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Foreword

"The objective of the course am; the course notes i:i to present the state-of-the-art, as well as recent developments in
unstructured grid methods. suitable for the computation of high Reyitolds number comIptessibic and inconltpCssible flows. and
other rektcd subjects. Topics and methods covered include:

- Least Squares Galerkin and Streamline Diffusion Finite Element Methods

- Finite Volume Nethods and Higher Order Polynomial Reconstruction

- Essentially Non Oscillatory Schemes for Unstructured Grids

M- ultidimensional Upwind Schemes on Triangles and Tetrahedra

- Grid Generation Methods for Unstructured Grids Using the Fron:al Method and Delaunay Principle

-- Turbulence Modelling on Unstructured Grids

- Error Estimators and Solution Adaptivity

- Parallel Comnputing on Unstructured Grid

- Post Processing Unsntructured Grid Data Bases for Flow Visualization Analysis

A wioc range of applications is presented, going from incompressible free surface problems transonic aerodynamics and
hypersonic reentry flows.

Getting these notes prepared in time was a difficult task. Only those who have been in this situation realize the time and work it
needs to write such lectures. We wish to congratulate all lecturers, who in between their busy pnofessional activities have found,
or better made, the time to write detailed and high quality contributions.

It is oul r opinion that we have here a reference work which will be used by a whole generation of PhDs and tither researchers who
wish to jump into the absorbing subject of unstructured grid methods in CFD.

We art: convinced that 'he lecture series for which these notes have been made will be a great success, and we thank both our
institutions, the von Kiirtnin Institute and the NASA Ames Research Center for hosting the course. We thank AGARD and the
Fluid Dynamics p:anel, its past Chairmaut Jim McCroskey, Executive Winston Goodrich and Secretary Anne-Maric Rivault for
their encouragcnent and professional support.

Ilernian l)econinck and Tim Barth
Course Directors

I.
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Avant-Propos

L'objct dc cc cours ct du support de cours cst tie prscntcr •.•t de Irar, ailsi qute ceisaills tlvcIoppnlemtts riic•nts .ais IV
doninine des methodes en maillagcs non-strnitur~s poxur Ic calcul d•coulements compre-ssibles et non-compressihles i.t grand
nombre de Reynolds et (aoutres stijets connewxs. [+cs questions ci Ics tethQovds couvertes sont Its suivaltes:

- m6.thotIes ties 6Iements finis moindres carres Galerkin c it diffusion longitudinalc

- mtthodesl tie volumes finis ce reconstruction polynorniale dordre Olev6

-- mithodes essentiellement non-oscillatoires pour maillages nion-structurs

- schnmas multidimensionnels tie discrdtisation ddientrt&e sur triangles ci O.mraodrcs

-- mnthodes de g6n~ration de tnaillages pour grilles ncn structur~cs scion Ia m6thodc frontale ct Ic I)rincipe tie Delaunay

-- noddlisation de I liurbulcnce sur maillages non-structur6s

cstinitatCurs d'errcur ct algorithuics pour niaiilagcs adaptatifs

- calcul en parallki sur maillagcs non-structures

- post-traitlenicut des bases (ie donnees stir maillages tion stictturts pour la visualisaiion des ,.eoulenients.

Un large eventail d'applications est prtiscnt., allant ties problemcs tie surfaces libres i'-m-compressibles ii Iacrodywicnique
transsonique ct les &eoulements hypersoniqucs rentrants.

it nisceni form.de cc suppor! de co.rs dan.1s ls .,,isimpar.. S.Cstav&rt diffic;-,. Sculs ,ci:;s qui Outi v.S Ua.. eiV. s1wtaiikoi
seront conscients du temllps c ties efforts qu'il faut consacrer it ;a rMtlaction tid tels ours, Notus tenons lone, it .liciter tonus nos
conif.cenciers, qui. iiialgru ties emplois dLe tenmps tr•s charges. ont trouve. ou pluteit cree, le temps tnclCsahirc lptor ecrire (Is
textes detailles dc grande qualite.

A no're avis, il s'agit d'un veritable ouvrage tic refcrence qui trouvera iln large accueti aupres de ttoule u0e geltiratioll tic
dilpim)6s roisiunic cycle et d'autres cherclh.urs souhaitant dccouvrir ie sujet passionnant ties mkthodes tds maillages non-
strunctur~s en aerodynamique nunmriquc.

Nous sommes convaincus que le cycle de colifs.rences pour lcquel ccs cours ont at6t tcrits aura beaucoup tie succbs. Ci nIous
tenons i remercicr nos deux orgalisrues, Ilnstituit von Kuirntimin e Ic NASA Ames Research Center pour rorganisalion du Cours.
Nots rklmercions 6.alenlent IA6ARI) vi Ic Panel tic It dynainique des tisldes, s01n a1ci60 P'r~sidcit JiM MeCroskey, Son

Adnijhistratcur Winiston Goodrich cl sa Secrclaire Aitnc-Maric Rivault pour Icurs encouragements cl leuir soutiell
professiotntel.

I lerman I)vconinck CeTim Batrth
i)irecteurs tic cours
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FINITE FELIENI" I'EI'OI)S FOR FL.OW PItOBLIEMS

by 7

De)apt, of Mathtrimiis
C(.'h~im' r,. Univwrity of T chi)logyv

412 9b (;otebotg

Sweden

0. INTROI)UC'ION (0.3) consistent use of space-tife fhnit.
element discretization for time dependent

0.1. The SD-methol problems, with the basis functions being
The purpose of this note is to give an discontinuous in time and continuous (or
overview of the Streamline Diffusion discontinuous) in space.

"- method (SDl-method below), also referred
to as Galerkin/Lepist Squares or SUPG Each of the modifications (0.1) and (0.2)
(Streamline Upwind Petrov-Galerkin), as a increases tie stability of tile underlying
general finite element method for Galerkin. method in diifferent ways and
Shyperbolic type partial differential through different mechanisms. The first
equations modelling convection-diffusion, modification (0.1) gives control of the
compressible/ iumwnjoarssible fluid flow or residual R(U) of the finite eletment
wave propagation. The S1)-method, solution U, obtain.xi by inserting the finite
developed by Tom Hughes and tile author element solution into the exact. differential
together with co-workers during the equation, ill a weigh;.ed l,11,-ormi with
eighties, gives the first general solutioa to
the fundamental problem of constructing weight. prol)ortionai to h0. The second
finite element methods for hyperbolic modification (0.2) gives 1,2-control of all
problems with the desired combination of

od stability and high accuracy. The first derivatives of 1) with the weight .g SD-method is a modified Galerkin method The two modifications (0.1) and (0.2)
based on l)ie,;etwise polynomial together add sufficient stability to
al)proximation with the following two basic guarante e.g. the following important
modifications: Iprolperties of the SI)-method (when

applical)le): maxinmum norim stability,
(031) a "streamlite diffusion" modification entropy consistency, error localization and
of the test funct-otis giving a weighted least monotone shock resolution. Further, the
s(quares control of tie residual R(U) of the modifications play a crucial role in the
finite element solution U. adaptive SD-methods based on a posteriori

error estimates developed recently. We
(0.2) introduction of all artificial viscosity recall that the finite element in its basic
Soff form, i.e. the standard Galerkin method

yi yhowith piecewise polynomial approximation,
ax(, Ch I 11(kIJ) VU, Ch ./2) or which has been so remarkably successful for

mnax(,, (121 I, 13/2) elliptic and parabolic problems, does not 4
where h is the local Ihn size a~nd . is work in general for hyperbolic problems:Unless the exact solut! ion is globally smooth
tie given viscosity a.tl C (enotes iX)sitiVe (or the mesh sufficiently refined
I constanltS, everywhere) tile standard Galerkin finite

Further, the Sit-method is characterized element solution will contain large spurious
by t 1 eooscillations making the error large overib



hwIge it'. iions of spac(' and time. Ilthe iqula or(er veThcitLy-lI)resrr frt!itlA holl,
sp!•,ns oscillatiotis reflect Owii? lack of which haIms It'd wide applications,:,,iltvin flethelanard (,ahorkin ine lo(! hi.-hwding' free imunaar'y nlow (ills], [113j),

(volcen'i idn the resid(til aind derivativ, o1"
the fillit., element. ,ollition. A (iecis;ive step in lh•e (develop)melntlit. of thie

SD-,ne tho. was Lakemi in thy :id ein ! ht.ies T
'iThe space--te di(iscrelzatt (113) of the with the introduidtmion of the scond
SI)--nctlhod ofiers a1 great flexibility ilI the inodifhitc.ion (0.2) oixxting in particular the
di(ret/izat iotl ili pa rt.icular Olthrlgh the possribtility of appli ying" t-hi SI)- method to
possibility of kuhis.g Space-time Ieshes, colniprosSiIle flow incli(uintg shocks (Q111-4],
.ientt.ed ill s)ace-titic. This gives a happ)ly IdJs ii, JSzll1. It aplpears that the iCitidual i
Smar'rgilpe oi tulerian and aigrangean ba)sed g rtificial viscosity of the forli -
tdes:ilutionle in the SI) of ethod conofitheing Ch I R(U) I / I Vi 1, which has a new con-
Sthe a.an~taes (of" ea('h (it the two strt'u'ion its COmIale(X to artificial
approaches whl avoiding the dis viscosities uted in finite difl'etrice/voliute
advanitages of a full •uclidean or met1hodr, iq close to the ininial Saiy
Lagrangean approach. I ,si ing space-tinie required teo make it Galerkin iiim sodi
mieshes orient.ed according to characteristics (0(tlihd. to 1i ) I) work weil for e.h .
(or l)artichle paths)! we ol•iain i. ,pexitli lrohlemu Wili ( shock"f.
variiant of the Si)-ittellod, which We, refeer
to asr the ('liaracterist i( 5l)-tethod, or As indicated, space-tiuine finivt elements
(CSD-method for short., and which is of in the -. -

particular interest for incomivsessilhk flow wereP], 1t roduedN) tearlYd! f e )-et hod o the
incluidinug also Mre (or niovinug) hon ildInrics vN] J.bu.tefl i~hi~ il i h
Orienting tnhe nin~ inl spine-time aecordiniI' getteidity of Itie 5 pace-tilin hi Ieh Was
tO,'Wieit~in the Suieth ii wp,'-iue otaccininitia.lted later ,1J3],[J~ 1,16,1 [10 la2-3]) iu
to Ihe nhature of the sohnion, we ohe-Ain tht forni of tile ('Si)-letioT with appl=ca-
\Wriants of Lilte SD)-uwdt.hod with fnLutUi'e?- or" tions1 to free boltndary, flow ( T1la31). The
Ahock -fit. ing Inethods. idea of using s!)ace-tinie finite elemientis-t

1'io hei)- method with Upasicalh t.ie fi rpSI[ ) and r.cnt. Ili( Sw t aws M d, inf (0 I I,111) wih iti ap)licatiolni to freeliio d il•( i oti n (0 .1 ) W a s i n kilmoWlle i n t h eL llo u n md a lr fhlo%ý . A ni o th e r r e cn' tI d e v\ e hlo p-
heiilllii lt, of l he eizghl ies by Ihlt,,hes h\lrd

31l ,iooks 11 1o sti l r1 1 ' C lt l'(a,18 .dapt.ive Si) and ('•S )-

diffusion J l'ohlns. The Ihorel ical lialy.i, meiitwhod see ho P UP S], [.121, Lilt: , 11:iI

of the method in this lorln inclliuding aliso nHJ ,/hofi utn in new way tlt! basic

p1,eltSioils to t il-i-doellident prob le s lotis (0. 1) auid (0.2) conio to use
bas11 oi spa linle e , w e•g. to pI' o it posteriori error est.itllit.es

harried out. i th)&y (*ig ty uniderlyi tile h adap1tivei? procedui•s .,;As far
(lolrivpi 0111n, ii th\ earl y einid iti nl { a,,.4s we know these results are the first to
"J!ohnson. Nivert and Pliti iranta PN]1 [N] , show that, efficient and relialhe terlrO
I INi. V A Iiill tesilt. of thiis analysis was

io exhibit the role of the lliodifical ioln (0.1) 'olit irol is p)Ossib)le for l iy rhillh l)l'OI )hpliie.ms

Io ince('r s'e tho Lt.Ltj i/!i -of t hle (v harkiai The SI)-i! iethiod has now SUC(Ies fldll y betell?
illethod. To empthliasiz' the staidility aspect.,
the term "Striilie (I illu " directly apldied to, iii pariticular, stationary and

R'elated to slabilit.y Was used (inisead ot thii(e de(. ( lidelil

st-reaitlnliile lipwinW ill 112]), with mlotivatition
froin ,ucalar convectiol problems where the (i) ('oilVCtion..siblehmion lrobl ns.leiist ,NltllW$IIt,#nodi flea lioni giv ilihg wi'iglli.ei (ii) ilit'drnl)ressibie Iu.u01ihr andil

m s rm iig gNavier-Stokes etquitions.h
1.9-(Oit.rol of) tihe c'onvecIt.i v: (erivative of (iii) 'onipl'essiblh Euher aind

the finite elemient sotlntiol (corresponds tO Navier-Stokes eqluiationts.
initrodulcing i( difflusiOl term actling in the (iv) reactive colintjr(ssibh.) fhow,
directioni oi the streantlines. (v) second order wave eiliatiohis ([1],

'x i elisions (If thn'e SI•l)-iet hod io the
inicoiipresMih)le Navier-Stokes equations A large ninihwr of and iinierical
followedl quickly (111132], [.S]) with furt-her theoretical reil ls are avalabhe. The
devehll)oipents. in recent. ,ears to at ,iiiiii



I heore,•.al resii•i.s in gmeei'al go beyond ,A\ito
previous results for olier methods id "'h are ditretv iah-g of the
(ilciliding fillite' differell¢eC 'illit.e voliimiie I alathiiitii and b)iIlAplaciail, r(,spe.tively.
ilietlhods) ill gelierality aiid/or prtue•isi. wit.h a switch fromi first. order to third order
Somie basic features of the ,1)-imlethod in r'eions of siiootlitess. Now, the
suppl)orted by t lieoreLt ical allt 1(11niierical .Sand1ird (alihtkiti fliile (lemnl t. Ilimthod
evi(dle(:e are ;)s follows: t.ypically pt0tA¢¢• (P.ulct(eredI ( difflerenQ e

all)l'oxlimiitiois to otAliVtltivC terins itid
(0.1) lli~h acit'.lra'y" O(lP+) trhe l~lodifilt. -vs (0.1) and (0,.2) add

(0.i) hi a•ifiici, 4(hl~h ibial visi cy ill i -taifnd orifo s
lyiytottia s ot" degree i. ilcludiuii ill particular anl automiatic

(0).5) Good stability: sharp iotiotOie 'swii.eh'related to thie size o tie
resolution of shocks and contact. •oefficiellt i =-.hil!(U)t/IVI! I which i.s
di(Colliilitie,. typically of order 47(h) close to shoiks for

(0.6) Localization: quick decay in xample and of order-2 it) or smaller ili
upwilld or Crosswilrd propagation relgoln of ordroi llOt) ltis, t lle

ipS1)-method coltitai ialls ic features of(0.u) Adaptive form'ls availablo bass.(I centered difference schemieis with artificiall
Oil sh•arp 41 poiteriori e.iror viscosity, b-t the technicalities tre

to0,8) Limiits of Sl)-sohltiOl. satisfy A] difterenlt in the SD-method. fi particular,
the SI)-niethod avoids the use of fourth

entrop •Coiidl,.ions (entropy order dissipation ani(d realizes tihe "switch"i"
Consstie foscl in viscosity in a. full filnite element. Context
(olls) rvaoiole laws hic sevarl'l which is easy t.o imIil)letnl~lit alll access'ible

consrvatotilawsiiisevealIor anialys•is,
dillmellsiolls w ith piecewise
polynomial-s of arbiitraiy d.egree (b) Finite \,olnijyeeip•
oil gelelral iiehles.

, 't...'. with five ,o,.
movilng•holldaries Illmay Ibe
ililhroachie(l inl alnaltir~d ,ay iusin• Ie lsed wyith di hOlictinious approximtatioliapro leibditll of athe Sliwa-yulsing ill space. We refer to this variant of the

thef ie S)-iiet.hod, including the mio(dificat.iolnsillesl. (0.1) and (0.2) p)rolprly iinterpreted, ,s thle
2 Ciscont.intioiS (1 alerkiin or 1)( -imetlhod.0.2.. (Comniarison with other mcth~ial in wit "i(CiCCt~al llrxiltiI

0:I1). Wit~h pie'ewlse constanlt alpproxhimation

I his leads, to liiore or less clisscal uii ite
We tliW briefly tomipiarte tile SI)-nieihod volhillie ilethiods (lelbelidii•g oil the con1text.With other l1llriericaf l ;wne~lrths i td With higher order disCOt. .Oi l1Oilu

poithia oppohmair nuerea 1)ethods in
Comnputationial FIuih ltyiillics ( FI) such l~olyIOoiiiat al)lCroxiPiiaion the su(-mehod
's (a) fiNite difl'rence mthods, (b) minite may le viewed as it higher order finitevohii iiiniethodif, (e ) r tilnce e method(s aiid volunii metliod. T'ihus the DG-imet.hod((i) ,shoctk-filttingk in l-tliodSI, - gives the inatural folrniiiulatliol of higherorder finite volume methods, which have

hnot founid a really satisfactory formulationhi each casie (a) .-(d) thhere is ii tc classical itContext of fillite volumlerelated vairiant, of tihe S)-iiethod ieal'i(iiig methods involving ad hoe flux limiting. iflux
he, essentiiil feaure of the inethiod (-() ¢Correction, post. processing et.cet. For ani

hi a lull finite eieieiit COitext,, ianalysis of the 11-lethod for Colnservation

(a) Finitv diflerevic:te iiethods laws. see .i1,].

The classical fillite difference method for (i) Particle methods
fluid ilow is obtailled by modifying a('eterd dffeec a-C) With space-time v teshes orieinted according a'enite~red diffe rence:( applroximaltioni of

conivective ter.ils by addling at coiil)hialOli tvo a)sant.iclC apprhsthe SIp)- ile mehod may be
(if artificial Viscosity of first order viewda atipror iiat.e p. iithod

3 2 with restart., or a variant of a method of
(1.Ah lt aiid third order ('li'Ajit U. Where the formi "exact. traisport. ilprojection"l.
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However, the SD-method does not require 0.3. The stability concept. Artificial
exact transport or precise particle tracing. viscosity.
The mechanism is just the orientation of
the space-time mesh in space-time which A main result of the theoretical analysis of
brings in a "particle feature" to the the SD-method is to exhibit the
method, but precise orientation or "exact importance of a correct notion of stability
transport" is not required. The method will both for stationary and time dependent
work also on non-oriented standard problems. The classical stability concept
meshes, but the precision is improved by for hyperbolic probleias typically requiring
suitable approximate mesh orientation, in a time dependent problem an L2 -bound
Further, the SD-methoa offers a built in of the solution for positive time in terms of
modified L2 -projection entering when the the L Ispace ~ ~ ~ ~ ~ ~~ h mehiLhne tdsrt ie2-norm of initial data at t = 0, or in
space mesh is changed at discrete time th~e case of a stationary problem an

levels. This makes it possible to change the L2-bon d of the solution in terms of the

3pace mesh often without decreasing the

accuracy by introducing oscillations or too L2 -norm of the right-hand side, turns out
much dissipation. Thus, the SD-method not to be fully adequate. Instead, a new
with space-time meshes oriented according stability concept for the discrete problem
to particle paths fives a general
formulation of a 'particle method" with the involving in addition weighted L -control

following advantages: precise particle of the residual (through the streamline
tracing is not necessary and frequent diffusion modification (0.1)) arid first
restarts with remeshing in space are derivatives of the discrete solutions
possible without essentially decreasing the (through the artificial viscosity (0.2)) in
accurary. terms of e.g. the L2 -norm of the initial

data, turns out to be more appropriate and
(d) Shock-fitting methods usefld. In addition a new stability concept

for linearized versions of the continuousiac lycoriing t hsol fepacetires msu h as problem is used in the context of deriving a

shocks rather than particle paths, which posteriori error estimates underlying the

can naturally be realized in adaptive forms adaptive versions or the SD-method. Thus,
of the SD-method, we make contact with we emphasize the extreme importance of

so called shock-fitting methods. In the using relevant stability concepts for both

so catlled theoinc-itting ios. ain onsm the discrete and continuous problems and
SD-method the wech is again only the new aspects of this fundamentalthe mesh orientation which ;may *ypically polmbogtt h ih hog h

be obtained from derivative information problemi brought to the light through the

from the computed solution. a

To sum u he SD-method characterized 0.4. Adaptive SD-methods. A posteriori
To sm u, te SDmetod haraterzed and a priori error estimates.

by (0.1)--(0.3) offers a large degree of
generality and flexibility and may be The improved stability properties of the
viewed as giving very natural SD-method in particular make it possiblegeneralizations of all the classical S-ehdi atclrmk tpsil
gecneraizations of all tinclassicl fto prove sharp a posteriori error estimates
techniques of CFD including finite which may be used to design reliable and
difference, finite volume, particle and shock efficient adaptive variants of the
fitting methods. Thus, the SD-method SD-nietlod. This seems to open for the
brings a surprising degree of tinity to CFD first time the field of CFD to adaptive
combinino in particular the two worlds ofE "cinin in parartea to wors quantitative error control on mathematical
Euclidean and Lagrangean mnethrds, basis with accurate resolution of fine scale
everything realized by a modifieu Galerkin features in e.g. boundary layers and shocks.
approach with piecewise polynomials on
space-time meshes. The a posteriori error estimates for the

SD-method for hyperbolic flow problems
typically have the form:
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(0.10) IlellL < CIIh2UIR(U)III2 (0.13) h1elL2 5 CllhP+½DP lulIL

I 'h I L 2' where u is the exact so2ution and DP+lu

is the maximal modulus of derivatives of u
where e is the error, R(U) is the residual of order p+l.
of the computed solution U, h is the mesh
size and we used the definition of i . This The proof of the a priori error estimate
estimate should be compared to the typical typically has the following structure:corresponding estimate for the Standardcorespoing estimate for thyperb Stanaro : 1. Representation of the error in terms of
Galerkin method for hyperbolic problems: the exact solution and a discretized
(0.11) dual problem.

(0.11) CJiRiIL2 2. Use of the Galerkin orthogonality to
introduce the truncation error in the

and the standard Galerkin method for error representation.
3. Interpolation estimates for theelliptic problems:trnaineo. truncation error.

4. Strong stability of the discrete dual
(0.12) 11el]L 2 5 CIlh2RL 2. problem.

We note the similarity in the structure of
The estimate (0.1 i) is in general useless for the proofs of the a priori and a posteriori
adaptive purposes since the right hand side error estimates, and also the differences: In
of (0.11) will increase with decreasing mesh the a priori case the key roles are played by
size until all features have been resolved, the truncation error and the strong
The estimate (0.12) for elliptic problems is stability of the discrete problem, and in the
sharp and may be used as the basis for a posteriori case these roles are taken by
reliable and efficient adaptive algorithms, the residual and the stability of the
Clearly (0.10) is a mixture of (0.11) and continuous problem. Both the a priori and
(0.12) using in particular the ellipticity in a posteriori error estimates are
the SD-method introduced through the fundamental: The a priori error estimate
artificial viscosity ý, together with the shows that the discretization error (and the

residual) will tend to zero with decreasing
particular design of i. mesh size, and the a posteriori error

estimate is the basis for adaptive
The proof of the a posteriori error estimate quantitative error control.
(0.10) has the following structure: 0.5. Summary of the design principles of

1. Representation of the error in terms of the SD-method
the residual of the finite element
solution and the solution of a We recall some of the fundamcntal
continuous (linearized) dual problem. problems in CFD:

2. Use of the Galerkin orthogonality built
in the finite element method. (0.14) design of artificial viscosity,

3. interpolation estimates for the dual (0.15) unstructured meshes,
solution. (0.16) how to combine Eulerian and

4. Strong stability estimates for the Lagrangean methods.
continuous dual problem.

Each of these problems has reccived
We note the crucial roles played here by massive attention over the years, but
the residual, the Galerkin orthogonality conclusive answers are still lacking to a
and the strong stability of the continuous large extent within the classical
dual problem. methodologies of CFD (finite difference

methods, finite volume methods, particle
The typical a priori error estimate for the and shock-fitting methods). Our main
SD-method with piecewise polynomials of point is now that the Sl)-method with the
degree p takes the form three cornerstones (0.1)-(0.3) offers a new



approach to each of the fundamental 1. SD-METHODS FOR STATIONARY
problems (0.14)-(0.16). LINEAR SCALAR CONVECTION-

DIFFUSION
The construction of the artificial viscosity 1.1. Introductionin ~ ~ ~ ~ ~ 11 tIntroduction te epndnc

Sin the SD-method with thle dependence As a basic model problem we shall consider
on the residual has a solid mathematical the following stationary linear scalar
basis and appears to be close to the convection -diffusion problem: F;ind the
minimal artificial viscosity required to concentration u = upx) such that
guarantee features such as entropy c
consistency, maximum norm stability,
(almost) monoone shock resolution et cet,
of prime interest in classical CFD. In (1.1b) u = g on 1,

addition, the artificial viscosity Z of the where 0 is a bounded convex domain in
SD-method makes it possible to design w
efficient adaptive SD-methods based on a the plane R2  X - x) = (P1 (X), I 2 (x)) is
posteriori error estimates. Thus, the a given velocity field, a=a(x) is an
Sl)-method offers a solution of the Ic , x afundmentl poble (0.4).absorption coefficient E = )x isa
fundamental problem (0.14). positive viscosity coefficient, which we

The space-;ime discretization of the typically assume to be,"small" in a sense to
SD-method has a maximal flexibility and be made precise, and f E L2( and g c
appears to solve (0.16) as well as of course L2 (P) is a given production term and
,(0.15). boundary data. Note that (1.1) is the basic

To sum up, it app( --s that the finite model for processes involving
econvection-absorption-diffusion-reaction
elynoment approximateion) with the ewise with a very large range of applicability. All1 •~~~)olynonmial approximation) with the design cefcet i n r sue~oo

princples(0.1~ (03) tat i thecoefficients /1, a and c are assurncd to beprinciples (0.1)-(0.3), that is the
* SD-method, gives a fresh approach to die "sufficiently smooth" according to

requirements made more precise below. Wefundamental problems of CFD v- ashlasuett

surprising degree of unificatic slosmens
many possibilities for the fut ("(.2 V- # _+ a)()? > 0,
0.6. Outline
An outline of the cont , of th1 is )te is as where a0 is a positive constant. Thisfollows:whr 0iapoiieontn.Ts
1. assumption is not essential in many cases

hconvection .r where it is sufficient to assume (- 1 div # +
2. SD-methods for time dependent scalar a) to be bounded from below (cf. [JNP]).

linear convection-diffusion. If = 0 then (1.1) reduces to
3. The CSD-method for scalar linear

coi"vection-diffusion. (1.3a) fl.Vu + an = f in fP ,
4. The Si) and CSD-methods for the (13b) = g onl

incompressible Euler and
Navier--Stokes equations.

"5. The SD--method for the compressible where now the boundary condition is only
Euler equations. enforced on th inflow part r = {x E I";6. The DG-method for conservation laws. J"7. Adaptive SD-methods for Burgers' n(x).ft(x) < 0} of r, where n(x) is the
c a outward unit normal to r. The solui ion uof (1.1) will typically have an utflow8.Numerical ,esult of width 0(() at the outflow part

9. Conclusion. Prospects for the fut. 1= {x E r• n(x).13(x) > 0} of the
boumndary and may have internal layers of
w-I.h O(N) along streamlines x(t) given
by fi, i.e. solutions of

.1i
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(1.4a) dIx = ( x) t > 0, is not small enough, be replaced .y the
artificial viscosity i depending on the

(1.4b) x(O) =, computed solution U and the mesh size h.
It. is convenient (and natural) to split the

e.g. if the iflow data. g is discontinuous total error e = u - U into
or if f is discontinuous across a str'eamrline.
Thus, the solution u of (1.1) typically has (1.5) u - u = (u - 6)+ (a- u),
features on the different scales 0(1), 0(V'c)
and .(c). The essential difficulty in tie where fi satisfies (1.1) with E replaced by
numerical solution of (1.1) is now the

presence of small scale- features in u, which i, i.e., fi is the solution of the continuous
if no; resolved may lead to spurious problem
oscillations in a standard Galerkin
approach. Let us remark here, anticipating (1.6a) #.Vii + afi - div(iVfi) = f in Q,
the discussion of adaptive SD-methods
below, that even if an adaptive process may (1.6b)
lead to a final mnesh whero all features of .6b) = g on r.

the exact solution are resolved so that on
the final mesh standard Galerkin would be Now, u - fi is the difference between the
possible to use, the meshes in the initial solutions of two continuous problems with
stages of the adaptive process would not be different viscosity c and ý, and fi - U is
fine enough to resolve all features, in which d
case we need robust discretzation methods the discretization error related to (1.6) with

like the SD-method which is able to now i considered to be given. The
produce good results withouA requiring advantajses of the :plittiný (1.5) are as
global resolution. The only way to avoid follows: The estimation o the
this would be to use an intitial mesh
refined uniformly everywhere which is not diicretization efror U will concern a

cost effective, or just impossible in most linear problem, whereas the full problem is

interesting cases. nonlinear since i depends on U. Further
in an adaptive approach the perturbation

The basic problem is now to design and
analyze a finite element method for (1.1) error u .i may be controled by
which is higher than first order accurate, controlling the difference i - c, cf below.
and which has good stability properties so
that resolution of all features wivl not be 1.2. Finite element prerequisites
necessary to produce reasonable results; an For simplicity we shall below restrain the
unresolved local feature should not degrade detailed presentation to the simplest
the error globally but only locally. We shall possible finite elements: piecewise linear
see that the SD-method gives a very functions on triangles (t.wo dimensions) or
satisfactory solution to this problem. Note tetrahedrons (three dimensions). This is
that if we give up the requirement of not essential and all methods to be
accuracy higher than first order, the p)resented have natural generalizations to

solution is immedeate: Just take i = ' general piecewise polynomial approxima-

C Iflh as artificial viscosity and apply the tion.

standard Galerkin method. However, this Below f) will denote a bounded domain in
method in general adds much too much d
articial viscosity and will require excessive Rd, d = 2,3, with polygonal or l)olyhedral
mesh refinement to give reasonable bundary r. By Th = {K} we will denote
accuracy, and thus cannot be considered to
give a satisfactory solution in general. Note a triangulation of f?, i.e., a subdivision of

that this simple method corresponds to the 3 i su (d 2) orftetredrons
clasicalartiicia visosit m~tod ~(d = 3) K such thI at different elements K(Sclasica arifical vscoity otho orwhich intersect, share either a vertex or a

upwind method in finite difference theory.
side (d = 2) or a vertex, edge or face

In the formulation of the SD-method below (d = 3). The local mesh size of Th will be

the given viscosity c will, if the mesh size given by the mesh function h(x) satisfying



(1.7) clhK • h(x) < c2hK for x E K, We further recall the following inverse
estimate: There is a constant C such that

where c1 and c2 are positive constants for all v E

independent of Th andhKistie (1.9c) VVIL (K K

diameter of K. We shall further assume

that the smallest angle of fhe elements K ETIh are uniformly bounded below. <_ ChK1 VIOIlL2(K),- K E Th

The basic finite element space used below
will now be the following: Vh, = {v: v is We shall below use the following notation
continuous on Q= - U F and v is linear (v,w) f vw dx,
on K, VK E Tl}, i.e. the space of Conl- k

tinuous piecewise linear functions on f. (v, Vv.Vw dx,
By 7rh we shall denote a standard inter- V)

polation operatoi into Vh defined by

nodal interpolation (or variants thereof ilvil = (v,v)", IIVvG! - (Vv, Vv)".
involving local smoothing) or through

1 2--projection. We shall assume that rh 1.3. Formulation of the SD-method for
satisfies the following interpolation (1.1) and (1.3).
estimates: There are constants C
independent of Th such that To define the SD-method for (1.1) with

g = 0 f'C simplicity, let t c H1(0) be
(.Sa kv - Irhv))11,2) the standard finite element,' -pace of b

piecewise linear functions on a
triangulation Th = (K) of 0l whichC111hmi-k DllvllL ,l 0<k<m<2,h

- Cub 2r Ovanish on F. The SD-method for C1.1)
2(n) now reads as follows: Find U E Vh such

v •L2 9L K) that h

<Ch'n.--•.lllnvIl,2(I), (1.10) a(U,v) L(v) Vv h

where
I _( i _< 2, K 'i Th, a(w,v) =

where K is the union of K and the = (M Vw + aw, v + b(fO.Vv+av))
nearest neighbors of K if in = 1, and

K l1 if in = 2, and + (OVv, Vv),

n =max 1)v, Iv) (f, v + 4(.Vv + av)),

a =rn where

w ith D al +..-+ i (I.la) 6= C1  m ax(h - TT ,0)/
a, ,d Ip =a

usn Ox s i..... d
a •(1, using standard multiindex notation.
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Let us also formulate the SD-method for
((h, R(U)) the reduced problem (1.3) as follows using

mxf ItR (U) 1/ the space Vh of continuous piecewise
2ax(TI, h 3 linear functions on Q without any

boundary conditions enforced and imposing
R(U) =RI(U) + R the inflow condition (1.3b) weakly: Find( 20J), U E 'Vh such that

(1.11c) RI(U)=(((1.12) a0(U,v) = L0 (v) Vv E Vh,

11.VU + aU - div(MVU)-fI in K, where

(1.lld) R.2(U)I K ao(w,v) - a(w,v) - I wv/3.nds,

max max I½[ nS'VU]I/hK, I_
ScOK S

L0(v) = L(v) - f gvfl.nds.

where [ý nS.VUJ denotes the jump in the F

quantity • ns.VU across a triangle side S where b and i are defined by (1.11) with

(in the interior of fl) with normal nS. f = 0.

Further, we use the convention that Let us note that with C1 = C2 = C3 = 0,
integrals over Q containing second in (1.10) and (1.12), we get the standard
derivatives are to be interpreted as a sum Oalerkin method (with weakly imposed
of integrals over the clements K, and we bounMary conditions in the case (1.12)),
also recall that h(x) hK for x • K. The while the choice C1 = 0 and setting C "

constants C1 and C only depend on the

,type of polynomial approximation and the viscosity method corresponding to a full
shape of the elements. For p = I and upwind approximation of the convective
triangular elements one may take derivative (with piecewise linears). In the
C = C2  0.5. The constant C may following table we roughly summarize the

1 2 3characteristics of tile three methodsnormally be chosen to be zero, but there is caatrsiso i he ehd
discussed with a plus or minus sign

(at least in theory) a reason to have indicating a satisfactory quality or not.
C3 > 0. Note that with c very small, we

have h~ h a Sta- Accuracy
.iT and 1 2 (if 3 bility

small), while b = 0 for ý Ž h> I and Standard

E = if c > max (C2 hR(U)/( IVU 1 +h), Galerkin +

C3h3I2). Notice further that in principle 1= 3

Z is implicitely defined through (1.11b) Classical art-ficial vis-+

since It(U) depends on i through cosity
(1.lc). This may be simplified in practice C1 =0, •=hI I,

by choosing Z = 0 in (1.11c,d).
•. Streamline

Notice that (1.10) is obtained multiplying StfeasinDiffusion
(1.1a) by b(/3.Vv+av), where the ýb-term C1NC2 -0.5, +
may be omitted in the case of piecewise
linear approximation in space, see [JNP]. C3 small
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1.5. The basic stability estimates for the 1.6. An a priori error estimate for the
SD-method SD-method

The motivation for the two modifications Let us prove an a posteriori error estimate
.(0.1) and (0.2) characterizing the for the SD-method (1.12). Without loosing
SD-method is to increase stability (without the essential part of the argument we shall
sacrificing accuracy). Let us now derive then assume for simplicity that
the basic stability estimates for theSD-mtho (1.0) nd 1.12. Fesei = 0 and a = 0. Recalling (1.3) we then
SD-miethod (1.10) and (1.12). These hv
estimates will follow from the following have
coercivity properties of the bilinear forms
a(v,v) and a0 (v,v): There are positive 0 h'

constants c depending on a. and a0  which together with (1.12) gives the error

such that equation

(1.13) a(v,v) >_ cjf 2  Vv E (1.15) ao(u - U, v) = 0 Vv E vh.

2 Recalling the stability estimate (1.14) we
(1.14) ao(v,v) S cmlvl Vv E' Vh, get using (1.15) with v = rhu - U, where
we7rhU E Vh is the interpolant of u,where, V

2 2 2 ll Il ( , ,u -u
IIIVlll = (llvI I + V i 2j II+ 8, .VvII 2)l dIlu - UIII • -ao( - U, u - U)

2 21I1 = (Ids)½ = an9,u - U, u - rhu)

+ aO(u - U, rh1U -- U)

To prove (1.13) we note that by Green's +

formula = a0(u - U, u - irl.u)

0 3. Vv vdx = - O f3-Vvv (Ix
st • _< II•413'V(n - U)l"II. -V(u - ,qhu)II

- f div fl v
2 dx + 1 "n v2ds,

P£ r + IIb1. V(u-U)II ie?-V(u-7rhU)II

which gives +(I(uU)2 10-1nds)1/2

(P-Vv + •v, v) r

1 2 (ti(u-7r 1 u) 2  nl Ids) 1 /2

= ((- v+)v, v) + I v .lds,
2 2

from which (1.13) and (1.14) directly follow -< IIL1-uIILu + CII-(u - 2rhU)I
recalling (1.2). We note the improved
stability of the SI)-method as compared to 2
the standard Galerkin method satisfying + CII6½13'V(u-nWhU)II

(1.13) and (1.14) with =0 and i c. 21/2.
+ (f (U-irh u) I#.nlds)

Recalling (1.8) this proves that



I-I t "-
i04

"c" 3/ 2D2u unresolved iayer may degrade the error in
( aiUI - C the whole domain. Proofs of the indicated

cut-off results for the SD-method, which
which is the basic a priori error estimate are based on the improved stability
for the SD-method (1.12). resulting from the streamline diffusion• modification, are given in [JNP].

We note that (1.16a), in addition to the
slightly non-optimal 1,2-estimate 1.7, An a posteriori error estimate for the

SD-method
(1.16b) j!ij-(U[ l Cjjh3/2 D2ujj, Let us now prove a basic a posteriori error

estimate for the SD-method (1.12). In this

contains tih estimate 1If.V(u-o)IIl < case the artificial viscosity i plays a
CIlh3/2D2uH, that is assuming for crucial role, while we may take 6 = 0 and
simplicity that hi(x) = constant and also a = 0 without loosiug the essentials

simp elicit tha optim) hcstmante aof the argument. The discrete problem thus
I1, we have the optimal estimate reads: Find U E Vh such that

(1. 16z) l4 .V(u-U)II _ CIihD 2u1I
(1.17) (13.VU,v) + (•VU,Vv)

for the convection operator 0. V applied to
error u - U. In particular we have for the - f Uvf. nds = (f,v) - j gvfl-nds
residual R1(U) = f-#.VU-aU = fl.V(u-U) + r r
a(u.-U) the following optimal estimate

(1.16d) IIR(U)II • ClihD2ull. Vv EV

Td The perturbed continuous oroblem withThe estimates (I.1I6a-d) ftof the Sl)--niethod

should be compared with the following solution 6 takes the following variational
estimates for the standard Galerkin method form: Find 6 E It1(V?) such that

(I. 16e) Iiu-UIl • CilhD u2I, (1.18) (/3.Vfiv) + (•VfiVv)

(1.16f) IIR(U)lI • CIID 2ull,

which are seriously non-optimal. f fiv#)nds = (fv) - f gv#-n(s,

The error estimates (I. 16a-d) are
meaningful only if h is small enough to E
resolve all features of ti requiring h1 to be let us now introduce the folowing
smaller than (. in e.g. okitflow layers. In

case some features of u are not resolved continuous dual problem: Find ýo E Hl(Q)
we may replace for instance (1.16b) by a such !.hat
localized analog of essentially the form (1.19) -(v, /3.V~o) - ((div 13)v, •)

(1. 16g) IIl'-U I ,2( 9') ý C I1hJ/2D 2  III11 , + (i ,Vv, V V) + f v 4I -.n (IS

where f' C 01" C fl and u is smooth in
Wft. The truncated domain f0" is obtained
from Ql by downwind or crosswind = (v, 0) 'A C 1l(f'),
"cut-off" with cut-off distances of order 0

3/4
(h) and O(h3'), respectively. Thiis 11(fl) where • = fi - U and I'+ X:
means that unresolved layers do not
degrade the error at the indicated distances fl(x) .zn(x) > 0). Taking v = in (1.19)
in upwin(l or crosswind directions. This is we get the following error representation
contrast to the standard Calerkin where an formula
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I1112 = -(b, /3. V) - ((div M6), (P) + f (U-g)(V-F)#.in ds

+ (iW Vý) + f 6VO*nds
1I4+ = (f-/3.VU + div(MVJ), (p-4)

=(O- V6, ý0)+(MVi, VV)-f 6V9 (k s8"s~
-s S

- Uf i O (V-I)ds
- (/3.v, •) + (Pru, Vy) I-'

f- . p on (18 - (0Y.VU, V) + f(U-g)(,-4,f.nds

rr- (•U, VV) + f U Vl-,n dIs=(Ru) -)

+ F h f h1 K -2(U)(-41)ds,
= (f,vq) - f gýof3*n ds - (13.VU, ýo) KOK

-Mere

-(vu, V) + 1 11oi.n (is IW(U)I K
F

(f-P. VU + div(J•U)) K I K Th,
= (f, ý1-4,) + 4 (U-g)(\0-b)f. 11 ,1N

P- 1 s VU] oilOK ,

(-ftVU, V-+) - (JvU, V(.-4))

so that -0 1 oi8 c OK,

(i.2G) j 'II (f - -VU, P- -( +(lJ-g)fi.n on Sc aK,

4 f (K n- 1' 0,=O, ScI+, or Sc I'

- (?.VU, V(•-÷)), respectively.

where we integrated by parts and used We shall now choose ý, = ir,,V and use the

(1.17), (1.18) and t E Vh is arbitrary. following strong stability estimate for p to
Ison ach clement K in estimate V4 via (1.8) (for a proof weIntegrating by parts o andec eliden of refer t~o [E7]:'"~••

the third term on the right hand side of
(1.20), we get Lemma 1.1. Under sufficient regularity

i (1.21) I" " (fassumptions on /3 and i there is a
constant C such that if y satisfies (1.19),S~thenS- >; OK (nU•;- )ds '

K K 'I(' lII+ I k1. V II + Ijdiv(_ Vljy)

+ 11#VVo + V i 1311 •C116 '1
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and With c > 0, we may add the condition
c = il the adaptive process,

IID" II < C¢111. corresponding to resolution of all details,
see Section S.

Recall-ing tile error representation formula
(1.21) we now get

2. SD-METHIOi)S FOR
(1.22) •< Cjjh2C-IR[, 'TIME-DEPENDENT LINEAlt SCALAR(.2 11'-< 1hi 11 CONVECTION DIFFUSION.

where It. = It + R I, R1 = .1 and 2.1. A inodel problem
We shall now consider the SD-method for

1 K = aI 121. the following time dependent model
ScOK S problem:

We thus obtain the following a posteriori (2.1a)uL +i Vu - div(cVu) = f in 5 1 I,
error estimate for (1.12) recalling that i = (2.1b) u = 0o n P ,x I,

max(C 2 hR(U)/ I VU I , h3/2): (2.Ic) u(.,0) u in le,

'Theorem 1.1. There is a constant C such where ut = t-a /3 /i(x,t) is a. given 4-

that if U and ýt satisfy (1.17) and (1 18), smooth velocity field, ((x,t) is a. positive
then 6 = -- U satisfies viscosity, fQ is a bounded polygonal

(ldomain in NR with boundary 1', 1 =
(0,T) with T > 0 is a given time interval,(1.23) IVII • IIE(hUf)II, and f = f(x,t) and u0 = 110 (x) are given

Where dat~a..
2 1)ert ,h IR. 2.2. Space-time,2 discretim'Ation

'-hill(). ,I It I VU 0 < tl < 12 <'"..< tn <"" tN -= IF

be a sequence of discrete time levels, set
We note that by (I. 16d) the quantity I/ = (tni, t.n+1 ), k1 = t+ I - t.n and

E(h,U,f) appears to be of order 0(hi introduce the space-time strips or "slabs"in regions of smoothness of the exact = Q x ! Let for n = 1,.... N, Tn =

solution and of order 0(1) close to a b
(discontinuity. Thus, (1.23) appears to be as {K} be a finite element subdivision of S
sharp as possible. For numerical results for into space-time elements K of diameter
adaptive algorithms based on (1.23) we ih with corresponding mesh function
refer to [EJ7]. In such algorithms one
seeks, in ani iterative process, a mesh h11(x,t) and let V C fl(s1 ) - f(v c

Th K} such that
H tl(Sn1 ): v = 0 on F' x I}) be a

"E KY~ TO! , VK /El• corresponding finite element space, and
-hK ' 1 'l'h, define

where TOI, > 0 is a tolerance given by N
tthe user and Nh is the number of elements V = 1H V
K i If= I
•.K i Tjh, corresponding to equidistri- i=
bution of the element (,ontributions in the ( v: v S n = 1V, N}.
right hand side of (1.23). n



I-la

The space-time mesh T= {K} on S (v,w) = (vw)dt,

may typically consist of standard tensor I1
product elements K = K x Int where 4 is with

a triangle or quadrilateral in 0 2, or 6= -'V2

"tilted such elemnenl•s (see below), or - n n,
tetrahedrons K of height k. 'lie mesh

Tl1 may also be more general with time i max (. C hR(U)/ I,
steps variable in space.

3
We notice that v E V may be Iq(U) j R (U),
discontinuous in time at the discrete lime
levels t11 and to account for this fact we

define IR(U) Ut+9.VU-div(dVU) o0n K,

v(.) sliII v(.. t s). l.(U)I18 max '

11 v 1 VII

[V + - t']/ko= -3(U) = Il / n ol Si,'
Using the proper generalization of (1.9)
and (1.12) to the tilme-dependenIt ca'e, we where [,-nx .VUIj denotes the jumip in the
shall now seek an apl)loximnation U E V.

quantity iln 'VU across aside S of K
2.3. The SD-method omi general ,
Sl.CC-6.imne ITiMt'liq. wijih aomnnil u -- n 01nx, 11 and Whenr L i' ' . L

\'\'e iiow formnilate the SI)- method for (2.1) iS eXtelld(ed LO S as a conistanIt. in t..

as follows: Fliild F) C V such tl1ht
T'lie basic a. p)riori error estimate for (2.2)

(2.2) a(Uv) Ltv) Vv - V, analogous to ( 1. 16a) reads in the case ' (

hert = 0 with piecewise l1hwCi1r ap)proximationl
hl x ald t,

N-I 0
•i'''' = ': :ll( '• (2.3':) JII II-< (-Jll' /•l) u~lli,9(Q )

where'
+ N , it, n 0 0,

+ =S N [ v + f W V(dx' (2.3) IIMvII = (llvi12

4ili(W'V) N I
II E j "(v i,+ j3 .V v )ll ',(ij

t= (wt+ '3.V\v.v + 6(v C + l. Vv))li 1= d(

N- N~11/
+ (VVw,Vv)1 + (iw ,,,),V + Nii1,,•/2

N -, (f10(J . )) 0 where lh(xt.) -dianu K if (x,t) C K and

L~) ('V-~ . i V) ,(11 0 1%) 2 x 2n--=0 1) )11 != )xI)U is the maximal partial

derivative of iu of order 2 with respect to



(x,t). We note the presence in 1mviii of the 3A.) •
junlp~s [Vill.

3. rilE CSI)-MET1JOD FOR LINEAR. t ( Vu 11 t f. V.a1,
SCAILAR CONVE C']1'ION--DI)FFUSION

SPItODEMS so that for example in the case t = 0, the

3.1. A iodel problem equation (3.1) takes the simple form

We now turn to a p)articular variant of the
SD-method (2.2) for time-dependent linear (3.5a) ()
sCfalar convection diffusion obtained by
orienting the ruesh apl)proximately along = f(x( Ž,.r),), r > 0,
characteristics locally in time. As
indicated, we will refer to this method as (3.5b) usx(,\,,0) u0(.\),
the characteristic Sl)-method or

CSD-method. This method combines the
Sadvantages of both Eulerian and which is a family of ordinary differentia!
I,agrangean techniqutes without suffering , a 1R2. T hs
fronm the disadvantages of either a4pproach, equations paranetrtzed by Xic IR h.g is

Si.e. oscillations or excessive artificial expresses tile fact that il lagrangeau
tcoordinates ( ,r), the convection part

diffusion il Eulelian methods and mesh (Ut + fl.Vu) of (3. 1a) takes a very simple
distortion difficulties in Lagrangean tImethlods, form.

To isolate the essential features, we shall as To be more precise, let 115 now iintroduce
a model p)roblem consider the following the mnapping F: Q -• Q defined by (xt)
pure initial value problem: F(,\,r) = (x (VT), T), where X(,XT)

satisfies (p3 . We recall that I-J (let ,J,(3.1 a.)ut+II_ (-d v( 'ii )= f'(x,i.) 'ii whr ,,1 Z~t .,sisLkC~~i

0 L( )-- 1i iJ 0 = 13 1(. I( ) = I so

where Q = lR2 x(0,T), and f; -, 2 is a that. I- = I for T. > 0 Which shows

smooth velocity field with that F: 0, is I-I and onto. lefining
n3o,2 d(=,r) ln II(Xt) where (x,t)

(3.2) (liv /= 0 iu Q, :(!)and Au(k il "Au(x,t), the prloblemi (3.1)
takes the following lorm in characteristic

and f and L0 are giveit functions with coordinatIs (I\ . ,

Colmlpact support in Q IR - [0,.)) andlR
rosiectively aMd > 0 is constant. The (3.6a) u A ---- f il Q,
restrictions to A pure initial value problem, 6 r 2
a divergence-free velocity field [3 and (3,61)) ft( - 0 ) it) in IR

constant t are not essential.
which is a varianti of the standard heat

' We recall that. the characteristics of the equiation with a variable coefficient analog

differential operator (.•" + f#.V) in (3.1Ia) A of the usual Laplacian.

iare curves x = x(\V,,r) given by In the CSD-method for (3.1) the mnapping

F is now built in, in a seitable discrete
(3.3a) #i(x, r) r > 0, form, which basically will make the

CSD-method for (3.1) equivalent to the
") (Discontinuous Galerkin method (the
S(3.31)) x(,X0) k ." D]G-method) for the parabolic problem

e t(3.6) with tensor product elements in the
SWe note that characteristic coordinates (xT). In
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luleril n coordinates (xt) this will
corresponl to using space-tinme .ivsh, on wvill be an approxiiaition of tJ(xt) on S
ea(h slab S) app~roximately ol'ictCled along
characteristics. For the l)G-method for lhre (.t) takes the role (Iocall oeSof theW cli tawterist~ic c~oordinates5 "k,:)p.IIrabolle problems with1 tensor product.S)o h ~matrsi tmiae +,r
"Spa'e-time elements4, a. very precise error above. We lote that with I t he identity,

analysis, iic(luding in partictilar iitegration
over large time with fre'1uent rimsehinig, is dx
available ([J4J, J3]). Applying these re•ilt.
to (3.6) we obtain sharp er:ror estimates for
the CSD-niethod for (3, 1). which signi- b
ficantly improve the correlsponding R (t -.
estimates for the general SDl-method I+ --3i
without. mesh orientation. In Ipa'ticulai it j=o ,
follows that int.eigrat.io over I large time arnd
frequent retneshinig is l)os.il)le in the which prove, that. the mapping F St .-
CSD-:nethod without. serious accutildation s a
of errors or dissipation of fine scales. Sn O1io-to-oe a ontoi

3.2. The CSDD-method

As above, let 0 = to < t( 3..).) ••. cIV3II , (,

< tn < +I - sequtenice of (liscrete j=0 l L(1R)
ti ein levels wit Ih associated time intervals

1 t. time stps k I- with c small eonlligh. This pillts a mildit, itm 11 It+ 11 Condition oil the time step k if 3 I s

and s abs = x I' smoo)th. hI the case of a non-smooth 3, ,
., '. c..... ..... .... • I , we may in order to avoid restrict-iolls on the

, , . . . ... ""te-- k . ( Me!! ti( t apprloximation B$l)iecowis,e lillear fulict'io oitl+ o l a ivlsh.it i by first snool hing d. Next Nw, nowe Ihat
l {n {,'} on I" with1 eheuents ,'; ax - x(x,t) (letitled by (3.7) satisfics

mesh size 1 hx) 1 he given. Iet .uS

now for a given (1 -( 0 for oact a (3. 10t0) I = (x,t t c I
int rotltuce a Ui'p aIa ., I::S S it l thlie( d (It

by
(3.I0b) x(xtt) x.

(3.7) (x,t) - F' (x.t1I
I'his means that the (trvos x(x,t) defi ned

g (-t. ),1i, ( ',u) will be approxilnmitions to the
= (x 4 . 1... ) t), exact. chararteristics x(N,.) dlk'fued h)

j---t. (3.3), if l( xI.' a p)l)roxhinft.(. ph, ,xt) In
tile simple basic case With (( = U, we have

(x't-) c- s,

where the 1U E W are functions to Ix,
(ldefined so that. Wtimr l , \)C Wn will be all ilt.erla)lait. of

(3.8) B(x~t) IB(x,.)

C(ouitimiing t hu notation uised aibov(, we
)](t. -- )J Ij(5), a ldoPt the convention of ;s-m)ciat.ing a

€ j=O)

ii) ii

*1



function V(x,t) on S with it givell .... ,1/,',,3

Sfunction 9(•,I ) on S and vice Vwoan, by -- x~f Chi{(U)/ I l (:h ',{

wrtinrv v~xsO vt(.,t) where (Jt.) o n ,

Fn (xjt). \W\e now int.oduce the oolvwil.l

spnce of functions v(x,t,) with the N - . I j l ),
cOrresponding v(x.t) being telsoV-product -- I
(jpieeeCwkCe polynonuials in (x t.: ' v -f i(cVt I 0I 1.

tl(tU)--jUtt-j1 VU-f-divQV•U)j on It.,

V= V E 11 (S): v(x,t,) v(Xjt)nI P,( ,o)] = ax i 1[ 1 V~u] I/111ý,

.7- - - w h e re U J -WE V Iln'
j=- 0 tY(U) = III]"] llkt on Sr,

in \\whieli all l)proilmnate soluition 11 of

(3.1) will be sought oil each Snt Note tlhat I t,") is now extended t.o S; t( he

FK: 1 - (S Ix) 11 . TKr1 gives it Constant aoig lo e ile approxiilate

s1lb1(ivisiOl; of S i itito oriented lmce-fhne ialctleri1icS ( xt) = F1n (m, t. C I

elements ("titled c'urved pris•s"•) K =
1",1(1 - I it ), t; E Tn 1 'orresponiding to the ILet Its now refori'luittt. (3.12) in

,ilb1divisiomi {,t 11 K E 'T' ) of S ilt.o characteristic cotrdihlales (x.0t, Wve shall ¶
g , N S!I8, Pu, 

-, I ii 141;III f l ht 6-11 i h r
( U't - n(x,t.).

\\We now define lhI (CSI)D-nilet hod x- follows:

For -. find 11 a 1ls E V suchl , I) I
n II 'J t1) V''•

that O)x

(3.12) f (U -rVU) where A- (A with T iiere

Si1  
denoting the transpose, enote that.

(v + (S(v t 4- ,.Vv))dxdt 1it \tit)(x = 1 for x E IR and recall that

w ith IJln1 (-- ie ..In1
(v+ f ( 3 JU v))dxdt1 Ii Pil

+ J VU•Vtv•\d×lt, J [jitl"v<ix a "-
S I11- '>(:1.i~ 11 Iýl l di\, BIJ 1, t E• Ill

j f(v . S(v - ,tVv)dx'-It front which follows that

Vv C V

w'ith I1" II the nlatrix nirll induced by tOle

where 1T0 = I ,llclileall norm in IR2 it V B is bomnded
01 oil S a• i k 1n is suall enoly'lh. \WVe

C, .9 -i ih- 
fuBother Mote that,• =(.l hn f rl4n'lUI2V ("o Sa,<



v + #.Vv =v + B.Vv + (9-B).Vv (3.17) Ib - B11l,

= 0t v(x(R,t), t) + (i1- B) < C(IIkq+l Dq+! L0(Q)

jn1 VR V + &.VR = + &.W, + IIh2D2XIIL(Q)'

where VR = Me. Changing to (R, t) where h = hn and k = k on Sn-

coordinates, (3.10) now takes the form:

or ni = 0, 1,2,....N Find Sn E We now state error estimates for (3.15)

under various assumptions on the size of a
IV: V E VI) such that as compared to L. We recall that Z will

satisfy C~h3/2 < i < C h if r is small.
S(Ut+"VO)('+b(Vt+&'VV))Pnldkdt Asin [EJ7-8] we shall compare U with

Sn
Sf fl the solution fi of (3.1) with c replaced by

(3.15) + ZVO.VIJnlddt +f [UnJvdx Z. The error u -. changing c to ý in
n the continuous problem may be estimated

11  R separately, see [EJ7-81. For simplicity of

notation we identify 6 and u below.
SJ f(],+r(V+ + a'.Vv))IJn Idxdt, c V
s,•csemi: jiI _<Cll in Sn, Vn.

with t and 6 defined as in (3.12). As indicated, in this case we may directly
Clearly, (3.15) corresponds to the use the sharp error estimates for the
DG-method with tensor product I)G-method for parabolic problems given in
space-time elements for the following [EJ3J under the (non-restrictive)
variant of (3.6): assumption that

(3.6) ii- + a.Vu - (liv(('Vu) = f, (3,18) kn > c max h2
x

where a will be small if 3 is smooth. If We then obta,' the following a priori error

I &I • Ci, thien (3.15) has full "parabolic estimate assuming c and &/ý are
nature" and the sharp error analysis from sufficiently smooth: There is a constant C
[EJ3] for the DG-method applies, whereas such that for tN < (max [)- we have
for 4 = 0(1) the general SD-analysis may with I = (0, tN)

be used. Now, I hI -C 173 - BI, so the size
of 6, is directly connected to the quality of (3.19) lu-U (L 2) _<
the velocity approximation B of /(

J1 defined by (3.11). By standard interpola-
tion error estimates with B a suitable < CL(IlkqlDq~l
interpolation approximation of /3, we have -

t L(OT 2 )
2  -2+Ilh D Ul1IL o(0,T,L),

i 0 2)
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where L max (log n+1 + 1)1/h, and o ld -fPAtpcca
n<N nsp +lh 2 )RIL+C 2 (Ss' I14l1, (0,T;L2 su 0<<_ Iv(01 tlL(2). - lkn 2()

This is a fully optimal error estimate with with C independent of T. A typical case

the constant C independent of t and could now be as follows: q = 0,
the time step k coupled with derivatives = O(h3 2 ), kn = Ch3 4 indicating

of F with respect to the characteristic again the possiblity of taking the time steps
•oordinate t. Improved variants with q+l larger than the space steps corresponding to

replaced by 2q+1 may also be derived, see CFL > 1.
[EJ3]. Further, the following A posterior
analog of (3.19) was derived in [EJ3] (for Case (iii): I -> C Z
simplicity stated in the case f = 0):

In this case we may use the general
(3.20) estimate (2.3) for the SD-method (2.2)

Hlu- UIIL,,(0T;L2) analogous to (1.16a).

< CL(II[UllL.(0,T;L) 3.3. Exact transport and projection ETP
In the case /=constant, q =0, B= /,
in which case we may take 6 = 0, the CSD

+I 12UI method (3.12) takes the form (assuming
hL (0 T1 2 ) also f = 0 for simplicity): Find

iU E V11 = {v: v(x,t) = w(k) with x=

+Illh2UJ]/kIII (0,T,L 2 )' iR+(t-tn)fl, w E Wn} such that

where the * indicates that the integrand (3.21) f (Ut#.VU)v(lxdt + f iVU.Vvdxdt

should replaced by zero on In if W11 1 c S t S

Wn and [U] is extended to Sn as

constant in time. We note the close + f [ dx = 0, Vv E V
similarity with (3.19). + nn, •2

TThe case I a I < Cý considered typically
would be relevant with q = 0 if D TO is t n,
small or with q = 1 if k2  U C•, assuming write (3.21) as follows: Find Un F Wn

such that
now 4 bounded, i.e., giving the time

07- (3.22) f Unv dx' fVUnVvdx

step restriction k < Ch3/4 if i = Ch3/2. + n [2 +-
In both cases this indicates the possibility
of choosing the time step kn larger than

the one corresponding to CFL > 1. = 2 + (X-kn3)V(x)dx, Vv n
IR-

'€ : Case (ii); I&•1 < C Z½
a. - ' Cwhere we used the fact that by the

In this case we state the following a definition of Vn 1 , un(x) =
posteriori derived in [EJ8]:
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U-(x-kn.. WZ)' discrete velocity B in the CSD-method
+With = 0 this means defined by (3.8)is equal to the exact

that velocity /#. We recall that the idea of ETP
underlines the Godunov method and

Un n-l generalizations thereof (VanLeer, PPM),(3.23) U+ =P nT n + and can probably be viewed, together with
the idea of centered difference approxima--

L2(O2) tions and artificial viscosity, as the bearingwhere Pn: L2 V n is the principle in classical CFD not including
L2-projection defined by (Pnwv) " ,v) finite element methods.

Vv E V and T is the translatiop Although thus ETP has been fairly
defined by successful as a principle for the generation

of schemes in CFD, ETP does not offer a
(Tnv)V)(x) = v(x - k full disc:_etization procedure since it

requires the "exact transport" step to be

Clearly, (3.22) corresponds to a method for performed form one discrete time level to

the problem (3.1) with c = 0 based on the next, which in general is highly
"exact transport + L2-project~ion". With non-trivial (e.g. requiring the solution of

Riemann problems).

the proper definition of i in the present Now, our point is that the CSD-method,
case, i.e., which coincides with ETP ir. simple cases,

9 n and which gives a full discretization for
= C h2  1l /kn, general problems, may be viewed as the

natural generalization of ETP. The
the C3S1)-method (3.22) corresponds to a following advantages are obtained this way:

method of again the form (3.23) with now a (i) Fully discrete schemes for general $modified L2-projection .: HI(R V( problems are obtained; it is no longer

defined by necessary to solve the given equations
exactly between discrete time levels.

(3.2-) (P1 w,v) + ((knVPnW,VV) (ii) The analysis of the CSD-method is
more precise than the classical analysis of

(w,v) Vv E V ETP. For example the CSI)-analysis shows
n, accuracy O(h2 /4) with pienewise linears

in space and q = 0 when k is the time
whore kn1 = C2h1 Pnw - w 1. In the step, while the ETP-anajyqis gives

prPzi~mce of discontinuities the modified 0(h 2 /k). Further, with the sharp

projection P shows improved CSD-analysis related to (3.19) it van be
n proved that in the CSD-method a

performance as compared to the standard discontinuity may be propagated over long
L2 -projection Pn' with monotone time intervals with little smearing, see [J4].

resolution of discontinuities where Pn 4. THE SD AND i.SD-METHODS FOR
gives mild oscillations. THE INCOMPRESSIBL, NAVIER-

STOKES EQUATIONS
We have now seen that the CSD-method in
the case /# constant c = f = 0, and q = 0 4.1. Formulation of the SD and
reduces to a method of the form "exact CSD-methods
transport + projection", or ETP for short,
with a built-in modified L2-projection with In this section we present the SD and
good stability properties. More generally, CSD-methods for the inompressible

dthe CSD-met.hod wili reduce to a method Navier-Stokes equations in R (d = 2,3):
of this form (in the case f = 0) if the
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an h43) VU IV: V E Vn},
Find the velocity u = ( d (4.3c) n -N

pressure p such that 1
U -

(4.1a) ut+(u.V)u+Vp - EAU = f in = {q: j E QU}).

,(4.1b) u =0 on r (0,T) We can now formulate the CSD-inethod,

(4.1c) u( ,0) = u 0 , for simplicity without shock-capturing

(sal)ontntan(fan rege tt= ), as follows: For n 0,1,2,..., N,

where Q = fN x (O,T), and ( isa find (U,P) = (U,P) E x W such
bounded domain in Rd, c is a positive nS•(small) constant and f and u0 are given that

data. (4.4) (Ut + (U.V) U, V)n - (P, div

Let now as above (tn) be a sequence of
discrete time steps and let for each n, + (q, div U),+ c(VU, Vv),,
W c HI(O) be a finite element spacen 0 + bl(Ut + (U.V)U + VP - CAU,

consisting ofpiecewise linear functions on amesh Tn = {X•} of mesh size 1)n. For a v UVv+V A~

given velocity field U on Sn = Q x In let

us now introduce the particle paths x(k,ti) + (02 divU, div v)n, + (b3 Uv)n
defined byi =(f' v + (lVt + /IT.V)v

(4.2a) d U(xt) tE In,
dt v U

+ VP- AU)) V(vq)EV XQn

(4.2b) x(5, tn) R, • E , where

and the corresponding mapping FU. -S e =

Sn defined by (x,t) = F 1 (,t) where x
' •2 U- whereU)x C2h if div U > K

x(.t) satisfies (4.2). We next introduce b2 = b2 (div U) = if liv U > K
* for a given q Ž0, the spaces

0 if div U _< K

*~ 1 (43d -U b. -i b(Ri U) = ifPUn = (Sn) 63 div Uif U if (iU>K,

= dt U( E.[Wnd, and as above
) j ~ (v,w) 11 = (v,w)dt, (vw) = J v.wdx,

(4.3b) -U = { 1(Sn
1I.(S'): (Vv,Vw)n = J (Vv,Vw)dt,

S('tn-tn)Jqj(k), W
j=0 d

(Vv,Vw)= f (Vv. Vwi dx
together with their analogs in '=lfl
(x,t).-coordinates:
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Notice that as defined the CSD--method For simplicity, let us consider the method
(4.4) involves an additional non-linearity (1.3) with b; = 0, j = 1,2,3, which does not

Usince V1  depends on U. By standard essentially affect the details of the
fixed point arguments it can be proved that argument to follow. Let us introduce the

S(4.3) absleo (following linearized dual problem: Find

Normally we expect to be able to find such (V,O) E Ld [ 1 20)) W such
a solution by computing a sequence of

p(k)) by seeking (U(k), that i Q
U~-ý U(k-) (.5a V - (u V) V+VU - +V0- E AV=e

p(k) E Vu1) QsUin Depending (4.5b) div V= 0

on tie choice of initial approximation
( )P()and the number of iterations (4.5d) di , r=0 i n

we may get different variants of the

CSD-method: For example with U(0) = 0
and k = 1 we get a standard SD-method where e = u - U. Multiplying (4.4) by e
with non-oriented tensor-product elements and integrating over In together with
in (x,t). In a typical implementation of the

CSD-etho we ouldlet ~ 0~integration by parts givesCSD-mnethod we would let U(0) be,

obtained from( the previous time step and (4.6) ' 1el2
iterate once (k= 1). ., 1e 1 2(Q)

This being said, let us now consider the N
CSD-method in the full non-linear = E ( - (u-V)y+V U -,e
formulation (4.4). We note that with (4.2) n=0satisfied, we have

+ (Vol e)n + (cVV, Ve)n
Z - (x(5i,t),L) Ut + U.VU, NIt to

= (( V,et)nl+(U.-Ve,•O)n + (VU -V'e)nj
which shows that in CSD-method in the 1=0

local coordinates (x,t) on each slab Sn, - (O,div e)n + (cVV,Ve)n- (p-P,div V)n}

the convection term takes a very simple
form. In particular, we have that when N

written in (R,t)-coordinates, the discrete + E f ([Unj, y")dx
eq1uations (4.3) correspond to a modified n =0 0
Stokes problem.

N
4.2 An a posteriori error estimate for the F , {(ut + u.V4+V), )1)n+(EVu, VV)n
(JSD-method n=O

Let us now give a (formal) proof of an a - (Ut + U -VU + VP, V)n + (EVU, VO)n1
losteriori error estimate for the
CSD-znethod. The proof is based on a N
strong stability estimate for a linearized
dual problem, which appears to be
fundamental but seems difficult to establish n= 2
by analytical techniques in interesting N
case . However, there is a clear possibility F (U+U.VU+Vl-fy4)
of testing this stability condition t U-
numerically.

+ (,.VU, V(;p-4 ))n + (div U, O-E)n}n
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should be replaced by an artificial viscosity
N 1 1- i defined as above. With suitable choice of

n=0 f[ 0, the estimate (4.9) appears to give a

nO reasonably efficient adaptive algorithm.
U U

,where (, 0) [ Sn Vn x'Qn will be The stability properties of the dual problem

cr(4.5) obviously play a ciucial role. Inchosen to interpolate (V,O). general the stability of (4.5) can only be

We shall now assume the following stability evaluated computationally. We have here
estimate for the linear dual problem (4.5): very briefly scratched the surface of a topicThertimate for thelineard al problewe hope to develop further in the future:
TcsAdaptive (C)SD-meth6ds for incompres-

(4.7) Isible flow, with a very large area of
(l•t + (u'V)VIIL 2 (Q) application.

4.3 The CSD-method for free beimdary
+ IIV•--' IIL (Q) + II&V4IIL2(Q) flow

The CSD-mnethod is ideally suited to
+ 110112 handle flow problem with free boundaries

or moving boundaries with prescribed
motion: Just let the nodes on the boundary

Without the term VU- V present this move according to (4.2) with U a
estimate follows by multiplying (4.4a) by computed or prescribed velocity. To be
(Vt + (u V)0) and integrating by parts more precise, let us present the

CSD-method for the Navier-Stokesusin th fac tht di u div•o 0.equations with free boundary occupying the
Note th.it by elliptic regularity for the e b d o

Stokes cquations it follows that volume Ql(t) at time t E (0,T): Find
(u,p) such that for t E I,

(4.) V0iIL2(-) + IIcD 2  (4.10a)ut+(u.V)u+Vp- div o=f infl(t),
1=#IQ +'L2(1

(4.10b) div u=O in fl(t),

< CII V0- _AVIIL2(f). (4.10c) a-n=O on r(t),
(4.10d) u(. ,O)=u 0 in f(O),

Combining (4.5)-(4.7) and recalling (1.8)
we obtain the following (formal) a where a {aij} is the stress tensor
posteriori error estimate defined by

SIle!lL 2()ýC2(Q)

+ I!k- 21 14 (Q) + Idiv UIIL2(Q)], cij(u) =+

where and a n -( ijnj) is the stress on the
J

nV boundary F(t) of fl(t) with outwar~d
R.I= Ilit + U.V + VP - fl + ,1 I normal n. Here Q•(t) = {x(x,t): X E 1(0))

Sn where x(X,t) satisfies

* and for simplicity the usual jump terms 4dx,[ '(4.11 a) = u(x, L), t > 0.

inv3lving c -, have been omitted.

Further, the viscosity coefficient e in (4.9) (4.11b) x(X 0) =



1-24 i

Note that (4.10c) states that the (total) (v'w)n = f f v.wdx dt
stress on the free boundary is zero. in 011(t)
Under sufficient regularity assumptions it
is known that (4.10) admits a unique v' wdxdt,
solution if T is small enough. Sn

To define the CSD-method for (4.109) let

ntn) be a squence of discrete time levels, <v,w>n 1 J I v w ds dt,
suppose the approximation fln of Q1(tn) Im 8n(t)

is given, let Wn be the space of
continuous piecewise linears on a where n(t) = {x(Xt): X E 0.) with x

, triangulation Tn of Q and define VU satisfying (4.2) for X E Q ".We note that
n n boundary condition (4.10c) is enforced

UUand Q n by (4.3). Note that in this case weakly in (4.12) since the velocities in VU

the functions in W are not restricted to
be zero on the boundary of Q t" Note are not restrained on the boundary of n -n U
further that in this case the functions in F (Sn). Further, we note that the

U UVn and Q =Un are defined on Sn = S4 -tern gives least squares control of the

FU (S1 ) with Sn R n e discrete boundary stress.

CSD-method can now be formulated as In Section 8, we present some numerical
follows ([Ha3]): Find results from [Ha3] for the method (4.12) i

(U,P) E V x Q" such that applied to non-stationary fountain flow
12 n using q = 0, k = land with u()l

Is

(U.VU)UV) 
given by UISni

- (P,divv)n + (q,div 5. 2p((U), e(v))n 5 SD-METIIODS FOR.

+ blS(Ut + (U.V)U + VP, vt + (U.V)v + Vq)n COMPRESSIBLE FLOW

5.1 Formulation of the SD-method
+ (62(iv U, (iv v)n + (63U,V)n + In this section we present the SD-method

for the compressible Euler equations for a

63<(2#c(U) - pl)). n, (2pc(v)-ql) n>n perfect gas in [12

2 .
S(f, v + b(Vt + (U.V)v + Vq))0 (5.1a) u,+ 2 f. (U)xi=0 X E R2, t > 0,

Si=l 1

V(v,q) E V ' (5.11)) u(x,O)=uO(x) x E 2,

where 6. j 1,2,3, are defined as above, where-

64 is a positive constant independent of h, W f

and Up , f wiut+P J
w f
.e

Here p is the density, w= (w1 , w2 ) is

!
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tile velocity, e is the total energy density, product elements K = I , I (or "tilted"
= (7-1)(pe - p(w2 + w2)/2) is the such elements) with tile basis functions

"i 1 tie Kcontinuous in x and discontinuous in time,
pressure, 6.. the Kronecker delta, anl s S 5.3 below.
7> 1 is a constant. The conservation law
5.1) can also be written in the form Remark 5.1. To see that square root in

(5.4) is well defined we recall (fHi]) that
Sthere is a positive definite matrix At

(5.2) ut + 
a 

Ai(U)Uxi = 0, 
0

i=1 A0 (U) such that A.i = AiA0 is symmetric,

Ofi i = 1,2,. Thus

where A. = is the Jacobian of fi(u). -I ± 1 ±
of- A -2 A A 2  A -? A -A 2Let now {Sn) be the usual sequence of A0 iA0 0m A0O

space-t.ne slabs S1 = •2x In, let for each is symmetric, so the similarity transform

nVn 1 c Hl(Sn) 4 be a finite element space induced by A" transforms the matrix M

and set V = B Vn. The general (kn I + h-2 .E At) to an obviouslyn>_

SD-method for (5.1) can now be positive definite symmetric matrix. It
formulated as follows: Find U E V such follows that M has positive eigenvalues
that U U Is E Vn satisfies: and a full set of eigenvectors which shows

that M-1 can be computed. In [Ha4]

(r, M (explicit formulas for the eigenvalues and
t 1i 1' eigenvectors of M are given. We recallt-1

that A0 = 71uu where t;(u)=

v +(v + !:A U)Vx +( v) = is the entropy. (

5.2. Entropy consistency
+ (MVU, Vv)n1 + (MUV, vt)nl= 0 VvEVV, To prove convergence of any numerical

method for the Euler equations (5.1) is for

where T again denotes transpose and the moment impossible, since existence of
solutions of the Euler equations has not

.6 T been proved mathematically. For the
(5.4) F = 6(u) SD -method the following weaker result is

possible to prove (with polynomial
1 ( 2  2 approximation in space-tinme of any order):

= (knI + h 2  E AUm 2 on S Limits of SD-solutions will satisfy any
* ~~i I entropy condition for (5.1 vzs[SzlJI

A corresponding result in the same

(5.5) 1 ~(u) = CIIII R(U) generality for finite difference/volume
21. VU+ (11' methods is known only for first order

approximations.
R(U) 1= It + E Ai(U)Ux I

i ' 5.3. An explicit form of the SD-method

rThe SD-method (5.3) leads to a system of
non-linear equations to solve for each slab+ i[UnllI/kn on Sn-

SSn ./ If the time step is sufficiently small

The simplest instance of the SD-method (corresponding to CFL < 1/2 say), we
is otidexpect to be able to solve this system with

(5_3) is obtained with a F 0 - few Newton-like iterations. We shall now
approximation in space-time on tensor consider the simplest case of P X -

approximation in (x,t) on tensor product

4j
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Selements r x In (or more generally i-term on the left hand side of (5.6) in anl
"tilted" such elements), continuous in x iterative method, and using e.g. the

nd it U conjugate gradient. method, at eachand discontinuous in t. Writing Un=iterative step.
UIS the SD-method (5.3) can in this case

E.IIn Section 8 we present some numerical
be formulated as follows: Find U E W results for the explicit method (5.7) applied
such that to a standard test probehm: Mach 3 flow ina channel with a ste up. We further give

some results for (5.6 extended to the
(5.6) (Un - Un- 1 , v) compressible Navier-Stokes equations for

flow over a flat plate. In both cases the( i(Un)Ui t T adaptive mesh control is based on (formal)+( Af U V 4 6 Aj(U ) vi))kn a, l)steriori error estimates of the form

(0.10).

+ (MVUn, Vv)kn 0 Vv E W1 , 6. The DG-method for conservation lawsIn this section we l)resent the
24 cossDiscontinuous Galerkin methed

where Wn c H(R consists of DG-method) which is a variant of the
continuous piecewise linears and the SD-method with (iiscontinuous approxi-

4mation in space as well as in time. The
corresxonding Vnl C HI(Sn)4 is defined by DO-method may be viewed as a gene-1 I 4 l ralized Finite Volume method. The
Vn {v E III(s) 4 : v(.,t) = w for t E In, DG-metl;od is fully analogous to the
where w E WSl)-method with the basic two modifi-where w E Wn}. cations (0.!) ;)nd (0.o2)1,alnd in -. dto

certain junip ternis relate(I to i lt er-'Cellement

To compute Un from (5.6), we may discontinuities.iterate in various ways; The simplest

poss'ble variant is obtained by lumping the Let as bove tn} Ibe a sequence of discrete
mass matrix related to the inner product tiilie levels, I = (t= t2 1( -,) in the first terni, and changing the t1 it, t+l), Sn = I
index n to n-I in all terms except the and let T, I K} be a. finite element
first, which gives a fully explicit scheme of triangulation of S into space-time
the form ([Ha 4]) to

elements K of diameter IhK. TIypically

(5.7) U'l =. U 1-,- k (E f(U") 'Il) the elements K may be prisms t;- xIll

with r a triangle or "tilted" such prisms,

-k ( A n- ) x A ii" Ai u I)T jor tetrahedrons. Define for q _ 0

i Vl ={vL2(Sn{): vI KE(IPq(K), K E T

-knl(qVUn-l, Vj), V= Ii V
nŽý0

where U" E l uj(x) with {j} the W,ý shall present the DG-method for a
j scalar conservation law:

standard Fl-basis functions of Wn. The
resulting method may be viewed as a
variant of certain well-known "upwind" ( +i
finite difference methods, see [Ila4]. Many i=2
variants of (5.7) with improved per- (6.1b) n(. ,0) x0 in R2,
formance in certain cases may he obtained
by keeping the mass matrix and e.g. the

) t
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where the fi: l -. FR are smooth fluxes and with < a < 2. Note that here we use a

u0 E 1,0o([R2) has compact suIlx)rt. 'Tlie variant of the artificial viscosity ý used

DG-method for (6.1) reads as follows: Find above.
U C V such that U - UI satisfies f.Rgark. Note that if "K = (-1,0,0)

11 corresponding to the "bottom" of K. then

(6.2) f (U Ut+ E f1(U)x ) F( -1)

KET' K FK(U) (-U+ + U")

(v + 4(v + Y fi(U)vx ))dxdt + •y (Un _ U1) = _Un

III

+ i VU.tv dxdtl where as above U+ =i0m Uit ±S), so
Ks-. 0

that
I (FK.(U) - f(1).nh()Vf~ds) = 0
K ((F(UK) - F(U n,)) ,

Vv EV1 nV,
= -u)v+ .

£ where ii is the ou~twardi unit normal to which gives the usual jump term. Further,

K, tv = (Vv, vt), if n1 = (1,0,0), then

1ýKI --- V IK , (l.,K(( ) - f(U ) .n 0,

f(U) = (U, f"(U), 1'2(U)), which means that there is no coupling
forward in time. Note further that the F K

(6.,3) FK(U) =1, (f(U() + f(U)). are basically the Lax-Friedrichs' fluxes.

For q = 0, 6.2) gives an impl)icit variant
K - L K) at (x,t) E OK, of the Finite olume method. The accuracy

of (6.2) is formally of order 01(h+1), thus
where K' is an element sharing the face S of accuracy higher than oine if
common to K and K' containing (x,t), q . 1. In particular, the use of the
and l,ax-Friedricks' fluxes (6.3) does not

C if n degrade the accuracy to first order if q > 1.1( 2 if n = + .(1,0 .0 ), '

C h/ otherwise, It is possible to prove convergence of the
I(= Ch- omethod (6.2) with q_ > 0 using the same

method of proof as for the SD-method with
with C a positive constant and 7 > 0 continuous basic functions in space based
small. Further, on the DiPerna uniqueness result for

measure valued solutions of scalar
• = c(1( 2 + 2-2 > ql2)-4 conservation laws (see [Sz2J, [JJ1). *

7. ADAPTIVE CSD-MTfHOI) FOR
BURGMEIIS' EQUATION ?i = (t C h (Ut + E fi(U)xi

" I f(7.1. Introduction

In []!X7-8], [J2], [151 and [JSz2], we prove a
+ max IUK- UK, /hK in K, posteriori error estimates and formulate

S C(K correspondinlg adaptive algorithms for
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I linear convection-diffusion problems, the
linear wave equation, and systems of where u0 E I,(O) hx3 compact support,
con'crva.tion laws 1..1 one s• ace (hnmenstion, 0 O t

respectively. Further, in [ J] we discuss and( is a small positive constant. For
extensions and present comp)utational c > 0 this problem is uniquely solvable. As

* results for compressible flow in two space c tends to zero, the solution uf will
* dimeasions. As far as we know, our results converge to a limit u, the entropy solution

tare tile first to show that reliable and of the inviscid Burgers' equation
efficient adaptive error control based on a corresponding to (7.1) with c = 0. Even if
postcriori error estimates is possible for the data u0 is smooth, u( .,t) may
finite element methods for hyperbolic become discontinuous in finite time,
problems. Of particular interest are the corresponding to the development of
results on adaptive finite element, methods
for systems of conservation laws, which shocks. The entropy condition states that
seem to open a large area of application. In at shocks (discontinuities), we have
the proofs of the a posteriori error u-(x,t) > u+(x,t), where
estimates we use our new strong stability
concept in a crucial way; using classical uk(x,t) = Ii m u(x + s,t)
stability concepts it appears to be s-.0 k
impossible to obtain useful a postcriori
error stimulates for hyperbolic problems, is the left-hand and right-hand limit,
The case of conservation laws presents a
remarkable example of the utility of the
new concept of strong stability: In this c-he m be very large negativethe linearized dlual problem is indeed shek •. W a_ evr arengtv

strongly stable, but is unstable with the OLC
classical weak stability concept cor- (but.-- will be bounded above). In suches... o. . dig to 0h1 fact that solhtions of

conservation laws do not in general show as the linearized problemn
continuous dependence L.) with cespect to
change of initial data or right hand side in (7.2a) 0 i (LI 0) - c _ = 0, in Q,
I 2 .X

(7.21)) €(x, t ) 0, x-,
To illustrate the essential po(ints, we shall
in this section indicate the proof of an a (7.2c) ¢(x , 0) 0 (x) x E R,
posteriori error estimate for a finite
element method for a scalar conservation Where Q x R obtai
law in one space dimension (Burgers' + oltae by linearizing
equation). For mome details and the (7.1a) around tile solution u(, is unstable

,itnportant extension to the case of systems,
we refer to [JSz2]. in L2, since multiplicating (7.2a) with 0

and integrating with respect to x leads to
7.2. An a posteriori error estimate for a
finite element methxi for Burgers' equation I d t 2(x,t)dx

We consider Burgers' expiation: Find the

scalar function ui = U (x,t) such that for _Ix 1 Ot if 9
xE R, t >0 + f a (Ix=- ¢(xtvlx

hi 1

(7.1a) f- + 0 ] - = 0, where the right-hand side may be large if
'x-

is large negative, which corresponds to
(7.1b) u((x,t) -0 0, x -+•. o, t > 0, the fact that (7.1) is not continuous in L2

with reslpct to ,2-pert'turbationms of initial
(7.1c) uC(x,O) = u0 (x), x E R,
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data. This argument seems to indicate that where i Ch,

a poStei-crioi error control in L2 for ;f: C
approximatesolutions of (7.1) would be Uh(x, t11- 1 ) 111-AO'1 (x, tn -1 q
impossible in the presence of shocks. The
remarkable fact. is, however, that such an
error control in fact. is possible to establish, un(X,O) = u0(:), and P : I(m) V is
if we use a proper stability concept and u te
the Galerkin orthogonality intrinsic in the t 2e 1,'2-proiect'on defined by
finite element, method, whiich we now
proceel to demonstrate. (7.,4) I Pn1 vw (iX = vw dx Vw E V .

The a posteriori error estimate in L2, for a

finite eleinent method for (7.1) to be Note that (7,3) corresponds to a method of ,
presented, may be extended to the case of the form "exact t'ausport + L2-projection",
system of conservation laws in one space similar to (for instance) dhe Godunov
dimension. This yields a way out of the method, cf. 1J4]. Note further that the
stalemate position of the cliassical approach
to conservation laws, based on viscosity coefficient ý in (7.3) is chosen as

L1 -continuity, which is limited to the Z = Ch, which makes (7.3) at most first
scalar case. order. Other more sophisticated choices of

i, with i depending on the re.idual of thl
For simplicity, we shall consider a i
"semi -discrete" finite element method for (shock-capturing artificial viscosity) are
(7.2) of the foirm of "exact transport + possible, giving higher order me.hods, see
Lo-pro.I•ction". cf. [J4]. The extension to
0Ihe .-- fu-ll diScrE;e Cas • with ,dis,;retiat;l,, it, We shall now prove an a posteriori error
space-time, using space-time elements, estimate in L2(, 9) for tihe discretization
follows the same )rinciples, see 1JSz3].

