obtained are shown in figures 5.10(d) and 5.10(e)
recpectively.
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Figure §.10
Shock interaction on a swept cylinder al a free stieam Mach number of RS and &
titteen degrees anglé of swoep {a) Skeich of the exparimental agparatus and the
chosen comnutalional domain. (b) The sequence of grids and corosponding computed
density comours obtansd by using adagth griding. (c) Cinss k taken
through the 3D grivs halt way along the cylinder. (d) The third adapled grid. (e) Deladl
of the shock Irderaction on the linal grid.

Generic Fighter Contiguration

This example concetas the simulation ol the flow past a generic
nghter configuration. The generation of the Initial grid for that
problem has heen described in section 3.9. Tha flow conditions
considered correspond to a free stream Mach number of 2 at an
angle of attack ot 3.79°. The engine inlet is modelled by prascribing a
Mach number of 0 3 within the engine. At the outlet supersonic flow
conditions are assumed. Beocause of the symmetry of the problem
only half of the domain is modelled. The spline definition of the
goometry is shown in figure $.11(a) and consists of 23 surface
components and 53 curve ccmponents. Two grids have been
employed in an initial demonstration of adaptive iegriding applied to
full aircraft configuration. Tho initial grid contains 76,522
tetrahedral eisments with 4,128 triangular faces on the boundary. A
preliminary first solution was computed using 1,500 iterations of
the basic explicit scheme. A second grid was adaptively gonerated
using the Mach number as the key variable in the errcr analysis. The
now grid is formed by 70,125 tettahedra with 7,262 uiangles on

SOy

OV

s

Figure 5.11
Quneric: lighter conilguralion M & free siream Mach number of 2 and at an angle of
aftack of 3.79 degrees. (a) Geometry delinftion - akcraft surtace and outer doundary.

(V) Inttia! grid and P [ ulion i the y plane. (¢} Seoond grid
and ned

P P Rition 0 the sy Yy pl-m;. (d) initial grid and computed
p ition on the ppiane aurface. (o) S d grid and puted pi
iution on the op ace.



L

[ R T

LT PSP,

P, Lo

e

< Sl e g

N e,

oo

PR T 4

-
R T ENRTY RS
[ R P

the boundary. It is interesting to notice that the number of elemenis
in the wo grids is approximately the same whereas tho number of
taces on the surlace has increased. Moroovs:, the minimum spacing
on tho ndapted grid Is 3.5 times smallot than the ono on the Initial
grid, thus indicaling also an incroase In the grid resolution. The
solution on the new grid was obtained after 2,000 iterations. The
grids and computed solutions at the plane of i munetry are shown n
tigures 5.11(b) for the Iniual grid and 5.11{c) for the adapted grid
The effect of tho adaptation in the vicinily of the engine Inlet can ba
obsurved. The grid and solution on the surlace of tho aircraft is
shown in figure 5.11(d) tor the initial grid and in figure 5.11(e) tor
the adapted grid. In this case the adaptation is very mild and is
hardly noticeable. The main reason for this is that the resolution on
the inilial grid is rather poor and some important How foatures are
not proparly captured.

6. TRANSIENT FLOWS [This saction has boen written in
collaboration with E. J. Proban EBMS, University College, Swansea
SA2 8PP, UK and O. Hassan, COR, Innovation Cenire, Univetsity
College, Swansea SA2 8PP, UK)

6.1 Transient Flows

Solutions of the Euler equations are smooth over laigs areas of the
computational domain and exhibit large gradisnts in localised pars of
the flow. In transiont simulations, these localisad regions will
generally move through the computational domain and may sweep
across very large areas o.g. the case of tlows involving propagating
shocks. This means that, unless adaptivity is usod, a globally fine
grid will bo necossary to provide tho required resotution. Thus the
use of adaptivity, with tho possibility for local grid refinoment and
coarsoning, ofters the potential for considerablo computational
savings. We havo already seen that only a few grid adaptations are
gonerally needed to obtain a satisfactory solution 10 a stoady
problom, but we can expect that grid adaptation will have to be
periormed several thousand times in a transiont flow simulation.
Thus any potential computational savings which appear to bo offered
by the usn of adaptivity in this cuso will only bo realised it the
adaptation of the grid can be porformed in an officient mannor.
Successtul implamentations of adaptivity to the solution of transient
problems have already been made within tho context of both
structured [54] and unstructured grids (55,56).

6.2 Grid Enrichment

An obvious method of achioving grid adaptation for iransient flow
simulanon is the oxtension of the grid enrichment ideas introduced
above for the solution of steady state probloms. An oxtremoely
successlul implemantation on unstructured triangular grids has been
made by Léhner [55). lh his method, the grid is automatically refined
and de-retined as necessary according to the results of an error
indicating process. An example [56] of the application of this
procoduro 1o shock-bubble interacuion problem i shown in tigure
6.1, This oroblem involves the interaction between a weak shock,
travalling at a Mach number of 1.29 In air, and a bubble of heavier
matetial (freon). From the figure it can be sean how the shock spesd
insido the bubble decreases, owing to the higher densily of the freon,
whartoeas the outer shock bends over. The inner shock focusos at the
right hand ond of the bubble, producing a significant over-pressura
and initiating a small circular blast wave. This method has also
rocontly been applied to three dimensional flow simuiations {57).

6.3 Transinnt Flows Invoiving Moving Bodles

The comple ity mvolved in wransiont flow simulation increases it ono
considers probloms in wnich certain boundaries of the computational
domain are aliowed to move, so that the geomelry of the domain
changes with lime. This means that the grid must be moditied during
the computation in order to accommadate these geomstrical changes.
Ono approach which has proved to be succasstul for tackling such
problems is the chimora apptoach, in which each individual geometry
component can have its own associated structwred grid which can
move independently of the other grids. Three dimensional viscous
simulations involving moving bodies have already been produced by
this method [58]. Unstructured gtids have been applied to the
solution of invistid two dimensional transient flows involving moving
bodies [59,60), using & method which is an extension of the
regriding procedures presented in section 5.6 and this is the
approach that will v presented here.
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Figure 6.1
Shock bubble Interaction problam using t et adaplation based on h
{from [S6)). (a) Intlal gnd and solution comtours. (b) Grid and solulion at 10 & (c)
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We restrict our considaration 1o two dimensionai wwviscid fows and
note that the basic varintional statement for the problem will need to
be moditiod to account for the fact that \he soatial domain Q2 is
varying with time. Suppose that we have tho sofution ,, at a certain
tme tovel 1,. We atlemp! to satisfy tho compressible Euler oguations
(1.38) over the space-time domain D = Q). s 1S 4,4 To
oxpress this problem in a variational torm wa nead to introduce
suitable trial and weighting function sets. We assume, for the
purposes of this discussion, that the condilions on the boundary T of
£ can be oxXprossed in the torm
U=Q

on T(l) (6.1)

Afthough such conditions are somewhat unraalistic, the actual
boundary conditions which would noed 10 bo applied in the simulation
of a givon problem can bLie roadily incorporated by making
appropriate modifications to the following analysis. \Wo may define

T={Uid=QonTUal,onattaty)

(6.2)
W={WiWaoonl}
and a variational tormulation of the problem can be stated as : find U
inF such that

n.

1
[ oL IF
J Jw[at* x ¥y ]dudl;g

for overy W in w. We will assume that the spalial domain Q has boen
discretised using 3 noded linear triangular elements, with Interior
nodes nunibored from | to p and introcuce the sets

(6.3)
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In the appreach which is to bu followod hero, cetlain nodes in the
grid will be tixed, while othors will movo with a proscribed
volocity. The shape functions M, are linear functions of space and
timo which satisty

ne 1

Mutxta) = Nj(x) Mylktaa) = NG (6.9)
where Nj is the standard tinite eloment shape function, delined in
soction 1.2, associatod to noade J at time t,. Working with the
function sets defined In equation (6.4), the Galerkin approximation
statement takes the lorm : find U, in T, such that

fnat
J M [Q&m %) | e

J +

i

N + x ay ]d‘l JtuQ

(6.6)

for v = 1.2,....p. Considering the first term appeanng in this
integral, it is possiblo to show that

Wegy o 9 .
J’ M, i di e dl(J My uh)) d .,J ¥ My u(p) di

(6.7)

oM
. J o Ui 90

whoro y denotos the velocity of the moving nodes. With y = (vy,
vy) interpolated linearly botween the nodal values ol y, &n observer
moving with the grid will not detect any change in the shape
tunctions 1.e.

DM, oM,
DL " at

Nt gy =0 (6.8)

whero D/Dt donotes differentiation tollowing the mowving grid and so
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Finally, combuii:g equations (6.6), (8.7) and {6.9), tho Galerkin
approximation satisfios
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n f
whara
B = By - Ve Uiy Bt =Eg -yl (8.13)
Inserting the assumed form for Uy, trom equation (6.4),
et
.1 * L o* J .
MU My e J ‘MJ[—%‘?w %‘;‘—] diz dt (6.12)
o

The integral appeating hore can be evaluated by lirst employnig ono
point integration in timo {at t = 1,,4,2) and then using a two-step
approximation [18,19]). Artificial viscosily will again be noodea with
a scheme of this type and the tesolution of the rasulting scheme may
be improved by tho use of tho FCT ideas mentioned in Section 1.3,

yammnn lv—-‘—

6.4  Adaptive Regriding for Transient Flows Inveiving
Moving Bodles

The mothod described above, whareby a grid may be adapted by
regriding, is a natural approach to follow for the simulation of flows
involving moving bodies. It will t@ assunwd tnal the motion of any
moving boundary is prescribed and te objective is to determine the
resulting flow field. The dascription of an algorithm which ¢an be
dovised to advance the solution of squation (6.11) in time can be
written as follows:

1. Generata an Initial grid to reprosent the computational domain and
to adequately resolve the initial solution,

2. Start the time.step loop

2.1 Advance the eolution one time-step

2.2 Update the coordinates of the points on the moving bounduries
2.3 Use an error indicator to exanine the current solution and defino
an ‘optimal’ distribution of grid spucing and stretching

2.4 Compare the current grid with the ‘optimal’ grid. Dolsto the
alaments whose size and shape is too diferont from tha optimal

2.5 Triangulate the regions where elements have bean deleted
according to tho new distribution of grid parameters

2.6 Determino, by interpolation, the flow variables ai the new
nodos

End the timo-stop loop

W is apparent tha! the crucial phase in this process is the giid
adaptation in steps 2.3-2.5. The mocharics ol this process is
illustrated diagramatically in figure 6.2. The success of the
procedyre depands upon the reliabilily of the error indicator which is
omployed. The indicator of equatior: (5.9) has agaln boen used for
this application.
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Figure 6.2
h 4 applind to transient problems [6))
d from

of the 9P
Iniiat grid () Marhey unwanind nodes and ek ts. (c) E \ ane.
tie gl (4) Boundary sides are genarated according 13 the asw gpacing distribution
to toran & closed loop around each hole (@) Triangulahon ot the holas using the
 advancing iont and  tha new distnbution of spacings.

6.5 Appilcation Examples

1D Shock Propagation

The tirst example considered consists of a two dimensional
simulation of the transient dovelopment of the flow in thock tube.
The purpose of this example is to illustrate the application of the
regriding algorithm 1o a transient problom with fixed boundaries.
The initial conditions are such that the solulion consists of a single
propagating shock, Figure 6.3 depicts the development of the grid and
solution as the shack propagates. it can be observed that the shock
movemont Is adoquately followed by the adaptation ol the griv. Note
also that the number of elements in the grid remains approximately
constant as the solution progresses.
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Figure 6.3 A
Shockh tbe oxamplo uang adoptively retined mashes (a) Adapted arid aad densiy
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Integrated Space Shuttle Vehicle Simulation

A two dimanstonal computatian has haan attemnted which involves a
simuiitlod space shulliv separating from tiw rochol boostor. The
relative mction of the shuttle with respect to the booster has boen
proscribed externally. The free stream conditions corrospond 10 a
Mach number of 2 and an angle of attack of -4® with respect to the
nitia’ posstion of the shuttie.  An inial steady state was computed
tor the contiguration shown i hgure 6.4(a). Figures 6.4(b)-6.4(d)
illustrate the dovelopmoit of tha gnd and sofution as the soparation
proceeds.

ACKNOWLEDGEMENTS

Our work in this aroa has bonofited groatly from the support over
sovoral yoars of tho Astothermal Luads Branch, NASA Langloy
Rosearch Centor, under grants NAGW-478 and NAGW-1809 and we
aro ploased to acknowlodgo this contubution. We also acknowledge
the assistance of Dassault Aviation tor partially funding this work
and providing the geomotry dofintion of tho Falcon; NASA Amos for
the supg >rt providod undor grant NCCW-008 and Rolls-Royce for
providing the geometry defintion and the support which allowed us
to porform ihe computation of the flow past the installed nacelle.

REFERENCES

1. N.P. Wealtherill, ‘Mash generation in computational Nuid
dynamics', von Ka:man Insiitute lor Fluid Dynamics, Lecture Sories
1989-04, Brussels, 1989,

2. JF: Thompson, Z.U.A. Warsi and C.W. Mastin, ‘Numetical grdd
gonoration - foundations and applications’, North-Holland, 1985.

3. S, Allwnight, 'Multibiock topology specification and arid
generation for complete aircralt configurations', in Applications of
Maesh Generation to Complox 3-D Configurations, AGARD Conferonce
Procoedings No. 464, 11.1-11.11, 1900.

4. T.. Baker, ‘Unstructured mosh generation by a genoralized
Delaunay algorithm', in Applications of Mesh Generation to Complex
3-0D Configurations, AGARD Conferonce Proceedings No. 464, 20.1-
20.10, 1990.

<Ly
%
AN
52

&

A
hat. 7

44

A

il
VAY.C<a"
YOS~

-y,

Figure 6.4
Space shullle vehida and bodster rockel simulation at a troe stream Mach mumber of
2 A Al an angle of altack of -4 GUHEes. The SAULIY MOVES HWMUS AW away i1om

the rockel with a $ motion Svq o and presswe solutions

oblalnl dwing the trancient simulatian stating tram a steadv state solutian The

grids consist of  (a) 7,070 slemants and 4,130 points, (b) 7,377 elements and 3,667
points and (d) 8.450 slemants and 4,379 paints

5. J. Peraire, M. Vahdati, K. Morgan and O.C. Zienkiewicz, ‘Adaptivo
romaoshing for comprossible flow computations', J. Comp. Phys. 72,
449-466, 1987

6. A. Jameson, T.J. Baker and N.P. Weathenll, ‘Calculation ot
inviscid transonic flow over a comploto aitcralt, AIAA Paper 86-
0102, 1986,

7. J. Peraire, J. Poiré, L. Formaggia, K. Morgan and O.C.
Zienkiowicz, Finito olomeont Euler compititions in throe dimensions',
int. J. Num. Meth. in Engn.. 26, 1988.

8. R. Lohner, K. Morgan and O.C. Zienkiew.cz, ‘Adaptive grid
rofinemont for the compressible Euler equations’, in Accuracy
Estimates and Adaptive Refinements in Finite Element Computations,
Edited by |. Babuska ot al, Witey, 281.297, 1986

9. L. Formaggia, J. Peraire, K. Morgan and J. Peiré, ‘Implemantation
of a 30 explicit Euler solver on a CRAY computer', in Proc. 4th Int.
Symposium on Science and Engineering on ‘CRAY Suparcomputers,
Minneapolls, 45-65, 1988.

10. C. Hirsch, 'Numerical computation of intornal and externa,
flows, Volume 2', Wiley, 1990.

11. C. Johnson, 'Numerical solutions of parntial differential equations
by the finite olement method', Cambridge University Press, 1987.
12. 0.C. Zienkiewicz and K. Morgan, ‘Finite Elements and
Approximation', Wiley, 1983.

13. J. Donéa, 'A Taylor-Galerkin methou for convoctive transport
problams', Int. J. Num. Meth. Engng. 20, 101-119, 1984,

14. O. Hassan, K. Morgan and J. Poraire, 'An adaptive
impiicitexplicit finito element scheme for comprossible viscous
high spoed flows', AIAA Paper 89-0363, 1989.



s Ak

e

A

I R

Mo e

15. K. Morgan and J. Peraire, 'Finite eloment methode tor
compreossible tiows', von Karman Institute lor Fhud Dynamics,
Lactura Safios 1987-04, Brussels 1087

16. J. Donda add 8. Giullani, 'A simple method 10 genotate high-order
accurate cenvaciion opoarators for explicit schemas based on inear
linito olomonts', Mt J. Num. Meth. Fluids 1, 63.79, 1901,

17, K. Morgan and J. Peralre, 'An Introduction tc linitd elomont
mothods tor computational fluld dynamias', Institute for Numarical
Mathods in Engineeting Repéit C/REOR/88, Univaiaily Collage of
Swansea 1008,

18. J. Paraire, K. Morgan and J. Peir), ‘Unstiuctured tinlte eloment
mesh gonetation and adaptive prosedurys for GFD', in Applications of
Mesh Genuration to Complex 3-D Configurations, AGARD Conference
Procoodings Mo. 464, 18.1.18.12, 1990,

19. f. Lohnor, 11 Morgan, J. Poraire and O.C. Zienkiewicz, 'Flnite
element mothods for high speed llows'. AJAA Paper 85-1521-CP,
1988

20. J.P. Doris and D L. Book, ‘Flux cotrected transport * : SHASTA,
a {luid transport algotithm that works'. J. Comp. Phys. 1, 8.69,
1973

21. § T. Zalesak, Tully muitidonensional tlux ¢osrostod wangport
algorithm tor flulds', J. Gomp. Phys. 31, 335362, 1979,

22, AK. Patott and M.K. Christie, 'FGT applind te the 20 tinite
wletnent solution of tracer transport by single phase flow In a porous
madiuy, in Numerical Mothods lor Fluid Dynamics, Edited by KW.
Morton anit M.J. Bainag, Oxlord Univarsity Press, 27-53, 1086,
23. R. Léhner, K. Morgan, J. Peraire and M. Vahdati, ‘Finde element
flux correctad transport (FEM-FCT) for the Euter and Navier-Stokes
equations', in Finite Elements in Finds, Volume 7, Edited by R.H.
Gatlagher ot al, 105.121, 19€8.

24 K. Morgan, J. Poraire and R. Ldhnor, 'Adaptive linite alamont
llux correctod iransport tachniquos tor CEED', in Finite Elemants -
Theory and Applicatron, Edited by OL. Dwoyor ot al.. Springer-
Vorlag, 165-176, 1908.

25. A. Lorat and J. Sides, ‘Efficiont solution of the steady Euler
oquations with a centered implicit schome’, in Numericanl Methods for
Fhud Dynamics NI, KW Morton and M.L Baines od., 85-88,
Clarandon Pross, Oxford, 1928,

26 O Hassan, K. Morgan and .. Poraire, ‘An mimplicit finite eloment
mathad tor high spoed Hows', AIAA Paper-90-0402, 1990

27 AAG. Roquicha and H.B Voelchar,' Solic modolhng. A Historical
Summary and contemporary assessment', [EEE Computer Graptucs
and Applications, 3, a. 2, 9-24, 1982,

20, LD. Faux and M.J. Praw, Computational Geometry for Design and
l‘v'c(u’mf(l(.iuw. Citia 1YOFWoaa, Chi:;hﬁ;‘ﬁﬁn’, 1541,

29, J.C Ferguson, 'Multivanale curve atapolaton’, J. ACM 11,
221 .1964.

30 S A Coons, ‘Surtaces for Computed Adod Dasign of Spaco
Forms', Report MAC-TR-41, Pigject MAC, Mi T, 1087

31 J Poird,'A fnute oloment proceduro tor tho solution of tha Cuter
ogquations using unstructured meshes', Univarsity of Wales Ph.0.
Thesis, C/PW126:89, 1980,

32. A Gaorge. ‘Computer implamantation ol the fimite aloment
mathod', Ph. D Thosis, Stanford Umvorsity, STAN.CS.71.208,
1971,

33. SH Lo, A new mesh generaton scheme for atbatrary planar
domaing', Int J Numer Mothods Engng. 21, 1403-1426 (1985).

34. JC Cavendish D.A. Fiwld and W.H. Froy, 'An upproach tc
automane three ¢ :onsional tinite alamant mesh ganoraton', Int. J.
Num. Meoth Erpag 21, 320-348,1985

35 J.4 Stower, Dittorontinl goomotty, Wikey Inielscionce, Now
York, 1964

36. L L Eriksson, RRLE. Smith, M.R. Wiese and N. Farr, 'Grid
oanaraton and inviscid flow computation abioul crarked-winged
arplana geomatring', AJAA Paper 87-1128 1987,

37. JL. Dentloy and J.H. Friedman, 'Data structuras lor range
soare ng', Compuling Strveys, 11, 4, 1979

38. M. Shamos and D. Hooy, 'Goometric intorsection probloms', In
17th Annual Sympostum on Foundations of Gemputar Science, 1GEE,
1978.

39. ‘Fundamontal algorithms for computer graphics', edited by R A.
Earmshaw, NATO ASI Serios F, vol. 17, Springer Vertag 1985.

40. J.Bons, 'A vectonsed algorithm for duterining the nowrost
aoighbours', . Comp. Fhys,, 66, 1-20, 1986.

41. R. Sedpewick, 'Algorithms', Addison Wesloy, Ronding, 1988

42. J. Boseot and J. Paraire, "An alternating digital treo (ADT)
algorithm for geometric searching and intersection problems”, Int.
J. Num. Meth. €ngng., in press (1990).

43. 0. Knuth, ‘the art of computer programming - Sorting and
searching', vol. 3, Addison Wasley, 1973

44. . Kauth, ‘The art of computar programming - Fundgamantal
algorithms', vol. 1, Addison Wesley, 1999,

45, J.L. Dentlay, ' Multittagnsional binary soarch tr¢os used fot
ussociative sewarching', Communications of the ACM, 18. 1, 1975,
46. J. Bonot, 'Finite olement analyzis of thin shoot suporplastic
forming procosses'. Universlty ol Walos Ph.D. Thesis.
C/PhD/128/89,

47. P.G, Ciatlot and P.A. Raviart, ‘Gonoral Lagrange and Hermita
interpolation in A* with applications In tinite alomant mothoas:,
Arch, Hat. Moch. Anal, 46, 177-199, 1972,

48. J.T. Odor  Grid optimisation and aduptive moeshes lor linite
alomant methoads, Universily of Toxas at Austin Notes, 1082

49, B. Palmorio, V. Billoy, A. Dorvioux and J. Poriavx, ‘Soll-
adaptive mesh refinements and linite sioment methods tor solving
the Euler equations', in N ical Mathods for Fluid Oynamics N,
K.W Morton and M.J. Bnines ed.. 369-388, Clarendon Pross,
Oxtord, 1988.

50. J. Poralto. K. Morgan, J. Polrd and 0O.C. Zienkiewicz, 'An
adaptive finite eloment mothod tor high spoed flows', Al&A Paper
87-0558, 1987,

51. B. Patmerio and A. Dervidux. 20 and 30 unstructured mesh
adaption rolying on physical analogy’. m Proc. of the Second
International  Conference on Numerical Grld Genoration in
Computationsl Fluid Mechanics, Miam! Boac'h. Florida, 1988,

62. K. Nakahushi and G.S. Duwort. ‘A practical adaplive-grid
mothod for complex fluid flow problems', Loclure Notes in Physics,
vol 218, 422-426, Springor Verlng, 1985,

53. C. Glass, A.R. Wieting and M. Holdea, 'Elfoct of leading odgo
swoep on shock-shock Interforence heating at Mach 8. AIAA Paper
89-027i, 1989

84, P Woodwurd and P Colella, 'The rumencal simulation of two
dimonsional flwd flow with sirong shocks', J. Comp  Phys. 54,
115173 . 1984,

55, R. Lthnor. 'An adaptive tinite elomont schome for transiom
problame in CFD* Comp. Aelh. in Appl. Moch and Engn. 61, 323-333,
1007,

56. . Lehno:, K. Morgan, J. Porairo and M. Vahdat, ‘Finito olomont
flux corroctod transport for the Eutor and Naviur-Stokas equations’,
int. J. Num. Math. in Fluids 7, 1093-1109, 1987.

57. R Lehner and J.D. Baum, 'Numercal simulation of shock
interactior, with complox goomotry threo-dimenstonal structuros
using a new adaptive h-rofinemont scheme on unstructured grids’,
AIAA Paper $0-0700, 1550,

58, PG Bunning, LT, Chiu, §. Obayashi, Y.M. Rizk and J1.. St jor,
‘Numoncal simulation of the imtagrated space shuttle veluclo n
ascont’, AIAA Paper 88-4359.CP, 1980

§9. L. Formaggia, J. Poraire and K Morgan, 'Simulation of a store
soparabon usng the finite elomont method', Appl. Mati:. Modelling
12, 175-181, 19%8.

6¢. E.J. Probert, 'Fimite oloment mothods for  transionts
comprossiblo  tlows', Unmivarsity of Wales Ph.D  Thosis,
CiPh/123/849, 1984

61. 1.J. Barth, 'Numoenical aspocts of computing viscous tugh
Roynolds number tlows on unstructured moshos', AIAA Paper 91-
0721, 1991

62. D.J. Mavriplis, "Throo dimensional unstruclured mwltigrid for
tha Eulor oquations’, AIAA Papar  91-1549, 1991

G3. P. Roe, "App.oximate Rwinaan solvers, paramoter vecters and
difterence schomes', J.Comp. Phys. 43, 357-372, 1981

G4 A Jameoson, ‘Transonic flow calculations', Princeton Univaer:sity
Raport MAE 1751, 1904

65. A. Jamoson and W. Schmidt, ‘Some recent dovelopmonts in
numetical methods for transonic Hlows', Comp.Math. Appl. Moch.
Engng. 51, 4G7-493, 1985

66. K.Morgan, J.tPorairo, R.R. Tharejn and J.R. Stowart, ‘An
adaptiva finite element scheme for the Euler and Nawvior-Stokes
oquations', AIAA 8th Computational Fluid Dynamics Conference,
Honolulu, Hawail, 1987

67. R.C. Swanson and E. Tuikel, "On central-ditterence and upwind
schamas', NASA Langloy Research Gentor ICASE Report Ro. 90-44,
1990

68. M. Gilog, 'Cnoigy stability analysis of multi-stop methods on
unstructured meoshos', M.LT. CFD Laboratory Roport CFD-TR-87.
1, 1967




69. J. Peird, J. Peraire, K. Morgan, O. Hassan and N. Birch, ‘The
numetical simulation of flow about installed aerv-engine nacalios
using a finite elemeni solver on unstructured meshes’, acceptad for
publication in Aero. J, 1992

70. E. Perez, 'Finite Eloment and multgrid solution of the two-
dimonsional Euler Equations on a nor-structured mesh', INRIA Report
No.442, 1985

71. R. Lohner and K. Morgan, "Unsiructured multigrid motheds for
slliplic problems', Int.J.Num.Meth.Engng. 24, 101-115, 1987

72. D.J. Mavriplis, 'Multigrid solution of the two-dimensional Eu'er
eqeations on unstructured triangular meshes’, AlAA J. 26, 824-
31, 1938

73. M.-P. Lezlercy, J. Periaux and B. Stouiflet, 'Multigric wethods
with unstructurad methods’, Fros. 7ith Int. Coni. on Finite Elements
in Flow Problems, Huntsville, Alabama, 1989

hD .“‘) ey

Mor o B0 et |

L

P e

v ramny

vo——yo

e s



ASPECTS OF UNSTRUCTURED GRIDS AND FINITE-VOLUME
SOLVERS FOR THE EULER AND NAVIER-STOKES EQUATIONS

by

Timothy J.Barth
CFD Branch

NASA Awmces Research Center

Motfett Field, CA 94035
United States

Contents

1.0 Preliminaries

5.0 Finite-Volume Solvers for the Enler Equa-

tions
1.1 Graphs and Meshes ) .
1.2 Dll('IIl)it 5.1 Euler Equations in Integral Form
' o 5.2 Extension of Scalar Advectio -7 ~mes

1.3 Data Structures

2.0 Some Basic Graph Operations Important in 5.3

CFD 6.0 Numnerical Solution of the Navier-Stokes Equa-
tions with Turbulence

2.1 Planar Graphs with Minimum Out-Degree
2.2 Graph Ordering Techiques

to Systems of Equations
Implicit Linearizations

S0 6.1 Turbulence Modeling for Urnstructured
2.3 Craph Partitioning for Parallel Comput- grids ’
. i
iny . o ‘
¢ 6.2 A Oac-Equation Turbuieace Transport
3.C Triangulation Methods Model

3.1 Voronoi Diagrary and Delaunay “vian-

gulation

3.2 Properties of a 2-D Delaunay Triangu-
lation

3.3 Algorthizs for 2-D Delaununy Tviangula-
tion

3.4 Other 2-I5 Trangulation Alger
3.5 2-D Steiner T-angulations
3.6 Three imeusienal ‘Triangulations

4.0 Some Theory Related to Finite- Voluae Solvers.

4.1 Scalar Conservation Law Equations

4.2 Comparison of Fini - Volume and Galerkin
Finite-Elemen: Methods

4.3 Bdge Formulas

4.4 Godunov Finite-Voluue Schcmes

4.5 k-exact Reconstractjon

4.6 T'pwind Advection Scheme with & = 0
Toconstruction

1.7 Vipwind Advections SV e with & = 1

i ar Reconstructic

Staximum Principles ane “Yelaunay Tri-
angulation

N W g e

B g

RN

[PPEVSTINENEL ST SRR

T S GG ek i i

P b Bt Kt



0-2

Introduction

One of the major achieverments in engineer-
ing science has becn the development of com-
puter algorithms for seling nonlinear differential
equations such as the Navier-Stokes equations.
These algerithins are now used in the practical
engineering design 1f devices such as cars and
airplanes as well as theoretical studies of com-
plex phenomena such as fluid turbulence. In past
years, limited computer resources have motivated
the development of efficient numerical methods
in computational fluid dynamics (CF D) utilizing
structured meshes. These meshes are comprised
of systematic arrays of quadrilateral or hexahe-
dral cells. The use of structured meshes greatly
simplifies the implementation of CFD algorithms
on conventional computers. Structured meshes
also permit the use of highly efficient solution
techniques such as alternating direction implicit
(ADL1) iteration schemes or multigrid. Following
the dramatic improvenmient in computing speed in
vecent years, emaphasis has shifted towards the de-
sign of algorithms capable of treating complex
geometries. The autcmatic generation of struc-
tured grids about complex gcometries is prob-
lematic. Unstructured grids offer one promising
alternative techniq. for treating these general
geometries. Unstructured meshes have irregular
connectivity and usually contain triangles and/or
quadrilaterals in two dimensions and tetrahedra
and/or hexahedra in three dimensions. The gen-
eration and use of unstructured grids poses new
chailenges in computational uid dynamics. This
1s true for both grid generation as well as for
the design of algorithms for flow solution. The
purpose of these notes is to present recent devel-
opments ‘n the unastroctured grid generation and
flow solution technelegy.

1.0 Preliminaries

1.1 Graphs and Meshes

Graph theory offers many valuable theoret-
ical results which directly impact the sign of
efficient algorithins using unstructured grids. For
nurposes of the present discussion, only simple
graphs which do not contain self loops or parallel
edges will be considered. Results concerning sim-
ple graphs usually translate dizectly into results
relevant to unstructured grids. The most famous
grapi theoretic result is Buler’s formula which re-
lates the munber of edges n(e), vertices n(v), and
faces n(f) of a polyhedron (sce figure 1.0(a)):

n(f) =n(e) - n(v) +2 (Euler’s formula)
(1.0)

This polyhedron can be embedded in a plane by
mapping one face to infinity. This makes the
graph formula (1.0) applicable to 2-D unstruc-
tured meshes. in the example below, the face 1-
2-3-4 has mapped to infinity to form the exterior
(infinite) face. If all faces are numbered includ-
ing the exterior face, then Euler’s formula (1.0)
remains valid.

1
(a) (b)

Figure 1.0 (») 3-D Polyhedron, (b) 2-D Planar
embedding

The infinite face can be eliminated by describing
the outer boundary in terms of boundary edges
which share exactly one interior face (interior edges
share two). We also consider boundary edges
which form simple closed curves in the interior
of the mesh. These curves serve to describe paos-
sible objects embedded in the mesh (in this case,
the polygon which they form is not counted as a
face of the mesh). The number of these polygons
is denoted by n(h). The modified Euler’s formula
now reads

w{(f) + (v, = n{e) + 1 = n{h) (1.1)

Since interior edges share two faces and boundary
edges share one face, the number of interior and
Loundary edges can be related to the number of
faces by the following formula:

mazx d(f)
2"(6)1‘71401-:‘01- +n((’)bound = Z i "(f)i (12)

=3

where n{ f); denotes the number of faces of a par-
ticular edge degree, d(f) = i. Note that for pure
triangulations T, these formulas can be used to
determine, independent of the method of triangu-
lation, the number of triangles or edges given the
number of vertices n(v), beundary edges n(e)pound,
and interior holes n(h)

n(f)z = 2n(v) = n(€pound — 2+ 2n(h) (1.3)

n(e) = 3n(v) = n(e)paund — 3+ 3In(h).  (1.4)
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This is a wall known result for planar triangu-
lations. (For brevity, we will sometimes use N
to denote n(v) in the remainder of these notes.)
In many cases boundary edges are not explicitly
giver and the boundary is taken to be the con-
vex hull of the vertices, i.e. the smallest con-
vex polygon surrounding the vertices. (To obtain
the convex bull in two dimensions, envision plac-
ing an clastic rubber band around the cloud of
points. The final shape of this tubber band will
be the convex hull.) A key observation for planar
meshes is the asumptotic linear storage requive-
ment with respect to the number of vertices for
v bitrary mesh arrangements.

The Euler formula extends naturally to an
arbitrary number of space dimensions. In this
general setting, Euler’s formula relates basic com-
ponents {vertices, edges, faces, etc.) of higher
dimensional polytopes. In computational geome-
try jargon, vertices, edges, and faces are all spe-
cific examples of “k-faces”. A O-face is simply a
vertex, a 1-fac . corresponds to a eldge, a 2-face
corresponds to a facet (or simply « face), etc.
A polytope P in RY contains k-faces Y k €
{~1,0,1,....d}. The -1-face derotes the null set
face by standard convention. Let the number of
k-faces contained in the polytope P be denoted
by Ni({P). For example, No(P) would denote the
number of vertices. Using this notation, we have
the following relationships:

No = n(v) (vertices), Ny =rn(e) (edges)
Ny = n(f) (faces), N3

H

n(¢) (volumes)

By convention, there is exactly one null set con-
tained in any polytope, i.e. N_j(P) =1 and by
definition Ny(P) = 1. Using these results, we can
succinctly state the general Euler formula for an
arbitrary polytope in R

d
Y (=D)¥Ne(PY= 0 (Euler’s Formula in RY)
k=1
(1.5)
On the surface of a polyhedron in 3-space, th-
standard Euler formula (1.6) is recovered since

~1+Ny -N+Ny=-1=0

or

n(f)+n(v)=nle)+2.

To obtain results relovant to three-dimensional
unstructured grids, the Euler formula (1.5) is ap-
plied to a four-dimensional polytope.

n(f) + n(v) = n(e) + n{) (1.6)

6-3

This formula relates the number of vertices, edges,
faces, and volumes n(¢) of a three-dimensional
mesh. As in the two-dimensional case, this for-
mula, does not cccount for boundary effects be-
cause it is derived by looking at a single four-
dimensional polytope. The example below demon-
strates how to derive exact formulas including
boundary terms for a tetrahedral mesh. Deriva-
tions valid {vx inore gencral meshes in three di-
mensions are also possible.

Example: Derivation of Exact Euler Formula for
3-D Tetrahedral Mesh.

Consider the ccllection of volumes incident
to a single vertex v; and ihe polyhedron which
describes the shell formed by these vertices. Let
Fy(v;) and Ny(v;) denote the number of faces and
vertices respectively of this polyhedron which ac-
tually lie on the boundary of the entire mesh.
Also let E(v;) denote the total aumber of edges
on the polykedron surrounding v;. Finally, let
dg(vi) and d.(v;) denote the number of tetrahe-
dral volumes and edges respectively that are in-
cident to v;. On this polyhedron, we have exact
satisfaction of Euler’s formula (1.0), i.e.

polyhedrai faces vertices on polyledron
d‘:,(v,-) + Fb(v,-) + d,_.(v,-) + Nb(u.-) = E(’U.‘)-}-2

(1.7)
Note that this stcp assumes that the pclyhedron
is homeomorphic to a sphere (otherwise Euler’s
formula fails). In reality, this is not a severe as-
sumption. (It would preclude a inesh consisting
of two tetrahedra which touch at a single vertex.)
Oun the polyhedron we also have that

polyhedril faces

rrm— et
2E(v;) = 3{dg(vi) + Fovi)).  (1.8)

Combining (1.7) and (1.8) yields

do(v;) = %(l¢(1)5) + -;—Fb(-u,-) = Ny(vi) +2. (1.9)

Summing this equation over all vertices produces

d.n(v) = % (@,n(v) + Z Fb(v,-)) - Z Ny(vi)

]

(1.10)
where d, and dy are the average vertex degrees
with respect to edges and volumes. Since globally
we have that

d.n(v) = 2vle), dgn(v) =4n(¢), (i.
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substitution of (1.11) into (1.10) reveals that

n(V)sound

n(e) =n(¢)+n(v)+ ! Z Fy(vi) - ! Z Ny(vi)
1= 4 b\ Vs 9 b \Yi) -

(1.12)
Finally, note that Y Fy(v;) = 3n(f)bound. Insert-
ing this relationship into (1.12) yields

"’(e) = "(¢) + "‘(v) + :T:'n(f)bound - %"(v)bound
(1.13)
Other equivalent formuias are easily obtained by
combining this equation with the formula relating
volume, faces, and boundary faces, i.e.

'Il(f) = 211((!)) + %"(f)lmtmd (114)

An exact formula, similar to (1.6), is obtained by
combining (1.14) and (1.13)

n(e)+n(¢)=n(f)+n(-u)+% n(f)bound" %n(v)bouud
(1.15)

1.2 Dualivy

Given a planar graph G, we informally de-
fine a dual graph Gpua to be auy graph with the
following three properties: each vertex of Gpya
is associated with a face of G; cach edge of G
is associated with an edge of Gpyq; if an edge
separates two faces, f; and f; of G then the asso-
ciated dual edge connects two vertices of G pyai
associated with f; and f;. This duality plays an
impartant. role in CFD algorithms.

= Mcsh

——  Mecdian Dual
------ Cenlroid Dual
{771 Dirichlet Region

Figure 1.1 Several triangulation duals.

In figure 1.1, edges and faces about the cen-
tral vertex are shown for duals formed from me-
dian segments, centroid segments, and by Dirich-
let tessellation. (The Dirichlet tessellation of a
set of points is a pattern of convex regions in the
plane, cach region being the porticn of the plane
closer to some given point P of the set of points

than to any other point.) Two-dimensional finite-
volume schemes for the Euler and Navier-Stokes
equations are frequently developed which form
control volumes froi. either faces (cells) of the
mesh or faces of the mesh dual. Schemes which
use the cells of the mesh as control volumes are
often called “cell-centered” schemes. Other “ver-
tex” schemes use mesh duals constiructed from
median segments, Dirichlet regions, or centroid
segments. In all of these schemes, the primary
computational effort is associated with the cal-
culation of the flux of mass, momenta, and en-
ergy through an edge associated with the con-
trol volume. The one-to-one correspondence of
edges of a mesh and mesh dual (ignoring bound-
aries) means taat there is very little difference in
computational effort in schemes based on tnesh
faces or duals. This observation is not true in
three dimensions! Consider a three dimensional
tetrahedral mesh. The duality for this nonpla-
nar arrangement is between edges of the tetrahe-
dral mesh and faces of the dual. In other words,
for each edge of the mesh there is a one-to-one
coriespondence with a face of the dual (ignor-
ing boundaries). Again, the main computational
effort associated with finite-volume schemes for
solving the Euler and Navier-Stokes equations is
the calculation of the flux through each face of
the control volume. If the control volumes are
the tetrahedra themselves (cell-centered scheme),
then a flux must be calculated for each tetrahe-
dral face. This means that the work is propor-
tional to the number of faces of the tetrahedral
mesh. From eqn. (1.14), the number of faces of
a tetrahcdral mesh is related to the number of
tetrahedra and boundary faces by

1
‘wOch_c scheine & "(f) = 2n(¢) + :z'"-(f)bouud-

If the control volumes of the finite-volume scheme
are formed from a mesh dual (vertex scheme),
then the number of flux calculations is propor-
tional to the number of faces of the mesh dual
which is roughly equal to the number of edges of
the origiral tetrahedral mesh. From eqn. (1.13)
we have that

WOrkyert scheme X "’(('-) = n(¢) + n(“)

+%n(f)bound - %n(v)baund
To better understand the work estimates, define
3 such that n(¢) = Bn(v). Practically speaking,
[ usually ranges from 5-7 for tetrahedral meshes.
Taking the ratio of the work estimates for the
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cell-centered and vertex scheme, ignoring bound-
ary terms and assuming an identical constant of
proportionality, we obtain

‘workc-—c scheme 2ﬁ1l(ll) - 2:6

= = -~ (1.16
Workyert scheme (1 + ﬁ)"’(v) 1+43 ( )

The work for the cell-centered scheme approaches
twice that of the vertex scheme. The reader should
not automatically infar that the vertex scheme is
preferred. The question of solution accuracy of
the two approaches needs to be factored into the
equation. The answer to the question of which is
“better” is still a subject for debate.

1.3 Data Structures

The choice of data structures used in rep-
resenting unstructured grids varies considerably
depending on the type of algorithmic operations
to be performed. In this section, a few of the
most common data structures will be discussed.
The mesh is assumed to have a numbering of ver-
tices, edges, faces, etc. In most cases, the physical
coordinates are simply listed by vertex number.
The “standard” finite element (FE} data struc-
ture lists connectivity of each element. For ex-
ample in figure 1.2(a), a list of the three vertices
of cach triangle would be given.

e—————
~
\
’ .
N
.
\
.
!
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'
]
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N 7]
L»/\ \\l T

(¢) (d)

Figure 1.2 Data structures for planar graphs.
(a) FE data structure, (b) Edge structure, (¢)
Out-degree structure, (d) Quad-edge structure.

The FE structure extends naturally to three di-
mensions. The FE structure is used extensive in
finite element solvers for solids and fluids.

For planar meshes, another typical structure
is the edge structure (figure 1.2(b)) which lists

6-5

connectivity of vertices and adjacent faces by stor-
ing a quadruple for each edge consisting of the
origin and destination of the each edge as well as
the two faces (cells) that share that edge. This
structure allows easy traversal through a mesh
which can be useful in certain grid generation al-
gorithms. (This traversal is not easily done using
the FE structure.) The extension to three di-
mensions is facewisc (vertices of a face are given
as well as the two ncighboring volumes) and re-
quires distinction between different face types.

A third data structure provides connectivity
via vertex lists as shown in figure 1.2(c). The
brute force approach is to list all adjacent neigh-
bors for each vertex (usually as a linked-list). Many
sparse matrix solver packages specify nonzeros of
a matrix using row or column storage schemes
which list all nonzero entries of a given row or
column. For discretizations involving only adja-
cent neighbots of a mesh, this would be identical
to specifying a vertex list. An alternative to spec-
ifying all adjacent neighbors is to direct edges of
the mesh. In this case only those edges which
point outward from a vertex are listed. In the
next section, it will be shown that an out-degree
list can be constructed for planar meshes by di-
recting a graph such that no vertex has more than
three outgoing edges. This is asymptotically op-
timal. The extension of the out-degree structure
to three dimensions is not straightforward and al-
gorithms for obtaining optimal edge direction for
nonplanar graphs are still under development.

The last structure considered here is the quad-
edge structure proposed by Guibas and Stolfi [1],
sce figure 12(d). Each edge is stored as pair of
directed edges. Each of the directed edges stores
its origin and pointers tc the next and previous
directed edge of the region to its left. The quad-
edge structure is extremely useful in grid gener-
ation where distinctions between topological and
geometrical aspoects are sometimes crucial. The
structure has been extended to three dimensional
arrangements by Dobkin and Laslo [2] and Bris-
son [3).

2.0 Some Basic Graph Operations
Important in CFD

Implementation of unstructured grid r.cth-
ods on diffcring computer architectures ias stim-
ulated research in exploiting properties and char-
acterizations of planar and nonplanar graphs. For
example in Hammond and Barth [4], we exploited
a recent theorem by Chrobak and Eppstein [5]
concerning directed graphs with minimum out-
degree. In this section, we review this result as
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well as presenting other basic graph operations
that are particularly useful in CFD. Some of these
algorithms are specialized to planar graphs (2-D
meshes) while others are very general and apply
in any number of space dimensions.

2.1 Planar Graphs with Minimum Out-Degree
Theorem: FEvery planar greph has o 3-bounded
orientation, [5).

In other words, cach edge of a planar graph
can be assigned a direction such that the maxi-
mum rumber of edges pointing outward from auy
verteX is less than or equal to three. A construc-
tive proof is given in ref.{5] consisting of the fol-
lowing steps. The first step is to find a reduceable
boundary vertex. A reduceable boundary vertex
is any vertex on the boundary with incident ex-
terior (boundary) edges that connect to at most
two other boundary vertices and any number of
interior edges. Chrobak and Eppstein prove that
reduceable vertices can always be found for ar-
bitrary planar graphs, (In fact, two reduceable
vertices can always be found!) Once a reduce-
able vertex is found then the two edges connecting
to the other boundary vertices are directed out-
ward and the remaining edges are always directed
inward. These directed edges are then removed
from the graph, see Figures 2.0(a-j). The process
is then repeated on the remaining graph until no
more edges remain. The algorithm shown picto-
rially in figure 2.0 is summarized in the following
steps:

Algorithm: Orient a Graph with maximum out-
degree < 3.

Step 1. Find reduceable boundary vertex.

Step 2. Direct exterior edges outward and interior
edges inward.

Step 3. Remove directed edges from graph.

Step 4. If undirected edges remain, go to step 1

X

(e) (

</,/

1)

(9) L)

)

Figure 2.0 (a-i) Mesh orientation procedure with
out-degree 3, (j) final oriented triangulation.

M

Linear time algorithms are given in [5]. In
the paper by Hammond and Barth, we exploit
the out-degree property to provide optimal load
balancing on a massively parallel computer. De-
tails are given in a later section.

2.2 Graph Ordering Techniques

The particular ordering of solution unknowns
can have a marked influence on the amount of
computational effort and memory storage required
to solve large sparse linear systems and eigen-
value problems. In many algorithms, thie band
width and/or profile of the matrix determines the
amount of computation and memory required.
Most meshes obtained from grid generation codes
have very poor natural orderings. Figures 2.1 and
2.2 show a typical mesh generated about a multi-
component airfoil and the nonzero entries asso-
ciated with the “Laplacian” of the graph. The
Laplacian of a graph would represent the 1.0nzero
entries due to a discretization which involves only
adjacent neighbors of the mesh. Figure 2.2 in-
dicates that the band width of the natural or-
dering is aimost equal to the dimension of the
matrix! In parallel computation, the ordering al-
gorithms can be used as means for partitioning
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a mesh among processors of the computer. 'This
will be addressed in the next section.

| N

SR
2 / s
L

Figure 2.1 Typical Steiner triangulation about
multi-component airfoil.

Figure 2.2 Nonzero entrics of Laplacian matrix
produced from natural ordering.

Several algorithms exist which construct new
orderings by attempting to minimize the band
width of a matrix or attempting to minimize the
fill that occurs in the process matrix factoriza-
tion. These algorithins usually rely on heuristics
to obtain high efficiency, and do not usually ob-
tain an optimum ordering. One example would
be Rosen’s algorithm [6] which iterates on the or-
dering to minimize the maximum band width.

6-7

Algorithm: Graph ordering, Rosen.

Step 1. Determine band width and the defining
index pair (i, j) with (i < j)

Step 2. Does their exist an exchange which in-
creases i or decreases j so that the band width is
reduced? If so, exchange and go to step 1

Step 3. Does their exist an exchange which in-
creases ¢ or decreases j so that the band width
remains the same? If so, exchange and go to step
1

This algorithm produces very good orderings
but can be very cxpensive for large matrices. A
popular method which is much less expensive for
large matrices is the Cuthill-McKee {7] algorithm.

Algorithim: Graph ordering, Cuthill-McKee.

Step 1. Find vertex with lowest degree. This is
the root vertex.

Step 2. Find all neighboring vertices connecting
to the root by incident edges. Order them by
increasitg vertex degree. This forms level 1.

Step 8. Form level k by finding all neighboring
vertices of level &£ — 1 which have not been pre-
viously orderad. Order these new vertices by iun-
creasing veirlex degree.

Step 4. If vertices reman, go to step 3

Figure 2.3 Nounzcro entries of Laplacian matrix
after Cuthill-McKee ordering.

The heuristics behind the Cuthill-McKee al-
gorithm are very simple. In the graph of the
mesh, neighboring vertices must have numberings
which are near by, otherwise they will produce en-
tries in the mateix with large band width. The
idea of sorting clements among a given level is
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based on the heuristic that vertices with high de-
gree should be given indices as large as possible
so that they will be as close as possible to vertices
of the next level generated. Figure 2.3 shows the
dramatic improvement of the Cuthill-McKee or-
dering on the matrix shown in figure 2.2,

Studies of the Cuthill-McKee algorithm have
shown that the profile of a matrix can be greatly
reduced simply by reversing the ordering of the
Cuthill-McKee algorithm, see George [8]. This
araouits to a renumbering given by

k—n—-4t+1 (2.1)

where n is the size of the matrix. While this
does not change the bandwidth of the matrix,
it can dramatically reduce the fill that occurs in
Cholesky or L-U matrix factorization when com-
pared to the original Cuthill-McKee algorithm.

2.3 Graph Partitioning for Parallel Computing

An efficient partitioning of a mesh for dis-
tributed memory machines is one that ensures
an eveu distribution of computational workload
among the processors and minimizes the amount
of time spent in interprocessor communications.
The former requirement is termed load balanc-
ing. For if the load were not evenly distributed,
some processors will have to sit idle at synchro-
nization points waiting for other processors to
catch up.  The second requirement cemes from
the fact that communication between processors
takes time and it is not always possible to hide
this latency in data transfer. In our parallel im-
pletuentation of a finite-volume flow solver on un-
structured grids, data for the nodes that lic on the
boundary between two processors is exchanged,
hence requiring a bidirectional data-transfer. On
many systems, a synchronous exchange of data
can yield a higher performance than when done
asynchronously. To exploit this fact, edges of
the communication graph are colored such that
no vertex has more than onc edge of a certain
color incident upon it. A communication graph
is a graph in which the vertices are the proces-
sors and an edge connects two vertices if the twoe
corresponding processors sfiare an interprocessor
boundary. The colors in the graph represent sep-
arate communication cycles. For instance, the
mesh partitioned amongst four processors as shown
in figure 2.4(a), would produce the commnunica-
tion graph shown in figure 2.4(b).

Figure 2.4 (a) Four partition mesh, (b) Commu-
nication graph.

The graph shown in figure 2.4(b) can be colored
edgewise using three colors. For example, in the
first communication cycle, processors (1, 4) could
perform a synchronous data ¢xchange as would
processors (2,3). In the second communication
cycle, processors (1,2) and (3,4) would exchange
and in the third cycle, processors (1, 3) would ex-
change while processors 2 and 4 sit idie. Viiing's
theorem proves that any graph of maximum ver-
tex degree A (number of edges incident upon a
vertex) can be colored using n colors such that
A < n < A+ 1 Hence, any operation that
calls for every processor to exchange data with its
neighbors will require 5 cormmunication cycles.
The actual cost of communication can often
be accurately modeled by the linear relationship:

Cost =+ fim {2.2)

where « is the time required to initiate a mes-
sage, O is the rate of data-transfer between two
processors and m is the message length. For n
messages, the cost would be

Cost = Z(a + fm,). (2.3)

n

This cost can be reduced in two ways. One way is
to reduce A thereby reducing n. The alternative
is to reduce the individual message lengths. The
boundsonn are2 < N < P-1for P > 3 where P
is the total number of processors. Figure 2.5(a)
shows the partitioning of a mesh which reduces
A, and 2.5(b) shows a partitioning which mini-
mizes the message lengths. For the mesh in figure
2.5(a), A = 2 while in figure 2.5(b), A = 3. How-
cver, the average message length for the parti-
tions shown in figure 2.5(b) is about half as much
as that in figure 2.5(a).
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Figure 2.5 (a) Mcsh partitioning with minimized
A, (b) Mesh with minimizes message length.

In practice, it is difficult to partition an unstre
tured mesh while simultaneously ininimizing the
number and length of messages. In the following
paragraphs, a few of the most popular partition-
ing algorithms which approximately accomplish
this task will be discussed. All the algorithms
discussed below: coordinate bisection, Cuthill-
McKee, and spectral pariitioning are evaluated in
the paper by Venkatakrishnan, Simon, and Barth
[9]. This paper evaluates the partitioning tech-
niques within the confines of an explicit, unstruc-
tured finite-volume Fuler solver. Spectral par-
titioning has been extensively studied by Simon
[10]. The algorithms have also been implemented
in three dimensions by A. Gandhi working in the
CFD branch at NASA Amcs Research Center.
Nete that for the particular applications that
we have in mind (2 finite-volume schieme with so-
lution unknowns at vertices of the mesh), it makes
sense to partition the domain such that the sep-
arators correspond to edges of the mesh. Also
noie that the patiitioning algoritlaus all can be
implemented recursively. The mesh is fivst di-
vided into two sub-meskes of nearly equal size.
Each of these sub-meshes is subdivided into two
more sub-meshes and the process in repeated un-
til the desired number of partitions I’ is obtained
(P is a integer power of 2). Since we desire the
separator of the partitions to coincide with edges
of the mesh, the division of a sub-mesh into two
picces can be viewed as a 2-coloring of faces of the
sub-mesh. For the Cuthill-McKee and spectral
partitioning techniques, this amounts to supply-
ing these algorithimne with the dual of the graph
for purposes of the 2-coloring. The balancing of
cach partition is usually done cellwise; although
an edgewise balancing is more appropriate in the
present applications. Due to the recursive na-
ture of partitioning, the algorithms outlined be-
low represent only a single step of the process.
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Coordinate Biscction

In the coordinate bisection algorithin, face
centroias are sorted either horizontally or verti-
ally depending of the current level of the recur-
sion. A separator is chosen which balances the
number of faces. Faces are colored depending on
which side of the separator they are located. The
actval edges of the mesh corresponding to the
separator are characterized as those edges which
have adjacent faces of different color, see figure
2.6. This partitioning is very cfficient to cre-
ate but gives sub-optimal performance vn parallel
computations owing to the long message lengths
than can routinely occur.
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Figure 2.6 Cooxdinate bisection (16 partitions).

Cuthill-McKee

The Cuthill-McKee (CM) algorithim described
carlier can also be used for recursive mesh parti-
tioning. In this case, the Cuthill-McKee order-
ing is perforined on the dua! of the mesh graph.
A scparator is chosen either at the median of
the ordering (which would balance the coloring
of faces of the original mesh) or the separator is
chosen at the level set boundary closest to the
median as possible. This latter technique has the
desired effect of reducing the number of discon-
nected sub-graphs that occur during the course
of the partitioning. Figure 2.7 shows a Cuthill-
McKee partitioning for the multi-component air-
foil mesh. The Cuthill-McKee ordering tends to
produce long boundaries because of the way that
the ordering is propagated through a mesh. The
maximum degree of the commu:ication graph also
tends to be higher using the Cuthill-McKee algo-
rithm. The results shown in ref. [9] for multi-
component airfoil gridds indicate a performance on
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parallel computations which is slightly worse than
the coordinate bisection technique.
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Figure 2.7 Cuthill-McKee partitioning of mesh.

Spectral Partitioning

The last partitioning considered is the spec-
tral partitioning which exploits properties of the
Laplacian £ of a graph (defined below). The al-

gorithm consists of the following steps:

Algorithm: Spectral Partitioning.

Step 1. Calculate the matrix £ associated with
the Laplacian of the graph (dual graph in the
present case).

Step 2. Calculate the cigenvalues and eigenvec-
tors of L.

Step 3. Order the eigenvalues by magnitude, Ay <
A < Az AN

Step 4. Determine the smallest nonzero eigen-
value, Ay and its associated cigenvector x; (the
Fiedler vector).

Step §. Sort clements of the Fiedler vector.

Step 6. Choose a divisor at the median of the
sorted list and 2-color vertices of the graph (or
dual) which correspond to clements of the Fielder
vector less than or greater than the median value,

The spectral partitioning of the multi-component

aitfoil is shown in figure 2.8. In reference [9),

we found that parallel computations performed

slightly better on the spectral partitioning than

on the coordinate bisection or Cuthill-McKee. The
cost. of the spectral partitioning is very high (even

using a Lanczos algorithm to compute the eigen-

value problem). It has yet to be determined if the

spectral partitioning will have practical merit.
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Figure 2.8 Spectral partitioning of multi- com-
ponent airfoil.