Let 0 =t < tI < t <... be a sequence of error e u1 -- Uh, where 11 satisfies

discrete time-levels and let, for each time (7.1) with Z c, which appears to be or
interval II _- (t nI, tn)' a finite elemteint order 0(h2 ) in smooth parts and of order

space Vn C 1I1 (R) be given, consisting of O(h•) in the presence of shocks. To obtain
piecewise iinear cotitinuous functions oil a a complete estimate for u" - uI, we would
finite element subdivision fn = {K} of R.
For simplicity, we shall assume h to be also need to estimate ut - 'mi.e., thle
independent of x and t, but this is not effect of cihanging the viscosity coefficient
essential. We shall consider the following in the continuous l)rol)lem (7.1) from i to
finite element tmeth•od for (7.2): Find uh c We refer to [H"17-8) and [JISz2] for

Suich that, for 1 = 1 ,2,., ul I RIdetails in this regard.

satisfies on R•x In Let now T = tN > 0 be a given final time,

and let us seek an a posh~iowri error
Ok estimate for the quantity le 1l,() where

}+(7.3a) I l li -'2- 0, Q = R X (0,1'). To this end, we introduce
the following linearized dual l)roblemi, the

(7.3b) U11 (X, t. ) - 0, x--*±OD t> stability properties of which are crucial:

(7.3c)1



following strong stability estimate for the
(9 O _solution q5 of the dual problemn (7.5):(7.5a)- r, 0¢ R 2

Nla_._7.1. Suppose - i is bounded from i
(7.5b) O(x, t)-,O x-,Ik, 0<t< l', above, Then there is a constant C such

that the solution • of (7.5) satisfies

(7.5c) +(.,,)=0, x E O, R
Q, (77) ,
where a = (u' + Uh)/?. Multidlying (7.5a) 2N(
by e, integrating by parts over each R , !In, = 1,..., N, and using that + + a L2(Q)

111

I ICII~Q 
___2(Q)we obtai 11 0< t <T " 12()

2

I 2(Q)- Proof. Mdfltiplyi•,g (7.5a) by -4

r915 O- integrating over Q, and integrating by
A f[ i - 4-) dxdi 1prts, we gQL.

Y, 6W~ d 1 2 -I

I *

I~ IR I Ox

"duIf 4I -

tj 2 2b du1 d
N 11 O ' dxdt

>~f (I - P,) )1(x, t1 )q(Px, ti3 - dx,
I Oil.

f x 1. --- •J d tdxdt
QQ

so that, by (7.1a) with c --z and (7.3a),
using tihe de(firing property (7.4) for Pn: which proves the lemma by a (Ir~invall

inequaliLy, since the third termi on whe
2 left-hand side integrate to zero.

We now turn to the error representation
(7.6). Using the standard estimates for the

N 1. ,-projection P.,),

110 - 111M 31-il

•] f l-- ln)Uh(, tn')n-I

(1- P1)0(x, tq4 _ . .

To estimate the quantity <s th h2  (*t 1S'o[ ,n+ _jt-), we shall use the Ox



:. iH

we get by Cauchy's inequality eStimating the projection error (1

IIel ,(•U - --2 f(I - 1n i h( ,t. 1 1 k as followt ([JSz2]):

1 2
r.. Il a-

ht n=1 ) 12 k110 - I'll h nliIIL2

1 -2 Cnih2 1ID•11() t-l 2

where kn = tn - tnFl. If we now asstme

that k > Ch for some positive constant where, with K V- (x ,X2) 1 1

C, and recall that • - Ch, we have that I>

wheh-1+ ax ]. (xitjI l

2= , K

A =K1  k(.,t1 l_1 ) kI 1 12 K dx

_1-1 k III O

'2_- . ih ' t14•44 i

11 ,2 1,(Q)'I. elow. Uising I .elnllla derivativye --•x-it (×x1 n.-I. )" IExtending

,1. 1, wO tthuS Cont'lu(lC that, I)'u~h to (0,T') by letin/ilgl

1 22 1h'

(T.)) IMII,(Q) <_C~~ - I>)h1  L9 (Q),' jhtlh(x',t.) &u( I)U(Kt..) for t. E•il

wiere, for Vionvewiedas of notation, we have we (all thus express the a j)OSfcrori error
defined for t beIn, estinate (7.9) alterltively as follows:.

41 w tus onl Wt1)itII I o .0T)b efnn

(I - P1uD2t(x,t) = (I- P,1),i(x, , (7.10) Ilell 1,2(Q) 2 CIhli)N, ll , fo t.(Q).

SO lthat. Soniic COlIii~lCi~tS are iii ord(t. Fir.st, the
aSSmnlpt)ton utsed above, that.11(1 -))hII , 2 (Q) A 1) II j can easily he avoided,

wee fo2 using also thne o trnsWiich own e the other teilrs

defein the strong stability estimate (7.7)) see f,

It 1 it 1)I.

so 'n)Uh' t-il'kn [JSz2] for details. Secondly, thre a postcrio,

aesti onte (7.10) appears t. be opthiaal, ie.,
We have thus arrived atu te surprisiniglv in partieulai' SCCn,, Od('r apn c uraote for
sin1i)C a po im'i error estiia~te ( (.),' aooin th wonhistoAlst. I hi mat is elun(e of

which can be made miore conicret.e by Lhe choice of i as i Ch, which itself
wou!d ?Oemreq)Olnd to an 4(h) pertuirbation
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for smooth solutions, and thus reduce the Remark 7.1. Note that the estimates (7.13)
accuracy of the total approximation to first indicate 0(v'li) accuracy (which is

order. With the more elaborate choice of i optimal) in the presence of shocks since, in
a2 fx(h2R(Uh) an 0(h)-neighbourhood-of the shock, the

aI, for instance, . C integrands on the right-hand side would be

h3/2), where R(uh) is the residual of uh of order 0(1).

defined below, which is a typical choice of Remark 7.2. The dual problem (7.5) may
the artificial viscosity in the SD-method be L2 -unstable, since multiplication of
(see above), we would obtain a method of (7.5a) with 0 gives

total accuracy 0(h 3/ 2 ) for smooth
solutions satisfying the following a 1 d 2• + 2
posteriori error estimate (cf. (1.5)) 1 'Td (xt)dx

(7.11) Ile-1lI,(Q) a'
I N 0 -(x,t)dx + f e(x,t)qo4x,t)dx,

or h)L 2 (Q) which may lead to instability if O is large
(7..2) jell negative, cf. the discussion above for the

L2 (Q) linearized problem (7.2).

<Cj11iih](!' h 3/ 2 D2 -I For analogs of (7.13) for full discretizations
/1"h)1IL2(Q)' of (7.1) and extensions to systems of

conservation laws in one space dimension,

where we define we refer to [JSz3], where we also consider

the case of rarefaction waves with a

R(Uh1) = (I - P11)u(.,tn1l)/h .on I. possibly large for t small, (N < 1/t),

We summarize the results obtained for using a weighted norm technique. The a

Burgers' equation as follows! posteriori error estimate of Theorem 7.2
may be extended to systems of conservation

Theorem 7.2. Let till be the solution of laws in one dimension under appropriate
assumptions including the presence of

- shocks, and rarefaction waves. As far as we
(4.3) and u( that of (7.1) with c = = know, these results are the first to show
Ch and k11 > Ch. Suppose that that a posteriori error control for systems

of conservation laws is possible. To
8a 910 (+ is hounded from establish the crucial stability estimates in

. (u h) the system case corresponding to Lemma
( 7.1, diagonalization together with a

above, an(! that ut and uh are bounded. weighted norm technique is used.

Then there are constants C such that The techniques for proving a posteriori

error estimates for conservation laws

"7.13) indicated above may formally be extended
7~.13) IlI -uh~iL 2(Q) to systems of conservation laws in several

(dimensions, leading to a posteriori error

2 2 estimates of e.g., the form (0.10), if the
_ Cl(I - P)uIIIL2(Q) Ci~lDUhIL2(Q). corresponding linearized dual problemsatisfies strong stability estimates

analogous .;o (7.7). In [H J] we give
computational results for the corresponding
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adaptive algorithms in the case of REFERENCES
Stime-dependent compressible flow in two
dimensions. Below we present a correspond- [EJ10 K. Eriksson and C. Johnson,

•,ing result for a stationary shock reflection Error estimates and automatic
problem. The question if the linearized dual time step control for nonlinear
problem satisfies the strong stability parabolic problems, I. SIAM J.
estimates in the case of systems of Numer. Anal. 24 (1987), 12-23.
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Navier-Stokes equations)in several [EJ2] K. Eriksson and C. Johnson, An
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but, as indicated, may probably be tested for linear elliptic problems,
computationally. We plan to give more Math. Comp. 50 (1988,j,
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* t
8. NUMERIC&.L RESULTS [EJ3) K. Eriksson and C. Johnson,
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(fountain flow) University of Technology, 1992.
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Navier-Stokes equations Adaptive finite element methods
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'TIlE FUTURE steps variable in space and
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potential, in particular in adaptive form. Adaptive streamline diffusion
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today used in several commercial and
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space-time elements and adaptivity in Math. Comp. (to appear).
these codes is to be expected.
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J If

i .

Standard Galerkin Classical artificial diffusion
Upwind method

I I

k

The sd-method

. V -- (Au = 0 in (0, 1)2,
u = 1 if x =0 or y =1

= 0 if y= 0 or x =1

(2,1)

II

2 i

A FIG. 1 - Comparison of Standard Galerkin, Classical artificial diffusion and the SD-method
for a stationary convection-diffusion problem with internal layer and boundary la;'er
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I 1 (')

"I Tihe CSD-method withoat shock -capturing
t
z

tt

The CSD-method with shock-capturing

FIG. 2 - The CSD-nethod for linear convection problem with 1 2-projection with and
with shock-capturing artificial viscosity at each time step (level curves of initial data and
CSD-solution after 5, 50 and 100 time steps)
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End of .... 2

SVelocity field an Initial data v

* .

En~d of timestep 29 Beginning of timestep 30•

I

I

Solution after 200 ti"•estcps Solution after 2000 tirnesteps

4FIG. 3 - The CSD-method for convection of initial conical distribution in complex velocity •
field /3 consisting of rotating arid counterrotatinig vortices v,
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AL " j.E .dS0 in(01)2

lev-el 5 level6 u~ =Iif x 0 or Y= I
= =0 ify =0 or xc I

LEOtA kOS E.DCWS L2."w~ ItRD A~w4. LC.tk

e,50 06 2d'9 19I *.tCiS .3:sa-et

PIC. 4a - Statimiary conivectiunl-dliffiisioii probiinj with internal and boundary layer cor-
responding to c 1 0'. Adaptivity based on (1.23) with TOL 0.1

level 5 level 6

I as 3* 2*.2I1,. JVM:40U
939 m2 S33S$IN 0.221S!.m

A 5)5 260 S.01IXU.U 8,.2 :114.

Fig. 4b - As in Fig. 4a with now, c 10' and TOL =0.05
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level 4 :1 1ee~ I level 6

FIM

level 7 level 8

m out a~bws L.NSIM 9" .lIIM 0lt.

- 9 so um~ s0a.. *.rnaa

1 1479 2"S 0611i2C-I .11 1t

__ _ _ _ _ _ _ _ _ _ 2136 me *.si0W*111-6 6.u'u4.sa-

FIG. 4r, - As in Fig. 4a with now c 10-3 and with the extra requirement -E~, and
TOL=O0.15
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i. FIG. 5 - The CSD-method for the incompressible Navier-Stokes equations with free bound-
ary (fountain flow)
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]Z

A 4

FIG. 6 - Adaiptive SD-niethiod for the compressible Exider equations (fully explicit version

M ach 3 cxannel flow with a step tip.
Adaptivity accordinig to (0.10)

-I
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• • ;_•.+_w_-d Pr = 0,32

390° R

19.• 10 pressu.3.O 1

Enltrofpy

S, - -

FIG. 7 - Adaptive SD-method for the compressible Navier-Stokes equations.
Flow over a flat plate
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FIG. 7 cont'd
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S~FIG. S - Space-time discrctization of the SD-method
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FINITE ELEMENT METHODS FOR FLUIDS

by

3 ,Thoniums .R. Hughes
Division of Applied Mechanics

Stanford University
Stanford, CA 94305-4040

United States

Outline

* Stabilized methods.

9 Space-time formulations.

* Symmetric linear advective-diffusive systems.

* Incompressible Euler and Navier-Stokes equations;

Stokes Problem.

* Compressible Euler and Navier-Stokes equations;

Entropy variables.

* Nonlinear operators and shock-capturing.

* Solution algorithms.

* Examples. i

4

2 ..
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Stabilized methods SUPG

Example: Scalar, steady advection-diffusion equation. P(w",uh) -1I + e Vw4 T(L•,' - =d. L(tv

r1u Lef a- VI - V- =V-- f on Sl C Rd Classical artificial diffusion

Assume V* a 0, x >0 B(wht-,) + j Vwh" KhVUh dQ = L(w")

Consider u = 0 on F (Dirichlet problem). Notations:

ar = domain of eth element.Remark:

Kh = artificial diffusivity, typically 0(h).
a = hiaI/(2r•) = element Peclet numllber

r = parameter determined by convergence analysis.
It = element mesh parameter

= 0(hi/lal) for e large.

Interested in 0 < o < oo; or >> I is viewed as "hard." = 0(h 2/K) for a smali.

V" = typical finite element space of continuous, piecewise Remarks:

polynomials of order k.
1. The additional terms improve upon the stability of

Point of departure: Galerkin's method Galerkin's method.

Find uh E Vh such that for all ih E Vh, 2. The classical artificial diffusion method amounts to

overkill. Accuracy is limited to first-order, independent

!3(wI, Ith) = L(tu") of k.

3. Galerkin/least-squares and SUPG are satisfied if uh - u

where %)("residual methods"); unlike classical artificial diffusion.

B(wt•h, a4) L-" f(-a • V woh it + -1 Vw h K.V11h) dP_ 4. Good stability and higlher-order accuracy are combined itn

Galerkin/least-squares and SUPG.

Wh d f IVhf dP* Global error estimates for smooth solatioms:

jo k + ½ (at least) in L2 (Q), usually k + 1 in practice.

* For rough solutions, same rates are observed outside

Remark: Galerkin's method posses-ses poor stability proper-

of small neighborhoods of layers ("interior estimates,"
* ~ ties for" a > 1. Spurious oscillations are genlerated! by imnre-

or localization results").

solved internal and boundary layers,

* Interior estimates are impossible for Galerkin. Layers

Galerkin/least-squares create global pollution.

B(W, u,)+ E f W £h r(L£u h f ) d - L(wh) 5. Galerkin/least-squares is conceptually simpler than SUPG

"- and slightly easier to analyze.
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Space-time formulations Remark: Continuity of the solution across time slabs is {oeakly

Initial-value problem fob Ivection-diffusion equation: enforced.

Ctu U Ut + Lu = f on 2x 10,T[ Generalization of the other methods proceeds analogously to

u(X, 0) = uO(x) ax E the steady case. For example,

V =0 on ×'x]O,T[ Galerkin/least-squares

Discontinuous Galerkin method in time B. (w", uh) + i ' , Lt" r(Ctu' - f) dfl dt - Ln(u)

Space-time (i.e., fQx]0,T[) is divided into time slabs,

S x]tn,,t+ I[, where 0 to < t1 < .<t = t .e Remarks:

1 The mathenmatical converge,•.c theory is virtually identical
to its steady counterpart.

t. 2. Same error estimates and localization results hold in terms

of the order, k, of the space-time elements employed.

h = piecewise polynomials of order k, continuous in a;, but 3. The issue of time integrator is obviated by the choice of

discontinuous across time slabs. space-time interpolation.

4. Unconditional stability is achieved for any choice.
Point of departure: Galerkin's method 5. Gives rise to a system of linear algebraic equations on each

Find uh = uh(X, ,) such that for all wh = Wh(X, t), time slab.

B,,(wP',u)- L,,(w4), n = 0, 1... N - 1

where

B. (h' U i'L ' ( h wlUh d52 + B(w'&,1s))d

L"(wh) t ./;... L(wh) dt+1 wh(t+) 1th(t-) d,

uh(t-) df uh(X,tj) =uo(a) xES fl

I
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Symmetric linear advective-diffusive systems Galerkin

IJ,,(Wh, V") L,(Wh), ,_, -,. . N - 1

(V) £V lf=AoVs 4 CV =.Fi z v • °J ,i . v - . B .t , ( W I , v h ) 11-1 V h..

'CV te A .V -V -VK'VV - L(f Mh A,, d J.v~kO (1 + B(Wh, V") ,'

V =(V 1 ,V 2 .... ,V,,,)+' "[ h( ).AoV V(t-+1 ) dl

;jT = X,•...X

"K = [K 1 1 ' " L , L(W 4 ) L (1 1" ) (it + f J W h(t+ ) A o V h(t .) d Q

K, . K~Jvh(t-f) LO' Vh(X.t)=v'() .

VV ~iVV -OV -+A V Galerkin/least-squa,'es

B,,(Wh. Vh) + £ LWA. r(itVh - F) dQ dt
A 0 = rn x in synnl., > 0

S= in x tsymm.,l < i < d

K - 0n. d) x (ti d) synim., > 0 Remark: Error estimates analogous to those of the scalar case

Find V = V(x, t) satisfying (V) and may be proved for Galerkin/least-squares (and SUPG).

V(XO) = VO(x) xE QA definition of the matrix r (H.-Mallet 1986, Shakib 1988)
V = 0 onI1

Analogous to the scalar, steady case we have: T = L- -'A-4 Ar I 4L'-T L-1

Galerkin where

Ao - LLT Cholesky factorization

B(Wh, Vh) L(Wh)

B (JV + = block-diag (Ao,..., Ao)= B(W1, Vh) ,,., (_ý7Wh .Vh +VWh . VVh) d

L(IV") Y~/IV dQ 40-

Galerkin/least-squares

(IVA, vA) + •' J £wC i-(CV" - F) df2 L(Wyh)

3 OC

Remarks: 
"xi dxj

1. r =n x in symni., > 0 (11-Mallet, 1986). Remark: If A 0 is only positive semidefinite, then A-'1 is to

! 2. Simple arguments reveal that T should not be diagonal, be understood as the inverse on the non-degenerate subspace,

even in Id. e.g.

Space-time formulations are developed in identical fwhion to if A 0 - c 0 t Aot 0

the scalar case:

'IA
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I Incompressible Euler and Navier-Stokes Equations 2. The formulation simplifies considerably due to the spnrsity
of the arrays. See Szepessy, 1987, and Hansbo-Szepessy,

4 •as a Symmetric Advective-Diffusive System 1990, for an analysis and numerical results for a related
method at high Reynolds number, and Johnson-Sarinen,
1986, for anmysis of incompressible Navier-Stokes via re-
lated formulations.

U3 3. Assume Vt =0 and Aj = . Then, the method

becomes a 7lonsyminetric Stokes solver, and is convergent
for all continuous pressure interpolation (i.e., no Babugka-

0 0 llrezzi condition). Galerkin/least-squares and related ap-
1 0proachcs to the Stokes problem:A0 = Brezzi-Pitkaranta, 1984

H.-F•iaca-BMestra, 1986
-J 1H.-.Fraca, 1987

Brezzi-Dougts, 1988

""[r0ei] Franca-H.-Loula-Miranda, 1988
A= u +Ao 1 < i < 3 Franca-H., 1988

L i Pierre, 1988, 1989
Franca, 1989

-- cartesian basis vector Doughla-Wang, 1989
, c Dur$vn-.Nochetto, 1989

Sylvester-Kechkar, 1990
: Stenberg, 1990

K1- = k 2 2 i= vA Franca-Stenberg, 1991
P

0 ,F'ranca-H.-Stenberg, 1991

Remarks:

1. r" is very simple in general. Assuming

*0 _9ý O' 2

t~

: =0 -r 0 0
.' t 0r 0 T 0

0' 0 0O

S !h a2  hiu{

" = • ~ ; a = "-'- = element Reynolds number

1 M

___________________________=_______1____ __ 1________

0 Q

h2 aso
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Compressible Euler and Navier-Stokes equations 11 = 11(U) = -s

S= III (PJ~ (P-()-) = 110on-dillerisional entropy

A) H
V U =entropy variables

(U) Ut + A. VU -- V. KVU = Ft
Remarks:

1. 11 is a coenvex funct~ion of 11. Thus U = U(V) is a well-
U -= (p, put, ptt•,ý pUt3, Pe 7'

defined chiange of variables which transformns (U) to (V).

Remarks:2, The dot product of (V) with V resuilts in the Clausius.

e sDuhem ieCqUality:
1. Neither A nor K is symmentric or definite.0 V.(V.+.4 - .(K )- )

0 = V - (AoV.j +~ A vv -- v (kvv) - j:)
Classical L( eability estiates are derived by takings

2. Cl. (SI) ,t

(p?)t A- V- (p??u) + V. W~ + -Ž0

diniensionat sense, 3. Tho space-time formulation inherits this property. Replac-

I id ing IVh by Vh results in a global statement of C.D.I.d- - (1I( + It,2+ el)]+"
2 ( ??( 4. In practice, the term

* This suggests that t!.- 1,2 (S2)-iimer-product structure is I .(Av~ '+ A. VVA) --
inappropriate for comlpressible Navier-Stokes and conse-

quently so would he a classical type Galerkin formulation. . U(V'),, + V F(U(Vh)))

Entropy variables appearing in 13B(I,') is integrated-by-parts over each time

Godunov 1962, Mock 1980, llarten 1983, Tadinor 198,4, Dutt slab. Global conservation is attained even when approxi-

1985, H. et al. 1986, Je.lnson et al. 1987. mate element quadrature is employed.

4

4



I , 2-7

nea::hNonlinear operators and shock-capturing f"+' l W AoVvdldt

Remarks:

1. Galerkin/lc-nst-squares, SUPG are linear methods.

2. They produce approximations to discontinuities like ft = 0(V0) is a scalar

V( = a non-dimensional space-time element gradient operator

A0 = block-diag(Ao, . .. , Ao)

Exmnples:

1. = -v / Aoiý(V`
3. No linear higher-order accurate method will produce mono- where

tone profiles. t = block-diag(T ,..., r)

4. The idea is to introduce nonlittear operators in order to 1XI, = (X .,-X)l

control oscillations about discontinuities, but not upset

higher-order accuracy in smooth regions ("locally first-2 / .v .. 2Av2 . p = 2V1ev' - •I1,V(' m

order"). H.-Mallet-Mizukami 1986, H.-MaIlet 1986, A0

Dutra do Carmo-Gale-5o 1987, Johnson-Szepesay 1986- where
4 1989, IXIA, = (X. AoX)l

I

'it
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61'OxvEM--h--11E ICompression~ Corneor - Mach~ 11.68

26: UK0

W& IX00

M.AC' 4.1 Al O-s

SUP: 0l

JI: 2.00

6lj~~~~~~ MEN0 414 kICI(s I "t 0 n'dtŽ1
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""1too - -- 4,036 .hulmints; 5,063 tiod.s

×A

Prejsent resul~t s

Hode A .AA

Distance Ci'on ledling edge, 10 I 2 5 0U

~~~4 ixt T2t=5t=3

A T.•.... . . . . . .... .5 0 15 2 25 30

Distance from leading edge, x. .
10

t At10 t 45

0 5 10 15 20 25i 3(

Distance ftom leading edge, x___ ---. I________L_

t= 15 =55

Flow Past a Circular Cylinder -_ _
(Nearly-Inco miipressible) t 20 t 51..

At-O~t

!0 01

kIOU 100 t -25 t 75___
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F'low past it Double EIIIipso (,., =20)

=4.2 x 10-, k,/it~
itl 6= ,232.24" × ni/s /

=. - 3.,69.2 m/T 2: 05.3, h( : '--!

ti ?I

F'lowv past. a Dotible Ellipse (Al,. 0)

liiviseid Viscotis ( Ih'iu 22,000)

"p V.. .x I..' kg/iI

I - ... .... / -

,0 K

zý rm/
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Flow pasut. a Double Ellipme (Al ,, - 26.0)

Invis~idViscous

Flow past a D)ouble IVliapso (AI.,,, = 25.0)

Invicid Viscous

Ux, /N

!/
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Flow past a Blunt Body (A4- = 17.9)

Top: eqtiilibrium chemistry - Bottom; perfeict gas

p = 1.0 x 10-1 kg/rn 3  Pressure
"IL1 = 5,465.6 rn/s
11 = 0.0 rnI/S
T- ==?'1.0 K

A4,, 17.9

Flow around a Falcon Jet: Cruise configuration Flow arouiW -'Falcon Jet: Approach configuration

Mach 0.85 - c = 1' Inviscid flow Mach, -- n 6' = 7.2' Inviscid flow

3-D Tac'sh: 3-1) meshl:

,i

I?

150, 15M24esde
- ST,514tct-ohcra878,54.1 tetraliedra

Pressure

P~ressure
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Conclusions Structure ot the Left-Hand-Side Submatrices

1. a) Galerkin/least-squares is an effective method foi

advective-diffusive systems. * Explicit element group

b) Nonlinear shock-capturing operators are essential

wvhen discontinuities and unresolved sharp layers are A'"= =
[0 X-1A----------]-

present.

cl Mathematical convergence proofs have been estab- Uncoupled set, of synnii., pos. def. nodal block matrices

lished fr all linear and somei nonlinu-.,,, :;',,-' .,,i.;. "itg p R•Implivit/direct eleinent group

2. Focal points of research:
A" A"'

* Compressible Eule: and Navier-Stokes equations. A"" A A-

* Generation and adaptive refinement of unstructured

meshes, especially in three dimensions. Fully coupled - stored in skyline columnn height form

s Design and analysis of effective shock-capturing oper. * Implicit/iterative element group

ators. 1

3. Cturrent developments: A"'" F ] =

"* More attention paid to turbulence modelling.

Fully coupledc - st~ored in 'untassembhle" elemernt file

"* Commercially available compre-ssible flow codes.

"* Application to more complex sv.sems, in particular,

chemically reacting flows, combustion, MWID.
Global System of Equations

"* Increased emphasis on iterative strategies for parallel
* The left-hand-side matrix

architectures.

"* Further mathematical analysis of algorithms and the
r4f" 0 0 01

development of design principles based upon the math-

enmatical theory of finite elements. 1A' 0!

0 0 A'il A' -
MutElmn Gop atirng0 A";" At-: (A;;p + a°+A"" j9 t

(Domain Decomposition)

"* Algorithm allows different solution techniques on diffrent t

subdomains * The right--haud-side vector

"* For examnple:

Iimplicit/ (Iirect Implicit/ itera tiveIgroup groupb'•

_L--• (K2;' +t b"'" + t')

• The vector of unknowns

grou-itrEr nod xplicit

a group-boundary node gxplpcit'group

9 Generalizable to arbitrary number of element groups
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Partial Reduction or thie System GIVIRES Algorithm

(Snaal and Shultz -- Mallet et al.)

*Explicit element group: solve for x"'~
*Search for solution a: = ,r,, +.7 , such that

~ ~eV =min 11b - A(,, 4- z)ll
ZENX

*Impl icit/ direct element group: statically condense xdir K ~rSpan~r,5 , Ar,. .A`1t-0}

Ajr e A di A"'ý(A~ di) IAiAr r=b -- Axn

bdir 'Wo bdir -Adir(Ad",\-i1b~j" Calculate the orthogonal b~asis of K,
2 2 2If''1 cu~

U, = [U "U .... tik
*Reduce the system of equations to

uising Modified CGnin-Schoiidt orthogonalization[~ ~ 1 -% ~~s~j*Gnrte -ictanu upp~er llesseriberg nan~trix, Hk
[A~e (A-2 P+ AgiX2 d oGnr t etnu

= (bKzP Fb~fr 4. iltcr) }Ih=[~(~)x
Rewrite as

StichI that

A U;. Uk, 11-.

o Rleduce the minimization problem to

Pre-preconditioning min 1b - A(x 0, + z)Il I

Stil 11 H

9Transform system to enhance convergence of iterative solver Yl - IAI

* Diagonal pre-preconditioning,

Joj, ILI'

tA a: b 0u

* M3ock-diagou.::1 Pre-preconditioning

nj 0 Solve the ahlove prob~lemu using at QI? algorithm '

- TOj (Cliolesky decomposition) I

Preconditioning on Element Group Basis

*Farmnally replace the system of equatiooas by

(U All ((i;)(U =

A LIU'(U) (-b



2-16

* Preconditioner
Elements Direct Diagonal Block-diag.

Ldf~ (g) ; Ud~ fl. (
L = 112 1.5 1.2 0.3

qg

e For implicit/iterative element group: 448 12.2 6.1 0.9

Element-by-element (EBE) preconditioners 1,792 102.7 35.6 5.0

Lt,, def "' u" df 171 r 7,168 1,174.4 175.3 24.5

c=1 •=" 28,672 -- 628.3 130,9

* Regularized element arrays

Computed on Convex-ClA'• = Ac - Diag(A') + I

e Gauss-Seidel EBE (sum decomposition) * Storage of iterative solver is substantially less than direct

LI+Uc = A,+I solver

* Nonsymmetric "Cholesky" EBE (product decomposition) * Effect of EBE preconditioning

AC = * CPU-time (see) per linear solve

Blo'k-diagonal pre-preconditioning

Supersonic Flow over a Flat Plate Elements No-EBE GS-EBE N

ii 112 0.3 0.3 0.4

448 0.9 0.9 1.3

Re = 1,000 Shock 1,792 5.0 4.8 6.5

7,168 24.5 21.2 30.4

28,672 lye 130.9 112.0 263.0

* CFL = 25

1,792 elements

Block-diagonal pre-preconditioning

-.. .. .... .. . ...

i!k I
' - .01

__ Ik 50

-~ _________E-4"____L______\\ . "-,.

4 .~ IE-6 k--

*CFL =25
0 5 10 15 20 25 30 35

* CPU-time (sec) per linear sol te CPU-time (sec)
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100 ,
I ,-%or =0.5 J

. 0.1U1 . .

o IE-8O

z EI

1E-12

0 50 I00 150 200

TVime step

1 00 ---

'• IE-4 •Mach Numberk

\ '

SI E-2 " N x.. • . -..
S1E~-I -0 3 6090•-

NACA0012 Aifil. ,

* Comaparison of global and local time--stepping strategies

* CFL = 50

•• * Block-diagonai pre-preconditioning

:~M = 0.85

' ~~Re = 500 ... ,

:~ 100ot __________

t 1E-4 global tlnizc-steppinIg

.• IE-S "•localI tiRme.Ste~pinlg
o 1E-10

1 E-12 a. 100-a.te, imarks

, 20 40 60 8) l10o

I * Local time stepping strategy

i CFL = 50 for implicit

:: CFL = 0.5 for explicit

4 S,• Block-diagonal pre-preconiditioning with iterative algo-

$., rithnis
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ID1F- 1.0

1 .... ---- Direct 0.9
-~...... -€'• ... '•, 0.8

"•N • "x•Explicit0.
IE-4 ", 0.6

.Z Z 0.5
1E-2 0.4
1~ E.8 [Biore-dingonal: 0.

L S-E3E - %% 0.3
1&10 qC - 0.2

1E-12 no E13E %CEB ~ .0.1

1 10 100 1000 0 0.2 0.4 0.6 0.8 1.0

CPU-tine (min) Fraction of implicit elements

* At normalized residual 10-13: Conclusions

, •s Block-diagonal pre-preconditioning significantly improves

Method Tie Steps CPU-Time Storage
SS the convergence of the GMRES algorithm.

(raii) (MByte)

Explicit 13,977 356.33 0.830 hnplicit/iterative algorithm is superior to both explicit and

Direct 104 118.05 9.752 implicit/direct algorithm, even for very small problems.

No-EBE 147 17.,42 4.249

GS-EBE 132 14.88 4.249 V Implicit/explicit partitioning is useful for making optimal

use of storage and CPU resources.N -EE132 16.53 7.354

• Two-element group partitions * We expect implicit/iterative algorithm Lo exhibit even

better performance on large three-dimensional problems,

but further research in reducing storage of the element ar-

rays is needed.[ M0-40% SOI%-20%

.. 20%-60%

10

-01

........... 

.

IE.4 ,,

IE-6 *:a=1

i F-4 Got1 01

Mes~h sie 11

480
70 70S • 60 to

Iin1,ipit on t ke inside
U 50

4T• 40 I

20 Implicit on the ontsid e __ J

02
S20 • ~r-t¢ r,' rpe.

10

0 0.2 0.4 0.6 0.8 1.0 01 0IE-4 .001 .01 .1

Fraction of implicit elements Mesh size
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I0 •l ~3.0,- ,
• (DC-Qurid,)

- 0 -- --

1E-4.01 1 12.5ACh C, h = ..
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.01 320

E3 t- ]. .... ...
OE-7 -- -

I 4 .001 01 .1.2

MesIh size hi

3.20

100

1;-• ... , l•0, i
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.10 0 D 2010

N 2.0-

1 2

.Dkti i shock . -.

1.0 1.4

-10 -4 10 202

Diistance from intti shck, x

Yt



2-20
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Abstract

In these lecture notes, we review some of the recent progress on stabilized finite element formulations used in
computation of incompressible flows. These stabilization techniques are used to prevent the numerical oscillations that
might be generated by the presence of dominant advection terms or by inappropriate combinations of interpolation
functions used for the velocity and pressure. The stabilization techniques emphasized in these lectnre notes are the
Galerkin/least-squares, streamline-upwind/Petrov.Galerkin, and pressure-stabilizing/Petrov-r-alerkin formulations, all of
them are consistent formulations in the sense that an exact solution still satisfies the stabilized formulation. Some of
these techniques are bas(d on finite element discretization in both space and time. Most of the numerical examples
considered are unsteady flow pioblenis, with emphasis on those involving moving boundaries and interfaces, such as
free-surface flows, liquid drops, flow past an oscillating cylinder and flow past an oscillating airfoil. Flow past a
vertically oscillating cylinder mounted on springs is solved as a simple but fundamental fluid-structure interaction
problem.

Also reviewed are the iteration strategies employed to solve the implicit equation systems resulting from the finite
element discretization of these flow problems, including those discretized by using the space-time formulation. In tdie
space-time formulation the finite element interpolation functions are discontinuous in time so that the fully discrete
equations are solved one space-time slab at a time, and this makes the computations feasible. Still, the computational
cost associated with the space-time finite clement formulations using piecewise linear functions in time is quite heavy.
For large-scale problems it becomes imperative to employ efficient iteration methods to reduce the cost involved. This
is achieved by using the generalized minimal residual (GMRES) iteration algorithm with the clustered element-by-
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e0lement (CEDE) pnIConditioners. The CEDE preconditioning is a generalized version of the standard element-by-clement
(EBE) preconditioning. In the CEDE preconditioning the elements are partitioned into clusters of elements, with a
desired number of elements in each cluster, and tle iterations are performed in a elustcr-by-clu.,tcr fashion. The number
of clusters should be viewed as an optimization paaumctcr to minimizc the computational COSL Recently we have been
performing this type of computations in the massively parallel environments of the Connection Maci:ines 2 and 5. For
these implementations we have been so far using diagonal prcconditioners. We will include some examples from these
massively parallel computations.

In these lecture notes we also describe a new mixed CIBE/CC preconditioning method for finite element
computations. The CC (cluster companion) preconditioning method shares a common philosophy with the multi-grid
methods. The CC preconditioners are based on conmpenion meshes associated with different levels of clustering. For each
level of clustering, we construct a CEDE preconditioner and an associted CC preconditioner. Because these two
preconditioners in a sense complement each other, when they are used in a mixed way, they can be expected to give
better performance. In fact, our numerical tests, for two- and three-dimensional problems governed by the Poisson
equation, demonstrate that the mixed CEDE/CC prcconditioning tesults in convergence rates which are, in most cases,
significantly better than the convergence ratem obtained with the best of the CEBE and CC preconditioning methods.

1. Introduction

The purpose of these lecture notes is to present a review of our solution strategies for incompressible flows using
finite elements. These strategies include the stabilized formulations, the space-time finite element approach to flow
problems with moving boundaries and interfaces, iteration techniques for solving the implicit equation systems
involved, massively parallel implementations, and sophisticated preconditioning techniques. The description of the
strategies reviewed in these lecture notes. and tho numerical results reported, have mostly been extracted from recent
articles by Te.zduyar et al. 1 -5 , Mittal and Tezduyar6 and Behr et al. 7 . The numerical examples considered here are
unsteady flow problems, including those involving moving boundaries and interfaces, such as large-amplitude sloshing,
liquid drops, flow past an oscillating cylinder and flow past an oscillating airfoil.

Finite element computation of incompressible flows involves two main sources of potential numerical instabilities
associated with the Galerkin formulation of a problem. One source is due to the presence of advection terms in the
governing equations, and can result in spurious node-to-node oscillations primarily in the velocity field. Such
oscillations become more apparent for advection-dominated (i.e., high Reynolds number) flows and flows with sharp
layers in the solution. The other source of instability is due to using inappropriate combinations of interpolation
functions to represent the velocity and pressure fields. These instabilities usually appear as oscillations primarily in the
pressure field. In fact, there is not much about either of these numerical instabilities that could be considered to be
inherent to the finite element formulation. Such instabilities appear also in the standard versions of other discretization
techniques such nr finite difference and fillite volnlre methods.

For the formulations considered in thcse, lecture notes, the stabilization of the numerical method is achieved by
adding to the Galerkin formulation a series ol stabilizing terms. These terms can be obtained b) minimizing the sum of
the squared residual of the governing equations integrated over each element domain. This kind of a stabilization is
onown as thi GLS (Galcrkin/Least-squares) stabilization. This approach has been successfully applied to Stokes flows8 .
ct•'pressible flows 9 -!0 , and incompressible ,"lows at finite Reynolds nwubers2 "3,1 -12. For time-dependent problems,
;, ostic, implementation of the GLS stabilization technique necessitates finite element discretization in both space and
time, .nd therefore leads to a space-time finite element formulation of the problem. The space-time finite element
formulatk'n has recently been successfully used, in conjunction with the GLS stabilization, for various problems with
fixed spatial dtmains. We can give as example the work of Hughes et al. 1 3 , Hughes and Hulbert1 4 , ShaKib' 0 , and
Hansbo and Szpm.ssy12 .

Perhaps one of thý. most striking applications of the stabilized space-time finite element formulation is, as it was
first pointed out and implemented by Tezduyar et al.2 "3 , in computing moving boundarics and interfaces. The DSD/ST

V: (Deforming-Spatial-Domain/Space-Time) procedure introduced by Tezduyar et al.2 -3 serves this purpose and was
successfuliy applied to several unsteady incompressible flow problems involving moving boundaries and interfaces,
such as free-surface flows, liquid drops, two-liquid flows, flows with drifting cylinders. In the DSD/ST procedure the
finite element formulation of a problem is written over its space-time domain, and therefore the deformation of the
spatial domain with respect to time is taken into account automaticclly. Furthermore, in the DSD/ST procedure the
frequency of remeshing is minimized. Here we define remeshing as the process of generating a new mesh, and projecting

¶ the solution from the old mesh to the new one. Since remeshing, in general, involves projection errors, minimizing the
frequency of remeshing results in minimizing the projection errors. Furthermore, minimizing the frequency of
remeshing increases the massive parallelization potential of the computations.



It is important to icalize that the. finite element interpolation fiunctions are discontinuous in timne so that the fully
discrete equations Lre solved one space-time slab at a time, and this makes the computations feasible. Still, the
computational cost associated with the space-time finite element formulations using piecewise linear functions in time
is quite heavy. For large-scale problems it becomes imperative to employ efficient iteration methods to reduce the cost
involved. This was achieved in Liou and TezduyarI by using the generalized minimal residual (GMRES)15 iteration
algorithm with the clustered element-by-element (CEBE) preconditioners. We will review such preconditioning
techniques later in these lecture notes.

Computation of time-dependent incompressible flow problems, over fixed spatial domains, can be performed by
using the finite element discretization in space only, rather than in both space and time. In this ¢asý we first consider
the GLS stabilization for the steady-state equations of incompressible flows. Then in the definition of the stabilizing
terms, we replace the residual of the steady-state equations with the time-dependent ones. These stabilizirn, terms are
added to the Galerkin formulation of the time-dependent equations. If, at the element interiors, we further neglect the
contribution to die weighting function frot the viscous terms (it is identically zero for linear velocity interpolation) we.
get a formulation with combination of SU.PG (stteamline-upwind/Petrov.Galerkin) and PSPG (pressure-
siabilizing/Pctrov-Galerkin) stabilizations. The former prevents the numerical oscillations caused by the presence of
advection terms, while the latter allows one to use equal-order functions for velocity and piessure without generating
oscillations in the pressure.

The SUPO formulation was introduced by Hughes and Brooks16 . A comprehensive description of the formulation,
together with various numerical examples, can be found in Brooks and Hughes17 .The implementation of the SUPG
formulation in Brooks and Hughesi 7 was based on QIPO (bilinear velocity/constant pressure) elements and one-step
time-integration of the semi-discrewe equations obtan•,d by using such elements. For hyperbolic systems in general, and
compressible Euler equations in particular, the SUPO stabilization was first reported by Tezduyar and Hughes 18.The
SUPG stabilization for the vorticity-stream function fcrmulation of incompressible flow problems, including those.
with multiply-,ýoanccted domains, was introduced by Tezduyar et al.19.

It was shown that (see Brezzi and Pitkaranta 20, and Hughes el al.2 1), with proper stabilization, elements which do
not satisfy the Brezzi condition can be used for Stokes flow problems. The Petrov-Galerkin stabilization proposed in
Hughes ct al. 2 1 is achieved, just like in the SUPO stabilization, by adding to tl,e Galerkin formulation a series of
integrals over element domnains. 'Ibe PSPG stabilization term proposed in Tezduyaj et al. 1 is a generalization, to finite
Reynolds number flows, of the Petrov-Galerkin stabilization tenu proposed in Hughes et al.2 1 for Stokes flows. In
Tczduyar et al.1, the SUPO and PSPQ" stabilizations are used together with both one-step (TI) and multi-step (T6) time.
integration schemes 22. With the TI scheme, the SUPG and PSPG stabilizations are applied sirmultaneously. With the
T6 scheme, on the other hand, the SUPO stabilization is applied only to the steps involving tha advective terms, and
thc, PSPO onahilivation is applied only to the steps involving the pressure terms. Both schemes were implemented in
Tczduyar et al. 1 based on the QIQI (bilinear velocity and pressure) and PIPi (linear velocity and pressure) elements,
and were successfully applied to a set of nearly standard test problems.

The element-by-element (EBE) preconditioners, which are constructed as series products of element level matrices.
have been successfully applied to several cla&:,ts of problems 2 3-26 , They can be used effectively with the conjugate-
gradient and GMRES 15 methods, and are highly vectorizable and parallelizable 25 ,27"28.They can also be used together
with the implicit-explicit and adaptive implicit-explicit time-integration schemes 26 ,28"30. In CEBE (clustered element-
by-element) preconditioning 1131, the elements are merged into clusters of elements, and the preconditioners am
constructed as series products of cluster level matrices. In Liou and Tezduyar31 , the CEBE preconditioning, together
with the conjugate-gradient method, was used for solving problems with symmetric spatial operators (e.g., for problems
governed by the Poisson equation). In Liou and Tezduyar 1 , the CEBE preconditioning was employed, in conjunction
with the GCMRES method, to solve compressible and incompressible flow problems. Applications to the space-time
finite element formulation of incompressible flows were included in Liou and Tczduyarl 1. To facilitate vectori7ation and
parallel processing, as it is done in the grouped element-by-clerment (GEBE) method27 , the clusters can be grouped in
such a way that no two clusters in any group arc connected. Furthermore, depending on the number of elements in the
cduster, within each cluster. elements can again be grouped in the same way. Each cluster matrix is formed by
assembling together the element level matrices associated with the elements in that cluster. The number of elements in
each cluster can be viewed as an optimization parameter that can be varied to minimize the computational cost. In fact,
in Minal and Tezduyar 6 , the unsteady incompressible flow computations were performed by using a space-time finite
element formulation with a nearly optimal cluster size which was determined by numerical experimentation.
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In these lecture notes we review the CC (cluster companion) preconditioning intoduced by Tezduya et al.5. li
the construction process of the CC preconditioners, we first start with a "primary" mesh with different levels of
clustering. For each level of clustering in this primary mesh, we define, a "companion" mesh, such that each cluster of
the primary mosh forms an element of the companion mesh. We then define a CC prccorditioner based on each
companion mesh, such that there is a CC precenditioner m.ssoelated with each C(113 preconditioneir based on a certain
level of clustering. This way. for each levcl of clustering, we obtain a CC preconditioner which we expect to have mom
inter-cluster coupling information then the associated CEDE preconditioner has. Conversely, the CE BE proconditioner

1wh "ixnctcd to have more intra.cluster coupling informiation than the associated CC preconditioner has.

"The mixed CilBE/CC preconditioning introduced by Tezduyar et al.5 is based on the belief that the CEBE and
CC preconditioners eomplement each other, and therefore when they are mixed together they will result in better
convergence rates. 'The mixed preconditioning can be implementel by using these two preconditioners alternately at each
iteration of the conjugate gradient method or at each outer iteration of the GMRES mnethod. Recently Saad 3 2 has
formulated a new version of the GMRES algorithm which allows changing the preconditioner at every inner iteration.
In fact, a GMRES subroutine, based on this new formulation and made available to us by Sand, is what we use to
implement our mixed preconditioning.

11. The Governing Equatioas of Unsteady Incompressible Flows

Let 11t o Rfsd be, the spatial domain at tume t c (0,1), where nsd is the number of space dimensions. Let rt
denote the boundtry of Ot. We. consider the following velocity -pssure formulation of the Navier-Stokes equations
governing unstoady incompressible flows:

-Vao =0 on at Vtc- (0,T), (1)

V u =0 on t V te (0,1), (2)

where p and u are the density and velocity, and a is the stress tensor given as

o (p, u )= - +2 t e (u) (3)

with

..u= u (V U (4

Here. p and pt are the ptes.ur and the dynamic viscosity, and I is the identity tensor. ThI. part of the boundary at which
the velocity is assuraed to be spccified is denoted by (F1g0

u = g on (FOg V t c (0,T). (5)

The "natural" boundary conditions associated with (I) are the conditions on the stress components, and the-e are the

conditions assumed to be imposed at the remaining patt of the boundary:

n A -- h ott (f't)h V t E (0,T). (6)

The homogeneous version of (6), wiich corresponds to the "traction-free" (i.ex, zero normal and shear stress) conditions,
is often im)posed at the out flow tx)udlarie,. As initial condition, a divergence-free velocity field uo(x) is spe~cified over
the domain Of at t = 0:

u(x,o) = u0(x) on 00. (7)

Let us now consider two immiscible fluids, A and B, occupying the domain Ot. Let (0t)A denote the subdomain
occupied by fluid A, a1d (rt)A denote the boundary of this subdomain. Similarly, let (Oft)B and (rt)B be the
subdollain and boundary associated with fluid B. Furthermore, let (rFt)AB be the inte'sectio" of (7t)A and (1t)B, i.e.,
the interface between fluids A and R.
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The kinematical conditions at the interface (Ft)AB are based on the continuity of the velocity field. The dynamical
;onditions at the interface, for two-diaensional problems, can be expressed by the tollowing equation:

DA" (A + nB' OB = nIA / RA cn (rt)AB V t 6 (0,T) (8)

vihere nA and nB are the unit outward normal ,,etors at the interface, qA and oB are the stress tensors, y is the surface
tension coefficient, and RA is the radius of curvature defined to be positive when nA points towards the center of
-urvature. The condition (8) is appilcable also to free-surface flows (i.e., when the second fluid does not eAist), provided
hat subdomain (0t)A is the one assigned to be occupied by the fluid.

l11. The Space-Time Formulation with the Galerkin/Least-squares Stabilization
and Application to Moving Boundreriez and Interfaces: the DSD/ST Procedure

A. The method

In the space-time finite element formulation, the time interval (0.') is partitioned into subintervals In = (tn,tn+l),
where tn and tn+I belong to an ordered scries of time levels 0 = to < tI < ... < tN = T. It was first shown in
Tezduyar et al.2 ,3 that the stabilize space-time finite -lemer.t formulation can be effectively applied to fluid dynamics
ccmputations involving moving boundaries and interfaces. In this formulation the spatial domains at various time
levels are allowed to vary. We let 1 ,n = Otn and rn = "tn, and define the space-time slab Qn as the space-time domain
encl•sed by the surfaces On, £)n+l ancl Pn (see Figure 1). Here Pn, the lateral surface of Qn, is the surface described by
the boundary r, as t traverses In. Similar to the way it was reprsC..nted by equations (5) and (6), Pn is decomposed into
(I'n)g and (Pn)h with respect to the type of baundary condition beinm imposed.

1)n+1 t+

t

Qn

Figure 1. The space-tune slab for the DSD/ST fomulation

Finite element discretization of a space-time s'ab Qn is achieved by dividing it into elements Qn, e=1,2. (nel)n,

where (ndl)n is the number of elements in the space-time slab Qn. Associated with this discretization, for each
space-time slab we define the following finite element interpolation function spaces for the velocity and pressure:

(Shin u' uh tu•-I W1 h (Qn)) nsd, uh gh ol(Pn)g

hh'(Vh)n= {whiwE Hlh (Qn)} nsd, wh0 on (n)g } (10)

(S (V)n h qh I qhh Hlh (Qn)} (11)

Here fl' (Qn) M1prcscnts the finite-dimensional function space over the, space-time slab Qn- This space is formed by
using, over the parent (alement) domains, first-order polynomi-ih in space and time. It is also possible to use
zeroth-order polynomials in time. In either case, globally, the interpolation functions are continuous in space but
discontinuous in time.
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The space-time formulation of(1)-(8) can be written as follows: start with

(u% = (uO)h; (12)

sequentially for QI, Q2, .... QN-1, given (uh)-, find uh e (Sh h such tht V h h

(S)n and ph E (S )n~ suhta w C. VU)

and V qh e (V~n

Jwh.p --u + uh.-V uh) dQ + fe(wh) c:(phuh) dQ
Qn Qn

(j,~wh h d P f Jwh nA y/ RAd P
(Pn)AB

+ f qhp v.uh Q + fwh)+. p((ul,)'- (uh)-) dil

+ elJn [p ah+ uh'V wh -V'o(qh,wh)
Qna

attp +uh.V uh )-. V.a(ph~uh)]dQ = 0 , (13)

where (Pn)AB is the space-time surface described by the boundary (Ft)AB as t traverses the time interval (tn,tn+ ).

In the %aviational fomulation given by (13), the following notation is being used:

(uh)n lira 8,0 uh(tn - •), (14)

( .)Q = I f , ... (ita t (15)
Q 1) in .

J(...)dP= J f(..)drdt. (16)lpn In r

Rermarks

1. If we were in a standard finite clement formuiation, rather tha'. a space-time one. the Galerkin formulation of (I)-
(8) would have consisted of the firt five integra!-, (their spatial versions otcourse) appearing in equation (13). In
the space-time fonnulation, because the irwerpolation functions are discontinuous in time, the sixth integral in
eqaation (13) enforces, weakly, the co,itinuity of the velovity in time. The re-maiiiing series of integrals in
equation -ire ihl least-squares weins added to thie Galerkin variational ft,:mulation to assure the numerical
;1abiC '., computations. The ccficient r determines the weight of such added terms.

2. This kiwi ,, :iabiiization of the Galefkin fornivation is referred to as the Gulerkiidleast-squares (GLS) vrow-cdurc,
and can be considered as a gern eralization o( the stabilization based on the streamlinc-upwind(P,'-ecv-Galerkin



S~3.7

(SUPO) procedure employed for incompressible flows. It is with such stabilization procedures that it is possible
to use elements which have equal-order interpolation functions for velocity and pressure, and which are otherwise
unstable.

3. It is important to realize that the stabilizing terms addcd involve the momentum equation as a factor. Therefore,
despite these additional terms, an exact solution is stiti admissible to the variational formulation given by
equation (13).

The coefficitnt - used in this formulation is obtained by a simple multi-dimensional generalization of the optimal
c given in Shakib 10 for one-dimensional space-time formuuition. The expression for the r used in this formulation is

=(()2+ (2 h'hl)2  4h2).' (17)

where v is the kinematic viscosity, and At and h are the temporal and spatial "element lengths".

Remarks

4. Because the finite. element interpolation functions are disconunuous in time, the fully discrete equations can be
solved one space-time slab at a time. Still, the memory needed for the global matrices involved in this method is
quite substantial. For example, in two dimensions, the memory needed for space-time formulation (with
interpolation functions which are piecewise linear in time) of a problem is approximately four times ciore
compared to using the finite clement method only for spatial discreti'ation. However, itertion methodr. .n be
employed to substantially reduce the cost involved in solving the linear equation sys'ems arising from th., space-
time finite element discretization.

5. The kinematical conditions at the interface (rt)AB are automatically satisfied because the discratized subdomains
(i00A and (0t)B share the same nodes at this interface.

6. The additional term (i.e., the fourth integral) in equation (13) enforces the dynamical conditions associated with
the interfaces and free-surfaces in the presence of surface tension effects. If the interface is to be interpreted as the
free-surface of a single fluid, then the fluid is assumed to occupy subdomain (Pt)A • This variational
formulation can of course becasily extended to more than two fluids.

7. For two-liquid flows, the solution and variational fur.ction spaces for pressure should include the functions which
arm discontinuous across the interface,

B. Application to flows involving moving bodies

As a special case of moving bodies let us now consider a frcely moving cylinder. The cylinder moves with

unknown linear velocity components V1 and V2 and angular velocity 44. The temporal evolutions of these additional
unknowns depend on the flow field and can be described by writing Lhe Newton's law for the cylinder:

dVj ,(VI, V2,0,U) (18)

!2 1(V1, V2,4,U) (19)
dt m

d6 T (V ,V2.. U) (20)

where D, L, and T are the drag, lift and torque on the cylinder, while m and J are its mass and polar moment of inertia.
The vector of nodal values of velocity and pressure is denoted by U. Temporal discretization of equations (18)-(20) leads
to a set of equations which, in an abstract form, can be written as
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V-V =AtD(V ,V,U). (21)

Here V (unknown) and V (known) are vectors representing the motion of the cylinder, respectively, inside the current
space-time slab and at the end of the previous one. The current slab thickness tn+l - tn is AL For linear-in-time
interpolation, equation (21) takes the form

(VI)n+1 (V) O (D- + D
2m n n4

(v2)n+I (V2)n + L 1)

-+ A t 1 - -( 2 2 )

(V2On (V2On M(L - Ln+I)

(Vh )6m ( - TL )

L n J6J n Tnl

Based on the general expression (21), we can write the incremental form of (22) as

A A (I At(!)) AV=RV(UY). (23)

Equation (23) is of course coupled with the incremental foirm of the discrete cquation system resulting from (13):

(Muu) A(i) + (Muv) AV = RU (U,V). (24)

In compuwitions reported in this article, the system (23)-(24) is solved by a block iteration scheme in which the term
(-D ) is neglected. During each iteration, equation (24) is solved for AU only, using the value of V from the

previous iteration- and then V is updated by (23) while U is held constant. However, the full system can, in principle.
be solved simultaneously to take advantage of larger time steps afforded by a fully implicit method. ,eiating on the
solution will still be needed not only because of the nonlinear nature of (1), but also because of the deptndence of the

e . e
eicment domains Qn on the vector V.

Remark

8. In the DSD/ST procedure to facilitate the motion of free-surfaces, interfaces and solid boundaries, we need to
move the boundary nodes with the normal component of the velocity at those nodes. Except for this restriction,
we have the freedom to move all the nodes any way we would like to. With this freedom, we can move the niesh
in such a way that we only need to remes: vhen it becomes necessary to do so to prevent unacceptable degrees of
mesh disnrtion and potential entanglements, By minimizing the frequency of remeshing we minimize the
projection errors expected to be introduced by remeshing, In fact, for some computations, as a byproduct of
moving the mesh, we may be able to get a limited degree of automatic mesh refinement, again with minimal
projection errors. For example, a mesh moving scheme suitable for a single cylinder drifting in a bounded flow
domain is described in Tezduyar ct al.3 . Also by minimizing the frequency of ren'4shing, we increase the massive
parallelization potential of the ccmputations.



3.9

IV. The Formulations with the SUPO and PSPG Stabilizations

The space-time formulation, described in the previous section, has the advantage of being able to handle flow
problems involving moving boundaries and interfaces, but is quite costly for large-scale problems. The CEBE iteration
technique can be used to reduce the cost substantially. For problems that do not involve any moving boundaries and
interfaces, one can use even less costly formulations. These formulations are based on finite element discretization in
space only, rather than in both space and time. In this section the variational formulations with the SUPG and PSPG
stabilization terms are described.

Associated with the finite element discretization of Q, we define the following finite element interpolation function
qspaes for the velocity and pressure:

S h = uh _Hlh(jj)]nsd, uh = ghonr (25)

Vu = Iwh [ Hlh ()] nsd,wh 0 on rg), (26)

h h
Sp = V P q i O Hlh (a)). (27)

Here HIh (a) represents the finite-dime-nsional function space over the spatial domain 1. This space is formed by
using, over the element domains, first-order polynomials in space. The stabilized Galerkin formulation of (1)-(7) canShn n ph• S uh ta wh Vhu a~ h•
be written as follows: find uhhe S.adsuch thatVwhc V UandVqh Vp

~lJwh.-(a•h uh.V uh d(- + ,fe(wh): c(ph,uh) dQ - Jwh hdF

+ fqh p V.uh d

+ S 18h+ h). a + u h.V uh V.O(ph,uh
"Il P. Fat do 0 .(28)

e=l Qe C' - ~c~hu

As it can be scen from eqaatior (28). two stabilizing terms have been added to the standard Galerkin formulation of (I)-
(7); the one with 8 h is the SUPG term, and the one with Eh is the PSPG (prcssuref-stailizirag/Peirov-Galerkin) term.
For definitions of thm Pctrov-Galerkin functions 6 h and ch see rezduyar et al. 1.

I'he spatial discretization of equation (28) leads to the following set of non-linear ordinary differential equations:

(M+M8)a+N(v)+NS(v)+(K+KS)v-(G+G8)p = F+F8, (29)

GTv+Mea+ NE(v)+ KE v+ GE p = E+EE, (30)

where v is the vector of unknown nodal values of uh. a is the time derivative of v, and p is the vector of nodal values
of ph. The matrices M. N. K and G are derived, rcspectively, from the time-dependent, advective, viscous, and pressure
terms. The vector F is due to the boundary conditions (5) and (6) (i.e.. the g and h terms), whereas the vector E is
due to the boundary condition (5). The subscripts 8 and e identify the SUPG and PSPG contributions, respectively.
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Let us consider the time-integration of equations (29) and (30) by a one-step generalized trapezoidal rule; i.e.,

given (uhý, find (uht+1 and (ph,+ 1 (this will be referred to as Ti formulation). When written in an incremental

form, the TI formulation !eads to

M Aa-G Ap=R , (31)

(GT)* Aa+ GE Ap=Q , (32)
where

R = F + F8- [(M + M) a + N(v)+ N8(v)

+(K+KS)v-(G+G8)pi (33)

TQ=E+Ee-[G v+Mra+NF(v)+Kev+Gcp] J(34)

• aN a +
M M-M+MS+aAt(-v +' K+KS) . (35)

G =G+G8, (36)

(GT)* = Me + a At ( N+ Ke+ GT) . (37)

The parameter a controls the stability and accuracy of the time integration algorithm.

Remarks

9. The equation systems (31) and (32) can be solved by treating the velocity explicitly in the momentum equation.
Since the SUPO and PSPG supplements are applied to all terms in the momentum equation, in explicit
computations the coefficient matrix of the pressure equation is generally not symmetric. All explicit TI
computations reported in this paper are based on the symmetrization of the coefficient matrix of the pressure* * T

equation, and the results are obtained with 2 passes per time step. In such computations M .(, and (GT) are
replaced with

NI ML . (38)

--- G , (3 9 )

(GT)* = a At GT (40;

where ML is the lumped version of the mass matrix MN.

10. One can also write a multi-step (T6) time integration formulation for equations (1)-(7). In the T6 formulation
the SUPG term is applied only to the sub-steps involving the advective terms. Tie PSPG term, on the. other
hand, is applied only to the sub-steps involving the pressure. For details of the T6 formulation and its
performance see Tezduyar et al.1, 22.

f
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V. CEBE (Clustered Element-by-Element) Preconditioning

Consider a linear equation system

Ax = b (41)

encountered in finite elcment computation of a problem. Based on the finite element discretization of the problem
domain "l, the matrices A and b are formed by adding together their element level constituents; i.e.,

"nei

A YAe (42)

net

where nel is the number of elements.

Remarks

11. The domain 0 can also be a space-time domain, in which case the elements are space-time elements.

12. The element level matrices Ae and be have the same dimensions as the global matrices A and b, respectively;
i.e., neq x ncq and neq x 1, where ncq is the number equations. However, the only non-zero entries for these
element level matrices are those corresponding to the nodes of element c. and this fact is taken into account in the
implementation.

We assume that direct wolution of (41) is not compuationally feasible and that we would like to design a good
preconditioner to maximize the efficiency of the iterative solution procedure. To achieve this, first we rewrite (41) in a
scaled form

A % = b, (44)

wher

- = W-1/2 AW-1/2,()
A =W 1 A W 1  (45)

= W -1 /2b (46)

; =W 1/2 x. (47)

The scaling matrix W is defined as

W = diag A. (48)



Remarks

13. This definition for the scaling matrix W is a good one when the matrix A is positive-definite. However, when A
is not positive-definite, the following alternative definitionA can be used:

W =lump M (49)

where lumr M is the lumped version of the mass matrix M. It is perhaps reasonable to look into defining a
scaling matrix based on a combination of (48) and (49).

14. In scaling a matrix, no matter what the level of that matrix is, the global scaling matrix W is the same. For

example, dhe element level matrices AC and be are scaled as

A' -W -/ 2 A W /2 , (50)

e W -1/2 be. 
(51)

The matrix A can be expressed as

nel
A = W + (Ae-_W e

0=1 (52)

In the scaled form this expression becomes

nel

A =I+ IRe , (53)
e=1

where

B 1~, 2. nel.(4

The element-by-clement (EBE) preconditioning is based on the approximation of (53) by a sequential product of
element level matrices. Earlier implementations can be seen in Hughes et al.2 3 "2 4 . Various vectorized versions and
applications to three-dimensional problems can be found in Hughes and Ferencz 2 5 . Parallel implementation of the
method is achieved in Tezduyar et al. 2 8 based on the grouped clement-by-element (GEBE) approach 2 7 , in which
elements are ordered in groups with no inter-element coupling within each group. The number of groups is minimized
to minimize the overhead associated with synchronization in parallel computations. Applications in conjunction with
the implicit-explicit and adaptive implicit-explicit element grouping can be seen in Tezduyar and Liou2 6 , Tezduyar et
al.2 8 , Shakib et al. 2 9 and Liou and Tezduyar 30 . Depending on the form of matrix A, the EBE type preconditioners can
be used with the conjugate gradient. GMRES 15 , or some other sophisticated search algorithm.
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Figure 2. Four different levels or clustering for a uniform 16 x 16 mesh: in each frame th. thick lines depict t€
cluster boundaies and the •i.tedl comnpanion mesh.

In the CEBE (clustered elernent-by-elemcnt) method the set of elements t: is partitioned into clusters of elements
£j, J = !,2, ..... Ncl. For example, Figure 2 shows four different levels of clustering for a uniform 16 x 16 mesh. The

cluster boundaries are marked with thick lines. In the first frame each cluster consists of one element, and therefore this
would lead to an EBE method. In the last framne the cluster size is 8 x 8: the next level of clustering after that (i.e.. level
5) would lead to a direct solution method. The global matrix Aj associated with cluster J is defined as
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Aj - A0 (55)
e G ej

Th1 matrix A can then be cxpressed, similm to (52), as

Nd

A =W+ (Aj-.Wj) (56)
J=l

In the scal:: forn this expre. becomes

NcA= I+4 ' Ij ,J (57)

J--I
where

Bj = Aj-Wj J l2... Ncl. (58)

The CEBE preconditioning is based on the approximation of (57) by a sequential product of cluster level
matrices. Here we give two examples (se. Liou and Tezduyar 11,31): 2-Pass CEBE preconditioner and Crout CEBE
preconditioner. The 2-Pass CEBE preconditioner is defined as

Nc - I IPC = nI(I + i BIj) n'o +l 2- j) (59)

J I JzlNcl

and the Crout CEDE preconditioner is dcined as

Ncl A Ncl A I A

PC -= !1Lj ln iDj .U (60)JI JI J=Ncl
A A A

where Lj , Dj and Uj are the matrices resulting from the following Crout factorization:

A A A

I+ hj = LjDjUj , J= 1,2, .... Ncl. (61)

in Liou and Tezduyar31. these types of preconditioning were used, in conjunction with the conjugate gradient method,
for problems governed by the Poisson equation. In Liou anti TezduyarI I they were used, together with the GMRES
method, for compressible and incompressible flow problems. Of course the convergence rates depend on the cluster
sizes. In Mital and Tcduyar6. for the space-time finite element formulation of an incompressible flow problem, an
optimal cluster size was determined by numerical experimentation and was used in the computations.

V1. CC (Cluster Companion) Preconditioning

Let us consider a mesh with different levels of clustering. For each level of clustering in this "primary" mesh, we
define a "companion" mesh, such that each cluster of the primary mesh ferns an element of the companion mesh. For
example, Figure 2 can now also be seen as showing the companion meshes associated with four different levels of
clustering in a 16 x 16 primary mesh. In each frame of Figure 2, the thick lines not only mark the cluster boundaries
for a ccrtain level of clustering, but also depict the companion mesh associated with that level of clustering. In the first
frame the companion mesh is the same as the primary mesh. In the last frame the companion mesh is a 2 x 2 wesh. In
our notation, the level of clustering and the associated companion mesh will be identified by the ssame integer number,
i.e., companion mesh I will be associated with clustering level I.

Because the companion mesh I is the sanme as the primary wesh, equations (41)-(43) can also be written as

(A) (x) (b) (62)
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(A) = e() (63)

11lll 9
(b) = E (b") 

(

c~l (64)

where the superscript "1" denotes the compianion mesh nunmber.

I
Let (u) be the approximation of a displacement-like scahir field u over the companion mesh 1. such that

(.U) = •(N) B (tU) (65)BI

1 I :

where (nnp) is the number of nodal points in companion mesh 1, (N)B is the shape function associated with node B,
I I -

and (u)W is the value of (u) at node B. A similar expression can be written to approximate u over the compattion mesh
2:

2 (a) 2  2 2
(u) =- 7. (N)B (U;.B (!6(U ( B W (66)

1 1 I 2 2 2 2
Let (u) ={(u), B =1,2, ..., (nnp) } and (11) = (u), B = 1,2, ..., (nnp) ). Given (u) , we would like to

1 1 2
obl-i- an expression that approximates (n) lla'ed on Icast-squares minimization of the difference (u) - (u) , we
obtain

II I 12 2
M (u) M (u) , (67)

whci¢
I1 r" i 1

(M )AB =J(N)A (N)B dQ , A, B 1,2.... (nip) (68)

12 JN (N 2 1 2
(M )AB fJ(N)A (N)B dQ• A= 1, 2...., (ninp) ,B 1,2... (2, (69)

Fron (67), we mi write

1 12 2(u) S=E (u) ,(0
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12
with the "interpolation" matrix E (dleinle4d as

12 I1 -I 12
E -[M I M (71)

((71

12 11 -1 12
E =[lump M ] M (72)

2()

An exprvssion similar to (70) can be written to obtain (u) front (u)

2 21 1(U) _=E (u) (73)

with
21 22-1 21

E =[M I M (74)

o(

21 22 -1 21
E = lump M 1 M (75)

where

22 [' 2 2 2(M )AB = (N)A (N2B (lil A, B 1, 22..., (nnl) (76)

(M A =J(N)2 (N)1B dL• A-i = 1 ,.•1"_ , (nlip) (7?t)

12 21

More on the derivations relateA to E and E can be found in the Appendix. Assuming that the Dirichiet type
boWwdary conditions are somehow taken care of in the implementation, we can also use equations (70) and (73) to obtain

1 2
(x) and (x) from each other. That is,

1 12 2
(x) E (x) (78)

2 21 1
(x) R (x) (79)

1 2
Furthermore, by assuming that (b) and (b) are force-like quantities and that the energy-like quantities expressed over

1 1 2 2
the two companion meshes, i.e., (b) (x) and (b) (x) , are equivalent, we can write

2 21 1
(b) F (b)

1 1(20)

1 12 2
(b) -=F (b),()
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21 12 T
F =(E) (82)

12 21 T
1 =(t)(83)

From (62), (78) and (80) we can write, an approxinmate expression for [(A) 1

1-i 12 2-1 21
t(A) I E [(A) I F (84)

This expression is the starting point for us to construct a companion preconditioner based on the comptnion mesh 2.
2

T'he matrix (A) van be comptiled either by using the definition of A over the companion mesh 2, or by using dte
following expre&sin:

"2 21 1 12
(A) = F (A) E (85)

We note, for itnplementational purixse, that (85) is equivalent to

2 (nel), 21 1 12
(A) F (AC) F (86)

1 2
We also note that, Xf (A) is symmetric and positive-definite. so is (A) given by the expression (85). However, we

1 -1
cannot say the same thiag for ((A) . given by the expression (84). Therefore, to define our companion
precondi~uas.e, w u.se a regu ariz.aion sinilar , t, the onc ,,,da ;,. O.-... 'Il c!,ster compion preoditiot h ot il
companion mesh 2 is then defined as

121-1 I -1 12 2-1 21 -I 12 21
(1 CC) ] w ([(A)! -- W F ) F (87)

In scaled fonni. (87) can be rewritlen as follows:

~ 121-1 '/ 2 2-I 21 _!12 21W/

[(Pcc) 1I = I+W F ([(A) I -1 W 12 )F (88)

We als experimented with the following mnodified version of (87):

121-! 12 2--1 2(
I(PCC) I W ((A) ÷ E I() I F(89)

which can be written in scaled fonn as

[c 121-1 w 1 /2 12 2-1 21 9/2
K(PCO I -- + !:" [ (A) I F* W (90)
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We c'an re•pat the expressions given by (88) and (90) for the chister companion prcconditioner based on the companion
mesh 3:

- 131 -1 13 3-I 31 13 31
1(PCC) ] + .W E ([(A) 1 -, I F )F 1 /2 . (91)

~ 131 -1 wi12 13 3 --1 31 1/
I 1 2) [ 1 4 F [(A) I F (92)

13 31
Ilere R nod K can be computed either by using definitions simihir to those given by equations (71),(72) andl (74)-
(75), or by using ihe following reiations:

13 12 23
i; - i ,(93)

31 32 21
.E (94)

31 13
lit any case, lhie matrices F and F are defined iis

31 13 T
F -(; ), (95)

13 31 T

F --=(E ) (96)

Resark

15. It is quite clear that the philosophy behind this type of preconditioninhg is similar to the philosophy behind
muliigrid iteration methods.

16. One could also incorpo)rate the idea of "Coml)allion" mlieshles ill conjunction with formulations employing higher-
order elemientrs. For example., for a miesh using bi-quiidratic elements only the nodes at the cornlers of thc higher-
order elements will form the companion miesh at level 2. To go to level 3 one could cluster elements in the
miesh at level 2 and so on.

VII. Mixed CFIDFiCC Preconditioning

It is reasonable to expect tiat the CEBE prcconditioner has more intra-cluster coupling informttion than tite CC
preconditioner has. It is also reasonable to expect that the CC preconditioner has more inter-cluster copliing
information thani the CERE precoliditioner has. Therefore, because these two preconditioncrs in a sc!A5e com)plllnuilt
each other, it is reasouable to hope tiat when they are mixed together they lcad to better convergence rates.

Initially our plan was to use these two preconditioners alternately at each itcrLtion of ithe c.nljuate gradic.,
method or at each outcr iteration of the GMRES inethod. However, it was rerently brought to our attenh~on that Sand3 I
has forwulated a new version of the GMRES algorithm which allows one to change the prm-ondilioaer .'e vcey inner
iteration. A GMRES subroutine based on this new formulation was made available to us by ,ld. and we.%imply use
this subroutine to impleniont our mixed preconditioning.

In our notation, CEBE-I will represent the CEBE preconditioning based on ciust,,rinq levei I, CC-I will
represent the CC preconditioning based on companion mesh I associated with clusterim.g level 1. ai.d CEBE/CC-I will
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represent the mixing of the two. For example, CC-I would lead to a direct solution method, and therefore we will
normally start our test computations with I = 2 o- higher.

Remark

17. We note that as I increases, the cost associated with CEBE-I increases and the cost associated with CC-I

VIII. Numerical Examples for Unsteady Incompressible Flows

All solutions using the space-time formulation, presented here, were obtained with linear-mn-time interpolation

functions. For the details of the computations see Tezduyar et al.1- 5 , Miual and Tezduyar6 and Behr et al.7 .

A. Unsteady flow past a cylinder at Reynolds number 100

In this test problem the dimensions of the computational domain, nomalized by the cylinder diameter, are 30.5 and
16.0 in the flow and cross-flow dircctiois, respectively. 11e, free-streaam velocity is 0.125. Reynolds number is based on
the free.stream velocity and the diameter of the cylinder. Symmetry conditions are imposed at the upper and lower
computational boundaries, and the traction-fh )e condition is imposed at the outflow boundary.

To have a better basis of comparison between the solutions obtained by using QIQI and PIPI elements, meshes
generated with both the elements are required to have the same distribution of the velocity and pressure nodes. The noylal
values of the stream function and vorticity are obtained by the least-squares interpolation. For the meshes generated
with the PIPI element, these quantities are computed froin the velocity field by using the meshes generated with the
QIQI element. For details of the computations and the performance characteristics see Tezduyar ct al.l.

The mesh used for QIQI consists of 5240 elements, while the number of elements for PlPl is 10,480. Both
meshes contain 5350 velocity nodes. A time step of 0.125 was chosen for the computations. The periodic solution is
computed by introducing a short term perturbation to the symmetric solution. We have observed, at least for smp.il
perturbations, that the periodic solution is independent of the ,node of perturbation.

For the OIQI/ST computatioas we use the clustered element-by-element iteration method to solve t'c resulting
equation system. At each time step about 31,500 equations are solved simultaicously. We chose a Krylov vector space
of dimension 25 and a cluster size of approximately 25 elements. For this problem, the CEBE technique takes less then
one-seventh the CPU time and less then one-third the storage needed by the direct method. It should be mentioned at
this point that we have had the successful experience of solving this problem, using dte space-time formulation, with a
much larger time step (1.0). Here we use a smaller time step to compare the solution with the ones obtained with other
formulations.

Strouhal number and the time history of the lift and drag coefficients for the various formulations z.fe shown in
Figure 3. The QIQI element gives a Strouhal number about 2% higher than what the PlPI element gives. Although
the lift and drag coefficients show no significant difference anong different formulations, the QIQI element gives a
slightly higher drag coefficient than the PIPI element, •nd the QIQI/TI fornmulation gives a slightly higher drag
coefficient than the QIQ I/ST formulation.

The periodic solution flow patterns correspt.nding to die crest value of die lift coefficient are shown in Figures
4-6. The pauerns corresponding to the trough value of the lift coefficient are simply the mirror images, wiL'l respect to
the horizontal centerline, of the patterns shown in Figures 4-6. The solutions obtained with different formulations are
very similar. However it can be seen, upon close comparison, that the QIQI element is less dissipative than the PIPI
element and that the QIQI/ST formulation shows less dissipation than the QIQI/TI fortmulation. On comparing these
solutions with the ones reported in Tezduyar et al. 3 3 . it can be observed that the solutions obtained with the QIQI and
PIPI elements are very Jose to the ones obtained with the pQ2PI and QIPO/T6. If we compare these solutions with
the ones reported for the T6 formulation in Trzduyar et al. 1 , we observe that '"6 formulation is less dissipative than the
TI formulation and the QiQI/S r formulation gives solutions very similar to QIQI/IT6.

B. Pulsating drop

In this problem the drop is initially of elliptical shape with axial dirmeensions 1.25 (horizontal) and 0.80 (vertical).
The density, viscosity and the surface tension coefficient are 1.0, 0.001 and 0.001, respectively. The effect of gravity is
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dimensions of the drop. Figures 8a, and 8b show the flow field and finite element mesh cen esponding, approximately,
to points "a", and 'b" in Figure 7.

C. Large-anplitude slositng

This problem is similar to the one that was considered in Huerta and Liu 3 4 . Initially tie fluid is stationary and
occupies a 2.667 x 1.0 rectangular region. The density and viscosity are 1.0 aPd 0.002. The gravity is 1.0, and the
surface tension is neglected. The wave is created by applying a horizontal body force of A sin(ot), where A = 0.01 and
S= 0.978. The Reynolds number (based on the height of the fluid and the gravity) is 514. Inviscid boundary
conditions are assumed at the walls of the "tank". Compared to the problem considered here, the Reynolds number used
in Huerta and Liu 34 is 514,000. Furthermore, in Hucrta and Liu4 the horizontal body force is removed after ten cycles.
in this case, on the other hand, this force is maintained during the entire computation. The number of elements is 441,
and the time step size is 0.107. With these values of the frequency and the time step size, a single period of the forcing
function takes 60 time steps. Figure 9 shows the time history of the vertical location (relative to the stationary level of
1.0) of the free-surface along the left- and right- hand-sides of the "tank". Figures 10a, and 10b show the flow field and
finite element mesh corresponding, approximately, to points "a", and "b" in Figure 9.

D. Flow past an oscillating cylinder

This is a simple but fundamental fluid-structure interaction problem. The computation involves flow past a
circular cylinder that is mounted on flexible supports and is free to respond to the fluid forces in the vertical direction;
the Reynolds number tor this simulation is 324. The dimensions of the computational domain, normalized by the
cylinder radius, are 61.0 and 32.0 in the flow and cross-flow directions, respectively. The mesh employed consists of
4060 elements and 4209 nodes. Symmetry conditions are imposed at the upper and lower computational boundaries,
and the traction-free condition is imposed at the outflow boundary. The periodic solution is obtained by introducing a
short term perturbation to the symmetric solution. In these computations, we use the CEBE iteration method to solve
the resulting equation system. At each time step about 25,000 equations are solved simultaneously. We chose a
Krylov vector space of dimension 25 and an average cluster size of 23 elements. For this problem the CEBE technique
takes less then one-sixth the CPU time and less then one-third the storage needed by the direct method.

At this Reynolds numb"er the natural frequency of the spring mazs system and the vortex shedding frequency for
flow past a fixed cylinder have very close values. Consequently, the cylinder undergoes high amplitude oscillations
(aporoximately one cylinder radius) in the vertical direction. These oscillations alter the flow field significantly. Figure
Ila shows, for the initial stages of the simulation, time history of the lift, drag and torque coefficients and the
normalized vertical displacemebt and velocity of the cylinder. We observe that the cylinder oscillates with an increasing
amplitude. The drag and torque coefficients for the cylinder also increase while th; lift coefficient shows a decreasing
amplitude. It is intereEting to note that both the mean and peak values of the drag coefficient increase with time, but the

,roagh valtie remains almost constmnt. The quantities displayed in Figure 1 la are shown in Figure 1 lb for a later
sq-tch ef time when the cylinder reaches a steady-state oscillation amplitude of about one radius. The cylinder oscillates
wqt. "#s natural frequency, and so does the torqae coefficient: the drag coefficient oscillates with twice the natural
freq.: '-,-cy of Ute cylinder. The dominant frequency for the lift coefficient corresponds to the natural frequency of the
cylinder. !n addition, there is a very small component of the lift coefficient with thrice the frequency of the dominant
ote. Figure 12 shows a sequence of frames for the vouticity during one period of the cylinder motion. The first, third
a'd last frames correspond to mean cylinder location, while the second and fourth frames correspond, respectively, to the
lower and upper extreme positions of the cylinder. Fo; letails of this problem and the computations see Mittal and
T-2,duyaz6.

E. Flow past at. oscillating airfoil

This computatiom, performed on tie Connection Machinu CM-5, involves flow post a NACA 0012 airfoil ptching
at Reynolds number 1000. The solution is obtai ied using the space-time algorithm with Galerkin/ieast.squares
stabilization. The mesh consists of 6609 nodes and 6460 elements. Linear-in-time shape functions are used. At each
time step, approximately 39,000 equations are solved simultaneously. 11e implicit equation sysic.- is solved using the
GMRES method in conjunction with a diagonal precondii;oner. The steady-state solution for flow past a stationary
airfoil at an angle of attack of 10 degrees and at Reynolds rnumber 1000 is used as initial condition. Then the airfoil is
forced to pitch about its half chord -•oint w'ih a non-d mersional fiequency of 1.0 (fc!U). Figure 13 the vorticity field at
various instants of thL pitching notion. During each pcriod of airfoil oscillation two vortices are shed. one from the
leading edg3 and the other from tht t-raling edge. For details of this problem and the implementation on the Connection
Machine see MiUal and Tezduyar6 aad Behr et al.7.



5-14

elements cover the entire domain and the intersection between For the generation of teirahedrz the advanclng front procedure is

elements occur3 only on common points, sides or triangular faces in taken orte step further. The front is now me.de up of the triangular
the three dimensional case. The final grid is constructed in a bottom- faces which are available to form a tetrahedron. The Initial front is
up manner. The process starts by discretising each boundary curve. obtained by assembling the triangulationo of the boundary surlaces.
Nodes are placed on the boundary curve components anr; then Nodes and elements will be simultaneously created. When forming a
contiguous nodes are joined with straight line segments. In later new tetrahedron, the !hres nodes belonUing to a triangular face from
stages of the generation process, these sements will become sides the front are connected either to an existing node or to a now node.
of some triangles. The length. of these segments must therefore, be After generating a tetrahedron, the front is updated. The generation
consistent with the desired local distribution of grid size. This procedure is completed when the number of triangles in the front is
operation iL repeated for each boundary curve in turn. zero.

The next stage consists of generating triangu:ar p:anar faces, For 3.2 Characterlestion of the Grid: G-ld Parameters
each two dimensional region or surface to be discrelised, all the The geometrical characteristics of a general grid are locally defined
edges produced when discretising its boundary curves are assembled in terms of certain grid parame'ers. If N (-2 or 3). is the number of
into the so called initial front. The relative orientation of the curve dimensions then. tl parameters used are a set of N mutually
components with respect to the surface must be taken into account in orthogonal directions M; i-1, .-. N, and N associated element sizes 8i;
order to give tho correct orientation to the si+Jes in the initial front, i.i, ... N (see figure 3.2). Thus, at a certain pnint, if all N element
The front is a dynamic date. structu'e which changes continuously sizes are equal, the grid in the vicinity of that point will consist of
during the generation process. At any given time, the front contains approximately equilateral elements. To aid the grid generation
lhe set of all the sides which are currently available to form a procedure, a transformation T which is a function of jU and 6i is
triangular fce. A side is selected from the front and a triangular defined. This transformation is represented by a symmetric N x N
element is generated. This mry involve creating a new node or matrix and maps the physical space onto a space in which elements,
simply connecting to an existing one. After the triangle has been in the neighbourhood of the point being considered, will be
generated, the front is updated and the generation proceeds until the approximately equilateral with unit average size. This new space
front is empty. Figure 3.1 illustrates the idea of the advancing front will be refe'red to as the normallsed space. For a general grid this
technique for a circular planar domain by showing the initial front transformation will be a function of position. The transformation T
and the form of the grid at various stages during the generation is the result of sruperimposing N scaling operations with factors i,6i
process. The size and shape of the generated triangles must be in each a direction. Thus
consistent with the local desired size and shape of the final grid. In
tile three dimensional case, these triangles will beuome faces of the N
tetrahedra to be generated later, T(.8) = X (3.1) L

T ol &) 0 a 31

where 0 denotes the tensor product of tyo vectors. The effect of
this transformation in two dimensions is illustrated in figure 3.3 for
the case of constant grid parameters throughout the domain.
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3.3 Grid Control: The Background Grid
The inclusion of adequate grid control is a key ingredient in ensuring
the generation of a grid of the desired form. Control over the
characteristics is obtained by the specification of a spatial
distribution of grid parameters by means of a bpckground grid. The • -
background grid is used for interpolation purposes only and is made S = 4 I

up of triangles in two dimonsions arid tetrahedra in three dimensions.
Values of gj and 81. and hence T, are defined at the nodes of the dt'\"
background grid. At any point Within an element of the background
grid. the transformation T is computed by linearly interpolating its i
components from the element nodnl values. The background grid 9

employed must cover the region to be discretised (see figure 3.4). In I
the generation of an initial grid for the analysis of a particular Figure 3.5
problem, the background grid will usually consist of a small number Grid* generated fr a redmngulur domain using a bckground grid eonsisling o1 two

of elements, The generation of the background grid can in this case •,en's to illustrate lb. eId @ v~iabi. grd slng and strtrig.
be accomplished without resorting to sophisticated procedures e.g. a
background grid consisting of a single element can be used to impose
the requirement of linear or constant spacing and stretching through
the computational domain. The generation process is akl.ays carried
cut in the normalised space. The transformation T is repeatedly 3.4 Curve Dlecretleatlon
used to transform regions in the physical space into regions in the The discretisation of the boundary curve components is achieved by
normalised space. In this way the process is greatly simplified, as positioning nodes along the curve according to a spacing dictated by

the desired size for a side, triangle or totrahedra in this space is the local value of the grid parameters. Consecutive points are joined

always unity. After the e1lemnt has been generated, the coordinates by straight lines to form sides. In order to determine the position

of tho newly created point, if any, are transformed back to the and number of nooes to be created on each curve component, the

physical space using the inverse transrormation. The effect of followilg steps era followed:

prescribing a variable grid spacing and stretching is illustrated in i) Subdivide recursively each cubic segment into smaller cubic
figure 3.5 for a rectangular domnin and using a background grid segments until their length is smaller than a certain prescribed

consisting of two triangular tememts. value. A safe choice for this value is the minimum spacing specified
in the background grid but often, considerably larger values can be
taken, The length of each cubic segment is computed numerically,
When subdividing a cubic segment, the position and tangent vectors
corresponding to the new data points can be found directly from the
original definition of the segment.
il) For all the data points Li; j-t-.,n (i.e. those used to define the
curve and those created to satisfy the maximum length criterion),
Interpolate from the background grid the coeffIcIets ol the
transformation T1 and transform the position end tangent vectors

i.e. l = T, El and tj-T,11. The new position and tangent vectors ,

I J1..n, define a sptine curve which can be interpreted as the
image of the original curve component in the normalised space. It
must be noted that because of the approximate nature of this
procedure., the new curve will in general have discontinuities of
curvature even though the curvature of the original curve varies
continuously.
Ili) Compute the length of the curve in the normallsed space and
subdivide it into segments of approxinately unit length. For each
nowly created point, calculate the cubic segment in which It is

eigue 3A4 contained and Its parametric coordinate. This information is used to
The background grid ftr the ,m ln of a @W d•,.on of rid P M. determine the coordinates of the new nodes In the physical space,

using the curve component definition.
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3.6 Triangle Generation In Two Dimensional Domain* Iv) Select other possible candidates fI- i vertex and order thorn In

The triangle generation algorithm utilises the concept of a generation a list. Two types of points are considerec viz. (a) all the nodes at,

fronL At the start of the process the front consists of the sequence ýh ... In the current generation front which are, in the normalised

of straight line pegfmints which connect consecutive boundary nodes. space, interior to a ci,:I with centre t and radius r - 81. and (b)
During the generation process, any stralghl line segment which is
available to form an element side Is termed active, whereas any the set of points ..... J~s generated along the height t..j, For each

segment which Is no longer active Is removed from the front, Thus point (, construct the circle with centre .j, on the line defined by

while the domain boundary will remain unchanged, the generation A

front changes continuously and needs to be updated whenever a new points E and M and which passe through the pnilts Q, and 1. The

element is formed. This updating process Is illustrated in figure 3.6. position of the centres Q, of these circles on the line kA, defines an

orderin.- of the the .j points. A list Is creatcsj which contains all the
.points with the furthest point from &i appearing at the head of

list. The points 1 .. sare added at the end of this list.

v) Select the best connecting point. This Is the firo. point In the

F . Iordered list which gives a consistent triangle. Consistency is
3 II! 1III1III 1 guaranteed by ensuring that none of the now'y created sides

ii iý -11"1 intersocts with any of the existing sides in th, front,
vi) Finally. if a new node is created, its coordinuttes in the physical
space are obtained by using the inverse transformation T-

1.

vii) Store the new triangle and update the front by adding/removing

the reWevant sides.

•t 6 1 9 It

II
61 .4. P

2I II = 1 12 | M $ | 1 t)i l

Figure 3.6
The front updnfing proced.e In two dkhiensions. (a) The InMial grentatlon fion0. (b)

Creation of a now eemer•t wh (1) no rnew poln •4eNted (2) the new pont 19iS s A

c n-oa d. ( cr) Th e u pd al t " of th e Pro nt t ca ee (b)(2). 1Pt

in the process of generating a new triangte the foilowing steps are .

involved (figure 3.7):

i) Select a side AB of the front to be used as a base for the triangle
to be gonenalea. H•ia. the criterion is to choose the shortest side.

This is especially advantageous when generating irregular grids.
ii) Interpolate from the background grid the transformation T at tMe 6 IDFAL POINT

centre of the side JA and apply it to the nodes in the front which are X IIflP POINTS

relevant to the triangulation. In our implementation we define the
relevant points to be all those which lie inside the circle of contre M 0 POINTS IN 11IE FRONT

and radius three limes the length of the side being considered. Let A.

band.i denote the positions in the normalised space of the points A. Fiture 3.7

EL and M& respectively. The genieatlon of a nw Itrang•e.

iii) Determine, in the normalised space, the ideal position k.1 for the

vertex of the triangular element. The point &3 is located on the line This grid generation procedure is schematically presented in the

perpendicular to the side that passes through the point M and a, a diagram shown in figure 3.8

distance 51 from the points j and fl. The direction in which P-t is

generated is determined by the orientation of the side. The value S, Grid Quality Enheacement

is chosen according to: In order to eathance the quality of the generated grid, two post-

processing procedures are applied. These procedures, which are

1 If 0.55.1 < t < 2.L local In nature, do not alter the total number of points or elements

0,551. i 0.55.1 < 1 (3.2) in the grid.

2-L if I5 2.L Diagonal swapping • ";nis changes the connectivities among nodes in

the grid without altering their position. This process requires a loop

ih t b n tover all the element sides excluding those sides on the boundary. For
where L is the distance between points i and A. Only in situations each aide AB (figure 3.9) common to the triangles ABC and ADS one
Swhere the side AD happens to have characteristics very different considers the possibility of swapping AB by CD. thus replacing the

from those specified by the background grid will the value of 8t be two triangles ABC and ADB by the triangles ADC and BCD. The

different from unity. However, the above inequalities must be taken swapping Is performed If a prescribed regularity criterion is

into account to ensure geometrical compatibility. Expression (3.2) is satisfied better by the new configuration than by the existing one. In
purely empirical and different inequalities could be devised to serve our Implementation, the swapping operation is performed if the

: the same purpose. minimum angle occuring in the new configuration is larger than in the

original one.
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-O •-I -'-ih- 3.6 Surface Olcretleatlon.
BOUNDARY-J The method followed for the triangulation of the surface components

is an extension of the grid generation procedure for planar domains
-AW'iftitINI described above. The discretisallon of each surface component is

FRONT ] accomplished by generating a two dimensional grid of triangles in the

parametric plane (u4,u
2 ) and then using .tho mapping L(Ui,U2 ) defined

T iSWE F OMin section 2.2. This mapping establishes a one to one correspondence

-L THE F.RONTI- between the boundary surface component and a region on the
parametric plane (u',u

2
) (figure 3.10). Thus, a consistent triangular

""NTRPOLATE MESH grid in the parametric plane will be transformed, by the mapping
', • PARAMETERS L(ull,ul, into a valid triangulation of the surface component. The

construction of the triangular grid in the parameter plane (u
t
,u

2
)

WA SO M 0 using the two dimensional grid generator, requires the determination
i UNSTREICHED SPACE J of an appropriate spatial distribution of the two dimensional g9id I

parameters. These consist of a set of two mutually orthogonal

Se -ilq --ldydirections g4-; i-1, 2. and two associated element sizes 86'; i1., 2.

INTIER|OR POINT 2 POINT FROM THe I fRONT
112

JTANSFORM SACK TO I" •

I.cAL SPACE r AIl "

Figure 3,10
M The mapping 04 a surlace €orponeint orito a two dir"91151nal domain,

Figure 3.6

aGw g"ateaion using the &&varlioir ItonitecIhnique. Dooub~ lk•d boxes are onty The two dimensional grid parameters in the (0I,0|) plane can ber
roquked i0 the stled$ o Ver ziallo VWi size and 311rdChinl at* 10 be included, evaluated from the spatial distribution of the three dimensional grid

parameters and the distortion and stretching introduced by the
mapping. To illustrate this process, consider a point 0-* in the

Grid smoothing - this alltes the positions of the interior nodes parametric piano of coordinates (uj1P,u2P) Where the Values of the

without changing the topology of the grid. The element sides are grid parameters 6j, 4.' i. 1,2 are to be computed. Its image on the

considered as springs of stiffness proportional to the length of the surface will be the point E = L(u'P'u2P), The transformation between
side. The nodes are moved until the spring system is in equilibrium. the physical spae and the nor,-nalist ' space at this point Tp can be
The equilibrium positions are found by Iteration. Each iteration obtained by direct interpolation Irani Ina backgrounld grid. A new
amounts to performing a loop over the interior points and moving mapping, valid in the neighbourhood of point P, can now be defined
their coordinates to coincide with those of the cenrroid o1 the between the parametric plane (ul,u•) and the normalised space as
neighbouring points. Usually three to five iterations are performed.

The combined application of those two post-processing algorithms is 11(u0,u0) = Tp L(ul.u2) (3.3)

found to be very effective in improving the smoothness and
regularity of the generated gridls. A curve in the parametric plane passing through point R_' and with

unit tangent vector & = (pllpl) at lhis point, is transformed by the :

aitova mapping into a curve in the normalised space passing through I

B the point Tp P. The arc length parameters ds and dC, along the

S•,•---•-<•original and transformed curves respectively, are related by the
• •_E2 expression [351

•a R pi (E (ds)2 (3.4/

1) >(d C ) 2 = I a- U -1 a _u--

1~11 Figur I.Th mpn 0 asu1,e oirpnn roaIoiesni1051

c Assuming that this relationd r between the are length parameters also

Fipholds for the spacings, we can sompute the spacing 8i d ong b the

s n s h n idirection r in the parameter plane as hu

•C Z ; B - o 12

S~~~(a) ()Ij

W t a t tl o e d e m sThe two dimensional grid parmtr arete ed. Its determined
cniigure a.S from the directions In which SL attains an extremum. This reduces to

s Ti deaTh noe arep moveduntil. (t)h snpngsystemiL (b)ineuiliru, finding the y igenvclues a nd e lgenvoctors of a symmettic 2 x 2

ni arix .
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To form the initial front, the (ul,u
2

) coordinates of the nodes
already generated on the boundary curve components have to be R
computed. As the mapping L(u',u

2
) cannot be inverted analytically,

the coordinates (u',u) of such points at* found numerically bry using I
a direct iteration procedure 1311.

3.7 Generation of Tetrahedre
The starling point for the discretisation of the three dimensional

domain into tetrahedra Is the formation of an initial generation front. Q1P
The initial front is the set of oriented* triangles which constitutes thediecreftied boundary of the domain and Is formed by assembling the h " .7"• -,'.

discretised boundary surface components. The order in which the .
nodes of these triangles are given defines the orientation, which is ..- ...... '- .

the same as that of the corresponding boundary su'face component. .

The algorithm for generating tetrahedra is analogous to that A
described above for the generation of triangles (see figure 3.8).
However, in the three dimensional case the range of possible options
at each stage Is much wider and the number of geometrical
operations Involved increases considerably. Thus, the ability of the
method to produce a grid and the efficiency of its implementation * I)EALPOINT
relies heavily upon the type of strategy selected. The generation of a

generic tetrahedral element involves the following steps (figure X HELP POINT

3.11); o PO INS IlE FRONT
I) Select a triangular face ABC from the front to be a base for the
tetrahedron to be generated. In principle, any face could be chosen,
but we have found it to be advantageous in practice to consider the
smallest faces first. For this purpose, the size of the face is defined Fligure 3.11
in terms of the size of its shortest height. Tie gene•aIon ofa 3eqa,1ra1 element

iti) Interpolate from the background irld the transformation T at the

centroid of the face h. and apply it to the nodes in the front which

are relevant to the triangulation. In our implementation, we define
the relevant points to be those which lie inside the sphere of centre

M with radius equal to three times the value of the maximum 3.8 G Quality Assessment
dimension of the face being considered. Let &. . ý. and I denote the Any discussion of grid quality should be intimately related to the

positions in the normalised space of the points A. a. C and M. form of the solution we are trying to represent on that grid. Two

respectively. factors need to be considered here:
i[i) Determine, in the transformed space, the ideal position -- for the i) Determination of the characteristics of the optimal grid for the

problem at hand. This introduces the concept of adaptivily and this

vertex of the tetrahedral element. The point -. lies on the line which aspect is considered in section 5.

passes through the point U and which is perpendicular to the face. it) Assessment on how well the generated grid meets the

The direction in which E-, is generated is determinod by the requirements specified by the grid parameters. This assessment canbe made by examining the generated grid and determining tho
orientation of the face. The location of -.. is computed so that the statistical distribution of certain indicators. For example in figure
average length of the three newly created sides which jin point , 3.12 we havo chosen as ;ndicaiors tle number of elements around a
with points A. . end ý- is unity. For facos whose size in the side, the magnitude of the element dihedral angles and the length of

parametric plane is very different from unity, this step may have to the side. These indicators are compared with optimal values i.e.
be modified, as in expression (3.2), to ensure geometrical those of a regular tetrahedron which has the exact dimensions
compatibility. However, such cases rarely occur in practice. Let 61 specified hy the grid parameters.

be the maximum of the distances between point P_1 and points A, f.
and ~
iv) Select other possible candidAtat for the vertex and order them in

a list. Two types of points are ounsidereo viz. (a) all the nodes , • os

in the current generation front which are, in the normalised SUR5NDING A SIDE

space, interior to a sphere with centre k and radius r = 61, and (b) a

new set of points G. . ., -s generated along the height t 1&. Consider.------

the set of points a. f. and ý and denote by ý the member of ;his set

which is furthest away from hi. For each point (1,, construct the DIHED•AL
sphere with centre Qi on the line defined by points E-1 and [ and ANGLt

which passes through point Q and Q. The position of the aentres O, of

these spheres on the line kIM defines an ordering of the the Qilpoints - --- I -' -- ---

with the furthest point from j, appearing at the head of list. The - - ,

points a_.. s are added at the end of this list.

v) Relect the best connecting point. This is the first point in the A
ordered list which gives a consistent tetrahedron. Consistency is
guaranteed by ensuring that none of the newly created sides ..J-7
intersects with any of the existing faces in the front, and that none - .,. . .

of the existing sides in the front intersect with any of the newly
created faces. He $o (o-.. IOSU "

vi) If a new node is created, its coordinates in the physical space
are obtained by using the inverse transformation TV.

vii) Store the new triangle and update the front by adding/removing Figure 3.12

the necessary sides. Grid quY s*tlltis.



3.9 Orid Generation for a Generic Fighter Configuration 3.10 The Computation of Transonic Flow Peot an
In computational aerodynamics, a problem of current interest is the Installed Nacelle
prediction of the inviscid fiowfield about complete aircraft To illustrate the numerical performance of the unstructured mesh
configurations. The problem considered here is the simulation of the solution procedure, we consider the analysis of a transonic inviscid
flow past a generic lightur with canard, 70.20 cranked delfa wing, flow past a realistic wingtpylontnacelle configuration 1691. The
vertical fin and engine Inlet. This samo configuration has boon configuration has been tested In a wind t1unnel with a turbine powered
studied previously using an algebraic grid generation approach [36]. simulator to represent the flow ihto the engine and the jet emerging
Due to the symmetry of the problem only hall of the tighter is from the exhaust. The assumed symmatry of the problem means that
modelled, Figure 3.13(a) shows the geometry definition of the only one half of the configuration needs to be considered. The
computational domain, The background grid empioyod is illustrated In definition of the computationat domain Is completed by the addition of
figure 3.13(b). The curve components, defined in terms of cubic the symmetry plane and planar far field boundaries, as shown in
splines and the discretlsslion of these components is displayed in figure 3.14a. Following the triangulation of the computational
figure 3.13(c). The individual surface components are described by boundaries, the aircraft surface Is represented by an assembly of
tensor product surfaces and the surface discretisation is illustrated 38,330 triangles with 19,167 nodal points. Two different views of
in figure 3.13(d). An intermediate stage during the tetrahedra the surface triangulation are given in figure 3.14b, Starting from
oeneration process is displayed in ligure 3.13(e). The final grid this collection of triangular faces, the computational domain is filled

ýonsisted of 76,522 tetrahedra and included a full simulation of the with tetrahedra by the advancing front method, simultaneously
creating interior nodal points and elements, The 3D grid which is
generated contains 592,380 tetrahedra and 112,198 nodes. For the
simulation, a free stream Mach number of 0.801 and an angle of
attack of 2.738 degrees are assumed. The flow within the engine is

- ~simulated by computing a pressure ratio, engine mass flow rate and
a jet total tempeiature by assuming that the separate core and fan
streams In the experiment mix together completely within the
turbine powered simulator, before ex:,austing through the nozzle.
Starting from free stream conditions, the solution Is advarced for
2,500 time.stepa, during which time the residual is reduced by four
orders ol magnitude. The computed, distribution of the pressure
contours on the surface of the model is shown in figure 3.14c. In the
experimental configuration, pressure guages are distributed at fixed
sections over the surface of the wing and also on the surface of the
nacell. A comparison of the computed and the experimentally

(a) .observed values of the pressure coefficient at a section along ','q
wing and on the surface of the nacelle is given in ligure 3.14d. The

(b) agreement between the numerically predicted values and the
experimentally determined pressure data is very good, apart from
the over prediction of pressures on the upper surface of the wing.
The discropancies between the experimentally observed pressure
distributions and the predictions of the Euler flow solver on the wing

// upper surface exist in regions where significant viscous effects can
/"-be expected to occur.

tt

(,)Ik

Filivre 3.13(a
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3.11 The Usoe of Multi-Grid A¢celerftion
The sequence of unstructured grids required for a multi-grid -,- -

algorithm of the type described above is readily produced bV the grid
generator by simply altering the scaling of the user specified -o.0 -s s9d
distribution functions.

Traneonic Flow In a Channel
The multiigrid $chenta Is applied first to the solution of transonic ( W).. -2,0 .... \\
flow in a channel. This is a 3D simulation of a 20 flow past a 4% 0

thick circular bump. Tho free btraam conditions correspond to a (r .-2 5
Mach nuMber of 0.675. The computation is oerlormed by using a fine
grid of 28,822 tetrahedra and throe coarser grids of 4.137, 556 -. - --

and 119 tetrahedra respectively. The corresponding triangui,,iot'
of the boundary ol the computational domain tre chown in figures -3s --

3,15a to 3,15d. Figure 3.15e displays the pressure solution after
150 multi-grid V-cycles (icicloe at) with ni -1, n2 -1 and n3 %0. .40° 20 40 60 so to 120 -4o to
The Increase In the rate of convergence lowards the steady state by CYCLELS
the use of the multi-grid scheme is readily observed in figure %.15f
which compares the convergence history of tmle flow calculation on
the finest grid with tho one obtained using the multi-grid scheme
with four grids.

J: Figures VSI
- T'r, fic fli r 1i a .hanns i t iar tff l iep t Mach ilWIbw of 0.476 (a) First gF1 of 110

eImesis, 63 pofet. (b Sreend gr9d of 565 etlmesms, 216 pIses,. (t) Thbd grid Of
4,117 sitereilis. 1.142 paeii. (d) Fo•thl gild O i 55,52 d , .,709 Poies. (t)

C9 iiuiei p"Vieure cogtuils. if) COw ip son of trhes cf"ergehice hisolries produced
by using ih thke , g.M 3ion, and by using niskl.

Flow About a Twin Engined Aircraft

As an illustration of the performance of the multi-grid acceleration
procedure for a realistic aeronautical configuration, a transonic flow
about a twin engined Dassault Falcon has been computed. For the

(a) simulation, a free stream Mach number of 0.85 Is assumed and the
angle o; attack is taken to be two degrees. Flow through conditions

t. are imposed at the engines. Due to the assumed symmetry of the

flow, the numerical computations were performed using only one
hall of the aircraft geometry. The representatloit of the bounJory of
the computational domain consists of 22 surface coniponents, and 47

curve components. The surface components used to represent the
aircraft geometry are showi' In figure 3.16a. Using this geometrical
definition, three grids ere generated, consisting of 863,967.
212,433 and 100,215 elements respectively. The surface

tnnlnlrsfor these grids -ve shown in figures 3!C-b t13Ad.
A three stage time-slapping scheme and a double W ctle (icycle =2)
Is employed, with one pre- and one post-smoothing step -jsed on each
grid( n/ =I, n^ -1 sad #3 =1). A plot showing the of the value of the

logarithm of the density residual versus the number nf fine grid
residual evaluatiotis for both the fine grid only calculation an, the
multi-grid cycle is shown in figure 3.161. The computed steady state
distribution of pressure contours on the aircraft surface In shown in
figure 3.169. This solution was obtained in about 190 minutes of cpu

time on a modern sr'eccomputer using a singto processor. For this
examirple. the multi-grid version of the solver requiros 89 storage
locations per node. Thos compares very favourably with the 63
locations per node required by the flow solver on a single grid.

(d) (e

S-,-

(c) •
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4. DATA STRUCTURES

(This section has been written in collaboration with J. [Bonet.
Institute for Numerical Methods in Engineering, University College,
Swansea SA2 8PP. UK)

From the previous section it is apparent that a successful
implementation of the presented ailgorithm will r~quiro the use of
data structures which enable certain sorting and searching
operations to be performed ellicienlly. For instance, the generation
front will require a data structure which allows for tho efficient
inqartinnldalelinn of ttidas/lann And which altn allown for fhA
etficienit idenrtliticalutn of thug sideniaces which inttursecl with 4%
proscribed region In space.

The problem of determining the members of a set of it points which
lie Inside a prescribed subregion of an N dimensional space is known
as geometric searching. Several algorithms have been proposed

137-401 which solve the above or equivalent problems witlh a
computational expense proportional to log(n), 1he problem
complexity increases considerably when, instead of considering
points, one deals with ;inite size objects such title sogments,
triangles or tetrahedra. A common problem encountered here.
namely geometric intormsstion, consists of finding the objects which
overlap a certain subregion of the space being considered.
Algorithms for solving this problem in two dimensions exist (411 tnd

have been applied in determining the intersection between
geometrical objects in tho plane. To our knowledge, the only
algorithm capable of so!ving this problem in three dimensions is
based on the use of the alternate digital tree (42). The particular
applcationt which motivated the drevelopment of this data structure
was the implementation of the grid generation algorithm described in
the previous section.
In what follows, we shall describe an algor'thm and associated data

structure, call#rd the alternating digital tree (ADT), which allows for
the efficient solution of the geometric searching problem. It
neturally offers the possibility of Insering and removing points and
optimally searching for the points contained Inside a given region. It
is applicable to any number of dimensions, and Is a natural extension
of the so catted digital tree search t3chnique which Is exhaustively in
(431 foe one dimensional problems. A procedure which allows
treatment of any geometrical oojoct in an N dimensional space as a
point in a 2N dimensional space will be Introduced; thereby allowing

the proposed technique to be employed for the solution of geoonetric

intersection pt'oblemr.



T1,
4.1 Binary Trio Structures 1. Visit the roo! of the current subtlie
Binary trees provido the basis lot several searching algorithms, 2. It the leto link of tie tout is not zero then trfverse tire loft
Including the one to be presented here. It Is therefore necessawy to ;ubroee.
Introduce some basi- concepts and termlnolo4y retaed to binary 3. t1 the right link of the loot is not zero then traverse the tight
tree structures. More detailed expositions can be lo'.id in 41.441. sublreo.

The procedure determined by thee three steps is clearly ticursive,
0*flnltion and Terminology that is, steps 2 and 3 Invoke again the algorithm which they deline.Tree structures provide a systumdtic way of storing a collection of In older to Itlusirat., this process, consider again the troee shown In

data Items which enables not only a quick access to the intonratlon figure 4.1b; lot this tree, the repeated application of the abovestored. bu~t also fRequom~ insertions and deletions of items. Thitl elgodothmn yields the following sequence:

Sdegree of flexibility requires the storage of dr.ta itom3 In non. 1. Traverse the tree {A, i•. C, 0, E, F, RG, 1P
sequential locations of il computer memory. As figure 4.10 1.1.
illustrates, to achieve this. ach data item is extended by the 1.2. 7troer.e (he tree 11)
addition of iNO integer values, known as the loft and right links, and 1.2.1. V.A a
stored in whit is known as a node of the free. Each added link can 1.2.2. skip
either bg equal to zero or equal to thI poslilon in) memory where 1.2.3- Skip

* another ne of the tree can be found. Hence. ftcm one node of the 1.3. Traverse the tweo (C, 0, C, F. G, 11)
tree it is possiblo to reach at most two other nodes, Moreover, in 1.3. 1. 'Wit c
order to ensure that every node can bo reached, these links must be 1.3.2, Traverse the flee [D, F)
such that ior each node except one, known as the root, there is one 1.3.2.1. Visit
and only one link pointing at it. This definition establishes a 1.3.2,2. Travorso the free (F)
hierarchy of nodes: the root at the top level of the hierarchy points 1.3.2.2.1 YViitI
at 0, 1 or 2 nodes at the next level: each of these in turn points at 1.3.2.2.2 Skip
otlher 0, 1 or 2 nodes at the next level of the hierarchy; aid so 1.3.2.2.3 Skip
forth. This hierarchical structure inspires the graphical 1.3.2.3 Skip
representation shown i:n figure 4.1b lot a simple tree comprising 1.3.3. Trnverse the tree IE. 0, H)
only eight erodes iA, 8, C. 0. E, F, 0, H). 1,3.3,1. VijLE

* Genealogical terms are normally used to describe th1e relative 1.3.3.2. Traverse the tree IG)ST1.3 ,3.2.1 gir
position of nodes In n tree: when a node points at a second node, the 1.3.3,2.2 Skip
former Is called the father of the latter, and this tii son of the 1.3.3,2.2 Skipfafnomr node. A noade witlhout sons, that is, with both links blank, is 1.3.3... Taesekipfee(11

.3332Skipanself together with (ill its descendants constitutes a .ubtr)o of Ilia

mail tree. For instance, in figure 4.1b the trees IC. D, E, F, G, H) 1.3.3,3.3 Skip
an IF. Gspect are sbro ftey.i rerotda n Thus, the nodes of the tree fit figure 4.1b In preordser are A, a. 0, 0.,
repciey F, E. G and H.

We notice in the above algorithfm that. before moving on to traverse
the felt subtroe e step 2 In the previcJs algorithm - it is necessary

f ' to store the value of the right link, tihla Is, the address of Ilie right
i A - t(aoT / son, in order to voiuble the subsequent travorsal of the right subtree,

Moreover, whilst traversing the loft subtree it is likely that
additional right links will have to be stored. In fact, a list containing

E tha addresses of all right subtiess encourntered along tine way~ WhON-b

([] ) (• 6•are yet to be traversed, mumt be kept end has to be continuously
ii 0 / updated as follows, After visiting etch node, the right link, if
ri - dilffurent from zero, Is added to the list tend if the left link is not

zero the ltll subtree is traversed, When a zero left link is
: rencountered, the last right link inserted in the list is retrieved, as

well as removed, from the list and the .tubtree rooted at this
_ (_address Is traversed.

Iji Ibi ,. • j £
Flamel 4.1 ".-. /j

S•;Tree Trevereat N€ --.

I.,N,

t '• ~To retrieve information stored in a given node requires knowledge of N -

"its location in memory, which is kept by its father. Hence, a node in aSthe tree can only be9 examined or visited it all Its ancestors are A- -t-
S • ~visited first. However, it Is possible to systematically examine, each N
.• .1 node In such a way that every node is visited exactly once. Such an

It gestation is known as travershig~ the tree and provides the basis !or
the searching methods dl~ussod below. Although several algorithms ib tl

; ~can be found in the literature to traverse a 'j..try tree 144).

attention will be centred here on the so-called preorder traevrsal
method. Thfis tec~hnique is embodied In the following, throes step: Figure 4.2

i6
V



This type of list, in which Items are Insertej one by one end required by this irow treo node Is generated by removing a node from
extracted, also otie at a time, hi the reverse older, Is known as a the list (seo figure 4.3b). Simlilarly, when a nodeo Is deleted from the
stack [44). A stack cotsists of a linear alray, or vector, together tree it is added to Ihl list ($se figure 4.3c). Inserting and deleting
with an Integer variable to record the number of Items In the array, nodes in the list always takes place at the head. To Insert a node into
This variable, being initially zero, Is increased by one evey time an tle lst, the ilk of the new node is sol equal to thu address of tIle
Item Is added to the stack and decreased by one when an Item is head end tha inserted node becomar the new head of the list, 'The
extracted from it. deletion of the head node cal be done by simply allowing Its link to bu

With the h•lp of a stack. any recursive algorithm can be Implemented tho now hood.

without the need to use recursive routines. For Instance. a non. AX,.S$
recursive implementation of the traversal algorithm given above can .11100 lrel
be symbolicolly expressed as: N, 041 ttAtil
O0. Sot 00t aIro, - addoess Of the root node N --

O . ) S o st a.r c k n * i z e N 0C N
1. Visit the noi .t stored iat : ,.,ihrh'or i (I1,'
2. It rig tlt I Inok 0 L thewN: Bsep.+ ft- t"~ i 7'ý ... N.. -

t1O(.lnk i• •rutlRt~iik Nil DO1

endif 14 C N
3a. If l.rkt ui k 0 O then: .Se tot 1)LA,1,11anut le 0 It link it.

b'o tO 1 ., 0 5
endi& N 0

3b, It i..C i- I i - 0 then: ,

a't:.k akIt-.ae 3 then:
Set ~~l' 'b _•t~ll~ , i~ .i0 tt lc intllCk _•i I•,

Soa I ~.
endlt

endif ADDRESS

$ /lrrak-jsi zo. - 0 
"1AORSInsertling and Dliellng Nedes Ni A

In order to add a now data item to a binary tree, a node, conltinhiJ N, ---cotn 0
tile now Item of information must be created and stored In a NJ l

convenient memory location. The lelt and right links of this node -re ,t
sot to zoro. It the current tree is empty, the new node becomes the N.
root of the tree, otherwise the node must be Inserted or litked to the N, tPItAtPl
existing tree. To achieve this, the tree is followed downwards. t, N I )
starning from the root aid lumping from lather to son, until a blank t _ ._ .N,
link is found. This hink is then set to the memory position of ilia New r •
nodo. When moving down the tree, a criterion must bo provided at r
each node to chose between tile loll or right branco, es. This coiteflon N, -0-,

determines the final position in the tree of the new node and. N,
consequently, the shape of the tree itself.

Deleting a node from a binary tree is a straightlotward operation if

the undesired node is a terminal node; changing to zero the
coiresponding link 0f its ltther effectively 'prunes' tha node from
the tree and renders the memory occupied by it avail',ble for future hnnnrfSS
uses. in the case of air iillerfediate node, the pro,.eis becomes
siightly more complicated since z% gap can not be 1lft In the tree. To -- f'1011
overcome this problem, the unwanted node Is replaced by a terminal H, ... 0 A
node chosen fron ainong its descendants. Tnis operation can be N .
carried out by nmodilying the links to suit the1 new structure of the N, .__
tree and without lmtovinlg the nodes from their memory positions. N .e