‘The spectral partitioning exploits a peculiar prop-
crty of the “second” eigenvalue of the Laplacian
matrix associated with a graph. The Laplacian
matrix of a graph is simply

=-D 4 A. (2.4)
where A is the standard adjacency matrix

-Aij = {1 G(U,’,vj) € G (25)

0 otherwise

and D is a diagonal matrix with entries equal to
the degree of each vertex, D; = d(v;). From this
definition, it should be clear that rows of £ each
sum to zero. Define an N-vector, s = [1,1,1,...]1,
By construction we hove that

Ls = 0. (2.6)

This means that at least one eigenvalue is zero
with s as an eigenvector.
The objective of the spectral partitioning is to di-
vide the mesh into two periitions of equal size
sich that the number of edges cut by the parti-
tion boundary is approzimately minimized.
Technically speaking, the smallest nonzero
cigenvalue nced not be the seccond. Graphs with
disconnected regions will have more that one zero
cigenvalue depending on the number of discor-
nected regions. For purposes of discussion, we
assurie that disconnected regions ave not present,
i.c. that Xs is the relevant cigenmode.
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Elements of the proof:
Define a partitioning vector which 2-colors
the vertices

p=[+1, =1, =141+l kL =100 (27

depending on the sign of elements of p and the
one-to-one correspondence with vertices of the
graph, see for example figure 2.9, Balancing the
number of vertices of each color amounts to the
reguirement that

slp (2.8)

where we have assumed an even number of ver-
tices,

Figure 2.9 Arbitrary graph with 2-coloring show-
ing separator and ent edges.

The key observation is that the number of cut
edges, E.. s precisely related to the L) norm of
the Laplacian matrix multiplying the partitioning
vecetor, 1.0

1B, = |1Lpll, (2.9)

which can be easily verified. The goal is to mini-
mize cut edges. That is to find p which minimizes
I|£pl1 subject to the constraints that {ipll, = N
and s L p. Since £ is a real symmetric (posi-
tive semi-definite) matrix, it has a complete set
of real eigenvectors which can be orthoguaalized
with cach other. The next step of the proof would
be to extend the domain of p to include real num-
bers (this introduces an inequality) and expand p
in terms of the orthogonal eigenvectors.

p = Z(f,xi (‘210)

o1

By virtue of (2.6) we have that x), = s. It reinaing
to be shown that ||Cply is minimized when p =
p’ = nxa/|xall1 e, when the Fiedler vector is

used. Inserting this expression for p we have that
el = m\ (2.11)

It is a simple matter to show that adding any
other eigenvector component to p’ while insisting
that ||p{li = N can only increase the L; norm.
This would complete the proof. Figure 2.10 plots
contours (level sets) of the Fiedler vector for the
multi-component airfoil problem.

Figure 2.10. Contours of Fiedler Veetor for
Spectral Fartitioning. Dashed lines arve less than
the median value.

3.0 'Iriangulation Mcthods

Althongh many algorithius exist for triangu-
lating sites (points) in an arbitrary number of
space dimensions, only a few have been used on
practical problems. In particular, Delaunay tyi-
angulation has proven to be a very useful triangu-
fation technique. ‘This section will present some
of the basic concepts surrounding Delaunay and
related triangulations as well as discussing somne
of the most popular algorithms for constructing
these triangulations.  The discussion of the ad-
vancing front method of yrid generation will he
deferred to Professors Morgan and Lohner,

2.1 Voronoi Diagram and Delannay Triangulation
Recall the definition of the Dirichiot tessel-
lation in a plane. The Dirichlet tessellation of
a point set is the pattern of convex regions, each
heing closer to some point I in the point set than
to any other point in the set. These Dirichlet re-
gions are also called Voronoi regiei. The edges
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of Voronoi polygons comprise the Voronoi dia-
gram, see figure 3.1, The idea extends naturally
to higher dimensions.

Figure 3.1 Voronoi diagram of 40 randoem sites.

Voronoi diagrams have a rich mathematical the-
oty The Voronoi diagram is belicved to be one of
the most fundemental constructs defined by dis-
crete deta.  Voronoi dingrams have been inde-
pendently discovered in a wide variety of disci-
plines. Computational geometricians have a keen
interest in Voronoi diagrams, It is well known
that Voronoi diagrams are related to convex hulls
via stereographic projection. Point location in a
Vuronoi diagraim can be performed in Q(log(i))
time with O(n) storage for n regions. This is use-
{ul in solving post-oftice or related problems in
optimal time,  Another example of the Voronoi
diagrain which oceurs in the natural sciences can
be visualized by placing crystal “seeds™ at rvan-
dom sites in 3-space. Lot the erystals prow a
the same rate in all directions. When two crys-
tals collide simply stop their growth. The crvs-
tal formed for cach site would represent that vol-
ume of space which is closer to that site than to
any other site. This would effectively construet
a Voronoi diagram. We now consider the role of
Voronoi diagrams in Delauay triangulation.

Definition: The Delaunay triangulation of a point
set is defined as the dual of the Voronoi diagram
of the set.

‘The Delaunay triangulation in two space dimen-
sions is formed by connecting two poims if and
only if their Voronoi regions have a comuon bor-
der segment. If no four or more points are cocir-
cular, then we have that wvertices of the Voronoi
are ¢ctreumcenters of the triangles. 'This is true be-

canse vertices of the Voronoi represent locations

that are equidistant to three (or more) sites, Also

note that from the definition of duality, edges

of the Voronoi are in one-to-one correspotudence

to edges of the Delaunay triangulation (ignoring

bonndaries). Because edges of the Voronoi di-

agram are the locus of points equidistant to two

sites, cach edge of the Voronor diagram is perpen-

dicular to the corresponding edge of the Delau-

nay triangulation, This duality extends to three

dimensions in a straightforward way.  The De-

launay triangulation possesses several alternate

characterizations and many properties of impor-

tance.  Unfortunately, not all of the two dimen-

sional characterizations have three-ditensional ex-
tensions. 'To avoid confusion, properties and algo-

rithins for constraction of two dimensional Delau-

nay triangulations will he considered first. The

remainer of this section will then discuss the three-
dimensional Delaunay triangulation.

3.2 Properties of a 2-D Delaunay Triangulation

(1) Uniqueness.  The Delaunay triangulation is
unique. This assumes that ne four sites are cocir-
cular. The uniqueness follows from the unique-
ness of the Dirichlet tessellation. ‘

(2) The etreumcivele eritevia. A trinnpulation of
N 2 2sites is Delaunay if and only if the cirev-
citele of every interior triangle is point-free. For
if this was not true, the Voronoi regions associ-
ated with the dual would not be convex and the
Dirichlet tessellation would be invalid, Kelated
to the circumcircle criteria is the incirele test for
four points as shown in figures 3.2-3.3.

Figure 3.2 Incircle test ior AABC and D (true).
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This test is true if point D lies interior to the cir-
cumcircle of A ABC which is eguivalent to testing
whether ZABC + ZCDA is less than or greater
than ZBCD -+ ZBAD. More precisely we ha-
that

< 180° incircie false
180° A B.C.D cocircular
> 180° incircle true

LABCHLCDA =

(3.1)
Since interior angles of the quadrilateral sum to
360°, if the circumcirele of AABC coutains 1)
then swapping the diagonal edge from position
A=Cinto B—D puarantees that the new triang,!.
pair satisfies the civenmeirele eriterin. Farther-
more, this process of diagonal swapping is local,
t.e. it does not disrupt the Delannavhood of any
tiangles adjacent to the q\uu]l‘ilut&‘l‘ul.

(M) Edge cirele property. A triangulation of <ites
is Delaunay if and only if there exists some circle
passing through the endpoints of cach and every
edge which is point-free. This characterization is
very useful because it alse provides a mechanism
for defining a constrained Delaunay triangulation
where certain edges ave preseribed apriori. A tri-
angulation of sites is n constrained Delaunay tri-
angulation if for each and every edge of the mesh
there exists some cirele passing through its end-
points contaiuing no other site in the triangula-
tion which is efsible to the edge. In figure 3.4, site
d is not visible to the sepment a-¢ becanse of the
constrained edpee a-b,

Figure 3.4 Constrained Delaunay triangulation.
Site d is not visible to a-c due to constrained seg-
ment a-b.

() Eouiangularity property. Delannay triangula-
tion maximizes the minimum angle of the triangu.
tation. For this reasoen Delaunay triangulation of-
ten called the MaxMin tnangulation. This prop-
orty is also locally true for all adjacent triangle
pairs which form a convex quadriaceral. This is
the basis for the local edge swapping algorithm of
Lawson [11] described below.

PriSa A sa. CARS earvem e

() Minimum Containment Circle. A recent result
by Rajan {12] shows that the Dalaunay triangula-
tion minimizes the maximum containment circle
over the catire triangulation. The containment
cirele is defined as the smallest cirele enclosing
the three vertices of a triangle. This is identical
to e circomcircle for acute triangles and a cir
cle with dinmeter eqgual to the longest side of the
triangle for obtuse triangies (sce figure 3.5).

A

()

Figure 3.5 Containment civeles for aoute and ob-
tuse triangles.

This property extends to n dimensions. Unfortu-
nately, the result does not bold lexicographically.

(6)Nearest neighhor property.  An edge formed
by joining a vertex to its nearvest neighbor is an
edge of the Delannay triangulation. This prop-
erty makes Delaunay triangulation a nowerful too
it solving the closest proximity m blem. Note
that the nearest neighbor edges do not describe
all edges of the Delaunay triangulation,

(TYMinimal roughness. The Delaunay triangulav
tion is a minimal roughness trimngulation for ar-
bitrary sets of scattered data, Rippa [13). Giver
arbitrary data f; at all vertices of the mesh and o
triangulation of these points, a unique plecewis
lincar interpolating surface can be constructed
The Detnunay triangulation has the property that
of all trinngulations it minimizes the roughness of
this surface as measuved by the following Soboley
semi-norng:

I, . 2 , 2
aOf\~ af oo
Y (LY | deay 3.2
/7'l(0-r) ! (ay) fodu

This is a interesting result as it does not depec
on the actual form of the data, "This also indi
cates that Delaunay triangulation approximate:
well those functions which minimize this Soboley
norm. One example would be the harmonic fune
tions satisfying Laplace’s equation with suitable
boundary conditions which miaimize exactly thi
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norm. In a later section, we will prove that a
Delaunay triangulation guarantees a 1aximum
priaciple for the discrete Laplacian approxima-
tion (with linear elements).

3.3 Algorithms for 2-D Delaunay Trianguiation

We now consider several techniques for De-
launay triangulation in two dumensions. These
methods were chosen because they perform opti-
mally in rather different situations. The discus-
sion of the 2-D algorithms is organized as follows:

(a) Incremental Insertion Algorithms
(1) Bowyer algorithm
(ii) Warson algorithm
(iii) Green and Sibson algorithm
(b) Divide and Conquer Algorithn
(c) Tanemura/Merriam Algorithm

(d) Global Edge Swapping (Lawson)

It should be pointed out that there appears to be
some confusion in the CFD literature concerning
the Bowyer[14] and Watson[15] algorithms. What
is sometimes described as Bowyer’s algorithm is
actually Watson’s algorithm. This is surprising
since both the Bowyer and Watson algorithns ap-
peared as back-to-back articles in the saine jour-
nal! The fundamenta! difference (as we will see)
is that the Bowyer algorithin is implementea in
the Voronoi plane and the Watson algorithm is
implemented in the triangulation plane.

3.22 Incremental Insertion Aloorithing

For simplicity, assume that the site to be
added lies within a bounding polyvgon of the ex-
isting triangulation. If we desire a triangulation
from a new set of sites, three initial phantom
points can always be added which define a tri-
angle large enough to enclose all points to be in-
serted. In additicn, interior boundaries are usu-
ally temporarily ignored for purposes of the De-
launay triangulation. After completing the tri-
angulation, spurious edges arc then deleted as a
postprocessing step.  Incrementel insertion algo-
rithms begin by inserting a new site into an exist-
ing Delaunay triangulation. This introduces the
task of point location in the triangulation. Some
incremental algorithms require kuowing which iri-
angle the new site falls within. Cther algorithms
require knowing any triangle whose circumcircle
contains the new site. In either case, two ex-
tremes arise in this reguard. Typical mesh adap-
tation and refinement algorithms determine the
particular cell for site insertion as part of the
mesh adaptation algorithm, thereby reducing the
burden of point location. In the olher exireuc,

initial triangulations of randomly distributed sites
usually require advanced searching techniques for
point location to achieve asymptotically optimal
complexity O(N log N). Search algorithms based
on quad-tree and split-tree data structures work
extremely well in this case. Alternatively, scarch
techniques based on “walking” algorithms are fre-
quently used because of their sitnplicity. These
methods work extremely well when successively
added points are close together. The basic idea
is start at the location in tke mesh of the previ-
ously inserted point and move one edge (or cell)
at a time in the general direction of the newly
added point. In the worst case, each point inser-
tion requires O(N) walks. This would result in
a worst case overall complexity G{N?). For ran-
domly distributed Points, the average point inser-
tion requires C{ N7) walks which gives an overali
complexity O(N% ). For many applications where
successive points tend to be close together, the
number of walks is roughly constant and these
simple algorithins can be very competitive. Us-
ing any of these techniques, we can procred with
the insertion algorithms.

Bowyer s algovithm

The basic idea in Bowver’s algoritum is to
insert a new site into an existing Voronoi diagram
{for cxample site Q in figure 3.6), determine its
territory (dashed line in fignre 3 €), delete any
cdges completely contained in the territory, then
add new edges and reconfigure existing edges in
the diagram. The foliowing is Bsewyver's algonthin
essentially as presented by Nowyer (see releron s
[14] for complete details):

Algoritihvu: Increinentai Delaunay crianguiation,
RBowver |14).

Step 1. Insert new point (site) Q into the Vorenoi
diagram.

Step 2. Find any oxisting vertex in the Voronoi
1iagram closer to the new poirt than to i%s forin-
ing points. This vertex will be deleted in the new
Voronoi diagram.

Step 3. Perform tree search to find remaining set
of deletable vertices V that are closer to the new
point than to their forming points. (In figure 3.6
this would be the set {vs, vq,vs5})

Step 4. Find the set P of forming poinis corre-
sponding t s the deletable vertices. In figure 3.6,
this would be the set {p2, ps,pa, ps, 07}

Step 5. Delete edges of the Voronoi which can
be described by pairs of vertices in the set V if
both forming points of the edges to be deleted
are contained in P

[P

¢




Step 6. Calculate the new vertices of the Voronoi,
cotnpute their forming points and neighboring ver-
tices, and update the Voronoi data structure.

d

Figure 3.6 Voronoi diagram modified by Bowyer.

Implementational details and suggested data
structures are given in the paper by Bowyer.

Watson’s algorithm

Impementation of the Watson {15] algerithm
is relatively straightforward. The first step is to
insert a new site into an existing Delaunay trian-
gulation and to find any triangle (the rcot) such
that the new site lies interior to that triangles cir-
cumcircle. Starting at the root, a tree search is
performed to find all triangles with circumcircle
containing the new site. This is accomplished by
recursively checking triangle neighbors. (The re-
sulting set of deletable triangles violating the cir-
cuincircle criteria is independent of the starting
root.) Removal of the delctable triangles exposes
a polygonal cavity surrounding site  with all the
vertices of the polygon visible to site . The in-
tevior of the cavity is then retriangulated by con-
necting the vertices of the polygon to site Q, see
figu.e 3.7(b). This completes the algorithm. A
tiorough account of Watson’s algorithm is given
by Baker [16] where he considers issues asseciated
with constrained triangulations.

Algorithm: Incremental Delaunay triangulation,
Watson [15)].

Step 1. Insert new site @ into existing Delaunay
triangdation.

Step 2, Find any triangle with circumncircle con-
taining site Q.

Step 3. Perform tree search to find remaining set
of deletable triangles with circumcircle containing
site Q.

Step §. Construct list of edges associated with
deletable triangles. Delete all edges from the list
that appear 1avre that once.

6-15

Step 5. Connect remaining edges to site Q and
update Delaunay data structure.

(v

Figure 3.7 (a) Delaunay triangulation with site
Q@ added. (b) Triangulation after deletion of in-
valid edges and reconnection.

Green and Stbson algorithm

The algoritnmn due to Green and Sibson [17]
is very similar to the Watson algorithm. The pri-
mary difterence is the use of local edge swapping
to reconfigure the triangulation. The first step is
location, i.e. find the triangle containing point
Q. Once this is done, three edges are then cre-
ated connecting ) to the vertices of this triangle
as shown in figure 3.8(a). If the point falls on an
edge, then the edge is deleted and four edges are
created connecting to vertices of the newly cre-
ated quadrilateral. Using the circumcircie criteria
it can be shown that the newly created edges (3
or 4) are automatically Delaunay. Unfortunately,
some of the original edges are now incorrect. We
need to somehow find all “suspect” edges which
could possibly fail the circle test. Given that this
can be done (described below), each suspect edge
is viewed as a diagonal of the quadrilateral formed
from the two adjacent triangles. The circumcircle
test is applied to either one of the two adjacent
triangles of the quadrilateral. If the fourth point
of the quadrilateral is intertor to this circumcircle,
the suspect edge is then swapped as shown in fig-
ure 3.8(b), two more edges then become suspect.
At any given time we can immediately identify all
suspect edges. To do this, first consider the sub-
set of all triangles which share @ as a vertex. One
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can guarantee at all times that all initial edges in-
cident to @ are Delaunay and any edge made inci-
dent to @ by swapping must be Delaunzy. Theve-
fore, we need only cousider the remaining edges
of this subset which form a poiygon about @ as
suspect and subject to the incircle test. 'The pro-
cess terminates when all suspect edges pass the
circumcircle test.

Figure 3.8 (a) Inserting of new vertex, (b) Swap-
ping of suspect edge.

The algorithm can be summarized as follows:

Algorithm: Incremental Delcunay Triangulation,
Green and Sibson {17]

Step 1. Locate existing cell enclosing point Q.
Step 2. Insert site and connect to 3 or 4 surround-
ing vertices.

Step 3. Identify suspect edges.

Step 4. Perform edge swapping of all suspect
cdges failing the incircle test.

Step 5. ldentify new suspect edges.

Step 6. If new suspect edges have been created,
go to step 3.

The Green and Sibsou algorithm can be im-
plemented using standard recursive programining
techniques. The heart of the algorithm is the re-
cursive procedure which would take the following
form for the config'vation shown in figure 3.9:

procedure swap{ vg, v1, U2, Uz, edges)
if(incircle[vq,v1,v2,v3] = TRUE)then
call reconfig_edges(vg, 1, va, 3, cdges]
call swapug, v, va4, U2, edges)
call swaplv, vy, vs, U3, edges)
endif

endprocedure

This example illustrates an important point.
The nature of Delaunay triangulation guarautees
that any edges swapped i .dent to Q will be final
edges of the Delaunay triangulation. This means
that we necd only consider forward propagation
in the recursive procedure. In a later section,
we will consider incremental insertion and edge
swapping for generating non-Dolaunay triangula-
tions based on other swapping criteria. This al-
gorithm can also be programmed recursively but
requires backward propegation in the recursive im-
plementation. For the Delaunay triangulation al-
gorithmn, the iusertion algorithm would simplify
to the following three steps:

Recursive Algorithm: Incremental Delannay
Triangulation, Green and Sibson

Step 1. Locate existing cell enclosing point Q.
Step 2. Insert site and connect to surrounding
vertices.

Step 3. Perform recursive edge swapping on newly
formed cells (3 or 4).

(=) 1 (v)

Figure 3.9 Edge swapping with forward propa-
jjation.

3.3b Divide-and-Conquer Algorithm

In this algorithm, the sites are assumed to be
prespecified. The idea is to partition the cloud of
points T (sorted along a convenient axis) into left
(L) and right (R) half planes. Each half plane
is then recursively Delaunay triangulated. The
two halves must then be merged together to form
a single Delaunay triangulation. Note that we
assume that the points have been sorted along
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the x-axis for purposes of the following discussion
(this can be done with O(N log N) comiplexity).

Algorithm: Delaunay Triangulation via Divide-
and-Conquer

Step 1. Partition T' into two subsets T, aud Ty
of neatly equal size.

Step 2. Delaunay triangulate 1y and Ty recur-
sively.

Step 3. Merge 7', and 7' into a single Delaunay
triangulation.

Figure 3.11 Triangulation after merge.

‘The only difficult step in the divide-and-conquer
algorithm is the merging of the left and right tri-
angulations. The process is simplified by noting
two properties of the meige:

(1) Only cross edges (L-R or R-1.) are created in
the merging process. Since vertices are neither
added or deleted in the merge process, the need
for a new R-R or L-L edge indicates that the origi-
nal right or left triangulation was defective. (Note
that the merging process will require the dcletion
of edges L-L and/or R-R.)

(2) Vertices with minimum (mazimum) y value in
the left and right triengulations always connect
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as crcss cedges. This is obvious given that the
Delaunay triangulation produces the convex .
of the point cloud.

Given these properties we now outline the “ris-
ing bubble” [1} merge algorithm. This algorithm
produces cross cdges in ascending y-oider. The
algorithm begins by forming a cross edge by con-
necting vertices of the left and right triangula-
tions with minimum y value (property 2). This
forms the initial cross edge for the rising bubble
algorithin. More generally consider the situation
in which we have a cross edge between A and B
and all edges incident to the points A and B with
endpoints above the half plane formed by a line
passing through A — B, sce figure 3.12.

Figure 3.12 Circle of increasing radius in rising
bubble algorithm.

This figure depicts a continuously transformed
circle of increasing radius passing through the
points A and B. Eventually the circle increases
in size and encounters a point C from the left or
right triangulation (in this case, point C is in the
left triangulation). A new cross edge (dashed line
in figure 3.12) is then formed by connecting this
point to a vertex of A — D in the other half trian-
gulation. Given the new cross edge, the procese
can then be repeated and terminates when the
top of the two meshes is reached. The deletion
of L — L or R R edges can take place during
or after the addition of the cross edges. Prop-
erly implemented, the merge can be carried out
in linear time, O(N). Denoting T'(N) as the to
tal running time, step 2 is completed in approxi
mately 2T°(N/2). Thus the total running time i
described by the recurrence T(N) = 2T(N/2) 4
O(N) =O(NlogN).

3.3¢ Tanemura/Merriam Algorithm

Another algorithm for performing Delauna
triangulation is the advancing front method de
veloped by Tanemura, Ogawa, and Ogita (18] an
later rediscovered by Merriam [19). Here the ide
is to start with a known boundary edge and forr
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a new triangle by joining both endpoints to one of
the interior points. This may generate up to two
additional edges, providing they aren't already
part of another triangle. After all the boundary
cdges have been incorporated into triangles, the
new edges will appear to be a (somewhat ragged)
boundary. This moving boundary is often called
an advancing front. The process continues until
tlie front vanishes. The problem here is to make
the triangulation Delaunay, This can be done
by taking advantage of the incircle property; the
circumcircle of a Delaunay triangle contains no
other points. This allows the appropriate point
to be selected iteratively as shown in Fig. 3.13.

Figure 3.13 A straightforward iteration proce-
dure selects the node which generates the small-
est circumcircle for a given edge. The absence of
nodes inside the circumcircle establishes conver-
gence,

The iteration begins by selecting any node which
is on the desired side of the given edge. If there
are no such nodes, the given edge is part of a con-
vex hull. Next, the circumcirele is coustructed
which passes through the edpe endpoints and the
selected node. Finally, check for nodes inside this
circle. If there are any, replace the selected node
with the node closest to the circumcenter and re-
peat the process, When the circumecircle is empty
of nodes, connect the edge endpoints to the se-
lected node.

3.3d Delaunay Triangulation Via Edge Swapping

'This algorithm due to Lawson [11] assumes
that a triangulation exists (not Delaunay) then
makes it Delaunay through application of edge
swapping such that the cquiangularity of the tri-
angulation increases. The equiangularity of a tri-
angulation, A(T), is defined as the ordering of
angles A(T) = [ay, a2, 0, ..., aa(),] such that
ap < ajifi < j. We write A(T*) < A(T) if
af <aj; and of = a; for 1 <i < j. A triangu-
lation T is globally equiangular if A(T*) < A(T)
for all triangulations T* of the point set. Law-
son’s algorithm examines all interior edges of the
mesh. Each of these edges represents the diag-
onal of the quadriiateral formed by the union of

the two adjacent triangles. In general one must
first check if the quadrilateral is convex so that
a potential diagenal swapping can place vithout
edge crossing. If the quadrilateral is convex then
the diagonal position is chosen which optimizes &
local criterion (in this case the local equiangular-
ity). This amounts to maximizing the minimum
angle of the two adjacent trizngles. Lawson's al-
gorithin continues until the mesh is locally opti-
mized and locally equiangular everywhere. It is
casily shown that the condition of local equiangu-
larity is equivalent to satisfaction of the incircle
test described earlier. Thei«fore a mesh which
is locally cquiangular everywhere is a Delaunay
triangulation. Note that eack new edge swap-
ping (triangulation T*) insures that the global
equiangularity increases A(T*) > A(T'). Because
the triangulation is of finite dimension, this guar-
antees that the process will terminate in a finite
numter of steps.

Iterative Algorithm: Triangulation via Law-
son's Algorithm
swapedge = true
While(swapedge)do
swapedge = false
Do (all interior edgcs)
If (adjacent triangles form conver quad)then
Swap diagonal to form T*.
If {optimization criteria satisfied)then
T=T*
swapedge = true
Endlf
EndIf
EndDo
EndWhile

When Lawson’s algorithm is used for construct-
ing Delaunay triangulations, the test for gnadri-
lateral convexity is not needed. It can be shown
that nonconvex quadrilaterals formed from tri-
angle pairs never violate the circumcircle test.
When more general optimization criteria is used
(discussed later), the convex check must be per-
formed.

3.4 Other 2-D 'Triangulation Algorithms

In this section, other algorithims which do
not nccessarily produce Delaunay triangulations
are explored.

The MinMaz Triangulation

As Babuska and Aziz [22] point out, from the
point of view of finite elements the MaxMin (De-
launay) triangulation is not essential. What is
essential is that no angle be too close to 180°. In
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other words, triangulations which minimize the
maximum angle are more desirable. These tri-
angulations are referred to as MinMax triangula-
tions, One way to generate a 2-D MinMax (ri-
angulations is via Lawson’s edge swapping algo-
rithm. In the case, the diagonal position for con-
vex pairs of iriangles is chosen which minimizes
the maximum inicrior angle for both triangles.
The algorithin is guaranteed to converge in a fi-
nite number of steps using arguments similar to
Delaunay triangulation. Figures 3.14 and 3.15
present a Delaunay (MaxMin) and MinMax tri-
angulation for 100 random points.

Figure 3.15 MinMax Triangulation.

Note that application of local MinMax optimiza-
tion via Lawson’s algorithin may only result in
a mesh which is locally optimal and not neces-
sarily at a global minimum. Attaining a globally
optimal MinMax triangulation is a much wmore
difficuit task. The best algorithm to present date
(Edelsbrunner, Tan, and Waupotitsch [23]) has a
high complexity of O(n*logn). Wiltherger [24]
has implemented a version of the Green and Sib-
son algorithm [17] which has been modified to
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produce locally optimal MinMax triangulations
using incremental insertion and local edge swap-
ping. The algorithm is implemented using re-
cursive programming with complete forward and
backward propagation (contrast figures 3.16 and
3.9). This is a nccessary step to produce locally
optimized meshes.

/ 3 3,,-—/”"’/75
/ -
Q 2 0\(. i}
\> N NS
() 1 (b) ! )

Figure 3.16 Edge swapping with forward and
backward propagation in Wiltberger algorithm.

The MinMax triangulation has proven to be very
useful in CFD. Figure 3.17 shows the Delaunay
trianguiation near the trailing edge region of an
airfoil with extreme point clustering.

Figure 3.17 Delaunay triangulation near trailing
edge of airfoil.

Upon first inspection, the mesh appears flawed
nea: the trailing edge of the airfoil. Further in-
spection and extreme magnification near the trail
edge of the airfoil (figure 3.18) indicates that the
grid is a mathematically correct Delaunay tri-
angulation. Because the Dclaunay triangulation
does not control the maximum angle, the cells

.
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near the trailing edge have angles approaching
180°. The presence of neatly collapsed triangles
leaves considerable doubt as to the accuracy of
any numerical solutions computed in the trailing
edge region.

Figure 3.3.8 Extreme closcup of Delaunay trian-
gulation near trailing edge of airfoil.

Edge swapping based on the MinMax criteria via
Lawson's algorithm or incremental insertion us-
ing the Wiltberger algorithm produce the desired
result as shown in figure 3.19.

Figure 3.19 MinMax triangulation near trailing
cdge of airfoil.

The Greedy Triangulation

A greedy miethiod is one that never undoes
what it did carlicr. The greedy triangulation con-
tinnally adds edges compatible with the current

triangulation (edge crossing not allowed) until the
triangulation is complete, i.e. Euler's formula is
satisfied. Oune objective of a triangulation wmight
be to choose a set of edges with shortest total
length. The best that the greedy algorithm can
do is adopt a local criterion whereby only the
shortest edge available at that moment is con-
sidered for addition to the current triangulation.
('This does not lead to a triangulation with short-
est total length.) Note that greedy tdangulation
casily accommodates constrained triangulations
containing interior boundaries and a nonconvex
outer boundary. In this case the boundary edges
are simply listed first in the ordering of candidate
cdges. The entire algorithm is outlined below.

Algorithm: Greedy Triangnlation

Step 1. Initialize triangulation T as empty:.

Step 2. Compute (3) candidate edges.

Step 3. Order pool of candidate cdges.

Step 4. Remove current edge e, from ordered
pool.

Step 5. If( e, does not intersect edges of T') add
e, toT

Step 6. U(Buler’s formula not satisfied) go to
Step 4.

Figure 3.20 Greedy Triangulation.

Figures 3.14 and 3.20 contrast the Delaunay
and greedy algorithm. The lack of angle con-
trol is easily seen in the greedy triangulation,
The greedy algorithm suffers from both high run-
ning time as well as storage. In fact a naive im-
plementation of Step 5. leads to an algorithm
with O(N3) complexity. Efficient implementation
techniques are given in Gilbert [25] with the result
that the complexity can be reduced to O(N?log N)
with O(N?) storage.
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Data Dependent Triangulation

Unlike mesh adaptation, @ data dependent
triangulation assumes that the number and posi-
tion of vertices is fixed and unchanging. Of all
possible triangulations of these vertices, the goal
is to find the best triangulation under data depen-
dent constraints. In Nira, Levin, and Rippa [26],
they consider several data dependent constraints
together with piccewise linear interpolation. In
order to determine it a new mesh is “better” than
a previous one, a local cost function is defined for
cach interior edge. Two choices which prove to be
particulariy effective arve the JND (Jump in Nor-
mal Deciivatives) and the ABN (Aungle Between
Normals). Using their notation, counsider an inte-
rior edge with adjacent triangles 7} and Ty, Let
P(x.y)y and P(x, y)2 be the linear interpolation
polynomials in 77 and 15 respectively:

Play) =aye by -+ ey

Pya.y) = aze +byy + ¢

The JND cost function measures the jump in nor-
wal derivatives of P} and P across a conunon
cdge with normal components n, and n,,.

s(fr,e) = Ine(ay —a2) + ny(by = b)i,
(IND cost function)
The ABN me.sures the acuie angle between the
two normals formed from the two planes Py and
P>, Again using the notation of [26}:

s(fr.e) =0 = cos™(A)

A= aaz by 41
ST F b E D)@+ + 1)

(ABN cost function)
Tlie next step is to construct a global measure of
these cost functions. This measure is required to
decrease for each legal edge swapping. This ip
sures that the edge swapping process terminates,
The simplest measures are the I; and I, norws:

Ri(fr) =3 ls(fr,e)]

cdges

R'_\(_ffr) = z S(f,’.‘(,)‘.-’

edges

Recall that a Delaunay triangulation would result
if the cost function is chosen which maximizes the
minimum angle between adjacent triangles (Law-
son’s algorithm). Although it would be desirable
to obtain a global optimum for all cost functions,
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this could be very costly in many cases. An ol
ternale stravegy is to abandon the pursuit of a
globally optimal triangulation in favor of a lo-
“ally optimal triangulation. Once again Lawson's
algorithm is used. Note that in using Lawson’s al-
gorithm, we require that the global measure de-
crease ab cach edge swap. 'This is not ax simple
as before since cach edge swap can have an effect
on other surrounding edge cost functions, Never-
theless, this domain of influcnce is very small and
casily found.

Iterative Algorithm: Data Dependent Trian-
gulation via Modified Lawson’s Algorithm
swapedge = true
While(swapedge)do
swapedge = false
Do (all interior cdges)
If (adjacent triangles
form canvex quadrilateralithen
Swap diagonal to form T,
If (R(fr-) < R(fr))then
T=T*
swapedge = truc
EndIf
EndIf
EndDo
EndWhile

Eldge swapping only occurs when R(fy+) < R{fy)
which guarantees that the method terminates in
a finite number of steps, Figures 3.14 aund 3.21
plot the Delaunay trianguiation of 100 random
vertices in a unit square and piecewise linear con-
tours of (1-+ tanh(9y — 92))/9 on this mesh. The
exact solution consists of straight line contours
with unit slope.

,4241/
7

Figure 3.21 Piccewise Linear Interpolation of
(1 + tanh(9y — 92))/9.
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In fignres 3.22 and 3.23 the data dependent tri-
angulation and zolution contours using the JND
criteria and [ measure suggested in [26) ave plot-
ted.

Figure 3.22. Data Dependent ‘Tyiangulation,
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Figure 3.23 Piccewise Linear Interpolation of

(1 + tanh(9y - 92))/9.

Note that the trim gulations obtained from this
method are not globally optimal and highly de-
pendent on the order in which edges ave accessed,
Several possible ordering strategies are meationed
in [27].

3.9 2-D Sieciner Dri-angulations

Defirition: A Steiner triangulation is any tri-
angulaticn that adds additional sites to an exist-
ing triai.gulation to improve some measure of grid
quality.

Technically speaking, the method of advancing
front grid gencration discussed by Professors Mor-
gan and Lohner in these notes would be a spe-
cial type of Steiner triangulistion. The inscrtion
algorithms described carlier also provide a sim-
ple mediinism tor generating Steiner triangula-
tions. Holmes (28] demonstrated the feasibility of

inserting sites at circumeenters of Delannay trian-
gles into an existing 2-1) triangulation to improve
measures of grid quality,  This has the desired
offeet of placiug the new site in a position that
guarantees that no other site in the triangulation
can lie closer that the radius of the civcumeircle,
soe figure 3.24. In a loose sense, the new site
is placed as far away from other nearby sites as
conservatively possible.

C b m——
A
c +
a a
{a) (b)

Figure 3.24 luserting site at cirenmeenter of acute
and obtuse triangles.

Warren et al[20] and Anderson [30] further demon-
strated the utility of this type of Steiner trian-
gulation in the generation and adaptive refine-
ment. of 2-D meshes. The algorithm developed
by Wiltberger [24] also permits Steiner triangu-
lations based on either MinMax or MaxMin (De-
lannay) insertion. Only in the latter case is the
insertion at triangle circumcenters truly justifi-
able. The paragraphs below give an expanded
discussion of 2-D Steiner triangulation.
Steiner Grid Generation

The 2-D Steiner point grid generation algo-
rithm described in {28,29,30] consists of the fol-
lowing steps. The Brst step is the Delaunay trian-
gulation of the boundary data. Usually three or
four points are placed in the far field with convex
hull enclosing all the boundary points. Starting
with a triangulation of these points, sites corre-
sponding to boundary curves ave incrementally
inserted using Watson's algorithm in [28,29,30]
and Green and Sibson’s algorithm in [17] as shown
in figure 3.25. The initiai triangulation a ~s not
guarantee that all boundary edges are members of
the triangulation. This can be remedied in a vari-
cty of ways. One technique adds additional points
to the triangulation so as to guarantee that the
resulting Delaunay triangulation contains all the
desired boundary edges, see reference [16]. An-
other approach performs local edge swapping so
as to produce a constrained Delaunay triangu-
lation which guarantees that all boundary edges
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Figure 3.25 Initial triangulation of boundary
points.

I either event, the bosmdary edges ave marked so
that they cannot be removed as the triangulation
is refined. The algorithims desciibed in [28,29,30)
interrogate trinngles in an arbiteary order (this
makes the triangulation nonunique),  The user
must specify some measure of quality for triangle
refinement (aspect ratio, area, containment cirele
radius, for example) and a threshold value for the
measure. I a triangle fails to meet the threshold
value, the triangulation is refined by plecing a
new site at the civenireenter of the faiied trian-
gle via Watson's algutitiiin. Soine Gue usi be
takeu to insure that measures are chosen which
are puaranteed to be reduced when the vefine-
ment takes place. Using thresholding in this way
dees pot give the user diveet control over the ac-
tual number of triangle gencrated in the process
of Steiner refinement.  Wiltberger takes a Jif-
ferent approach by maintaining a dynamic heap
data structure of the quality measure.  (Heap
structures are a very eflicient way of keeping a
sorted list of entries with insertion and guery time
O(log N') for N entries.) The triangle with the
largest value of the specified measure will be lo-
cated at the top of the heap at all times dur-
ing the triangnlation, This makes implementa-
tion of a Steiner triangulation which mindmizes
the mazimum value of the measure very efficient
(and unique). In this implementation, the user
can cither specify the number of triangles to be
generated or a threshold value of the measure.
Note that multiple measures can be refined lex-

.

icographically, Figure 3.26 shows a Steiner tri-

nngnlntion using the Wiltherger alpovithne with
MaxMin iusertion and refivement based on iax-
hnun aspect mtio,

Figure 3.26 Steiner triangulation with sites in-
serted at circumceenters to reduce maximum cell
aspect ratio.

Figure 3.27 Steiner triangulation of Texas coast
and the Gulf of Mexico.

This triangulation has proven to be very flexible,
For instance, figure 3.27 shows a Steiner triangu.
lation of the Texas coast and Gulf of Maxico.

3.6 Three-Dimensional Triangulations

The Delaunay triangulation extends naturally
into three dimensions as the geometric dual of the
3-D Voronoi diagram. The Delaunay triangula-
tion in 3-D can be characterized as the unique
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trinhgulation such that the circumsphere passing
through th. four vertices of nny tetrahedron must
not et unany other point in the trinngulation.
A v the 22D case, the 3-D Delaunay trinngula-
von has the property that it minimizes the maox-
ium containsuent sphere (globally but not to-
eally). 1o two dimensions, of can be shown that
a wexh entively comprised of acute triangles is
awtomatically Deiaunay. To prove this, consider
an ndjacent triangle pair fortming « gquadrilateral.
Dy swapping the position of the diagonal it s
casily shown that the minihuum angle always in-
crenses. Rajan [12] shows the natural extension
of thig iden to three or more space dinensions,
He defines a “self=centered” simplex in RY to be
a sumplex which has the citenmeenter of its cir-
cutsphere interior to the simplex. In two dimyen-
siona, acute triangles are self-centered and obtuse
triangles are not. Rajan shows that a triangula-
tion entirely conipused of self-centered simplices
in RY is antomatically Delanuay.

360 3-D Bowyer and Watson Algoritins

The algerithms of Bowyer [14) and Watson
115] extend naturally to three dimensions with es-
tiniaved complexities of O(N YY) and O(N 3 for
N randonly distributed vertices. They do not
give worst case ostimates, [t should be noted
that in three dimensions, Klee [20] shows that
the maxunum number of tetraliedra which can
be generated from Vo vertices is O(N?), Thus an
uptimal worst case complexity would be a least
O(N?). Under normat conditions this worst case
scenario is rarely encountered. Baker [16] reports
more readistic actuad ran dmoes for Waisun's algo-
vithin.

3.6b 3-D Edee Swapping Alporithms

Until most recently, the algorithim of Green
aud Sibson based on edge swapping was thonght
uot to be extendable to ¢hvee dimensions because
1t was unclear how to generalize the coucept of
edge swapping to three or more dimensions. Iy
1986, Lawson published a paper {21] in which he
proved the fundamental combinatorial vesult:

Theorem: (Lawson. 1986} The convex hull of
d 4+ 2 points in R? can be triangulated in at most
2 ways.

Joe [31,32), and Rajan [12] have constructed
algorithins based on this theorem. In joint work
with A. Gandhi [33], we independently constructed
an incremental Delaunay triangulation algorithm
based on Lawson’s theovem. The remamder of
tlus section will review our algorithm and the ba-
sic ideas behind 3-D edge swapping algorithms,

1t is useful to develop a taxonomy of pos-
sible configurations addeessed by Lawson's theo-
ren. Figure 3.28 shows configurations in 3.1 of
five points which can be triangulated in only one
way and heace no change is possible.  We eall
these arrvengaments “unswappable”™. Figure 3.29
shows configurations which allow twe ways of tri-
angulation. It is possible to Hip between the two
possible triangulations and we enll these nreange-

ments “swappahle™,
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Figure 3.28 Generie nonswappable contignrations
of 5 points. Shaded region denotes planar surface,
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Figure 3.29 Generic swappable configurations of

3 points. Shaded region denotes plaae surfuee.

There are two arrangements (hat allow twao
triangulations. Figures 3.29(n) and 3.29(h) show
the subelass of companion trinngulations that ean
ho teansforned from ane tynpe to another thereby
changing the number of tetrabiedra from 2 to 3
or vice-versa, Figares 3.29(¢) and 3.20(d) show
the other subelass of contigurations that can be
transformed from one type to another while keep-
ing constant the number of tetrahedra (2), These
figures reveal an important difference between the
two and three-dimensional algorithms. The num-
ber of tetrakedrons involved m the swapping op-
eration need net be constant,

The 3-D edge swapping algorithm is based
on lipping between the two ways of triangulating
the configurations in figure 3.29. One good way of
finding all sets of five points in the mesh is to loop
through all the faces in the mesh and considering
the five points that make up the two adjoining
tetrahedra for that face. Below we present the
facewise edge swapping primitive,

Primitive: EDGE_SWAP(face)
Let € = { Set of tetrahedra made from the §
nodes of the two adjoining tetrahedra }
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H{shape{C) = convex)then
Let T = current trinngulation
Let T* = alternate triangulation (if it exists)
U Quality (7)) > Quality(T)then
[l‘:\l;;v S\\'np T o '1“}
Eudif

Eohif
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The first step is to lind all the tetrahedren
that are descvibed by the five nodes of the twe
tetrahedra adjacent to the face in question. There
v actnaxitnuae of four tetrahedra that can be built
Do five nodes, Sinee any two tetrahedra made
frot the satie live points will hoave to shave theee
points {i.e. o face) it is sutlivient to only ook
at the four neighboring tetrabedra of any of the
two tetrabiedra already known, This constitutes
a linear time algovithm for finding all the non-
overlapping tetrahedra made from the five points,

If these tetrahedra form a conves shape, then
the configruration is described by one of the config-

urations in Rgures 3,28 and 3.29 (configurations of

the convex hull) and edge swapping is permitted,
If. for example, ouly two of the three tetrahiedra
i tigare 3.29(b) were present, the two tetrahe-
dra will formy a concave shape. Obviously, edge
swapping concave shapes is not possible without
possibly creating overlapping tetrahedra in the
wesh. For swappable configurations, a check ix
performed to see if the local mesh quality anea-
sure (discussed further below) wall improve by
edge swapping wte the alternate trinngulation, 1f
it does, the swap ix pvrfurmv(l; otherwise the trg-
anpnlation s unchanged. This techmgue offers a
distinet advantage over others (Bowver's or Wat-
son's algorithm) in that 1t allows the use of any
arbitrary mesh quality measure,

Computational Aspects of 3-1D Bdge Swapping

Before proceding further. it is useful to dis-
viss the computational aspects of Come of the op-
erations needed for the edge swapping algovithi,
¢ Deterining Convexity: This operation tests
whether the shape formed by the tetrahedron T,
and Ty is convex. Let the vertices of the tetra-
hedra be numbered 77 = (1,231 and 75 =
(1,2,3,5) i.e., (1,2,3) is the face shared by T,
and T and nodes 4 and 5 are at the two ends
of Ty and T vespectively,  We make use of the
notion of barycentric coordinates to perform the
convexity test, The by 4.4 satisfying

1 1 1 1 ' N 1
Iy e Xy Xy bg I
woow oo T e
2 3 I S .l).. 5

are called the barveentyie coordinates of node 5
They indicate the position of 5 in relation to the
nodes of tetvahedion 7y, For each s, the sign of
b, inddicates the position of 5 relative to the plane
H. passing through the triangulir face epposate
pode . Thus b, = O when disin H_ b > 0 when
% ois on tlw siatne stde of 1) as node s, uml h.o <0
when o is on the opposite side of [, Irom wode
« Clearly, byag > 05 lies inside tetrnhedron
(L2 304). D we tmagine a cone Ermed by plasies
11 g of Ty, then 1) and 2y would form a vonvex
shape if and only if node § lies i the cone on the
side upposite from node 1 (figure 3.30).

Figure 3.30 Couvesity cone for node -4

The conditions to satisty this vequireent are by <
Oand by 50 > 00 Inorder to test i three cells tor
a convex shape, the nodes are renumbered as if
the three eell configuration were edge swapped
into the corresponding two cell contignration for
purposes of the baryveentrie test. For example,
consider athree cell confignration with number-
ing (1,234, (2,34, 0) and (1.2.4.5), then the
corresponding, two cell umlwm.\tmu would have

oo adog D and
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(13050 as the comng
at the ends of the two hn.lln dra.  Notice that
il the three tetrahedra formed a convex shape,
then it would be possible 1o edge swap noto a
couvex two tetrahedea configivation. I the three
colls formed a concave shape, bowever, the trans-
formed two cell triangulation would contain over-
lapping tetrahedra which the test above would
label as concave.

Using Cramer's tule to solve the Ar = b
problem posed above requires computing deter-
minants of the form

1 l | 1
[{F )]} Qo My By
Az @z azy  Quy |
Gxy  Qap Qan Aoy

five times. An optimization is possible by exploit-
ing the property of determinants that subtract-
ing one row or column from another leaves the
determinant unchanped. If we subtract the first
colmn from the rest, we simplify the above 4x1
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determinant into a 3x3 one.

1 0 0 0 !
a1 M2— a1 @3 —ay apq—ap
Q21 @22 — Q)] QG23 ~ Q21 Q24 — QA2
@31 a3z — @z a3z — a3zl Qzq — Az I

|¢11~2'-ﬂn Q13 — Q@1 G4 —ap
=|Q22— a2 Gz3 — Q) G24 — Q3]
(3z — a3y a3z —as; Q34 — Az

¢ Delaunay Circumsphere test: The 3-D Delau-
nay triangulation is defined as the unique trian-
gulation such that the circumsphere of any tetra-
hedron contains no other point in the mesh. To
determine where point E lies in relation to the cir-
cumsphere of tecrahedron (A, B, C, D), denoted
by(QQ ABCD), we use the InSphere primitive :

<0 if Eisinside O ABCD
InSphere( E) { =0 if Eison Q ABCD
> 0 if E is outside ) ABCD

wherc InSphere is computed from the following
determinant;

InSphere( E)

1 1 1 1 1

XA ¥ ¢ ITp TE |
=lY% VYE Yc Yp VE
24 zp 2 2p Ip

11 1 1 1
A Ty Tc Tp
YA ¥YB Yo Yp

2]

Y P 4 z o 2
wi wh wlo owh whi 4 B ¢ D !
Tp—~TA X - Ta Ip—TAp Iy - T4

— | ¥B~Ya Y —Ya YD — YA  YE — kA
g A ¢ — 24 Ip —zA ZE — 27
2 _ .2 2 2 , v
wy —wh wi - wh wh-wd wh - v}
IB~2TpA TC—TQ TP —2ap
Y8 — Y4 Yo — YA UD— YA
Ip—2A 2c—2ZA Ip=—ZA

and wh = 2% +yh + 23

The first determinant is the 3-D extension
of Guibas’ InCircie primitive [1]. It represents
the volume of a pentatope whosc vertices are the
points A. B, C, D, E projected onto the 4-D
paraboloid (22 + »% + 22). (A pentatope is the
simplest polytope i:n 4-D just as a tetrahedron is
the simplest polytope in 3-D and a triangle in 2-
D. A pentatope can be constructed by joining the
tetrahedron to a fifth point outside its 3-space.)
The coordinates in 3-space of these five points
rernain unchanged; they simply acquire a value
in their fourth coordinate equal to the square of
their distances from the origin. The volume of
this polytope is positive if point E lics outside

e et s oo e s g b

(O ABCD and negative if point E lies inside O
ABCD, provided that tetrahedron (A4, B,C, D)
has a positive vilume (as given by the second
determinant). The determinant is degenerate if
point E lies exactly on O ABCD.

This test is motivated by the observation in
3-D that the intersection of a cylinder and a unit
paraboloid is an ellipse lying in a plane (figurc
3.31). So, any four co-circular points in 2-D will
project to four co-planar points and the volume
of the tetrahedra made from these four co-planar
points will be zero. The paraboloid is a surface
that is convex upward and the points interior to
a circle get projected to the paraboloid below the
intersection plane and the points exterior to it
get projected above :he the intersection plane.
If a point lies outside the circumcircle of three
other points, the tetrahedron made from these
four points will have positive volume provided the
three points were ordered in a counter-clockwise
fashion. The volume will be negative if the point
lies inside the circumcircle.

Figure 3.31 Projection of cocircular points onto
unit paraboloid.

The second determinant is the 3-D exten-
sion of Guibas’ CCW (counter clock-wise) prim-
itive [1] which computes the volume of tetrahe-
dron (A, B,C, D). Thus the InSphere primitive
works irrespective of how the points A, B, C,
and D are ordered. If it can be guaranteed that
all the tetrahedra in & mesh have their vertices
ordered to have positive voluines then the need
to compute the second determinaut is eliminated.
The InSphere primitive becomes ili-behaved when
the points A, B, C, and D all lie nearly on a
plane because the position of the circumsphere
with respect to the points (i.e., whether the cir-
cumsphere is above or below the plane) becomes
very sensitive to small perturbations in the coor-
dinates of the five points.
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3-D Mesh Optimization

The 3-D edge swapping algorithm can be used
to optimize existing triangulaticns. In fact, there
is no way to wriangulate a givea set of points based
on the minmax or maxmin ¢f the face angles di-
rectly. An alternative is to start with ap existing
triangulation and optimize it. This requires that
we cycle through all the faces in a mesh and appiy
the edge swapping procedure at each step. This
process is continued until ne more swaps are pos-
sible.

Algorithm: Three-dimensional mesh optimiza-
tion.
while (swaps occurred in the last cycle over faces)
for all faces
EDGESWAP (face)
endfor
endwhile

In the following paragraphs, we discuss a few swap-
criteria and exainine the meshes they produce.

Global Edge Swapping

The InSphere criteria is binary in the scense
that either the triangulation of a set of five points
satisfies the criteria or it does not. It can also be
shown that of the two ways to triangulate a set of
five points, if one way fails the InSphere criteria,
then the other one will pass and vice-versa. Cases
1 and 3 in figure 3.15 and cases 1, 3, and 5 in
figure 3.16 will always pass the InSpitere criteria.

The Delaunay triangulation is unique for a
given set of peiats. Lawson also noticed the re-
lation between local and global properties ot the
Delaunay InSphere criteria: a triangulation is De-
launay if and only if the triangulations of sets of
five points corresvonding to all the interior faces
in the mesh satisfy the InSphere criteria. This
means that if every face satisfies the Delaunay
criteria, then the whole mesh must be a Delau-
nay triangulation.

Joe [32] has proven, however, that process-
ing faces in an arbitrary way may result in getting
stuck in loral optima. This is an important dif-
ference between two and three dimensional comn-
binatorial edge swapping,

3-D MinMaz and MezMin Triangulations

The edge swapping algorithm can be applied
locally to produce a triangulation that minimizes
the maximum face angle. In 2-D, the edge swap-
ping algorithm (working with edge angles) gets
stuck in local minima and depending on the or-
der in which the edges were traversed, different
local minima are reached. In practice, the tocal
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minima all scem very close to the global mini-
mum which makes edge swapping a practical way
to get a nearly optimal MinMax triangulation.
We observe that in 3-D as well, there are many
local iminima and the order of face traversal deter-
raines which one is found. It is hard to deterraine
how far these local minima are from the global
minimum but we believe that edge swapping is
a practical way to get nearly optim:al MinMax
meshes.

Lawson has shown that in 2-D, Delaunay tri-
angulations have the property that the minimum
edge angle is maximized (i.e., MaxMin triangu-
lation). So in 2-D, the MaxMin triangulation is
unique and the edge swapping algorithm will con-
verge to it. In 3-D, however, the Delaunay trian-
gulation is not the same as MaxMin triangulation
and the edge swapping algorithm working with
the MaxMin criteria has the same property of get-
ting stuck in local minima as the MinMax. Agair,
it is hard to judge how close the local minima are
from the global minimum but we still conclude
that edge swapping is a fairly efficient technique
for the construction of MaxMin triangulations.

3-D Minimum Edge Triangulation

Another mesh of interest is the minimmuu
edge triangulation. Since finite-volume flow solvers
work edge-wise, it is beneficial to reduce the num-
ber of edges in a mesh. This is easily accom-
plished by edge swapping such that we always
swap from case 3.29a to case 3.29b. Each time
this operation is performed, one edge and one
tetrahedron are removed from the mesh. Again,
different meshes will be produced depending upon
how faces are traversed and the final mesh may
only be at a local minimum.

Incremental Deleunay Triengulation

The edge swapping algorithm provides an ef-
fective way for inserting a point into an existing
trianguation. Simply find the tetrahedra into
which the point is to b ingerted and test its faces
according to the circumsphere criteria to deter-
mine if edge swapping should take place. If a
set of 5 points corresponding to a face is retri-
angulated, we proceed to test all the outer faces
of the new triangulation for swappability and so
on. This propagates a front that retriangulates
the mesh. It is known that any new face created
during the retziangulation is indeed a part of the
final mesk as well, and so back-propagation is not
required. This may not be true for other mesh
qrality rceasures and back propagation then be-
COMES NeCessary.
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Rajan proves that it is possible to find a cer-
tain sequence of edge swaps which will guarantee
that Delaunay triangulation is recovered when a
site is added to an existing Delaunay triangula-
tion. In practice, however, we find that this order-
ing of edge swaps does not seem to be necessary
in order to recover the Delaunay triangulation.
In fact, it s our conjecture that this is aiways the
case.

This insertion algorithm can be used to adap-
tively refine meshes. To do this, sites are inserted
at the centers of the circumspheres of tetrahedra
with large aspect ratios (or other suitable mica-
sures). This insertion site does not always lie
within the cell T; marked for refinement. To find
the cell in which the new site lies, a walking al-
gorithm i1s employed. Starting at Tj, barycentrics
are computed to determine which face of T; the
new site lies behind. The next step is to traverse
to the cell behind that face. This procedure is ap-
plied recursively until the cell in which the new
site falls within is found. The idea of introduc-
ing new sites at the centers of the circumspheres
of tetrahedra works well becausc each new site
intr¢ 1ced is equidistant to the 4 points of the
lacg aspect ratio tetrahedra. This produces high
quality meshes in 2-D and seems to work well in

3-D.
.6¢ 3-D Surface Tr' - gulation

The Wilth. . algorithm has been extended
to inclade the gulation of surface patches.
Although th . <pt of Dirichlet tessellatiou is
well defired g .. ooth manifolds using the con-
cept of  odisic v wce, in practice this is too
Finddi.g geodesic distance is a varia-

at is not easily solved. We have

expeunsiy
tiop . i

i -mpler procedure in which surface
grids in -1 are constructed from rectangular sur-
face patches (assumed at least CV siooth) using
a gencralization of the 2-D Steiner triangulation
schen;o.

7]

& P ®-

L = - A
]

Figure 3.32 Mapping of rectangular patches on
(s,t) plane.

Points are first placed on the perimeter of each

patch using an adaptive refinement strategy based
on absolute error and curvatuze measures. The
syrface patches are projected onto the plane, see
figure 3.32. Simple stretching of the rectangular
patches permits the user to produce preferentially
stretched meshes. (This is useful near the leading
edge of a wing for example.)

The triangulation takes place in the two di-
mensional (s, 7* plane. The triangulation is adap-
tively refined using Steiner point insertion to min-
imize the maximum user specified absolute error

“and curvature tolerance on each patch. The ab-

solute error is approximated by the perpendicu-
lar distance from the triangle centroid (projected
back to 3-space) to the true surface as depicted in
figute 3.33. The user can further refiue based on
triangle aspect ratio in the (s, t) plane if desired.

Figure 3.33 Calculation of triangulation abso-
lute error by measurement of distance from face
centroid to {rue surface.

Tigure 3.34 shows a typical adaptive surface grid
_:nerated using the Steiner triangulation method.

V} 7D
)\ m‘W J ’
e
4" KA ‘,ﬁ\ X :

Figure 3.34 Adaptive Steciner triangulation of
surface mesh about Boeing 737 with flaps de-
ployed.
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4.0 Some Theory Related to
Finite-Volume Solvers

4.1 Scalar Conservation Law Equations

For purposes of these notes, we consider nu-
merical methods for solving conservation law equa-
tions.

Definition: A conservation law asserts that the
rate of change ot the total amount of a substance
with density z in a fixed region € is equal te the
flux F of the substance through the boundary Q2.