Figures 4.2a and 4.2b illustrate the deletion of node C from thu troo NI.-
shown in figures 4.1 a ncid 4.1b and its replacement by node 14 - h •0 t 0 A

It tho application at hand demands frequent deletion and insertion, a --N' l
imteillory book-kooping systemn is nIecessary for the ellicient N.
impilnlentlltionI of tree strllucilres. Tihis is required so that now N, 0 I
ndes coln be ticoed in the memory space released by the dolotion of -.. 0
previous nodes. This problem can be solved by using a linked list N, - '
strutture to record all the available inemory spaces. A linked list is
a data structure tliat differs from the binary tre* dikt Olutlura
described above il, that Goy node has always only 0ne link poior lni4
at another node, end every node hat always one link pointing at It.
There are two exceptions., Wtlr'h are the heod and the end iodes.
The head is a ilode with no link pointing at it • the addreso of which Is
kept seperately - and the end Is a node with a blank link.

As shown In figure 4.3 the two daIn structures, binary tree and
linked list, are updated slmultriweoui•,y. Initially, the available
memory is partitioned into cells of the correct size to store e al, li el icr coligureeo mn. ()i e l r 0'o t.iu. 4 4 (t)All1 the

nodes These cells, which contain no relevant inforinatio.r other iven o.Oi• r- 1 i wO w.n Qll he ,.A0oie 10l6e-4# Ny nod~e aol A(q)r JCIM& nod*
a single link, are then joined together to form a linked list. Every
time e rode needs to be inserted into the tree, the memory space
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4.2 The Alternating Digital Tree Ck1 = Cki, ddri = dki for i j i and cli = 2 (Cki + dkl), dkl = dki

Consider a set of n points in a N dimensional space (RN ) and a3suine (4.2b)

for simplicity that the coordinate values of their position vectors
[&i. 12 ... A). alter adequate scaling, vary within the interval This correlation between nodes and subdivisions of the unit

[0,1). The aim of geometric searching algorithms is to select from hypercube allows an ADT to be further defined by imposing that each

this set those points that lie inside a given subregion of the space. To point in the tree should lie inside the region corresponding to the
facilitate their representation, only rectangular - or 'hyper- node where it is stored. Consequently, If node k of an ADT structure

rectangular' - regions will be considered, thereby allowing their contains a point with coordinates xk, the following condition must be

definition in terms of the scaled coordinates cf the lower and upper satisfied:
vertices as (a, .•).. . ,f

C' 5 Xk! < dki for i = 1,2.. N (4.3)

Comparing the coordinates of each point k with the vertex
coordinates of a given subregion to check whether the condition a, :5 Due to this additional requirement there exists only one possible way

Xki sbi is satisfied for i = 1. 2 ... N, would render the cost of the in which a new point can be inserted in the tree. As discussed in the

searching operation proportional to the number of points n. This previous section the tree is followed downwards until an unfilled
position where the node can be placed is found. During this process,computational expense, however, can be substantially reduced by

storing the points in a binary tree, in such a way that the strutr however, left or right branches are now chosen according toofsthetoreernflectg the po sitioibinsaof thee pon in su tat Thestructure whether the new point lies inside the region related to the left orof the tree reflecs the positions of the points in space. There exist h os hrb nuigta odto 43 sstsid
several well known algorithms that will accomplish this effect for right sons, thereby ensuring that condition (4.3) is satisfied.
one dimensional problems; the most popular are the binary search
tree and digital tree methods 141,43]. Binary s&orch trees have Given a predetermined set of n points, an ADT structure can be built

been extended to N dimensional problems in 1451, bit the resulting by placing anyone point at the root end then inserting the remaining
tree structure, knowin al N-d trees, do not allow the efficient points in consecutive order according to the algorithm described

deletion of nodes. The algorithm presented here is a natural above. This is illustrated in figure 4.5 for a set of 5 points

extension of the one dimensional digital tree algorithm and {A,B,C,D,E). The shape of the free obtained in this way depends

overcomes the difficulties encountered in N-d trees. mainly on the spatial distribution of the points and somewhat on the
order in which the points were inserted. The cost of operations like

Definition and Node Insertion node insertion/deletion and geometric searching depends strongly on
Broadly sp)akindg, an alternating digital tree can be defined is a the shape of the tree; generally poor performances are to be
broary tree in which a set of n points al stored follcb wing certain expected from highly degenerated trees (see figure 4.6), whereas
geobatrinal criteria. These criterin are based on the similarities well balanced trees (see figure 4.7), as those obtained for fairly

geomtrial ritria Thee citeio re asedon he imiariies uniform distributions of points, will result in substandial reductions
arising between the hierarchical and parental structure of a binary of teserching ot intse casesuth i average numberevelsin

tree and a recursive bisection process: each node in the tree has two of the searching cost, In those cases the average number of levew s in
-on, lkeisea isetin pocss ivdesa ive rgio ito wo the tree, and therefore the average cost of inserting a new point.

mona, likewise a bisection procr.ss divides s given region into two becomes proportional to log(n): clearly a r~cnsiderable cost it
smaller subregions. Consequently, .t is possible to establish i-n compared with the cost of storing the poir a sequential list. but
association between tree nodes and subregions of the unit hypercube flutabe in view of the r oir csint c ists th t

as follows: the root represents the unit hypercube itself; this region fully justifiable in view of the reduction io ching costs that ADT

is now bisected across the xt 
axis and the region for which 0 • xt < structures will provide.

0.5 is assigned to the loft son and the region for which 0.5 < x, 4 1I
9 F ;.s1ne 11 0o he fighl son; ai e64Ch of .hese nodes ;he pro;ess O s ..

repeated across the x2 direction as shown ini figure 4.4. In a two *, l')
diimensional spai.., .' process can be repeated in~efinitely by j
cnosiig xr and x*ý ' actions in alternating order: s:milarly. in a
general N dimensional space, the prowess can be continued by
choosing, directions xl. x

2
. xN in cyclic order.

0, 0, o, ..L.\

R I

FUture 4.4 F._
Th. relation between a b•ury trie and a bi•$ ,lo pfo oeOs.

Generally, it a node k at ;he hierarchy level m - the root being level
0 - represents a region (gk, dx), thc F !)regions iissociated to its left
.and right sons. ( ,, IJd) and (gj,. &xii result from the bisection of Figure 4.5

11,. 4!•) by a plane normal to the j-th coordinate axis, where j is eLaling an AOT bY siv.s n'i n

• , cyclically from the N space directions as:

j= - It mod(M,N) (4.1)

Geometric Searching
and inod(m,N) denotes the remainder ot the quotient of m over N. Consider now a set of points stored in an ADT structure. The fact

-teiice (Q,. V.j) and (G*,, djx,) are obtained as: that condition (4.3) is satislied by every point provides the key to

the efficient solution of a geometric searching problem. To illustrate

cx, cki, d - dki for i * j and cxii = Cki, iddxi (1ck it +) this, note first that the recursive structure of the bisection process
described above implies that the region related lo a given node k
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consequently, all points stored ir' these nodes must also lie inside the Search the tree (ABCD,E,F,G,H}:
region represented by node k. For Instance, all points in the ADT Sr the t XA1!,CDEfo 1. 2
structure are stored in nodes descended f:om th-. tinW and, clearly, 2. h i f d ! a' br i t1,2
all of them lie inside the unit hypercubo - the region arsocialed with 2. Since del Ž a' and c0

1 . b'search the tree
the loot. Analogously. the complete sot of points stored in any (B.C.0,E):
subtree is inside the region rupiesented by the root of the subtree 2.1 Check if al ; x5 I s bf

2.2. Sirce dc > a' and cci< b'search the tree
This feature can be effectively used to reduce the cost of a (C,E:
geometric searching process by checking, at any node k, the 2.2. Check if a1 s x 1 !b
intersection between the searching range (,I, bJ and the regie.1 2.2.2. Skip (loft link is zero)
representod by node k, namely (C, d;). it these two regions fail to 2.2.3. Skip (cE' > bt)
overlap, then the complete set of points stored in the subtree rooted 2.3. Skip (con > b2)
,.t k call be disregarded from the search, thus avoidinj the need to 3. Skip (CFI > b1)
examine the coordinates of every singli point. eiigain a 'non-recursive' implementation of this algorithm can be

achicvjd using a sWack In a very similar way to thai previously

A cdescribed for the traversal algorithm.
SNote that, with this technique, only the coordinates of points A,B and

C are actually examined, the rest being immediately disregarded in
view of their position in the tree. In general, only those points
stored in nodes with associated regions overlapping (L. b) will be

( checked during the searching process.

A.~ij F 3I[
0 G

Figure 4.6 I
Digetwitted Iron.

A Figure 4.6 1th. searching problm ( WA

BC
4.3 Geometric Interbection
Gsometrical intersection problems can be found in many applica: .-Is;

S E F H for instance, a common problem that may emerge it, contact
algorithms [461, hidden line removal applications or in the advancing
front grid ganeration algorithm presented in section 3, is to

C Kdetermine from a set of three noded triangular elements those which
intersect with a given .;e segment. Similar problems. involviog
other geometrical objects, are encourterel in a wide range of

Figure 4.7
A t t. geometrical applications. In general, a cleometric intersection

problem consists of finding from a set of geometrical objects those
which intersect with a given object. If every one-to-one intersection
is investigated, the solution of these problems can become very

Conmsquenlly, a systematic procedure to select the points that lie expensive, especially when complex objects such as curves or
inside a given searching range tiL h) can be derived from the sur'aces are involved. Fonrunately, many of !hese one-to-one
traversal olgorithm previously presented. Now the generic operation intersections can be quickly discarded by means of a simple
visit 'he root' can be re-interpreted as checking whether the point comparison bitween the coordinate limits of every given pair of
stored in the root falls inside the searching range. Additionally, the objects. For instance, a triatgle with x-coordinate varying from 0.5
left and right subtrees need to be traverued only if the regions and 0.7 cannot intersect with a segment with x.coo-dinate ranging
associated with their respective root nodes intersect with the ranG9. from 0. i to 0.3. Generally, the intersection between two objects in
Accordingly, a geometric searching algorithm emerges in a the N dimensional Euclidean space, requires each of the N pairs of
recursive form as: coordinate ranges to overlap. Consider for instance the intersection
1. Check whether thq coordinatev of the node stored in the root. say problem between triangular facets and a target straight line segment
1k, are inside (L UJ i.e. check whether at _< xk < bi for I = 1.2... N. in R3 ; then, if (Xmin, Xma) are the coordinate limits of elernen' k
2. If the flft link of the root is not zero and the region (a&,, d61;[) and (Uo,min, lo,max) are the lower and upper limits of the target
overlaps with (L W) i.e. it dklg > aI and ckli _-; bi for i - 1,2 ... N, segment (see /ipure 4.9), an important stop towards the solution of
search the left subtree, a geumelric intersection problem is to select those which satisfy the
3. If the fight link of the root is not zero and the region (.•kr, 60kr' inequality:
overlaps with (la bj i.e. if dkri 2 t aI and Ckhi s b! for i - 1,2 .,. N.
search the right subiree. Xk,mlni<5 XO.Maxs

for i =t ,2... N (4.4)
In order to illustrate this process, consider the set of points and the Xk.maxi > Xo, 5iin'
searching range shown in figure 4,.a and the corresponding
alternating digital tree depicted in figure 4.8b. For this simple The cost of checking condition (4.4) for every element grows
example, the algor;thm given above iesul~s in the following sequence proportionally to n, and for very numerous seof may becomeof eteps: prohibitive. This cost, hoe-rver, ccn be substant;ally reduced by

using a simple device whereb.' the process A! selecting those



elements which satisfy condition (4.4) can be interpreted as a Using this representation of a given object k, condition (4.6)
geometric searching problem. Additionally, since the number of becomes simply:
e;ements that satisfy condition (4.4) will normally be much smaller j
than n, the cost of determining which of these intersects wih the
target segment becomes affordable. al xk bil for i = 1,2.-s2N (4.7)

where SL and b can be interpreted as the lower and upper verlices of
a 'hyper-rectangular' region in R2N and, recalling (4.5), their
components can be obtained in terms of the coordinate limits of l1,e
target object (see figure 4.11) as:

element ia

S X0.mn .... X0.mln N, 1 .... 1J (4.8b)

• T

Nb Xo.min Xmax

Target I ne X0 rain Fa V
segment " ",.Ln "1 i , , X 1-- -00a, 0,

Figure 4.9 Xo.min Xomax Xo,max
The definilion ol coordinaie limits fot triangular esemems and straight line

segnenils.

Figure 4.11 C
The intafse~ion problem in I'l as a searchirn prolernil in Fd,k

In order to interpret condition (4 4) as a geometric searching
problem, it is first convenient to assume that all the elements to be
considered lie inside a unit nyperc-JbO - a requirement tha. can be
easily satisfied through adequate scaling of the coordinate values.
Consequently, condition (4.4) can be re-written as' Consequently, the problem of finding which objects in RN satisfy

condition (4.4) becomes equivalent to a geometric searching problem

0 5Xkn k <. X0.maxl in R2N i.e. obtaining the points sk which lie inside the region limited
. by I and b. Once this subgroup of elements has been selected, theSXikinN -< gOnmuoN intersection of each one of them with the target object must be

(4.5) checked to complete the solution of the geometric intersection
X0,min' 5 Xk.max1 !5< 1 problem.
XO.lnN Xk.t.xN <1 4.4. The Use of the ADT for Grid Generation

It is obvious from the advancing front algorithm described in section

Consider now a given object k in RN wilh cý'ordinate limits k.min, 3 that operations such as searching for the points inside a certain
nd ~JI.meu; combining this two sets ot coordinate values, it is region of the space and determining intersections betweengeometrical objects - in this case sides and lacoc - will be

possible to view an objcct k in R* as a point in R24 with coordinates performed very frequently. The complexity of the problem is
x:for i = 1.2. 2N definel as (see figure 4.10): increased by the fact that the see of faces forming the generLtion

front changes continuously as new faces need to be inserted and

16- [ Xk1 mint .... X.,minN' Xk'maxI ... Xk. maxN) N (4.6) deleted during the process. Clearly, for grids consisting of a large
number of elements the cost of performing this operations can be
verv Important.

A successful implementation of the above algorithms has been
accomplished by making extensive use of the ADT date structure.

XMaA For instance, the Mlgorithm of section 3.5 lor tetrahedra gerteration

employs two tree structures: one foW tfd faces in the front and the
other for the s~des defined by the intersection betw~een each pair of
faces in tWe front (see figure 3.11). This combination allows a high
degree of flexibility and the operations of insertion, deletion,

-,, -- geometric searching and geometric intersection can be performed
optimally. The overall computational perfoimance, of the algorithm is

I demonstrated by generating tetrahodral grids, using the above
"method, for a unit cube (see ligure 4.12). D'fferent numbers of

- X w_ ----. elements have been obtained by vnrying the grid size. In figure 4.12

0 Xin Xmax Xmin the computer time required on a VAX 8700 machine has been plotted
agains- the number NE of elements generated. It can be observed thuat
a typical NE'log(NE) behaviour is attained. Using this approach grids
containing up to one million elements have been generated and no
degradation in the periormance has been detected.

Figure 4.10
The relereisedallon a a roegio In f 1 as a poW in R 2

'
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theory. The por.sibte presence of discontinuities in the colution Is
taken into account and, in addition, the procedure provides
information about any directionality which may be present in the

17, 1- solution. The advantages of using directional error Indicators become
apparent when we consider the nature of the solutions to be
computed involving flows with shocks, contact discontinulties etc,

k r ID Such features can be most economically reprosented on grids which
are stretched in appropriate directions. Although, these error

,,.5 .-.. , lt4 .- 0,, estimates have no associated mathematical rigour considerable
2$00. 1445* "0r945 success has been achieved with their use in practical situations.

&0,,moledft

3 The computed error, estimated from the current solution, is
transformed Into a spatial distribution of 'optimal' grid spacings

C,.N. HAI(NF' which are interpolated using the current grid. The current grid is
then modified with the objective of meeting these 'optimal'

O"distribution of grid charantfirlstics as closely as possible. Three
-0 alternative procedures will be discussed here for performing the

2 grid adaption. The resulting grid Is employed to produce a new
4 '10 solution and this procedure can repeated several times until the user

ý,.4- ,is satisfied with the quality of the computed solution.

5.1 Error Indicator In ID
The development of a method for error indication is considerably

Fileur 4.12 simplified it we restrict consideration to problems involving a single
Grid gerivalio • cpu li.es. scalar variable. For this reason, when solving the Euler equations, a

key variable Is identified and then the grid adaptation is based on an
error analysis for that variable alone- The choice of the best

S. ADAPTIVITY FOR STEADY STATE PROBLEMS variable to use as a key variable remains an open question, but the
The procedures described above allow for the computation of an the Mach number has been adopted for the computations reported in
initial approximation to the steady state solution of a given problem, these notes.
"Ibis approximation can generally be improved by adapting the grid in
some manner. Here, we follow the approach of using the computed Consider first the one dimensional situation in which the exact
solution to predict the desired characteristics (i. e. element size and values of the key variable a are approximated by a piecewise linear
shape) for a new, adapted grid. The ultimate aim of the adaptation function o&. The error E is then defined as
procedure is to predict the characteristics of :he optimal grid. This
can be defined as the grid in which the number of degrees of E . c(x') - (x1) (5.1)
freedom required to achieve a specified level of accuracy is a
minimum. Alternatively, it can be interpreted as the grid in which a We note here that if the exact solution is a linear function of 0( then
given number of degrees of freedom are distributed in such a manner the error will vanish, This is because our approximation has been
that the highest possible solution accuracy is achieved. In practical obtained using plecewise linear finite element shape functions.
situations however, there are several factors which make the Moreover, if the exact solution is not linear, but is smooth, then it
achievement of such optimal grids extremely difficult. Some of these can be represented, to any order of precision, using polynomial
factors are: shape functions.
i) The concept of optimality is intinrately linked to that of accuracy,
which is not uniquely defined. Hence optimality of a grid needs to be To a first order of approximation, the error E can be evaluated as
defined with respect to a given norm or measure of the error. An the difference between a quadratic finite element solution 8 and the
additional inconvenience related to the measure of accuracy, in the linear computed solution. To obtain a piecewise quadratic
present ,ontext, arises from the fact that we are attempting to aporoximation one could obviously solve a new problem using
solve a coupled set of non linear partial dlitferential equations and, quedralic shape function,%. This procedure however, although
therefore, a rigourois measure of the error should involve all the possible, is not advisable as it would be even more costly than the
relevant variables. original computation. An alternative approach for estimating a
ii) For linear elliptic operators, as we have shown in Section 1, oiia optto.A lentv prahfretmtnquadratic approximation from the linear finite element solution is
Galerkin finite element algorithms are readily derived which therefore employee. Assuming that the noda: values of the quadratic

guarantee that the approximation obtained is the most accurate and linear approximations coincide i.e. the nodal values of E are
dmong e efximoned withi to tial nm iled o zero, a quadratic solution can be constructed on each element, once

lunctions. Here, accuracy is defined with respect to a norm implied the value of the second derivative Is known. Thus the variation of
by the operator itself (the energy norm). For the Euler equations, the error E wthin an element e can be expressed as
however, such an energy norm does not exist and no numerical
schemes are known which possess this optimality property. I d-).
iii) This best approximation property means that the error of the E 2 4 a(h. x,- (5,2)
computed solution, measured in the energy norm. is bounded above C
by that of the exact interpolant. i.e. the approximation in the space
of current trial functions which has exact nodal values, Using results where r denotes a local element coordinate and h. denotes the
of interpolation theory [471, it is then possible to produco rigourous element length. A procedure for estimating the second derivative of
bounds on tue error of the numerical approximation. These results a piecewise linear fungtion is described below. 7
are tased on certain regularity assumptions on ii-. solution, which
for the Eulor equations will be inva' -. z .i,?inity of The root mean square value E.Res of this error over the element can
discontinuities in the flow. be computed as
iv) Finally, the orror estimates produced are based on the computed U
solution. As this is only an approximate solution, such error (' ,
estimates will only be as good as the computed solution, This means E 2
that. even in the bIst situation, the optimal grid will only be .ERms dr1 =2- (5.3)
achieved in the asymptotic limit. i.e. when the solution is so good f idxi
that the computed error becomes very reliable. 0

where s • I St•aids for absolute value.
In view of these observations and limitations, we have made an
attempt to develop a heuristic adaptive strategy. This strategy uses We define the 'optimal' grid, for a given degree of accuracy, as the
error estimates which are based upon concepts from interpolation grid in which this root mean square error is equal over each
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elem3nt. In the present context, this requirement may be regarded where 11 is an arbitrary unit vector, 60 is the spacing along the
as being somewhat arbitrary. However, it has been shown 148] that direction of L, arid mll are the components ot a NxN symmetric
the requirement of equidistributlon of the error leads to optimal matrix of second derivatives
results when applied to certain ellipttz problems. This requirement Is
therefore written as

he I daM4 oa
deZ = C (5.4) ¶ax'axl(

These derivatives are computed, at each node of the current grid, by

where C denotes a positive constant. using the N dimensional equivalent of the procedure presented In the
previous section. The meaning of equation (5.9) is graphically

Finally, the requirement of equation (5.4) suggests that the 'optimal' illustrated in figure 5.1 which shows how the value of the spacing in

spacing I on the new adapted grid should be computed according to the a direction can be obtained as the distance from the origin to the
point of intersection of the vector IL with the surface of an ellipsoid.
-,-,,The directions and lengths of the axes of the ellipsoid are the

d2  
= C (5.5) principal directions and eigenvalues of the nm.atrix m respectively.

5.2 Recovery of the Second Derivatlves Several alternative procedures exist for modifying an existing grid

The first derivative of the computed solution on a grid of linear in such a way that the requirement expressed by equation (5.8) is

elements will be piecewise constant and discontinuous across more closely satisfied. Three such methods will be described here, In

elements. Therefore, straightforward differentiation of d leads to a the first procedure, called grid enrichment, the nodes of the current
grid are kept fixed but some new nodestelements are created. In the

second derivative which is zero inside each element and is not second procedure, referred to as grid movement, the total number
defined at the nodes. However, by using a recovery piocess, based of elements and nodes remains fixed but their position is altered.
upon a variational or weighted residual statement `121, it is possible Finally, in the adaptive regiding algorithm, the grid adaption is
to compute nodal values of the second derivatives orfm element accomplished by completely regenerating a new grid using the grid

generation algorithm presented In section 3.

To illustrate this process, consider a one dimensional domain 0 < x1

< L which has been discretised into (n-l) linear two noded fi..ite
elements. The piecewise linear distribution of the computed solution /1"
6 is expressed as - - "

n
Y= .Njdj (5.6) ', [

where Njis the stancdard linear finite element shape function 1121 -

associated to node J. Similarly, a piecewise linear approximation to ... .-,
the distribution of the second derivative, which we seek to
determine, can be written as /

d26I /-------

ý7,T2I Njd,12(5.7)SJ 
x3

The nodal values of the second derivative may be compuied from the L... ,

apipromir _to variltional requirement that
Si

( Nj NK C11 ) 12 6J) dl dhe dcsermlrnallon 0 The value d the spacig lialong Oiw deredio n,
dx d xl dx1

+ { NK)xO -N K1 ,.n (5.8) 5.4 Grid Enrichment
In order to adapt a grid using grid enrichment, a sweep over all the
sides in the g.id is made and the 'optimal' spacing in the direction of

The values of the derivatives at the two end points can be inserted,
if known or can be taken to be equal to the constant value o theside,

rfkowocoecnsulting t oalgeb the matrix m is taken I) be the average of its value at the two nodes
derivative in the adjacent elements. The resulting set of algebraic of the side, The enrichment procedure consists of introducing an
equations can be solved, in a few iterations, by using a Jacobi
procedure (16) or alternatively, the consstent mass matrix additional node for each side for which the calculated spacing is less
appearing on the left hand side of equation (5.7) can be lumped, thus thaen the length of the side. For interior sides, this additional node is
yielding a diagonal system of equations. Numerical results obtained placed at the mid-point of the side, whereas fcr boundary sides, it isto dte o nt inicae ay sinifcan diferecesin te gids necessary to refer t•o the boundary definition and to ensure that thp
to date do not indicate any significant differences in tho grids new node is placed on the true boundary. When any side is subdivided
produced by using these two approanhes. ii this manner, the element'- associated with that side will also need
5.3 ': '' to MItt-l to be subdivided in order to preserve the consistency of the finsbf

Following the process described above, nodal values of the second grid. Figure 5.1 illustrates the three possible ways in which this

derivative can be obtained from the approximate solution on the element subdivision might have to be performed in two dimensions.
current grid. The use of expression (5.5) then yielos directly a nodal The number of sides to be refined depends on the choice of !he

constant C in equation 5.9. To avoid excessive refinement in the
value of the 'optinal' spacing for the new gd. vicinity of discontinuities. a minimum threshold value for the

Expression (5.5) can be directly extended to the N dmensional case computed spacing can be used. When the grid enrichment procedure
has been completed, the values of the unknowns at the new nodes are

by writing the quadratic form linearly interpolated from the original grid and the solution algorithm

is re-started. This procedure has been successfully implemented in
mli pi c (5.l) two and three dimensions and several impressive demonstrations of

) 1the power of this technique have been made. 18,19,49,50].
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A 
It can be observed, from the examples presented, how the quality of

_________enrichment procedure. The main drawback of the approach is that the
number of elements increases considerably following each
application of the procedure. This rnilens that, in the simulation of

practical three dimensional problems, only a small number of such
adaptations can be contemplated.

FigCr - -.-

figure 52 .Te rbe sle

dimensional example is illustrated in fgr .. Tepolmsle
is a Mach 0.15 flow past a double ellipsi configuration at 3$0 angle b

of attack. The Initial grid and two adaptively enrilchcdl grids are If
6. ~shown together with the computed Mach number solutions. The I

.ippiicatioM of theocnrichmenil algorithm in three dimensions is shown
in figure BA4. The inviscid flow past a 3$ wedge Is solved. The free
stream Mach number is 3. This is a two dimensional problem F
computed on a three dimensional grid. Two views of the initial grid
and solution are shown. A single application ofi the enrichment
algorithm produces Ihe grid and solution which are also displayed in-

FIRST M(511 SECOND MESH 31141110 MESPI
1 732. ... InctI S r 31, ro' It, 649 1.-en Wc

Sfl oiflt 2 52 Ao.n, S 444 0-.1.

#rU1~''N''', N-AFigure 5.4.r'u ~ \~iSupArsnwik flow past a wedgre of sangle thirty degiriee Is three dimensions.
'~~' (a) (hiVieora 0 the Widia grid. (c) The ccrnyuted density contours.
' 'ii(d) (9) Views of the enriched grid, ill The computed density

cc.Itours orr the enirichred grid.

1.'~.A z6.5 Grid Movement7For the grid movement algorithm, the element sides are consideredc
6 . as springs of prescribed stiffness; and the nodes are moved until the

.'IV, spring system Is in equilibrium. Consider two adjacent nodes J and K
as shown in figure 5.5. The force LK exerted by the spring

connecting these two nodes can be takcen to be

AK~ tWx CJg (I J-ij 5.1

I -' Iwhere CA is the stiffness of the spring and gj and iK are the

K; Oi " position vectors of nodes J and K respectively. Assuming that

h- lLi-LcI (5.12)

the adaptation requirement of equation (5.9) wit be satisfied if the
spring stilinesses are defined as

MACH NUMBEoR SOLTuIONS m- a is u 30' (.3

Here flJK is 1b, unit vector in thes direction of the alide joining nodes i

Psure ~rad K. For equilibrium, the sum of spring fores6 at each node should
suprsaoni flow pa 3 double slise d a fire*elf sws we re str of e.1 and &I an be equal to z,ýro. The assembled system can be brought into

4angile as aeack of "rit degreet asehrgo a aleqemnlifre d We solacuttorns obtaned equilibrium by sImple Iteralion. In cacti nteration, a loop Is performed
talwi"then u*se of A'w" senldrm over all the Interior nodes and new nodal coordinates are calculated

according to the expression
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Figure 5.5
The grid movement algorithmfr In whilch element sWaes are repaced by Springs.

S iWlAn tIhET1 SOLUTIdONS M. ats av X'I Cj it I
NEW. Kl .111Li s= (5.14)

J:. ExFigure 5.6
K i .1supersonici ttsw past a double ex11p~o Mi .tree stream Mach number of 0.15 and at ao

a1i< ofl.~ attack Of thirty degrees showing a soqueos oll grils ord solutions sblarrd
tollowing the use of apdaptive grid movement

where the summation extends over the number of nodes, Sj, which t
surround node J. Sufficient convergence is normally achieved after
three to five passes through this prociidure.

This technique will not necessarily produce grids of better quality, t
as badly formed elements can appear in regions (such as shocks) in ._-
which the spring coefficients C, vary rapidly over a short distance. .

To ovoid this problem. tho definition of the value of CJK given in ... - -

equation is (5.13) can be replaced by an expression of the form -

A CJK
B' + CJK .

This can be regarded as a blending function definition for Ihe spring
stiftnesses and it has been cottslruitod so ai to ansuro 'hat, wish a
suitable choice for the constants A and B. excessively small or -t.-

excessively large element sizes are avoided. This, in turn means
that grids of acceptable quality will be produced. More sophisticated -

procedures for controlling the quality of the grid during movement .

can also be devised J511 and grid movement algorithms have been
successfully used in two and three dimensional ftow simulations on i
both structured and unstructured grids [15,51,521.

The grid movement algorithm described has been applied to the ............ ... ..-
problem of flow past a double ellipse configuration which has been 10 649 elements MACII NUMBER SOLUTION
treated previously. Figure 5.6 shows the solutions produced 5 444 points .

following two grid adaptations. It can be seen that the Improvement
obtained after the second adaptation is m~nor. This is because the
algorithm does not allow for the creation of new nodes and so the Figure 5.?
quality of the final solution is very much dependent on the topology supersonic flow past a doubl eapa. a a tree atream Mbch niwrtber at .15 and aIt an
of the initial grid. This is a major drawback of the grid movement angle of attack o4 thirty degrees showing the soltlonse obtained following te.
strategy. A possible remedy to this problem is to combine grid qIicatio ot adq4tve gid muvement to a previousty enricted gid.
enrichment and grid movement procedures. This is demonstrated in
figure 5.7 which shows the application of the movement procedure to
"the final enriched grid of fIgure 5.3. The 'optimal' values for the grid parameters are calculated at each
5.6 Afgle11node of the current grid. The directions a,: -i ... , N, are taken to be 4
5.6 Adaptive Regrldlng the principal directions of the matrix m. The corresponding grid
The basic idea of the adaptive regriding technique is to use the spacings are computed from the eigenvalues e,: i-i,,,., N, as
computed solution to provide information on the spatial distribution
of the grid parameters. This Information will be used by the grid 1,2
generator described in section 3 to generate a completely new 8 - f i.(1
adapted grid for the problem under investigation. fr 1-11. N.
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The spatial distribution of the grid parameters Is defned when a .b
value Is specified for the constant C. The total nurber of elements in

the adapted grid will depend upon the choice of this constant, ror

smooth regions of the flow, this constant will determine the value of .•

the root mean square error in the key variable that we are willing to
accept. Therefore this constant should be decreased each time a new
grid adaption Is performed. On the other hand, solutions of the Euler . - to
equations are known to exhibit discontinuities. At such 210
discontinuities, the root moan square error will always remain large
and therefore a different strategy i, needed in the vicinity of such
features.

M - e,.tS

In the practical implementation of tho present method, two threshold a-300
values for the computed spatial distribution of Ilpacing are used: a
minimum spacing frg. arid a maximum spacing 6mfx, so that WIITIAL MS9 MACH NUMBER SOLUIION

I 599 elemfler

!5rln 61 8S • 
8
m a for i=1 . ... N (5,17) U 2 points

The reason for delining the maximum value 8... is to account for the
possibility of a vanishing eigenvatue In (5.16) which would render (d)
that toxpression meaningless. Yhe value of 8 max is chosen as the
spacing which will be used in the regions where the flow is uniform
(the far field, for instance). On the other hand, maximum values of
the second derivaliveo occur near the dlscontinuities (if aonv) of the jj,3 .

flow where the error indicator will demand that sniallr elr,.rc irs
are required. By imposing a minimum value 3 fer 9-a grid size, wtr
attempt to avoid an excessive concentration of elements noar ,.
discontinuities. As the flow algorithm is known to spread *.

discontinuities over a fixed number of elements (i.e. two or three),
6.ml is therefore set to a value that is considered appropriate to
ensure that discontinuities are represented to a required accuracy. •-IS
This treatment also accounts for the presence of shocks of different
strength in which, since the numerical values of the second
derivative are different, equation (5.16) will assign them different
grid spacings (e.g. larger spacings in the vicinity of weaker shocks). SPACING DISTRIBUTION STRTCHING DISTRIBUION

The total number of elements generated in the new grid will now
depend on the values selected for C, 5, and 8min However, it . -- 5

turns out that this number is mainly determined by the choice of the
constant C, which is somehow arbitrary. The criterion employed
here is to select a value that produces a compulationally affordable
number of elements.

The adaptive regriding strategy presented in this section is
illustrated in figure 5.8 by showing the various stages during the 7
adaptation process. Figure 5.8(a) shows the Initial grid employed for
the computation of the supersonic flow past a double ellipse
configuration. The Mach number contours of the solution obtained on

a!he ii gid are shown in figure 5.8(b). Tho flow conditions are i
free stream Mach number of 8.15 and an angle of attack of 300. The
application of expression 5.16 to the solution obtained produces the
distribution of spacing and stretching displayed in figures 5.8(c) and

5.()respectively- In figure 5.8(c) the contours corresponding to (--h)--. . 5:,,'- b)
he valuo of the minimum spacing occuring in any direction is shown, "
whereas in figure 5,a(d) the value of and the direction of stretching
is displayed in the lorm of a vector field. The magnitude of the
vector represents the amount of stretching i.e. ratio between --2

maximrum and minimum spacings, and the direction of the vector
indicates the direction along which the spacing is maximum. In this "-.
example expression 5.17 has been applied to the computed spacings
with values of 

8
msx - 15 and 

5 mln . 0.9. Figures 5.8(e) - 5.8(h)
show various stages during the regeneration process. It can be
observed how small elements are generated first as discussed in-/7'
section 3.5. The completed grid is shown in figure 5.8(i) and the
solution computed on this adapted grid is shown irn figure 5.811). It RiGNUIAED,.SH MACH NUmUOIUIION

can be observed how a very significant improvement in the solution 1,1 *-A.

is obtained using, in this case, a single adaptation.

Estimating the Number el Elements to be Generated
The regeneration process uses the current grid as the background
grid. Such a background grid clearly represents accurately the Figure 5.0
geometry of the computational domain. In this case, the number of Irvaliation of the adalve reguiding procedure applied In tle iaalytis 01 supersonc

How past a doub•s rim" at a Irliel4,fea Meah number 01 8.15 Mi ,dt 0,11 entanle Oelements to be generated, denoted by N.. can be estimated as art, t of rldy degrees . (ia Initlal grid. (b) Mach number CDuro C¢wuted on the
follows. Once the values of C, 5na, and &•ln have been selected, the Initia geld. (c) The computed distfibulon of 64150056, -Ing ,mln - and 5max - IS.
spatial Jistribution of grid parameters Si, gQ; i-I .... N IS computed. () The computd valve and dirc.,ora Ic ths strelching. (4) - (h) Views 04 the grid

during dlernr stlagee" of the roegiaig. lI) Fl,•e &ded grMd. (f) The Mach number
For each element of the background grid, the values of the contour dstrlibution pWoduced 0 6he 1adveky regenerated grid.
transformation T is computed at the cenfrold. The transformation is
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applied to the nodes of the element and its volume V. in the Shock Interaction on a Swept Cylinder
normalised space is computed The number of elements Ne is assumed 1his Is a problem of practical Interest because its Implications to the
to be proportional to tho total volume in the unstretched space, i.e. desigit etf hypersonic vehicles 1531, The experimental apparatus and

the computational domain adopted are shown dlagramatlcally in
figure 5.10(a), The numerical simulation has been carried out for a

-N* X V . (5.18) sweep angle ot 150 on a cylinder of diameter D equal to 3 inches andlength L equal to 9 inches, The undisturbed free stream Mach numbe
0.1 is 8.03. The fluid which has been turned by the shock generator

enters the computational domain with a Mach number of 5.20. The
where Nb is the number of elements in the background grid and X is a initial grid and those obtained after two adaptive regridlngs and the
constant. The value of X is calculated as a statistical average of the dersity contours distribution are shown Ii figure 5.10(b). The
values obtained for several generated grids, The calculated value Is characteristics of the grids are shown in table 6.2.
X = 9. This procedure gives estimates of the value of Ne with an
error of less, than 2(P/., which is accurate enough for most practical Grid Elements Points 8 mhI 8

InaX
purposes, II the estimated value of N. is either too big or too small,
then the value of C is reduced or increased anrd the process repeated 1 5t 190 10 041 1.0 1.01
until the value of C produces a number of elements which is regarded 2 100 07t 18 660 0, 5 3.0 |
as being computationally acceptable. 3 171 800 31 0o3 0.18 3.0

Application Examples

Double Ellipse Table S.1 3D Shock intoractior on a swept
The adaptive regriding procedure is applied twice to the problem of cylinder: grid characteristics.
flow past a double ellipse. The flow conditions are those previously
considered for this conliguration. The initial and two adapted grids The poten.al advantagos of tie adaptive regriding procedure are
and the solutions for Mach number are shown in figure 5.9. The clearly illustrated in this three dimensional example. The final
characteristics of the grkds employed are displayed in table 5.1. adapted grid has a resolution of more than five times that of the

initial grid whereas the total number of degrees of freedom
increases by only a factor of 3.4. The effec's of the three

Grid Elements Points 6 mmn dimensional adaptation are best shown in figure 5.10(c) which shows
1 2027 I I 10 4.0 the cross section through the grids hall way along the cylinder. Two

21views of the throe dimensional grid for the final adaptation together
31.;51 1 A64 0.9 with the soiution obtained are shown in figures 5.10(d) and 5,10(e)

L 3 6403 3• 2 %r o .ýrespectively.

Table 6.1 Doublo ollipso (M.=8.15. o=300): grid characteristics.

It is observed how the application of the adaptive procedure, when
compared to the enrichment strategy, allows for a larger incroase in
ine resolution at the expense of a smaller increase on total number
c! eleents. On tho other hand the regriding procedure does not
suffer from the limitations intheient ini the grid movement algorithm.

41 01

•w., -1. 4- -0,Wlw - 3.t

Sup.lSOnIc Ilow pa st a dompo. eMlire s a fiee srta Mah A. 4W a 8.iS an at an

: i~~ngle of atlack of thldy deree sho"l the sequence of ends a•nd the .•

¢w sonrling solutions ,ob=lained using ad41dq, he roglrlding •

o r~c 4 PC.T. 244 ECC0"
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Fr0l1 MK1iii SCOND MESH THIRD MIEN

f-N.-

shoc* intoradllr on a sweri oylirntl•f W to• Math number of R.0IS and ,Aj

fitipen dogreftl i~lngki of s%%W• (a) Sketlch of the expirwimetl P*hatu~pilis and The •.:F

Choo cmir ialbr al~ll l doma•in. (b) TN• wtioncllll<# tH grids ad cofrosi-.ndtilng clomptd
t ~denslity c•oAirs obtalined by usingl adattive raliridmin. (c) Cvnsi smlilonitallken

Generic Fighter Configuration
This exatinple, concerns the simulation of Ihe flow past a genericfighter configuration. The generation of the Initial grid for that

problem has been described in section 3.9. The flow condilionzs

considered correspond to a free stream Mach number ofl 2 sit an . .

angle of attack of 3.790. The engine inlet is modelled by proscribing a(e
,_ ~ ~~Mach number of <, 3 within The engine. At the outlet supersonic flow (l ,i~~ -•• ••

, ~~~conditionls are nssumred. Bec:ause Of 111w Symmetry Of the problem •" ,,

i ~~only half of the domain is mo-delled. The spline definition of the,.-

goornetry is shown in figure 5.11(a) and consists of 23 surface

components and 53 curve components. Two grids have been
employed in an initial demonstration of adaptive iegriding applied to

Figure S.fl
full aircraft coidiguration. The initial grid contains 76,522 cioeri lip.-der co~nilzradtio, .f a fiee stream march numbe•r of 2 an 4d atan ,,n.lie of

tetrahedral elements with 4,128 triang3ular faces on the boundary. A 0~ack *1 3.79 dio~ess. (a) Geometry definition • airrefatf surdi;e and outer boundlary.

•preliminary first solution was computed using 1,500 iterations of (b) IMgria id and corniuted pre•,um sollea 10 the symmetry piano. (,C-) •w,@.or grid
I~~~~~~a • Pn•iurtelld "se-iiwl e soionui on' Th symmetry planir.t (d) rinitial grtid alnd ¢comliouted

the basic explicit scheme. A send grid was adaptively, gene:rated p•lesr 94iuio on the aeralion borac,• (a) secon SW" &-A comuta wp,"sro

Susing the Mach number as the key variable in the error al-ifilysis, The souinr on The •awrpt surfac.

now grid is formed by 70,125 tetiahedra with 7,262 triangles on



the boundary. It is inlereetintg to notice that the liumber of elements
In the two grids is approximately the same whereas the number oftao oh sr-e a ncesd.M OVT-hemnmu pcig"faces on the surface has Increa•sed. Moreover, the minimum spacing. .. • -... !1. .

on the adopted grid Is 3.5 times smaller than the ono on the Initial , L .-
grid, thus indicraing also an Increase In the grid resolution. The ' .' j , "
solution onl the now grid was obtained after 2,000 Iterations. The
grids and computed solutions at the plane of .•'nmetry are shown ! n"
figures 5.11(b) for the Initial grid and 5.tr(i) for the adapted grid l",,
Tihe effect of the adaptation in the vicinity of the engine inlet can be ii•
obsr ved. The grid and solution on the surlace of the aircraft is
shown in liguro 5.11(d) for the initial grid and in figure 5.11(e) for
the adapted grid. In this case the adaptation is very mild and is
hardly noticeable. The ;ain reason for this is that the resolution on
the initial grid is rather poor and some important flow features are
not properly captured.

6.TRANSIENT FLOWS IThis section has been written in N ' I.Ž:N.- "
collaboration with E. J. Probert EUMS, University College, Swansea

y SA2 8PP. UK and 0. Hassan. CDOR, Innovation Centre, University
College, Swanson SA2 9PP. UK) .

.:6.1 Translent Flews -,,,-, --i-,-
Solutions ot the Euler equations are smooth over large areas of 'he
computational domain and exhibit large gradien.s in localisod parts o1
the flow. In transient simulations, those localised regions will _0"1Jf.M]
generally move through the computational domain and may sweep

• : ~across very large areas e.g. ilia case of flows involving propagating| !

shocks. This means that, unless adaptioity is iisid, a globally tine s . .
grid will be necessary V) provide the required resolution. Thus the
= use of adaptivity, with the possibility for local grid rofinement and

coarsening, otters the potential for oonsiderablo computation•l
savings. We hay, already seen that only a lew grid adaptations are
gonera'ly needed to obtain a satisfactory solution to a steady (b) (d)
problem, but we can expect that grid adaptation will have to be
performed several thousand times in a transient flow simulation.
Thus any potential computational savings which appear to be offered Figure 6.1
by the uso of adaptivity in this ouso will only bo roalised it the Sfiock butblt, Interrcion probbi, usir liattlaitr *d~ aii• i bse*d on enrChmnenl

(110M tt61) (a)tn"t i ririn gd amIJ sololian 00ntowl. (b) Orid and soiulioi atr 1.06i nadaptation of the grid uan be perforined in aln efficient manner. GYM and solutin 4 1.071 (d) Grid Aid ns4ution a t 1. 0 e
Successful implementations of adaptivity to the solution of transient
problems have already been made within the context of both
structured 1,41 and unstructured grids 155,561.

6.2 Grid Enrichment We restrict our consideration to two cilnensionl inivinuid f;ows an•inoe.2 t iOr•.icvod toii. satmetfr te rolmmil nedt
An obvious method of achieving grid adaptation for transient flow note tfhint ie absic variational state mnt I-r the probltm will need to
simulation is the Oxftonion of the grid enrichment ideas introduced be moditiod to account for the tact that the spatial domain u is
above tot the solution of steady state problems. An extremoly varying with tIne. Suppose that we have the solution 'V, at a certain
successlul implementation on irestructured triangular grids has been time level In. We attempt to satisfy the compressible Eulor equations
made by Lbhner 155]. In his method, the grid is automatically retiner (1.38) over the space-time domain D (C 1t), I• ! t I t,,I). To
and de'retined as necessary according to the results of an error express this problem in a variational form we need to introduco
indicating process. An example 1561 of the application of this suitable trial and weighting function sets. We assume, for the
procodure to shock-bubble interaction problem l shown in figure purposes of this discussion, that the conditions on the boundary r of
6.1. This oroblem involves the interaction between a weak shock, D) can be oxpressdj in the form
travelling at a Mach number of '.29 in air, and a bubble of heavier
material (freon). From the figure it can be seen how thre hock speed U -0 on r(t) 16. 1)
inside the bubble decreases, owing to the higher density of the freon,
whereas the outer shock bends over The inner shock focuses at the
right hand end of the bubble, producing a significant over-pressuro Although such conditions are somewhat unrealistic, the actual
and initiating a small circular blast wave. This method has also bourndary conditions which would need to be applied in tihe simulation
reconly been applied to three dimonsional flow smuliations 1571. of a given problem can tie readily incorporated by making

appropriate modifications to the following analysis. We may dofiti
6.3 Transiint Flows Involving Movlng Bodies
The comple ity involved in trwinliont flow simulation incroases it one " = U. I .Q on r: U1= - U, onl i at I . tn)
considers problems in wnich certain boundaries of the computational
domain are allowed to move, so that the geometry ot the domain (6.2)
changes with lime. This means that the grid must be modified during W , { W I W , 0 on I')
the computation in order to accommodate these geometrical changes. and a variational formulation of the problem can be stated as find U
Ono approach which has proved to be successful for tackling such in 'J such that
problems is the chimera approach, In which each individual geometry
component can have its own associated structred grid which can t

n.
move independently of the other grids. Three Jimensional viscous
simulations involving moving bWdies have already been produced by Lu a W + " dil dt (6.3)this method 1511. Unstructured grids have been applied to tili

solution of invisrckd two dimensional transient Ilowr involving moving
bodies 159,60], using a method which is an extension of the for every W in w. We will assume that the spatial domain I) tins boon
regriding procedures presented in section 5.6 and this is the discretisud using 3 noded linear triangular elements, with Interior
approach that will u'n presented here. nodes numbered from I to p and introduce the sets
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IN !10(p ) I1J(p) MI UI +M 2 1.2.....+MpJUp; Uj)= on t', 6.4 Adoptive Rogrilding for Ttanolent Flows Involving
- Vn on f) at I tf) Moving Bodies

(6.4) The method described above, whereby a grid may be adapted by( (6.4)
, WW on 1 regrlding, is a natural approach to follow for the simulation of flows10r0 (Wits Mir- aIM 1+ 2  ; W~ 0or)involving moving bodies. It will te astuwowd bAt the motion of any

In the approach wikoh is to bI followed hero, crtiain nodes i moving boundary is prescribed and the objective is to detemilne the

grid will bo fixOe. willie others will niovO with a proscribed resulting flow field. The description of an algorithm which can be
velocity. Tho shape functions Mj are linear furntions of space and devised to advance the solution of equation (6,11) Hi tlime can beS 1little which saltisfy written as follows:

im Generate ai Initial grid to represent the computational domain And

MA,'n =Nn A- n.0 "'s 65 to adequately resolve the inllal solution.

2. Start the time-stop loop
Sin2.1 Advanice the solution one time-step

whore N" Is the standard finite element shape function, defined In 2.2 Update the coordinates of the points on the maovin boundaries
section 1.2, associated to node i at time tI. Working with tie 2.3 Use an error indicator to oxan,;no the current solution and define
function sets defined In equation (6.4), the Galerkin approximation an 'optimal' distribution of grid spacing and stretching
statement takes the form : find U4,) int 7,,, such that 2.4 Compare the current grid with the 'optimal' grid. Delete the

tn, I ulemilnts whose size and shape is too different from thq optimalf r AI+aK J+)-w dld . Triangulate heregion~s weeelements haebeen deleted
at + a d It (0.0) according to the new distribution of grid parameters

?.6 Determine, by interpolation, the flow variables at the new
nodes

for i = o..p. Considering the first term appearing il this Etnd the times-top toop
Integral, it Is possible to show that

!I is apparent tia! th•e crucial phase in this process is tie grid

lJ A d( r Mj Lip) d' adaptation in steps 2.3-2.5. The mecharics of this process is
a 'd t, illustrated dlogramatlcally in figure 6.2. The success of the

(6.7) procedure depends upon the reliabilily of thie error Indicator which is
employed. Tile Indicater of equatioe- (5.9) has again boon used for

Sat14)di) this application.

wheore denotes the velocity of the moving ,,odes. With .4p)-(v 0 , '",.j.
Vi) interpolated linearly between Ihe nodal values ol ., an observer " 1 .. . .
maoving with the grid will not detect any change in the shape ..
functions to ,lx

So. L• •._ =•__, 0 (68•) : . - .... . .

Dt at v'x aOy

WhOre DIDt denotes differentiation following tie nlOVlng grid anid so

* -C .. .. *, .. ... ( J- .k.ip,

(0.9) " " ';" "

M/ L )y "v,1

rinally. combivoiq equations (66). (67) and (6.9). Ote Galorkini . ., " -
0r nlpproxinlti(,l l salisfios -

MJIp•(O . ,1  d I kf I 4

I,,, * ,--

Mj Q(p dl d-I Mj U~p) dil •i t\ Itt, •\•=

Figure 6.2" M , X dy 0 d 1 (6.10) illlsition oi th~ •l ol erllm-shn9 proceduf# a14,iitd to tiwi~jelil 1polems (a)
)X f Initial g9id 11,) Mafki UneanIphd r0t.1 anld olomnlils. (l) Eieen ts•io A, or0Ved horn

i,, •l, i (d) •h•ito tuy skideo s are q rtol-ed sac ordiog i. the A " gimem ci disltiboi•tio
io IONoo at. citss 1,o00 b or,o ,,r 4 each iWe- () UtianOuhon Ot lhs holes Usirl Ihll'

wilere . Vs~iaQ front 1d Ihe now distribuionl of SP-aings.

Eý(,,l IPI V- vU40l E(P)' = E(i " vy UI4 (6.1 i )
6.6 Application Examplesl

Insorting the assumed form for U., Itron equation (6.4),
"ID Shock PropagatlonSt,,, The first e~xample considered consists of a two dimensional

rnl I. • .• f. simulation of the transient development of the flow in .hock tube.
IM Wi.U - IM 1 J M ax -i d, dt (6.12) The purpose of this example is to illustrate the application of the

nnl " Lregriding algorithm to a tansient problem with fixod boundaries,
: The integral appearing flora can be evaluafl by first employing ono The initial conditions are such that the solution consists of a singlepoint integration in limo (at I = t0 0 io2 ) and then using a two-step propagating shock. Figure 6.3 depicts the development of tire grid and

solution as the shnck propagates. It can be observed that the shock
a scheme of this typo and the resolution of the iosullng ain cheme may movement Is adequately followed by the adaptation of the grid. NoteStb improva d by the us e of tho FCT k hoes menttined !in Soction 1.3. also tfat the number of elemenits in the glid remains approximately

constant as the solution progresses.
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); •Integrated Specei Shuttle Vehicle Simulation Figure 6.1
, A tw o d i r'n n sin n anl n _n n in u ta thn r h a s. h A AII A ll~ m n led " w h ic :h inv ol- _e s a Spi(w o s;hu ttle vo hldni ,m • b~ooster r-cil l $1mnul.-lion It % IfeA, strearli -A "h ivjm b~ r ofS•=v)3•11ul, tiod *;Pacu~ ul'ull;%o se..palatingm fhoirl tf,-.i fokul ljoo.•lkr. 'T o 2 Wi'd a! am angl of an k of -4 06•es$. IOU• stuiLAl moves upwxv,,. alv aw.ty limitho Itar• wo~kl 'wvii a 1-4osolaitt• motion So~qutn¢ki of mostles ,m pfersuil,$ s0leat01nsrelaItive nirtion of 1110 shuttle will, rospect to the booster ha.s boon obfltitj ,oilng tho, h'ramrik l sinulalo~n starting Irani n slodv statle sclulIzi 711

I pro s c r ib o d 0x to fin a lly , T h e f r ee s tre a m c o n d i tio n s$ c o r r e s p o n d to a 1:d rK ýl ! f t ( at , 7 ) • 1nd l ( 'd) 8 4S 9 3 #fe n~ a n d ) 4 . 3 79 p oi ni %#ls u d 3 , 7Ma"ch nunfibor of 2 and an anglo of attack of -Au with rospml, to tho ,.. nJ(d84. lm' ,d.79ets
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Introduction This polyhedron can be embedded in a plane by
One of the major achievements in engineer- mapl)ping one face to infinity. This makes the

ing science has been the development of comn- graph formula (1.0) applicable to 2-D unstruc-
puter algorithms for seloing nonlinea' differential tured meshes. In the example below, the face 1-
equations such as the Navier-Stokes equations. 2-3-4 has mapped to infinity to form the exterior
These algorithms are now used in the practical (infinite) face. If all faces are numbered includ-
engineering design ,f devices such as cars and ing the exterior face, then Euler's formula (1.0)
airplanes as well a. theoretical studies of corn- remains valid.
plex phenomera such as fluid turbulence. In past4
years, limited computer resources have motivated
the development of efficient numerical methods - .
in computational fluid dynamics (CF D) utilizing
structured meshes. These meshes are comprised . I
of systematic arrays of quadrilateral or hexahe- . 4

dral cells. The ume of structured meshes greatly -.- : 2e
simplifies the implementation of CFD algorithms 1 2
on conventional computers. Structured meshes (a) (b)

also permit the use of highly efficient solution
techniques such as alternating direction implicit Figure 1.0 (-) 3-D Polyhedron, (b) 2-D Planar
(ADi) iteration schemes or multigrid. Following embedding
the dramatic improvement in computing speed in
cecent years, emphasis has shifted towards the de- The infinite face can be eliminated by describing
sign of algorithms capable of treating complex the outer boundary in terms of boundary edges
geometries. The automatic generation of struc- which share exactly one interior face (interior edges
tured grids about complex geometries is prob- share two). We also consider boundary edges
lematic. Un structured grids offer one promising which form simple closcd curves in the interior
alternative tGchniq. for treating these general of the mesh. These curves serve to describe pos-
geometries. Unstructured meshes have irregular sible objects embedded in the mesh (in this case,
connectivity and usually contain triangles and/or the l)olygon which they form is not counted as a

quadrilaterals in two dimensions and tetrahedra face of the mesh). The number of these polygons
and/or hexahedra in three dimensions. The gen- is denoted by n(h). The modified Euler's formula
eration and use of unstructured grids poses new now reads
challenges in computational quid dynamics. This
is true for both grid generation as well as for n(f) + n(v, = n(e) 4 1 - n(h) (1.1)
the design of algorithms for flow solution. The
purpose of these notes is to present recent devel- Since interior edges share two faces and boundary
opments :n the tunstructured grid generation an edges share one face, the number of interior and

flow solution techno.legy, boundary edges can be related to the number of
faces by the following formula:

1.0 Preliminaries

1.1 Graplhs and Meshes 2n(c)jjlj.i,. + r,(C)bo,,nd := Z i n(f)i (1.2)
Craph theory offers many valuable tlicoret- i=3

ical results wbich directly impact the 'sign of where n(f)i denotes the numnber of faces of a par-
efficient algorithms using unstructured grirs. For ticular edge degree, d(f) = i. Note that for pure
!) U'lOSCS of the present. isciission, only simple triangulations T, these formulas can be used to
graphs which do not contain self loops or parallel determine, independent of the method of triangu-
edges will he "onsidered. Results concerning sire- lation, the number of triangles or edges given the
pie graphs usually translate di':ectly into results ininber of vertices n(v), boundary edges n(c)bound,
relevant to unstructured grids. The most famous and interior holes n(h)
graph theoretic result i.• Euler's formula which re-
lates the number of edges n(e), vertices n(v), and 71(f)3 = 2n(v) - n(e)b•,,d - 2 + 2n(h) (1.3)
faces n(f) of a polyhedron (see figure 1.0(a)):

or
n(f) = n(e) -- vm(v) + 2 (Euler's formula)

(1.0) n(e) = 3n(v) -- n(e)b,,,nd - 3 + 3n(h). (1.,4)
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This is a well known result for planar triangu- This formula relates the number of vertices, edges,
lations. (For brevity, we will sometimes use N faces, and volumes n(o) of a three-dimensional
to denote n(v) in the remainder of these notes.) mesh. As in the two-dimensional case, this for-

In many cases boundary edges are not explicitly mula does not .-ccount for boundary effects be-

given and the boundary is taken to be the con- cause it is derived by looking at a single four-

vex hull of the vertices, i.e. the smallest con- dimensional polytope. The example below demon-

vex polygon surrounding the vertices. (To obtain strates how to derive exact formulas including

the convex bull in two dimensions, envision plac- boundary terms for a tetrahedral mesh. Deriva-

ing an elastic rubber band around the clouad of tions valid I't more general meshes in three di-

points. The final shape of this rubber band will mensions are also possible.

be the convex hull.) A key observation for planar Example: Derivatibn of Exact Euler Formula for

"meshes is the asymptotic linear storage require-
ment with respect to the number of vertices for 3-D Tetrahedral Mesh.

.-bitrary mesh armrngements. Consider the ccllection of volumes incident

The Euler formula extends naturally to an to a single vertex vi and Ulhe polyhedron which

arbitrary number of space dimensions. In this describes the shell formed by these vertices. Let

general setting, Euler's formula relates basic corn- Fb(vi) and Nb(vi) denote the number of faces and

ponents (vertices, edges, faces, etc.) of higher vertices respectively of this polyhedron which ac-

dimensional polytopes. In coinputational geome- Wually lie on the boundary of the entire mesh.

try jargon, vertices, edges, and faces are all spe- Also let E(vi) denote the total number of edges

cific examples of "k-faces". A 0-face is simply a on the polyhedron surrounding vi. Finally, let

vertex, a 1-fa( corresponds to a edge, a 2-face do(vi) and d.(vi) denote the number of tetfaahe-

corresponds to a facet (or simply a face), etc. dral volumes and edges respectively that are "in-

A polytope P in Ra contains k-faces V k E cident to vi. On this polyhedron, we have exact

4-1,0, 1. d}. The -1-face denotes the null set satisfaction of Euler's formula (1.0), i.e.

face by standard convention. Let the number of
k-faces contained in the polytope P be denoted polyhedral facet: terlicecs on polyhedron

by NkJP•. For example, No(P) would denote the d.(i,,) + Fb(vi) + d.(vi) + Nb(oi) = E(vi)+2
number of vertices. Using this notation, we have (1.7)

the following rela ionships: Note that this step assumes that the pdyhedrow

is homeomorphic to a sphere (otherwise Euler's
N= n(v) (vertices), N1 =n(e) (edges) formula fails). In reality, this is not a sev.re n.-

N,• I(f) (faces), N 3  1n(0) (volumes) smunption. (It would preclude a mesh consiting
of two tetrahedra which touch at a single vertex.)

By convention, there is exactly one null set con- On the polyhedron we also have tthat
tained in any polytope, i.e. N-1 ('P) = I and by
definition Nd(P) = 1. Using these results, we can polyhedr %I faces
succinctly state the general Euler formula for an _____

arbitrary polyt-'pe in R" 2E(vi) = 3 (do(vj) + 1dV1)). (I .ý)

d Combining (1.7) and (1.8) yieldsE (-l)'NL.(P) "-- 0 (F~uler's Fornmula in R~a

(1.5) de(vi) = 7do(v:) + 1Fb(vi) - Nb(vi) + 2. (1.9)

On the surface of a polyhedron in 3-space, tl"
standard Euler formula (1.0) is recovered since Summing this equation over all vertices l:roduces

-1+N 0 - N+N 2 -1=0 1
d'n(.V) = on,(,,) + Fb(Oi - Nh(vi) i

or 2 i

n(f) + n(v) = n(e) + 2. (1.10)
o b r l e t twhere 'e add do are the average vertex degrees

To0 obtain resuilts rel,'vaiit to three-dimensional wt epc oegsa~ oue.Snegoal
unstructured grids, the Euler formula (1.5) is ap- with respect to edges and volumes. Since globally

plied to a four-dimensional polytol)e. we have that
ra(f) 4- n(v) = n(e) + n(O) (1.6) d1 n(v) 2v(e), don(v) = 4n(,O), (I.' I)
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substitution of (1.11) into (1.10) reveals that than to any other point.) Two-dimensional finite-
volume schemes for the Euler and Navier-Stokes

n(V)bound equations are frequently developed which form
n(e) = ncontrol volumes froi.. either faces (cells) of the

4 n ) ) Fb(vt)- 2ZNb(v.) mesh or faces of the mesh dual. Schemes which

(1.12) use the cells of the mesh as control volumes are
Finally, note that E F6(vi) = 3n(f)bound. Insert- often called "cell-centered" schemes. Other "vet-
ing this relationship into (1.12) yields tex" schemes use mesh duals constructed from

median segments, Dirichlet regions, or centroid
n(e) = 1(o) + n(v) + 1nMbo,,,,- 2n(V0boua segments. In all of these schemes, the primary

(1.13) computational effort is associated with the cal-

Other equivalent formulas are easily obtained by culation of the flux of mass, momenta, and en-

combining this equation with the formula relating ergy through an edge associated with the con-

volume, faces, and boundary faces, i.e. trol volume. The one-to-one correspondence of
edges of a mesh and mesh dual (ignoring bound-

1 aries) means thiat there is very little difference in
n(f) = 2n(•') + •l(f)b~o,a,,d (1.14) computational effort in schemes based on mesh

faces or duals. This observation is not true in
An exact formula, similar to (1.6), is obtained by three dimensions! Consider a three dimensional
combining (1.14) and (1.13) tetrahedral mesh. The duality for this nonpla-

nar arrangement is between edges of the tetrahe-
n(e)+n(4,)=n-(f)+n(v)+-1 n(f ,,d--- n(V)bo,,Ld dral mesh and faces of the dual. In other words,

4 G f 2 O for each edge of the mesh there is a one-to-one
(1.15) correspondence with a face of the dual (ignor-

1.2 Duality ing boundaries). Again, the main computational
effort associated with finite-volume schemes for

Given a planar graph G, we informally de- solving the Euler and Navier-Stokes equations is
fine a dual graph GDuat to be auy graph with the the calculation of the flux through each face of
following three properties: each vertex of GD,,ia the control volume. If the control volumes are
is associated with a face of G; each edge of G the tetrahedra themselves (cell-centered scheme),
is associated with an edge of GD,•tl; if an edge then a flux must be calculated for each tetrahe-
separates two faces, fh and fj of G then the asso- dral face. This means that the work is propor-
ciated dual edge connects two vertices of GD,1,,, tional to the number of faces of the tetrahedral
associatcd with f, and f). This duality plays ani mesh. From eqn. (1.14), the number of faces of
important role in CFD algorithms, a tetrahedral mesh is related to the number of

tetrahedra and boundary faces by

worke_¢ scheme OC n(f) = 2n(o) + -nIl~bou,,.

Mesh If the control volumes of the finite-volume scheme
Mcdian Dual are formed from a mesh dual (vertex scheme),
Ccznroid Dial then the number of flux calculations is propor-

L1 Dinchlet Region tional to the number of faces of the mesh dual
which is roughly equal to the number of edges of
the origiral tetrahedral mesh. From eqn. (1.13)
we have that

Figure 1.1 Several triangulation duals. 'ork scheme .X nl(e) = n.(O) + n(v)

In figure 1.1, edges and faces about the cen- 3 1 1.

tral vertex are shown for duals formed from me- +2n(f)6o,,,, -

dian segments, centroid segments, and by Dirich-
let tessellation. (The Dirichlet tessellation of a To better understand the work estimates, define
set of points is a ?attern of convex regions in the fl such that n(o) = /3n(v). Practically speaking,
plane, each region being the portion of the plane 13 usually ranges from 5-7 for tetrahedral meshes.
closer to some given point P of the set of points Taking the ratio of the work estimates for the



6-5

cell-centered and vertex scheme, ignoring bound- connectivity of vertices and adjacent faces by stor-
ary terms and assuming an identical constant of ing a quadruple for each edge consisting of the
lproportionality, we obtain origin and destination of the each edge as well its

the two faces (cells) that share that edge. This
work_-c sheme,,__ = 2_n(__ ) = 2/ (1.18) structure allows easy traversal through a mesh
worvk,,ert she.,, (1 +± )U(v) 1+0 4  which can be useful in certain grid generation al- A

gorithms. (This traversal is not easily done using
The work for the cell-centered scheme approaches the FE structure.) The extension to three di-
twice that of the vertex scheme. The reader should mensions is facewise (vertices of a face are given
not automatically infer that the vertex scheme is as well as the two neighboring volunes) and re-
preferred. The question of solution accuracy of quires distinction between different face types.
the two approaches needs to he factored into the A third data structure provides connectivity
equation. The answer to the question of which is via vertex lists as shown in figure 1.2(c). The
"better" is still a subject for debate. brute force approach is to list all adjacent neigh-

bors for each vertex (usually as a linked-list). Many
1.3 Data Structures sparse matrix solver packages specify nonzeros of

a matrix using row or cohunn storage schemes
The choice of data structures used in rep- which list all nonzero entries of a given row or

resenting unstructured grids varies considerably column. For discretizations involving only adja-
depending on the type of algorithmnic opelations cent neighbors of a mesh, this would be identical
to be performed. In this section, a few of the to specifying a vertex list. An alternative to spec-
most common data structures will be discussed. ifying all adjacent neighbors is to direct edges of
The mesh is assumed to have a numbering of ver- the mesh. In this case only those edges which
tices, edges, faces, etc. In most cases, the physical point outward from a vertex are listed. In the
coordinates are simj)ly listed by vertex number. next section, it will be shown that an out-degree
The "standard" finite element (FE) data struc- list can be constructed for planar meshes by di-
ture lists connectivity of each element. For ex- recting a graph such that no vertex has more than
ample in figure 1.2(a), a list of the three vertices three outgoing edges. This is asymptotically op-
of each triangle would be given. timal. The extension of the out-degree structure

to three dimensions is not straightforward and al-
---------------~ gorithms for obtaining op~timal edge direction for

"-- nonplanar graphs nre Atill under development.
The last structure considered here is the quad-

edge structure proposed by Guibas anid Stolfi [1],
/ j \ 4 "" |• see figure 1 2(d). Each edge is stored as pair of

(I) (b) directed edges. Each of the directed edges stores
its origin and pointers to, the next and previous
directed edge of the region to its left. The quad-
edge structure is extremely useful in grid gener-
ation where distinctions between topological and
geometrical aspects are sometimes crucial. The
structure has been extended to three dimensional
arrangement3 by Dobkin and Laslo [21 and Bris-i . son 13].

W1) (d)

2.0 Some Basic Graph Operations
Important in CFD

Figure 1.2 Data structures for planar graphs. mri ~Implementation of unstructured grid r..eth- •
(a) FE data structure, (b) Edge structure, (.) ods on differing computer architectures ias stim-
O g r , Q g culated research in exploiting properties and char-
The FE structure extends naturally to three di- acterizations of planar and nonplanar graphs. For
imensions. The FE structure is iute extensive in example in Hammond and Barth [4], we exploited

finite element solvers for solids and fluids, a recent theorem by Chrobak and Eppstein [5]
For planar meshes, another typical structure concerning directed graphs with minimum out-

is the edge structure (figure 1.2(b)) which lists degree. In this section, we review this result as

! II
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well as presenting other basic graph olperations
that are partictilarly useful in CFD. Some of these -
itigorithms are specialized to planar graphs (2-D1
meshes) while others are very general and apply
in any number of space dimensions.

_2.1 Planar Graphs with Minimum Out-Degree

Theorem: Every planar graph has a 3-bounded (e) ()
orientation, [5].

In other words, each edge of a planar graph
can be assigned a direction such that the maxi-
mum unuber of edges pointing outward from any
vertex is less than or equal to three, A construe-
tive proof is given in ref.[5] consisting of the fol- i (h)
lowing steps. The first step is to find a reduceable
boundary vertex. A reduccable boundary vertex
is any vertex on the boundary with incident ex-
terior (boundary) edges that connect to at most
two other boundary vertices and any number of
interior edges. Chrobak and Eppstein prove that

* reduceable vertices can always be found for at-
bitrary planar graphs. (In fact, two reduceable
vertices can always be found!) Once a reduce- (i) U)
able vertex is found then the two edges connecting
to the other boundary vertices are directed out-
ward and the remaining edges are always directed
inward. These directed edges are then removed Figure 2.0 (a-i) Mesh orientation procedure with
from the graph, see Figures 2.0(a-j). The process out-degree 3, (j) final oriented triangulation.
is then repeated on the remaining graph until no
more edges remain. The algorithm shown picto- Linear time algorithms are given in [51, In
rially in figure 2.0 is summarized in the following the paper by Hammond and Barth, we exploit
steps: the out-degree property to provide optimal load

Algorithm: Orient a Graph with maximum out- balancing on a massively parallel computer. De-

degree < 3. tails are given in a later section.

Step 1. Find reduceable boundary vertex.
Step 2. Direct exterior edges outward and interior 2.2 Graph Ordering Techniques
edges inward. The particular ordering of solution unknowns
Step 3. Remove directed edges from graph. can have a marked influence on the amount of
Step 4. If undirected edges remanin, go to step 1 computational effort and memory storage required

to solve large sparse linear systems and eigen-
value problems. In many algorithms, the band
width and/or profile of the matrix determines the

amount of computation and memory required..
Most meshes obtained from grid generation codes
have very poor natural orderings. Figures 2.1 and
2.2 show a typical mesh generated about a multi-

(a) ciated with the "Laplacian" of the graph. The
(') •*l c~omponen airoil and the nonzero entriesas-

c- mLaplacian of a graph would represent the or onzero a
i entries due to a discretizatiou which involves only
Sadjacent neighbors of the mnesh. Figure 2.2 in-

dicates that the band width of the natural or-
dering is almost equal to the dimension of the

(©) Ca) matrix! In parallel computation, the ordering al-S~gorithmrs (-aln be used as rneaws for partitioning
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a mesh among processors of the computer. This Algorithm. Graph ordering, Rosen.
will be addressed in the next section. Step 1. Determine band width and the defining

index pair (ij) with (i < J)
- Step 2. Does their exist i;n exchange which in-

- creases i or decreases j so that the band width is
/ _ reduced? If so, exchange and go to step 1

Step 3. Does their exist an exchange which in-
X/ _ creases i or decreases j so that the band width

remains the same? If so, exchange and go to step

/ x This algorithn produces very good orderings

but can be very expensive for large matrices. A
/ - l'poplular method which is much less expensive for

- large matrices is the Cuthill-McKee [71 algorithm.

-9 \ Algorithm: Graph ordering, Cuthill-McKee.

7/ ----- / 7 Step 1. Find vertex with lowest degree. This is
/ the root vertex.

Step 2. Find all neighboring vertices connecting

Figure 2.1 Typical Steiner triangulation about to the root by incident edges. Order theim by

multi-com)ponent airfoil. increasiirg vertex degree. This forms level 1.
Step 3. Form level k by finding all neighboring

4 X ,,• - vertices of level k - 1 which have not been pre-
& viously ordered. Order these new vertices by in-
, •Fm creasing vei' ex degree.

x Step 4. If vertices remain, go to step 3

NIP

Figure 2.2 Nonzero entries of Laplacian matrix

produced from natural ordering.

Several algorithms exist which construct new
orderings by attemp)ting to minimize the band
width of a matrix or attempting to minimize the
fill that occurs in the process matrix factoriza- Figure 2.3 Nonzero entries of Laplacian matrix
tion. These algorithims usuaMly rely on heumistics after Cuthill-McKee ordering.
to obtain high efficiency, and do not usually ob-
tain an optimum ordering. One example would The heuristics behind the Cuthill-McKee al-

be Rosen's algorithm [61 which iterates on the or- gorithin are very simple. In the graph of the

dering to minimize the maximum band width. mesh, neighboring vertices must have numberings
which are near by, otherwise they will produce en-
tries in the matrix with laxge band width. The

idea of sorting elements among a given level is



based on the heuristic that vertices with high (le-
gree should be given indices as large as p)ossible
so that they will be as close as possible to vertices
of the next level generated. Figure 2.3 shows the 4
(drainatic improvement of the Cuthill-McKee or-
dering on the matrix shown in figure 2.2.

Studies of the Cuthill-McKee algorithm have
shown that the profile of a matrix can be greatly

reduced simply by reversing the ordering of the
Cuthill-McKee algorithm, see Georgc [8). This 2 2 3
amounts to a renumbering given by (a) (b)

k - n- k+ 1 (2.1)

Figure 2.4 (a) Four partition mesh, (b) Cominiu-

where it is the size of the matrix. While this nication graph.

does not change the bandwidth of tile matrix, The graph shown in figure 2.4(b) can be colored
it can dramatically reduce the fill that occurs in edgewise using three colors. For example, in the
Cholesky or L-U matrix factorization when coin- first communication cycle, processors (1, 4) could
pared to the original Cuthill-McKee algorithm. perform a synchronous data exchange as would

processors (2,3). In the second communication
cycle, processors (1, 2) and (3, 4) would exchange

2.3 Graph Partitioning for Parallel Computing and in the third cycle, processors (1,3) would ex-
change while processors 2 aud 4 sit idle. Ving's

An efficient partitioning of a mesh for dis- theorem proves that any gral)h of maximum ver-
tributt::4 memory machines is one that ensures tex degree A (number of edges incident upon a
aw ývcwa distribution of computational workload vertex) can be colored using n colors such that
among the processors and minimizes the amount A < i _< A + 1. Hence, any ol)eration that
of time spent in interprocessor communications. calls for every processor to exchange data withl its
The former requirement is termed load balanc- neighbors will require n communication cycles.
ing. For if the load were not evenly distributed, The actual cost of communication can often
some processors will have to sit idle at synchro- be accurately modeled by the linear relationship:
nization p)oints waiting for other processors to
catch t). Thie Rocond requirement comnes frum, Cost + 11m (2.2)
the fact that. communication between processors
takes time an(l it is not always possible to hide where ( is the time required to initiate a ines-
this latency in (lata transfer. In our parallel imn- sage, 3 is the rate of data-transfer between two
plenientation of a finite-volume flow solver on un- processors and in is tihe message length. For n
structured grids, data for the nodes that lie on the mnessages, the cost would be
boundary between two processors is exchanged,
hence requiring a bidirectional data-transfer. On Cost = D(a + 03m.). (2.3)
many systems, a synchronous exchange of data,
can yield a higher perforniance than when done
asynchronously. To exploit this fact, edges of This cost can be reduced in two ways. One way is
the comnmnunication gral)h are colored such that to reduce A therel)y reducing n. The alternative
t1o vertex has more than one edge of a certain is to reduce the individual message lengths. The
color incident upon it. A communication graph bounds on it are 2 < N < P- I for P > 3 where P
is a grap)h in which the vertices are the proces- is tile total number of processors. Figure 2.5(a)
sors and an edge connects two vertices if the tk, shows the partitioning of a mesh which reduces
corresponding processors share an irmterprocessor A, and 2.5(b) shows a partitioning which mini-
"boundary. The colors in the graph represent sep- mizes the message lengths. For the mesh in figure

arate cominunication cycles. For instance, the 2.5(a), A = 2 while in figure 2.5(b), A = 3. How-
imesh l)artitioned amongst four processorstas shown ever, the average message iength for the parti-

in figure 2.4(a), would produce the cominunica- tions shown in figure 2.5(b) is about half as much

lion graph shown in figure 2.4(b). as that in figure 2.5(a).
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Coordinate Bisection
In the coordinate bisection algorithm, face

.... .. . .I ceutroitis are sorted either horizontally or verti-
cally depending of the current level of the recur-

. ... sion. A separator is chosen which balances the
S..... - .........I . ... number of faces. Faces tire colored depending on

which side of the separator they are located. TheJ ... b-- ) actual, edges of the meshl corresponding to the
(s) (b)sepitnmtor are characterized -i those edges which

have adjacent faces of different color, "ee figure
giglre .5 a)M~shl~atitinin wih mnim,•d 2.6. This p~artitioning -is very efficient to ere-
Figiire2.5(a)Mes patitonig wth ninillled ate but gives sub-olptimal performnmce oin parallel

A, (b) Mesh with minimizes mcssage length. computations owing to the long message lengths

In pructice, it is difficult to partition an unsti, than can routinely occur.
tured mesh while simultaneously inininkzing the
number and length of messages. In the following
paragrapihs, a few of the most popular partition-
ing algorithms which approximately accomplish
this task will be discussed. All the algorithms
discussed below: coordinate bisection, Cuthill-
McKee, anld spectrzl partitioning are evaluated in
the paper by Venkatakrishnan, Simon, and Barth
S[9]. This paper evalutes the partitioning tech-

niques within the confines of an explicit, unstruc-
tured finite-volume Elder solver. Spectral par-
titioning has been extensively studied by Simon
[10]. The algorithms have also been ilmplemented
in three dimensions by A. Gandhi working in the
CFD branch at NASA Ames Research Ceiter.

Note that for the particular al)p!ications that
we have in iuind (a finite-volume schi,'ime with so-
lution unknowns at vertices of the inieh), it makes
sense to partition the domain such that the sep-
arators correspond to edges of the mesh. Also Figure 2.6 Coordinate bisection (16 partitions).
U,)te tdhat C.hC p)LIt.iGOiiiig aigoiitiii-s all can be CuthU-McKee
implemented recursively, The iesn is first 'I diThe Cuthill-McKce (CM) algorithm described
vided into two sub-ni.esh's of nearly equal size, earlier can also be used for rec'ursive mesh parti-
Each of these sub- meshes is subdivided into two tioning. In this case, the Cuthill-McKee order-more sulh-meshes audI the process in rep~eat~edli- tinunI hs 'sth.uhilM~eodr
til the desired nuber of l)artiteious pc is obtained ing is performed oil the dual of the mesh graph.is athedesired wer o A separator is chosen either at the median of(P is a ;nteger power of 2). Since we desire the the ordering (which would balance the coloring
separator of the partitions to coinci(de with edges the or iginal eo r the spror is
of the mesh, the division of a sub-mesh into two of faces of the original e esh) or the separator is

pieces can be viewed as a 2-coloring of faces of the chosen at the level set boundary closeijt to the
sub-ies. Fo th CuhillMc~e ad spctrl median as possible. This latter tec:hnique hase the

sub-mesh. For the Cuthill-samee and supctral desired effect of reducing the number of discon-

partitionuig techniques, this amounts to spply1- nected sub-graphs that occur during the course
ing these algorithms with the dual of the graph of the patitioning. Figure 2.7 shows a Cuthill-
for l)urposes of the 2-coloring. The bal~ancing of McKee partitioning for the multi-component air-
each partition is usually done cellwise; although foil mesh. The Cuthill-McKee ordering tends toii edgwis balacin The Cutil-ree ordering tend tIan• edgewise balanc'ng is more approprit~e in the produce long boundaries because of the way that
"present applications. Due to the recursive na- is a mesh. The

the ordering ispropagatedl through aieh hture of partitioning, the algorithms outlined )e- maxiinum degree of the conimmu:cation graph alsolow represent only a single step of the process. tends to be higher using the Cuthill-McKee algo-

rithmn. The results ,'hown in ref. [9] for multi-
(component airfoil grids indicate a performance on
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parallel computations which is slightly worse than
the coordinate bisection technique.

SFigure 2.8 Spectral partitioning of multi- com-

ponent airfoil.

SFigure 2.7 Cuthill-McKee patrtitioning of eiC11. r'he spectral partitioning exploits a peculiar prop-
erty of the "second" eigenvalue of the Laplacian

Speetral Partitioning matrix associated with a graph. The Laplacian
The last partitioning considered is the spec- matrix of a graph is simply

tral partitioning which exploits properties of the

Laplacian £ of a graph (defined below). The ail- £ - -,D + A. (2.4)
gorithm consists of the following steps: where A is thc standard adjacency matrix

Algorithm: Spectral Partitioning.

Step 1. Calculate the matrix C associated with Aij e(v, 0 v o r E G (2.5)
the Laplacian of the graph (dual graph in the 0 otherwise

present case). and P is a diagonal matrix with entries equal to
Step 2. Calculate the eigenvalues and eigenvec- the degree of each vertex, "D = d(vi). FRom this
tors of A. definition, it should be clear that rows of C each
Step 3. Order the eigenvalues by magnitude, A _ sum to zero. Define an N-vector, s - [1, 1,1
,\.. < \,,...AN By133' construction we h,.;t that
Step 4. l)etermine the smallest nonzero eigen-
value, A\! and its associated eigenvector x1 (the Cs = 0. (2.6)
Fiedler vector).
Step 5. Sort elements of the Fiedler vector. This means that, at least one eigenvalue is zero
Step 6. Choose a divisor at the median of the with s as an eigenvector.
sorted list and 2-color vertices of the graph (or The objective of the spectral partitioning is to di-
dual) which corresp)ond to elements of the Fielder ide the mesh into two pmrtititos of equal size
vector less than or greater thanl the median value. such that the number of edges cut by the parti-

tion boundary is approximately minimized.
'The spectral partitioning of the multi-component Technically speaking, the smallest nonzero

= airfoil is shown ill figure 2.8. In reference [91, eigeuvalue need not be the second. Graphs with
we found that parallel computations performed disconlnected regions will have more that one zero
slightly better on the spectral l)artitioning than eigernvalue depending on the number of discor.-
on the coordinate bisection or Cuthill-McKec. The nected regions. For purposes of discussion, w;e
cost of the spectral partitioning is very high (even assume that disconnected regions are not p)resent,
using a Lanczos algorithm to coml)ute the eigen- i.e. that A2 is the relevant eigenmode.
value problem). It has yet to be determined if the
spectral partitioning will have practical merit.



Elements of tile proof: By virtue of (2.6) we have that x, = s. It reinais
Define, a partitioning vector which 2-colors to be shown that IICp£ II is minimized when P =

tihe vert.ices Pf =- ?x2/l i.e. whell the i,'iedler vector i-
used. Inscrt-in, this expressiomm for p we have that

= [+i, -1,-1+",+1..... +1,-1]' (2,7)

depending on the sign of elements of I) arid the
one-to-one corresl)ondence with vertices of the It is a simkl, matter to show that adding any
graph, see for example figure 2.9. Balancing the other eigenmvector colmliponlcnt to p' whil' insisting

inumber of vertices of each color amounts to the that llp1llt = N can only increase the Lt norm.

requiremnent. that. This would comn)lete the proof. Figure 2.10 plots
scontours (level sets) of the Fiedler vector for the

S .L p (2.8) nimilti-conmponent airfoil problmn.

where we have i.isuimed an even nIumbetr of ver-
t.ices.

I-.-+ -"+1

+1 Figure 2.10. Cont~ours of lFiedle;' Vvetor for

Specctral IPartitioning. Dashed linecs are less than
the /med-Iian w11Ie,

Figure 2.9 Arbitrary graph with 9:coloring show-
i., selarator a-d nit edges. 3.0 :iangulatiou __,ethod_

, The key ob~servation is that the numbler of cut Although many algorithins exist for triainti-
edges , E,, is precisely related to the Tl• lorll of lt in s.)w imensi(onus, iny au fe a vebitrar nu iter on
the Lapflac'ian inatrix nititiplying the partitioning prci(c a problmnsio . ~ly partcl',har, Dvlaen used ovector, i.e.p

4E,. = 1.'.pht ('2.9) anugtlatiion has proven t.o be a very tme fle triangu
iatioh technvique. This section will present soie

which 2.9 be easily verifieA. The goal is to mini- of the basi- rolrceitns sgrrounding Dehomay and
imize crtt edges. That is to 3ind p which jiiniiyeq related triangulations ms well as discissing some
ImrPeII subject to the constrai ts that Ith>IIe = N of the most popular algorithmis for constructing

ed s -1, is peiely relat t Vi eS1110tric (pos it- these triang(ulations. The discussion of tiher ad-
thive sapla-finita) matri 'nix, it has i t coAmplte set. venting front method of frie generation wvill oe

tof real eigevectors which can be orthog.,nalizcl deferred to Professors Niorgau and La1tner i
with each other. The next. stp of the proof wouhld . Voronoi tc iaeram aTit setion wu i pre•st.i.hoin

hicl can bexteastilyveriied.he goa inderel toimii- oft basiRecall the definition of the Dirichlata tesse!-

,• Iers (this intro~duces anl inequality) and exp~and p) lation inl a p~lane.. The Dirichlet teiselhationk ofill ter egs ef the orthogonal igelwectorsh ai pointr set is thi e plattern of convex regioul s, easoh

steing closer to some ooint Plt[ ill the point set thani
h) o ŽtCi.th2l.f0)oto a lly other poinitin il f the l)irichht. t re-

iP t glons are also called Voronoi reg•o';i. The edges

Ii

I.



of \.T j plyOlgons comnpris~e Che \oi'onioi liii- clse vertices of the Voronoi irep'resenlt, lot miolis
grainl, see figure 3.1. The idea extends naturally that are equidistant t three (oi- more) sites. Also
to higher dimensions. note that from the definitioll of duality, edges

of the Voronoi are in one-to-one corresplondlence
to edges of the Delaunay triangulation (ignoring
boiuidaries). Because (dges of the Voronoi di-
agerati are the loc1ts of points equiidistant. to two
sites, each edge of the Voronot diagrain is perpen-
(h/icuhar t.o the corresponding edge of the Dehiu-

way t.riaiguhation. This duality extends to three
dimensions in a st.raiglitforward way. 'IT'he l)e-
hulalny tCrianigulation possesses several lltern'llatte
characterizationis and iany lproperties of ixi po!r-

I.�.] tance. Unfortumnately, not all of the two dinieii-
sional characterizations huame three-dimensional ex-
tensions. To avoid Confusion, properties aid algo-
rithmis for c-onst raction of two dimensional Dell iu-
itay triangulations will he considered first. The
remainer of this section will then discuss tie three-
dimensional Delaunay triangulation.

Figure 3.1 Voronoi diagram of 40 randonim sites. .2_ _Properties of at 2-D lD)elaunatv "•'iantiilattuion

\oro•noi diagrams have it rich mathealtie the- (1) Ulliqutenss. -fhe Delatimly triainigulation is
ory. T1he V'oronoi diagram is believed to be one unique. This assumnes that no four sites are cocir-
the inost futn~damzefntal constrtuct.s deIiied by dis. cular. The uniqueness follows from t he unique-

(rete data.. Voronoi diagrals have Jhevemi e- Iess of the Dirieihlet. tessellation.

Pend.,tl ,ly discovere'd in1 a wide varietv of disci- (2)7T1: circaincircle criteria. A triaigulation of
plines. Computational geonietriciais have a koeel N > 2 sites is Delaumuy if and only if the (ircuml-
interest in Voronoi diagrams. It is well known circle of every interior triangle is point-free. For
that \oronoi diagrams are related to (con\vex hulls if this wan not true, the Voronoi regions associ-

via stereographic projiction. Point locatiou in ia ated wit.hi the (du4al would not lie coilvex and tilie
Vuronoi diagrain can be iperforined in () Iog( ,)) l)irichh't tessellation would Ile invalid. Related
lime with 0(11) storage for n reglions. This is mse- to the circumcircle, riteria is the incirek test for
fil in1 solving post-ofice or relat led ProbhleliS in four pointts as shown inl figures 3.2-3.3.
op~timalime. Another example of the Voronoi - -

diagrinli whivnh occur.-i in I he a•itoral :wiencv.:i Ca:I A "
1w visualiz.ed hy lllaciiig crystal "seeds" at ran- '- '' 1)
(10111 siles in, 3-space. I .e the crystals grow ati
the sallle rate ill (h diroctiotis. W\'hen two crys-
tills ('ollide simply stop their g vrowth. The crvs-
tal follled for each site would repre,-senkt Oiat ,ol. C
11111v of space which is Closer to that site thain to
aMy other site. T'his would effectively construct . .
a\ Vorolloi diagram. We now consider the role of
\Troteil diagrams in Delauinay triangulation. Figit 3.2 hncireh, test r AA DC and D (tre).

Definitioai:The Delaiu•ay t.rianguhation of a point AA"
set is definled as the dual of the \VoroI'oi d.alf'ti am

* of the set.

* '1Thie Delaunay triatigulation in two space dimen- /
sions is formved h)y connecting two poims if and .._ .-- C
only if their Voroiioi regions have a (comtmion. 1)01-

dier segncnt.. If no four or more points are cocir-
ciflar, then we have that. vertices of the Voronoi
are cireumcnntters of the triangles. T'his is true be- Figure 3.3 Incircle test for .2ABC and D (false).

tI

A ,



This t-est, is t r'u if point V lie'.s iilt ,rior to tilte cir- (5)Miuim tum Con tainucnti Cirric. A rec'ut result
cuncirde of AA BC which is equivilhe, to testing by Riajmi [12] shows that the Dplaunay trianhgula-
whether ZABC + £CDA is less than or greater tieul minlinlizes the maxizuniu contaiiment circle
thalt z CD -+- / 13A V. More precisely we ha'. over the entire triangirilation. Tui eont.ahinuierit
t hat circle is defined its the snmllesýt circlie enclosing.,

t the three vertices of a t~riang~le. This is identical
< 180' incireip false to Al,h circiuimcircle for acunte triallgles and it Cir

4ABL"-t-/CLA = 180' A,1,CD cocirettlar cde wit~h dialmet~er et l to the longest. sdl of tst.
> 180' iircle true ( riangle for obt use tri"gles (se figure .

Since inerior angles of the (uiadrilat-eral shll to
360",' if thie ecircimeirele of A-A~1K(' conitains D~ ~...
litheu swapping the linrnal edge lfrou)l J)ostitioni

.4-C into B--D ltuarantees that the new triant,"'s

pair satisfivs the circuliineilrdle criteria. irtiher.-
more, this process of diagonal swapp)ing is local,
ixe. it C ltv's I ICt. (Iisfi'l l t, 01 V DeIailia , OW i 00( of ally
Irianighls dlj'aeldt to tlhe quadrilateral.

(:l) 1M`qc circle property. A trinngitlntinl of ;itpis ..)
is Delaunay if adl only if there exists, some 1eirche

plzisiug through the endpoints of ealht and every
edge which is ointi.-free. This characterization is
VeI: iisefil becattse it also provides a IljethcllisI I Figilre 3.5 Containni, rt circle;s for acute and oh.

* for lefining 0 eot.strainird Delatinny triangulation tilse triallhe"s.

whvere (('ftain eges ur'e lr,''rjil)ed .i prioi. A tri- Tlis 0l property extellds (.o it dimensions. Ulfort.i-
anlgulationl of siths is i const t'alled Delaun1 y 1 tri- latucly, the it'eStil, dotes not hold lhxicogaphically
angulation it for eachi aid every e Idge of the liuesh
there exists sonice circh, passillg i through its edl- (6)Ncarest ii cigyhbor proi'trty, Ali edge for'e(

points containing no other site ill the triangula- by joining a vertex to its titarest. neighbor is ar

lion which is visilde to the edge. In figure 3A1, site (edge of the Delaunay triangulation. This prop

d is not visible to lihe segnIent a-c because of the orty makies DOelalitay trialigillatioin it !owerful too

collst raimid edge a-h. il, ,olvini the clhotset proximity pi blei)1. Not(

b that the nelarest neighbor edges do not descrihi
all edges of the Delaiuiiay triangulation.

- (7 Minima rouhitess. The )elaumay triingula
""/ \l tiOl is a nilnnini roullnhl.ess tr!u!mgnlatloll !or af'

Ibd trarY sets d.) Ncat~teredl data, Hippa [13]. Givei
i ;iirbit ralry data f, ait all 'ert ices of thei mesh an.Id a

I riani;lationl of rlese points, a kiiliqlie pievewisi

linear iut erpolat~ing surface (alilt be constructed
11'" 1h Deiaiuuy triangulation has the property thai
Of all i riangulatiuis it. niiliiesA'S the roluh'iess )
(his surface as ieasmi'ed by the following Sobolei

Figure .4 Coust raiine,, Delimmy triatiulatio, svini-norm:

Site' d is not visible to a-c due (1, constratitned se I-/O f\' 'Ohf
mlerit a-b). J I 1,i- dy (3.2

(-l) L'quionlu,'!arit,t propcrty. l)elallliay triallgula-
""intl iaxiiiize's the mjlinnimn angle of thO trialigli- This s it int-eresting result. as it, does not.
lauiull. •or O. Isrii t,ll r )elahillay t.riailgulhttiol oi- oil tdie actuial for"iil ol t'he (dtit. This also idi

ten called the Maxilt i triangulation. "l'his prop- cates that Deltlllitay triangulation approXimkiatte
erty is also locally trill, fou all adjacent triangle well those finictions which minimize this Soboleo
pairs which form it convex quadrllameral. This is norm. One example would be the harmonic funie
the 1asis for the local edge swapping algorithm of tions satisfying Laplace's equation with suitabl
l~awson (11l described lbelow. boundary (ond(litionis Which nlilinlize exactly thi

I-"
t;
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norm. In a later section, we will prove that a initial triangulations of randomly distributed sites
Delaunay triangulation guarantees a maximum usually require advanced searching techniques for
priaciple for the discrete Laplacian al)proxina- point location to Fachieve -symptotically optimal
tion (with linear elements), complexity O(N log N). Search algorithms based

on quad-tree and split-tree data structures work
3.3 Algorithms for 2-D Delaunay Triangulation extremely well in this case. Alternatively, search

We now consider several techniques for De- techniques based on "'walking" algorithms are fre-

launay triangulation in two dimensions. These quently used because of their simplicity. These

methods were chosen because they l)erformn opti- methods work extremely well when successively
mally in rather different situations. The discus- added points are close together. Tche basic idle

inof the 2-D algorithms is organized as follows: is start at the location in the mesh of the previ-
ously inserted point and move one edge (or cell)

(a) Incremental Insertion Algorithms at a time in the general direction of the newly
(i) Bowyer algorithm added point. In the worst case, each point inser-
(ii) Waitson algorithm tion requires O(N) walks. This would result in
(iii) Green and Sibson algorithm ia worst case overall complexity O(N 2 ). For ran-

(b) Divide and Conquer Algorithm domly distributed points, the average point inser-

(c) Tanemura/Merriam Algorithm tion requires C(N1 ) walks which gives an overall

(d) Global Edge Swapping (Lawson) complexity O(Ni). For many applications where
successive points tend to be close together, the

It should be pointed out that there appears to be number of walks is roughly constant and these
some confusion in the CFD literature concerning simple algorithms can be very competitive. Us-
the Bowyer[14] and Watson[15] algorithms. What ing any of these techniques, we can procced with
is sometimes described as Bowyer's algorithmn is the insertion algorithms.
actually lWatson's algorithm. This is surprising Bowyer s algorithm
since both the Bowyer and Watson algorithms ap-
peared as back-to-back articles in the satne jour- The basic idea in Bowyer's algorithm is to
nal! The fundanmenta! difference (as we will see) insert a new site into an existing Voronoi diagram
is that the Bowyer algorithm is iniplenmentea in (for example site Q in figure 3.6), determine its
the Vorouoi plane and the WVatson algorithm is territory (dashed line in figure 3 6), delete any
implemnented in the triangulation plane, edges completely contained in the territory. then
3.3a -C',reinernta! insertiop. Algoithns add new edges and reconfigure existing edges in

For simplicity, assume that the site to be the diagrm. The foliowingis rwer'salgorthm
essentially as prcsnted b)y 1owycr (:ee reier-n z

added lies within a bounding polygon of the ex- 114 for complete details):
isting triangulation. If we desire a triangulation
from a new set of sites, three initial l)hanton) Algorithrz: luc,'li-ntaii Dehlauiwy ririanguiation,
points can always be added which define a tri- Bowyer 114).
angle large enough to enclose all points to be in-
serted. In additicn, interior boundaries are usu- Step 1. Imsert new point (site) Q into the Vorenoi

ally temporarily ignored for purposes of the Do- diagram.
launay triangulation. After completing the tri- Step 2. Find any :•xisting vertex in the Vorooi
angulation, spurious edges are then deleted as a liagram closer to the new poizrt than to its fomnn-

postprocessing step. Incremental insertion algo- ing points. This vertex will be deleted in the new
ritimmns begin by inserting a new site into an exist- Voronoi diagram.
ing Delaunay triangulation. This it roduces the Step 3. Perform tree search to find remaining set
task of point location in the triangulation. Somne of deletable vertices V that are closer to the new
incremnental algorithms require ki'wing which ',ri- point than to their forming points. (In figure 3.6
angle the new site falls within. Other algorithms this would be the set {v 3 , v4 , vO})

require knowing any triangle whose circumcircle Step 4. Find the set V of forming points corre-
contains the new site. In either case, two ex- sponding t, the deletable vertices. In figure 3.6,
tremes arise in this reguard. Typical mesh adap- this would be tile set {P2, P•, P4, PS, P7}
tation and refinement algorithms determine the Step 5. Delete edges of the Voronoi which can
particular cell for site insertion as part of the be described by pairs of vertices in the set V if
trmesh adaptation algorithm, thereby reducing the both forming points of the edgres to be deleted

burden of point location. In the o.iher extrei,,c, are contained in 'P
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Step 6. Calculate the new vertices of the Voronoi, Step 5. Connec-. remaining edges to site Q and

compute their forming points and neighboring ver- update Delaunay data structure.
tices, and update the Voronoi data structure. - -

70, P7

2 2 W 4"pp ./ P

- U.

5 V6

Figure 3.6 Voronoi diagramn modified by Bowyer.

, hnplernentational details and suggested data
structures are given in the paper by Bowyer.

•Watson's aigo.ithmr (b)

hnip!ementation of the W atson j15] algorithmu
is relatively straightforward. The first step is to Figure 3.7 (a) Delaunaky triangulatiou with site
insert a new site into anl existing Delaunay trian- Q added. (b) Triangulation after deletion of in-
gulation and to find any triangle (the root) such valid edges and reconnection.

that the u~ew site lies interior to that triangles cir- Green and Sibson algorithmi
cunc-ircle. Starting at the root, a tree search is•
performed to find all triangles with circumicircle The algori~nn due to Green and Sibson [17]
containing the new site. This is accomplished by is very similar to the Watson algorithmn. The pri-
recursively checking triangle neighbors. (The re- mary difference is tile use of local edge swapping
suiting set of deietable triangles violating tile cir- to reconifigure tile triangulation. '-Pie first step is;
cuincircle criteria is indepen ident of the starting location, i.e. find the triangle containing point
root.) R-emoval of tile deletable triangles expose.,, Q. Once this is (lone, three edges are then cre-
a polygonal cavity surrounding site Q with all tile ated connecting Q to the vertices of this triangle

Svertices of the polygon visible to site Q. Tile in- as shown in figure 3.8(a). If the point falls on anl

Sterior of tile cavity is then retriangulated býy con- edge, then the edge is deleted and four edges are
nectin.g, the vertices of the polygon to site Q, see created connecting to vertices of the newly cre-
tilu-e 3.7(b). This completes the algorithmn. A ated qluadrilateral. Using the circumicircle criteria
64(poumgh .account of Watson's algorithmn is given it, (an be shown that the newly created edges (3
b~y Baker [161 where lie considers issues associated or 4) are automnatically Delauinay. Unfortunately,
with constrained triangulations. some of the original edges are now incorrect. We

Algoi~h: Iiermeitz~~elainatringtlatonneed to somlehlow find all "suspect" edges which
Algoith: Icremnta Deauny tranglatoncould possibly fail the circle test. Given that. this

Watson [151. can be (lone (described below), each suspect edge

:,Step 1. Insert new site Q into existing Dehamnlay is viewed ,as it diagonal of the quadrilateral formed
S triang,.Iation, from the two adjacent triangles. Tie circunicircle

SStep ?. Find any triangle with circunicircle con- test is applied to either one of the two adjacent
raining site Q. triangles of the quadrilateral. If the fourth point

iStep 3. Performn tree search to find remaining set of the quadrilateral is interior to this circumcircle,
Sof deletable triangles with circumcircle containing the suspect edge is then swapped as shown in fig-

site Q. ure 3.8(b), two more edges then becore suspect.
"step 4. Construct list of edges asociated witb At any given time we can immediately identity eall
gdeletable triangles. Delete all edges from the list suspect edges. To do this, first consider the sub-

that appeare more that once. set of all triangles which share Qrirt a vertex. One



can guarantee at all tinmes that all initial edges thedure swap[ v., V e, V2, v t3, edgevs]
!cident to Q are Delaunay and any edge made inoi- if(itCi hDue[VqVl ,V2,Vu ti = TRUE)then

,dent. to Q by swa'ping must be Dela-nay. Thre- ctll reconfigvedgeslvq, 11, 172, a'a, lergesc

fore, we need only consider the remaining edges call swap[tie, vi, v nl, in2, edges]

of this subset which form t polygon about Q as call swap[fo , V2, gn e tn , edgeys r

ssuspect and subject to the incircle trst. ihc pro- endif
gcess terminates whe all suspect edges pass thr endprocedure

circuicircle test. This example ilplstrates an important point.
rlhenature of Delaunay triangulation guarantees

t" .... .- that any) edges swapped iii, 'dent to Q will be final

egesorifn the iotnse rtion agoitlan iould Thsimplisy

S....• /•that we need only consider forward propagationl

oi the recursivg procedure. li a later section,
: R---rwe will consider incremental insertion and edge

Ste..1.%taeppii i en ting enon-Daunac y triangula-
tions based or other swapding criteria. "To is ali

I S/gorithp. can also be programmed recursively but
formrequires backward propagation in the rec ursive im-(a) - llenientation. For the Delaunay triangulation• al-

gorithFe, the insertion algorithm wouol simplify
to the following three steps:

-gihml Recursive Algorith: Incremental DelauTay

~~ag~toGreen and Sibson [7 a b

SStep . Locate existing cell enclosing point Q.
Step Step 2. Insert site and conncett to surrounding

igvtcvertices.
S4 .ef e s o Step 3. Perform recursive edge sw ig o wly

dgesfrme failin the onrrl test

Siguep 3.8a Idntify inew o nu1 ewt vertex, (h) Swap-n-CnicrAgoi

ping of suspect edge. i T

The algorithen can be summarized as follows:

Algorithm: Incremental Delounay Triangtilation, te
Green and Sibson [171 , (b)

Step 1. L~ocate existing cell enclosing point Q.
Step 2. Insert site and connect to 3 or 4 surround-
ing vertices.

Step 3. dlel)tify sushwect edges. tFigure 3.9 Edge swatpth ing with forward propa-

Step 4. Perform edge swaping of all suspect aingation.

edges failing tthe incircle test.
Step 5. Identify new suspect edges. :;.3b Divide-and-Conquer Algorithmn

Step 6. If new suspect edges have been created, I hsagrtm h ie r sue ob
go to step 3. prespecified. Tile idea is to partition the cloud of

T!cGreen and Sibsou ýdgorithm call be irai- points T (sorted along a convenient axis) into left

plemnented using standard recursive programming (L) and right (R) half planes. Each half plane

techniques. The heart of the algorithm is tile re- is then recursively Delaunay triangulated. The

cursive procedure which would take tile following two halves must then be merged together to form

formn for the config,,ration shown in figure 3.9: a sin~gle Delaunay triangulation. Note that. we

assumne that tile points have been sorted along



tile x-axis for purposes of the following discussion as cr(;ss edges. This is obvious given that the
(this call be (lone with 0(N log N) complexity). Delaunay triangulation plroduces the ,onvex _i

of the point cloud.
Algorithm: Delauiay Triangulation via Divide Given these properties we now outline the "ris-
and-Conquer ing bubble" [11 merge algorithm. This algorithm
Step 1. Partition 2' into two subsets Tt, and T? produces cross edges in ascending y-older. The
of nearly equal sie. algorithm begins by forming a cross edge by con-
Step 2. Delaunay triangulate Tt. and T11 recur- necting vertices of the left and right triangula-
sively. tiuns with minimum y value (property 2). This
Step 9. Merge T. and T,, into a single Delhunmy forms the initial cross edge for the rising bubble
triangulation. algorithm. More generally consider the situation

in which we have a cross edge between A and B
\ I " ' and all edges incident to the points A and B with

endpoints above the half plane formed by a line
" / - passing through A - B, see figure 3.12.

iFigure 3.10 q'I~iaugalated subdivisions.

,: \ --}•Figure 3.12 Circle of increasing radius in rising

,.//i " l i \-This figure dep)icts a, continutously tran~sformaed

/:- ... I 1 •circle of increasing radius pasising through tile

/ J' •-- ... / "

-. r • -,.---. "F ointes A and B. Eventually the circle increrses

in size and encounters a p)oint C fromn the left. or
Aright triangulation (ill this c'ase, p~oint. C is in the

left t.riangalation). A new cross edge (dashed line
in figure 3.12) is then formed by connecting this

\ ~ point to a vertex of A - D in the other half trian-
_ . . -•,-'V•.- gulation. Given the new cross edge, the proces,,

can then be rel)eated and terminates when t.hl(
top of the two meshes is reached. The deletioii

Figure 3.11 Triangulation after merge. of L - L or I? -- R edges (-all take place during.
The only difficuth step in thi divide-and-conlquer or after the addition of the cross edges. Prop-
algorithm is the inerging of the left and right tri- erly implemented, the merge can be carried oul
angilations. The process is simplified( by noting in linear time, O(N). Denoting T(N) as the to
two properties of the merge: tal running time, step 2 is completed in approxi.

o emately 2T(N/2). Thus the total running time i!
(1) Only cross edges (L-R or R-L) arc c:eat(ed in described by the recurrence T(N) = 2T(N/2) j
the vierging prnocess. Since vertices are neither 0(N) O(NlogN).
added or deleted in the merge process, the need
for a new R-R or L-L edge indicates that the origi- 3.3c Tanlemura/Merriam. Algorithm
nhal right or left triangulation was defective. (Note Another algorithm for performing Delauna
that tie merging process will require the dcletion triangulation is the advancing front method de

!of edges L-L and/or R-R.) tinuaini h dacn rn ehdd
oaveloped by Tanemura, Ogawva, and Ogita (181 ani

(2) Vertices with minimum (maximum) y value in later rediscovered by Merriam [19]. Here the ide
the left and right triangulations always connect is to start with a known boundary edge and fort



a new triangle by joining both endpoints to one of the two adjacent triangles. In general one must
the interior points. This may generate up to two first check if the quadrilateral is convex so that,
additional edges, providing they aren't already a potenitial diagonal swaMaping can place 1ithout.
part of another triangle. After all the boundary edge crossing. If the quadrilateral is convex then
edges have been incorporated into triangles, the the diagonal position is chosen which o0)timizes n

new edges will appear to be a (somewhat ragged) local criterion (in this case the local equiangular-
boundary. This moving boundary is often called ity). This anmunts to maximizing the mininmm

an advancing front. The process continues until angle of the two adjacent trikngles. Lawson's al-
tne front vanishes. The problem here is to make gorithln continues until the mesh is locally opti-
the triangulation Delaunay. This can be done mized and locally equiangular everywhere. It is
by taking advantage of the incircle property; the easily shown that the condition of local equiangu-
circumeircle of a l)elaunay triangle contains no larity is equivalent to satisfaction of the incircle
other points. This allows the appropriate point test described earlier. Thei fore a mesh which
to be selected iteratively as shown in Fig. 3.13. is locally equiangular everywhere is a Delaunay

triangulation. Note that eaca new edge swap-
ping (triangulation TP) insures that the global
equiangularity increases A(TP) > A(T). Because
the triangulation is of finite dimension, this guar-
antees that tile process will terminate in a finite

" .... , "number of steps.

"Iterative Algorithm: Triangulation via Law-
son's Algorithm
y'wapeclge = trute

Figure 3.13 A straightforward iteration proce- Whiedswa= trge

dure selects the node which generates the small-. hile(swapedge)do

est circumcircle for a given edge. Tile absence of swapedge false
Do (all interior edges'

nodes inside the circumcircle establishes conver- D
gence. If (adjacent triangles form convex quad) thengence. Swap diagqonal to form TP.
Tile iteration begins by selecting any node which S opdiaton torm t4If (opt.inization criteria satisfied) then
is on the desired side of the given edge. If there T =
are no such nodes, the given edge is part of a con-
vex hull. Next, the circunncircle is constructed swapedge = true
which passes through the edge endpoints and the EndIf

Endlif
selected node. Finally, check for nodes inside this EndDo
circle. If there are any, replace the selected node E;mili
with tile node closest, to the circumucenter and re-

peat the p~ro'ess. When the circumncircle is empty When Lawson's algorithm is used for construct-
of nodes, connect the edge endpoints to the se- ing Delaunay triangulations, the test for quadri-
lected node. lateral convexity is not needed. It can be shown

that nonconvex quadrilaterals formed from tri-
3,3d Delaunay Tiangulation Via Edge Swapnpinig angle pairs never violate the circumncircle test.

This algorithm due to Lawson [11] assumnes When more general ol)timization criteria is used
thati a triangulation exists (not Delaunay) then (discussed later), the convex check miust be per-
makes it Delaunay through application of edge formed.
swapping such that the equiangularity of the tri- 3.,4 Other 2-D 'Riiangulation Alg~orithmns
angulation increases.. The equiangularity of a tri.
angulation, A(T), is defined as the ordering of In this section, other algorithms which do
angles A(T) = [a1 , a•.,3, ... ,,, such that not necessarily produce Delaunay triangulations

-Iri _< .vj if i < j. We write A(T*) < A(T) if are explored.
: ý < aj and oa, = oi for 1 < i < j. A triangu- T M Triongulation
lation T is globally equiangular if A(T*) <_ A(T)
for all triangulations 7T of the point set. Law- ks Babugka and Aziz [22] point out, from the
son's algorithm examines all interior edges of the point of view of finite elements the MaxMin (De-
imesh. Each of these edges represents the diag- launay) triangulation is not essential. What is
onal of the quadrilateral fornmed by the union of essential is that no angle be too close to 180°. In



otler words, triangulatiotis which minimize the produce locally optimal MinMax triangulations
maximun angle are more desirable. These tri- using incremental insertion and local edge swap-
augulations are referred to as MinMax triangula- ping. The algorithm is implemented using re-
tions. One way to generate a 2-D MinMax tri- cursive programming with complete forward and
angulations is via Lawson's edge swapping algo- backward propagation (contrast figures 3.16 and
rithm. In the case, the diagonal position for con- 3.9). This is a necessary step to produce lrcally
vex pairs of triangles is chosen which minimizes optimized meshes.
the maxhunm iit-crior angle for both triangles.
The algorithm is gutaranteed to converge in a fi-
nite number of steps using arguments similar to 3.--- s
l)elannay triangulation. Figures 3.1,4 and 3.15
present. it Delatnay (MaxMin) andl MinMa~x tri-
angulation for 100 random points. o20

I~j // (. I (b)4

Figure 3.16 Edge swapping with forward and
-., ! backward propagation inl Wiltberger algorithm.

Y The MinMax triangulation has proven to be very
--\-- useful in CFD. Figure 3.17 shows the Delaunay

triangulaLion lnear the trailing edge region of an
airfoil with extreme point clustering.

Figure 3.14 Delaunay 'Tiiangulatiol.

/V / hIi:• • •-7z-~----=•""--- -- • ---_ -:_ .. .

'~!iV~L --7

-A3
Figure 3.15 MinMax "1\'iangulat ion.

Note that application of locl MinMax optimiza- Figure 3.17 Delaunay triangulation near trailing
tion via Lawson's algorithm may only result in edge of airfoil.
a mesh which is locally optimal and not neces-
sarily at a global minimumr. Attaining at globally Upon first inspection, the mesh appears tlawed
optimal MinMax triangulation is at much more neai the trailing edge of the airfoil. Further in-
difficuXt task. The best algorithm to present date spection and extreme magnification near the trail
(Edelsbrunner, Tan, and Waupotitsch [23]) has it edge of the airfoil (figure 3.18) indicates that the
high complexity of 0(n2 log n). Wiltberger [24] grid is a mathematically correct Delaunay tri-
has implemented a version of the Green and Sib- angulation. Because the Delaunay triangulation
son algorithm [171 which has been modified to does not control the maximum angle, the cells
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* tiear the trailing, edge hae angles approaching triangulation (edge crossing not allow-d) until the
1800. The p)reselce of nearly collapsed triangles triangulation is coimplete, i.e. Euhler's formula is
leaves considerable doubt as to the accuracy of satislied. One objective of a triangulation might
any numerical solutions computed in the trailing be to choose a set of edges with shortest total
edge region. length. The best. that the greedy algorithm can

do is adopt a local criterion whereby only the
shortest edge available at that moment is con-
sidered for addition to the current, triangulation.
(This does not lead to a triangulation with short-
est total length.) Note that greedy triangulation
easily accommodates constrained trianglations
containing interior boundaries and a nonconvex
outer boundary. In this case the boundary edges
iare simply listed first in the ordering of candidate
"edges. The entire algorithm is outlined below,

Algorithm: Greedy Triangulation

. Step 1. Initialize triangulation T as eni)ty.
Step 2. Compute (") candidate edges.
Step 3. Order pool of candidate edges.

Step 4. Remove current edge ce from ordered
poo l.

_ ...._Step 5. If( e, does not intersect edges of T ) add
e, to T

Figure 3..8 Extreme closeup of Delaunay trian- Step 6. If(Euler's formula not satisfied) go to
gulation near trailing edge of airfoil. Sfetp 4.

Edge swapping based on the MinMax criteria via
Lawson's algorithm or incremental insertion us-
ing the \Viltberger algorithm produce the desired-" --

result. as shown in figure 3.19.

-~~~ -- K7/

SFigure 3.20 Greedy 'kiangulation1.------- ---- - ---- Figures 3.14 and 3.20 contrt tie Dlauny

a .... alo•• -. he lack- of ngle con-
- trol is eily seen in the greedy triangulation.

_--. -_.- - The greedy algorithm suffers from both high run-
------ ning time as well Ls storage. In fact a naive im-

l)lelientation of Step 5. leads to an algorithm
Figure 3.19 MinMax triangulation near trailing with O(Na) complexity. Efficient implemeitation
edge of airfoil, techniques axe given in Gilbert [25] with the result

that the complexity can be reduced to O(N 2 log N)
The Gieedy Thangu!ation with O(N 2 ) storage.

A greedy method is one that never undoes
what it did earlier. The greedy triangulation con-
tinually add,& edges compatible with the current



Data Dependent 'n1angulation this could be very costly in many cases. An v'l-
Unlike tn(sh adaptation, i,. dala dependent ternal, stra.egy is to abandon the pursuit of a

triangudation iissumes thit. the uuaiLbe('r miid posi- globally optimal triangulation in favor of a lo-

tion of vertices is fixed and unchanging. Of all cally optimal triangulption. Once again Lawson's

posp-ble triangulations of these vertices, the goal algorithm is used. Note that ini using Lawson's al-
L is to find tie best triangulation under data depen- gorithni, we require that the global meaure de-

dent constraints. lit Nira, Levin, and I(ippa [.61, m rease at each cligi swap. This is not as simple
they consider several data depelndent constraints as before since va(.h edge swap can have u) effect
together with piecewise linear interpolation. In on other surrounding edge cost functions. Never-

order to (letermine if a new mesh is "better" than thlc'Iss, this domiiain of intlucicwe is very small auid

.a previous one, a local cost fiictionI is defined for casily fiund.
Seach interior edge. Two choices which prove to IJe
I i)articulariv effective are the JND (Jump) ill Nor- Iterative Algorithm: Data Dependent Tlriaii-

ieal Derivatives) and the ABN (Angle Between gulation via Modified Lawson's Algorithim
Normials). Using their notation, consider an jute- swapedge = true
riot edge with adjacent, triangles T, and T2. Let While(swapedge)do
P(x, y/)I and P(X, y)2 be the linear interpolation swapedgc = fhdse
polynomials in T, and T2 respectively: Do (all interior edges)

If (adjacent trianglesSPi~x, y) -.= b IV + CIg--e forim m-nvex quadrilatcrothien

P.2(', y) a 2.X + b2 1) +C' Suap diagonal to( form '1.
If (R(f'.r ) < R(f'r))then

The JND cost function measures the junup in nor- T = T*

neal derivatives of P1 and I12 across a 'co11llnoim
edge with normal components 11, and I EIIpefge = true

s(fr, e) = n,.(ai - .,) + n,,,(b1 - b,)I, Eulif

(JND cost finctiol) EndDo
'ilhe ABN me-,sures the acute angle between the E(llWhile
two normals formed from the two planes P• and
A.2 Again using, the notation of [26j: Edge Swapp)ing only occurs when R(fr. ) < I(f r)

which gua,,autees that the metdd terminates in
s(fw, e) = 0 = (co%- (.) a finite number of steps. Figures 3.14 and 3.21

plot tie Delammy triaguilation of 100 raudom
vertices ill a unit square and piceewise linear con-

A = a(12 + hilt, + 1 tours of (1 t.aUh(gy - 9x))/9 on this mesh. The
,./(•- "'b' + l-��1)(a +b + 1 exact .3olution consists of straiglht line con lurs

(ABN cost function) with ""it slope.
The ileXt. step is to construct a global measure of
these cost functions. This measure is required to
decrease for each legal edge s;wap)ping. This it,
sures that the edge swapping process terminates. Ji
The simplest measures are the I ;an1(d l,, lioi'llsl S:',..'.

tlg(fr) IsI.',l

R, (f 7 ,) " '.rI/i,/

Recall that a Delaumay triangulation would result C.

if the cost function is chosen which imaxiuizes the --

Sminium angle between adjacent triangles (Law-
son's algorithm). Although it would be desirable Figure 3.21 Piecewise Linear Interpolation of
to obtain a global optimum for all cost functions, (1 + taih(9gy - 9x))/9.



In figures 3.22 and 3.23 div data ,Iopetdet t.ri- inserting sitesat. circinicenters of Dehaiiay trian-
anlgula io mid n ol ohtttoio ('olnto11"s usiu• t he JNI) g�les hito an existing 2-1.) trianlglation to imro:m,'

c'riteria and 1t mcsn'rc s-iggestcd in [26] are plot.- Inealsres of grid qualit ty. T'hi s has the desired
ted. el'ect of p)aciiug the new site ill it positlion that.

gtuarant.es that nio other site ill the I ritiguhlation
(-aln lie closer that the radius of the ci-eumeirele,
:see figurt? 3.241. lIn it loose sonse, the new site,

¢ /d -" .is p)laced its far away from other nearby sites its
/Yj 2i~A' ~ coiiser vativi.ly possible.

//4~,(c -~b

a a

Figure 3.22. Daita Dependent 'h.iiangulation. (b)

:igure 3.24 lIsertinig site ait. e(unirii'mieter ot ,,tit
- 111(nd obttiuse triangles.

'.reti ct (it[91 and Anderson [.30] ft'rther demontt -

stirated the utility of this type of Steiner triali-
(I -< -1 gulationi in t he gteuti-ation mid( a(dapltive reline-

'ent. of 2-DI meshes. The idlgorithm developed
!b Wiltterger [241 also permits Steinier triautii-

-aion. bsed oin either Mlinklax or iMaxNkin (Do-
"launay) insertion. Only in the latter case is the
insertion at triangle circunicenters truly justifi-

- !abl. 'File. paragraphs below give all expldanted
discuission of 2-D Steiner triangulation.

Figure 3.23 Piecewiie liuneat Initerpolation of S nllcr ("rtI Geneiraton

(I + tuIh(9!/ - 9.:r ))/9. The 2-1) St-einer point grid ge•,eratioln algo-
Note t hait 0,,: triat.tloit ilhni t bith- scrihe(l il [28,29,30] consisis of the fol-

t1 li i.h,: tnot~ •lolls ot lllaiaed fron this lowiivng "p. The f!rst S•t.ep is the Delauniy tlian-
giulation of tile boundary data. Usnally three or

peienlenlt onI the order in whic'h cdgeos aire 'iW(-• e . four p)oitls are placed in t.he far field with convex
inveral losible ordering .lni.egie.i tre ineuliol hull exiclosiiig all the b)Oulidlary3 points. Starting
inl [27I. wit.)i a triangulation of these p)oints, sites corre-

3.5 2-1) Sieiner 'lriwi'itlnat ion:; spooding to boundary cuirves are incremient.ally

I~efizition: A Steiner trintigulation is anyiv t- inserted using Watson's algorithm in i28,29,30]
anld (Greeni anld Sitbson's-ialgorithmi in [17T] ais .shown

aligulatien that adds additional sites to (ln exist.- in figure 3.25. The initiai triangulation (i -S not
"ing tria-.gulixtion to improve sonic measure of grid guaranltee thai all boundary edges tre melbers of

S(uality. tihe triangulation. This can be remedied in it vari-

l '1e(lniic•!ly speeaking, thle method of advaIcilng('t.y of waYS. One technique -dds additios.al point
front. grid genc rationl discusse(d by Professors Mor- to the triangillat.ion so is to guarantee that, the
gan and UIiner ill these notes would be a1 spe- resiulting Delauinay triangUlation contains all Lthe
cial type of Steiner trianguliation. The insertion desired boundary edges, see reference [161. Ali-
alpo'rithnis described earlier also provide ia simn- other apl)roach p)erforms local edge swap)l)ing so
ple u,.n...nism ior generating Steiner triangula- as to prodiice a constrained l)elainay triangii-

Lions. Holnes [281 demonstrated tihe. feasibility of lation which guarantees that all bounldary edges



n'e m1'11uni e1irhs of tihe triahlnulaition. uIguti ition using the \Viltborger al','oritihzir with
MaxŽMilNn illserl-tion and r'tiireluerit hu.4,cd oh laX-
imul mspe~qct ratio.

01 1~ ý7
- -! -i~t~/li -- -- ,--T !•': , ,, -I

P. V., 'A
IN ý.4 I- 11• ,

j . 3I
• " ' L :, t "' ' . ' t

Figtire 3.25 Initinl iorifniulation of htonthau .-..... .
l)Oin~t.-•

Figure 3.26 Steiir It riangulation wit h sites ill-
Ill tit er ('v'Pit e ll, tile htllndilry (,(Ig ,s are illiarlilk so S t.t'l '('d a II ( titucll ter' to l't dr lce cMiitillli (ell
that they ('11llllOt he t'eti r )emo el as tile tr'itt~i'Itlation wsI,, (t ratio.
is refined. l' algorithms (N.-i,•hied ii 128,2:9,301
'int rrogaltt tniallgh's ill all arbitrary order (this

mtakes the triatililatioli noimilltlie ). The user
unitist specify sonmc znatsitre of (jlalitN for t ria ].gle

r(clil3('lVIItI (aspec' ratio, area, ('ontaitilllelit circl,
rNilius, for exanmple) and it threshold 'aliv' for the ....

eica,',ure. If a triinghe fails to Illtet the hrtshhld ! xd
value lit', t riangnlatiou is r(tincd by pihCiting a -y
niew.V .it, at thlie ('ircui'i ..*,itttr ,,f the FLihed t rian-

_V . .M. %`Odt .•~lk" "Al~t"lItlil.l St'lilll", tIiltV 1llli ll ' I W, .I P4 jt

t akli to iNsure t hat Ill'ltalC5 are ('htivltol wihV(lleh

ail'O p'uilri'llitee(l lte re(dtie(I'ed MiiNI the reline- "" ..

(lov-" iot give the tiser direct. lltrol over the am / "-, I
tual, niiumber of t riaiigle genirrated tlh tilte ,),oc5S -"- / p"
of Stdiner retinoiewt. Wiltlherger takes a (it- -it jf ,
ferent approachl by m3ain3t aininig a dynlikcl heap
data struct.ure of lhe quality illeasure. (fleapl .. t, "
"S;truit tiirs are a very efficient way of keepling a
sortedl list, of entries with inisertion and query tim+e Figure 3.27 Steiner triangulat ion of Texa's coaa,'t
f(logN) for N entrie,.) The triangle witdi the anild the Gulf of Mexico.

largest value of ili spec'ified meiiasure will be to-
cated at. the top of the heap at all tilies (hip- This triangulation has proven to be very fhexible,
ing the tria:lidatlatiol. 'This makes hpeleltinent-a- For instance, figure 3.27 shows a Sthiner tlialigu..
tion of a Steiner triangulation which nuinaizes laition of the Texas coast and Giiff of ,ehxio.

th.c maxjimiLm ova'i of the measuire very efficient 3.6 Thre-Diinelslolial T] an~iilati..s
(anld ullique). In this inpleuhmentation, the liser
call either specify the niminber of triangles to be Tlhe Delauiay triangiilation extends naturally
generated or a threshold value of the mieasure. ilnto three dilieliSiOliS as the geonletric dual of the

Note that multiple nieasures can be refined Iex- 3-D Voronoi diagram. The Delaunay triaiigula-
icographicahlly. Figure 3.20 shows a Steiner tri- tion in 3-D can be c'haract.erizled as the mimpl e



t.riweigulation such that, the ,-ircuolsphlere pi'4 l;tlt It is tsI, ftil to developi a t.nxolxoilin of p)s-
I Itotrgh t I- :"our vcrtfic.s, of any totraledroiti ust .ibl,, configurations aidrestwd by Lawston's tiheo-
not c,-1 .A.,n ally other P)oint ill tie triantigultion, rt'. t ' gure 3.28 shows cnfiguratIM. i 31) of
A, -h Lie 2-D ease. tihe 3-D) Dehulnay triangula- live points which call Iw t(riangullatid ill only one
tion has the prfl)erty that it Iinliuiit, es the max- way and hicue ht. cliaige is possible. We call
itumn containnment, sphere (globally bit tnt. to. t.lwsc ui, s un'v,,ts "unziwappahle". Figture 3.29
'odly). IlltVo dinlensions. a! can be shown that :lows configurations which allow two ways of tri-

a tiwsh etitirely comtlsi.ted of acuti t ;'iiuhgle- i6 atulhation. It iv po•siblh td o tlip bet weimi the two
auOto.ia;t ctaly Dvelauuay. To prove t his., Colitidor possible triangulations ntid we caPl the.-e mrrang,-

an lid.]acnll. t~rltal,_h' pair fortiiiuzg -is tdrila-al let swppale".

By swapping the1 position of the diagounal it. i -

ORasly shown t lm~t thet Iluininalun angle alwatys ill-
cr(':ses. Itajani (121 Ahw the W`S 1V t aI ral eXtt'ellstolk .. '\*\ ~ *
of this iWea to w three or mote space diizen,.-iIs. ,i -•" , '-\ .
Slie defiins a "selt-f eIII.eI" ,t-imph'x iill to he
a sAmplex which 1 ts tI h"|('wmncent ,r of its rir-
t'utillslh '. iltej olt '' 4'O tl g siui phx, lit two dilleln- (. (b) 1c)

sions, acuttl lr'i;u.u•esa. self eent ered .111d o• •tils'

triWangle are uot.. ]aUazi shows that a triinoula- Figuri 3.28 Generic nonswappablit contigurat ions,
tion entirely colilmsed of self-centered sitnplices; of 5 ptintS. Shaded region deuotes phaiar surface.
in it' is anutoniaitiCaldly )4elautiay.

.1'x/ .

* ~ .G 3- Boyr id \Vatsvii Algoriluid s - ~ :
liTh Mlgoritlhns of 13owyor 11-11 anti \Vatsoni ' -/" -"

Silian ýell conliphlxit I ieof o(N').Il) and 0(" 4 ") for
"A' ranloinll ,listribuled vertices. They (it) tiot
give worst case esthinltes. It should be Iloti' ('41) (c) (AN)

that in three diunusioNks, l0e (201 shows that
the malximit number of t etrahedra wvhich can Figrti•e 3.29 (meneric swapial he coutiguratinns of
he gewerated frout . veil ices is O(.Y). 0h an 5 Points. Shaded region den, tes plAnar urthe.

00i'i, ) WUnder n'Lse copleixity wthtll worst h.lt There are two l i'ri-lllg-ietit"s that allow t wo.(NA'2 }. T..nder norittld coniditionts this ,,vOust ta~ lriangnlatiolls. ligti'e. 3.29(ti) and 3.2(h) show\

.-,cen rhio is rarely en 'ountervd. Baker [16) report,,,s ti )(ass o f conlpanioi tria3u19N t iond t1hat Ma

l U o r ol I vr e a i i s i c a c t I l at i I -t i l t i 1 1 1 1 4 's f 1 1 W i .- , l Si , h , , t, u.l lf t i lt t t e " '"t . tt het .
he tansfrl !t ....i 11,14 t\.iw to another therleby

-itni. tchiianigintg lke lnuintler otf tetrahlidra firont to 3

"3Afih 3-I)F],l'lt, •W1)al~l~i_ A l!.brilitiit or \'ice-versa. Fil-;lure 3 19.y() and 3.9() W\:ho"
the otiher ýlubiclvss of ronitigriations that can lk,

Un. it il iliost recenlly e he siLpprirhii of thought Irallsforilled fioin oliiie type to allioth,1' while kep-
ani Siblsoin bt•setl oi edge ,s~ippaiii Wd.S tholightlhig const liit. tlie niuilbelr of tetrahedra (2), These
iot I o be exteidlible to 11 rve dimuentsions lalgoich .ue

wiaoui'es r'Cv&al ain iii,.)'rt.allt dtl''eitelictt between the
Mgt, m~i• yphga to theeof mot~ir~lie dimensins.litep tdwo lind t hree-dimlensionial allgorithnis. The.1111111-

1986, Lasuigt turlished a imOl 121] in whichlilt, bcr of ttrahedrons intiolited gi the stoapphq ojk-
proved thle fulidaa' ietnil 'onleil lit Iporial ireshilh: h raton need itot e constat,

The 3-) edge sWalipilng algorithin is ba.sed

ThOiir-lui: (IL.awsoni. 1986) The ConvI'x hnill of oil flippiig le('tweii the two Ways of rialigilulat.iltg
d + 2 pWslih hi I Call he triangulated ini at. uiost ihe couiigur•m lulls in |igure 3.29. ()tiN prod way tot'

2 Wiiys. lhidilng all sets of five poilt.s in the lnieshi i's to 1001)
Jloe [11,321, and lajan 1121 have constructed thlroitigh all tile faces ill the mlesh and conlsidl'riug

algorithms hasetl oin this rheoreti. Ili joilit. work the five points that mlliitke uip Ii.? two adjoining

with A. (Gandhi [331,"we independenitly cousructed ito raiedra for diat. face. Bielow we present tihe

all itucrciici Delauuiy triangulation allgoritlun facewise edge swapping primitive.

balsed on Lawson's theorei. ''ll'h reinalnli•r of Prihitive: ll)GR,..S\ .P(fact )
hlits :lection will review our algorithnn and the ba- Let. C 4 Set of tet.rahedra naiae froni the 5

sic idesil behind 3-1) edge Swapl)lng algorit.lims, nodes of the two adjoining tet rahedra }

't
It



lf(S-llpv(C) collvv\ )I hoit ;it-v (alted O blc IIv('l'tiitll coord'(illnt t' of notioie
Le't T c(i'tIll''i IrIIJIIIIIlilt 111 I -, iiiulicat e tilh, p1ImiI ionl of -- ill Ivdat ion tol Ihlo

Lut T* altertint'' I I-iitigitla itIll (if it exss iod's of 1e uh.iti l. -For ''.1(11 III, ;qml' ' ig o

IQ( (~lility( 'I') >: (Ouli liV ('I')()t j i 1'. indliates' till, lpll;it ioll oIf 5 i'I4ativv to till pillill

[Elgi 'Swti I T jIltl T thrjlsilg I liotjh tile triazl.Igttia fact. oppo. 1t

Eildif otillo:. Tl'iis b.. = 0 wh en z") is it, Hi._ !. > 0 wihen
71 1I. tilt tilt, salillt. still' If 1, its illl(l' S. mi11& (. ()

The lii'st step inI to fiI tilld tid~ lt, tofI't~ll lielt, when't 5 is oil (titte );ilosit ,I sidu "f U.- fron t 11(1
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l I WIXit s i.C.. ofh oil' it i-aS e r s t haiii( t caI I mI1 ilt l 1hli if an -l flo e5lc il(1'c leI it

.1 ~~~~~sd lineartt tithe1 iligldi 111 fill'ti t3.30).al ~' I~l
foverlpltit- tilet t'nhl'(lri , will' ftilv the slukve plijtlt s

' I f1. t .0.. .' t e ) tiie it is ( "Al I *1icivtI~' sitionly lieU ',

tIll' theolir igt i ghi i on i ll' le t riic w4t'l('i of' alle ('f lhle
* ~ ~ ~ ~ w Ii ' etyit l llld Iigu vi'i' .$ anond .29 hr oilgirt 1(115lltu

.I. foivr t'iiiiipi.1 oriilm GW o il' finhing all m'lenolk- Fiue33 'uei 111'fr11(1

.lrfwll(.;,ttaldi fortm it onca\' she..h\Itsmpe. teng

NW.1IIions il'lligi('t 3.2' n 3.29l' lcoisligu'a iou l'll'XSaof.Ilendst'rnmee si

Uil'l. for example ie onyt'ouf gt iltS, F1Cit( igur te 3'lte.30 onvextyi votW fo'i- (lotivltl 4. t o

litltgure 3.29t(b) ter pri fteslcal tilth twoitvirliwa- Thttllt,' 'ifOM lit ioks'Uais" I Ill,- Iell vIt'il aI' Xttt Il.,

ittIF,% w ill'fr s a cl icav shape.i~l't lOtl i ol' l sl.'ivt' (Il''l5.1111i I IIcll 111 ~t ta Ii i i WI ecl. i I; I y

pustIlt c ren(ting over lapp int it iraWStell' list Ill' ifc till i't e aeiafre ovXsl

ct'hlfo- thred vII l'(tl&infig liajtŽionWere. lilt' I maplw

im- e.Fore swppwedit ctfitr eitrain, is csfuhoc uis. Hiot'iiie ,cl ne- old two c(ll traglatil I ow1 i gildl'O ilalitl hI lor

pl' fo~re oild ~lto sc if tihle tloca'l' (It.~l '1(1'i'tY Itill' (l plarpping te l t i biid a hl. 11 y c r ic test. ForIVI example
mrae (iion us Nee l foirthi'lt hl owl t s w ll l il l tiproit bY11 Il1.1i'l e i 111v I-eil ~ l~ l c i'.l-ltll "llt1111

* etig l'pi'llliig Ino tit( v eN it v: T rims o lw at ml Ifion 1 tests) (2ing 4r,i.')). itie 1( sL2,4e ) the n Oic-

.iltii'r Ila t 'o Is ihapeillrned. Thisc tel rliheqlk oftlS ' 1  aioliip~ t loe ll( uiW oil l 2,~ :,dete
adila7 i icon e. over o levet' t150X o r lt IVa et l a t (t ,,in it ~s of ' the tw foiniit N t lot a

(235)itt e., (142,3) il(is Ith fallw. lhikre bv'T1 o

atiul ~ ~ ~ ~ ~ ~ thl it' wouldi lit,4' it lntI 5ývl iit{ itt 1 i'ttttts~II~ 2 ~ l 1

Coif lvnlpa AespectsIvofy.1 ) VII' c SlapIn i'tkx two1 i10 I'll'e I n coil (1:12-li (13 (:.1 If h ho

ilo t ,o of ipilat'yeit.1'i cooi'iiites tof pe'oI'II.o t iheop fo m d(I) v Iraitlto w idco lalo e -

lappinit teest.eri which div test.. above fyiti
el"Itioll" ~oli'l~lod or titt' 04 1,0 S\Vlkjwtilll1t th-01-itilill. litlith' bysecxploit.e

#Dtriniiij Co-.it 1 hz 1p-ail rest Uin 1 C u h ralperty of deto soilvett~ tile~ SU~~Ax t

Ixdo heSat formed x.1  the teI le l T g poblem rose aor e requunifromao rles Cmuigdteli'
al TIsi c Ylex Let t/ilvrie of til Iitrk detrlnullits of t ile tgd fformuircttl' is

(1, 2, 3, 5)1 iJ. (1] 2,3)m frs the facet. were bipyf thThe'
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determinant into a 3x3 one. 0 ABCD and negative if point E lies inside 0
ABCD, provided that tetrahedron (A, B, C, D)

1 0 0 0 has a positive •-.Aume (as given by the second
all a 12 - all a 13 - al1  ai1 t - all determinant). The determlinant is degenerate if
a21 a 22 - a 21 a23 - a 21 a2 4 - a 21  p oint E lies exactly on 0 ABCD.
all a 3 2 - a 3 1 a33 - a 31 a 3 4 - a31 This test is motivated by the observation in

141 1 2 -( all a 13 -- a1 1  a 1 4 - ali 3-D that the intersection of a cylinder an(l a unit
- a2 2 -a 21 a2 3 - a21 (24 - a 21  paraboloid is an ellipse lying in a plane (figure

(132 a31 (133 - a3l a34 - a3 1  3.31). So, any four co-circular points in 2-D will
project to four co-planar points and the volume

9 Delaunay Circumsplhere test: The 3-D Delau- of the tetrahedra made from these four co-planar
nay triangulation is defined as the unique trian- points will be zero. The paraboloid is a surface
gulation such that the circumsphere of any tetra- that is convex upward and the points interior to
hedron contains no other point in the mesh. To a circle get projected to the paraboloid below the
determine where point E lies in relation to the cir- intersection plane and the points exterior to it
cumsphere of tetrahedron (A, B, C, D), denoted get projected above 'he the intersection plane.
by(O ABCD), we use the InSphere primitive : If a point lies outside the circumcircle of three

other points, the tetrahedron made from these
four points will have positive volume provided the

in mf E is inside 0 ABCD three points were ordered in a counter-clockwise
nhr(E) =0 ifEisOi ABCD fashion. The volume will be negative if tile l)oint

> 0 if E is outside Q ABCD lies inside the circumcircle.

wber( luSphere is computed from the following ..

determinant:

InSphere(E)

aA X;B XC XD XE )XA XB 3, Xl)

- A YP1 Z,- y 1 Y Z J YA YB Yc PIv

,2 ,. W2 2 ZA Z -B ZC Z D

XB- XA XC - X A XD - XA J'I -- X.4

YB -- YA YC -- YA JD -- YA YE -- A

'B-- ZA ZC- Z A ZD - ZA ZE ZA

IV2  W2 IV2-w 2  11,2 - I2 2 U1
B A C~ A 1) A 1 E A

- XA~ - ,4 U X,~ Figure 3.31 Projection of cocircular points ontoXYB -A YC -- XA iD -- YA unit 1)araboloid.

- ZA ZC- ZA ZD - zA The second determinant is the 3-D exten-

and wIV= 2 + y, + sion of Guibas' CCW (counter clock-wise) prim-
The first determinant is the 3-D extension itive [1] which computes the volume of tetrahe-

of Guibas' InCircie primitive [1]. It represents dron (A, B, C, D). Thus the InSphere primitive
the volume of a pentatol)e whose vertices are the works irrespective of how the point. A, B, C,
points A. B, C, D, E projected onto the 4-D and D are ordered. If it can be guaranteed that.
paraboloid (x 2 + 112 + Z2). (A pentatope is tile all the tetrahedra in a mesh have their vertices
simplest polytope in 4-D just is a tetrahedron is ordered to have positive volumes then the need
the simplest polytope in 3-D and a triangle in 2- to compute the second determinant is eliminated.
D. A pentatope can be constructed by joining the The InSphere primitive becomes ill-behaved when
tetrahedron to a fifth point outside its 3-space.) the points A, B, C, and D all lie nearly on a
The coordinates in 3-space of these five points plane because the position of the circumsphere
remain unchanged; they simply acquire a value with respect to the points (i.e., whether the cir-
in their fourth coordinate equal to the square of cuinsphere is above or below the plane) becomes
their distances from the origin. The volume of very sensitive to siall perturbations in the coor-
this polytope is positive if point E lies outside dinates of the five points.
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3-D Mesh Optimization minima all seem very close to the global mini-

The 3-D edge swapping algorithin can be used mum which makes edge swapping a practical way

to get a nearly optimal MinMax triangulation.
to op~timize existing triangulatios. hi fact, there We observe that in 3-D as well, there are many
is no way to triangulate a givea set of points based local minima and the order of face traversal deter-
on the minnmax or niaxmnin of the face angles di- mines which one is found. It is hard to determine
rectly. An alternative is to start with an existing how far these local minima are from the global
trianguilation and optimize it. This requires that minimum but we believe that edge swapping is
we cycle through all the faces in a mesh and applytithe cdcra practical way to get nearly optimal MinMav

edge swapping procedure at cacti step. This meshes,
process is continued until no more swaps are pos-
sib~le. )0- Lawson has shown that in 2-D, Delaunay tri-

angulations have the property that the muinimumn
Algorithm: Three-dimensional mesh optimiza- edge angle is maximized (i.e., MaxMin triangu- f
tion. lation). So in 2-D, the MaxMin triangulation is
while (swaps occurred in time last cycle over faces) unique and the edge swapping algorithm will con-

for all faces verge to it. In 3-D, however, the Delaunay trian-
EDGE.SWAP (face) gulation is not the same as MaxMin triangulation

endfor and the edge swapping algorithm working with
enldwhile the MaxMin criteria has the same property of get-

in tme following paragraphs, we discuss a few swap- ting stuck in local minima as thle MinMax. Again,
it is hard to judge how close the local minima are

criteria and examine the meshes they produce. from tme global minimum but we still conclude

Global Edge Swapping that edge swapping is a fairly efficient technique

The. ISphee criteria is binary in the s(eflse for the construction of MaxMin triangulations.

that either tile triangulation of a set of five points 3-D Minimum Edge Triangulation
satisfies tl:e criteria or it does not. It can also be
shown that of tile two ways to triangulate a set of Another mesh of interest is the minimumin

five points, if one way fails the InSphere criteria, edge triangulation. Since finite-volume flow solvers

then tile other one will pass and vice-versa. Cases work edge-wise, it is beneficial to reduce the nuin-

1 and 3 in figure 3.15 and cases 1, 3, and 5 in ber of edges in a mesh. This is easily accom-

figure 3.16 will always pass tile luSphere criteria. plished hy edge swa!ping such that we always
The Delaniay triangulation is unique for a swap from case 3.29a to case 3.291). Each time

given set of points. Lawson also noticed the re- this operation is l)erforme(l, one edge and one

lation between local and global properties ol tie tetrahedron are removed from the mesh. Again,

Delaunay ItSphere criteria: a triangulation is Dc- different meshes will be produced depending upon

launay if and only if the triangulations of sets of how faces are traversed and the final mesh may

five points corresponding to all the interior faces only be at a local minimum.

in the miesh satisfy the lnSpherc criteria. This Incremental Dela'unay Triangulation
means that if every face satisfies the Delaunay
criteria, then the whole mesh must be a Delau- The edge swapping algorithm l)rovides an ef-
nay triangulation. fective way for inserting a point into arn existing

Joe [32] has proven, however, that process- triangulation. Simply inid the tetrahedra into
ing faces in an arbitrary way may result in getting which the point is to be inserted and test its faces
stuck in local opt.ima. This is an important dif- according to the circumsphere criteria to deter-
ference between two and three dimensional co:n- mine if edge swapping should take place. If a
binatorial edge swapping. set of 5 points corresponding to a face is retri-

,-in ai T.agul. angulated, we proceed to test all the outer faces"8-D M'in Max. anltd MaxMin Pi,•angulati071S
of the new triangulation for swappability and so

Tile edge swapping algorithm can be al)plied on. This propagates a front that retriangulates
locally to produce a triangulation that mininmizes the mesh. It is known that any new face created
the maximum face angle. In 2-D, the edge swap- during the retriangulation is indeed a part of the a'h

ping algorithm (working with edge angles) gets final muesh as well, and so back-propagation is not
stuck in local minimhna and depending on the or- required. This may not be true for other mnesh
der in which the edges were traversed, different q1vality measures and back propagation then be- 4

local minima are reached, In practice, the local comes necessary.

.A
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Rajan proves that it is possible to find a cer- patch using an adapt ive refinement strategy based
tain sequence of edge swaps which will guarantee oil absolute error and curvatu:e measures. The
that Delaunay triangulation is recovered when a stfrface patches are projected onto the lplante, see

site is added to an existing Delaunay triangula- figure 3.32. Simple Gtretching of the rectangular

tion. In practice, however, we find that this order- patches permits the user to produce preferentially
ing of edge swaps does not seem to be necessary stretched meshes. (This is useful near the leading

in order to recover the Delaunay triangulation, edge of a wing for example.)
In fact, it is our conjecture that this is always the The triangulation takes place in tie two di-

case. inensional (s, f\ plane. The triangulation is adap-

This insertion algorithm can be used to adap- tively refined using Steiner point insertion to min-
t.vely refine meshes. To (1o this, sites are inserted imnize the maximum user specified absolute error
at the centers of the circumspheres of tetrahedra and curvature tolerance on each patch. The ab-
with large aspect ratios (or other suitable niea- solute error is approximated by the perpendicu-
sures). This insertion site (hoes not always lie lar distance from the triangle centroid (projected

within the cell Ti marked for refinement. To find back to 3-space) to the true surface as depicted in
the cell in which the new site lies, a walking al- figule 3.33. The user can further refine based on
gorithm is employed. Starting at Ti, harycentrics triangle aspect ratio in the (s, t) plane if desired.
wre computed to determine which face of Ti the
new site lies behind. The next step is to traverse
to the cell behind that face. This procedure is ap- 3 3 4,
plied recursively until the cell in which tile new /v, 2••

site falls within is found. The idea of introduc- t

ing new sites at the centers of the circumuspheres ,
of tetrahedra works well because each new site t x
intr( "'iced is equidistant to the 4 points of the
la~ek,! aspect ratio tetrahedra. This produces high
quality meshes in 2-D and seems to work well in
3-D. Figure 3.33 Calculation of triangulation abso-

3.6c 3-D Surface Tr: -- ulation lute error by measurement of distance from face

The Wiltt. ,algorithm has been extended centroid to true surface.

to include tO giulatioti of ,imrfacp patches. -;Igure 3.34 shows a typical adaptive s.urface grid
Although th, , pt of l)irichlet tessellation is .�,nerated using the Steiner triangulation method.
well defit..1,na. n .a othi manifolds using the con-
cept of, od.:.:ic lce, inc practice this i,; too
cxpcnsi' - mI-g geodesic distance is a varia-
tio , at is not easily solved. We have t

IJ, o, .mpler procedure in which surface
gruis in 6-) are constructed from rectangular sur- -

face p)atches (assumed at least C' smooth) using
a generalization of the 2-D Steiner triangulation
schenw.

2 I \ \ ",

Figure 3.34 Adaptive Steiner triangulation ofFigure 3.32 Mapping of rectangular patches on sraems bu oig77wt lp e
(s, ) plne.surface mesh about Boeing 737 with flaps de-

(s, t) plane. ployed.

Points are first placed on the perimeter of each
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4.0 Some Theory Related to in numerical modeling of conservation laws oil un-
Finite-Volume Solvers structured meshes. In the next section, the siu-

4.1 ar eplest of numerical schemes based on integral and
ii calar Conservation Law Eunations weak forms of the conservation law are compared

For purposes of these notes, we consider nu- to illustrate their similarities. These schemes can
merical methods for solving conservation law equa- be viewed as the "central-difference" counterparts
tions. on unstructured grids. For advection dominated
Definition: A conservation law asserts that the flows, these algorithms are inadequate and addi-

rate of change of the total amount of a substance tional terms must be added. This topic is under-
with density z in a fixed region 1. is equal to the taken in detail in future sections.
flux F of the substance through the boundary Oft. 4.2 Comparison of Finite-Volume and Galerkin

Finite-Element Meth(,ds
of- d a + /F(z) .x di = 0 (integral form) Although the integral and weak forms of the

Di equations appear to be quite different, numerical

The choice of a numerical algoritlhm used to schemes based on these forms often produce iden-

solve a conservation law equation is often influ- tical discretizations. To demonstrate this point,

enced by the form in. which the conservation law is consider the Galerkin discretization (with linear

presented. A finite-difference practitiomer would elements) of a general model advection-diffusion

apply the divergence theorem to the integral form equation (i > 0):

and let the area of P shrink to zero thus obtaining 0 4
the divergence form of tile equation. at + V • F(z) = V - j1Vz

z + V ', (Z) = 0 (divergence form) Multiplying by a test function 6 and integrating

by parts over the region Q produces the weak

The finite-element practitionur constructs the di- >r:t of the equation.
vergence form then multiplies by au arbitrary test a n
function 4 and integrates by parts. O(- z da- VO. F(z) d a - F(z) - n di

j - da- VO'.F'z)da±+ ( I- -[,FV4dV d a+/ pVz-ndl
at JO1 ! 4JQ

(weak form) (4.0)

Algorithm developers starting from these three In the finite-element method, the entire d(omain

forims can produce seemingly different niumerical is first divided into smaller elements. In this case,

schemes. In reality, the final dist.retizations are the elements are triangles Tj, such that Q = UTj,

usually very similar. Some differences do appear T7 n- T1  0, I # j. In Fig. 4.la we show a rep-

in the handling of boundary conditions, solution resentative vertex with adjacent neighbors. (To

discontinuities, and nonlinearities. When consid- simp)lify the discussion in the remainder of these

ering flows with discontinuities, the integral form notes, we adopt the convention that tile index

appears advantageous since coniscrvation of fluxes "J" refers to a global index of a mesh whereas

comes for free and the proper jump conditions are the index "i" always refers to a local index.) The

assured. At discontinuities, the divergence form linear variation of tile solition in each triangle Tj

of thle equations implies satisfaction in the semse can be expressed in terms of the three local nodal

of distribution theory. Consequently, at disconti- values of the solution, Iz = 1,2, 3, and three

nuities special care is needed to construct finite element shape functions nl, i = 1,2, 3.

difference schemes which produce physically rel- 3

evant solutions. Because the test functions have z.(x, y)rj. = Z ni(x, y) Z&h

compact support, the weak form of the equations Z= = x.

also guarantees satisfaction of the jump condi- (local representation)
tions over the extent of the support. The di- Each element shape function ni call be interpreted
vergence form oi the equations is rarely used in as a piecewise linear surface which takes on a unit
the discretization of conservation law equations value at vi and vanishes at the other two vertices
on unstructured mieshes because of the difficulty of the triangle as well as everywhere outside the
in ensuring conservation. On the other hand, tile triangle. The solution can also be expressed glob-
integral and weak forms are both used extensively ally in terms of nodal values of the solution and
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global shape functions. Before evaluating equation ('4.1), it is useful to
introduce more notation concerning the geometry

/a ZT Nof figure 4.1a. Figure 4.2 depicts the index and

nodes J normal convention which will be used throughout
(global representation) these notes. The triangle with vertices 0, i, and

In this form, the global shape functions are piece- i + 1 is denoted as Ti+t,2 This index convention
wise linear pyramids which are formed from the will be used for other quantities such as areas and
union of all local shape functions with have unit gradients which are comlputed in 7,+1/2.[
value at vj. These global shape functions also en-
joy comlpact sul)port, i.e. they vanish outside the
region % formed from the union of all triangles
incident to uj. A global shaple function for vertex n., i+l
Uj is shown in Fig. 4.11).

4 IiSl i n l,:

5 Ni.I

5'Medi Dual H

.... c,,roial Figure 4.2 Vertex Vo and adjacent neighbors.

6 It is convenient to define normals, fi, for straight
2 eedges which are scaled by the length of the edge.

Using this notation, a simple formula exists for
the gradient of the numerical solution in a triangle

Figure 4.1a Local mesh with centroid and me- Ti+1/ 2 .
dian (duals. I h --

"i+1/2 = 2A-. /2 (z6ii+1 p/ + zi ni+' - zi+lnii )

(4.2)
The gradient of the test function in each trian-

.gle takes a similar forn (replace z by 0 in the
previous formula with 00 1, Oi = 0, i = 0).

... 2 •+ 1 /2  (4.3)

rThe discrete form of cqn. (4.0) is now written as

de+ ____ / F(z") do

Figure 4.1b Global shape function for vertex v0  t+i 2A. 1 /2 j+, d
(not labeled). d(vo)

The Galerkin finite element method assumes i2A+1/2 /da

that the class of test functwns is identical to the (4.4)
class of functions approximating the solution. The The flux integral can be evaluated by exact inte-
simplest test functions of this sort are the in-e Tefu nerlcnbeeautdb xc negration (when possible) or numerical quadrature.
dividual shape functions. To obtain a Galerkin In this case, tie latter is assumed.
discretization for a typical vertex vj, simply set

= N1 and evaluate (4.0) in Qj. Since - van- fp ,() do +---F(zh)+ z)+F(z~t))
ishes on ofIj equation (4.0) simplifies to the fol- 3T,/2  ) +
lowing form: (4.5)

The diffusion term is also evaluated with Vz4
J Oh hJ constant in Ti+ 1 / 2 and ii+1/2 the area weighted

da-j . F(z•) daaverage p.
(4.1) .LhVzhda=A,+i/2 "-.i 1 /2 Vz 4 1 /2  (

=f- V4 . VzhJ da = (4.)
aj dTi+ 1/ (.6
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This simplifies (41.0) considerably. the domain (no holes) and represents a consis-
teet and conservative finite-volume discretizat ion

a Oz- dof the domain which is spatially equivalent to the

it'• 11).Galerkin approxinmtion. The scheme can now be

d(vo) +written in a finite-volume form

+ E ýni+1/ 2 . (F(zh4 + F(z') + F(zh'l 1)) d(vo)
d'=,ýtoz d,, + E (H. U (4.10)

hi~d(tvo) 1_t ~
j/'•1i+1/2 nii+1/2 'Vi+1/2Zh'

i= l where H is the numerical fltux of the finite-volume
(4.7) discretization

Equation (4.7) represents a Galerkin discretiza-
tion of the model equation assuming piecewise 1 p
linear functions. Note that as far as the geom- (H2. t)i =•(F(z) + F(zi'))• . dl
etry is concerned, only the exterior normals of JR•_,/2

Qj appear. Conspicuously absent are the normal hh f'R

vectors for interior edges. This strengthens our - -il,/ 2 Vi 1 / 2 Z , dl

confidence that we can show an equivalence with _/3
a finite-volume discretization on nonoverlapping /2 ""

control volumes. To show this equivalence, note
that the flux term can be manipulated using the (4.11)

identityZ.O") ini+1/2 = 0 into a form in which and R' is the centroid of Ti+ 1/ 2 , RW+]29
the relevant geometry is any path connecting ad- ½(R 0 + Ri + Ri+1 ) and R" is the midpoint of
jacent triangle centroids (R denotes the spatial the edge e(vo, vi), Rl" ( (Ro + Ri).
position vec$or): 

2

Conclusion: The spatial discretization produced
t(v)l by !he Galerkin finite clernent scheme .with lin.

6 n "z'h) + F z,) ±0,li), car elements has an equivalent finite-volume dis-
cretization on nonoverlapping control volumes -with

d(VO.)1 bounding curnes which pass through the centroid
Fz0)+ ziI)) (+1 +n'-m 4of triangles and mid.qide of edges. One- such set

of control volutnes satisfying these constraints Is
d(VO) 1. +i+l the median dual.

=z +• n fl
tRi=6 We now need to ask if the time integrals pro-

d(vo) 1(Ro+R,-+Ri+n) duce identical "mass" matrices for the Galerkin
(F(z;) + F( ,__)) fdl finite-element and finite-volume schemes. The

8 i=1 ~(answer to this question is no. In fact, these ma-
(4.8) trices are not the same in one space dimension.

"* The diffusion term also simplifies using this iden- Tie Galerkin mass matrix for a simple 1..D mesh
tity. with uniform spacing produces a row of the mass

d(vo) matrix with the following weights:E~o I . -h
2 -2/2 Vi+/2Z 0 1

S+/=1I 4 ahdx = -•Ax-(zj-. + 4zj + zj+i)

d(t,) ,t(Ro+R.~i)
h. I(n d+ (Finite - Element)

i=T J The finite volume scheme on "median" dual pro-
(4.9) duces the following weights:

To obtain a single consistent path for the inte- "
grations appearing in equations(4.8) and (4.9) re- 0 zhdx --= 0 AxI(zj-1 + 6zj + zj+)
quires that the path pass through the centroid Ot i 5t 8

of each triangle and the mid-side of each inte- (Finite - Volume)

rior edge. The path formed by connecting these Although the finite-volume matrix gives better
points by line segments is precisely the median temporal stability, the finite-element mass matrix

dual of the mesh. This dual completely covers is more accurate.
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4.3 E.•re Formulas Identical results are obtained by approximating
The first, teri appearing on tihe rigat-hand- the right-hand-side of (4.13) by trapezoidal quadra-

side of equation (4.10) ture (exact for piccewise linear uh)

id ofequan+ , /2 (4.1(.)

(F(zo) + F(z' . dlo

where To = {1,2, ... ,6} and iii+ 1/2 is the vector

suggests a computer implenmentation using an edge perpendicular to the edge e(vi, vj+ ) with inagni-

data structure. The fluxes in this termn are eval- tude equal to the length of the edge. The sum-

uated at the two endpoints of an edge. The geo- ination can be rearranged to yield

metrical terms could be evaluated edgewise if the 1
midpoint of the edge and the centreids of the two ithn dl = 1(i*(i+ 1 /+ini-1/ 2 ). (4.15)
adjacent cells are known. Recall that the edge iE.lo
data structure (described in section 1.3) for a 2- & constant solution can be added to (4.15) since
I) mesh supplies this information for each interior the gradient of a constant function is exactly zero
edge of thle mesh, i.e. the structure provides for in this discretization. In particular, we add the
each edge value of u"t at vertex vo.

(1) The two vertices which form the edge. 1'it n dl I E "('to + u4)(ni+1/2 + 'i-1/2)
(2) The two adjacent cell centroids (or a pointer ifo 2 d (+
to centroid values) which share the edge. (4.15)

More generally, if the solution is assumed to vary Once again using the fact that for any closed
linearly within each triangle then edge formulas curve j n dl = I d i = 0 which implies that
can be derived for discretizeo forms of the gra- V
dient, divergence, Hessian, and Laplacian oper- iii+1/2 + ii- 1/2 = n
ators. As we will see, the formulas can be de-
rived from eithrr a finite-volume or finite-element for any path connecting i -I and il.F I. This path
point-of-view with essentially identical results, integral represents a vector wlich is paralel in li-

4.3a Gradient and Divergence Edge Formulas rection and three times the magnitude of the vec-
tor - ohtained by computing the i•ntegral for any

As a first example, we will derive an edge sibple path connecting the centroils of the two

formula for the integral averaged gradient of a triangles which share the edge e(vno), fth+e tiw

function it, f Vii da, for the the region Qo (de- 3",-,
scribed by the union of all triangles which share .f" d i- = 360 i. This reduces the gradient for-

the vertex v(), see figure 4.1a. If the discrete solu- mula to the following form:
tion uh varies linearly in each triangle T then the 3
gradient is constant and the integration exact. n dl = (, + u )ioi ('1.17)

Vui da = (Vuh).,,A, (41.12) The vertex lumped average gradient at vertex is
110 TCfl then given lby

Equation (4.12) would suggest computing the gra- (Vi' )",, 3 1 1. +_; n E- _ 11 + ,(4 .118)
dient ili each triangle sharing v0 and accuniulat- iEAO 2 (

ing the area weighted sum. If iutegral averaged
gradients are required at all vertic(t; then the gra- It is well known that the region bounded by the
dient in each triangle could be compted and the "median" dual at vertex vr, (shown in figure 4.1a)
area weighted result scattered to the three ver has an area Ao which is exactly !An,,. Therefore,
tices of the triangle for accumulation. We re- using the median dual we obtain a formula which
fer to this as the element-by-element approach. appears to represent some approximate quadra-
A Green's formnula would suggest a different ap- ture of the right-hand-side of (4.13) on nonover-
proach for the samne task. lapping regions.

f Vu da f foun dl (4.13) (Vuh)VO = 0. (uo + uit)niio (4.19)
o 0 = lo

i
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A naive interpretation of equation (4.19) would The gradient and divergence operators are
probably conclude that this equation is a rather related so that it is not surprising that the dis-
poor approximation to (4.13). It is not obvious cretization of the divergence operator produces a
from (4.19) that the gradient of a linear func- similar formula:
tioni u is computed exactly. From the origin of
this formula, we now know that this formula can div(Fh)do- 3 (Fo + FP) ). fii (4.21)
be obtained from a trapezoidal quadrature on a , o 2 0

slightly larger region and is exact within the class
of linear polynomials. The Galerkin weighted finite element integrals with

Keep in mind that a constant solution coidd linear elements produce essentially identical re-
have been subtracted instead of added from equa- suits. In this case a piecewise linear weighting
tion (4.15) which would have given a different but function Oh is introduced (see figure 4.1b). The
equivalent form of (4.19). gradient and divergence formulas (introduced ear-

I1 lier)
(V" ),, =(i - u()ni0  (4.20)

Ao iE 2 ' J V u a = d a + ,,')- 'o j (4.22)

This formula does not appear to resemble any o iETO 0

approximate quadrature of (4.13).
Equation (4.19) suggests an algorithm using O/ di v(Ft&)do = E ( + F ). -oi (4.23)

an evdge data structure which is quite different o n0

from the element-by.element method (4.12). The
edgebased calculation consists of the following differ from flie pipc-'ious formulas by a coniiant
steps. factor of 1/3. For example, if a lump)ed approxi-

mation to the left-hand-side of (4.22) is assumed,
Sample G'mdiet ComnputtLtionl then (4.19) is recovered since

(1) (Precomputation) For each edge e(vi, vj) gather
the centroid coordinates of the t "o adjacent. cells, f h V h d C ;; (Vuh) o. A0.
vý and ,. d (4

(2) (Precamputation) For each edge complute the
dual edge normal fiij friom the centroid coordi- 4.3b 2-D Hessian and Laplacian Edge Formulaas
Ilates Iiij = A.;t(ilf. (Orient 1rommi Vi to 4'j it We begin by approximating the following ma-

< j). trix of second derivatives

(3) For ea(ch e(ge V(Vi, vj) gather th' values of t he
function at the two vertices, ui' and it. Vp(Vu)T [( ) , j (4.25)
(4) For each edge compute the arithmetic average
and multiply by the dual edge vormmal, ½(,,i + using a standard Galerkin approximation for the
n1j)n1 1 . region 0)o formed from the union of all triangles

(5) For eaceh edge scatter and accumulate the re- that share the vertex v0 . To do so, multiply (4.25)()ult at vertex v s. by the weight function -0 and perform integrationsul a vete vi by parts over Qo assuming -- 0 on 0OR.
(6) For each edge negate, scatter and accumulate
the same result at vertex oj. OV i(Vu) -"f p (VO) (Vu)7'da

(7) For each vertex compute tie final gradient by o 0
(dividing the accumulated result by area of the [
inmedian dual, A0 . E - J,+(Vi)" da
This algorithm conforms perfectly within the edge (4.26)
data structure. In prlirtice all the geometrical fac- where Ti+m/2= simplex(vo, vi, vi+1 ). Using the
tors could be 1)recomputed and stored in memory notation of figure 4.2, gradients of the piecewise

by edge thereby eliminating a gather. Thie sample linear functions 0h (figure 4.lb) and 04 are
algorithm described above serves as a template
for all the remaining algorithms described in the (Veh)i+, =- (1.27)rest of this section. + 2A.+t/ 2
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and

Sh h ni 41i+l(•u,,)+., = -1 (un i4+ /2 +u., i ll t,,N%, •*)

(4.28) 0
wvhere Ai+, 2 is the area of 7  ,,+1/2 alid Ibi+/2.

is the vector normal to the edge e(vj, vi+,) with , n 14 V,

magnitude equal to the length of the edge. -.

For pieccwise linear uh, the gradient is con-
stant in each triangle. The integral average ma-
trix of second derivatives simplifies to the follow-
ing form: i-I ,

.[40h V I(X7 th ) 7' d t Figure 4.3 Local geometry configuration.

.__o Ih• 1Vf R ufeiring to figure 4.3, we have the following vec-
+ tor identities:

• I I. jj.. -_3ij/2.. 2Ai'+l/l2 f7+
I~i~/ 2(tlA4; 4 1/2pd a i-1/2 = A,- XIli, fll = + fl2Ai+ 1/4,121s+ I I 2jiE:1o (4.33)

E + /2 ý +/p ),, and simnilarly
i C T0 1. 1 ý

(4.29) fri+,/2 = Mir, 4 •ni, ii+l = - 3 -L, + Ili.

where 71,+l/2 is the integral average of p in Tj+ 1/2 (4.34)
Inserting the triangle gradient formula, we obtain It is useful to decompose the tensor product terms
a discrCtized formula for the Galerkin integral, into symmetric and skew-symmetric parts, for ex-

ample:
f hV, /1(VTh)7" -,-(1(,1.' n/lR

1+1 4 1/2 (u0 hi+ /2+ (431ai3)+ I it ) + %

(.1.30) Sk'ewa--y. mmetrie

Regrottping terms miI~d removal of it colstitl. so-
lution yields the following snmplified form and

, p•v•(V,') 1 " ,do = Vp,(V(n" - ,t)).' ,d, I, ui/._((n,+, )• = (-i.,,> - 9,,,.,i )
0 ~SY 111111ric

u,,, - ,,o) 3 ,,a -" ~'")
0E 30 +~IIfj

(4.31)
w i t h k e ,w , -. n,,,i,, r t r ic

I r / ~Upon dividing by the area terms, some simple
4= - [----.+i/2(,,+,) algebra reveals that

,:- - .___.:_•li~/2•li~tT (4.-3l2).. 1i-1/2(l~i-t) -- (91R~ili~ -- il~ll') .•_i
S~~~~~~A i- /2A- 12A_ 1-

(4.35)

! ~Even though this formula is very simple, it. is and similarly

niot coimpatible with the edge (data structure men- T 1-'I
tioned( earlier. Using sonie simple idlentities, we fli+1/2(.Ii+1)V. __ ". - qr + ii~ i(f )
wvill now rewrite th- weight formula in a form [Ai+ i

hIch ic ai I the I I



So in suninary we have that

- i -t ' 7 i4-1 ]2 -* '120 --64 "1

41 i+ 1/2 Wli--- ,

1/21

+01i+ 112 -T 1 2  [01 0J Figure 4.4 Local angles for triangles sharing edge-(Vo, vi).

The second form is compatible with all edge data
struct.ure where edge vertices and idjacenti cell iij+ 1/2 * r'i+ I cos (a1t, )
centroids are known. -ll/ - -×=-c t1i+1 Sll sill-)

4.3c 2-D Edge Discretization of .2Muq (4.41)

Calculat;ion of this terni amounts to. sum-
iuing diagonal entries of the_ previous result.. Can- C- i ~i- cos (aft,)
ceilation of terms leaves a redluced form. ni-i/ 2 X i Si- sn (1 14,)

OhV,/, h d a RTace V'~ ji(V11'4) 1 d a Inserting these formulas yields a particularly sire-

0 100) pie form of the weight. factors Wj:
S0 0

: (,1.38) 9 = i+l/,,cota'l(( ,) a- /Ti ./2ctan(

-[T ii+l,/• ili+ 1 (4.43)
Wi I- z [. tl, q Equati'n (4.43) is particularly useful in theoreti-

S (4.39) cal studies.

T4-- A-l, 1, 4.3d 3-D Hessian and Laplacian Edge Formulas

The area of a triangle can be expressed in terms of As in the 2-1) case, we begin with the Galerkin
the magnitude of the cross i)roduct of the scaled integral equation for the Hessian-like matrix of
edge normals. derivatives.

Oh / V 11V(,7(V1,1)I ( J-1 q(V.0h) (Vu")"' dvhi+1/2 =-- [ili+1t2 X Iri-i I r.1

I In this formula is the volume formed by the
Aj-U'. = ,Iiii-1/2 x iii-d union of all tetraheara that share vertex vo. Fol-

lowing a procedure identical to the 2-D case, we
can derive the analogous 3-D edge formula for the
matrix of second derivatives~~( 11 ' 'Ii+•_, •I+)i ~wi =- 7i'+l"-'--n'•2 L i+,. X '"+11 OhV p(VVuh)Tdv '5* Mi(u1 - vo) (4.44)

_ (-i- / - ] meio
l i-1/21,, l i,_•vJ where

Fiually we can express the (lot and! cross products d(vo,v.)

in terms of the local angles as sketched in figure Ai= -_ E ;k+123.k+t/2 (4k+l/ 2) (4.45)
4.4. 9 k+1/2
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TO is the set. of indices of all adjacent. ieighbors of liaarlly we can rewrite tiht, dot and cross product

V0 connected by incident edges, k a local cyclic in- in ternis of the cotangent, of the face angle.
dex describing the associated vertices which form
a polygon of degree d(to, vi) surrounding the edge Sk+,.-/2 ' "k+ •. /2 (os ((.-/k+l1./2)
c(vo, vi). The subscript k + 1/2 indicates quaiiti- I sA.+i/2,×•4 1 ,2 j ,,i (aA.+t/2)

t.ies associated with the tetrahedron with vertices -cotn ,
V0, Vi, VA and Vk+I as shown in figure ,4.5. (M+1/)

As in the 2-D case, the weights WI now have a
particularly simple form:

k- zk+I , 21A1?k+Il 2 ICOtaMI(ok+ 1/2 )

/ _ ,4.4 Godhmov Finite-Volume Schemes

k-IN /In this section, we consider upwind algorithms
k+1 for 3,5alar kyperbolic equations. In Iartic(ilar,

k we concenitrat4e on upwind schemes based on Go-
dunov's method [34] and defer the discussion of

-,"upwind" schemes based on the fluctuation de-0 s•,,,? composition method or the Petrov-G alerkin for-
mulation (SUPG, GLS) to the lectures of Profs.
Decovine-k, Hughes, and Johnson.

Figure 4.5 Set of tetrahedra sharing edge c( vo, v1,) rhe developlment l)resented iere follows many

with local cyclic index k. of the ideas developed previously for st.ructured
meshes. For example, in the extension of Go-

,.3e 3-D Edge Discre ization of V ciVh dunov's scheme to second order accuracy in one
spiace dimension, van Leer [351 developed an ad-Following the same procedure as in 2-1), we vection SChemeUC b)ased oil tQ' ' , ,ti-VL of (fiS-

obtain: continuous piecewvise lineur . i 'm,6..s together

with Lagrangian hydrody,,i,,. ý, ",i..x ther,,after,
11 J Colella and Woodwar(ld " t'ti wardand

""V- . '1I)'(" Colella [37] further extent(,e -.me ideas to in-fro fro ,dude discontinuous paicccwi:),- arabOliC al)prox-
= Z W1(u1 - t~o) inmations with Eulerian or Lagrangian hydrody-

namics. -arten et. al. [38,39] later extended
(w.r6) related schemes to arbitrary order and clarified

where the entire process. These techniques have been

'(o t.'. applied to st ructured meshes i nmultiple space di-
V,, T k+ 1/2 8k-* 1 (4.47) mensions by applying one-dimensional-like s( henmes
Ei Sk

kV =9.+ 1/2 along individual coordinate lines. T'his has proven
to be a highly successful approximation but does

It can be shown that the volume of a tetrahedron not directly extend to unstructured meshes. In
is given by reference ['40], we proposed a scheme for multi-

(dimensional reconstruction on unstructured meshes
=l 2 k+k 1/2 X1,+m/' (4148) using discontinuous l)iecewise linear distributions

m3 IARk+i(. of the solution in each control volume. klono-
tonicity of the reconstruction was enforced using

where IAR*4 1121 is the length of the edge shared a limiting proedure similar to that proposed by1ý limtin faxedsr asiocilar to~ that/ proose byby the fces a~ssociated wi. -+u/2 and +/2" van Leer [35] for structured grids. In a later pa-

per (Barth and Frederickson [411), we developed
(,/numerical schemes for unstructured mneshes utiliz-

=)S .+ /_/2 *k+ 12 ing a reconstruction algorithm of arbitrary 11,Urm
= - "i R/21k+i k+1 l2I Portions of the discussion p)resented here is taken

(4.49) from these palpers.



_4 _4a GInerdlizel _hUt kSiV ODE olpl)E e(iation; iar tiased for the time evolutition,

i.e. Euler imnpllieit, Euler explicit, Ringe-lKutta.srWe begin by conisiderhing t~he integri'd coil- rieesito I(evlinpoesisaie('1'the, resutlt of the evohitioui 1)iroee, is a lUCW co|-
,srvatioii law for soilie doinaiii, [l Qimi(d its tes-

sellation 'T(O ) comprised of ce( ls, i 1 = U c ti repe ofted. The r proc es"s call be 5ui narY/ d ii thei

,k (Il,, k # j. The integral equation is valid repiate ps:

for the entire domain Q as well as in each cell (or

possibly dtial cell): (1) Reconstruction in Eacht Cell: Given ilite-
gri. cell averages in all cells, reconstrulct pieceCise

it uda+ I (u). lidt = ) (4.51a) AYly.oynuial coefficients €l`(,,,,) for use ill equit-
to jtioti (4.51). ["or solutions cotitaillhig (Iscoliti-

iuities and/or steep gradieiits, inonotonjicity ei-

:.[undamelntal t.o Goduno'v's Iniethod is the cell av- forcesneut may be required.
'. crage of tile Sohittioll, 'F4, ill each cell.

e(2) Flux Evaluation Oil Eadh Edge: Consider

ft cach cell bollildaryii>c C, to be a collection of edges
i It (It =-"ijA1  (4.52) (or duail edges) from the mesh, Along , eih edge

(or dual edge), perform a high order accutrate flhx
S~quttdratulre,

In Goditiov's method aid the higher order aic-
cturate exteiionl consui red here, tcse cell av- (3) Evolution in Each Cell: Collect flux coil-

crages are treated as thee fitndaiental iinknowns tribittions ini each cell and evolve ini time using

(degrees of freedoim). anky time stepping scheme, i.e., Euler explicit, Ell-
ler implicit, Ruigc-l~ut.ha, etc. The result, of this

((i 1 A 1)+ / F(.u) ii1 =. 0 (,t.51b) process is once again cell aivoi'ges.

By far, the most ditfictilt. of these steps. is

The Solution algorithm for (4.5 is a reliey dithe polyionhial reconstruct ion given cell averages.

sthn • ohttenalgorith for etens ions af rativcly lit the following paragraplhs, we describe design
stlndird p~rocedure for extensi~ons of Goduiov's criteria for ia general reconstructioii operator.
scliemne in Euleri:ui coordinates [3,1-391. 'Tihe ba-
sic idea is to start with piecewise coistantt data. ini & CCOlS tI'uLC1i011

each cell with value eq-ial to the integral cell aver- The rCColcstrutic.ioni operiator su'es as it finite-

age. Using information from cell averages, k - thi diniensioiild (l)ossibly pseudo) inverse (if the cell-
order piecewvise polynomials are fleonstrlcted: veraging operator A whos j-h compoieiit. Aj

compitil. es the ceil average Ott sioi. ut.io. .,. V,

mI+u<&. 1 = I y)&(.t.53) i = A iu = -, / t~x, .j) , (t.5,i)

where P,,,,,)(. o --.)c., Y - Ur) = (.r)- .r,.)"' y, " i',)

and (A"~, Y ) is thle cell ceiitroid. The 1)ro(vi of liI additiolt, we place the following additional re-

re(oitilst.rionhi aliinnts to finding the l)polyliolnial (liireineits :
coefficients, ct(1m) . Near steep gradients and dis-

Coliit.hilhuiis, these p)olynionmial coeflicieits imiybe (1) Conservation of the inea-i: Simply stated.
altered based oil monotonicity arguments. Be giveii cell averages -F, we require that. all poly-
cause the reconstructed polyloniials vary d(scon- inoilijal reconstructions iaik have the correct cell

tiluoxisly from cell to cell, a hinique value of the average.
solhttion does not exist. at cell interfaces. This

noiitniquieness is resolved via. exact or alpproxi- if *1k = RIi thei -I = A ik
iiiate solutions of the Rlieiaiai lproblem. lit hprac-
tice, this is acconiplished by supllplanting the trite This means that IRk is a right iiviwrs, (if the av..
Muix function in (4.51) with it numerical flux fuinc- eraging ol)erat.or A.
tion (described below) which proditces a single
unique flux given two sohltion states. Once the A R
flux integral in (4.51) is carried out (either ex-

iw.tly or by numerical quadrature), the cell aver- Conservation of the umeani has an imiplortant imipli-
age of the solution cani be evolved in titme. Tit cation, Unlike finite-leleimett schilcies, G( 'lrlum
tilost cases, stalndard techniqutes for integrating schemmsll havle diagouil monss 'matrix.



(2) k-exactness: WVe say that. a reconistrucltio
operator . R• is k-cxact if ii 'A recon.trtlct.s poly.

l1uilials of (lgree ' k or l,'.ss exactly,

if ts' CPk ( and ii Au, thell lk RkiT Rj

In other word(s, Rp is a hle'f-ijivelse of A restricted ThA
to the space of polynomiials of degree at. mlIOst k'.

11kA (1.6) AFigure 4.6b Picwise qadatic reconstruction.

Fltux .Lvlyuttiot

tlh'" task- here is to evaluate tht lhtux integralT hisý in irsuc that e~xact. ,solution~s conlailled ill' it ap p~earin g ill (,4.51),

are in fact solutions of the discrete cequat.ions. For
sufficiently Niiooth sohtilions, the ~proIpert.y of k- f
exact ness also lsm'vz, t(hla whhte piecewvise poly-/ F((•) -dl (4.57)

11tials• are e'Vafhitd at cel boundaries, Iho dif-
Fiereac' intw •,(, solut ,iltl p tiol tioiis w it. I r At coll interfitces, two distinct 'ilupns of the so-

ili il' k at a atel pdim te ortional two hk were li1tio01 (all be obtained anywhere oil tilth bound-
h i. a mnhwxinsmi di.wt 'r of ,lye wo ells. ui•EP., a.'y of the control volume by (ii•rct evaliataion of

• hi0 a i globhal (uatrlit llVyalilIliiaI i tE th'e h iecwCvis(' liiylioiiiilsl iii the IWo cells shraiig
which hits• blccii iIv,,r'Vng ii each jiitcr\'al, the interface. For brevity, the states will he d(-

:uiiol.d I1)' 1+ and Ui- which shoiouhl lie ilterlpreted
-is' (i)"" and (11k')- where ± refers to which piece-
wise polynoiaial w'ias used ill the evahiation. Rather

Sthan its(, i nunierical flux funetioti derived fromn

the exact solution of the Riemii in problenm, we
prefer' 1iil1neri'a| fltlx fuiictionlis basedOl on l110a1

4, vhalue Ihiiri-/ail'io/n .A-: w, will .'., t,.s• i
a ilyv mIlakes cot'i'tll a stbaliihty proofs llluch hlearer.

f\Defile f (te, 11) =F(a) -it anld in(t, 1) = f (u, It)',
ti 11t 1e-lij-i vaIlle fhlx fmilltiioli is •i\eni by

h(,,'', n", ) -- (f (11t, n) + f (ui n))(..)

Fi01r0 LI,,h -i~v, = -,,-)(f )(u1u a
Figure 4.6ml Cell ave~rahin!, ,f (It:artic p,•ivno- U =fif"- +(1 .-0)1,+ fors.oti,,,C [ 0,11I. U.si,,gth.

mil. elp.i u rical flux function, we %,pproximate (4.57) by

lh i ii to I-, it) dl
Figur'e 4.61) shows ;wal qutdratic recoxist-ruct~iou) :1g r -uu~n
P . given the (celI a\',riages. Clos'.- e.' t.i'aol d,

figure 4.0b reveals small jliips, ii tilt. pife, tise In Iprtct.ice, this flux intgral is niever cvalhlated

polynomials at. intterval boundaries. The.;:e jaimlpl)S exactly, except when the daitat is piecewise con-
,would decreatse even milore for ctibics anild vanish st.ailt. When piecewise liniear functions are used, a
altogether for quartic reclonstruic'tioni. Property nilidpohi0t (1uadrhit.ulre formlnua is usually employed.
(1) requires that. the area uiinder" each l)jiecewist This is used rather titaii the slightly miore at'cu-
polynomial is exactly equal to the cell avverage, rate t.rare).oidal quaadrature because it requires

only one flux evaluation per edge s.glelit while

L



the trapezoidal quadratre requires two. When Since () < v + t < k and 0 < in -- i -- s -- t .- k, we
conlSiderling scheiles with reconistr.luct.ioni order k ca•. (ortl'e iaid rewrite ill termis of (lIv standard
greater thaii oni(, we suggest. ill (,11] that Gauss and tralnsforniled basiS. polyiioniai.ls

quadrtaturer foli'ilas lit, used. Recall dhint, N pointGauss (imlarature flit nmhls integralte 2N- I poly-' it"," l i-;'"i), *"o,. (.0

nomijis exactly. These qlmdritttre forunilas give ,4+fk

Ole tig es accuracyifor the lowesat number4 of t Satisfa.-tion of conservation( of the mneian is guar-f u n ce rt io n e v a l u a ti tt i u s• . F o r t h e k -e x a c t r ec uo t s t r u c . . 1 t e k y i t o l c n i t i e t a n f re-o r
tion discussed below, N > (k 1' 0/2 point (um,ot-
(lit(drat tre formulas nre used. dinatc syteili zero iiieoa basis polynomniids J) ill

tll but the first hav(' zero cell average, i.e

hi this section, a brief accom.it is givel' of Nt that using these polynollti;ls requiirs a trii-
the t'cconi-ti'uc.ioii sch'lwie prt'eet.(d ilu Barth and notr mod(ltficatijon of (1.660) but. ret.linls tit' saillec
PRederickson (41] for arbitrrary order iv-comst rI'l- fortin:
tiou. Upon first inspi)ection1, th, Its(, of High ordtler-
reconstruction appears to he an (eXp)esive i)'o)lo- = ', P (4.61)
sition. The present reconstruction strategy opti-
mizes the efficiency of the recoustrlitrion by pre-
coniiptitihg is it OllC tittle p)reprocessinig step the Given this preparatory work, we, nu,%%o ready
set of weight'; Wj ill each cell ej with neighbor to tlescribi, thli foriiulatioit of tili, recol.utrltction
set ' such thagorith

Z.. 1 1 '• ...... ), (.1.59)
,EA., We note that tihe set of (ell neighbors N',

iiiist contaiai at least. (k 4- 1)(k + 2)/2 cells c) if
where , are the polynomial coeli'ijents. This the recomstrutction operator Rtk is to 1)o k-exact.
effectiv'ely reduices the iproblem. of ret'co,•struction That (, + 1)(k + 2)/2 els is not suftii('ce)t. ill n1
to nmultip~lic'atio nt of predehter minhetd w e'ig htls anld ,i'; latiOlls is (va.sily o b~s erlv ed , If', fo(r (eX a m~ph', Ith

cell averamiges to obtail poly)oln)inal coefficients. cell-centers all lie on a single straight lile 0t' ('calt
During the preproessing to obtain tthe re- lind a linvar function it such that A, () = 0 for

construct ion weights Wj a coordintate systvl with evervy ('cell c, whdi imnvus that. reconstruction of
origin at thie centroid of ej is ilasslllmed to mill- u is itmpossible. lit otther c'a$ses a k-exact retvoi-

s| r,11cl ioln is invariallnt to aillu I raisfovliattiolls, we geometrv may he poorlY 'ontliit ionied.
then temporarily transfornm ('ot ate" hil(l scale') to Our apl)roaclh is to work with a slightly larger
aniotht'he cot)ordiunati, systemuui (7, -y) whic.h is liol'ial- S1i4 Olita ('ttillinlg molroU t tilt, m11intitmumltll tlttnta-

ized to the lit (l c her of (ells. Itn this case the ,operator 1. is likely

[ to be lolnlulliqluc, becaltse variolls sulbsets would
II - I.Im IIbe able' it slil~lort. rte(olist 1mu11t ionl oplero.1 or1s of dlv-

LD D .ree k. Although ill would reproduce a polyno-

with tiltle niatri-i D is chosen so that utuial of tdtegree, k, exactly, if we disregard round-
oil, hey Would differ ill their tCreatnlllnt of n1on-

A• (.7-) A A•(i) polynion'ials, or of polynomials of degree higher

A 1(:i •) =A ,( ) = 0 lithain k. Any k-exact reColnStrIuctioll ol)erator 1l.k

is a \\','lted arervige of these IlaSi" olnes. Our ajp
Polynomials oil1 c 1 .11 tem.porarily represented hroadi is tqo hoose the otle of nuirinum ,oheuius
uslinl the polynomial basis futitions liorilm. This. operator is opttintal, in a (i'Irtain se(,nse.

whe.in the function we, are reconstru'cting is riot. ex-
) ,.,,. , ... actly a p)olynomnial of degree k, but one that has

Note that polynounials in this systemi are easily been pertrb'bed by the ad(lition of Gaussian nolise,
transformed to the standard cell-centroid basis for it minimizes the expeced deviation from the

unl)erturbcd polynomial ill a certain rather nat-
ural n"orm.

yti"i ('2)(') 'i* .• I~':n. 1 '"-"•., 4,, . 2.' +,1 -.-, As we begin the formulation of tilt, recon-
.1,2< 2. 1 struction prel)roce-sing algorit lui, the reader is
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reminded that the task at hand is to calculate the Note that W is a (k + 1)(k + 2)/2 by Arj matrix
weights Wj for each cell cj which when applied and A' has dimensions M by (k + l)(k + 2)/2.
via (4.59) produce piecewise polynomial approx- To solve (4.65a) in the optimum sense described
imations. We begin by first rewriting the piece- above, an LjQj decomposition of A' is performed
wise polynomial (4.53) for cell cj in terms of the where the orthogonal matrix Qj and the lower tri-
reconstruction weights (4.59) angular matrix Lj have been constructed using a

modified Gram-Schmidt algorithm (or a sequence
ut(xY) = P(.,) Y_ W(",oii of Householder reflections). The weights W' are

then given by

or equivalently W =Q1L1
Applying (4.63) these weights are transformed to

u1k(X.Y) E 1 : W(m,n)iP(o,n) the standard centroid basis and the preprocessing
iý6c,• ,,+n<k step is complete.

We now show a few results presented earlier
Polynomials of degree k or less are equivalently in reference [41]. The first calculation involves the
represented in the transformed coordinate system reconstruction of a sixth order polynomial with
using zero mean l)olynomials random normalized coefficients which has been

cell averaged onto a random mesh. Figures 4.7a-
=k(x y) W',,VP)iP , (4.62) b show a sample mesh and the absolute L-7 erroriE, __ , M+<k of. the reconstruction for various meshes and re-

construction degree.

Using (4.61), we can relate weights in the trans-
formed system to weights in the original system

-S t

wo= _ G,,W(,,) (4.63)
,n+,&<k

We satisfy k-exactness by requiring that (4.62) is /
satisfied for all linear combinations of P(,.8 ;(x, Y)
such that s + r < k. In particular, if u,(x, y) =

P(,t)(x, y) for some s + t < k then

I(sE)(X, Y) = ( (mn) VV',I ~ (P(,)

This is satisfied if for all s + m, m + n < k Figure 4.7a Random mesh.

10

Tr~ansforminig basis polynomials back to the orig- ....... ............
inal coordiiiate system we have l°.

•. '(ui x si:~ ai(P'iu,v)) = -s 10'W (, ,n~ E --- ,v, i -.. .... • .... ....
mrnn 10""-. "'... i ..

(4.64) . ... . .
This can be locally rewritten in matrix form as 10 .

WA'. I1 (4.65a)
1% 1 2 3 4 5

and tra~nsformed in terms of the standard basis Degree K of Reconstructionweights via i
Wj i a

j(4.65b) Figure 4.7b L2 error of reconstructionI
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The reconstruction algorithm has also been . .
tested on more realistic problems. Figures 4.8a-
c show a mesh and reconstructions (linear and --
quadratic) of a cell averaged density field corre-
sponding to a Ringleb flow, an exact hodograph
solution of the gasdynamic equations, see [42]. "

AI

Figure 4.8c Piecewise quadratic reconstruction
of Ringleb flow.

/ -i:

4.6 U. wind Advection Scheme with k = 0
Recoust.ruction

This is the simplest (first order) approxima-
Figure 4.8a Randomized mesh f,-" Ringleb flow. tion in which the polynomial behavior in each cell,

/- ...---- ... " cj, is a constant value equal to the cell average.

i . uk(: y) )=Uj for . E cj (4.66)

/The flux I ula 'he• simplifics to the follow-
.. ing form (for clarity W.j is locally numbered TO

. "... . .. . as shown in figure 4.,a)

•---•"%t"h(O+ u- j) h (Tiii U4,), I i)

1 -n +f}i• (4.67)

In this formula, •, ''+ for any simple path.

Dy summing over all edges of the control volume,
the entire scheme for cj is written

Figure 4.8b Piecewise linear reconstruction of
Ringleb flow. 0 9 d+ (f)

11 da+ - Y U,9 +M i)

The reader should note that the use of piecewise d(c)
contours gives a crude visual critique as to how - Ia(fi', ni)I (9i - Uo)= 0
well the solution is represented by the piecewise
polynomials. The improvement from linear to (4.68)
quadratic is dramatic in the case of Ringleb flow. It is not difficult to prove stability and monotonic-

A later section will show actual numerical solu- ity of this scheme.
tions computed using this reconstruction opera-
tor.



Monotonicitli and Stability It should be clear that coefficients in (4.74) sum to
unity. To prove monotonicity in time and space,

Recall that the flux function was constructed it is sufficient to show positivity of coefficients.
from a mean value linearization such that By inspection we have that aI Ž0 Vi >0. To

f(ui, ii) - f(uo, iPi) = a(fii, iii) (ui - uo) (4.69) guarantee monotonicity requires that oto Ž 0.

with iii = 9uo+(1-O)u., 8 E [C, 1]. This permits d(c.#)

regrouping terms into the following form: ao = 1 + T a(ui, nI- Ž0 (4.75)
d(,cj

-go• da + t aio, i) Thus, a CFL-like condition is obtained which in-
1t, sures monotonicity and stability.

+ ) (a(fii, xii) - Ia(tsi, Iii)I) (Ui - Fl0 ) 0 A<, (4.76)
i=1 (4.70) a.. (ftati, fi)-

For any closed control volume, we have that
Note that in one dimension, this number corre-

d(cý) sponds to the conventional CFL number. In mul-
Z f(-F," iii) = 0 tiple space dimensions, this inequality is sufficient
i=1 tbut not necessary for stability. In practice some-

Combining the remaining terms yields a final form what larger timestep values may be used.

for analysis (a = a+ + a-, aI = a+ -- a-):
Conclusion: The upwind algorithm (4.68) using

( 4.71 piecewise constant data satisfies a discrete maxi-
S ii dn+ Ea(fii, i)-(rij-u-o) = 0 (4.71) mum principle for general unstructured meshes.

* 4.7 Uwn deto cee ihLna

To verify the monotonicity of the scheme at. steady Upwind Advection Schemes with Linear

sta.,e, set the time term to zero and solve for .To.

In this section, we consider advection schemes
i2l'_(.ti, n i)- •'i based oU linear reconstruction. Tile process of

I0 d(j) a(- i- t (4.72) linear reconstruction in one dimension is depicted

1 i=l ill figure 4.9. /
All weights a'i are positive and stun to unity. The
scheme is monotone since iio is a positive weighted"
average of all neighbors. This implies a maximum 6

principle since Ti0 is bounded from above and be-
low by the maximum and minimum of neighbo.-
ing values (and itself), u and Umn,.

! ,,,i, _<n o <ý •7 ,,,71 .21 (4.73)......--

For explicit time stepping, a CFL-like condition
is obtained for monotonicity. For Euler explicit ..
time stepping, we have the time approximation,11 L

-- A' io da _ 0 Figure 4.9 Linear Reconstruction of cell-averaged r

which results in tihe following scheme: One of the w,-;t important observations concern-

d(cj) ing linear reconstruction is that -we can dispense

At =F011 (in -n) with the rotion of cell averages as unknowns by
A, i= reinterpreting the unknowns as pointwise values

d(c,) of the solation sampled at the centroid (midpoint £

- aiw! in 1-D1) of the control volume. This well known
-4=0 result greatly simplifies schemes based on linear

(4.74) reconstruction. The linear reconstruction in each



interval shown in figure 4.9 was obtained by a sir- or in symbolic form C Vu f where 6-43

pie central-difference formula given point values
of the solution at the midpoint of each interval. = [ 1 L2 L3 ] (4.80)

In section 4.3, results for the Ringleb flow
with linear reconstruction were presented. The in three dimensions. Exadt calculation of gradi-
reconstruction strategy presented there satisfies ents for linear it is guaranteed if any three row
anl the design requirements of the reconstruction vectors Wi(Ri - Ro) span all of 3 space. This im-
operator. For linear reconstruction, simpler for- plies linear independence of fl, E2 , and L3 . The
mulations are possible which exploit the edge data system can then be solved via a Grani-Schmidt
structure. Several of these reconstruction schemes process, i.e.,
are given below. Note that for steady-state com-
putations, conservation of the mean in the data [•i] [1 0 0]
reconstruction is not necessary. The impEcation [V2 [L L2 I L 3 C 1  1 (4.81)
of violating this conservation is that a nondiag- L V 3  0 0 1

onal mass matrix appears in the time integral.
Since time derivatives vanish at steady-state, the The row vectors Vi are given by Vi = 7'
effect of this mass matrix vanishes at steady-state. where
The reconstruction schemes presented below as-
sume that solution variables are placed at the U1 =(133122 - 123 123)L 1 - (133112- 123 113 )L 2

vertices of the mesh, which may not be at the -(122113 - 123112)L 3precise centroid of the control volume, thus vio-
lating conservation of the mean. The schemes can U2 = -/ 13/ 13)L2 - (133112 - 113i23)Lm
all be implemented using an edge data structure

and satisfy k-exactness for linear functions. -(111123 -- 113 112 )L 3

4.7a Green-Gaulss Reconstruction U3 =(11!122 -/1 12112 )L 3 - (172113 -1 12123 )L 1

This reconstruction exploits the gradient cal- A-(11113 - 112113 )L2
culation (4.19) studied earlier in section 4.3:

1 1 n i f

(Vu)v0  2 (i(ui + uo)nio (4.77) Note that reconstruction of N independent
v e. ("4)+ d N inner product

sums. Since aly d N of these sums involves thewhere nii is the vector normal associated with solution variab., s themselves, the remaining sums
the edge e(Vo, vi). This approximation extends could be precalculated and stored in computer
naturally to three dimensions, see Barth [43]. memory. This makes the present scheme compet-

.iReconstruction itive with the Green-Gauss reconstruction. Using
4.7b Linear Lst-Stares (L 9 ) Recothe edge data structure, the calculation of inner

To derive this reconstruction technique, con- product sums can be calculated for arbitrary coin-
sider a vertex vo and suppose that the solution binations of polyhedral cells. In all cases linear
varies linearly over the support of adjacent neigh- functions are reconstructed exactly. We demon-
bors of the mesh. In this case, the change in ver- strate this idea by example: -
tex values of the solution along an edge e(vi, vo)
can be calculated by For k= 1, n(e) I Loop through edges of mesh

(Vuh) 0 • (Rl - o) = uO - ,t (4.78) J± = e-(k, 1) ! Pointer to edge originj2 = e-1 (k, 2) ! Pointer to edge destination
This equation represents the scaled projection of dx = w(k). (x(j 2 ) - x(j 1 )) ! Weighted Ax
the gradient along the edge e(vi, vo). A similar dy = w(k). (Y(J2) - Y(Ji)) ! Weighted Ay J
equation could be written for all incident edges 11 1(j1 ) = l,,(ji) + dx . dx ! l, orig sum
subject to an arbitrary weighting factor. The re- ll(j12) = l1(j2) + dx. dx 11, dest sum
suit is the following matrix equation, shown here 112(31) = 112(j,) + dx " dy ! 112 orig sum
in three dimensions: 112(j2) = 112(j 2 ) + dx . dy ! 112 dest sum
[ wAx 1 u,,Ay, nim Az 1 [uA (w,(tt -Uo)•

•IIX ')AY "D Z fu = i 0

174Ax,, U,,4AY, 1  \u•/A du = w(k). (u(j2) - u(j,)) . Weighted Au

(4.79) 1u3 ( i) = lua(ji) + dz . du 1u3 orig sum
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lU 3 (j2 ) = lu3(j 2 ) + dz . du I iu 3 dest sum to prevent oscillations from developing in tile nu-
Endfor merical solution. One way to do this was pio-

neered by van Leer [351 in the late 1970's. The

of weighting coefficients, wi. These weighting polynomials and enforce strict monotonicity in

coefficients can be a function of the geometry the reconstruction. Monotonicity in this context

and/or solution. Classical approximations in one t should be interpreted to mean that the value of

dimension can be recovered by choosing geomnet- the reconstructed polynomial does not exceed the
rical weights of the form wi = 1./1Rj - Rolt for minimum and maximum of neighboring cell av-
values of t = 0, 1, 2. The L2 gradient calculation erages. In other words, the final reconstruction
technique is optimal in a weighted least squares must guarantee that no new extrema have been
sense and deternmines gradient coefficients with created. This will be referred to as 'monotonicitv

least sensitivity to Gaussian noise. This is an im- property a. When a new extreinurm is produced
portant property when dealing with highly dis- the slope of the reconstruction in that interval
torted (stretched) meshes. is reduced until monotonicity is restored. This

4.7c Data Dependent Reconstruction implies that at a local minimum or maximum in
the cell averaged data the slope i 1-D is always

Both the Green- Gauss and L2 gradient calcula- reduced to zero, see for example gure 4.10.
tion techniques can be generalized to include data
dependent (i.e. solution dependent) weights. In
the case of Green-Gauss formulation, the sum

1I
Z (U0 + u1 i~fo

iElo

is replaced by

1 ((Vu)o. (Ri - Ro)) iD?
iE :t~(4.82)

If the p6 are chosen such that p,-, - ,0 = 1 then Figure 4.10 Linear Reconstruction with mono-
the gradient calculation is exact whenever the so- tone limiting.
lution varies linearly over the support. In two Another property (referred to hereafter as 'prop-
space dimensions, equation (4.82) implies the so- erty 2') of the monotonicity enforcement is mo-
lution of a linear 2 x 2 system of the form tivated by the stability proof associated wit1' the

higher order accurate schemes (presented in sec-
Y0  AE m = P!i2(UL+ui)niO tion 4.7e). In one dimension, property 2 canl ber-nlmx A0 - 020i characterized as the requirement that the new re-

construction not produce a reconstructed solution
where variation, f Idul, which is larger than the piece-

wise constant value. If property 2 is violated then
"IZ= PA O MXy,,, in. 3 = ? pAygny, the slopes must be reduced until the solution vari-

ielo i~lo ation is satisfied. This situation is depicted in
figure 4.11. For arbitrary unstructured grids, aS p i = I sufficient condition is that the differences in the

iET. idEo extrapolated states at a cell interface quadrature
point be of the same sign as the difference in the

C-Lre must be exercised in the selection of p+ ill piecewise constant values, i.e.
order that the system be invertible. This is sim- u+ - u 0
ilar to the spanning space requirement of the L2  > 0, (property 2).
gradient calculation technique. U+ - 1

when combined with property 1, the following in-
.4.7d Monotonicity Enforcement equality exists: -'

When solution discontinuites and steep gradi- U + - U > 0 (4.83)
ents as present, additional steps must be taken -- - v..
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This inequality is crucial in the stability proof with 4j = Iin(•, 42, b:s,..., bN,. in practice,
given below, the reconstructed polynomial may be calculated

at the flux aquivratrr, points instead of the ver-
tices of the control volume with a negligible degra-

. . dation in tiaonot onicity. hi the implementation of

-" . .property 2, we l)refor a "symmetric" reduction

S. of slopes. In other words, at interfaces violating
.property 2, both of the two cells sharing that in-

S.terface reduce their slope until (4.83) is satisfied.
• •l•........When the above procedures are combined with

S tile flux function given earlier (4.58),

(a) (b)

Figure 4.11 (a) Reconstruction profile with in- h(u+, u-, a) = (f(u+, n) + f(ut-, n))
creased variation violating monotonicity property 2 (4.58)
2. (b) Profile after modification to satisfy mono- -a(fi, n)l (u+ --- )
tonicity property 2.

In Barth and Jespersen [40], we gave a simple
recipe for invoking property 1. Consider writing the resulting scheme has very good shock resolv-
the linearly reconstructed data in the following ing characteristics. To demonstrate this fact, we
form: consider the scalar nonlinear hyperbolic problem

ui(x, y)1 = Uj + Vul, • (It - Rj) (4.84a) suggested by Struijs, Deconinck, et al [44]. The
ci equation is a multidimensional form of Burger's r

Now% consider a "limited" form of this piecewise equation.

linear distribution.

uk(x, Y)j = j +4" (jVu, . (R - Rj) (4.84b) 2
ejU + (U /2) ,, + it =y

The idea is to find the largest admissible -t, while
invoking a monotonicity principle that values of
the Iliearly reconstructed function must not ex- We solve the equation in a square region [0, 1.5] x
cced the maximum and minimum of neighboring [0, 1.5] with boundary conditions: u(x, 0) = 1.5 -
centroid values (including the centroid value in 2x, x < 1, u(x,0) = -. 5, x > 1, u(0, y) = 1.5,
cj). To do this, first compute and u(1.5,y) = -. 5. Figures 4.12 and 4.13 show -j

n,,eihbo,.s) carpet plots and contours of the solution on reg-
uJ =nular and irregular meshes.

mid

then require that

"ms" << (4.85)

For linear recoustructions, extrema in u(x, y)' - A
occur at the vertices of the control volume and
sufficient conditions for (4.85) can be easily ob-
tained. For each vertex of the cell compute uio=
uk(xt,yj)j, i = 1,Nc, to determine the limited
value, Oj, which satisfies (4.84):

Jmin(luj if u,-j- >O0ui--U$

't min(1, U:**ui), if ui, -- j < 0 Figure 4.12a Carpet plot of Burger's equation
I 1 if uj -T- = 0 solution on regular mesh.
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Note that the carpet plots indicate that the nu-
inerical solution on both meshes is monotone. Even
so, most people would prefer the solution on the