9 [ da+f F(z)-ndi =0 (integral form)
ot Jo~ o0

The choice of a numerical algorithin used to
solve a conservation law equation is often influ-
enced by the form in which the conservation law is
presented. A finite-difference practitioner would
apply the divergence theorem to the integral form
and let the area of Q shrink to zero thus obtaining
the divergence form of the equation.

)
52+ 7 F(:) =

(divergence form)

The finite-element practitioner constructs the di-
vergence form then muitiplies by an arbitrary test
function ¢ and integrates by parts,

0 / /
rda— | Vo-Fl2)dast HF(dndl =0
at/"” 4 Jos

(weak form)
Algorithm developers starting frown these three

forms can produce seemingly different numerical
schemes. In reality, the final discretizations are
usually very similar. Some differences do appear
in the handling of boundary conditions, solution
discontinuities, and nonlinearities. When consid-
cring flows with discontinuities, the integral form
appears advantageous since conscrvation of fluxes
cornes for free and the proper jump conditions are
assured. At discontinuities, the divergence form
of the equations implies satisfaction in the seuse
of distribution theory. Cousequently, at disconti-
nuities special care is needed to construct finite
difference schemes which produce physicaily rel-
evant solutions. Because the test functions have
compact support, the weak form of the equations
also guarantees satisfaction of the jump condi-
tions over the extent of the support. The di-
vergence form. of the equations is rarely used in
the discretization of conservation law equations
on unstructured meshes because of the difficulty
in ensuring conservation. On the other band, the
integral and weak forms are both used extensively

RPN
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in numerical modeling of conservation laws on un-
structured meshes. In the next section, the sim-
plest of numerical schetnes based on integral and
weak forms of the conservation law are compared
to illustrate their similarities. These schemes can
be viewed as the “central-difference” couaterparts
on unstructured grids. For advection dominated
flows, these algorithms are inadequate and addi-
tional terms must be added. This topic is under-
taken in detail in future sections.

4.2 Comparison of Finite-Volume and Galerkin
Finite-Element Methc¢ds

Although the integral and weak forms of the
equations appear to be quite different, numerical
schemnes based on these forms often produce iden-
tical discretizations. To demonstrate this point,
consider the Galerkin discretization (with linear
clements) of a general model advection-diffusion
equation (g > 0):

0
ot~

Multiplying by a test function ¢ and integrating
by parts over the region  produces the weak
inrr of the equation.

d

éi/ da—/Vd) F(:) da+

2+ V-F(z)=V . -uVz

¢ F(2) - ndl
a0

== [;LV({)- zda-}-/ weVz -ndl
JQ NET)

(4.0)
In the finite-element method, the entire domain
is first divided into smaller elcents. In this case,
the elements are triangles T;, such that Q = UTj,
;0T =0, | #j InFig 4.1a we show a rep-
resentasive vertex with adjacert neighbors. (To
simplify the discussion in the remainder of these
notes, we adopt the convention that the index
“j” refers to a global index of a mesh whereas
the index *” always refers to a local index.) The
lincar variation of the solution in each triangle T;
can be expressed in torms of the three local nodal
values of the solution, ”T i t=1,2,3, and three
element shape functions n;, i =1,2,3.

3
= Zni(l‘,y) 2
i=1

(local representation)
Each element shape function n; can be interpreted
as a pieccwise linear surface which takes on a unit,
value at v; and vanishes at the other two vertices
of the triangle as well as everywhere outside the
triangle. The solution can also be expressed glob-
ally in terms of nodal values of the solution and

Mz, y);
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global shape functions.

Mx,y) = Z N;(w,y) fjh

nodes .
(global representation)

In this form, the global shape functious are piece-
wise linear pyramids which are formed from the
union of all local shape functions with have unit
value at v;. These global shape functions also en-
joy compact support, i.c. they vanish outside the
region ©; formed from the union of all triangles
incident to v;. A global shape function for vertex
v; is shown in Fig. 4.1b.

~=—~ Median Dual
------ Centroid Dual

Figure 4.1a Local mesh with centreid and me-
dian duals.

Figure 4.1b Global shape function for vertex v
(not labeled).

The Galerkin finite-element method assumes
that the class of test funciions is identical to the
class of functions approzimating the zolution. The
simplest test functions of this sort are the in-
dividual shape functions. To obtain a Galerkin
discretization for a typical vertex vj, simply set
¢* = N; and evaluate (4.0) in ;. Since ¢ van-
ishes on 9Q2; equation (4.0) simpliﬁes to the fol-
lowing form:

at qS" hda- / Voh - F(z*) d
(4.1)
=_/ Vet . V2 da

i

Before evaluating equation (4.1), it is useful to
introduce more notation concerning the geometry
of figure 4.1a. Figure 4.2 depicts the index and
normal convention which will be used throughout
these notes. The triangle with vertices 0, ¢, and
i+ 1 is denoted as T;y /4 This index convention
will be used for other quantities such as areas and
gradients which are computed in T}y, /2

i+l

i-1

Figure 4.2 Veriex vy and adjacent neighbors.

It is convenient to define normals, i, for straight
edges which are scaled by the length of the edge.
Using this notation, a simple formula exists for
the gradient of the numerical solution in a triangle
Tiv1/2-
V’*:+|/2 = A =1 (zgﬁi+l/2 + iy - Z:‘-Hﬁi)
(4.2)
The gradient of the test function in each trian-
gle takes a similar form (replace z by ¢ in the
previous formula with ¢ = 1,¢; = 0, ¢4 = 0).

i+1/2

-1
V¢, = ——n; .
dig1/2 2ir1re Niy1/2 (4.3)
The discrete form of cqn. (4.0) is now written as
d(vo)
a /‘ Mgy )
— ¢z da+ . F Zl) da
ot Qy y 24;, +1/2 Tc-n/z(
d(vo) +l/2
n; h
= . nvz" da
Z 2‘4"“/2 ‘/7;'-41/:

(4.4)
The flux integral can be evaluated by exact inte-
gration (wken possible) or numerical quadrature.
In this case, the latter is assumed.

R da= SR Bl 1 B+ FGR)

t+l/2
(4.5)
The diffusion term is also evalnated with Vz"
constant in T;yy/2 and Ji;4/, the arca weighted
average p.

l -
Jr w2z da = Ay Big12Velhye  (46)

i+1/2
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‘This simplifies (4.0) considerably.

d n
& Qj¢z da

di

~
o
~—

U

J

(=21 R

g2 (F(20) + FED + F(2l))

+

...
]
b

-9
—_—

2
]
-

- " h
Pipry2 Migry2 - Virez

o] =

i=1

(4.7)
Equation (4.7) represents a Galerkin discretiza-
tion of the model equation assuming piecewise
linear functions. Note that as far as the geom-
etry is concerned, only the exterior normals of
?; appear. Conspicuously absent are the normal
vectors for interior edges. This strengthens our
confidence that we can show an equivalence with
a finite-volume discretization on nenoverlepping
control volumes. To show this equivalence, note
that the flux term can be manipulated using the
identity E:-l_(_‘__"f) fiit1/2 = 0 into a form in which
the relevant geometry is any path connecting ad-
jacent triangle centroids (R denotes the spatial
position vecior):

d("o)l
> gitieryz s (F2) + (o) + Flzin)

i=1

d(vo) 1

=) % (F(z0) + F(2!) - (Rigryz + Bisyy2)
a(vo) 1 Ris

=Y = (Fiz§) +F(M)- / ndl
i=1 6 SR,
d(vo) 1 . L(Ro+R+Ri1)

=Y 5 (P + R [ n di
i=1 2 H{Ro+R+R_y)

(4.8)

The diffusion term also simplifies using this iden-
tity.

d( Uo)

l e —
Z §“i+1/2 . Ili+1/2vi+1/22h
=1
d(vo) HRo+Rijy)
= Z Fiyr/aVisr/22" / ndl
i=1 *(Ro-i-R.')
(4.9)

To obtain a single consistent path for the inte-
grations appearing in equations(4.8) and (4.9) re-
quires that the path pass through the centroid
of each triangle and the mid-side of each inte-
rior edge. The path formed by connecting these
points by line segments is preciscly the median
dual of the mesh. This dual completely covers
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the domain (no holes) and represents a consis-
tert and conservative finite-volume discretization
of the domain which is spatially equivalent to the
Galerkin approximation. The scheme can now be
written in a finite-volume form

d(vo)
%¢"z" dat+ Y (H-i);=0  (4.10)

=1

where H is the numerical flux of the finite-volume
discretization

R 1 A i n"i+|/2
(H - i); =—2-(F(zc)+F(z,- ))-/ ndl
R'!
=1/3
= Bic12Vici 2" / ndl!
i-1/3
R,
= Tigr o Virip?" /n Y ai
' (4.11)
and R}, /2 is the centroid of Tiyyj2, Ri,, 2 =

1(Ro + R; 4+ Ri41) and R}" is the midpoint of
the edge e(vo, v;), R = %(Ro + R;).

Conclusion: The spatial discretization produced
by the Galerkin finite-clement scheme with lin-
car clements has an equivalent finite-volume dis-

cretizetion on nonoverlapping control volumnes wiih

bounding curves which pass through the centroid
of triangles and midside of edges. One such set
of control volumes satisfying these constraints is
the median dual.

We now need to ask if the time integrals pro-
duce identical “mass” matrices for the Galerkin
finite-element and finite-volume schemes. The
answer to this question is no. In fact, these ma-
trices are not the same in one space dimnension.
The Galerkin mass matrix for a simple 1-D mesh
with uniform spacing produces a row of the mass
matrix with the following weights:

¢] o 1
&A d)hzhd:l:: 0—tA:L‘-‘(Zj_1 +4Z_,'+ZJ‘+1)
J

6

(Finite — Element)

The finite volume scheme on “median” dual pro-
duces the following weights:

J a . 1
-é? o, Zhd:l? = E?A.'L‘g(z_,'_l +GZJ' + Z_,‘+1)

(Finite — Volune)
Although the finite-volume matrix gives better
temporal stability, the finite-element mass matrix
is more accurate,
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4.3 Edge Formulag

The first terin appearing on the rigat-hand-
side of equation (4.10)

R 1/
J @) + Ry [ Ral
i—-1/2

suggests a cornputer implementation using an edge
data structure. The fluxes in this term are eval-
uated at the two endpoints of an edge. The geo-
metrical terms could be evaluated edgewise if the
midpoint of the edge and the centreids of the two
adjacent cells are known. Recall that the edge
data structure (described in section 1.3) for a 2-
D mesh supplies this information for each interior
edge of the mesh, i.e. the structure provides for
each edge

(1) The two vertices which form the edge.

(2) The two adjacent cell centroids (or a pointer
to centroid values) which share the edge.

More generally, if the solution is assumed to vary
linearly within each triangle then cdge formulas
can be derived for discretize) forms of the gra-
dient, divergence, Hessian, and Laplacian oper-
ators. As we will see, the fortnulas can be de-
rived from either a finite-volume or finite-clement.
point-of-view with essentially identical results,

4.3a Gradient and Divergence Edge Forinulas

As a first exampie, we will derive an edge
formula for the integral averaged gradient of a
function u, f Vu da, for the the region Qg de-
scribed by the union of all triangles which share
the vertex vg, see figure 4.1a. If the discrete solu-
tion u* varies linearly in each triangle 7' then the
gradient is constant and the integration exact.

Vu" da = Vul)p A 4.12
/Qo S (Vutypdr  (4.12)

TSR

Equation (4.12) would suggest computing the gra-
dient in each triangle sharing vy and accumulat-
ing the area weighted sum. If jutegral averaged
gradients are required at all vertices then the gra-
dient in each triangle could be computed and the
arca weighted result scattered to the three ver
tices of the triangle for accumulation. We re-
fer to this as the element-by-element approach.
A Green’'s formula would suggest a diflerent ap-
proach for the same task.

Vuda= f undl (4.13)
Qo [

Identical results are obtained by approximating
the right-hand-side of (4.13) by trapezoidal quadra-
ture (exact for piccewise lincar uh)

1 o
f uPndl =Z E(uf‘ + u:'H)n,-“/z (4.14)
INo i€T,

where Ty = {1,2,...,6} and ii;4,,, is the vector
perpendicular to the edge e(v;, vi4) with magni-
tude equal to the length of the edge. The sum-
mation can be rearranged to yield

1 g g
f uh ndl = E §u£'(n,-+,/2+n,~_1/2). (4.15)
9 i€To

A constant solution can be added to (4.15) since
the gradient of a constant function is exactly zero
in this discretization. In particular, we add the
value of u* at vertex vq.

1 -~ -
f ul' n dl = E '2'(11(’; + ’U-?)(n.‘.*_l/g + r!,'._l/z)
P19 1N

welp
(4.18)
Once again using the fact that for any closed
curve §n d! = §dii = 0 which implies that
Vit
LFFRYLIN o | TR =/ " dn
Vit
for any path connecting »;_; and v;4,. This path
integral represents a vector which is parallel in di-
rection and three times the magnitude of the vec-
tor il obtained by computing the integral for any
simple path connecting the centroids of the two
triangles which share the edge e(vo, v;). [, :"*“ dii =
3[:"' . dii = 3iiy;. This reduces the gradient for-
mula to the following form:
8 -~
% utn dl = S‘ (ul + ul )iig; (4.17)
o 2

The vertex lumped average gradient at vertex is
then given by

3 Lon | by
(V') = - Z —(ug + u )mg;.  (4.18)
Aq, b 2

It is well known that the region bounded by the
“median” dual at vertex vy, (shown in figure 4.1a)
has an arca Ag which is exactly %AQ,,. Therefore,
using the median dual we obtain a formula which
appears to represent some approXimate quadra-
ture of the right-hand-side of (4.13) on nonover-
lapping regions.

1 1 -
(Vuh)lJo = X(; Z E(ug + uf‘)no.- (4.19)
€T,
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A naive interpretation of cquation (4.19) would
probably conclude that this equation is a rather
poor approximation to (4.13). It is not obvious
from (4.19) that the gradient of a lincar func-
tion u is computed exactly. From the origin of
this formula, we now know that this formula can
be obtained from a trapezoidal quadrature on a
slightly larger region and is exact within the class
of linear polynomials.

Keep in mind that a constant solution could
have been subtracted instead of added from equa-
tion (4.15) which would have given a different but
cquivalent form of (4.19).

(Vauh),, = —‘;— ;(u'~I - ul)itg; (4.20)
lGIo

This formula does not appear to resemble any
approximate quadrature of (4.13).

Equation (4.19) suggests an algorithm using
an edge data structure which is quite different
from the element-by-element method (4.12). ‘The

edge-based calculation consists of the following
steps:

Sample Gradient Computation

(1) (Precomputation) For cach edge e(v;, v;) gather

the centroid coordinates of the tv-o adjacent cells,
v and .

(2) (Precomputation) For each edge compute the
dual edge normal ii;; from the centroid coordi-

+
. ~ v, 4 N ~ .
nates n;; = f,.( dn.  (Orient from »; to v if
i< j).
3) For each edge e{v;, v;) gather the values of the
B nhv;) e
fmu tion at the two vertices, u" aud u'—'.

(4) For each edge compute the arithmetic average
and multiply by the dual edge vormal, 2(11,

w;)n;;.
(5) For each edge scatter and accumulate the re-
sult at vertex v;.

(6) For each edge negate, scatter and accumulate
the same vesult at vertex v;.

(7) For each vertex compute the final gradient by
dividing the accumulated result by area of the
median dual, Aq.

This algorithm conforms perfectly within the edge
data structure. In prictice all the geometrical fac-
tors could be precomputed and stored in memory
by edge thereby eliminating a gather. ‘The sample
algorithm described above serves as a template
for all the remaining algorithms described in the
rest of this section.
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The gradient and divergence operators are
related so that it is not surprising that the dis-
cretization of the dwergence operator produces a
similar formula:

. 3 - .
/n o div(Fh)do =) §(F3 +Fh - fp  (4.21)

i€7o

The Galerkin weighted finite element integrals with
linear elements produce essentially identical re-
sults. In this case a piccewise lincar weighting
function ¢* is introduced (sce figure 4.1b). The
gradient and divergence formulas (introduced ear-
lier)

¢" Vulda = Z %(u:,' + u:-')ﬁo.- (4.22)
Qo i€,

/ 4)"dw(F")da_Z (P +F") Ro; (4.23)

ltzo

differ from the picvious formulas by a coustant
factor of 1/3. For example, if a lumped approxi-
mation to the left-hand-side of (4.22) is assumed,
then (4.19) is recovered since

MVuhde = (Vut),, Ao. (4.24)
Qn

4.3b_2-D Hessian and Laplacian Edge Formulas

We begin by approximating the following ma-
trix of second derivatives

N — (1), (/‘"y\r .
Vu(Vu)' = (itte)y ("_"ysy] (4.25)

using a standard Galerkin approximation for the
region Yy formed from the union of all triangles
that share the vertex vp. To do so, multiply (4.25)
by the weight function ¢ and perform integration
by parts over Qp assuming ¢ == 0 on 9Qy.

¢V (V) da = -/) 1(V¢) (Vu)T da

-y f 1(V6) (V)T da

ieT, ""’/2
(4.26)
where Tiyyyy = simplex(vo, vi,vi41). Using the
notation of figure 4.2, gradients of the piecewise
linear functions ¢* (figure 4.1b) and u* are

{lo

1

My, = e
(V¢ )r.‘+1/z 2A.'+1/2

Riy1/2 (4.27)
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and
(V(l")']‘ =——_-l--(u"ﬁ- +ul il -l i)
172 2A£+l/2 01i4-1/2 i g SR LY
(4.28)
where Ay, is the area of Tiyy/p and By

is the vector normal to the edge e(v;,viy;) with
magnitude equal to the length of the edge.

For piecewise lincar u”, the gradient is con-
stant in each triangle. ‘T'he integral average ma-
trix of second derivatives simplifies to the follow-
ing form:

MV u(Vur da
Ja,
hT
= n..H/_/ #(Vue')'da
§2A ’rn-f-l/'.l
=D 2A

ll.+1/o(V“ )7 *,/7/!.llla

i€ly Tt
l+l/2 e d
—Z n.“/z(Vu )1.'“/‘
€T,

(4.29)
where 1, ., is the integral average of gt in iy /2
Inserting the triangle gradient formula, we obtain
a discretized formula for the Galerkin integral.

/ "V u(Vu)" da
Qo

1 "‘x-}-l/.

=

4 ieT, “&H-l/"

n,+,/>(uan,+,/.,
+ uf' l’i}l_; - uf‘“ fil )
(4.30)

Regrouping terms and removal of a constant. so-
lution yields the following stmplified form

/ MY (VT da = Vu(V" —utN” da
$lo Qo

= Z M(u? — ult)

i€T,
(4.31)
with
1[5
A/I'- - —_-— [’__+_l../_.). .+l/,)(“'_. l)
‘1 .“l"+1/- "
— . (4.32)
_ l‘.'—l_/'zﬁ‘ ()"
A.‘_.l/z R VPRI

Even though this formula is very simple, it is
not compatible with the edge data structure men-
tioned earlicr. Using some simple identities, we
will now rewrite thz weight formula in a form
which is compatible with the edge data structure,

il i+1

Figure 4.3 Local geometry configuration.

Referring to figure 4.3, we have the following vec-
tor identities:

. aw 1. . " 1,
Di—y2 = dnp, ~ 5!].’, Ni—y =3y, + i

14.33)
and similarly
~ - 1 e g -y 1 -
Wipyp2 = 30, + §n,~, N4 = =3y, + =n,.
(4.34)

It is useful to decompose the tensor product terms
into symmetric and skew-symmetric parts, for ex-
ample:
g - T ~ 7 -
~f_yyo(fijny) = (51 ,n - ()nnnn)
Nm——— ———

Symmetric

-

&

+ ;(ﬁ;ﬁ};-— fipii))

, v
Skew=symmeltric

and

....|._-

ﬁi}-l,’2(ﬁi+l)) =( n; 7 - Oni Iﬁ;,)

Symactric

(ind - il

Skew—symmetric

+

SR

Upon dividing by the area terms, sowmne simple
algebra reveals that

n;_ 1/2(5-'-1)7‘

_ (Qﬁniﬁlln‘.. - %ﬁiﬁ;‘r)_’_[ 0 1]

Ai-y/2 Aici/e -
(4.35)
and similarly
figro(ii)? (] - 90,67, )+[ l]
Aitr2 Aivr12 -1 0}

(4.56)




! So in suminary we have that
L[ figrya N
Mi= —~ ["'—‘_ni+l/2(“n‘+l)
i+1/2
Hicyye . o
- '_‘_"/_'nl—l/z(“i-l)
i—1/x

o - -:I [l‘“-l/'.’. . . (4.37)

: AT l’l‘i.ﬁ,l - gﬁu'lln

i I'—l/“ A.‘..]/)

‘ — - 0 1

: F(Hig 12 — Fizyy2) [_1 0”
Jd

The second form is compatible with an edge data
structure where edge vertices and adjaceni ccll
centroids are known.

4.3¢ 2-D Edpe Discretization of ¥V - uVu

Calculation of this term amounts te swu-
ming diagonal entrics of the previous result. Can-
cellatinn of terms leaves a reduced forn.

St rarars

SV uVu" da ::'Imce/ & (vt da

. A Qo Qo
?
: = Z Wil — ult)
, 1€71y
; (4.38)
11 g0 fig
W=~ [,,.._H/Z-'__/___'__
1L A
LT, (1.39)
b Ni_1/2 Njy
s gy fy m—————
. iy 2 Al‘--l/z
‘The area of a triangle can be expressed in termis of
e the magnitude of the cross product of the scaled
edge normals.
1, -
Avypr = iy 172 X By |
1 hd g
A= ;;|“i-l/2 X Hi—y]
!
i K 11 (Aigr/ - Wig)
! Wi = ~3 [I‘i+1/2 TN
H . |nl+l/2 X Big]
. i " " (4.40)
: ; 7 (i—1/2 - Bi1) ]
z j TR ETTTT T
¥ H =1 |y po X Ricy
%
! .
!’ Fiually we can express the dot and cross products

in terims of the local angles as sketched in figure
4.4.
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i-i

Figure 4.4 Local angles for triangles sharing edge
e(vy, v;).

fd g
Dy o Mgy cos (ay,,)

W2 X iga] —  sinfog,) ~eotan{ar, )
(4.41)
and
= _':ii-l/z . ﬁ_f—l - “Cf)s(a‘n..‘) - -—(‘ot.:l.n((.\'n.)
iRy x Wi sin (v g,) :
(4.42)

Inserting these formulas yields a particularly simn-
ple form of the weight factors W

Wi = = |Tijy1 pc0tan(ay,) + Tt,-_l/gcotan(o‘u..)]

(4.43)
Equatiun (4.43) is particularly useful in theoreti-
cal studies.

PO b

4.3d 3-D Hessian and Laplacian Edge Formulas

Asin the 2-D case, we begin with the Galerkin
integral equation for the Hessian-like matrix of
derivatives,

/tﬁ"V/t(Vu")T dv = -‘/“(V‘p") (Vu)" dv
A [‘ l\

In this formula - is the volume formed by the
union of all tetraheara that share vertex vy. Fol-
lowing a procedure identical to the 2-D case, we
can derive the analogous 3-D edge formula for the
matrix of second derivatives

/ "V (VM dy = 2 Mi(ui — o) (4.44)
Yrq i€,
where

d(ve,v;) —
Leg1/2 ., -y T

8. ) . 4.45
Verir k+1/2(8k41p2)”  (4.45)

1
Mi=~3

k=1

w0 [T I
PRI -
-
—
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Ty 1s the set of indices of all adjacent neighbors of
vp connected by incident edges, & a local eyclicin-
dex describing the associated vertices which form
a polygon of degree d(vg, v;) surrounding the edge
¢(vg, #5). The subscript & 4 1/2 indicates quanti-
ties associated with the tetrahedron with vertices
Vo, Uy, Uk and vgq1 as shown in figure 4.5,

Figure 4.5 Sct of tetrahedra sharing edge e(vg, vy)
with local cyclic index &,

4.3e 3-D Edge Discretization of ¥V - 4Vu

Following the same procedure as in 2-D, we
obtain:

f \,-')" v ,'.'Vh‘h dv = Trace / q:"\",un"_ de
Vo

Vo
= Z Wi(1u; — )

t€ly

(+4.46)

where
1 d(vo,v;) _k+]/2
= o g o S e (e
Vi 9 Vi1 Sirrfz 8pip (447)

k=1

It can be shown that the volume of a tetrahedron
is given by

V. 2 l§k+112xgk+1/2|
0 = —
MUl AR 4121

(4.48)

where |AR4 2| is the length of the edge shared
by the fices associated wiih §;4 /2 and 8}, /2

1 d("o'”-)

Skr1/2  Spyy)2
W; = Fia 2|ARA+1 2|“’“"—-—-——
y o / I8 +l/2xsk+l/z|

(4.49)

Finally we can rewrite the dot and cross product
in terms of the cotangent of the face angle.

Str1/2 * Shepr sz ¢os (k1 /2)
|§k+|/2 xg’k-.‘l/?' Sill (Q[\-+1/2)
= = cotan(ceiqy/2)

As in the 2-D case, the weights W; now have a
particularly simple form:

1 d(ve.v;)
W = 5 ; Fpg1 2| A Rigy o] cotan(ong y g2)

(4.50)

4.4 Godunov Finite-Volume Schemes

In this section, we consider upwind algorithms
for scalar hyperbolic equations. In particular,
we concentrate on upwind schemes based on Go-
dunov’s method [34] and defer the discussion of
“upwind”™ schemes based on the fluctuation de-
composition method or the Petrov-Galerkin for-
mulation (SUPG, GLS) to the lectures of Profs.
Deconinck, Hughes, and Johuson.

The development presented here follows many
of the ideas developed previously for structured
meshes,  For example, in the extension of Go-
dunov's scheme to second order accuracy in one
space dimension, van Leer {35 developed an ad-
vection scheme based on the « - ivirtion of dis-
continuous piecewise linear .. * "aitions together
with Lagrangian hydrodyras. '« Soon thereafter,
Colella and Woodward |, dward and
Colella [37] further extenas e ideas to in-
clude discontinuous piccewi: ¢ varabolic approx-
imations with Eulerian or Lagrangian hydrody-
namics.  Harten et. al. [38,39] later extended
related schemes to arbitrary order and elarvified
the entire process. These techniques have heen
applied to structured meshes in multiple space di-
mensions by applying one-dimensional-like schemes
along individual coordinate lines. This has proven
to be a highly successful approximation but does
not directly extend to unstructured meshes, In
reference [40], we proposed a scheme for multi-
dimensional reconstruction on unstructured meshes
using discontinucus piecewise linear distributions
of the solution in cach control volume. Mono-
tonicity of the reconstruction was enforced using
a2 limiting procedure similar to that proposed by
van Leer [35) for structured grids. In a later pa-
per (Barth and Frederickson {41)). we developed
nunerical schemes for unstructured meshes utiliz-
ing a reconstruction algorithm of arbitrary ueasr.
Portions of the discussion presented here is taken
from these papers.
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4 4a Generalized Godunov Schame

We begin by considering the integral con-
servation law for some dotnain,  and its tes-
sellation T(2) comprised of cells, ¢j, € = Uc;,
cx(iej == B,k # 7. The integral equation is valid
for the entire domain Q as well as in cach cell (or
possibly dual cell):

d
— / uda -+ F(u) ndl =0 (4.51a)
()f v, OC,

Fundamental to Godunov’s method is the cell av-
erage of the solution, @, in each cell.

/ uda=1A;
LT o

)

In Godunov's method and the higher order ac-
curate extension consié red here, these cell av-
crages are treated as the fundamental wnknowns
(degrees of freedom).

Z’%(TZJ‘AJ) + F(u) ndl=0 (4.510)

e,

The solution algorithm for (4.51b) is a relatively
standard procedure for extensions of Godunov's
scheme in Bulerian coordinates [34-39). The ba-
sic idea is to start with piccewise constant data in
cach cell with value equal to the integral cell aver-
age, Using information from cell averages, k — th
order piccewise polynomials are reconstructed:

“k(-l‘v U) = E Q(m.n)})(m.n)(f —= Lo Y Ye)
m+n<k

(4.53)
where Poyny (e~ 2o,y =ye) = (0 =)™ (g~ )"
and (e, Y. ) is the cell centroid. The process of
teconstruction amounts to finding the polynomial
cocflicients, aq,, ). Near steep gradicnts and dis-
continuiues, these polynomial coeflicients maybe
altered based on monotonicity arguments. Be
cause the reconstructed polynomials vary discon-
tinwously from cell to cell, a unique value of the
solution does not exist at cell interfaces. This
nonuniqueness is resolved via exact or approxi-
mate solutions of the Riemann problem. In prac-
tice, tis is accomplished by supplanting the true
flux function in (4.51) with a numerical flux func-
tion (described below) which produces a single
unique flux given two solution states. Once the
flux integral in (4.51) is carried out (ecither ex-
acily or by numerical quadrature), the cell aver-
age of the solution can be evolved in time. In
most cases, standard techniques for integrating
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ODE cquations are used for the time evolution,
i.e. Buler implicit, Euler explicit, Runge-Kutta.
‘The result of the evolution process is a new col-
fection of cell averages. The process ean then be
repeated. The process can be smmmarized in the
following steps:

(1) Reconstruction in Bach Cell: Given inte-
gral cell averages in all cells, reconstruct piecewise
jolynomial coefficients vy, ») for nse in equa-
tion (4.51). Fov solutions containing disconti-
nuities and/or steep gradients, monotonicity en-
forcement may be required.

(2) Flux Evaluation on Each Edge: Consider
sach cell boundary, ¢;, to be a collection of edges
(or dunl edges) from the mesh, Along cach edge
(or dual edge), perform a high order accurate flux
quadrature,

(3) Evolution in Each Cell: Collect flux con-
tributions in cach cell and evolve in time using
any time stepping scheme, i.c., Buler eaplicit, Bu-
ler implicit, Runge-Kutta, ete. The result of this
process is once again cell averages,

By far, the most diflficult of these steps is
the polynomial reconstruction given cell averages.
In the following paragraphs, we describe design
criteria for a general reconstiuction operator.

Reconstruction

The reconstruction operator serves as  finite-
ditnensional (possibly psendo) inverse of the cell-
averaging operator A whose j-th component A
computes the ceil average of the soliation ia ¢,

u(x, y)de (4.54)

1
T'J = A,‘ll I,
a; Je,

In addition, we place the following additional re-
(uirements:

(1) Conservation of the mean: Simply stated,
given cell averages U, we require that all poly-
nomial reconstructions ¥ have the correct cell
average.

it of =R'T then W= Au*

This means that R¥ is a right inverse of the av-
craging operator A.

ARY = (4.55)
Conservation of the mean has an important impli-

cation. Unlike finite-clement schemes, Godunov
schemes have a diagonal mass matrix.
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(2) k-exactness: We say that a reconstruction
operator RY js k-exact if BYA reconstructs poly-
nomials of degree & or less exactly,

it vw& P oand W= Au, then u® = R¥ = u

In other words, RY is a left-inverse of A restricted
to the space of polynomials of degree at most k.,

RYA| =1 (4.96)

R

Thix insures that exact solutions contained in Py
arc in fact solutions of the discrete equations. For
sufficiently simooth solutions, the property of A-
oxactness also kssures that when piecewise poly-
nomials are evaluated at cell boundaries, the dif-
ference hetween solution states diminishes with
increasing & at a tate proportional to A+ were
I is o maximum diameter of the two cells. Figure
1.0a shows a global (uartic polynomial v € Py
which has been averaged in each jnterval,

= ——

N

e e e < = g
i g
\ -
S

Figure 4.6 Cell averaging of quartic pnlyno-
mial.

Figure 4.6b shows a4 quadratic reconstruction «% <
Py given the cell averages. Clase ipsper tion of
figure 4.Ch reveals small junips in the piecewise
polynomials at intesval boundaries. These junips
would decrease even more for cubics and vanish
altogether for quartic reconstruction.  Property
(1) requives that the area under each piecewise
polynomial is exactly equal to the cell average.

i

Figuve 4.6b Piccewise quadratic reconstruction.

Flux Fvaluation

The task here is to evaluate the flux integral
appearing in (4.51).

F(u) -undl
. 3(‘)

At coll interfaces, two distinet values of the so-
lution can be obtained anywhere on the bound-
ary of the control volume by direct evaluation of
the piccewise polynomials in the two cells shaving
the interfuce. For brevity, the states will be de-
noted by ut and u= which should be interpreted
as (uF)t and (%)~ where 4 refers to which piece-
wise polynomial was used in the evaluation. Rather
than use a numetical flux function derived from
the exact solution of the Ricmann problem, we
prefer numerizal flux functions based on mean
value Hupearizations As we will see, this acty
allv makes certain stability proofs much clearer.
Define f(u,n) = P(u) -n and a(u.n) = f(u,n),
the mean value flux function is given by

—

h( u T mn) = 5 (f(“-& n) ok flur, n))
—-%Ia((t,n)l (at ~u7)

wiere f(ut) - f(u”) = a(w.n)(u* - u~) and
it = Bu”™ 4 (1 ~8)ut for some 0 € [0, 1]. Using the
numerical flux function, we approximate (4.57) by

/ hWut w”,n)dl
de

In practice, this flux integral is never evaluated
exactly, except when the data is piecewise con-
stant. When piccewise linear functions are used, a
midpoint quadrature formula is uswally cimployed.
This is used rather than the slightly more accu-
rate trapezoidal quadrature because it requires
only one flux evaluation per edge segment while

i
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the trapezoidal quadrature requires two. When
considering schemes with recoustruction order &
greater than one, we suggest in [41] that Gauss
quatlrature fortnulag be used. Reeall that N point,
Gauss quadrature founulas integrate 2N -1 poly-
nominls exactly, These guadeature formulas pive
the highest accuracy for the lowest number of
function evaluations. For the k-exact reconstrucs
tion discussed below, N > (k4 1)/2 point. Gauss
gradrature formulas nre used.

4,5 l-exact Reconstruction

In this section, a briet acconnt is given of
the reconstruction scheme presented in Barth and
Frederickson [41) for arbitrary order reconstruc-
tiow. Upon first inspection, the use of high order
reconstruction appears to be an expensive propo-
sition. The present reconstruction strategy opti-
nizes the efliciency of the reconstruction by pre-
computing as a one time preprocessing step the
sot of weights W in each cell ¢, with neighbor
set A%, such that

~———

a TR, (:1.59)

{m.n) =

AW
(€N

where gy, ) are the polynomial coeflicients, This
offectively reduces the problem of reconstruction
to muitiplication of predeterinined weights and
cell averages to obtain polynomial coeflicients.
During the preprocessing to obtain the re-
construction weights Wy a coordinate system with
origin at the centroid of ¢; is assumed to min-

imivze roundofl orrors

~ To insure that the recon.
straction s invariant to afline transformations, we
then tempornrily transform (rotate and scale) to
another coordinate svstem (7, 7) which is normal-
ized to the el ¢,

)= v (7]

y Doy Doy lu

with the matrix D is chosen so that
AT = A7) =1
Aj(EH) = A,(FT) =0

Polyuomials on ¢, ave temporarnily represented
> N '). . ’ *
using the polynomial basis functions
33 U ¢ S} B ¥
P={1,00.300 F .

Note that polynomials in this systenn are easily
transformed to tne standard cell-centroid basis

i) =1}

™y =

Z(I")(ﬂ) l)"'-—‘l)-) II)" 1 H l”m-e-n—.\-v-l
N t

stk

-

Since 0 S skt <hand0<m4yn—-s—1 <k, we
Citll rcordcr mul rewrite in tmmh of the h(.u.udard
and transformed basiy polynomials

(’" n) = }Ml ('m i s,

attgh

(4.60)

Satisfaction of conservation of the mean is guar-
anteed by introducing into the transformed coor-
dinate system zero mean basis polynomials ™ i
which all but the first have zevo cell average, i

= [LF7F - LTR 7 - LT - A4,(), ...
Ne - that usiug these polynomials requires a mi-
nor wodification of (4,60) but retains the sane
form:

= b} —r;\‘ [

p(-u.n) = ’m "P(
stk

(-+.61)

Given this preparatory work, we are now ready
to describe the formulation of the reconstruction
algorithm,

Mounnon Inergy. (Least-Squares ) Reconstruction

We note that the set of cell neighbors A,
wwst contain at least (& + 1)(1\ +2)/2 cells ¢, if
the reconstrnction operator R.)-' is to be k-exact,
That (&« 1)(k -+ 2)/2 cells is not sutticient in all
sitaations is easily observed. I, for example, the
coll-centers all lie on a single straight line one can
find a linear function u such that A, (x) = 0 for
every cell ¢;, which means that reconstruction of
u is impossible. In other cases a k-exact recon-
straction oporater nk miay exiat, hut due to the
geometry may be poorly conditioned.

Our approach is to work with a slightly larger
support containing more thau the minimum mun-
ber of cells. In this case the operator R.j' is likely
to be nonunique, beeause varjous subsets would
be able to support reconstruction operators of de-
gree ko Although all would reproduce a polyno-
mial of degree & exactly, if we disregand round-
off, they would ditfer in their trentment of non-
polynomials, or of polynomials of degree highey
than A, Any k-exact reconstruction operator Rf
is a weighted average of these basic ones. Qur ap
proact is to choose the oue of minimun Frobenius
norm. This operator isoptimal, in a certain sense,
when the function we are reconstrueting is not ex-
actly a polynomial of degree k, but one that has
heen perturbed by the addition of Gaussian noise,
for it minimizes the expected deviation from the
unperturbed polynomial in a certain rather nat-
ural nogm,

As we begin the formulation of the recon-
struction preprocessing algorithm, the reader is
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teminded that the task at hand is to calculate the
weights W, for each cell ¢; which when applied
via (4.59) produce piecewise polynomial approx-
imations. We begin by first rewriting the piece-
wise polynomial (4.53) for cell c; in terms of the
reconstruction weights (4.59)

uk(a:,y)= z I’(m,n) Z W(m,n)iﬁl'

m+n<k iENc,.

or equivalently

“k(m.‘y)= Zﬁi Z W(m,n)i})(m,n)
feNe;  mingk

Polynomials of degree k or less are equivalently
represented in the transformed coordinate system
using zero mean polynomials

. — 0
uk(x’ y) = Z u; Z W(,nl,n)ip(m,n) (462)
iGch m4-n<k

Using (4.61), we can relate weights in the trans-
formed system to weights in the original system

—=st ’
Z Gm.n“,(m,u),i
m4n<k

“/(S,()i = (‘1.63)

We satisfy k-exactness by requiring that (4.62) is
satisfied for all linear combinations of I—"(’J',;(m, y)
such that s + ¢ < k. In particular, if u*(z,y) =
T’J(JSI,)(:B, y) for some s + ¢ < k then

0 —0 —0
Pay®y) =D Pl Z Wimn)idi(P(s 1))
m4n<k iGNc’.

This is satisfied if for all s4-t,m+n <k

-0
Z W(’m,n)i“ll'(P(s,t)) = 5?)::.
"GNC"

Transforming basis polynomials back to the orig-
inal coordinate system we have

of N UL N .
Z ('vn..n)i L Gs,t Ai(P(uyv)) = 6:1:11
ie.Af,,. udv<k
(4.64)
This can be locally rewritten in matrix formn as

W_’,A; =1 (4.65a)
and transformed in terms of the standard basis
weights via

W; = GW/, (4.65)

Note that W is a (k + 1)(k +2)/2 by A; matrix
and A has dimensions Afj by (k + 1)(k + 2),/2.
To solve (4.65a) in the optimum sense described
above, an L;Q; decomposition of A’ is performed
where the orthogonal matrix Q; and the lower tri-
angular matrix L; have been constructed using a
modified Gram-Schmidt algorithm (or a sequence
of Householder reflections). The weights W, are
then given by

3 Pk

Wj = Q;L;

Applying (4.63) these weights are transformed to
the standard centroid basis and the preprocessing
step is complete,

We now show a few results presented earlier
in reference [41]. The first calculation involves the
reconstruction of a sixth order puvlynomial with
random normalized coefficients which has been
cell averaged onto a random mesh. Figures 4.7a-
b show a sample mesh and the absolute L, error
of the reconstruction for various meshes and re-
construction degree.

10 j

L2 error

16 12 3 4 5
Degree K of Reconstruction

Figure 4.7b L, error of reconstruction.
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The reconstruction algorithm has also been
tested on more realistic problems. Figures 4.8a-
c show a mesh and reconstructions (linear and
quadratic) of a cell averaged density field corre-
sponding to a Ringleb flow, an cxact hodograph
solution of the gasdynamic equations, sce [42].

Ve
"
///7/////; /
Wi

Figure 4.8b Pieccwise linear reconstruction of
Ringleb flow.

/

The reader should note that the use of piecewise
contours gives a crude visual critique as to how
well the solution is represented by the piecewise
polynomials. The improvement from linear to
quadratic is dramatic in the case of Ringleb flow.
A later sectiun will show actual numerical solu-
tious computed using this reconstruction opera-
tor.

i

6~

Figure 4.8¢ Piecewise quadratic reconstruction

of Ringleb flow.

4.6 Upwind Advection Scheme with k=0
Reconstruction

This is the simplest (first order) approxima-
tion in which the polynomial behavior in each cell,
cj, is a constant value equal to the cell average.

uk=0(3;’y) = U for u* € ¢y (466)

The flux formula then simplifics to the follow-
ing form (for clarity T; is Jocally numbered @,
as shown in figure 4.1a)

Al

h(u*',u",ﬁ),- == h(%;, Wy, Ai)
1 — fnd Fied -
=5 (F(@, i) + f(@, 1)) (4.67)

1 = =
—-ila(u,', n;)|(w ~ o)

. - R,/ .
In this forimla, fi; = f¢,"*'/* for any simple path.
-1

By summing over all edges of the control volutne,
the entire scheme for ¢; is written

d{c;)
a 7! 1, g — -
52/::,- o da-+ ; E(f(uo,n,) + f(u;, 1))
d(c;)
5 b il - 50y =0
=1

(4.68)
It is not difficult to prove stability and monotonic-
ity of this scheme.
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Monotonicity and Stability

Recall that the Aux function was constructed
from a mean value linearization such that

f(us, 8;) = fug, i) = a(ii;, ;) (u; — uo) (4.69)

with @t; = Qup+(1—0)u;, 8 € [C, 1]. This permits
regrouping terms into the following form:

P dic;)

5;/; Toda + ‘2_1 J g, 1)
d(¢;) 1

+ Z = (a{i;, 8;) — |a(t;, 1)) (@i ~ o) =0
i=]

(4.70)
For any closed control volume, we have that

d(c;)

Z f(@g,1i;) ==

Combining the remaining terms yields a final form
for analysis {(a = a* +a7,|a} =at - a”):

d(¢;)
a )
52/; uoda+z a(@;,0;) (W —%p) =0 (4.71)

i=1

To verify the monotonicity of the scheme ai steady
sta.e, set the time term to zero and solve for .

d - d(¢;)
[¢ (C, "K’l‘, nj) 1:. )

Uy = i=l e Z oGl (472)

Zﬂd(cl) a{ii;, )" i=1

All weights «v; are positive and sum to unity. The
scheme is monotone since 7 is a positive weighted
average of all neighbors. This implies a mazimum
principle since Ty is bounded from above and be-
low by the maximum and minimum of neighbo:-
ing values (and itself), Tpez and Wpnin-

~

Upin < S Uynaz

(4.73)

For explicit time stepping, a CFL-like condition
is obtained for monotonicity. For Euler explicit
time stepping, we have the time approximation,
01 DA 114
Ty dam —4—2

ot A J. At
which results in the following scheme:

{ d{c;)
ant! =1y - T S a(@;, /)~ (@) - ag)
€ =1
d(c;)
= Z oy
i=0

(4.74)

It should be clear that coeflicients in (4.74) sum to
unity. To prove mounotonicity in time and space,
it is sufficient to show: positivity of coefficients.
By inspection we have that o; 2 0 Vi > 0. To

guarantce monotonicity requires that ap > 0.

At &
ag =1+ A_ L a(ﬁ.—,ﬁ.-)" >0

C

(4.75)

i=1

Thus, a CFL-like condition is obtained vhich in-
sures monotonicity and stability.

Ac

At < ~
Zd(cg) a(i;, ;)=

(4.76)

Note that in one dimension, this number corre-
sponds to the conventional CFL number. In mul-
tiple space dimensions, this inequality is sufficient
but not necessary for stability. In practice some-
what larger timestep values may be used.

Conclusion: The upwind algorithm (4.68) using
piecewise constent date satisfies a discrete mazi-
mum principle for general unstructured meshes.

4.7 Upwind Advection Schemes with Linear
(k_=1) Reconstruction

In this section, we consider advaction schemes
based on lincar reconstruction. The process of
linear reconstruction in one dimension is dJepicted
in figure 4.9.

Figure 4.9 Linear Reconstruction of cell-averaged
data.

One of the most important observations concern-
ing linear reconstruction is that we can dispense
with the r.otion of cell averages as unknowns by
reinterpreting the unknowns as pointwise values
of the soluation sampled at the centroid (midpoint
in 1-D) of the control volume. This well known
result greatly simplifies schemes based on linear
reconstruction. The linear reconstruction in each

eyt %

P st

LA NI A sl SO

S

ia Rt e

i

o b .

e e AR AT T

L

WIT AR T TN




interval shown in figure 4.9 was obtained by a sim-
ple central-difference formula given point values
of the solution at the midpoint of each interval.

In section 4.3, results for the Ringleb flow
with linear reconstruction were presented. The
reconstruction strategy presented there satisfies
ail the design requirements of the reconstruction
operator. For linear reconstruction, simpler for-
mulations are possible which exploit the edge data
structure. Several of these reconstruction schemes
are given below. Note that for steady-state com-
putations, conservation of the mean in the data
reconstruction is not necessary. The impl'cation
of violating this conservation is that a nondieg-
onal mass matrix appears in the time integral.
Since time derivatives vanish at steady-state, the
effect of this mass matrix vanishes at steady-state.
The reconstruction schemes presented below as-
sume that solution variables are placed at the
vertices of the mesh, which may not be at the
precise centroid of the control volume, thus vio-
lating conservation of the mean. The schemes can
all be implemented using an edge data structure
and satisfy k-exactness for linear functions.

4.7a Green-Gauss Reconstruction

This reconstruction exploits the gradient cal-
culation (4.19) studied carlier in section 4.3:
. 1 1 " -
(Vi = —— D 5(u; + uo)fioi (4.77)
Ao j7. 2

where fy; is the vector normal associated with
the edge e(vp,v;). This approxirnation extends
naturally to three dimensions, see Barth [43].

4.7b Lincar Least-Sqnares {L,) Reconstruction

To derive this reconstruction technique, con-
sider a vertex vp and suppose that the solution
varies linearly over the support of adjacent neigh-
bors of the mesh. In this case, the change in ver-
tex values of the solution along an edge e(v;, v5)
can be calculated by

(Vuh)o - (Ri — Ro) = u; — 1

This eguation represents the scaled projection of
the gradient along the edge e(v;,vp). A similar
equation could be written for all incident cdges
subject to an arbitrary weighting factor. The re-
sult is the following matrix equation, shown here
in three dimeusions:

(4.78)

wAry Ay mAz )/ wy(uy —ug
Uy

. . : Uy )=
[wnA$71 wy Ay, wyAz, Uz wn(uu_uo)
(4.79)
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or in symbolic formn £ Vu = f where

L= (L, L, L] (4.80)
in three dimensions. Exact calculation of gradi-
ents for linear u is guaranteed if any three row
vectors wi(R; — Rp) span all of 3 space. This im-
plies linear independence of L. L, and L;. The
system can then be solved via a Gram-Schmidt
process, i.e.,

v:Il‘ - g ‘-o 1 0 0
Vo|[L1 L L3)=1|(0 1 0] (481)
Vs 0 01

The row vectors \7; are given by \7; = (—ﬂgﬂ—)

where

U, =(laglys - loalag) Dy — (lagli2 — laaly3) Do
~(laghys — logli2)Ls

Uy =(lgaly — llslls)ﬁz — {lsalyy — lygiza)iny
—(lialaa - hlig)Ea

Us =(li:las - lialia)Es = (lalis — lyala3)E,
~{li1las — llzlna)faz

and fgj = (ﬁ, . I-:J)

Note that recounstruction of N independent
variables in R __, lies (*}!) +d NV inner product
sums. Since aly d N of these sums involves the
solution variab.. s themselves, the remaining sumns
could be precalculated and stored in computer
memory. This makes the present scheme compet-
itive with the Green-Gauss reconstruction. Using
the edge data structure, the calculation of inner
product sums can be calculated for arbitrary com-
binations of polyhedral cells. In all cases linear
functions are reconstructed exactly. We demon-
strate this idea by example:

For k =1, n(e)
i = c'l(k, 1)
Jo = e‘l(k,Z)
dz = wik) - (z(j2) — 2(i1))
dy = w(k) - (y(j2) - y(ir))
hLi() =lu(h) +dz - dz
l1(j2) = h1(j2) + dz - dz
Li2(G1) = Lhia(h) +dz - dy
Lia(j2) = hia(j2) + dz - dy

! Loop through edges of mesh
! Pointer to edge origin
! Pointer to edge destination
! Weighted Ax
! Weighted Ay
!l orig sum
!4 dest sum
! lyz orig sum
!l dest sum

du = w(k) - (u(j2) — u(3;)) ! Weighted Au
lug(ji) = lua(jy) +dz - du ! lug orig sum
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lug(j2) = lua(j2) +dz -du ! luz dest sum

Endfor

This formulation provides frecedom in the choice
of weighting coefficients, w;. These weighting
coefficients can be a function of the grometry
and/or solution. Classical approximations in one
dimension can be recovered by choosing geomet-
rical weights of the form w; = 1./|R; — Ry|* for
values of t = 0,1, 2. The L, gradient calculation
technique is optimal in a weighted least squares
sense and determines gradient coefficients with
Jeast sensitivity to Gaussian noise. This is an im-
portant property when dealing with highly dis-
torted (stretched) meshes.

4.7c Data Dependent Reconstruction

Both the Green-Gauss and L, gradient calcula-
tion techniques can be generalized to include data
dependent (i.e. solution dependent) weights. In
the case of Green-Gauss formulation, the sum

1 -
Z 5(“0 + u; )iy,

i€y

is replaced by

1
Z p&i(uo+u,~)fio;+p$% ((Vu)o - (Ri — Ry)) iip;

i€,

(4.82)
If the pi are chosen such that pg; + pf; =1 then
the gradieat calculation is exact whenever the so-
lution varies linearly over the support. In two
space dimensions, equation (4.82) implies the so-
lution of a linear 2 x 2 systetn of the form

Ao —mze —mgy Yur\ 1 e
[ —my: A - myy_l u, _'21’0:'5(“04'1‘-)00.

where

- + A =
my, = E pp;Axing,, my, = EJ p},-Ay,—ny..
i€l, 1€y

myy, = Z YAz, my = Z phAyin,,
i€To icl
Care must be exercised in the selection of p* in
order that the system be invertible. This is sim-

ilar to the spanning space requirement of the L,
gradient calculation technique.

4.7d Monotonicity Enforcement

When solution discontinuites and steep gradi-
ents as present, additional steps must be taken

to prevent oscillations from developing in the nu-
merical solution. One way to do this was pio-
neered by van Leer [35] in the late 1970’s. The
basic idea is to take the reconstructed piecewise
polynomials and enforce strict monotonicity in
the reconstruction. Monotonicity in this context
should be interpreted to mean that the value of
the reconstructed polynomial does not exceed the
minimum and maximum of neighboring cell av-
crages. In other words, the final reconstruction
must guarantee that no new extrema have been
created. This will be referred to as ‘monotonicity
property 1." When a new extremum is produced,
the slope of the reconstruction in that interval
is reduced until monotonicity is restored. This
implies that at a local minimum or maximum in
the cell averaged data the slope in 1-D is always
reduced to zero, see for example figure 4.10.

Figure 4.10 Linear Reconstruction with mone-
tone limiting.

Another property (referred to hereafter as ‘prop-
erty 2’) of the monotonicity enforcement is no-
tivated by the stability proof associated with the
higher order accurate schemes (presented in sec-
tion 4.7¢). In one dimension, property 2 can be
characterized as the requirement that the new re-
construction not produce a reconstructed solution
variation, [ |du|, which is larger than the piece-
wise constant value. If property 2 is violated then
the slopes must be reduced until the solution vari-
ation is satisfied. This situation is depicted in
figzure 4.11. For arbitrary unstructured grids, a
sufficient condition is that the differences in the
extrapolated states at a cell interface quadrature
point be of the same sign as the difference in the
piecewise constant values, i.e.

+ — —
;T-_% >0, (property 2)
when combined with preperty 1, the following in-
equality exists:
ut —u~

1> —4————20 .
> (4.83)
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This inequality is crucial in the stability proof
given below,

Figure 4.11 (a) Reconstruction profile with in-
creasad variation violating monotonicity property
2. (b) Profile after modification to satisfy mono-
tonicity property 2.

In Barth and Jespersen [40], we gave a simple
recipe for invoking property 1. Consider writing
the linearly reconstructed data in the following
form:

u*(z,9); =T + Vu, - (R—R;)  (4.84a)
Nsw consider a “limited” form of this piecewise
linear distribution.

u*(z,9); = Tj 4 2;Vug, - (R—R;) (4.84b)
The idea is to find the largest adinissible &; while
invoking a monotonicity principle that values of
the Linearly reconstructed function must not ex-
cced the maximum and minimum of neighboring
centroid valnes (including the centroid value in
¢;). To do this, first compute

u_'ini" = lnin(ﬁj,-ﬁueiyhbors)
and

“;‘"a: = m&x(ﬁj) ﬁncighbor.»)

then require that

14;-'"" < u(x,y);' < uper (4.85)
For linear reconstructions, extrema in u(:c,y)f
occur at the vertices of the control volume and
sufficient conditions for (4.85) can be easily ob-
tained. For each vertex of the cell compute u;,=
uf(zi,4i)j, # = 1,N,; to determine the limited
value, ¢;, which satisfies (4.84):

. uoT . —
mm(l, ‘-"‘7‘—_3:-,-), if u; — uj > 0
4)" = . 1 u"““—ﬁj .f — 0
min(1, —3——=-u'__u’, ), ifui--7;<

1 ifu,‘—ﬁj=0
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with ®; = min(¢y, ¢z, ¢3, ...,¢ch). In practice,
the reconstructed polynomial may be calculated
at the flux quadrat:r points instead of the ver-
tices of the control volume with a negligible degra-
dation in raonotonicity. In the implementation of
property 2, we prefer a “symmetric” reduction
of slopes. In other words, at interfaces violating
property 2, both of the two cells sharing that in-
terface reduce their slope until (4.83) is satisfied.

When the above procedures are combined with
the flux function given earlier (4.58),

(f(ut,n) + f(u~,n))

la(@, m)| (u* —7)

h(ut,u™,n) = )
(4.58

N = 20—

the resulting scheme has very good shock resolv-
ing characteristics. To demonstrate this fact, we
consider the scalar nonlinear hyperbolic problem
suggested by Struijs, Deconinck, et al [44]). The
equation is a multidimensional form of Burger’s
equation.

ug+ (u?/2); +uy =9

We solve the equation in a square region [0, 1.5] x
[0, 1.5] with boundary conditions: u(x,0) = 1.5—
2z, z £ 1, u(2,0) = =5, =z > 1, «(0,y) = 1.5,
and u(1.5,y) = -.5. Figures 4.12 and 4.13 show
carpet plots and contours of the solution on reg-
ular and irregular meshes.

Figure 4.12a Carpet plot of Burger’s equation
solution on regular mesh.
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Figure 4.13a Carpet plot of Burger’s equation
solution on irregular mesh.

Figure 4.13b Solution contours.

P L R

Note that the carpet plots indicate that the nu-
merical solution on both meshes is monotone. Even
so, most people would prefer the solution on the
regular mesh. This is an unavoidable consequence
of itregular meshes. The only remedy appears to
be mesh adaptation. Simi'ar results for the Euler
equations will be shown on irregular meshes in a
future section.

4.7e Stability Analysis via Encrgy Methods

Consider oncc again the local mesh shown in
figure 4.1a with local index about a vertex vg. In
the analysis performed below, we consider energy
stability of schemes of the following form

d(e;)

—gﬁvo = - Z h(’(l+,'u_,ﬁ)o.'
i=

o > (4.86)

using linear reconstruction with limiting. Note
that in this analysis all boundary effects will be
ignored. In section 4.5, stability of the first or-
der upwind scheme was proven using monotonic-
ity analysis. Before considering the higher order
schemes, we briefly digress to show stability of the
first order upwind scheme using energy methods.
Using the saime techniques, energy stability of the
high order schemes with reconstruction and lim-
iting will be shown.