regular mesh. This is an unavoidable consequence
of irregular meshes. The only remedy appears to
be mesh adaptation. Simn'.r results for the Euler
equations will be shown on irregular meshes in a
future section.

4.7e Stability Analysis via Energy Methods

Consider once again the local mesh shown in
figure 4.1a with local index about a vertex v0. In
the analysis performed below, we consider energy
stability of schemes of the following form

d(c,)j

"ji-oAo = - h(ut+ -, fi)0o (4.86)
j=1

using linear reconstruction with limiting. Note
Figure 4.12b Solution Contours on regular mesh. that in this analysis all boundary effects will be

ignored. In section 4.5, stability of the first or-
der upwind scheme was proven using monotonic-
ity analysis. Before considering the higher order
schemes, we briefly digress to show stability of the
first order up wind scheme using energy methods.
Using the same techniques, energy stability of the
high order schemes with reconstruction and lim-
iting will be shown.

Enaemy Analysis for the k = 0 scheme

In this case, the flux takes the simple form and
the scheme for a single vertex v0 can be written
as indicated below

Figure 4.13a Carpet plot, of Burger's equation A,)+ d(c-)1 -, )
solution on irregular mesh. !o n nj)

S2n

C.u (4.87)

a( j >1 9a ,fii)I (Tih - io) =0

£u

or in symubolki operator form, where u denotes
the solution vector, i.e. u = [U1,i2,Th,...,TN jT*
In this symbolic form, the scheme is written as

(Du)t + C.u - Cdu = 0 (4.88)

where D is a positive diagonal matrix cont ining j
thc area of each control volume. 4. and C, repre-
sent the advective and diffusive operators in this
linear scheme. The energy of the system (1.88) is
given by the following equation:
(uTDoU) +uT(4 + CT) U + T) C uT =

Figure 4.13b Solution contours. (4.89)
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It is a straightforward exercise to show that in Fr'ozom sytinxnetry and the eigeniivie circle theorem
the linear case, C,, and Cf are skeew-symmetric we have that
(isoenergetic) operators, hence (4.92)

u" (' + E'"') u = 0.

The diffusive operator 4, is synetric which re- ~It remains to be shown that the advection oper-
duces the energy equation to the following form: ator , is either isoenergetic (in the linear case)

or decays energy in the system. Not A1l extrap-
I olation formulas guarantee that this is true. A
2 (-(full discussion of this topic is beyond the scope of

these notes and is a subject of current research.
romn symmetry and application of the eigenvalue Note that in reference [45], we indicated a pref-

circle theorem, it is easily shown that £,1 is ia erence for a standard Galerkin discretization of
symmetric, negative semi-definite matrix opera- E,. Since this operator is isoenergetic, when com-
tor which implies that bined with the diffusion operator described above,

11t7"dU < 0 the entire scheme is provably stable in an energy

norm.

for all u. This establishes that the scheme is en-
orgy stable since 4.8 Maximum Principiles and the

(u1 'Dou) _< 0 Delauna r 'iangulation

Energy Analusis &or the k - 1 scheme The edge formulas l)resented earlier not only
provide an efficient procedure for calculating quan-

We now consider the advection scheme with lin- tities such as the gradient and divergence, but
ear reconstruction. The interface states for the also provide certain theoretical results which are
edge of the control volune separating cells co and difficult to ascertain otherwise. For example, Cia-
Ci .me denoted by t4 and u7-, respecti\-dy. The riot and Raviart (46] consider Galerkin schemes
scheme is written in the familiar form: for solving elliptic equations using linear finite-

elements. They derive sufficient conditions for
(f(ia0+ i,) + (s,, the existence of a discrete maximum principle for

2 iLaplace's equation if all angles in the triangula-
tion are less than ir/2 - e for some positive e.

C.u Using the edge formulas derived in section 4.3,
d(c,) I sufficient and necessary con(ditions can be der:ved

la(i(i, 60) (u7 - U+) = 0 for a discrete maximum l)rinciple which are quite
i different fromn the Ciarlet result. A brief outline

Call of the proof is given below.
(4.91)•

Consider rewriting equation (4.91) using the i(len-tity Example: Derive conditions for a discrete max-
tity

'imuni l)rinciple using a Galerkin approximation

+ )+ with linear elements.,,: -,,o+: Il"'- ) , -10 =0
\Ui O/ Using a reduced form of (4.43), the canonical

which tacitly a-ssumes that the ratio exists. Mono- edge formula for the discrete Laplacian operator
tonicity lprOp)erties 1 and 2 guarantee that V) E is given by
[0,1]. Thus, equation (4.91) is rewritten in the
nonlinear form: h

(Ao uo),+ ,., -(f( 0,• ii) + f(u dii)) 4 w

S[cota,±(,,)+ cotan(all,)] (U, ,,0 )
a•_)l (4.93) *

- ,IZ(AA, - WIo) -- o
2~t where the angles OL. and &ft, a-e (depicted below.
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The key elements of the proof are given below:
Rearrangement of the weights appearing in (4.93)
yields

S= [ s(aL 4.8sin(an.
2 sin(•,), sin, 4n)

i-I Since of,, < lr, all, < ir, the denominator is
always positive and nornegativity requires that

Figure 4.14 Circuincircie test for adjacent tri- oC., + an, _ 9r. Some trigonometry reveals that
angles. for the configuration of figure 4.14 with circumncir-

cle passing through {(O, vi, Vi+l } the sum o', +
It. is well known that. a discrete maximutm p j depends on the location of vi. with respect

ciple exists for arbitrary point distributions and to tie circumcircle in the followingway:
boundary data if and only if the discrete operator
is a nonnegative operator, i.e., if o u, + oaL. < 7c-, vi-i exterior

n(u )!o = Z wiul' (4.94) Ctu, + (yL, > 7r, Vi-I interior (4.99)

iEa" 0  (_R, + aL. -= 7r, 'i.. cocircular

and Also note that we could have considered the cir-
cumcircle passing through {vD, vi, I._ V -} with sire-

w0 < 0, w1 1 0, i > 0, w0 + wi= 0 (4.95) ilar results for vi+1 . The condition of nonnegativ-
i'lo ity implies a circumcircle condition for all pairs of

adjacent triangles whereby the circumcircle pass-
for any interior vertex vo. For schemes of the form ing through either triangle cannot contain the

fourth point. This is precisely the unique char-
()" H(ui -u•) (4.96) acterization of the Delaunay triangula':.n which
iElo would comnplete the proof.

Keep inl mind that from equation (4.98) we
* nonnegativity requires that WVi Ž 0 for all i E lo. have that cotan(a) > 0 if a < ir/2. Therefore
* This guarantees a maximum principle. Equating a sufficient but not necessary condition for non-

equation (4.96) to zero, we obtain negativity (and a Delaunay triangulation) is that

all angles of the mesh be less than or equal to

Ito -(4.97) r/2. This is a standard result in finite element
E•• ITo theory and apl)lies in two or more space dimen-

sions. The construction of nonnegative operators
and therefore has important implications with respect to the di-

.h agonal dominance of implicit schemes, the eigen-
rmin (i•, t , .... Itu0) 1 u1 < max (•,h, U,, ... , 111,) value spectrum of the discrete operator, stability

of relaxation schemes, etc.
A natural question to I)e addressed concerns the We can ask if the result concerning Delaunay
existence and uniqueness of triangulations of an triangulation and the maximum l)rinciple extends
arbitrary point set such that (4.93) guarantees a to three space dimensions. As we will show, the
discrete maximum principle. In two dimensions answer is no. Section 4.3d gives the correspond-
a unique triangulation always exists. The main ing edge formulas for Hessian and Laplacian dis-
result is summarized in the following theorem: cretizations in 3-D. The resulting formula for the

The discrete Laplacian operator (4.93) exhibits three dimer~ional Lailacian is
a discrete maximum principle for arbitrary point
sets in two space dimensions iff the triangulation f V,' V2uh dv = Wi(ui - uo) (4.100)
of these points is a Delaunay triangulation. 41, iVr,
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Consider a subset of the N vertices, in particular
consider an interior edge incident to vo connect-

I dj, iug to vi as show)n in figure 4.16 by the dashed$i• = ARk'+ 1/2- ot~ln((Vt+,1/12), linle segment and al1 neighbors adjacent to vi on [
k=1 (il 01) the hull of the point set. hit this experiment we
I fml- it v(d. O1) consider the height of the interior edge, z, as a

In this formula Vh'0 is the volume formed by the free paramneter. Although it will not be proven

union of '-1 tetrahedra that share vertex n0.2o is iS here, the remaining A' -- 8 points can be placed
the set of indices of all adjacent neighbors of v0  withlou, conflicting with auw of the conclusions
connected by incident edges, k a local cyclic iin- obtained for looking at the subset.
dex describing the associated vertices which form ft is known that a necessary and sufficient con-
a polygon. of degree d(vto, vi) surrounding the edge dition for the 3-I) Delaumn triangulation is that
4(Vo, vi), ak+1 2 is the face angle between the the circumnsphere passing through the vertices of
two faces associated with -+1 /2 and gk+ 1/2 1lk 1'1any tetrahedron must be point free [211; that is to
share the edge c(- vkVk+) and IARk+1/21 is the say that no other point of the triangulation can
mnagnitude of the edge (see figure below). lie interior to this sphere. ATirtherniore a property

of locality exists 1211 so that we need ouly inspect
adjacent tetrahedra for the satisfaction of the cir-
cuinsphere test. For the configuration of points
shown in figure 4.16, convexity of the point cloud
constrains z > 1 and the satisfaction of the cir-
/'cusphere test requires that z < 2.

1 < z < 2 (Delaunay Triangulation)

k k1 FRom (2.13) we find that T.V' > 0 if and only if
z < 7/4.

7z< (Nonnegativity)

Figure 4.15 Set of tetradra hari interior m have a
edge S(v, vif) with local cyclic index k. valid Delaunay triangulation which does iot. sat-

isfy a discrete maximum principle, In fact, the

A niaximum principle is guaranteed if all WR > 0. l)elaunay triangulation of 400 points randomly
We now will procede to describe a valid Delau- distributed in the unit cube revealed that approx-
nay triangulation with one or more WVj < 0. It iniately 25% of the interior edge weights were of
will suffice to consider the I)elaunay triangulation the, wrong sign (negative).
of N points inl which a single point. v0 lies inte- Keel) in mind that from (4.101) we can obtain a
rior to the triangulation and tile remaining N - 1 sufiicient but not necessary condition for nonneg-
points describe vertices of boundary faces which ativity i.hat all face angles be less thai or equal
coml)letely cover the convex iull of the point set. to 7./2.

The formulas for the l)rotot.ypical viscous terin
V. It. u are only slightly more complicated than
the Laplacimn formulas. In 2-D we have the fol-

V. , lowing weights

2 r, = i1,.ca('11,s~) + TiRtCotan(aki)] 4V, (4,102)
ToP VIe• Swe Vke or in 3-D (12

,d(Vo^m)..'

Wi=, E Ti: k+1/ 2 1ARk+i/21 '0t,11104+ 1/2)Figure 4.16 Subset of 3-D Delauinay Triangula- ++.
tion which does not maintain nominegativity. (4.103)

_ |I
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where II is the average value of it in the specificd
simplex. Since it and TI are always assunmed posi-
tive quantities, we have the following theorem: _ + f• )- J tda +J F(u) nt (11- 0 (5.5)

A diserete maximum principle associated with 1
the discrdization of \7. /Vu with weights given.
by (4.102) and (4.10,) is guaranteed iff > 0 wi

for~ id interior edges of the mesh. A sufficient but . ix
not necessary condition is that all angles ('2-D) or , . pV(V n) + I
faces angles (3-D) be less thats. or equal to ir/2. u ) F(u) 1 1• \E (E + p)(v.n/
fihe proof follows inmmediately from nonnegativ-
ity of (4.102) and (4.103). The sufficient but not Ill tile next section, we show tile natural ex-
necessary condition is a minor extension of the tension of the scalar advection scheme to include
result by Ciarlet [46]. (5,5).

5.0 Finite-Volume Solvers for the Euler 5.2 Extension of Scalar Advection Schdmes to

Equations Systems of CEquations

In this section, we consider the extension of The extension of the scalar advection schemes
upwind scalar advection schemes to the Euler equa- to the Euler equatious requires two rather minor
tions of gasdynamics. As we will see, the changes muodific:ations:
are relatively mninor since most of the difficult
work has already been (lone in designing the scalar (i) Vector Flux Function. The scalat" f hx f ene-scheme. tion is rep~laced by a vect~or flux ftmnction. In thle

present work, the mean value linearization due to
5.1 Buler Equations in Integral Form Roe [47] is used. The form of this vector flux func-

The physical laws concerning the conserva- tion is identical to the scalar flux function (4.58),

tion of mass, momentum, and energy for an ar-
bitrary region Q can be written in the following
integral form: h(ut+, u-, n) = (f(u+,n) + f(xr, n))

Conservation of Mass _ 1 iA (u+ _ u-)

0p (Ia + p(V . n) dl = 0 (5.1) where f(u,nx) E F(u) n, and A --z df/du iý, the
flux Jacobiaim.

Conservation of Momentum (2) Componentvise. limiting. The solution vari-
able. are reconstructed comMooeentwise. In pri-

"• pV d a+ I)V(V. - ) d I + Pik d I = 0 ciple, any set of variables crai be used inl the recon-
struction (primitive variables, entrol)y variables,

(5.2) etc.). Note that conservation of the mean can

make certain variable combinations more difficult
Conservation of Energy to implement than others because of the nonlin-

0 cL Zearities that may be introduced. The simplest
O~--t E da + (E + p)(V . ) dl = 0 (5.3) choice is obviously the conserved variables them-

in fan selves. When conservation of the mean is not im-
t e t Vn l)ortmt (steady-state calculations), we prefer theSIn thlese equations p, V, p, and E are the densityt use of primitive variables in tihe reconstruction

velocity, pressure, and total energy of the fluid u step.
The system is closedl by introducing a tiernody- The resulting scheme for the Euler equations

i nisnical equation of state for a perfect gas:a q o a a chas the saone shock resolving characteristics ,is

the scalar scheme. Figures 5.1a-b show a simple
Sp = (I, -1)(E - iptV V)) (5.4) Steiner triaugulhtion and the resulting solution

obtained with a linear reconstruction scheme for
These equations cai be written in a iore com- transonic Euler flow (Mo = .80, a = 1.250) over
pact vector equation: a NACA 0012 airfoil section.



Smatroi mid solution adaption will IW give" by

Professor Johnsoii in these notes. The paper by
Warren ct al [29] also provides some interesting
insights into the area of mesh adaptation for flows
conitainling discontinuities.

tI

Figure 5.1a Initial triangulation of airfoil, 3155
Sve rtic e s ,

£ Even though the grid is very coarse with only

3155 vertices, the upper surface shock is captured
cleanly with a profile that extends over two cells Figure 5.2a Solution adaptive triangulgation of

of the mesh. airfoil, 6917 vertices.

The flow features in figure 5.21) are clearly defined

rwith a weak lower surface shock now visible. Fig-

ttire 5.3 shows the surface pressure coeflicient dis-\ I tribution on the airfoil. The discoutitmities are/'crisply captured by the scheme.

IIH///////'// /~- / ,',.)) 7 ,-

S//
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Figure 5.Ib Mach number contours on initialtrmg, ain M,,.,= .-80 , a= .2*
Clearly, the power of the unstructured grid method ,

is the ability to locally adapt the mesh to resolve .

flow features. Figures 5.2a-b show an adal)tively

refited mesh and solution for the same flow. The

mesh ha.s been locally refined bsed on a poste. Figure 5.2b Mach number contowts on adapted

tiori error estimates. These estimates were ob- airfoil.

tained by performing k-exact. reconstruction in The other major advantage of unstructured grids

each control volume using linear aind quadratic is the ability to automatically mesh complex ge-

functions. A complete discussion of error esti- omnetries. The next examp)le showni in figure 5.4a-



b is a Siv,,10r triaitiiilathioii awl solihdion about a
Ini lti-tUotiipOiellt, airfoil.

-- ' -

0.5 p.. . .. ... '..

0.0 0.2 0., / 0(. 0,8 H.() _____

x/c

Figure 5.3 Compariso1 of C,, dist-rihbli os oil
initial fwd adapted wllshois. Figure 5.4b Mach muinber ont ours about multi-

cOml)O, iit airfoil, Al = .2, n = 0'.

1U. sing (he incremenital Steiner algori thm dinsi.'uS,( \: l'r,'v~ouly metioned the import ante of
rol the gridI c'all 'onstructed fronit crvc 1ulitg acci'tt fluxit quadraturi formulas. Il fatt,

data in about ten minutes time on a standard en- for k-exact. reconstruction, wv suggest. N imiu1

gincerivg workstation using less than a ininute of Gauss plihidratures with N > (k + 1)/2. in Figs.
nctuial C PU ctime. 5.51-1) this imlporta nlce is ilhlltrated b~y plottillp

density conit.oulr, foi. a Imiierical cah'llaltioll of the
Ringh, Iflow (i'rPvhmsly desc3ribsd) using qutadratic"

Y-1 r, onstruction k=.iir . Oriuuitlh suggests thatL(' -\- • wo point qundrathues should be used in this (qse.

\ \ \

--- -- _ -- _ .. .. "- = __ _
S. . -. -.... .. .. -

, , . - - -__,

k-1 N .- 1\ ,•-,• • k

Figure 5.4a Steiner Grid about niulti-onapo'neli. tihiM[
airfoil.

Figure 5.5a Ringleb flow density (cointOirs us-

Ing quadratic reconstruction umd oe-l)oint. Gauss
The flow calculation shon sl OIill n figure 5..1) was p)er- u r
fornied on a CRAY ,aipercolnpu .er taking just it (uadrature (kA 2, N

few lilinlitcs of CPU tuinle using it linear rF:Ou- Figure 5.5a shows contours for a citlation us-
struictioli shienle with implicit tiliie adva;ueiment., ing one-point Gauss quadrature and Fig. 5.5b

Details of the implicit schemi are given in the shows contoours for a calculation using two-point
next. setioli. qitadrattlres. rThe inprovement, ill Fig. 5.51) is



dramatic. hicreasing t-he imnibr of (pu:drattire and •2 gradient revonl:tru( tion, Figu.r 5.7 shows
pojits to thtlre( leaves the snolltioll nllichallged. sufai. e f p.s.;re contouirs onl thle wimi, surface aind

C-O profiles at Several spian st-ations.,

fit ; I /I

"- ,

[i IL UiU ~iffffRi I i I .

* Figure 5,,b Biugleb ilow density contours iUs- Figure 5.7 M6 Wing Surface Pressure Contours
ing (piadratic recostlruct.ion and two-point Gauiss amd Splnwise Cp Prmfiles (MG4= ,8.1,A--3.06').

i ~qulad'atmre (k = 2, N = 2).

The algorithms i' tliied in section -1 have Pressure contou'rs clearly show the lambda

beIen e.xlended to inclitde the Euler t iutiots in type shock pattern on tile WHing surface, Figu'res

Sthree dimensions, In reference [413], we showed the 5.8an- comipare pressr'e coeffici(int distribittios

SIod d Mie 0 at three spanl stations oil the wilig mieilsured inl

(vt et of an ,-er eqtt ion -o'er on tetr- t he experinlwent., y/b=...65...95.
hiedral meshe~s, One of the 1llC'llat'ions preCs(ited

in t1i.,s plper simluanted Euder flow about the ON- -

ERMA M6 wing. The tetrahiedral mesh used for
the calc:ulations was it subdivided 151x17x33 hex- .. 5

.We r•,,1116111' t etrahledral metsh contained .196,35-0 U• 00•,•.•-.
let rahedi-a, 105, 177 vertices, 11,690 boidary ,er-

[ ics, ml 3,36 bundr~yfa,. 'igimre5.6 shows 0.5 -- UpwiPA, (Ol'ell-GMNSs Gr~diC111%

it .... I.Ip\%ltat 1-2 Gradients
cl setlp of tile sitrface mnesh nlear (lth , o utboar'd .- C ;L3D(wxf. ,1)

tip. "1. O 0x~rnn

0.('K) 0.125 o.5o 0 O.75 1.00

Figure 5.8.a M6 Wing Spanwise Pressitre Distri-
butionl, yli1 -- .44,1

' E~jach graph comlpares the up~wind code with Omeni-
GCams and L.) gradient ealctilation with tile CFL3D

; restilts ai.pe~arinp,, in [.181 and tice experime~ntal
: ! lauta [,49]. Numerical retmilts oil the t~etra!hedral
" .,mesh complare very f~avorably with tile CFI,31)
S~st~ructuredi mesh, codie. rh'ie results for the oxit-

" "Figure 5.6 Closcup of M-6 WVing Stfirr'c Mesh board station appear bett~er for tile present code
,Near Tip. than tile CF,'I3D results. This is largely (lie to

' thel( diff'erence in grid t~oiologv and subsequent ini-
i q~nansonic: calculations, Afoo -. 8.1, ýi -=: 3,00°,"

Were perforwed onl die CRAY YANMP cOmpltitler proved resolution ill that. area.

usngthe iipwinl codie with both dihe Gree•n-(.,;uss
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By rearranging terms, we cam arrive at the so
called "delta" form of the backward Euler scheme

O- A11R u+1 _u"') +A u'
-0.5D- du .At= -At Rt(u()

(5.9)
Note that for large time steps, the schenme be-

0.5 - Upwind, Gzen-Gauss Gradieniks comes equivalent to Newton's method for finding
--.-- Upwind, L2 Gradients roots of a nonlinear system of equations. New-
1 .... Ct3D(ref. 4) ton's method is known to be quadratically con-1.0. O Experiiment

SExperiment vergent for isolated roots. Each iteration of the
1.5 Fscheme requires the solution of an algebraic sys-

0.00 0.25 0.50 0.75 1.00 teal of linear equation. In practice, we use ei-
x/c ther sparse direct methods as discussed in ref.

[45] or preconditioned minimnum residual ireth-
Figure 5.8b M6 WVing Spanwise Pressure Distri- ods. Both of these topics will be addressed by
b)ution y/b .65. Professor Hughes and other lecturers. The suc-

-1.5- cess or failure of these methods hinges heavily on
0 the accuracy of the time linearization. For the

-. 0- .schemes discussed in sections 4 and 5, the most
difficult task is tCe linearization of the numerical

-0.5 - flux vector with respect to the two solution states.
For example, given Lihe flux vectorS0.0-

0. 'jpwind. Gioen-Gauss Gradients h(U4  n) -1 (f(u+,n) + f(u-,n))
0.5 . Upwind,w ' 12 Gradients u2 (5.10)

-... C F I.3D (ref. 48)

1.0 o Experiment
5 Experiment 2 1 -

0.00 0.25 0.50 0.75 1.00 we require the Jacobian terms ' and T--. In

x/c reference [50], we derived the exact Jacobian lin-
earization of Roe's flux function. In this same pa-

Figure 5.8c M6 Wing Spanwise Pressure Distri- per, approximate linearizations of (5.10) were in-
bution y/b = .95. vestigated. The linearization of (5.10) is straight-

forward, except for terms whici arise from differ-
5.3 hflI)liuiL, Linearizations entiation of [A(U)[. A simple approximation is

In this section, we consider the task of lin- to neglect these terms in the linearization pro-
earizing the discrete spatial operator for purposes cess. This produces the following approximate
of backward Euler time integration. Defining the linearizations:
solution vector u = [T11, uT2,7 3, --, NTI]", the basic
scheme i' written as dh- IA()) (Approx 1)

du+ 2
Dut = R(u) (5.7) dhd = I (A(u--) + JA(i )j) (Approx 11)

where D is a positive diagonal matrix. Perform- du +

ing a backward Euler time integration, equation It is not difficult that to prove that the error asso-
(5.7) is rewritten a- ciated with this approximation is O(I1u+ - u-

which makes the linearization attractive for the

D(u'+ - u") = At R(un+l). (5.8) implicit calculation of smooth flows. Near dis-
continuities, this term becomes 0(1) which can

where n denotes the iteration (time step) level, slow the convergence of the scheme considerably.
Linearizing the right-hand-side (RHS) of (5.8) in One important attribute of this approximation is
time produces the following form: that it retains time consernation of the scheme.

This amounts to a telescoping property of fluxes

Du + dR"(u I+ -" in time. For time accurate problems involving
D(u"+l-I")=At R() du (u U moving discontinuities, this property is essential(Run' dR" ~ ~ ovin
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to obtain correct shock speeds. Another approx- This leads to a highly vectorizable (using gather-
imate form considered in [50] uses the following scatter hardware) algorithm for matrix assembly
simple approximation (and matrix multiplies). For the higher order

dh reconstruction schemes, the tisual strategy is to
- A(ia)- (Approx 2) only construct LHS matrix terms associat'1 with

du+the first order upwind scheme while using a higher

dh order RHS operator. The mismatch of operators
au destroys any hope of quadratic convergence for

This linearization also differs from the exact lii- large time steps. Figure 5.9 graphs the conver-
earization by terms O(fliv+ - u-11). One impor- gence history for a typical calculation using the

tant feature of this linearization is that it pro- linearizations discussed above. The flow prob-

duces a LHS operator for the first order upwind lem being solved is subsonic flow over a single

scheme which is (block) diagonally dominant. For airfoil. In this ease, the flow is smooth and all

those solution methods or preconditioning meth- linearizations should be applicable. In this fig-

ods based on classical relaxation schemes, this ure, we see that when the RHS and LHS op-

property establishes convergence of the relaxation erators both correspond to the first order up-

method. Scalar equation analysis also indicates wind scheme and the exact Jacobian linearization
that when this linearization is used with back- is used, quadratic convergence is achieved. The

ward Euler time integration and first order up- schemes using approximate linearizations do not
wind space discretization, the resulting scheme is approach quadratic convergence but are very ef-

monotone for all time step size. Unfortunately, fective in reducing the initial residual. In reality,

this linearization violates time conservation and most computation,- are terminated after reduc-
should not be used for time accurate calculations. ing the residual about four orders of magnitude.

For the pr'esent example, this would amount to 7
steps using the exact linearization or 8-9 steps us-

10. ing the approximate forms. Using a higher order
10-4 ..................... .-..t.. . ......................... ............................... accurate RH S slows the convergepce even further.
105'-.-............. .. Nevertheless, a four order reduction in residual is

.7 -6..... I ................ ....... ....... achieved ...... after.....30-4eed0ftsteps.stps

.... 0. .6.0 Numerical Solution of the Navier-Stokes
Z Equations with Turbulence

... ..............
....... 6.1 Turbulence Modeling for Unstructured Grids

1._ _ _ _Simulating the effects of turbulence on un-
10 0 5 1i0 15 structured mesihes via the compressible Reynolds-

Iterations averaged Navier-Stokes equations mad turbulence
modeling is a relatively unexplored topic. In early
work by Rostand [511, an algebraic turbulence

Figure 5.9 Convergence histoines for exact and model was incorporated into an unstructured mesh
approximate hinearizatiorl. ullid lines show con- flow solver. This basic methodology was later re-
vergence histories for calculations carried out us- fined by Mavriplis [521 for the flow about multi-
ing first order upwind RHS in(5.9). Dashed line element airfoil configurations. Both of these im-
depicts scheme run with exact linearization of plementations utilize locally structured meshes
first order scheme on the LHS and second order to produce one-dimensional-like boundary-layer
RHS discretization. profiles from which algebraic models can deter-

Using the edge data structure, the assembly of mine an eddy viscosity coefficient for use in the
the LHS matrix in (5.9) for the first order scheme Reynolds-averaged Navier-Stokes equations. The
is very straightforward. The flux associated with use of local structured meshes limits the geperal
each edge e(vi,vj) of the mesh is linearized with applicability of the method.
respect its two arguments, ui and uj. This means The next level of turbulence modeling in-
that the linearization contributes to the fonna- volves the solution of one or more auxiliary dih'er-
tion of the block matrix elements in the i-th row ential equations. Ideally these differential eqta-
j-th column, i-th row i-th column, j-th row i- tions would only require initial data and bound-
th column, and j-th row j-th column positions. ary conditions in the same fashion as the Reynolds-
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averaged mean equations. The use of turbulence
models based on differential equations greatly in-
creases the class of geometries that can be treated 1
"a-itomatically." Unfortunately this does not make a !
the issue of turbulence modeling a "solved" prob- aR =af
lem since most turbulence models do not perform
well across the broad range of flow regimes usu- vt =c,,(vd?2 )DjD2

ally generated by complex geometries. Also keep lit =Pvt
in mind that most turbulence models for wall- D1 =1 - exp (- y+ /A+)
bounded flow require knowledge of distance to D2 =1 - exp(-y+/A+)
the wall for use in "damping functions" which 2 1Et) 2

simulate the damping effect of solid walls on tur- P = (•,t(Uj +" OUj ) ! 2 ( '
bulence. The distance required in these. models is P Ox - 3 -)k
measured in "wall units" which means that phys- c(1. 12 /Dical distance from the wall y is scaled by the local f 2(y+) ==- + (I - =-)(-- + D2)wall shear, density, and viscosity. CC2

++ = l(6.1) + D2

V PwauV 
1.)

Scaling by wall quantities is yet another compli- - p2
cation but does not create serious implementa-

tion difficulties for unstructured meshes as we will The following constants have been recommended
demonstrate shortly. in [53]:

6.2 A One-&iuation Turbulence Transport Model4 K =0.41, c~, -- 1.2, c•2 = 2.0
In a recent report with Baldwin [53], we pro-

posed and tested (on structured meshes) a single ci 0.09, A+ 26, A+= 10
equation turbulence transport model. In this re-
port, the model was tested on various subsonic We also recommend the following boundary con-
and transonic flow problems: flat plates, airfoils, ditions for (6.2):
wakes, etc. The model consists of a single scalar
advection-diffusion equation with source term for 1. Solid Walls: Specify Rk, = 0.
a field variable which is the product of turbulence
Reynolds number and kinematic viscosity, vRT... 2. Inflow (V. n < 0): Specify RT = (RT)oo < 1.
This variable is proportional to the eddy viscosityexcet vry nar sold wll.3. Outflow (V - n > 0): Extrapolate j_?7. from
except very near a solid wall. itro ausinterior values.

D(vR-T)=(c/ -c )/--P
Dt (CE2 12 - 4I) l'JP Equation (6.2) depends on distance to solid

S2 - 1 walls in two ways. First, the dam ping functior.
+(' ± .)VZ(VR) -, -(Vv) . V(vRfr) 12 appearing in equation (6.2) depends directly

(6.2) on distance to the wall (in wall units). Secondly,
In this equation, P is the production of turbulent vi depends on vRg and damping functions which
kinetic energy and is related to the mean flow ve- require distance to the wall.
locity rate-of-strain and the kinematic eddy vis-
cosity vi. In equaLion (6.2), the following func- V= cDi(y÷)D2 (y+)vRg
tions are required:

It is important to realize that the damping func-
tions f2, D1 , and D2 deviate from unity Galy when
very near a solid wall. For a typical turbulent
boundary-layer (see figure 6.1) accurate distance
to the wall is only required for mesh points which
fall below the logarithmic region of the boundary-
layer.
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""4 •foil, Navier-Stokes flow is comj)uted about this

35- geometry assuming turbulent flo% with the fol-
i 2•P, lowing free-stream conditions: Moo = .725,c

30• 2 31', Re = 6.5 million. Wind tunnel experi-

ments for the RAE 2822 geometry at these test20- A"t , m Fqv m; conditions have been perforlned by Cook, Mc-

Donald, and Firmin [54]. The RAE 2822 airfoil15.-mesh shown in figure 6.2a contains approximately

10 •• •ot Plue .•14000 vertices and 41000 edges. The second ge-
5L•mm u.,u ometry consists of a two element airfoil configu-

Re(&i..A7V ration with wind tunnel walls. The inflow condi-
S.tions assume turbulent flow with Mo, = .09 and

10" 10 10 10 , ° 1 Re = 1.8 million. Details of the geometry and

wind tunnel test results can be found in the re-
.port by Adair and Home [55]. The two element

"Figure 6.1 Typical. fiat plate boundary-layer from mesh shown in figure 6.3a contains approximately
ref. [53] showing dependence of turbulence model 18000 vertices and 55000 edges.

on distance to wall.
Both meshes were constructed in two steps.

The relative insensitivity of distance to the wall The first step was to generate a Delaunay trian-
means that accurate estimation of distance to the gulation of the point cloud. As mentioned earlier,

wall is only required for a small number of points the method of Delaunay triangulation cam gener-
that are extremely close to a boundary surface. ate poor triangulations for highly stretched point
The remaining points can be assigned any approx- distributions. Both meshes suffered from nearly
imate value of physical distance since the damp- collapsed triangles with two small interior angles.
ing functions are essentially at their asymptotic As a second step, a Min-Max triangulation was
values. A general procedure for calculation of dis- constructed by edge swapping the Delaunay tri-
tance to the wall in wall units is to precompute angulation. Edge swapping repaired both trian-
and store, for each vertex of the mesh, the mini- gulations. Both airfoil geometries were calculated
mum distance from the vertex to the closest solid assuming turbulent flow using the one-equation
wa~l (examples are shown later in figures 6.2b and turbulence model (6.2). Level sets of the gen-
6.3b). This strategy can only fail if two bodies are eralized distance function used in the turbulence
in such close proximity that the near wall damp- model are shown in figures 6.2b and 6.3b.
ing functions never reach their asymptotic values.
Realistically speaking, the validity of most tur-
bulence models would be in serious question in
this situation anyway. In general, the minimum
distance from vertex to boundary edge does not
occur at the end points of a boundary edge but
rather interior to a boundary edge. For each ver-
tex, information concerning which boundary edge
achieves the minimum distance and the weight
factor for linear interpolation along the boundary
edge must be stored. Data can then be interpo-
lated to the point of minimum distance whenever
needed. In the course of solving (6.2), distance to
a solid wall in wall units is calculated by retriev-
ing physical distance to the wall and the local wall
quantities needed for (6.1) as interpolated along
the closest boundizy edge.

The numerical calculations presented in this
section represent a successful application of the
ideas discussed in previous sections. Figures 6.2a
and 6.3a show examples of Min-Max triangula-
tions ab,#ut single and muli-element airfoils. The
first geometry consists of a single RAE 2822 air- Figure 6.2a Mesh near RAE 2822 airfoil.

4
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-0.5 '

• -•0 0 ........... .. .................. ........... ..0 . .... ... ........ ...
. 00.0 .. 6 . ..

---------___ -----__Figure__6.2dPressure___coefficient__distribution___on

0.0 0.2 0.4 0.6 0.8 1.0
X/C

Figure 6.2d1 Pressure coefficient distribution on
airfoil.

Figure 6.2b Contours of distance function for Navier-Stokes computations for the two el-
turbulence model, ement airfoil configuration as shown in figures

4J 6.3c-d. The effects of wind tunnel walls have been
modeled in the computation by assuming an in-
viscid wall boundary condition. Mach number

contours are shown in figure 6.3c. Observe that
the contours appear very smooth, even in regions
where the mesh becomes very irregular. This is
cdue to the insistance that linear functions be ac-
curately treated in the flow solver reguardless of
nmesh irregularities.

47

Figure 6.2c Closeup of Mach number contours
near airfoil.

Figures 6.2c-d plot Mach number contours
and pressure coefficient distributions for the RAE -

2822 airfoil. The pressure coefficient distribution
":4 compares favorably with the experiment of Cook,

McDonald, and Firmin j29]. Leading edge trip -Z=
strips were used on the experimental model but
not simulated in the computations. This may ex-
plain the minor differences in the leading edge
pressure distribution. Figure 6.3a Mesh near Multi-element airfoil.
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Figure 6.3d Pressure coefficient distribution on
airfoil.
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I SUMMARY

'rhis contribution presents high resolution upwind finite < + P> / dr =< 9(9, ") (3)

volume schemes based on a polynomial reconstructio.t
of the unknowns on unstructured polygonal cells. The in which i is the outward pointing unit normal at the
schemes are Essentially Non-Oscillatory (ENO) through boundary r of it and < . >" is an averaging operator
the use of an adaptive stencil selection. A complete anal- over the domain IS. The flux fit will be denoted by If.

" ysis and comparison given in this text shows that the or- In the case of the Euler equations, q, H and S are given
. der of the space accuracy of the schemes is at least equal as follows:

to the degree of the reconstruction polynomial. Numeri-
cal results are shown for a nonlinear hyperbolic conserva-
tion equation, confirming the ENO shock capturing and q - (p, pu, pt, p)T'
higher order accuracy on highly irregular grids. More re- /Pn
alistic Euler calculations will demonstrate the ability of )the concepts that are outlined theoretically. F~,r)= u"..u + p.11 )

pn,,.(e + PiP)
2 INTRODUCTION S(q,- - 0 (4)

The aim of the present work is to investigate adaptive with u. - il.i the velocity in the normal direction,
unstructured grid Finite Volume methods for the corn- i' = (n.,n,), p the density, u and v the velocity com-
putation of 2D viscous compressible flows. A general ap- ponents, e the total energy per unit mass, p the static
proach is followed, based on unstructured polygonal finite pressure. The next relations exist between e, p and the
volumes with an arbitrary number of edges and with a temperatute T:
cell centered definition of the unknowns, ref. [1, 2]. This
includes as a subset the classical structured grids based
on quadrilaterals as well as the unstructured grids based = 0 1)u2 + V -
on triangles. All types of meshes can be encapsulated in . ., 2
just one and the same datastructure which was cast into r = p.RT
an object-oriented database written in C++ in view of a
higher order schemes. This text, however, will not treat C y.R.T (5)

* convection-diffusion problems but only purely hyperbolic
problems ef the following form: with R the universal constant for gases, y the ratio of the

specific heats at constant pressure respectively constant
+ aq temperature and c the speed of sound.

In the next section, a description is given of a more classic
im which q is a set of solution variables, F is any location in compressible Euler solver for adaptive unstructured grids.
the domain 11 where the equation is to be solved and S is These solvers are based on either a constant or a linear

source term. The vector P = (P, G) contains the fluxes representation of the solution in each volume, see [3] and
of the convection quantity in the I,- and y-direction. therefore, they can only achieve a space accuracy which
Eq. (I) can be cast in integral form using Green's theorem is in between order one and order two. The solution rep-
as: resentation is discontinuous across cell interfaces and the

values on both sides of each cell interface are used as the
initial values for a local Riemann problem. In the case of

0 JJ ,.dO + f /(q, ").i.d" = JJ S(q, - (2) linear solution representations, either limiters or artificial
a-t fdissipation are introduced in order to maintain mono-

tonicity in the neighbourhood of discontinuities. How-
or, after division by 0: ever, these techniques locally reduce the space accuracy

of the scheme to first order. These schemes are said to be
"Research supported by Avions Marcel Daaasult and the Bel- Total Variation Diminishing (TVD), see ref. (4, 5, 6]. Ex-

gitin National Fuind for Scientific Research (NFWO) gteeslestwrsNve-tkscduain
* t Member of Doctoral Program at VKI with Belgian Govern.

ment IWONL grant reveals a strong dependency of the obtained solutions ontProfessor at the VKI the local mesh quality. This is particularly true when



local grid relinements have been applied in order to have ture by Ilarten and Chakravarthy [16] which miniimuize

a better spatial resolution. mathematically all derivatives up to order k.
In a final section, numerical results obtained using

One of the possibilities to reduce the mesh "nsitivity is schemes with ENO-reconstruction will be presented for
to increase the spatial accuracy of the schemes used. To nonlinear scalar convcction problesn as well as for the
achieve this, the solution representation (reconstruction) compressible Euler equations.
in each finite volume must be more accurate. Barth [7, 8]
proposed in this context to reconstruct the solution in
each control volume by a polynontial of higher degree. 3 A CLASSIC TVD SCHEME
Based on his ideas, two variants of his highcr order poly.
noni a reconstructtion aigogithin wil be presented. Some 3.1 Introduction
results produced by these algorithms and a numerical er-
ror study will be shown. Before introducing polynomial reconstruction in section 4
A fheoretical study concerning the use of these two algo- and the schemes that can be built with it (section 5), a
rithms in an upwind finite volume solver is carried out in classic TVD-scheme for adaptive unstructured grids is
a separate section. This study reveals that schemes us- discussed in this section. This discussion shows approx-
ing polynomial solution reconstruction are higher order imately the current status in finite volume solvers, their
accurate in space regardless the local grid quality, This is capabilities and their shortcomings. These shortcomings
crucial for solution adaptive grid procedures as they in- are to be situated in the fact that finite volume solvers are
troduce sudden and considerable changes in the cell size sensitive to grid irregularities and that their spatial ac-
and shape. curacy is reduced to first order because of the use of lint-
Note that other approaches exist to reduce the grid sen- iters or artifidal dissipation. ENO-schemes as described
sitivity in the literature. Essers and Renard [9] for in- in sections 5 and 6 try to cure those shortcomings.
stance, apply a non.conservative correction to the flux Concerning the notation, q denotes always the exact so-
based on the numerically computed coefficients in the lution of a given analytical problem whereas Q, always
local truncation error. However, as conservation is no stands for some discr,.te solution of a discretized prob-

* longer guaranteed, discontinuities will not exhibit the cor- lent.
rect jump.
Struijs and Deconinck [10, 11] presented their so called
fluctuation splitting schemes whereby the total net flux in 3.2 Discretization
a triangle is sent to its 3 nodes according to the direction
of the convection speeds. Several wave models were set up) The eqs. (3) and (4) can be discretized while defining
to find these directions and showed to be very performing a set of non-overlapping polygonal finite volumes with
in the case of contact discontinuities on irregular meshes. area Pi, which cover the computational domain 01. The

discrete unknowns QP are associated with the gravity
center of the cell. This leads to the next discrete finite

It is also well known that schemes with a non-constant so- volume equations that have to be satisai-d for each cell
lution reconstruction are not monotone and therefore not P:
* stable. In order to stabilize these higher order schemes, -Qt Qr' .

nonlinearities have to be introduced, For the classical +j -' HJ .APR = 0 (6)
'I'VD schemes, this is achieved by limiting the solution R
reconstruction, ref. [3, 6, 121. In the present work, a dif- where the summation extends over all the neighbouring
ferent path is followed. The support of the re-onistruc- cells R adjacent to cell P, fig. 1.
tion, i.e. the bet of cells used to compute the coefficients
of Ihe reconstruction polynomial, is arbitrary; this degree
of 'reedom leaves the room to choose the support in an
adaptive way to stabilize the scheme. The nonlinuvarity __
lies then in the fact that cells are accepted or rejected
from the support after each iteration. llarten et al. [13]
proposed an adaptive selection of the stencil which allows
to define the polynomial in each control volume such that -0 /
the derivatives of the reconstruction polynomial are mnin-
imal. Their ID analysis showed that this selection leads
to the so called ENO-schemes, i.e. schemes in which the
occurring oscillations are only of order k, the degree of
the reconstruction polynomial.
Shu and Oshei [14] extended this method to two dimen-
sionial cartesian meshes using a dimension by dimersion Fig. 1: Flux at the interface between cell P andR.
reconstruction, while Durlofsky et al. [15] used linear re-
construction with adaptive stencils on triangular meshes. Here, ASPR is the length of the edge common to cells
In the present contribution, two peneralizations of these P and R. The superscript n stands for the current time
support selection algorithms towards unstructured grids level where the the time t is equal to n.A4t. As the interest

f consisting of polygonal cells will be discussed in more here goes mainly to the space accuracy of the scheme, the
detail. A first one is based on some marching proce- reader is referred to ref. [3] for more a complete descrip-

* dure whereby the marching direction is based on some tion of the construction of explicit and implicit schemes
heuristic criteria such that both the first order gradient based on this type of space discretization. HpR is the

I of the reconstruction and the variation of that first gra- numerical flux through the edge, defined by an approxi-
dient over the whole of the stencil are minimal. A second mate Riemann solver, ref. [17]. In the present approach,
selection algorithm suggests a finite number of candidate Van Leer's flux vector splitting and Roe's flux difference
supports and selects then the one with minimal norm of splitting are adopted as approximate Riemann solvers in

* all derivatives up to an order equal to the order of the order to obtain an upwind treatment of the flux. We have
reconstruction. Other methods are given in the litera- for Van Leer [181:

U



and the contour integrals can easily be discretized '" a
lit~i = 11+ (QP) .1- I"(QWi') (7) sum over the edges of the coittrol volume:

and for Roe's splitter [19]: Q Q,, tis - (1,), As, (13)

!1 [I(Q*t) + ll(Qi)] where Q" is taken as the average of Q between the two
+ nodes defining edge i:

I- C,,. (Q -.) I -(Q 71 - Q() (6 + ed c1
2•=Q Q+ (14)

in hlhkh CG, is the 1acobian R taken at the Ro-2
averaged Mtate Q,,I (q•,Q). In eqs. (7) and (8), Q, On a mesh with ceil-cebtered etorage of the unknowns,the integration contotr for estimating the gradient in a
and Q; indicate any type of extrapolation of the tin' given cell P is defined in fig. 3.
knowns in cell P resp. It front the gravity centers of
these cells to the interface between these two cells. ilow-
ever, jit classic finite volunte cheunes, only constant or
linear extrapolation is emnployed:

=+ QP 
0

iii Ote case of constant solution reprcsi-uuthti'r.. anti

S= QP + (f- - Fp).Oqp

QP + (fO -eft).QR (10)

"for linear solnt ito reconstruction, whet'eby lQp and e Contour

t(, are assuMned to be constant gradient vectors for
cell P, re•p. cell R. The vector FO points to the mid-
point 0 of the edge be.weon the cells P and R.
On an unstructured mesh, the classic finite difference for- Fig. 3; Integration contour.
mulas for approximating the first derivatives of the dis-
crete solution Q in eq. (10) cannot be used. An approxi- Note that the saute method is used in a cell adjacent to
miation for the gradient of Q over a given polygont P can a boundary of the dotmti, exccpt that the integrattua
be found using the Gauss theoreut, fig. 2: contour is no longer centr-1 with respect the ceih .tf, fig.

4. Furthermore, additional tauknowns are stored halfway
= f,isda (11) the edges representing the boundary. In the next sub-fA . , section, it will be shown that these additional unknowns

are also useful for treating the boundary conditions tuore
consistently.

p -.-

Fig. 2: Gauss theorem.

Indeed, taking P = (Q, 0), and assuming P constant Fig. 4: Contour close to a wall.

over the polygon P, eq. (11) yields: OxUsing the gradient computed in the above unanner, it is

possible to establish a piecewise linear reconstruction of
/ , _ d _ Q i de the discrete solution over a cell; i.e., for any point e'in ccll

P, we obtain a linear representation Q()(r) of the state
- a) Ivariables given by eq. (10). If P is taken at the centroid
(L( )m = . p0  Q n. ds of the cell, it is easy to verify that this Untar variation is

,, Po just a redistribution oe the cell averaged data:

(the subscript ti denoting some point inside the polygon
P); in the same way, one finds: < Q()(r" >,P= Q(Ir,) = QP (15)

i.e. cell averages and values at the gravity center are ex-
(Oi 1 I (12 changeable. Hence, it was indeed justified to use valuesa O= p ( at the gravity center in eq. (6) when discretizing eq. (3).



It is also important to point out here that the linear re-
constructiou as presented here will exactly tecopotruct Zone where is allowed VQ
the exact solution q of eq. (3) if q is linear, 'Po obtain ow where Qpl' allowed
this, one needs only the values qp - q(IFol.) of the so- . _P
lution at the centroid 0i, of each cell P. Schentes with
this property are called linearity preserving or k-exact, . .

see [1

Finally, remark also that the scheme given by eq. 6) .0
whereby the gradients in eq. (10) are estimated as de- Q+
-cribet above, it cquivalent to the Fromm scheme [20) F OQp
when applied in one dimension. The Fromm scheme is
a member of the family of the so called oc-schemnes [211
whereby x = 0. The Frommn scheme is upwind biased in
the sense that the fluxcs in eq. (7) and (8) are taken on
one side while the stencil to calculate the extrapolAted - -- -

solution variables is central. P R x

3.3 TVD-Limiters Fig. 5: ID Representation of the limiting procedure.

Schemes using a piecewise linear reconstruction are said
to be second order accurate in space on regular grids but In 11), the value of Qo corresponds to a linear interpo-
are unstable or at least they are highly oscillatory near lation at the cell interface between the values of Qp and
discontinuities. In order to achieve TVD properties for QR, fig. 5.
those schemes, the gradient slopes used for QJ and QIt By restricting the values of Q'P and QI, i.e. for valucs of
in eq. (10) are limited as follows: the function p close to zero, oscilltions are suppressed in

the neighbourhood of zones where large gradients occur
= q + p. . - )because the scheme turns locally back to first order.

QR = Qn + •I' - OQR. (F•o - fit) (16) 3.4 Boundary Equations

where 0 is tlme limiting function whose value is in most 3.4.1 Flux Equality Method
of the cases to be found in the interval (0, 1], As an The flux l1,1v in eq. (6) through edges at the boundary
example, van Albada [6] proposed the following form for of the domain are computed by introducing additional
the limiting func:tion: unknowns along each boundary edge (fig. 6).

r- +'
T2 +(07)

where

in which

(Q'n-V )l'l+l•-4d (Q9)
- .Fig. 6: Boundary edge.

for the computation of Q•+ and~
According to [221, the boundary unknowns Qj' are de-

MQ - Q) - • terumined by solving the following algebraic consistency
= - l'i-rPi-l (20) equation for the boundary flux lpnt, e.g. for van Leer

Qn. ( F)splitting (see eq. (7)):

for the evaluation of Qj. The symbol o denotes a small
positive number that avoids division by zero. Other lint- H"i' = If+(Qp) + 1-(Q.) IP(Qv) (22)
iters ar, given in [6, 12]. where Qia is the adjacent cell variable anti H*(Q) a
Note that the limiting can be performed one any type of boundary flux function which satisfies the boundary con-
variables: conservative Q, primitive 0 or characteristic ditions. In other words, the numerical flux Hps must
IV variables. For this purpose, the symbol Q should be equal the physical flux H" at the boundaries. E.g. for
replaced in the above equations by the proper one: Q, 0 a solid wall, enforcing zero normal velocity, the fluxes
or W. become:

S'The us" of equations (16)-(20) guarantees that Q•, andS[r 0 1
Q;O will have a value in the interval [Qp, Qo] resp. 0j(Qp).II

[Qo, QR], where Qo is defined as: _p _ _t

• : 0

Q Qo = Q M +(Q -QP). If- rPI It has been shown by Deconinck et al. [22] that thisSle- FPJ + g1r- VRI boundary condition treatment is a characteristic bound-

S- +(. if - FRI ary condition treatment in the cue of a linear hyperbolic
Q11++(QP 911)-)._fpl + Ir- l (21) system. For the nonlinear system it is an approximate

iir



Icharac.teristic boundary condition, consistent with the in- the boundaries. The bountdaty conditions would not
t tetior approximate Rieiann solver. be matched exactly.

3.4.2 Flux Balance Method 3. nunerical experimnents revealed that so0ne inderre-
2llaxation of the extrapolations was icquested to en-

As proposed by Degrez (23], one updates the variables sure convergence when second older space accuracy
in I , interior cells adjacent to the walls separately fro a wais el inside the mesh, equation (26) becomels

tho.,e being completely inside the mesh. then:
First, all fluxes through interior edges are computed as
usumally. In order to update the variables -it an interior cell
P adjacent to the wall, one uses the flux balance equia- [..,, I . t

tion (6). However, the fluxes entering the cell through fW i
its boundaries that coincide with a physical boundary
are yet unknown. Isolating the known fluxes in the flux with w the relaxation parameter having a value ini
balance equation (3) gives: the interval 10, 1].

f > ± 3.5 Grid Adaptivity
UP Ii"+ l"",onrlp..v '-t.,v In order to have sufficient resolution of the calculated

(23) solution in regions of high truncation error, locally more
with I! = P anti 001",, denuoting the edge on the do- and linter cells are needed, In the present work this was
main boundary. After discretizing, one finds: done by a simple grid cnrichment technique, based on

gradients in the solution. ref. (1. 21. A given cell is refined
if tile pressur. , or alternatively the streamuwise entropy

_ A 1] gradient both weighted by the cell area satisfy

* I Iv w 1 S I v -, I ia., I' .z > C (28)

* Calling the lirst (known) summation in the right hand where the gradients are scaled to the hIRMS value over the
side Z, and writing the equations in full whereby AQp, = field, and C is a usr-specified threshold. The cell area

Q '.• , the next set of equations is found when deal- Ofp is norlmalized with respect to the maximum cell area
ing with a solid wall: 0l,,.. over tie field. TO facilitate the choice of the thresh-

0 _ ohl C, a histogram of the gradient distribution over thc[0 1 mesh cells is calculated as iropl)osed in (21]." Hence, in-L\ QW) , (25) stead of the threshold, the fraction of the total number
IF Y of cells to be refined is given a an ilmpt foi the refining.

0 1 Fuithermore, a prelininary view of the refitted grid can

in which W denotes the flat boundary ceii ,uGndering the be obtained by plotting the grid (while connecting tile
current cell 1). One has now a set of 4 equations with 5 gravity center of all cells satisfying condition (28) to the
unknowns: 4 unknowns in the vector AQ, and the static middle of their edges according to the refinement strat-
ptessute in the boundary cell W, pv. egy described below). This view can hell) to tuite the
The first eqtiation (mass conservation) can readily be threshold value C in a filler way without having to spend
solved, yielding Ap• and thus p•, and so can the fourth large amnounts of computational time in order to set up a

equation. The velocity vector 4ý'+ and the wall pres- new datastructure associated with the refined grid.
sure pw can be evaluated only if an additional equation A cell is refined by connecting its gravity center with the
can be found, The flux balance method consists now in middle of each edge (fig, 7a anti 7b). If the interior cell
stating that the valhe in I1 (at time step it + 1), when to be refined lies next to the colmputational boundary,
extrapolated to the boundary cell W using the relevant !he boundary cell Is split as weii, whereby the newly cre-
gradkint in the cell (as of time step is), should miiatch the ated boundary cells have the same boundary Condition
boundary condition. Practically, in case of the flow tan- as the original cell. If some of the neighbouring cells arc
gency condition at a solid wall, the additional equation not refined, new vertices have to be created along the re.
reads filed edges, which increases the number of vertices of this

neighbour cell. The conservative variables in the newly
+ .(Fw - ep)] 4,ilp, %,l 0 (26) created cells are copiedl front the original cell P.

This equation allows now to evaluate all variabl-s in the
interior call 1 at time level is + 1. However, a few points
should be emphasized:

I. when several edges of the interior cell P are bound-

ary edges, extrapolating the variables to each of
chose boundaries is impossible (it would yiehl dif-

ferent values to be stored in the cell P). A strategy
shýuld be devised to handle such cases, e.g. aver-
aging the extrapolated variables over all boundary" edg•. Fig. U-: Refinement in the interior domain.

2. when second order space accuracy is used inside The present refinement strategy may lead to non-smooth
the mesh, limiters are used to preserve the mono. grids, but has the important merit to limit the remesh-
tonicity of the solution, but obviously those limiters ing zone to exactly the region targeted by the refinement
should not be used when extrapolating variables to criterion.
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Fig. 7b: lIleimen t. next to a dowaii n hond ary. 2

Anyhow, the nonr-smoothness of refined grids a'c'ls thei .•~olutio nl quallity d raniitice ily. Fslpeci~lly when several re .

,iiiniments are ,lfrilrml, unaccp tlegid iregutlarities., =1,2: Cell Le2vels
called "spiders", appear. "Spidet"' occur ill a cell which V ertex Levels
has not yet been refinled in the pfrevioi$19 refinements while
sottli of its neighbours. did. Conmnecting itow its gravity
('enter with the middle of each (!) of its ctdlgs whenre- Fig. 10: Assigiting levels to thre Iew cells and vertices.

flining the cell, leads to the creatiot. of rt "spider" (fig. $)
Colsistihg of cells With all odd( shape. Oni the other hand, in order to avoid islands and creeks

of l10ui.refilled cell% and a too large (PIr'renlce in cell size
betweetn a cell anrd its neiighbours, the following rules -ire
applied after the telinemelit is finished:

1. A cell is to be relined additionally when all of it.s
neighbours have at higher level (fig. 12a).

2. A cell is to be refined additionally when all except
one of its neighbours have a higher level (fig. 12b).

3, A cell is to he refited additionally when the level
difference hletweeln the cell itself and one of its neigh-
hours exceeds Ole (fig. 12c). Fig. 12d shows how it

Fig, 8: Generation of a "spider". is refilled.

'This is cured by iutrodlihing Ieuvt, dependepir refinement.
'This involves assigning a level to each grid cell and each
grid vertex. A cell is then refinied as if all of its iteigh-
!;innhg c llhave the �nr !evel.t. ati nor "_ApitlrN" occurt
(h'g. 9).

Fig. 12a: All neighbours were reftined.

Fig. 9! l,evel dependent refilntelien.

The level of all cells and vertices of the starting grid is
4qiijal to 1. Fig. 10 shows how the levels ire atssignled atfter
Vert lktflilt-tit of a cell. Storage of the grid cell levels is not
to be seeni as a drawback since these levels will be needed
for a fNotre miultigrid implemuentation.
I"'u:thermore, before the relinievment starts, some flagged
cells for refinrement loose their fnag again ill older to avoid
isolated refined cells and spits of refined zones into non-
tefincd zones. 'Flre altgotitoni devised for this turns off Fig. 12b: All i1eighbolirs eXCept onre are at a higher
the flag of refinement of a cell if at least all but onle of its level.
neighboutrs will not be refined, fig. 11 Obviously, several
scans will be needled before the above rule will bie fully Again, several scan, of a refinedI grid are needdit to sat-
satisfied. isfy all the rules, specially when there are deep creeks.
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Reng for refinementn

-Fato bedeleted'ftr the a Prtofl
smoothness check

Fig. 11: Rules for avoiding islands and pits ,f refined cells.

The computation was started on an initial mesh contain-
ing 154 cells as shown in fig. 15. Not!! that the mesh
was copied twice in this figure in order to achieve a bet-
ter visual impression of the cascade. Refining the grid 5
times on basis of the velocity pro•ected entropy gradients

Op in each intermediate solution, the final mesh contained
9333 cells, fig. 16.
As can be seen in fig. 17a, the isentropic Mach number
distribution obtained from the final grid hardly exhibits
any oscillation. However, note that the clip in the distri-
bution in the lower right corner of the figure is due to the
fact that the impinging shock in point A of the wedge

Fig. 12c: The level difference exceeds one. is not perfectly cancelled by the expansion wave in the
same point. This is presumed to be caused by round-off
errors in the specification of the geometry. Comparison
of fig. 17a with the result by Holmes [26] as given in
fig. 17b reveals clearly the monotonic character of the
present scheme. Holmes' result however does not show
the (lip in the lower right corner of the figure. Both meth- j
ods have difficulties in predicting the exact value of the
isentropic Mach number after the expansion wave in point
$ of the wedge.
Comiparison of the isentropic Mach lines obtained with
the two methods shows again that the cancelling of the
impinging shock and the expansion shock in point A is
not complete with the present method, fig. 18a and 18b.

Fig. 12d: Final refinement.

These a priori and a posteriori scars of the mesh to be
adapted decrease the precise control on the regions where
the grid is to be refined, but the smoothness of the grid
is enhanced considerably. Finally, one of the main rea-
sons to use a nested refining as described here instead
of a complete (solution ad,-ptive) remeshing is the future
implementation of a multigrid acceleration technique.

3.6 Results

This subsection presents the results obtained front a cal-
culation on a 21) supersonic staggered wedge cascade.
This test case, for which an analytical solution exists was
proposed by Denton [25]; the upstream Mach number is
1.6 and the incidence is 600. The geometry of the prob-
lems is given in fig. 13 while the isentropic Mach number
distribution on the profile predicted by the analytical so-
lution is shown in fig. 14. Comparisons will be made with
the results of the comlutation by alVnles [26].
The computatisn was done using a Van lmr approxi-
mate Riemnann soler, [18]. In order to perform the time
integration a point Gauss.Seidel relaxation technique is
used, see ref. [3]. Van Albada's flux limiter was applied
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Fig. 13: rlte Geometry of the Problem.
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Fig. 14: The Analytical Isentropic Mach Number Distribution
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Fig. 15: The Initial MeAh (154 Cells).
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Fig. 16: The Final Mesh (9333 Cells).
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Fig. 17a: t/entropic Mach Number Distribution Fig. 17b: Isentropic Mach Number Distributionwith Present Method. by Holmes.

Fig. 18a: Wantropi¢ Mach Number Lines with Present Method. ,
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4 RECONSTRUCTION cell P. This reference point is in general cell P's gravity
ALGORITHMS center far. Furthermore, the function Q(k) has to satisty

the following requirements, fig. 19:

* it must consezve the mean in the cell P. In other
words, the mean value of q(k) over the cell area Rp
must be equal to the discretized average value ip.

4.1 Introduction assigned to cell P:

UP ~ Q¶~ l = < Q%(k)(Q-) >'P (29)

The estimate of the solution variables at the cell inter-
faces based on linear extrapolation given by eq. (10) be- * it must represent polynomial functions of degre
comes inaccurate for non-linear functions and the idea r<k exactly over the whole cell area. In this case,
proposed by Barth [7, 8) is .o perform a higher order ex- the reconstruction Q(k) over the complete domain
trapolation which is still exact for polynomial functions will be continuous across the cell edges. If r > k
q(z, y) of higher degree over the domain fl. In turn, then discontinuities across the con edges are allowed.
this higher order extrapolation will allow for more ac- Note that cell P can be either an inter.. "ell or a bound-
curate flux evaluations at the cell interface. A variant of
Barth's reconstruction algorithm based on zero-mean ba- ary cell.
sis polynomials (Zero-Meaa Iligher Order Reconstruction 0
or briefly: ZM-IOR) is presented in this section together
with a new reconstruction algorithm using basis polyno-
mials with a zero-value at some reference point of the , L
cell where the solution is to be reconstructed. In general,
this reference point will he the gravity center of the cell
(GC-HOR). The second algorithm is believed to be coin-
putationally less involving since less inertial moments are
to be computed. X Pd

/'

Note that solution reconstruction is just a way of interpo- X
lating a discrete set of given point values or mean values. O
Other interpolation techniques can be devised such as in
lHarten [161 whereby the derivatives of a truncat,-d Taylor
series expansion are determined by stating that the mean
of this series in each support cell must equal the respec- Fig. 19: Representing the solution in cell P with a
tive given discrete lean value. flatten also (Cvclopcd polynomial function.
the CC counterpart of this algorithm.

In the following, the origin of the coordinate system is
always translated towards some reference point F'P asso-
ciated with cell P1, The effect of round-off errors in the
implementation is attenuated due to this translation of
the coordinate system.

Conservation of the mean is met if Q(") belongs to a func-
tion space VA (flp) with a basis of zero mean polynomials
defined by:

0F <(r +:0i+j<k and frE fl)

where i and j are always positive and4.2 ZM-HOR-Algorithm

I for i = =0
AXu. Ai4P--(,";" for 0 < i + j< k

(30)
with

The aim is to represent the discrete solution Q in each
cell P by a polynomial function QO)(z, 9) of degree k
where k>l. The discrete solution value Op assigned to AZp = X - sp (31)
cell P is not related to any reference point of the cell, AYP = y - VP (32)
it is supposed to be the mean of the solution distribu-
tion over the cell whereas the notation Qp denotes the I =' (z'.Ayj. d33)
discrete solution value at some reference point Fp of the 1j - 3

.1
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4.2.1 Barth's Version

Barth [7, 8] proposes the following form for the recon- A = A (42)

struction polynomial Q(k)(r) in the cell P: where A is the (its m tit) unity matrix with in the numberof coefficients in a two dimensional peiynomial of degree
i+)k:

F) Via .. r( n t= (k+ 1).(k+2) (43)itj--0 .rt 2'

V.P (34) Knowing that one is reconstructing a known function vec-
tor F(F) and using eq. (37), this results in the following

with set of systems of equations:

V = [Vo0 "... VI.! vo,;]T (35) W.F= A (44)

and or

F = [Fo,o(F) ...F j(V) ... Fo,&()] T (36) [IF]T. [WIT = A (45)

The expression V.F is the scalar product of the two vec-
tors; i.e. the sum of the products of their corresponding whereby the matrix F contains the mean < F'j(r >"
components. Note also that the coordinates of any vector of the known basis polynomials over each support cell R
Fare given in a normalized coordinate system related the with Oi + i<k:
cell P.

Barth suggests further the following form for the coefli- < <Fo,o >"' < Ft,o >- .. < F0, >"I
cients in the vector V: < Fo,o >R2 < F,o >R . < Fo,k > A2

V = W. (37).

where < F,o >R1. <F1 .o >Ra ... <Fo, >R-where(46)

[WR0  WR2 .. By construction the elements of F only depend on geo-
00 -00 metrical characteristics of the support used for the recon-

1,• 0 111' (38 struction in cell P. Therefore, also the weights obtained
(38)•as a solution of eq. (44) are only geometry dependent.

Eq. (45) represents a set of in systems of m equations
O.k 0,k " Ok with i unknowns where m is given by eq. (43) and is is

atd the number of cells R taken into the support. The first
system of eq. (45) reads while taking into account thatP1 R2. .] .IT() < Fo,o >R _,VII:

in which MW, denotes the weight assigned to tb; ;upport , = 1 (47)
cell R when computing the coefficient VIYj o thc recou- R
struction polynomial in cell P. 'he subscript is gives the and
number of cells present in the support for cell P. The
support is a set of cells in the neighbourhood of cell 1P. E = <8
The array Q contains the discrete solution averages in .J = <

Reach support cell.

The weight factors can now be determined by requir- This reduces the system (44) to:
ing that each of the zero mean basis polynomials F,,,(F), . = (49)
with O<s + t<k, must be represented exactly by the re-
construction algorithm independently of the local grid in which the matrix I is given by
shape. In other words, the right hand side of eq. (34)
must match exactly with each basis polynomial F.,t(r) Ji1,P JljP ,JR2 'P

00 10 Okover the cell P if F.,,(() is specified as exact cell aver- ,42 ,p i• ..

ages < Fo,,x) >P and < F.,(-) >R in the cells P and R I= o0' .'0 " ,0 (50)
respectively: -"... J

F(iP) =- A. F(F) (40) o'o 1,0 o,5

where A is now a ,atrix whose rows contain the coefti- where ifPt is the inertial moment of order (i,j) of the
cients A,• (0 + jk and O•s -tk) to reconstruct the support cells It with respect to the reference point ?p of
corresponding basis polynomial F°,1 (r") in the left hand cell P:
side of eq. (40): 1

0o A0 .o AD'o "P P- J a d(51)

A to A "' " Ao k
A = (41) Remark that 0~f' = 1, YR. To be able to solve each sys-

S " ". tern of equations exactly in (49), the number of support
A to. ... A.. cells a should be taken at least equal to m. The selection0 .0 of the cells R needed for the algorithm will be discussed

It is easily seen that eq. (40) is satisfied if in a later section.
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As n is at least equal to m, each system of eq. (49) is an where, similar to Barth's version, A is now a [In x (vi -
underdetetmined linear system of equations. They can 1)3 matrix defined by:
be solved using a modified Gram-Schmidt algorithm with
column pivoting, see ref. [27]. The arbitrary constants in A°•° A010 ... A'0 1
the general solution of eq. (49) can be determined by im- A A : A - 'A
posing additional constraints on the weights W:,. As we A. -- (60)
want now the reconstruction to be as insensitive as pos- ' k
sible to noise in the given data., the norm of the weights AOh A0,o " A.,k
maiot be minimal: maob m a (n2) Eq. (59) is satisfied over the whole cell P if

(Wfi must be minimal (,52)0
iA 1 (61)

for 0<i + j•5k, In ref. [27], it is shown that the least & = 1
squares problem (52) is equivalent to solving an overde-
tennined system of n equations with n - m unknowns where A is now the [(m - 1) x (mn - 1)] unity matrix.
(the arbitrary constants in the general solution). A least Knowing that one is reconstructing a known function vec-
squares solution of the system can be obtained using tor F(F) and using eq. (57), this results in the following
again the modified Gram.Schmidt algorithm mentioned set of systems of equations:
above and is then inserted in the general solution of
eq. (64). W. = B (62)

whereby the matrix F remains the same as in eq. (46).
4.2.2 Present Version Note that the components of ' are still related to some

The version of the ZM-IIOR-Algorithm presented here reference point ep associated with the cell P.
difffrs from Barth's version in two manners. First, no Since < Fo,o(r-) >R _ 1, the first system of eq. (62) leads
local coordinate transformation is performed towards a now to:
normalized system. Secondly, in this approach, the re- 0 0(
const-,'uction is seen as separated into a constant part ,,=0 ,0<i+j<_ (63)
equal to the given ccli average and a part representing R
the higher order terms: This reduces the system (62) to:

Q(ph)(F = p + [V.F - Vo,o.Foo(?)] (53) W.I = B (64)

where V is again the vector as in eq. (34) and (35). In or
other words, the term Vo,o.Foo(r) in ea. (34) is replaced
by the given cell average. Equation (53) can therefore be IT.wT = BT (65)
rewritten as:

where the matrix I is defined in eq. (50). Equation (65)
Q( )= QP + VY (54) represents a set of rn - 1 systems of m equations with nv

unknowns where n is the number of support cells and m
with is given by eq. (43). Solving this set of systems is done

in exactly the same way as in Barth's version except that
[V 1 ,0 Vj ... V0 ,1 ] L (55) the number of systems to solve is reduced by one.

Sane 4.2.3 Conservation of the Mean

[F =[ 1 O(O) ... Fij(F) ... FOt(F)] T (56) We will now investigate to what extent both versions (34)
and (54) of the ZM-HOR-Algorithm conserve the mean

Note that the elements with subscript (0, 0) are no longer of a solution function Q(r) specified as a discrete s~t of

present in eq. (55) and (56). cell averages Up whereby:
As in Barth's version, the coefficients in V in eq. (54) are
viewed as a weighted sum of the given discrete averages Up -- < Q >, (66)
in the support cells: As zero mean polynomials are used, it follows immedi-

V = W.q (57) ately that the mean of eq. (54) is equal to the given cell
average. This means that the present version always con-

where now serves the mean even if the degree of the function to re-
construct is beyond k.

WR WLR2 ... W 1. Taking the mean of Ba'th's formulation of the reconstruc-
WW0 W 2 0 0 tion polynomial in eq. (34), one finds-

0 w = (58) %(

[W! Y .. ILet us now expand Q in Taylor seisand average it .0. -o>p=V06 WOU

Again, the weight factors Wm- with 0 < i + k can over each support cell R. Therefore, two vectors are now.!4
now be determined by requinng that each of the zero introduced:
mean basis polynomials F.,,(), with 0 < a + I < k, must
be represented exactly by the reconstruction algorithm I =,' 1 [ ..,•. " -n,m o,1 1 (68)! ~independently of the local grid shape.

+ containing the inertial moments of cell R of exactly or- J.

F(ir) <F( >P + A. F(F) (59 der I %ith respect to the reference point rFp of celi P and
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llence, Barth's version of the ZM-IIOR-Algorithm only
a.Qp conserves the mean to order h, even if the given func-

%)0 ,0 tion Q were a rn!ynomial of degree r•k. In that case,
the mean of the construction would exactly equal the
value Qp of the function Q in the reference point of cell P.

0QP - ( ' .oqr,,,69 As the reference point is in most cases equal to the cen-

-R (9 troid of the cell and as Q is not always linear, Qp is in
general not equal to Qp. However, conservation of the
mean will be established in the limit of h-.0.

0) 4.3 The GC-HOR-Algorithm

hthe discrete solution Qp of cell P is now supposed to

P a' Q be given at some reference point Fp associated with the
OQr-MM j= azjma.YM , 0 < <1 (70) cell P:

the derivatives of order I of the function Q at the reference QP = Q(2,p) (74)
point 'p of cell P. One can then average the Taylor series
expansion of ip and QR around the reference point V'P In practice, the reference point will coincide with the
giving (note that the operators < • >P and < • >R are gravity center of the cell P.
glinear)gn The concept of a generic reference point for the recon-
lastruction algorithm is also very useful for studying cell-

vertex schemes for which the discretized solution is in
Q =_ < Q >P general not stored at the gravity center of the associated

control volume. However, in the frame of this contribu-
Q I + j < '[(F-.. rp)'J]Q) >P~ tion, the ideas are only fixed on cell-centered storage.
I1 IP The aim is again to represent the solution in each cell P
*P I . by a polynomial function Q(')(r() of degree k where k>1.

Q' +E E T . The cell P can either be an interior cell or a boundary
i=l ,=O cell. The function Q(1k) has to satisfy the following re-

Q1' + I.p" •~ p (71) quirements, fig. 19:

eit its value at the reference point Fp(xp, yp) of cell P

an(1 must be equal to the discrete solution value assigned
to the cell P:•n = Q>•Q•)(f•'P) = QP (75)

* it must represent polynomial functions of degree
Q,• + 2 < j [(v- .']q) >it r<k exactly over the whole cell area. In this case,

-1= L P the reconstruction Q(k) over the complete domain
00 Jwill be continuous across the cell edges. If r > k

Q + . DPQ1 ,,, then discontinuities across the cell edges are allowed.

I= 0n0 Again, the origin of the coordinate system is always trans-
= 4r +-' E I .P ,-.I lated towards the reference point VFp of the cell P in order

+ •T! .U%5 (72) to reduce the influence of round-off error in the algorithm.
1=1 Requirement (75) is met if Q(k) belongs to a function

where QP = Q(FP) and Qn = Q(Fn). Inserting the above space Vk(flp) where its basis is given by
equation in eq. (67) while using also eq. (48) leads to:

-- {G,,(r) : 0 < i +j 5 k and e E I•+p.

+W ( where now the basis functions Gj,(') are given by

1=1 Z., a..) = Ar'P. AV;,: 0 < i + < (76)

+ O(hA+i )P•+3  As for the ZM-HOR-Algorithm, the reconstruction poly-

nomial is given by a linear combination of the basis poly-••~~~P I i'V•Rit .8QP nomials:
= 1 . 1 -- R ~ . I I

+ ( y÷' )V•+' (3) Q¶)(r) = V.G (77)

where the vector V is given by eq. (55) and the vector GThe expression P"•+' stands for space derivatives of or- i iia otevco •dfndi q 5)btue h

der k + I of Q and h is a typical length associated with is similar to the vector ]k defined in eq. (56) but uses thenon-zero mean basis polynomials G.,,:
cell P; e.g. h = v'. Knowing that I is never zero in the

summation of eq. (73) and applying eqs. (49), one finds G = [01,o(0) "" Gi(V) ... G0,k(F)] T (78)
that the summation over i is equal to zero and one gets
using eq. (71): Also here, the coefficients in the vector V in eq. (77) are

written as a weighted sum of the given discrete values

< Q)(r) >P = Q, + O(hk+,)Vk+t QR in a set of cells in the neighbourhood of the cell P:

"q, + O(h)VQ V = W.Q (79)
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Sin which The solution W of the system is easily obtained:

0 -1/2 0 1/2 0.
...QR, QR QRJ (80) w= 0 0 1/2 0 -1/2 (86)

A similar reasoning as for the ZM-IIOR algorithm is now
followed leading to the next set of systems of equation in which the first row gives the weights contributing to
for the reconstruction weights: the term in y and the second row gives the weights con-

tributing to the term in z.
W.D = A (81) The reconstruction of the solution Q in cell P can then

be written as:
in which the matrix D is defined as:

0, C" Q0)(x,y) = () Q) +0 Go, ..
D 0 (82) Q - Q(87)

Go.; G ' , From which it is found that the gradient of Q() is given.. 0'R -. by the classic central approximation formulas.
with G, - G. ,(n) the point value of a basis polyno-
mials at the reference point of a support cell R. Remark As the value of a linear function in the gravity center of a
again that eq. (81) gives the following equation for recon- cell is also equal to the mean value of the linear function
structing constant basis polynomial: over the cell, it can be shown easily that the ZM-HOR-

algorithm gives the same recnnstruction weights when
I W,• = 0 for 0 < i + j < k (83) performing a first order reconstruction.

R

The set of systems (81) is solved just as it was solved in 4.5 Caveat
the case of the zero mean polynomials while adding the If one takes a support as shown in fig. 21 in order to per-
constraint of minimal norm. form a second order reconstruction, then one finds that

all coefficients in the matrix A of the weights contribut-
4.4 Example ing to the term in x.y are zero. Note that always either

Ax or Ay is zero for each of the elements of the support
Suppose one wants to perform a linear reconstruction us- depicted in fig. 21.
ing the GC-IIOR algorithm ;n th." cell P o" a regular or-
thogonal rectangular mesh with mesh size A -- AV = 1,
see fig. 20. The reference point of each cell is taken
at the gravity center. The support for the reconstruc-
tion is chosen to contain the cell P itself and its 4 direct
neighbours. 3

1814 P12 216 1

1
3ý 5

Fig. 21: Erratic Support for Quadratic Reconstruc-S~tion.

The product of both will therefore always be zero, see
also eq. (81) with s = t = 1. As in the RHS one finds
a unit block matrix, the equation with i -- - 1 will

Fig. 20: Support for Linear Reconstruction on a Reg- he contradictory since it states that 0 should equal 1.
ular Mesh. Therefore, second order polynomial reconstruction on a

regular rectangular mesh always requires taking elements
The matrix D in eq. (81) becomes then: along the diagonal of cell P into the support.

1 0 0 Note that this problem also occurs when using the ZM-
1 -1 0 IIOR-algorithm. The mean of Fl, (zy) will be zero over

D - 1 0 1 (84) each of the support cells since F 1,1 is an uneven function
1 0 being integrated over a domain with symmetric bound-

1 0a1ries.
In general, one can say that a contradictory system is

The first column of D corresponds to eq. (83), the second eneral, one an s tt a cntradictor syste i-
column gives the coefficients of the weights for the term
Sin • and the third column gives the coefficients of the rections. A contradictory system is avoided if, see also

weights for the term in z. The first row is related to cell P eqs. (49),(64),(81):
while' row j is related the neighbour j-I for j=2, 3, , IT= m or T = (
The right hand side of the system is given by: rank rank D (88)

where m is given by eq. (43). The condition can be satis-

RHS = 0 (85) fled by choosing an oversized stencil which obviously in-
0 0 1 creases the computational load. In this work, the stencil
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is in general oversized by 2. In ref. [16], llarten proposes k I •

other techniques for selecting the support in order to QI, + E T!j E CIL .. ,. .Dl•VIL...
obtain a sufficient number of linearly independent equa- .I1 Mt0
Lions. lHowcver, these techniques are all strongly linked +O(ha+l,.Dh4.
with the chosen reconstruction algorithm. n

4.6 Accuracy -=)

Theorein 4.1 one finds that:
If a given solution junction Q varies smnoothly and if Q is
specified as a discrete set of cell averages in each cell, theta Q")(" r Q(Qj .1 0(hk+i).,Dk+ (92)
the ZM-HOR-Algorithm given by eq. (54) approxitnates a
given solution function Q to order hk+' tvith k Mhe degree
of the rcLoastrtetio) pottaotial5. A similar reasoning for Barth's version of the ZM-0ll1-

Algorithm leads to tLie next theorem'Pr'oof of Theorem 4.1:

As Q varies smoothly, one can then average the Taylor Theorem 4.2
series expansion as given in eq. (72) using the definitions If a given solution furaction Q varies smoothly and if Q is
in eq. (68) and (69). Inserting the expresion of eq. (72) specified as a discrete set of cell averages in each cell, theta
for Qj? in eq. (5.1) yields: tlae ZMI-IO1?Ailgorithm given by eq. (34) approximates a

given solution function Q to order hk4' with k the degree
,)( ",, of the ,eo,,structioa polynomials.

5 / We will now proof the following theozen concerning the
S+ �~ Y' I (• "IRP) QP" accuracy of the GC-llOR-Algorithn,:

4+j>o k =1 I Theorem 4.3

+ 0(hk+2 ).'l If a given solution function Q varies smoothly and if Q is
specified as a discrete set of cell averages in each cell, then

Let us now define the vector F1 as: the GC.-1OOl-AIgorithin given by eq. (77) approximates a

givci solution function Q to order hIt with k the degree
F 1  [F1,0. "" Fl-,nm " " FO1 ] (89) (f the rcconstructiots polytornials.

i.e. the vector containing all basis functions of exactly
degree I. Proof of rheoreiti 4.%:
Using eq. (64) and expanding also Op while truncating In a similar way as for the ZM-IIOR-Algorithiu, one per-
the series at I = k, one gets: forms a Taylor series expansion around the reference Fjp of

Qn in the expression for V., in eq. (77). Using the prop-
erties of the weights •VIa expressed by eq. (81) and (83),k I P p. 9QP one finds again:

1=i Q)(O = Q(9) + O(hlA+').'1+i (93)

+ T! ~F,.9Qf + 0(h t ~)$~

%where "Dk+' stands for space derivatives of order k + I of 4.7 Results
Q and ht iso typical length associated with cell P; e.g. In the following, some reconstructions of known polyno-
h = ViW. The ul'h elenient of the vector C1 is given mials using the CC-HOOR-algorithni are shown. Similar
by: results were obtained with the ZM-HOR-algorithm. A

numerical error study on the higher order reconstruction
Ct ..... = (x-zp)-.(y-yp)m (90) algorithm was carried out whereby the error between the

Remark then also that due to ell. (30)! reconstruction and the exactly known polynomial is ex-
amined. The next polynomials were rather arbitrarily

S91 selected to perform the numerical error study:F1 =- C1 - 1, (91)

The reconstruction polynomial reads then: Pa(z,y) - 2z + 3y + 2
r Y(x, ) - •i 2 + z2

A I)3 (Xy) -x -18+ •

kq(; =Q + !'"" °"" j(,X= + ,Y,1 + "2 (94)
Q,- , 4 ( .. +j -0(h-2 -y +

A ~ z + 16y + ty
i. -34z + 10

As the Taylor series expansion of Q(r') around the refer-
ence point Fp is given by: Figures 22, 23, 24 and 25 show an isovalue plot of the

four polynomials on a given rectangular domain.
Three different meshes were used on the domain to re-

SQ(9 construct the previous polynomials using the Non-ZeroQV ,Mean liaR-algorithm while taking the gravity center as
a reference point: a) a regular mesh (fig. 26a), b) as a)Q 1, but twice as fine (fig. 26b) and c) an irregular mesh with

SI1
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S~Fig. 22: lsolines of 'rest Polynomial P1 for the GO-HOR-Algorithm.

7-7-7N

Fig. 23: Iselines of Test Polynomial P2 for the GC-llOR1-Algorithm.

t the samte number of points as in a) but they are mnove2d
ranlonfly (fig. 26c). L .. fn(• )d

The values of the reconstructed polyntomials were then L2- =- (96)(ý(;) r-~
com~pared with the exact values of the polynomials. The L24••/~ VR Qý.fl
grap hs 27a and 27b show the L 2-norm of th e error m ade T i q a i n i i c e i e n e a t y t e s m s e .( 5all over the domain as a function of the order of the recort- Ti qaini iceic neatytesm se.(
struction and this for each of the four given polynomials. but now only over each cell individually.
"'he L.•-norm is given bjy: Making a plot of the relative 1,2-norrm of the error would

only produce random noise if r < k. Therefore, it nuakes

only sense to examine the error distribution over the do-(N,) main when r > k. Figures 28a, 28b and 28c show the

L2,r -- Q(j•)-Q).d (11) relative error distributions for the polynomials 112, 113
F T Q- fir aw'.4 whvit u~ing a first order reconstruction on the

irregular mesh. It is observed that the largest errors. oc-
Sin which Q(A) is the reconstructed function, Qthe given cur where the isolines of the polynomial exhibit a high

P curvature or where the distance between the isolines isp oly nom ial fu nction . lE q . (95) is d iscretized by cover- v r i g s r n l . T e ef c f t e t r s o i h r d g eing the domain with a fine point cloud, This cloud is vrigsrnl.Teefc ftetrso ihrdge
triangulated and ",he error is assumed to vary linearly in in the polynomials P'2, P3 and 1)4 is stronger in these Iota-
each triangle. The integral over the whole domain is then tiers; therefore, the linear reconstruction cannot match
the sum; of the integrals over each triangle. As about 13 anymore with the imuposed polynomial and the error in-

cream, , 
en ontetwNte

points were taken in each grid cell, the discretization er- craes he same behaviour is seno n h w te
ror will be relatively small (typically 0,1 o•.meshes and for the higher order reconstructions as long

msr >k.
Comparing the L2-norins in fig. 27a for the coarse and the Finally, fig. 29a, 29b and 29c present the linear, quadratic
fine mnesh, one can conclude that the reconstruction error and respectively the cubic reconstruction of the function
is, as expected, roughly of order O(hk+'), if r > k. This 1-3 on an irregular ruesh. These figures demtonstrate the
dependency on the grid spacing is valid for all polynomial increasing quality of the reconstruction with increasing

Sdegrees r larger than k. Note also that the error is hardly reconstruction order. Again, an exact match is found
S = at'ctedby he ridirrgulaity ascanbe edued orm when the order of the reconstruction equals the degree of

: • ~~~figs. 27a. and 27b. fýromt these two figuies, it also obvious thpoyoi.
S~that the reconstruction error is indeed increasing for a

S "[ ~~~given k when r ib increasing. ,48 R mr

S : lhk order to ,ece how the errors ate distributed over the
;t ,domain, the relative 1,2-notm of the difference between Solution reconstruction is just a way of interpolating a

the two functions over each individ&&a cell is computed given set of discrete values. Hlence, it is clear that, besides
as follows: polynomial basis functions, other basis functions can be

t'

4

S... iT..-. --... . . . ... 'Nam |m• a i lI i IIif a II l l [ ] I II [
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F*ig. 24: l~i•of '!reqt Polynorkial 113 feur the GCd-lOR-Algorithrit,, ) / /
' L I J / I

Fig. 25: Isoline.i of 'Vest Polynouiial P31 for the C-C IOR-Algorithuil.

used for ;ohlution reconstrulctioni such| as triglonomeittric,
S i I~~yperbolic or Bessel fulnctionis. Unlike inl spectral inethi-1 • oda>,Is thc• hiepnt.?.NM II,,"A only to be cellwise C'ontinulous;

i~e. discoutininitics are allowedi across c:ell itliterface~s.
Aiother interesting in 2:poltiou te ofnique was proposed
sy De foyer et til. (8, s9], whereby a iuxure of trigono.

metrinolid porynomial fiunctiotns is uls•i n clh is still

to be done to gent'ralize this tcchnique to finite voluime
schemes irn miultilbie (liimIenSiOnlS.
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Fig. 26a: lRegulr Mesh for Testing the GC-1iOR-AIgotrithon.

411-
I 

i I i -i-a.fili.

vt-f

.1__1. i - i - i•-

Fig. 261): Rlefiled Regular MeshI for Testing the GC-1lOiR-Algorithm.

Fig. 26c: Irregular Mesh for Testing the GO-IIOR-Algorithm.
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- Regular Mesh
........ Fine Regular Mesh L IrreguJar Mesh
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Fig. 27a: Graph of L2-norm of the Reconstruc- Fig. 27b: Graph of L2-*nornm of the Recon-

tion Error, Regular and Refined Mesh struction Error, lrregulh-r Mesh (GC-l

(GC-IIOR), JOR).

_,_._• __

"",•\ \ •'•,-•' ,.,,. \

... . . ... ...... _--• .e",- .

Fig. 28a: Error Diof for Of tre Reconsuto for 2b Ordeh ootruction of Pn (GO- rOR), R

cellwise L2-norms.
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Fig. 286: E~ror Distribution for 1" Order Reconstruction of P 3 (G O-H OR), i

cellwise £2-norms.

j



-•..._1-ii-i.--I -- -

_ -_.IS *" .. ,' "T? 26 -' '" "' \-,

1---2

Fig. 28c: E)rror Distribution for 1"* Order Reconstruction of P
4 

(GC-ilOR),
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Fig. 28c: Ero1 itiuto o s Order Reconstruction of PA reulrMs (GC -IIOR) ,

cellwise Lu-norms.
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Fig. 29b: 2" Order Reconstruction of P3 , Irregular Mesh (GC-HOR).

Fig. c 3C-HR'-)
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Fig. 29c: 2"'d Order Reconstruction of F
3

, irregular Mesh (GC-HOIR).
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5 HOR-SCHEMES Eq. (98) will be solved exactly if the next equation is
satisfied VP E 0':

This section discusses 2D upwind finite volume schemes d!n + il.'q'ds = S(q (
applying higher order polynomial solution or flux recon- .d-A + j 4),dfl (100)
struction for linear and nonlinear convection problems a
with a source term. As yet, no attention will be paid Using the results of approximate Riemann solvers, an up-
to the rmonotonicity of the schemes nor will stability be wind space discretization of the left hand side of eq, (100)
taken into consideration, with a first order accurate time discretization is obtained

and the scheme becomes (after division by 1lp):

In+ -0
+ .qj (Q- = [D(S)] (Q-) (101)

5.1 Linear Problem with

Consider the 2D linear convection equation with source [D(&.q)] (Q) =
ternm to be solved in a domain f0:

I*Z (f;+R.Q~k + GR.Q~k) sc1)
QF•EEl /.. A•• +a- '••A,4102)

R 0

the space discretization, D(S) an as yet undefined dis-

q+.1= S(q( cretization of the source term S and

+R = max(.ii,0) (103)
aPR = min ,,0)

from which it follows that

where d is a constant convection vector and q the solu- aL + GPR = B.f

tion of the analytical problem. Integration over Q gives:

Remember that i is a constant vector. i is the mean of
the discrete solution distribution over the cell P at time
level n.

Jj~dL -. J q.dQl + d.j4 S(q, Fj).df (98)

Discretizing the domain by partitioning it into smaller ,t
cells P of arbitrary polygonal shape and applying Green's
theorem to the second term in the left hand side, eq. (98) QKo
can be written as: QPO

Fig. 30: Gauss points 0 on the edge between the cells

fj LQ.dQ +EI E P and R.

p 0, P 80P The value of Qok) and Q(k() is the value of k04 orderpolynomial reconstruction at the Gauss points 0 on the

cell interface between cell P and its neighbour R, seen
from cell P resp. cell R (see also eq. (54) and fig. 30):

/0 = +(W..n) .FP(?o) (104)
Ell S(q, ).dfl (99)

O = R + w. .FR(1o) (105)

or following eq. (77):

whereby O,,p n-- 0 and 4 is the outward unit normal QM = Qn +(WQn)1 .GP(itO) (106)

vector at the edges of the cell P while the contour integra- () - GP(Fo) (107)

tion has to be carried out in counter-clockwise direction. Q -o) = Qn + (w.Qn), GR(?O) (107)
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in which FP and FR ate the vectors containing the zero
mean basis polynomials related to the reference points of Qp - Q I
cell P resp. R: At + " (q,f).dO = D(S)

or

_ ) iV, = D(S) - < S(q,F)> r (109)

F,•(F = (Z - ZR)6-(Y - YR)' - IfR At

, 0<i+j k The right hand side of eq. (109) will be zero if D(S) is

and where GP and GR are the vectors containing the an exact discretization of cell average of the source term.

oasis polynomials for the GC-IIOR-Algorithm related to This then means that the time change of the polynomial

the reference points of cell P resp. R: steady state solution is zero. In other words, an exact
polynomial steady state solution of degree r is no longer
modified by the scheme (101) if the the order of the so-

G!(V)= (z - zp).(y -yp) lution reconstruction is at least equal to r.

= (X-ZR) .(Y- VR)' Note that, in the general case, the difference between

0 < +j: k D(S) and < S(q, r >P is given by eq. (121) showing
that the difference is not zero. It will be zero if the source

See also eqs. (30), (33) and (76). Note also that the cell P term can be averaged exactly. This leads to the follow-

and its direct neighbours R have in general a different ing theorem linking polynomial preservation with higher
support. order space accuracy:

Theorem 5.2

Theorem 5.1 .1 a scheme is polynomial preserving up to degree k and
The space diseretization of the scheme given by eq. (101) if its source term discretization is of order hk in space,

and eq. (102) is order hk accurate on any type of mesh then the scheme is of order hk in space.
wherever the solution is smooth:

Proof of Theorem 5.2:

[D (.1q)] (q)---<.Oq >p +O(hk).k+l (108) Suppose that the scheme is lower order accurate:

[(D(..)q) = < ()q >p + <(hq)+D)+ONote that in eq. (108) the symbol q denotes the solution+
of the exact solution of the (analytical) equivalent dif- with p < k. Note also that, in the equivalent differential

ferential equation (30, 12], whereas in the following, the equation of a scheme, a derivative of order p+ 1 can never

symbol Q stands for the discrete solution function at a have a coefficient which is larger than something of order

given moment during the computation. hP. Hence, terms like O(hP)V)k+' with p < k can never

Two proofs for this theorem are given in appendix A. A appear.

first proof is based on eqs. (92) and (93) stating that the Plugging an exact polynomial solation q of degree k in
polynomial reconstruction approximates a solution q(-) the scheme of eq. (101) would lead to:

to order h(k+l).Vk+'- The second proof uses a truncation
error analysis based on the concept of the equivalent dif-
ferential equation, see also (30, 12]. The choice of D(S) p - . ) .

will follow from each of the proofs, see subsection 5.4. UtP+ •p J 'tV + )(IjD)q

For the time being, no attention will be paid to the time
discretization which nevertheless still has an effect on the = D(S)

space discreLization as well. As it is supposed here that the source term is discretized

with a space accuracy of O(hk) with k < p, this becomes:

5.1.1 Polynomial Preservation

Let us now investigate what happens to an exact poly- Qp - RE = -o(hp)T9•q+l 6 0
nomial solution q of degree r satisfying the steady state
of eq. (97) in 0 when passing it into the scheme given This is in contradiction with the starting hypothesis that
by eq. (101). If the degree of the polynomial solution the scheme is polynomial preservin&. So, polynomial
does not exceed the order of the reconstruction k, then preservation up to degree k implies k order space accu-

Qo= "(Ao = qo and eq. (101) reduces to: racy if the source term is discretized exactly.

0

iV + -L.•VIE (i iip(R).qo.Aso = D(S) 5.2 Nonlinear Problem
Op R 0 Remind first that q stands for the exact solution of a

If the number of Gauss points on each edge is larger than given analytical problem whereas Q denotes the discrete

or equal to 'i!-, one finds, after applying the Gauss the- solution at a certain moment during a computation.
oren: 2 Let the following 2D nonlinear convection equation withsource term S to be solved in a domain 0:

QV, At Wi" , A-) + 11(q, - = s(q, F) (110)

As q satisfies d.50 = S(q, f) everywhere in Up, this can where f is some flux vector. Integratioa of eq. (110)
be further reduced to: over it gives:
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difference splitting schemes. Note that this will only be
valid where H, 1+, H - and Q are F,nooth functions. AsIf I.dn+ff .P(q, .dO = S(q, r-).dQ for the linear pfoblem, no attention will be paid to the

fat aC time discretization which nevertheless still has an effect
(111) on the space discretization.

Proceeding as for the linear problem, eq. (111) can be

written as:
5.2.1 FVS-HOR-Scheme

Z f !J . f+~j Pq~.l Theorenit 5.3
at P on P The space discretization of the scheme given by eq. (114)

and eq. (116) is order h, accurate on any type of mesh
S~qV).fl (12) wherever the solution is smooth:

whereby E•p Oip =Dt and 4 is the outwatrd unit normal D(It.•')] (q) = < '.01 >P,+~ '~ I 18
vector at the edges of the cell P while the contour integra-

tion has to be carried out in counter-clockwise direction.
Eq. (111) will be solved exactly if the next equation is

satisfied VP E 0l: Proof of Theorem 5.3:
To proof order h' space accuracy, one studies the trun-
cation error by deriving the equivalent differential equa-

ff Lq + S(9, .d(113) tion using local Taylor series expansions. Using eqs. (92)

Sf fnd = Sor (93) and if the exact solution q of the equivalent differ-
n P ential equation varies smoothly, scheme (114) with (116)

The flux function tI(q,?, fi) is now defined as P(q, r).i can then be rewritten as (when carrying out a Taylor

and can be evaluated based on the concepts of ID pro- series development of Hp+R and HR around qo):

jected Riemann solvers leading to an upwind space dis-

cretization of the left hand side of eq. (113) with a first

order accurate tirre discretization as given in the follow- [D(•f'] (q) =
ing equation (after division by UlP):

E1 [H R(qo) + Ov, k+1 )-k'Pll+

T Q P + [D•I.P)] (Q-) = [D(S)](Q-) (114) [ +
At + ]t•P'n-j(q.) + C)(hk+lq'r'Pq+l"n -l l .Aso

with _1. E tE z::o,2FJ ip) .Aso
[ it O. RAs, (115)R .0 0(k q~

the space discretization, D(S) an as yet undefined dis- 1 E E [H (qp, 9'p, npR)

cretization of the source term S and lpR a numerical R o
flux vector obtained using a ID approximate Riemann a

solver. The latter can be either a flux vector splitter ( A

(FVS): 
+ C1 A

+O(hk)V
4+' .Dp

"ft°R H+(Q ,) Fo,i•pn)+ H-(Q•)oi'o,i, ) (116)

or a flux difference splitter (Roe-type splitter, [19]): where the definition of CP is given in eq. (90) while the

one of OHt is similar to the one found in eq. (69).

"fRO = The previous expression for the space discretization can
1A )be rewritten as a continuous contour integral if the num-

[H (Q(pa),°¢l°' ) + H (Q(nR,',fO, il2Pt) ber of Gauss points 0 on the edges is larger than or equal

- I Qi;PR)I(Q Rk) -..) (.) (117) to a

where the value of Q(fo) and Q(*) is the value of kh order [D(11.)] (q) =

polynomial reconstruction at the Gauss points 0 on the 4

cell interface between cell P and its neighbour R, seen 1iI fl(q., i,)+O(ha+) .ds

from cell P refjp. cell R, see also eq. (104), (105) , (106) S--Ie" p LJ

and (107). The symbol Cm stands for the Jacobian Z.o(hk)r.+1..

taken at the Roe-averaged state Q, (POI...). Note <v.P >P +O(ha)D•÷inp ,

also that for both the eqs. (116) and (117) the following r
is valid: which completes the proof of kVh ord-r space discretiza-

tion. Note also that one is discretizing mean values over
a cell even when the GC.-IHOR-Algorithm is used. Point

It will now be shown that the space discretization of the values are discTetized only if the order of the reconstruc-
scheme given by eq. (114) and eq. (115) is order h' ac- tion k < 1.
curate on any type of mesh for both flux vector and flux 0 I
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5.2.2 FDS-HOR-Scheme

Theorem 5.4
The *pace discretization of the scheme given by eq. (114) 0 -P - +h+_f f d D(s)+ o(h?)P;:
and eq. (117) is order hk accurate on any type. of miesh SIP I
vherever the solution is smooth: front which it follows that nonlinear 1lOR-Schemes are

[D('O.P) ( < '0 >" > "-(hk)D'"+'VVA' (119) only polynomial preserving if higher order derivatives of
9 | H w.r.t. to q are zero and if there is a sufficient num-

ber of Gauss points. As for the linear problem D(S)
Proof of Theorem 5.4- should be an exact discretization of the source t erm. Note
Again using eqs. (92) and (93) and if q varies smoothly, that, in the general case, the difference between D(S) and
scheme (114) with (117) can be rewritten as (when car- < S(q, FF) >" is given by eq. (121) showing that the dif-
rying out a Taylor series development of H, q and C6 m ference is not zero. It will be zero if the source term can
around qo): be averaged exactly. In that case, it will be shown here

that if a scheme is polynomial preserving up to degree k
then it is of order hk in space.

Tj *" { ft(qo, fo, PR) 5.2.4 Flux Reconstructiou
R 0 For nonlinear problems it seems logic to reconstruct the

+ ) -(hk+ n).D+ fluxes rather than the solution variables themselves, in
particular when ENO-reconstruction is used, see sec-

+h(qo,Fo,iipR) + ,(h)k,. DqI"DH tion 6. It is expected to achieve a better control over
+ [C,,,(qo, qo) the monotonicity of 6i.e scheme.
+O(hb+i)V.]b(hk+1)1.+i ,}so Shu and Osher 131, 14] devised indeed a Lax-Friedrichs

type of scheme where the numerical flux

=- P(Q) = F(Q) + aQ

is reconstructed using higher degree polynomials. They
presented interesting results in two space dimensions.

- " • E[II (qo, ro, 4PR)] .Aso A slightly different approach was brought up by llar-
20r A 0 ten [16] whereby the averages of the reconstructed solu-

Sk+1. I D1 tion Q ... and the reconstruction of the projected flux
+0(hk)V D~ifA vector (P.6ie)"co = HER' are evaluated over each

Front here on, the same reasoning is followed as for the cell edge using an a.p-opriate Gauss quadrature for-
FVS-HOR-Scheme whereby it is required that the num- mula. These edge-averaged values available from both
ber of Gauss points 0 on the edges is larger than or equal sides of the edge are then used to solve a single Riemann
to 1_,. This brings one then to the conclusion that FDS- problem using a Roe-type approximate Riemann solver

HIOR-Schemes are k'h order space accurate on any type 3f rather than the number of times as would be required by
mesh even if considerable grid irregularities are present. the quadrature formula. This option depends of course

0 strongly on the computational cost of the approximate
Riemann solver.

5.2.3 Polynomial Preservation Ilarten proposes two ways of reconstructing the fluxes.
A first one consists of writing the physical flux vector

As with the linear problem, let us now investigate what as an analytical function of the solution reconstruction
harpens to an exact polynomial solution q of degre- r polynomial. This function is then rewritten as a kind of
satisfying the steady state of eq. (110) in S1 when passing truncated Taylor expansion whereby analytical expres-
it in the scheme given by eq. (114). If the degree of sions for the space derivatives are used. The coefficients
the polynomial solution does not exceed the order of the in this expansion are such that the reconstruction con-

reconstructisn A, then P = qo and eq. (114) serves the mean. A second method uses a gravity center .
reduces to: reconstruction whereby the values of the physical flux

vector at the cell centroids are evaluated using the value
of the zero-mean solution reconstruction at those cen-

___-___ troids. The first flux reconstruction method seems to
be most appropriate for unstructured grid solvers imple-

1. ~ ~mented on parallel computers. The second method has a
Hoe (qo, eo, il,;n).Aso + D(S) lower computational cost but requires more storage and

R 0 results in more inter-processor communication.
1," [H (go, Fip?

0 o 5.3 Discussion

+ IcP(Vo).aHP] Aso+ D(S) From eq. (108), (118) and (119) it follows that the
ýH Aso+ D(S)schemes (101) and (114) can become inconsistent when

piecewise constant solution reconstruction is used. In
h)t practice, piecewise constant solution reconstruction al-

ways gives reasonable results even on irregular meshes
which indicates that the scheme is at least first order.

If the number of Gauss points on each edge is larger than LeVeque [32] showed in ID that first order accuracy is
or equal to r, one finds, after applying th) Gauss the- indeed achieved on irregular meshes. The proof in 2D is
orenk: presented for a linear scheme in appendix B and depends
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on the time discretization and the fact that the scheme Proof of Theorem 5.5:
is stable for CPL-numbers which are of order h. One ass•ames that the exact averages of a smooth exact

solution q are given in each cell P. If aow also S is a
Eq. (108), (118) and (119) indicate that the truncation smooth function of q then from eq. (122) and eq. (92)
error of the space discretization is at least of order P", and after performing a Taylor series development of S
which does not exclude that the complete scheme can around q it follows that:
be of order hk+l not only on regular meshes but also
on irregular meshes. Actually, the choice of the time So(fy = S(q, r-) + O(hk+])Vq (123)

discretization can be such that its truncation error com-

pensates the ternis of order h* in the space discretization This leads now to the following relation between higher
truncation error to order hk+l. LeVeque made some sug- order derivatives of S and So:
gestions in this direction, while Shu [31] used a Runge-
Kutta type of explicit time stepping whereby the coeffi- .9•' aSr + 0(h("4 s)-• (124)

cients where optimized for space accuracy and stability. Inserting eq. (123) and (124) in eq. (121), one finds:
Further comments on time integration will be given in

section 5.5.

Remark also that no lower order derivatives are present in [D(S)] (q) = S rq(fp), rp]

the truncation error given by eq. (108), (118) and (119). 1 .W
In other words, terms of the form: + E 1-lppo + 0(1 )

O(h')'lp with r < k and p : r < S(q,) >P +C(hA+,) (125)

do not occur. This guarantees that the scheme has no 0
second ,.der diffusive errors if the order of the solution
reconstruction is larger than 2. If the order of reconstruc- Remark that a simpler source ternm discretization can be
tion is 1, the scheme might be second order accurate (see used in combination with the GC-HOR-Algorithm:
LeVeque) but still have diffusive errors. This implies the
presence of the following term in the truncation error: ID(S)] (Q) = S(Qp, rp)

0(h2 )'P2 whereby k ---1+"
+ J'; W,"'P.S(QR-.,FR) (126)

This idea can be generalized to higher order stating that .+j>o 'R.
a scheme with an 0(h0) space operator might become i0(hk+') due to the time discretiza*.ion while derivatives i.e. the reconstruction of the source term using the pointof order k+ I remain present ii the truncation error which values at the reference points of the cells. The symbol Q

becofees then of the following shape: still denotes a dkscrete solution at a certain moment dur-

ing the computation. The discretization (126) satisfies
O)(hk+, . k+, also condition (120) as long as S and the exact; solution q

are smooth functions. To proof this, it is sufficient to
let D(S) act upon the exact solution q and to performi

5.4 Source Term a Taylor series development of S(qn.,R-, ) around the
point fip and truncate after the terms of order k.

Eq. (108), (118) and (118) indicate that the discretiza-
tion of the source term S(q, F) must satisfy the following 5.5 Time Discretization
equation when: O(Jhk) spatce accuracy is to Ibe obtained:

t The problem at hand is to flin a good approximation for
the time dependent term

N [D(S)](q)= < S(q, r) >" + 0(h") with p> k (120)
< I9 >P (127)

If S is a known function of ' and linear in q then D(S) is A J 4'f =
taken as the exact mean of the function over the cell P
with q taken in the gravity center. In all othea" cases the i

of the respective analytical problems. The discretizationfollowing discretization is proposed: :
is fairly different for ZM-HOR and CC-lIOR-Algorithms
algorithms described in section 4. Therefore, the time

k discretization for schemes based on the ZM-hIIOR aud
[D(S)] () S + P.P. the GC-IlOR-Algorithmn will be discussed separately for
•D Q) T I, 'the linear problem with source term given by eq. (97).

(121) Other time discretizations reported in the literature will

in which be addressed as well. -5

I(• SQ )(1 €] (22) 5.5.1 ZM-HOR-Algorithmi

Consider the following discretization D (qc) of the term

and where the vector aS*'p is defined in a similar way given in eq. (127):
as in eq. (69). The derivatives in this vector take known +1

expressions. I he following theorem is going to be proved: [D(qe)] (Q) = - (128)

Theorem 5.5 where Q is a discrete solution, see also eq. (101). The
The source term discretization given by eq. (121) satisfies mean values in the right hand side of eq. (128) could be
the condition (120) for higher order splmce accuracy. computed as the mean of the reconstruction polynomial

SI
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over cell P. However, from eq. (54) and the fact that
zero-mean polynomials are used, it follows that the cell -0)+A
average of the Ph order reconstruction of 9 equals Qp. ES = iZC 'C [IX*J (1341)
Hence, no cell averaging phase is needed in the updating kn0
phase of the computation. From eq. (101) one finds then with
that the new cell value of the discrete solution at the next
time step can immediately be evaluated as: f- [41)] =[D + D(S)J (Q(k))

"QP+ =QP - At.[(.) q) + 1)(S)](Q-) (129) whereby i=1,2 ..., p and q(o) - Qfl and q(P) - Q,,*,.
The integer p denotes the total number of intermediate

Let us now investigate the truncation error of the dis. steps.

cretization given in eq. (128) by inserting the exact so- Shu and Osher (31] have chosen the coefficients cik such
lution q and performing a Taylor expansion in time and that the scheme is TVD under certain CFL-restrictions
space around r- < q(r, t") > F. One gets: (a detailed discussion of stability and Total Variation is

deferred to section 6). They came up with second, third,
fourth and fifth order schemes of which only the second

[D (q)] (q) < >P - < q(', t") >P order scheme is presented here:
at

= < qt> +>O('At) (130) -
Q()= Q(G) + WiC 1Q0o)1

5.5.2 GC-HOR-Algorithma Q(2) = Q(O) + IAt (4 [Q(0)] +C [Qr')] )(135)?

The time discretization in eq. (101) or eq. (128) is based
on mean values of the solution over the cell P, also for the CFL < 1 (136)
scheme using the GC-llOR-algorithm. Hlowever, unlike (137)
the scheme using the ZM-IIOR-algorithm, the mean of
the solution over the cell is not stored but the value of the Note that the CFL-restriction is valid only in 1D coin-
solution at some reference point (in general the gravity putations. For two calculations the limit is 1/2. Note
center). Hence, a averaging phase will be necded in the that ENO-recoustruction is needed after each intermedi-
updating phase of the computation: ate time step, see section 6.

Ilarten [161 proposed a single step higher order accu-
31+1 _ - = < QP+I + W.Qn+l.G > P rate time stepping scheme avoiding multiple invocations
P P1P of ENO-reconstruction algorithms. Harten's approach is

- <Q" + W.Qn.G > based on a Cauchy-Kowalewski procedure whereby the
=- AQ, + W.AQ.IP.P (131) solution Q(Ft) is writt i- in a Taylor series expansion in

both space and time whereby:

where W, G and Q are defined in eq. (58), (78) resp. (80),
vector 11,j, is given by: Qs, = - a.Qsx -

. ... 0,t T (132) Q•t = Sy - a.Qy - b.Q,
Q,0 1k St - a.Qt - b.Qyt

and AQP and AQ stand for the time changes of the sol- = -a.Sx - b.Sy + a 2.Q., + 2ab.Qsv + b".Qyy
tion values in centroids of cell Pa. .a-sp. all cells belong- S] 2 Q]
ing to the support of cell P. This means that eq. (131) = -t(•'•)sI +
leads to a system of equations since it has to be satisfied
for all cells simultaneously. This system could be solved
with any direct or iterative inversion algorithm. Since
this is an expensive operation, mass lumping can be ap-
plied just as is done in Finite Element techniques. This These expressions are of course only valid if one solves
means that instead of averaging the complete reconstruc- the linear convection problem given by eq. (97). Note
tion, only the constant part Qp is taken into account, also that one can then show via a recursive proof that:
However, since

<Q(5 ) >"= Q, + O(h).-Q -PQ -g-+.. [(- I v "-

the averaging phase will introduce an additional first or-
der space error. If one is only interested in steady state It is clear that the Taylor series expansion of the recon-
solutions whereby DV tends to zero, this temporarily in- structed solution Q(i, t) taken at the initial time level
crea.el troncatlion error is acceptable. The new discrete t" will be equal to the reconstruction polynomial at this
values at a next time level are then given by: time level. Hence, all mixed time/space derivatives can

be expressed in pure spatial derivatives which can be eval-
uated using the reconstruction polynomials. The scheme

#1+- Q" + At [D(S) - D(Z.0q)] (Qn) VP (133) becomes then:

5.5.3 Runge-Kuttsa Methods QP -

The general explicit p-stage Runge-Kutta method can be
written as: - {+D(S (Q(, r))}.dr
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The continucus time integration is then approximated by 2. AlU coefficients in a monotone swheme are positive.
some Gauss quadrature satisfying the desired time accu-
racy. The values of the solution at intermediate time 3. A TVD-scheme is always monotonicity preserving,
levels and at the several Gauss points on the cell inter- but not vice versa.
faces are evaluated using the Taylor series expansion in
both time and space. The CFL-limit for this scheme is 4. A monotonicity preserving scheme can be higher or-

about 1/2. der accurate in space, hence also a TVD-scheme,

5. If one has a uniform boundedness of the TV then
5.6 Distinction with Finite Elements convergence to a weak solution is achieved.

11O11-Schemes differ from Finite Element methods (see 6. If the TV of the discrete solution at time level n + I
the book of Johnson C. [33]) in that their data repre- does not exceed the TV of the reconstruction of
sentation is allowed to be discontinuous whereas classical the solution at time level n or, in other words, if
Finite Elements methods, such as the Taylor-Galerkin or TV [D (Qn)] < TV (Q~eo.), then the scheme is
the Streamwise Upwind Petrov-Galerkin (SUPG) meth- TVD.
ods [34, 10], use a continuous data interpolation Lased
on Galerkin basis functions. The discontinuous interpo- 7. TVD-schemes are always stable but are at most sec-
lation used in the I1OR-Schemes allows a straightforward ond accurate in space.
incorporation of one dimensional Riemann solvers having
upwind properties. Note, however, that recently Finite Considering the schemes given by eq. (101) and (114)
Element discretizations have been devised using discon- with the above properties in mind, one finds that they
tinuous solution represent .tions. are not monotore nor TVD. Hence, convergence is not

Finally, the spatial size of the support increases with the at ali guaranteed. In order to stabilize these higher order
"order of accuracy in HiOR-Schemes. The order of a Finite schemes, their discretization operator D must be made
Element scheme is increased by adding new degrees of nonlinear.
freedom in the same element hence avoiding a spatial As higher order accuracy is required, the resulting non-
growth of the support. linear schemes cannot be TVD since the latter can not

achieve more than second order accuracy. One tries
6 ADAPTIVE STENCILS therefore to mike an "almost TVD" scheme based on Es-

sentially Non-Oscillatory (ENO) solution reconstruction;
6.1 Introduction i.e. a reconstruction satisfying:

A general explicit scheme can be cast as, see alsoTV ( ) TV (Q) + 0 k+i 1
eqs. (101,(102) and (114),(115)' T- + (141)

Q"+ = D (QR.) (138) As the support of the reconstruction is arbitrary, the con-
dition (141) can be fulfilled by selecting the support in

with D some di-cretization operator acting upon the an adaptive way such that no solution discontinuities of
solution given in each cell R" of the support, The order less than or equal to k are traversing the zone of the
scheme (138) is called Total Variation Diminishing support. The nonlinearity of the discretization operator
(TVD) if: lies then in the fact that cells are accepted or rejected

from the support after each iteration. Such a scheme is
TV (Q"+') = TV [D (Q")] • TV (Q") (139) also called a moving stencil scheme (MS). As the order

with of accuracy is independent on the support choice (see
section 5), the accuracy of MS-schemes is not affected

,tV (Q") = _ E IQ• - I (140) by moving the stencils. Hlence, US-schemes cannot be
. Rs It' (140) TVD. Hlowever, no proof is available yet that would guar-
P •> antee the uniform boundedness of the TV and hence con-

in which R points to a direct nieighbour of cell P. liar- vergence. Nevertheless, the numerous computations re-
ten [35, 36] showed the following properties of linear ported on in the literature indicate the stable properties
schemes for scalar problems; i.e. the operator D is linear: of MS-schemes.

I. A monotone scheme (1) is a monotone function of In this section, two adaptive support selection algorithms
will be discussed. The first algorithm performs a sup-

its arguments) is always TVD, but not vice versa, port gathering by heuristic marching (SSM-Algorithm,

2. All coefficients in a monotone scheme are positive. Support Selection by Marching). The second algorithm
selects the support out of a set of candidate supports

S3. A "FVD-schemie is always monolonicity preserving, such that the global norm of the derivatives of the re-

but not vice versa. Monotonicity preservation im- construction polynomial are minimal at the gravity cen-
jplies that if Q is monotone on a given mesh, then ter (SSG-Algorithm, Support Selection for Global norm
D(Q) will also be monotone on the same mesh. minimization).

4. A monotonicity preserving scheme is always at most
first order accurate in space. From this it follows 6.2 SSM-Algorihhm
that monotone and TVD-schemes are also always 6.2.1 General Concept
first order accurate.

The support of a cell P always contains the cell P itself
For nonlinear schemes, however, the following properties whereafter the two direct neighbours making the smallest
are valid: gradient are added. The gradient associated with two

direct neighbours is estimated using a local triangulation
1. A monotone scheme is always at most first order connecting the gravity centers of the direct neighbours

accurate in space. with the centroid of cell P, see fig. 31.
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6.2.4 Searclh for Lowest Gradient

2 Using the local triangulation with the neighbouts of Pas described in subsection 6.2.1, one stores the corre-
w sponding norms of the gradients in increasing order, The

value following which the neighbours are sorted is called
the sorting variable which now is the square of the norm
of the gradients of the variable q one is reconstructing.

* *The -sao,4ted first and second neighbour of each triangle
are listed in the Samte order as well as the gradient vec-
tors. The object containing all this information is called

Fig. 31: Local triangulation for gradient estimation. a neighbour sorter, named NSp:

11J2 NIV N2  _

One assigns the given cell averages (ZM-llOR-Algorithin) 10 2• 3 (3,1)
or point values (GGO-lOR-Algorithnl) of the solution 20 1 2 (2,4)
f,,nction q to the vertices of each local triangle. The gra- 106 3 1 (9,S)
dient in such triangle is then obtained through a linear
interpolation over the triangle: where N, and N2 are the lists of the first resp. second

neighbour forming the local triangle.

[ Aq,,, Ayp2 - Aqp2A&tpl 1 For each neighbour R of P another neighbour sorter NSR
2-- API2" Aqp, AX1'2 J& 4YP2AXP! is generated whereby the sorting variable is given by the

(142) following expression:where ~l
Aqpa = q, - qp and Aqp2 = Q2 - V 

I2 - (143)

and similar definitions for the coordinates x and p. ILSqrP 11
After inserting cell 1 and 2 in the support, a marching in which the first subscript i is associated with the local
procedure ij started from cell 1. Another pair of direct triangle LAr,,,,I+ as depicted in fig. 32, while the second
neighbours of cell 1 is added if the gradient differs least subscript P or R denotes the cell around which the local
front the gradient that was compnted when cell I was triangulation is made.
added to the support. In other words, the support is
selected in the zone where the solution function q remains
as close as possible to a 3D plan, passing through the
point rp(xPyp, qp) and having Iqyp as a gradient. +

The selection algorithm includes central biasing. This
means that a central support will be selected if the gra-
dients estimated with each pair of direct neighbours differ
very little. In that case all direct neighbours are included.
Central biasing is interesting since the round-off error for
the reconstruction is then minimal.

Finally. note also that the algorithm breaks down on reg-
ular meshes if the order of the reconstruction is larger Fig. 32: Triangle ,
than one. Problems as described in section 4.5 occir in
this case. The lowest sorting variable value of each generated neigh-

bour sorter is multiplied with the square of the norm of
6.2.2 Detailed Procedure the gradient in the associated triangle A, :,., :

Note that the selection procedure is implemented in an
Object-Oriented manner using C++. Therefore the fol- ( - IMP
lowing discussion will be more data and event related in- min 1 1  1 11,,, ,mi (144)
stead of tracing th,. more traditional paths of flow charts nun, lliill
and functionalities. q P

. tThis value is now used as the sorting variable for a newS6.2.3 Startup neighboW sorter NSPR acting upon the direct neigh-
The minimum number of cells n needed in the support is bouts R of the cell P. In other words, a neighbour R
set equal to: comes first in the neighbour sorter if its smallest relative

gradient difference is small as well as the gradient with
n (k + l)(k + 2) + 2 which the smallest relative gradient was achieved.

2
Two cells are added in order to have better condi- 6.2.5 Discontinuity Detection
tioned matrices, in particular for regular meshes (see sec. proceduretion 4.5). Besides this, a discontinuity sensor €' is initial,. TIhe poeuedescribed in the previous subsection re-
ized to 5 (ses subsection 6.2.5). suits in a list of neighbours ordered with increasing asso-dated gradient norms and norms of gradient differences.
The support used during the previous iteration is emp- This is still not yet sufficient to come to the final decision
tied and the current cell P is added as a first cell in the of accepting a neighbour into the support. Indeed, the
support for the iteration at hand. norm of the gradient differences might be smaller across



a discontinuity. Hence, a separate discontinuity detection are added siahnultaisecusly to the support in order to avoid
is required. having a one dimenoional support le.ding to the probleir~~iiired. set at thedicunsxd n sect in th it 1.hi e'5.~ t h
Given the grad'•ent vectors stored in the neighbour sorter

NSp, the discontinuity sensor 41 is defined as: When a cell of the Itst N1 ix •crcpt4d • l'..echilf • sg is

E --i •/P -- •quP',ninmarching procedure described in subsection 6.'; 7.
IM -b 19K in (145)

.IIPqit m0 6.2.7 Marching

li i ILooping now over the new cells addcd to the support,
where is the m~inimnum normn of the gradient the whole procedure starting from subsection 6.2.4 is re-
vectors given in the sorter NSr while N is the number peated. Again, one loops over the latest added cells and
of direct neighbours of the cell P. The sensor is a so on.
measure of the gradient variation around the cell P. A If one is in a region enclosed by discontiiities or do-
cell R belonging to the list Ni of the sorter NSi will be main boundaries, it could be that no more cells can be
added to a list of rejected cells if: admitted. In this case, one tries to make a branch in the

marching at cells where a branching flag was set. If this
S> TIIRES ( 0.1 initialiy) (146) does not lead to additional support cells, one loops down

and in the support and tries again to add other neighbours. If
i still this remains unsatisfactory, the threshold for the dis

mm 0 11vqKP 11 continuity sensor 0 is doubled and the procedure starts
all over again. This can be repeated until the threshold

12 (17 becomies so high that the weakest discontinuities are just
> + seen as sharp gradients. The reconstruction will then no

/ longer be truly F,'NO and the only cure is the have more

where the subscript R points now to the R"' cell in the and filter cells in these zones.
cyclic list giving the direct neighbours of the cell P in
counter-clockwise direction, see also fig. 33. 6.2.8 Boundaries

Arriving in a boundary cell, fig. 34, one sorts first the
neighbours of the interior neighbour R baSed on the

R1 norms of the absolute gradient vectors, see section 6.2.4.

Fig. 33: Rejecting cells at a discontinuity.

The coefficient 5 in the denumerator in the right hand Fig. 34: Gradient estimation at boundaries.
side of Viq. (147) was ctcralincd cwparicaiiy to COmpl'.y
with the widest possible range of gradient values. The cells A and B are direct neighbours of the interior

neighbour R which are vertices of the two local triangles
6.2.0 Acceptance of Support Cells that have also the boundary cell P as a vertex. Their

Denoting the sorting variable value of neighbour R in the neighhours are sorted using thme following sorting variable:
neighbour sorter NSpl by SVn, a cell in the list N, and
the associated cell in the list N2 forming the local triangle lll
will be admitted to the support if: SVA = 1 'q,,A - vqAj

* the number of cclls is already present in the support S -= 1 qB'I
satisfies: !ls< I (k + 1)(k + 2) + 2 (148) The ncighbours of the initerior neighboult are once again

"sorted but now using the relative norm of the difference of
* the respective gradient vectors with the mean of the gra-

SVR - SVR ....... dient vectors. The result is stored in a neighbour sorter
SV,,, -S , < e (149) NSr. The lists N, and N2 of the sorter NSn contain each

both the cells A and B. If SVA < SVB, one selects cell
where 0 < e < 1 A from list NI together with the corresponding sorting

variable value anti gradient vector in NSR. These three* the candidate cell is not in the list of rejected cells items are then stored in the neighbour sorter NS,'n of the
andi not already present in the support boundary cell P. If SVA > SVU, the cell B is selected
' front the list N2 of NSR as well as the correslponding

IThe second condition leads to a central stencil if the gra- forth e lt ofe a wllgade t corresoning
dient is almost constant, i.e. for almost linearly varying items ar e stored in NS gie.
solution functions. The parameter e is called the central
bias parameter: the higher its value is set, the more cen- The neighbour sot ter NSrR finally contains a degenerate
tral supports will be obtained. Cells out of the list N2  triangle AR,IR, while the gradient vector is the gradient

Ii



7-32

in the local triangle ALt,A,11 or ARt,p, ) having the small- 2
est relative difference in gradient vectors, The sorting L-2

variable value is the square of the relative norm of the
differcncc between the gradient vcct.br in the selected tri- a 2
angle antd the mean gradient vector of the interior neigh-
bout R.

The reason behind this ratlher complex procedure ir the A I1
fact that at weak discontinuities either :ell A or D lies on
the other side will still having the lowest absolute gradi.
ent vector. This is anticipated by looking to the smallcAt
relative gradient vector differences of botlh cell A and I). Fig. 36: Condition to ly within a sector.
'rhe result might be that one has to select the neighbour
with the higher gradient but with the sniallest gradient
variation. The conditions to be satisfied in order to accept a cell il

a sector support are the same as for the SSM-Algorithin
6.3 SSGIAlgorithm except for condition (149).

For each of the N + I caididate supports the globei norm
The SSG-Algorithni is a generalization towards meshes IIDIIl, is computed and the candidate with the small-
with arbitrary polygonal cells of a similar a•geritllm pro- est global norni is selected. Note also that the nornk of
posed by Ilarten [16) for triangular grids. 'rite algorithm the central candidate support is divided by two in order
suggests itself a set of candidate supports around a cell to establish a bias towards central supports in order to
1) and selects then the support for which the global norin ihprove the precision, see also Hlarten and Chakravar.
of the derivatives of the reconstruction polynomial at the thy [16] or Shu [37].
gravity center of the cell j) is niinirnal. '[he global norm
SID JII is given by:

t÷j>0 P

whereby

q"c = i!j! A,, (151)

for both the GC-Algorithm and the ZM-Algorithnm. [lhe Fig. 37: Too small sector supports in coolers.
coefficient A.,, is an element of the vector A given by for
instance eq. (37). This implies that the weight matrix W
is to be recalculated for each candidate support.

6.3.2 Exceptions

6.3.1 Camlidate Supports 1 It night happen in corners formed by two discon-
tinuities or by two dontain boundaries that not

The first candidate is always the central support, i.e. the enough cells can be accepted, see fig. 37.
support obtained by taking the neighblours of the iHeigh- Th o o-gle of se 416-

.;..... iis , a -j lo Witi L iWiitho t iigim y oth,:4 "iii..llt..ik. .i,. ..
accolint. After this, N sector ý...pporte are gathered with increased Iuntil enough cells caln be accepted. Can-
N the number of side3 of a cell P. The gravity center didate supports will then of course be partially over-
of the Aells of a sector support lies entirely in a sector lappi:ng If still not enough cells can be found, the
limited by the two lines connecting the gravity center of opening angle of the sector is decreased back to its
cell I' with two consecutive vertices, see fig. 35. initial value but the value of TIlRES in the shock

detection condition (146) is increased by a factor 5
until enongh cells were gathered.

If no cells were ever rejected due to comidition (146)
and if a large number of sector widenings took place,
the candidate is no longer conusidered when still not
enough support celh. were found. in this ca-e, one
was dealing with a corner of the domain where th"
solution variables were varying smoothly.

2. When a neighbour of cell P is a boundary cell, the
m'ssociated sector support is always too small and

Fig. 35: Division by Sectors. hence is rot considered as a candidate support, see
fig. 38.

Note that a point P lies within a sector defined by two
half lines Ll and L2 defined by their direction vector dl
rp. 4 if, see fig. 36: 6.3.3 roundaries

iij ® rAP > , and a2 ® TA)' < 0 (152) The candidate supports for the reconstruction in bound-
ary cell 11 consist of the central support of the interior

where the vector VApL connects the position of the apex A neighbour and of the sector supports associated with the
of the sector with the position of the point P. interior neighbour. llowever, the latter do not contain



7i3:3

reconstructed exactly (P 4 was malo tile fuinction to detf.ct
discontinuities).

Only the shape of the discontinuity is toot exact. Or.,,
sees that it follows exactly the grid lines instead of being
a straight line. There are methimods i cure this problemn
like for instance the subcell recsohltion technique proposed
by flarten et al. (ref. [38]), see also section 7.3

In tile following, the recoi•struction of tile exact solution

Fig. Sector formed with it cellof the following problem is discussed:

q, + q. + 0 (155)
the interior neighbour itself. This is done in order to M Y
enhance the chances for ENO-reconstrnction when a dis- with
continunity is present in between the gravity centers of the
boundary cell and its interior neighbour. q=+1 oil y = 0
Note that except for the central supports, no boundary q -1 on V = -- I
cells are ever allowed in the support since having a bound- q = -2y [ I on x = 0
ary cell in the support close to a discontinuity may lead
to instabilities. Indeed, a boundary cell which was in a Equation 155 refers to a convection problem whose con-
smooth region may suddenly be in a non-smooth zone vection speed is given by (1,q). The solution is equal to
after applying the boundary conditions which lead to -1 on the lower half of tlme domain antd equal to 41 nu
a change in% the solution vahle stored ir, the boundary tile upper Ihmaf. In the triangular zone in the left half tile
cell. When calculating afterwards the flux balances in solution is given by:
the interior domain, the reconstruction in cells close to

ithe boundary will no longer be ENO; hence, large os. (t, (156)
cillations will occur. This could eventually be cured by 2Z - I
selecting new supports after ,pm;.ng the bot"Ay eefl.% e .s"d varies line-rfy along lines wlerez = rte. At the
hut this would be far too costly. borders of the triangular zone one observes therefore a

dit-continuity in time first derivatives of q and a. disconti-
6.4 Examples unity along the line p = 0.5 if x > 0.5. Fig. 42 shows

the isolines of the quadratic reconstvaction of tile exact
In tile following, some reconstructions of known Dolyno. solution q usitig the CC-1IOR-Algowithim combined with
mnials with a discontinuity are presented here. Only ex- the SSG-Algorithm. The discontinmity along y = 0.5 is
amples using the GC-IlOR-algorithm combined with the not visible, For reasons of comparison, fig, 43 shows tile
SSM-Algorithin are given as similar results were obtained isolines obtained when performing a linear interpolation
with time Z/M-1lOR-algorithrm. between the gravity centers of the grid. The discontinu-
nhe next set of functions were used to demonstrate the ity takes now the thickness of one cell. Fig. 44 shows a
ninmotonicity of the reconstruction: 3D view of time solution over the two dimension al domain

whereby each "tile" in the plot represents the reconstruc-
PI(Z y) = 2 2- + 3Y tioe polynomial in each grid cell. The discontinuity is
P2(XY) = 3r2 + 59" + 2ry infinitely sharp but again follows the grid lines,

+ 2z + y (,53) Using the SSM-Algorithin in order to obtain an ENO-
P3( ) = - 59 + + o reconstruction, the supports are allowed to cross the dis-S , 4 . 1 _,

iP = ( ")- coFtinity the first derivative At thl- hornher of the tri-
I "I .r + p angular zone. Indeed, when marching, one takes fitst the

ieighbours forming the smallest first order derivative. In
yif > tan(30').(r - 1) and I), this can lead to the situation given in fig. 45.

Pu(r,,v) = _-5? + (;,Y 2 2r y

1'.,(i, yl = -6(r - 3) - Syý' (1.)
- (r4-, 02+ to

'4(x, y) -= 8 - 3)>y + .1y' + 2ry3

y2 - 30 ~
2 P 1 X

otherwise. Only some results for functions Pa and P. will
he presented as analogue figures were obtained for the liu- Fig. 45: Discontinuous derivatives in ID.
ear and quadratic fmunctions. Fig. 39 shows a quadratic
reconstruction of time cubic function P3 whereby this fumsc- It is apparent that first neighbour I of cell P will be
tion was also used to detect dliscontimnuities, taken. The marching procedure will then continue on
Vig. .10 presents the support for a number of cells close the side with the smallest gradient and as cAl P also
to tile discotinumity and in the sittooth region. It is o- bhelomgs to the support, the reconstruction will oscillate
served that the supports tend to align thenmselves with close to cell P. Marching support selection algorithms
the isolinmes. should therefore be used with care.

Finally, fig. 41 gives the isolines 4'h order ENO. Other two dimensional support selection algorithms are
rmi:ostruction of function 1'1 demonstrating that both given in the literature, Abgrall [39] describes an algo-
polynomnials oni either sides of the discomtinuity call be rithun for triangular meshes which is similar to the SSM-
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Fig. 39: Istolines of function P,% with quadratic ENO-recoiistruction.

I

I

Fig. -10: Some oupports for quadratic iNO-reconstrdion, of untuictiOu P3.

Algorithm. Ilarten [16] presents allother marchilnl al-
gorithun which mathematically mininjizes the higher or..
der derivatives, tlie also proposes a fixed central support
scheme for problems without discOntiniuitics. This choice
is justified by the fact that central supports are miost
accurate whken iecoustruct~ig. Ali automatic switch be-
twoen coustant solution reconstruction and higher order
reconstruction is introduced when, solving problems with
weak shocks (hybrid reconstruction). This will of course
not lead to uniformnly hiiher order sleumes.
Shit anid Osher [14] ftpoltt the cIl'et or ilw cloi(e' of
the first ncighbouring suplport cell oil the stability. Fley
developed ,. support sclct.ion algorithin which takes the
first. eiihbomi r sipport cell always on the upwind side.
Finally, it is soie•timies suggested to keep the sill11l"is.
fixed ill siiiooth Z0onles ill order to reduce the colmiputa-
tional cost. However, it still remains to verify that such
Schenics are stable since tile soluition cali start to oscillate
also in smoolith zotes becaiuse tlhe sche•ie is not TVI).
This means that the supports will have to be adapted
which iticreasCes again die conlmutational cost.

I_,
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i4

0

Fia. 44: Nonlinear sualar convection problem, 3D view of the quadratic re-
construction of the exact solution (GC-IIOR + SSG).
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7 SYSTEMS OF EQUATIONS The component-wise support selection assigns a support
to each component of the solution vector. It increases
the work spent in the support selection algorithm. by a
factor 4 but seems to be more robust when several mov-
ing shocks intersect in time-dependent problems. Note
that in this case there is not always enough room to find
a support in which no discontinuities occur and hence
spurious escillations can be generated.
The vector support selection assigns one and the same
support to all 4 solution variables. The selection is
performed on basis of the smoothness of a single (de-

7.1 Initroduction rived) vwriable such as the Mach number, static pressure,
density,... This approach is considerably more economic.

Concerning the robustness of a scheme to be used for
the Euler equations it is important to remind that the
density p, static pressure p and static temperature T are
nonnegative quantities. Reconstruction of the conserva-
tive variables in an ENO-fashion gives a direct control
over the density but not over the derived quantities p
and T. Small oscillations in the reconstruction of the

Until now only scalar problems were tackded but the final conservative variable close to multiple discontinuity in-
aim is to solve a system of equations such as the Euler teractions lead in general to larger oscillations in p and T.
equations. Although the exteasion towards systems of When computing these quantities at a cell interface using
cqaations is rather straightforwa.r-l, some additional top- the local values of the reconstruction of the conservative
.cs are particularly interesting when solving the Euler variables, one can get a negative value as a consequence
equations (2),(3),(4). This section will treat the recon- of which the solution procedure is to be stopped.
struction phase when solving systems of equations and As the characteristic variables vary more smoothly than
also some recently developed concepts for sharpening dis- the conservative variables at discontinuity interactions,
continuities, it is often srggested in the literature to perform a local

transformation to tne characteristic variables. One can
then comnpute all derived variables from he component-
xv:L recoirstruc(!or of the characteristic va!:iables which
remain smooth at discontinuity interactions. The traas-
formation matrix contains the eigenvectors of the Jaco-
bian in.trix of 'he flux normal to the discontinuity.
Another approach is to reconstruct
the vector (p,pnpv,p)T. This gives again direct con-
trol ov .r the density and the pressure and moreover, the
noI'nai mnoaentum and p remain smooth across contact
disconti,.u1ities.

7.3 Subcell Resolution
In 1), llarten [38] proposed a method to resolve discon-
tinuitics wore sharply. A discontinuity is detected by:

I. inispectihg thf nchus a,, 11041 , 8 of the derivatives
of the reconstrictioun ip cell i and its neighbouring
cells i + I and i- 1, fig. 46.

2. comnparing the mean o; the reconstruction polyno-
mials Q•r 0 and Q,•"o assigned to the neighbours
i - 1 resp.s + 1 with the given discrete mean value
<Q > in cell P

7.2 Reconstruction A discontinuity is assumed when:

C's > as-1
ff, > ol(157) -

and

(< Qo-+Cl- >' < Q > )(< r'°> < Q >) <0

In the case of the two dimensionai Euler equations, one (158)
is aow dealing with a solution vector Q of 4 solution in which < Q,'+' >' and < Qi'- >' denote the mean
variables. 'rwo approaches are now possible [16], the of the reconstruction polynomial of cell i + I reap. I - I
component-wise suppc.t selection and the vector support over cell i. The rctinstruction in cell i will then consist
selection. of the extension of the reconstruction polynomials of the
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Xl 1  x I Xl+ 1  X Fig. 48: Subeell reso!ution in 2D.

Fir. 46: ID discretization around a discontinuity.

8 NUMEkICAL EXPERIMENTS
neighbours into the cell i, fig. 47. The interface between
the two polynomials is located at a position xj such that: 8.1 Intrcduction

tj(O) =i + 9(z,+i - z) (159) Results will be presented for linear scalar problems, nan-
linear scalar problems and an Euler flow problem. Allwith 0 the solution of the next nonlinear equation stating results were obtained with an object-oriented code writ-

that the mean in the cell i must b,,- conwerved: ten in C++ in order to have an enhanced flexibility when
testing and adding new algorithms. Comparison of the

< Q~ >", + < Q 1÷i >js,=< Q>, (160) code with an existing FORTRAN code when using ex-in which < Q~e° >" antd< Q[o >"•+ indicate the actly the same first order scheme on the same mesh did

mean of the reconstruction polynomial of cell i - 1 over not reveal any loss of efficiency due to the object-oriented
the interval [i, I] resp. the mean of the reconstruction implementation.
polynomial of cell i + 1 over the interval [;, i + 1].
Knowing 0, a scheme can be constructed while introduc- 8.2 Linear Scalar Problems
ing a corrective flux [381.

In this section, the verification of polynomial preservation
will be addressed. Consider now the following problem

on a rectangular domain 0I, see also fig. 26c:

I i:q =S(z,y) with i =4(2,1) (161)

This problem was studied with 4 different source termsSI i IS g iv e n b y :

W! - Si(x,y) = x + 2y - 3

S2 (z, y) = x z+2y - 3
X X 3 2 2 1Fig. 47: ID reconstruction with subcell resolution. S8(zp) = z + 33y -

S 4 (z,y) = 8r 3 
+ 80p3 + 2,zY2 -- 68

A 2D extension might consist of detecting the disconti-
nuities based on the conditions (146) and whereby the The exact solution to the problem (161) is then given by
normal direction of the discontinuity at a cell P is indi- following 4 polynomials:
cated by the mean gradient vector over all local triangles
around P, fig. 31 and fig. 48. The polynomials of the two
opposite direct neighbours having their centroid closest P'(z, y) = 2x + 3y + 2
to the normal through the centroid of P will be extended -z+
into cell P. The interface line between the two polyno- P24(r,) = 4 + XY
mians is parallel to the discostinuity and its location is 5
computed while requiring th.t the mean over the cell P - Y - 4 +
be conserved. 4 13 +

7.4 Slope Modification Method 6 19 2 1 +6

Yang [40] proposed to add a modification to the coeflli- y 1

cieats of the linear terms in the reconstruction polyno- Pd(z, Y) = z' + 16y4 + 8zy 3

mial. This modification is called a slope modifier and is - 34z + 10
a w.inmod-like function depending on the jurmps in the
unmodified reconstruction polynomials at the cell inter- which are the same polynomials as those in eq. (94) of N
faces. The final effect is that one added artificial com- section 4. These solutions can of course only be obtained
pression to the scheme, while imposing proper boundary conditions.
Yang produced impressive results for both ID and 2D
problems. Moreover, his method is less costly than the Tests were performed using both the GC-IIOR and ZM-
subcell resolution approach. For a detailed comparison IIOR-Schemes. In the following, one will discuss how
between the subcell and the slope modification approach, polynomial preservation was achieved for the two algo- 5'
the reader is referred to the work of Shu and Osher [14]. rithms.
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For the GCC-.HOR-scheme, tle exact solution q is given in * the order of the reconstruction is at least equal to
the gravity centers of each cell : the degree r of the polynoMial exact solution

QP, =-- &op, ) M* only the exact solution value is imposed at the grav-
ity centers of the bountlary cells and not the exact

while for the ZM-IIOR-scheine it is given as its exact flux.
mean value over each cell:

e the source term is discre'ized as follows:

SS(XGP',YG ) .o p
A4p

for both interior and boundary cells. * only one (1!) Gauss point is used

It was then numerically observed that the imposed exact * a non-conservative flux distribution is applied. This
polynomial solution q of degree r was not touched, i.e. means that each edge is visited twice but each time
the residuals are within the round-off error of the machine seen from the other side. Thus:
(1O-'), if Qf,+i = Q - F_

* the exact flux integrals are imposed at the bound- Qn1 = Qn - FRP
aries where the convection vector d is pointing into
the domain, whereby

" the same treatment as for interior edges is applied at FpIr = E d.iipu.Qt
boundaries where the convection vector points out R

of the domain. This is correct as the value in the FRP = --- 1a1p.Q
boundary is not used when calculating the flux. In-
deed, the upwind approximate Riernann solver will P
only take the value in the interior neighbour into in which Q+ and Q- are the extrapolated values
account, at the cell edges while using only the linear terms

of the reconstruction polynomial. It is clear that" the source term must be averaged exactly over each the fluxes -ent to the two cells adjacent to the same
cell, see ;iso eq. (120): edge will not be identical so that the scheme is not

conservative.
D(S) t•S(x,.v).dO at boundaries where the convection vector points

outward the domain, the update of the boundary
cell P is (lone as follows:

"* the order of the reconstruction k is at least equal to

the degree r of the exact polynomial solution Q'M" = Q(1 l)(fp)

"* the number of Gauss points it satisfies the next con- where the superscript (k) indic:otes that. all terms of
dition: the reconstruction polynotrial in the interior neigh-

, k + bour R are taken into account. For the computation
of the flux contribution to the interior neighbour stiJi

where k is the order of the reconstruction, only the linear terms are used.

The LINEX scheme can become economic for reconstruc-Following theorem 5.2, this expeiinient can be regarded tions of order Eigher than or equal to 4 since then nor-
as a numerical verification of the accuiacy in the interior inatly one would need at least 3 flux evaluations per edge
domain of the GC-IIOR and ZM-HO.-schenie. instead of 2 in the case of the LINEX scheme. Also

Fig. 49 shows the quadratic reconstruction of the nu- the evaluation of the source term is cheaper as one just
incrical solution obtained using a GC-SSG-scherne with has to take its value at the gravity center (even if ZM-
quadratic reconstruction, a 2 point Gauss quadrature reconslruction is used). However, as we are interested
(GP=2) along the edges and the source term S4 . The in capturing discontinuities co.rectly, the LINEX scheme
linear interpolation of the sante solution is presented in i6 of few importance. Note that )ther non-conservative
fig. 50 which is to be compared with the exact solution schemes with reduced grid sensitivity are described in the
shown in fig. 25. Note that using quadratic reconstruc- literature, see e.g. [9].
tion for a polynomial solution of degree 4 does not pre-
serve the so!,%tion since the order of reconstruction does 8.3 Nonlinear Scalar Problems
siot match the degree of the solution. The grid one used
is a randomized rectangular mesh containing 296 cells, In this section, the numerical solution of the nonlinear
fig. 26c. The randomizing of the grid points is necessary probkm of eq. (155) in section 6 will be discussed. The
to avoid a contradictory system for the reconstruction definition of the problert is repeated here:
weights as discussed in subsection 4.5. (Q 2 \
The solution was extracted after 100 iterations and took qa + q1 4- 0 (162)
90 minutes of CPU on an SGI Iris 4D/35 workstation, 2
the final residual is of the order 10'. with

Remark that another HOR-scheme can be devised
whereby the solution in each celi is represented by only q +1 on y = 0
the litear part of the higher degree (k) reconstruction
polynomial. Polynomial preservation for such a LINEX q = -1 on Y = 1
scheme (LINear EXtrapolation) is then obtained if: q -2y + 1 on x = 0
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Fig. 49: Reconstruction of the solution of the linear problem, (k=2, GP=2,
GC-SSC).

.. ..........

Fig. 50: Linear interpolation of the solution of the linear problem, ( k=2,
P2, GC-SSG). r

The exact soluic is given in fig. 42 and 43. The comn- The solution shown here was obtained after 100 Euler
putation started knorn the exact solution using the GC- explicit time steps with a CFL-number equal to 0.1. The
IIO1 reconstruction (k=2) with SSG support selection, convergence history is given in fig. 56 showing the RMS-
The analytic flux is given by: value over the whole domain of the relative change of the

solution values over each time step. The total CPU cost
q+ of the calculation was about 3 hours on an SG I Iris 4D/35

Ii = q.uz ± j.n2 (163) workstation which means about 0.16 seconds per cell per
iteration.

The numerical fluxes ifpo through the edges were conm-

puted using a Roe-type flux splitter whereby C,,, in 8.4 Ringleb Flow in a Bended Channel
eq. (8) is now given by:

The results presented in this subsection were computed

()+ Q( using a fixed stencil and are to be considered as prelimi-
Cm = 14 +" + 2 (164) nar in particular with respect to the boundary condition

treatment.

A two point Gauss quadrature (GP=2) was applied,
meaning that the Rieniann solver was invoked twice for 8.4.1 Problem Description
each edge.
The exact solution was kept fixed at the upper, lower The Ringleb flow [41] is basically a potential flow in a
and left boundaries of the computational domain whilc strongly bended duct and can be described analytically.
the reconstructed solution in the interior cells at the right A proper choice of the shape of the duct guarantees that
boundary was copied into the boundary. the flow remains everywhere subsonic, see fig. 57 taken

front [42].
The quadratic reconstruction of the numerical solution At any point in the domain, the flow is characterized
as well -- the mesh is shown in fig. 51 while the linear by two parameters j and k. "The parameter V" is a non-
interpolation of the numerical solutiorn on the dual mesh dimensionalized speed and is constant along circles which
is presented in fig. 52. Thoee tw,'o figures can be compared therefore become the isotach lines. The parameter k is
with fig. 42 resp. 43. A three dimensional view of the equal to • where 0 is the angle of the local flow direc-
reconstruction of the obtained numerical solution is given tion. One can proof that k is a constant along stream-
in fig. 53 which can be compared with fig. 44. lines.
It is seen that the discontinuity is captured in one cell Taking now the streamline with k = 0.8 as the inner wall
and that no oscillations occur. This is put in evidence in of the bended duct will result in a fully subsonic flow. The
fig. 54 and 55 showing a cut of the solution at x 0.3 outer wall coincides with the streamline for which k =
resp. z - 0.95. 0.4. The in- and outlet of the duct are part of the isotach
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Fig. 53: Linear interp,ýJation of the computed sohltion of the noniiniear scalarc'oIvc:ton problem, (t=2, GP=2, GC-SSG).
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AA Computed

0 Ii 0

Y 3

Fig. 54: Solution cut at z 0.3 (k=-2, GP=2, GC(- Fig. 55, Solution cut at X 0.05 (k--2. GP=2, GC-SSG). SSG).

SIline with ij = 0.3. The mesh used Oil this geometry inilet and with the parameter • -0.3.
is depicted in fig. ,58 and contains about 600 triangular
cells generated by a code written by J.D, W/iller at the 8.4.4 Sohittiotn
University of Micigatn and which uses a combination of
Delattnay anti frontal methods, see- ref. [,43]. The flow The exact solution presented on the inesh of fig. 58 using
turns from left to right. a 3'd order -:econstrnction (k=-3) is given in figures 59

and 60
8.4.2 Sehetne The velocity lines obtained fronm the solution are shown

in the plot of fig. 61.A fixed central supporL was used in the calculation bc- It is clear that the tachlines are no perfect cir4.es in the

cause of its enhanced accuracy in the reconstruction entire doina~in. li,mwever, the plot of constant dc-,sity lines
phase (see [161) and because of the absenlce Of dircon1- given iln fig. 62 is c on-.par able to the sohlution presented
tinnities in the flow. The solution in the form| of censer- by B•arth in fig. 63 obtained from ref. (4,51.

€vative variables was recoustruc' ed using a vector recon- A further comparison between the density isolines of the
I struction; i.e. ail variibles nse one ,and the same suip,- luneric.l solution attd the exact solution (fig. 62 and 59)

) port. Tevalues of the second order Zero-Niean recon- sos;rate good agreement.,h relative L2-nkorlk Of
ýiulmtioa oil both sidcs of ach :l1. cellcge were |-axcý i' t heero as compmited with eq NO6 hetweell tile nimmer-
Van Leer's flux splitter to evahluate the (non-linear) flIlx ical solutiout mid the exac't one over' the whole domain is
through the current edge uising onle point (GP•-I) Gauss of order 1% for the (tensity. Fig. 64 presents the local
quadratutie. The CF'l-minther is 0.2 com~binled With a 4 relative 1,2-no'rm of the error.
Step Ruuge-Kutta t~ivic stepping with tile following cool- The largest, errors are madle at the inner wall of the dluet
ficients : (1, 1 . 1,) .where the hiigher order derivatives of the exact solution

4 ý 2are hfigher and hence cannot be uma',ched exactly b~y a8.4.3 Doundary ComIl iiots quadratic reconstruction, Another reason is that tie

exact boundary is approximated by a seriey of straight

The complonenlts of tile unlit Vector tangent to tile ex- boundary ed~ges of nmore or less constant lenlgth, This ap-actly known flow direction art impoed at the inlet. Note proxig.a5on is olcorse less accurate where the curvature-
that thee compo0.3ents vary along the i slgt.. Besiies this, of the boundary is higher.
also the total pressure (1.2 bar) and theab ot6 tremper- To show the improveent achieved with quadratic re-
c e (298 K) are needed in order to treat a subsonic strution

inlet bountdary condition. Remark that thle flow is in- reconstruction, fig. 65 shows the tachlines obtained whentviscid and subsonic as a consequence of which there are using linear reconstruction and o Gaus point.
no losses. Therefore, the total press.re and temperature The undeclying pesh is much teore visible in the case of

rcanl be f.ouleed constant along the inlet. Zero normal linear reconstruction. The relative L2-nork of the den-
.velocity is required at the solid walls. Although this coo- sity error ovei the entire domash is about 1.5% compared

dition is suctiaient to perform a correct boundary condi, to the 1.0t t obtained with quadratic reconstruction.
uion treatment, also e constant total pressure (u.2 b nr)

was imposed o(6 the weals. This type of treatsn ent was

S proposed by Denton in [44] and leadls to a more accurate
isolution at the solid boundaries when a fully reversible

or isentropic flow is present. As the speed is constantm at

pthe outlet av well as the total pressure, r. constant static
pressure (1.125 bar) was applied at the outtlet. This pres-
sure corresponds with the imposed toth•l pressure at the
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1Fig. GO) Exact tacIIiuu'!s for Rihgleb flow (kc=3).
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Fig 61; Tac~hinIws for I11iigleb flow (k-2, GP-1).
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Fig. 64: Local relative L2-norrn of the density error (k=2,GP-I).
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Fig. 65: Velocity lines~ for Ringleb flow (k•=I,GP~=I).



7-501

References [15] DURLOFSKY LJ.,
OSHER S., and ENGQUIST B.,. "Tri1ngle based

[1] VANKEIRSBILCK P., STRUIJS R, and DECO- TVD schemes for hyperbolic conservation laws". J.
NINCK )I.,. "Solution of the Eiler equations us- of Comp. Phys., 1:64-73, Jan. 1992.
ing unstructured polygonal meshes". In R. Gru-
ber, J. Periaux, and R.P. Shaw, editors, Proc. oj [16] IIARTEA A. and CHAKRAVAIrIIIYS.al,. "Multi-
the Fifth Int. Symp. on Num. Meth. in Enginecr- dimensional ENO schemes for general geometries".
ing, Lausanne, Switzerland, 11-15 Sept. 1989. Comp. Technical Report 91-76, ICASE, Sept. 1.991.
Mech. Publications, Springer Verlag. [17] ANDERSON W.K.,

[2] VANKEIRSBILCK P. and DECONINCK H.,. TrOMAS J.L., and Van LEER B.,. "Comparison
"Computation of inviscid supersonic flows using of Finite Volume flux vector splittings for the Euler
adaptive meshes". In DESIDERI and PERIAUX J., equations". AIAA-Journal, 24(9):1453-1460, Sept.
editors, Proc. of the Int. Workshop on Hypersonic 1986.
Floups for Reentry Problems, Antibes, France, 22-25 [181 Van LEER B.,. "Flux-vector splitting for lh, Eulev
Jan. 1990. Springer Verlag. to be published. eq[1] iV n lEE 13.,. l to sltting o r i hEequations". In Proc. 811h 1,a. Cowl. on Namer. Metha.

f3] STRUIJS R., VANKOIRSBILCK P., and DECO- in Fluid Dynamics, volume 170, pages pp 507-512.
NINCK H.,. "An adaptive grid polygonal Finite Vol- Springer Verlag, 1982.
time method for the compressible flow equations". In (191 ROE P.L.,. "The approximate Riemann solvers,AlAA, editor, AIAA 9th Comp. Fluid Dyti. Conf.,pAgeditor-311, A 98. Camper Fld DAA-8-195-Co, parameter vectors and difference schemes". J. of
pages 303-311, 1989. Paper AIAA-89-1959-CP. rComp. Phys., 43(2):357-372, Oct. 1981.

[41 VEE II.C.,. "A class of high-resolution explicit and [20] FROMM J.E.,. "Practical investigation of convec-
implicit shock-capturing mnthods". In Proc. of the tive difference approximations of reduced disper-
VKI Lecture Series in Comp. Meth. in Fluid Dy- sion". The Physics of Fluids Supplement 11, 1969.
namics, 6-10 March 1989. VK! ,"S !9819-019

[5] YEE .C., WARMING R.F., and IARTEN A.,. (21] DECONINCK If.,. "A survey of upwind principles"I5)mpli, Hcit TAlMING Varatio D in g (RTVD Afor the multidimensional Euler equations". In Proc.
"Implicit Total Variation Diminishing (TVD) of VKI Lecture Series on Comp. Meth. in Fluid Dy-schemes for steady state solutions". J. of Comp. namics, 1987. VKI-LS 1987-04.
Phys., 57-3:327-360, Feb. 1985.

[6] SPEIKREIJSI S.P.,. "Multigrid solutions of the [22j DECONINCK 11. and STRUIJS R.,. "Consistent
boundary conditions for cell centered upwind Fi-steady Euler equations ". PhD thesis, TU Delft, 1987. nite Volume Euler solvers". Num, Meth. for Fluid

[7] BAItIl1 T.J. and FREDERICKSON P.O.,. "Hligher Dynarnics 111, Clarendon Press, Oxford, April 1988-
order solution of the Euler equations on unstruc- 12/CFD.
tured grids using quadratic reconstruction". AIAA, [23] DEGREZ G.,. "VKI TN: A unified wall boundary
090-0013), 8-11 Jan. 1 90. treatine,,t for cell-centered Finite Volume. discretiza-

[8] BAR'THi T.J.,. "Aspects of unstructured grids and tions of the Euler and NavieroStokes equations' . in
FV-solvers for the Euler and Navier-Stokes equa- preparation, 1991.
tions". In Proc. ,f the AGARD-FDP- VKI Special [24' POWELL K.G., BEER M.A., and LAW GW.,. "An
(Ioursc, 18-22 May 1092. AGARD.-R-787. adaptive embedded mesh procedute for leading edge

[9] ESSERS J.A. and RENARD R.,. "An implicit flux- vortex flows". AIAA, (89.0080), 1989.
vector splitting Finite-Element technique for an ir1- [25] DENTON J.,. "Analytical supersonic staggered
proved solution of the comprc.sible Euler equations wedge cascade, a test case for inviscid 21) flow cal-
o. distorted grids". In Proc. of the l1th Int. Con.f culations". In Proc. of the VKI Lecture Series on
on Num. Meth. in Fluid Dyn., Williamsburg, Vir- NMul. Meth. for Flows in Tlurbomachinery, 22- 26
ginia, June 4, - 'uly 1 1988. May 1989. VKI-LS 1989-06.

[10] STRUIJS K. and DECONINCK I1., 'fluctuation [26] HOLMES D.G.,. "21) inviscid test case results". In
splitting scherieg for the 2D Euie.r equations". lit Proc. of the VKI Lecture Series on Nuni. Meth. for
Proc. of the VKI Lectture Series on Comp Fluid Flows in Turbomachinery, 22- 26 May 1989. VKI-LS
Dyn., Feb. 18 22 1991. VK!-LS 1991-01. 1989-06.

[11] IIEMKER P.W. and KOREN B.,. "Efficient multi- [271 DAIILQUIST G. and BJORCK A.,. "Numerical
dimensional upwinding for the .steady Eiler equa- Methods" Prentice-lHall, 1974.
IAons". Report NM-Rgl07, CW!, 1991. [28] DE MEYER H., VANDEN BERGIIE G., and VAN-

[12] HIRSCHI Ch.,. "A general .-nalysis of two- TIIOURNOUT J.,. "On a new type of mixed in-
dimensional convecton .schemes". In Comtjutational terpolation". J. of Comp. and Appl. Math., (30):pp
Fluid Dynomics. von Karman Ir.stitute, 1991. VKI- 55-69, 1990.
IS 1991-01.

[29) VANTHOURNOUT J., VAND)EN BERGHE G.,
[13] IiAR'FEN A., EPIGQUIST B., ar.m CIiAKRA'vAR- and DE MEYER If.,. "Families of backward dif-

THY S.R.,. "Unifrrmly high order accurate Essen- ferentiation metheds based on a new type of mixed
tially Non-Oscil'altory schemes 111". Technical Re- interpolation". Computers Math. Appl., 20(! 1):19-
port 86-22, ICASE, April 1986. 30, 1990.

[14] SIIU C. and OSIIER S.,. "Efficient iinplemeihta- [30] IIlRSCHI Ch.,. "Numerical Computation of Internal
0ion of Essentially No-i-Oadllatmy sho>ck-capturing and Extrnal 17,vw", volume 1. Wiley John and
snewes, 1I". J. of C'omp. Phas., 83:32-78, 1989. Sono, '988.



7-51

[31] SliU C. and OSHER S.,. "Efficient inuplenlenta- developed in a Taylor series around some point irp as-
lion of Essentially Non-Oscillatory shock-capturing signed to thse cell where the truncation error is to be
schemes". . of Comp. Phys., 77:439-471, 1988. evaluated, see (30] and [12]. The differential equation is

the equation which is satisfied by the exact solution q in
[32] LEVEQUE R.J.,. "The accuracy of conservative a discrete set of points Fp around which the Taylor ex-

methods for the advection equation on nonuniforr panrions have been made. As yet, the choice of the point
grids". priv. conim., October 5 1987. 6'p rex.ains arbitratr.

r33 JOHNSON C.,. "Nunericl solution of partial di- In this proof, the procedure deviates a little from the
[33 O.classic or.e given in [30] and [12] in that it first use3 the

jerential equal.tios by the Fituite Element method". theorems 4.1 and 4.3 before applying Taylor serie,.s expan-
Studentlitteratur, 1987. stuns. 'T'hus, u-aing eqs. (92) or (93) and assuning that

["Petrov- the eaLct solution a of the equivalent differential equation
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As (d.i4R) is constant along each straight edge, the
[4131 MULLER ,.-1)., 1OE P.L., and DECONINCK If.,. previous expression for the space discretization can be

"A frontal approach for node generation in Delau- rewritten as a contimuous contour integral if the number
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A Proofs of Higher Accuracy or

Proof of Theorein 5.1 (A):] = .f (i hl.q•Dd 1A): (q) (d,. qd, + 0(h'

To proof order hA space accuracy one has to investigate
the local truncation error. The truncation error i-, 6,i: Using Green's theorem, one finds finally that the space
part in ,h; -iquhialcat differtutial equation that is not discretization satisfies the following equation:
pr.-Žstrt.in the analytical modelling equation to be solved.
To obtain the equivalent differential equation, the un- r
knowns in the stencil cells of the employed scheme are[D(i.~q)j (q) = < &.'q >1 + O(h/)'Dk' (165)
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which completes the first proof for order hk space accu- -+ [
racy. Note also that one is discretizing mean values over aap, qj, + I V(r)
a cell even when the GC-llOlb-Algorithm is used. Point =1
vaues are discretized only if the order of the reconstruc- k

-tionl k < 1. +a]-,,, qp +• -'a 'aql

Proof of Theorem 5.1 (B): + it. .

The second proof follows rigorously the c!assic truncation 1=1

error analysis as described in [30] and (12]. This menans + O(h)Dq+I (167)
that all solution values in the support cells have to be ex-
panded in well in the vector Q or Q as defined in ejq. (39) Keeping in mind eq. (64), it. is desirable to rewrite I
resp. (86). R /' R

ill iterms ( 1 . ' with 0 < 3 < I and 0 < I< n anI R' a

-rThe proof will only be given here for the scheme us- cell belonging'to the support of cell R. This can be done
ing ZM-IlOR extrapolation since the reasoning fo- the using the next transformation formula:
GC-IIOR scheme is completely similar and leads to the
%name conclusions. The proof will rely heavily on the
lproperties of the reconstruction weights as expressed in
eqs. (64), (63), (81) and (83).

To examine the local truncation error, the expres- t
sions (104) and (105) have to be developed in a Taylor 3=o s=tI k

series and plugged into eq. (101). The Taylor expansions Az-,,10- I 1 R(168)
of the mean of the solution in cell P and a cell R next to zR P. Rl.1

cell P are given by the expressions (71) resp. (72). The
reference point fp in these expressions is the same as the Using eq. (168) and taking I'to account the properties
one used to compute the inertial moments when recon- given by eq. (64), one finds after some manipulations
structing the solution, eq. (33). The properties expressed that.

by eq. (64) can then immnedi;.tcly be exploited when ap- -R P p I. P
plying eq. (71) to the scheme given by eq. (i01) with q , ." C -
the exact solution of the equivalent differential equation: W! With these results the space discretizatio-a becomes:

=D(i(, = )_ (q) Aso

11 1 p kI •

Z1 Z Apo [1(p q q)- A" f"

"{aii.[qtt .? {O•,t. [qp ± It 0 •)Oq

+ W ((1,+ ~ t.Paqi~ .FFw . + , >+ a.P. [qp + E TcP(Vo).Pi t

+,7,,vI,,+ere. '.0i+o(h 5 )D÷ I
4

(~' .. o,,.. ]"

+"I'l- W, 4 Fill .A1I

wihRas pport qp. ~-I fi .. q ,] t Again, asii o ( 1ia iscntn ln ahsrih de
cell Usingrnowotheepropertiesf(r4)hofstheerdcsnstruc-t+on hanDbe

roewritten, the rasontingou prceedo intexracly the namer
[Diq) q .. . Ma sintefr ro eaigt.e.(6)

L-I

'ZI,~ ~ ~ ~ ~P -l ] '. 1 ý,' I •, ,] I ,'ttvH 1 1,

wher (,ki.Ia).

with~Agin as (15lR ispot constan alon each straight edge,,r f C(

cel Usin ... th r perte (54) Prviu theesio foreconstruc-eizti anb

renwrittn, the rascontinuou proneeus integratly the number
[ 7] of Gayuss pint 0tn he edges proofaleedingat eq ua to5)

f it . .1 i041

I2
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B First Order Accuracy As the scheme is on!y stable if the CFl-euutber is smaller
than one, it follows that At = 0(h). Hence, all coefli-

Theorem B.1 cients of the higher order derivatives are 0(h) and one
First order accuracy can be obtained on irregular meshes gets:
when ouly cell-ulise constant solution e.¢ou.structiopi is

r ,scd.

Proof of Theorem B.1: La' n-0 + (h)

Let us first write down the truncation error 'T"" in cell P Knowing that

at time level n for the linear scheine given by eq. (101)

where now Q¢o= qP and Q~o) = qy with q the exact
solution of the equivalent differential equation: oP R 0

if the number of Gaitss "poits is at least equal to I and
since

,~ At I ft
2

9811 + IT q11-'ll, + O(Ate) = F pnFO -. 60o

+ (t •o T,; + can be rewritten as:
It 0 a~t

+(-, r,,,+aPn [ + Axpit. q.1',', + Ay1,j. qylI" Tj =

+ ; •APR. qx.Ib, + 1AY'n. qi - I +p
+ Azp-,.Aypu-. qs,!,i] i Aso

+ 0(h7) 
+ 0(h)

i From eq. (97) it follows that: Taki;ag into account that

"o " = " (l

q,1,= -". , - . one findsq q=i I, = -a. qxx i', - 6. qjy 1'%

I [a.P•

q. I . q,,~ +2ab. q~ l .4. b2. qvyl'j',

and fu rthermore: RZ, [ iot Q,
+ a+]

+ R-'P.¢ o 'vql ,Aso,

Sa I'R 'qv + ( 'Pn 'q,') .A so I P s

1? 0 + 0(h)

VP D'''~lefining
= Ill-..•• •.,•., ,,o ,,'o.1? 0

T can be regarded is the space discretizatio of 1in-

steadl of q plus a terna of order h:

+ I- Z PR.AXPR.A5O - a -- 1,11

1 ̀ 1 
-----

P 
+ a. Iq s oso that i•/.At, becomes: "Ai +0(()

+ 7 aPR.AIIPR.A-S+ 2 At(1)

L 14 o;,.•,.s -D.•,

+ T-Z a piAzuAyPR .A90 fp t.)IAC qvjflp The global error of thte ,Jwiene of .-q. kiC~1) is 110W deil',ed

+ 0(h 2 )+, C(A) satisfies:

'I.1 •



(E+1 -- E")

P pi
1 /• • (a,•.,E• +,.P,.E;") .Aso (170)

or

±(1::'-, E") 4. D (M") =(1 71)
At

The global error can be decomposed as

Ep=a j',n + P (172)

where

T -vo, = 0(h)

E = E)"-ttr

Equation (171) becomes then:

Att~

71- 2N (j.;a+: - "~

= >,+ O(h) =0(h)

Since the scheme is stable, one finds that the error p
remains O(h) over a fixed time interval. It follows then
that the global error El" is 0(h). The scheme giveti by
eq. (101) is therefore first order accurat.e in space antl
time.

0
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'ORItWORD AND INTRODUCTION the aerospace industry, as well as to most manufac-
turing processes, CFD has been pursued actively ever

Numerical methods for the solution of field problem- since the first digital computers were developed. The
s using unstructured grids have reached a high de- Manhattan project was a major testbed and benefi-
gree of maturity. In Computational Fluid Dynamics ciary of early CFD technology. Concepts like artificial
(CFD), their impact has come relatively late. CF) dissipation date from this time.
has been traditionally dominated by structured grid CFD, by its very nature, encompasses a variety of
solvers. These simpler solvers were used on relatively disciplines, which may be enumerated in the following
simple domains that were still of engineering inter- order of importance:
est, e.. an airfoil or a wing. Only as the computa- - Entineerint: We live in a technology-driven
tional power of hardware increased to current levels world. Engineering provides the reason wiy we
did the possibility of computing geometrically corn- purud. Forg th e ro a son of we

plexdesgnsbecoe areaity.It as t ths pint pursue CFD. Forget the romantic vision of re-plex designs become a reality. It wan at this point searchers mimicking art for art's sake. This is

that methods based on unstructured grids started to engineringmandiif a fod ant guie an i-
havean mpat o maistram FD.engineering, and if a code can not guide an engi-

have an impact on mainstream CFD. neer to better products, it i-' simply useless.
The following set of notes are part of a larger set that I - Phys-•: Physics explains the phenomena to be
had originally planned for this short course. As the fi- simulated for engineering purposes, and provides
nal program only called for me to describe grid gener- possible approximations and simplifications to ab
ators, adaptive refinement schemes, visualization and initio physics. For example, the potential ap-
parallelization issues, I have restricted them to these proximation, where applicable, tepresents CPU
topics. The topic of visualization has been left out savings of several orders of magnittide as com-
entirel;. Given the description of optimal data struc- pared to full Reynolds-Averaged Navier-Stokes
tures for grid generation, the reader can easily devise (RANS) simulations. It is the task of this dis-
optimal search algorithms for visualization. cipline to outline the domains of v•lidity of the

I have preceded these topics with a short chapter that different assumptions and approximations that

places CFD among related disciplines, tries to define are possible.

its aims, and focuses on the end-product of CFD re- - Mathemati : Mathematics has three different
search: flow simulation codes. The newcomer should types of input for CFD applications. These are:
find this section partimularly interesting, a) Classic Analysis, which discusses the nature,

boundary conditions, Green kernels, under-
The reference section covers all topics originally in- lying variational principles. adjoint opera-
tended for this course. The readr is encouraged to tots, etc. of the PDEs;
consult all of these for a more complete picture of b) Numerical Analysis, which describes the sta-
CFD. bility, convergence rates, uniqueness of solu-

tions, well-posedness of numerical schemes,
1. CFD: GENERAL CONSIDERATIONS etz.; and

Before going into a detailed description of algorithm- c) Discrete Mathematics, which enables thea used for Co>mputational Fluid Dynami,-s (CFD), it rapid execution of arithmetic operations (trysolving a square-root by hand).
seems proper to place this discipline among related
disciplines. CFD is patt of Computational Mechanics, S nn
which in turn is part of Simulation Techniq:ues. The roomed into many subdisciplins. The most ira-portant ones for CFD are: '
aim is to approximate physically relevant situations at onesf whD ae:
and phenomena using computers. In CFD, thin is -a) Algorithms, which describ how to perform
complished by solving numerically Partial Diffezntial certain operations in an l ptimal way (e.g.
Equations (PDEs), or by following the interarticn of search of items in a list or in space);
a large numbers of particles. Due to its relvance to b) Coding, so that the final code is portable,

1
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t

easy to modify and/or expand, easy to un- (the general purpose run of manufacturing industries
derstand, user-friendly, etc.; and procýs" control);

c) Software, which not only encompasses corn- b) 'rho.w that require a large number of runs to op-
pilers, debuggers and operating systems, but timize highly sophisticated products (e.g. airfoi! or

also advanced graphics libraries (e.g. try do- wing optimization); and
ing what you can do with GL in PlIGS); c) Those that require a
and few very detailed runs on extremely simple geome-

d) Hardware, which drives not, only the realmi tries in order to understand or discover new physics

Of ever expanding applicantion that Would (the NASA/NRL/LLNL/LANI,/etc. scenario, whereof eer epaning ppliatins tat wuld each run takes at least .500 hours of CRAY-time).
have been unthinkable a decade ago, but. also
influences to a large extent the algorithms According to this frequency of runs, the priorities
employed and the way codes are written. change, as can be seen from the following table:

- Visualization Techniques: The vast az_:ounts of
data produced by modern simulations need to be
displayed in a sensible way. This not only refers 0(1) 0(1,000) 0(10)
to optimal algorithms to filter and traverse the days seconds months
data at hand, but also to ways of seeing this da- EU Sp, AC
ta (plane-cuts, iso-surfaces, X-rays, stereo-vision, DO TT BM
etc.). GF GF SP

- User Community: The final product of any CFD TT AC TT

effort is a code that is to be used for engineer- BM BM EU
ing applications. Successful codes tend to have AC EU GF

a user-community. This introduces human fac- SP DO DO
tors which have to be accounted for: confidencc
and benchniarking, documentation and educa- The message is clear: before comparing codes, ask
tion, the individual motivation of the end-users, how often the code is to be used on a particnlar ap-
ego-factors, not-invented-here syndrome, etc. plication, how qualified the personnel is, what the

maximum allowed turnaround time is, the expected

1. 1 The CFD Code accuracy and the resources available. Only then can
a proper choice of codes be made.

The end-product of any CFD effort is a code that is
to be used for engineering applications. The quality 1.2 Potn ds.c o to an ndustrial Context
of this tool will depend on the quality of ingredients G
listed above. Just as a chain is only as strong a st Going from a research code to an industrial code re-
s weakest member, so is a code only as good as the quires a major change of focus. Industrial codes are
worst of its ingredients. Given the breadth and vari- characterized by
ety of disciplines required for a good code, it is not - Extensive manuals and other documentation;
surprising that only a few codes make it to a pro-
duction environment, although so many are written - 24-hour hotline answering service;
worldwide. Once a CFD code leaves the realms of rt- - Customer support team for special request-
search, it becomes a tool i.e. a part of the service in- s/applications;
dustry. CFD codes, like other simulation codes, have
certain properties. Some of these are: - Incorporation of changes through releases and

- EU: Ease of Use (Problem set-up, User interface. training,

"In short, they require an organization to support
- DO: Documentation (Manuals, lip, . them. Many researchers (particularly members of a-
- GF: Geometric Flexibility cademia who always longed for their own company)

-'T: Turnaround Time (Set-up to en(-result) seem to ignore this. The result is a proliferation of
- BM: Benchnaarking small companies that neither satisfy customer needs,
- AC: Accuracy nor attain a high scientific level in their cedes. Thus,
- SP: Speed these companies are characterized by being short-

As any other product, CFD, codes have a customer lived, as well as being one-idea ot one-product ori-

base. This customer base may be categorized by the ente.
number of times a certain application has to be per- 2. UNSTRUCTURED GRID GENERATION
formed. Three main types of end-users may be iden-
tified: Consider the task of generating ani arbitrary unotruc-
a) Those that require a few runs on new configura- tured mesh in a given computational domain. The
tions every so often to guide them in their designs information required to perform this task is-



a) A description of the bounding surfaces of the do- uniform mesh sizes, one may define a series of box-
main to be dioctetized; es in which the element size is constant. For each

b) A description of how the clemeint -ize. shape and location in space, the element size taken is the small-
orientation should be in space; eft of all the boxes containing the current location.

c) The choice of element type; When used in conjunction with surface defit-ition via
,l) 'lh. choice of a suitable method to achieve the quad/octrefe, one can automate the point distribu-

generation of the desired mesh. tion process completely in a very elegmut way (Got].

The most comimon ways to provide these four pieces VA4 jt/Linel/urface 'ources: A more flexible way
of information are discussed in the following. that combines the smnoothnesw of functions with the

2 ____ Le oundinic Surfaces of the generality of boxes or other discrete elements is to de-
2.1 ripion of th• Be rf ofh ine sources. As aii example, consider the line source
.Dom.aii defined by the function:

S.I &alI tic Functions: This is the preferred choice
if a CAD-CAMI data base exists for thle description of 6x~ 0 [÷(L~ 21
tile domain. In this case, Splines, B-Splints or other I \ ri/ J
types of functions ate used to deocribe the surface 'rhe definition of r(x) may be inferred from fig-
of the domain. An important characteristic of this ure 2.1. As one can see, a very flexible way of defin-
approach is that the surface is continuous, i.e. there ing mesh spacings is obtained with the 4 input pa-
exist no 'holes' in the informnation. raineters 60, r0, rl, ,. If one collapses the two points

S.2 iscrel Dat: lhere, instead of functions, a cloud x2 -x, a point-source is obtained. It is a simple
of points describes the surface of the computational matter to introduce these sources interactively with
domain. This choice nay be attractive when no CAD- the mouse once the surface data is available. Ob-

CAM data base exists. Commercial digitizers can viously, the number of sources should be kept small
gather surface point information at high speeds, (> (N. < 50) in order not to incur penalties in user set-

30,000 points/sec), allowing a very accurate descri,- up time and grid generation time.
tion of a scaled model or the full configuration [Gd. 1].
Notice that this approach leads to a discontinuous
surface description. In order raot to make any mis- x2
takes when discretizing the surface during mesh gen- r(x
eration, only the points given in the cloud of points
should be selected.
2.2
Variation of ilement Size. Sha All! IdIItian
in swae

V.! Internal Meawure- of Crid __.lity: The idea here
is to start froin a given surface mesah. After the intro- /
duction of a new point or element, the quality of the X I
current grid or front is assessed. Then, a new point
or clement is introduced in the most critical region. Eil..1 mnple of t Source to Dtl4e
This process is repeated until either a mesh that sat- Element Size in Space
isfies a preset measure of quality is achieved (G v. 11],
or the number of faces in the front has shrunk to ?e- V.5 B a,.ft iUL j : liere, a coarse grid is provid-
ro [Ga.8J. This technique works well for equilateral ed by the neer. At each of the nodes of this back-
elements, requiring mninimal user input. On the other ground grid, the element size, stretching and stretch-
hand, it is not very general, as the surface mesh needs ing direction are specified. While very geh~eral and
to be provided as part of procedure, fle.aible, and par'iularly suited to adaptive remesh-

V.2 Analytical Functions: In this case, the nse, codes ing, tile input of suitable background grid, for con-
in a small subroutine the desired variamio-. of elemen- plex 3-D configurations can become a tedious pro-
t size, shape and orientation in space. Needies to cess. Therefore, most available grid generator.- ea-n
say, this is the least general of all procedures, requir- ploy background grids in conjunction with s.ource-
ing new coding for every new problem. On the oth- definitions in order to generate the first mesh.
er hand, if the same problem needs to be discretized 3 t
many times, an optimal diseretization vaay be coded 2. ___

in this way. Although it may seem inappropriate to Almost all current unstructured grid generators can
pursue such a" appesoach within unstructured grids, only generate triangular or tetrahedral elements. If
the reader may be reminded that most current airfoil quad-elementa in 2-D ate required, they are generated
calculations are carried out using this approach. by the following five-stage process:

V.- 3ox, If all that is required are regions with Q.1 Generate a triangular mesh with elements that



are four times W big a- the quad-elenients re- 'front' donotes the boundary between the Togion in -

quired. pace that him been filled with eleiecnts and that. which
is ehipty.

Q.2 uise as inany pairs of triangles into quads as poe.
sible without generat.ing quads that art too diL+-
torted. This proce•s will leave o)iuo triangle. ill .
the domain. I INN( W

Q.3 Smooth the mefihl of triangles and qnads.
QA tl-rellne globally the [ituli of triangles and quads.

For the triangles, introduce -in additional point
ill th¢e elemnenit (,we 1lgure 2.2). Il tills way. the
resulting niesh will only contavin quads. More-
over, thie quads will now be of the desired size.

Vi•r 2.3.tAtldvzicing Ftol"t Method

1___ _ M.2 Jijtg..lji% i trjsU I this case, an exist-
ing grid is niodified by the introduction of new points..
After the introduction of each point, thae grid is recon-
nected or recionstructed locally in order to improve
tthe mesh quality, This procedure has been sketched
in Figure 2.4. In mnit ei ,s, tile Delatuney circuin-
scircle or circunisphere criterion is used to reconinect
tile points. Given the duality between Voroiioi tesse_-
lations and tile triatlgulatiolin obtained using the De-
lauitty criterion, the miethods falling under this cate-
gory have been called Voronoi al rithins.

/ /

Fix~tirt2.21: Geueration of Q'.ia-Meshcii fromn 'l'rianglts

Q.5 Smooth the final mesh of quads.

The procedure outlined above will Uot work in 3-D.
There is a large ef'ort of 3-D brick generation tech-
nology at Sand-a Labs at the present time.

2.4 Methods

There appear to be only the two following ways to fill
space with an unstructured mesh: Fiiure 2.4: Voronoi Appromach

M.1 FilEmntV. i.e. Not YetGridded Snace: The
idea here is to procede into as yet ungridded space un-
til the complete computational domain is filled with In the following matrix, a brief sumni.nry is given of
elements. This has been shown diagramatically in possible combinations for specifying element size and
Figure 2.3. The methods falling uaaer this catego- shape in space, the method employed to generate the
ry ate the so-called advandin; front alorithlns. The nmesh as attempted by various authors:



A\uthao. Ulm.n Sit %oh.•1.h'-- .. 00" C) 111ibortn _aCk2Lrudud i: [;or I, )l- €lli that re-
"'ahl l t ; - quire uniforn girids (e.g. l -\dar Cro-q, Sect.ion cal-

I. Io V ?!:I NI I 4;, CtkA 0 1t ilS atd hlotlrog1enilleus turbUlenlce), 1o10t of the
Mr1 /Peu.'mtelt.ohiuet V i;s \t I (;a 34 mesh covering tile coniputational donaitli call be read-
lIwlt V I NI I tt

V, ..1 I ily obtain from a 11 uiform grid. Thiy grid Ni called
W\ftIh.ltiIIM~vrl, hI/inkcI \- 2 I t G.v Ill i backgtound grid, becauto) it. is laid over the coin-

Vl IV\ 3 .41 (G, 1 putv ionial doumamll. At tile 1omit(lriti, the me.sh•.r'yj{bvp, .ueih d V 3 \I '2 (~&• I

%I1i2 0 V I d 2 Cv I1 IIti)y ieJ Ino.diljCd to conform to tile surfitcei, althliough
mlilily Legolatid codes omtit even this. After modify-

ilng tllchs 4irf llcet •e•lilelets, tile l1C.S-h is sinoothled. ill
... ') ~ .N" ...... order to obtain al iiore uniforlm dii.cretizat.•)nI Close to

Many other miethoddS of genierIttlig MnSheCS thautt are the boundaries [GrAl.Gr.21. rite ptocedhre has been
-pxcially ouit.d to t p)art.icuhlr application may be de- l ketehud hi Figure 2.6.

veloped. If one knows the approinllate answer (Say we
want to solve tile saim winig tittle ald tittle again), the
specialized development. of all optimal mttsh akes• -- \7 7 \
good sense. In inany of these ca" (e.g. th 0-mesh
for a subsouic/tronsonic Ut.eady-state airfoil Calcuhi-
tion), grids generated by hime more gneral muletlho(ls 1OA•'ry
listed above will tend to be larger than the specialized
ones for the same final accuracy. The main methods
falling under this Seeiaiized category are:

a) Smj•Die Mavnilk. lii this case, it is assumed that 7
the rcmplete computational doniain can be mapped
into a single quad or cube, The dist-'bution of points
and elcnilents in space is controlled either by an ,4,- /
braic function, or by tile solution of a Partial Differ-
ential F'quation in the transformed space. Needless
t~o say, thie number of points on opposing faces of the
mapped quad or cube have to match line by line.

b) a Ap oa.h: Here, the previous %I).
proach is applied on a local level by first m1anually or
semi-n.-anually dicreti.'; ig tile domain with large ie.-
mlie.nts. These large emements are subsequently divided
tip into smaller elements using simple inappikigs [G- Eij&VU: Mesh Generar' ,n by Perturbation of a
m--- , .... r,: .... . 5 -- "I'\ __ ,. . ... . . ............ i . Rejtil,wi M es~h

this approach hail been termed minulti-block', and a 3. GRID GENLUA'ION USING THE
whole service industry dedicated to tie proper con- ADVANCING F'RONT METIIOD
struction of grids ha evolved (Giii. -h1.

___After describing tile general strategies currently avail-
/ able to generate unstructured grids, the advancinkg

/ front nmthod will now be explained in more detadl.
I '-Tie ainm is to show what it takes to it`%ke any of

__.._ the methods outlined in the previous sections work.
Many of the data structures, search algorithms, and

..... ( -- general coding issues carry owver to the other methods.
- - The advancing front technique consitits algorit~hmical-

_____ -ly of thle following steps:
iF. Define the spatial variation of elenlent size,

stretchings, and stretching oCrections for the ele-
___ nments to be created. in most cases, this is accomu-

plitlihed with a combination of background gridsK.....and tources as outlined above.

. I F.2 Define the boundaries of the domain to be grid-I ded. This is typically accoxiplishled by splikies in
L -2-D and surface patches in 3-1).

F.3 Using thie information stored on the background
.jLM _*..Macro-Element or Multim.lock Approach grid, act uip facets on "ll these boukidaries. This



yiehip the initial fr,,it nf faces. At the sitioie time, D.5.1 Determine whether the Cletleent formed I it th
find the gene•ati,..u parameters (element size. el- the select.ed point IPNMW does not cross a'y
oment otretchings and strotching directions) for given facce. If it. doe,,. oelect a new point as

th,•se ftaces froth the background grid. IPNEV arnd try agailn (go to F.5.3).

F.4 Select the next face to be deleted ftom the fron- 1.6 Add the IICW element, point, and faccs to their
t.; in order to avoid large clement.s crossing over respective list$.
regions of mumil elements, the face forminit the F.7 IPind tho generation parametera for the new faces
smallest new elamont is selectcd ,as the next face front the background grid.
to be deleted ftomi1 the llst of" fnces. F>.8 D~elete tile knowil,'n I t,Z)r froml tile li-A• of facesq.

F., For the face to be deleted: F.9 If there are any faces left in the front, go to 1".,.

F.5. I Select. n 'best point.' position for the intro.
duct.ioi. of a new point. IPNEW.

F.5.2 Determine whether a point exists in the al- The complete grid generation of a simple '2-) deA, mAr
ready generated grid that should be used in isingi the dvancnlug front techiitque is showuk ili Fig-
lieu of the new point. If there is such a point, ure 3.1. In the following, individual aspects of this
set this point, to goneral algorithmic outlined are descrii,-d in more de-
IPMEW and continue seatchin, (go to F.5.2). tail.

Uerine Der ie
Domain Iackgrclunt*
to be Grid
Gridded.. . . .

6 new points I new Potnt
6 new races 2 new faces

I face Out

-. act f"-6 nact.r-

I new point 0 new points
"2 ;s;.., (•,,-nc I ne:ts,. .V '

I O ~ut 2 r3cos out
nac tf _. nactf-

o niew pointsQ l\
I new race 2 new ra c.

2 faces out I faci ? od , t

nact f-6 nactr-

0 new points 0 new oom

0 new faces A~Iv no,,ta

3 (aces out 2~:~ -'iŽJe races I kW (dI ~~~~n8;aUct Kfa,Ž, t

ne facesOu Active Fromt3 faces out

nactf-O Elements

fijre 3.1: Grid Generation Using the Advancing Front T'chnmique
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3. 1. •heckinx the Intersertion of Faces FACE

The most important ingredient of the advancing front
generator is a reliable and fast algorithm for checking 922
whether two faces intersect each other. Experience 

i 2

from practical applications indicates that even Olght
changes in this portion of the generator greatly influ- 2,
ence the final mesh. As with so many other problem- z
s in computational geometry, checking whether two
faces intersect each other seems trivial for the eye, SIDE
but is complicated to code. The problem is shown
in Figure 3.2. The checking algorithm is based on X

the following observation: two triangular faces dc not Fiu : 3.3 Face-Side Combination
intersect if no side of either face intersects the other
face. The idea then is to build all possibie side-face SlOE
combinations between any two faces and check them
in turn. If no intersection is found, then the faces do
no,, cross. With the notation defined in Figure 3.3,
the intersection point is found as

1 2 3 FCxf + agx + ag2 = X,+s , (3.1) FA

where the gi-vectors form a covariant basis. Using g,
the contravariant basis g' defined by

g• (3.2) Fixmre 3.4: Distance Between Face and Side

where b' denotes the Kronecker-delta, the a' are given The first form (Eqn.(3.5)) produces acceptable grids.

by If the face and the side have points in common, then
=the ai wiil all be either 1 or 0. As both Eqn.(3.5) and

aI (x- x]) g, Eqn.(3.6) will not be satisfied, special provision has
a2 = (x, - x 1 ) g . (3.3) to be made for these cases. For each two faces, siy
a3 = (x/ - x,) • g . side-face combinations are possible. Considering that

on average about 40 close faces need to be checked,
Because we are only interested in a triangular surface this way of checking the crossing of faces is very CPU-
for the g1, g2 - plane, we define another quantity sim- intensive. When it was first implemented, this portion
ilar to the third shape function for a !,near triangle: of the grid generation code took more than 80% of the

a4 = I - al _ of2 (3.4) CPU time required. In order to reduce the work load,
a three-layered approach was subsequently adopted:

Using the a', two faces can be considered as '-rosse-" a) M /Max-search: The idea here is to disregard
if they only come close together. Then, in order for all face-face combinations where the distance be-
the side not to cross the face, at least one of the a' wtween faces exceeds some prescribed minimum dis-

has to satisfy tance. This can be accomplished by checking the

t > maz(-a', a' - 1) , i = 1,4 , (3.5) maximum amd minimum value for the coordinates
of each face. Faces cannot possibly cross each other

"where t is a predefined tolerance. By projecting the g, if, at least for one of the dimensions i = 1, 2,3, they
onto their respective unit contravariant vectors, one satisfy one of the following inequalities
can obtain the actual distance between a face and a
side. The criterion given by Eqn.(3.5) would then be maztac.1 ) A, BzC) < mininj, 2 (ZX'Z,' )-d ,

replaced by (see Figure 3.4): (3.7a)
1A

d > rnaz(-a - , .1, 4 3.6)>
Igil B C B C(3.7b)

where A, B,C denote the corner points of each face.

b) Local element coordinates: The purpose of check-
ing for face-crossings is to determine whether the new-
ly formed tetrahedron breaks already given faces. The j

idea is to extend the previous Min/Max-criterion with
the shape functions of the new tetrah-dron. If all
the points of a given face have shape-fanction val-

U.: Crossing of Two Faces ues N that have the same sign and lie outside the



l-, 1 4 t] interval, then the tetrahedron cannot poes. 3.2.1 Heap List for the Fuessibly cross the face. Such a face is therefore disre-garded. Heap lists are well-known binary tree data structuresin computer science [Ni.1-41. The ordering of the tree
c) In-depth analys s of sid_•face combinations; Al- is accomplished by requiring that the key of any fa-
1 the faces remaining after the filtering proccrs of steps ther (root) be smaller than the keys of the two sons
a) and b) are analyzed using side-face combinations (branches). An example of a tree ordered in this man-
as explained above. net is given in Figure 3.5, where a possible tree for the

Each of these three filters requires about an order letters of the word 'example' is shown. The letters
Eah of magntue more CP-imers reqith an the oreder have been arranged according to their place in the al-
of magnitude more CPU-time than the preceding phabet. We must now devise ways to add or delete
one. When implemented in this way, the face-crossing entries from such an ordered tree without altering the
check requires only 25% of the total grid generation ordering. In the present case faces have to added as
time. When operating on a vector machine, loops are entries into the tree. Therefore, replace 'entry' by
performed over all the possible combinations, building 'face'. The ideas that follow use the heap-sort and
the gi,g', ', etc. in vector mode. Although the vec- heap-search algorithms [Ds.2,3] to determine quickly
tor lengths are rather short, the chaining that results which face should be deleted next from the front.
from the lengthy mathematical operations involved
results in acceptable megaflop-rates on the CRAY- 1
XMP. 2-

3.2. Data Structures to Minimize Search Overheads

The operations that could potentially reduce the ef-
ficiency of the algorithm to O(N'I5 ) or even O(N2 )
are (see section 2): 3. E .

a) Finding the next face to be deleted (step F.4); .

b) Finding the closest given points to a new point "xE
(step F.5.2); I

c) Finding the faces adjacent to a given point (step
F.5.3);4. A A

d) Finding for any given location the values of gen-
eration parameters from the background grid -E E
(steps F.3 and F.7). This is an interpolation X E M
problem on unstructured grids. /

The verb 'find' appears in al of these operations. The & X
main task is to design th.e best data structuires for
performing the search operations a)-d) as efficiently ... 6...
as possible. Thesm data structures are typically bi-
nary trees or more complex trees. They were devel-
oped in the 1960s for Computer Science applications. 7. A
Many variations are possible (see [Ds.AJ). As with
flow solvers, there does not seem tc be a clearly d-
fined optimal data structure that all current grid gen- M E
erators use. For each of the data structures currently
employed, one can find pathological cases where the
performance of the tree-seach degrades considerably. P%
The data structures I have used are:The ata trucure I hve ued ae: ii•r 3.5: Insertion of Items into the Heap List

- Heap-lists [Ds.1-41, to find the next face to be
deleted from the front; The positions of the son or the father in the heap

- Quad-trees (2-D) and Octrees (3-D) list LBEAP(1:R•BAP) are denoted by IPSON, IPFATK
[Ds.l,2,Go.1], to locate pomnts that are close to respectively. Accordingly, the face-number of the
any given location; son or the father in the tree is denoted by IF-" ~SON, IIFtT3. Then IFSON=LllgAP(IPSEIN) and IF-- N-trees, to determine which faces are adjacent to Ta
a point. FATIIaLZUP(IPFATI). From Figure 3.5 one can see
apntthat the two sons of position IPFATI are located at

Combining these data-structures, one can also derive IPSOuiz ,IPFITm and IPSO12=2*IPFATT+1 respec-
an optimal interpolation algorithm for unst-uctured tively. Assume that NFACE faces and RFACRC• 1:FACE)
grids (Ga.41. associated keys are given. The two main operations
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are adding and deleting a new face to the tree without IFSOIIfLBAP(IPSO11I),
altering the ordering. IFSOI2vLBEAP(IPSOUI2),

3.2.1.1 Adding a new face to the heap list IFFATh-LEAP(IPFATU).
R.6 Determine which son needs to be exchanged:

The idea is to add the new face at the end of the If RPACB(IFFATI) < IPACE(IFS011).
tree. If necessary, the internal order of the tree is re- RFACEM(FSOi2) : act IPRIEC=O
established by comparing father and son pairs. Thus, If RPACE(IFFATE) > RFACE(IFSON1) >
the tree is" traversed from the bottom upwards. RFACE(IF$S2) : set IPUCI=IPSOI2
Altorithm ADDNEAP : If RFACE(IFFATI) > RFACE(IFSON2) >

A.1 Increase IBEAP by one: NHEAP=NIEAP+I. RFACE(IRZFSO1) : set IPEXCE(IPSOFI

A.2 Place the new face IFIEW at the end of the heap fRFcE(xIFSG12) >set IPECH=IPSO12

* list: L!E-tP(lEAP)=IFiNEV. If RFACE(IFSOu2) > RFACE(IFFATI) >
A.3 Set the position of the son IPSON in the heap list RFACES(I011):

"to: set IPEXCHaIPSOII1
aIPSOI=HEAP. R.7 Unless XPEXCH=O, exchange father and son posi-

A.4 Then the position of the father MPFATH in the tions:
heap list is given by: IPFATN=IPSOE/2 (integer R.7.1 interchange the faces stored in LHEAP
division). R.7.1 s e facr

A.5 The faces associated with the positions of father R.7.2 set IPFATIIPEZCI
and son are: IFSOiLHEAtP(IPS01), R.7.3 unless 2*IPFATH > UHEAP (bottom of theIFFATsLfeIFAP(IPFATES). list), go back to step R.4.

A.6 If RFACE(IFSOI) < RFACE(IFFATH): In this way, the face with the smallest associated key

A.6.1 interchange the faces stored in LHEAP will again remain at the top of the list in position L-
HEAP(1). The described process is illustrated in Fig-

A.6.2 set IPSOfiIPFAT. ure 3.6, where the successive removal of the small-

A.6.3 unless IPSO:ll (top of the -.it), go back to est element (, '.phabetically) from the previously con-
step A.4. structed heap list is shown.

In this way, the fa'-e with the smallest associated key
RFACE(IFACE) remains at the top of the list in po- i.
sition LHEAP(l). The process is illustrated in Fig- @ .
ure 3.5, where the letters of the word 'example' 'a

been inserted sequentially into the heap list. M

3.2.!.2 .E
Removing the face at the top of the heap lis. 2.

¶ The idea is to take out the face at the to. -0'o- hea L-./• ... A --- - .
list, replacing it by the face at the bottor" ucs
list. If necessary, the internal order .e- M M
established by comparing pai _-Att )n.ifS
Thus, the tree is traversed from a, .... iards. dX X 't -_ x

Algorithm RENHEAP:
3. 6,

R.i Take out the face at the top of the list: I-
FOUT=L£EAP (1)

R.2 Place the face stored at the end of the heap list (ý)@@OL &O '

Sat the top: fifue 3.6: Successive Deletion of the
IJEAP (1) aLBhAP (IHEAP), and lower Smallest Item from the Heap List

t IBHEAP: IUEAP=IIEAP-1.

R.3 Set the position of the father IPFATH in the heap
list to It is easy to prove that. b-h the insertion and
IPFATR=1. the deletion of a face into the heap list will take

R.4 Then the positions of the two sons IPSONl and ," 2((Il2AP)) operations [De.3,4] on the average.

IPSON2 in the heap list are given by: IP-.
SO12*IPFATE 2 Quad/Octrems for the Points
and IPSON2fIPSOBI1+. Quadtrees and Octrees have been used extensively for

R.5 The faces associated with the positions of father 2-D and 3-D gý' ' generators (Go.1]. Their main role
and sons are: there was to dmine the objects to be gridded, and
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not to provide an O(log(N)) search algorithm for .r- for LQUAD (7, IQ) < 0
bitrary point distributions. The moain iHeas are de- the quads into which the
scribed for 2-D regions. The extension co 3-D regions present quad was subdivided
i• immediate. Define an array LQUAD(1:7 .HQ'JAD) to
store the points, where HQUAD denotes the maximum At moot four points are stored per quad. If a fifth