Energy Analysis for the k = 0 scheme

In this case, the flux takes the simple form and
the sclieme for a single vertex vy can be written
as indicated below

d(cy)
1
(AoTio) + Y - (f(%o, ;) + f(i, Wy))
Du ‘ \g 2 »
C:u
des) (4.87)

- Z %Ia(ﬁ.-, 0| (W —-p)=0
t=1

- "
"t

Lgu

or in symboli¢ operator form, where u denotes
the solution vector, i.e. u = [&;, W2, T3, ..., un]7 .
In this symbolic form, the scheme is written as

(Du)t+ Lau—Lqu=0 (4.88)

where D is a positive diagonal matrix cont ining
the area of each control volume. £, and L, repre-
send the advective and diffusive operators in this
linear scheme. The energy of the system ( 1.88) is
given by the following equation:

(uTDou), +u’ (L, + L) u—u’(Ly+ LD u=0
(4.89)
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It is a straightforward exercise to show that in
the linear case, £, and £! are skew-symnetric
(isvenergetic) operators, hence

u' (Lo + L) u=0.

The diffusive operator Ly is symmetric which re-
duces the energy equation to the following form:

1, . "
3 (u? Dou), —u"Lqu=0 (4.90)

From symmetry and appiication of the cigenvalue
circle theorem, it is easily shown that £, is a
symmetric, negative semi-definite matrix opera-
tor which implies that

uTLI.gu <0

for all u. This establishes that the scheme is en-
ergy stable since

(uTDou)‘ <0

Energy Analysis for the k = 1 scheme

We now consider the advection scheme with lin-
car reconstruction. The interface states for the
edge of the control volume separating cells ¢ and
¢i e denoted Dy ugd and w7, respectivily, The
scheme is written in the familiar form:

d(cy) 1
(Aot} + Y §(f(u:.ﬁ.~)+ flur i)
‘Du Jj} )
Lan
d(c,) i
- Z -i|a(i¢.-,ii.-)| (U —ud)=0
i ,
L'::u

(4.91)
Consider rewriting equation (4.91) using the iden-
tity

-t

u;' - u.g = (i_'—_—-_zf-g—) ('ﬁ',‘ -—71‘0) = l//'(ﬁ,' - 770)
U — Wy

which tacitly assumes that the ratio exists. Mono-

tonicity properties 1 and 2 guarantee that ¢ €

{0,']. Thus, equation (4.91) is rewritten in the

nonlinear form:

d(c;)
(Adto) + 3 5 (F(ud i) + f(u7, )
=1

Ay
= Y gilali, )| ~ T) =0
=1
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From symmetry and the cigenvalue circle theorem
we have that

uLau<o (4.92)

It remains to be shown that the advection oper-
ator L, is either isoencrgetic (in the lincar case)
or decays energy in the system. Not sl extrap-
olation formulas guarantee that this is true. A
full discussion of this topic is beyond the scope of
these notes and is a subject of current research.
Note that in reference [45], we indicated a pref-
crence for a standard Galerkin discretization of
L4. Since this operator is isocnergetic, when com-
bined with the diffusion operator described above,
the cntire scheme is provably stable in an energy
norm.

4.8 Maximum Principles and the
Dclaunay Triangulation

The edge formulas presented carlier not only
provide an efficient procedure for calculating quan-
tities such as the gradient and divergence, but
also provide certain theoretical results which are
difficult to ascertain otherwise. For example, Cia-
rlet and Raviart [46] consider Galerkin schemes
for solving elliptic equations using linear finite-
clements. They derive sufficient conditions for
the existence of a discrete maximum principle for
Laplace’s equation if all angles in the triangula-
tion are less than w/2 — ¢ for some positive e.
Using the edge formulas derived in section 4.3,
sufficient and necessary conditions can be derived
for a discrete maximum principle which are quite
different from the Ciarlet result. A brief outline
of the proof is given below.

Example: Derive conditions for a discrete max-
imum principle using a Galerkin approximation
with lincar clements.

Using a reduced form of (4.43), the canonical
edge formula for the discrete Laplacian operator
is given by

dAutda = L(u*),, =
o

Z %[cotzm(ah) + cotan(cep; )] (u; — uo)

i€lo !
(4.93)
where the angles ap; and op, aze depicted below.
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Figure 4.14 Circumcircie test for adjacent tri-
angles.

It is well known that a discrete maximum prin-
ciple exists for arbitrary point distributions and
boundary data if and only if the -liscrete operator
is & nonnegative operator, i.e., if

u" e, Z wiul (4.94)

IGI(I

and

wo <0, w; 20,i>0, wo+ Y w;=0 (4.95)
iEIo

for any interior vertex vg. For schemes of thie form

Z Wl —ud) (4.96)

lelo

L(u")y, =

nonnegativity requires that W; > 0 for all ¢ € 7.
This guarantees a maximum principle, Equating
equation (4.96) to zero, we obtain

h
ho_ Z.‘ez( Wi, ¢
up = —hz;ezo W, (4.97)

and thercfore

miu (uf, ul, ...,udo) < ug < max(ul, ub, .. ,uzu)
A natural question to be addressed concerns the
existence and uniqueness of triangulations of an
arbitrary point set such that (4.93) guarautees a
discrete maximum principle. In two dimensions
a unique triangulation always exists. The main
result is summarized in the following theorem:

The discrete Laplacian operator (4.93) exhibits
a discrete mazimum principle for arbitrary point
scts in two space dimensions iff the triangulation
of these points is a Delaunay triangulation.

The key elements of the proof are given below:
Rearrangement of the weights appearing in (4.93)
yields

=1

W; = [cotan(ar,;) + cotan(ag; )]

cos(ag;) . cos(an,)
- + =
sin(ay,) = sin(ap,)

_1 sin (g, + ap,)
2 |sin(ay,)sin(wp,)

b:[t—il\l

(4.98)

Since ay, < m, ap, < m the denominator is
always positive and nornegativity requires that
ay, + ap, < 7. Some trigonometry reveals that
for the configuration of figure 4.14 with circumcir-
cle passing through {ve,v;,v;41} the sum ap, +
«yp,, depends on the location of vy with respect
to the circumcircle in the following way:

v;—) exterior
v;—1 interior (4.99)
v;..1 cocircular

ap, +op; <,
ap, +ap, >,

R, + ap, =T,

Also note that we could have considered the cir-
cumcircle passing through {ve, v;, v;—1 } with sim-
ilar results for v;4,. The condition of nonnegativ-
ity implies a circuincircle condition: for all pairs of
afljacent triangles whereby the circumcircle pass-
ing through ecither mam,lo cannot contain the
fourth point. This is precisely the unique char-
acterization of the Delaunay triengula’.on which
would complete the proof.

Keep in mind that from equation (4.98) we
have that cotan(a) > 0 if a < 7/2. Theretore
a sutficient but not necessary condition for non-
negativity (and a Delaunay triangulation) is that
all angles of the mesh be less than or equal to
a/2. This is a standard result in finite element
thcory and appiies in two or more space dimen-
sions. The construction of nonnegative operators
has important implications with respect to the di-
agonal dominance of implicit schemes, the eigen-
value spectrum of the discrete operator, stability
of relaxation schemes, etc.

We can ask if the result concerning Delaunay
triangulation and the maximun principle extends
to three space dimensions. As we will show, the
answer is no. Section 4.3d gives the correspond-
ing edge formulas for Hessian and Laplacian dis-
cretizations in 3-D. The resulting formula for the
three dimensional Laplacian is

¢" Vb dv =Y Wi(ui—w) (4.100)
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Z I.L\Rk., 1/-_,' C()tﬂ.ll((l’k+ 1/2 )

k=1

(4.301)
In this formula Vi, is the volume formed by the
union of 211 tetrahedra that share vertex vy. Ty is
the set of indices of all adjacent neighbors of vy
counected by incident edges, & a local cyclic in-
dex describing the associated vertices which form
a polygon of degree d(vq, v;) surrounding the edge
e(vo,vi), @ig1/2 is the face angle between the
two faces associated with 8412 and 8}, | /2 which
share the edge e(vr, veq1) and ARy of is the
magnitude of the cdge (see figure below).

Wi =

[ o=

Figure 4.15 Set of tetrahedra sharing interior
edge e(vg, ¥;) with local cyclic index k.

A maximum principle is guaranteed if all W; > 0.
We now will procede to describe a valid Delau-
nay triangulation with one or more W; < 0. It
will suffice to consider the Delaunay triangulation
of N points in which a single point vg lies inte-
rior to the triangulation and the remaining N -1
points describe vertices of boundary faces which
completely cover the convex hull of the point set.

g sl e
|

Top Yiew

Figure 4.16 Subsct of 3-D Dclaunay Triangula-
tion which does not maintain nonnegativity.
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Consider a subset of the N vertices, in particular
consider an interior edge incident to vp connect-
ing to v; as shown in figure 4.16 by the dashed
line segment and all neighbors adjacent to v; on
the hull of the point set, In this experiment we
consider the height of the interior edge, z, as a
free parameter. Although it will not be proven
here, the remaining N - 8 points can be placed
withour conflicting with any of the conclusions
obtained for looking at the subsot.

It is known that a necessary and sufficient con-
dition for the 3-D Delaunay triangulation is that
the circumsphere passing through the vertices of
any tetrahedron must be point free {21]; that is to
say that no other point of the triangulation can
lic interior to this sphere. Furthermore a property
of jocality exists [21] so that we need only inspect
adjacent tetrahedra for the satisfaction of the cir-
cumsphere test. For the configuration of points
shown in figure 4.16, convexity of the point cloud
constrains z > 1 and the satisfaction of the cir-
cumsphere test requires that 2 < 2.

1<:2<2 (Delaunay Triangulation)

From (2.13) we find that W; > 0 if and only if
2 < T/4
1<,

(Nonnegativity)

This indicates that for T/4 < : < 2 we have a
valid Delannay triangulation which does not. sat-
isfy a discrete maximum principle. In fact, the
Delaunay triangulation of 400 points randomly
distributed in the unit cube revealed that approx-
imately 25% of the interior edge weights were of
the wrong sign (negative).

Keep in mind that from (4.101) we can obtain a
sufficient but not necessary condition for nonneg-
ativity ihat all face angles be less than or equal
to 7 /2.

The formulas for the prototypical viscous term
% - 1ty are only slightly more complicated than
the Laplacian formulas. In 2-D we have the fol-
lowing weights

1
V= 2 [71 p.cotan(er,) + Jip cotan(a R..)]

(4.102)
or in 3-D
1 d(vo,v;)
Wi = :’E le+l/2|ARk+]/21 COt‘ml((\'k‘fl/?)
T k=1
(4.103)
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where ji is the average value of u in the specified
simplex. Since p and 7i are always assumed posi-
tive quantities, we have the following theorem:

A diserete maximum principle associated with
the discretization of V - uVu with weights given
by (4.102) and (§.108) is guaranteed iff W; > 0
Jor all interior edges of the mesh, A sufficient but
not necessary condition is that all angles (2-D) or
faces angles (3-D) be less than or equal to /2.

‘The proof follows immediately from nonnegativ-
ity of (4.102) and (4.103). The sufficient but not
nccessary condition is & minor exteusion of the
result by Ciarlet [40].

5.0 Fianite-Volume Solvers for the Euler
Equations

In this section, we consider the extension of
upwind scalar advection schemes to the Euler equa-
tions of gasdynamics. As we will see, the changes
are relatively minor since most of the difficult
work has already been doue in designing the scalar
scheme.

5.1 Euler Equations in Integral Form

The physical laws concerning the conserva-
tion of mass, momentum, and energy for an ar-
bitrary region Q can be written in the following
integral form:

Conservation of Mass
o .
--—/ pda +-f pV-n)di=0 {5.1)
o Ja an

Conservation of Momentum

;‘Z./pv (ia+/ pV(V . m) dl+f pundl=0
ot Jo Jog oQ
(5.2)

Comnservation of Energy

-‘Z/E(la-ff (E+p)(V-n)dl=0 (5.3)
ot Jq on

In these equations p, V, p, and E are the density,
velocity, pressure, and total energy of the fluid.
The system is closed by introducing a thermody-
namical equation of state for a perfect gas:

p=(=1E-36(V-V)  (4)

These equations can be written in a more com-
pact vector equation:

g f
= ) ada+ F(u) ndi=0 5.5
at Jo on ) (6:9)
with
P p(V.n)
u=|pV], Fu) n=|pV(V - n)+pn

o (E + p)(V +n)

In the next section, we show the natural ox-
tension of the scalar advection scheme to include
(5.5).

5.2 Extension of Scalar Advection Schemes to

Systems of Equations

The extension of the scalar advection schemes
to the Euler equations requires two rather minor
maodifications:

(1) Vector Flux Function. The scalar flux func-
tien is replaced by a vector flux function. In the
present work, the mean value linearization due to
Roc [47] is used. The form of this vector flux func-
tion is identical to the scalar flux function (4.53),

.o,

h(u¥,u,n) =-;- (f(ut,n) + f(u™,n))
(8.6)
~2]AG@)] (ut - )

where f(u,n) = F(u) n, and A = df/du i~ the

flux Jacobian,

(2) Componentwise limiting. The solution vari-
ables are reconstructed componentwise. In prin-
ciple, any sct of variables can be used in the recon-
struction (primitive variables, entropy variables,
etc.). Note that conservation of the mean can
make certain variable combinations more difficult
to implement than others because of the nonlin-
carities that may be introduced. The simplest
choice ts obviously the conserved variables them-
selves. When conservation of the mean is not im-
portant (steady-state calculations), we prefer the
use of primitive variables in the reconstruction
step.

The resulting scheme for the Euler equations
has the same shock resolving characteristics as
the scalar scheme. Figures 5.1a-b show a simple
Steiner triangulation and the resulting solution
obtained with a linear reconstruction scheme for
transonic Euler flow (Mo, = .80, « = 1.25°) over
a NACA 0012 airfoil section.
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Figure 5.1a Initial triangulation of airfoil, 31565
vertices.
Fven though the grid is very coarse with only

3155 vertices, the upper surface shock is captured
cleanly with a profile that extends over two cells

.
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Figure 5.1b Mach nuuber contours on initial
teiangulation, Mo, = 80,00 = 1.25°.

Clearly, the power of the unstructured grid method

is the ability to locally adapt the mesh to resolve
flow features. Figurcs 5.2a-b show an adaptively
refined mesh and solution for the smne flow. The
mesh has been locally refined based on a poste-
sori crror estimates. These estimates were ob-
tained by perfotming k-cxact reconstruction in
each control volume using lincar and quadratic

functions. A complete discussion of error csti-
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mation and solution adaption will be given by
Professor Johnson in these notes. ‘The paper by
Warren ¢t al [29] also provides some interesting
insights into the arca of mesh adaptation for tlows
containing discontinuitics.
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Figure 5.2a Solution adaptive trianguiation of
airfoil, 6917 vertices.

The flow features in figure 5.2b are clearly defined
with a weak lower surface shock now visible. Fig-
ure 5.3 shows the surface pressure coeflicient dis-
tribution on the airfoil. The discontinuitics are
crisply captured by the scheme,

Figure 5.2b Mach number contours on adapted
airfoil.

"The other major advantage of unstructured grids
is the ability to automatically mesh complex ge-
ometries. The next example shown in figure 5.4a-

<

E



o g

it

PR TR IR TN

B T

- -

O

0-32

b is & Steiner trinngulation and solution about a
multi-component airfoil.

S
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Figure 5.3 Comparison of ¢, distributions on
initinl ard adapted moshes,

Using the incremental Steiner algorithm discussed
previously, the grid can constructed from curve
data in about ten minutes time on a standard en-
gincering workstation using less than a minute of
actual CPU tiwe.

%%gs 4.\

Figure 5.4a Steiner Grid about multi-component
airfoil,

‘The flow caleulation shown in tigure 5.4b was per-
formed on a CRAY supercomputer taking just a
few minutes of CPU time using a linear recon-
struction scheme with implicit time advaicement.
Details of the implicit scheme ave given in the
next. section.

Figure 5.4b Mach number contours about multi-
component airfoil, My = 2,0 =0°,

We previously mentioned the importance of
wsing accurate flux quadrature formulas. In fact,
for k-exact reconstruction, we suggest N point
Gauss quadratures with N 2 (k4 1)/2. In Figs,
5.5a-b this importance is il'ustrated by plotting
density contours for a numerical calculation of the
Ringleb flow (previously described) using quadratic
reconstruction & = 2. Qur formula suggests that
two point quadratures should be used in this case,

. \\ . =
-~ NN
_\\\\\\); >
\\\\‘}\3 =

.

Aithi

Figure 5.5a Ringleb flow density contowrs us-
ing quadratic reconstruction and one-point Gauss
quadrature (k = 2, N = 1).

Figure 5.5a shows contours for a calculation us-
ing one-point Gauss quadrature and Fig.  §.5b
shows contours for a calculation using two-point
quadratures. The improvement in Fig. 5.5b is
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dramatic, Increasing the mmber of quadrature
points to three leaves the solution unchanged.
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Figure 5.5b Ringleb flow density contours us-
ing quadratic reconstruction and two-point Guuss
quadrature (k= 2, N = 2).

The algorithms outlined in section 4 have
been extended to include the Euler eguations in
three dimensions, In reference [43], we showed the
natural extension of the edge data structure in the
development of an Euler equation solver on tetra-
hedeal meshes. One of the caleulations preseuted
in this paper simulated Euler tlow about the ON-
ERA M6 wing. The tetrahedral mesh used for
the calenlations was a subdivided 151x17x33 hex-
ahiwedval C-type wmiesh with ephevieal wing (ip ean.
The resulting tetvahedral inesh contained 496,350
tetrahedra, 105,177 vertices, 11,690 boundary ver-
tees, and 23,376 boundary faces, Figure 5.6 shows
a closeup of the surface mesh near the outhoard
tp.

Figure 5.6 Closcup of M6 Wing Surface Mesh
Near Tip.

Transonic calewlations, M, = 84, o = 3.06°,
were performed on the CRAY Y-MP computer
using the upwind code with both the Green-Gauss

[(BAR!

and Ly gradient reconstruction. Figure 5.7 shows
surface pressice contours on the wing surface and
(' profiles at several span stations,

r\jJJ. i ‘u
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Figure 5.7 M6 Wing Surtace Pressure Contours
acd Spanwise Cp, Profiles (Moo= 81,0 =3.06°).

Pressure contonrs clearly show the lambda
type shock pattern on the wing surface. Figures
5.8a-¢ compare pressure coeflicient distributions
at three span stations on the wing measured in
the experiment, y/b=.44,.65.,.95.

-1.5
-0
0.5
G 00

0.8 ——- Upwiml, Green-Giauss Gradiems
- === Upwing, 12 Gradicis

weem CELID (rof. 48)

1o o Hxperiment

o bxperiman

1.5 ' T Y
0.00 0.25 .50 0.78 100
Xk

Figure 5.8a M6 Wing Spanwise Pressure Distri-
bution, y/b = A44.

Each graph compares the upwind code with Green-
Gauss and Lo gradient calculation with the CFL3D
results appearing in (48] and the experimental
data {19]. Numerical results on the tetrahedral
mesh compare very favorably with the CFL3D
structured mesh code. The results for the out-
board station appear better for the present code
than the CFL3D results. This is largely due to
the difference in grid topology and subsequent im-
proved resolution in that area.
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Cp

0.5 —— Upwind, Green-Gauss Gradienis
- --- Upwind, |.2 Gradients
~»w=- CFL3D (ref. 48)
1.01 o Experiinent
¢ Experiment

000 025 0.50 075 100
x/c

Figure 5.8b M6 Wing Spanwise Pressure Distri-
bution y/b = .65.

1.5
-1.074
-0.5-
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0.5 —— Upwind, Green-Gauss Gradients
- =~. Upwind, L2 Gradients
—-= CFL3D (rcf. 48)
1.0 o Exncriment
e Experiment

000 025 0.50 075 100
x/c

Figure 5.8c M6 Wing Spanwisc Pressure Distri-
bution y/b = .95.

9.3 Implicit Linearizations

In this section, we consider the task of lin-
carizing the discrete spatial operator for purposes
of backward Euler time integration. Defining the
solution vector u = [, @,, T3, ...,HN]"', the basic
scheme i written as

Du, = R(u) (5.7)
where D is a positive diagonal matrix. Perform-
ing a backward Euler time integration, equation
(5.7) is rewritten as

D(u™*! —u") = At R(u™). (5.8)
where n denotes the iteration (time step) level.

Linearizing the right-hand-side (RHS) of (5.8) in
time produces the following form:

D(un-l-l_“n) = At (R(un) + %_(un-f-l _ ll"))

By rearranging terms, we can arrive at the so
called “delta” form of the backward Euler scheme
n
[D - At 1‘:—'{—-] (u"*! — u") = +At R(u™)
u

(5.9
Notc that for large time steps, the scheme be-
comes cquivalent to Newton’s method for finding
roots of a nonlinear system of equations. New-
ton’s method is known to be quadratically con-
vergent for isolated roots. Each iteration of the
scheme requires the solution of an algebraic sys-
tem of linear equation. In practice, we use ei-
ther sparse direct methods as discussed in ref.
[45] or preconditioned miniinum residual meth-
ods. Both of these topics will be addressed by
Professor Hughes and other lecturers. The suc-
cess or failure of these methods hinges heavily on
the accuracy of the time linearization. For the
schemes discussed in sections 4 and 5, the most
difficult task is the linearization of the numerical
flux vector with respect to the two solution states.
For example, given ihe flux vector

h(u*,u”,n) =3 (f(u*,n) + £(u", n))
2 (5.10)
—51A@)| (u* - u7)
we require the Jacobian terms 2% and J2-. In

reference [50], we derived the exact Jacobian lin-
earization of Roe’s flux function. In this same pa-
per, approximate linearizations of (5.10) were in-
vestigated. The linearization of (5.10) is straight-
forward, except for terms which arisc from differ-
entiation of |A(u)|. A simple approximation is
to neglect these terms in the linearization pro-
cese, This produces the following approximate
linearizations:

dh 1
dut = 5(‘4(“ ) — |A(@)]) (Approx 1)
dh 1 ~ »

du- §(A(“ )+ |A(Q)|]) (Approx 1)

It is not difficult that to prove that the error asso-
ciated with this approximation is O(Jlut — u—|!)
which makes the linearization attractive for the
implicit calculation of smooth flows. Near dis-
continuities, this termn becomes O(1) which can
slow the convergence of the scheme considerably.
One important attribute of this approximation is
that it retains time conservation of the scheme.
This amounts to a telescoping property of fluxes
in time. For time accurate problems involving
moving discontinuities, this property is essential

R L



to obtain correct shock speeds. Another approx-
imate form considered in [50] uses the following
simple approximation

dh oy
e A(u)” (Approx 2)
dh o,
Zu= = AW@T (Approx 2)

This linearization also differs from the exact lin-
earization by terms O(Jjvt — u~J|). One impor-
tant feature of this linearization is that it pro-
duces a LHS operator for the first order upwind
scheme which is (block) diagonally dominant. For
those solution methods or precouditioning meth-
ods based on classical relaxation schemes, this
property establishes convergence of the relaxation
method. Scalar equation analysis also indicates
that when this linearization is used with back-
ward Euler time integration and first order up-
wind space discretization, the resulting scheme is
mouotone for all time step size. Uunfortunately,
this linearization violates time conservation and
should not be used for time accurate calculations.

L2 Norm Residual

I e W

10, 5 10 15
Iterations

Figure 5.9 Convergence histories for exact and
approximate linearizations. Solid lines show con-
vergence histories for calculations carried out us-
ing first order upwind RHS in(5.9). Dashed line
depicts scheme run with exact linearization of
first order scheme on the LHS and second order
RHS discretization.

Using the edge data structure, the assembly of
the LHS matrix in (5.9) for the first order scheme
is very straightforward. The flux associated with
each edge e(v;,v;) of the mesk is linearized with
respect its two arguments, u; and u;. This means
that the linearization contributes to the forna-
tion of the block matrix elements in the i-th row
j-th column, i-th row i-th column, j-th row i-
th column, and j-th row j-th column positions.
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This leads to a highly vectorizable (using gather-
scatter hardware) algorithm for matrix assembly
(and matrix multiplies). For the higher order
reconstruction schemes, the usual strategy is to
only construct LHS matrix terms associat~l with
the first order upwind scheme while using a higher
order RHS operator. The mismatch of operators
destroys any hope of quadratic convergeuce for
large time steps. Figure 5.9 graphs the conver-
gence history for a typical calculation using the
linearizations discussed above. The flow prob-
lem being solved is subsonic flow over a single
airfoil. In this case, the flow is smooth and all
linearizations should be applicable. In this fig-
ure, we sce that when the RHS and LHS op-
erators both correspond to the first order up-
wind scheme and the exact Jacobian linearization
is used, quadratic convergence is achieved. The
schemes using approximate linearizations do not
approach quadratic convergence but are very ef-
fective in reducing the initial residual. In reality,
most computations are terminated after reduc-
ing the residual about four orders of magnitude.
For the piesent example, this would amount to 7
steps using the exact linearization or 8-9 steps us-
ing the approximate forms. Using a higher order
accurate RHS slows the convergence even further.
Nevertheless, a four order reduction in residual is
achieved after 30-40 steps.

6.0 Numerical Solution of the Navier-Stokes
Equations with Turbulence

6.1 Turbulence Modeling for Unstructured Grids

Simulating the effects of turbulence on un-
structured meshes via the compressible Reynolds-
averaged Navier-Stokes equations and turbulence
modeling is a relatively unexplored topic. In early
work by Rostand [51], an algebraic turbulence
morel was incorporated into an unstructured mesh
flow solver. This basic methodology was later re-
fined by Mavriplis [52] for the flow about multi-
element airfoil configurations. Both of these im-
plementations utilize locally structured meshes
to produce one-dimensional-like boundary-layer
profiles from which algebraic models can deter-
mine an eddy viscosity coefficient for use in the
Reynolds-averaged Navier-Stokes equations. The
use of local structured meshes limits the gereral
applicability of the method.

The next level of turbulence modeling in-
volves the solution of one or more auxiliary difier-
ential equations. Ideally these differential equa-
tions would only require initial data and bound-
ary conditions in the same fashion as the Reynolds-
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averaged mean cquations. The use of turbulence
models based on differential equations greatly in-
creases the class of geometries that can be treated
“a1tomatically.” Unfortunately this does not make
the issue of turbulence modeling a “solved” prob-
lem since most turbulence models do not perform
well across the broad range of flow regimes usu-
ally generated by complex geometries. Also keep
in mind that most turbulence models for wall-
bounded flow require knowledge of distance to
the wall for use in “damping functions” which
simulate the damping effect of solid walls on tur-
bulence. The distance required in these models is
measured in “wall units” which means that phys-
ical distance from the wall y is scaled by the local
wall shear, density, and viscosity.

+ /I.‘E"_“g 6.1

y Pwall ¥V ( )
Scaling by wall quantities is yet another compli-
cation but does not create serious implementa-

tion difficulties for unstructured meshes as we will
demonstrate shortly.

6.2 A One-Equation Turbulence Transport Model

In a recent report with Baldwin [53], we pro-
posed and tested (on structured meshes) a single
equation turbulence transport model. In this re-
port, the model was tested on various subsonic
and transonic flow problems: flat plates, airfoils,
wakes, etc. The medel consists of a single scalar
advection-diffusion equation with source term for
a field variable which is the product of turbulence
Reynolds number and kinematic viscosity, v Ry
‘This variable is proportional to the eddy viscosity
except very near a solid wall.

D(URT)

~Di = (Ceyf2 = Ce,) VRp

Ho 4 VA vRy) - a—(Vw) -V(vRy)

(6.2)
In this equation, P is the procuction of turbulent
kinetic energy and is related to the mean flow ve-
locity rate-of-strain and the kinematic eddy vis-
cosity »,. In equatlicn (6.2), the following func-
tions are required:

l‘ =(ce, — c(,)ﬁ/n2
O¢
OR =0,

v, =c,(vRy)D, D,

Mt =pYi
D, =1 —exp(~y*/AT)

Dy =1 - exp(-y* /A7)
_(0U;  QU;\ aU; 2 (0@)2
P“"(az,-+ )ax,-'a"‘ Oz

Cey

) =412 (Ky% +D.Dz)(¢‘D,Dz

c(n Cz
+
Y

+ b (s oy 14%) D

bt exp(~y*/AT) Dl))

A+

The following constants have been recommended
in {53):

x =0.41,
c, =0.09,

Ce, =12, ¢, =20
At =26, A} =10

We also recommmend the following boundary con-
ditions for (6.2):

1. Solid Walls: Specify Ry = 0.
2. Inflow (V- n < 0): Specify Ry = (Ry)oo < 1.

3. Outflow (V-n > 0): Extrapolate Ry from
interior values.

Equation (6.2) depends on distance to solid
walls in two ways. First, the damping function
J» appearing in equation (6.2) depends directly
on distance to the wall (in wall units). Secondly,
v¢ depends on vR, and damping functions which
require distance to the wall.

" = C“Dl (y+ )D2 (y+ )Vﬁ(

It is important to realize that the damping func-
tions fz, Dy, and D, deviate from unity only when
very near a solid wall. For a typical turbulent
boundary-layer (see figure 6.1) accurate distance
to the wall is only required for mesh points which
fall below the logarithmic region of the boundary-
layer.
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Figure 6.1 Typical flat plate boundary-layer from
ref. [53] showing dependence of turbulence model
on distance to wall.

The relative insensitivity of distance to the wall
means that accurate estimation of distance to the
wall is only required for a small number of points
that are extremely close to a boundary surface.
The remaining points can be assigned any approx-
imate value of physical distance since the damp-
ing functions are essentially at their asymptotic
values. A general procedure for calculation of dis-
tance to the wall in wall units is to precompute
and store, for each vertex of the mesh, the mini-
mum distance from the vertex to the closest solid
wall (examples are shown later in figures 6.2b and
6.3b). This strategy can only fail if two bodies are
in such close proximity that the near wall damp-
ing functions never reach their asymptotic values.
Realistically speaking, the validity of most tur-
bulence models wouid be in serious question in
this situation anyway. In general, the minimum
distance from vertex to boundary edge does not,
occur at the end points of a boundary edge but
rather interior to a boundary edge. For each ver-
tex, information concerning which boundary edge
achieves the minirnum distance and the weight
factor for linear interpolation along the boundary
edge must be stored. Data can then be interpo-
lated to the point of minimum distance whenever
needed. In the course of solving (6.2), distance to
a solid wall in wall units is calculated by retriev-
ing physical distance to the wall and the local wall
quantities needed for (6.1) as interpolated along
the closest boundary edge.

The numerical calculations presented in this
section represent a successful application of the
ideas discussed in previous sections. Figures 6.2a
and 6.3a show examples of Min-Max triangula-
tions abrut single and mulii-element airfoils. The
first geoinetry consists of a single RAE 2822 air-
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foil. Navier-Stokes flow is computed about this
geometry assuming turbulent flow with the fol-
lowing free-stream conditions: Ms, = 725, =
231°,Re = 6.5 million. Wind tunnel experi-
ments for the RAE 2822 geometry at these test
conditions have been performed by Cook, Mc-
Donald, and Firmin [54]. The RAE 2822 airfoil
mesh shown in figure 6.2a contains approximately
14000 vertices and 41000 edges. The second ge-
ometry consists of a two element airfoil configu-
ration with wind tunnel walls. The inflow condi-
tions assume turbulent flow with M, = .09 and
Re = 1.8 million. Details of the geometry and
wind tunnel test results can be found in the re-
port by Adair and Horne [55]. The two eleinent
mesh shown in figure 6.3a contains approximately
18000 vertices and 55000 edges.

Both meshes were constructed in two steps.
The first step was to generate a Delaunay trian-
gulation of the point cloud. As mentioned earlier,
the method of Delaunay triangulation can gener-
ate poor triangulations for highly stretched point
distributions. Both meshes suffered from nearly
collapsed triangles with two small interior angles.
As a sccond step, a Min-Max triangulation was
constructed by edge swapping the Delaunay tri-
angulation. Edge swapping repaired both trian-
gulations. Both airfoil geometries were calculated
assuming turbulent flow using the one-equation
turbulence model (6.2). Level sets of the gen-
eralized distance function used in the turbulence
model are shown in figures 6.2b and 6.3b.

H

” | 1o

Figure 6.2a Mesh near RAE 2822 airfoil.
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Figure 6.2b Contours of distance function for
turbulence model.

/

Figure 6.2c Closeup of Mach number contours
near airfoil.

Figures 6.2¢-d plot Mach number contours
and pressure coefficient distributions for the RAE
2822 airfoil. The pressure coefficient distribution
compares favorably with the experiment of Cook,
McDonald, and Firmin [29]. Leading edge trip
strips were used on the experimental model but
not simulated in the computations. This may ex-
plain the minor differences in the leading edge
pressure distribution.

Figure 6.2d Pressure coefficient distribution on
airfoil.

Navier-Stokes computations for the two el-
ement airfoil configuration as shown in figures
6.3c-d. The effects of wind tunnel walls have been
modeled in the computation by assumning an in-
viscid wall boundary condition. Mach number
contours are shown in figure 6.3c. Observe that
the contours appear very smooth, even in regions
where the mesh becomes very irregular. This is
due to the insistance that linear functions be ac-
curately treated in the flow solver reguardless of
mesh irregularities.

1%

AN

{

Figure 6.3a Mesh near Multi-element airfoil.
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Figure 6.3d Pressure coefficient distribution on

airfoil.

Figure 6.3b Contours of distauce function for
turbulence model.
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Figure 6.3c Closeup of Mach number contours
near airfoil.

Pressure coefficient distribution on the main
airfoil and flap are graphed in figure 6.3d. Com-
parison of calculation and experiment on the main
element is very good. The suction peak values of
pressure coefficient on the flap element are slightly
below the experiment. The experimentors also
note a small separation bubble at the trailing edge
of the flap which was not found in the computa-
tions.

to
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1 SUMMARY

This contribution presents high resolation upwind finite
volume schemces based on a polynomial reconstruction
of the unknowns on unstructured polygonal cells. The
schemes are Essentially Non-Oscillatory (ENO) through
the use of an adaptive stencil selection. A complete anal-
ysis and comparison given in this text shows that the or-
der of the space accuracy of the schemes is at least equal
to the degree of the reconstruction polynomial. Numeri-
cal results are shown for a nonlinear hyperbolic conserva-
tion cquation, confirming the ENO shock capturing and
higher order accuracy on highly irregular grids. More re-
alistic Euler calculations will demonstrate the ability of
the concepts that are outlined theoretically.

2 INTRODUCTION

The aim of the present work is to investigate adaptive
unstructured grid Finite Volume methods for the com-
putation of 2D viscous compressible flows. A general ap-
proach is followed, based on unstructured polygonal finite
volumes with an arbitrary number of edges and with a
cell centered definition of the unknowns, ref. {1, 2]. This
includes as a subset the classical structured grids based
on quadrilaterals as well as the unstructured grids based
on triangles. All types of meshes can be encapsulated in
just one and the same datastructure which was cast into
an object-oriented database written in C-44 in view of
higher order schemes. This text, howcver, will not treat
convection-diffusion problems but only purely hyperbolic
problemns cf the following form:

9

Y+ 90N =369 0

in which g is a set of solution variables, 7 is any location in
¢ domain {2 where the equation is to be solved and S is

a source term. The vector F = (£, G) contains the fluxes

of the convection quantity in the x- and y-direction.

Eq. (1) can be cast in integrzl form using Green's theorem

as:

.‘ % / /n 0.dQ + ﬁ F(q,7).7.dT = f /ﬂ S(g,7).dQ (2)

or, after division by I:
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TMember of Doctoral Program at VKI with Belgian Govern.
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<a>t 4o fr Fadl =< $(g7)>"  (3)

in which # is the ontward pointing unit normal at the
boundary I' of @ and < . > is an averaging operator
over the domain Q. The flux F.% will be denoted by H.
In the case of the Euler equations, ¢, /f and S are given
as follows:

(py p1, pv, pe)”

q =
pun
- Pun.u 4 png
H(@.F) = pun.v + p.ny
prin-(e +plp)
S(er) = 0 (")
with 8, = .4 the velocity in the normal direction,

% = (ng,my), p the density, u and v the velocity com-
ponents, e the total energy per unit mass, p the static
pressure. ‘The next relations cxist between e, p and the
temperatuce T

2 2
p = p(r-1). (c - L}"—)
p = pRT
¢ = ~+.RT (5)

with R the universal constant for gases, y the ratio of the
specific heats at constant pressure respectively constant
temperature and ¢ the speed of sound.

In the next section, a description is given of a more classic
compressible Fuler solver for adaptive unstructured grids.
These solvers are based on either a constant or a linear
representation of the solution in each volume, see [3] and
therefore, they can only achieve a space accuracy which
is in between order one and order two. The solation rep-
resentation is discontinuous across cell interfaces and the
values on both sides of each cell interface are used as the
initial values for a local Riemann problem. In the case of
linear solution representations, cither limiters or artificial
dissipation are introduced in order to maintain mono-
tonicity in the neighbourhood of discontinuities. How-
cver, these techniques locally reduce the space accuracy
of the scheme to first order. These schemes arc said to be
Total Variation Diminishing (TVD), see ref. [4, 5, 6). Ex-
tending these solvers towards Navier-Stokes calculations
reveals a strong dependency of the obtained solutions on
the local mesh quality. This is particularly true when
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local grid refinements have been applied in order to hiave
a better spatial resolution.

Onc of the possibilitics to reduce the mesh sensitivity is
to increase the spatial accuracy of the schemes used. 1o
achieve this, the solution representation (reconstruction)
in cach finite volume must be more accurate. Barth [7, 8]
proposed in this context to teconstruct the solution in
each control volume by a polynomial of higher degree.
Based on his ideas, two variants of his higher order poly-
uomial reconsiruction sigorithm wiii be presciated, Some
results produced by these algorithms and a numerical er-
ror study will be shown.

A theoretical study concerning the use of these two algo-
rithms in an upwind finite volume solver is carricd out in
a scparatc scction. ‘This study reveals that schemes us-
ing polynomial solution reconstruction are higher order
accurate in space regardless the local grid quality. This is
crucial for solution adaptive grid procedures as they in-
troduce sudden and considcrable changes in the cell size
and shape.

Note that otaer approaches exist to reduce the grid sen-
sitivity in the literature. Esscrs and Renard [9] for in-
stance, apply a non-comservative correclion to the flux
based on the numerically computed coefficients in the
local truncation crror. tHowever, as conservation is no
longer guarantead, discontinuitics will not exhibit the cor-
rect jump.

Struijs and Deconinck [10, 11] presented their so called
fluctuation splitting schemes whereby the total net fiux in
a triangle is sent to its 3 nodes according to the direction
of the convection speeds. Several wave models were set up
to find these directions and showed to be very performing
in the case of contact discontiniities on irregular meshes.

It is also well known that schemes with a non-constant so-
Jution recoustruction are not monotone and therefore nct
stable. In order to stabilize these higher order schemes,
nonlinearitics have to be introduced. For the classical
TVD schemes, this is achieved by limiting the solution
reconstruction, ref. [3, 6, 12]. In the present work, a dif-
ferent path is followed. The support of the re-onstruc-
tion, i.¢. the sct of cells used to compute the coeflicients
of the reconstruction polynomial, is arbitrary; this degree
of ;tcedom leaves the room to choose the support in an
adaptive way to stabilize the scheme. The nonlinvarity
liex then in the fact that ceils are accepted or rejected
from the support after each iteration. Harten et al. [13]
proposed an adaptive sclection of the stencil which allows
to define the polynomial in cach control volame such that
the derivatives of the reconstruction polynomial are min-
imal. Their 1D analysis showed that this sclection leads
to the so called ENO-schemes, i.e. schemes in which the
occurring oscillations are only of order k, the degree of
the reconstruction polynomial.

Shu and Osher [14] extended this method to two dimen-
sional cartesian meshes using a dimension by dimersion
reconstruction, while Durlofsky et al. [15] used linear re-
construction with adaptive stencils on triangular meshes.
In the present contribution, two peneralizations of these
support selection algorithms towards unstructured grids
consisting of polygonal cells will be discussed in more
detail. A first one is based on some marching proce-
dure whereby the marching direction is based on some
heuristic criteria such that both the firat order gradient
of the reconstruction and the variation of that first gra-
dient over the whole of the stencil are minimal. A second
selection algorithm suggests a finite number of candidate
supports and selects then the one with minimal norm of
all derivativea up to an order equal to the order of the
reconstruction. Other methods are given in the litera-

ture by Harten and Clakravarthy [16] which minimize
mathematically all derivatives up to order k.

In a finai scction, numerical results obtained using
schemes with ENO-reconstruction will be presented for
nonlincar scalar convection problems as well as for the
compressible Euler equations.

3 A CLASSIC TVD SCHEME

3.1 Introduction

Before introducing polynomial reconstruction in section 4
and the schemes that can be built with it (section 5), a
claggic TVD-scheme for adaptive unstructured grids is
discussed in this section. This discussion shows approx-
imately the current status in finite volwine solvers, their
capabilitics and their shortcomings. ‘These shortcomings
arc to be situated in the fact that finite volume solvers arc
sensitive to grid irregularities and that their spatial ac-
curacy is reduced to first order because of the use of lim-
iters or artificial dissipation, ENO-schemes as described
in sections 5 and 6 try to cure those shortcomings.

Concerning the notation, ¢ denotes always the exact so-
lution of a given analytical problem whereas @ always
stands for some discrate solution of a discretized prob-
lem.

3.2 Discretization

The eqs. (3) and (4) can be discretized while defining
a sct of non-overlapping polygonal finite volumes with
area Qp which cover the computational domain Q. The
discrete unknowns Qp are associated with the gravity
center of the cell. This leads to the next discrete finite
volure equations that have to be satisiied for each cell

r:
% -ep

1 -
Y + ﬁ-; 2'{ Hpp.Aspr =0 (6)

where the summation extends over all the neighbouring
cells R adjacent to cell P, fig. 1.

Fig. I:  Flux at the interface between cell P andR.

Here, Aspr is the length of the edge common to cells
P and R. The superscript n stands for the current time
level where the the time t is equal to n.At. As the interest
here goes mainly to the space accuracy of the scheme, the
reader is referred to ref, [3] for more a complete descrip-
tion of the construction of explicit and implicit schemes
based on this type of space discretization. Hpgr is the
numerical flax through the edge, defined by an approxi-
matc Riemann solver, ref. [17]. In the present approach,
Van Leer’s flux vector splitting and Roe’s flux difference
splitting are adopted as approximate Riemann solvers in
order to obtain an upwind treatment of the flux. We have
for Van Leer {18):



Hpp=1*(Qb)+ i (QR) (7)
and for Roe’s splitter [19}):

How = 5 [H@H)+HQR)

-5 10n(@)1.@-QH)  ®

in which Ch. is the Jacobian %g taken at the Roe-

averaged state Quw (@}, QR). In egs. (7) and (8), @}
and Qj indicate any type of extrapolation of the un-
knowas in cell P resp. R from the gravity centers of
these cells to the interface between these two cells. How-
ever, it classic finite volume schemes, only constant or
lincar extrapolation is employed:

Qt = Qr
Qr = Qr 9)

in the case of constant solution representati<u and

Qr + (Fz —~7p).¥Qp
Qr + (fo—7r).VQr (10)

Qb

Qr
for linear solution reconstruction, whereby VQp and
’\'*QR arc assumied to be constant gradicut vectors for
cell P, resp. cell R The vector 7o points to the mid-
point O of the edge betiveen the cells P and R,
On an unstructured mesh, the classic finite difference for-
mulas for approximating the first derivatives of the dis-
crete solution Q in ¢q. (10) cannot be used. An approxi-
mation for the gradient of Q over a given polygon P can
be found using the Gauss theorem, fig. 2:

i

/ vgaa=4 Fids (11)
p

m,l

Gauss theorem.

Fig. 2:

Indeed, taking F = (Q,0), and assuming %’f- constant
over the polygon P, eq. (11) yiclds:

f 8Q
—dl = nrds
-/-/ﬂp oz My Q

= (22 - L
- (a:)m - .np men:d\,

(the subscript m denoting some point inside the polygon
P); in the same way, one finds:

)y _ L
(ay)m T Qr meQn,ds (2)

and the contour integrals can easily be discretized as a
sum over the edges of the coantrol volutie:

Qu,ds = EQ.’ (ns); Oy (13)
op i

where Q° is taken as the average of Q between the two
nodes defining edge

Q! = 9.1;%‘!21. (14)

On a mesh with cell-centered storage of the unknowns,
the intcgration contour for entimating the gradient in a
given cell P is defined in fig. 3.

A\ Contour

Fig. 3;  Integration contour.

Note that the same method is used in a cell adjacent to
a boundary of the domain, except that the integration
contout is no longer centr~! with respect the ceh ¢, fig.
4. Furthermore, additional uaknowns are stored halfway
the cdges representing the boundary. In the next sub-
section, it will be shown that these additional unknowns
are also uscful for treating the boundary conditions more
consistently,

7
A,...,D : Gravity cenlef
VW :Vertices

Fig. 44 Contour close to a wall.

Using the gradient computed in the above manuer, it is
possible to establish a piecewise lincar reconstruction of
the discrete solution over a cell; i.c., for any point #in cell
P, we obtain a linear 1epresentation Q(,:)(F) of the state
vatiables given by cq. (10). If P is taken at the centroid
of the cell, it is easy to verify that this lincar variation is
just a redistribution of the cell averaged data:

< QMM >F=Q(r) = Qr (15)

j.c. cell averages and valucs at the gravity center are ex-
changeable. llence, it was indeed justified to use values
at the gravity center in eq. (6) when discretizing eq. (3).
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It is also important to point out here that the linear re-
construction as presented here will exactly teconstruct
the exact solution ¢ of eq. (3) if ¢ is lincar. "l'o obtain
this, one needs only the valucs gp = ¢(F,) of the so-
lution at the centroid G of each cell P. Schemes with
this properly arc called lincarity preserving or k-exact,
sec [8].

Finally, temark also that the scheme given by cq. \6)
whereby the gradients in eq. (10) arc estimated as de-
scribed above, it cquivalent to the Fromm scheme [20]
when applied in one dimension, The Fromm scheme is
a member of the family of the so called x-schemes [21]
whereby & = 0. The Fromm scheme ia upwind biased in
the sensc that the fluxcs in eq. (7) and (8) arc taken on
one side while the stencil to calculate the extrapolated
solution variables is central.

3.5 TVD-Limiters

Schemes using a piccewise linear seconstruction are said
to be second order accurate in space on regular grids bat
are unstable or at least chey are highly oscillatory near
discontinuities. In order to achieve I'VD properties for
those schemes, the gradient slopes used for QF and Qp
in eq. (10) are limited as follows:

Qp +¢rr. VQr (Fo — fr)
Qr +vrr . YQr. (7o — 1) (16)

%
Qr
where ¢ is the limiting function whose value is in most
of the cases to be found in the interval [0,1]. As an

example, van Albada [6] proposed the following form for
the limiting function:

P = (17)

where

2
r = sign (a.b). %2—1_: ~ ‘; (18)

in which

o = Qr-Qn)EHEES (g
b= VQr. (- )

for the computation of Q} and

= @ -0 i ()

b = VQr.(F-fr)

for the evaluation of Q7. The symbol € denotes a small
positive number that avoids division by zere. Other lim-
iters are given in [6, 12].

Note that the limiting can be performed one any type of
variables: conservative Q, primitive Q or characteristic
W variables. For this purpose, the symbol Q should be
replaced in the above equations by the proper one: Q, @
or W.

The use of equations (16)-(20) guarantees that Q} and
Qr will have a value in the intertval [Qp, Qo] resp.
[Qo. Qr], where Qo is defined as:

Qo

Qr +(Qr _Q',)_';— ¥ = ¥p|

7p| +|F - Fal
IF = ¥l
- 7p| + |~ 7kl

Qr+(Qr —Qn)-,F (21)

po =

vomcescsssenrvsnrsossnssacvran

-
X

)

Fig. 5: 1D Representation of the limiting procedure.

In 1D, the value of Qo corresponds to a lincar interpo-
lation at the cell interface between the values of Qp and
Qr, fig. 5.

By restricting the values of Q}, and QR i.c. for values of
the function ¢ close to zeto, oscillations are suppressed in
the neighbourhood of zones where large gradients occur
because the scheme turns locally back to first order.

3.4 Boundary Equations
3.4.1 Flux Equality Mcthod

‘The flux Hpr in eq. (6) through edges al the boundacy
of the domain are computed by introducing additional
unknowns along e¢ach boundary edge (fig. 6).

Fig. 6:

Boundary cdge.

According to [22], the boundary unknowns Qp are de-
termined by solving the foilowing algebraic consistency
cquation for the boundary flux #pp, ¢.g. for van Leer
splitting (see eq. (7)):

Hpr=1Y(Qr)+ H™(Qr)= H'(Qr)  (22)

where Qg is the adjacent cell variable and H*(Q) a
boundary flux function which satisfies the boundary con-
ditions, In other words, the numerical flux Hpr must
equal the physical flux H* at the boundaries. E.g. for
a solid wall, enforcing acro normal velocity, the fluxes
become:

0
p(Qp).ns

1@ =1 p@r)ny
0

It has been shown by Deconinck et al. [22) that this
boundary condition trcatinent is a characteristic bound-
ary condition treatment in the case of a linear hyperbolic
system. For the noulinear system it is an approximate
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charactenstic boundary condition consistent with the in-
terior approximate Ricmann solver,

3.4.2 Flux Balance Meothod

As proposed by Degrez [23), one updates the variables
in 1} dnterior cells adjacent to the walls separately fro a
thoue being completely inside the mesh.

First, all fluxes throngh interior edges are computed as
usually. In order to update the variables in an interior cell
# adjacent to the wall, oune uses the flux balance cqua-
tion (6). However, the fluxes entering the cell through
its boundarics that coincide with a physical boundary
are yet unknown. Isolating the known fluxes in the flux
balance equation (3) gives:

<>’ g L/ H.al + / Hal =0
Qp o p\ON p W Mpw
(23)
with M = F.% and IQpw denoting the cdge on the do-
main boundary. After discretizing, one finds:

Q','\“ -Qp = —-gi- Z Hpr.Aspr 4+ Hpw. Aspaw

R W
(24)
Calling the first (known) summation in the right hand
side 7, and writing the equations in full whereby AQp =
QP! - QB the next sct of equutions is found when deal-
ing with a solid walk

0
i At | pwane , o
L\Q)l =7 ﬁ-; P .ny .AS[‘H (.5)
0 J

in which W denotes the flat boundary ceii bordering the
current cell P. One has now a set of 4 equations with &
unknowns: 4 unknowns in the vector AQp and the static
pressute in the boundary cell W, pw.

The fitst equation (mass conscrvation) can readily be
solved, yielding App and thus pht?, and so can the fourth
cquation. The velocity vector &' and the wall pres-
sure pw can be evalnated only if an additional equation
can be found. The flux balance method consists now in
stating that the value in P (at time step » + 1), when
extrapolated to the boundary cell W wsing the relevant
gradicnt in the cell (as of time step n), should match the
boundary condition. Practically, in case of the flow tan-
gency condition at a solid wall, the additional equation
reads

[‘7‘";'“ + (vﬁ"l'*) Afw - l’r)] Aow =0 (26)

This equation allows now to cvaluate all variables in the
interior cell P at time level n 4+ 1. However, a few points
should be emphasized:

1. when several edges of the interior cell P are bound-
ary cdges, extrapolating the variables to each of
those boundaries is impossible (it would yield dif-
ferent values to be stored in the coll P). A strategy
should be devised to handle such cases, e.g. aver-
aging the extrapolated variables over all boundary
edgus.

[

when second order space accuracy is used inside
the mesh, limiters are used to preserve the mono-
tonicity of the solution, tut obviously those limiters
should not be used when extrapolating variables to

the boundaries. "The boundary conditions would not
be matched exactly.

3. numerical experiments revealed that some underte-
laxation of the extrapolations was requested to en-
snre convergence whan second order space accuracy
was nsed inside the mesh, equation (26) becomes
then:

[i.";;“ tw (W’,‘.) (Fw - i',\)] dipw =0 (29)

with w the relaxation paramoter having & value in
the interval [0, 1).

3.5 Grid Adaptivity

In order to have sufficient resolution of the calenlated
solution in rcgions of high truncation error, locally morve
and finer cells are nceded. In the present work this was
done by a simple grid entichment technique, based on
gradients in the solution, ref. (1, 2). A given cell is refined
if the pressure, ot alternatively the streamwise entropy
gradient both weighted by the cell area satisfy

¥ple Qp o LiSelr Q0
RMS "Qnas UORMS Qg

where the gradients are scaled to the RMS vadue over the
ficld, and C is a user-gpecified threshold. The ccll area
Qp is normalized with respect to the maximum cell area
Qmax over the field. To facilitate the choice of the thresh-
old C, a histogram of the gradicut distribution over the
mesh cells is calculated as proposed in [24]). Hence, in-
stead of the threshold, the fraction of the total number
of cells to be refined is given as an input for the refining,.
Furthermore, a preliminary view of the refined grid can
be obtained by plotting the grid (while connecting the
gravity center of all cells satisfying condition (28) to the
middle of their edges according to the refincment strat-
egy described below). ‘l'his view can help to tune the
threshold value C in i finer way without having to spend
large amounts of computational time in ovder to set up a
new datastructure associated with the refined grid.

>C (28)

A cell is refined by connecting its gravity center with the
middle of cach edge (fig. 7a and 7b). If the interior cell
to be refined lies next to the computational boundary,
the boundary ceil 18 spht as well, whereby the newiy cre-
ated boundary cells have the same boundary condition
as the original cell. If some of the neighbouring cells are
not refined, new vertices have to be created along the re-
fined edges, which increases the number of vertices of this
ncighbour cell. The conscrvative variables in the newly
created cells are copied from the original cell P.

L
X

Fig. 7s: Refinement in the interior domain.

The present refinement strategy may lead to non-smooth
grids, but has the important merit to limit the remesh-
ing zone to exactly the region targeted by the refinement
criterion.
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Fig. Tb:  Reflinement next to a domain bonndary,
} Anyhow, the non-smoothness of refined grids attects the
i solution gquality dramatically. Especially when several re-
+ v ' () € o
! finements are performed, unaceeptable grid icvegularitios, 1.2: Cell Levels
. called "spiders”, appeat. “Spiders” ocent in a cell which 1,2 Vertex Levels
has not yet been refined in the previons refinements while
sotue of its neighbours did. Counccting now its gravity . .
center with the middle of each {!) of its cdges when re- Fig. 10:  Assigning levls (o the wew cells and vertices
: fining the cell, leads to the creatior. of » "spider” (fig. §)
: consisting of cells with an odd shape, . o
On the other hand, in order to avoid islands and crecks
; of non.refined cells and a too large dif¥erence in cell size
between a cell and its neighbours, Lhe following mles ave
applicd after the refinement is finished:
P 1. A cell is to be relined additionally when ail of its
S b * neighbours have a higher level (fig. 12a).
: ® 2. A cell is to be refined additionally when all except
3 one of its neighbours have a higher level (fig. 12b).
® 3. A coll is to be refined additionally when the level
% difference hetween the cell itself and one of its neigh-
' hours exceeds one (fig. 12¢). Fig. 12d shows how it
; 'ig. 8:  Generation of a "spider”. is refined.
t
: . This is cured by introdncing level dependent refinement.
! - ‘This involves assigning a level to each grid cell and cach
d grid vertex. A cell is then refined as if all of its neigh-
bouring cells have the same level and no “spiders™ aceur
(hg. 9).
¥
Fig. 9t Level dependent refinement.
The level of all cells and vertices of the starting grid is
cqual to 1. Fig. 10 shows how the levels are assigned after
: refinement of a cell. Storage of the grid cell levels is nat
; % to be seen as a drawback since these levels will be needed
: for a future wmultigrid implementation.
: ; Pusthermore, before the relinement starts, some flagged
H : cells for refinement loose their flag again in order to avoid
i R isolated refined cells and spits of refined zones into non- . . .
E ; refined zones. The algorithm devised for this turns off Fig. 12b: All neighbours except one are at a higher
the flag of refinement of a cell if at least all but one of its level.

neighbours wili not be refined, fig. 11 Obviocusly, several
; scans will be needed before the above rule will be fully Again, several scans of a refined grid are needed to sat-
¢ satisfied. isfy all the rules, specially when there are deep creeks.




F] = Flag for refinrement

K = Flag to be deleted

after the a prior
smoothness check

Fig. 11: Rules for avoiding islands and pits o refined cells.

Fig. 124: Final refinement.

These a pricti and a posteriori scans of the mesh to be
adapted decrease the precise control on the regions where
the grid is to be refined, but the smoothness of the grid
is enhanced considerably. Finally, one of the main rea-
sons to nse a nested refining as described here instead
of a complete (solution adaptive) remeshing is the future
implementation of a multigrid acceleration technique.

3.6 Results

This subscction presents the results obtained from a cal-
culation on a 2D supersonic staggered wedge cascade.
This test case, for which an analytical solution exists was
proposed by Denton [25); the upstrcam Mach number is
1.6 and the incidence is 60°. The geometry of the prob-
lem is given in fig. 13 while the isentropic Mach number
distribution on the profile predicted by the analytical so-
lution is shown in fig. 14. Comparisons will be made with
the results of the computation by Holmes [26).

‘The computation was done using a Van Leer approxi-
mate Ricmann solver, [18]. In order to perform the time
intcgration a point Gauss-Scidel relaxation technique is
used, sce ref. [3]. Van Albada’s flux limiter was applied

T . e e

The computation was started on an initial mesh contain-
ing 154 cells as shown in fig. 15. Note that the mesh
was copied twice in this figure in order to achieve a bet-
ter visual impression of the cascade. Refining the grid 5
times on basis of the velocity projected entropy gradients
in cach intermediate solution, the final mesh contained
9333 cells, fig. 16.

As can be seen in fig. 17a, the isentropic Mach number
distribution obtained from the final grid hardly exhibits
any oscillation. However, note that the dip in the distri-
bution in the lower right corner of the figure is due to the
fact that the impinging shock in point A of the s/edge
is not perfectly cancelled by the expansion wave in the
same point. This is presumed to be caused by round-off
errors in the specification of the geometry. Comparison
of fig. 17a with the result by Holme: [26] as given in
fig. 17b reveals clearly the monotonic character of the
present scheme. Holmes’ result however does not show
the dip in the lower right corner of the figure. Both meth-
ods have difficulties in predicting the exact value of the
isentropic Mach number after the expansion wave in point
13 of the wedge.

Conparison of the isentropic Mach lines obtained with
the two methods shows again that the cancelling of the
impinging shock and the expansion shock in point A is
not complete with the present method, fig. 18a and 18b.
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Fig. 13:  The Geometry of the Problem.
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Fig. 14: The Analytical Iseatropic Mach Number Distribution
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Fig. 16: The Final Mesh (9333 Cells).
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4 RECONSTRUCTION
ALGORITHMS

4.1 Introduction

The estimate of the solution variables at the cell inter-
faces based on lincar extrapolation given by eq. (10) be-
comes inaccurate for non-linear functions and the idea
proposed by Barth (7, 8] is .o perform a higher order ex-
trapolation which is still exact for polynomial functions
q(z,y) of higher degree over the domain . In turn,
this higher order extrapolation will allow for more ac-
curate flux evaluations at the cell interface. A variant of
Barth’s reconstruction algorithm based on zero-mean ba-
sis polynomials {Zero-Mean Higher Order Reconstruction
or briefly: ZM-HOR) is presented in this section together
with a new reconstruction algorithm using basis polyno-
mials with a zcro-value at some reference point of the
cell where the solution is to be reconstructed. In general,
this reference point will be the gravity center of the cell
(GC-HOR). The sccond algorithm is believad to be com-
putationally less involving since less inertial moments are
to be computed.

Note that solution reconstruction is just a way of interpo-
lating a discrete set of given point values or mean values.
Other interpolation techniques can be devised such as in
Harten [16] whereby the derivatives of a truncated ‘Taylor
series expansion are determined by stating that the mean
of this series in cach support cell must equal the respec-
tive given discrete mean value. llaiten ako developed
the GC counterpart of this algorithm.

4.2 ZM-HOR-Algorithm

The aim is to represent the discrete solution Q in each
cell P by a polynomial function Q(,:‘)(z,y) of degree k
where k>1. The discrete solution value ap assigned to
cell P is not related to any reference point of the cell,
it is supposed to be the mcan of the solntion distribu-
tion over the cell whereas the notation Qp denotes the
discrete solution value at some reference point Fp of the

cell P, This reference point is in gencral cell P's gravity

center fg,. Furthermore, the function Q(,f') has to satisfy
the following requirements, fig. 19:

e it must conserve the mean in the cell P, In other
words, the mean value of Q(P) over the cell area Qp

must be equal to the discretized average value Q.

assigned to cell P:

0.=.1 M 40 = < O SF
QP_QP.//;PQ,,.dQ—<Q,,(i')> (29)

¢ it must represent polynomial functions of degree
r<k exactly over the whole cell area. In this case,
the reconstruction Q*) over the complete domain
will be continuous across the cell edges. If r > &
then discontinuitics across the co" edges are allowed.

Note that cell P can be either an inter.. . -ell or a bound-
ary cell.

]

‘O

X\.

Fig. 19: Recpresenting the solution in cell P with a
polynomial function.

In the following, the origin of the coordinate system is
always translated towards some reference point 7p asso-
ciated with cell P. The effect of round-off crrors in the
implementation is attenuated duwe to this translation of
the coordinate system.

Conscrvation of the mean is met if Q(,f) belongs to a func-
tion space Vi (2p) with a basis of zero mean polynomials
defined by:

F=({Fi,(H:0<i+3<kand ¥ € Qp)

where ¢ and j are always positive and

P _ 1 4 for 3 =j =0
Wilf) = Arp. AU;’ = IO%P foro<itich
(30)
with
AZP = ZT—-—ZIp (31)
Ayp = y-—y»r (32)
PP . _1_/ Az%h.Ay). dQ (33)
oJ Qp p
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4.2.1 Darth’s Version

Barth [7, 8] proposes the following form for the recon-
struction polynomial Q(,f)(f“) in the cell P:

i+igk
Q(;)(;) = Z Vii . Fi(F)
Vhy=0 ’
= VF (34)
with
V=[Voo - Vij - Vo.k]T (35)
and

F=[Fo,0(F) -+ Fij(F) -+~ Fou(®]" (36)

The expression V.F is the scalar product of the two vec-
tors; i.e. the sum of the products of their corresponding
components. Note also that the coordinates of any vector
T are given in a normalized coordinzte system related the
cell P,

Barth suggests further the following form for the coeffi-
cients in the vector V:

V=WQ 37)
where
Wo:& Wo:;o’ e WS
W' wWweE oo W/e
w=| ¥ ¥ 10 (38)
Woi Wep - W%
and
— = = - T
Q= [Qm QR, QR,] (39)

in which W.E dcnotes the weight assigned to th: support
cell R when computing the coeflicient Vi, v the recon-
struction polynomial in cell P. ‘The subscript u gives the
number of cells present in the support for ccll P. The
support is a set of cells in the neighbourhood of celi P
The array Q coutains the discrete solution averages in
each support cell.

The weight factors W,{; can now be determined by requir-

ing that cach of the zero mean basis polynomials F, ¢(¥),
with 0<s 4+ t<k, must be represented exactly by the re-
construction algorithm independently of the local grid
shape. In other words, the right hand side of eq. (34)
must match exactly with cach basis polynomial F, ()
over the cell P if F, (F) is specified as exact cell aver-
ages < Fo () >F and < Fu (7) >® in the cdlls P and R
respectively:

F(f)= A . F(? (40)
where A is now a matriz whose rows contain the coeffi-
cients A} (0<i+j<k and 0<s + t<k) to reconstruct the
corresponding basis polynomial F,(f) in the left hand
side of ¢q. (40):

O:g Ao.o Ve A0.0

As Mg o Agy
A= . ' (41)
| A0s AYs - AQL

It is easily seen that eq. (40) is satisfied if

A=A (42)

where A is the (m x m) unity matrix with m the number
of coefficicnts in a two dimensional peivnomial of degree
k:

m = (k+l)é(k+2) (43)
Knowing that one is reconstructing a known function vec-

tor F(7) and using ¢q. (37), this results in the following
set of systems of equations:

wF=a (44)

or
[F".(w)"=a (45)
whereby the matrix ¥ contains the mean < F; () >®

of the known basis polynomials over each support cell R
with 0<i + j<k:

< So st ¢ Fo >k < Fox >k
< Fop 5P < Fio>R < Fox P
F= . . .
< Foo >R < Fyg >R < Fox >t
(46)

By construction the elements of F only depend on geo-
metrical characteristics of the support used for the recon-
struction in cell P. Therefore, also the weights obtained
as a solution of eq. (44) are only geometry dependent.
Eq. (45) represents a set of m systems of m equations
with n unknowns where m is given by eq. (43) and n is
the number of cells R taken into the support. The first
system of eq. (45) reads while taking into account that

<Foo>B=1,VR:
) Wop =1 47)
{3

and

Ywh=0,0<itj i<k (48)
R

‘This reduces the system (44) to:

Wi=4A (49)
in which the matrix I is given by
IﬂhP IR"P e IRhP
D
= 0 (50)
&7 I

where I,-‘.z'P is the inertial moment of order (i,7) nf the
support cells & with respect to the reference point i'p of
cell P:

rRp _ 1 i AL
I} = oy / o Aty Ay, dQ (51)
Remark that I:,',P =1, VR. To be able to solve eack sys-

tem of equations exactly in (49}, the number of support
cells 2 should be taken at least equal to m. The selection
of the cells R needed for the algorithm will be discussed

in a later section.
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As 2 is at least equal to m, each system of eq. (49) is an
underdetermined linear system of equations. They cau
be solved using a modified Gram-Schmidt algorithm with
colnmn pivoting, sce ref. [27). The arbitrary constants in
the general solution of eq. (49) can be determined by im-
posing additional constraints on the weights W. j+ As we
want now the reconstruction to be as insensitive as pos-
sible to noise in the given dats, the norm of the weights
must be minimal:

Z (W.-':.-)2 must be minimal (52)
R

for 0<s 4 j<k. In rel. [27)], it is shown that the least
squates problem (52) is equivalent to solving an overde-
termined system of n equations with n = m unknowns
(the atbitrary constants in the general solution). A least
squares solution of the system can be obtained using
again the modified Gram-Schmidt algorithm mentioned
above and is then inserted in the general solution of

eq. (64).

4.2.2 Present Version

The version of the ZM-HOR-Algorithm presented here
differs from Barth’s version in two manners. First, no
local coordinate transformation is performed towards a
normalized system. Secondly, in this approach, the re-
consfiuction is seen as separated into a constant part
equal to the given cell average and a part representing
the higher order terms:

QP (A =Qp+[V.F - Vo0.Fpo(®) (53

where V is again the vector as in eq. (34) and (35). In
other words, the term V0. Fo,0(7) in ca. (34) is replaced
by the given cell average. Equation (53) can therefore be
rewritten as:

PN =Qp+V.F (54)
with

Vo= [Vip Vig- Voul” (58)

and

F=[Fof - Fij(® - Foui®)T  (56)

Note that the elements with subscript (0,0) are no longer
present in eq. (55) and (56).

As in Barth’s version, the coefficients in V in eq. (54) are
viewed as a weighted sum of the given discrete averages
in the support cells:

V=WQqQ (57)
where now
wis whe oo owlh
wi W:" . wha
w=| ° 20 (58)

Ry Ry R
Wm Wok wo.:

Again, the weight factors W,"' with 0 < i+; < kcan
now be determined by requiring that each of the zero
mean basis polynomials F, (), with 0 < s 4 ¢ < k, must
be represented exactly by the reconstruction alsoritl\m
independently of the local grid shape.

F(A =<F@>" +K.F® (59)

where, similar to Barth’s version, A is now a [m x (m -
1)} matrix defined by:

iy g a8
i- Ay Aze Agin (60)
Aé:* Aé:: Ao x
Eq. (59) is satisfied over the whole cell P if
0
A=|:]p |=B (61)
0

where A is now the [(m — 1)} x (m —1)] unity matrix.
Knowing that one is reconstructing a known function vec-
tor F(F) and using eq. (57), this results in the following
set of systems of equations:

WF=B (62)

whereby the matrix F remains the same as in eq. (46).
Note that the con\ponents of ¥ are still related to some
reference point rp associated with the cell P.

Since < Fo,0(F) >® = 1, the first system of eq. (62) leads
now to:

Y wh=0 0<i+jigk (63)
R
This reduces the system (62) to:
W.iI=8 (64)
or
1ITw?=p" (65)

where the matrix / is defined in eq. (50). Equation (65)
represents a set of m — 1 systems of m equations with n
unknowns where n is the number of support cells and m
is given by eq. (43). Solving this set of systems is done
in exactly the same way as in Barth’s version except that
the number of systems to solve is reduced by one.

4.2.3 <Conservation of the Mean

We will now investigate to what cxtent both versions (34)
and (54) of the ZM-HOR-Algorithm conserve the mean
of a solution function Q(F) specified as a discrete szt of

cell averages Qp whereby:

Qp=<Q>" (66)

As zero mean polynomials are used, it follows immedi-
ately that the mean of eq. (54) is equal to the given cell
average. This means that the present version always con-
serves the meau even if the degree of the function to re-
construct is beyond k.

Taking the mean of Ba:th’s fonmulation of the reconstruc-
tion polynomial in eq. (34), one finds:

<QPM > = Voo = Y WHQr (67
R

Let us now expand Q in a Taylor series and average it
over each support cell R. Therefore, two vectors are now
introduced:

RP _ [{RP . R.P
L= [Ic,a R AR Fi (68)

containing the inertial moments of cell R of exactly or-
der 1 with respect to the reference point 7p of celi P and

[
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oaf=| () .c';Q.".m,.,. (69)
(1) e

p 3'Q
0Qicrm,m = Bai=mayn

with

, 0<m <l (70)

P

the derivatives of order { of the function Q at the reference
point 7p of ccll P. One can then average the Taylor serics
expansion of Q@ and Qg around the reference point 7p
giving (note that the operators < - >F and < - >R are
linear):

Qr = <Q>°
= Qr +§;ﬁ < {[(?—i‘»)-f’]'Q}P >P
= Qr+ 2% X'_:olflf:.,m-a(?f—m.m
= Qr+) JIPP0af (1)
and -
Qr = <Q>"

- Qr +iz]‘! < {[(r‘—rp)ﬁ]'q}p SR
=1 N

) 1 [
= Ql’ < Z F z I(E',’;._,,ran}:-m,m

l=1 =0
[ 1 p

= Qr+) i oql (72)
t=1

where Qp = Q(7r) and Qr = Q(Fr). Inserting the above
equation in eq. (67) while using also eq. (48) leads to:

k
<OPM> = or+ Y h WA (1 0af)

+ Ot

k
Qr+ Zili (}: wo',‘o.xf'-”) .aQf
R

T \
+ o(*hypgH (13)

k41

‘The expression DS stands for space derivatives of or-

der k4 1 of Q and b is a typical length associated with-

cell P; e.g. h = VIp. Knowing that lis never zero in the
summation of eq. (73) and applying eqs. (49), one finds
that the summation over ! is equal to zero and one gets
using eq. (71):

<P >°

Qp + O+ Dt
Qr + 0Dy

7-15

Hence, Barth’s version of the ZM-HHOR-Algorithm only
conserves the mean to order A, even if the given (unc-
tion Q were a polynomial of degree r<k. In that case,
the mecan of the constiruction would exactly equal the
value @ p of the function Q in the reference point of cell P.
As the reference point is in most cases equal to the cen-
troid of the cell and as Q is not always linear, Qp is in
general not equal to Qp. However, conservation of the
mean will be established in the limit of A—0.

4.3 The GC-HOR-Algorithm

‘The discrete solution Qp of cell P is now supposed to
be given at some reference point ¥p associated with the
cell P:

Qr =Q(p) (74)

In practice, the reference point will coincide with the
gravity center of the cell P.

‘The concept of a gencric reference point for the recon-
struction algorithm is also very uscful for studying cell-
vertex schemes for which the discretized solution is in
general not stored at the gravity center of the associated
control volume. However, in the frame of this contribu-
tion, the ideas are only fixed on cell-centered storage.

The aim is again to represent the solution in each cell P
by a polynomial function Q(:)(i-') of degree k where k>1.
The cell P can either be an interior cell or a boundary

cell. The function Q(,f) has to satisfy the following re-
quirements, fig. 19:

o its value at the reference point Fp(zp,yp) of ccll P
must be equal to the discrete solution value assigned

to the cell P: .
QP(7r) = Q» (75)

¢ it must represent polynomial functions of degree
r<k exactly over the whole cell area. In this case,
the reconstruction Q*) over the complete domain
will be contiinous across the cell edges. Ifr > &
then discontinuities across the cell edges are allowed.

Again, the origin of the coordinate system is always trans-
lated towards the reference point ¥p of the cell P in order
to reduce the influence of round-off error in the algorithm.

Requirement (75) is met if Q(,f) belongs to a function
space Vi (Qp) where its basis is given by

G={Gi;(f): 0<i+j<kandFeQp}.

where now the basis functions G;,;(f) are given by

Gi;=Azh. Oyh: 0<i+isk (76)

As for the ZM-HOR-Algorithm, the reconstruction poly-
nomial is given by a linear combination of the basis poly-
nomials:

FH=V.G (17)

where the vector V 1s given by eq. (55) and the vector G

is similar to the vector F defined in eq. (56) but uses the
non-zero mean basis polynomials G ;:

G=[Gro® - Gij(A - Gou(MT  (78)

Also here, the coefficienis in the vector V in eq. (77) are
written as a weighted sum of the given discrete values
Qnr in a set of cells in the neighbourhood of the cell P:

V=W.Q (79)
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in which

T
Q=[Qr, @r, - Q) (80)

A similar reasoning as for the ZM-HOR algorithm is now
followed leading to the next set of systemns of equation
for the reconstruction weights:

WD=4 (81)

in which the matrix D is defined as:

Gd Gd Gd )|
Go3 Gia -+ Gaa

D= . 1,0 . 0,k (82)
Gos Gf‘.s Gé‘.:

with G” = G,;(Fr) the point value of a basis polyno-
mials at the reference point of a support cell . Remark
again that eq. (81) gives the following equation for recon-
structing constant basis polynomial:

STwh =0foro<its<k (83)
R

The set of systems (81) is solved just as it was solved in
the case of the zero mean polynomials while adding the
constraint of minimal norm.

4.4 Example

Suppose one wants to perform a linear reconstruction us-
ing the GC-HOR algorithm in the cell P of a regular mx-
thogonal rectangular mesh with mesh size Az = Ay =1,
sce fig. 20. The reference point of each cell is taken
at the gravitv center. The support for the reconstruc-
tion is chosen to contain the cell P itself and its 4 direct
neightours.

W

Fig. 20: Support for Linear Reconstruction on a Reg-
ular Mesh.

The matrix D in eq. (81) becomes then:

1 0 0
1 -1 0
D=1 0 1 (84)
1 1 0
1 0 -1

The first column of D cotresponds to eq. (83), the second
column gives the coefficients of the weights for the term
in y and the third column gives the coefficients of the
weights for the term in z. The first row is related to cell P
while row j is related the neighbour j~1 for 5 = 2,3,4,5.
The right hand side of the system is given by:

0 1 o] (85)

RHS:[O 01

The solution W of the system is casily obtained:

0 -1/2 0 1/2 0]
w=|o D 1/2 0 -1/2 (86)

in which the first row gives the weights contributing to
the term in y and the second row gives the weights con-
tributing to the term in z.

‘The reconstruction of the solution Q in cell P can then
be written as:

Wey) = Qr+ BNz

-+9?——-9i(y— vp) (87)

From which it is found that the gradient of Q‘ ) is given
by the classic central approximation formulas.

As the value of a linear function in the gravity center of a
ccll is also equal to the mean value of the linear function
over the cell, it can be shown casily that the ZM-HOR-
algorithm gives the same reconstruction weights when
performing a first order reconstruction.

4.5 Caveat

If one takes & support as shown in fig. 21 in order to per-
form a second order reconstruction, then one finds that
all coefficients in the matrix A of the weights contribut-
ing to the term in zy are zero. Note thal always either
Az or Ay is zero for each of the elements of the support
depicted in fig. 21.

(o]

NN
o= Tjwiw
N
o)}

Fig. 21: Erratic Support for Quadratic Reconstruc-
tion.

The product of both will therefore always be zero, see
also eq. (81) with s = ¢ = 1. As in the RHS onc finds
a unit block matrix, the equation with ¢ = j = 1 will
be contradictory since it states that 0 should equal 1.
Therefore, second order polynomial reconstruction on a
regular rectangular mesh always requires taking elements
along the diagonal of cell P into the support.

Note that this problem also occurs when using the ZM-
HOR-algorithm. The mean of Fy,1(x,y) will be zero over
each of the support cells since Fy,; is an uneven function
being integrated over a domain with symmetric bound-
aries.

In general, one can say that a contradictory system is
expected if there are not enough cells in all space di-
rections. A contradictory system is avoided if, sec also
eqs. (49),(64),(81):

rankIT=m or rank D7 =m (88)

where m is given by eq. (43). The condition can be satis-
fied by choosing an oversized stencil which obviously in-
creases the computational load. In this work, the stencil
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is in general oversized by 2. In ref. (16}, Harten proposes
other techniques for selecting the support in order to
obtain a sufficient number of lincarly independent equa-
tions. lowever, these techniques are all strongly linked
with the chosen reconstruction algorithm.

4.6 Accuracy

Theorem 4.1

If a given solution function Q varies smoothly and if Q is
spectfied as a discrete set of cell averages in each cell, then
the ZM-HOR-Algorithm given by eq. (54) approximates a
given solution function Q to order h**! with k the degree
of the rcconstruction polynomials,

Proof of Theorem 4.1:
As Q varies smoothly, onc can then average the Taylor
series expansion as given in eq. (72) using the definitions
in eq. (68) and (69). Inserting the expression of eq. (72)
for Q@ in cq. (54) yiclds:

QP)(F) = 61‘

i<k

+ r.,,f i (Z wR .t ") oQf

+y>0
+ O(h*“).Df,*‘

Let us now define the vector Fy as:

= [F(_o o Fiemm Fl’.‘] (89)

i.c. the vector containing all basis fanctions of exactly
degree . _

Using eq. (64) and expanding also Qp while truncating
the serics at ! = k, one gets:

k
1
&'® = Qr+y piToqf
=1

k
1 o 3 .
+ ,E 7F10Qf + O(h+2). D!
=1

where DEY! stands for space derivatives of order k + 1 of
Q and A ise typical length associated with cell P; eg.
h = VSOp. The m*® element of the vector Cf is given
by:

Clmm = (z=2p) "".(y~vr)" (90)
Remark then also that due to eq. (30):

Fi=¢,-11'* (91)
The veconstruction polynomial reads then:
F p :
QM =Qr +Z FCT-0Qf" + O(r*+?) Dt

As the Taylot series expansion of Q(F) around the refer-
ence point 7p is given by:

QM
k
+ ; % {[(r— ?p).e]' Q}P

7-17
= Ql’ + Z ] E l—m.man’-.-m.m
=1 m=0
+0(h"+’\ AR
= Qp +Z"c, Q7 + ot ). pEH
one finGs that:
(*)"':) Q(':') + O(hk+!) Dk+l (92)
0

A similar reasoning for Barth’s version of the ZM-HOR-
Algorithm leads tc the next theorem:

Theorem 4.2

If a given solulion function Q varics smoothly and if Q s
specified as a discrete set of cell averages i cach cell, then
the ZM-ITOR-Algorithm given by ¢q. (34) approximates a
given solution function Q to order K51t with k the degree
of the veconstruction polynomials.

We will now proof the following theorem concerning the
accuracy of the GC-HOR-Algorithm:

Theorem 4.3

If a given solution function Q varics smoothly and if QQ s
specificd as a discrete sel of cell averages in each cell, then
the GC-HOR-Algorithm given by cq. (77) approximates a
given solution function Q to order h*'' with & the degree
of the reconstruction polynomials.

Proof of Theorem 4.2:

In a similar way as for the ZM-HOR-Algorithm, one per-
forms a Taylor scries expansion around the reference 7'p of
Qn in the expression for Vi, in eq. (77). Using the prop-
erties of the weights W,° expressed by cq. (81) and (83),
one finds again:

QWA = Q) + o). DY (93)
u]

4.7 Results

In the following, some reconstructinns of known polyno-
mials using the GC-HOR-algorithm are shown. Similar
results were obtained with the ZM-HOR-algorithm. A
numerical error study on the higher order reconstruction
algorithm was carried out whereby the error between the
reconstruction and the exactly known polynomial is ex-
amined. The next polynomials were rather arbitrarily
sclected to petform the numerical error study:

P(z,y) = 22 + Jy + 2
P(z,y) = -: + zy
-7 — ¥ +
Py(zy) = FH2t + ny’ s (94)
- %,!y’ - tzy + 10
Pz,y) = ' + 164 + 82y
-3z + 10

Figures 22, 23, 24 and 25 show an isovalue plot of the
four polynomials on a given rectangular domain.

‘I'hree difterent meshes were nsed on the domain to re-
construct the previous polynomials using the Non-Zero
Mecan HOR-algorithm while taking the gravity center as
a reference point: a) a regular mesh (fig. 26a), b) as a)
but twice as fine (fig. 26b) and c) an irregular mesh with
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Fig. 22: Isolines of Test Polynomial P1 for the GC-HOR-Algorithm.

Fig. 23: Isolines of Test Polynomial P2 for the GC-IOR-Algorithm.

the same number of poinis as in a) but they are moved
randomly (fig. 26¢).

The values of the reconstructed polynomials were them
compared with the exact values of the polynomials. The
grapls 27a and 27b show the Ly-norm of the crror made
all over the domain as a function of the order of the recon-
struction and this for each of the four given polynomials.
The l3-norm is given by:

Lyere = \/ f /ﬂ Q% - Q)2.aq (95)

in which Q(,f) is the reconstructed function, Q the given
polynomial function. Eq. (95) is discretized by cover-
ing the domain with a fine point cloud. ‘T'his cloud is
triangulated and the error is assumed to vary lincatly in
cach triangle. The integral over the whole domain is then
the sum of the integrals over each triangle. As about 13
points were taken in each grid cell, the discretization er-
ror will be relatively small (typically 0,1 %).

Comparing the L;-norms in fig. 27a for the coarse and the
fine mesh, one can conclude that the reconstruction error
is, as expected, roughly of order O(A**'), if r > k. This
dependency ou the grid spacing is valid for all polynomial
degreces r larger than &. Note also that the error is hardly
aftected by the grid irrcgularity, as can be deduced form
figs. 27a and 27b. ['rom these two figuses, it also obvious
that the reconstruction crror is indecd increasing for a
given k when r is increasing. .

fn order to sec how the errors are distributed over the
domain, the relative Lz-norm of the difference between
the two functions over cach individual cell is computed
as follows:

b I @ -Qran
Lo VIl Qa0

‘T'his equation is discretized in exactly the same as eq. (95)
but now only over cach cell individually.

Making a plot of the relative [z-rorm of the error would
only produce random noise if r < k. Therefore, it makes
only sense to examine the crror distribution over the do-
main when r > k. Figures 28a, 28b and 28c show the
relative error distributions for the polynomials P2, P3
ana ’4 when usiog a fivst order reconstruction on the
irrcgular mesh. It is observed that the largest errors oc-
cur where the isolines of the polynomial exhibit a high
curvature or where the distance between the isolines is
varying strongly. The effect of the terms of higher degree
in the polynomials P;, P5 and Py is stronger in these loca-
tions; therefore, the linear reconstruction cannot match
anymore with the imposed polynomial and the error in-
creases. ‘The same behaviour is seen on the two other
meshes and for the higher order reconstructions as long
asr > k.

Finally, fig. 29a, 29b and 29¢ present the lincar, quadratic
and respectively the cubic reconstruction of the function
P5 on an irregular mesh. These figures demonstrate the
increasing quality of the reconstruction with increasing
reconstruction order. Again, an exact match is found
when the order of the reconstruction cquals the degree of
the polynomial.

4.8 Remark

Solution reconstruction is just a way of interpolating a
given set of discrete values. Ilerce, it is clear that, besides
polynomial basis functions, other basis functions can be
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Fig. 24: Isolincs of Teat Polynomial P3 for the GC-HOR- Algorithm.

i

Fig 25: Isolines of Test Polynowial P4 for the GC-HOR-Algotithwm.

used for solution recomstruction such as trigonometric,
byperbolic or Bessel functions. Unlike in spectral meth-
ods, the interpolants need only to be cellwise continnous;
i.e. discontinmities are allowed acvoss cell interfaces.
Another interesting interpolation technique was preposed
by De Meyer ¢t al. {28, 29], whercby a mixture of trigono-
metric and polynomial functions is used. Rescarch is still
to be done to generalize this technique to finite volume
schemes in multiple dimensions.
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Fig. 26b: Refined Regular Mesh for Testing the GC-HOR-Algorithm.

Fig. 26c: Irregular Mesh for Testing the GC-HOR-Algorithm,




e Regular Mesh
‘ esssses: Fine Regular Mesh

e erwenccpocansn

Y U0 . WO N S .
R [ AW S

S P, !

_8 _4 .......... :u ........ ;‘ ........
Y T Ll ook ;. .................. [RTTTELLLE
Y : s

e = —
1 2 ) 4

Fig. 27a: Graph of Lz-norm of the Reconstruc-
tion Error, Regular and Refined Mesh
(GC-HOR).

0‘ Irregular Mesh

R [T o, desecsacod

2 |racdemannann RS
k
\
N
RN LAEAL \EELEED ) DIARLINED SEREE SR EE L
3

I N NN VDN W

5 hacdeueen

73 R S, CTA W

1 2 3

4 k

Fig. 2Tb: Graph of Lo-norm of the Recon-
struction Error, lrregular Mesh (GC-
HOR).

Fig. 28a: Error Distribution for 1** Order Reconstruction of P; (GC-HOR),

cellwise L3-norms.
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5 HOR-SCHEMES

Thiz section discusses 2D upwind finite volume schemes
applying higher order polynomial solution or flux recon-
struction for linear and nonlinear convection problems
with a source term. As yet, no atiention will be paid
to the monotonicity of the schemes nor will stability be
taken into consideration.

5.1 Linear Problem

Consider the 2D lirear convection equation with source
term to be solved in a domain Q:

% 439 =S(s,9 (97)

where @ is 2 constant convection vector and g the solu-
tion of the analytical problem. Integration over €2 gives:

/ / % 4 4 / /ﬂ iVqdl = / /; S(q,7).d  (98)

Discretizing the domain by partitioning it into smaliler
cells P of arbitrary polygonal shape and applying Green’s
theorem to the second term in the lefi hand side, eq. (98)
can be written as:

//n,. dn+}:f .dq

- ZP; / /n _Stq, 740 (99)

whereby 3, Qp = @ and 7 is the outward unit normal
vector at the edges of the cell P while the contour integra-
tion has to be carried out in counter-clockwise direction.

7-23

Eq. (98) will be solved exactly if the next equation is
satisfied VP € Q:

p t Mnpep ap

Using the results of approximate Riemann solvers, an up-
wind space discretization of the left hand side of eq, (100)
with a first order accurate time discretization is obtained
and the scheme becomes {after division by Qp):

+1 -
?LA: e [D(E.Vq)] @ = [D(S)(Q™) (101)

with

[p@va)]@ =
e DY (chr @Y +app-QR)) -Bec(102)

the space discretization, D(S) an as yet undefined dis-
cretization of the source term $ and

alx = max(d.#,0) (103)
app = min(@.7,0)

from which it follows that

£ -— e o
app +app = 6.7
Remember that @ is a constant vector. Qp is the mean of

the discrete solution distribution over the cell P at time
level n.

Fig. 30: Gauss points O on the edge between the cells
P and R.

The value of Q%) and Q{¥) is the value of ¥** order
polynomial reconstruction at the Gauss poinis O on the
cell interface between cell P and its neighbour R, seen
from cell P resp. cell R (see also eq. (54) and fig. 30):

&) = T+ (Wa"), FP(fo) (04)

QW = Qr+ (W-T)R.F”(Fo) (105)
or following eq. (77):

Q¥ = QF+(W.Q"),..G (%) (106)

QR = Qr+(W.Q"),.G#) (107)
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in which FP and F® are the vectors containing the zero
mean basis polynomials related to the reference points of
cell P resp. R:

(2 ~2p)'(y—yp) -~ IDF

‘ RAR
(z - zr)'.(y - yR)Y - I
, 0<i4y <k

Fl(
FE(P

and where GP and GF are the vectors containing the
basis polynomials for the GC-HOR- Algorithm related to
the reference points of cell P resp. R:

(z —zp) (v — yp)

(z -~ zr)' (y — &)’
, 0<it <k

m(')
G5(7)

See also egs. (30), (33) and (76). Note also that the cell P
and its direct neighbours R have in general a different
support.

Theorem 5.1

The space discretization of the scheme given by eq. (101)
and eg. (102} is order k¥ accurate on any type of mesh
wherever the solution is smooth:

[D(3:90)] (@) = <@Fe>F +ODIH  (108)

Note that in eq. (108) the symbol ¢ denotes the solution
of the exact solution of the (analytical) equivalent dif-
ferential equation [30, 12], whereas in the following, the
symbol Q stands for the discrete solution function at a
given moment during the computation.

Two proofs for this theorem are given in appendix A. A
first proof is based on eqs. (92) and (93) stating that the
polynomial reconstruction approximates a solution g(#)
to order Atkt1) D""" The second proof uses a truncation
crror analysis based on the concept of the equivalent dii-
ferential equation, see also [30, 12]. The choice of D(5)
will foillow from each of the proofs, see subsection 5.4.

“or the time being, no attention will be paid to the time
discretization which nevertheless still has an cffect on the
space discretization az well.

5.1.1 Polynomial Yreservation

Let us now investigate what happens to an exact poly-
nomial solution ¢ of degree r satisfying the steady state
of eq. (97) in Q when passing it into the scheme given
by eq. (101). If the degree of the polynomial solution
does not exceed the order of the reconstruction k, then

Q(,f(), = Q(,:‘(), = go and eq. (101) reduces to:

Q__“"_Q)_{_ + ﬁ—- Qz(ﬁ' ﬁpn) .go-Qso = D(S)

if the number ot Causs points on each edge is larger than
or equal to “1, one finds, after applying the Gauss the-
orem:

Q'f_‘f_:_: // (3.94) .42 = D(s)

As g satisfies .V = S(g,7) everywhere in 2p, this can
be further reduced to:

=ntl

ot -q 1 -
L, / [ s.na = D(s)
or
oAbl
2=k = D(S) - <87 >T (109)

The right hand side of eq. (109) will be zero if I}{S) is
an exact discretization of cell average of the source term.
This then means that the time change of the polynomial
steady state solution is zero. In other words, an exact
polynomial steady state solution of degree r is no longer
modified by the scheme (101) if the the order of the so-
lution reconstruction is at least equal to r.

Note that, in the general case, the difference between
D(S) and < S(g,7) >P is given by eq. (121) showing
that the difference is not zero. It will be zero if the source
term can be averaged exactly. This leads to the follow-
ing theorem linking polynomial preservation with higher
order space accuracy:

Theorem 5.2

f @ scheme is polynomial preserving up to dcgnec k and
if sts source term ducnuzahon is of order L* in space,
then the scheme is of order h* in space.

Proof of Theorem 35.2:
Suppose that the scheme is lower order accurate:

D(@¥g) = <aVg>" + oW)DEt!

with p < k. Note also that, in the equivalent differential
equation of a scheme, a derivative of order p+ 1 can never
have a coefficient which is larger than something of order
AP, Hence, terms like O(h’)'D"“ with p < k can never
appear.

Plugging an exact polynomial solution ¢ of degree & in
the scheme of eq. (101) would lead to:

—nd4l  —n
- 1 - : 3
QP—AI&. + Q—P-,//‘;P(u.eq) A+ 0(""1”4’;“

= D(S)

As it is supposed here that the source term is discretized
with a space accuracy of O(k*) with k < p, this becomes:

' -T
At

This is in contradiction with the starting hypothesis that
the scheme is polynomial preservmﬂ So, polynomial
preservation up to degree & imaplies k" order space accu-
racy if the source term is discretized exactly.

= O(R")DH # 0

a]

5.2 Nonlinear Problem

Remind first that ¢ stands for the exact solution of a
given analytical problem whereas Q denotes the discrete
solution at a certain moment during a computation.

Let the followirg 2D nonlinear convection equation with
source term S to be solved in a domain :

%+Vﬁmn=swn (110)

where F is some flux vector. Integratioa of eq. (110)
over (Q gives:
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/./n %%‘d“+/Lv-F(q.ﬂ-dn= //ﬂ 5(g, 7).

(111)
Proceeding as for the lincar problem, eq. (111) can be
written as:

ZP: //;.,. %.dn + 2}} f:m,, F(q,7).i.ds
- o[, s (112)

whereby 3, Qp = @ and i is the outward unit normal
vector at the edges of the cell P while the contour integra-
tion has to be carried out in counter-clockwise direction.
Eq. (111) will be solved exactly if the next cquation is
satisfied VP €

f/ﬂp%“l.daﬂ» fmpi‘(q.r*).ﬁ.da.—. //‘;PS(q,r‘).dqna)

The flux function H(q,7,7) is now defined as F(g,7).7
and can be evaluated based on the concepts of 1D pro-
jected Riemann solvers leading to an upwind space dis-
cretization of the left hand side of eq. (113) with a first
order accurate time discretization as given in the follow-
ing equation (after division by Q2p):

-+l —=n
&—A%g’i + [D(?-F)] @) = [DSNQ™Y) (114)
with

[D(V.F)] Q) = ﬁl;.zz:i{,?n.mo (115)
R O

the space discretization, D(S) an as yet undefined dis-

cretization of the source term S and Hpr a numerical
flux vector obtained using a 1D approximate Riemann
solver. The latter can be cither a flux vector splitter
(FVS):

188 = HH(Q$), 7o, ipr) + H™ Q). 7o, 5pR) (116)

or a flux difference splitter (Roe-type splitter, [19]):

HEp =
% [H (Qg‘(),.i"o.ﬁpu) +H (Q(,;(’).Fo.ﬁ}’n)]
- % |Cm(Qm. ﬁPR)' . (Q(};()) - Q(;é) (117)

where the value of Q$¥) and Q'¥), is the value of k** order
polynomial reconstruction at the Gauss points O on the
cell interface bietween cell P and its neighbour R, seen
from cell P resp. cell R, see also eq. (104), (105) , (106)
and (107). The symbol Cm stands for the Jacobian %%

taken at the Roe-averaged state Qm (Q(;?,,Q(:(),). Note
also that for both the egs. (116) and (117) the following
is valid:

I?PR(Q» Q,T‘) = H(Q) f, ﬁPR)

It will now be shown that the space discretization of the
scheme given by eq. (114) and eq. (115) is order A* ac-
curate on any type of mesh for both flux vector and flux
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difference splitting schemes. Note that this will only be
valid where H, it, H ~ and Q are s.anooth functivns. As
for the lincar problem, no attention will be paid to the
time discretization which nevertheless still has an effect
on the space discretization. -

5.2.1 FVS-HOR-G3cheme
Theorem 5.3
The space discretization of the scheme given by eg. (114)

and eq. (116) is order h* accurate on any type of mesh
wherever the solution is smooth:

[D(v.ﬁ‘)] (@) = < ©.F>P +orY DDy, (118)

Proof of Theorem 5.3:

To proof order h* space accuracy, one studies the trun-
cation error by deriving the equivalent differential equa-
tion using local Taylor series expansions. Usirg eqs. (92)
or (93) and if the exact solution ¢ of the equivalent differ-
ential equation varies smoothly, scheme (114} with (116)
can then be rewritten as (when cartying out a Taylor
series development of H3p and Hpp around go):

[D(®.5] (a) =
ﬁl—. 3 [Ilp’fn(qo) +O(R*)DiH D),
P R ©
+ Hpplgo) + O )'D:“D},,_] Aso

1 o =

= Q—.Zle(qo,rO."m)-ASO
P R
+O(h*)DG* Dy

= é;‘-EZ[H(QPnFP,ﬁPR)
R O

k
1P
+3 ﬁC‘P(ro).i)Hf] Aso
=1
+O(W)D;+ Dy

where the definition of Cr is given in eq. (90) *vhile the
one of H is similar to the one found in eq. (69).

The previous expression for the space discretization can
be rewritten as a continuous contour intcgral if the num-
ber !gi Gauss points O on the edges is larger than or equal

1.02.

[p2.H)) @ =

'nl“ }( [H(g.7.7) + O3*+)] ds
P Jop

+0(W*) D DYy
= <V.F>P ront)Dit Dy

which completes the proof of k** ord=r space discretiza-
tion. Note also that one is discretizing mean values over
a cell even when the GC-HOR-Algorithm is used. Point
values are discretized only if the order of the reconstruc-
tion £ < 1.
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5.2.2 FDS-HOR-Scheme

Theorem 5.4
The space discretization of the scheme given by eq. (114)

and eq. (117) is order h* accurate on any type of mesh
wherever the solution is smooth:

[D(v.i‘)] (@) = < O.F > +oh*)D:H DYDYy (119)

Proof of Theorem 5.4:

Again using eqs. (92) and (93) and if ¢ varies smoothly,
scheme (114) with (117) can be rewritten as (when car-
rying out a Taylor series development of H, ¢ and Cr,
atound go):

DV.F) =
2_0‘-;. zﬁ: ; {l?(qo, 7o,iPR)
+O(W DDy,
+A(go,70,7pr) + O(WH DI DY,
+ [Cm(QOy qO)
+O(W+)D4] o(h* )i+ } Aso

1 o o
= ﬁ:;; (g0, 7o, firn).As0

+O*) D D),
5 2 Ll (g0, Fo.i
= —, l(qo,ro,npn)].Aso
20 =%
+O(W)D3*! D}y Dy

From here on, the same recasoning is followed as for the
FVS-HOR-Scheme whereby it is required that the num-
ber of Gauss points O on the edges is larger than or equal
to £2L. This brings one then to the conclusion that FDS-
HOR-Schemes arc k'™ order space accurate on any type of
mesh even if considerable grid irregularities are present.

0

5.2.3 Polynomiai Preservation

As with the linear problem, let us now investigate what
haypens to an exact polynomial solution ¢ of degre~ r
satisfying the stcady state of eq. (110) in €2 when passing
it in the scheme given by eq. (114). If the degree of
the polynomial solution does not exceed the order of the
reconstruction k, then Q(A), = Q(,:‘), = go and eq. (114)
reduces to:

&' -9 _
At
1
~ac 3 H(go.70,72R).As0 + D(S)
P 'R0
1 o
TS 5_: Z [H (90,70, firr)
R ©

r l .
+y ﬁci’ (Fo).0HT | Aso + D(S)

+O(h")DH

If the number of Gauss points on each edge is larger than
or equal to 1, one finds, after applying th» Gauss the-
orem:

==n+41 6" 1
9 -Qp 1 / ¥.£.49 = D(S) + O ) D}
A‘ QP np

from which it follows that nonlinecar HOR-Schemes ate
only polynomial preserving if higher order derivatives of
H w.r.t. to ¢ are zero and if there is a sufficient num-
ber of Gauss points. As for the lincar problem D(S)
should be an exact discretization of the source term. Note
that, in the gencral case, the difference between D(S5) and
< 5(g,7 >F is given by eq. (121) showing that the dif-
ference is not zero. It will be zerc if the sonrce term can
be averaged exactly. In that case, it will be shown here
that if a scheme is polynomial prescrving up to degree k
then it is of order h* in space.

5.2.4 Flux Reconstruction

For nonlinear problems it scems logic to recomstruct the
fluxes rather than the solution variables themselves, in
particular when ENO-reconstruction is used, see sec-
tion 6. It is expected to achieve a better centrol over
the monotonicity of ii.e scheme.

Shu and Osher {31, 14] devised indeed a Lax-Friedrichs
type of scheme where the numerical flux

FQ)=F@Q)+aQ

is reconstructed using higher degree polynomials. Tliey
presented interesting results in two space dimensions.

A shghtly different approach was brought up by Har-
ten [16] whereby the averages of the reconstructed solu-

tion Q"°°° and tlle reconstruction of the projected flux
(14:]

vector (F.iipn = HEPR° arc cvaluated over each
cell edge using an ap.p-opriate Ganss quadrature for-
mula. These edge-averaged values available from both
sides of the edge arc then wsed to solve a single Riemann
problem using a Roe-type approximate Riemann solver
rather than the number of times as would be required by
the quadrature formula. This option depends of course
strongly on the computational cost of the approximate
Riemann solver.

Harten proposes two ways of reconstructing the fluxes.
A first one consists of writing the physical flux vector
as an analytical function of the solution reconstruction
polynomial. This function is then rewritten as a kind of
truncated Taylor expansion whereby analytical expres-
sions for the space derivatives are used. The coefficients
in this expansion are such that the reconstruction con-
serves the mean. A second method uses a gravity center
reconstruction whereby the values of the physical flux
vector at the cell centroids are evaluated using the valuc
of the zero-mean solution reconstruction at those cen-
troids. The first flux reconstruction method seems to
be most appropriate for unstructured grid solvers imple-
mented on parallel computers. The second method has a
lower computational cost but requires more storage and
results in more inter-processor communication.

5.3 Discussion

From eq. (108), (118} and (119) it follows that the
schemes (101) and (114) can become inconsistent when
piecewise constant solution reconstruction is used. In
practice, piecewise constant solution reconstruction al-
ways gives reasonable results cven on irregular meshes
which indicates that the scheme is at least first order.
LeVeque [32] showed in 1D that first order accuracy is
indeed achieved on irzegular meshes. The proof in 2D is
presented for a linear scheme in appendix B and depends
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on the time discretization and the fact that the scheme
is stable for CFL-numbers which are of order A.

Eq. (108), (118) and (119) indicate that the truncation
error of the space discrelization is at least of order A",
which does not exclude that the complete scheme can
be of order A**! not only on regular meshes but also
on irregular meshes, Actually, the choice of the iime
discretization can be such that its truncation error com-
pensates the terms of order A* in the space discretization
truncation error to order h*t!. LeVeque made some sug-
gestions in this direction, while Shu [31] used a Runge-
Kutta type of explicit time stepping whereby the coefti-
cients where optimized for space accuracy and stability.
Further comments on time integration will be given in
section 5.5.

Remark also that no lower order derivatives are present in
the truncaticn error given by eq. (108), (118) and (119).
In other words, terms of the form:

Oh"YD, withr <k andp<r

do not occur. This guarantees that the scheme has no
second . .der diffusive crrors if the order of the solution
reconstruction is larger than 2. If the order of reconstruc-
tion is 1, the scheme might be second order accurate (see
LeVeque) but still have diffusive errors. This implies the
presence of the following term in the truncation error:

O(hz)'D: whereby k =1

This idea can be generalized to higher order stating that
a scheme with an (?(h*) space operator might become
O(h**") due to the time discretization while derivatives
of order k+1 remain present in the truncation error which
becomes then of the following shape:

O(h*+)ypEt?

5.4 Source Term

Eq. (108), (118) and (118) indicate that the discretiza-
tion of the source term S{q, 7¥) must satisfy the following
equation when O(h") space accuracy is to be obtained:

(D99 = < S(g, V) > + O withp > & (120)

If S is a known function of /' and linear in g then D(S) is
taken as the exact mean of the function over the cell P
with g taken in the gravity center. In all other cases the
following discretization is proposed:

B &
(D)@ = 8 [QR(F), 7] + 3 g1 057
- (121)
in which

5* (M =5[] (122)

and where the vector 38" is defined in a similar way
as in cq. (69). The derivatives in this vector take known
expressions. The following theorem is going to be proved:

Theorem 5.5
The source term discrelization given by eq. (121) satisfies
the condition (120) for higher order space accuracy.

Proof of Theorem 5.5:

One asanmes that the exact averages of a smooth exact
solution ¢ are given in each cell P. If aow also S is a
smooth function of ¢ then from eq. (142) and eq. (92)
and after performing a Taylor series development of S
around ¢ it folows that:

§°(7) = S(g, 7) + O(h**')Dg (129)

This leads now to the following relation between higher
order derivatives of S and S*:

88yt = oSt + ok +1)-H)pg (124)
Inserting ¢q. (123) and (124) in eq. (121), one finds:

(D)} (9) = S [a(Fe), Fr)

k
+Y ,‘-,l{"”.as,” + Ok
[
= <8(q¥ >" +onH) (125)
a

Remark that a simpler source term discretization can be
used in combination with the GC-HOR-Algorithm:

ID(S(Q) = S(Qp,TP)

ISk
+ X IR oW T S@re TR (126)
14)>0 R

i.e. the reconstruction of the source term using the point
values at the rrference points of the cells. The symbol @
still denotes a discrete solution at a certain moment Jur-
ing the computation. The discretization (126) satisfies
also condition (120) as long as S and the exact solution ¢
are smooth functions. ‘To proof this, it is sufficient to
let D(S) act upon the exact solution ¢ and to perform
a Taylor series devclopment of S(qp+,7r+) around the
point ¥p and truncate after the terms of order k.

8.8  Time Discretization

The problem at hand is to find a good approximation for
the time dependent term

1 9 0= <q>?
QP/nP at.dﬂ_ < qe > (127)

in eq. (100) and eq. (113) where ¢ is the exact solution
of the respective analytical problems. The discretization
is fairly different for ZM-HOR and GC-HOR-Algorithms
algorithms described in section 4. Therefore, the time
discretization for schemes based on the ZM-HOR and
the GC-HOR-Algorithm will be discussed scparately for
the lincar problem with source term given by eq. (97).
Other time discretizations reported in the literature will
be addressed as well,

3.5.1 ZM-HOR-Algorithm
Cousider the following discretization D (g¢) of the term
giver in cq. (127):

=n$l _n

D (Q) =% (126)

where Q is a discrete solution, see also eq. (101). The
mean values in the right hand side of eq. (128) could be
computed as the mean of the reconstruction polynomial
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over cell P, However, from eq. (54) and the fact that
zero-mean polynomials are used, it follows that the cell
average of the k' order reconstruction of Q equals Qp.
Hence, no cell averaging phase is needed in the updatmg
phase of the computation. From eq. (101) one finds then
that the new cell value of the discrete solution at the next
time step can immediately be evaluated as:

el

Tt =T - Ac D@V + D) @) (129)

Let us now investigate the truncation error of the dis-
cretization given in eq. (128) by inscrtmg the exact so-
lution g and pcrformmg a laylor expansion in time and
space around p= < ¢(F,t") >F. One gets:

< g(F ") >P ~ < q(F ") >T
At
< g >F +O(AY) (130)

(D (g (9)

5.5.2 GC-HOR-Algorithm

The time discretization in eq. (101) or ¢q. (128) is based
on mean values of the solution over the cell P, also for the
scheme using the GC-HOR-algorithm. However, unlike
the scheme using the ZM-HOR-algorithm, the mecan of
the solution over the cell is not stored but the value of the
solution at some reference point (in general the gravity
center). Hence, a averaging phase will be needed in the
updating phase of the computation:

O - = <@ awaQrtiasP
-<Qp +w.Q".G >P
= AQp+W.AQIPP (131)

where W, G and Q are defined in eq. (58), (78) resp. (80),
vector Ip p is given by:

P _[pP P.P P17
=[’1.o SN FFLRER (132)

and AQr and AQ stand for the time changes of the solu-
tion values in centroids of cell P and :sp. all cells belong-
ing to the support of cell I’. This means that eq. (131)
leads to a system cf equations since it has to be satisfied
for all celis simultaneously. This system could be solved
with any direct or itcrative inversion algorithm. Since
this is an expensive operation, mass lumping can be ap-
plied just as is done in Finite Element techniques. This
means that instead of averaging the complete reconstruc-
tion, only the constant part Qp is taken into account,
However, since

< QW >P= Qp + O(h).Dy

the averaging phase will introduce an additional first oz-
der space ecrror. If one is only intercsted in steady state
solutions whereby Dj tends to zcro, this temporarily in-
creased trancation ertor is acceptable. The new discrete
values at a next time level are then given by:

# = Qb + At [D(S) - D@P)] @), VP (133)

5.5.3 Runge-Kutia Methods

The general explicit p-stage Runge-Kutta method can be
written as:

i1
QW =@ 4 AlEC.‘kC [Q(*)] (134)

[ 1]
with

£[q] = [p(a94) + D(5)| (@*)

whereby § = 1,2,...,p and Q® = Q" and @) = Q"1
The integer p dcnotcs the total number of intermediate
steps.

Shu and Osher [31] have chosen the coefficicuts cix such
that the scheme is TVD under certain CF L-restrictions
(a detaited discussion of stability and Total Variation is
deferred to section 6). They came up with second, third,
fourth and fifth order schemes of which only the second
order scheme is presented here:

QW = Q(°)+AlC[Q(°)]

Q@ = Q9+ zar{c[Q] +£[e"] }ass)

CFL < 1 (136)
(137)

Note that the CF L-restriction is valid only in 1D com-
putations, For two calculations the limit is 1/2. Note
that ENO-recoastruction is nceded after each intermedi-
ate time step, see section 6.

Harten [16] proposed a single step higher order accu-
rate time stepping scheme avoiding multiple invocations
of ENO-reconstruction algorithms, Harten’s approach is
based on a Cauchy-cha.lewsh procedure whereby the
solution Q(,t) is writt- .. in a Taylor series expansion in
both space and time whcreby

Qsl = S, — a.Q,, - b-Q:y
Qu = Sy-a.Qsy~bQyy
Q“ = S, - a.Q,, fod b-Qyt

-a.5z - b5y + a’-Qn -+ 2ab.Qsy + Ly Qyy
= -[(®9)s]+[(29)"<]

These expressions are of course only valid if one solves
the linear cunvection problem given by eq. (97). Note
also that one can then show via a recursive proof that:

.5‘_;-( 1Pt .[(av)""s}+(-1)P.[(av)'0]

It is clear that the Taylor series expansion of the recon-
structed solution Q(F,t) taken at the initial time level
" will be equal to the reconstruction polynomial at this
time level. Hence, all mixed time/space derivatives can
be expressed in pure spatial derivatives which can be eval-
uated using the reconstruction polynomials. The scheme
becomes then:

—=n$l -=n

Qr =
¢+
- [ {[p@%a+ D] @G0} ar

e e

T e Grsanes 71002

R L T T FE

s

e T n s by Wb e

T ;7 ROLL

o ekl

PR |



RO

‘The continucus time integration is then approximated by
some Gauss quadrature satisfying the desited time accu-
racy. The values of the solution at intermediate time
levels and at the several Gauss points on the cell inter-
faces aze cvaluated using the Taylor series expansion in
both time and space. The CF L-limit for this scheme is
about 1/2.

5.8 Distinction with Finite Elements

HOR-Schemes differ from Finite Element methods (see
the book of Johnson C. [33)) in that their data repre-
scntation is allowed to be discontinuous whercas classical
Finite Elements methods, such as the Taylor-Galerkin ox
the Streamwise Upwind Petrov-Galerkin (SUPG) meth-
ods [34, 10), use a continuous data interpolation lased
on Galerkin basis functions. The discontinuous interpo-
lation used in the HOR-Schemes allows a straightforward
incorporation of one dimensional Riemann solvers having
upwind properties. Note, however, that recently Finite
Element discretizations have been devised using discon-
tinuous solution representztions.

Finally, the spatial sizc of the support increases with the
order of accuracy in HOR-Schemes. The order of a Finite
Element scheme is increased by adding new degrees of
freedom in the same element hence avoiding a spatial
growth of the support.

6 ADAPTIVE STENCILS

6.1 Introduction

A general explicit scheme can be cast as, see also
eqs. (101,(102) and (114),(118)

Q' = D(QR) (138)

with D some discretization operator acting upon the
solution given in each cell R* of the support, The
scheme (138) is called Total Variation Diminishing
(TVD) if:

TV Q™) =TV[D(@)STV(@Q)  (139)
with
TVQ )= Y IQk- Q¥ (140)
P R>P

in which R points to a direct neighbour of cell P. Har-
ten [35, 36] showed the following properties of lincar
schemes for scalar problems; i.e. the operator D is lincar:

1. A monotone scheme (D is a monotone function of
its arguments) is always TVD, but not vice versa,

5\7

All coeflicients in a monotone scheme are positive.

3. A TVD-scheme is always monotonicity prescrving,
but not vice versa. Monotonicity preservation im-
plies that if Q is monotone on a given mesh, then
D(Q) will also be monotone on the same mesh.

4. A monotonicity preserving scheme is always at mcst
first order accurate in space. From this it follows
that monotone and I'VD-schemes are also always
first order accurate.

For nonlinear schemes, however, the following properties
are valid:

1. A monotone scheme is always at most first order
accurate in space.

e e e i, wele
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2. All coefficients in & monotone scheme are positive,

3. A T'VD-scheme is always monotonicity prescrving,
but not vice versa.

4. A monotonicity preserving scheme can be higher or-
der accurate in space, hence also a T'VD-scheme,

5. If one has a uniform boundedness of the 'V then
convergence to a weak solution is achicved.

6. If the TV of the discrete solution at time level n 4 1
does not exceed the 1V of the reconstruction of

the solution at time level n or, in other words, if
TVID(@Q™)] £ TV (Q"™), then the scheme is
TVD.

7. TVD-schemes are always stable but are at most scc-
ond accurate in space.

Considering the schemes given by eq. (101) and (114)
with the above properties in mind, one finds that they
are not monotore nor TVD. Hence, convergence is not
at ali guaranteed. In order to stabilize these higher order
schemes, their discretization operator D must be made
nonlinear.

As higher order accuracy is required, the resuiting non-
linear schemes cannot be TVD since the latter can not
achieve more than second order accuracy. One tries
therefore to make an "almost TVD” scheme based on Es-
sentially Non-Oscillatory (ENQ) solution reconstruction;
i.e. a reconstruction satisfying:

V@) <TV(@+0o (M) (1an)

As the support of the reconstruction is arbitrary, the con-
dition (141) can be fulfilled by selecting the support in
an adaptive way such that no solution discontinuitics of
order less than or equal to k are traversing the zone of the
support. The nonlinearity of the discretization operator
lics then in the fact that cells are accepted or rejected
from the support after each iteration. Such a scheme is
also called a moving stencil sckeme (MS). As the order
of accuracy is independent on the support choice (see
section 8), the accuracy of M S-schemes is not affected
by moving the stencils. Hence, M S-schemes cannot be
TVD. However, no proof is available yet that would guar-
antee the uniform boundedness of the TV and hence con-
vergence. Neverthcless, the numerous computations re-
ported on in the literature indicate the stable properties
of M S-schemes.