number of quads allowed. For each quad 'Q, store in point falls into the quad, the quad is subdivided into
LQUAD ( :7.IQ) the following information: four, and the old points are re-located into their re-

LQIAD ( 7, IQ) : < 0: the quad is fall spectve quads. Then the fifth point is introduced to
= 0: the quad is empty the new quad into which it falls. If the quad is full

> 0: the number of points agair-, the subdivision process continues, until a quad
stored in the quad with vacant storage space is found. This process is

LQl'.*.D( OIQ) > 0 : the quad the present illustrated in Figure 3.7. The newly introduced point
quad came from E falls into the quad IQ. As IQ already contains the

LQUAD( S, IQ): > 0: the position in the four points A,B,C and D, the quad is subdivided into
quad the present four. Points A,B,C and D are relocated to the new
quad came from quade, and Doint E is added to the new quad IQUAD+2.

LQUAD(1:4,IQ): for LQUAD(T,.IQ) ? 0: Figure 3.7 also shows the entries in the LQUAD-array,
the points stored in this quad as well as the associated tree-structure.

W0 NOUAO*+ Z NMM+O4

a r a a D a OLD POINTS (A.8.CC)

A a 
0 '

NQUADO41 NOUAO 2

NOUA0e4
10 NOUAD+3- 1

NOUAD+2-
NO AOD + +

0. A C0:

S II

II -I

C

LCKJ~- NOUAO+1
NOUAD+2

2 NGUA+4 2

10 A S CIO + '14 144 1-1 10

II,, II

NOU$OII-------- OA-
PK +1 AIII I 1o -. 10,1 NOUAO 1

NOLAOD+2 A 1 NOUAD.I
MOWO 3 C NOUAD+3

NOUAD.4 0 410 4 NOI÷AD+4

I I I I14 -4- -14
M -1 1 i -OU-O-" WO - I Mau

Fim 3.7: Introduction of a New Point into a full Quad
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In order to find points that lie inside a search region, faces surrounding points (+1), and NFAPG the maxi-
the quadtree is traversed from the top downwards. mum Lumber of storage locations. Then store in:

In this way, those quads that lie outside the search
region are eliminated at the highest possible level. L'n"IN(IPODI) : the place IFAPO in LFAPO
An attractive feature of quadtrv.s and octrees is that where the storage of the faces

there is a close relationship between the spatial loca- surrounding point TPOII starts.
tion and the location in the tree. This considerably ( : > 0 : the number of
reduces the number of operations required to find the stored naces

quads covering a desired search-region. It is not dif- : the place JFAPO

ficult to see that with the quadtree or the octree it in LFAPO

takes O(log4 (N)) or O(loge(N)) operations to locate where the storage
all points inside a search region or to find the point of the fac's
closest to a given point. ourrounding

3.2.3 N-trees for the Face/Point Search point IPoII
is continued

N-trees are linked lists that are often used " re- LFrAPO(1:NFSUP-1, IFAPO) : 0: an empty location
* late data of different naturc and number of items.

For unstructured grids one could relate element, face, > 0 : a face surrounding
side and point-data. In the present case, a storage
scheme is sought to answer the question: which are
the faces adjacent to a given point? As the num- In 2-1D one typically has two faces adjacent to a point,

ber ot faces surrounding a point varies from point to and NFSUP-3, while for 3-D meshes typical values

point, but usually fluctuates within certain bounds, are NFSUP=8-10. Once this storage scheme has been

the following scheme appears attractive. Define an set up, storing and/or finding the faces surrounding
array LPOII( I:POII) over the points and another points is readily done. The process of adding a face to

array LFAPO(1-KFSUP,HFAPO), where IPOI! denotes the linked list LPOIi/LFAPO is shown diagramatically

the number of points, MFSUP the average number of in Figure 3.8.

t

F3

IPOIhI

F1 CF2,

JIM i FAPO

2 2

IPOIN 
IFAW 0AP

F1 F21F2 2 F1F2 i -(NFAPO+1) 4--

SMFA P O

WA•.8 0 0i F3o0 1 ]ist
Fgte3.8: I,,tro(I,:.'tiohI of a New Face into the Linked List
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3.3 Additional Techniques to Increase Sgmd should be reminded that in 3-D, even the slightest

There are some additional techniques that can be used chance of something going astray has to be accounted
for. In a mesh of over a million tetrahedra (common

to improve the performance of the a ron even for Euler-runs), any slight possibility becomes
grid generator. The most important of these are:

a reality. The following techniques have been found
a) Filtering: Typically, the number of close points effective in enhaciug the reliability of advancing front
and faces is far too conservative, i.e. large. As an grid generators to a point where they can be applied
example, consider the search for close points: there on a routine basis in a production environment:
may be up to eight points inside an octant, but of a) Avoidance of badI elements during generation: It is
these only one m ;y be close to the face to be taken important not to allow any bad elements to be creat-
out. The idea is to filter out these 'distant' faces and ed during the generation process. These bad elements
points in order to avoid extra work afterwards. While can cause havoc when trying to introduce further ele-
the search operations are difficult to vectorize, these ments at a later stage. '.herefort, if a well-shaped
filtering operations lend themselves to vectorization tetrahedron ean not be introduced for the current
in a straightforward way, leading to a considerable face, the face is skipped.
overall reduction in CPU requirements. b) Sweep and Retry: If any faces where new ele-

b) Automatic Reduction of Unused Points: As the ments could not be introduced remain in the field,
front advances into the domain and more and more these regions are enlarged and remeshed again. This

tetrahedra are generated, the number of tree-levels 'sweep and retry' technique has provea extremely ro-

increases. This automatically implies an increase in bust and reliable. It has also made smoothing of

CPU-time, as more steps are required to reach the meshes possible: if elements with negative or sinai-

lower levels of the trees. In order to reduce this CPU- 1 Jacobians appear during smoothing (as is the case

increase as much as possible, all trees are automatical- with most spring-analogy smoothers), these elements

ly restructured. All points which are completely sur- are removed. The unmeshed regions of space are then
rounded by tetrahedra are eliminated from the trees. regridded. By being able to smooth, the mesh quality

This procedure has proven to be extremely effective, is improved substantially, leading to better results in

It reduces the asymptotic complexity of the grid gmn- field solvers.

erator to less than O(N log N). In fact, in most prac-
tical cases one observes a linear O(N) asymptotic 3.5 Some Examples
complexity, as CPU is traded between subroutine cal-
Soverheads and less close faces on average for large s a3.5.1 Multi-Element Airfoil Configuration: Figure 3.9

probems.shows a multi-element airfoil cuse. Figure 3.9a gives
problems. the boundary information, Figure 3.9b the back-
c) Global h-refinement: While the basic advancing ground grid used and Figure 3.9c the quadtree ob-

front algorithm is a scalar algorithm, h-refinement can tained for the background grid. Figures 3.9d,e show
be completely vectorized. Therefore, the grid gen- the constructed mesh before smoothing, as well as the
eration process can be made considerably faster by associated quadtree. This grid is then smoothed usiing
first generating a -oarser, but stretched mesh, and a spring system analogy, producing 'he grid shown in
then refining globally this first mesh with classic h- Figure 3.9f.
refinement [Ae.6,7]. Typical speed-ups achieved byusing this approach are 1:6 to 1:7. Currently, the advancing front algorithm constructs

grids at a rate of 25,000 tetrahedra per minute on

the CRAY-XMP or CRAY-2. With one level of h-

3.4 Additional Techniques to Enhance reiab~ility refinement, the rate is 190,000 to 200,000 tetrahedra
The advancing front algorithm described above may per minute. This rate is essentially independent of
still fail for some pathological cases. The newcomer grid-size, but may decrease for very small grids.

.1



Figure 3.9: Multi-Element Airfoil Configuration
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I
! 4. ADAPTIVE REFINEMENT numbers of degrees of freedom (i.e. the smallest nmn-

SBesides their ability to discretize accurately com plex ber of dem ents) for the general aim :

, • geometriw, a second very attractive feature of un- cs ..., rain Vx E t•. (4.I)
! 1 structured gtidB ht the eaas with which adaptive re-
', z flnement can be incorporated into them. Th• addition Conceptually, one can derive this criterion front the
Sof further degrees offteedom does not destroy any pre- observation that the error will have the irregular dis-

Svious structure, Thtut, the flow solver requires no fur- tribution for the first mesh shown in Figure 4. la. It
Sther modification when operating on an adapted grid. the number of degrees of freedom is kept the same.,

For many practical problems, particularly those with the distribution of element size and shape is all that
! travelling shocks or flapping wakes, the regions that may be varied. ABet repositioning of points, the er-
r, need to be refined are extremely small as compared rot distribution in space will become more regular,
i to the overall domain, Thereforet the savings in slot- as shown in Figure 4.lb. One can also see. that the

age and CPU-requirements typically range between general aim stated in Eqn.(4.1) will be achieved when
10-100, as compared t.o an overall fine mesh [Am.l- the error is constant in the domain.
4,Ae.l-12,Ar.l-5]. Experience indicates that for prob-
lems falling in this class, adaptive refinement makes
the difference between being or not being able to run
the problem to an acceptable accuracy in a reason- •,r•, y //// •

able time [Ae.8-10]. Without it, one would he forced
. to use nmch coarser grids, with lower accuracy, for

the seane expense.
On the other hand, one should not always expec-

: t such big gains from adaptive refinement. As au
example, consider the repetitive simulation of iavis- III I • I t-t--•-b-•-t-b-•--

Scid subsonic flow past airfoils. For this application, a
J welbchoeen O-mesh already gives a near-optimal dis-
Scretization. Therefore, except perhaps at leading and •, 0ero,• ,,0•,•to•
: trailing edges and possible shock-regions, adaptation

will not give dramatic gains in performance.
The hidden advantage of adaptive refinement is that
it frees the user from having to waste time choo•.
ing a good initial grid. With adaptation, any ini-
tial grid will be transformed into a near-optimal dis-
cretizstion. Thus, adaptation adds a new dimension
of user-friendliness to the CFD process that w• not•_|F--F--F_}-•.FFFI-H-.t_-!,-_•
there previously.

Any adaptive refinement scheme is composed of three
" main ingredients. These are ,• .•:•o, a•pt•to•

I) an optimal-mesh criterion,
S• 2) an error indicator, and Fit• 4.1: Optimal Mesh Criterion

, 3) a method to refine and coarsen the mesh.

They give answers to the questions b) Local Absolute I•r¢or Tolerances: In malty practi
' 1) how should the optimal mesh be ? cal applications, the requited error tolerances may not

2) where is refinement/coarsening required ? be the same at all locations. Moreover, instead o|, "
3) how should the refinement/coarsenivg be accom- ing the general minimization stated in Eqn.(4.1), on.

plished ? may desire to enforce absolute local bounds in certai,•.

The topic of adaptation being now a decade old, it regions of the domain:

is not surprising that a variety of answers have been
proposed by several authors for each of these que,- •h < et Vx G t•,ub • (,I.2)

tions. In the following, the most sttccessful ones are Mesh refinement or coarsening would then take placeSdiscussed in more depth, if the local error indicator exceeds or falls below given

S4.10ntimal Mesh Critefi• refinement or coarsening tolerances:

,• The most common optimal mesh criteria employed > e, • refine , < ec =:" coarsen.

are: 4.2 Error Indicato•/Fattimatont
s) Enuidistribution of Error: The sam is to attain a
grid in which the error is uniformly distributed in s- Consider the task of trying to determine if the soh!•
pace. One can show that sltch a mesb his the smallest lion obtained on the present mesh is accurate, h•
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tuitively, a nU1luber of 4oriteria immediately conic t = to1 ,-,,,
mind: variations of key-variables within elements, - 2tsi + u.+i) -

entropy-levels, higher-order derivatives of the solu-
tions, etc. All of them make the fundamental ts- u, = 2-(-uN. 2 + W1u - 30ut + 16u•+1 - um+2)
sunltion that the solution nii the present mesh is 12h2
adready in some form 'close' to the exact solution.
This -ssumption is reasonable for parabolic and el- + 11" 4 , vtI (4.5b)
liptic problems, where, due to global minimization

principles, local deficiencies in the mesh have only .o it rhe ssutmption of smoothness in ts would allow a
local effect. For hyperbolic problems, the assumption good estimate of the error in the second derivatives
uh _ u may be completely erroneous. Consider an from the difference of thqee two expressions, For un-
airfoil at high angle of attack. A coarse initial mesh structured grids, one may recover these derivatives
may completely miss local separation bubbles at the with reconstruction procedures.
leading edge that lead to massive separation in the 1.4 Residuals of pDEs on AdIacnWrids: Assume

back portion of the airfoil. Thus, any error indicator we have a node-centered scheme to discretize the
presently in use (and I really mean any) would mis- PDEs at hand. At steady state, the residuals at the
s these features, performing adaptation at the wrong nodes will vanish. On the othet hand, if the residu-
places. On the other hand, the assumption u* • U is Is are evamuated at the element level, non-vanishing
a very reasonable one for most initial grids. As a mat- residuals are observed in the regions that require fur-
tor of fact, it is not so difficult to attain, particularly ther refinement. This error indicator hbw been used
if a similar problem has been solved before. extensively in France [Ae.41, Another possibility is

to check locally the effect of higher order shape func-
4.2.1 Popular Errorndi_.cators: tions introduced at the element level or at element
The most popular error indicators presently used in boundaries. These wo-called p-refinement indicators
production codes may be grouped into the following have been used extensively for structural FEM appli-
categories: cations [Ae.13,141.
1.1 Juings in lndicitor Variables: The simplest error All of these error indicators have been used in prac-

indicator is obtained by simply looking at the jump of tice to guide mesh adaptation procedures. They all
some indicator variable like the Mach-number, densi- work for their respective area of application, It seems
ty, or entropy within an element. The underlying a&- that the derivation of a proper error indicator is not
sumption is that in those regions where the-se jumps a difficult tsk. The analyst usually knowns how to
are large, more elements ue re iuired. This assump- discern a good solution from a bad one. An error
tions fails at shocks, where tar Jump will stay the indicator built on this knowledge has to work
same no matter how fine the mesh is made. Never-
theless, error indicators of this form have been used in 4.2.2 Tasent Compressible Flows
industrial applications with success [Ae.3,Ae. It1,121. Transient Compressible Flows, with their travelling

1.2 Interpolation 'heory: Making the assumption shocks of widely different strengths which need adap-
that the solution is smooth, one may approximate tation every 5-10 timesteps require more refined error
the error in each elements by a derivative one order indicators. Design criteria for these error indicators
higher than the element shape function. kor I-D, this are:
would result in an error indicator at the element level a) The error indicator should be fast.
of the form h) The error indicator should be dimensionless, so

that several 'key variables' can be monitored at
(h = chP2- , (4.3) the same time.

$I aic) The error indicator should be bounded, so that
where the p - th derivative is obtained by some re- no further user intervention becomes necessary
covery procedure, and for linear elements p = 2. The as the solution evolves.
total error in the computational domain is the given d) The error indicator should not only mark the re-
by gions with strong shocks to be refined, but al-

so weak shocks, contact discontinuities and other

! (4.4) 'weak features' in the flow.
V All of the popular error indicators described above are

no', dimensionless. This implies that strong shocks
1.3 Comnarison of Derivatives: Again making the as- produce large error indicators, whereas weak shocks
sumption that the solution is smooth, one may com- or contact discontinuities produce small ones. Thus,
pare significant derivatives using schemes of different in the end, only the strong shocks would be refined.
order. As an example, consider the following two ap- losing the weak features of the flow. An error indica-
proximations to a second derivative: tor that meets the design criteria a)-d) was proposed



in (Ae.6]. In genotal terms, it is of the form D' = iUt. -- UI- + -U, - U,-4 1 (,1.9b)
Dý -=- IUi+ - 2. U, + U,-tl (,A.9)

4h2 Iscond derivat!es 1 the error indicator on the present (old) grid EO' is
crrOr h Ifirst derituativesl + i Icnean tdnel given by:

By dividing the second derivatives by the absoiute (4 Di+ D (4.10)
value of the first derivatives the error indicator be-
comes bounded, dimeusionless, and the 'eating up' The reduction of the current clement %6e h4Od by a
effect of strong shocks is avoided. The terms follow- fraction ( to hU" 4 . -hl)" will yield a new error
ing t are added as a Inoi se' filter in order not to refine indicator of the form
'wiggles' or 'ripples' which may appear due to loss of
,,onotonicity. The value for e thus depentds on the 1t(4,11+
algorithm chosen to solve the IM describitng the 14 + D(1
physical process at hand. The multidimensional form Given the desired error indicator value £,,aw for the
of this error indicator is given by improved mesh, the reduction factor 4 is given by:

El Ek.,(fn N11 NIJ dQ -'Uj)2

(Ds) 4 J [4, + D + .91(4.7)
where N' denotes the shape-function of node 1. This (4.12)
error indicator has performed very well in 2-1) over Observe that for a smooth solution with D1 .< D,
the years (Ae.6-10,Ar.2-5]. However, when first used this results in , = (E"*w/E0'd)o-5, consistent with
in 3-4), it proved unreliable. The source for this seem- the second order accuracy of linear elements. Cloac
ingly inconsistent behaviour was found to stein from to discontinuities DI > Do, and one obtains
the large loclg variations in element size, shape. as t = En"O'/Eoll, consistent with the first order er-
well as number of element surrounding a point en- ror obtained in these regions.
countered in typical 3.-D unstructured grids. These T e i
will produce large variations of the second term in the This error indicator can be denergthized to multidimen.
denominator which are not based on physics, but on
the mesh structure itself. The solution was to modify
this error indicator as follows: I. ia2"n IN,'IlNIIUjId , (4.13)

IN'N )dIJ~~iVUl. -UA: h2 IN,' IIN,1Ur~dSJ

( 0, ) ( 1 2 ) 1.~ N ' N - IQ ,j 1( 4 1 1where MM, is the lumped mw-matrix at point 1D,) , = itN (bI (6.I.f1

and hI the average element length at point I. 'This or-
ror indicator has proven to be remarkably insensitive which yield an error matrix E of the form:
to local variations in element size and shape, while
still yielding the correct indicator values for physi- { Ev. EE rEl1  0 0 }
eal phenomena of interest. This good performance
is attributed to the smoothing effects of two averag- j - Ey EE 1. 0 E22 0 X
ing operations working simultaneously: the lumped E.. E, 0 0 E j,3mass-matrix and the point-henghts,(.1)

The principal eigenvalues of this matrix are then used

4.2.2.1 Determination of Element Sizes to obtain reduction parameters 4pj, in the three as.
sociated eigenvector directions. Due to the symmetry

If all that is required is a thresholdiag for refinement of E, this is an orthogonal system of eigenvectors that
or coarsening, the error indicator given by Eqn.(4.8) is defines a local coordinate system.
sufficient. On the other hand, one may wish to obtain
a more precise estimation of the required element size 4.2.2.2 Smoothing of Element Size and Stretchines
to meet a certain tolekraie (e.g. to use within an As mentioned above, it is very important in the con-
adaptive remeshing context). In this case, a more text of transient problems to generate grids which
precise analysis is required. Defining the derivatives do not exhibit minimum element sizes that axe much
Saccording to order as: smaller than the prescribed minimum element size.

Practical calculations indicate that the grids pro-
DO -- n (I1u+.I + 2. IU, I + iU-t11) (4.9a) duced by simply taking the described error indic.t



tot and the resulting distribution of eleniett, sizes, the vector denoted f sat".
stretchingp sad stretching directions did not meet this Sv.3 For each point i: compute the maxintmum stetch-
requirement. In other words, they were too irregular. ing s"' over its surrounding tielets:
Far superior grids were obtained by smoothing .%nd

limiting the initial ,1imcributions obtained for element # fi(.1
sizes, Pstretching. mid stretching directions. el V 1, VIsuC "
Smoothing of Element Lengths: The eleoient length
h is a seatar quantity Within each smoothing pass Sv.4 For each point i: form the average elemeit
over the mesh, the following operations are per. stretching si over its surrounding elenent.s:
formed:

S,. I For each element el. take the average element 1 nul
length h44 over its nodes: s 7 s.i -,) - (4.22)

"noel

ofh (4. 16) As before, a point average proves imoro ol'ectivo than
an area weighted average, as it limnits the infuence of

where i = I, ..., ttatoel represent the n des of 61c- large elements over small ones. For typical runs, three
mrent el. to four smoothing passes over the mesh are perfowed

Ss.2 For each point i: form the average element length for the element lengths and stretchings.
lil" over its smur:ounding elements: 0

(4.17)

where el 1, .... nsuel represent the eletentsssurrounding niode i. s
Ss.3 For each point i: obtain the nww element length

hai fron t hi(

Note that a 'point average' is taken, and riot sit
'area weighted average'. This is important, as it Figu:y 4.2: Smoothing of Stretchings

limits the infuence of large elementa over smal-
I ones. One can also observe that the element 4.3 RefinenieiAýa e
length is never allowed to increase at any given t % idi

,int.to./t:tiniator, the third ingredient of any adap-

S~th.ilint o•fStietchinin and..tretching Directions: tive refinement. method is the" ýlinemient strategy, i.e.
The stretching direction 9 is a vector quantity. There- 1o1.w t..reline a JIvten imsh. Thrft different familics
fore, problems may arise when trying to smooth of refivement strategies have been prop,%sed to dlate:
stretching directions. A typical case is shown in Fig-
tire 4.2. Suppowe an average stretching vector in the S.:- Mesh oeihrR ntnLi- slŽ
element is desired. In order to ac'en',uate the stretch- The aim is to reopoition thte points in the field ii
ing direction with the maxinmum stretching, we mul- order to obtain A better diiscretizatror tor the prob-
tiply each stretching vector with its corr-sponding h'ul at hat?, Th. regions where more elementts are

stretching factor. Simple averaging would then yield required t..nd to draw points atrd dlenients front re-
the completely erroneous element stretching direction giOns wheree a coarser mesh can bh tolerattd. Two
denoted by so in Figttre 4.2. In order to avoid this basic appjoaches have been used to date:

problem, the. following algorithrn is employed: a) Spring Systems, whereby the mesh is viewed as a

Sv.I For each elhment el: colmiptute the maximum system of springs whose stiffncss is prorortional
to the error indict tot, andstetching s* encountered at the nods: h) 'rho Moving Finitv; Element Methocl, where the

ti.2 . (4.19) pooitio. 1 of vein is viewed as further unknowns
., "noel in a gencral fun-tioneJ to be minimized.

Sv.2 For each element el: form the average elf nent Mesh movement. schemes art relatildy simple to code,
stretching ser ao as the mesh topology is not allowed to change. On

1 nn.. the other hand, they are not fleAible mad general t-
a1 siins, 4' - si) . (4.20) nough for comp ex production runs which may have

i= trimany shocks. They have been menti, ied here for
completenes, and awe not recommenwded 'ot practical

For the example shown in Figure 4.2, this yields applications.



S.2 N_ jjhnicht_{L-_h os|: In this case, d) rhe method should be faot. Iln particular, it
degref of freedom are added or takon from a mesh should lend itcelf to a high degree of parallelism.
according to some rule, One may either split elements e) The method should not involve a major storage
into new ones (h-reflnement), or add further degrees overhead.
of freedom with hierarchica' shape-functions (Fig- These criteria severely limit tile fic•. of applicable &-
urd to.3). The hihe may be "aCfuptiehus With uC ld- trategies. From the reoults reported ill the literature,
(litioul of higher order shape- (inetioau (j-refinement), one can observe that only the simplest and fastest
again either conventional ones or hierarchical ants. of all refinement strategies, i.e. simple h-relticntt
For elliptic systenm of PDEs, the combination of hI- with only one level of tefinement/coatsening per mlesh
and p-refinement leads to exponential convergence change, has wer mate it into a production environ-
rkte [Ae. 14]. ient. 'rho 'easons are obvious:

S.3 .mu ehs:Finally, one may ise an h.1) Conservation presents no problem for h-
advamncued unstructured grid generator in combination refinentext.
with all error indicator to renuesh the computational h.2) No interpolationJs other than the ones natural.
domain either globally or locally, in order to produce ly given by tile element ohl&pe-funCtious are re-
a more suitable discretization. quired. Therefore, no numerical diffusion is iii-

troduced by the adaptive refihement procesure.

433.1 Transient CopIreIiblc Fls This is contrast to adaptive remeshi..g, where
the grids before and after a mesh change may

As before, if we consider transient compressible flows not have the same points in common. The re-
with travelling shocks of widoly different strengths quired interpolations of tho unknowns will result
which require adaptation every 5- 0 timesteps, we are in an increased amount of numerical diflusion
faced with more constraints than the usual steady- (see. [Ar.2]).
state flow application. Design criteria for refinement h.3) Il-refinement is very well iuited to vector and
strategies for theft types of applications are: parallel processors. This is of particular ina-

a) 'rhie method should be conservative, i.e. a ms-Nh portance in the preemnt context, where a mesh
change should not result in the production or lowe change is performed every 5-10 tiniesteps, andof ilia", momentum or energy. a large percentage of mesh points is affecLed in

b) The method should have a minimal amount of each mesh chage.
numerical dissipation, as man6y m1esh changes are h-.4) 11-refinement is more robust than remeshing.
required during the course of one simulation. Particularly in 3-1). tile anmount of things that

c) The method should not produce elements that cai go wrong seems to be much less than when
are too small, as this would reduce too severely remneshing.
the allowable timestep of the explicit flow solvers I have tried other methods for this class of problems,
employed. like rcnnIlimmg, Maily problemo cal be solved success.

SF'igtrqc .4 ý3: Allowable Itelituienwt C'aies for TretrMIC417r1

-*
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fully by them, but experience indicates that one can coarsening cases become 8:4, 8:2, 8:1, 4:2, 4:1, 2:1.
never be sure. Particularly if numerical diffusion due These coarsening cases awe summarized in Figure 4.6.
to reinterpolation is present, contact discontinuities When constructing the algorithm to refine or coarsen
may simply disappear, triple points may become dis- the grid one faces the usual decision of speed versus
torted, and jets may spread out beyond recognition, storage. The more information from the previous grid

is stored, the faster the new grid may be construct-4.4 H-refi~nement withl Tetrah.•.& ed. In the present case, this was accomplished by a

Because of its importance in practical calculations, e

and as a tutorial example of what is typically r- , 7-9 4
q sired for an h-refinement strastegy, the h-refinement
with tetrahedra is described in more detail. As stat-. 1
ed above, the number of refinement/coarsening levels.9
per mesh change is limited to one. Moreover, refine-
ment of a tetrahedron is only allowed into two (along -7 "
a side), four (along a face) or eight new tetrahedra.
These cases are denoted as 1:2, 1:4 and 1:8 respec-
tively. At the same time, a 1:2 or 1:4 tetrahedron
ca. only be refined further to a 1:4 tetrahedron, or
by first going back to a 1:8 tetrahedron with subse-
quent further refinement of the 8 sub-elements. We
call these the 2:4, 2:8+ and 4:8+ refinement cases.
The refinement cases are summarized in Figure 4.4. 7
This restrictive set of refinement rules is necessary to 5

avoid the appearance of ill-deformed elements. AL the
same time, it considerably simplifies the refinemen-
t/ coarsening logic. An interesting phenomenon that 0 6-8 4

does not appear in 2-D is the apparently free. ' 3ice 10of the inner diaqgonal for the 1:8 refinement case. As 10

shown in Figure 4.5, one can place the inner four el-
ements around the inner diagonals 5-10, 6-8, or 7-9. 7
In the present case, the shortest inner diagonal was
chosen. This choice produces the smallest amount of i
distortcd tetrahedra in the refined grid. When coars-
ening, again only a limited number of cases that are
compatible with the refinement is allowed. Thus, the Figure 4.4: Possible Choices for the Inner Diagonals

9:2 4:2

6:j 4. Ae

Figgre 4.5: Allowable De-Reffi.weent Cases for Tetrahedra



8-22 rn'.

max

maa

axmax

max

a) From Sides to Points b) From Points to Sides

Figurie 4.6: Algorithm to Screen for Admissible Refinement Came

modified tree-structure which requires twelve integer described in more depth. One complete grid change
locations per element in order to identify the 'paren- requires algorithmically the following five steps:
t' and 'son' e!ements of any element, as well as the 1) Construction of the missing grid information
e!ement type. needed for a mesh change (basically the sides of
The first seven integers store the new elements ('son- the mesh and the sides adjoining each element);
s') of an element that has been subdivided into eight 2) Identification of the elements to be refined;
(1:8). For the 1:4 and 1:2 casee, the sons are also 3) Identification of the elements to be deleted;
stored in this allocated space, and the remaining in-
teger locations are set to zero. 4) Refinement of the grid where needed;

In the eigth integer, the element from which the 5) Coarsening of the grid where needed.
present element originated (the 'parent' element) is
stored. 4.4.1.1 Construction of Missins Grid Information
The ninth integer denotes the position number in the The missing information consists of the sides of the
parent element from which this element came. mesh and the sides belonging to each element. The

The tenth integer denotes the element type. One can sides are dynamically stored in two arrays, one con-
either have parents or sons of 1:8, 1:4 or 1:2 tetra- taining the two points each side connects and the oth-
hedra. These are marked by a positive value of the er one (a pointer-urray) containing the lowest side-
element type for the parents, and a negative value for number reaching o:-t of a point. The formation of
the sons. Thus, for example, the son of a 1:8 element these two arrays is accomplished in three main loop-
would be marked as -8 s over the elements, which are partially vectorizable.
Finally, in the eleventh and twelveth integer location, After having formed these two side-arrays, a further
the local and global refinement levels are remembered. loop over the elements is performed, identifying which

sides belong to each element.
These twelve integer locations per element are suf-
ficient to construct further refinements or to re-.on-
struct the original grid. It is clear that in these twelve 4.4.1.2 Identification of Elements to be Refined
integers a certain degree of redundancy is present. For The aim of this sub-step is to determine on which
example, the information stored in the 10th integer side further gridpoints need to be introduced, so that
could be recovered from the data stored in locations the resulting refinement patterns on an element-level
1:8 and 11:12. However, this would require a number belong to the allowed ca listed above, thus produc-
of non-vectorizable loop. with many IF-tests. There- ing a compatible, valid new mlsh. Five main steps
fore, it was decided to store this value at the time of are c necessary v achieve this goal:
creation of new elements instead of recomputing it at a) Mark elements that require refinement;
a later time. Similarly, the 11th integer can be recov- b) Add protective layers of elements to be refined;
ered from the information stored in locations 1:8 and c) Avoid elements that become too small, or that
12. As is the case with the 10th integer, storage was have been refined too often;

traded for CPU-time. d) Obtain preliminary list of sides where new points

will be introduced;

4.4.1 Algorithmic Imnlementation e) Add further sides to this list uti.. an admissible
refinement pattern is achieved.

Having outlined the basic refinement/coarsening s- The first three of these steps are obvious. The last
trategy, its algorithmic implementation can now be two are explained in more detail.



d) Obtain preliminary list of sides for new points are marked for the introduction of new points until
Given the side/element information obtained in sub- an admissible refinement pattern is reuched. This is
step 4.4.1.1, one can dettrmine a first set of sides on accomplished by looping several times over the ele-
which new gridpoints need to be introduced. This set ments, checking on an element level whether the set
of sides in still preliminary, as only certain types of of sides marked can lead to an admissible new set of
refinement are allowed, sub-elements. The algorithm used is based on the ob-
e) Add further sides to achive admitsible refinement servation that the admissible cases are based on the
The list of sides marked for the introduction of new introduction of new points along one side (1:2), three
points is still preliminary at this point. In most cases, contiguous sides (1h4), or six contiguous sides (1:8).
it will not lead to an admissible refinement pattern These admissible cases can be obtained from the fol-
to construct a new mesh. Therefore, further sides -wing element-by-element algorithm (see Figure 4.7):

C

c - ----- this sub assembles the rhs-contributions at points (rhspo)
c from the element-rhs (rhsel)
C
a we assume that: Iconn- contains the mesh connectivi-.y
o rhsel. contains the element-rhsides
c

This loop will not vectorize, as rhspo in loop 3000 may be accessed
several times

C
c - ------ set rhspo=0. 0
C

call rfilvc(npoin, rhspo, 0.0)
C
c - ----- loop over the nodes
c

do 2000 inode=l,nnode
Cc .....-loop over the elements
c

do 3000 ielem=l,nelem
ipoin=lconx ( ielem, inode)
rhspo (ipoin) =rhspo (ipoin) +risel ( ie em, inode)

3000 continue
c

2000 continue

By renumbering the elements, accesing the same point within each group
of elements can be avoided; thus, one can force vectorization of loop 3000

c
c ------ set rhspo=O.0
c

call rfilvc(npoiTi, rhspo, 0.0)
c

C .------outer loop over the groups of elements
c

ielel=O
c

do 1000 igrou~l,ngrou
c
c - ----- starting and ending elements of this group
c

ieleO=ielel+l
ieiel=lgrou(igrou)

c
c ----- loop over the nodes
c

do 2000 inodel,nnode
c
c - ----- loop over the elements of this group
c

cdir$ ivdep
c

do 3000 ielemmieleO, ielel
ipo..n=lconn (ielem, inode)

A rhspo(ipoin) -rhspo (ipoin) +rhsel ( ielem, inode)
3000 continue
2000 continue

c
c - ----- end of outer loop over the groups of elements
c

1000 continue

Figute 4.7



8-24

- Set the node-array LNODE(1:4)=0; d) Delete noints to achievet admissible coarseninq
- Loop over the sides of the element: if the side The lint of total deletion points obtained in the pre-

has been marked for the introduction of a new vious step in only preliminary, as unallowed coarsen-
point, set LUODS(VIt)ul, LIODE(IP2)=1, whereý ing cases may appear on an element level. Therefore
IP1, IP2 are the end-nodes c3rresponding of this loops are performed over the elements, deleting all
side; those total deletion points which would result in u-

- Loop over the sides of the element: if LN.- nallowed coarsening cases for the elements adjoining
ODl(IXP1)a and LNQDI(IP2)-1, mark the side them. This process is stopped when no incompatible
marked'for the introduction of a new point. total deletion points are left. As before, this process

Practical calculations w.th several admissible layers may be made considerably faster by grouping togeth-
of refinement and large grids revealed that sometimes er and treating differently the parent elements with
up to 15 passe. over the mesh where required to ab- 0,1,2,3,4,5 or 6 total deletion points.
tain an admissible set of sides. This relatively high 4.4.1.4 Refinement of the Grid Where Needed
number of passes can occur when the mesh exhibits
regions were the refinement criterion is just met by the The introduction of further points and elements is
elements. Then, the list of sides originally marked for performed in two independent steps, which in princi-
refinement will be far from an admissible one. In each pie could be performed in parallel.
pass over the mesh, a further 'layer' of elements with a) Points: To add further points, the sides marked
admissible sides marked for refinement will be added, for refinement in sub-step 4.1.2 are grouped togeth-
Moreover, as an element can be refine,! in six possible er. For each of these sides a new Srid-point will be
ways, in some cases it may take three passes to go introduced. The interpolation of the coordinates and
from a 1:2 to a 1:8 case. Thus, the 'front' of elements unknowns is then performed using the side/point in-
with an admissible set of sides marked for refinement formation obtained in sub-step 4.1.1. These new co-
may advance slowly, resulting in many passes over the ordinates and unknowns are added to their respective
mesh. A considerable reduction in CPU is realized by arrays. In the same way new boundary condition-
presorting the elements as follows: s are introduced where required, and the location of

- Add up al! the sides marked for refinement in an new boundary points is adjusted using the CAD-CAM

element; data defining the computational domain.
- If 0, 1 or 6 sides were marked: do not consider b) Elements: In order to add further elements, theifurthor 6sides marked for refinement are labelled with their

further; nwgipitnme.Teefeteeeetsd
- If 4 or 5 sides were marked: mark all sides of this new gridpoint-nmber. Thereafter, the element/side

element to be refined; information obtained in sub-step 4.1.1 above is em-

- If 2 or 3 sides were marked: analyze in depth aa ployed to add the new elements. The elem . . , be
described above, refined are grouped together according to e refine-

ment cases shown in Figure 4.4. Each case ib. :eated
This then yields the final set of sides on which new in block fashion in a separate subroutine. Perhaps
gridpoints are introduced, the major breakthrough of the present work was the

reduction of the many possible refinement cases to
4.4.1.3 Identification of Element a to be Deleted only six. In order to accomplish this, some informa-

The aim of this sub-step is to determine which points tion for the 2:8+ and the 4:8+ cases is stored ahead
are to be deleted, so that the resulting coarsening in scratch arrays. After these elements have been re-
patterns on an element-level belong to the allowed fined according to the 2:8 and 4:8 cases, their sons
cases listed above, thus producing a compatible, valid are screened for further refinement using this infor-
new mesh. Four main steps are necessary to achieve mation. All sons that require further refinement are
this goal: then grouped together as 1:2 or 1:4 cases, and pro-

a) Mark elements to be deleted; cesned in turn.
b) Filter out elements where father and all sons are As the original description of all variables was per-

to be deleted; formed using linear elements, the linear interpolation
c) Obtain preliminary list of points to be deleted; of the unknowns to the new points will be conserva-
d) Delete points from this list until an admissible tive. However, small conservation losses will occur

coarsening pattern is achieved, at curved surfacee. These losses are considered to be
The first two of these steps are obvious. The last two both unavoidable and small.

& are explained in mome dtail. 4.4.1.5 Coarvening of the Grid Where NeLe_4_

c) Obtain nreliniinNX Qt of points to be deleted The deletion of points and elements is again per-
Given the lint of parent-elements to be coarsened, one formed in two independent steps, which, in principle,
can now determine a preliminary l'st of points to be could be performed in parallel.
deleted. Thus, all the points that would be deleted if a) Pojat: The points to be deleted, having been
all the elements conteined ia this list were coarsened marked in sub-step 4.1.3 above, all that remains to
are marked as 'total deletion points', be done is to fill up the voids in the coordinate-,
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unknown- and boundary condition-arrays by renum- tractive option. The steps required are as follows:
bering points and boundary conditions. L.1 Identify the badly distorted elements in the
b) Elemie: The deletion of elements is again per- layers that move, writing them into a list
formed blockwise, by grouping together all elements LRNu( 1: EDE).
corresponding to the coarsening cases shown in Fig- L.2 Add to this list the elements surrounding these
ure 4.6. Thereafter, the elements are also renumbered badly distorted elements.
(in order to fill up the gape left by the deletid ele- L.3 Form 'holes' in the present mesh by:
ments), and the point-renumbering is taken into con-sideatin wthintheconectiityarrys.L.3.1 Forming a new background mesh with the
sidetzktion within the connectivity-arrays, elements stored in the list LBEM
It is 71ear that the coa.-sening procedure is non-
conservative. However, no physical or numericsl L.3.2 Deleting the elements stored in hI..N from

problems have ever been observed by using it. This L.3.3 Removing all unused points from the grid
may be explained by the fact that the coarsening is thus oving d p
done iu those regions where the solution is smooth. thus obtained.
Thus, the coarsened grid represents the swution very L.4 Recompute the error indicators and new element
well, and consequently the conservation losses are s- distribution for the background grid.
mall. Moreover, those regions where the maintenance L.5 Regrid the 'holes' using the advancing front
of conservation is important (e.g. discontinuities) are method.
never affected.

Typically, only a very small number of elements (<
10) becomes so distorted that a remeahing is required.

4.5 Adaptive Remeshine Thus, local remeshing is a very economical tool that
Adaptive remeshing is a very competitive adaptation allowes reductions in CPU-requirements by more than
technique for steady-state applications or problems 60% for typical runs.
with moving bodies. For the latter class of problem-
s, a fixed mesh structure will, in most cases, lead to 5. EFFECTIVE USE OF
badly distorted elements. This means that at least SUPERCOMPUTER HARDWARE
a partial regeneration of the computational domain
is required. On the other hand, as the bodies move
through the flowfield, the positions of relevant flow However clever an algorithm may be, it has to run
features will change. Therefore, in most of the com- efficiently on today's supercomputer hardware. The
putational domain, a new mesh distribution will be following section examines the main issues involved

for each type of supercomputer currently available, asrequired. The idea is to regenerate the whole compu-

tational domain adaptively, taking into consideration well au techniques to use this hardware as efficiently
the current flowfield solution. Any of the automat- as possible. There are three main types of supercom-
ic grid generation techniques outlined above may be puter currently available. These are:
employed to accomplish this. In my codes I tend to a) The by. now traditional vector machines, which
use the advancing front technique [Ar.2-4J. The steps achieve high speeds by splitting the necessary arith-
required for one adantive remeshiny are as follows: metic operations between subsequent mew'.ers of a

R.1 Obtain the error indicator matrix for the grid- vector-loop,
points of the present grid. b) Single Instruction Multiple Data (SIMD) ma-

chines, that perform the same arithmetic operationR.2 Given the error indicator matrix, get the element ars ag ubro o-ee rcsos n
size elmen stetcingand trechig drecion across a large number of low-level processors, and

size, element stretcdhng . ad sretchig direction c) Multiple Intruction Multiple Data (MIMD) mae-
for the new grid. chines, that perform the different arithmetic opera-

R.3 Using the old grid as the 'background grid', tions acroes many medium-level processors.
remesh the computational domain using the ad-
vancing front technique. One emerging architecture for future machines is the

R.4 If further levels of global h-refinement are do- NIMD-machine, where only a few (N) different pro-
sired, refine the new grid globaly. coema we carried out over a large number (M) of

R.5 Interpolate the solution from the old grid to the powerful vector proeesor.. An architecture like thiswould require the programmer to take into consider-
ation all the individual aspects ecountered in each of

S4.5.1Ln the presently available mupercomputer architectures.

Practical simulations indicate that the appearance of 5.1 Y_ h
badly distorted elements occurs at a frequency that
is much higher than expected from the element size At the beginning of the 1980s, two different classes
prescribed. Given the relatively high cost of glob- of vector machines where in use: memory to memory
al remeshing, local remeshing in the vicinity of the (CYBEle205) and register to register (CRAY) atchi-
clements that became too distorted becomes an at- tectures. Due to its greater versatility, the second
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type of machine is the dominant vector machine at 5.2 SIMD Machines
present. Register to register machines prefer chunky
loops, high flop to memory access ratios, and low in- SIMD machines, as exemplified by the Thinking Ma-
direct addressing. Unfortunately, most simple flow chines CM-series, operate very efficiently on nareis~-
solvers look just the opposite; they have extremely neighbour transfer of operations. On the other hand,
simple loops, low flop to memory access ratios, and general data exchange operations, as required for un-
high amount of indirect addressing. Just to illustrate structured grids, take a very large amount of time.ghe imporntanc of indirect addressingJust the readerrm A simple gather takes the equivalent of 20-60 flops.the importance of indirect addressing, the reader may

be reminded that even with hardware gather/scatter, Several routers or pre-compilers have been devised toalleviate this problem [Sc6]. At the same time, renum-
it takes the equivalent of 2.5 multiplications to get beviategis haobee explore same th ap-
"a number from memory using indirect addressing. bering strategies have been explored [Sc7]. Both ap-
Therefore, an importtmnt Lssue when coding for perfor- proaches combined lead to a significant decrease in
mance on these machines is the reduction of indirect indirect adresing overhead. On the other hand, they

are useless for more general applications where theaddressing operations required. For tetrahedral ele- mesh topology changes every few timesteps (remeh-
ments, the amount of indirect addressing operations ing, h-refinement, etc.). Therefore, only a few steady-

required can be approximately halved by going from stat orefixemesh t ransien ons afe been
ar, lemnt-ase daa sructre o a ede-bsedda, state or fixed mesh transient applications bare beenSar. element-based data structure to an edge-based da- eteeyscesulo hstp fmcie[c8ta sruc ure Th s ch nge of ata stru tur avids extrem ely successfull on this type of m achine [Sc.8-

ta structure. This change of data structure avoids 1 I]. SIM D machines may be compared to memory toredundant information, leading also to a proportional memory vector machines: they inherently lack gener-
reduction in CPU and memory requirements (Sc.3- ality, which may lead to their eventual demise.
5]. A second important issue is the vectorizability
of scatter-add loops. Consider the following element
RHS assembly loop: 5.3 MIMD Machines

Algorithms to group the elements into non- MIMD machines, an exemplified by the Inte!, NCube,
conflicting groups fall into the category of colouring Parsytech, etc. hypercubes, consist of fairly powerful
schemes [Sc.1,2]. This has been exemplified for the processors that are linked together by message pass-
2-D mesh shown in Figure 5.1. Given that on typical ing and synchronization software. In the future, each
vector-machines one only n-_-ds vector lengths that of these. processors will be a vector-processor. This
are a few multiples of 64, it is easy to construct very implies that most of the algorithmic considerations
well-balanced element orderings that span the whole discussed for vector machines will carry over to these
mesh, except for cne last group with less than 64 el- machines. The main issues when trying to code opti-
ements. mally for this type of supercomputer are:

*~ %'

S Group I Group 4
6 Group 2 Group 5

SGroup 3 Group 6

Ficure 5: Renumbering or Couring of Elements for Vectorized Scatter-Add



a) Minimization of Idle Time: In the worst case s- for parallel map.hines is to minimize the interprocessor
cenario, all but one processor wait for the last transfer of information. For a given information flux
processor to finish a certain task. This implies 0j, and subdomains of equal size, this is equivalent
that one has to strive for the same amount of to the minimization of the surface to volume ratio of
work and communication in each processor. each subdomain i:

b) Minimization of Interprocessor Information Flow:
With processor performance advancing rapidly in _.- in (6.1)
comparison to interprocessor transfer speeds, the (61
amount of information required between proces- Several algorithms for splitting a domain can be en-
sors has to be minimized. In general, this will visioned. These are, in ascending order of generality
lead to a minimization problem for the area-to- (see Figure 5.2):
volume ratio of the processors. - Simple Cartesian splitting;

c) Extra Layers/Additional Work Ttadeoffs: The - Quadtree/Octree splitting;
amount of required information transfer between
orocesisors can be staged (usual code), or more in- - Unstructured grid pt

i, -nation can be gathered ahead of the timestep. It seems natural to choose the unstructured grid s-
In the latter case, no further information transfer pitting for the following reasons:
is required within a timestep. On the other hand, - A fine unstructured grid can be assumed. This,
more layers of information surrounding each do- in turn, allows division of the grid into subdo-
main are required. Both approaches are possible, mains of nearly equal size.
and the performance of each may depend more - Three major pieces of software, the grid a-
on the indiviual hardware of each machine than moother, the field solver, and the grid generator
anything else. can all use the same algorithm to generate sub-

5.3.1 General Considerations domains. This reduces the software development
costs.

"'he effective use of any parallel machine requires the 5.4.1 A Domain-Splitting Ai rithm
following general steps for the solution of the problem
at hand: A simple algorithm that attempts to obtain a sub-
P.1 Break up the problem to be solved into pieces; division which satisfies Eqn.(5.1) is the following
P.2 Hand each processor a piece of the problem; 'wavefront'-type scheme:
P.3 If required: provide for interprocessor transfer of Assume given: as Dart of the background grid

* information; - The elements that surround each point;
P.4 Assemble the results. - An initial starting element within each subdo-
The processor hierarchy and scheduling may also vary. main.
Some of the possible choices are: - A real number REM in each element associated

- All processors working at the same level (used for with the effort to be spent in it (e.g. the number
grid smoothing and explicit flow solvers); of elements to be created);

- A pyramid of masters that hand out and/or per- - A real number REM that denotes the desired
form tasks; average cumulative effort in each subdomain.

- A one master - many slaves doing different oper-
ations hierarchy (used for unstructured grid gen- Then:

eration); S.1 Initialize point and element arraiys;
- A one master - many slaves doing the same op- S.2 Initialize domain counter REFFD

eration hierarchy (the SIMD paradigm). S.3 Start next subdomain:
Porting a typical flow-code to a MIMD requires the Update domain number;
following pieces of software: Initialize subdomain effort counter;

- Parallel Input Modules; S.4 Select the next point to be surrounded from the
- Parallel Domain Subdivision Modules for Load order of creation list;

Balancing; S.5 Mark this point as totally surrounded;
- Node-Versions of the Flow-Code for Parallel Ex- S.6 For each of the elements surrounding this point:

ecution; If the element has not been marked as be-
I- nterdomain Info-Transfer Modules; longing to a domain before:

- Parallel Adaptive Grid Regeneration Modules; Mark the element as belonging to
- Parallel H-refinement Modules; the present domain;
- Parallel Output Modules. Update subdomain effort counter;

For the nodes of this element:
"1 ice message is clear: do everything in parallel, or If the point is not yet totallySdon't even start. surrounded and has not

5.4. Domain Snhitt" yet been incorporated into the

The aim of any domain-splitting algorithm devised order of creation list:



a) Cartesian

b) Ouad-Tree

C) Background Grid

Eimi..u: Domain Splitting Strategies

Add the point to the order of Figure 5.3 shows how this algorithm works on a simple
creation list; 2-D domain, where it was assumed that REFFI .0

Endif and REFFDoO.O. For more expensive, but almost as
Endif effective algorithms, see [Mi.11.

S.7 If the subdomain effort counter exceeds RMFFD

A Compress point creation list, eliminating all 5.5 Pallel Grid Geeratio
, totally surrounded points.St uFor the grid generator, the steps taken are as follows:

Goto S.3 G.1 Subdivide the global domain to be gridded into
Otherwise subdomains using the background grid;

G.2 Grid up each subdomain separately;
Goto S.4 G.3 Grid up the inter-subdmain regions;

Endif G.4 Assemble the result.
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Figure 5.3: Simple Domain Splitting Algorithm
ij: i: order of creation, j: domain-number

Given the subdomains, there are two possible parallel first element based on the background grid. This
grid generation strategies (see Figure 5.4): initial element yields a first set of active faces.
Sa) .In-Out: F.3 Select the next available active face to be deleteda) O ut: from the front. In order to avoid large elements- Grid each subdof aid senarately; crossing over regions of small elements, the face

- Grid pairs of adjacent domains; forming the smallest new element is selected as
- Grid the corners. the next face to be deleted from the list of faces.

One can also work directly with corners after gridding FA For the face to be deleted:
each subdomain. However, it is clear that the achiev- F.4.1 Select a 'best point' position for the intro-
able parallelism is greater if they are postponed. duction of a new point [PEW.

b) Out-In: F.4.2 Determine whether a point exists in the al-
- Grid the corners; ready generated grid that should be used in
- Grid pairs of adjacent domains; lieu of the new point. If there is such a point,
- Grid each subdomain separately. set this point to TPIEW and continue search-

This sond approach avoids the need of checking a- ing (go to F.4.2).
gainst the borders of the subdomain in the last, and F.4.3 Determine whether the element formed with
moot CPU-intensive step. However, the correct grid- the selected point
ding of corners and tines without conflicts is more [EeW crosses any given faces. If it does,
difficult th&n in the first method. In the present case, select a new point as [EW and try again
the first approach was implemented. (go to F.4.3).

F.4.4 Determine whether the element formed with
5.5.1 Generation of Subdoniain-Grids the selected point

[PIEW crosses any given background faces. If
In each subdomain, the advancing-front grid genera- it does, mark the current face as unavailable
tion technique [Ga.3-7] is used to generate an unstruc- and select a new face (go to F.8).
tured grid. Given a background grid that defines the F.5 Add the new element, point, and faces to their
deuirei spatial distribution of element size and shape, respective lists.
the following steps are required (see Figure 5.5): F.6 Find the generation parameters for the new faces
F.1 Find the outer faces of the background grid. from the background grid.
F.2 If no active, initial faces are present: generate a F.7 Delete the known faces from the list of faces.
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Ckg'0o•f •C•, - Active Faces

- Points of these Faces
Renunmber to obtain local arrays, rermembering

WNEW the renumbering order;
Send the assembled information to the node,

From the Node to theg llot:

, detd .. ..o--' - Obtain the remaining information froii the node:
i Fron Active Faces

Active / - New Elements

- New Points
EjmUre 5: Advazpcing Ftont Grid Generation in - Renumber and store in the global arrays.

Each Subdomain

F.8 If there are any active, available faces left in the When generating the inter-domain regions, one can
front, go to F.3. not generate at the same time the interfaces of al-

Compared to the usual advancing front method, the I neighbors for a certain subdomain. Therefore, a
only modifications required are steps F.1, F,2 and contingency list was impleme:nted that avoids these
FA.4. conflicts. It operates on the premise that during each

taak hand-out pass over the interdomain-boundaries
5.5.2 Data Management or corners, a subdomain may be touched once only.

5.5.2.1 Data Structures for the Host During each task hand-out pasw, the following opera-
lions are performed:

In order to simplify the complexity of data handling ti alize perf om aar

as much as possible, the following rules were followed: CA Initialize a subdomain-array;

- A point belongs uniquely to one (and only one) C.2 Loop over the int)rdotnain-boundaries (or cor-

subdomain; ners):
- Ani element belongs to the lowest domain-number If none of the subdomains involved has al-A eleet n loe s tready been used:

of is noes;- Mark the subdornains involved;
- A face may belong to more than one domain. - ren uber ans toltede-Renumber and send to the next

In the global arrays that store the mesh as it is wssem- available processor the
bled, the subdomains have allotted slots. The storage information necessary;
scheme used is shown diagrammatically for the coor- Endif
dina~es in Fignre ,i,6, 5.6 Parallel Smoojbhgnand Explicit Flow Solvers

Practical implementations of either advancing front
or Voronoi grid generators indicate that in certain re-

, ._____.. ,, , gions of the mesh abrupt "ariations in element shape
, or size may be present. These variations appear even

when trying to generbte perfectly uniform grids. The !
usual way to circumvent this problem is to improve
the uniformity of the mesh by smoothing. The most

Pifuxre 5.6: Storhe of Coordinate Information in commonly used smoother is the so-called Laplacian
the Ma•ster.Node smoother. The sides of the triangulation are assumed

to represent springs. These springs are then relaxed
5.5.2.2 Data Strtctures for the Node in time using explicit time stepping, until an equilibri-

um of spring-forces has been established. The flow of
No special data structures are required for the node. information and most of the loops in such a smoot her
In fact, the node-code is the same as the one used for are equivalent to an explicit time-marching scheme. .

* a siungle-procesor machine. Therefore, the techniques used for the smoother and
the flow solver are identical. The implementation of

,5.5.3 Inform~tion Flowa spring analogy smoother or an explicit flow solver

The information transfer required for the parallel grid on a parallel machine requires the following steps:

generation algorithm described above is as follows: S.A Subdivide the given mesh into subdomnaipns;
r te s tNdS.2 For each smoothing pass or timestep:

i a_ the Host to The Node - Smooth each subdomain separately;

- Aseemble the required informtion for the do- - Exchange boundary information;
mains involved: S.3 Assemble the result.

- Background Grids Thus, for the smoother and the flow solver an equal-



level hierarchy is employed. This seems apnropriate, - Exchange force contributions between proces-
a sors, adding;

a) no contingency tets (other than the synchroniza- - Update the coordinate vectors of the interfaces.
tion at the end of one paas over the elhments) are The advantage of this approach is that the total
required, and amount of information (elements, points) required for

b) the amount of CPU spent is roughly the same ill the parallel version is the same as for the serial ver-
each processor. sion, However, the original serial code has to be mod-

itted extensively.
5,6,1 gmoothiug o..Subomain.Grid

In each subdomnain, the standard Laplacian smoother b) Ceoordinateqj tilrl atioir:
is employed. Each side of the triangulation is sup. - Add a further layer of elenments to each subdo-
Sposed to represent a string. Thus, the force acting on main;
each point is given by: - Update each subdomain as for the serial, I-

domain came;
"("- Exchange the updated coordinate information

Sfj = c (Xj - xi) , (5.2) between proceors.
we te t hein this approach, the total amount of information (ele-
Swhere c denotes the spring constant, xj the coordi- ments, points) required for the parallel version is larg-
trates of the point, and the sum extends over all the er than that required for the serial version, However,
points surrounding the point, The time-advancement the extra amount of information is not large (1 layer
for the coordinates is accomplished m follows: of elements). On the other hand, the code employed

I t f-in each subdornain is exactly the same as for the ser-
AX = At• f ( al case. It was felt that this advantage outweighs all

At the outer boundary of the subdomain, Ax = . posible disadvantages.
Usually, 3-4 timesteps or passes over the meslh yield 'this second method requires the addition of layers of
an acceptable mesh. elements at the boundaries of the sublomains. The
5.U l.ata Structures following algorithm accomplishes this task:

5.62 ~aa SrutuesAssum ivn

In order to be able to alko move the boundary points - The elements that surround each point;
or change the unknowns at subdomain interfaces, at, - The domain-hr. each element belongs to.

exchange of information between processors has to

be allowed. Two possible choices are possible (see Then:
Figure 5.7): LI Initialize pointer-lists for elements, points and

receive-!ists;
L.2 For each point IPMII;

Get the smallest dornain-nr. ZOKIN of the el-
ements that surround it; store this number in
LPNIN(IPOII);

For each element that surround- this point:
If the domain-nr. of this element is lariter
than IDNI :

"- Add this element to domain IDM IN
"L.3 For the points of each subdomain TDONN:

If LPKIN(IPOIW) .US.IDO0N :
I add this information to the receive-list for

this subdomain:
Endif

I LA4 Order the receive-list of each subdomain accord.
ing to subdomains;

. .... i .5 Given the receive-lists, build the send-list for
S~each suhdomain.

A.5sermble Ih$ In• eiC-% domraln - \oo 13yer of elrmnente

S- txcrlafge-ad• rs at mntertace - O.3t~ eaI da,,' .• ,,• •,,m 5.6.3 InforIation Flow
u-pdate unkInown5s C Ecanqg uodated •u•k•own-

The information transfer required for the parallel. -
EiturL5.7 Updatino Strwgies moothing or flow advancement algorithm described

above is as follows:
* a) Riht•haad Side Information:

- Assemble all force contributions (right-hand From the Hotto the o
sides) in each processor; - Assemble the -'equired information for the do-



FL

,anins involved: in the send-list;
- Grid -Receive the updated coordinates of ail nodes s-

Send/Receive Lists tored in the receive-liet;

- Send the ,sscinbled information to the node. - Overwrite the coordinate" for these ret.eived
1wints.

From Node to Node: From the Node to the lct:

- Send the updated coordinates of all nod(- store-d -caim,.ber and store in the global arrays.

Multi Element Airfoil: Domain Detln.t .on

Multi Element Airfoil: Grndded Stibdomains



Mtulti Element Airfoili Final .Assernbled Mesh
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Examples Shock Interaction with an Elevated Box

- Grid Generator: FRGEN2D

- Hydro-Code: FEFLO27 (2-D, Euler, H-Refinement)

- Plotting: FEPLOT2D

- Details: [Ae.6, Ae.7]

MESH: NELEM-'23S76, NPOIN=13142 MESHM NELEM=378O5, NPOIN=IItI4

i4 A.

(bW

Fig 2. Expanded Vime o (a) ,Mesh and (b) Presare Con-
tours Around the Box. t=0.4.

MESH: NELEMsc.42, NPOLN17T04T

MESHe NELEM-2WG, NFOIN=13142

(c) 2
(d) IWIN(d [l(b) r

Fig 1. Expanded views of (a) Mesh sad (b) Pressure Con-
tours Around the Box; (c) Mesh and (d) Pressure Contours
tor the Complete Comptutational Domain. t=0.0. Fig 3. Expanded Views of(a) Mesh. (b) Prsure Contours

Around Ithe Box, mnd (c) PrmureContourt Under the Box.



(a)

(ac)

- 44
J al

(b) / , (d) ,

Fig S. Expanded Views of (a) Mesh and (b) Pressure Coa-
tours Around the Bow. (c) Pressure and (d) Vorticity Con-

FPg 4. Presume Contours (a) Atound and (b) Under the tours Under the Box, t=1O.
Bam. two.8

MESH: NELEM=3.44, NPOIN=31623

- 3

LI

(b) 
Fi; 6. Pressue Contours (a) Around and (b) Under .e

Box. t-1.2.

a.
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MESH: N4ELEM&%Oea5, NPO~hI=40872

((a)

Fig S. (a) Premurs Contours Azound the Box; (b) Vorticity
Contours Under the Box. tn1.S.

MESH: NELEM=63446. NPOIN=27040

(a)t

FigT. Ezpeaded'VlewR 0((a) Xftt ad (b) Proonve Cart.
toun Armd the Box; (c) Pnremu* and (d) Verticity Corn-
tour. Undu, the Boan. tml.4.
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MESHt NELEbM2m24ST, NPOKNmtl482 i

- -"-o- "

-
.

Fig 9. Expanded View of (a) Mesh. (b) Pressure, (c) Mach
4umber and (d) Vorticity Contours Asound the Box, t=2.6. -

I"I

Cd)/, / I•
(a) .

Fiq 10. Expa~nded Views of Presuze Contours Around the Fiq 11. Expanded Views of (a) Mesh. (bl ,
Box: (a) t=3.2: (b) t.3.6. ci Mach Number and (d) Vorticity Contours ,roun i -e

Box. t=6.0.
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Excamplea 2 Store Release into Supersonic Free Stream

- Grid Generator: FRGEN2D

- Hydro-Code: FEFLO44 (2-D, ALE-Euler, Remeshing)

Plotting: FEPLOT2D

Details: [Ar.2, Ar.3]

tMf'311 fNiL.F.h: 16220 33fAlN: f$l2I . hIN: ).'7[,01 . NO- O),z.l :i .I'II -|

Store Sepwmatkai1 Problem. T=

lit A1 fII.LPI - .. ,bi • li~ l• IL,}'l') ' L kri'l~•l OUNz 1.).%-U.1i•x ). l.li ~J[ *f -0li

Sto Se\to Pr-kt T= -

''N

K,

VU



Examples 3 Shock Interaction with a Box

- Grid Generator: FRGEN2D

- Hydro-Code: FEFLO44 (2-D, ALE-Euler, Remeshing)

- Plotting: FEPLOT2D
- Kinematic Condition: Free Flight After Onset of Lift.

- Details: [Ar.2, Ar.3]

I.

IESH NJELE- 2936 PIPOIN= L592 PPESSufE mIN-- 0.0CC-CO 44-.

C) d

/1

e) PositiB=at ox in Time
T=0.O T=O.6 T,,.2 Ta,.4

.TI

Shock-Box Interact;on. Free B,
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Examples 4 Shock Interaction with a Box

- Grid Generator: FRGEN2D

- Hydro-Code: FEFLO44 (2-D, ALE-Euler, Reineshing)

- Plotting: FEPLOT2D

- Kinematic Condition: Constrained Until Onset of Lift

- Details: [Ar.2, Ar.3]

B) b)

/ /
MESH NELSM2 MGL NPOIN2 1581 PRSSURE1 MINX (3.00(.00 .~ O55.Ea

c) d

/ I-

e) Position of th* Box iskTi m

T-.1.2 T=1i.6 Tu=2.0 T-2.4T=0. T--2.8.

T-3.2 '

T-O.-

.. ~~Shock•-Box ht.'ta~tion: Constr.•neci B1o:



Examples y von Karman Vortex Street

- Grid Generator: FIGEN2D

- lydro-Code: FEBIC2D (2-D, Semi-Implicit)

- Plotting: FEPLOT2D

- Parameters: Ma-0.1, Re---100

- Details: [Hawaii 1989 AIAA CFD Conf.]

MESH NELEM: 12278 . NPOIN: 6235

t

, PR~~ESSURE MIN- 0.71E•-02 . MQ 0J.72E÷02 . OUC: 33.-3

, -1 ,,Ak,

t _ 1

II



MIESI NELEM: 122,_ 8 • NP0IN: 6 2.35

VEL.SCI TT V[CT RSR

S....., 
I-.

\. \ \ "

-•-.,.•..•_•. .• ....•------,---

• *. U,



Exam ples 6 voni Karman Vortex Street

- Grid Gene~rator: FROEN2I)

-. Hydiro-Codc: FEFLOIG26 (2-D, 131couiprtible, H-re4,)

*Plotting: FEPFLOT2D

-Paramieters: R-1= 1000

-Details: [S1.2]

- -7

7-

-RSU'E MIN 1.0C0 MAX 1.5E0 -UC *5.O**

0- *-- ~ --

AB-E~oMN 1,0E0 MAX 1.5EO OU- 5-O-02 .- . **~-~-*

>- - -

von KrmanVorte Stret a Re=100 -:.EFOC
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IExkmnples Convection Between Coxicent~riii Cyliniders

- Grid Genera~tor: PROEN2D

- Ilydro-Code: PEFL~OIC26 (2-D), Incomprwic .bk, It-
Ref.)

- Plotting: HFPLOYl21)

- Parminoers: d/ddi 3.14, Cyr 122,000, fie 1.0,
Pr 0.71

MESH TEM4PER Oj. ()g 5,K8 ASSI YEL) s DjCs I .UUE*01

*~: : n

~R

N..

PARTICLE TRACES

Convection Between Concentric Cylind&ets
(C r = 122. 000. Re = 1.0. Pr = 0.7 1)



.,- Deais ,.e.---- .....

I

tft

I E×arplo Shoc~k [niSckTan Interactionwdized Leopard-2 TFLa7k
Grid1( Generaitor: F~RGE, N3D

- I~dr-o.Coe: lF~F1O74(3-1. , A1IE-Eitler, !lI-1t4.)

: Pli~otting: 1'EP LOT3I D FE~POST3D

S ~-Details: [:Ae.7, Ac.91

tLm

* ,. .
: •.q9mmt

9. lm•

9m•
•. FEFL074 ~ ~-..i"F LO,

*~l U.
'Eu",

Q FF.LO?4 •,, -- FFLO

SSho~~~k-Tank~ Ineatin(EFO4

'U.
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Examples 9 Shock Interaction with a T-62 'rank

- Grid Generator; FRGEN3D
- Hydrho-Code: FEFLO74 (3-D, ALE-Euler, H-Raf.)
- Plotting: FEPLOT3D, FEPOST3D

- Details: [Ae.7, Ae.10]
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _I
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Examples 10 1-Store Release into Supersonic Free Stream

- Grid Generator: FRGEN3D

-Hydro-Code. FEFLO52 (3-D, ALE-Euler, Remnshing)

- Plotting: FEPLOT3D, FEPOST3D

- Details: [Ar.4]

I :six

-I=

/ 
.

// '4

I anew'i,,, 10,41M,41

FEFL0L25

2II. Mll ,.
2, llSUU

2lIiii M{
2 .1411 

" ,,

2 UYII4I n

3 N6li

* lUinl 

"

I .IU~q•

.. -
""-"FE L0 2 --

*.UU41

r. '" FFL5
iI
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/ ,

/

//

FEFLO52

8.3 im

I

I,-

I.gI. I

I .M

FEFLO52
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Examples 11 2-Store Release into Supersonic Free Stream

- Grid Generator: FRGEN3D I
- Hydro-Code: FEFLO52 (3-D, ALE-Euler, Reineshing)

- Plotting: FEPLOT3D, FEPOST3D

- Details: (Ar.4]

/ •

FEFLO52

-$.Men

3t.48mq
a m

.UK.

gma

3 -Ij

FEFLO52

p. :

a sa
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FEFLO52

3:1M

-3 '

3 .

* ..M-

FEELL522

* uini

I-i

-,4L•

Id-m
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in Delaunay Triangulations.
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I SUMMARY triangles that ate found to exceed certain thresholds of
maximum area or rnaxinunlu skewniess. olmhnes proposes

A new algorithm for the generation of the interior nodes to mneasure skewness as the ratio of the radins of the cir-
for Delaunay triangulations Is given. The method uses a cuniscribed circle over twice tile radius of the inscribed
background grid to interpolate local mesh site pataraetets circle.
that is taken from the triangulation of the given boundary Once such a bad triangle is detected it will be refined
nodes. Geonettric criteria are used to find a -et of nodes by the inzeftron of a new node at the circuincentre of
in a frontal manner. This set is subsequently introduced that triangle. lefintement is perforlnied on tlbe largest
into the existing mesh, thus providing an updated De- triangle in the grid until all triangles ate smaller than
launay triangulation. The procedure is completed when a first threshold value. Then refinement continues on
no more improvement of the grid by inserting new nodes the skewed triangles starting with the one having the
can be achieved, largest circunicircle. The final grid is obtained after all

skewed triangles are smaller than a second area threshold.
2 INTRODUCTION Refining on skewness yields an inmplicit mnechanismn that

increases the node density very close to boundaries with

The purpose of this lecture series is to discuss the achieve- a finer node spacing.
ments and recent advanccs made in the solution of Hlowever, searching for the largest cell or a skewed cell
the E'uler- and Navier.Stokes equiations on unstructured with the largest circnncircle for each new node is a rather
grids. One of the main benefits related to the unstruc- costly procedure and the skewness criterion i., expensive
tured grid approach is the simplicity with which an un- to evaluate since it involves three square roots lduring the
structured grid can be tailored around very complex ge- calculation of the circle ratio. Also the grids produced by
onietries and be adapted to the solution in a subsequent this approach are not as regular as tihe ones given by the
interaction process with the flow solver. Such advantage Advancing Font method. This is due to the fact that
will become even more important as three-dimensional the refinement process is much more random.
calculations become commonplace.
It is desirable that the mesh can be generated with miln-
imum input from tile user. Ideally, one would wish to 3 FRONTAL NODE CREATION
specify only the boundary geometry, and perhaps a func-
tion to specify some desired niesh size. The internal point We introduce here a technique that combines the ideas of
cloud should thea be found automuatically by the grid refining a l)elaunay triangulation of boundary nodes with
generation code. Two methods that satisfy these criteria the :des 0f frontal advance. Inm ovnr method, the front
have become popular and are discussed in other lecture will take the formn of a boundary between a 'inicely' tri-
series contributions angulated region ,n.d a 'badly' triangulated region. The

inethod will be described for two dimensions, but we be-
* The Advancing Front method of Peraire et al. [11, lieve there will be few obstacles to implecmnting it. in

detailed in the contributions of Lohber and Morgan three.
& Peraire. It one looks at a l)elaunay triangulation of a set of bound-

ary nodes (as in figure 1), one can observe that aimnost
* hlohnes' refinement procedure [2) used in a Dlelau- every boundary face is either the short face of a triangle

nay triangulation [3] a- discussed in Ihe lectures by with one very acute angle or else one of two short faces
Barth. in a triangle with one very obutse angle. ln accordance

with our idea of a front that divides nice triangles from
The approach we propose here combines idcas from both bad triangles, we take the boundary to define the initial
methods. a position of such a front. TO begin with, we have no nice
In itself Lelaunay triangulation does not provide an in- triangles, but we will introduce a layer of well-positioned
terior point cloud. A popular approach to overcome this nodes that will aflcx• abe front to advance.
deficiency has been outlined by Iohnues [2]. A l)elau- 'The construction of the new node.; is an easy task. We
nay triangulation of the boundary nodes is taken as ani simply formn an equilateral triangle with the frontal face
initial grid. Figure 1 gives such a triangulation for the srn
three element aerofoil configuration shown in figure 11. and either stretch or compress it to better match the

The initial trianguilationi consists of large, very skewed spacing requirements of the background mesh, this gives
__iiat_ g ti__tsfrersw ideal spacing with the two nodes that form the face. A

"yon Karmtan Institute and University ef MichigKn further check is required to make sure the new node Ls
tUniverity of Michigan sufficiently distant front the remaining nodes ini the grid
$von Karmlan Institute and from the other new nodes. The desired distance is in-



1

I, detect all bad triangles in the grid and find their

Q O short faces,

find a set of nodes to form nice triangles with the
short faces,

3. check whether the new nodes are not too close to any
other node already introduced into the structure,

4. check whether the new nodes are not too close to

any other new node,

5. retriangultte with the set of new nodes.

The steps will bL iepeated until no n, : o inmprovemtent by
node insertion c.%- be achieved.

3.1 Front Detection.

The front consists of the interface between the region of
properly refined triangles and the unrefined region. A
refinement should only take place on a face that has a
refinable triangle on one side and an unrelinable on the
other. If refining was merely based on side ratios, an oh-

-. 0.o0 t-- ruse triangle in the front would lead to the introduction of
three nodes. Figure 3 shows the two nodes that would be
formed from the two short faces in the front of the obtuse

Fig. 1. Triangulation of boundary nodes. The nodes triangle and the node front the face of the acute triangle
on the boundary of a three element aerofoil that neighbors the obtuse one. Not that this extra node
are connected to nodes on the outer bourdary is Ladly placed, but this node should be formed only in
(not shown), nodes on another boundlay or the next stage This would lead to an irregular front, with
nodes on the same boundary. scattered faces #hat may not be conunected and the sub-

sequent refining would have much of the randonmess of
Ilolmes' method.

terpolated on a background mesh that uniquely specifies
the distance between nodes everywhere in the domain.
Nodes that exhibit bad spacing are either merged with
other nodes or discarded. With these new nodes in place, front
the l)elaunay algorithm is re-run and will readily accept
the proposed, nice triangles as it resents skewness in its
triangulation. We will name these triangles 'explicit' in -. ,
the following. Also nice triangles between the new nodes
will be formed as they are guaranteed to be spaced nicely
as well, the 'implicit' triangles. In the rest of the domain
Delaunay still has to construct ai-,te cells, though with
slightly improved shape.

I I Fig. 3: Obtuse triangle along the front with three
now front implicit triangles new nodes formed.*i ! I RA triangle is unrefinable if either it is not skewed or it is

skewed but node spacing around the cell does not allow
further insertion. Checking is simplified by keeping a
"status flag for each triangle to only examine each cell
once, It is to be emphasized that contrary to the usual
Advancing Front method no explicit tracking of the front

o o explicit triangles and thus no expensive overhead is required.

3.2 Node Construction.

Fig. 2: Explicit triangles (striped) and implicit trian- The ideal node to be placed in the mesh would satisfy
gles (squared) that are formed along the old the distance criterion with all neighboring nodes, i.e. the
front and build the new front. distance to all nodes that it will be connected to equals

the background spacing evaluated at the midpoint be-
Again the short faces of these "-cute cells denote a frontier tween these two. Clearly, this is an ill-posed problem.
between the region with nice cells and the region still But even trying to satisfy thc distance condition with
waiting to be refined figu'. 2, and the process can be the two nodes of the frontal face leads to a system of
repeated until all bad trianglhs have vanished. Hence, two quadratic equations. The task will become more
the algorithm can i'e cast into the following steps: antenable with the restriction to isoceles triangles. We
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will carry out the geometrical construction in an approx-
imnate imanner leading to only one lin.a. equation.

Target
"3 2

J,,

mM

Fig. 5: Scalar product criterion to walk from a cell
towards a target

Fig. 4: Short face and constructed node The new
node 3 and the spacing reference node 4 lie at each step a finite distance towards our Point of destiny
on the perpendicular bisecter of the face 3. we must reach our target so this search priccedlure always

converges.

We alpproxinmate the l of the sides 11 and 12 opposite he direction to turn to is given by the nmaximtutn scalar
WtdesI al xnd 2 by 2/vlength of theight I and il all product of the normal on the face and the vector front the
Snodes 1 and 2 by 2/V51 of the height i as found iII an midpoint of that face to the target (figure 5), Of course,
equilateral triangle. Requiring that this approximated only two directions have to be tested once the &-..ch is
"sidelength equals the desired spacing h4 midway between on its way, also it would be rathez wasteful to use unit
node 3 and the midpoint of the hase Af (figure 4), we normals. The search is finished when all scalar products
"find are non-positive, indicating that the target ;c.s either in

"2 (X. - )the cell or on a face of the cell.
h4 = ]x3 - xM[ I (X3 - xhr) V1 -i+ h. lit the worst case the cost of this search is O(vW/") on

( mesh with N nodes. However, once the foreground
where hagt denotes the (esire-d spacing at Al, Vh is the and background cells associated with the new tiode are

local gradit-ot of the background spacing and x3 ,,,s are determined, all of the triangles in the vicinity, where most

the position vectors of nodles 3 and M. As we place the of the remaining operttions take place, are found in a few

new niode along the perpendicular bisector, we can write steps.

X'% - X= A I 3.4 Background Mesh.
'aj -mIT 'Ih l)elaunay triangulation of all boundary nodes is couu-

where 11I is th• unit normal on the base pointing towards putted as an initial triangulation to begin the point gen-
the triangle to be refined. The height for a triangle with eration process. This triangulatiou provides at no extra
counterclockwise sense is thus cost a suitable background ucs-ht to provide a local value

of desired distance between nodes at any location within
hm the convex hull. It will be assumed here that this desir-

- I m, V h oale -distance is a picccwi3c linHea: f.nctim.: of polsifion.
ý, iinterpolated between the nodal values of a triangle in

Note that in the giwvn forrm the altitude of the explicit the background grid. The spacing value at that node is
triangle is indlependent of the length of the base This, computed as the average distance to its two neighboring
coniserves 0iý. thickness of the layer of cells introduced nodes on the boundary. The gradient of the spacing h is
even if the length of the faces varies strongly (figure 9). evaluated for each triangle in the background nteh t using

Gauss' Theorem,

3.3 Searching.

The efficiency of unstructured grid generation methods 2 hl

is very dependent on the way sj-ecilic nodes or cells are

found in the grid. For example Bowyet's algorithm re- where S stands for the surface and s, for the scaled out-
quires the search for a circulncirele that contains a new ward normalss of the background cell.
node and interpolation on a background mesh involves A linear variation between the fine spacing on a body
finding the background cell that contains the point of in- and the coarse spacing on a far-field boundary ill ob-
terest. As already stated, an imliplemnentation of Bowyer's tained when the background triangle connects directly
algorithm usually comes with the storage of the neigh- from the interior to the exterior boundary. But along
bars to each triangle and the position of its circumcen- conkave contours it may happen that l)elaunay connects
tre. ilence, a straightforward way to locate a pomsition between finely spaced interior boundaries and the back-
in a Delaunay triangulation woll be to wa!k along the ground grid will specify a too large area of fine spacing.
Dirichlet tesselation from circulnCentre to circumce|ntre Figure 1 gives an example of such an illconnected back-
closer towards the target. But this method does not nec- ground mesh. It shows a close-up of a multi element
essarily converge as a Voronoi vertex can lie outside the aerofoil, obscured by the triangles formned inside the ele-
its associated triangle. ments. A clearer view of the configuration can be seen in
A method of similar computationa.l cost is to walk front figure 11. The triangles leaving the frame are connected
cell to cell in the direction of the target. As we progress to the outer boundary. However, the initial triangulation



also connects the finely iiscretized trailing edge of the triangle, wo know that there is no node closer to the new
main flap with the lowek side of the iaittn aerofoll and node thatn the three nodes forming that triangle. More-
implies an undesirable high node dnsity in the entire over, the new node to equidistant fiom both ill-connected
iliconnccted area between the ivio elements. boundaries, We then extrapolate front the spaclh.g of the
The problem can easily be circumvented by the intro- Inore finely ditetotized boundary using the average gra-
duction of extra nodes into the backgtound mesh. As the dient of the initial triangulation.
background triangulation consists of very skinny trian-
gleg, only very few nodes will be needed to break up the 3,• Skewness Threshold.
unwanted connectivity. If we connect these few nodes to

a boundary in the background grid we implicitly define So far the term 'bad' ham been u". I for long skinny tri-
the spacing for these nodes in the saint way as for the angles without specifying on what we base this label.
other boundaries. However, this procedure requires extra Front the previous discussion it follows that a criterion is
user input, usrbIly after viewing the background grid and needed that I6 easy to evaluate and that discriminat"s the

j visualizing the grid becomes dillicult in three dimensions. faces to be used in the front An olvious and inexpensive
To be consistent with the philosophy of minintal user in- choice for quantifying the proportions of a triangle is to
put we should have the program introduce the necessary look at ratios of the iiuiated sidelongth over the squared
nodes and merely ask the user which boundaries he does maximunt sidelength. A triangle will be called 'bad' once
not want to have connected. The procedure will be to any of its thvee side tatios drops below a threshold. Con-
detect an illicit liaison and place a backgronid node in- sidering the fact trat a triangle is formed by placing a
between, l)uring a subsequent retriangulation most if not nod, sLomewhere along the perpendicular bisector of the
all of the triangles shared between the two bodies will be. base, one cant estimate threshold values for the side ratios.
broken and again few extra nodes suffice, Figure 6 shows A first estimate can be derived for an acute triangle on
the background mesh inodifid by automatic insertion, a zero-gradient background. In this case l)elatinay Wrian-
Four node" have been introduced from triangles in the gulation will always form an equilateral explicit triangle
area between the main aerotoil ahd the main flap. with the base, and an implicit triangle with the new node.

and the distant node of the previous bad triangle.

0,00 -

(0a)_ (b)

Fig. 7: (a) Refining of air acute triangle (dashed) into
an equilateral triangle (bottonc) and an acute
,ipliit' lre14-glc (p'I); Refin"•ig f an
obtuse trianigle (dashed) into two trianglesSI (full).

-0.1 03 n070 r-io Figure 7 (a) shows the geonmetry in question.The worst
'implicit' triangle is produced when the distant node of
the acute triangle also lies ot, the perp'endicular bisector.

Fig. 6: Background grid automatically modified by If we let the dashed triangle become less and less acute

the ins•rtion of four nodr:- to break up irir- (V will grow and # will becomire siraller. Both atifles will
wanted connmectivity Two of these nodes are be equal if b .646, so that refining an acute triangle

with b < .646 will make the grid worse, lHence for acuteshown between the miajin aerofoil arid the p triangles a good threshold is the side ratio of a trianglennd flap, with b = .646 or

The remaining question is what spacing to apply to these .366.
new nodes. One would like the spacing to rise smoothly
from every body node into the domain to finally match Similar reasoning applies to the obtuse triangle in figure 7
the spacing of the outer boundary. This corresponds to (b), Here the two nodes formed perpeatditular to the two
extrapolating the spacing with an average gradient from short faces will be merged Rubseklnently as they are too
every boundary node towards the autoinatically inserted close to each other. Hence we have to consider the new
node and take the minimum of all these values - an on- node to be plactd on the angular bisector. The smallest
reasonably costly procelure. angle in the old triangulation was o; in the new triangu-
Fortunately, the Delaunay properties make the task at lation it is f. Since 2(a + 1) = X mtatters only improve if
hand a lot more amenable. If we place the new node to o < 4/4. That is, we should only refine obtuse triangles
break ani unwanted triangle at the Vorono, vertex of that for which the side ratio is less than
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One is less fortunate with checking the distance towards
2the other new nodes that are also waiting to be intro-

Smx dJced. Along the front we might find a set of very acute
triangles that can lie rather oblique to it. The initial front

It turns out that the quality of the triangulation is sime- along the boundaries in figure 1 can serve as a good exam-
what insensitive to the choice of the side ratio threshold New nodes that are too close to each other may not
and any value in the range of the two estimates will give lie in neighboring triangles and one cannot make use ofgood results. This allows to use the same threshold for the underlying grid. Extensive search throughout the list

both obtuse and acute triangles. The triangulation will of new nodes has to be performed, but the list contains
change with a different threshold but the minimum angles only 0(V) nodes at a time. This advocates the use
found will remain virtually unchanged. Strong gradients on intelligen ata ture Th at es soe kin
in the background grid might lead to the formation of of an intelligent data structure that provides some kind
explicit triangles that exceed the threshold in the side of bucketing to further reduce the cost of searching and

will retain an optimal count of operations of O(N log N).ratio. T herefore the altitude of the triangle to be form ed O c w e o e r o n o b o l s ,t e r
will be bounded to the height of an obtuse triangle with Once two new nodes are found to be too close, they are
the threshold side length ratio an(i the height of its acute merged. This merging is actually the only step in the al-
counterpart. gorithm that introduces irregularity into an initially reg-

ular mesh. All other steps are independent of the order(/ 2 2 )in which triangles or nodes are encountered. While it isSm, 1 1 <a 2 1generally not important which neighbors are merged, we

Si..)2 4 • • Sm, - 4 do viant to have preferred merging of the two nodes that
ate formed from the two short faces of an obtuse trian-

3.6 Spacing Check. gle as shown in figure 7 (b). If one searches backwards
through the list of new nodes, this pair is encountered

The spacing check balances the mechanism of node intro- first and treated with higher priority.
duction due to excessive skewness by rejecting or merging In order to achieve large minimum angles we may toler-
nodes; in this way grid quality is assured for the implicit ate nodes being closer to each other than allowed b) the 4
triangles. We might want to reject a new node because it background mesh. Otherwise the skewness mechanism
falls too close tho some existing node, or because it fall9 providing refinement may be counterbalanced too much.
too close to another new node. The two cases have to be Initially the number of new nodes is completely deter-
dealt with separately. mined by the number of boundary nodes. As the front
Looking for close nodes that are already introduced, we propagates outwards, the nodes will eventually becomecan make use of the fact. that a Delaunay niesh con- too numerous as the J., "ground mesh demands more
structed with Bowyer's algorithm covers the entire con- and more distance bei t the nodes and the spacing
vex hull. We can construct an enlarged circle around each check will coarsen the 1.. In this way liberal spacing
triangle which is the circumcircle with an added rim of will allow more completely regular rows with the original
the required distance for the new node. If the new node number of nodes around the bodies. On the other hand,
does not fall within that enlarged circle, the distance be- being too lax allows node insertion where no impr.ove-
twec,' the new node and the nodes of the triangle is at ment can be achieved. Good values for a tolerance factor
1e.t, required spacing (figure 8). to be multiplied with the desired spacing hiave been found

to lie in the range between .5 and .75.
It is to be noted that no criterion for too large cells is
needed if the frout emerges from the finely spaced bound-
aries. The spacing mccl mism will gradually coarsen up

'5 I 4 that frcnt until it meets the outer boundary. Further
refinement in the field can be left to solution adaptive in-
teraction with the solver. However, the implementation
would not pose any problems. If, after retriangulation,

•i two connected nodes are fop nd to be too far apart, an-
6 other node can be introduc-,d between them.

/ 3.7 Computational Cost.

""• . Suppose that a total of N nodes are generated in such a
"way that NP new nodes are created every time the front

. ... advances. Bowyer's algorithm takes O(log N) operatioas
to introduce a single node into a triangulation. With
a dissecting data structure like a split-tree the cost of
searching the list of NP new nodes requires O(log NP)

Fig. 8: Figure 8: A new node (A) is contained in the operations. One needs N1-' stages to construct the full
triangl 146, but closest to the node 2. The triangulation; the total cost is thus O(N(p + l)log N).
enlarged circ!es 174, 132, 342 contain A and As p ranges between 0 and 1, the number of operations
require testing. The enlarged ciicle around necessary increases by a factor of two in the worst case
456 does not contain A and excludes nodes 4, when all nodes are formed in one single stage, compared
5 and 6 from testing. to a triangulation of specified nodes. Hence, the method 4

is asymptotically optimal. i "
In a similar fashion to the tree search during the inser- Actual times are given for the three element aerofoil case
tion procedure, the simply connected region can be de- given .in figures 9 through 12. The initial triangulation
termined where nodes that are already introduced might of the 328 boundary nodes took .77 secords on a DEC .0

be too close to a new node. Once a new node is found to 5000/200, L.e, .0023 sec/node. The insertion algorithm
be too close to another old one it is discardcd from the created 2047 interior nodes and used 27 seconds, i.e .013
list. sec/node. Thus, the method for generating new nodes

i .
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and triangulating them costs about five times as much
computer time per node as the 4riangulation alone. Note
that the current implementation does not employ any
tree data structure and therefore the given times could
be reduced further.

4 EXAMPLES

A classic case for an unstructured grid generatol is the
grid around a multi-element aerofoil. Structured grid
generation already requir, s sophisticated extensions to
deal with this proem. rhe background grid for the
aerofoil given in figure 1 was modified by the automatic
insertion of four nodes as seen in figure 6. The initial tri-
angulation is boundary conformal and does not require
introduction of extra nodes according Weatherill's apos-
teriori criterion [11).

0.60.7

-1.7 1.7 5,0
0 20-

Fig. 10: Grid around three-element aerofoil.

-0.20-

0.60 -

-O.CO

--0.10 0.,30 0.110 1.10

Fig. 9: Grid around three clement aerofoil after three
rows of nodes have been inserted. Note the
coarsening of ,he front in the second row on 0.20
the upper surface. The tracking prevents a
breakdown of the front in the region between
the three aerofoils.

Figure 9 shows the grid after three rows of nodes heve
been constructed, the resulting grid is shown in figure 10, -0.20
a close-up of the aerofoil in figure 11. The different rows
of nodes cart be identified clearly in the final triangula-
tion.
On the upper .kurface of the main acrofoil it cant be
demonstrated how essential the construction algorithm
is to grid quality. In tite second row the spacing check
* has eliminated several nodes and the length of the faces -0.r0
in the new front varies from normpal to doubled. Still -0.a 0 30 0.70 Lo
the nodes in the third row are aligned evenly, providing
nearly equilateral triangles again. The disturbances in-

troduced in the second row are completely eliminated in Fig. 11: Close-up of grid around three-element aero-
foil,Lhe fourth row.

The regularity of the grid is entirely due to the frontal
insertion, no smoothing filter .vas applied. Figure 12
shows a detail of the grid between the three elements.
The fronts do not break down and merge into each other
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2. D.G. Holmes and D.D. Snyder, The Generation of
Unstructured Triangular Meshes Using Delaunay
Triangulation, Proceedings of the Second Confer-
encc on Grid Generation in Computational Fluid
Dynamics, Pineridge Press, Swansea, 1988.

3. B. Delaunay, Stir la sphere vide, Bull. Acad. Science
USSR VII: Class. Sci. Mat. Nat. 7,J-800, 1934.

4. .. Peraire, K. Morgan, J. Piero and J. Bonet, Un-
structured Mesh Methods for Computational Fluid
Dynamics, Part. 4, Data Structures, Von Karinan
Institute Lecture Series 1990-06 in Numerical Grid
Generation.

5. D.T. Lee and B.I. Schachter, Two Algorithms for
Constructing a Dclaunay Triangulation, Int. Jour-
nal of Comp. and Inform. Sciences, Vol. 9, No. 3,
1980.

6. M.D. Rees, Numerical solution of the heat equation
on triangular grids, Computing Laboratory, Uni-
versity of Oxford, Numerical Analysis Report 88/2,
1988.

0,738 0.789 0.830 0,S886 7. T. Barth, On Unstructured Grids ard Solvers, Von

Karman Institute Lecture Series 1990-03 in Compu-

Fig. 12: Detail of grid around three-dement aerofoil. tational Fluid Dynamics.

8. S. Rippa, Minimal Roughness Property of the De-
lannay Tr~iangulation, PhD) thesis, Tel-Aviv Univer-

smoothly. Only very few triangles with maximum an- sity, 1989.

gles exceeding 90* can be found. If fronts are aligned 9. T. Baker, Element Quality in Tetrahedral Meshes,
to each other, tie resultiig point cloud is perfectly reg. presented at the 7th International Conference on Fi-
ular as between the main flap and the vane flap. The nite Element Methods in Flow Problems, runtsville,
gradual increase in node spacing between the main aero- Alabama, April 3-7 1989.
foil and the inain flap is due to the automratic insertion
of additional background nodes which are not present in 10- A. Bowyer, Computing Dirichlet Tessellation, The
the foreground grid. Overall, the cell surface varies very Coniputer Journal, Vol. 24, No. 2, 1981
smoothly with a factor of about 100 000 from the small-
est cells at the trailing edge of the vane flap to the largest 11. N.P. Weatherill, Grid Generation, Part3, The De-
cells at the outer boundary. launay Triangulation, Von Karman Institute Lec-
The only user input for the case were the 328 boundary ture Series 1990-06 in Numerical Grid Generation.
nodes and a statement requiring no connection between
the ,ntin aerutoil and the iiak plap. 12. J.-D. Miller. Frontal Node Generation for l)elaunay

Triangulations, Technical Note, Von Kartnan Insti-
5 CONCLUSIONS tute, in preparation.

A frontal inechanisin for the creation of the interior nodes
of a Dela, nay triangulation has been developed. 'lThe
method combines the high neode distribution quality of
the Advancing Front method with the optimal connec-
tivity of the Delat.nay triangulation. Precise control of
aode spacing is achieved by the use of the initial trian-
gulation of the boundary nodes as a background mesh
with nc additional effort of the user. The node genera-
tion dtoes not require explicit tracking of the front and is
independent of the oreer in which triangles are listed.
We are presently working on a generalization that can in-
corl•urate stretching to obtain a non-isotropic triaagula-
tion. All features of this concept readily extend to :hree

, dimensions where the optim1l operation count and the
simplicity of boundary control, front tracking and node
construction of the method become even more important.
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