In this section, two adaptive support selection algorithms
will be discussed. The first algorithm performs a sup-
port gathering by heuristic marching (SSM-Algorithm,
Support Sclection by Marching). The second algorithm
selects the support out of a set of candidate supports
such that the global norm of the derivatives of the re-
construction polynomial are minimal at the gravity cen-
ter (SSG-Algorithm, Support Selection for Global norm
minimization).

6.2 SSM-Algorithm
6.2.1 General Concept

The support of a cell P always contains the cell P itself
whereafter the two direct neighbours making the smallest
gradient are added. The gradient associated with two
direct neighbours is estimated using a local triangulation
connecting the gravity centers of the direct neighbours
with the centroid of cell P, see fig. 31.
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Fig. 31:  Local triangulation for gradient estimation.

One assigns the given cell averages (ZM-HOR-Algorithm)
or point values (GC-HOR-Algorithm) of the solution
{onction ¢ to the vertices of each local triangle. ‘The gra-
dient in such triangle is theu obtained through a lincar
interpolation over the triangle:

@ _ 1 Agm Ayp: — Agr2Qyps
? AP12 - 2QAI’12 ' Aqu AIP’Q 7 A(IPQAI)’I

(142)
where

Agpi=qi—qp and Agr2 =2 —gqp
and similar definitions for the coordinates r and y.

After inserting cell 1 and 2 in the support, a marching
procedure is started from cell 1. Arother pair of direct
neighbours of cell 1 is added if the gradient differs least
from the gradient that was compnted when cell 1 was
added to the support. In other words, the support is
selected in the zone where the solution function ¢ remains
as close as possible to a 3D plane passing through the
point #p(zp,yr,¢r) and having Vg1 p as a gradient.

The selection algorithm includes central biasing. This
maeans that a central support will be sclected if the gra-
dients estimated with each pair of direct neighbours differ
very little. In that case all direct neighbours are included.
Central biasing is interesting since the round-off error for
the reconstruction is then minimal.

Finally, note also that the algorithm breaks down on reg-
ular meshes if the order of the reconstructior is larger
than one. Problems as described in section 4.5 ocenr in
this case.

6.2.2 Detailed Procedure

Note that the selection procedure is implemented in an
Object-Oriented manner using C++. Therefore the fol-
lowing discussion will be more data and event related in-
stead of tracing th: more traditional paths of flow charts
and functionalitics.

6.2.3 Startup

The minimum number of cells n needed in the support is
set equal to:

n=%(k+l)(k+2) +2

Two cells are added in order to have better condi-
tioned matrices, in particular for regular meshes (sce scc-
tion 4.5). Besides this, a discontinuity sensor ¢ is initial-
ized to § (see subsection 6.2.5).

The support used during the previous iteration is emp-
tied and the current cell P i3 added as a first cell in the
support for the iteration at hand.

68.2.4 Search for Lowest Gradient

Using the local triangulation with the neighbouts of P
as described in Bubsection 6.2.1, one stores the cotre-
sponding norms of the gradients in increasing order. The
value following which the neighbours are sorted is called
the sorting variable which now is the square of the norm
of the gradients of the variable ¢ one is reconstructing.
The i-<s0.7ated first and sccond neighbour of each triangle
arc listed in the same order as well as the gradient vee-
tors. The object containing all this information is called
a neighbour sorter, named N §p:

ILE I | Ny | Na V]

102 173 @I

20| 1| 2 |(24)
106 | 3 | 1 (95)

where N1 and N2 are the lists of the first resp. second
neighbour forming the local triangle.

For cach neighbour R of P another neighbour sorter NSp
is generated whereby the sorting variable is given by the
following expyession:

“‘7“"" - ‘7’"-"“2 (143)

F]
[9onr]

in which the first subscript ¢ is associated with the local
triangle &g, 041 as depicted in fig. 32, while the second
subscript P or R denotes the cell sround which the local
triangnlation is made.

Fig. 32: Triangle Anryia41.

The lowest sorting variable value of cach generated neigh-
bour sorter is multiplied with the square of the norm of
the gradient in the associated triangle A p,iq1:

, ”vq-'.n - eqn.r'r
min; - I
[Fonr]

This value is now nsed as the sorting variable for a new
ncighboyr sorter NSpr acting upon the direct neigh-
bours R of the celi . In other words, a neighbour R
comes first in the neighbour sorter if its smallest relative
gradient difference is small as well as the gradient with
which the smallest relative gradient was achieved.

2
. Ilvqi,ﬂ,min

(144)

6.2.5 Discontinuity Detection

The procedure described in the previous subsection re-
sults in a list of neighbours ordered with increasing asso-
ciated gradient norms and norms of gradient differences.
This is still not yet sufficient o come to the final decision
of accepting & neighbour into the support. Indeed, the
norm of the gradient differences might he smaller across
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a discontinnity. Hence, a scparate discontinuity detection
is required.

Given the gradient vectors stored in the neighbour sorter
N Sp, the discontinnity sensor ¢ is defined as:

_ Eﬁ:l !'Ivel’i’;.: -~ an.l;.mm (145)
. R,P.min

2

where ll\"qn,r,....-.. " is the minimum norm of the gradient

vectors given in the sorter NSp while N is the nmnber
of direct ncighbours of the cell P. The scnsor ¢ is a
measure of the gradient variation around the cell P. A
cell R belonging to the list Ny of the sorter N Sp will be
added to a list of rejected cells if:

¢>THRES (= 0.1 initialiy) (146)

min (“an.r”v ) “VQR—:,»"Q)
2 ( . %) (147

where the subscript R points now to the R*® cell in the
cyclic list giving the direct neighbours of the cell P in
counter-clockwise direction, see also fig. 33.

and

> "a‘IRJ’.min

Fig. 33:  Rejecting cells at a discontinuit,.,

The coeflicicnt 5 in the denumerator in the right hand
side of eq. (147) was detennined cmpivically to comply
with the widest possible range of gradient values.

6.2,.6 Acceptance of Support Cells

Denoting the sorting variable value of neighbour Rin the
neighbour sorter NSpp by SVg, a cell in the list Ny and
the associated cell in the list N; forming the local triangle
will be admitted to the support if:

o the number of cclls n already present in the support
satisfies:

< Sk 1)(k42) +2 (148)

SV - SVR.mm
SVR,ma: - SVH,mm

where 0 <e < 1

<e (149)

e the candidate cell is not in the list of rejected cells
and not already present in the support.

The sccond condition leads to a central stencil if the gra-
dient is almost constant, 1.¢. for almost linearly varying
solution functions. The parameter ¢ is called the central
bias parameter: the higher its value is set, the more cen-
tral supports will be obtained. Cells out of the list N3
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are added simultanerusly to the support in order to avoid
having a one dimensianal support leading to the problewm
discussed in section 4.5,

When a cell of the hist %, is accopted  beanching fAag is
set at the next celi in the iist Ny This s relavaut to the
marching procedure described in subsection 6.7 7.

6.2.7 Marching

Looping now over the new cclls added to the support,
the whole procedure starting from subscction 6.2.4 is ve-
peated. Again, one loops over the latest added cells and
80 on,

If one is in a region enclosed by discontinuities or do-
main boundarics, it could be that no more cells can be
admitted. In this case, one tries to make a branch in the
marching at cells where a branching flag was set. If this
does not lead to additional support cells, one loops down
in the support and trics again to add other neighbours. If
still this remains unsatisfactory, the threshold for the dis.
continuity sensor ¢ is doubled and the procedure starts
all over again. This can be repeated until the threshold
becomes so high that the weakest discontinuitics are just
seen as sharp gradients. The recomstruction will then no
longer be truly ENO and the only cure is the have more
and finer cells in these zones.

6.2.8 DBoundariecs

Arriving in a boundary cell, fig. 34, one sorts first the
neighbours of the interior neighbour R based on the
norms of the absolute gradient vectors, sce section 6.2.4.

Fig. 34: Gradient estimation at boundaries.

The cells A and B are direct neighbours of the intetior
neighbour R which are vertices of the two local triangles
that have also the boundary cell P as a vertex. Their
neighbours are sorted using the following sorting variable:

SV, = "eq.“‘—vq,\.p"'
A

The neighbours of the interior neighbout are once again
sorted but now using the relative norm of the difference of
the respective gradient vectors with the mean of the gra-
dient vectors. The result is stored in a neighbour sorter
NSg. Thelists N,y and N; of the sorter NSk contain each
both the cells A and B. If SV, < £V, one selects cell
A from list N) together with the corresponding sorting
variable value and gradient vector in ¥Sg. Thesc three
items are then stored in the neighbour sorter NSpp of the
boundary cell P. I SVA > SVp, the cell B is selected
from the list N2 of NSy as well as the corresponding
sorting variable value and gradient vector. Again, these
items arc stored in NSpp.

The neighbour sotter NSpg finally contains a degenerate
triangle A g p,r while the gradient vector is the gradient
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in the local triaugle A p a,p or Qg p,p having the small-
est relative difference in gradient vectors. The sorting
variable value is the square of the relative norm of the
difference between the gradient vector in the sclected tri-
angle and the mean gradient vector of the interior neigh-

bour K.

‘The reason behind this rather complex procedurc is the
fact that at weak discontinuitics either cell A or B lics on
the other side will still having the lowest absolute gradi.
cnt vector. This is anticipated by looking to the smallest
relative gradient vector differences of bothk cell A and A,
T'he tesult might be that one has to select the neighbour
with the higher gradient but with the smallest gradient
variation.

6.3 SSG-Algorithm

The SSG-Algorithm is a generalization towards meshes
with arbitrary polygonal cells of a similar algerithn pro-
poscd by Harten [16] for triangular grids., The algorithm
suggests itscll a sct of candidate supports around a cell
P and sclects then the support for which the global norm
of the derivatives of the reconstruction polynomial at the
gravity center of the cell P is winimal. The global norm

[IDI%, is given by:
2
) (150)
p

14y<k :
= al-uqrcco
DI3, = E: (__‘_-_
" "’ 30 ar*dy

whereby

al-f-)qrfco .
—_—| =it A
I oy P 1Ay
for both the GC-Algorithm and the ZM-Algorithm. ‘The
coeflicient A,,, is an element of the vector A given by for
instance eq. (37). This implies that the weight matrix W
is to be recalenlated for each candidate support.

(151)

6.3.1 Candidate Supports

The first candidate is always the central support, i.e. the
support obtained by taking the neighbours of the neigh-
Loaes and 5o on without (akisg any other limitation ko
account. After this, N scctor sapports are gathered with
N the number of sides of a cell P. The gravity center
of the cells of a sector support lies entirely in a sector
limited by the two lines connecting the gravity center of
cell I’ with two consecutive vertices, see fig. 35.

Fig. 35: Division by Sectors.
Note that a point P lies within a sector defined by two
half lines Ly and [z defined by their direction vector d
resp, i if, see fig. 36:

MQFAp >0 and @3 QFap <0 (152)
where the vector Fap connects the position of the apax A
of the sector with the position of the point P.

Fig. 36: Condition to ly within a sector,

The conditions to be satistied in order to accept a cell i
a sector support are the same as for the SSM-Algorithm
except for condition (149).

For each of the N + I caudidate supports the globzet norm
IDI3 is computed and the candidate with the small-
est global norm is selected. Note also that the norm of
the central candidate support is divided by two in order
to establish a bias towards central supports in order to
improve the precision, see also Harten and Chakravar-
thy [16) or Shu [37}.

: 7 £ st

Fig. 37:  Too small sector supports in cocners.

6.3.2 Exceptions

1 It nught happen in corners formed by two discoun-
tinuitics or by two domain boundaries that not
enough cells can be accepted, see fig. 37.

The opening angle of the sector is thon gradually
increased wutil enough cells can be accepted. Can-
didate supports will then of course be partially over-
lappiag If still not enough cells can be found, the
opening angle of the sector is decreased back to its
initial value but the value of TH RES in the shock
detection condition (146) is increased by a factor §
until enough cclls were gathered.

If no cells were ever rejccted due to condition (146)
and if a large number of sector widenings took place,
the candidate is no longer considered when still not
enough support cell. were found. In this case, one
was dealing with a corner of the domain where the
solution variables were varying smoothly.

2. When a neighbour of cell P is a boundary cell, the
assoctated scctor support is always too small and
hence is rot considered as a candidate support, see
fg. 38.

6.3.3 DBoundarics

The candidate supports for the reconstruction in bound-
ary cell P consist of the central support of the interior
ncighbour and of the sector supports associated with the
interior neighbour. However, the latter do not contain
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Tlig. 38:  Sector formed with a boundary cell,

the interior neighbour itsedf. This is done in order to
cnhance the chancea for ENO-reconstruction when a dis-
continuity is present in between the gravity centers of the
boundary cell and its interior neighbour.

Note that except for the central supports, no boundary
cells are ever altowed in the support since having a bound-
ary cell in the support close to a discontinuity may lead
to instabilities. lndeed, a boundary cell which was in a
siooth region may suddenly be in a non-smooth zone
after applying the boundary conditions which lead to
a change in the solution value stored in the boundary
cell. When calculating afterwards the flux balances in
the interior domain, the reconstruction in cells close to
the boundary will no longer be ENO; hence, large os-
cillations will ocenr. This could eventnally be cured by
sclecting new supports after updnting the boundary colls
but this would be far too costly.

6.4 Examples

In the following, some reconstiuctions of known polyno-
mials with a discontinuity are presented here. Only ex-
amples using the GC-HOR-algorithm combined with the
SSM-Algorithm are givea as similar results were obtained
with the ZM-HOR-aigorithm.

The next set of functious were used teo demonstrate the
monotonicity of the reconstruction:

Pi(r.y) = 2r + 3y
Paz,y) = 3% + 597 + 21y
+2r +y ) N
Pyz,y) = 321+ 5% 4 (r+y)? (153)
[y = 'y - 2t - 2y
+roy
if y > tan(30°).(r - 1) and
Pz,y) = 2r -3y -5
Pyr,y) = =b2'  6y® — 2y
-rt ot
M(r9) = 6(r-3)° -5y’ {(154)
—(x+ 9?4+ 10
Puz,n) = —8(r = 3)'y + 4y* + 204’

-2r —y - 30

otherwise, Only some resnlts for functions £ and Py will
be presented as analogue figures were obtained for the lin-
car and quadratic functions. Fig. 39 shows a quadratic
reconstiuction of the cubic function P whereby this func-
tion was also used to detect discontinnities.

Fig. 10 presents the support for a number of cells close
to the discontinuity and in the smooth region. It is ob-
served that the supports tend to align themselves with
the isolines.

Finally, fig. 41 gives the isolines 4* order ENO.
reconstruction of function 24 demonstrating that both
polynomials on cither sides of the discontinmity can be
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tecoustructed exactly (P4 was also the function to detect
discontinuities).

Only the shape of the discontinmity is not exact. One
sces that it follows exactly the grid linea instead of being
a straight line. 'There are methods to cure this problemn
like for instance the subcell resolution technique proposed
by Narten et al. (ref. [38]), sce also section 7.3

In the following, the reconstyuction of the exact solution
of the following problem is discussed:

e
LTI P (—)) =0 (155)
Iy
with
¢q=+1 on y=0

g= -1 on y= 41
¢g=-2y+t1 on z =0

Equation 155 refers to a convection problem whose con-
vection speed is given by (1,¢). The solution is cqual to
-1 on the lower half of the domain and equal to 41 an
the upper half. In the triangular zone in the left half the
solution is given hy:

2y -1 -
oz, y) = 50— (156)
and varies linearly aleng Yines where ¢ = cte. At the

borders of the triangular zone onc obsetves therefore a
diccontinuity in the first derivatives of ¢ and a disconti-
wuity along the line y = 0.5 if z > 0.5. Fig. 42 shows
the isolincs of the quadratic reconstraction of the exact
solution ¢ using the GC-HOR-Algonithm combined with
the SSG-Algorithm. The discontinuity along y = 0.5 is
not visible, For reasons of comparison, fig. 43 shows the
isolines obtained when performing a linear interpolation
between the gravity centers of the grid. The discontinu-
ity takes now the thickness of one cell. Fig. 44 shows a
3D view of the solution over the two dimension al domain
whereby each "tile” in the plot represents the reconstruc-
tion polynomial in each grid cell. The discontinuity is
infinitely sharp but again follows the grid lines.

Using the SSM-Algorithm in order to obtain an ENO-
reconsttuction, the supports are allowed to cross the dis-
continunity in the first derivative at the horder of the tri-
angular zone. Indeed, when marching, onc takes fitst the
neighbours forming the smallest first order derivative. In
11}, this can lead to the situation given in fig. 45.

\o

(Y SR
v boecsosnraiace
-t pococcnaan

Fig. 45: Discontinuous derivatives in 1D,

It is apparent that first neighbour 1 of cell P will be
taken, The marching procedure will then continue on
the side with the smallest gradient and as cell P also
belongs to the support, the roconstruction will oscillate
close to cell P. Marching support selection algorithms
should therefore be used with care.

Other two dimensional support selection algorithms are
given in the literature, Abgrall [39] describes an algo-
rithwm for triangular meshes which is similar to the SSM-
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Fig. 39: lsolines of function Py with quaulutic ENO-reconstruction,
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Fig. 40: Some supports for quadratic ENO-reconstraction of functioa Ps.

Algorithm. Harten [16] presents another marching al-
gorithm which mathematically minimizes the higher or-
der derivatives. He also proposes a fixed central support
scheme for probleins without discontinuitics, This choice
is justified by the fact that central supports are most
accurate when reconstructing. An automatic switch be-
tween constant solution reconstruction and higher order
reconstruction is introduced when solving problems with
weak shocks (hybrid reconstruction). “Uhis will of course
not lead to uniformly higher order schemes.

Shu and Osher {14] izpoet on the effect of tie choice of
ihe first neighbouring support cell on the stability, They
developed a support sclection algorithin which takes the
first neighbour support coll always on the upwind side.
Finally, it is sometimes suggested to keep the supp-ris
fixed in smooth zones in order to reduce the computa-
tional cost. However, it still remains to verify that such
schewes are stable since tue solution can start to oscillate
also in smooth zones becanse the scheme is not TV,
This means that the supports will have to be adapted
which increases again the computational cost.
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7 SYSTEMS OF EQUATIONS

7.1 Introduction

Until now only salar problems were tackled but the final
aim is to solve a system of equations such as the Fuler
equations. Although the exteasion towards systems of
cquations is rather straightforward, some additional top-
ics are particularly interesting when solving the Euler
equations (2),(3),(4). This section will treat the recon-
struction phase when solving systems of equations and
also some recently developed concepts for sharpening dis-
continuities.

7.2 Reconstruction

n the case of the two dimensionai Enler cquations, one
is aow dealing with a solution vector Q of 4 solution
variables. Two approaches arc now possible [16), the
component-wise suppe.t selection and the vector support
selection.

The component-wise support selection assigns a support
to cach component of the solution vector. It increases
the work spent in the suppor! selection algorithi by a
factor 4 but scems to be more robust when several mov-
ing shocks intersect in time-dependent problems. Note
that in this case there is not always enough room to find
a support in which no discontinuities occur and hence
spurious cscillations can be generated.

The vector support seicction assigns one and the same
support to all 4 solution variables. ‘The s=lection is
performed on basis of the smoothness of a single (de-
rived) variable such as the Mach number, static pres.ure,
density,. . . This approach is considerably more economic.

Concerning the robustness of a scheme to be used for
the Fuler equations it is important to remind that the
density p, static pressure p and static temperature T are
nonnegative quantities. Reconstruciion of the conserva-
tive variables in an ENO-fashion gives a direct contro)
over the density but not over the derived quantities p
and T. Small oscillations in the reconstruction of tie
conservative variable close to multiple discontinuity in-
teractions lead in general to larger oscillations in p and T.
When computing these quantities at a cell interface using
the local values of the reconstruction of the conservative
variables, one can get a negative value as a consequence
of which the solution procedure is to be stopped.

As the characteristic variables vary more smoothly than
the conservalive variables at discontinuity interactions,
it is often suggested in the literature to perform a local
transformation to the characteristic variables. One can
then compute all devived variables from .he component-
wite recorstructior of the characteristic variables which
remain srnooth at discontinuity interactions. The traas-
formation matrix contains the eigenvectors of the Jaco-
bian matrix of the flux normal to the discontinuity.
Another approach is to reconstruct
the vector (p, pu,pv,p)T. This gives again direct con-
trol ov:r the density and the pressure and moreover, the
noimai momentum and p remain smooth across contact
discontivnities.

7.3 Subeceil Resolution

fn 1D, Havten [38) preposed a methed to resolve discon-
tinuitics more sharply. A discontinuity is detected by:

L. inspectiug the nevins o4, 0041, i~y of the derivatives
of the reconstoncticn i cell ¢ and its neighbouring
ceills v 4+ 1 and s - 1, fig. 46.

2. comparing the mean o1 the reconstruction polyno-
mials Q725° and Q)57 assigned to the neighbours
+ = 1 resp. 1 + 1 with the given discrete mean value
<Q> incell P

A discentinnity is assumed when:

oy > 0,
gi > Ol (157)

and

(< Qv >' - <Q >').(< QY >' - <@ >') <90
(158
in which < Q39" >' and < Q[Z{° >* denote the mean
of the reconstruction polynomial of cell 4 4 1 resp. 1 — 1
over cell 5. The recconstruction in celi ¢ will then consist
of the extension of the reconstruction polynomials of the

BRI OY: Lo Lt}

-

Nebeiommp a0

1 e

R

PP R ST



U .

|
i Xie1 X

S
x|

|
|
Ly
' 1 l ]
X
Fig. 46: 1D discretization around a discontinuity.

neighbours into the cell ¢, fig. 47. The interface between
the two polynomials is located at a position z; such that:

z;(0) = zi + 0 (zi42 ~ %) {159)
with @ the solution of the nexi nonlinear equation stating
that the mean in the cell ¢+ must be: conserved:

< Qreco > K] +< Qreco >;.-+l_< Q >, (160)

in which < Q*$° > and < Qr55° >34 indicate the
mean of the reconstruction polynomlal of cell § = 1 over
the interval (4, 5] resp. the mean of the reconstruction
polynomial of cell § 4 1 over the interval [3,i + 1.
Knowing 8, a scheme can be constructed while introduc-
ing a corrective flux [38}.

Fig. 47: 1D recenstruction with subcell resolution.

A 2D cxtension mnight consist of detecting the disconti-
nuities based on the conditions (146) and whereby the
normal direction of the discontinuity at a cell P is indi-
cated by the mean gradient vector over all local triangles
around P, fig. 31 and fig. 48. The polynomials of the two
opposite direct neighbours having their centroid closest
to the normal through the centroid of P will be extended
into cell P. The interface line between the two polyno-
mials is parallel to the discontinuity and its location is
computed while requiring that the mean over the cell P
be conserved.

7.4 Slope Modification Method

Yang [40] proposed to add a modification to the coeffi-
cieats of the linear terms in the reconstruction polyno-
mial. This modification is called a slope modifier and is
a minmod-like function depending on the jumps in the
unmodified reconstruction polynomials at the cell inter-
faces. The final eflect is that one added artificial com-
pression to the scheme.

Yang produced impressive results for both 1D and 2D
problems. Moreover, his method is less costly than the
subcell resolution approach. For a detailed comparison
between the subcell and the slope modification approach,
the reader is referred to the work of Shu and Osher {14].
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8 NUMEKICAL EXPERIMENTS

8.1 Intrcduction

Resnlts will be presented for linear scalar problems, non-
linear scalar problems and an Euler flow problem. All
results were obtained with an object-oricnted code writ-
ten in C++ in order to have an enhanced flexibility when
testing and adding new algorithms. Comparison of thc
code with an existing FORTRAN code when using ex-
actly the same first order scheme on the same mesh did
not reveal any loss of efficiency due to the object-oriented
implementation,

8.2 Linear Scular Problems

In this section, the verification of polyromial preservation
will be addressed. Consider now the following problem
on a rectangular domain , see also fig. 26c:

@V = S(z,y) with @=(2,1) (161)

This problem was studied with 4 different source terms
S given by:

Si(z,y) = 2+ 2y -3
Sa(z,y) = z 4+ 2y -3

3 1
Sa(z,y) = —z + 334° oY

Su(z,y) = 82 4+ 80y + 2ary® - 68

The exact solution to the problem (161) is then given by
following 4 polynomials:

P(zr,y) = 2z + 3y + 2
1
Piry) = 777 + 1y
K
- - y + z
Pyz,y) = — 3 + llya + -1161:2
19 1
SV -+ 10
Pz,y) = z' + 16¢* + 8z¢°
—~ 34z + 10

which are the same polynormials as those in eq. (94) of
section 4. These solutions can of course only be obtained
while imposing proper boundary conditions.

Tests were performed using both the GC-HOR and ZM-
HOR-Schemes. In the following, one will discuss how
polynomial preservaiion was achieved for the two algo-
rithms.
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For the GC-HOR-scheme, the exact solution g is given in
the gravity centers of cach cell :

Qr = q(z6p, Y6p)

while for the ZM-HOR-scheme it is given as its exact
mean value over cach cell:

<Q>"=//;Pq(x,y)-dﬂ,

for both interior and boundary cells.

It was then numerically observed that the imposed exact
polynomial solution ¢ of degree r was not touched, i.c.
the residuals are within the round-off error of the machine
(107, if

o the exact flux integrals are imposed at the bound-
aries where the convection vector @ is pointing into
the domain.

e the same treatinent as for interior edges is applied at
boundaries where the convection vector points out
of the domain. This is correct as the value in the
boundary is not used when calculating the flux. In-
deed, the upwind approximate Riemann solver will
only take the value in the interior neighbour into
account.

¢ the source term must be averaged exactly over each
cell, see also eq. (120):

D(S):/ A S(z,y).dQ

o the order of the reconstruction k is at least equal to
the degree r of the exact polynomial solution

e the number of Gauss points n satisfics the next con-
dition: a1
ng il

where k is the order of the reconstruction.

Following theorem 5.2, this expesiment can be regarded
as a numerical verification of the accusacy in the interior

domain of the GC-HOR and ZM-HOR-schenie.

Fig. 49 shows the quadratic reconstruction of the nu-
merical solution obtained using a GC-SSG-scheme with
quadratic reconstruction, a 2 point Gauss quadrature
(GP=2) along the cdges and the source tetm S¢. The
lincar interpolation of the san:e solution is presented in
fig. 50 which is to be compared with the exact solution
shown in fig. 25. Note that using quadratic reconstruc-
tion for a polynomial solution of degree 4 does not pre-
serve the solntion since the order of reconstruction does
not match the degree of the solution. The grid one used
is a randomized rectangular mesh containing 296 cells,
fig. 26c. The randomizing of the grid points is necessary
to avoid a contradictory system for the reconstruction
weights as discussed in subsection 4.5.

The solution was extracted after 100 iterations and took
90 minutes of CPU on an SGI Iris 400/35 workstation,
the final residual is of the order 107,

Remark that another HOR-scheme can be devised
whereby the solution in each cell is represented by only
the linear part of the higher degree (k) reconstruction
polynomial. Polynomial preservation for such a LINEX
scheme (LINear EXtrapolation) is then obtained if:

¢ the order of the reconstruction is at least equal to
the degree r of the polynomial exact solution

¢ only the exact solution value is imposed at the grav-
ity centers of the boundary cells and not the exact
flux.

o the source term is discretized as follows:
S(2Gp 1 yGp) P

¢ only one (1!) Gauss point is used

¢ a non-conservative flux distribution is applied. This

means that each edge is visited twice but each time
seen from the other side. Thus:

1 \
o= QP -Fer
QX' = Qx-Fnp

whereby
Fpr = Ed.ﬁpn-QTx
R

Frp = E a.ﬁm».Q;
P

in which Q} and Qp are the extrapolated values
at the cell edges while using only the linear terms
of the reconstruction pelynomial. It is clear that
the fluxes rent to the two cells adjacen: to the same
edge will not be identical so that the scheme is not
conservative.

¢ at boundarics where the convection vector points
outward thc domain, the update of the boundary
cell P is done as follows:

1 k),
Q! = Q)
where the superscript (k) iadicates that all terms of
the reconstruction polynumial in the interior neigh-
bour R are taken into account. For the con.putation

ol the flux contribution fo the interior neighbour stili
only the linear terms are used.

The LINEX scheme can become cconomic for reconstruc-
tions of order Ligher than or equal to 4 since then nor-
mally one wouid need at least 3 flux evaluations per edge
instead of 2 in the case of the LINEX scheme. Also
the evaluation of the source term is cheaper as one just
has to take its value at the gravity center {even if ZM-
reconsiruction is used). However, as we are interested
in capturing discontinuities co:rectly, the LINEX scheme
iv of few importance. Note that nther non-conservative
schemes with reduced grid sensitivity are described in the
literature, sce c.g. [9].

8.3 Nonlinear Scalar Problems

In this section, the numerical solution of the nonlinear
probl.m of eq. (155) in section 6 will be discussed. The
definition of the problem is repeated here:

¢
i:+qs+(—) =0 (162)
2/
with
g=+1 on y=20
g= -1 on y=1
g=-2y+1 on z =0
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Fig. 50: Linecar interpolation of the solution of the linear problem, ( k=2,

GP=2, GC-SSG).

The exact solu.ic is given in fig. 42 and 43. The com-
putation started wom the exact solution using the GC-
HOR reconstruction (k=2) with SSG support selection.
The analytic flux is given by:

¢
H=qu: + oy (183)

‘The nuwerical fluxes fpy through the edges were con-
puted using a Roe-type flux splitter whereby C,, in
eq. (8) is now given by:

" L b
+ ‘
Crm = spp + Qf;e_zo__wz,,.m (164)

A two point Gauss quadrature (GP=2) was applied,
meaning that the Riemann solver was invoked twice for
cach edge.

The exact solution was kept fixed at the upper, lower
and left boundaries of the compatational domain while
the reconstructed solution in the interior cells at the right
boundary was copied into the boundary.

The quadratic reconstruction of the numerical solution
as well ~~ the mesh is shown in fig. 51 while the Jinear
interpolation of the numecrical solutior. on the dual mesh
is presented in fig. 52. These two figures can be compared
with fig. 42 resp. 43. A three dimensional view of the
reconstruction of the obtained numerical solution is given
in fig. 53 which can be compared with fig. 44.

It is seen that the discontinuity is captured in one cell
and that no oscillations occur. ‘This is put in evidence in
fig. 54 and 55 showing a cut of the solution at z = 0.3
resp. z = 0.95.

The solution shown here was obtained after 100 Euler
explicit time steps with a CF L-number equal to 0.1, The
convergence history is given in fig. 56 showing the RAM S-
value over the whole domain of the relative change of the
solution values over each time step. The total CPU cost
of the calculation was about 3 hours on an SGI Iris 4D/35
workstation which means about 0.16 scconds per cell per
iteration.

8.4 Ringleb Flow in 2 Bended Channel

The results presented in this subsection were computed
using a fixed stencil and are to be considered as prelimi-
nar in particular with respect to the boundary condition
treatment.

8.4.1 Problem Description

The Ringleb flow [41] is basically a potential flow in a
strongly bended duct and can be described analytically.
A proper choice of the shape of the duct guarantcees that
the flow remains everywhere subsonic, see fig. 57 taken
from [42].

At any point in the domain, the flow is characterized
by two parameters g and k. The parameter § is a non-
dimensionalized spced and is constant along circles which
thercfore become the isotach lines. ‘The parameter k is
equal to ;i35 where @ is the angle of the local flow direc-
tion. One can proof that k is a constant along stream-
lines.

Taking now the streamline with & = 0.8 as the inner wall
of the bended duct will result in a fully subsonic fiow. The
outer wall coimncides with the streamline for which k& =
0.4, The in- and outlet of the duct are pavt of the isotach
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SSG).
line with § = 0.3. The mesh used on this geometry

is depicted in fig. 58 and contains about 600 triangular
cells generated by a code written by J.D. Miiller at the
University of Michigan aud which uses a combination of
Delaunay and frontal methods, see ref. [43]). The flow
turns from left to right.

8.4.2 Scheme

A fixed central suppori was used in the calculation be-
cause of its enhanced accuracy in the reconstruction
phase (see [16]) and because of the absence of discon-
tinuitics in the flow. The solution in the form of conser-
vative variables was reconstruc’ «d using a vector rccon-
struction; i.e. all variables use one and the same sup-
port. The values of the second order Zero-Mean recon-
situction on both sides of cacl coll cdge were passed inte
Van Leer’s flux splitter to evaluate the (non-lincar) flux
through the current edge nsing one point (GP=1) Gauss
quadrature. The CFL-unmber is 0.2 combined with a 4
step Runge-Kutta time stepping with the following coef-
ficients : ({,5.3.1).

8.4.3 Boundary Conditions

The components of the unit vector tangent to the ex-
actly known flow direction arc imposed at the inlet. Note
that these components vary along the inlet. Besides this,
also the total pressure (1.2 bar) and the total temper-
ature (298 K) are needed in order to treat a subsonic
inlet boundary condition. Remark that the flow is in-
viscid and subsonic as a consequence of which there are
no losses. Therefore, the total pressare and temperature
can be assumed constant along the inlet. Zero normal
velocity is required at the solid walls. Although this con-
dition is sufficient to perform a correct boundary condi-
tion treatment, also a constant total pressure (1.2 bar)
was imposed on the walls. This type of treatment was
proposed by Dentou in [44] and leads to a more accurate
solution at the solid beoundaries when a fully reversible
or isentropic flow is present. As the speed is constant at
the outlet as well as the total pressure, & constant static
pressure (1.125 bar) was applied at the outlet. This pres-
sure corresponds with the imposed totai pressure at the
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Fig. 55: Solution cut at 2 = 0.95 (k=2, GP=2, GC-

SSG).

inlet and with the parameter 7 = 0.3.

8.4.4 Solution

‘The exact solution presented on the mesh of fig. 58 using
a 3" order zeconstruction (k=3) is given in figures 59
and 60

The velocity lines obtained from the solution are shown
in the plot of fig. 61.

It is clear that the tachlines are no perfect circles in the
entire domain. However, the plot of constant dezsity lines
given in fig. 62 is comparable to the solution presented
by Barth in fig. 63 obtained from ref. [45}.

A further comparison between the density isolines of the
numerical solution and the exact solution (fig. 62 and 59)
shows a rather good agreement. The relative La-norm of
the crror as computed with eq {(96) between the numer-
ical solution and the exact one over the whole domain is
of order 1% for the demsity. Fig. 64 presents the local
relative Ly-norm of the error.

T'he largest errors are made at the inner wall of the duct
where the higher order derivatives of the exact solution
are higher and hence cannot be ma'ched exactly by a
quadratic recomstruction. Another reason is that the
cxact boundary is approximated by a series of straight
boundary edges of more or less constant length. This ap-
proximation is of course less accurate where the curvature
of the boundary is higher.

To shew the improvement achieved with quadratic re-
construction with respect to a HOR-scheme using linear
reconstruction, fig. 65 shows the tachlines obtained when
using linear recounstruction and 1 Gauss point.

The unde:lying mesh is much more visible in the case of
lincar reconstruction. The relative Lz-norm of the den-
sity error ovei the entire domain is about 1.5% compared
to the 1.0% obtained with quadratic reconstruction.
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Density lines for Ringleb flow (A=2,GP=1).

'ig. 62:

1).

(k=2,GP=

Tachlines for Ringleb low by Barth

Fig. 63:



Fig. 64:

Fig. 65:

Local relative Lr-notm of the density error (k=2,GP=1).

Velocity lines for Ringleb flow (k=1,GP=1).
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A Proofs of Higher Accaracy

Proof of Theorcn 5.1 (A):

To proof order h* space accuracy ome has to investigate
the local truncation error. The truncation error is i
part in tki aquivaleat differential equation that is not
pt2sent-in the analytical modelling equation to be solved.
To obtain the equivalent differential equation, the un-
knowns in the stencil cells of the employed scheme are
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developed in a Taylor serics around some point 7p as-
sighed to the cell where the truncation error is to be
evaluated, sce [30] and [12]. The differential cquation is
the equation which is satisfied by the exact solution ¢ in
a Jiscrete set of points fp around which the Taylor ex-
pansions have been wade. As yet, the choice of the point
¥'p rexains arbitrar.

In this proof, the prccedure deviates a little from the
classic ore given in [30] and [12] ia that it first uses the
theorems 4.1 and 4.3 before applying Taylor series expan-
sivns. Thus, uting eqs. (92) or (93) and assuming that
the exict solution @ of the cquivalent differential equation
varies smoothly, the space discreticaiion of scheme (101)
can then be rewritten as:

[D(a~vﬂ)} (@)=
Slp E Z {“Pn [q(ro) + O )]
R O

+ app [q(i"o) + ou.**")j }-as0
which. n iis turn, is equal to
[v(a.vw] (@) =
SIP ZE (d.fipR) .4(70).Os0 + O(R” )Dk‘“

The value of ¢(Fo) can now be replaced by a Taylor series
expansion around the reference point ¥p while truncating
it after the the terms of order &:

2 Z(a fiPR).

[‘11‘ +E Cl (Fo)-0af ] Aso

[D(ﬂ Vw] ()=

=

+ O DE!

where the definition of (,, lS given in ¢q. (90) while the

one of 3q] is similar to BQ, as found in eq. (69) but now
applicd to the eract solution ¢ of the numerical scheme.

As (Z.9ipR) is constant along each straight edge, the
previous expression for the space discretization can be
rewritten as a continuous contour integral if the number
(:f ?auss points O on the cdges is larger than or equal to
kit

1,
[P@d9)] @ =
1 - - i VP p]
==, ). = Cy (1).0 ds
s [qp+?;,! F()onf |
+O(*)Dt!
or

[D(a ‘71)] (9= g5 ]{ (@.7).g.ds + O(h*)DEY!

Using Green's theorem, one finds finally that the space
discretization satisfies the following equation:

[p@%0) () = <aPe>" +o*)DE (165)
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which completes the first proof for order h* space accu-
racy. Note also that one is discretizing mean values over
a cell even when the GC-HOR-Algorithm is used. Point
values are discretized ouly if the order of the reconstruc-
tion k < 1.

]

Proof of Theorem 5.1 (B):

The second proof follows rigorously the classic truncation
crror analysis as described in [30] and [12]. This means
that all solution values in the support cells have to be ex-
panded as well in the vector Q or Q as defined in eq. (39)
tesp. (80).

The proof will only be given here for the scheme us-
ing ZM-HOR ecxtrapolation since the reasoning for the
GC-HOR scheme is completely similar and leads to the
samte conclusions. The proof will rely heavily on the
properties of the reconstruction weights as expressed in
eqs. (64), (63), (81) and (83).

To examine the local truncation error, the expres-
sions (104) and (105) have to be developed in a Taylor
series and plugged into eq. (101). The Taylor expansions
of the mecan of the solution in cell P and a cell R next to
ccll P are given by the expressions (71) resp. (72). The
reference pomt 7p in these expressions is the same as the
one used to compute the inertial moments when recon-
structing the solution, ¢q. (33). The properties expressed
by ¢q. (64) can then immediztely be exploited when ap-
piying eq. (71) to the scheme giveu by eq. (101) with ¢
the exact solution of the equivalent differential equation:

[P @ = “L ZA,O
{“me [fn’-fz 1P 9
W (l ,L dq,) o

+ WH, (qp +

0 M,.

=1
4+ o(typit! (166)
where
ap =lap--ap)”
P _[yBeP P T
I “[ll SRR PR P ]
and

4 ) T
op Ry m,.P
1, = [I, l, RS Py ]

with R! a support cell of the direct neighbonr R of
cell Using now the propertics (54) of the reconstruc-
tion :hts, eq. (166) becomes:

ZzAso

[p@99)] (@) =

k
1 -
{at-.e. [,,,, + Z sCl (ro).oq{’]

+app. [QP + Z In b oaf’

=1
N S S
+2‘—,w 1I,*.6q! .F"]}
[
+ O(h*)Dt (167)

Keeping in mind oq (64), it is desirable to rewrite 1," "{,m

intetms of IX R witho<s<land0<t<mand R a
cell bclongmg 1o the suppott of cell R, This can he done
using the nexi transformation formula:

Il'im m =
i’fi (l—nx) (m.)
A E
=0 ¢=0 \
AzS™M 7 Aybn.l, n - (168)

Using eq. (168) and taking i'.to account the properties
given by eq. (64), one finds after some manipulations
that:

whpt —cf _1it?

With these results the space discretization becomes:

[1)(0 Qq)] (9) = Zy‘dqq

1 > >
{“"lt [‘IP+ Im t’('o)-a‘ll,]

k
l=1
1 _p P

+app. [qp +Y_ 571 (Fo)-dal ]}
I1=1

c)(h*)p:“
1
= = VY@ .
QP ¥ LO‘(G npn)

k
1. .p,.
[qr+z ,—,Cf (70)-0q | .Aso
=1

+O(r*)Di !

Again, as (d.fipr) is constant along each straight edge,
the previous expression for the space discretization can be
rewritien as a continuous contour integral if the number
(!)‘g?auss points O on the cdges is larger than cqual to

+ O*)Di

From now on, the reasoning proceeds in exactly the same
way as in the first proof leading to eq. (165).

‘i .
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B First Order Accuracy

Theorem B.1

First order accuracy can be obtained on irregular meshes
when only cell-wise constant solution reconstruction is
uscd.

Proof of Theorem B.1:

Let us first write down the truncation error Th in cell P
at time level n for the linear schewe given by eq. (101)

wherce now Q(,f(), = gp and Q(,f(), = gr with ¢ the exact
solution of the equivalent differential cquation:
) =
At .
alp + e quelp + O(Al’)

+ hl—’, ;; {“l}"’nﬂ'f"
+app lgb + Brer. 6l + Dyrr. glp
+%A$3’n- grslp + -;-Ay'f’n- avylp
+ Azpp.Aypn. 4nlp]) Aso

+ O(h?)

From eq. (97) it {ollows that:

n . n
alp = —a gl —boglp

" " n
qrlp = ~a. gra|p - b gaylp
n — lll —b n
‘lwl;‘ = —aQ 4qsyip . ‘lyy|p

N n n 2 "

(Illl';r = a . q:x'p + 2ab. qu!p -+ b nylp

and furthermore:

S (abnead +appap) Bso
R O
b Y Y ddrdso

o

i

-

~=
o S
=

(2

=i

A

-

so that 1P becomes:

gn

Z Ea,,n Azrpn.Qdso — a] cg:lp

R 0

1 - n
+ WEZ“PR-AW’R-A-'O”’] - oulp
L R O

-~ _ Al
_4; 2 a‘nR.AT-?pR.A.!o + ll2 —?T] . q,,|';,
L8

=] I

[ 1 _
+ ;Q—pzy‘,apn-ﬁy%n A30'*"’2—] Qvolp

a Z z app.&zrr.Ayrr.As0
L** R "o

+ab.At). gaylp
+ ORY)+0AY)
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As the scheme is only stable if the CFL-uumber is smaller
than one, it follows that At = O(h). Hence, all cocffi-
cients of the higher order derivatives are ¢}(h) and one
gets:

fII" = l
Knowing that
1 N , o
as Z L (@.&pR) Fro.dso = d
PRD

if the number of Gauss points is at least equal to 1 and
since

Za,,,‘ rrrR.Aso - a] \7q| + O(h)

FPR = Fpo — FRO

Tp can be rewritten as:

T} =
- ﬂ ZL (apr-Fro + a}a.Fro) Aso]
PL™" o
4+ O(h)

Takiug into account that
one finds
TP =

- ‘_;;ZZ [a;R.f'no ﬁq'j{

+app.iro. ‘7"| ] Ase

+ O
Defining
T = Fpo.e'qll,
le = Fno. 6q|R
™ = o)

T3 can be regarded as the space discretization of 7 in-
stead of ¢ plus a term of order A:

Tp =
—ﬁ;zz [“PR TP + app. FR]
+0O(h)
= D(T;) Wi (169)
The global error of the L heme of v (i01) is wow detined
as:
Ep = §(fp,tn) - ¢i

with § the exact solution of the analytical problem (97)

and, due to the lincarity of the scheme, the global error
satisfies:
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The global errot can be decomposed as

S

where

= TP = fpo. O " = Oh)
Ep = Ep-L}

Equation (171) becomes then:

)

= M- (B - )
(Tp+ - 73)

= T3~ 22 (ﬁq.ﬂ +O(an)

TR 4 O(h) = O(h)

7-54
T3 =
(B3 - BY)
+ % Xuj EO: (@ ED + a5 ER) .Aso (170)
or

(171)

(172)

R

Since the scheme is stable, one finds that the error E}
remains O(h) over a fixed time interval. It follows then
that the global error ED is O(h). The scheme given by
eq. (101) is therefore first order accurate in space and

time.
[w]
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FINITE ELEMENT METHODS IN CFI:
GRID GENERATION, ADAPTIVITY AND PARALLELIZATION

by

Rainald Lolmer
CMLLSEAY, The George Washington University
Washington, D.C. 20052
United States -

TOREWORD AND INTRODUCTION

Numerical methods for the solution of field problem-
s using unstructured grids have rcached a high de-
gree of maturity. In Computational Fluid Dynamics
(CFD), their impact has come relatively late. CFD
has been traditionally dominated by structured grid
solvers. These simpler solvers were used on relatively
simple domains that were still of engineering inter-
ost, e . an airfoil or a wing. Only as the computa-
tional power of hardware increased to current levels
did the possibility of computing geometrically com-
plex designs become a reality. It was at this point
that methods based on unstructured grids started to
have an impact on mainstream CFD.

The following set of notes are part of a larger set that I
had originally planned for this short course. As the fi-
nal program only called for me to describe grid gener-
ators, adaptive refinement schemes, visualization and
paralielization issues, 1 have restricted them to these
topics. 'The topic of visualization has been left out
entirel,. Given the description of optimal data struc-
tures for grid generation, the reader can easily devise
optimal search algorithms for visualization.

I have preceded these topics with a short chapter that
places CFD among related disciplines, tries to define
its aims, and focuses on the end-product of CFD re-
search; flow simulation codes. The newcomer should
find this section pariizularly interesting.

The reference section covers all topics originally in-
tended for this course. The reader is encouraged to
consult all of these for a more complete picture of
CFD.

1. CFD: GENERAL CONSIDERATIONS

Before going into a detailed description of algorithm-
o used for Computational Fluid Dynami-s (CFD), it
seemns proper to place this discipline among telated
dieciplines. CFD is part of Computational Mechanics,
which in turn is part of Simulation Techniques. The
aim is to approximate physically relevant sivuations
and phenomena using computers. In CFD, this is ac-
complished by solving numerically Partial Diffe:ential
Equations (PDEs), or by following the interarticn of
a large numbers of particles. Due to its relsvance to

the aerospace industry, as well as to most manufac-
turing processes, CFD has been putsued actively ever
since the first digital computers were developed. The
Manhatcan project was a major testbed and benefi-
ciary of early CFD technology. Concepts like artificial
dissipation date from this time.

CFD, by its very nature, encompasses a variety of
disciplines, which may be enumerated in the following
order of importance:

- Engineering: We live in a technology-driven
world. Engineering provides the reason wiy we
pursue CFD. Forget the romantic vision of re-
searchers mimicking art for art’s sake. This is
engineering, and if a code can not guide an engi-
neer to better products, it i~ simply useless.

- Physics: Physics explains the phenomena to be
simulated for sngineering purposes, and provides
possible approximations and simplifications to ab
initio physics. For example, the potential ap-
proximation, where applicable, tepresents CPU
savings of several orders of magnitude as com-
pared to full Reynolds-Averaged Navier-Stokes
(RANS) simulations. It is the task of this dis-
cipline to outline the domains of validity of the
different assumptions and approximations that
are possible.

- Mathematics: Mathematics has three different
types of input for CFD applications. These are:

a) Classic Analysis, which discusses the nature,
boundary conditions, Greenr kernels, under-
lying variational principles. adjoint opera-
tors, etc. of the PDEs;

b) Numerical Analysis, which describes the sta-
bility, convergence rates, uniqueness of solu-
tions, well-posedness of nwinerical schemes,
ets.; and

¢) Discrete Mathematics, which enables the
rapid execution of arithmetic operations (try
solving a square-root by hand).

- Computer Science: Computer s:ience has mush-
toomed into many subdisciplines. The most im-
portant ones for CFD are:

a) Algorithms, which describe: how to perform
certain cperations in an optimal way (e.g.
search of items in a list or in space);

b) Coding, so that the final code is portable,
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casy to modify and/or expand, easy to un-
derstand, user-iriendly, etc.;

¢) Software, which not only encompasses com-
pilets, debuggers and operating systems, but
also advanced graphics librarics (e.g. try do-
ing what you can do with Gl in PHIGS);
and

d) Hardware, which drives not only the realn
of ever expanding applications that would
have been unthinkable a decade ago, but also
influences to a large extent the algorithms
employed and the way codes are written,

- Visualization Techniques: The vast amounts of
data praduced by modern simulations need to be
displayed in a sensible way. This not only refers
to optimal algorithms to filter and traverse the
data at hand, but also to ways of seeing this da-
ta (plane-cuts, iso-surfaces, X-rays, stereo-vision,
ete.).

- User Community: The final produet of any CFD
cffort is a code that is to be used for engineer-
ing applications. Successful codes tend to have
a uger-community. This introduces human fac-
tors which have to be accounted for: confidence
and benchmarking, documentation and cduca-
tion, the individual motivation of the end-users.
ego-factors, not-invented-here syndronue, etc.

1.1 The CED Code

The end-product of any CFD effort is a code that is
to be used for augineering applications. The quality
of this tool wili depend on the quality of ingredients
listed above. Just as a chain is only as sttong as it-
s weakest member, so is a code only as good as the
worst of its ingredienta. Given the hreadth and van-
ety of disciplines required for & good code, it is not
surprising that only a few codes make it to a pro-
duction enviromuent, although so many are written
wotldwide. Once a CFD code leaves the realms of re-
search, it becomes a tool, i.e. a part of the service in-
dustry. CFD codes, like other simulation codes, have
certain properties. Some of these ate:

- EU: Easc of Use (Problem set-up, User interface,
)
DO: Documentation (Manusals, Help, ..)
- GF: Geometric Flexibility
- TT: Turnaround Time (Set-up to end-result)
BM: Benchniatking
- AGC: Accuracy
- SP: Speed

As any other product, CFD codes have a customer
base. This customer base imay be categorized by the
number of times a certain application has to be per-
formed. Three main types of end-users may be iden-
tified:

a) Those that require a few rune on new configura-
tions every so often to guide them in their designs

(the gencral purpose run of manufacturing industries
and procss control);

b) Those that requite A large number of runs to op-
timize highly sophisticated products (e.g. airfoi! or
wing optimization); and

¢) Those that requite a
few very detailed runs on extremely sitmple geome-
trica in order to understand or discover new physics
(the NASA/NRL/LLNL/LANL/etc. scenario, where
cach run takes at least 500 hours of CRAY-time).

According to this frequency of runs, the prioritics
change, as can be scen from the following table:

Gen.Purp./Anal. Des./Optim. New Phys.
o) a(1,000) 0(10)
days seconds months
EYU sp AC

Do T BM

GF GF sp

TT AC T

BM BM kU

AC EU GF

sp DO DO

The message is clear: before comparing codes, ask
how often the code is to be used on a partienlar ap-
plication, how qualified the personnel is, what the
maximum allowed turnaround time is, the expected
accuracy and the resources available. Only then can
a proper choice of codes be made.

1.2 Porting Research Codes to_an_Industrial Context

Going from a research code to an industrial code re-
quires & major change of focus. Industrial codes are
characterized by:

- Extensgive manuals and other docummentation;

’

24-hour hotline answering service;

Customer support team for special request-
s/applications;

- Incorporation of changes through releases and
training.

In short, they require an organization to support
them. Many researchers (particularly members of a-
cademia who always longed for their own company)
seem to ignore this. The result is a proliferation of
small compsanies that neither satisfly customer needs,
nor attain a high scientific level in their ccdes. Thus,
these companies ate characterized by being shoet-
lived, as well as being one-idea or one-product ori-
ented.

2. UNSTRUCTURED GRID GENERATION

Consider the task of generating an arbitrary unstruc-
tured mesh in a given computational domain. The
information required to perform this task is-
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3) A description of the bounding sutfaces of the do-
main to be discretized;

b) A description of how the element size. shape and
orientation should be in space;

¢) The choice of element type;

4 The choice of a suitable method to achicve the
genetation of the desired mesh,

The most common ways to provide these four picces
of information are discussed in the following.

2.1 Description of the Bounding Surfaces of the
Dowaiy

S.1 Analytic Functions: This is the preferred choice
if a CAD-CAM data base exists for the degcription of
the domain. In this case, Splines, B-Splines or other
types of functions are used to describe the surface
of the domain. An important characteristic of this
approach is that the surface is continuous, i.¢. there
exist no ‘holes’ in the information.

$.2 Discrete Data: Here, instead of functions, a cloud
of pointa describes the surface of the computational
domain. ‘This choice may be attractive when no CAD-
CAM data base exists. Commercial digitizers can
gather surface point information at high speeds, (>
30,000 points/sec), allowing a very accurate descrin-
tion of a scaled model or the full configuration {Gd.1).
Notice that this appioach leads to a discontinuous
surface description. In order not to make any mis-
takes when discretizing the surface during mesh gen-
eration, only the points given in the cloud of points
should be selected.

2.2
Variation of flement Size, Shape and QOrientation
i _Space

V.1 Internal Measurea of Crid Quality: The idea here
18 to start from a given surface mesh. After the intro-
duction of a new point or element, the quality of the
current ygrid ot front is assessed. Then, a new point
ot clement is introduced in the most critical region.
This process is repeated until eithier a mesh that sat-
isfies a pressat measure of quality is achieved (Gv.11},
or the number of [aces in the front has shrunk to ze-
ro {Ga.8]. This technique works well for equilateral
elements, requiring minimal user input. On the other
hand, it is not very genetal, as the surface niesh needs
to be provided as part of procedure.

V.2 Analytical Functiong: In this case, the user codes
in a small subroutine the desired varialio of elemen-
t size, shape and orientation in space. Neediess to
say, this is the least general of all procedures, requir-
ing new coding for every new problem. On the oth-
er hand, if the same problem nceds to be discretized
many times, an optimal discretization 1aay be coded
in this way. Although it may seem irappropriate to
pursue such an approach within unstructured grids,
the reader may be reminded that most current airioil
calculations are carried out using this approach.

V.3 Boxes: If all that is required are regions with

X-3

wniform mesh sizes, one may define a sories of box-
¢s in which the clemnent size is constant. For each
location in space, the element size taken ia the small-
est of all the boxes containing the curront location.
When used in conjunction with surface definition via
quad/octrees, one can automate the point distribu-
tion process completely in a very elegant way [Go.1).

V.4 ot /Line/Surface Sources: A more flexible way

that combines the stmoothnese of functions with the
generality of boxes or othet discrete clements is to de-
fina sources. As an example, consider the line source
defined by the function:

5(x) = 6o [1+("_(§lr.l.".«.’2)7] L@

The definition of r(x) may be inferred from Fig-
ure 2.1. Ae one can see, a very flexible way of defin-
ing mesh spacings 18 obtained with the 4 input pa-
taincters 8, ro,ry, 9. If one collapses the two points
x2 —+ Xj, A point-source is obtained. It is a simple
matter to introduce these sources interactively with
the mouse once the surface data is available. Ob-
viously, the number of sources should be kept small
(N, < 50) in order not to incur penalties in user set-
up time and grid generation time,

r(x)

X1

Figupe 2.1: Example of a Source to Detine
Element Size in Space

V.5 Backgreund Grids: Here, a coarse grid is provid-
ed by the wser. At each of the nodes of this back-
ground grid, the element size, stretching and stretch-
ing direction are specified. While very general and
flesible, and pariiculatly suited to adaptive remesh-
ing, the input of suitable background grids for com-
plex 3-D configurations can bhecome a tedious pro-
cess. ‘Therefore, moet available grid generator: em-
ploy background grids in conjunhction with source-
definitions in order to generate the first mesh.

2.3 Element Type

Alinost all current unstructured grid generators can
only gonerate triangular or tetrahedral elements. If
quad-elements in 2-D are required, they are generated
by the following five-stage process:

Q.1 Generate a trisngular mesh with elements that
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are four times as big as the quad-elements re-
quired.

Q.2 Fuse as mony pairs of triougles into quads as pos-
sible without genorating quads that ate teo dis-
torted. This proceas will leave some trisngles in
the domain,

Q.3 Smooth the mesh of triangles and quads.

Q.4 H-refine globally the mesh of triangles and quads.
For the triangles, introduce an additional point
in the clement (sce Tigure 2.2). o this way, the
resulting mesh will only contain quads. More-
over, the quads will now be of the desired size.

al Mesh ot
Trtan )igs

COAfLe

Mol reniene

Figure 2.2: Generation of Quad-Meshes from Triangles

Q.5 Smooth the final mesh of quads.

The procedure outlined above will nov wotk in 3-D.
There is a large cffort of 3-D brick generation tech-
nology at Sandia Labs at the present time.

2.4 Methods

There appear to be only the two following ways to fill
space with an nustructured mesh:

M.1 Fill Empty, i.e. Not Yet Gridded Space: The
idea here is to procede into as yet ungridded space un-
til the complele computational demain is filled with
clements. This has been shown diagramatically in
Figure 2.3. The methods falling unaer this catego-

ry are the so-called advancing front algorithins. The

frout’ denotes the boundary botween the togion in &
pace that has been filled with elementa and that which
13 empty.

Active ‘rant

>

‘\-
\wu"cary

Figure 2.3: Advancing Front Method

l\ll-\NtW

M.2 Improve_an Existing Grid: In this case, an exist-
ing grid is modifled by the introduction of new points.
After tho introduction of each point, the grid is recon-
nected or reconstructed locally in order to improve
the mesh quality. ‘This procedure has been sketched
in Figure 2.4. In moat cases, the Delauney circum.
scircle or circumsphere criterion is used to reconnect
the points. Given the duality between Voronoi tesse-
lations and the triangulations obtained using the De-
launey criterion, the methods falling under this cate-
gory have been called Voronoi algorithms.

Figure 2.4: Voronoi Approach

In the following matrix, a brief summary is given of
poasible combinations for specifying element size and
shape 1n space, the method employed to generate the
mesh as atteipted by various authors:

| —
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2.4 Qthet Methods

Many other methoda of genecrating meshes that are
apecially suited to o particular application may be de-
veloped. If one knows the approximate answer {say we
want to solve the same wing time and time again), the
specialized development of an optimal mesh makes
good sense. ln many of these cases (e.g. an O-mesh
for a aubsonic/transonic steady-state mrfoil caleuls-
tion), grids generated by the mote genaral methods
listed above will tend to be larger than the apecialized
ones for the same final accuracy. The main methods
falling under this speciaiized category are:

a) Simple Mappings: In this case, 1t is assumed that
the ccmplete computatioual domain can be mapped
into o single quad ot cube. The dist=‘bution of points
and elements in space ia controlled either by an wlge-
braic function, ot by the solution ot a Pattinl Differ-
entiai Equation in the transformed space. Needless
to say, the number of points on opposing faces of the
mapped quad or cube have to match line by line.

b) Macro-Element Appreach: Here, the previous ap-
ptoach is applied on a local level by fiest manually or
semi-manually discretizi 1g the domain with large cle-
ments. Theae large cicmenta are subsequently divided
up into smaller elements using simple mappings [G-
in.d) {see Pigure 2.5). 1o the werospace comununity,
this approach has been termed ‘multi-block’, and a
whole service industry dedicated (o the proper con-
structiou of grids has evolved [Gm.2.5).

i
i
S
e e —
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Figure 2.5 Macro-Element or Multi-Block Approach

¢) Upifepn Dackground Grid: For 1. oblema that re-
quire uniform gride (e.g.  Hadar Cross:Section eal-
culations nnd hothogeneous turbulence), most of the
mesh covering the computational domain can be read-
ily obtain from o uniform grid. This grid i called
a background grid, becanso it is laid over the com-
putstionnl domain. At the boundarien, the mesh
try be madified to conform to the surfaces, although
mony Legoland codes omit even this. After modify-
ing these surface elements, the mesh is smoothed, in
order 1o obtain a more uniform discretization close to
the boundaries {Gr.1.Gr.2). The procedure has been
sketched in Figure 2.6.

EAAAAS

Boung.ry
BouLhIArY
¢ Swgathvng
Figure 2.9: Mesh Generat on by Perturbation of a

Regu'ar Mesh

3. GRID GENLKATION USING THE
ADVANCING FRONT METHOD

After describing the general strategies currently avail-
able to generate unstructured grids, the advancing
front mathod will now be oxplained in more detail.
The aim is to show what it takes to make any of
the mcthods outlined in the previous sections work.
Many of the data structures, scarch algorithms, and
yeneral coding issues carry over to the other methods,
‘The advancing front technique consists algorithmical-
ly of the lollowing steps:

F.1 Define the spatial variation of element size,
stretchings, and stretching ¢'rections for the ele-
ents to be created. In maost cases, this is accom-
plished with & combination of background grids
and sources as outlined above.

F.2 Define the boundaries of the domain to be grid-
ded. This ia typically accomplished by splines in
2-D and surface patches in 3-D.

F.3 Using the information stored on the hackground
grid, set up faces on 2l these boundaries. This
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F.6.3 Determine whether the element formed with
the selected point IPNEW does not ¢cross ary
given faccs. I it does, select a now point as
IPNEW and try agnin (go to F.5.3).

.6 Add the new clement, point, and faces to thar
tespective lists.

yields the witial front of faces. At the smne time,
find the genetati. n parameters (element size, el-
ement etretchings nnd strotching directions) for
these fuces from the background grid.

F.4 Select the next face to be deleted from the fron-
t; in ordet to avoid large clements crossing over
rogions of small olements, the face forming the
smillest new clemont is selocted as the next face
to be deleted from the list of faces.

F.o For the face to be deleted:

I°.7 Find the goneration parameters for the new faces
from the backgtound grid.
F.8 Delete the known faces from the list of faces.
.. o . ) 1".9 If there are any faces loft in the front, go to I'.4.
F.5.1 Select a ‘best point’ position for the intro-
duction of o new point 1PNEW.

F.5.2 Determine whether a point exists in the al-
ready generated grid that should be used in
lieu of the new point. If there is such n pnint,
set this poiat to

The complete grid generation of a simple 2-D domain
using the advanciug front technique is showu in Fig-
ure 3.1. In the following, individual aspects of this
general algorithmic outlined are descritied in more de-

X, NP
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IPHEV and continue seatchin, (go to 1°.5.2).
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Figure 3.1: Grid Generation Using the Advancing Front Technique



3.1. Checking the Intersertion of Faces

The most important ingredient of the advancing front
generator is a reliable and fast algorithm for checking
whether two faces intersect each other. Experience
from practical applications indicates that even slight
changes in tLis portion of the generator greatly influ-
ence the final mesh. As with so many other problemn-
s in computations! geometry, checking whether two
faces intersect each other seems trivial for the eye,
but is complicated to code. The problem is shown
in Figure 3.2. The checking algorithm is based on
the following observation: two triangular faces de¢ not
intersect if no side of either face intersects the other
face. The idea then is to build all possibie side-face
combinations between any two faces and check them
in turn. If no intersection is found, then the faces do
no’ cross. With the notation defined in Figure 3.3,
the intersection point is found as

xy + algy +a’gr =x, +ags 3.1

where the g;-vectors form a covariant basis. Using
the contravariant basis g* defined by

g g =8, (3.2)

where 6] denotes the Kronecker-delta, the a* are given
by

ol = (x, - xq)-g!
o = (x, ~xs) - g7 . (3.3)
o =(xy~x,)-g° .

Because we are only interested in a triangular surface
for the gy, g2 - plane, we define another quantity sim-
ilar to the third shape function for a hinear triangle:

a*=1-al-a? . (3.4)

Using the a*, two faces can be considered as ‘~rosse "’
if they only come close together. Then, in order for
the side not to cross the face, at least one of the o'
has to satisfy

t > maz(—o',a'-1) ,i=14 , (35)

where t is a predefined tolerance. By projecting the g,
onto their respective unit contravariant vectors, one
can obtain the actual distance between a face and a
side. The criterion given by Fqn.(3.5) would then be
replaced by (sce Figure 3.4):

d> —Lrnaz(—a‘,a‘ -1) ,i=14 . (3.6)

Ig*!

Figure 3.2: Croasing of Two Faces
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FACE

Figure 3.3: Face-Side Combination
SIDE
H] %
FACE
9

Figure 3.4: Distance Between Face and Side

The first form (Eqn.(3.5)) produces acceptable grids.
If the face and the side have points in common, then
the o* wiil all be either 1 or 0. As both Eqn.(3.5) and
Eqn.(3.6) will not be satisfied, special provision has
to be made for these cases. For each two faces, six
side-face combinations are possible. Considering that
on average about 40 close faces need to be checked,
this way of checking the crossing of faces is very CPU-
intensive. When it was first implemented, this portion
of the grid generation code toock more than 80% of the
CPU time required. In order to reduce the work load,
a three-layered approach was subsequently adopted:

a) Min/Max-search: The idea here is to disregard
all face-face combinations where the distance be-
tween faces exceeds some prescribed minimum dis-
tance. This can be accomglished by checking the
maximum amd minimum value for the coordinates
of each face. Faces cannot possibly cross each other
if, at least for one of the dimensions i = 1,2,35, they
satisfy one of the following inequalities

mazgacer (24,25, 26) < Mingacea (2%, 25, z6) —d ,
(3.7a)

Mingecar (24, 2%, 25) > mazjacer (2%, 25, 26) +d ,
(3.7b)
whete A, B,C denote the corner points of each face.

b) Local element coordinates: The purpose of check-

ing for face-crossings is to determine whether the new-
ly formed tetrahedron breaks already given faces. The
idea is tc extend the previous Min/Max-criterion with
the shape functions of the new tetrahedron. If all
the points of a given face have shape-function val-
ues N’ that have the same sign and lie outside the
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[=t, 14 t] interval, then the tetrahedron cannot pos-
sibly cross the face. Such a face is therciore disre-
garded,

¢) _In-depth analysis of side-face combinations; Al-
1 the faces rernaining after the filtering process of steps
a) and b) are analyzed using side-face ccnibinations
as explained above.

Each of these three filters requires about an order
of magnitude more CPU-time than the preceding
one. When implemented in this way, the face-crossing
check requires only 25% of the total grid generation
time. When operating on a vector rnachine, loops are
performed over all the possible combinations, building
the g;,g",a’, etc. in vector mode. Although the vec-
tor lengths are rather short, the chaining that results
from the lengthy mathematical operations involved
results in acceptable megaflop-rates on the CRAY-
XMP.

3.2. Data Structures to Minimize Search Overheads

The operations that could potentially reduce the ef-
ficiency of the algorithm to O(N!-®) or even O(N?)
are (see section 2):

a) Finding the next face to be deleted (step F.4);

b) Finding the closest given points to a new point
(step F.5.2);

¢) Finding the faces adjacent to a given point (step
F.5.3);

d) Finding for any given location the values of gen-
eration parameters from the background grid
(steps F.3 and F.7). This is an interpolation
problem on unstructured grids.

The verb ‘find’ appears in ail of these operations. The
main task is to design the best data structures for
performing the search operations a)-d) as efficiently
as possible. These data structures are typically bi-
natry trees or more complex trees. They were devel-
oped in the 1960s for Computer Science applications.
Many variations are possible (see [Da.l]). As with
flow solvers, there does ot seem tc be a clearly de-
fined optimal data structure that all current grid gen-
erators use. For each of the data structures currently
employed, one can find pathological cases where the
performance of the tree-seach degrades considerably.
The data structures I have uced are:

- Heap-lists [Ds.1-4], to find the next face to be
deleted from the front;

- Quad-trees (2-D) and Octrees (3-D)
[Ds.1,2,Go.1), to locate points that are close to
any given location;

- N-trees, to determine which faces are adjacent to
a point.

Combining these data-structuree, one can also derive
an optimal interpolation algorithm for unstructured
grids {Ga .4].

3.2.1 Heap List for the Faces

Heap lists are well-known binary tree data structures
in computer science {Ds.1-4]. The ordering of the tree
is accomplished by requiring that the key of any fa-
ther (root) be smaller than the keys of the two sons
(branches). An example of a tree ordered in this man-
net i8 given in Figure 3.5, where a posesible tree for the
letters of the word ‘cxample’ is shown. The letters
have been arranged according to their place in the al-
phabet. We must now devise ways to add or delete
entries from such an order=d tree without altering the
ordering. In the prescnt case faces have to added as
entries into the tree. Therefore, replace ‘entry’ by
‘face’. The ideas that follow use the heap-sort and
heap-search algorithms [Ds.2,3] to determine quickly
which face should be deleted next from the front.

1. 2.

®

X ® ® ®

Figure 3.5: Insertion of [tems inte the Heap List

The positions of the son or the futher in the heap
list LBEAP(1:MBEAP) are denoted by IPSON, IPFATH
respectively. Accordingly, the face-number of the
son or the father in the tree is denoted by IF-
SON, IFFATE. Then IFSON=LHEAP(IPSON) and IF-
FATE=LRBAP(IPFATH). From Figure 3.5 one can see
that the two sone of positicn IPFATH are located at
IPSONi= +IPFATH and IPSON222+IPFATH+1 respec-
tively. Assume that FFACE faces and RFACE(1:WFACE)
associated keys are given. The two main operations
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are adding and deleting a new face to the tree without
altering the ordering.

3.2.1.1 Adding » new face to the heap list

The idea is to add the new face at the end of the
tree. If necessaty, the internal order of the tree is re-
established by compatring father and son pairs. Thus,
the tree is traversed from the bottom upwards.

Algorithm ADDHEAP :

A.1 Increase NHEAP by one: NHEAP=NHEAP+1.

A.2 Place the new face IFNEW at the end of the heap
list: LREAP(XEEAP)=IFNEV.

A.3 Set the position of the son IPSON in the heap list
to:

IPSON=KHEAP,

A.4 Then the position of the father IPFATH in the
heap list is given by: IPFATH=IPSON/2 (integer
division).

A.5 The faces associated with the positions of father
and son are: IFSON=LEEAP(IPSON),
IFFATB=LEEAP(IPFATH).

A.6 If RFACE(IFSON) < RFACE(IFFATH):

A.6.1 interchange the faces stored in LHEAP
A.6.2 set IPSON=IPFAT.

A.6.3 urless IPSO¥=1 (top of the "it), go back to
step A 4.

In this way, the face with the smallest associated key
RFACE(IFACE) remains at the top of the list in po-
sition LHEAP(3). The process is illustrated in Fig-
ure 3.5, where the letters of the word ‘example’ ha
been inserted sequentially into the heap list.

3.2.1.2
Removing the face at the top of the heap lis!

The idea is to take out the face at the t., >t thi= hea
list, replacing it by the face at the bottor~ ~tuc he

list. If necessary, the internal order . . e
established by comparing pai o ns.
Thus, the tree is traversed from vuc v, ~ ... .sards.

Algorithm REMBEAP :

R.1 Take out the face at the top of the list: I-
FOUT=LHEAP(1)

R.2 Place the face stored at the end of the heap list
at the top:
LHEAP (1)sLHEAP(WHEAP), and lower
NEEAP: NREAP=RHEAP-1.

R.3 Set the position of the {ather IPFATH in the heap
list to
IPFATH=1.

R.4 Then the positions of the two sons IPSON1 and
IPSON2 in the heap list are given by: 1p-
SON1=2¢IPFATH
and IPSON2=IPSON1+1.

R.5 The faces asgociated with the positions of father
and sons are:

89

IFSON1=LBEAP(IPSON1),
IFSON2=LHEAP (IPSON2),
IFFATH=LHEAP (IPFATR).

R.6 Determine which son needs to be exchanged:
If RFACE(IFFATH) < RFACE(IFSON1),
RFACE(IFSON2) : set IPEXCH=0
If RFACE(IFFATH) > RFACE(IFsON1) >
RFACE(IFSON2) : set IPBXCH=IPSON2
If RFACE(IFFATB) > RFACE(IFSON2) >
RFACE(IFSON1) : set IPEXCA=IPSONY
If RFACE(IFSON1) > RFACE(IFFATH) >
RFACE(IFSON2) : set IPEXCH=IPSON2
If RFACE(IFSON2} > RFACE(IFFATH) >
RFACE(IFSON1) :
set IPEXCHsIPSO¥1

R.7 Unless IPEXCH=0, exchange father and son posi-
tions:
R.7.1 interchange the faces stored in LEEAP
R.7.2 set IPFATE=IPEXCH

R.7.3 unless 2¢IPFATE > RHEEAP (bottom of the
list), go back to step R.4.

In this way, the face with the smallest associated key
will again remain at the top of the list in position L-
HEAP(1). The described process is illustrated in Fig-
ure 3.6, where the successive removal of the small-
est element (: ‘phabetically) from the previously con-
structed heap list is shown.

@OOL®ME®

Figure 3.6: Successive Deletion of the
Smallest Item from the Heap List

It is easy to prove that buch the insertion and
the deletion of a face into the heap list will take
O ,,(NHEAF)) operations {Ds.3,4] on the average.

uad/Qctrees for the Points

Quadtrees and Octrees have been used extensively for
2-D and 3-D g:i : generators [Go.1]. Their main role
there was to duiine the objects to bhe gridded, and
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not to provide an O(log(.V)) search algorithm for ar-
bitrary point distributions. The main ideas are de-
scribed for 2-D regions. The extension to 3-D regions
ic immediate. Define an array LQUAD(1:7,HQUAD) to
store the points, where XQUAD denotes the maximum
nvmber of quads allowed. For each quad IQ, store in
LQUAD(1:7,1Q) the following information:

LQUAD( 7,1Q): < O0: the quad is full
=0: the quad is empty
> 0: the nuinber of points
stored in the quad
the quad the present
quad came from
the position in the
quad the present
quad came froni
for LQUAD(7,1Q) > 0 :
thie points stored in this quad

wrap( 6,IQ): >0:

LQUAD( 5,IQ): >0:

LQUAD(1:4,1Q) :

]
N
ao
o]
8 C G
——
A
o °g

+
-
c-jojojo

i

for LQUAD(7,1GQ) <0 :
the quads into which the
present quad was subdivided

At most four points are stored per quad. If a fifth
voint falls into the quad, the quad is subdivided into
four, and the old points are re-located into their re-
spective quads. Then the fifth point is introduced to
the new quad into which it falls. If the quad is full
agair, the subdivision process continues, until a quad
with vacant storage space is found. This process is
illustrated in Figure 3.7. The newly introduced point
E falls into the quad IQ. As IQ aiready contains the
four points A,B,C and D, the quad is subdivided into
four. Points A,B,C and D are relocated to the new
quade, and voint ¥ is added to the new quad NQUAD+2.
Figure 3.7 also shows the entries in the LQUAD-array,
as well as the associated tree-structure.

NQUAD +3 NAD +4
N s
ool p O OLD POINTS (ABC.0)
B ¢c| n
o NEW FOINT (€)
A
] %

Figyre 3.7: Introduction of a New Point into a full Quad
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In order to find points Lhat lie inside a search region,
the quadtree is traversed from the top downwards.
In this way, those quads that lie outside the search
region are eliminated at the highest possible level.
An attractive feature of quadtrees and octrees is that
there is a close relationship between the spatial loca-
tion and the location in the tree. This considerably
reduces the number of operations required to find the
quads covering a desired search-region. It is not dif-
ficult to see that with the quadtree or the octree it
takes O(log,(N)) or O(logg(N)) operations to locate
all points inside a search region or to find the point
closest to a given point.

3.2.3 N-trees for the Face/Point Search

N-trees are linked lists that are often used "> re-
late data of different nature and number of items.
For unstructured grids one could relate element, face,
side and point-data. In the present case, a storage
scheme is sought to angwer the question: which are
the faces adjacent to a given point? As the num-
ber ot faces surrounding a point varies from point to
point, but usually fluctuates within certain bounds,
the following scheme appears attractive. Define an
array LPOIN(1:MPOIN) over the points and another
array LFAPO(1-MFSUP,MFAPO), where HPOIN denotes
the number of points, MFSUP the average number of

8-11

faces surrounding points (-+1), and NFAPO the maxi-
mum number of storage locations. Then store in:
tP0IN(IPOIN) : the place IFAPO in LFAPG
where the storage of the faces
surrounding point JPOIN starts.

LFAPO(MFSUP, IFAPO) : >0 : the number of
stored taces
< 0 : the place JFAPO
in LFAPO
where the storage
of the facrs
surrounding
point IPOINX
is continued
LFAPO(1:NFSUP~1,IFAPO) : = 0 : an empty location
> 0 : a face surrounding
IPOIN

In 2-D one typically has two faces adjacent to a point,
and MFSUP=3, while for 3-D meshes typical values
are NFSUP=8-10. Once this storage scheme has been
set up, storing and/or finding the faces surrounding
points is readily done. The process of adding a face to
the linked list LPOIN/LFAPO is shown diagramatically
in Figure 3.8.

3
IPOIN
(2] F2,
H
POIN: L\FAPO:
1 1
2 2
IPOIN WFAPO
—
FAPO F2l 2 Fi|F2 — (NFAPO +1)
NPOIN |
NFAPO
NFAPO + i 0]o F3j0] 1 NFAPO + 1
MFAPO

Figure 38: Introdi:tion of a New Face into the Linked List
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3.3 Additionu| Technigues to Increase Speed

There are some additional techniques that can be used
to improve the performance of the advancing front
grid gencrator. The most important of these are:

a) _Filtering: Typically, the number of close points
and faces is far too conservative, i.e. large. As an
example, consider the search for close points: there
may be up to eight points inside an octant, but of
these only one my be close to the face to be taken
out. The idea is to filter out these ‘distant’ faces and
points in order to avoid extra work afterwards. While
the search operations are difficult to vectorize, these
filtering operations lend themselves to vectorization
in a straightforward way, leading to a considerable
overall reduction in CPU requirements.

b) _Automatic Reduction of Unused Points: As the
front advances into the domain and more and more
tetrahedra are generated, the number of tree-levels
increases. This automatically implies an increase in
CPU-time, as more steps are required to reach the
lower levels of the trees. In order to reduce this CPU-
increase as much as possible, all trees are automaiical-
ly restructured. All points which are completely sur-
rounded by tetrahedra are eliminated from the trees.
This procedure has proven to be extremely effective.
It reduces the asymptotic complexity of the grid gen-
erator to less than O(N log N). In fact, in most prac-
tical cases one observes a linear O(V) asymptotic
complexity, as CPU is traded between subroutine cal-
1 overheads and less close faces on average for large
problemas.

¢) _Global h-refinement: While the basic advancing
front algorithm is a scalar algorithm, h-refinement can
be completely vectorized. Therefore, the grid gen-
eration process can be made considerably faster by
first generating a coarser, but stretched mesh, and
then refining globally this first mesh with classic h-
refinement [Ae.6,7]. Typical speed-ups achieved by
using this approach are 1:6 to 1:7.

3.4 Additional Techniques to Enhance Reliability

The advancing front algorithm described above may
still fail for some pathological cases. The newcomer

should be reminded that in 3-D, even the slightest
chance of something going astray has to be accounted
for. In a mesh of over a million tetrahedra (common
even for Euler-runs), any slight possibility becomes
a reality. The following techniques have been found
effective in enhaciug the reliability of advancing front
grid generators to a point where they can be applied
on a routine basis in a production environment:

a) Avoidance of bad eleinents during generation: It is
important not to allow any bad elements to be creat-
ed during the generation process. These bad elements
can cause havoc when trying to introduce further ele-
ments at a later stage. Lherefore, if a well-shaped
tetrahedron can not be introduced for the current
face, the face is skipped.

b) Sweep and Retry: If any faces where new ele-
ments could not be introduced remain in the field,
these regions are enlarged and remeshed again. This
’sweep and retry’ technique has provea extremely ro-
bust and reliable. It has also made smoothing of
meshes possible: if elements with negative or smal-
1 Jacobians appear during smoothing (as is the case
with most spring-analogy smoothers), these elements
are removed. The unmeshed regions of space are then
regridded. By being able to smooth, the mesh quality
is improved substantially, leading to better results in
field solvers.

3.5 Some Examples

3.5.1 Multi-Element Aigfoil uration: Figure 3.9
shows & multi-element airfoil case. Figure 3.9a gives
the boundary information, Figure 3.9b the back-
ground grid used and Figure 3.9c the quadtree ob-
tained for the background grid. Figures 3.9d,e show
the constructed mesh before smoothing, as well as the
associated quadtree. This grid is then smoothed using
a spring system analogy, producing ihe grid shown in
Figure 3.9f.

Currently, the advancing front algorithm constructs
grids at a rate of 25,000 tetrahedra per minute on
the CRAY-XMP or CRAY-2. With one level of h-
refinament, the rate is 190,060 to 200,000 tetrahedra
per minute. This rate is essentially independent of
grid-size, but may decrease for very small grids.
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4. ADAPTIVE REFINEMENT

Besides their ability to discretize accurately complex
geometries, & second very attractive feature of un-
structured grids is the ease with which adaptive re-
finement can be incorporated into them. The addition
of further degrees of freedom does not destroy any pre-
vious structure. ‘Thus, the flow solver requires no fur-
ther modification when operating on an adapted grid.
For many practical problems, particularly those with
travelling shocks ot flapping wakes, the regions that
need to be refined are extremely small as compared
to the overall domain. Therefore, the savings in stor-
age and CPU-requirements typically range between
10-100, as compared to an overall fine mesh {Am.1-
4,Ae.1-12,Ar.1-5]. Experience indicates that foc prob-
lems falling in this class, adaptive refinement inakes
the difference between being or not being able to run
the problem to an acceptable accuracy in a reason-
able time [Ae.8-10]. Without it, one would be forced
to use much coarser grids, with lower accuracy, for
the same expense.

On the other hand, one should not always expec-
t such big gains from adaptive refinement. As an
example, consider the repetitive simulation of iavis.
cid subsonic flow past airfoils. For this application, a
well-chosen O-mesh already gives a near-optimal dis-
cretization. Therefore, except perhaps at leading and
trailing edges and possible shock-regions, adaptation
will not give dramatic gains in performance.

The hidden advantage of adaptive refinement is that
it frees the user from having to waste time choos-
ing a good initial grid. With adaptasion, any ini-
tial grid will be transformed into a near-optimal dis-
cretization. Thus, adaptation adds a new dimension
of user-friendliness to the CFD process that was not
there previously.

Any adaptive refinement scheme is compoeed of three
main ingredients. These are

1) an optimal-mesh criterion,

2) an error indicator, and

3) a method to refine and coarsen the mesh.

They give answers to the questions
1) how should the optimal mesh be ?
2) where is refinement/coarsening required ?

3) how should the refinement /coarsening be accom-
plished ?

The topic of adaptation being now a decade old, it
is not surprising that a vatiety of answers have been
proposed by several authors for each of these ques-
tions. In the following, the most successful ones are
discuseed in more depth.

4.1 Optimal Mesh Criteria
The most common optimal mesh criteria employed
are:

a) Equidistribution of Error: The aim is to attain a
gtid in which the error is uniformly distributed in s-
pace. One can show that such a mesb has the smallest

numbets of degrees of freedom (i.c. the smailest num-
ber of elements) for the general aim:

¢ wminVxeQ. (4.1)

Conceptually, one can derive this criterion from the
obsetvation that the error will have the irregular dis-
tribution for the first mesh shown in Figure 4.1a. if
the number of degrees of freedom is kept the same,
tlie distribution of element size and shape is all that
may be varied. Aftet repositioning of points, the er-
ror distribution in space will become more regular,
as shown in Figure 4.1b. One can also sce that the
general aim stated in Eqn.(4.1) will be achieved when
the crror is constant in the domain.
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Figuge 4.1: Optimal Mesh Criterion

b) Local Absolute Error Tolerances: In many practi-
cal applications, the required error tolerances may not
be the same at all locations. Moreover, instead ot * ~
ing the general minimization stated in Eqn.(4.1), oa.
may desire to enforce absolute local bounds in certain
regions of the domain:

A <o Ve, (4.2)

Mesh refinement or coarsening would then take place
if the local error indicator exceeds or falls below given
refinement or coarsening tolerances:

™ > ¢, = retine , ® < ¢, = coarsen.

4.2 Error Indicators/Eetimators

Consider the task of trying to determine if the solu-
tion obtained on the present mesh is accurate. In-




tuitively, & numbet of criteria immediately come to
mind: variations of key-variables within elements,
entropy-levels, higher-order derivatives of the solu-
tious, etc. Al of them wmake the fundamental as-
sumption that the solution on the present mesh is
already in some form ‘close’ to the exact solution.
This assumption is reasonable for parabolic and el-
liptic problems, where, due to global minimization
principles, local deficienctes in the mesh have ounly a
local effect. For hyperbolic problems, the assumption
u? & u may be completely erroneous. Consider an
airfoil at high angle of attack. A coarse initial mesh
may completely miss local separation bubbles at the
leading edge that lead to massive separation in the
back portion of the airfoil. Thus, any crtor indicator
presently in use (and I really mean any) would mis-
8 these features, performing adaptation at the wrong
places. On the other hand, the assumption u® ~ uis
a very rcasonable one for most initial grids, As a mat-
tor of fact, it is not so difficult to attain, particularly
if a similar problem has been solved before.

4.2.1 Popular Error Indicators

The most popular error indicators presently used in
production codes may be grouped into the following
categories:

1.1 Jumps in Indicator Variables: ‘The simplest ertor
indicator is obtained by siinply looking at the jump of
some indicator variable like the Mach-number, densi-
ty, or entropy within an element, The underlying as-
sumption is that in those regions where these jumps
ate large, more elements sre re yuired. This assump-
tions fails at shocks, where tne jump will stay the
same no matter how fine the mesn is made. Never-
theless, etror indicators of this form have been used in
industrial applications with success {Ae.3,Ae.11,12).

1.2 Interpolation Theory: Making the assumption
that the solution is smooth, one may approximate
the error in each elements by a derivative one order
higher than the element shape function. For 1-D, this
would result in an error indicator at the element level
of the form

Su
zF '

where the p — th derivative is obtained by some re-
covery procedure, and for linear clements p = 2. The
total error in the computational domaia is the given

by
h=c [/ h? ——-d!!] . (4.4)

1.3 Comparjson of Derjvatives: Again making the as-
sumption that the solution is smooth, one may com-
pate significant derivatives using schemes of differcnt
order. As an example, consider the following two ap-
proximations to a second derivative:

P2
e = oh

(4.3)

817

1 —hy Jv (4.5a)

|
Ugrly = n (Mg — 20 + ti4) — 12

u‘n‘lg = 12"3 (—ti-3 + 16u; .y — J0u; + 10041 — Ui42)

%Mu v (4.5b)
The assumption of sinoothness in 4 would allow =
good estimate of the error in the second derivatives
from the difference of these two expressions, For un-
steuctured grids, one may recover these detivatives
with reconstruction procedures.

[.4 Residuals of PDEs on Adjacent Grida:  Assume
w~¢ have a node-centered scheme to discretize the
PDEs at hand. At steady state, the residuals at the
nodes will vanish. On the othes hand, if the residu-
als are cvatuated at the element level, noun-vanishing
residuals are observed in the regions that require fur-
ther refinement. This error indicator has been used
extensively in France {Ac¢.4]. Another possibility is
to check locally the effect of higher order shape func-
tions introduced at the clement level or at clernent
boundaries. These so-called p-refinement indicators
have been used extensively for structural FEM appli-
cations [Ae.13,14).

All of these error indicators have been used in prac-
tice to guide mesh adaptation procedures. Thay all
work for their respective area of application. It seems
that the derivation of a proper error indicator is not
a difficult task. The analyst usually knowns how to
discern a good solution from a bad one. An error
indicator built on this knowledge has to work !

4.2.2 Transient Compressible Flows

Transient Compressible Flows, with their travelling
shocks of widely different strengths which need adap-
tation every 5-10 timesteps require more refined error
indicators. Design criteria for these error indicators
are;

a) The error indicator should be fast.

b) The error indicator should be dimeunsionless, so
that eeveral ‘key variables’ can be monitored at
the same time.

¢) The error indicator should be bounded, so that
no further user intervention becomes necessary
as the solution evolves,

d) The error indicator should not only mark the re-
gions with strong shocks to be refined, but al-
so weak shocks, contact discontinuities and other
‘weak features’ in the flow.

All of the popular error indicators described above are
no’ dimensionless. This implies that strong shocks
produce large error indicators, whereas weak shocks
ot contact discontinuities produce small ones. Thus,
in the end, only the strong shocks would be refined.,
losing the weak features of the flow. An error indica-
tor that meets the design criteria a)-d) was proposed

feae
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in (Ae.8). In gonctal terims, it is of the form

h? |second derivatives|

b |first derivatives] + ¢ [mean value] -
(16)

error =

By dividing the second derivatives by the absolute
value of the firat derivatives the ertor indicator be-
comes bounded, dimeunsionless, and the ‘eating up'
effect of strong shocks is avoided. The terms follow-
ing ¢ are added as & ‘noise’ filter in order not to refine
‘wiggles’ or ‘ripples’ which may appear due to loss of
nionotonicity. The value for ¢ thus depends on the
algorithm chosen to solve the PDEs describing the
physical process at hand. The multidimensional form
of this ercor indicator is given by

Eu,a (fn N.'tN.fdn Uy )?

£l = : .
Silfa NI (1843051 + € (INT1021) ] d)2
(4

)
where N7 denotes the shape-function of node I. This
ertor indicator has performed very well in 2-D over
the years [Ae.6-10,Ar.2-5). However, when first used
in 3-1), it proved unreliable. ‘The source for this scem-
ingly inconsistent behaviour was found to stem from
the large local variations in element size, shape, as
well as number of element suerounding a point en-
countered in typical 3-D uustructured grids. Thrse
will produce large variations of the second term in the
denomiinator which are not based on physics, but on
the mesh stracture itself. The solution was to modify
this error indicator as follows:

- | Tas (o NANTdQ - U5)?
a \j Coa (S INLIINT U |dQY + eM Mrh7 2 (Uil

(4.8)
where M M; is the lumped mass-matrix at point I,
and hj the average element length at point /. ‘Thiser-
ror indicator has proven to be remarkably insensitive
to local variations in clement size and shape, while
still yielding the correct indicator values for physi-
cal phenomena of interest. "This good performance
i3 attributed to the smoothing eflects of two averag-
ing operations working simultaneously: the lumped
mass-matrix and the point-lenghts.

Ei

4.2.2.1 Determination of Element Sizes

If all that is required is a thresholdiag for refinement
or coarsening, the error indicator given by Eqn.(4.8) is
sufficient. On the other hand, one may wish to obtain
amore precise estimation of the required element size
to meet a certain toleravce (e.g. to use within an
adaptive remeshing context). In this case, a more
precise analysis is required. Defining the derivatives
according to order as:

D} = e (Uiga] + 2 US|+ Uiea)) (4.9a)

D} = \Uiyy = Uil - |Us = Ui (4.96)
D} 2 Wipy 2. Ui + Uiyl (4.9¢)
the error indieator on the present (old) geid KoM is
given by:
Jold = Dsﬂ
LT+ D)

The reduction of the cutrent clement sise h°'9 by a
fraction & to A"*Y = €. hM will yield a new error
indicator of the form

(4.10)

Enew - Dlg?
) D.‘if + D}

Given the desired error indicator value E"* for the
imptoved mesh, the reduction factor € is given by:

(4.11)

e EmeL [0l V(D) + 4D} B (D} + DY)
= gedy Tfj:.l + D)

(4.12)

Observe that for a sinooth solution with D! < DY,

this results in & = (E™v/E*M)°3 congistent with

the second order accuracy of linear clements. Close

to discontinnities D' 3 D% and one obtains

¢ = E"“”/E““, consistent with the first order er-
tor obtained in these regions.

This error indicator can be generulized to multidimen.
sional situations by defining the following tensors:

(D“){,, = a’c.,/ |N",||N'{|lU;|dQ , (4.13)
(1)
(DY, = h* f INLUNSGUS QY
a
(DM, :h’l] NANTdQ U, | (4.14)
a
which yield an error matrix E of the form:
Exz "yt Eu: Ell 0 0
E = Egv Ev’ E.y = x‘ 0 Eﬁﬂ 0 ‘x-‘
E., Eya E,, 0 O0FEy
(4.15)

The principal eigenvslues of this matrix are then used
to obtain reduction parameters {;+j+ in the three as-
sociated eigenvector ditections. Due to the syinmetry
of B, this is an orthogonal system of eigenvectors that
defines a local coordinate system.

4.2.2.2 Smoothing of Element Size and Stretchings

As mentioned above, it is very important in the con.
text of transient problems to generate grids which
do not exhibit minimum element sizes that are much
smaller than the preacribed minimum element size.
Practical calculatione indicate that the grids pro-
duced by simply taking the described error indics-



tor and the resulting distribution of clement sizes,
astretchings and stretching diroctions did not meet this
requirement. In other words, they were too irregular.
Far superior gride were obtained by smoothing nd
limiting the initial disctibutions obtained for element
sizes, wtretchings and etretching directions.

Smmmw The eloment length
A is a acalar quantity. Within each smoothing pass
over the mesh, the following operations are pet-
formed:

Ss.1 For cach clemont eol: take the average clement
length A2y over its nodes:

1 nnoel
uue

LY Y Z""

nnoel (4.16)

where § = 1,..., nnoel tepresent the nodes of sl
ment el.

Se.2 For each point i: form the average element length
{?¥* over its sur;ounding elements:

1 neavel
ave _.

l = Z hove
¢ nsuel oo
el

where el = 1,..., nsuel represent the elements
sutrounding node 4.

Se.3 For each point i: obtain the new clement length
h; from

(4.17)

hi = min(("* k) . {(4.18)

Note that a ‘point avetage’ is taken, and not an
‘arca waighted average’. ‘This is important, as it
limits the infuence of large elements over smal-
1 ones. One can also obsetve that the element
length is never allowed to increase at any given
point.

Smoothing of Stretchings and Stretching Directions:
The stretching direction s is a vector quantity, There-
fore, problems may arise when trying to smooth
stretching directions. A typical case is shown in I'ig-
ute 4.2. Suppose an average stretching vector in the
clement is desired. In order to acconiuate the stretch.
ing ditection with the maximum stretching, we mul-
tiply each stretching vector with its corrwsponding
stretching factor. Simple averaging would then yicld
the completely erroneous eloment stretching direction
denoted by s, in Figure 4.2. In order 0 avord this
problem, the following algorithm is employed:

Sv.1 For each eloment el: compute the maximum
stetching 8714% encountered at the nodes:

mazx

ST I .
1= 1, nnoel ’

o (4.19)

Sv.2 For each element el: form the average clament
stretching a:;’ a8

nnocel

i = nnoel L 8i sign(sg*® - si) . (4.20)

For the example shown in Figure 4.2, this yields

R0

the vector denoted ae o3f”.

Sv.3 For cach point #: compute the maxitnum stetch-
ing s"*f over its sutrounding clements:

maoz an
, 5('

ot 1.21

¢ el w1, nsue ( )

Sv. I For each point i: form the average element
stretching 8¢ over its surrounding elements:

neuel
l

)_‘ S 3ign(8MF L8y) . (4.22)

= Weuel

As before, a point average proves more offectiva than
an ares weighted average, as it limits the infuence of
large elcments ovet small ones. For typical runs, three
to four stnoothing pasees over the mesh are porfomed
for the element lengths and stretchings.

sa=0

Sot—.-

S\I\P
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Figurs 4.2: Smoothing of Stretchings

4.3 Refinement Strategies

Besides the aim of refinement and the error indi-
cator /estimator, the third ingredient of any adap-
tive refinement method is the - sfinement strategy, i.e.
how to tefine a gwven inesh. Three different families
of refinement strategics have been propnsed to date:

.0 Mesh Movemext or Repesitioning (£-methoads)
The aim is to reposition the points in the field in
order to cbtain » better discretizavor tor the prob:
levs ot har” The regions where more elements are
requited fand to draw voints and elements from re-
gions wlhere a coarser mesh can be tolerated. Two
basic approaches have been used to date:

a) Spring Systems, wlieteby the mesh is viewed as a
system of springs whose stiffness is proportional
to the errot indicc tor, and

b) The Moving Finity Element Lethod, where the
positios of pein 18 viewed as further unkrowns
in a gencral fun:tiongl to be minimized.

Mesh movemens scheines arc relatively simple to code,
as the mesh topology is not allowed to change. On
the other hand, they are not flexible and general o
nough for complex production runs which may have
many shocks. They have been merntic ved here for
completeneas, and are not recommended ior practical
applications.
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S.2 Meah Entichment (h/p-methods): Ju this case,
degrees of freedom ate added ot taken from a mesh
according to some tule. One may cither split elements
into new ones (h-refinement), ot add further degrees
of freedom with hietarchicai shape-functions (Fig-
ute 41.3). The samc may be accomplished with the ad-
dition of higher order shape-functions (p-refinement),
again cither conventional oner or hiecrarchical vnes.
For clliptic systems of PDEs, the combination of h-
and p-refinement leads to exponential convergence
rates [Ae.14).

5.3 Remeshing. (in-methods): Finally, onc may use an
advanced unstructured grid generator in combination
with an error indicator to remesh the computational
domain either globally or locally, in otder to produce
A more suitable discretization.

1.3.1 Transient Compressible Flows

As before, if we consider transient compresaible flows
with travelling shocks of widely different strengths
which require ndaptation every 5-10 timesteps, we are
faced with mote constraints than the usaal steady-
state flow application. Design criteria for refinement
strategies for these types of applications ate:

a) The method should be conscrvative, i.e. a mesh
change should not result in the production or loss
of mass, momentum or energy.

b) The method should have a minimal amount of
numerical dissipation, as many mesh changes are
requited during the course of one simulation.

¢) The method should not produce clements that
are too small, as this would reduce too severely
the allowable timestep of the explicit flow solvers

employed.
’ 1:2
14

d) The method should be fast. In particular, it
should lend iteclf to o high degree of patallelism.

¢) The method should not involve a major storage
ovethead.

These criteria severely limit the ficl? of applicable s-
teategies. From the results reported in the literature,
ona cun obsarve that ouly the simplest and fastest
of all \ofinement atrategics, i.e. ample h-refinement
with only one level of tefinement /coatsoning per mesh
change, has aver made it into a production environ-
mont. Tho reasons are obvious:

h.1) Conservation presenta no problem for h-
tefinement.

h.2) No interpalatiors other than the ones natural-
ly given by the element shape-functions ate re-
quited. Therefore, no numerical diffusion is in-
troduced by the adaptive refinement procesure.
This is contrast to adaptive remeshi..g, where
the gride before and after a mesh chenge may
not have the same points in common. The re
quired interpolations of tho unknowns will result
it an increased amount of numerical diffusion
(sec [Ar.2)).

h.3) Horefinement is very well suited to vector and
parallel processors. This is of particular im-
portance in the present context, where a mesh
change is performed every 5-10 timesteps, and
n large percentage of mesh points is atfected in
cach mesh chage.

h.4) H-refinement is more robust than remeshing.
Particularly iu 3-1). the amount of things that
ean go wrong scems to be much less than when
remeshing.

1 have tried othet methods for this class of problems,
like remeshing. Maay probleis con be solved success-

Figure 4.3: Allowable Retinement Casies for ‘letrabedra
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fully by them, but experience indicates that one can
never be sure. Particularly if numerical diffusion due
to reinterpolation is present, contact discontinuities
may simply disappear, triple points may become dis-
torted, and jets may spread out beyond recognition.

4.4 H-refinement with Tetrahedra

Because of its impottance in practical calculations,
and as a tutorial example of what is typically re
qired for an h-refinement strutegy, the h-refinement
with tetrahedra is described in more detail. As stat-
ed sbove, the number of refinement/coarsening levels
per mesk change is limited to one. Moreover, refine-
ment of a tetrahedron is only allowed into two (along
a side), four (along a face) or eight new tetrahedra.
These cases are denoted as 1:2, 1:4 and 1:8 respec-
tively. At the same time, a 1:2 or 1:4 tetrahedron
car. only be refined further to a 1:4 tetrahedron, or
by first going back to a 1:8 tetrahedron with subse-
quent further refinement of the 8 sub-elements. We
call these the 2:4, 2:84+ and 4:8+ refinement cases.
The refinement cases are summarized in Figure 4.4.
This restrictive set of refinement rules is necessary to
avoid the appearance of ill-deformed elements. At the
same time, it considerably simplifies the refinemen-
t/ coarsening logic. An interesting phenomenon that
does not appear in 2-D is the apparently free <’ sice
of the inner diagonal for the 1:8 refinement case. As
shown in Figure 4.5, one can place the inner four el-
ements around the inner diagonals 5-10, 6-8, or 7-9.
In the present case, the shortest inner diagonal was
chosen. This choice produces the smallest amount of
distorted tetrahedra in the refined grid. When coars-
ening, again only a limited number of cases that are
compatible with the refinement is allowed. Thus, the

8-21

coarsening cases become 8:4, 8:2, 8:1, 4:2, 4:1, 2:1.
These coarsening cases are summarized in Figure 4.6.
When constructing the algorithm to refine or coarsen
the grid one faces the usual decision of speed versus
storage. The more information from the previous grid
in stored, the faster the new grid may be construct-
ed. In the present case, this was accomplished by a

B S-10 4

c16-9 4

Figure 4.4: Possible Choices for the Inner Diagonals

Figure 4.5: Allowable De-Refinement Cases for Tetrahedea
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Figure 4.6: Algorithm to Screen for Admissible Refinement Cases

modified tree-structure which requires twelve integer
locations per element in order to identif; the ‘paxen-
t' and ‘son’ elements of any element, as well as the
elsment type.

The first seven integers store the new elements (‘son-
8') of an element that has been subdivided into eight

) (1:8). For the 1:4 and 1:2 cases, the sons are also
stored in this allocated space, and the remaining in-
teger locations are set to zero.

In the eigth integer, the element from which the
present element originated (the ‘parent’ element) is
stored.

The ninth integer denotes the position number in the
parent clement from which this element came.

The tenth integer denotes the element type. One can
either have parents or sons of 1:8, 1:4 or 1:2 tetra-
hedra. These are marked by a positive value of the
element type for the parents, and a negative value for
the sous. Thus, for example, the son of a 1:8 element
would be marked as -8.

Finally, in the eleventh and twelveth integer location,
the local and global refinement levels are remembered.

These twelve integer locations per element are suf-
ficient to construct further refinements or to reson-
struct the original grid. It is clear that in these twelve
integers a certain degree of redundancy is present. For
example, the information stored in the 10th integer
could be recovered from the data stored in locations
1:8 and 11:12. However, this would require a numnber
of non-vectorizable loops with mauy IF-tests. There-
fore, it was decided to store this value at the time of
creation of new elements instead of recomputing it at

' a later time. Similaely, the 11th integer can be recov-
ered from the information stored in locations 1:8 and
12. As is the case with the 10th integer, storage was
traded for CPU-time.

4.4.1 Algorithmic Implementation.

! Having outlined the basic refinement/coarsening s-
trategy, its algorithmic implementation can now be

described in more depth. One complete grid change
requires algorithmically the following five steps:

1) Construction of the missing grid information

needed for a mesh change (basically the sides of

the mesh and the sides adjoining each element);

2) Identification of the elements to be refined;
3) Identification of the elements to be deleted,;
4) Refinement of the grid where needed;
5) Coarsening of the grid where needed.

4.4.1.1 Construction of Missing Grid Inforrnation

The missing information consists of the sides of the
mesh and the sides belonging to each element. The
sides are dynamically stored in two arrays, one con-
taining the two points each side connects and the oth-
er one (a pointer-urray) containing the lowest side-
number reaching ot of a point. The formation of
these two arrays is accomplished in three main loop-
8 over the elements, which are partially vectorizable.
After having formed these two side-arrays, a further
loop over the elements is performed, identifying which
sides belong to each element.

4.4.1.2 Identification of Elements to be Refined

The aim of this sub-step is to determine on which
sides further gridpoints need to be introduced, so that
the resulting refinement patterns on an element-level
belong to the allowed cases listed above, thus produc-
ing a compatible, valid new mesh. Five main steps
are necessary to achieve this goal:
a) Mark elements that require refinement;
b) Add protective layers of elements to be refined;
¢) Avoid elements that become too small, or that
have been refined too often;
d) Obtain preliminary list of sides where new points
will be introduced;
e) Add further sides to this list un... an admissible
refinement pattern is achieved.
The first three of these steps are obvious. The last
two are explained in more detail.
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d) Obtain preliminary list of sides for new points
Given the side/element information obtained in sub-
step 4.4.1.1, one can determine a first set of sides on
which new gridpoints need to be introduced. This set
of sides is still preliminary, as only certain types of
refinement are allowed.

¢) Add further sides to achive admissible refipement
The list of sides marked for the introduction of new
points is atill preliminary at this point. In most cases,
it will not lead to an admissible refinement pattern
to construct a new mesh. Therefore, further sides

§-.3

are marked for the introduction of new points until
an admissible refinement pattern is reached. This is
accomplished by looping several times over the ele-
ments, checking on an element level whether the set
of sides marked can lead to an admissible new set of
sub-elements. The algorithm used is based on the ob-
servation that the admissible cases are based on the
introduction of new points along one side (1:2), three
contiguous sides (1:4), or six contiguous sides (1:8).
These admissible cases can be obtained from the fol-
-wing element-by-element algorithm (see Figure 4.7):

----- this sub assembles the rhs-contributions at points (rhspo)

we assume that: lconn- contains the resh connectivity
rhsel: contains the element-rhsides

This loop will not vectorize, as rhspo in locp 3000 may be accessed

c
g from the element-rhs (rhsel)
o
c
c
several times
g ----- set rhspo=0.0
° call rfilvc(npoin, rhspo, 0.0)
g ----- loop over the nodes
© do 2000 inode=1, nnode
g ————— loop over the elements
c

do 1000 ielem=1,nelem
ipoin=lconn(ielem, inode)

rhspo(ipoin)=rhspo(ipoin)+rhsel (ielem, inode)

3000 continue
C
2000 continue

By renumbering the elements, accesing the same point within each group
of elements can be avoided; thus, one can force vectorizaticn of loep 3000

Z ~—~~=set rhspo=6.0
° call rfilve(npoin,rhspo,0.0)
g ----- outer loop over the groups of elements
c ielel=0
C
do 1000 igrou=l, ngrou
g ————— starting and ending elements of this group
© iele0=jielel+l
ielel=1grou(igrou)
g ----- loop over the nodes
© do 2000 inodew1,nnode
g ----- loop over the elements of this group
gdirs ivdep
c

do 3000 ielem=iele0,ielel
ipoin=lconn(ielem, inode)

rhspo(ipoin)=rhspo(ipoin)+rhsel (ielem, inode}

3000 continue
o
2000 continue

c
c  =—--- end of outer loop over the groups of elements
c

1000 continue

Figute 4.7
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- Set the node-array LEODE(1:4)=0;

- Loop over the sides of the element: if the side
has been marked for the introduction of a new
point, set LIODE(IP1)=1, LNODE(IP2)=1, wher~
IP1, IP2 are the end-nodes corresponding of this
side;

- Loop over the sides of the element: if LE-
ODE(IP1)=1 and LEORE(IP2)=1, mark the side
marked for the introduction of a new point.

Practical calculations with several admissible layers
of refinement and iarge grids revealed that sometimes
up to 15 passes over the mesh where required to ob-
tain an admissible set of sides. This relatively high
number of passes can occur when the mesh exhibits
regions were the refinement criterion is just met by the
elements. Then, the list of sides originally marked for
refinement will be far from an admissible one. In each
pass over the mesh, a further ‘layer’ of elements with
admissible sides marked for refinement will be added.
Moreover, as an element can be refineq in six possible
ways, in some cases it may take three passes to go
from a 1:2 to a 1:8 case. Thus, the ‘front’ of elements
with an admissible set of sides marked for refinement
may advance slowly, resulting in many passes over the
mesh. A considerable reduction in CPV is realized by
presorting the elements as foliows:

- Add up al the sides marked for refinement in an
element;

- If 0, 1 or 6 sides were marked: do not consider
further;

- If4 or 5 sides were marked: mark all sides of this
element to be refined;

- If 2 or 3 sides were marked: analyze in depth as
described above.

This then yields the final set of sides on which new
gridpoints are introduced.

4.4.1 3 ldentificati lements to elet

The aim of this sub-step is to determine which points
are to be deleted, so that the resulting coarsening
patterns on an element-level belong to the allowed
cases listed above, thus producing a compatible, valid
new mesh. Four main steps are necessary to achieve
this goal:
a) Mark elements to be deleted;
b) Filter out elements where father and all sons are
to be deleted;
¢) Obtain preliminary list of points to be deleted;
d) Delete points from this list until an admissible
coarsening paitern is achieved.
The first two of these steps are obvious. The last two
are explained in more datail.

c) Obtaig preliminagy list of points to be deleted
Civen the list of parent-elements :¢ be coarsened, one
can now determine a preliminary I'st of points to be
deleted. Thus, all the points that would be deleted if
all the elements contezined ia this list were coarsened
are marked as ‘total deletion points’.

d) Delete points to achieve admissible

The list of total deletion points obtained in the pre-
vious step is only preliminary, as unallowed coarsen-
ing cases may appear on an clement level. Therefore
lvops are performed over the elements, deleting all
those total deletion points which would result in u-
nallowed coarsening cases for the elements adjoining
them. This process is stopped when no incompatible
total deletion points are left. As before, this process
may be made considerably fuster by grouping togeth-
er and treating differently the parent elements with
0,1,2,3,4,5 or 6 total deletion points.

4.4.1.4 Refinement of the Grid Where Needed

The introduction of further points and elements is
performed in two independent steps, which in princi-
ple could be performed in parallel.

a) Points: To add further points, the sides marked
for refinement in sub-step 4.1.2 are grouped togeth-
er. For euch of these sides a new grid-point will be
introduced. The interpolation of the coordinates and
unknowns is then performed using the side/point in-
formation obtained in sub-step 4.1.1. These new co-
ordinates and unknowns are added to their respective
arrays. In the same way new boundary condition-
s are introduced where required, and the location of
new boundary points is adjusted using the CAD-CAM
data defining the computational domain.

b) Elements: In order to add further elements, the
sides marked for refinement are labelled with their
new gridpoint-number. Thereafter, the element/side
information obtained in sub-step 4.1.1 above is em-
ployed to add the new elements. The elem¢ ., o be
refined are grouped together according to . e refine-
ment cases shown in Figure 4.4. Each case is . ‘eated
in block fashion in a separate subroutine. Perhaps
the major breakthrough of the present work was the
reduction of the many poesible refinement cases to
only six. In order to accomplish this, some informa-
tion for the 2:84 and the 4:84 cases is stored ahead
in scratch arrays. After these elements have been re-
fined according to the 2:8 and 4:8 cases, their sons
are screened for further refinement using this infor-
mation. All sons that require further refinement are
then grouped together as 1:2 or 1:4 cases, and pro-
cessed in turn.

As the original description of all variables was per-
formed using linear elements, the linear interpolation
of the unknowns to the new points will be conserva-
tive. However, small conservation losses will occur
at curved surfaces. These losses are considered to be
both unavoidable and small.

4.4.1.5 Coarsening of the Grid Where Needed

The deletion of points and elements is again per-
formed in two independent steps, which, in principle,
could be performed in parallel.

a) Poipts: The points to be deleted, having been
marked in sub-step 4.1.3 above, all that remains to
be done is to fill up the voids in the coordinate-,
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unknown- and boundary condition-arrays by renum-
bering points and boundary conditions.

b) Elements: The deletion of elements is again per-
formed blockwise, by grouping together all elements
corresponding to the coarsening cases shown in Fig-
ure 4.6. Thereafter, the elements are also renumbered
(in order to fill up the gaps left by the deleted ele-
ments), and the point-renumbering is taken into con-
sidexration within the connectivity-arrays.

It is clear that the coasening procedure is non-
conservative. However, no physical or numerical
problems have ever been observed by using it. This
may be explained by the fact that the coarsening is
done in those regions where the solutinn is smooth.
Thus, the coarsened grid represents the s 'ution very
well, and consequently the conservation losses are s-
mall. Moreover, those regions where the maintenance
of conservation is important (e.g. discontinuities) are
never affected.

4.5 Adaptive Remeshing

Adaptive remeshing is a very competitive adaptation
technique for steady-state applications or problems
with moving bodies. For the latter class of problem-
s, a fixed mesh structure will, in most cases, lead to
oadly distorted elements. This means that at least
a partial regeneration of the computational domain
is required. On the other hand, as the bodies move
through the flowfield, the positions of relevant flow
features will change. Therefore, in most of the com-
putational domain, a new mesh distribution will be
required. The idea is to regenerate the whole compu-
tational domain adaptively, taking into consideration
the current flowfield solution. Any of the automat-
ic grid generation techniques outlined above may be
employed to accomplish this. In my codes I tend to
use the advancing front technique [Ar.2-4]. The steps
requized for one adaptive remeshing are as follows:

R.1 Obtain the error indicator matrix for the grid-
points of the present grid.

R.2 Given the error indicator matrix, get the element
size, eleinent otretching and siretching direction
for the new grid.

R.3 Using the old grid as the ‘background grid’,
remesh the computaticnal domain using the ad-
vancing front technique.

R.4 If further levels of global h-refinement are de-
sired, refine the new grid globally.

R.5 Interpolate the solution from the old grid to the
new one.

4.5.1 Local Remeshing

Practical simulations indicate that the appearance of
badly distorted elements cceurs at a frequency that
is much higher than expected from the element size
prescribed. Given the relatively high cost of glob-
al remeshing, local remeshing in the vicinity of the
clemnents that became too distorted becomes an at-
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tractive option. The steps required are as follows:

L.1 Identify the badly distorted elements in the
layers that move, writing them into a list
LEREN(1 : NRREM).

L.2 Add to this list the elements surtounding these
badly distorted elements.

L.3 Form ‘holes’ in the present mesh by:
L.3.1 Forming a new background mesh with the
elemnents stored in the list LEREY .
L.3.2 Deleting the elements stored in LEREM from
the current mesh.
L.3.3 Removing all unused points from the grid
thus obtained.

L.4 Recompute the error indicators and new clement
distribution for the background grid.

L.5 Regrid the ‘holes’ using the advancing front
method.

Typically, only a very small number of elements (<
10) becomes so distorted that a remeshing is required.
Thus, local remeshing is a very economical tool that
allowes reductions in CPU-requirements by more than
60% for typical runs.

5. EFFECTIVE USE OF
SUPERCOMPUTER HARDWARE

However clever an algorithm may be, it has to run
efficiently on today’s supercomputer hardware. The
following section examines the main issues involved
for each type of supercomputer currently available, as
well as techniques to use this hardware as efficiently
as possible. Thete are three main types of supercom-
puter currently available. These are:

a) The by. now traditional vector machines, which
achieve high speeds by splitting the necessary arith-
metic operations betwzen subsequent memisers of a
vector-loop,

b) Single Instruction Muitiple Data (SIMD) ma-
chines, that perform the same arithmetic operation
acroes 8 large number of low-level processors, and

¢) Multiple Instruction Multiple Data (MIMD) ma-
chines, that perform the different arithmetic opera-
tions across many medium-level processors.

One emerging architecture for future machines is the
NIMD-machine, where only a few (N) different pro-
conses are carried out over a large number (M) of
powerful vector processors. An architecture like this
would require the programmer to take into consider-
ation all the individual aspects ecountered in each of
the presently available supercomputer architectures.

5.1 Yector Machiges

At the beginning of the 1980s, two different classes
of vector machines where in use: memory to memory
(CYBER-205) and register to register (CRAY) azchi-
tectures. Due to its greater versatility, the second

;
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type of machine is the dominant vector machine at
present. Register to register machines prefer chunky
loops, high flop to memory access ratios, and low in-
direct addressing. Unfortunately, most simple flow
solvers look just the opposite: they have extremely
simple loops, low flop to memory access ratios, and
high amount of indirect addressing. Just to illustrate
the importance of indirect addressing, the reader may
be reminded that even with hardware gather/scatter,
it takes the equivalent of 2.5 multiplications to get
a number from memory using indirect addressing.
Thercfore, an important issue when coding for perfor-
mance on these machines is the reduction of indirect
addressing operations required. For tetrahedral ele-
ments, the amount of indirect addressing operations
required can be approximately halved by going from
ar. element-based data structure to an edge-based da-
ta structure. This change of data structure avoids
redundant information, leading also to a proportional
reduction in CPU and memory requirements [Sc¢.3-
5]. A second important issue is the vectorizability
of scatter-add loops. Consider the following element
RHS assembly loop:

Algorithms to group the elements into non-
conflicting groups fall into the category of colouring
schemes [S¢.1,2]. This has been exemplified for the
2-D mesh shown in Figure 5.1. Given that on typical
vector-machines one only needs vector lengths that
are a few multiples of 64, it is easy to construct very
well-balanced elemert orderings that span the whole
esh, except for one last group with less than 64 el-
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5.2 SIMD Machipes

SIMD machines, as exemplified by the Thinking Ma-
chines CM-series, operate very efficiently on qiearest.-
neighbour transfer of operations. On the other hand,
general data exchange opetations, as requ.red for un-
structured grids, take a very large amount of time.
A simple gather takes the equivalent of 20-60 flops.
Several routers or pre-compilera have been devised to
alleviate this problem [Sc6]. At the same time, renum-
beting strategies have been explored [Sc7). Both ap-
proaches combined lcad to a significant decrease in
indirect adressing ovcrhead. On the other hand, they
are useless for more general applications where the
mesh topology changes every few timesteps (remesh-
ing, h-refinement, etc.). Therefore, only a few steady-
state or fixed mesh transient applications bave been
extremely successfull on this type of machine {Sc.8-
11]. SIMD machines may be compared to memory to
memory vector machines: they inherently lack gener-
ality, which may lead to their eventual demise.

5.3 MIMD Machines

MIMD machines, as exemplified by tlie Inte}, NCube,
Parsytech, ete. hypercubes, consist of fairly powerful
processors that are linked together by message pass-
ing and synchronization software. In the future, each
of these processors will be a vector-processor. This
implies that most of the algorithmic considerations
discussed for vector machines will carry over to these
machines. The main issues when itying to code opti-
mally for this type of supercomputer are:
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Figure §.1: Renumbering or Colouring of Elements for Vectorized Scatter-Add
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a) Minimization of Idle Time: In the worst case s-
cenario, all but one processor wait for the last
processor to finish a certain task. This implies
that one has to strive for the same amount of
work and communication in each processor.

b) Minimization of Interprocessor Information Flow:
With processor performance advancing rapidly in
comparison to interprocessor transier speeds, the
amount of information required between proces-
sors has to be minimized. In general, this will
lead to a minimization problem for the area-to-
volume ratio of the processors.

¢) Extra Lavers/Additional Work Tradeoffs: The
amount of required information transfer between
processors can be staged (usual code), or more in-
1. "aation can be gathered ahead of the timestep.
In the latter case, no further information transfer
i8 required within a timestep. On the other hand,
more layers of information surrounding each do-
main are required. Both approaches are possible,
and the performance of each may depend more
on the indiviual hardware of each machine than
anything else.

5.3.1 General Considerations

‘The effective use of any parallel machine requires the

following general steps for the solution of the problem

at hand:

P.1 Break up the problem to be solved into pieces;

P.2 Hand each processor a piece of the problem;

P.3 1f required: provide for interprocessor transfer of
information;

P.4 Assemble the results.

The processor hierarchy ard scheduling may also vary.

Some of the possible choices are:

- All processors working at the same level (used for
grid smoothing and explicit flow solvers);

- A pyramid of masters that hand out and/or per-
form tasks;

- A one master - many slaves doing different oper-
ations hierarchy (used for unstructured grid gen-
eration);

- A one master - many slaves doing the same op-
eration hierarchy (the SIMD paradigm).

Porting a typical flow-code to a MIMD requires the
following pieces of software:

- Parallel Input Modules;

- Parallel Domain Subdivision Modules for Load
Balancing;

- Node-Versions of the Flow-Code for Parallel Ex-
ecution;

- Interdomain Info-Transfer Modules;

Parallel Adaptive Grid Regeneration Modules;
Parallel H-refinement Modules;
Parallel Output Modules.

T 1e mesesage is clear: do everything in parallel, or
don’t even start.

5.4. Domain Splitting

The aim of any domain-splitting algorithm devised
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for parallel machines is to minimize the interprocessor
transfer of information. For a given information flux
Bi, and subdomains of equal size, this is equivalent
to the minimization of the surface to volume ratio of
each subdomain §:
%l'i —min . (5.1)

Several algorithms for splitting a domain can be en-
visioned. These are, in ascending order of generality
(see Figure 5.2):

- Simple Cartesian splitting;

- Quadtree/Octree spljtting;

- Unstructured grid splitting.

It seems natural to choose the unstructured grid s-
piitting for the following reasons:

- A fine unstructured grid can be assumed. This,
in turn, allows division of the grid into subdo-
mains of neatly equal size.

- Three major pieces of software, the grid s-
moother, the field solver, and the grid generator
can all use the same algorithm to generate sub-
domains. This reduces the software development
costs.

5.4.1 A Domain-Splitting A.l;gorithm

A simple aigorithm that attempts to obtain a sub-
division which satisfies Eqn.(5.1) is the following
‘wavefront’-type scheme:

DY iven; as part of the backgroun

- The elements that surround each point;

- An initial starting element within each subdo-
main.

- A real number REFFE in each element associated
with the effort to be spent in it (e.g. the number
of elements to be created);

- A real number REFFD that denotes the desired
average cumulative effort in each subdomain.

Then:

S.1 Initialize point and element arrays;

S$.2 Initialize domain counter REFFD ;

S.3 Start next subdomain:

Update domain number;
Initialize subdomain effort counter;

S.4 Select the next point to be surrounded from the

ordet of creation list;

$.5 Mark this point as totally surrounded;

S.6 For each of the elements surrounding this point:
If the element has not been marked as be-
longing to a domain before:

Mark the element as belonging to
the present domain;

Update subdomain cflort counter;
For the nodes of this element:

If the point is not yet totally
surrounded and has not

yet been incorporated into the
order of creation list:
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Figwge $.2: Domain Splitting Strategies

Add the point to the order of Figure 5.3 shows how this algorithm works on a simple
creation list; 2-D domain, where it was assumed that REFFE=1.0
Endif and REFFD=8.0. For more expensive, but almost as
; Endif effective algorithms, see [Mi.1].
v s S.7 If the subdomain effort counter exceeds REFFD :
; : Compress point creation list, eliminatingall 5.5 Parallel Grid Geyeration
3 ; totally surrounded points. ]

i ; For the grid generator, the steps taken are as follows:
13 ' Goto $.3 G.1 Subdivide the global domain to be gridded into
; Otherwise subdomains using the background grid;

j G.2 Grid up ¢ach subdomain separately;
- Goto 5.4 G.3 Grid up the inter-subd>main regions;
Endif G.4 Assemble the resnit.
é—
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28,4 233
29,4 ’
27,4 24,3 223
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! Figyre $.3: Simple Domain Splitting Algorithm
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Given the subdomains, there are two possible parallel
grid generation strategies (see Figure 5.4):

a) In-Out:

- Grid each subdomaiu separately;

- Grid pairs of adjacent domains;

- Grid the coruners.
One can also work directly with corners after gridding
each subdomain. However, it is clear that the achiev-
able parallelism is greater if they are postponed.

b) Out-lu:

- Grid the corners;

- Grid pairs of adjacent domains;

- Grid each subdomain separately.
This second approach avoids the need of checking a-
gainst the borders of the subdomain in the last, and
most CPU-intensive step. However, the correct grid-
ding of corners and lines without conflicts is more
difficult than in the first method. In the present case,
the first approach was implemented.

5.5.1 Generation of Subdomain-Grids

In each subdomain, the advancing-front grid genera-
tion technique [Ga.3-7]is used to generate an unstruc-
tured grid. Given a background grid that defines the
desireq spatial distribution of element size and shape,
the following steps are required (see Figure 5.5):

F.1 Find the outer faces of the background grid.

F.2 If no active, initial faces are present: generate a

first element based on the background grid. This

initial element yields a first set of active faces.
F.3 Select the next available active face to be deleted

from the front. In order to avoid large elements

crossing over regions of small elements, the face

forming the smallest new element is selected as

the next face to be deleted from the list of faces.
F.4 For the face to be deleted:

F.4.1 Select a ‘best point’ position for the intro-
duction of a new point IPEEW.

F.4.2 Determine whether a point exists in the al-
ready generated grid that should be used in
lien of the new point. If there is such a point,
set, this point to IPBEW and continue search-
ing (go to F.4.2).

F.4.3 Determine whether the element formed with
the selected point
IPNEW crosses any given faces. If it does,
select a new point as IPEEW and try again
(go to F.4.3).

F.4.4 Determine whether the element formed with
the selected point
IPNEW crosses any given background faces. If
it does, mark the current face as unavailable
and select a new face (go to F.8).

F.5 Add the new element, point, and faces to their
respective lists,

F.6 Find the generation parameters for the new faces
from the background grid.

F.7 Delete the known faces from the list of faces.
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Figure $.4: Parallel Grid Generation Strategics
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F.8 If there are any active, available faces left in the
front, go to F.3.

Compared to the usual advancing {ront method, the
only wmodifications required ate steps F.1, ¥F.2 and
F.4.4.

5.5.2 Data Management
5.5.2.1 Data Structures for the Host

In order to simplify the complexity of data handling
as much as possible, the following rules were followed:
- A point belongs uniquely to one (and only one)
subdomain;
- An clement belongs to the lowest domain-number
of its nodes;
- A fuce may belong to more than one domain.

In the global arrays that store the mesh as it is assen:-
bled, the subdomains have allotted slots. The storage
scheme used is shown diagrammatically for the coor-
dinates in Figure 5.6.

Domatn-nimber ———

1 apard & npoit | —

o —
- -
-

Figure 5.6: Storage of Coordinate Information in
the Muaster-Node

5.5.2.2 Data Structutes for the Node
No special data structures are required for the node.

In fact, the node-code is the same as the one used for
a single-processor machine.

5.5.3 Information Flow

The information transfer required for the parallel grid
generation algorithm described above is as follows:

From the Hoet to the Node:
- Aseemble the required information for the do-
mains involved:
- Background Grids

8-

- Active Faces
- Points of these Faces
- Renumber to obtain local arrays, rerncmbering
the renumbering order;
- Send the assembled information to the node.

F ode_to Host:

- Obtain the remaining information from the node:
- Active Faces
- New Elements
- New Points

- Renumber and store in the global arrays.

5.5.4 Contingency Tests

When generating the inter-domain regious, one can
not generate at the same time the interfaces of al-
1 neighbors for a certain subdomain. Therefore, a
contingency list was implemented that avoids these
conflicts. It operates on the premise that during each
taok hand-out pass over the interdomain-boundaries
or corners, 4 subdomain may be touched once only.
During each task hiand-out pass, the folloving opera-
tions ate performed:

C.1 Initialize a subdomain-array;
C.2 Loop over the interdomain-boundaries (ot cor-
ners):
If none of the subdomains involved has al-
ready been used:
- Mark the subdomains involved;
- Renumber and send to the next
available processor the
information necessary;
Endif

5.6 Parallel Smoothing and Explicit Flow Solvers

Practical implementations of cither advancing front
or Voronoi grid generators indicate that in certain re-
gions of the mesh abrupt variations in clement shape
or size may be present. These variations appear even
when trying to generate perfectly uniform grids. The
usual way to circumvent this problem is to improve
the uniformity of the mesh by smoothing. The most
commonly used smoother is the so-called Laplacian
smoother. The sides of the triangulation are assumed
to represent springs. These springs are then relaxed
n time using explicit time stepping, until an equilibri-
um of spring-forces has been established, The flow of
information and most of the loops in such a smoother
are equivalent to an explicit time-marching scheme.
" Therefore, the techniques used for the smoother and

the flow solver are identical. The implementation of
a spring analogy smoother or an explicit flow solver
on a parallel machine requires the following steps:

S.1 Subdivide the given mesh into subdomatns:

S.2 For each smoothing pass or timestep:

- Smooth each subdomain separately;
- Exchange boundary information;
S.3 Assemble the result.

Thus, for the smoother and the flow solver an equal-
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level hicearchy is employed. ‘This seems appropriate,
#8
a) no contingency tests (other than the synchroniza-
tion at the end of one pass over the elements) are
required, and
b) the amount of CPU spent is roughly the same in
each proceseor.

In each subdomain, the standard Laplacian smoother
is employed. Each side of the triangulation is sup-
posed to represent astring. Thus, the force acting on
each point is given by:

ny,
fi=c) (% -x) , (5.2)
j=t
where ¢ denotes the spring constant, xy the coordi-
nates of the point, and the sum extends over all the
points surrounding the point, The time-advancement
for the coordinates is accomplished as follows:

Axi = At—l—-f.- . (5.3)
ns;

At the ouier boundary of the subdomain, Ax = 0.
Usually, 3-4 timesteps or passes over the miesh yield
an acceptable mesh.

5.6.2 Data Structures

In order to be able to alro move the boundary points
or change the unknowns at subdomain intetfaces, an
exchange of information between processors has to
be allowed. Two possible choices are possible (see
Figure 5.7):

- Exchange force conttibutions between proces-
sors, adding;
- Update the coordinate vectors of the interfaces.

The advantage of this approach is that the total
amount of information (elements, points) required for
the paraliel version is the same as for the serial ver-
sion. However, the original serial code has to be mod-
ified extensively.

b) Coordinate_Information;

- Add a further layer of clements to cach subdo-
maiu;

- Update each subdomain as for the serial, 1-
domain case;

- Exchange the updated coordinate information
between processors.

In this approach, the total amount of information (ele-
ments, points) required for the parallel version is larg-
er than that required for the serial version. However,
the extra amount of information is not large (1 layer
of clements). On the other hand, the code employed
in ecach subdomain is exactly the same as for the seri-
al case. It was felt that this advantage outweighs all
possible disadvantages.

This second method requires the addition of layers of
clements at the boundaries of the subdomains. The
following algorithm accoplishes this task:

- The elements that surround each point;
- The domain-nr. each element belongs to.
L.1 Initialize pointer-lists for elements, points and
receive-liste;
1.2 For each point IPOIN;
Get the amalleat domain-nr. IDMIR of the el-
ements that surround it; etore this number in
LPNIS(IPOIN);
For each element that surrounds this point:
If the domain-nr. of this element is larzer
than IDMIN :
- Add this element to domain IOMIN
L.3 For the points of each subdomain JDORY:
If LPNIBCIPOIN) . BE.IDOMN :
add this information to the receive-list for
this subdomain;
Endif
L.4 Order the receive-list of e,ach subdomain accord-
ing to subdomains;
I.5 Given the receive-lists, build the send-list for
each subdomain.

R UL

» Agsemble rhs in 23Ch domaln
- Exchange-3dg rhs at interface
- Update ynknowns

Eigure 37: Updating Strategies

= Agg bayer of elements

- H33te 2Ach Jomain 3s 1 el :

- £x<hange updated unknowns 5'6'3 MLJ'—E—Q—-O atio low

The information transfer required for the parallel s-

moothing or flow advancement algorithm deseribed
above is as follows:
a) Right:Hand Side Informatjon:

- Assemble all force contributions (right-hand Erom the Host to the Noge:

sides) in each processor; - Assemble the vequired information for the do-
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mains involved:
- Grid
- Send/Receive Lists
- Send the assembled information to the node.

From Node to Node:

- Send the updated coordinates of all nodes stored

P —
e b -

(<

Multi Element Airfoil:

e - . _

in the send-list;

- Reccive the updated coordinatea of ult nodes s-
tored in the teceive-list;

- Overwrite the coordinates for these rercived
points.

From the Node to the Host:

- Renvimber and store in the glebal arrays.

\7"%

Domain Detination

.
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Multi Element Aitfoil: Gridded Subdomains
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Examples 1 Shock Interaction with an Elevated Box
- Grid Generator: FRGEN2D
- Hydro-Code: FEFLO27 (2-D, Euler, H-Refinement)
- Plotting: FEPLOT2D
- Details: [Ae.6, Ae.7]
.\_(ESH: NELB{\-'["=2SOTQ. NPOIN=13143 MESH: NELEM=37808, NPOIN=18114
(a)1y (a) .
PRESSURL:
!
' | (b?
(b) | | Fig 2. Expanded Views of (s) Mesh sad (b) Pressure Con-
= ——JI X tours Around the Box, t=(0.4.
[IRRSIS S
-MESH: NELEM=34842, NPOIN=1T04T
MESH: NELEM=25876, NFOIN=13143 T e e A T

va)

Fig 1. Expanded views of (a) Mesh and (b) Pressure Con- '
tours Azound the Box: (c) Mesh and (d) Pressure Contours
tor the Complete Computational Domain. t=0.0. Fig 3. Expanded Views of (a) Mesh, (b) Pressurz Contours

Around the Box, and (¢) Pressure Contouss Under the Box.
1=0 A

o [ S ] *
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Fig 5. Expanded Views of (a) Mesh and (b) Pressure Con.
tours Around the Box: (¢) Pressure and (d) Vorticity Con-

Fig 4. Pressure Coatours (a) Around and (b) Under the tours Under the Box, t=1.0.

Box, t=0.8

MESH: NELEM=063344, NPOIN=318323

pavaw;

(a)

Fig 6. Pressure Coatouss (a) Around and (b) Under the
Box, t=1.2.

| QPR S T

q g

L e st

S

e

"

e

ATRLAM A Srae

) AR T A NN A P 1

YAy b 3

T

B A VN

boa i ab e et b B 03 L .
g targz

f srmtoipm mietee

- o e a e o L6

- e e s

R T s ¥ o T T

L ermav .

INTN

A LU ARNL T




8-38

MESH: NELEMiv80835, NPOIN=¢0872

(b)

Fig 7. Expagde Views of (a) Mesk and (b) Pressure Con-
tourw Around the Box; (¢) Pressure and (d) Verticity Con-
tours Undee the Box, tm1.4.

Fig 8. (a) Pressure Contours Around the Box; (b) Vorticuty
Contours Under the Box. t=1.8.

MESH: NELEM=33e48, NPOIN=2T040
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MESH: NELEM=32487, NPOIN=114832

"
WAV o

(a)

(c)

(d)

(b)

Fig 9. Expanded Views of (a) Mesh. (b) Pressure, (c) Mach
Number and (d) Vorticity Coatours Acround the Box, t=2.6.

(c)

(a)

(d)

Fig 10. Expanded Views of Pressuze Contours Around the Fig 11.  Expanded Views of (a) Mesh, (b) Precei:e
Box: (a) t=3.2; (b) t=3.6. -¢1 Mach Number and (d) Vorticity Contours Aroun 1 “ e
Box. t=6.0.
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Around the Box.

P TS s R ¢ —

P ST

B O g MOF A B S 1V 7

oin s g

ERTN L2

adl e FAL

PN



o wren wr W

8-41

(R ]

_M .

Store Release into Supersonic Free Stream

2

Examples

AT

FRGEN2D

- Hydro-Code: FEFL.O44 (2-D, ALE

- Grid Generator

EEEIRE

Euler, Remeshing)

-

R ,, Mt

FEPLOT?2D

- Plotting:
- Details: [Ar

[ "

.2, Ar.3]

.
.

1s

-

()]}

MAXE ) GdE e o DU 0L LIE

020

FRESUIRE  HIN:

3371

NFBIN

W)

an
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NELEM= 16

MESH

Stove Separation Problemn. T=
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0
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Examples 3

ESH NELEM:z 860 . POlN: 184

Shock Interaction with a Box

Grid Generator: FRGEN2D

Hydro-Code: FEFLO44 (2-D, ALE-Euler, Remeshing)
Plotting: FEPLOT2D

Kinematic Condition: Free Flight After Onset of Lift
Details: [Ar.2, Ar.3]

#OESILRE  MINe YL I0E<S0 . vAe: 330y

,_

MESH  MELEM: 2936 . HPQINz 1592

PREGSURE  MIN= 0.Q0€-00 . ™A« J.348+01 . |

c)

d)

e) Podition of the Box in Time

Te0.0 T=0.6 T=l.2 T=ild
e e o

1
i
I}
|
¥
1
!
H

i
S
|
|

Tels

|
| :

Shock-Box Interaction. Free B.



Examples ¢ Shock Interaction with a Box

- Grid Generator: FRGEN2D

- Hydro-Code: FEFLO44 (2-D, ALE-Euler, Remeshing)
- Plotting: FEPLOT2D |

- Kinematic Condition: Constrained Until Onset of Lift

- Details: [Ar.2, Ar.3

vESH  MELEM: 223 . RPOINz (I3

PRESSURE  MiMz I 5CE-LS - MGue [ "lI.sd . 1.l:

b)

MESH & NCLEM= 2916 . MPOIN= 1581

PRESSURE : MINT 0.COE-00 . MAX: J,55E+5) . ln.:

<)

fL s
AR>S el
IPNET I 2 s E T

sl
2 s

’
‘.
/

d)

e) Position of the Box in Time

T=

T=0.0

T=1.6 T=22.0 Ta3.
0.8 T=1.2 T=24

Tw=2.8

Shock-Box Interaction: Constrained Bow

—~on

PR 5 gy g Ll e

el pavangr

3o e v

(R
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Examples 5 von Karman Vortex Street
- Grid Generator: FRGEN2D
- Hydro-Code: FEBIC2D (2-D, Semi-Implicit)
- Plotting: FEPLOT2D '
- Parameters: Ma=0.1, Re:=100
- Details: [Hawaii 1989 AIAA CFD Conf.]

MESH  NELEM= 12278 . NPQIN= 6235

NG EOORORRERGNLG

...............

AVAVAYA VAV,
MAY Zavaw

MRCH-NR  MI[N= 0.00E-0Q . MAX= Q,1SE+QQ . QUC= . 77<-1C

ENTROPY  MIN= 0.42E-22 . “R<=z 0D, 1E+03 . QUC= ..

‘e

L acy Ot 8 1 e o | e S T, 137

[P

o ———




MESH  NELEM= 12278 . NPBIN= 6235
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Examples 6

von Karman Vortex Street

- Grid Generator: FRGEN2D

- Hydro-Code: FEFLOIC26 (2-D, Incompressible, H-ref.)
- Plotting: FEPLOT2D

- Parameters: Re=1000
- Details: [S1.2)
‘ T wey ot N < ."'vtgoc;\"n vét!(\ﬂ“" T e ™ —_ - =
/‘/‘ ,/
/ < -
-~
vavatatatavava)
v, ™
'vwm\':"\,‘x’zmgss
a%"%
[ 'l
N
o=
: NABEAT 3!
l"‘- X ravl.y / |
Y ) “ i
S W AVA VA WP N f
PRESSURE: MINz 1 QQE-34 . MAX= 1 65€+«900 . DUC:= 5.00E-02
3
Ve
ADSIVEL) » MIN= 1 Q@E-Q4 . MAX: 1 656+008 . DUC: 5.00€-92
)
1
;
i
i
‘

von Karmag Vortex Street at Re=1,000 (FEFLOIC2S)



Examples 7

PARTICLE TRACES

Convection Between Concentric Cylinders
- Grid Generator: FRGEN2D

- Hydro-Code: FEFLOIC26 (2-D, Incompre: sible, H-
Ref.)

- Plotting: FEPLO'T?2D

- Parameters: do/d; = 3.14, Gr = 122,000, Re¢ = 1.0,
Pr =071

SN
7

TEMPER. QuCa 5.00E-02

N —

)

Convection Between Concentric Cylinders
(Gr =122,000. Re = 1.0, Pr = 0.71)
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Examples

]

Shock Interaction with an Idealized Leopard-2 ‘Tank

Grid Generator: FRGEN3D

Hydro-Code: FEFLO74 (3-1), ALE-Euler, -Itef)
Plotting: FEPLOTID, FEPOSTID

Details: [Ae.7, Ae.9)

f

- rompem—-
NN
$8388844344

T

POemsrFepe o cmansaRpEEye,
[T
38883838

”lill

N e

Shock-Tank Interaction (FEFLO74)

FEFLO74




Examples

9

Shock Interaction with a T-62 Tank
- Grid Generator;: FRGEN3D
- Hydro-Code: FEFLQ74 (3-D, ALE-Euler, H-Raf.)
- Plotting: FEPLOT3D, FEPOST3D
- Details: [Ae.7, Ae.10]

8-49
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Examples

10

2. K
1.1
2. 500
2. 9130008
2. 5990890
3. 240800
EXUT L ]
2.0TR 08
3. 000
.03
(AL L)
1.00R 00
1, W0
1. 1K an
1. 100
.16
2,008
1.0/
B [
1.0
1. g
1. QD
1. 300800
1. TR
1, 1792008
1. 00808
[B o 4]
7. 8-
0.0008-01
9. At

i-Store Release into Supersonic Free Stream

Grid Generator: FRGEN3D

Hydro-Code. FEFLOS52 (3-D, ALE-Euler, Remeshing)

Plotting: FEPLOT3D, FEPOST3D
Details: [Ar.4]

-

FEFLO52

e ey raTrue - O N
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Examples 11 2-Store Release into Supersonic Free Stream = :
- Grid Generator: FRGEN3D

- Hydro-Code: FEFLO52 (3-D, ALE-Euler, Remeshing)

Plotting: FEPLOT3D, FEPOST3D 4
Details: [Ar.4]
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A Frontal Approach for Node Generation
in Delaunay Triangulations.

J~-D, Miiller *
P.L. Roe !
H. Deconinck ¢
CFD-Group - von Karman [nstitute for Fluid Dynamics
Acrospace Department - Univorsity of Michigan

1 SUMMARY

A new algorithm for the generation of the interior nodes
fot Delaunay triangulations is given. The method uses a
background grid to interpelate local mesh size parameters
that is taken from the trianguelation of the given boundary
nodes . Geometric ceiteria are used to find a set of nodes
in a frontal manuer. This set is subsequently introduced
into the existing mesh, thus providing an upcated De-
launay triangulation. The procedure is completed when
no more improvement of the grid by inserting new nodes
can be achieved.

2 INTRODUCTION

The purpose of this lecture setics is to discuss the achieve-
ments and recent advances made in the solution of
the Buler- and Navier-Stokes equations on unstructured
grids. One of the main benefits telated to the unstrue-
tured grid approach is the simplicity with which an un-
structured grid can be tailored around very complex ge-
ometrics and be adapted to the solution in a subsequent
interaction process with the flow solver. Such advantage
will become even more important as three-dimensional
calculations become commonplace.

1t is desirable that the mesh can be generated with min-
imum input from the user. ldeally, onc would wish to
specify only the boundary geometry, and perhaps a func-
tion to specify some desired mesh size. The internal point
cloud should then be found automatically by the grid
generation code. T'wo methods that satisfy these entena
have become popular and are discussed in other lecture
seties contributions :

o The Advancing Front method of Peraire et al. [i],
detailed in the contributions of Lohner and Morgan
& Peraire.

¢ Holmes' refinement procedure [2] used in a Delau-
nay triangulation [3] as discussed in the lectures by

Barth.

The approach we propose here combines ideas from both
methods.

In itself Delaunay triangulation does not provide an in-
terior point cloud. A popular approach to overcome this
deficiency has been outlined by Holmes [2]. A Delau-
nay triangulation of the boundary nodes is taken as an
initia) grid. Figure 1 gives such a triangulation for the
three clement aerofoil configuration shown in figure 11,
The initial triangulation consists of large, very skewed

*von Karman Institute and University of Michigen
tUniversity of Michigon
tvon Karman Inatitute

triangles that are found to exceed certain thresholds of
maximum arca or maximum skewness. Holimes proposes
to measurc skewnees as the ratio of the radins of the cir-
cumscribed circle over twice tite radius of the inscribed
cirdie.

Once such a bad triangle is detected it will be refined
by the insertion of a new node at the circutncentre of
that triangie. Refinement is performied on the largest
triangle in the grid until all triangles are smaller than
a first threshold value. Then refinement continues on
the skewed triaugles starting with the onc having the
largest circumcircle. ‘The final grid is obtained after all
skewed triangles are smaller than a second area threshold.
Refining on skewness yiclds an implicit mechanisim that
increases the node density very close to boundarics with
a finer node spacing.

However, scarching for the iargest cell or a skewed cell
with the largest circumcircle for each new node is a rather
costly procedure and the skewness criterion i expensive
to cvaluate since it involves three square roots during the
calculation of the citcle ratio. Also the grids produced by
this approach are not as regular as the ones given by the
Advancing Front method. This is due to the fact that
the tefinement process is much more random.

3 FRONTAL NODE CREATION

We introduce here a technique that combines the ideas of
refining a Delaunay triangulation of boundary nodes with
the ideas of frontal advance. In onr method, the fromt
will take the form of a boundary between a ‘nicely’ tri-
angulated region and a ‘badly’ triangunlated region. The
method will be described for two dimensions, but we be-
licve there will be few obstacles to implementing it in
three.

I{ one looks at a Delannay triangulation of a set of bound-
ary nodes (as in figure 1), one can observe that almost
every boundary face is cither the short face of a triangle
with one very acute angle or clse one of two short faces
in a triangle with one very obutse angle. In accordance
with our idea of a front that divides nice triangles from
bad triangles, we take the boundary to define the initial
position of such a {ront. To begin with, we have no nice
triangles, but we will introduce a layer of well-positioned
nodes that will allew ihe front to advance.

The construction of the new nodes is an casy task. We
simply form an cquilateral triangle with the frontal face
and cither stretch or compress it to better match the
spacing requirements of the background mesh, this gives
ideal spacing with the two nodes that form the face. A
further check is required to make sure the new node is
sufficiently distant from the remaining nodes in the grid
and from the other new nodes. The desived distance is in-
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Fig. 1:  Triangulation of boundary nodes. The nodes
on the boundary of a thtee element acroioil
are connected to nodes on the outer bourdary
{not shown), nodes on another boundary or
nodes on the same boundary.

terpolated on a background mesh that wniquely specifies
the distance between nodes everywhere in the domain.
Nodes that exhibit bad spacing are either merged with
other nodes or discarded. With these new nodes in place,
the Delaunay algorithm is re-run and will readily accept
the proposed, nice triangles as it resents skewness in its
triangulation. We will name these triangles ‘explicit’ in
the following. Also nice triangles between the new nodes
will be formed as they are gnarantecd to be spaced nicely
as well, the ‘implicit’ triangles. In the rest of the domain
Delaunay still has to construct acute cells, thongh with
slightly improved shape.

\ \
implicit triangles

Fig. 2:  Explicit triangles (striped) aud implicit trian-
gles (squared) that are formed along the old
front and build the new front.

Again the short faces of these scute cells denote a frontier
between the region with nice cells and the region still
waiting to be refined figur: 2, and the process can be
repeated until all bad triangl:s have vanished. Hence,
the algorithm can e cast intc the following steps:

1. detect all bad triangles in the grid and find their
shott faces,

2. find a set of nodes to form nice triangles with the
short faces,

check whether the new nodes are not too close to any
other node already introduced into the structure,

[

4. check whether the new nodes are not too closc to
any other new node,

5. tetriangulate witir the sct of new nodes.

The steps will bu sepeated until no 1~ ¢ improvement by
node insertion cas be achieved.

3.1 Front Detection.

The front consists of the interface between the region of
propetly refined triangles and the unrefined region. A
refinement should only take place on a face that has a
refinable triangle on one side and an unrefinable on the
other. If refining was metely based on side ratios, an ob-
tuse triangle in the front would lead to the introduction of
three nodes, Figure 3 shows the twoe nodes that would be
formed from the two short faces in the front of the obtuse
triangle and the node from the face of the acute triangle
that neighbors the obtuse one. Not that this extra node
is tadly placed, but this node should be formed only in
the next stage ‘This would lead to an irregular front with
scattered faces that may not be connnected and the sub-
sequent refining would have much of the vandomness of
Holmes® method.,

Fig. 3:  Obtusc triangle along the front with three
acw nodes formed.

A triangle is unrefinable if either it is not skewed or it is
skewed but nade spacing around the cell does not allow
further insertion. Checking is simplified by keeping a
status flag for each triangle to only examine each cell
once. It is to be emphasized that contrary to the usual
Advancing Front method no explicit tracking of the front
and thus no expensive overhead is required.

3.2 Node Construction.

The ideal node to be placed in the mesh would satisfy
the distance criterion with all neighboring nodes, i.e. the
distance to all nodes that it will be connected to equals
the background spacing evaluated at the midpoint be-
twcen these two. Cleatly, this is an ill-posed problem.
But even trying to satisfy the distance condition with
the two nodes of the frontal face leads to a system of
two quadratic equations. The task will become more
anicnable with the restriction to isoceles triangles. We
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will carry out the geomctrical construction in an approx-
imate manner leading to only one lineai equation.,

Short face and constructed node ‘The new
node 3 and the spacing reference node 4 lie
on the perpendicular bisecter of the face 3.

Pig. 4:

We approximate the length of the sides {1 and 12 opposite
nodes 1 and 2 by 2/V/3{ of the height ¢ as found in an
equilateral triangle. Requiring that this approximated
sidelength equals the desired spacing Ay midway between
node 3 and the midpoint of the base M (figure 1), we
find

2 1
hy = ﬁlm - xM|= (‘2 (X3 —xa) Vi ’IM)

where hys denotes the desired spacing at M, VA is the
local gradicat of the background spacing and Xa, X are
the position veclors of nodes 3 and M. As we place the
ncw node along the perpendicnlar bisector, we cau write

X3 — XM
e = g,
[%3 ~ Xarl

X3 —xa =1

where 1y is the unit normal on the base pointing towards
the triangle to be refined. The height for a triangle with
counterclockwise sense is thus

hat

4.l
vl 7mVh

{ =

Note that in the given form the altitude of the explicit
triangle is independent of the length of the base. ‘This
conserves {he thickness of the layer of cells introduced
even if the Jength of the faces varies strongly (figure 9).

3.3 Searching.

The efficiency of unstructured grid generation methods
is very dependent on the way specific nodes or cells are
found in the gnd. For example Bowyer’s algorithn re-
quires the search for a circumcircle that contains 4 new
node and interpolation on a background mesh involves
finding the background cell that contains the point of in-
terest, As already stated, an implementation of Bowyer's
algorithm usually comes with the storage of the neigh-
bots to cach triangle and the position of its citcuicen-
tre. Hence, a straightforward way to locate a position
in a Delaunay triangulation won'd be to walk along the
Dirichlet tesselation from circuimcentre to circumcentre
closer towards the target. But this method does not nec-
essarily converge as a Voronoi vertex can lie outside the
its associated triaugle.

A mcthod of similar computational cost is to walk from
cell to cell in the direction of the target. As we progress

9.3

Scalar product criterion te walk from a ccll
towards a target

Fig. &

at cach step a finite distance towards our point of destiny
we must rcach our target so this scarch pracedure always
cOnverges.

The direction to turn to is given by the maximnm scalar
product of the normal on the face and the vector {rom the
widpoint of that face to the target (figure 5). Of course,
only two directions have to be tested once the sv.ich is
on its way, also it would be rathe: wasteful to use unit
normals. The search is finished when all scalar products
are von-positive, indicating that the target Lics either in
the cell or on a face of the cell.

In the worst case the cost of this search is O(VN) on
a mesh with N nodes. However, once the foteground
and background cells associated with the new node are
determined, all of the triangles in the vicinity, where most
of the remaining operations take place, are fonnd in a few
steps.

3.4 Background Mesh.

The Delaunay triangulation of all boundary nodes is com-
puted as an initial triangulation to begin the point gen-
cration process. This triangulation provides at no extra
cost a suitable background mesh to provide a local valne
of desircd distance bhetween nodes at any Jocation within
the convex hull. It will be assumed here that this desie-
able Jdistaiice is a piccewise Nunear function of position,
interpolated between the nodal values of a tnangle ia
the background grid. The spacing value at that node is
computed as the average distance to its two neighboring
nodes on the boundary. The gradient of the spacing b is
evaluated for each triangle in the background mesh nsing
Gauss’ Theorem,

J
IS
Ch 35 }; A,

where S stands for the surface and 3, for the scaled out-
ward normals of the background cell.

A linear variation between the fine spacing on a body
and the coarse spacing on a far-field boundary is ob-
tained when the background triangle connects divectly
from the interior to the exterior boundaty. But along
concave contours it may happen that Delaunay connects
between fincly spaced interior boundaries and the back-
ground grid will specify a too large arca of fine spacing.
Figure 1 gives an example of such an illconnected back-
ground mesh. It shows a closc-up of a multi clement
acrofoil, obscured by the triangles formed inside the ele-
ments, A clearce view of the configuration can be scen in
figure 11. The triangles leaving the frame are connected
to the outer boundary. However, the initial triangulation
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also connects the fincly discretized trailing cdge of the
main flap with the lower side of the main aerofoll and
implies an underitable high node density in the entire
illconnccted area between the w0 clements.

The problem can easily be circumvented by the intro-
duction of extra nodes into the backgiound mesh. As the
background triangulation consists of very skinny trian-
gles, onldy very few nodes will be necded to break up the
unwantcd connectivity, If we connect these few nodes to
a boundary in the background grid we implicitly define
the spacing for these nodes in the smine way as for the
other boundaries. However, this procedure requires extra
user input, usnally after viewing the background grid and
visualizing the grid becomes diflicudt in three dimensions.
"I'o be consistent with the philesophy of minimal user in-
put we should have the program introduce the necessary
nodes and merely ask the user which boundatiea he does
not want to have connected. The procedure will be to
detect an illicit liaison and place a background node in-
between. During a suhsequent retriangulation most if uot
all of the trisngles shared between the two bodies will be
broken and again few extra nodes suffice. Figure 6 shows
the background mesh modificd by antomatic inscrtion.
Four nodes have been introduced from triangles in the
arca between the wain acrofoil and the main flap.

Q0 204

] L4 LA
~010 3 07
Fig. 6:  Background grid auntomatically modificd by

the insertion of four noder to break up wn-
wanted connectivity ‘I'wo of these nodes are
shown between the mam aerofoil and the secs
ond fiap.

The remaining question is what apacing to apply to these
new nates. One would like the spacing to nise smoothly
from every body node into the domain to finally match
the spacing of the outer boundary. This corresponds to
extrapolating the spacing with an average gradient from
every boundary node towards the automatically inserted
node and take the minimum of all these values - an un-
reasonably costly procedure.

Fortunately, the Delaunay propertics make the task at
hand a lot more amenable. If we place the new node to
break an unwanted triangle at the Voranot vertex of that

triangle, wo know that there is no node closer to the new
node than the three nodes forming that triangle. More-
over, the new node 18 equidistant {rom both ill-connected
boundaries, We then extrapolate from the spacing of the
more finely discretized bonndary using the average gra-
dient of the initial triangulation,

3.5 Skewness Threshold.

So far the term ‘bad’ han been ueed for long skinny tri.
angles without specifying on what we basce this label.
From the previous discussion it follows that a criterion is
needed that is easy to evaluate and that discriminates the
faces to be used in the front. An obvious and inexpensive
choice for quantifying the proportions of a triangle is to
look at ratios of the squared sidelength over the squared
maximum sidelength. A triangle will be called ‘bad’ once
any of its thyee side raiios drops betow a threshold. Con-
sidering the fact thaat a triangle is formied by placing a
nod.: somewhere along the perpendicular bisector of the
base, ono can cstimate threshold values for the side ratios.
A first estimate can be derived for an acute triangle on
a zero-gradient background. In this case Delanuay trian-
gulation will always form au equilateral explicit triangle
with the base, and an implicit triangle with the new nod»
and the distant node of the previous bad triangle.

b
e att—]
]
b
b |_...._b.__._.|
e e
() (b)
Fig. T:  (a) Refining of an acute triangle (dashed) into
an equilateral triangle (botton:) and an acute
Swplicit’ tdangle (top); () Refining of an
obtuse triangle (dashed) mto two triangles
(full).

X N . M v
110 Figure 7 (a) shows the geometry in question, The worst

‘implicit’ tnangle is produced when the distant wode of
the acute triangle also lics on the perpendicular bisector.
If we let the dashed triangle become less and less acute
o will grow and A will becoine smaller. Both aneles will
be equal if & = .648, so that refining an acute trangle
with b < 648 will make the grid worse. Hence for acute
triangles a good threshold is the side ratio of a triangle

with b = 648 or
Smn\ )‘2 |
amn ) 366
(bmn;

Similar reasoning applies to the obtuse triangle in figure 7
{b). Here the two nodes formed perpendicular to the two
short faces will be merged anbsequently as they are too
close to each other. Hence we have to consider the new
node to be placed on the angular bisector. The smallest
angle in the old triangulation was a; in the new triangu-
Iation it is 8. Since 2(a 4+ B8) = & matters only improve if
a < xf4. That is, we should only refine obtuse triangles
for which the side ratio is less than
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It turns out that the quality of the triangulation is some-
what insensitive to the choice of the side ratio threshold
and any value in the range of the two estimates will give
good results. This allows to use the same threshold for
both obtuse and acute triangles. The triangulation will
change with a different threshold but the minimum angles
found will remain virtually unchanged. Strong gradients
in the background grid might lead to the formation of
explicit triangles that cxceed the threshold in the side
ratio. Therefore the altitude of the triangle to be formed
will be bounded to the height of an obtuse triangle with
the threshold side length ratio and the height of its acute
counterpart.

&.._.-..)’_1(__1_< §m)2_l
Smar 4= 95 ~ Sml'n 4

3.6 Spacing Check.

The spacing check balances the mechanism of node intro-
duciton due to excessive skewness by rejecting or merging
nodes; in this way grid quality is assured for the implicit
triangles. We might want to reject a new node because it
falls too close tho some existing node, or because it falls
too close to anotier new node. The two cases have to be
dealt with separately.

Looking for close nodes that are already introduced, we
can make usc of the fact. that a Delaunay mesh con-
structed with Bowyer’s algorithin covers the entire con-
vex huli. We can construct an enlarged circle around each
triangle which is the circumcircle with an added rim of
the required distance for the new node. If the new node
does not fall within that enlarged circle, the distance be-
tweer the new node and the nodes of the triangle is at
leas. ¢ : required spacing (figure 8).

Fig. 8:  Figure 8: A new node (A) is contained in the
triangl. 146, but closest to the node 2. ‘The
enlarged circles 124, 132, 342 contain A and
require testing. The enlarged ciicle around
456 does not contain A and excludes nodes 4,
5 and 6 from testing.

In a similar fashion to the tree search during the inser-
tion procednre, the simply connected region can be de-
termined where nodes that are already introduced might
be too close to a new node. Once a new node is found to
be too close to another old one it is discarded from the
list.
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One is less fortunate with checking the distance towards
the other new nodes that are also waiting to be intro-
duced. Along the front we might find a set of very acute
triangles that can lie rather oblique to it. The initial front
along the boundaries in figure 1 can serve as a good exam-
ple. New nodes that are too close to each other may not
lie in neighboring triangles and one cannot make use of
the undetlying grid. Extensive search throughout the hst
of new ncdes has to be performed, but the list contains
only O(VN) nodes at a time. ‘This advocates the use
of an intelligent data structure that provides some kind
of bucketing to further reduce the cost of searching and
vrill retain an optimal count of operations of O(N log N).
Once two new nodes are found to be too close, they are
merged. This merging is actually the only step in the al-
gorithm that introduces irreguiarity into an initially reg-
ular mesh. All other steps arc independent of the order
in which triangles or nodes are encountered. While it is
generally not important which neighbors are merged, we
do viant to have preferred merging of the two nodes that
ave formed from the two short faces of an obtuse trian-
gle as shown in figure 7 (b). If one searches backwards
through the list of new nodes, this pair is cncountered
first and treated with higher priority.

In order to achieve large minimum angles we may toler-
ate nodes being closer to each other than allowed by the
background mesh. Otherwise the skewness mechanism
providing refinement may be counterbalanced too much.
Initially the number of new nodes is completely deter-
mined by the number of boundary nodes. As the front
propagates outwards, the nodes will eventually become
too numerous as the bi Ygrouud mesh demands more
and more distance bei 1 the nodes and the spacing
check will coarsen the :_....t. In this way liberal spacing
will allow more completely regular rows with the original
number of nodes around the bodies. On the other hand,
being too lax allows node insertion where no imprave-
ment. can be achieved. Good values for a tolerance factor
to be multiplied with the desired spacing have been found
to lie in the range between .5 and .75,

It is to be noted that no criterion for too large cells is
needed if the front emerges from the finely spaced bound-
aries. The spacing meck inism will gradually coarsen up
that freat until it meets the outer boundary. Further
refinement in the field can be left to solution adaptive in-
teraction with the solver. IHowever, the implementation
would not pose any problems. If, after retriangulation,
two connected nodes are for nd to be too far apart, an-
other node can be introduced between them.

3.7 Computational Cost.

Suppose that a total of N nodes are generated in such a
way that N? new nodes are created every time the front
advances. Bowyer’s algorithm takes Q(log N) operatious
to introduce a singic node into a triangulation. With
a disscecting data structure like a split-tree the cost of
searching the list of NP new nodes requires O(log NF)
operations. One needs N'~® stages to construct the full
triangulation; the total cost is thus O(N(p + 1)log N).
As p ranges between 0 and 1, the number of operations
necessary increases by a factor of two in the worst case
when all nodes are formed in one single stage, compared
to a triangulation of specified nodes. Hence, the method
is asymptotically optimal.

Actual times are given for the three element aerofoil case
given .in figures 9 through 12. The initial triangplation
of the 328 boundary nodes took .77 secords on a DEC
5000/200, i.e, .0023 sec/node. The insextion algorithm
created 2047 interior nodes and used 27 seconds, i.e .013
sec/node. Thus, the method for generating new nodes
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and triangulating them costs about five times as much
computer time per node as the criangulation alone. Note
that the curtent implementation does not cmploy any
tree data structure and therefore the given times could
be reduced further.

4 EXAMPLES

A classic case for an unstructured grid generator is the
grid around a multi-clement aerofoil. Structured grid
generation already require s sophisticated extemsions to
deal with this protiem. The background grid for the
aerofoil given in figure 1 was modified by the automatic
insertion of iour nodes as seen in figure 6. The initial tri-
angulation is boundary conformal and does not require
introduction of extra nodes according Wecatherill’s apos-
teriori criterion [11].
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Fig. 9:  Grid aroiind three clement acrofoil after three

rows of nodes have been inserted. Note the
coarsening of ithe front in the second row on
the upper surface. The tracking prevents a
breakdown of the front in the region between
the three acrofoils.

Figure 9 shows the grid after three rows of nodes have
been constructed, the resulting grid is shown in figure 10,
a close-up of the aerofoil in figure 11. The difierent rows
of nodes can be identified clearly in the finai triangula-
tion.

On the upper surface of the main aerofoil it can be
demonstrated how essential the construction algorithm
is to grid quality. In the second row the spacing check
has climinated several nodes and the length of the faces
in the new front varies from normal to doubled. Still
the nodes in the third row are aligned evenly, providing
nearly equilateral triangles again. The disturbances in-
troduced i the second row are completely climinated in
the fourth row.

The regularity of the grid is entirely due to the frontal
insertion, no smoothing filter vas applicd. Figure 12
shows a dctail of the grid between the three clements.
The fronts do not break down and merge into cach other

Fig. 10:
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-0.10

Fig. 11:

Grid around three-element aerofoil.

Close-up of grid around three-element aero-
foil.
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Fig. 12: Detail of grid around three-element aerofoil.

smoothly. Ouly very few triangles with maximum an-
gles exceeding 90° can be found. If fronts are aligned
to each other, the resulting point cloud is perfectly reg.
ular as between the main flap and the vane flap. The
gradual increase in node spacing between the main aero-
foil and the main flap is due to the automatic insertion
of additional background nodes which are not present in
thke foregronnd grid. Overall, the cell surface varies very
smoothly with 2 factor of about 100 000 from the small-
est cells at the trailing edge of the vane flap to the largest
cells at the onter boundary.

The only user input for the case were the 328 boundary
nodes and a statement requiring no connection between
the main acrofuvil and the wmain Rap.

5 CONCLUSIONS

A {rontal mechanism for the creation of the interior nodes
of a Delavnay triangulation has been devcloped. The
mecthod combines the high node distribution quality of
the Advancing Front method with the optimal connec-
tivity of the Delaunay triangulation. Precise control of
aode spacing is achicved by the use of the initial trian-
gulation of the boundary nodes as a background mesh
with ne additional effort of the user. The node genera-
tion does not require explicit tracking of the front and is
independent of the oraer in which triangles are listed.

We are presently working on a generalization that can in-
corpurate stretching to obtain a non-isotropic triangula-
tion. All features of this concept readily extend to ihree
. dimeasions where the optim»] operation count and the
simplicity of boundary control, front tracking and node
| construction of the method become even more important.
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DIFFUSION DES PUBLICATIONS
AGARD NON CLASSIFIEES

L'AGARD ne détient pas de stocks de ses publications. dans un but de distribution générale a l'adresse ci-dessus. La diffusion initiale des
publications de I'AGARD est effectuée aupreés des pays membres de cette organisation par llintermédiaire des Centres Nationaux de
Distribution suivants, A F'exception des Etats-Unis. ces centres disposent parfois d'exemplaires additionnels; dans les cas contraire. on pewt
sc procurer ces excmplaires sous forme de microfiches ou de microcopies aupres des Agences de Vente dont la liste suite.

CENTRES DE DIFFUSION NATIONAUX

ALLEMAGNE
Fachinformationszenirum,
Karlsruhe
D-7514 Eggenstein-Leopoldshafen 2

RELGIQUE
Coordonnateur AGARD-VSL
Etat-Major de la Force Aérienne
Quarticr Reine Elisabeth
Rue d'Evere, 1140 Bruxelles

CANADA
Directeur du Service des Renseignements Scientifiques
Ministere de 1a Défense Nationale
Ottawa, Ontario K1A 0K2

DANEMARK
Danish Defence Research Board
Ved ldractsparken 4
2100 Copenhagen ©

ESPAGNE
INTA (AGARD Publications)
Pintor Rosales 34
28008 Madrid

ETATS-UNIS
National Acronautics and Space Administration
Langley Research Center
M/$ 180
Hampton, Virginia 23665

FRANCE
ON.E.R.A. (Direction)
29, Avenue de la Division Leclerc
92322 Chatiilon Cedex

GRECE
Helienic Aur Foree
Air War College
Scientific and Technical Library
Dekelia Air Force Base
Dekelia, Athens TGA 1010

ISLANDE
Director of Aviation
¢/o Flugrad
Reykjavik
ITALIE
Aeronautica Militare
Ufficio del Delegato Nazionale all AGARD
Aeroporto Pratica di Mare
00040 Pomezia (Roma)

LUXEMBOURG
Voir Belgique

NORVEGE
Norwegian Defence Rescarch Establishment
Autn: Biblioteket
P.O,Box 25
N-2007 Kjeller

PAYS-BAS
Nzstherlands Delegation to AGARD
National Aerospace Laboratory NLR
Kluyverweg |
2629 HS Delft

PORTUGAL
Portuguese National Coordinator to AGARD
Gabinete de Estudos e Programas
CLAFA
Basc de Alfragide )
Alfragide
2700 Amadora

ROYAUME UNI
Defence Research Information Centre
Kenugern House
65 Brown Street
Glasgow G2 8EX

TURQUIE
Milli Savunma Bagkanhf (MSB)
ARGE Daire Bagkanh@ (ARGE)
Ankara

LE CENTRE NATIONAL DE DISTRIBUTION DES ETATS-UNIS (NASA) NE DETIENT PAS DE STOCKS
DES PUBLICATIONS AGARD ET LES DEMANDES D'EXEMPLAIRES DOIVENT ETRE ADRESSTES DIRECTEMENT
AU SERVICE NATIONAL TECHNIQUE DE L'INFORMATION (NTIS) DONT L'ADRESSE SUIT.

AGENCES DE VENTE

National Technical Information Service

(NTIS)

5285 Port Royal Road 10, rue Mario Nikis
Springfield. Virginia 22101 75015 Paris
Etats-Unis France

ESA/Information Retrieval Service
European Space Agency

The British Library
Document Supply Division
Boston Spa, Wetherby
West Yorkshive LS23 7BQ
Royaume Uni
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Les demandes de microfiches oude photocopies de documents AGARD (y compris les demandes faites auprées du NTIS) doivent comporter
la dénomination AGARD., ainst que le numeéro de série de I'AGARD (par exemple AGARD-AG-315). Des informations analogues, telles
que letitre et la date de publication sont souhaitables. Veuiller noter quily alieu de spécifier AGARD-R-nnn et AGARD-AR-nnnlorsde
commande derapports AGARD et des rapports consultatifs AGA RD respectivement. Des références bibliographiques complétes ainsi que
des résumés des publications AGARD figurent dans les journaux suivants:

Scientifique and Technical Acrospace Reports (STAR) Government Reports Announcements and Index (GRA&I)
publi€ par ta NASA Scientific and Technical publi¢ par le National Technical Information Service

Information Division Springfield
NASA Headquarniers (NTT) Virginia 22161
Washington D.C. 20546 Etats-Unis

Etats-Unis (accessible ¢galement ¢n mode interactit dans 1a base de

donndes bibliographiques cn ligne du NTIS, et sur CD-ROM)
tprimé par Specialised Printing Services Limited
0 Chigwell Lance, Loughion, Essex 1G103TZ
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Telephone (1)47.38,57.00 - Telex 610 176
Telefax (1)47.38.57.99

AGARD does NO' hold stocks of AGARD publications at the above address for general distribution. Initial distribution of AGARD

publications is made to AGARD Member Nations through the following National

istribution Centres, Further copies are sometimes

available from these Centres (except in the United States), but if not may be purchased in Microfiche or Photocopy form (rom the Sales

Agencics listed below.
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UNITED KINGDOM
ICELAND L Defence Research Information Centre
Director of Aviation Kentigern House
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ITALY . UNITED STATES
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00040 Pomezia (Roma) Hampton, Virginia 23665

THE UNITED STATES NATIONAL DISTRIBUTION CENTRE (NASA) DOES NOTHOLD
STOCKS OF AGARD PUBLICATIONS, AND APPLICATIONS FOR COPIES SHOULD BE MADE
DIRECT TO THE NATIONAL TECHNICAL INFORMATION SERVICE (NTIS) AT THE ADDRESS BELOW.
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5285 Port Royal Road 10, rue Marto Nikis Boston Spa, Wetherby
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nited States France United Kingdom

Requests for microfiches or photocopies of AGARD documents (including requests to NT1S)shouldinclude the word'AGARD' and the

AGARD scrial number (for example AGARD-AG-315), Collateral information such as title and publication date is desitable, Note that

AGARD Reports and Advisory Reports should be specified as AGARD-R-nnnand AGARD-AR-nin. respectively. Full bibliographical
references and abstracts of AGARD publications are given in the following journals:

Scientific and Technical Acrospace Reporns (STAR) Government Reports Announcements and Index (GRA&I)
blished by NASA Scientific and Technical blished by the National Technical Information Service
formation Division g‘lr‘mgﬁdd

NASA Headquarters SN'IT) \’i’rginia 22161

Washington D.C. 20546 United States

United States (als0 available online it: the NTIS Bibliographic

baubase or on CD-ROM)
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